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ABSTRACT 

Credit Risk, Liquidity Risk and Asset Dynamics:  

Theory and Empirical Evidence 

Rui Zhong, Ph.D. 

Concordia University, 2013 

In this dissertation, we first generalize Leland (1994b)’s structural model from 

constant volatility to the state-dependent volatility with constant elasticity (CEV) and 

obtain the analytical solution for most variables of interest, including first-passage default 

probability, corporate debt and equity value. After incorporating jumps into asset 

dynamics, we develop an efficient algorithm to calculate the first passage default 

probability by adopting a restricted structure of default times and derive numerical 

solutions for the variables of interest. We find that the extra parameter in the CEV 

structural model has a significant impact on the optimal capital structure, the debt 

capacity, the term structure of credit spreads, the duration and convexity of risky debt, the 

equity volatility, the asset substitution impacts and the cumulative default probabilities. 

Further, we incorporate the liquidity risk of the secondary bond market into the 

structural model with a constant elasticity of variance through the rollover channel and 

derive the analytical expressions for the variables of interest with an innovative method 

in Chapter 2. We find that state dependent volatility has noticeable impacts for all the 

interesting results, including the endogenous default boundary, the optimal leverage and 

the credit spreads, which depend on the value of the state dependence parameter.  
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In Chapter III, we compare the empirical performance of the two alternative 

volatility assumptions that we used in our study within the context of the Leland (1994b) 

model. Using time series data from both firm and risk level, We document that CEV 

structural model with the elasticity parameter around -0.67 on average exhibits a superior 

fitting in the CDS spreads across all the maturities. The relationship between the sign and 

value of and the firm specific measures of default risk, such as leverage ratios, CDS 

spreads and current ratios indicates that there is a tendency for  to increase as the risk 

of the firm decreases, but that the tendency is weak and fluctuates. We also note that the 

CDPs generated by the CEV structural model can fit the Moody’s observed data much 

better compared to these with constant asset volatility.  

In the last Chapter, we study the market efficiency between the CDS and Loan CDS 

(LCDS) markets by constructing a CDS and LCDS parity relation under the no arbitrage 

assumption. We document persistent and significant violations of this relation with the 

cross sectional data from both markets. We identify time-varying and significant positive 

arbitrage profits from an artificial default risk-free portfolio that trades in both markets 

and simultaneously longs an undervalued contract and shorts the corresponding 

overvalued contract for exactly the same underlying firm, maturity, currency and 

restructure clauses. We show that the profits cannot be accounted for by trading costs or 

imperfect data about loan recovery rates in the event of default. Using panel regressions 

with macroeconomic and firm-level variables, we find that firm-level informational 

asymmetry and difficulty of loan recovery in case of default are much more important 

than macroeconomic factors in accounting for the arbitrage profits. 
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Chapter I STRUCTURAL MODELS OF THE FIRM UNDER TIME-

VARYING VOLATILITY AND JUMP PROCESS ASSET DYNAMICS  

1. Introduction 

 A very large number of studies, both theoretical and empirical, on corporate bond 

pricing and the risk structure of interest rates have appeared in the literature following the 

pioneering work of Merton (1974) and Black and Cox (1976), which in turn were 

inspired by the seminal Black and Scholes (1973) model of option pricing. These studies 

adopted the methodological approach of contingent claims valuation in continuous time, 

in which the value of a firm’s assets played the role of the claim’s underlying asset and 

allowed the valuation of the various components of the balance sheet under a variety of 

assumptions. This approach has been shown to be sufficiently flexible to tackle some of 

the most important problems in corporate finance, such as capital structure, bond 

valuation and default risk, under a variety of assumptions about the type of bonds 

included in the firm’s liabilities. The resulting models came to be known as structural 

models of bond pricing, as distinct from another class of models known as reduced form 

models, in which there is no link between the default risk of bonds and the firm’s capital 

structure.1  

Under continuous coupon payment and first-passage default2 assumptions, Leland 

(L, 1994a,b) and Leland and Toft (LT, 1996) first studied corporate debt valuation and 

optimal capital structure with endogenous default boundary for infinite maturity debt and 

                                                 
1 For the reduced form models see Jarrow and Turnbull (1995), Duffie and Singleton (1999) and Duffie and 
Lando (2001). These models lie outside the topic of this paper. 
2 Under the first-passage default assumption, a firm will claim default when the asset value first crosses the 
pre-determined default boundary. This default boundary can be determined endogenously (Leland, 1994a,b, 
Leland and Toft, 1996) or exogenously (Longstaff and Schwartz, 1995).  
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finite maturity debt, respectively. Because of the computational complexity of the 

valuation expressions, a major emphasis in the structural models was placed on the 

derivation of closed form expressions, rather than numerical results based on 

approximations3 or simulations.4 Such a focus allowed relatively easy estimations of 

numerical values given the parameters of the model, but at the cost of maintaining simple 

formulations of the mathematical structure of the asset value dynamics, in which a 

univariate diffusion process still follows the original Black and Scholes (1973) and 

Merton (1974) assumption of a lognormal diffusion with constant volatility.5 This is all 

the more surprising, in view of the fact that the option pricing literature has long 

recognized that such an assumption is no longer adequate to represent underlying assets 

in option markets, and has introduced factors such as rare events, stochastic volatility and 

transaction costs. Choi and Richardson (2009) studied the conditional volatility of the 

firm’s assets by a weighted average of equity, bond and loan prices and found that asset 

volatility is time varying. Hilberink and Rogers (2002) and Chen and Kou (2009) extend 

the Leland (1994b) model by incorporating a Levy process with only upward jumps and 

with two-sided double exponential jumps 6 , respectively. In their study of the term 

structure of credit default swaps (CDS), Huang and Zhou (2008) note that time varying 

asset volatility should potentially play a role in structural models in order to fit into the 
                                                 
3 Zhou (2001) and Collin-Dufresne and Goldstein (2001). 
4 Brennan and Schwartz (1978), and more recently Titman and Tsyplakov (2007) are examples of studies 
that rely on numerical simulations. 
5 Most structural models are univariate and assume a constant riskless rate of interest. Longstaff and 
Schwartz (1995), Briys and de Varenne (1997), and Collin-Dufresne and Goldstein (2001) use bivariate 
diffusion models, in which the term structure of interest rates follows the Vacisek (1977) model and the 
asset value is a constant volatility diffusion. As the empirical work in Chan et al (1992) shows, the Vacisek 
model does not fit actual term structure data. Further, Leland and Toft (1996) note that this bivariate 
diffusion refinement plays a very small role in the yield spreads of corporate bonds.  
6 Zhou (2001) was the first to introduce jumps into structural models under the first passage default 
assumption, but no analytical solution is presented and he did not study the impact on optimal capital 
structure with endogenous default boundary. Huang and Huang (2003) also incorporate double exponential 
jumps into a structural model, but they only focus on corporate debt valuation and credit spread.   



3 
 

empirical credit default spread data. Huang (2005), and Zhang, Zhou and Zhu (2008) 

incorporate stochastic volatility and jumps into the Merton (1974) model by assuming 

that default occurs only at maturity and find that incorporating jumps and stochastic 

volatility may help to improve the matching of the top quality credit spreads.  

In this paper we incorporate similar generalizations into the dynamics of the asset 

value in the context of the L (1994b) and LT (1996) models, which allow default at times 

other than the maturity of the debt. We consider several alternative specifications that 

include a state-dependent volatility with and without jumps, and a stochastic volatility, 

again with and without jumps in both the asset value and the volatility processes. For the 

state dependent case we consider the Constant Elasticity of Variance (CEV) model, 

originally formulated by Cox (1975) in the context of option pricing,7 which has an extra 

parameter and includes constant volatility as a special case. By borrowing heavily from 

the option pricing literature we manage to derive closed form expressions for almost all 

the variables of interest in the absence of jumps, including corporate debt value, total 

levered firm value, optimal leverage and equity value. Because of discontinuities, we 

only obtain quasi-analytical numerical solutions for several of these same variables when 

we include in the asset dynamics an independent jump component with multinomial 

amplitudes; for computational purposes default times are constrained to occur at fixed 

discrete intervals. As a special case, we also obtain quasi-analytical solutions for the 

variables of interest for the constant volatility model in the presence of jumps without 

restricting the type of distribution of the amplitude of the jump component.8 

                                                 
7 See also Emmanuel and MacBeth (1982), Cox and Rubinstein (1985), and Schroder (1989). 
8 Kou and Wang (2003) and Huang and Huang (2003) develop analytical solutions for this model, but at the 
price of restricting the jump amplitude distribution to a double exponential.  
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Similar results are also obtained from the stochastic volatility specification with and 

without jumps. In this more complex specification all results, with and without jumps, are 

derived quasi-analytically, with the important difference that without the discontinuities 

due to the jump components the default times are much more tightly spaced, 

approximating the continuous time default case. The general formulation and the nested 

nature of the various specifications allow us to gauge the impact of each additional 

feature of asset dynamics in approximating observed patterns in the variables of interest 

such as credit spreads and default probabilities. For this reason in the numerical 

applications we first compare the various cases of asset dynamics in the absence of jumps, 

and then we introduce jumps in each case. 

Apart from the asset value dynamics, we follow the general assumptions initially 

formulated by Merton (1974), in which default occurs when the asset value hits a lower 

default-triggering threshold. While in Merton’s model default could only take place at 

maturity, Black and Cox (1976), Leland (1994a,b,1998) and LT adopted debt 

assumptions that allowed default to take place before maturity. All these models can be 

included in our formulations, with the mixed jump-diffusion models that we present 

allowing default at discrete predetermined times. To our knowledge, this is the first paper 

to relax the constant volatility assumption of the earlier studies and still derive closed 

form solutions under continuous coupon payment and first passage default assumptions, 

and also the first model to incorporate jumps with distributions other than a double 

exponential at times other than debt maturity.9   

                                                 
9Zhou (2001) is the first paper to introduce jumps into structural models by using simulation. Kou and 
Wang (2003) and Huang and Huang (2003) obtain the analytical solution of the first passage default time 
by restricting the jump amplitude distribution to a double exponential. 



5 
 

Since our extensions have implications for several strands of literature that have 

dealt with different problems in corporate finance, we review briefly the key issues 

examined by the class of models that we generalize. All these issues can be dealt with the 

same type of integrated models of the levered firm that we examine. The main such issue 

is the capital structure choice, which originates in the classic Modigliani and Miller (1963) 

analysis of the levered firm in the presence of taxes, according to which capital structure 

is chosen as a trade-off between the tax advantage of debt and the costs of possible 

bankruptcy. The pioneering work in this area that comes closest to our own approach is 

that of Leland (1994a,b,1998), and LT.10 Since several authors have raised doubts on 

whether the trade-off approach can really be invoked to justify observed leverage ratios, 

several studies focused on agency problems between stockholders and debt holders, or 

stockholders and managers.11 These and other related studies show clearly the importance 

of the structural models in linking the default probabilities and yield spreads to the capital 

structure decision, a linkage that is missing from the reduced form models.  

As already noted, we use the asset value of the unlevered firm as the basic 

underlying process for the valuation of the various components of the balance sheet of the 

levered firm, following Leland (1994a, b) and LT. In a variant of the basic model, 

presented in Goldstein, Ju and Leland (2001), the firm value is estimated from the 

dynamics of the earnings before interest and taxes (EBIT), split between the claimholders 

and the government.12 A direct modeling of the dynamics, division and valuation of the 

firm’s cash flows would in principle also be possible in our models, but it will need to 

                                                 
10 See also, Sarkar and Zapatero (2003), Ju et al (2005) and Titman and Tsyplakov (2007) 
11 See Mella-Barral and Perraudin (1997), Leland (1998), Morellec (2004), and Ju et al (2005). 
12 See also Sarkar and Zapatero (2003).  
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confront the troublesome issue of the valuation of non-traded assets, which is beyond the 

scope of this paper, and which in earlier studies is either avoided or carried out only 

under the most elementary assumptions.13 

We close this literature review by noting a variant of the reduced form models, 

which is particularly popular in the financial mathematics literature. In that stream the 

primary asset dynamics, in the familiar forms of diffusion or jump diffusion, are applied 

not to the asset value but to the equity returns, as in the option pricing literature.14 The 

advantage of this approach is that the equity returns, unlike firm value, are observable 

and available in high frequency data. Its disadvantage is, as with the reduced form models, 

that it does not allow the modeling of the firm’s balance sheet and the linkage of the 

default process with the firm’s capital structure, and for this reason will not be pursued in 

this paper. There exist statistical methods by which the parameters of the asset value 

dynamics can be estimated from the observed dynamics of the equity value for any given 

model.  

In what follows we present in Section 2 the various cases of asset dynamics that 

have been used in the option pricing literature, as well as the fundamental building blocks 

of the L and LT structural models of the firm to which they will be applied. Section 3 

presents the fundamental notions of the cumulative first passage to default probability 

(CFPD) and unit price (UP), on the basis of which all economic variables of interest can 

be computed, and develops the equations in closed form or semi analytical format for 

their estimation within each one of the asset dynamics presented in Section 2. Due to the 
                                                 
13 Sarkar and Zapatero (2003, p. 38, footnote 1) avoid the issue, while Morellec (2004) assumes that agents 
are risk neutral and the approach of Goldstein et al (2001) is only suitable to constant parameter diffusion 
processes for the cash flows.     
14 See, in particular, Carr and Linetsky (2006) and Campi et al (2009).  
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numerical accuracy and convergence issues for the quasi analytical estimations, these key 

building blocks cannot be estimated to an acceptable degree of accuracy and time 

partition for the stochastic volatility models with and without jumps. For this reason we 

present numerical results for FPDP and UP only for the constant and state dependent 

volatilities and compare their performance with and without jumps. Section 4 compares 

all the variables of interest of the full L and LT models for the cases of constant and state 

dependent volatilities, the only cases for which a direct comparison is possible under the 

assumption that default is possible at any time point. Section 5 concludes.       

2. Economic Setup 

2.1 Unlevered asset dynamics 

Following Leland (1994a, b), we consider a firm whose assets are financed by 

equity and debt with a tax-deductible coupon. As in all previous related literature, the 

values of the components of the firm’s balance sheet are estimated as contingent claims 

of the state variable V, the value of the unlevered firm’s assets representing its economics 

activities, which follows a mixture of a continuous diffusion process DV with time-

varying variance t together with an independent Poisson jump process (the physical or 

P- distribution): 

 J t
dV q dt v dW JdN
V

 (2.1) 

Where is the instantaneous expected rate of return of asset; q is the payout rate to 

the asset holders, including coupon payments to debt holders and dividends to equity 

holders; is the jump arrival intensity and J the mean of the logarithm of the amplitude 
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distribution, ln(1 )J ;  W is a standard Brownian motion; and N denotes the number of 

Poisson jumps. Three forms of time varying variance are considered: constant elasticity 

of variance (CEV), stochastic volatility (SV), and stochastic volatility with volatility 

jump (SVJ), which can be expressed by, 

 : t tCEV v V  (2.2) 

 : v
t t tSV dv v v dt v dW  (2.3) 

 : v v v
t t tSVJ dv v v dt v dW J dN  (2.4) 

The constant risk free rate is denoted by r . Under the risk neutral measure (Q-

distribution), Equation (2.1) becomes, 

 Q Q Q Q Q
J t

dV r q dt v dW J dN
V

 (2.5) 

This mixed process continues until the asset value hits or falls below a threshold 

value, denoted by K, for the first time. In such a case, a default event will be triggered 

and liquidation takes place immediately. Assuming the absolute priority is respected, the 

bond holders will then receive 1 K , while the equity holders receive nothing. The 

remaining asset value equal to K is considered as a bankruptcy cost.  

Unlike the case of the constant volatility or the pure CEV diffusion, the derivation 

of the Q-distribution for TV  given its P-distribution is not a trivial process in the presence 

of jumps, unless it is assumed that the jump component is non-systematic. Otherwise, the 

parameters of the jump component of the mixed process need also to be transformed in 
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the transition from the P- to the Q-distribution, in addition to the replacement of by r . 

Similarly, the transition from the P- to the Q-distribution is not trivial for the stochastic 

volatility process, with or without jumps.  In empirical applications in the option pricing 

literature the two distributions are extracted from the underlying and the derivative asset 

markets respectively. Nonetheless, the reconciliation between the two separate estimates 

has not generally been successful. We discuss this issue when we implement the model in 

subsequent sections. 

We denote the bond maturity by T, and the first passage time when the asset value 

reaches the threshold value by . The risk neutral asset value dynamics then become,  

 
, 0

min{ , }, 0

Q Q Q Q Q
J t

t

dV r q dt v dW J dN if t T
V

V V K if t T
 (2.6) 

In what follows we’ll examine two kinds of first passage default time : 

continuous (or unrestricted) default, Tc ,0 , and discrete (or restricted) default, d . 

For discrete default, we discretize the maturity of debt, T, into N sub-intervals and define 

NTt / ; then, tid , 1,2,i NN .  

i Constant Volatility with jumps in asset value 

We define c
tv which is constant and equation (2.6) becomes, 

 
, 0

min{ , }, 0

Q Q c Q Q Q
J

t

dV r q dt dW J dN if t T
V

V V K if t T
 (2.7) 
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Without the jump component the asset dynamics follow a geometric Brownian 

motion with a constant volatility for which an analytical solution for the first passage 

default probability exists.15 Incorporating jump components introduces discontinuities 

into the asset value dynamics, implying that an analytical solution for the first passage 

default probability exists only for particular forms of distribution of the jump amplitude 

such as the double exponential of Kou and Wang (2003), who use Laplace transform 

techniques to derive the first passage default probability.16  Similarly, the numerical 

approximation of the first passage default probability by discretizing Fortet’s equation, 

developed by Collin-Dufresne and Goldstein (2001), does not work after incorporating 

jumps. In the following section, we present a numerical algorithm to approximate the first 

passage default probability after incorporating the jump component without any 

restrictions on the distribution of jump amplitude given the characteristic function of the 

jump amplitude distribution, )(J . The following Lemma, whose proof is obvious, 

applies to this case and is noted for future references.  

Lemma 1: When the asset dynamics follow (2.7) and T  ,  if  the characteristic 

function of the jump amplitude distribution, )(J , exists, then the characteristic function 

of the asset value ln TV   is: 

2 2
ln ( )( ) exp ( ) exp ( ( ) 1)

2
T

c
i V CV Q JTE e i r q T T  (2.8) 

                                                 
15 See Black and Cox (1976), Leland (1994a, b) and Leland and Toft (1996). 
16 Huang and Huang (2003) also used this diffusion process to study the credit spread of corporate bonds.  
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The conditional distribution of TV given the jump diffusion process (2.7) can be 

found by inverting (2.8).  

ii CEV with jumps in asset value 

By combining (2.2) and (2.6), the asset dynamics with CEV and jumps in asset 

value can be written as, 

, 0

min{ , }, 0

Q Q Q Q Q
J t

t

dV r q dt V dW J dN if t T
V

V V K if t T
 (2.9) 

Without the jump components, the parameter , the elasticity of the local volatility, 

is a key feature of the CEV model. For 0 the model becomes a geometric Brownian 

motion with constant volatility. For 0  ( 0 ) (the state-dependent volatility is 

positively (negatively) correlated with the asset price.17  In equity markets, the well-

known “leverage effect” shows generally a negative relationship between volatility and 

equity price. There are also some suggestions that the economically appropriate range is

0 1 ,18 even though empirical evidence in the case of the implied risk neutral 

distribution of index options finds negative values significantly below this range. 

Jackwerth and Rubinstein (2001) find that the unrestricted CEV model when applied to 

the risk neutral distribution extracted from S&P 500 index options is able to generate as 

good out-of-sample option prices as the better known stochastic volatility model of 
                                                 
17 As Emmanuel and Macbeth (1982, p. 536) were the first to point out, for  the local volatility 
becomes unbounded for very large values of V, and there are technical issues concerning the mean of the 
process under both the physical and the risk neutral distribution. This problem is solved by assuming that 
the volatility is bounded and becomes constant for V exceeding an upper bound; see Davydov and Linetsky 
(2001, p. 963), A similar lower bound when  is < 0 prevents the formation of an absorbing state at 0.    
18 See Cox (1996), and also Jackwerth and Rubinstein (1999), who term this model the restricted CEV. The 
arguments in favor of the restricted CEV model are mostly applicable to index options and will not affect 
our formulation.  
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Heston (1993).  Note that all this empirical evidence only reveals the elasticity of 

volatility of equity value but not of asset value. The observed negative relationship 

between the equity value and equity volatility could be generated even with constant 

asset volatility or even with slightly positive elasticity of asset volatility. Hereafter we 

shall study positive, negative and zero scenarios without any restrictions.  

The CEV model yields a distribution of the asset value TV  conditional on the initial 

value tV  and, hence, initial volatility that has the form of a non-central chi-square

2( , , )z u , denoting the probability that a chi-square-distributed variable with u degrees 

of freedom and non-centrality parameter v would be less than z. The shape of this 

distribution is given analytically most often in terms of its complementary form 1-

2( , , )z u , denoting in our case the probability T TV v . For 0 this probability is 

given analytically by,19   

 2 2Pr ( ) 1 ( , , ) ( ,2 , )T Tob V v c b a a b c  (2.10) 

Where  

 

2 ( ) 2 1

2 2( )

,  ( ) ,  ,
2( )

[ 1]

r q T
T t

r q T

a v c V e b
r q

e
 (2.11) 

This distribution is the equivalent of the lognormal when the volatility is constant. It 

has been tabulated and is easily available numerically. Several additional results hold 

about the ),,(2 vuz distribution when the parameter u is an even integer that can 

                                                 
19 See Schroder (1989, p. 213-214). 
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simplify the computations. Nonetheless, the main result necessary for the extension to the 

mixed jump diffusion process by using the chi-square distribution’s characteristic 

function holds even for non-integral degrees of freedom.20 

For the mixed jump-CEV diffusion process (2.9) when T , we derive a quasi-

analytical form of the conditional distribution of the unlevered asset value TV  given the 

initial value tV  the equivalent of (2.1)-(2.2) for the CEV diffusion if the riskless rate r is 

replaced by the instantaneous drift . In order to obtain quasi-analytical solutions we 

shall also restrict the class of distributions of the amplitudes of the jump processes that 

we’ll consider, to discrete multinomial jumps, presenting results only for the binomial 

case without loss of generality. The quasi-analytical form is derived by the inversion of 

the characteristic function of the distribution, for which efficient numerical procedures 

exist. 

Let ,  1,...,iL i n denote the amplitude of the ith jump given n jumps in the interval 

0,T , and let TY denote the jump component in that period, with n
TY , the conditional 

value of TY , where 
1

n
n

T i
i

Y L . From (2.1) and the independence of the diffusion and the 

jump components, we have D
T T TV V Y . The following auxiliary result, proven in the 

appendix, will be necessary for the estimation of the distribution of TV under the mixed 

process. 

 Lemma 2: The characteristic function of the distribution of TV is given by  

                                                 
20 See Johnson et al  (1995, p. 433). 
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 [ ] | ( )T Ti V i Z
T D TE e E E e Y E i y  (2.12) 

Where 2 .T Ty Y , 2
T TZ V , and  

 
2

exp( )
1 2( ) [ ]

(1 2 )

i Z
D b

i c
ii E e

i
 (2.13) 

and the parameters c, b are given by (2.11).  

From this result we can now derive the distribution of TV  under the mixed process 

under a binomial distribution, by inverting the characteristic function given by Lemma 2. 

The following result is also proven in the appendix. 

Proposition 1: Let 2  ,j jl L j u d  and a given by (2.11). Then the probability 

distribution of  TV  is given by 

1

0 0

Pr ( ) 1 Pr ( | , )
!

j j
j iT i i j

T T t u u T T u d
j i

jnT
ob V v V e p p ob Z a N j y l l

ij
(2.14) 

where 

 

1

0

1

0

Im( ( ))1 1Pr ( | , )
2

Im( ( ))1 1
2

T

T

i Z
i j D T

T T u d

i Z i j
D u d

e i yob Z a N j y l l

e i l l
 (2.15) 

Although this distribution is not given in closed form, the expressions (2.14)-(2.15) 

yield semi-analytical expressions for it under the binomial jump amplitude assumption, 

which easily and obviously generalizes to a multinomial one.  
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iii  SV with jump in asset value and jumps in asset volatility (SVJJ) 

The diffusion process of asset value with stochastic volatility and jumps in both 

asset value and asset volatility can be written as follows by (2.1)-(2.4), 

 

, 0

min{ , }, 0

Q Q Q Q Q
J t

v v v
t t t

t

dV r q dt v dW J dN if t T
V

dv v v dt v dW J dN

V V K if t T

 (2.16) 

This diffusion process was first used by Duffie, Pan and Singleton (DPS, 2000) to 

describe the dynamic process of equity value. As with the CEV process, the bivariate 

mixed jump diffusion of (2.16) was also used in option pricing, with the P- and Q-

distributions extracted from the underlying asset and the option market respectively. As 

Eraker, Johannes and Polson (2003, p. 1294) note, such a joint estimation does not 

necessarily reduce the uncertainty in the estimates, unless the jump risk premia are 

arbitrarily restricted. Nonetheless, since in structural models equity and debt are 

derivative assets on the total asset value, SVJJ should also be a candidate process to be 

considered when we want to assess the effects of alternative asset dynamics 

specifications.  

A major difficulty in empirical studies on structural models is that the unlevered 

asset value is a non-tradable asset and its P-distribution cannot be extracted from the 

financial markets. In what follows we study the effects of the SVJJ asset dynamics 

specification on the economic variables of interest and discuss empirical implementation 

in subsequent sections. Note that SVJJ contains stochastic volatility (SV) and stochastic 

volatility with jumps only in asset value (SVJ) as special cases.  
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There are three sources of risk in SVJJ: the stochastic volatility process, the jumps 

in asset value and the jumps in asset volatility. We follow DPS (2000) in the model 

specification, assuming that the jump components and the bivariate diffusion process are 

mutually independent, with ( , )Q v
vCov dW dW , and that the jump amplitude 

distributions in asset value and asset volatility are correlated as well with correlation J , 

and with common arrival intensity . The distribution of the jump amplitude in asset 

variance is exponential with mean v
J  , while the jump amplitude in asset value is 

lognormally distributed with standard deviation, J , and mean v
J J z , where vz is a 

realization of jump amplitude in asset volatility. The following result is extracted from 

DPS. 

Lemma 3: When the asset value dynamics follow (2.16) with T , the bivariate 

characteristic function of the distribution of lnVT and Tv  at time T  conditional on lnV0 

and 0v  at time 0 is, 

 
1 2ln

1 2 0 0

1 2 1 1 0 2 2 0

( , , ln , )

exp ( , , ) ( , ) ln ( , )

T Ti V v SVJJE e V v

A t B t V B t v
 (2.17) 

Where,  

 1 1 1 2 1 20

1( ) (1 ) ( ) 2 log( ) ( , , , )
2 exp( ) 1

t

J
v EA r q t i t D b t h B B
a E Dt

 

 1 1 1( , )B t i   
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 2
exp( )

2exp( )

Dt b DB a aDt C
D

 

Where , , , ,a b c D E and 1 2 1 20
( , , , )

t
h B B  are defined in the proof in appendix B. The 

distribution of TV  conditional on the initial values 0V  and 0v  can now be found by 

inverting (2.17).  

2.2  Stationary debt structure  

We consider a claim such as a corporate bond on this underlying asset, denoted by

( , , )F V v t under the bivariate diffusion case, or ( , )F V t under the state-dependent volatility 

with and without jumps. This claim pays a continuous nonnegative coupon C  per unit 

time as long as the firm is solvent,21 and it must satisfy a partial differential equation 

(PDE) whose form depends on the asset dynamics. For instance, under a general state 

dependent volatility the following PDE has to be satisfied when the firm finances the net 

cost of the coupon by issuing additional equity, with the subscripts denoting partial 

derivatives and denoting the default time. 

21 ( )
2

[ ( (1 ) ] 0  if  0

( , ) (1 ) min{ , }  if  0

VV J V tvV F r q VF F

E F V J F C rF t T

F V t V K t

 (2.18) 

A closed form solution for such an equation for debt claims that are generally time-

dependent is not available even under constant volatility and without jumps. Nor is it 

                                                 
21 The firm is solvent only when the asset value is above the threshold value for bankruptcy all the time and 
never below it, starting from the issue date of this corporate bond. 
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available for the more complex bivariate diffusion asset dynamics, in which the PDE also 

depends on the price of volatility risk. For the constant volatility case without jumps L 

and LT adopted particular debt maturity and repayment structures that allowed the 

solution of (2.18) as if the value of the debt claims were time-independent. In this paper 

we apply the same maturity and repayment structures and solve both the Leland (1994a,b) 

and the LT  models for our asset dynamics cases, but we use L as our base case, since this 

model, with its exponential stationary debt structure, generates the most elegant results22. 

We assume that the debt has a total principal value P  at time 0 when it is issued with 

coupon rate C . As time goes by, the firm retires this debt at a proportional rate g. Thus, 

the remaining principal value of this debt value at time t is gte P , and the debt holders 

receive a cash flow ( )gte C gP  at time t, provided the firm remains solvent. Hence, the 

average maturity of this debt will be, given that no default occurs, 

 1

0

gt
aT gte dt g  (2.19) 

Thus, the average maturity under the L model is the reciprocal of the proportional 

retirement rate. In order to get a stationary debt structure we assume that the firm replaces 

the retired debt with newly issued debt having the same principal and coupon so as to 

keep the total principal and total coupon payments independent of time. We denote the 

total value of all the outstanding debt by ( )D V or ( , )D V v for the bivariate diffusion. 

Because all outstanding debts are homogenous, the initial total principal P, the coupon 

                                                 
22 Compared to LT, the L model yields a simpler analytical solution. The debt service rate is C+gP under 
L, while it is C+P/T under LT. The two models are fully consistent with each other in their results if L’s 
retirement rate g is changed to match the average maturity of debt structure under LT. The LT model is 
discussed in the appendix. 
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rate C, and the retirement rate g (or equivalently, the average maturity  ) define the 

debt characteristics and can be used at time 0 as control parameters to value all the 

outstanding debt. When the volatility of the unlevered asset value is constant L derived 

this value ( )D V  analytically. If the volatility is time-varying then the solution of the 

corresponding PDE depends on the structure of time-varying volatility.  

The key to the estimation of ( )D V or ( , )D V v lies in two basic concepts: the first 

passage default, probability and the unit price. Omitting for notational simplicity the 

arguments ( , , )V v K . The first passage probability is denoted by |f t , where t is 

the probability that the underlying asset hits or falls below the default boundary for the 

first time conditional on the initial status of the underlying asset at time t . Thus, the 

cumulative first passage density (CFPD)  

 ( | ) ( | )
T

t
F T t f t d  (2.20) 

Similarly, we define the unit price (UP) denoted by up  as the price of a security 

which pays $1 when the default event occurs before the maturity T of a claim. In a risk-

neutral world with risk free rate, r , we have, 

 ( | , ) ( | )
T r

u t
p T r t e f t d  (2.21) 

We define also the value of a risky perpetuity ( )d V , corporate debt of an infinite 

maturity such as the one examined in Leland (1994a), to be used as a building block is 

subsequent results 
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 ( ) [1 ( )] ( )(1 ) ,  where ( ) ( ,0)d d d u
Cd V p r p r K p r p r
r

 (2.22) 

Under the Leland (1994b) debt structure the weighted-average maturity of the risky 

corporate debt is aT , where 1/ ag T  from equation (2.19). At time 0 the firm issues 

perpetual debt with principal P and coupon payment C. Since the debt payout rate is 

( )gte C gP  at time t and the debt holders’ claim on the principal is (1 ) gtKe  in case 

of bankruptcy, the value ( , )D V v of this debt at time 0 is, for all asset dynamics, 

 ( )

0 0

( , ) [ ( )](1 ( 0)) (1 ) ( 0)rt gt r g tD V v e e C gP F t dt K e f t dt  (2.23) 

Which becomes after integration by parts, 

 ( , ) (1 ( )) (1 ) ( )d d
C gPD V v p r g Kp r g
r g

 (2.24) 

In the following section we estimate the CFPD and UP for all cases of asset 

dynamics examined in this paper. We derive an analytical solution for the CEV case and 

a quasi-analytical solution for the SV case of asset dynamics without jumps and develop 

an efficient numerical algorithm for all the cases with jumps: constant volatility, CEV 

and SVJJ, all under discrete time default. 

3. First Passage Default (FPD) Probability and Unit Price (UP) 

3.1 Unrestricted default: CEV and SV 

For unrestricted (or continuous) default, we assume that the default events could 

occur at any time point before the maturity of the debt. In other words, the first passage 
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default time is (0, ]T . This assumption has been used in most of the literature of 

structural models. The advantage of this assumption is that it is much easier to arrive at 

an analytical solution for the CFPD and UP under a diffusion process for the asset 

value23. Such an analytical solution is very convenient for the study of many important 

variables such as optimal capital structure, credit spreads, debt capacity, agency cost, etc. 

In this first subsection we focus on the continuous default assumption and derive an 

analytical solution for the CFPD and UP under the CEV diffusion process. We also study 

the CFPD and UP under the SV process by a numerical approximation algorithm 

proposed by Collin-Dufresne and Goldstein (2001).  

i The CEV process 

Without the jump components, the asset dynamic in (2.9) can be written as, 

 
, 0

, 0

Q Q Q
J t

t

dV r q dt V dW if t T
V

V K if t T
 (3.1) 

Since the value of a unit security is also that of a down and out barrier option with 

$1 payment, we can use available results from option pricing to prove the following 

lemmas. Firstly, we study the UP for a claim with infinite maturity. 

Lemma 4: Under a general state dependent volatility  the price of a unit 

security which pays one dollar when the asset value V hits the barrier K under the risk 

neutral distribution is given by 

                                                 
23 See Black and Cox (1976), Leland (1994a, b), Leland and Toft (1996), Kou and Wang (2003) and Sarkar 
and Zapatero (2003).  
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0

( )( ) 1
( )

r r
d

r

Vp r e d
K

 (3.2) 

where  is the decreasing fundamental solution of the following ordinary 

differential equation (ODE) for U(V,t), 

 
2 21 , , , 0, 0

2 VV V U V t r q VU V t rU V t V  (3.3) 

Proof: See Proposition 1 of Davydov and Linetsky (2001). 

When the volatility is constant, the above ODE has a solution 
*

r V V , where 

*  is the solution of a quadratic equation, yielding24:  

 
2

* 2
2r

r V V V  (3.4) 

When the volatility is state-dependent, there is no analytical solution for the general 

form. We have, however, an analytical solution for the state-dependent variance under a 

CEV process given by 

Lemma 5: When the state dependent volatility is given by the CEV process 

V V , the solution of PDE (3.3) is given by 

 

1
2 2

,
1
2 2

,

, 0, 0

, 0, 0

x

k m
r

x

k m

V e W x r
V

V e M x r
 (3.5) 

Where,  
                                                 
24 See Ingersoll (1987, p. 372) . 
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2
2

| | 1, , ,
| | 4 | |

1 1
2 4 2 | |

r qx V sign r q m

rk
r q

 

,k mW x  and ,k mM x  are the Whittaker functions. 

Proof: See Proposition 5 of Davydov and Linetsky (2001). 

The combination of equations (3.2)-(3.5) may now be used to provide the analytical 

solution for the UP while the CFPD is always equal to 1 because of the infinite maturity. 

The Whittaker functions ,k mW x  and ,k mM x  are the fundamental solutions for the 

Whittaker equation and are available in the Matlab (or Mathematica) software.25 Since 

the sign and value of  affect the probability of default by increasing (decreasing) the 

volatility in “bad” states when 0 ( 0 ), the shape of r V  is also strongly 

affected by that parameter. It is a monotonic decreasing (increasing) function with respect 

to asset value V when 0 ( 0 ), In addition, the slope of the function increases with 

the absolute value of .26  

For the claim with finite maturity, T, the semi-analytical solution for UP and CFPD 

could be derived by the following lemma. 

Lemma 6: When the state dependent volatility is given by the CEV process 

V V , the cumulative first passage cumulative default probability, | 0CEVF T , 

and the price of a unit security, | 0up T  equal 
                                                 
25 See Whittaker and Watson (1990, pp. 339-351). 
26 The relevant figures are available from the authors on request. 
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1

2 1

1| 0

1| 0

CEV

rCEV
u

r

V
F T L

K

V
p T L

K

 (3.6) 

Where 1L  denote the inverse of the Laplace transform evaluated at the appropriate 

maturity T and V  is defined in equation (3.5). 

Proof: See appendix. 

There are several numerical algorithms that can be used to invert the Laplace 

transform in order to get | 0CEVF T  and 2 | 0CEV
up T 27 . | 0CEVF T can also be 

estimated numerically with the one-dimensional Fortet equation.  

ii The Stochastic Volatility process 

After removing the jump components in the asset value and the asset volatility 

dynamics (2.16), the asset dynamics with a pure stochastic volatility process can be 

written as, 

 

, 0

, 0

Q
t

v
t t t

t

dV r q dt v dW if t T
V

dv v v dt v dW

V K if t T

 (3.7) 

                                                 
27 Davydov and Linetsky (2001) use an Euler numerical integration algorithm, with the details shown in 
their appendix D, p. 964. Kou and Wang (2003) use the Gaver-Stehfest algorithm, with the details showing 
in their section 5, p. 519. We tried both algorithms in this paper and arrived at the same results given our 
calibration.  
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The correlation between QW and vW is v . To our knowledge, no analytical 

solutions for CFPD and UP exist for this general form of diffusion process. By restricting 

the drift of asset the diffusion process, 0r q , and the correlation 0v

simultaneously, the analytical solution for CFPD and UP can be found by the method of 

images or the eigen-function expansion method28. Since the restrictions are unrealistic, 

we will not discuss this semi-analytical solution here.  

As the continuous property of the asset diffusion process is maintained with the 

stochastic volatility, the Fortet equation algorithm could be used to compute the CFPD 

probability and the UP. Longstaff and Schwartz (1995) first introduced this algorithm 

into the finance literature to solve the default probability with a stochastic interest rate. 

Collion-Dufresne and Goldstein (2001) extend the Fortet algorithm from a one-

dimensional to a two-dimensional Markov process.29 Elkamhi, Ericsson, Jiang and Du 

(2012) applied this algorithm to the first passage default probability calculations with 

stochastic volatility. 

Consider a two-factor Markov process ,t tz v ,where lnt tz V K as in (3.7) with 

a free transition density, denoted by 0 0 0, , | , ,0t tf z v t z v  with 0 0 tz z and a 

probability density that the first passage time through zero at time , given 0 t , and 

the asset volatility takes the value v at that time, denoted by 1 0 00, , | , ,0f v z v . Thus, 

the two-dimensional generalization of the Fortet’s equation can be expressed as, 

 0 0 0 1 0 0 00 0
, , | , ,0 0, , | , ,0 , , | 0, ,

t

t t t tf z v t z v f v z v f z v t v dvd  (3.8) 

                                                 
28 See Lipton (2001) 
29 Collin-Dufresne and Goldstein (2001) also show that the Longstaff and Schwartz (1995) algorithm can 
only approximate the exact solution of their model.  
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The probability density functions 0 ...f  and 1 ...f  can be obtained by the 

discretization algorithm proposed by Collin-Dufresne and Goldstein (2001). Denote the 

maximum and minimum asset variance values as v  and v , respectively. We discretize 

the time T  and asset variance v into TN  sub-periods and vN  sub-intervals, respectively. 

Define jt j t with Tt T N , 1, 2, , Tj NTN, T , and iv v i v with vv v v N

, 1, 2, , vi N, vN, v . The discretized version of (3.8) is,

 0 0 0 1 0
0

, , | , ,0 , , , | 0, ,
T v

t t j i t t
t v v

f z v t z v q t v f z v t v  (3.9) 

Where  

 1 1 0 0, 0, , | , ,0j i i jq t v t vf v t z v  

The 1 ,j iq t v can be calculated recursively as follows, 

11 1 0 1 0 0

1

0 0 0
1 1

, , , | , ,0

, , , | , ,0 , , , | 0, , ,

2,3, ,

v

j j

i t i

Nj

j i t i j k l t i j l k
k l

T

q t v vf z v t z v

q t v v p z v t z v q t v f z v t v t

j NTN, T

 (3.10) 

Given the joint probability density function 0 0 0, , | , ,0t tf z v t z v , the CFPD 

probability with stochastic volatility is given by, 

 0 0 1
1 1

( , , ) ,
t vN N

SV j i
j i

F z v T q t v  (3.11) 
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3.2 Discrete default 

Although the analytical (or semi-analytical) solution for CFPD and UP can be 

derived under a continuous default assumption, this assumption does not allow the 

derivation of CFPD and UP in the presence of jump components. Note also that in the 

empirical world default mostly occurs on certain critical discrete times such as the 

coupon payment date or the maturity date of the corporate bonds. On the other hand, 

incorporating jumps into the diffusion process of asset value seems to be very critical 

especially during financial crisis periods; such jumps cannot be included under 

continuous default assumption.30 In order to be consistent with the discrete default data 

and also to incorporate jump components in the asset diffusion process, we present an 

efficient numerical algorithm for the approximation of CFPD and UP with the discrete 

default assumption under which the first passage default time, tid where, 

Ni 2,1 .  The CFPD and UP of this algorithm converge to the results of continuous 

default when 0t .  

The key to developing the equivalent of equation (3.1)-(3.2) after incorporating 

jump components is the default time density function ( , , )f t V K , the first passage time 

probability distribution for this model for a given 0V . A closed form expression for

( , , )f t V K or for the value of a risky perpetuity does not exist for the mixed process. 

Instead, we develop an algorithm based on time discretization, as in the solution of 

                                                 
30 Kou and Wang (2003) have to restrict the distribution of jump amplitude to be a double-exponential 
distribution in order to derive a semi-analytical solution for CFPD by Laplace transform since the double-
exponential distribution is memoryless. 
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Fortet’s equation,31 using the distributions of TV derived in previous section under each 

scenario. Given ( ) Pr ( )  T t T T t tF v v ob V v V v  , vt K , we set T t t ,  and 

evaluate from (2.10)-(2.11) the probability ( , )t t tF v t v  and the associated density

( , )t t tf v t v  for various values of tv and t tv in the two-dimensional array[ , )K . Define 

also, for
Tt
n

,   

 1 0 1( ) ( 0, ) , , ( , ) ( )t t k t t t t s k s s
K

f v f v v f v f v t v f v dv  (3.12) 

For [2, ]k n . We then have the following result, whose proof is obvious and is 

omitted.  

Proposition 2: If (0, ]T denotes the first passage time to default, 

0 0( 0, ) Pr { 0, }G T V ob T V denotes its distribution, and iQ  denotes the probability that 

the firm asset value will lie below its default value K  at i t given that it lies above it at 

, 1,2 1j t j i 1,  these probabilities are  given by the relations 

1 0 2 1

( 1) 1 ( 1) ( 1)

( , 0, ), (2 , , ) ( , )

( , ( 1) , ) (( 1) , ) ,  [2, ]

t t t
K

i i t i i t i t
K

Q F t K V Q F t K t V f t V dV

Q F i t K i t V f i t V dV i n
 (3.13) 

and 0( 0, )G T V  can be approximated by 

                                                 
31 See Collin-Dufresne and Goldstein (2001). Fortet’s equation cannot be used either in its continuous or in 
its discrete time format, since the asset value path is discontinuous and at default the asset value may be 
less than K . 
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 0
1

( 0, )
n

iG T V Q  (3.14) 

Where ( , ),  1,...,i i tf k t V i nis given by (3.12). 

A key input in evaluating this algorithm is the probability density function 

,T tf V V , which has closed form expression for the constant volatility and CEV. After 

incorporating jumps an analytical expression exists only in the form of the characteristic 

function. The probability density function can be expressed as the inverse Fourier 

Transform of characteristic function, , ,tV , which yields, 

 
1, , ,

2
Ti V

T t tf V V e V d  (3.15) 

The Fast Fourier Transform (FFT) technique32 can be applied here to reduce the 

computational time significantly.  Given 0, 0a b are sufficiently large in absolute 

value, a valid approximation to ,T tf V V is, 

 
1, , ,

2
T

b
i V

T t t
a

f V V e V d  (3.16) 

Let 
b a

N
, j a j and , ,j j tV  for 0,1, ,j NN, . The integral can 

be approximated as, 

 
1

0

1,
2

T

N
i V

T t j
j

f V V e  (3.17) 

                                                 
32 See Carr and Madan (1999). 
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Then, define ,
2 2

T k
k kV

N b a
for k from the same grid as j . Thus, the 

approximation becomes, 

 ,
1 1

2 /

0 0

1 1,
2 2

T kT

N N
iV a i kj Ni V

T t j j
j j

f V V e e e  (3.18) 

The summation term is a discrete Fourier transform, and the FFT technique is 

readily available in computation softwares, such as Matlab, R, etc. In addition, as the 

transition matrix is the same for each time step because of the Markov property and only 

needs to be calculated once, the computational time can be reduced further even for a 

complicated distribution. The key issue in evaluating the results of interest is the proper 

value of a  and b . Although the discrete time methods to estimate the CFPD and UP 

measures are applicable to all asset dynamics presented in Section 2, their practical 

implementation in the SV and SVJ cases is limited for reasons of accuracy and 

computational time to a number of time partitions that is too small for most empirically 

interesting problems, For this reason we limit ourselves in what follows to the constant 

and state dependent volatility cases, and we examine the effects of our discretization for 

these cases. We will test the convergence of the first passage default probabilities 

produced by this algorithm to those under continuous default under the calibration of the 

constant volatility case. 

3.3 Calibrations and numerical results 

In this section, we will test the convergence of restricted default to un-restricted 

default under constant volatility asset dynamics and compare by calibrations the term 

structure of first passage default probabilities and unit prices generated by different asset 
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dynamics, including constant volatility and CEV under un-restricted default. In our base 

case, we assume the risk free interest rate 8%r ; firm’s payout rate 6%q ; initial 

asset volatility 0 20% ; the current asset value $100V ; the exogenous default 

boundary $50K . 33  We consider 1  and 1 , and set 0V  under CEV 

asset dynamic.  

i Restricted default versus unrestricted default 

In Section 3.2, we introduced the concept of restricted default under which the 

default events only occur at pre-specified discrete time points. It can be daily, weekly, 

monthly etc. The discrete default structure is more flexible but also more computationally 

intensive compared to the unrestricted default structure. The most important advantage of 

our algorithm is that it can apply to any asset dynamics including the jumps given the 

analytical expression of the characteristic function of the underlying asset. Theoretically, 

the CFPD probabilities under a restricted default structure should converge to those under 

the unrestricted default structure as the number of discrete default points goes to infinity. 

Numerically, Figure I-1 shows the clear convergence trend of the CFPD probabilities 

under restricted default to those under continuous default when the discrete default 

interval decreases from one quarter to one week.   

[Insert Figure I-1 about Here] 

                                                 
33 The calibration of risk free rate, payout ratio and asset volatility are similar to Leland and Toft (1996). 
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ii CFPD probabilities under CEV and Jumps 

In this section, we will only do a static analysis of the jump impacts on the 

cumulative default probabilities and associated implied volatilities, in which the lowest 

value of is limited to -1.  

[Insert Figure I-2 about Here] 

[Insert Figure I-3 about Here] 

Figure I-2 and Figure I-3 report respectively the term structure of CFPD 

probabilities and term structure of IVs for diffusion-jump and CEV-jump processes under 

varying calibrations. In order to make all the scenarios comparable, we use the base 

calibration for asset dynamics without jumps and set the base case for jump at 

0.05, 0.2, 1/10J J J . Both diffusion and CEV models with and without base 

case jumps are plotted by dashed and solid lines. For the CFPD probabilities, the 

presence of jump components shifts upwards sharply the default probabilities compared 

to that of the base case without jumps across all the models. The shift depends on the 

jump calibration. For instance, increasing jump intensity or the volatility of jump 

amplitude or decreasing the expected value of jump amplitude will increase the CFPD 

probabilities, even doubling the CFPD probabilities for the longest maturity of 20 years 

compared to the no jump case when the intensity is equal to 1/ 2J . As for the term 

structure of IVs shown in Figure 14, we find that the jump components shift the term 

structure of IVs upward from the no jump base case under all scenarios and also twist the 

shape of term structure according to the model. For the constant volatility case( 0 ), 

the jump component would increase the IV for short term debt, not enough for our 
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parameter choices to account for the observed downward term structure of empirical IV, 

but raising the possibility that a higher or a systematic jump risk may indeed explain the 

observed structure. For the CEV-jump models the jump component has a more noticeable 

impact on the long term maturity, especially for positive .  

We conclude that jump components, for all the difficulties that they present in 

deriving analytical solutions, have significant impacts on default probabilities. The 

evidence that we present from our numerical algorithm can only be considered 

preliminary, and more research is needed, especially with respect to improving the 

accuracy of the derived solutions. Such improvements may allow a shorter discretization 

interval and, thus, bring the results of the algorithm closer to the unknown continuous 

time solutions. 

4. The Structural Model Under CEV Diffusion Process 

Since we derived an analytical solution for the value of the risky debt with 

stationary structure as in Section 2 under the CEV diffusion process by combining 

equation (3.2) and (3.5), the analytical solution for the equity and asset value will be 

derived as well in this section. Then we will study in this section the endogenous default 

boundaries, optimal capital structure, term structure of credit spreads, debt capacity, 

duration and convexity of corporate debt, equity volatility and asset substitution effect. 

4.1 Equity value and asset value  

The value of the equity can be derived by valuing the tax shield due to the 

deductibility of the coupon interest and the bankruptcy cost. The corporate tax rate for the 

firm is denoted by w . As the interest paid to the bondholder is tax-deductible, the firm’s 
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total value is increased by the tax shield due to debt financing. However, the bankruptcy 

costs increase as well if the firm issues more debt to finance its projects. According to the 

trade-off theory, the manager of this firm should balance the tax benefit and the 

bankruptcy cost by maximizing the total firm value. This value can be expressed by, 

 , , ( , )v V K V TB V K BC V K  (4.1) 

Where ,v V K  is the total firm value, TB(V,K) is the tax benefit due to debt 

financing and ( , )BC V K  is the bankruptcy cost. For a risky debt with infinite maturity, 

the discount rate under the risk-neutral distribution to calculate the expected present value 

of one dollar when default occurs for the first time is the risk free rate. For a risky debt 

with finite maturity T, the discount rate will be the sum of the risk free rate plus the 

proportional retirement rate g that depends on the maturity of the debt. The tax benefit 

available to the firm equals the total tax benefit for a risk-free bond minus the tax benefit 

loss due to the default event34, which yields, 

 ( ),
( )

r

r

VwC wCTB V K
r r K

 (4.2) 

The bankruptcy cost is the present value of the loss due to the default event, equal to, 

 ( ),
( )

r

r

VBC V K K
K

 (4.3) 

Thus, we have, 

                                                 
34 We assume that the firm always benefits fully from the tax deductibility of coupon payments when it is 
solvent, as in Leland (1994a, b).  
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 ( ) ( ),
( ) ( )

r r

r r

V VwC wCv V K V K
r r K K

 (4.4) 

Since we assumed that the firm is financed by risky debt and equity, the value of the 

corresponding equity equals the total value of the firm minus the total value of the risky 

debt, which yields, 

 

, ,

1

( )
1 (1 )

( )

r r

r r

r g r g

r g r g

E V K v V K D V

V VwCV K
r K K

V VC gP K
r g K K

 (4.5) 

4.2 The endogenous bankruptcy trigger 

In the previous sections, we assumed that default happens when the state variable V 

drops below a default boundary, K. This default trigger value can be determined 

exogenously or endogenously. If a firm cannot choose its default boundary value, then 

this boundary can be determined by a zero-net worth trigger35 or by a zero cash flow 

trigger36. Under the zero-net worth trigger assumption, the default occurs when the net 

worth of the firm becomes negative for the first time, which implies that the default 

trigger value equals the total face value of the outstanding debt, namely K P . However, 

we often observe that firms are still alive even though their net worth is negative in the 

financial markets. Thus, in order to improve the simple zero net worth trigger, Moody’s 

KMV defines as trigger value 0.5*Short LongK P P . Under zero cash-flow trigger, a firm 

claims default when the current net cash flow to the security holders cannot meet the 

                                                 
35 See Brennan & Schwartz (1978), and Longstaff & Schwartz (1995). 
36 See Kim, Ramaswamy, &Sundaresan (1993). 
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current coupon payments, which implies /K C , where  is the net cash flow to the 

security holders. The problem for this trigger value is that sometimes the equity value is 

still positive even though the current net cash flow is zero. In this case, a firm will prefer 

to issue more equity so as to meet the current coupon payment, instead of announcing 

default. On the other hand, if a firm is capable to choose its default boundary value, this 

default boundary value will be set endogenously by maximizing the total firm value. 

Following Leland (1994a) and LT, we may find the optimal endogenous default 

boundary by the smooth-pasting condition, 

 
( , ) | 0V K

E V K
V

 (4.6) 

This default boundary value maximizes the value of the equity at any asset level37. 

Applying (4.6) to (4.5), we get the following results, proven in the appendix. 

Proposition 3: According to the smooth pasting condition (4.6), the endogenous 

default value under the CEV diffusion process, denoted by eK , can be obtained by solving 

following equation for given parameter values ,  and with the auxiliary variables 

defined in (3.5) 

 

11

11 0

r e
e

r e e

r g e
e

r g e e

KwC K
r K K

KC gP K
r g K K

 (4.7) 

Where,  

                                                 
37 See Leland (1994a) 
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Proposition 3 yields an endogenous default boundary by solving equation (4.7). 

Although there is no explicit solution for the endogenous default value, it is 

straightforward to find it from equation (4.7) by using a root finding algorithm, provided 

a positive root exists. We examine the properties of the solution, as well as the other 

variables of interest of the model in numerical examples in the following sections.  

We analyze the impact of state-dependent volatility on endogenous default triggers, 

debt values, optimal capital structure and term structure of credit spreads by considering 

their values in a base case with the following parameters: current asset value 100V , 

risk-free rate 0.08r , firm’s payout rate 0.06q , tax rate 0.35w , proportional 

bankruptcy cost 0.5 , and initial volatility of assets 0 20% . Although some of 

these parameters may not reflect current conditions, they were chosen based on previous 

studies closely related to this paper, such as LT and Leland (2004), with which the results 

of this study need to be compared in order to assess the impact of the more general 

formulation. The remaining parameters will assume various values according to the 

studied topic.  

[Insert Figure I-4 about Here] 

Figure I-4 shows the values of endogenous default boundaries for the L model, 

which is a special case of the CEV structural model when  equals zero, and four CEV 
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structural models with 1, 0.5,0.5,1 . In all cases the endogenous default trigger 

declines as the average maturity of the bond increases. This is consistent with the 

findings in the L and LT models. The economic interpretation is that the equity holder 

would rather sell equity to finance the required cash flow for debt servicing than choose 

to go bankrupt, even though the net worth of the firm may be negative, provided the 

anticipated equity appreciation is greater than the contribution required from the equity 

holders to keep a firm alive. For long term debt structure, the endogenous default 

boundary is usually less than the face value of the debt, which implies that the expected 

appreciation of equity for such a debt structure should be relatively higher than for the 

short-term debt structure. After incorporating the CEV process, we find that the smaller 

 is, the faster the endogenous default boundary declines. If  is negative and large in 

absolute value, and the average maturity of the debt is long enough, the corresponding 

endogenous default boundary could be close to zero, which implies that this firm would 

never choose to go bankrupt endogenously even though the net worth of the firm may be 

negative.  On the other hand, if  is positive and large in absolute value, the endogenous 

default trigger of the CEV model decreases slowly and is greater than that of the L model.  

These changes of endogenous default triggers under the CEV structural model can 

be understood economically from the point of view of the relationship between 

anticipated equity value and volatility. When  is negative (positive), the volatility of 

the asset increases (decrease) when the asset value decreases. Recall that it is well known 

since Merton (1974) that the equity in a levered firm can be interpreted as a call option on 

the value of the assets. Similarly, Merton (1973) showed that in many cases of underlying 

asset dynamics, including those used in this paper, the value of the option is an increasing 
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function of the volatility. It follows that ceteris paribus the anticipated increase in the 

value of the equity will be inversely proportional to the value of , while the default 

boundary will also vary inversely with this anticipated equity appreciation. In other 

words, at low values of V where the probability of default is high, the increase in 

volatility when  is negative will counteract the fall in the value of equity because of the 

fall in V.  

[Insert Figure I-5 about Here] 

Next we examine the effect of the leverage ratio, ( , , ) / ( , , )D V K g v V K g , on the 

default boundary for two different values of maturity, or of its inverse g. The debt value 

at time 0 is set at par, implying that the RHS of equations (2.24) is set equal to P. The L 

model shows a strictly increasing function of this endogenous default boundary with 

respect to the leverage ratio, depicted by the solid lines in Figure I-5. As expected, the 

monotone increasing property of the default boundary as a function of the leverage ratio 

is preserved, but the speed of increase depends on the value of . For the 20-year average 

debt maturity the shape of the function is convex for all . The positive relationship 

between the value of  and the default boundary is maintained for negative ’s at all 

leverage ratios, but not for positive ’s, where we see a reversal for low values of the 

leverage ratio. Again, this is consistent with the option interpretation of the equity, since 

a low leverage ratio corresponds to a deep in the money call option, for which the 

volatility effect is weak and may be swamped by other factors in solving equation (4.7).  

Note also that for the firms with a low leverage ratio and a negative  there is a 

non-endogenous default zone in which a firm would never choose to go bankrupt 
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endogenously, especially for the lowest value of 1 . In Figure I-5, this non-

endogenous default zone with 1 starts from zero leverage and ends at 29% leverage 

for 5-year bonds and at 43% leverage for 20-year bonds. This shows a positive 

relationship between the range of the non-endogenous default zone and the average 

maturity of corporate bonds. By comparing the endogenous default triggers for CEV 

structural models with 1 and 0.5   we see the non-endogenous default zone 

becomes wider if  decreases. Again, this lowering of the default boundary to about zero 

is consistent with the volatility effect that causes ceteris paribus an appreciation of the 

equity treated as an option whenever the underlying value V decreases. In the non-

endogenous default zone, the anticipated equity value is high enough to dominate the 

required cash outflow for debt required to keep the firm alive. Thus, the equity holders 

will choose to retire equity in order to fund the coupon payment for the debt holders until 

the equity value goes to zero. This behavior leads to lower recovery value for the bond 

holders, which increase the risk of corporate bonds.  

4.3 Optimal capital structure 

Under an endogenous default boundary and a pre-determined debt structure, the 

optimal capital structure that maximizes the total firm value can be achieved by altering 

the leverage ratio, the ratio of the total outstanding debt value over the total firm value, 

/D v . Figure I-6 examines the relationship between total firm value and leverage ratio 

for bonds with average maturities from 1 to 20 years, and Table I-1 reports the optimal 

leverage ratios and the values of key endogenous variables at optimal leverage. As the 

average maturity increases, the optimal leverage ratio increases and the optimal total firm 

value increases as well. For instance, for 1-year debt, the optimal leverage ratios are 
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32.88%, 28.44% and 27.20% for 0.5 , 0  and 0.5  respectively, while for 

10-year debt, the corresponding optimal leverage ratios are 66.39%, 59.61% and 51.63%. 

This relationship was first reported by L and is still preserved under CEV volatility.  

[Insert Figure I-6 about Here] 

[Insert Table I-1 about Here] 

Based on the results Figure I-4 and Figure I-5, we anticipate that the optimal 

leverage ratios are affected by the value of  for given debt characteristics. We also 

expect that negative values of  are more leverage-friendly. These do indeed turn out to 

be the case. For intermediate or long term debt structures, the optimal leverage ratios 

increase (decrease) with the absolute value of   when  is negative (positive). For 

instance, the optimal leverage ratio increases from 51.43% to 67.06% when   decreases 

from 0 to -1, and decreases to 40.79% when   increases to 1 for the 5-year average 

maturity debt. For short-term debt structures, less than or equal to 1-year, the optimal 

leverage ratios decrease first and then start to increase when   increases from 0 to 1.  

Similarly, the total firm value and the total debt value are both increasing functions 

while the total equity value is a decreasing function of the average maturity of the debt 

under each scenario considered in Table I-1. This effect is consistent with the trade-off 

theory, which balances the tax benefits and bankruptcy costs of the firm in order to 

maximize the total firm value. Given that the anticipated bankruptcy costs are invariant to 

debt maturity, in long term debt the anticipated tax benefits that accumulate over time 

should dominate the anticipated bankruptcy costs, thus increasing both optimal leverage 
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and firm value. Conversely, the anticipated bankruptcy costs should dominate the 

anticipated tax benefits for short-term debt.  

Under the CEV model the strong effect of  on the optimal leverage also has 

predictable effects on total firm value. If  is negative, the optimal leverage ratio and 

total firm value will increase compared to the L model in which  is zero. The value 

effect is, however, small. For instance, for a 5-year average maturity the total firm value 

increases by about 5.5% when β changes from 0 to -1, a much smaller change than the 

respective changes in the debt and equity values. On the other hand, for positive values of 

β the effects of β on firm value do not have a consistent sign, with the effect dependent 

on debt maturity. Again, the effects on total value are small even though the shifts in the 

composition of capital structure are significant. 

Table I-1 also examines the risk characteristics of the optimally levered firm with 

the equity risk measured by equity volatility and the debt risk measured by debt volatility 

and credit spread. For a given debt maturity, both equity volatility and debt volatility 

monotonically increase when  decreases; the same is true for the credit spread for all but 

the largest maturity. For all the debt maturities considered in Table I-1, the largest equity 

risk and debt risk measured by both risk metrics is always reached when  equals -1, the 

smallest  in our calibrations. On the other hand, for any given value of , the volatility 

of debt increases monotonically with the average debt maturity. The volatility of equity 

and the credit spread, however, first increase and then decrease with maturity for  equal 

to -1,-0.5 and 1, while it increases with maturity for  equal to 0.5 and 0. Apparently, the 

impact of the size of  on optimal debt financing is major. 
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4.4 Credit spread and debt capacity 

We calculate the term structure of credit spreads ( /C D r ) of newly issued debt for 

alternative leverage ratios shown in Figure I-7. For a given maturity debt, a high leverage 

ratio implies a high credit spread. The humped term structure, which first increase and 

then decreases, can be observed clearly for moderate-to-high leverage ratios for all values 

of . These patterns are consistent with the findings of the L and LT models. Under the 

CEV structural model credit spreads are higher for negative than for positive  for all 

maturities and under all the leverage ratios considered in Figure I-7. The humped shapes 

of term structure for moderate-to-high leverage ratios are still preserved with state-

dependent volatility. This credit spread is inversely proportional to dp , the present value 

of one dollar paid to debt holders when default occurs, which is given by Lemmas 1 and 

2 for the risk neutral distribution. Since the default boundary is endogenously determined 

for given , leverage ratio and debt maturity, these are also the variables that affect the 

credit spread. 

[Insert Figure I-7 about Here] 

Debt capacity is the maximum value of total debt under endogenous default 

boundary. L and LT found that debt capacity falls as the volatility of asset value increases 

under their constant volatility models. For the CEV model, debt capacity increases when 

 is negative and decreases when  is positive. Figure I-8 depicts the debt value as a 

function of the leverage ratio for debt with 5-year average maturity. For the three values 

of  in the figure, the maximal debt value tends to be reached at approximately equal 

leverage ratios, which lie between 80% and 90%. Since a firm with a negative  has a 

higher optimal leverage, such a firm would typically experience a high debt value and a 
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high total firm value compared to a firm with a positive  with exactly the same 

leverage ratio. 

[Insert Figure I-8 about Here] 

4.5 Duration and convexity of corporate debt 

For the debt portfolio, the Macaulay duration, which measures the percentage 

change of bond value with respect to the change of the risk free interest rate, is one of the 

most popular and simple ways to measure interest rate risk for bonds with no default risk. 

For coupon-paying corporate bonds with default risk, L and LT studied the relationship 

between effective duration, which measures the real change of bond value with respect to 

the change in the risk free interest rate, and Macaulay duration. They found that the 

Macaulay duration is much longer than effective duration as the leverage ratio (or credit 

spread) increases, which implies that the traditional duration-matching methods for 

immunization should be adjusted when using corporate bonds. Following L, the 

Macaulay duration is given by 1/ ( / )g C D , while the effective duration is equal to 

/ *(1/ )D r D . In Figure I-9, we fix the leverage ratio at 50% and show the 

relationship between Macaulay duration and effective duration for the CEV model under 

different values of . For a constant volatility (solid line), the Macaulay duration is 

generally longer than the effective duration for all maturities, but under the CEV (dashed 

line for 1 and dotted line for 1), the Macaulay duration is much closer to the 

real effective duration for any given effective duration. This implies that the traditional 

duration-matching method should be more effective under state-dependent than under 

constant volatilities. 

[Insert Figure I-9 about Here] 
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For default-free debt, the debt value is a convex function of the interest rate, which 

is a critical property for the traditional duration matching method. However, L and LT 

found that this convexity does not necessarily hold any longer for corporate risky debt 

under the constant volatility assumption, a result confirmed in the scenarios considered in 

Figure I-10 (solid lines). Under the CEV model, the convexity relation may appear again 

depending on the value of . In Panel A of Figure I-10, both the positive  ( 1 , 

dotted line) and the negative  ( 1, dashed line) show a convex relationship for the 

debt with 5-year average maturity and 40% leverage ratio. When, however, the leverage 

ratio increases from 40% to 50% in Panel B, only the negative  preserves the convexity 

relationship. Thus, a dynamic duration-convexity hedge strategy for a bond portfolio 

should be implemented differently for different asset volatility assumptions, debt 

maturity and leverage ratio. For instance, for 20-year average maturity and 50% leverage 

ratio constant volatility yields a bond value that is a concave function of the interest rate, 

while for a CEV process with 1 ,  the traditional duration-convexity hedging 

strategy still works because the convexity relationship still holds.  

[Insert Figure I-10 about Here] 

4.6 Equity volatility  

Most structural models assume asset dynamics following a diffusion process for the 

unlevered firm value. Since this is a non-tradable asset and an unobservable variable, we 

need to estimate the drift and volatility of asset value from observable data of traded 

assets, such as the stock or bond price. For the model presented in this paper the 

parameters of the diffusion process may be estimated by a maximum likelihood method 

initially proposed by Duan (1994) that yields the asset value and volatility from observed 
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equity value. By using three different models of asset dynamics, Ericsson and Reneby 

(2005) show that this method has superior properties compared to other estimators.  

Once the parameters of the diffusion process have been estimated by the maximum 

likelihood method, it is straightforward to get the equity volatility and equity value. Since 

the analytical solution for the value of the equity has been derived under the CEV 

structural model, the volatility is given by applying Ito’s Lemma to equation (4.5), equal 

to 

 
( )

Equity
E V V V

V E
 (4.8) 

[Insert Figure I-11 about Here] 

In Figure I-11, we assume that the firm is optimally levered under an endogenous 

default boundary and we examine the relationship between equity value and equity 

volatility for the L model and CEV structural models with varying ’s. The L constant 

volatility model (solid line) indicates a negative correlation between equity value and 

equity volatility. As we use the whole US market’s average data for our calibrations, this 

negative correlation is consistent with the findings for the market index data, which is 

popularly known as the “leverage effect”. Under the CEV model, the correlation between 

equity value and equity volatility depends on the value of . The smaller  is, the 

stronger the negative correlation between equity value and equity volatility. For instance, 

the dotted line ( 0.5)  is steeper than the solid line ( 0 ) and the dashed line 

( 1) is even steeper compared to the case 0.5 . On the other hand, when  is 

positive and large enough, it can also indicate a positive relationship between equity 
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value and equity volatility, as in the case that 1  (plus-dashed line). While for the 

market index the leverage effect has been well documented, for an individual firm the 

correlation between equity value and equity volatility could be positive or negative, 

depending on the particular firm’s characteristics. Thus, the CEV model allows more 

flexibility and generalization than the constant volatility model, which is only a special 

case of CEV structural models.  

4.7 Agency effects: debt maturity and asset substitution 

We noted in Table I-1 that the total firm value increases when the maturity of the 

debt becomes longer under optimal capital structure. Rationally then all firms should use 

long-term debt to finance their projects in order to maximize total firm value. Why are 

short-term debts still traded in the bond market? Leland and Toft (1996) answer this 

question by studying the asset substitution effect for different debt maturities. The asset 

substitution originated from Jensen and Meckling (1976) and refers to the effect that 

equity holders will try to transfer value from debt to equity by increasing the riskiness of 

the firm’s activities. By analyzing the relationship between  E and /D  for 

different levels of asset value, LT find that  

“the existence of potential agency costs implies that firms with higher asset risk will 

shorten their optimal debt maturity as well as decrease their optimal amount of debt.”  

[Insert Figure I-12 about Here] 

We re-examine the asset substitution effect in the context of the CEV model in 

Figure I-12. This figure shows the sensitivity of equity value and debt value to the total 

asset risk, V , respectively for the maturities of 1-year, 5-year, 10-year and 
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perpetual. When the signs of E and /D  are the same, the interests of equity 

and debt holders are positively correlated, indicating a zero asset substitution effect, and 

vice versa.  The constant volatility case ( 0 ) is our benchmark for each scenario. As 

maturity increases from 1-year to perpetual, the asset substitution effect increases for all 

the scenarios being considered, which is consistent with LT’s findings. For 1 the 

asset substitution effects are more severe, especially for intermediate- and long-term 

maturity, compared to those of the benchmark cases. On the other hand, for 1, most 

of the time the interests of equity holders are in line with those of the bond holders, 

provided the asset value is greater than the corresponding bankruptcy trigger for each 

maturity, indicating that increasing asset risk will decrease both equity value and debt 

value simultaneously. These observed stylized factors imply that firms would use short-

term debt and  suboptimal amounts when their asset value follows a CEV process with 

negative correlation between asset value and asset volatility, the most commonly 

assumed feature of asset dynamics. 

5. Conclusion 

In this Chapter, we have presented a new structural model of the firm that 

generalizes the asset dynamics assumptions of Leland (1994a,b) and Leland and Toft 

(1996), among others. The generalizations are twofold. First, we introduce a state 

dependent volatility that varies with the underlying asset, the value of the unlevered firm, 

under the constant elasticity of variance form. We derive closed form expressions for 

almost all the variables of interest on the balance sheet, including corporate debt values, 

total levered firm values and equity values. By comparing the term structure and unit 
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price generated by CEV and stochastic volatility asset dynamics given an exogenous 

default boundary, we found that CEV is a simplified form of stochastic volatility and 

could mimic the term structure of CDP generated with stochastic volatility to a certain 

extent. Under the derived endogenous default trigger we study the impact of state 

dependent volatility on default probabilities, optimal leverage, credit spreads, debt 

capacity, duration and convexity of corporate debt, and the agency effects of debt. Most 

of the results are given implicitly, but efficient numerical methods allow us to reach the 

solutions easily. 

Second, we introduce jump components into both the simple, the state dependent 

and stochastic volatility diffusion dynamics. We derive quasi-analytically the asset value 

distribution under log-normal jumps with constant volatility, multinomial jumps with 

state dependent volatility and double jumps with stochastic volatility and derive an 

efficient discrete time algorithm for the first passage time distribution under restricted 

default times. Although the lack of analytical expressions prevents several important 

derivations, we nonetheless establish that the presence of even unsystematic jump risk 

increases significantly default probabilities and the term structure of default volatilities.    

An interesting question is whether the new structure model provides a better fitting 

for the cross section empirical data from equity, debt, option and CDS market. To answer 

this question, the empirical study will be conducted and results will be discussed in 

Chapter 3. 
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Appendix  

A. The value of corporate debt under the CEV model and the LT debt assumptions 

In LT’s stationary debt structure the firm continuously sells a constant amount of 

new debt with maturity T  and redeems the same amount of matured debt in order to keep 

the total outstanding principal and coupon payment rate constant and equal to P  and C , 

respectively. Suppose ( , , )d V K t  denotes the price of one unit of outstanding debt with 

finite maturity t , continuous coupon payment C , and principal P , which can be 

expressed by 

 0

0

,0
, ,

(1 ) ,0

rs rt

rs r

t

e Cds e P t
d V K t

e Cds e K t
 (A.1) 

Given the first passage probability density function ( , , )f V K  under the CEV 

process, we define, omitting arguments for notational simplicity 

 
0

( , , ) ,
t

rB e f V K dt  (A.2) 

The expected price of one dollar payment when default occurs during the period 

(0,t). From equation (3) in LT we find the price of this bond equals 

 , , 1 ( ) 1 ( ).rtC C Cd V K t e P A t K B t
r r r

 (A.3) 
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( )A t , the cumulative first passage default probability, was defined in Section 3.3. 

Under the CEV process analytical forms for ( )A t  and ( )B t  are given in the following 

Lemma. 

Lemma A1: When the state dependent volatility is given by the CEV process 

V V , the first passage cumulative default probability,) ( )A t  and the expected 

price of one dollar payment when first passage default occurs during the period from 

time 0 to t equal 

 

1

1

( )1
( )

( )1
( )

r

r

VA
K

V

t

tB
K

1 (1 (
(
(1
((

1 1 rr1
 (A.4) 

Where  denote the inverse of the Laplace transform evaluated at the appropriate 

debt maturity t and  ( )V  is defined in equation (3.7) 

Proof:  It suffices to prove the second part of (A.4) since the first part follows 

immediately by setting r=0. By definition the Laplace transform ( )  of ( )B t is given 

by 

 
0 0 0

Λ ( , , ) 1
t

t r t r
Te e f V K d dt e E e dt  (A.5) 

By changing the order of integration (A.5) becomes 

 
0 0

1Λ ( , , ) ( , , )rt re dt e f V K d e f V K d  (A.6) 
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Since the RHS of (A.6) is a constant times the value of a $1 perpetual claim in the 

first passage time under the CEV distribution, (A.4) follows immediately from (A.6) by 

Lemmas 1 and 2, QED.  

By inserting equation (A.4) into (A.3), we arrive at the solution for the price of risky 

corporate debt with finite maturity  under the CEV diffusion process. Thus, under the 

LT model’s stationary debt structure, the value of all outstanding debt with maturityT , 

the equivalent of (3.8)-(3.9) for 1g T   , is from (A.3),  

 0

, , , ,

1 1 ( )

T

t

rT

D V K T d V K t dt

C C e CP I T K J T
r r rT r

 (A.7) 

Where  

 
0 0

1 1( ) ,   ( )
T T

rtI T e A t dt J T B t dt
T T

An analytical expression for I T   is  

 
0

1 1( ) ( )
T

rt rTI T e A t dt B T e A T
T rT

 

Unfortunately there is no analytical solution for J T  , which must be evaluated 

numerically from the function B(T) estimated by(A.4).  

Note that for debt with maturity t the first passage probability density function, 

( , , )f V K  should be exactly the same for both L and LT stationary debt structures under 
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the CEV process. Hence, we may define the equivalent retirement rate  as the one that 

makes the expected price of a one dollar payment when default occurs equal under both L 

and LT debt structures, or &'L L TB g B t for t corresponding to aT  and g=g’ in (3.2). 

 
'

0 0

( , , ) ( , , )rr
t

ge f V K d e f V K d  (A.8) 

Since the RHS of (A.8) is available analytically from the inversion of the Laplace 

transform in the second part of (A.4), the value of corporate debt under the LT stationary 

debt structure can be found for any t from (A.8) by applying the equivalent retirement 

rate 'g  and setting t=g’-1. 38 

B. Proof of Lemmas and Propositions 

Proof of Lemma 1 

The characteristic function (2.8) of a non-central 2 variable is a well-known 

result.39 (2.7) follows then immediately from (2.6) and the definitions of TZ  and Ty , QED. 

Proof of Lemma 3 

We have the bivariate diffusion Process (2.16) under risk neutral distribution. With 

correlated Brownian motions , , ,v v
Jt t

d W W dt d N N dt  and the auxiliary 

variables are given by, 

                                                 
38 Note, however, that the total debt (A.7) in the LT model is not equal to the total debt given by (3.9) for

1g T , but, given T , we  can find the corresponding retirement rate g by setting the total debt value of 
(A.7) equal to that of (3.9).  
39 See, for instance, Walck (2007, p. 110). 
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H , (1,1)
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H , (1,2) 2
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H  (B.2) 

 0l , 1

0 0
0 0

l  (B.3) 

We conjecture the structure of the bivariate characteristic function as follows, 

 1 2 1 2( , , , , ) expV v t A BV B v  (B.4) 

Following Proposition 1 of Duffie, Pan and Singleton (2000) , we have to solve the 

following system of ordinary differential equations, 

 1 1 2 2 1 2 1 2( ) ( , ) ( , ) ( ( , , , ) 1)J
A r q B t vB t h B B
t

 (B.5) 

 1 1( , ) 0B t
t

 (B.6) 

 22 2
2 2 2 2

( , ) ( , ) ( , )B t aB t bB t c
t

 (B.7) 

Subject to the boundary condition 1 1 2 2(0) 0, (0) , (0)A B i B i . Define another 

set of auxiliary variables as, 

 2 2
1 1 1

1 1, , ( )
2 2v va b B c B B  (B.8) 

Apparently, 
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 1 1 1( , )B t i  (B.9) 

 Thus,  

 2
1 1 1

1 1, , ( )
2 2v va b i c i  (B.10) 

We know that (B.7) is a standard Riccati equation and 1 2
b Dy

a
is one of the 

particular solution, where 2 4D b ac . Define 
2 1

1z
B y

. Thus,  

 2 1
1B y
z

, 2
2

1B z
t z t

 (B.11) 

Insert (B.11) into (B.7) and rearrange the terms, 

 z Dz a
t

 (B.12) 

(B.12) is a first order linear differential equation and the general solution is given by 

 
exp( )

exp( )

a Dt C
Dz

Dt
 (B.13) 

where C is a constant and determined by the boundary condition. Therefore, we 

have 

 2
exp( )

2exp( )

Dt b DB a aDt C
D

 (B.14) 

As we know 2 2(0)B i , apply to (B.14) and have, 
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 2

2

2
2

b D a iaC
D b D a i

 (B.15) 

We define, 

 2

2

2
2

b D a iE
b D a i

 (B.16) 

Thus, 

 2
1 exp( ) 1

2 exp( ) 1
E DtB b D

a E Dt
 (B.17) 

Plug (B.9) and (B.17) into (B.5) and solve this first order ordinary differential 

equation, we have 

1 1

1 2 1 20

1( ) (1 ) ( ) 2 log( )
2 exp( ) 1

( , , , )

J

t

v EA r q t i t D b t
a E Dt

h B B

 (B.18) 

As we assume that jumps in asset value lnV and jumps in asset variance v  are 

simultaneously correlated with common arrival intensity c . The marginal distribution of 

the jump amplitude in asset variance is exponential with mean v
cJ  conditional on a 

realization, v
Jz of the jump amplitude in asset variance, the jump amplitude in asset value 

is normally distributed with mean V v
cJ J Jz  and variance 2

cJV . 

Thus, we have 
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2 2
1 1

1 2
2 1

1exp
2( , )

1

V
cJ cJV

v v
cJ J cJ

x x
h x x

x x
 (B.19) 

Therefore,  

1 2
1

2 2 1 2
1 1 2 2 1 2 1 10

1 2

2 ln( )
1( ( , ), ( , ), , ) exp
2

Dtt V
cJ cJV

k E kk t a
k Ee kh B s B s ds i

k k
 (B.20) 

Where, 

 1 21, 1
2 2

v v
J Jm b D m b D
a a

 (B.21) 

 1 1 1 2 2 1,v v
J cJ J cJk m i k m i  (B.22) 

Therefore, the bivariate characteristic function of asset value and asset volatility is 

given by Lemma 3. 

 Proof of Proposition 1 

The characteristic function inversion (2.10) is well-known; see, for instance, Heston 

(1993, p. 331). (2.9) follows then immediately by noting that 

Pr ( ) Pr ( )T Tob V K ob Z a  and that 

1Pr ( ) [Pr ( , )]i j
T T T u dob V K E ob V K N j y l l , QED.    

Proof of Proposition 3 

Under CEV diffusion process, the equity value can be found from equations (4.5), 
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Where,  
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Where, 

 2
2

1( ) ,,
4

r q
x V sign r q m  

1 1
2 4 2 | ( ) |

rk
r q

1 11 1
2 42 4

 

,k mW x  and ,k mM x  are the Whittaker function.  

 

 

 

Following Leland (1994a), the smooth pasting condition implies,  

 
( , ) | 0V K

E V K
V

 (B.25) 

We define, 

 , ,' ' ', ,k m k mW x M x xW M x
x x V
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From the Mupad notebook in Matlab software40, we have,  

 

1,'
,

1,'
,

1
2

( 0.5) 1( )
2

k m
k m

k m
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W xkW W x
x x
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From (B.23) we have, 

( , ) 1 11 1 r gr

r r g

VVE V K wC C gPK K
V r K V r g K V

(B.27) 

Where,  
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Applying the smooth pasting condition that sets the RHS of (B.27) to 0, we have 

1 11 1 0r gr

r r g

KKwC C gPK K
r K K r g K K

 (B.28) 

Where,  
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which corresponds to equation (4.7), QED. 

                                                 
40 The first derivative of the Whittaker function with respect to x can be found by command: diff(whittakerM(a,b,z),z) 
and diff(whittakerW(a,b,z),z) 
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Figure I-1: Convergence of Restricted Default 

This figure depicts the term structure of cumulative default probabilities for both restricted default and 
unrestricted default with constant volatility asset dynamics. It is assumed that the risk free rate, payout rate, 
initial asset volatility, initial asset value and exogenous default boundary are the same as in the base case. 
Under restricted default, weekly (dash line), monthly (dash-dot line) and quarterly (dot line) default is 
considered. Under continuous default, the cumulative default probabilities are calculated by the analytical 
expression in Leland and Toft (1996) and shown by solid line. 
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Figure I-2: FPCD probabilities for CEV with jumps 

This figure depicts the CDPs for diffusion-jump model ( 0 ) and CEV-jump models ( 1, 1) 
under varying calibrations of jump parameters. The dashed lines show the diffusion model and CEV model 
without jumps. The solid lines show the base case for the diffusion-jump and CEV-jump models. For the 
base case of jump calibration, 0.05, 0.2J J

and 1/10J
. The dashed-dot lines show the case of 

1/ 2J
; the dot lines show the case of 0.1J

; the plus lines show the case of 0.4J
 with the other 

parameters same as in the base case. The initial asset value, 
0 $100V , risk free rate, 0.08r , payout ratio, 

0.06q  and initial asset volatility 
0 20% . The exogenous default boundary equals $50 for all the 

scenarios.  
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Figure I-3: Term structure of IVs for CEV with jumps 

This figure depicts the term structure of IVs for diffusion-jump model ( 0 ) and CEV-jump models 
( 1, 1) under varying calibrations of jump parameters. The dashed lines show the diffusion model 
and CEV model without jumps. The solid lines show the base case for diffusion-jump and CEV-jump 
models. For the base case of jump calibration, 0.05, 0.2J J

and 1/10J
. The dashed-dot lines 

show the case of 1/ 2J
; the dot lines show the case of 0.1J

; the plus lines show the case of 0.4J
 

with the other parameters same as in the base case. The initial asset value, 
0 $100V , risk free rate, 

0.08r , payout ratio, 0.06q  and initial asset volatility 
0

( )
t

A t f d . The exogenous default 

boundary equals $50 for all the scenarios.  
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Figure I-4: Endogenous Default Trigger as a function of average maturity  

This figure depicts the values of endogenous default triggers for the Leland (1994b) model (bold solid line) 
and CEV structural models with  (dashed line),   (dotted line),  (Bold dotted line) 
and  (bold dashed line). It is assumed that current asset value , current debt value , 
risk free rate , the firm’s payout rate , tax rate , and proportional bankruptcy 
cost . The coupon rate is determined by making the debt issued at par value under the endogenous 
default boundary. The initial volatilities are the same for all these scenarios, and . For each given 

 under the CEV diffusion process, .  
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Figure I-5: Endogenous default trigger as a function of leverage ratio  

This figure depicts the value of the endogenous default trigger with respect to the leverage ratio under the 
Leland (1994b) model (solid line) and CEV structural models with  (Bolded dashed lines), 

 (Bolded dotted lines),  (dotted lines) and (dash lines). It is assumed that current asset 
value , risk free rate , the firm’s payout rate , tax rate , and 
proportional bankruptcy cost . The coupon rate is determined by making the debt issued at par 
value under the endogenous default boundary. The initial volatilities are the same for these scenarios and 

. For each given  under the CEV diffusion process, . 
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Figure I-6: Total firm value as a function of leverage ratio  

This figure depicts the total firm value with respect to the leverage ratio under the Leland (1994b) model 
(solid line) and CEV structure models with (dashed lines) and  (dotted lines). Three 
scenarios of average debt maturity are considered, ,  and . It is assumed that current 
asset value , risk free rate , the firm’s payout rate , tax rate , and 
proportional bankruptcy cost . The coupon rate is determined by making the debt issued at par 
value under the endogenous default boundary. The initial volatilities are the same for these scenarios and 

. For the given  under the CEV diffusion process, .  
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Table I-1: Characteristics of optimally levered firms under different models 

This Table exhibits the characteristics of optimally levered firms under the Leland (1994b), Leland and Toft (1996) , and CEV structural models with 1-
year’s, 5-years’, and 10-years’ average maturity. It is assumed that current asset value  dollars, risk free rate , the firm’s payout rate 

, tax rate , and proportional bankruptcy cost . The leverage is chosen by maximizing total firm value and the coupon rate is 
determined by making the debt issued at par value under the endogenous default boundary. The initial volatilities are the same for these scenarios and 

. For each given  under the CEV diffusion process, . 

Models Coupon 
(Dollars) 

Bankruptcy 
Trigger 

(Dollars) 

Optimal 
Leverage 
(Percent) 

Firm 
Value 

(Dollars) 

Equity 
Value 

(Dollars) 

Total Debt 
Value 

(Dollars) 

Equity 
Volatility 
(Percent) 

Total Debt 
Volatility 
(Percent) 

Credit 
Spread 

(Basis Points) 
1-year Average Maturity 

 3.59 37.52 39.05 108.59 66.18 42.41 35.63 0.71 48.31 
 2.86 36.72 32.88 107.06 71.87 35.20 31.33 0.2 14.46 
 2.35 36.25 27.20 108.19 78.76 29.42 26.26 3.04E-3 0.23 

 2.54 38.76 28.90 110.00 78.21 31.80 25.94 3.24E-4 0.03 
L( ) 2.44 35.67 28.44 107.06 76.61 30.45 27.99 3.12E-2 2.3 

5-year Average Maturity 
 8.70 51.83 67.06 119.44 39.34 80.10 58.40 8.90 286.30 

 7.11 50.98 61.00 115.44 45.02 70.42 51.37 6.09 210.31 
 3.99 41.72 42.75 112.74 64.54 48.20 32.85 0.67 27.51 

 3.76 41.29 40.79 114.33 67.69 46.64 30.24 0.14 6.45 
L( ) 5.23 46.36 51.43 112.99 54.88 58.12 40.82 2.69 100.51 

10-years Average Maturity 
 9.09 46.95 70.43 123.37 36.49 86.89 55.50 9.93 245.62 

 8.07 49.51 66.39 119.38 40.12 79.26 52.70 8.06 218.09 
 5.17 44.62 51.63 115.71 55.97 59.74 37.67 1.91 64.78 

 4.58 43.27 47.74 116.83 61.05 55.78 33.60 0.53 20.98 
L( ) 6.60 48.09 59.71 116.63 46.99 69.64 45.69 4.92 147.46 

Infinite Average Maturity 
 9.75 36.23 77.44 130.43 29.43 101.00 52.03 11.20 165.33 

 9.20 42.97 74.65 126.85 32.16 94.69 52.06 10.13 171.30 
 7.42 45.72 65.84 123.29 42.12 81.17 45.63 4.62 114.32 

 4.98 36.19 50.73 120.95 59.60 61.35 33.52 0.39 12.36 
L( ) 8.38 45.37 70.58 124.43 36.61 87.82 49.53 7.69 153.83 
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Figure I-7: The term structure of credit spreads under different leverage ratio 

This figure depicts the term structure of credit spreads for the Leland (1994b) model (solid line) and CEV 
structural models with  (dashed lines), and  (dotted lines) under 40% (Top), 50% (Middle) 
and 60% (Bottom) leverage ratios. It is assumed that current asset value  dollars, risk free rate 

, the firm’s payout rate , tax rate , and proportional bankruptcy cost . The 
coupon rate is determined by making the debt issued at par value under the endogenous default boundary. 
The initial volatilities are the same for these scenarios and . For the given  under the CEV 
diffusion process, .  
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Figure I-8: Debt value as a function of leverage 

This figure depicts the value of debt for different leverage ratios under the Leland(1994b) model(solid line), 
CEV structural model with  (dashed line), and  (dotted line). It is assumed that current asset 
value  dollars, risk free rate , the firm’s payout rate , tax rate , and 
proportional bankruptcy cost . The coupon rate is determined by making the debt issued at par 
value under the endogenous default boundary. The initial volatilities are the same for these scenarios and 

. For the given  under the CEV diffusion process, . The average maturity of debt is 
assumed to be 5 years. 
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Figure I-9: Effective duration with respect to Macaulay duration  

This figure depicts the change of effective duration of bonds with respect to their Macaulay Duration for 
the Leland (1994b) model (solid line)and CEV structural models with (dashed line) and 

(dotted line). It is assumed that current asset value  dollars, risk free rate , the firm’s 
payout rate , tax rate , and proportional bankruptcy cost . The coupon rate is 
determined by making the debt issued at par value under the endogenous default boundary. The leverage 
ratio is assumed to be 50%. The initial volatilities are the same for these scenarios and . For the 
given  under the CEV diffusion process, .  
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Figure I-10: Bond price as a function of the risk-free interest rate 

The graphs depict the bond price per $100 face value as a function of risk-free rate of interest for the 
Leland (1994b) structural model (solid lines) and CEV structural models with (dashed lines) and 

(dotted lines). Panel A shows the bonds with 5-year average maturity and 40% leverage ratio; Panel 
B shows the bonds with 5-year average maturity and 50% leverage ratio; Panel C shows the bonds with 20-
year average maturity with 40% leverage ratio; and Panel D shows the bonds with 20-year average maturity 
with 50% leverage ratio. It is assumed that current asset value  dollars, the firm’s payout rate 

, tax rate , and proportional bankruptcy cost . The coupon rate is determined by 
making the debt issued at par value under the endogenous default boundary when the interest rate is 8%. 
The initial volatilities are the same for these scenarios and . For the given  under the CEV 
diffusion process .  
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Figure I-11: Volatility of equity with respect to the level of equity value  

This figure depicts the volatilities of equity under the Leland (1994b) model (solid line) and CEV structural 
models with  (dashed line), 0.5  (dotted line), 0.5  (star-dashed line) and 1 
(plus-dashed line). It is assumed that current asset value 100V  dollars, risk free rate 0.08r , the firm’s 
payout rate 0.06q , tax rate 0.35w , and proportional bankruptcy cost 0.5 . The average maturity 
of debt is 5 years. The leverage ratio is the optimal leverage ratio computed under the endogenous default 
boundary. The coupon rate is determined by making the debt issued at par value under the ndogenous 

default boundary. The initial volatilities are the same for these scenarios and 0 20% . For the given  

under the CEV diffusion process 
0 /V .  
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Figure I-12: Sensitivity of equity and debt values to total asset risk  

This figure depicts the sensitivity of equity value and debt value to total asset risk measured by the 
volatility of assets, for 1-year, 5-year, 10-year and perpetual bonds, shown under the L model with solid 
(dashed) lines for the sensitivity of equity (debt), under the CEV structural model with β 1 with plus-
solid (plus-dashed) lines for the sensitivity of equity (debt), and the CEV model with β 1 with star-solid 
(star-dashed) lines for the sensitivity of equity (debt). The total coupon payment and face value of debt are 
determined such that the capital structure is optimal for firm value V 100 . The particular values for each 
bond refer to Table I-1. It is assumed that the risk free rate 0.08r , the firm’s payout rate 0.06q , tax 
rate 0.35w , and proportional bankruptcy cost 0.5 . 
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Table I-2: Characteristics of firms under different models with jumps 

This table reports the characteristics of firms for Leland’s model (L), Leland’s model with jump (L-J), CEV 
structural model (CEV) and CEV structural model with jump (CEV-J). The bonds pays continuous coupon 
and the coupon payment equals the continuous coupon in Table I-1 for each scenario. The default events 
only occur on the semi-annual basis and the default boundary is equal to the endogenous default boundary 
of the optimally levered firm in Table 1 for each scenario. The intensity of the jump is 1/10J . The 
jump amplitude for L-J follows a log-normal distribution and for CEV-J follows a binomial distribution 
with 0.05, 0.2J J

. It is assumed that current asset value 100V  dollars, the firm’s payout rate 
0.06q , tax rate 0.35w , and proportional bankruptcy cost 0.5 . The initial volatilities are the same 

for these scenarios and 0 20% . For each given  under the CEV diffusion process, 
0 /V . 

 Models Leverage 
(Percent) 

Firm  
Value 

(Dollars) 

Equity 
 Value 

(Dollars) 

Total Debt  
Value 

(Dollars) 

Credit  
Spread 
(Basis 
Points) 

1-year maturity bond 

L( 0 ) L 0.2829 107.63 77.18 30.45 1.29 
L-J 0.2849 106.87 76.42 30.44 1.39 

 1 CEV 0.3867 109.92 67.42 42.50 44.66 
CEV-J 0.3907 108.73 66.24 42.49 44.99 

0.5  CEV 0.3263 107.93 72.71 35.22 12.09 
CEV-J 0.3293 106.92 71.71 35.21 12.26 

  0.5  CEV 0.2709 108.58 79.16 29.42 0 
CEV-J 0.2737 107.48 78.07 29.41 0 

 1 CEV 0.2923 108.76 76.96 31.80 0 
CEV-J 0.2965 107.22 75.43 31.79 0 

5-year maturity bond 

L( 0 ) L 0.5125 114.58 55.86 58.72 90 
L-J 0.5154 113.11 54.81 58.30 97 

1 CEV 0.6718 123.00 40.38 82.63 253 
CEV-J 0.6792 120.42 38.63 81.79 264 

0.5  CEV 0.6094 118.06 46.12 71.95 188 
CEV-J 0.6155 115.79 44.52 71.28 198 

 0.5  CEV 0.4255 113.62 65.27 48.35 25 
CEV-J 0.4299 111.95 63.82 48.13 29 

 1 CEV 0.4064 114.83 68.15 46.67 5.6 
CEV-J 0.4117 113.02 66.49 46.53 8 

10-year maturity bond 

L( 0 ) L 0.5984 118.61 47.64 70.97 130 
L-J 0.5989 116.90 46.88 70.02 143 

 1 CEV 0.7112 126.52 36.54 89.98 210 
CEV-J 0.7138 124.04 35.50 88.54 227 

0.5  CEV 0.6683 122.05 40.49 81.56 189 
CEV-J 0.6706 119.65 39.41 80.24 206 

 0.5  CEV 0.5153 116.99 56.70 60.29 58 
CEV-J 0.5180 114.94 55.40 59.54 68 

 1 CEV 0.4760 117.57 61.60 55.96 18 
CEV-J 0.4802 115.34 59.95 55.39 27 
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Table I-3: Characteristics of firms under different models with jumps 

This table reports the characteristics of firms for Leland’s model with jump (L-J) and CEV structural model 
with jump (CEV-J) under varying jump calibrations. The 5-year bond pays continuous coupon and the 
coupon payment equals the continuous coupon in Table I-1 for each scenario. The default events only occur 
on a semi-annual basis and the default boundary is equal to the endogenous default boundary of the 
optimally levered firm in Table I-1 for each scenario. For the base case, the intensity of the jump is 

1/10J
. The jump amplitude for L-J follows a log-normal distribution, and for CEV-J follows a 

binomial distribution with 0.05, 0.2J J
. It is assumed that current asset value 100V  dollars, the 

firm’s payout rate 0.06q , tax rate 0.35w , and proportional bankruptcy cost 0.5 . The initial 
volatilities are the same for these scenarios and 

0 20% . For each given  under the CEV diffusion 
process, 

0 /V . 

Models Leverage 
(Percent) 

Firm 
Value 

(Dollars) 

Equity 
Value 

(Dollars) 

Total Debt 
Value 

(Dollars) 

Credit 
Spread 

(Basis Points) 
L-J( 0 ) 

Base Case 0.5154 113.11 54.81 58.30 97 
 1/ 5J  0.5182 111.71 53.82 57.89 103 

 1/ 20J  0.5140 113.84 55.33 58.51 94 

 0.25J  0.5156 112.87 54.68 58.19 99 

 0.15J  0.5153 113.33 54.93 58.40 95 

 0.1J  0.5178 112.13 54.07 58.07 101 

 0.05J  0.5109 114.84 56.17 58.67 91 
1 

Base Case 0.6792 120.42 38.63 81.79 264 
 1/ 5J  0.6866 117.87 36.94 80.93 275 

 1/ 20J  0.6755 121.71 39.50 82.21 258 

 0.25J  0.6799 120.09 38.44 81.64 266 

 0.15J  0.6787 120.68 38.78 81.90 262 

 0.1J  0.6858 118.33 37.18 81.15 272 

 0.05J  0.6681 124.11 41.19 82.92 249 
1 

Base Case 0.4117 113.02 66.49 46.53 8 
 1/ 5J  0.4165 111.34 64.97 46.37 11 

 1/ 20J  0.4093 113.82 67.23 46.59 7 

 0.25J  0.4126 112.66 66.18 46.49 8.8 

 0.15J  0.4110 113.29 66.73 46.56 7.5 

 0.1J  0.4152 111.87 65.43 46.45 9.5 

 0.05J  0.4065 114.72 68.09 46.64 6.2 
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Chapter II STATE DEPENDENT VOLATILITY, LIQUIDITY RISK AND 

CREDIT RISK 

1. Introduction 

The credit spread of a firm is defined as the yield increment of its bonds over the 

riskless rate. This spread is a key component of a firm’s financing cost, and reflects 

primarily its default risk, but also other essential factors, such as the liquidity risk of its 

bond market and general macroeconomic conditions. The default risk has been modeled 

theoretically, and measured empirically, in a large number of studies on corporate bond 

pricing and the risk structure of interest rates, following the pioneering work of Merton 

(1974) and Black and Cox (1976), which in turn were inspired by the seminal Black and 

Scholes (1973) model of option pricing. The resulting models came to be known as 

structural models of bond pricing, as distinct from another class of models known as 

reduced form models, in which there is no link between the bonds of a given risk class 

and the firm’s capital structure. 41  The liquidity of the firm’s bond markets was till 

recently studied independently of its default risk. Ericsson and Renault (2006) develop a 

structural bond valuation model to simultaneously capture liquidity and credit risk 

directly and find positive evidence between the illiquidity and default components of 

yield spreads. An important recent study by He and Xiong (2012)42 use structural model 

through the rollover channel to combine the effects of both default risk and liquidity risk. 

The framework followed the well-known Leland and Toft (1996) structural model of the 

firm, in which the basic stochastic process of the value of the unlevered firm’s assets was 
                                                 
41 For the reduced form models see Jarrow and Turnbull (1995), Duffie and Singleton (1999) and Duffie 
and Lando (2001). These models lie outside the topic of this paper. 
42 See also Ericsson and Renault (2006) , who found a positive correlation between bond market illiquidity 
and the default components of the yield spread. 
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constant volatility diffusion. They found that the market value of debt decreases and the 

endogenous default boundary increases in the presence of liquidity shocks in the bond 

market, which confirmed the positive relationship between liquidity risk and credit spread.  

The adoption of Leland and Toft (1996) framework provides analytical solutions for 

debt and equity values in the presence of liquidity risk, but has to inherit the limitation of 

the constant volatility assumption. This is a common feature of structural models, since 

the complexity of the valuation expressions places a major emphasis on the derivation of 

closed form expressions, rather than numerical results based on approximations 43  or 

simulations.44 Such a focus allowed relatively easy estimations of numerical values given 

the parameters of the model, but at the cost of maintaining simple formulations of the 

mathematical structure of the asset value dynamics, in which a univariate diffusion 

process still follows the original Black and Scholes (1973) and Merton (1974) assumption 

of a lognormal diffusion with constant volatility.45 This is all the more surprising, in view 

of the fact that the option pricing literature has long recognized that such an assumption 

is no longer adequate to represent underlying assets in option markets, and has introduced 

factors such as rare events, stochastic volatility and transaction costs. Note also that 

empirical evidence shows that this assumption does not hold. Choi and Richardson (2009) 

studied the conditional volatility of the firm’s assets by a weighted average of equity, 

bond and loan prices and found that asset volatility is time varying. In their study of the 

                                                 
43 Zhou (2001) and Collin-Dufresne and Goldstein (2001). 
44 Brennan and Schwartz (1978), and more recently Titman and Tsyplakov (2007) are examples of studies 
that rely on numerical simulations. 
45 Most structural models are univariate and assume a constant riskless rate of interest. Longstaff and 
Schwartz (1995), Briys and de Varenne (1997), and Collin-Dufresne and Goldstein (2001) use bivariate 
diffusion models, in which the term structure of interest rates follows the Vacisek (1977) model and the 
asset value is a constant volatility diffusion. As the empirical work in Chan et al (1992) shows, the Vacisek 
model does not fit actual term structure data. Further, Leland and Toft (1996) note that this bivariate 
diffusion refinement plays a very small role in the yield spreads of corporate bonds.  
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term structure of credit default swaps (CDS), Huang and Zhou (2008) similarly note that 

time varying asset volatility should potentially play a role in structural models in order to 

fit into the empirical credit default spread data.  

In this Chapter we revisit the combined effects of default risk and liquidity risk in a 

generalized model of the dynamics of the asset value by assuming that the diffusion 

volatility is state-dependent, varying with the asset value according to the constant 

elasticity of variance (CEV) model. Compared to constant volatility diffusion, the CEV 

model has an extra parameter and includes constant volatility as a special case. This 

model has had several applications in the realm of option pricing, and has even been 

mentioned in the context of structural models of the firm as early as 1976.46 The fact that 

it has not attracted more attention is probably due to its analytical and computational 

complexity at a time when computational technology was relatively undeveloped.   

In spite of the significant additional computational complexity of CEV we manage 

to derive closed form expressions for all the variables of interest, including corporate debt 

value and equity value. Other variables of interest such as the endogenous boundary and 

the optimal leverage under endogenous default boundary can be estimated numerically, 

as they are in several constant volatility models.  As a result of the flexibility provided by 

the extra parameter, our structural model under the CEV process is able to produce 

numerical results that are considerably closer to the historical record of yield spreads, 

liquidity risk and default probabilities than the earlier constant volatility structural models.  

                                                 
46 See Cox and Ross (1976, pp. 163-165). This article examines the CEV model in two special cases, 
discussed further on in this paper. 
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The main economic justification for introducing state dependent asset volatility in 

credit default models of the firm is that volatility risk has increasingly been recognized as 

an important factor in the pricing of financial assets.  Although the inverse variation of 

firm equity volatility with firm value can be justified theoretically because of the well-

known leverage effect, the empirically documented index volatility fluctuations cannot be 

similarly justified, and it transmits itself to individual firms through capital market 

equilibrium.47 An advantage of the CEV model is that it can approximate more complex 

stochastic volatility situations while remaining theoretically and empirically tractable.    

Our main building block is the structural model of Leland (1994b), itself an 

extension of that author’s seminal contribution published that same year. This model has 

some minor computational advantages in the derivation of closed form expressions, while 

retaining most of the attractive features of the subsequent Leland and Toft (1996). Leland 

(1994b) is similar to Leland (1994a) insofar as it uses infinite maturity debt financing, but 

it does achieve a debt structure with a finite average maturity by continuously retiring and 

refinancing the debt at a fixed rate with perpetual bonds. As a result, the debt maturity 

effect can be studied by focusing on the rollover rate, while the equivalence of this 

model’s results with Leland and Toft (1996) can be easily demonstrated by an 

appropriate choice of parameters.48 Further, the continuous debt rollover allows the study 

of the illiquidity effects of the bond markets on both equity and debt, while the default 

boundary is chosen endogenously by maximizing the value of the equity, as in Leland 

and Toft (1996).  

                                                 
47 See the empirical results for both market index and individual firms in Driessen et al (2009). 
48 This equivalence is demonstrated in the appendix to the Chapter 1 for both fixed volatility and CEV 
models. 
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Our approach has certain advantages vis-à-vis other attempts to generalize the asset 

dynamics of structural models. Hilberink and Rogers (2002) and Chen and Kou (2009) 

extend the Leland (1994b) model by incorporating a Levy process with only upward 

jumps and with two-sided double exponential jumps, 49  respectively. Apart from the 

highly stylized nature of the jump component model, which was chosen for its 

mathematical convenience, their diffusion component has constant volatility. Zhang, 

Zhou and Zhu (2008) incorporate stochastic volatility and jumps into the Merton (1974) 

model, but by necessity assume that default occurs only at maturity; they find that 

incorporating jumps and stochastic volatility may help to improve the matching of the top 

quality credit spreads. Elkamhi, Ericssion, Wang and Du (2012) introduce stochastic 

volatility into the asset value diffusion process and study the impact of volatility risk 

premium on the credit spread. Their results can be obtained only by numerically solving 

the two-dimensional Fortet equation approximation method for the first passage time 

distribution.50  

In this Chapter we present generalized expressions for both equity and debt values 

in the presence of rollover risk under CEV that include constant volatility as a special 

case. We show theoretically and for all elasticity values that increases in the rollover risk 

parameters reduce the values of both debt and equity. In the numerical estimations with 

simulated data we find that the sign and magnitude of the elasticity parameter are major 

determinants of the model’s results, on their own or in their interaction with other 

features of the model like leverage and debt maturity. As with constant volatility, the 
                                                 
49 Zhou (2001) was the first to introduce jumps into structural models under the first passage default 
assumption, but no analytical solution is presented and he did not study optimal capital structure with 
endogenous default boundary. Huang and Huang (2003) also incorporate double exponential jumps into a 
structural model, but they only focus on corporate debt valuation and credit spread.   
50 See Colin-Dufresne and Goldstein (2001).  
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endogenous default boundary increases with the size of the rollover risk parameter, while 

a positive (negative) elasticity raises (lowers) the endogenous default boundary for all 

cases. Similarly, the elasticity parameter emerges as a major determinant of the optimal 

leverage in all cases, with the size of its effect depending on the maturity of the debt. 

Our theoretical results on the effects of liquidity risk in the CEV model parallel 

those of He and Xiong (2012) for the constant volatility case in the Leland and Toft 

(1996) model. Specifically, the liquidity premium reduces the value of both debt and 

equity and increases the level of the endogenously chosen default boundary. Comparing 

fixed and state dependent volatilities, the CEV model reduces the value of equity more 

than the constant volatility case, especially for the shorter maturities, while it reduces the 

value of debt for negative elasticity and leaves it approximately equal to the constant 

volatility case for positive elasticity. On the other hand, the effect on the endogenous 

boundary depends crucially on the sign of the elasticity, resulting in almost all cases in a 

lower boundary for negative and higher for positive elasticity than for constant volatility. 

2. Economic Setup and Debt Valuation 

2.1 The CEV diffusion model distribution for the unlevered asset 

Following Leland (1994a,b), we consider a firm whose assets are financed by equity 

and infinite maturity debt with a tax-deductible coupon. As in all previous related 

literature, the values of the components of the firm’s balance sheet are estimated as 

contingent claims of the state variable V, the value of the unlevered firm’s assets 

representing its economics activities. If r  denotes the riskless rate, q  the payout rate to 
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the stockholders, and 1 ( )tV V the state-dependent volatility, we have under the risk 

neutral distribution: 

 
( ) ,  if 0

 if 0

Qt
t

t

t

dV r q dt V dW t T
V

V K t T
 (2.1) 

In (2.1) it is assumed that the diffusion process continues until the asset value hits or 

falls below a threshold value, denoted by K, for the first time . In such a case, a default 

event will be triggered and liquidation comes in immediately. Assuming the absolute 

priority is respected, the bond holders will then receive (1 )K , while the equity holders 

receive nothing. The remaining of asset value that equals to K  is considered a 

bankruptcy cost.  

The parameter , the elasticity of the local volatility, is a key feature of the CEV 

model. For 0  the model becomes a geometric Brownian motion with constant 

volatility. For 0  ( 0 ) (the state-dependent volatility is positively (negatively) 

correlated with the asset price.51 In equity markets, the well-known “leverage effect” 

shows generally a negative relationship between volatility and equity price. There are 

also some suggestions that the economically appropriate range is 0 1 ,52 even 

though empirical evidence in the case of the implied risk neutral distribution of index 

options finds negative values significantly below this range. Jackwerth and Rubinstein 

                                                 
51 As Emmanuel and Macbeth (1982, p. 536) were the first to point out, for 0  the local volatility 
becomes unbounded for very large values of V, and there are technical issues concerning the mean of the 
process under both the physical and the risk neutral distribution. This problem is solved by assuming that 
the volatility is bounded and becomes constant for V exceeding an upper bound; see Davydov and Linetsky 
(2001, p. 963), A similar lower bound when  is < 0 prevents the formation of an absorbing state at 0.    
52 See Cox (1996), and also Jackwerth and Rubinstein (1999), who term this model the restricted CEV. The 
arguments in favor of the restricted CEV model are mostly applicable to index options and will not affect 
our formulation.  
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(1999) find that the unrestricted CEV model when applied to the risk neutral distribution 

extracted from S&P 500 index options is able to generate as good out-of-sample option 

prices as the better known stochastic volatility model of Heston (1993). Most of the 

option pricing literature has concentrated on two special cases, the square root model 

with 
1
2

 and the constant volatility model with 1, since these generate more 

tractable option pricing expressions.53 Hereafter we will present our numerical results for 

both positive and negative values of the elasticity without any restrictions in our 

theoretical results.  

The distribution of the asset value TV  conditional on the initial value 0V  has the form 

of a non-central chi-square 2( , , )z u v , denoting the probability that a chi-square-

distributed variable with u degrees of freedom and non-centrality parameter v would be 

less than z. This distribution is given analytically most often in terms of its 

complementary form 1- 2( , , )z u v , denoting in our case the probability T TV v . For 

0 this probability is54   

 2 2Pr ( ) 1 ( , , ) ( ,2 , ),T Tob V v c b a a b c  (2.2) 

Where  

 

2 ( ) 2 1

2 2( )

,  ( ) ,  ,
2( )

[ 1]

r q T
T t

r q T

a v c V e b
r q

e
 (2.3) 

This distribution becomes the lognormal when the volatility is constant. It has been 

tabulated and is easily available numerically. Several additional results hold about the
                                                 
53 See Beckers (1980) and Cox and Ross (1976).  
54 See Schroder (1989, p. 213-214). 
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2 ( , , )z u v distribution when the parameter u is an even integer that can simplify the 

computations. Nonetheless, the main result necessary for the extension to the mixed jump 

diffusion process by using the chi-square distribution’s characteristic function holds even 

for non-integral degrees of freedom.55 

2.2 Stationary debt structure, rollover risk and debt value  

The values of contingent claims on the value of a firm whose assets’ dynamics 

follow an equation such as (2.1) are given by the solution of a partial differential equation 

(PDE), which expresses the notion that in the risk neutral world the instantaneous return 

on the value of the claim should be equal to the riskless rate. Merton (1974) and Black 

and Cox (1976) derived closed form solutions of the equation for the case of pure 

discount bonds. A time dependence term in this PDE prevents the derivation of a closed 

form solution for the pde when the claim is a conventional finite maturity coupon bond, 

even when the volatility is constant. Leland (1994a,b) and Leland and Toft (1996) 

adopted particular debt maturity, coupon and repayment structures, termed stationary 

debt structures, under which the firm continuously issues and retires debt simultaneously 

in order to keep the total value of outstanding debt time-independent and eliminate the 

corresponding term in the PDE.  

In this Chapter we adopt the Leland (1994b) model as our base case, since this 

model, with its exponential stationary debt structure, preserves all the merits of Leland 

and Toft (1996)’s stationary debt structure, and also generates the most elegant analytical 

                                                 
55 See Johnson et al (1995, p. 433). 



84 
 

results with both constant and state dependent volatility.56 We assume that the infinite 

maturity debt has a total principal value P  at time 0 when it is issued with coupon rate C . 

As time goes by, the firm retires this debt at a proportional rate g. Thus, the remaining 

principal value of this debt value at time t is gte P , and the debt holders receive a cash 

flow ( )gte C gP  at time t, provided the firm remains solvent. Hence, the average 

maturity of this debt will be, given that no default occurs, 

 1

0

gt
aT gte dt g  (2.4) 

Thus, the average maturity under this model is the reciprocal of the proportional 

retirement rate. In order to get a stationary debt structure we assume that the firm replaces 

the retired debt with newly issued debt having the same principal and coupon so as to 

keep the total principal and total coupon payments independent of time. We denote the 

total value of all outstanding debt by (V). Since all the outstanding debts are 

homogenous, the initial total principal P, the coupon rate C, and the retirement rate g (or 

equivalently, the average maturity  ) define the debt characteristics and can be used at 

time 0 as control parameters to value all the outstanding debt. 

The rollover risk follows the specification pioneered by He and Xiong (2012). In 

their model bond markets are occasionally subjected to Poisson-type liquidity shocks, 

during which a bondholder must sell her holdings at an exogenously given proportional 

cost 1k . In the presence of those shocks this proportional cost times the intensity  of the 

                                                 
56 Compared to Leland and Toft (1996), the Leland (1994b) model yields a purely analytical solution in the 
CEV case. The debt service rate is C+gP under Leland (1994b), while it is C+P/T under Leland and Toft 
(1996). The two models can be made consistent with each other in their results, as shown in our online 
appendix. 
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shock induce a premium that must be paid by the firm when it refinances its debts 

through rollover. While He and Xiong (2012) focused on the effects of the bond market’s 

liquidity parameters on credit risk, we concentrate in this paper on the interaction 

between the state-varying volatility of our CEV model with the liquidity risk in defining 

the firm’s credit spreads and optimal capital structure.  

Let ( , , )f t V K denote the first passage time to default density function and define 

 0

0

( , . )

( , ) ( , , )

t

rt
r

A t f V K d

B V K e f t V K dt
, (2.5) 

denoting respectively the cumulative default probability from time 0 to t, omitting for 

simplicity its arguments and the value of an instrument paying $1 at the first passage time 

when the riskless rate is r. The functions A t and ( , )rB V K are the key building blocks of 

the closed form expressions for the values of the firm’s financial instruments. Let also 

( , )D V g denote the value of the debt at time 0 in the Leland (1994b) model. In the 

presence of liquidity risk as defined above and for a general state-dependent volatility

( )V , the value ( , )D V g is given by the following equation, the counterpart of equation (5) 

in He and Xiong (2012) for the Leland and Toft (1996) model with a constant volatility. 

2 2
1

2 2
1

1( , ) ( , ) ( , ) ( ) ( ( ))
2

1( , ) ( ) ( ( ))
2

V VV

V VV

rD V g C gP gD V g k D V g r q VD V V D

r g k D V g C gP r q VD V V D
 (2.6) 

The solution of (2.6) is available in closed form if we know the functions A t and

( , )rB V K . It is given by the following result, proven in the appendix. 
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Lemma 1: The value ( , )D V g of the debt in the Leland (1994b) model is equal to 

 
1

1 1

( , ) [(1 ) ] ( , )r g k
C gP C gPD V g K

r
B K

g r g k
V

k
 (2.7) 

(2.7) can also be written in the following more intuitive form 

 1

1

( )

0

, 1 ( ) (1 ) ( , )r g k t
r g kD V g e A t C gP dt KB V K  

The first part of above equation is the cash flow till default, while the last one is the 

payoff upon default. From these results we can now provide closed form solutions for the 

debt under both fixed volatility57 and CEV. 

Proposition 1: Under constant asset volatility the  debt is given by the following 

expression 

 
1 1

1
2 22 2 2

1

2

( , ) [(1 ) ]

0.5 0.5 2

zC gP C gP VD V g K
r g k r g k K

r r r g k
z

 (2.8) 

Under the CEV model the the debt is given by 

 1

11 1

( )
( , ) [(1 ) ]

( )
r g k

r g k

VC gP C gPD V g K
r g k r g k K

 (2.9) 

With 

                                                 
57 Hereafter we set ( )V for all fixed volatility cases. 
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Where,  

 2
2

1 , ,
4

r q
x V sign r q mgsignsign  
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 and  are the Whittaker functions.  

Proof: (2.8) is a well-known result for the first passage time of a constant volatility 

diffusion process. See, for instance, Leland (1994b, p. 12) or Ingersoll (1987,p. 372). (2.9) 

is an auxiliary general result (Proposition 1) in the derivation of barrier options under 

state-dependent volatility underlying asset dynamics of Davydov and Linetsky (2001), 

while (2.10) is a similar result stated in Proposition 5 of that same paper, QED. 

The Whittaker functions ,k mW x and ,k mM x in (2.10) are the fundamental solutions 

for the Whittaker equation and are available in the Matlab (or Mathematica) software; 

they are described in more detail in the appendix.58 Since the sign and value of affect 

the probability of default by increasing (decreasing) the volatility in “bad” states when

0 ( 0 ), the shape of r V is also strongly affected by that parameter. It is a 

monotonic decreasing (increasing) function with respect to asset value V when

                                                 
58 See Whittaker and Watson (1990, pp. 339-351). 



88 
 

0 ( 0) . In addition, the slope of the function increases with the absolute value of

.59 

3. Equity Valuation, Default Boundary and Leverage 

3.1 Equity valuation under simple and CEV diffusion models 

Let ( , )E V g denote the value of the equity and w denote the corporate tax rate. 

Omitting the arguments in the partial derivatives the value ( , )E V g in the presence of 

rollover risk and for a general state-dependent volatility ( )V  satisfies the following 

equation, similar to equation (11) of He and Xiong (2012) 

2 21( , ) ( ) 1 ( , )
2V VVrE V g r q VE V V E qV w C gD V g gP  (2.11) 

In (2.11) the first two terms reflect the change in equity value because of the 

dynamic change in the unlevered firm’s assets, the third and fourth terms are cash inflows 

from dividends and the after tax cost of the debt coupon, while the last two terms 

represent the change in equity value by the debt issuance cost absorption, with debt 

retired at face value but refinanced at market value. This absorption is affected by 

liquidity cost through the market value of debt. The boundary conditions are 

, 0,  for all E K g g , and ( , )E V g increases linearly with respect to V whenV . 

The following general result, proven in the appendix, gives the value of ( , )E V g for 

both fixed and state-dependent volatility diffusions. This value is expressed in terms of 

the Unit Price (UP) function defined in Chapter 1 if this UP function is known 

analytically, as it is for both cases covered in this essay. In the appendix we also present 

                                                 
59 The relevant figures are available from the authors on request. 
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the Laplace transform method proposed by He and Xiong (2012) to solve equation (2.11) 

when the volatility is constant and find exactly the same solution for the equity value 

(2.12). Unfortunately, this method cannot be used directly under CEV asset dynamics. 

 
Proposition 2: Under both constant and state-dependent asset volatility the  equity 

value is given by the following expression 

1

1

0 1

1
0 1

1

( , ) ( , ) ( , )

( ,

( , ) 1

(1 ) ) ( , )

r r r g k

r r g k

wCE V g V K A A
r

k C gP C gP

B

K A A
g k r r

V K B V K B V K

B V K B V K
 (2.12) 

In (2.12), 
1
( , )r g kB V K is given by the same expressions as in (2.8) and (2.9) for the  

constant volatility  and CEV cases respectively, while 

 

1
2 22 2 2

2

0.5
( , ) ,  

0.5 2y

r
VB V K y
K

r r r
 (2.13) 

for fixed volatility, and (
)

(
(

, )) r
r

r K
B VV K  for CEV. The constant terms are as in 

(2.7): 

 0 1
1 1

,  [(1 ) ]C gP C gPA A K
r g k r g k

  

It can be readily verified by using the terminal conditions 

1
( , ) ( , ) 1r r g kB K K B K K that , 0.E K g For V  we have 

1
( , ) and ( , ) 0r r g kB V K B V K , yielding 

 1

1

lim ( , ) 1V
kwC C gPE V g V

r r g k r
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For 1 0k and constant volatility expression (2.12) coincides with equation (17) of 

Leland (1994b). A direct comparison of the limit of this last equation for V with the 

corresponding limit of (2.12) shows that at the limit the liquidity costs reduce the limiting 

value of the equity by an amount equal to 1

1

( ) k gC gP
r g k r g

, implying that the 

effect of liquidity costs varies with g , the rollover rate and the inverse of the average debt 

maturity.   

A more intuitive understanding of the role of liquidity risk in the debt and equity 

values can be obtained by rewriting equation (2.12). Define three type of bonds, denoted 

by 0 1 2, ,D D D , where 0D  is the value of  a perpetual bond with coupon payment 

0C C gP , 1D  is the total value of perpetual bonds which are continuously issued and 

retired at a proportional rate g  with coupon payment 1C C  and face value of total 

outstanding debt 1P P  in the absence of liquidity risk, and 2D  is the total value of 

bonds which are similar to 1D  but in the presence of liquidity risk. Then we have, 

 

1

0

1
2

1

1

( , )

( , )

( , )

(1 )

(1 )

(1 )

r

r g

r g k

C gP C gPD K
r r

C gP C g

B V K

D B V K

D B V K

PK
r g r g

C gP C gPK
r g k r g k

 (2.14) 

From (2.7) it can be easily seen that 0 1 2D D D ; observe also that each

,  0,1,2iD i can also be written under the form of (2.7). Substituting into equation 

(2.12), the equity value can be expressed by, 
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1
2 0 2

1

1
1 2 1 0 2

1

( , ) ( , )( , ) 1 r r
kwCE V g V K D D D

r g
B V K

k

kE D D

B K

D D

V

g k

 (2.15) 

Where 1 1( , ) ( , )1 r rB V KwCE V K DB
r

V K  is the equity value with 1D in 

the absence of the liquidity risk given the default boundary K . Let  

 1
2 1 0 2

1
E

kLC D D D D
g k

 

 1 2DLC D D  

If the default boundary K is exogenously determined and does not change in the 

presence of the liquidity risk then ELC  and DLC represent the liquidity costs absorbed by 

the equity holders and debt holders, respectively. Observe that the losses of equity are 

always positive, since60 

 1
0 2

1

0E D
kLC D D LC

g k
 

provided the average maturity of total outstanding debts is finite ( 0g ). Specifically, for 

the debt with infinite maturity ( 0g ), the liquidity cost becomes zero since the rollover 

channel is closed.  

Note that the total liquidity cost to both debt and equity holders can also be written 

as, 

                                                 
60 This inequality can be proven very simply by noting from (2.7) that ,D V g is strictly convex with 

respect to the discount rate 1r g k , which obviously implies 1
2 0 1

1 1

kg D D D
g k g k

.   
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 1 1
1 2 0 1

1 1
D E

LiquidityEffect RolloverEffect

k kLC LC D D D D
g k g k1 2 0 1

1LiquidityEffect RolloverEffect1

D D D1
1 2 0 12 k11g k1 2D D DD D1
1 2 02 g

 (2.16) 

Where 1 2D D represents the “Liquidity Effect”, the decrease of debt value 

because of the presence of liquidity shocks, and 0 1D D  is the “Rollover Effect”, the 

decrease of debt value because of the presence of the retirement. The total liquidity cost 

is the sum of the liquidity and rollover effects weighted by 1

1

k
g k

. Further, as the 

liquidity risk of bond markets affects the value of equity through rollover channel, the 

liquidity cost to equity can also be decomposed into the weighted difference of rollover 

and liquidity effects as follows, 

1 1
0 1 1 2 0 2 1

1 1 1 1
E

RolloverEffect LiquidityEffect

k kg gLC D D D D D D D
g k g k g k g k1RolloverEffect LiquidityEffect111111

0 1 1 2D0 1 1 2k0 1 1 2D D D DD D D0 1 1 21 1g k gg111

 (2.17) 

In the second form of (2.17) the strict convexity of the function ,D V g  implies 

that the equity losses increase with the rollover cost parameters 1k , just like the debt 

losses. Compared to the constant asset volatility, the state dependent volatility affects 

0 1,D D  and 2D through the probability density function of the first-passage default time. 

Thus, the total liquidity costs of equity are affected by the state dependent volatility 

through both the liquidity effect and rollover effect channels.   

As already noted, the constant volatility case solution of (2.12) can also be derived 

by the Laplace transform technique used by He and Xiong (2012).61 The derivation 

                                                 
61 See appendix. 
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presented here, in addition to being computationally much simpler, is also more intuitive 

economically. 

3.2 The endogenous default boundary 

A firm’s default trigger can be determined exogenously or endogenously. Generally, 

the exogenous default triggers such as the zero-net worth trigger62 and the zero cash flow 

trigger63are not determined by the equity holders but rather by the creditors.  Under the 

zero-net worth trigger assumption the default occurs when the net worth of the firm 

becomes negative for the first time, which implies that the default trigger value equals the 

total face value of the outstanding debt, namely K P . However, we often observe that 

firms are still alive even though their net worth is negative in the financial markets. Thus, 

in order to improve the simple zero net worth trigger, Moody’s KMV defines as trigger 

value 0.5*Short LongK P P . Under zero cash-flow trigger, a firm claims default when the 

current net cash flow to the security holders cannot meet the current coupon payments, 

which implies /K C , where  is the net cash flow to the security holders. The 

problem with this trigger value is that sometimes the equity value is still positive even 

though the current net cash flow is zero. In this case, a firm will prefer to issue more 

equity so as to meet the current coupon payment, instead of announcing default.  

On the other hand, the endogenous default trigger determined by the equity holders 

is the optimal default boundary which can maximize the total asset value. The equity 

holders may receive the anticipated equity value and service the coupon payments and 

rolling costs even when the firm is insolvent. The equity holders will lower the default 

                                                 
62 See Brennan & Schwartz (1978), and Longstaff & Schwartz (1995). 
63 See Kim, Ramaswamy, &Sundaresan (1993). 
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boundary to keep the firm alive if the anticipated equity value is no less than the 

anticipated value of debt service. Even though the net worth of the firm may be negative, 

the equity holders may still be able to raise funds to service the debt cash flow by issuing 

new equity. 

Following Leland and Toft (1996), and Chen and Kou (2009), we determine 

endogenously the default boundary K , from the smooth pasting condition64 0
V V K

E
V

. 

Differentiating (2.12) directly, we get 

1

1

1

1
1

1

1 ( , ) ( , ) ( , )

(1 ) ( , ) ( , ) 0

r r r g kV V K V V K V V K
V V K

r r g kV V K V V K

E wC B V g KB V g A B V g
V r

k C gPK B V g A B V g
g k r

 (2.18) 

The solution of this equation depends on the asset dynamics. For both cases it is 

given by the following result, proven in the appendix. 

Proposition 3: Under  constant asset volatility the  default boundary is given by the 

following expression 

 

1

1 1 1

1

1

( )

(1 )( )1 (1 )

C gP kC gP wCy y zz
r g k r g k r r g k

K k y zy z
g k

 (2.19) 

Under the CEV model there is no closed form expression for the default boundary. 

The solution of (2.18) is found numerically, by replacing the expressions for the 

derivatives of ( , )rB V K and
1
( , )r g kB V K  from the quantities given in the appendix.  

                                                 
64 See Chen and Kou (2009).  
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From (2.19) it is clear that for 1 0k our boundary coincides with expression (19) 

of Leland (1994b). We also prove in the appendix the following result, the counterpart of 

the He and Xiong Proposition 2, with essentially the same proof as the one used in that 

paper. 

Proposition 4: Under both constant and state dependent asset volatility an increase 

in the liquidity premium 1k decreases the debt value and increases the default boundary

K . 

The impact of the liquidity premium on the default boundary is illustrated in 

numerical results in the next section. In the CEV case it depends on the sign of the 

coefficient , with the average debt maturity (the inverse of the parameter g by (2.4)), 

also playing a role in the relationship between fixed and state dependent volatilities. 

From equation (2.19) it is also possible to derive the impact of g on the default 

boundary, which increases with g under some restrictions on the parameter values, as in 

He and Xiong (2012). Unfortunately no similar closed form results exist for the CEV 

case, due to the complexity of the Whittaker functions in (2.18). For this reason this 

average maturity effect is examined numerically in the next section.   

3.3 Optimal leverage  

At 0t  the firm chooses its initial leverage by choosing the debt parameters, the 

coupon C and the principal P . Let 0V denote the initial asset value and 0( , , )v C P V the total 

value of the firm. To focus on the effects of liquidity risk on leverage we assume that 
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debt is issued at par, in which case 0( , , ; ( , ))P D V C P K C P ; this equality defines an 

implicit relation 0( , )P C V , which we substitute into the equation of the value of the firm 

 0 0 0( , , ) ( , , ; ( , ) ( , , ; ( , ))v C P V E V C P K C P D V C P K C P  (2.20) 

(2.19) can now be maximized with respect to the optimal coupon *C in order to find 

the optimal leverage. Setting * *
0( , )P P C V , we measured the optimal leverage by the 

ratio 
* * * *

0
* *

0

( , , ; ( , ))
( , , )

D V C P K C P
v C P V

. The numerical results are shown in the next section. 

4. Model Calibration and Numerical Results 

In this section we present simulation results for the variables of interest, based on 

base case parameter values extracted from earlier empirical studies.65 For the empirical 

work in the next Chapter we calibrate the model to individual firm data. Here, we set the 

riskless and payout rates 8%r  and 2%q , the tax and bankruptcy cost rates 27%w  

and 40% , and the bond market illiquidity parameters at 1 and 1 1%k . We also 

normalize the initial asset value at 0 100$V . For the asset value volatility we set the 

initial volatility at 0 23% for both constant volatility and the CEV model, and we 

adjust the CEV parameter 0 0V accordingly. We present results for 1 , 0

(constant volatility) and 1, with intermediate values yielding similar results. Last, 

we use three values of the debt rollover parameter g , corresponding by (2.4) to average 

                                                 
65 For instance Bao, Pan and Wang (2011), Chen et al (2007), He and Xiong (2012) and Zhang, Zhou and 
Zhu (2009).  
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maturities 1T , 5T , and 10T . The face value of total outstanding debt in the base 

case is 50P . 

4.1 Debt and equity values and endogenous default boundary 

 Figure II-1 presents the endogenous default boundary for various values of the 

illiquidity parameter  ranging from 0 to 2, two benchmark maturities of 1T  and 10T , 

and two exogenously given leverages, with 50P and 70P . The coupon rates have 

been chosen to make the debt issued at par for the benchmark case of constant volatility 

at 23% and 0 .  

[Insert Figure II-1 about here] 

The figure illustrates clearly the importance of the state dependence of the volatility, 

whose contribution to the rise or fall of the default boundary can be at least as large as 

that of the liquidity shock. The sign of the elasticity determines, in all but the lowest 

values of , the relationship of the CEV boundary relative to the fixed volatility case, 

with a positive (negative) sign corresponding to a higher (lower) boundary at equal ‘s. 

Not surprisingly, leverage increases the boundary at equal maturities in all cases, while 

the boundary increases with and is uniformly higher for equal leverage for the shorter 

maturity, as in He and Xiong (2012, Figure 3).  

These observed results can be understood from the relationship between the 

anticipated equity value appreciation and the anticipated debt costs to keep the firm alive, 

including both the rollover costs and the continuous coupon payment. For both constant 

and state dependent volatility cases, the presence of liquidity shocks in the debt market 

reduces the value of anticipated equity appreciation through the rollover channel while 
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the coupon payments are the same. Hence, the default boundary is higher compared to 

that in the absence of liquidity shocks. In contrast to the constant volatility, the state 

dependent volatility, in this case the CEV, changes the first passage default probability 

density function, which has a direct impact on the market values of debt and equity. 

Specifically, a negative , reflecting a negative relationship between asset value and 

asset volatility, increases the value of anticipated equity appreciation when the asset 

value decreases since the equity can be considered as an option on the firm’s asset and, 

thus, rises in value with the volatility. The impact on the debt value is more complicated 

and depends on the debt structure, including maturity, coupon policy and firm leverage 

ratio. However, given the calibration in the base case, we note that the impact of state 

dependent volatility on the value of anticipated equity appreciation dominates that on the 

debt costs. Hence, we observe significantly lower endogenous default boundaries when 

 is negative compared to constant volatility. Note that we assume that the liquidity cost 

is proportional to the market value of debt. Hence, the magnitude of the endogenous 

default boundary increases as the intensity of liquidity shocks increases depending on the 

debt structure, including maturity, face value, coupon payment, etc., as well as the value 

of volatility elasticity.      

Given the endogenous default boundaries under different volatility assumptions, 

Figure II-2 and Figure II-3 present the rollover losses for debt and equity respectively for 

50P  and 70P as functions of the parameter  ranging from 0 to 2, for two different 

average maturity values and for an endogenous default boundary. The coupon payment 

was chosen to make the debt issue at par in the absence of liquidity shocks when the 

volatility is constant. The results are presented as differences from the respective values 
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oD and oE for debt and equity in the absence of liquidity shocks, oD D  and

oE E . 

[Insert Figure II-2 about here] 

[Insert Figure II-3 about here] 

As the figures show, the effect of the state dependent volatility on the rollover losses 

is significant in many cases but its size and direction differ depending on the maturity of 

the debt and the sign of the elasticity parameter. In general, a negative (positive) 

relationship between the asset value and asset volatility results in relatively smaller 

(greater) losses of debt value compared to those of constant volatility. For debt the 

volatility effect is weak for low face value in all cases and moderately significant for high 

face value for both maturities. It is much more pronounced for equity in all cases, and it 

is especially strong for positive elasticity, high face value, and the shortest maturity of 

1T , where the loss of equity value from the volatility effect is approximately 25% 

lower in magnitude than the loss of value of the constant volatility when the liquidity 

parameter is equal to 2. 

Of particular interest is the effect of compression or expansion of the optimal 

default boundary in the state dependent volatility cases. We study it by equalizing the 

default boundaries in all three elasticity parameter cases. From Figure II-1 it follows that 

the boundary is forced up (down) in most cases for negative (positive) elasticity, making 

default easier (harder). The consequences of this appear most clearly in the next set of 

figures, Figure II-4 and Figure II-5, showing the quantities oD D  and oE E  
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with an exogenous default boundary set equal to the endogenous boundary of the 

constant volatility case for each . 

[Insert Figure II-4 about here] 

[Insert Figure II-5 about here] 

A comparison of Figure II-2 with Figure II-4 shows clearly that equalizing the 

default boundary in all three elasticity cases also brings the corresponding debt values 

closer together than in the endogenous boundary cases. In equation (2.7) the raising 

(lowering) of the boundary K results in an increase (decrease) in the default probability

( )A t and in the term
1
( , )r g kB V K , increasing (decreasing) the second term and 

decreasing (increasing) the first term. Hence, the optimal choice of the boundary may 

result in higher or lower rollover losses for debt, depending on maturity and face value. 

In the negative elasticity case the differences between Figure II-2 and Figure II-4 are very 

small in all cases, except for the case 1T and 70P , where raising the boundary 

increases the rollover debt losses. In the positive elasticity case, on the other hand, 

lowering the boundary in Figure II-3 yields lower rollover losses for both maturities 

when 70P , and has an insignificant effect on the losses in the other two cases. 

The situation is somewhat different in the comparison of the equity rollover losses 

in Figure II-3 and Figure II-5, since the losses are by definition lower in all Figure II-3 

cases than the corresponding cases of Figure II-5. Most affected by the suboptimal choice 

of the boundary is again the positive elasticity case when 1T and 70P , where the 

losses now exceed those of the constant volatility case, implying a rise in losses of more 

than 25% by the decrease in the default boundary. In all the other cases the boundary 
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changes bring relatively small changes in equity losses. There is also some evidence of 

small, but measurable agency effects in the case 10T and 70P , since the sum of the 

losses of equity and debt holders is higher for the optimally chosen rather than the fixed 

boundary, given that the former was chosen to represent the interests only of the equity 

holders.66 

4.2 Optimal capital structure 

Table II-1 presents various cases of the choice of the optimal initial leverage by 

maximizing the total firm value given in equation (2.20). As noted in Section 3.3, the 

coupon was first selected in order to make the debt issued at par, and then chosen 

optimally by maximizing (2.20). The table shows the optimal coupon, leverage, debt and 

equity values, as well as the endogenous default boundary for three values of and three 

maturities, 1T , 5T and 10T . 

[Insert Table II-1 about here] 

The table illustrates several effects already expected from the earlier results of He 

and Xiong (2012). Specifically, the optimal leverage decreases as the rollover costs 

increase and increases with maturity in all cases. The strong negative volatility effect on 

leverage found in the earlier study becomes even more important when the volatility is 

state dependent, and its impact tends at times to swamp the maturity and even the rollover 

parameter effects. For instance, the leverage of the negative elasticity case with 

                                                 
66 Observe from (3.6) that the total value loss because of the liquidity and rollover effects is strictly 
dependent on the parameter set 

1( , , )r g k and not on parameters such as the payout ratio . Hence, the 
endogenous choice of the default boundary does not necessarily maximize the value of the firm. See also 
the comments in Leland (1998, pp. 1224-1226) and Chen and Kou (2009, p. 353).    
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maximum rollover risk ( 2 ) and 5T is higher than that of the positive elasticity case 

for 0 and 10T .  

In Table II-1 a negative elasticity always results in a higher leverage and a positive 

elasticity mostly in a lower leverage, with the exception of the low maturity and high 

rollover cost parameters. We also saw from Figure II-1 that at equal leverages the 

negative (positive) elasticity is also associated with a lower (higher) endogenous default 

boundary. In Table II-1, by contrast, the endogenous default boundary at optimal 

leverage varies inversely with the elasticity for all but the highest value of , where the 

dependence reverses sign, or even results in a lowest boundary for the 0  case. We 

conclude that the volatility effects are predominant when it comes to the determination of 

the key endogenous variables of the firm, except for the extremes of the maturity and 

rollover cost ranges. 

The strong volatility effect on leverage appears even more clearly in Figure II-6, 

which plots the optimal leverage as a function of the bond trading proportional cost 

parameter 1k that varies from 0 to 150 basis points, corresponding to a change in the 

rollover cost parameter  from 1 to 1.5 if 1k is kept equal to its base case value of 100 

since the two appear always together. Here we vary the initial volatility and set it at two 

alternative values, 0 20%  and 0 25%, bracketing our base case of 0 23% .   

[Insert Figure II-6 about here] 

This more detailed result confirms the conclusions derived from Table II-1. At low 

maturity and high trading costs the constant volatility case achieves the lowest optimal 
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leverage, while at higher maturity it always lies between the two other cases. Further, a 

higher initial volatility results in a lower leverage in constant volatility and positive 

elasticity cases everywhere, while for negative elasticity leverage may perversely 

increase with initial volatility in the low maturity and low to moderate trading cost range. 

Note also that at the higher maturity the optimal leverage for both state dependent 

volatility cases is much less sensitive to trading costs than the constant volatility case. 

4.3 Rollover cost and credit spreads 

Figure II-7 plots the credit spreads ( )C gP g r
D

of the newly issued debt against 

the rollover risk parameter for two different leverages and debt maturities. In all cases 

the spread increases almost linearly with , but the slopes differ according to debt 

maturity, elasticity of the volatility and (especially) leverage. It is highest for all three 

elasticity cases in the high leverage, low maturity panel, in which its slope varies from 

approximately 150 to 250 basis points as  rises from 0 to 2. All three slopes are 

approximately equal to 100 basis points for both maturities when leverage is low.  

[Insert Figure II-7 about here] 

When the leverage is chosen optimally the change in will affect the optimal 

leverage as well as the credit spread, in which case the change in spread will then include 

a default component, as well as a rollover cost component. The results in Table II-2 

illustrate the contributions of these two components to the change in spread in a number 

of cases, covering two bond maturities, three different values of , and two starting 

volatilities 0 21%  and 0 23% , coupled with corresponding bond trading 
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proportional cost parameters 1 50k  and 1 100k basis points respectively. The lower 

volatility and cost correspond to A-rated and the lower to B-rated bonds.  

[Insert Table II-2 about here] 

In the Table II-2 entries as  increases the default portion is defined as the amount 

1Spread k . It is clear from the corresponding entries that the value and the share 

of the default portion in the total spread are increasing functions of the elasticity in all but 

one case. The default share also varies inversely with the maturity of the debt in all cases, 

even though the differences are proportionately smaller at the higher values of . Last, 

we note the strong starting volatility effect on credit spread changes, which implies that 

for all maturities and elasticity values the low volatility A-rated bonds respond much less 

to a given change in than the B-rated bonds. As He and Xiong (2012) note, this is a 

manifestation of the well-known flight to quality phenomenon associated with severe 

disruptions in the financial markets, in which the prices of lower rated bonds decrease 

much more than those of higher rated ones. 

5. Conclusion 

In this Chapter, we re-examine the impact of liquidity shocks of bond market on the 

credit risk through the rollover channel under the exponential stationary debt structure. 

We develop an innovative derivation methodology to obtain the analytical solution for 

the equity value in the presence of rollover risk. This approach provides a much intuitive 

expression for the equity value. Further, this methodology can be easily applied into CEV 
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and stochastic volatility asset dynamic process provided the expression for the first 

passage CDP and unit price are available.  

Taking advantage of the analytical expression of first passage CDP and unit prices 

derived in Chapter I, we analyze the impact of rollover risk on endogenous default 

boundary, credit risk and optimal capital structure under CEV asset dynamics. We show 

theoretically and for all elasticity values that increases in the rollover risk parameters 

reduce the values of both debt and equity. In the numerical estimations with simulated 

data we find that the sign and magnitude of the elasticity parameter are major 

determinants of the model’s results, on their own or in their interaction with other 

features of the model like leverage and debt maturity. As with constant volatility, the 

endogenous default boundary increases with the size of the rollover risk parameter, while 

a positive (negative) elasticity raises (lowers) the endogenous default boundary for all 

cases. Similarly, the elasticity parameter emerges as a major determinant of the optimal 

leverage in all cases, with the size of its effect depending on the maturity of the debt.  
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Appendix 

The following result, whose proof is obvious and will be omitted, will be used in 

several of the proofs of this appendix. 

Lmma A.1 

Let the risk neutral dynamic equation of an underlying asset with state-dependent 

volatility diffusion be 

 ( )dV dt V dW
V

 (A.1) 

Then the current value of a derivative asset that pays off $1 when the underlying 

asset becomes equal to K for the first time and 0 otherwise is given by ( , )rB V K in (2.5), 

with limiting values lim ( , ) 0V rB V K  and ( , ) 1,rB K K which satisfies the equation 

 2 21 ( ( )) 0
2 VV VV V F VF rF  (A.2) 

Proof of Lemma 1 

Replacing from (2.7) into (2.6) and taking into account that 
1
( , )r g kB V K  satisfies 

(A.2) with 1r g k instead of r and r q instead of , and setting the constant term 

and coefficient in (2.7) 0A and 1A respectively, we get 
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B V K

B
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(A.3) obviously holds by the definitions of 0A and 1A and the terminal conditions of 

1
( , )r g kB V K  and the debt value, QED.  

The Whittaker functions 

The Whittaker functions are related to the confluent hypergeometric functions as 

follows 
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 (A.4) 

where 1 1 , ,F a b z and , ,U a b z are, respectively, the first kind and second kind 

confluent hypergeometric functions. Mathematically, they can be expressed as follows, 

with . denoting the gamma function. 
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 (A.5) 

Thus, the second kind confluent hypergeometric function can be expressed as,
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Replacing into the expression for ( , )rB V K , we get 
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 (A.6) 

Where, 

 2 2
1 22 2,

r q r q
x V x K  

Proof of Proposition 2 

From (2.12) we have, with subscripts denoting partial derivatives, 
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The rest of the proof follows the same steps as in Lemma 1: replacing (2.12), (A.7) 

and (A.8) into (2.11) and collecting terms we find that the equation holds, since ( , )rB V K

satisfies (A.2) with r q and 
1
( , )r g kB V K  similarly satisfies (A.3) as in the proof of 

Lemma 1, QED. 

Proof of Proposition 3 

We use the definitions of ( , )rB V K and 
1
( , )r g kB V K from (2.12) and (2.7)-(2.8) 

respectively. (2.15) follows then directly from (2.14) by replacing and collecting terms, 

QED. Observe that in (2.15) the result is the same as expression (19) in Leland (1994b) if 

we set the rollover term 1k equal to 0. 

For the state dependent case, we concentrate on the case 0 , with 0 treated 

as an extension. In such a case 
1 0
2

k m and the Whittaker function in (2.10) is given 

by 
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 (A.9) 
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We note from (2.10) that r V and 
1r g k V differ only as to their key parameter

k , which has the respective values rk as in (2.10) and 11 1
2 4 2 | ( ) |

r g kk
r q

1 11 1
2 42 4

. 

Further, set from (2.10) the expression 2 (2 1)2
2 ,  2

r q dx V
d

x V
V

V . 

Then we have: 
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Where we define 
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1
( , )r g k V V KB V K is then found from the same expression, by replacing rk by k . A 

similar computation takes place for the case 0  .  

The terms ( , )r VB V K and 
1
( , )r g k VB V K , instead of (A.9)-(A.10), can also be 

derived from (A.7)-(A.8), by using the following expressions 

 1 1
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These yield for 0  
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For 0  we have  
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 (A.11) 

Similar results also hold for 
1
( , )r g k V V KB V K . 

Proof of Proposition 4 

For ( , )D V g the result follows immediately from (2.7), since both terms in the right-

hand-side are decreasing functions of 1k , QED. For the equity, we note from (2.11) that 

we can write it as an expectation at time 0, 0 , of its discounted cash flows along the path 
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of the value V till the default time t , writing explicitly the dependence of equity and debt 

on the important parameters. 

 0
0

( , ; ) ( 1 [ ( , ; ) ])
t

rS
s sE V K e qV w C g D V K P ds  (A.12) 

It is clear from (A.12) that for a fixed default boundary K  the equity value decreases 

with 1k , given that the debt decreases.  

Consider now two different values 1 2 and let 1K  and 2K denote the 

corresponding endogenous default boundaries. Assume that 1 2K K . By definition, 

1 1 1 2 2 2( , ; ) ( , ; ) 0.E K K E K K Since the default boundaries were chosen optimally, we 

have 1 1 1 1 2 10 ( , ; ) ( , ; )E K K E K K . On the other hand, since the equity decreases as  

increases, 1 2 1 1 2 2 1 2 2( , ; ) ( , ; ) ( , ; ) 0E K K E K K E K K . This is, however, not 

compatible with the definition of equity, which is non-negative whenever the starting 

asset value exceeds the default boundary, implying 1 2 2( , ; ) 0E K K  whenever 1 2K K . 

Thus, the latter assumption is false, and 1 2K K , QED. 

Laplace Transform Method for Equity Value with Constant Volatility 

The Laplace transform method can be used to solve equation (2.11) only when the 

volatility is constant. Under constant volatility, equation (2.11) can be written as, 

 2 21 1 ( )
2V VVrE r q VE V E qV w C gD V gP , (A.13) 
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with the boundary condition, 0E K  and VE K l . The equity value is linear in 

asset value when it approaches the default boundary K. 

Define ln Vm
K

, and substitute into the above differential equation. We then 

have,  

 2 21 1 1 ( )
2 2

m
m mmrE r q E E qKe w C gD m gP , (A.14) 

with the boundary conditions, (0) 0E and (0)ME l . 

Define the Laplace transform of ( )E M  as 

 
0

( ) ( ) smF s L E m e E m dm  (A.15) 

Then, applying the Laplace transform to both sides of  (A.14), we have 

2 2 11 1( ) ( )
2 2 1m mm

w C gPqKrF s r q L E L E gL D m
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 (A.16) 

Note that, 
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Thus, we have 

2 2 2 211 1 1( ) ( )
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Define 0 and 0  to be the two roots of the following equation with respect 

to s , 

 2 2 21 1 0
2 2

r r q s s  (A.19) 

Then we have, 21 0
2

s s , 1z a and 0a z , where 
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As we have seen, 
10 1( , ) ( , ),r g kD V g A VA B K where  
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Under constant volatility assumption, we have, 
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Therefore,  

2 20 1

1 1
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 (A.21) 

The Laplace inverse can be derived as, 
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Note that, 
2

1 1 1

12

ym ymym ymgA gA e gA ee e
y y y y g k

. Simplifying and 

rearranging, the equity value has the exactly same expression as (2.12), QED. 
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Figure II-1: Endogenous Default Boundaries 

This figure depicts the endogenous default boundaries in the presence of liquidity shocks for the different 
asset volatility assumption, including constant volatility ( 0 ) and CEV processes ( 1, 1). T is 

the average maturity of total outstanding debts. P is the face value of total outstanding debts. It is assumed 
endogenous default and the coupon payment makes the debt issue at par in the absence of liquidity shocks 
with constant asset volatility. The rest of calibrations are same as the base case. To make the picture look 
more condense, we shift the endogenous default boundary of 1up 20 units in Panel B and D, and 5 
units in Panel A. 
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Figure II-2: Rollover Loss of Debt Holder with Endogenous Default Boundary 

This figure depicts the rollover loss of debt with endogenous default boundary. The coupon payment is set 
to make the bond be issued at par in the absence of liquidity shocks with constant volatility. The rollover 
losses of debts holders equal D P , where D and P denote the value of total outstanding debt in 

the presence and in the absence of liquidity shocks, respectively.  
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Figure II-3: Rollover Loss of Equity Holders with Endogenous Default Boundary 

This figure depicts the rollover loss of equity with endogenous default boundary. The coupon payment is 
set to make the bond be issued at par in the absence of liquidity shocks with constant volatility. The 
rollover losses of equity holders equal oE E , where E and 

oE denote the value of total equity in 

the presence and in the absence of liquidity shocks, respectively.  
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Figure II-4: Rollover Loss of Debts with Exogenous Default Boundary 

This figure depicts the rollover loss of debt with exogenous default boundary. The coupon payment is set to 
make the bond be issued at par in the absence of liquidity shocks with constant volatility. The rollover 
losses of debts holders equal D P , where D and P denote the value of total outstanding debt in 

the presence and in the absence of liquidity shocks, respectively.  
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Figure II-5: Rollover Loss of Equity Holders with Exogenous Default Boundary 

This figure depicts the rollover loss of equity with endogenous default boundary. The coupon payment is 
set to make the bond be issued at par in the absence of liquidity shocks with constant volatility. The 
rollover losses of equity holders equal oE E , where E and 

oE denote the value of total equity in 

the presence and in the absence of liquidity shocks, respectively.  
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Table II-1: Characteristics of the Optimally Levered Firms  

This table depicts the characteristics of the optimally levered firms. T is the average maturity of the total outstanding debts. C is the optimal coupon 
payment which made the debt issued at par. Lev, Lev, DV, EV and K denote the optimal leverage, percentage of leverage compared to the case 0 , 
debt value, equity value and endogenous default boundary, respectively. The rest of the calibrations are same as the base case. 

Panel A: T=1 

 0   1  2  
 C Lev DV EV K  C Lev Lev DV EV K  C Lev Lev DV EV K 

1 6.04 55.42% 60.99 49.06 55.91  5.04 48.37% -12.72% 51.08 54.53 44.68  3.72 35.47% -
35.99% 36.17 65.81 26.40 

0  3.43 39.17% 42.49 65.68 43.34  3.24 34.28% -12.48% 35.83 68.68 38.00  2.72 26.71% -
31.81% 27.16 74.53 29.78 

1 3.41 38.45% 42.59 68.17 43.14  3.57 37.15% -3.38% 39.61 67.01 41.99  3.60 34.99% -8.99% 36.02 66.93 39.80 

Panel B: T=5 

 0   1  2  
 C Lev DV EV K  C Lev Lev DV EV K  C Lev Lev DV EV K 

1 9.98 75.91% 90.74 28.80 57.11  9.51 74.25% -2.18% 82.97 28.78 53.06  8.38 68.30% -
10.03% 71.75 33.30 44.18 

0  6.35 60.56% 68.35 44.52 52.50  5.60 53.66% -11.39% 57.49 49.65 46.67  4.40 41.79% -
30.99% 42.88 59.73 36.68 

1 4.48 48.73% 55.42 58.32 45.24  4.51 46.13% -5.3% 49.91 58.27 43.99  4.38 42.21% -
13.38% 43.70 59.84 41.40 

Panel C: T=10 

 0   1  2  
 C Lev DV EV K  C Lev Lev DV EV K  C Lev Lev DV EV K 

1 10.57 82.62% 101.43 21.34 53.53  10.10 80.50% -2.57% 91.43 22.14 49.38  9.03 74.11% -10.3% 78.47 27.42 40.82 

0  6.89 64.50% 74.03 40.75 51.63  6.25 58.44% -9.4% 63.25 44.99 47.01  5.11 47.63% -
26.16% 49.10 53.98 38.62 

1 4.98 53.05% 60.98 53.97 46.43  4.94 49.87% -5.9% 54.26 54.54 45.12  4.71 45.16% -
14.87% 46.86 56.90 42.37 
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Figure II-6: Optimal Capital Structure 

This figure depicts the relationship between firm’s optimal capital structure and the bond proportional 
trading cost for the different scenarios.  The calibrations, except the average debt maturity and initial 
volatilities, are the same as base case. 
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Figure II-7: Effect of liquidity demand intensity on credit spreads 

This figure depicts the effect of liquidity demand intensity on the newly issued corporate debt’s credit 
spreads. T is the average maturity of the total outstanding debts and P is the face value of total outstanding 
debts.  It is assumed endogenous default and the coupon payment makes the debt issue at par in the absence 
of liquidity shocks with constant asset volatility. The rest of calibrations are same as the base case. 
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Table II-2: Response of Credit Spreads 

This table reports the responses of different firm’s credit spread to a liquidity shock and state dependent 
volatilities. It is assumed risk free interest rate 8%r , tax rate 27%w , proportional bankruptcy cost 

40% , firm’s payout rate 2%q , and the current asset value $100V . For A-rated firms, the initial 
volatility 

0 21%, proportional liquidity cost 
1 50k   basis points (bps). For BB-rated firm, the initial 

volatility 
0 23%, proportional liquidity cost 

1 100k   basis points. We find the coupon payment and 

face value of debt such that its newly issued par bonds with the specified maturity have an initial credit 
spread of 100 bps for A-rated firms and 330 bps for BB-rated firms with constant volatility.  

Panel A (A-Rated, T=1) 

  1  2   4  
Model  Spread  Spread Spread Default part  Spread Spread Default part 

  (bps)  (bps) (bps) (bps) (Percent)  (bps) (bps) (bps) (Percent) 
1  136.07  189.53 53.46 3.46 6.47%  296.48 160.41 60.41 37.66% 

0   100.00  155.88 55.88 5.88 10.52%  268.70 168.7 68.7 40.72% 
1  69.86  126.86 57 7 12.28%  242.83 172.97 72.97 42.19% 

Panel B (A-Rated, T=5) 

  1  2   4  
Model  Spread  Spread Spread Default part  Spread Spread Default part 

  (bps)  (bps) (bps) (bps) (Percent)  (bps) (bps) (bps) (Percent) 
1  114.85  166.17 51.32 1.32 2.57%  268.59 153.74 53.74 34.96% 

0   100.00  153.65 53.65 3.65 6.80%  260.60 160.6 60.6 37.73% 
1  63.52  118.99 55.47 5.47 9.86%  230.67 167.15 67.15 40.17% 

Panel C (BB-Rated, T=1) 

  1  2   4  
Model  Spread  Spread Spread Default part  Spread Spread Default part 

  (bps)  (bps) (bps) (bps) (Percent)  (bps) (bps) (bps) (Percent) 
1  350.88  474.40 123.52 23.52 19.04%  722.73 371.85 171.85 46.21% 

0   330.00  475.05 145.05 45.05 31.06%  773.58 443.58 243.58 54.91% 
1  392.77  551.10 158.33 58.33 36.84%  850.20 457.43 257.43 56.28% 

Panel D (BB-Rated, T=5) 

  1  2   4  
Model  Spread  Spread Spread Default part  Spread Spread Default part 

  (bps)  (bps) (bps) (bps) (Percent)  (bps) (bps) (bps) (Percent) 
1  261.80  372.58 110.78 10.78 9.73%  592.12 330.32 130.32 39.45% 

0   330.00  459.05 129.05 29.05 22.51%  709.44 379.44 179.44 47.29% 
1  410.10  544.79 134.69 34.69 25.76%  784.02 373.92 173.92 46.51% 
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Chapter III EMPIRICAL EVIDENCE: CEV AND CONSTANT 

VOLATILITY 

 

In this chapter we compare the empirical performance of the two alternative 

volatility assumptions that we used in our study within the context of the Leland (1994b) 

model. Using time series data at both the macro and firm levels, respectively, we use two 

different estimation methods for the competing models’ parameters for each firm (each 

rating class) in our sample. Given the estimates, we then compare the out-of-sample 

performance of the two models with respect to the endogenously generated variables of 

each model when compared to data that was not used for the parameter estimation.  

In the first estimation we use the historical record of observed default probabilities 

for the bonds of each maturity and risk class in order to extract the volatility parameters 

of the two models. This is an area in which the constant volatility assumption does not 

perform very well, especially for short maturities in all risk classes, as shown in Leland 

(2004). This estimation is, however, flawed, insofar as it forces every firm in the sample 

to follow the observed default probabilities of the “average” firm of the corresponding 

rating class. Thus, although the CEV model outperforms the constant volatility in better 

approximating the historical record, the extracted values of the elasticity of variance are 

not considered reliable and are not consistent with the values extracted from the other two 

methods.  

The second estimation is based on the observed leverage ratio, equity value and 

equity volatilities, extracted from either the intraday historical volatilities or from the 
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implied volatilities as observed in the option market. Here the estimated parameters are 

extracted from firm-specific data and vary widely across the firms in our sample. We find 

that the constant volatility and CEV structural models have similar performances when 

using only these three variables for the parameter estimation. 

Last, we estimate the parameters by fitting the two competing models to all the 

available historical data for our sample of firms. This data includes not only the equity 

volatilities but also the credit default swap (CDS) data for five different maturities. The 

parameters are extracted using the Generalized Method of Moments (GMM) method. We 

find that the CEV structural model, with its extra parameter, exhibits a much better in-

sample fitting in the CDS spreads across all the maturities. In additional, we find a 

negative relationship between the value of   and the firm specific measures of default 

risk, such as leverage ratios, CDS spreads and current ratio etc. Last, we compare the 

estimates of the average cumulative default probabilities across all the bonds of a similar 

maturity and rating to the comparable historical record of bonds of the same maturity and 

risk class. In this out-of-sample comparison we find that the CEV model average 

probabilities are much closer to the historical record than the constant volatility model.    

1. Empirical Evidence from Moody’s Historical Cumulative Default 

Probabilities 

1.1 Moody’s historical default data 

In this section we evaluate the capacity of the CEV structure to approximate 

available bond risk structure historical data. Such data can be under the form of corporate 

bond prices or yields, as in the empirical studies of Anderson and Sundaresan (2000) and 
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Eom, Helwege and Huang (2004), or default probabilities as in Leland (2004). The 

advantage of focusing on default probabilities rather than bond prices is that the 

cumulative default probabilities (CDP) are not affected by additional factors, such as 

illiquidity, state tax, etc. The physical asset dynamics of the underlying asset value are 

the main driver of the cumulative default probability. By contrast, the risk neutral process 

is the one that enters into corporate bond pricing. Although the two processes yield 

different results, the volatilities should be exactly the same under both risk-neutral and 

physical distributions for the diffusion and jump-diffusion models with diversifiable jump 

risk.67  

[Insert Figure III-1 about Here] 

The data for the cumulative default probability (CDP) of bonds of various risk 

classes and maturities is given in Moody’s.68 Figure III-1 exhibits the CDPs for Aa, A, 

Baa and Ba rated corporate bonds for the periods 1983-2008 and 1983-2010. Since the 

sub-prime financial crisis starts in 2008, these two data sets show the CDPs pre and post 

crisis. We only consider these four middle ratings because the default probabilities are 

rather low for Aaa bonds, while bond ratings lower than Ba are too risky. As the figure 

shows, the CDP term structure after the sub-prime financial crisis shifts upward and 

becomes much steeper relative to that before the crisis.  

                                                 
67 When the jump risk is systematic the market is incomplete, the physical and risk neutral jump process 
parameters are different, there are infinitely many possible transformations corresponding to the same 
physical distribution, and total volatility may be affected. For an analysis of this case see Oancea and 
Perrakis (2010).  
68 Moody’s “Corporate Default and Recovery Rates 1920-2008”, and “Corporate Default and Recovery 
Rates 1920-2010”. 
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1.2 Term structure of implied volatilities of historical CDPs under the L and LT 
models 

In order to examine the consistency of the L and LT models with the above data we 

examine the volatilities implied by the CDPs under the assumption that the CDP data 

represents an “average” firm for each rating class with characteristics corresponding to 

the averages reported by Moody’s. Under both L and LT it is assumed that a firm’s value 

follows a diffusion process with constant volatility under the risk-neutral distribution, as 

in equation (2.2) with a constant and jump intensity 0Q . Then the cumulative 

default probability till time T is, 69 

2

1 2

2 2 2

1 22

; ( ( ))

0.5 , , ,

aVF T N h T N h T
K

r q V b a T b a Ta b ln h T h t
K T T

 (1.1) 

The corresponding CDP under the physical distribution is found by replacing r q  

by the drift q  of the physical distribution. Thus given an observed CDP for a 

particular maturity, risk free rate, payout rate, current asset value and exogenous default 

boundary, K, the volatility D
im implied by the simple diffusion is given by, 

 1( ) ( ; , , )D
im T F T b q  (1.2) 

[Insert Table III-1 about Here] 

We show in Table III-1 the information from Moody’s used to find the implied 

volatility (IV) in (1.2). The risk premium, risk free rate, payout rate and average leverage 

for Aa, A, Baa and Ba rated corporate bonds are shown in Panel A, with the average 
                                                 
69 See equation (4) in LT or equation (21) in L. 
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leverage ratio found from Moody’s special comment in 2006.70 The average leverage 

ratio increases when the corporate debt rating decreases. We use a constant payout rate 

6%, risk free rate 8% and tax rate 35% for all the corporate bonds. In addition, we assume 

that the current asset values are the same and equal to 100 and that the risk premium is 

4%71 implying a 12% rate of return of underlying asset value for all the bonds. Leland 

(2004) shows that an exogenous or endogenous default boundary fits the observed default 

probabilities equally well provided default costs and recovery rates are matched. In this 

study exogenous default boundaries which equal the value of debt for the “average” firm 

of each rating are used to calculate the IVs. The debt value is set according to the 

historical average leverage ratio for each rating.  

[Insert Figure III-2 about Here] 

We compute the simple diffusion IVs for our samples and plot them in Figure III-2, 

while the average IVs for all the scenarios considered are shown in Panel B of Table I-2. 

As expected, the IVs after the sub-prime financial crisis are relatively higher than those 

before the crisis for all the ratings because of the higher CDPs after the crisis. The figure 

shows clearly that the term structure of IVs is not flat for all rating categories, which 

conflicts with the constant volatility assumption of both the L and LT diffusion models. 

Compared to the average IV for each rating category, the IVs are significantly higher for 

short-term corporate debt for all rating classes and occasionally higher for longer-term 

debt as well. As functions of maturity, the IVs are sharply decreasing initially and then 

become flat, with a slight increase when maturity is long enough. Under this asymmetric 

                                                 
70 Moody’s special comments: “The Distribution of Common Financial Ratios by Rating and Industry for 
North American Non-Financial Corporations: July 2006”. 
71 A 4% asset risk premium is consistent with an asset beta of about 0.6, as used in Leland (2004). 
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“U” shape term structure of IV the IVs for medium-term debt, around 10 to 15 years, are 

the lowest for each rating category. This indicates that the risk of short-term and long-

term debt issued by a firm is higher than the risk of medium-term debt. Comparing the 

average of IVs in Table III-1, we find that the sub-prime financial crisis does increase the 

volatility of asset value for all debt categories. As expected, the average IV increases with 

the average maturity of debt for all rating categories, since the risk of a firm is generally 

higher when it chooses to finance itself with longer term debt. On the other hand, the 

volatility does not always increase when the debt rating deteriorates, although the lowest 

rating has a much higher average volatility than the highest one; the slight drops in 

average volatility in intermediate ratings may be due to the composition of the sample. 

The U-shaped curve implies that if we use the average IV to predict the cumulative 

default probabilities of corporate debt for each rating, we will sharply under-estimate the 

default probability for short term and maybe slightly under-estimate the default 

probability for long-term. This is consistent with the Leland (2004) findings.72 As most 

curvature of the IV appears in the short term CDPs, we only focus on the short term 

CDPs in the following analysis, ranging from 1-year to 10-year CDPs.  

1.3 Term structure of implied volatilities under the CEV structural model 

Compared to the L and LT models, the CEV structural model has one extra 

parameter  to capture the state-dependent volatility of asset value. Can the CEV 

structural model generate the downward sloping term structure of IV? In order to answer 

this question, we first try to fit the historical term structure of IVs by varying  and  

                                                 
72 Note, however, that the evidence for the LT model from the sample of 182 firms used by Eom, Helwege 
and Huang (2004) to test the predictions of five structural models finds that LT overpredicts the yield 
spread for low maturity bonds.   
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and keeping the rest of the calibrations the same as in the LT model, which is used in 

most empirical work .73  

[Insert Table III-2 about Here] 

[Insert Figure III-3 about Here] 

Table III-2 reports the values of  and  which minimize the sum of absolute 

deviations between IVs from the CEV structural models and IVs of historical CDPs for 

Aa, A, Baa and Ba rated bonds during the periods of 1983-2008 and 1983-2010. To keep 

the optimization problem simple, we only consider integer values of . Compared to the 

LT model with flat term structure of IVs, the CEV structural model can generate a 

downward sloping term structure of IV, which can be visualized in Figure III-3 for 

different rating categories during the periods we considered. At the same time, the sums 

of absolute differences between CEV IVs and Moody’s historical IVs are small compared 

to those between LT IVs and Moody’s historical IVs, especially for higher rated debt. For 

instance, the sum of the absolute errors of Aa bonds decreases by 85%, from 0.3146 to 

0.0498 after incorporating the state-dependent volatility. Even for the Ba bond which has 

the highest  in our sample, the sum of the absolute errors still decreases by 25%, from 

0.1208 to 0.0884. Therefore, the prediction of CDPs could be improved dramatically after 

introducing state-dependent volatilities to the asset value diffusion process, especially for 

higher rated bonds. Across different rating categories,  increases and the initial 

                                                 
73 Since Leland (2004) shows that an exogenous or endogenous default boundary fits the observed default 
probabilities equally well provided default costs and recovery rates are matched, the exogenous default 
boundary is used here to keep the exercise simple. 
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volatility, 0 S , increases when the bond rating decreases.74 This indicates a higher 

volatility increase of higher rated bonds per unit decrease of asset value compared to that 

of lower rated bonds. Although the absolute scale of CDPs of higher rated debt is small, 

especially for short term maturities, the change of the IVs is relatively greater across 

different maturities. This evidence is consistent with Coval, Jurek and Stafford (2008)’s 

findings that although default risk is less important in an absolute sense for senior CDO 

tranches, systematic risk is extremely important as a proportion of total spreads for these 

tranches. In additional, by comparing the  and 0 with the period of 1983-2010, we 

found that the sub-prime financial crisis makes the term structure of IVs of Aa and A 

bonds much steeper and has relatively little impact on the term structure of IVs of Baa 

and Ba bonds. 

On the other hand, the elasticity estimates extracted from the CDP data for the CEV 

model are all negative and implausibly high in absolute value, varying from -2 to -5 or 

even to -6 for the period that includes the financial crisis. These values were estimated by 

ignoring individual firm information and are radically different from those extracted in 

the following two sections. Their only advantage lies in demonstrating the ability of the 

extra parameter to achieve a much better approximation to the historical record.  

2. Data Description of Individual Firms 

In the following sections, we recognize the characteristics of individual firms and 

conduct two exercises with the firm-level information from the financial statements, 

                                                 
74 As we assume the exogenous default boundary equals the face value of the debt so as to keep the 
calculation simple, it makes the initial volatilities relatively small. The values of the implied initial 
volatilities increase and the values of  do not change when the exogenous default boundary decreases.   
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equity market, debt market, option market and Credit Default Swap (CDS) markets, both 

separately and simultaneously. 

The credit spread data is obtained from the Markit database during the period from 

January, 2001 to December, 2011. We limited our sample only to United States firms for 

contracts denominated in US dollars. We select single name contracts with senior 

unsecured debts and modified restructure (MR) clause. We only keep the single name 

contracts which have at least 60 consecutive months’ observations. As the reported 

frequency of CDS database is daily, the CDS spread on the last Wednesday in each 

month is extracted as the CDS spread in that month. 

The accounting and equity information are extracted from the COMPUSTAT and 

CRSP data bases respectively. We calculate the total assets as the sum of book value of 

debt and market value of equity. The firms’ payout ratio is represented by the sum of 

cash dividend and interest payment divided by the total asset. As the accounting 

information frequency is quarterly, we convert it into monthly by assuming that the 

values are constant within each quarter. The at the money call option implied volatilities 

are extracted from the Optionmetrics database. The risk free rates are interpolated from 

the observed 6month Libor rates and 1, 2, 3, 5, 7, 10 years interest rate swap rates.  

[Insert Table III-3 about Here] 

[Insert Table III-4 about Here] 

The final sample consists of 103 firms whose detailed characteristics are reported in 

Table III-3. Table III-4 reports the distribution of individual firms in term of industries 
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and ratings75. Approximately half of the firms belong to consumer goods and industrials. 

There are only four firms in technology and telecommunication services, while the rest of 

the firms are almost equally distributed in basic materials, energy, healthcare and 

consumer services. The average payout ratios are equal in all the industries, about 1%, 

which is much lower than the calibration values used in Leland and Toft (1996). The 

average leverage ratio across all the industries is around 38%. In term of the individual 

industries, healthcare has the lowest leverage, about 25%, while the other industries are 

more or less around 40%, with the highest leverage of 43% in industrials. The highest 

implied volatility from the option markets occurs in energy, around 31%, while the 

average implied volatility in the full sample is around 27%.76  In term of credit default 

swap spreads, consumer services have the highest spreads and healthcare has the lowest 

spreads across all the maturities. We also note that the highest credit spreads do not 

coincide with the highest leverage ratios, indicating that industry is potentially an 

important factor in the determination of credit spreads, most probably because of the 

recovery rates in case of default, that enter into the CDS spread determination.77   

Panel B reports the rating distribution of individual firms. Most of the sample firms 

are rated as A and BBB, approximately 82%, while the numbers of firms in the highest 

and lowest ratings are relatively small. Generally, as ratings decrease from AAA to BB, 

the leverage, implied volatility and credit spreads across all the maturities increase. As 

there is only 1 firm in the B and CCC ratings respectively, we attribute the abnormal 

                                                 
75 Both industries and ratings classifications are extracted from the Markit database. 
76 The implied volatility of Telecommunication services is only 22%. As there is only one firm in this 
industry which is not enough to represent the whole industry, we leave this outside our discussion. 
77 Acharya, Bharath and Srinivasan (2007) studied the impact of the industry factor on credit spreads 
through the recovery channel and documented that creditors of defaulted firms recover significantly lower 
amounts in present-value terms when the industry of the defaulted firms is itself in distress. 
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behaviour of leverage, implied volatility and credit spreads in these ratings to firm 

specific characteristics. 

In the subsequent two sections we will use the information of our sample firms to 

test whether the CEV model is a better structural model of the firm in terms of 

representing the observable characteristics of debt and equity instruments, as well as CDS 

spreads. 

3. Empirical Evidence from Leverage, Equity value and Volatilities 

3.1 Methodology 

There are three types of equity volatilities: historical volatility, realized volatility and 

option implied volatilities, which contain the different information sets. The historical 

and realized volatility reflect the past and current information in the equity market, 

respectively, while the option implied volatility reflects the information in the option 

market. Cao, Yu and Zhong (2010) show that the option implied volatility is a more 

efficient forecast for future realized volatility compared to the historical volatility. By 

studying the co-movement among CDS, equity and option markets, Berndt and 

Ostrovnaya (2008) find that option prices reveal information about forthcoming adverse 

events at least as early as do credit spreads. In other words, the implied volatility from 

option markets contains certain future information compared to historical and realized 

volatilities. Since the current and future information sets are more interesting for our 

study purposes, we are going to use implied volatility from option markets for our base 

case results and realized volatility from the intraday dataset for robustness checks.  
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Denote the observed and model implied equity volatility by Obs
E  and Im

E ,  equity 

value by ObsE  and ImE , leverage ratio by ObsLev  and ImLev , respectively.  For the 

parameter estimation we use the Generalized Method of Moments (GMM) method. 

Denote the estimation parameter set as 1 0= , . This approach obviously nests the 

constant volatility case by setting 0  . 

At each time point 1,...,t of our data base we have the following vector 1 1,f t , 

a function of the parameter set 

 

Im

Im
1

Im

( ) ( )
, = ( ) ( )      

( ) ( )

Obs

Obs
E E
Obs

E t E t
f t t t

Lev t Lev t
 (3.1) 

The model implied debt value Im( )D t  , equity value Im( )E t  and volatility Im
E , can 

be computed from equations (2.24), (4.5) and (4.8) in Chapter 1, respectively. The 

implied leverage can be computed by, 

 
Im

Im
Im Im

( )( )
( ) ( )
D tLev t

D t E t
  (3.2) 

In order to determine the model implied moments numerically, we need both 

accounting and equity information. It is assumed that the time-varying exogenous default 

boundary equals the value of current debt plus one-half of the long term debt78 for both 

candidate models. The asset values are the sum of book value of debt plus the market 

value of equity; the latter equals the product of stock price and outstanding shares. The 

firm’s total payouts are the sum of cash dividends to shareholders and interest payments 

                                                 
78 This exogenous default boundary was introduced by the KMV group and is widely known. 
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to debtholders. The corporate tax rate is assumed to be 35% and the recovery rate is equal 

to the estimated recovery rate in the Markit database. Under these assumptions, the 

Leland model has only one variable, asset volatility, to estimate, while the CEV structural 

model has one extra parameter, the elasticity of variance, besides the volatility level. 

Since the GMM estimates by minimizing 1 1[ , ]E f t , we set  

 1 1 1 11

1, ,G f t   (3.3) 

and estimate 1 by the relation, 

 1 1 1 1 1 1arg min , ,G T W G T  (3.4) 

In (3.4) 1W is a matrix of weights that is computed by successive approximations.79 

3.2 Results 

[Insert Table III-5 about Here] 

Table III-5 presents the average values of the parameters under the CEV structural 

model estimated as described in Section 3.1, with leverage ratios, equity values and 

implied equity volatilities. In Panel A, we observe that the value of  decreases from 

1.19 to -1.08 as the rating class decreases from AAA to CCC, even though the ’s  in 

some rating classes are not significantly different from zero at conventional levels. We 

also note that for the whole sample, the average value of  is around 0.095 which is not 

significant from zero either, and the average value of initial volatility is around 15% and 

                                                 
79 We choose 1W  by setting 1

1W as the covariance matrix of moments. See pages 443-447 in Greene’s 
Econometric Analysis  (Sixth Edition). 
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significant different from zero. For the industry distribution of parameters reported in 

Panel B, the Industrials and Technology sectors have the relatively lowest ’s , around -

0.21 and -0.4, respectively, while Consumer Services and Healthcare have the highest  

among all the sectors. However, none of these ’s are significant different from zero 

conventional levels.   

As we only fit the equity and account information in this exercise, it appears that the 

CEV structural model, which introduces skewness into the asset value distribution, does 

not outperform the Leland model with constant asset volatility.  

4. Empirical Evidence From Equity, Debt and CDS Markets 

4.1 Econometric methodology 

In this section, we incorporate the observed information from the Credit Default 

Swap (CDS) market. For each firm in our data base we use 1, 3, 5, 7,10j different 

maturities for the CDS spreads in our parameter estimation. Setting 1
jg T everywhere 

the CDS spreads jc  are given by the following expression in our continuous time notation, 

with R  denoting the estimated recovery rates, whose estimates are also available in the 

CDS data base.  
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Discretizing this expression in terms of quarters ,  1,...,4i ji T , and setting 0, iD  

and 0, iQ  for the discount factor and survival probabilities respectively in the time 
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interval 0, i , we have for 0, jCDS T , the total spread paid by the default protection 

buyers in[0, ]jT  , 
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The first passage time to default probability distribution for the state dependent 

volatility processes is given in terms of its Laplace transform by the following 

expression80 

 
1

1=   j

V
A T

K
 (4.3) 

with the expressions in braces given by (3.6) in Chapter I in the case of the CEV 

distribution.  

For the parameter estimation we use the Generalized Method of Moments (GMM) 

method. At each time point 1,...,t of our data base we have the following vector

2 2 ,f t , a function of the parameter set 
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In (4.4) Im ( , ),  1, 2, 3, 5, 7,10jCDS t T j represent the CDS spreads estimated from 

(4.1)-(4.3) given the parameter set 2 0= , , while ,Obs
jCDS t T  is the corresponding 

                                                 
80 See equations (3.6) in Chapter 1, based on Davydov and Linetsky (2001, Proposition 2). 
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observed CDS spread. Similarly, Im
E t is the model-based equity volatility estimated 

from (4.8) in Chapter I given 2 , while E t is the observed equity volatility from the 

option market. Similar to section 3, we set  

 2 2 2 21

1, ,G f t   (4.5) 

and estimate 2 by the relation 

 2 2 2 2 2 2arg min , ,G T W G T  (4.6) 

In (4.6) 2W is a positive definite weighting matrix. We set this matrix equal to the 

variance matrix of the moment conditions81 and compute by successive approximations.  

4.2 Results 

Following the procedure described in the previous section, we conduct the GMM 

estimation with seven moments including the information from financial statements, 

equity, option and CDS markets and report the average values of parameters in Table III-

6. For the entire sample, the average values of  and 0   are around -0.67 and 21%, 

respectively, and both of them are significant different from zero at the highest 

conventional confidence level. Over 85% of the firms in the sample have negative ’s,  

indicating a negative relationship between asset value and asset volatility. In other words, 

we document a significant skewness in the asset value distribution after incorporating the 

information from the CDS market. 

[Insert Figure III-4 about Here] 
                                                 
81 See “Econometric Analysis (6th Edition)” edited by William H. Green, on page 444.  
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[Insert Figure III-5 about Here] 

Compared to the Leland structural model with constant volatility, the CEV structural 

model shows a clearly superior fitting of its estimates to the observed data, especially 

with respect to the CDS spreads. According to Figure III-4, the structural model with 

constant volatility consistently underestimates the CDS spreads with 1-year, 5-year and 

10-year maturities, while the CEV model estimates lie much closer to the observed 

values. Since we fixed the default boundary to the one based on the KMV method, there 

is only one extra parameter, the elasticity of variance , under the CEV structural model 

compared to the structural model with constant volatility. This extra parameter improves 

dramatically the fitting of the time series of CDS spreads across all the maturities while 

maintaining the fitting of the implied equity volatilities time series at comparable levels 

of accuracy to the constant volatility, as shown in Figure III-5.  

[Insert Table III-6 about Here] 

Table III-6 shows the distribution of the estimates of across rating classes and 

industries. For the different rating classes, we observe a decrease of  as the rating 

decreases from AA to BB, while the value of the initial volatility o  first decreases and 

then increases. The observations in other rating classes are too few to arrive at a reliable 

conclusion. For the different industries, all the average values of  are negative and 

significantly different from zero, with the lowest values in Telecom Services, Technology 

and Consumer Goods. All the average value of o  are significant, with the highest value, 

around 28%, in the Energy sector. We also note that most of the positive ’s fall into the 

Consumer Services, Industrials and Basic Materials sectors. 
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[Insert Table III-7 about Here] 

As individual firms have their own specific characteristics which lead to different 

asset value distributions, we document a wide range of values of  from -2.34 to 1 for the 

whole sample. To assess the relationship between  and firm specific characteristics, we 

break down the whole sample into five sub-samples in ascending values of . We pick 

the first and last 20 firms and put them into the first and last quantiles respectively, and 

split the rest into three quantiles evenly. Table III-7 reports the firm characteristics of the 

quantiles in term of both mean and median. Generally we observe that as the value of  

increases, there is a tendency for both asset values and current ratios which are equal to 

current assets over current liabilities, to increase, while the leverage ratios and CDS 

spreads decrease. Nonetheless, the relationship is neither monotone nor very strong, and 

the ratios and spreads fluctuate in the intermediate quantiles, probably reflecting firm 

specific factors.  It is well known that high leverage and CDS spreads are associated with 

high default risk while a high current ratio is associated with low default risk. Hence, the 

firms with higher default risk have a higher probability to have a negative  compared to 

those with a lower default risk. Since the sign of  shows the relationship between asset 

value and asset volatility, the firms with a high default risk have a higher probability to 

have a more skewed distribution of asset value compared to those with a relatively lower 

default risk. In addition, we did not see a clear relationship between the value of  and 

the firm’s payout ratio and implied volatility.  

4.3 Out of Sample Fitting of CDP 
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We observe from Table III-4 that we have fairly large sample firms in the A and 

BBB classes, with average values of leverages around 31% and 44%, respectively. 

Compared to the Moody’s risk class information reported in Table III-1 in section 1, the 

leverage ratio of BBB firms is very similar to that of Baa firms, approximately 44%. 82 

Thus, our samples of firms in the BBB class should be good proxies for Moody’s Baa 

class. Since we have already calibrated the value of initial volatilities and elasticity 

parameters for each individual firm in the previous section with equity, option and CDS 

information, we may now verify the out of sample fitting for the historical term structure 

of cumulative default probabilities for the BBB class.  

[Insert Figure III-6 about Here] 

From Table III-6, we know that the average values of the initial volatility and the 

elasticity parameter  are 18.67% and -0.7037, respectively, under the CEV structural 

model, while the average asset volatility is around 15.29% under the Leland structural 

model with constant volatility. We assume 4% asset risk premium.83  The exogenous 

default boundary, risk free rates and payout rates are the same as in the empirical data for 

all the firms in the BBB class of our sample.  As we see in Figure III-6, the term structure 

of physical cumulative default probabilities generated by the CEV structural model can 

almost capture the level and trend of the observed information, while that generated by 

the structural model with constant volatility dramatically underestimates the CDP. Thus, 

                                                 
82 We assume the S&P’s BBB is equivalent to Moody’s Baa class.  The equivalence of the S&P A class 
with Moody’s Aa is less clear, and for this reason we don’t present the comparative CDP results for that 
class. In these results the observed CDP for the Aa class lies between the CEV and constant volatility cases.   
83 Leland (2004) assume 4% asset risk premium for the calibration. This number is consistent with 6% 
equity premium when the average firm has about 35% leverage. 
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the CEV structural model with its extra elasticity parameter shows significant flexibility 

to fit into the cross sectional information from major financial markets.   

5. Conclusion 

In this Chapter, we use real data from the equity, option and CDS markets for a 

sample of firms to compare the performance of structural models with constant volatility 

and CEV, using three alternative information sets. 

First, using Moody’s historical cumulative default probabilities, we show that the 

term structure of implied volatilities is not constant, especially for the short-term 

maturities. We show that the extra parameter of the CEV model achieves a much better 

approximation to the historical record than constant volatility. Further, we find that the 

elasticity estimates extracted from the CDP data for the CEV model are all negative and 

implausibly high in absolute value, varying from -2 to -5 or even to -6 for the period that 

includes the financial crisis. 

Second, we use firm level information limited to the accounting data and equity and 

option market observations. With such an information set, we note that the CEV 

structural model has a performance similar to the structural model with constant 

volatility.  

Third, we incorporate the information from CDS markets into the data set used in the 

second exercise and re-examine the performance of both models. We document that the 

CEV structural model exhibits a much better fitting to the CDS spreads across all 

maturities. In addition, we find that the estimated values of are overwhelmingly and 

significantly negative for most of the firms in our sample across all industries and rating 
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classes. The relationship between the sign and value of and the firm specific measures 

of default risk, such as leverage ratios, CDS spreads and current ratios indicates that there 

is a tendency for  to increase as the risk of the firm decreases, but that the tendency is 

weak and fluctuates. 

Last, we compared the estimated average cumulative default probabilities to the 

Moody’s data for the BBB rating class in our sample for which there were sufficient 

numbers of firms for reliable inferences. We note that the CDP term structure generated 

by the CEV structural model can fit the observed data much better than the one estimated 

with constant asset volatility.  

Overall, the elasticity parameter under the CEV structural model provides a 

significant degree of flexibility to fit the cross sectional information from financial 

statements, equity, option and CDS markets simultaneously compared to the competing 

structural model with constant volatility. More complex asset dynamics that include jump 

and/or stochastic volatility components may perhaps improve the fit compared to the 

CEV. Nonetheless, the theoretical and computational drawbacks of these dynamics, 

documented at length in Chapter I of this thesis, preclude their use in empirical research 

at this point in time.  
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Table III-1: Calibration of Model Parameters 

Panel A 
 Aa A Baa Ba 

Average leverage(D/v) 31.6% 41.7% 44.8% 49.8% 
Payout Rate 6% 6% 6% 6% 

Risk Free Rate 8% 8% 8% 8% 
Recovery Rate 50% 50% 50% 50% 

Tax Rate 0.35 0.35 0.35 0.35 
Risk Premium 4% 4% 4% 4% 

Panel B 

0V  100 100 100 100 
K 31.6 41.7 44.8 49.8 

Average Implied 
volatility(1983-2008) 18.97% 17.69% 19.11% 23.36% 

Average Implied 
volatility(1983-2010) 19.33% 18.30% 19.50% 24.21% 
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Table III-2: CEV structural model parameter estimation by fitting Moody’s historical CDPs  

This table reports the estimation of  and 0  in the CEV structural model by minimizing the sum of absolute deviations from Moody’s historical CDPs for 
terms from 1-year to 10-years. 

,

I I
CEV MMIN  

The average leverage, payout rate, risk free rate, recovery rate, tax rate and risk premium are assumed to be the same as in Panel A in Table III-1 for different 
rating categories of debt. We assume the initial asset value is 100 and the exogenous default boundary equals the face value of the debt. 

I
M is the average 

implied volatility by the LT model.  

 Period of 1983-2008  Period of 1983-2010 

Rating  0  I I
CEV M  

II
MM    0  I I

CEV M  
II
MM  

Aa -5 6.5% 0.0498 0.3146  -6 6.3% 0.0530 0.3128 

A -4 8% 0.0621 0.1832  -5 7.6% 0.0778 0.2036 

Baa -4 9.5% 0.0747 0.1914  -4 9.8% 0.0836 0.1866 

Ba -2 16% 0.0884 0.1208  -2 16.5% 0.1010 0.1075 



148 
 

Figure III-1: Cumulative Default Probabilities of Aa, A, Baa and Ba rated corporate 

bonds  

The dashed lines show the cumulative default probability (CDP) of corporate debt during 1983-2010. The 
solid lines show the cumulative default probabilities of corporate debt during 1983-2008. 
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Figure III-2: Implied volatility of historical cumulative default probabilities  

The dashed lines show the implied volatilities of the cumulative default probabilities during 1983-2010 by 
LT model, while the solid lines show the implied volatilities during 1983-2008. The initial asset value 
equals 100 and the debt value is chosen from the empirical leverage ratio for the different ratings. The 
coupon is calculated by making the debt issued at par value. Tax rate is 35% and recovery rate is 50% for 
all the debts. The average maturity of debt is 10 years. The exogenous default boundaries are equal to the 
value of debt for each scenario. 
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Figure III-3: Term structures of Implied Volatilities (IV) of CEV structure model 

This figure depicts the term structure of IV for Moody’s historical CDPs (solid lines) and CEV structural 
model (dashed lines). The LT model with exogenous default boundary is used to calculate the IVs. The 
average IVs for Moody’s historical CDPs are shown by dashed-dot lines for Aa, A, Ba, B rated debt during 
the periods 1983-2008 and 1983-2010. The average leverage, payout rate, risk free rate, recovery rate, tax 
rate and risk premium are assumed to be the same as in Panel A in Table III-1 for different rating categories 
of debt. We assume the initial asset value is 100 and the exogenous default boundary equals the face value 
of the debt. The values of  and 

0
 in CEV structural model are calculated by minimizing the sum of 

absolute deviations from Moody’s historical CDPs for terms from 1-year to 10-years and shown in Table 
III-2. 
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Table III-3: Summary Statistics of Individual Firms 

This table reports the summary statistics of individual firms. Note that in sector column, BM, CG, CS, EN, 
HC, IN, TE, TS are abbreviations of  Basic Materials, Consumer Goods, Consumer Services, Energy, 
Healthcare, Industrials, Technology and Telecommunications Services, respectively. The payout ratio is 
the sum of cash dividend and interest expense divided by the total asset. The recovery rates are the 
estimated recovery rates reported in Markit datasets. The implied volatilities are extracted from 
Optionmetric for the at the money call options. 

Company Name Sector Rating Begin 
date 

End 
date 

Total 
Asset 

(billion) 

Payout 
Ratio 

Leverage 
Ratio 

Recovery 
Rate 

Implied 
volatility 

3M Co IN AA 04/2003 12/2011 69.56 0.01 0.18 0.40 0.22 
Abbott Labs HC AA 10/2003 12/2011 98.95 0.01 0.23 0.40 0.21 

Air Prods & Chems Inc BM A 04/2003 09/2008 20.78 0.01 0.30 0.40 0.22 
Alcoa Inc. BM BBB 08/2001 09/2008 45.79 0.01 0.42 0.40 0.34 

AmerisourceBergen Corp CS BBB 02/2004 12/2011 17.37 0.00 0.55 0.40 0.27 
Anadarko Pete Corp EN BBB 01/2003 09/2008 40.52 0.01 0.48 0.40 0.31 

Anheuser Busch Cos Inc CG A 06/2003 10/2008 51.64 0.01 0.25 0.40 0.18 
APACHE CORP EN A 03/2003 09/2008 31.58 0.00 0.30 0.40 0.31 

Archer Daniels Midland  CG A 06/2003 09/2008 31.83 0.01 0.44 0.40 0.30 
Arrow Electrs Inc CG BBB 11/2001 12/2011 7.43 0.00 0.57 0.40 0.38 

Autozone Inc CS BBB 03/2003 07/2011 12.58 0.00 0.35 0.40 0.27 
Avon Prods Inc CG BBB 01/2003 12/2011 19.04 0.01 0.25 0.40 0.31 

Baker Hughes Inc EN A 11/2001 09/2008 20.82 0.01 0.17 0.40 0.34 
Baxter Intl Inc HC A 02/2002 12/2011 36.91 0.01 0.26 0.40 0.26 

Black & Decker Corp CG BBB 05/2002 01/2010 8.50 0.01 0.47 0.41 0.32 
Boeing Co IN A 04/2001 09/2008 92.46 0.01 0.50 0.40 0.28 

BorgWarner Inc CG BBB 11/2001 09/2008 5.21 0.01 0.43 0.40 0.31 
Bristol Myers Squibb Co HC A 04/2003 12/2011 64.12 0.02 0.26 0.40 0.25 

Campbell Soup Co CG A 06/2002 10/2011 17.43 0.01 0.32 0.40 0.21 
Caterpillar Inc IN A 04/2001 09/2008 67.27 0.01 0.54 0.40 0.28 
CenturyTel Inc TS BBB 03/2003 04/2008 8.99 0.01 0.50 0.40 0.22 

Clorox Co CG BBB 07/2004 07/2009 13.16 0.01 0.32 0.40 0.21 
Coca Cola Entpers Inc CG A 06/2003 09/2008 30.04 0.01 0.66 0.40 0.23 
Colgate Palmolive Co CG AA 08/2003 12/2011 41.92 0.01 0.19 0.40 0.20 
ConAgra Foods Inc CG BBB 08/2001 07/2011 20.08 0.03 0.42 0.40 0.22 

ConocoPhillips EN A 01/2003 09/2008 152.40 0.01 0.45 0.39 0.25 
Costco Whsl Corp CS A 07/2004 07/2011 35.93 0.00 0.29 0.40 0.25 

CSX Corp IN BBB 01/2003 09/2008 29.17 0.01 0.58 0.40 0.29 
Cytec Inds Inc BM BBB 02/2004 12/2011 4.30 0.00 0.49 0.40 0.36 
Danaher Corp IN A 01/2004 12/2011 29.13 0.00 0.23 0.40 0.25 

Diamond Offshore 
Drilling EN A 07/2003 09/2008 10.89 0.02 0.19 0.40 0.37 

Dover Corp IN A 12/2004 12/2011 12.74 0.01 0.31 0.40 0.29 
Dow Chem Co BM BBB 01/2002 09/2008 65.87 0.02 0.44 0.40 0.28 

Eastman Chem Co BM BBB 01/2003 09/2008 8.57 0.01 0.52 0.40 0.25 
FedEx Corp IN BBB 08/2002 07/2011 36.34 0.00 0.30 0.40 0.28 

Gen Dynamics Corp IN A 11/2004 12/2011 41.54 0.01 0.36 0.40 0.24 
Gen Mls Inc CG BBB 04/2002 07/2011 31.57 0.02 0.39 0.40 0.19 

Goodrich Corp IN BBB 09/2001 09/2008 9.19 0.01 0.52 0.40 0.33 
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Halliburton Co EN A 02/2003 09/2008 34.94 0.01 0.30 0.40 0.33 
H J HEINZ CO CG BBB 04/2001 10/2011 21.96 0.02 0.38 0.41 0.21 
Home Depot Inc CS A 02/2002 09/2008 95.07 0.01 0.22 0.41 0.28 

Honeywell Intl Inc IN A 11/2001 12/2011 54.86 0.01 0.41 0.40 0.30 
Intl Business Machs Corp TE AA 04/2001 12/2011 233.09 0.01 0.34 0.40 0.25 

Intl Paper Co BM BBB 04/2001 09/2008 39.13 0.01 0.56 0.40 0.27 
Johnson & Johnson HC AAA 03/2003 12/2011 207.15 0.01 0.15 0.40 0.17 

Kellogg Co CG BBB 03/2003 12/2011 27.45 0.01 0.33 0.40 0.18 
Kimberly Clark Corp CG A 02/2004 12/2011 38.91 0.02 0.29 0.40 0.18 

The Kroger Co. CS BBB 08/2006 10/2011 33.61 0.01 0.53 0.40 0.29 
Eli Lilly & Co HC A 06/2003 12/2011 70.15 0.02 0.22 0.40 0.24 
Ltd Brands Inc CS BB 03/2003 09/2008 12.76 0.01 0.29 0.40 0.32 

Lockheed Martin Corp IN A 04/2001 12/2011 52.81 0.01 0.45 0.40 0.26 
Lowes Cos Inc CS A 01/2003 09/2008 54.34 0.00 0.22 0.40 0.28 

Marriott Intl Inc CS BBB 05/2002 09/2008 18.00 0.00 0.31 0.40 0.30 
Masco Corp CG BB 07/2002 09/2008 18.45 0.01 0.39 0.41 0.31 

Medtronic Inc HC A 09/2003 10/2011 62.35 0.01 0.16 0.40 0.24 
Merck & Co Inc HC AA 03/2004 10/2009 105.48 0.02 0.23 0.40 0.27 
Mohawk Inds Inc CG BBB 12/2004 12/2011 7.91 0.00 0.44 0.40 0.38 

Molson Coors Brewing CG BBB 10/2005 12/2011 12.93 0.01 0.41 0.40 0.27 
Monsanto Co BM A 04/2003 09/2008 31.34 0.01 0.22 0.40 0.32 
Motorola Inc TE BBB 08/2002 09/2008 57.09 0.01 0.35 0.39 0.38 

Newell Rubbermaid Inc CG BBB 05/2001 02/2009 11.75 0.02 0.43 0.41 0.30 
Nordstrom Inc CS A 11/2001 09/2008 10.30 0.01 0.35 0.41 0.37 

Norfolk Sthn Corp IN BBB 04/2001 09/2008 29.32 0.01 0.54 0.39 0.32 
Northrop Grumman Corp IN BBB 04/2003 03/2011 36.98 0.01 0.46 0.40 0.22 
OCCIDENTAL PETRO EN A 09/2002 09/2008 45.32 0.01 0.29 0.40 0.29 

Omnicare Inc CS BB 11/2004 02/2011 7.65 0.01 0.50 0.26 0.40 
Omnicom Gp Inc CS BBB 05/2002 12/2011 25.77 0.01 0.47 0.40 0.29 

ONEOK Partners LP EN BBB 05/2006 12/2011 7.79 0.04 0.53 0.40 0.22 
J C Penney Co Inc CS BB 06/2001 09/2008 20.37 0.01 0.51 0.38 0.39 

Pepsico Inc CG A 06/2004 12/2011 124.03 0.01 0.19 0.40 0.18 
Pfizer Inc HC AA 10/2003 12/2011 234.37 0.02 0.28 0.40 0.24 

Pitney Bowes Inc TE BBB 11/2003 12/2011 15.76 0.02 0.53 0.40 0.24 
PPG Inds Inc BM BBB 07/2001 12/2011 17.96 0.01 0.42 0.40 0.27 
Praxair Inc BM A 10/2003 09/2008 25.16 0.01 0.26 0.40 0.23 

Pride Intl Inc EN BBB 06/2003 09/2008 6.49 0.00 0.35 0.40 0.38 
Procter & Gamble Co CG AA 04/2001 12/2011 213.09 0.01 0.25 0.40 0.19 
Quest Diagnostics Inc HC BBB 09/2005 12/2011 14.15 0.01 0.30 0.40 0.24 

Raytheon Co IN A 06/2003 12/2011 32.39 0.01 0.42 0.40 0.22 
Rep Svcs Inc IN BBB 09/2004 12/2011 14.30 0.01 0.43 0.40 0.27 

Reynolds Amern Inc CG BBB 11/2004 12/2011 26.53 0.02 0.39 0.40 0.23 
Rohm & Haas Co BM BBB 05/2001 11/2008 15.81 0.01 0.39 0.41 0.27 

Ryder Sys Inc IN BBB 01/2003 09/2008 7.26 0.01 0.62 0.39 0.29 
Safeway Inc CS BBB 07/2005 12/2011 20.99 0.01 0.50 0.40 0.31 

Schering Plough Corp HC A 04/2003 09/2008 40.65 0.01 0.23 0.40 0.28 
Sealed Air Corp US IN B 02/2006 12/2011 7.05 0.01 0.47 0.40 0.31 

Sherwin Williams Co CG A 06/2002 12/2011 9.60 0.01 0.31 0.40 0.29 
Smithfield Foods Inc CG BB 07/2003 08/2008 7.53 0.01 0.57 0.39 0.29 
Southwest Airls Co IN BBB 06/2003 12/2011 18.62 0.00 0.45 0.39 0.35 
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Sunoco Inc EN BB 07/2003 09/2008 14.55 0.01 0.51 0.40 0.34 
SUPERVALU INC CS CCC 03/2003 09/2008 15.13 0.01 0.60 0.40 0.28 

Sysco Corp CS A 03/2005 12/2011 24.48 0.01 0.26 0.40 0.23 
Target Corp CS A 04/2002 09/2008 64.06 0.00 0.35 0.40 0.30 
Textron Inc IN BBB 10/2002 09/2008 23.69 0.01 0.58 0.39 0.28 
Un Pac Corp IN BBB 09/2003 09/2008 45.93 0.01 0.49 0.39 0.24 

Utd Parcel Svc Inc IN AA 08/2004 12/2011 68.52 0.02 0.32 0.40 0.23 
Utd Tech Corp IN A 06/2003 09/2008 85.24 0.01 0.33 0.40 0.20 

Unvl Health Svcs Inc HC BB 03/2004 12/2011 5.10 0.01 0.42 0.40 0.31 
UST Inc. CG BBB 04/2003 10/2008 8.99 0.03 0.17 0.40 0.22 
V F Corp CG A 09/2004 12/2011 11.07 0.01 0.26 0.40 0.28 

Wal Mart Stores Inc CS AA 01/2001 10/2011 296.93 0.01 0.28 0.40 0.23 
Waste Mgmt Inc IN BBB 01/2004 08/2009 31.50 0.01 0.46 0.40 0.24 
Whirlpool Corp CG BBB 04/2001 09/2008 12.73 0.01 0.59 0.40 0.33 

Wyeth HC A 02/2003 07/2009 81.20 0.01 0.28 0.40 0.26 
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Table III-4: Distribution of Individuals Firms 

This table reports the industry and rating distribution in Panel A and B, respectively. The average values of all the variables are reported. The 1, 3, 5, 7, 10 
years credit default swap spreads are reported as basis points (bps). 

Panel A: Industry Distribution 

Sector/Rating Observations leverage Payout 
ratio 

1 year 
Spread 

3 year 
Spread 

5 year 
Spread 

7 year 
Spread 

10 year 
Spread 

Implied 
volatility 

Basic Materials 10 0.40 0.01 26.85 39.11 51.92 59.30 68.51 0.28 
Consumer Goods 27 0.37 0.01 33.53 48.82 63.90 71.57 79.79 0.26 

Consumer Services 17 0.39 0.01 43.87 64.65 84.10 92.76 102.56 0.30 
Energy 10 0.36 0.01 30.21 44.73 58.86 66.96 76.00 0.31 

Healthcare 12 0.25 0.01 20.89 32.54 44.76 51.22 58.01 0.25 
Industrials 23 0.43 0.01 26.79 39.48 52.73 59.99 67.94 0.27 
Technology 3 0.41 0.01 37.66 54.12 68.55 76.46 85.50 0.29 

Telecom Services 1 0.50 0.01 24.76 46.52 71.38 86.84 102.93 0.22 

Panel B: Rating Distribution 

AAA 1 0.15 0.01 11.51 16.57 22.33 26.19 30.76 0.17 
AA 9 0.26 0.01 15.68 23.18 30.89 35.72 41.42 0.23 
A 38 0.31 0.01 17.32 26.50 35.91 41.95 49.11 0.26 

BBB 46 0.44 0.01 37.10 53.84 71.12 79.88 89.44 0.28 
BB 7 0.46 0.01 83.09 121.94 154.16 166.00 177.62 0.34 
B 1 0.47 0.01 72.47 111.10 150.17 163.88 176.62 0.31 

CCC 1 0.60 0.01 54.54 89.48 124.22 140.64 157.33 0.28 

All Firms 103 0.38 0.01 31.32 46.24 61.07 68.76 77.29 0.27 
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Table III-5: Distribution of Parameters with Leverage and Equity 

This table reports the average value of parameters by fitting leverage, equity value and equity implied volatility. The 
average p-values for each parameter are reported in the parentheses.  

Panel A: Rating Distribution 

 ALL  Negative Betas  Positive Betas 
N beta sigma N beta sigma N beta sigma 

AAA 1 1.1901 0.1700    1 1.1901 0.1700 
(0.3319) (0.0008)    (0.3319) (0.0008) 

AA 9 0.5275 0.1505 4 -0.1005 0.1496 5 1.0299 0.1513 
(0.2657) (0.0120) (0.3290) (<.0001) (0.2150) (0.0216) 

A 38 0.1091 0.1703 20 -0.6523 0.1651 18 0.9550 0.1760 
(0.0992) (0.0033) (0.1052) (0.0002) (0.0925) (0.0068) 

BBB 46 0.0334 0.1393 27 -0.6962 0.1396 19 1.0701 0.1388 
(0.1303) (0.0227) (0.1137) (0.0002) (0.1538) (0.0547) 

BB 7 0.0463 0.1736 4 -0.5174 0.1704 3 0.7978 0.1778 
(0.1630) (0.0216) (0.1667) (0.0010) (0.1580) (0.0490) 

B 1 -1.0766 0.1213 1 -1.0766 0.1213    
(<.0001) (<.0001) (<.0001) (<.0001)    

CCC 1 -1.0801 0.1678 1 -1.0801 0.1678    
(0.0556) (0.0054) (0.0556) (0.0054)    

total 103 0.0950 0.1544 57 -0.6398 0.1516 46 1.0056 0.1580 
(0.1328) (0.0139) (0.1265) (0.0003) (0.1406) (0.0308) 

Panel B: Industry Distribution 

 ALL  Negative Betas  Positive Betas 
N beta sigma N beta sigma N beta sigma 

Basic 
Materials 

10 0.2166 0.1545 4 -0.7157 0.1450 6 0.8382 0.1609 
(0.0614) (0.0322) (0.0019) (<.0001) (0.1010) (0.0536) 

Consumer 
Goods 

27 0.0852 0.1425 16 -0.5375 0.1423 11 0.9910 0.1429 
(0.1138) (<.0001) (0.1211) (<.0001) (0.1032) (0.0003) 

Consumer 
Services 

17 0.5064 0.1869 8 -0.6178 0.1744 9 1.5056 0.1981 
(0.1208) (0.0248) (0.1498) (0.0007) (0.0949) (0.0462) 

Energy 10 -0.0236 0.1847 6 -0.3307 0.2074 4 0.4370 0.1506 
(0.1928) (0.0405) (0.1550) (0.0013) (0.2493) (0.0994) 

Healthcare 12 0.4163 0.1671 6 -0.3509 0.1613 6 1.1834 0.1729 
(0.2207) (0.0211) (0.2664) (<.0001) (0.1750) (0.0422) 

Industrials 23 -0.2159 0.1306 13 -0.9918 0.1306 10 0.7927 0.1306 
(0.1090) (0.0013) (0.0525) (0.0005) (0.1826) (0.0024) 

Technology 3 -0.4047 0.1097 3 -0.4047 0.1097 
(0.2855) (<.0001) (0.2855) (<.0001) 

Telecom 
Services 

1 -1.8688 0.1487 1 -1.8688 0.1487 
(<.0001) (<.0001) (<.0001) (<.0001) 
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Table III-6: Distribution of Parameters with Equity and CDS Spreads 

This table reports the average value of parameters by fitting equity implied volatility and CDS spreads. The average 
p-values for each parameter are reported in the parentheses.  

Panel A: Rating Distribution 

 ALL  Negative Betas  Positive Betas 
N beta sigma N beta sigma N beta sigma 

AAA 1 -0.9971 0.1604 1 -0.9971 0.1604 
(<.0001) (<.0001) (<.0001) (0.0005) 

AA 9 -0.4186 0.2511 7 -0.5862 0.1812 2 0.1679 0.4958 
(0.0002) (<.0001) (<.0001) (<.0001) (0.0009) (<.0001) 

A 38 -0.6627 0.2307 33 -0.8087 0.2272 5 0.3006 0.2543 
(0.0002) (<.0001) (<.0001) (<.0001) (0.0012) (<.0001) 

BBB 46 -0.7037 0.1867 40 -0.9133 0.1908 6 0.6939 0.1590 
(0.0069) (<.0001) 0.0009 (<.0001) (0.0474) (<.0001) 

BB 7 -0.8919 0.2303 6 -1.1181 0.2349 1 0.4651 0.2028 
(<.0001) (<.0001) (<.0001) (<.0001) (<.0001) (<.0001) 

B 1 0.5274 0.1562 1 0.5274 0.1562 
(-0.0062) (<.0001) (0.0062) (<.0001) 

CCC 1 -1.0721 0.2736 1 -1.0721 0.2736 
(<.0001) (<.0001) (<.0001) (<.0001) 

total 103 -0.6709 0.2118 88 -0.8648 0.2073 15 0.4663 0.2384 
(0.0032) (<.0001) (0.0004) (<.0001) (0.0199) (<.0001) 

Panel B: Industry Distribution 

 ALL  Negative Betas  Positive Betas 
N beta sigma N beta sigma N beta sigma 

Basic 
Materials 

10 -0.4853 0.1822 7 -0.9851 0.1908 3 0.6809 0.1623 
(<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) 

Consumer 
Goods 

27 -0.8375 0.1997 25 -0.9455 0.1888 2 0.5111 0.3358 
(<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) (<0.0001) 

Consumer 
Services 

17 -0.4826 0.2213 12 -0.8904 0.2392 5 0.4960 0.1782 
(0.0018) (<0.0001) (<0.0001) (<0.0001) (0.0061) (<0.0001) 

Energy 10 -0.5919 0.2871 9 -0.6950 0.2966 1 0.3357 0.2008 
(0.0035) (<0.0001) (0.0039) (<0.0001) (<0.0001) (<0.0001) 

Healthcare 12 -0.6231 0.1969 12 -0.6231 0.19692 
(<0.0001) (<0.0001) (<0.0001) (<0.0001) 

Industrials 23 -0.6847 0.2159 19 -0.8875 0.1916 4 0.2786 0.3315 
(0.0116) (<0.0001) (<0.0001) (<0.0001) (0.0669) (<0.0001) 

Technology 3 -1.0540 0.1686 3 -1.0540 0.1686 
(<0.0001) (<0.0001) (<0.0001) (<0.0001) 

Telecom 
Services 

1 -1.1286 0.1382 1 -1.1286 0.1382 
(<0.0001) (<0.0001) (<0.0001) (<0.0001) 
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Table III-7: Characteristics of Firms with Different Betas 

This table reports the characteristics of firms within different beta quantiles. Leverage equals total debt over total 
assets. Current ratio equals current asset over current liability. Payout ratio equals the sum of cash dividend and 
interest expense divided by the total assets. Implied volatilities are the call option implied volatilities from option 
market. 

Beta Quantiles Total 0-20% 21%-40% 41%-60% 61%-80% 81%-100% 

Beta values -2.34 ~ 1 -2.34 ~ -1.04 -1.04 ~ -0.98 -0.98 ~-0.81 -0.81 ~ -0.28 -0.22 ~ 1 

N 103 20 21 21 21 20 

Panel A: Means 

Leverage 0.3786 0.4133 0.3896 0.4068 0.3573 0.3249 

Total Assets 4.34E+10 2.88E+10 4.17E+10 4.17E+10 3.69E+10 6.83E+10 

Current ratio 1.4533 1.2913 1.3540 1.4734 1.5876 1.5577 

Payout ratio 0.0104 0.0108 0.0079 0.0081 0.0136 0.0120 

1Y CDS Spreads 31.3216 35.9334 33.8354 38.5367 22.2912 25.9762 

3Y CDS Spreads 46.2438 55.7609 48.3903 54.8282 33.5563 38.7813 

5Y CDS Spreads 61.0658 75.2904 63.3211 69.8178 45.1666 51.9776 

7Y CDS Spreads 68.7625 84.8468 71.0693 77.1313 52.0681 58.9980 

10Y CDS Spreads 77.2913 94.6554 79.5323 85.4650 60.1437 66.9970 

Implied Volatility 0.2733 0.2440 0.2814 0.2984 0.2675 0.2737 

Panel B: Medians 

Leverage 0.3784 0.4187 0.3620 0.4301 0.3784 0.2946 

Total Assets 2.74E+10 1.69E+10 2.08E+10 2.91E+10 2.45E+10 4.87E+10 

Current ratio 1.3024 1.1594 1.1604 1.2889 1.3927 1.4940 

Payout ratio 0.0095 0.0112 0.0073 0.0084 0.0114 0.0114 

1Y CDS Spreads 22.7694 26.2025 18.5574 23.8004 18.1137 20.1085 

3Y CDS Spreads 32.1538 45.7060 30.5065 32.9205 27.7378 29.1998 

5Y CDS Spreads 43.2735 61.0262 40.0791 43.2819 37.6122 38.6436 

7Y CDS Spreads 49.4273 68.6341 47.6000 51.0469 43.8566 44.6378 

10Y CDS Spreads 57.8791 78.6446 57.0330 59.8140 52.7728 52.5273 

Implied Volatility 0.2737 0.2438 0.2858 0.2848 0.2737 0.2795 



158 
 

Figure III-4: Time Series of CDS Spreads 
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Figure III-5: Time Series of Equity Volatility 
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Figure III-6: Out of Sample Fitting for Historical Term Structure of CDP 

This figure depicts the out of sample fitting for historical term structure of cumulative default probabilities 
(CDP) of Moody’s Baa class. The value of  and  come from the GMM estimation in Section 4.2. It is 
assumed that Moody’s Baa equivalent to S&P’s BBB. The average value of  are equal to 15.29% and 
18.67% for Leland and CEV structural models, respectively. The average value of  is -0.7037 for BBB 
class. The asset risk premium is assumed to be 4%. The exogenous default boundaries, risk free rates and 
payout rates are exactly same as the empirical data used in GMM estimation in Section 4.2 for BBB class.     
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Chapter IV   MARKET EFFICIENCY AND DEFAULT RISK: EVIDENCE 

FROM THE CDS AND LOAN CDS 

1. Introduction 

The market for Loan Credit Default Swaps (LCDS), which are credit derivatives on 

syndicated secured loans, has grown rapidly since its 2006 launch until the recent Great 

Recession. Compared to traditional Credit Default Swap (CDS) contracts, LCDS 

contracts have higher recovery rates and cancellability options. Unlike non-cancellable 

LCDS (or US LCDS) that are generally used for trading purposes,84 the protection buyer 

of a European LCDS stops paying a premium to the protection sellers once the loan is 

cancelled by a refinancing activity. Thus, the refinance rate and the LCDS spread are 

usually negatively correlated. Compared to selling the loan directly, banks can keep the 

loans on their balance sheets while transferring the credit risks of loans to third parties, 

usually large financial institutions. As the banks have no incentive to keep monitoring the 

loan actively after buying a LCDS contract, this causes what is referred to as the “Empty 

Creditor Problem”.85 

In this paper we take advantage of the fact that both CDS and LCDS contracts 

depend on the same credit event in order to examine the efficiency of their markets as 

reflected by the co-movement of their time series. Assuming market efficiency, we 

identify a model-free parity relation and we construct a zero-net-cost portfolio that trades 

simultaneously in both markets and uses observed CDS and LCDS spreads, as well as 

reported recovery rates in case of default from both types of contracts, We identify 

                                                 
84 Merrill Lynch, Credit derivative strategy, Feb. 14, 2007. 
85 See Bolton and Oehmke (2011). 
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persistent and positive arbitrage profits from that portfolio over the data period, which 

imply that the observed CDS and LCDS data violates the parity relation. The arbitrage 

profits are large and exist for all rating classes of bonds in our data base. 

We show that these profits cannot be justified by transaction costs or by imperfect 

information with respect to the recovery rates. Further, we identify a subset of firms that 

present persistent evidence of market failure in the form of extreme and persistent 

violations of the market efficiency condition. We analyze the determinants of both profits 

and market failure in terms of macroeconomic and firm-level variables. We find that 

firm-level effects, especially those related to informational asymmetry and difficulty of 

loan recovery in case of default, are much more important than macroeconomic factors in 

accounting for arbitrage profits and market failure. 

Our paper contributes to the growing literature on violations of market efficiency in 

financial markets, which has been noted in several different venues. Since both CDS and 

LCDS contracts are derivatives that depend on the default risk of the borrowing firm, 

their spreads should be determined simultaneously with the valuation of the entire set of 

financial instruments that lay claim to the firm’s cash flows. The theoretical models that 

value the firm’s financial claims are known as structural models of the firm, pioneered by 

Merton (1974), with important contributions by Leland (1994) and Leland and Toft 

(1996). Nonetheless, the complexity of the structural models and the uncertainty of their 

parameters have limited their empirical applications to CDS valuation.86 For this reason 

most violations of market efficiency have been documented in other derivatives markets, 

in equity option markets, in the pair of index and equity option markets, or in index 

                                                 
86 Zhang, Zhou and Zu (2008) is one of the few studies that has adopted this approach. 
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futures options markets.87 To our knowledge, this paper is the first one to document 

efficiency violations in credit default swap markets.  

Most previous integrated studies of stock, bond, option and CDS markets have been 

purely empirical. Acharya and Johnson (2007) study the information flow between the 

CDS market and the stock market from the perspective of insider trading. They find that 

information revelation in the CDS market occurs only for negative credit news and for 

entities that subsequently experience adverse shocks, and increases with the number of a 

firm’s relationship banks. Berndt and Ostrovnaya (2008) extend the work of Acharya and 

Johnson (2007) by incorporating the option market and find that prices of options reveal 

information about forthcoming adverse events at least as early as do credit spreads. 

Norden and Weber (2009) and Forte and Pena (2009) analyze the co-movements of credit 

default swap, bond and stock markets from real observed prices and implied CDS spreads, 

respectively. The main advantage of our study is that although it is consistent with 

structural models of the firm, it is completely model-free and depends only on market 

efficiency and the quality of the data. 

If both CDS and LCDS contracts are written on the same firm, the claims are 

triggered by the same default events which are defined by the International Swap and 

Derivatives Association (ISDA). Thus, the default and survival probabilities of these 

credit derivatives should be exactly the same given the same maturities, restructuring 

clauses and denominated currencies. However, the claim sequences of CDS and LCDS 

are different, which leads to different recovery rates, for which estimates are provided in 

the respective data bases. Generally speaking, the syndicated secured loans which are the 

                                                 
87 See for instance Goyal and Saretto (2009), Driessen et al (2009), and Constantinides et al (2011).  
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underlying assets of the LCDS have higher priority during the bankruptcy process 

compared to senior unsecured debts which are the underlying assets of CDS. Therefore, 

relatively higher recovery rate estimates of LCDS contracts are observed in the data bases 

(approximately 70% on average) compared to similar estimates for recovery rates on 

CDS contracts (around 40% on average). Further, the LCDS recovery rates are contingent 

on the values of the collateral assets, which are independent of the value of the borrowing 

firm, unlike the CDS rates. 

Based on these observations, we construct CDS and LCDS parity under the no 

arbitrage assumption, which should hold in the absence of market frictions. With single 

name CDS and LCDS daily observations during the period from April 2008 to March 

2012, we document a time-varying and significantly positive arbitrage profit generated by 

an artificial default risk-free portfolio that simultaneously longs the undervalued and 

shorts the overvalued contract based on CDS and LCDS parity. We also identify a subset 

of firms (hereafter termed “market failure set”) for which the only recovery rate in the 

CDS market consistent with the parity relation is negative for continuous time intervals 

of at least ten days’ length. In order to understand these observed parity deviations, we 

then address several follow-up research questions. First, do the observed arbitrage profits 

persist in the presence of transaction costs?  Second, are the reported data on recovery 

rates in the data base reliable as estimates of “true” recovery rates upon default for both 

CDS and LCDS markets? Third, what is the impact on deviations in spreads from their 

parity relation of firm-specific and also macroeconomic variables, and the set of 

publications on North American LCDS released simultaneously by the ISDA? Last, to 
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the extent that the deviations from parity cannot be explained from the above factors, 

what do these violations say about the efficiency of the CDS and LCDS markets? 

To address the first two questions, we first compute the arbitrage portfolio by 

including transaction costs in the form of bid-ask spreads of the CDS market as reported 

in earlier studies and in the Bloomberg database. We find that the profits survive this 

inclusion, since the spreads are much lower than the estimated profits. To address the 

second question, we examine the real default data from a number of firms within our data 

base that failed as well as all the default events on the senior unsecured debts documented 

by Moody’s default and recovery database during the study period. We find that the 

realized recovery rates vary widely between firms and the default types. We also compare 

the estimated recovery rates to other reported estimates from earlier studies for senior 

unsecured debt like the ones traded in the CDS market and find that the estimates in our 

data base are, if anything, rather conservative with respect to the existence of the 

arbitrage profits. 

To address the third research question, we run panel regressions on arbitrage profits 

from violations of the parity relation on firm-specific and macroeconomic variables for 

the entire sample of firms, for several subsamples differentiated by rating class, and 

separately for the market failure set of firms. We include in the independent variables 

standard firm-specific variables like firm size, leverage, current asset ratio and tangible 

assets ratio. We also include the idiosyncratic volatilities calculated from the residuals of 

a Fama-French three-factor model. In the macroeconomic variables we include an 

important event during our sample period that would affect CDS and LCDS spreads and 

their deviations. The event consists of the positive news associated with the simultaneous 
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release of a set of publications to regulate and standardize North American LCDS by 

ISDA on April 5, 2010. The results for the firm-specific variables are consistent with 

prior expectations on the basis of earlier studies about the determinants of the level and 

changes in CDS spreads88 and their effects on information asymmetry, one of the most 

probable sources of the arbitrage profits. Specifically, we find that leverage turns out to 

be always positively correlated with profits, again an expected result since its effect on 

the default event is symmetric for both CDS and LCDS markets, while its effect on 

recovery rates is going to affect primarily the CDS market. The a priori effects of firm 

size and current asset ratio are less clear, since they impact both credit spreads and 

recovery rates. On the other hand, the idiosyncratic risk of firms turns out to be strongly 

positively associated with profits, an expected result given the fact that such risk is an 

indicator of information asymmetry. Equally interesting is the impact of the 

macroeconomic variables. The ISDA, by establishing global standards for LCDS 

contracts from the aspects of definition, qualification, settlements, continuity and 

documents, increased market efficiency in term of reducing the deviations between the 

two spreads in all the samples, but the effect is statistically significant at the conventional 

level only for the not-rated firms. On the other hand, variables associated with market 

downturns have a strongly positive effect on arbitrage profits for almost all samples. 

These findings provide some further indirect understanding of the dislocations caused in 

various markets by the collapse of Lehman Brothers89 and adds some new insights to a 

                                                 
88 Collin-Dufresne, Goldstein and Martin (2001), Ericsson, Jacobs and Oviedo (2009) and Cao, Yu and 
Zhong (2010). 
89 Some of the published studies include Baba and Packer (2009) who examine dislocations in the foreign 
exchange swap market;  De Haas and Van Horen (2012) on the impact on cross-border bank participation 
in the syndicated loan market; and Aragon and Strahan (2012) on the impact on the provision of liquidity 
by hedge funds.  
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growing literature on the adverse (beneficial) effects of asset complexity (standardization) 

on price volatility and trade efficiency (e.g., Carlin, Kogan and Lowery, forthcoming).90 

Last, we find that the failure firm subset has significant differences in the size of all 

firm-specific variables from the remaining firms in our sample, as well as in the levels of 

their respective CDS and LCDS spreads and recovery rates. On the other hand, the results 

of the panel regressions have much lower explanatory power for this subset, while not 

being noticeably different as to the size and significance of the coefficients. We conclude 

that the failure firm subset consists of small, heavily indebted firms with high 

idiosyncratic risk and, hence, likely to be subject to a significant degree of information 

asymmetry. 

The rest of the paper is organized as follows. In Section 2 we present the CDS and 

LCDS parity and construct the trading strategy. In Section 3 we describe our sample 

datasets. In Section 4 we report and analyze the empirical evidence for the co-movement 

of CDS and LCDS markets for both the short and long runs and examine its robustness 

with respect to transaction costs and recovery rate estimates. In Section 5 we present the 

results of the panel regressions of the realized profits from our parity violations arbitrage 

strategy on the macroeconomic and firm-specific variables. Section 6 concludes.  

2. EMPRICAL METHODOLOGY: THE TRADING STRATEGY 

We construct a model-free trading strategy to detect whether an arbitrage 91 

opportunity exists in the CDS and LCDS markets. According to the definition of a CDS 

                                                 
90 Carlin, Kogan and Lowery (forthcoming) conclude that their experimental results imply that regulation 
requiring asset standardization should decrease price volatility and increase liquidity. Carlin and Manso 
(2011) explore the dynamic relationship between obfuscation and sophistication in retail financial markets 
accounting for the important role played by learning mechanisms within the investor population. 
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contract, the premium of a CDS contract (denoted by c ) received by the protection seller 

(or paid by the protection buyer) has to make the present value of the expected premium 

leg equal to the present value of the expected default leg in order to rule out an arbitrage 

opportunity. This can be expressed mathematically as follows under continuous time, 

 
(1 ) ( | )

( | )

T D r

t
T S r

t

R P t e d
c

P t e d
 (2.1) 

R denotes the recovery rate; ( | )DP t denotes the probability that a default event 

occurs at time for the first time conditional on the information at time t ; and 

( | ) 1 ( )S D

t

P t P s t ds  denotes the probability that a firm survives until time 

conditional on the information at time t . Letting 
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and integrating by parts, we find that the denominator of (2.1) is given by 
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The expressions in (2.2) and (2.3) are given in particular structural models of the 

firm in terms of the parameters of the asset dynamics process.92 The estimation of the 

parameters is done by calibrating the particular model to the observed spreads and to 

other observable variables of the model, as shown in the appendix.  Nonetheless, the 

                                                                                                                                                 
91 In this chapter, “arbitrage” means the violation of parity which may or may not lead to profitable trading 
in the financial markets. 
92 See, for instance, Leland and Toft (1996, p. 990). 
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availability of the CDS and LCDS data sets allows the model-free examination of the two 

markets. Following the underlying logic of a structural model, the first passage default 

probability and the survival probability should only be driven by the distance between the 

firm’s asset level and default boundary so that default risk and distance are inversely 

related. Thus, the US LCDS and traditional CDS issued on the same firm with the same 

default clause and maturity should share exactly the same first passage default probability 

and survival probability. If we denote the traditional CDS and US LCDS premiums by 

,CDS LCDSc c  and recovery rates by ,CDS LCDSR R , respectively, it follows that, 

(1 ) ( | ) (1 ) ( | )
,

( | ) ( | )

T TD r D r
CDS LCDSt t

CDS LCDST TS r S r

t t

R P t e d R P t e d
c c

P t e d P t e d
 (2.4) 

Thus, the following equality must be satisfied in order to rule out arbitrage 

opportunities given no market frictions and no errors in the recovery rate estimates, 

 1
1
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CDS LCDS

LCDS

Rc c
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 (2.5) 

Thus, in the absence of transaction costs, the arbitrage payoffs of the portfolio 

constructed based on (2.5) can be computed as, 
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In the presence of the one-way proportional transaction costs which are proportional 

to the nominal amount of contracts, 93  denoted by k , there is a non-trading zone 

,CDS CDSc cCDS ,cCDS , , where, 

 1 1,
1 1

CDS CDS
CDS LCDS CDS LCDS

LCDS LCDS

R Rc c k k c c k k
R R

 (2.7) 

If the observed CDS spreads fall in the non-trading zone , there is no arbitrage 

opportunity. Otherwise, we are able to construct a trading strategy to generate arbitrage 

profits, which gives,

 

1
1

1_
1

0

CDS
CDS LCDS CDS CDS

LCDS

CDS
LCDS CDS CDS CDS

LCDS

CDS CDS CDS

Rc c k k if c c
R

RPR TC c k k c if c c
R

if c c c

 (2.8) 

Specifically, when the observed CDS spread CDS CDSc c , we buy one share CDS 

contract with $1 notional amount and pay CDSc premium continuously given that no 

default occurs and finance this transaction by shorting 1
1

CDS

LCDS

R
R

 shares of the US LCDS 

contract with $1 notional amount per contract. If a default event occurs, we receive 

1 CDSR  dollars from the CDS leg contract and pay 1 * 1 1
1

CDS
LCDS CDS

LCDS

R R R
R

 

dollars to the holder of the US LCDS leg. Given no estimation risk of recovery rates, this 
                                                 
93 Given a CDS contract with 1$ notional value and premium c , we have to pay c k  when we buy and 

receive c k  when we sell it. 
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portfolio can be considered as default risk free. It can, however, generate a positive profit 

at the initial time. When the observed CDS spread CDS CDSc c  positive arbitrage profits 

can be generated by selling CDS contracts and buying corresponding LCDS contracts. In 

the following sections, we will test the violation of this equality by the observed CDS and 

LCDS spread and estimated recovery data. 

3. SAMPLE AND DATA 

The CDS market has existed for a long time but the LCDS market was launched in 

2006 in both US and Europe. We obtain our CDS and LCDS data from Markit who 

collects the quotes on LCDS spreads from large financial institutions and other high 

quality data sources and produces the LCDS spread database on a daily basis starting 

from April 11, 2008. Our sample is from April 11th, 2008 to March 30th, 2012, which 

encompasses the credit crisis and the Great Recession. Since the LCDS contracts can be 

divided into US LCDS and Euro LCDS based on the embedded cancellable feature, we 

only use US LCDS to construct the portfolio in order to keep our analysis model free. 

In the CDS market, the contracts on senior unsecured debts are selected since this 

type of contract is the most liquid and is used frequently in the literature.  In the LCDS 

market, the contracts on the first-lien syndicated loans are selected since the claims on 

collateral for the first-lien loans are senior to those of the second-lien loans, which 

indicate more reliable estimated recovery rates. In addition, the LCDS contracts on first-

lien loans are the majority and more liquid compared to those on the second-lien loans. 

We restrict our CDS and LCDS contracts to those in the United States and denominated 

in US dollars. To ensure that the first-passage default and survival probabilities of the 
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CDS contracts are exactly the same as those of the corresponding LCDS, we match the 

daily LCDS and CDS data based on company name, denominated currency, restructure 

clauses and time to maturity. We only study the contracts with a 5-year maturity since 

they are the most liquid contracts and the most studied in the previous literature.94 Markit 

also reports the estimated recovery rates obtained from their clients. These recovery rate 

expectations at time of issue may differ from subsequent recovery-rate expectations and 

actual recovery rates, especially during bad economic times.95 Nevertheless, these data 

represent the only available proxy for the real recovery rates96 (especially for LCDS 

contracts) and have been used in previous studies.97 Table IV-1 reports the summary 

statistics for our full sample and sub-samples. We eliminate the observations whose CDS 

spreads (or LCDS spreads) are greater than 1 and the single name contracts which have 

less than 120 consecutive daily observations. In addition, we obtain the accounting 

variables from COMPUSTAT, economic macro variables from Federal Reserve H.15 

database and equity information from Bloomberg. After merging all these datasets and 

removing the missing observations and private firms, the full sample contains 68,147 

firm-clause-daily cross-sectional observations for 120 single names during the sample 

period from April 11, 2008 to March 30, 2012. 

[Insert Table IV-1 about Here] 

                                                 
94 See Jorion and Zhang (2007), Cao, Yu and Zhong (2010, 2011), Schweikhard and Tsesmelidakis (2011), 
Qiu and Yu (2012) and Zhang, Zhou and Zhu (2009). 
95 Jokivuolle and Peura (2003), Altman, Brady, Resti and Sironi (2005), Hu and Perraudin (2002) and 
Chava, Stefanescu and Turnbull (2006) report that the recovery and default rates are negatively correlated. 
96 The real recovery rates are collected from Moody’s Default and Recovery Database and discussed in 
section 4. 
97 See Huang and Zhu (2008), Zhang, Zhou and Zhu (2008), and Elkamhi, Ericsson and Jiang (2012). 
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In the full sample, the mean LCDS and CDS spreads are around 3.7% and 4.6%, 

respectively. Both medians are smaller than their corresponding means which indicate 

asymmetric distributions and fat tails, especially on the right side. These style factors are 

also verified by positive skewness and high kurtosis for the CDS and LCDS spreads. The 

distributions of recovery rates for the LCDS and CDS contracts are close to a Gaussian 

distribution with slightly negative skewness. Both the mean and median of the LCDS 

recovery rates, around 65% and 70% respectively, are greater than the corresponding 

statistics for the CDS contracts, around 38% and 40% respectively. Intuitively, the 

syndicated secured loans which are the underlying asset of LCDS are usually backed up 

with collateral and have claim priority compared to the senior unsecured debts which are 

the underlying asset that backs the CDS once the default event occurs. The sub-sample of 

investment grades (includes firms rated greater than or equal to BBB), accounts for more 

than 60% of the total observations, while junk rated contracts and not rated contracts 

share almost equally the rest of the observations, approximately 20% each. As expected, 

both the mean and median of the CDS and LCDS spreads in the investment grade sub-

sample are relatively lower, while the mean and median of the recovery rates are 

relatively higher compared to the junk subsample. In terms of the accounting variables, 

the average values in the full sample are around 25 million for total assets, 61% leverage 

ratio, 54% tangible asset ratio and 1.54 current ratio. Compared to the statistics of the 

investment grade firms, the means for the junk firms are higher for the leverage ratio and 

lower for total assets, tangible asset ratios and current ratios. The not rated firms are 

mostly relatively small firms in terms of their total assets. Their leverage ratios, tangible 

asset ratios and current ratios are diverse.  
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The daily idiosyncratic volatilities98 of the full sample have a mean around 2.4% 

with positive skewness and extremely high kurtosis. As expected, both the mean and 

median of daily idiosyncratic volatilities of the investment grade firms are relatively 

lower than those of junk rated firms. For the not rated firms, the daily idiosyncratic 

volatilities are more volatile compared to the other sub-samples.  

4. THE EFFICIENCY OF THE CDS AND LCDS MARKETS 

In this section we examine the violation of CDS and LCDS parity constructed in 

Section 2 at the index and firm levels, respectively. The results are first presented in the 

absence of both transaction costs and uncertainty of recovery rates, and then subsequently 

extended by the inclusion of these two missing items.   

4.1 Trading Strategies 

Following the CDS and LCDS parity in the presence and in the absence of 

transaction costs discussed in Section 2, we first examine the relationship in (2.6) and 

(2.8) with the observed CDS and LCDS data. Figure IV-1 reports the distribution of 

trading strategies with and without transaction costs in Panel A and Panel B, respectively.  

[Insert Figure IV-1 about Here] 

Interestingly, without transaction costs the CDS and LCDS parity in (2.5) does not 

hold at all, which implies huge arbitrage profits in these markets in the absence of 

recovery rate risk. Generally, buying CDS contracts and selling corresponding LCDS 

contracts can generate positive arbitrage profits, which indicates that the LCDS spreads 

are overpriced compared to the corresponding CDS spreads, especially for the not-rated 

                                                 
98 The calculation details are provided in Section 5. 
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single name contracts. But there is still around a 23% percent chance to make positive 

profits by selling the CDS contracts and buying corresponding LCDS contracts in the full 

sample. 

In the presence of transaction costs, we observe that only approximately 19% of the 

cross-sectional observations in the full sample cannot generate positive arbitrage profits. 

There are still a large number of opportunities to make positive arbitrage profits, 

especially for the not-rated single name contracts. Similar to the case without transaction 

costs, buying CDS contracts and selling the corresponding LCDS contracts dominates the 

opposite trading strategy.  

4.2 Portfolio Results without Transaction Costs and Uncertainty of Recovery 
Rates 

In this subsection it is assumed that the CDS and LCDS markets are frictionless and 

that the recovery rates reported by the Markit database are the “real recovery rates” once 

the default events occur. As noted earlier, we construct the default-free portfolio by 

checking the equality of equation (2.5). There is arbitrage opportunity if the equality does 

not hold. Particularly, we simultaneously buy the CDS contract and sell the weighted 

LCDS contract provided 1
1

CDS
CDS LCDS

LCDS

Rc c
R

 and vice versa.  

Relying on the CDS and LCDS parity with the no-arbitrage assumption, we build 

the portfolio for each single name contract on a daily basis and analyze the payoff based 

on the cross sectional observations. The summary statistics are presented in Panel A of 

Table IV-2. The average trading profit across all observations is approximately a daily 

3.75% indicating that the portfolios constructed by the contracts which violate the CDS 
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and LCDS parity are able to generate a 3.75% arbitrage profit per day per single name 

contract on average over the whole sample period. This is incredibly large compared to 

the average daily returns in the traditional equity and bond markets.  Note that the high 

standard deviation, 7.5%, and high kurtosis, 117.53, confirm that the mean may be driven 

by some outliers. Nevertheless, the 1.6% median return which is not affected by extreme 

values is still noticeable large and positive on a daily basis. 

[Insert Table IV-2 about Here] 

We now divide the full sample into three sub-samples based on rating status. The 

junk-rated contracts generate relatively lower returns in terms of both mean and median 

compared to the investment-grade contracts, while the not-rated contracts generate the 

highest profits among all the sub-samples. This can be interpreted intuitively from the 

perspective of asymmetric information. Compared to the rated firms, the not-rated firms 

likely have higher asymmetric information effects since they release less information to 

the markets. In turn, this can be expected to reduce the market efficiency between the 

CDS and LCDS markets and increase the deviations from the parity relation between 

these two markets, resulting in the large arbitrage profits for the arbitrage portfolio for 

these firms. 

As the time span of the single name contracts varies, the cross-sectional average 

puts more weight on the firms with a longer life. In order to remove this bias, we first 

calculate the daily average profit for each single name across the life of the contract and 

then present the statistical properties of the sample reported as “Firm Daily Average 

Profits” in Panel A. The distribution is much closer to the Gaussian with 4.5% mean and 
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2.5% median daily return, which are even greater than those based on the cross-sectional 

observations.  

In order to check the time trend of the arbitrage profits, we aggregate the trading 

profits per day across all the available paired single name contracts and then divide by the 

total number of single name contracts per day to construct a payoff index. Suppose there 

are tN pairs of single name contracts on day t . The payoff of each pair i  on day t  is 

denoted by itr . The payoff index return tR  on day t  is then expressed by, 

 
1 tN

t it
it

R r
N

 (3.1) 

As expected, the distribution of index returns is almost Gaussian for all the samples. 

Similar to the cross-sectional results, the average profit for the not-rated sub-sample 

dominates in terms of the mean and median the rated sub-samples but also has the highest 

standard deviation, 3.3%. The investment grade single names generate lower profits than 

the junk-rated single names. The time trend of daily average profits of the different 

samples can be observed visually in Figure IV-2.  In the full and Investment grade 

samples we note that the arbitrage profits are relatively higher during the great recession 

period from mid-2008 to late 2009, compared to the rest of the periods, and gradually 

decrease in recent years. The junk-rated and not-rated samples have significantly higher 

volatilities than the investment grade firms. As mentioned before, both junk-rated firms 

and not-rated firms are small firms in terms of total assets. They have relatively lower 

tangible ratios which make them more vulnerable, especially under turbulent financial 

market environments. This style factor turns into the higher volatilities for these two sub-

samples compared to the investment grade firms. 
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4.3 Portfolio Profits Given Transaction Costs 

The liquidity problem in the CDS market has been studied from different 

perspectives in the literature. Acharya and Johnson (2007) document that the median 

CDS bid-ask spread is around 20 basis points using CDS quotes for the most widely 

traded North American entities for the period from January 1, 2001 to October 20, 

2004.99 With the CDS data from 1997 to 2006, Tang and Yan (2007) report that the bid-

ask spread is approximately 22 basis points on average.100 Note that the time spans in 

these studies do not overlap with our sample period, which covers the Great Recession 

and afterwards. The Great Recession starting from 2008 affected the CDS market 

dramatically and may have adversely affected its liquidity. Since the Markit database 

only provides the composite quotes for the CDS and LCDS spreads, we match the single 

names in our sample with the Bloomberg database and find that 66 out of 120 firms are 

quoted in the Bloomberg historical CDS dataset.101 The bid-ask quote information is 

retrieved during the period from January 2nd, 2008 to November 23rd, 2012, which covers 

the time span in our study. Table IV-3 reports the summary statistics of both firm average 

and daily average bid-ask spreads. The median of the daily average bid-ask spread at 

around 18 basis points is a little lower but close to the numbers documented by Acharya 

and Johnson (2007) and Tang and Yan (2007). The positive skewness and extremely high 

kurtosis imply fat tails, especially on the right. This turns into a relatively high mean of 

around 35 basis points in contrast to the median.  

                                                 
99 Cite from Table 1 on page 117 in Acharya and Johnson (2007). 
100 The bid-ask spread is computed by combining the summary statistics results in Table 1 and Table 3 in 
Tang and Yang (2007).   
101 As Bloomberg does not provide the information about restructuring clauses, we can only match with 
firm name and we need to assume that the restructure clauses are the same as the single name contracts in 
the Markit database. 
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[Insert Table IV-3 about Here] 

Intuitively, the one way transaction cost represented by one-half of the quoted bid-

ask spread in the LCDS market should be greater than its counterpart in the CDS market 

since the LCDS market is relatively smaller and less liquid. However, we are unable to 

identify the real bid-ask spread in the LCDS market.  

Panel B of Table IV-2 reports the numerical results in the presence of time-varying 

bid-ask spreads for both the firm and index levels. Compared to the scenarios in the 

absence of transaction costs (Panel A in Table IV-2), both mean and median of the profits 

decrease for all samples but are still significantly positive. Specifically, the full cross-

sectional sample generates 3.38% in average profits. In terms of time trend, the profits in 

the presence of transaction cost are very similar to those in the absence of transaction 

costs, which can be observed visually in Figure IV-2. Therefore, the significantly positive 

arbitrage profits survive the introduction of transaction costs.  

[Insert Table IV-4 about Here] 

If we now assume that all the arbitrage profits are caused by relatively less liquidity, 

we can calculate the value of transaction costs which make the arbitrage profits equal to 

zero. The computation is straightforward and can be expressed as, 
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The summary statistics for the implied round-trip transaction cost ˆ2 itk , are reported 

in Table IV-4. The average implied transaction cost for the cross-sectional observations 

of around 200 basis points is more than ten times the realized bid-ask spreads 

documented for the same sample period. These results show that transaction costs can 

only explain a small portion (approximately 10%) of the observed abnormal positive 

profits generated by the portfolio. 

4.4 Uncertainty of Recovery Rates and Market Failure 

After the introduction of transaction costs, there are still about 90% of the abnormal 

positive profits that remain unexplained. Note that we have assumed that the estimated 

recovery rates reported in the Markit datasets are reasonable proxies for the “real 

recovery rates” in the presence of default events. Generally, the real recovery rates 

depend on the type of default events and can only be observed once the default events 

occur. For instance, if a default event is triggered by missing an interest payment, the real 

recovery rate is usually higher than if the default event is triggered by the filing of 

Chapter 11 or Chapter 7. Hence, the uncertainty of the real recovery rates should be a 

source of risk that may explain the observed abnormal profits from an arbitrage portfolio 

between the CDS and LCDS markets. 

i Real recovery rates versus estimated recovery rates 

In the LCDS market, the underlying assets are the Line 1 syndicated secured loans 

with collateral. The value of the collateral is easier to estimate and incorporate into the 

estimation of the LCDS recovery rates. In addition, syndicated secured loans have claim 

priority compared to the senior unsecured debts which are the underlying assets of the 
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CDS markets in bankruptcy. Thus, the estimated recovery rates should be a good proxy 

for the “real recovery rates” of LCDS contracts.  

In order to check the quality of the estimated recovery rates in the CDS markets 

obtained from Markit, we try to match the single names in our sample with those in the 

Moody’s Default and Recovery Database which documents almost all the historical 

default events and their corresponding real recovery rates. We find that four firms have 

default events on senior unsecured debts during the period from April 11, 2008 to March 

30, 2012. The detailed firm list and statistics of real recovery rates are reported in Table 

IV-5.  The mean and median estimated recovery rates are calculated for all days prior to 

the default event, and the real recovery rate is calculated as the percentage of debt market 

value one month after the default event divided by the face value of the debt. The real 

recovery rates are much higher than the estimated recovery rates in term of both mean 

and median. 

[Insert Table IV-5 about Here] 

As the real recovery rate sample is too small to make conclusive conclusions, we 

collect all the observed default events on the senior unsecured debts (1535 observations) 

during the sample period from April 11, 2008 to March 30th, 2012 and report the 

summary statistics in Panel B. Apparently, these results verify that the real recovery rates 

depend on the type of default events. We note that around half of the default events are 

triggered by “Distressed Exchanges”. 102  As distressed exchanges can trigger default 

                                                 
102 Distressed exchange is the substitution of a bond by its issuer with a financial asset of lower value. A 
distressed exchange was possible but sometimes not likely to trigger a default event in the CDS market. As 
of April 2009, distressed exchanges are no longer considered a default event (see Altman and Karlin, 
2009).  
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events for some CDS contracts with modified-restructuring (MR) clauses, Modified-

modified restructuring (MM) clauses under certain circumstances and sometimes not,103 

we also report the average real recovery rates after excluding the distressed exchanges.  

Compared to the real recovery rates, the estimated recovery rates are much higher in term 

of both the mean and median. Given the LCDS recovery rates, buying CDS contracts and 

selling LCDS contracts generates much more profits when the real recovery rates are low, 

which is generally the case for our trading strategies. 

Next, we benchmark our recovery rates to those reported in the literature. Acharya, 

Bharath and Srinivasan (ABS, 2007, pp. 797-798) provide recovery rate data from a 

sample of defaulted firms for the 18-year period ending in 1999. They report median 

rates of 91.55%, 61.99% and 54.63% for bank loans, senior secured debt and senior 

unsecured debt, respectively. The first two recovery rates correspond to our LCDS and 

the last one to our CDS. The average recovery rates for senior secured bank loans and 

senior unsecured bonds are 70.47% and 36.69%, respectively, during the period from 

1982 to 2007, as reported in Moody’s special comment.104 The results from Moody’s 

special comment (1982-2007) and observed defaults including distressed exchanges in 

Panel B of Table IV-5 (2008-2012) are much closer to the estimates given in our Markit 

data than the ABS results. They preserve in the entirety or even increase the estimated 

arbitrage profits that we report. 

                                                 
103 During the current 2012 negotiations regarding the restructuring of Greek sovereign debt, one important 
issue is whether the restructuring will trigger CDS payments. ECB and IMF negotiators are trying to avoid 
these triggers as they may jeopardize the stability of major European banks who have been protection 
writers. (Source: http://en.wikipedia.org/wiki/Credit_default_swap#Terms_of_a_typical_CDS_contract) 
104 Moody’s special comment, “Corporate Default and Recovery Rates, 1920-2007”, February 2008. 
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ii Implied recovery rates 

Although we verified empirically that on average the real recovery rates are smaller 

but close to the estimated recovery rates, deviations between the real recovery rates and 

estimated recovery rates of the CDS contracts vary dramatically among the individual 

cross-sectional observations. To verify the cross sectional and time series sources of this 

variability, we now check the implied recovery rates in the presence of transaction costs 

by setting the profits of the arbitrage portfolio equal to zero. Mathematically, the implied 

recovery rates can be computed as, 

 

1 1

ˆ 1 1

CDS
LCDS CDS CDS

LCDS

CDS
CDS LCDS CDS CDS

LCDS

CDS CDS CDS CDS

c k R if c c
c k
c kR R if c c
c k

R if c c c

 (3.3) 

Where ˆ
CDSR  is the implied recovery rate of the CDS contract. Compared to the daily 

average of estimated recovery rates, the daily average implied recovery rates that are 

reported in Panel A of Figure IV-3 are greater and also more volatile.  

[Insert Figure IV-3 and Table IV-6 about Here] 

Theoretically, the recovery rates cannot be negative because of the limited liability 

of the debt holder. However, we observe some negative implied recovery rates and some 

of them even last for periods as long as a couple of months. According to (3.3), the 

observed CDS and LCDS spreads, LCDS recovery rates and the transaction costs affect 

the implied CDS recovery rates directly. In order to identify the most important of these 

factors in terms of the negative implied recovery rates, we collect all the turning days on 
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which the implied CDS recovery rates become negative (First Day). Thus, each such 

identified implied CDS recovery rate is positive on the day before the turning day (1 Day 

Before). Table IV-6 reports the means and medians of all the variables which might 

affect or be affected by the implied recovery rates. Based on the two-sides Wilcoxon two 

sample test, we observe that the LCDS recovery rates decrease significantly on the 

turning days and their spreads also decrease on those days (albeit with less than 

conventional significance). Intuitively, when the LCDS recovery rates decrease, the 

corresponding LCDS spreads should increase because the loans have become more risky. 

Such counter-intuitive market behavior supports the failure of the LCDS market as 

reflected in the negative implied CDS recovery rates. Both CDS spreads and recovery 

rates increase but not significantly at conventional levels. Since the CDS spreads depend 

on both default probabilities and recovery rates (see (2.4)), we test for changes in the 

spread ratios defined as CDS LCDSc c  and recovery rates ratios defined as 

1 1CDS LCDSR R in order to rule out any impacts on default probabilities. Not 

surprisingly, the spread ratios significantly increase but the recovery rates ratios decrease, 

which indicate market failure. In the presence of such market failure, the mean profit of 

our trading strategy on the first day of about 5.7% is significantly greater (almost double) 

the mean profit on the one day before of approximately 2.9%. We also observe a decrease 

in equity returns, CDS spreads and an increase of CDS recovery rates, but none of them 

are significant at conventional significance levels.  

iii Market Failure 

Given market frictions, negative implied recovery rates could appear occasionally 

but should disappear after a reasonable period of time because prices should adjust 
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quickly in a well-functioning market. In this section, we define 19 single name contracts 

in our sample as market failure contracts because they have ten or more consecutive days 

(approximately two weeks) on which their respective implied CDS recovery rates are 

negative.  

[Insert Table IV-7 about Here] 

Comparison statistics of failure and non-failure firms are reported in Table IV-7. 

Compared to the non-failure firms, the failure firms are usually small firms in terms of 

total asset value with relatively higher leverage on average. The idiosyncratic volatilities 

of the failure firms are noticeably higher than those of non-failure firms. We also note 

dramatically higher CDS spreads and slightly higher LCDS spreads for the failure firms 

compared to the non-failure firms, although their CDS and LCDS recovery rates are very 

similar. Based on the results reported in Panel C of Table IV-7, all of the means and 

medians of the differences in these variables between failure and non-failure firms with 

the exception of median difference of the LCDS spreads is significant at the 1% level. 

Given these differences in firm-specific characteristics, the trading strategy of selling 

CDS contracts and buying the corresponding LCDS contracts of failure firms dominates 

all other strategies for non-failure and failure firms, as depicted in Figure IV-4.  This 

indicates that the CDS spreads are generally over-priced for the failure firms compared to 

their corresponding LCDS spreads. We also note that the market failure behaviors 

reflected by the negative implied recovery rates are clustered and occur with greater 

frequency during the 2008 financial crisis, as depicted in Figure IV-5. 

[Insert Figure IV-4 and Figure IV-5 about Here] 
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After removing all the market failure firms from the full sample, we find that the 

implied recovery rates become less volatile and are consistently above the estimated 

recovery rates with only one (inverted) spike during May 2011, as shown in Panel C of 

Figure IV-3. It appears that the uncertainty of the implied CDS recovery rates is mostly 

contributed by the failure firms.  

5. IMPACT OF MACRO AND FIRM-SPECIFIC VARIABLES 

The outcomes of the risk-free portfolio differ among the single names and are also 

time-varying. In this section, we study the impacts of different macro-economic and firm-

specific variables on the outcomes of the arbitrage portfolios in the presence of 

transaction costs.  As the outcomes of the arbitrage portfolios depend on the CDS and 

LCDS spreads and recovery rates, we list the most important factors explaining the levels 

and changes of credit spreads reported in the existing literature, including Collin-

Dufresne, Goldstein and Martin (2001), Acharya, Bharath and Srinivasan (2007), 

Acharya and Johnson (2007), and Cao, Yu and Zhong (2010). Then we refine the list 

based on multicolinearity105 and data availability to arrive at the subsequently discussed 

variables whose correlations are reported in Table IV-8.  

[Insert Table IV-8 about Here] 

5.1 Firm specific variables 

Logarithm of total assets (LOGA): the logarithm of total asset value. The total asset 

value equals the sum of book value of total liabilities and the market value of total equity 

                                                 
105 For instance, we use the yields on 5-year US treasury bonds since both CDS and LCDS contracts in our 
sample have five years to maturity. We use the spread between the yields on Aaa and Baa corporate bonds 
(CBS) and eliminate the VIX because we find that these two variables are highly correlated and the CBS 
has better explanatory power than VIX.   
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including traded equity and non-traded equity. The total asset value is used to control the 

size impacts on arbitrage profits. The relationship between total assets and arbitrage 

profits is ambiguous.  

Current asset over current liability ratio (CAL): this ratio equals current assets 

divided by current liabilities. This ratio indicates the ability of a firm to pay short term 

debt with current assets (i.e., assets that should be easier to liquidate). The current ratio is 

expected to be inversely related with the default probability. Lower default probabilities 

are expected to decrease both the CDS and LCDS spreads. As the arbitrage profit 

measures the deviations between the CDS and LCDS markets, the impact of CAL on 

arbitrage profits is indeterminate. 

Leverage ratio (LEV): this ratio equals total liabilities divided by total assets, which 

indicates the capital structure of a firm. Collin-Dufresne, Goldstein and Martin (2001) 

find that the change of the leverage ratio is positively correlated with the change of credit 

spreads for groups with leverages greater than 15%,106 while Acharya and Johnson (2007) 

find that the leverage ratio has an insignificant impact on the level of the credit spread.107 

Economically, firms with high leverage ratios will have both higher CDS and LCDS 

spreads due to an increased probability of default. As the impact on the spread moves in 

the same direction for both markets, it may not change the deviation between these two 

markets. However, as highly levered firms issue more debt but with less equity backing, 

the recovery rates of the senior unsecured debts should decrease much more compared to 

the syndicated secured loans which usually have collateral backing and claim priority. 

                                                 
106 Table 2 on page 2186 in Collin-Dufresne, Goldstein and Martin (2001). 
107 Table 10 on page 136 in Acharya and Johnson (2007). 
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Such a decrease of CDS recovery rates are expected to increase the profits of the 

portfolio. Overall, we expect the leverage ratio to be positively correlated with the 

arbitrage profits.  

Tangible assets (TANG): this variable equals the total value of property, plant and 

equipment divided by total assets. Acharya and Johnson (2007) find that the tangible 

asset ratio increases the credit spread using Fama-MacBeth regressions but has an 

insignificant effect using panel regressions. As tangible assets can be considered as a 

collateral proxy, the recovery rates of CDS should be higher with higher tangible asset 

ratios. Furthermore, tangible assets are much easier to estimate and monitor compared to 

intangible assets, making the estimate of recovery rates much closer to real recovery rates. 

Higher expected recovery rates of CDS contracts are expected to decrease the expected 

profits of the arbitrage portfolio. Hence, we expect to have a negative coefficient for the 

TANG factor.   

 Idiosyncratic volatilities (IDIO): The idiosyncratic volatilities are the conditional 

volatility of equity return residuals which cannot be explained by the asset-pricing model. 

For the calculation, we collect the daily closing equity price, denoted by itp , for firm i at 

day t  and calculate the daily returns by 1 1it it itr p p . We run the following 

regression using the Fama-French three-factor model to get the residual it , 

 1 2 3it t t t t itr rf R rf SMB HML  (4.1) 

The idiosyncratic volatilities, ith , which are the conditional volatilities of the 

residuals, are filtered by an EGARCH model, given as follows, 
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 The idiosyncratic volatilities can be considered as measures of the firm-specific 

noise. Idiosyncratic volatility is used as a measure of pricing uncertainty or price 

informativeness. While some empirical researchers argue that greater idiosyncratic return 

volatility is an indicator of more informative stock prices (e.g., Brockman and Yan, 2009), 

most argue that it is an indicator of less informative stock prices due to more noise and 

pricing errors and greater asymmetric information (e.g., Chen, Huang and Jha, 2012; 

Krishnaswami and Subramaniam, 1999). Lee and Liu (2011) reconcile these two 

opposing views by empirically documenting that the relation between idiosyncratic 

volatility and price informativeness is either U-shaped or negative. We conjecture that 

higher idiosyncratic volatility is associated with lower market efficiency, since 

idiosyncratic noise generally reflects firm-specific factors which indicate increased 

information asymmetry. Thus, we expect that higher idiosyncratic volatilities are 

associated with increased arbitrage profits.  

5.2 Macro variables 

Publication of ISDA dummy (ISDA): As an administrator of the globally agreed 

standards of credit default swaps, the International Swaps and Derivative Association 

(ISDA) became more proactive after the sub-prime financial crisis and released a series 

of publications providing guidance and standards to try to protect investors and improve 

the efficiency of the CDS market. As our analysis focuses on the relative efficiency of the 

CDS and LCDS markets (especially the US market), we examine the impact of the 

release on April 5, 2010 of a series of documents published by the ISDA regarding the 
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North American Loan CDS market. The documents include the “Bullet Syndicated 

Secured Loan Credit Default Swap Standard Term Supplement”, “Bullet Syndicated 

Secured Loan Polling Rules”, “Bullet LCDS Auction Rules and LCDS Auction 

Settlement Terms” and “Bullet LCDS Continuity Procedures”.108 Further details on each 

publication are found in the appendix. Overall, these rules and supplements established 

the global standards for LCDS contracts from the aspect of definition, qualification, 

settlements, continuity and documentation. Thus, we expect that the LCDS market should 

become more efficient with standardization and that the deviation from efficiency should 

be narrowed after this event date. The ISDA dummy variable is equal to zero before the 

publication of ISDA to regularize and standardize the LCDS market, including the 

publication day and equals to one after this event date. Hence, we expect a negative 

coefficient for this dummy variable.  

5-year US treasury bond yield (TB5Y): is the yield on US 5-year treasury bonds. 

This bond yield is usually considered as a risk-free rate and also as an indicator of the US 

economy. Lower interest rates usually coincide with a weakening economy as the 

government keeps interest rates at a low level to try to stimulate the economy. In a 

recession, recovery rates are generally low and the credit spread is generally high. From a 

different perspective, Longstaff and Schwartz (1995) point out that the static effect of a 

lower spot rate decreases the risk-neutral drift of the firm value process, which, in turn, 

increases the probability of default.109 Since a high credit spread caused by an increase of 

default probabilities should affect the CDS and LCDS markets in the same direction, the 

net impact on the deviation of these two markets should be small. However, the decrease 

                                                 
108 http://www.isda.org/publications/isdacredit-deri-def-sup-comm.aspx#ra 
109 This result is also verified by Duffee (1998). 
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of CDS recovery rates will increase the deviations, which should increase the arbitrage 

profits. Therefore, we expect a negative coefficient for this factor. 

Slope of the term structure (SL): this variable is measured by the difference between 

the yields on 5- and 1-year US treasury bonds. The slope of the term structure is one of 

the most important factors documented by Litterman and Scheinkman (1991). A low 

slope indicates low forward interest rates, which means that the level of the current spot 

interest rate is high. For a higher interest rate level, the theory predicts a lower default 

probability and a higher recovery rate. Thus, higher CDS recovery rates indicate lower 

arbitrage profits and the expectation of a positive coefficient for this factor.    

Yield spread between Aaa and Baa corporate bonds (CBS): this variable equals the 

difference between the yields of Aaa corporate bonds and Baa corporate bonds.  The 

increase of the spread between these corporate bonds indicates an increase of credit 

spreads, especially the CDS spreads as CDS contracts usually have lower ratings 

compared to the same-firm LCDS. Thus, the yield spread between Aaa and Baa corporate 

bonds can be considered as the spread between CDS and LCDS. Intuitively, an increase 

in their yield spread will increase the probability of violations of CDS and LCDS parity 

and lead to higher arbitrage profits.    

Return of the S&P 500 total return index (SP): this is the daily return on the S&P 

500 total return index. This is an economic indicator from the perspective of the equity 

markets. Intuitively, positive S&P 500 returns imply a strong economy with a low default 

probability and high recovery rates. Thus, we would expect to have a negative coefficient 

for this factor. 
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The accounting variables, including total assets, book value of total liabilities, 

market value of equity, current assets, current liabilities and tangible assets, are obtained 

from the COMPUSTAT database via the WRDS platform. The data are updated quarterly. 

We convert the frequency from quarterly to daily by keeping the value constant within 

each quarter and then take a one quarter lag. The fixed income macro variables, including 

the yields on 1- and 5-year US treasury bonds, and Aaa and Baa corporate bond yields 

are obtained from the US Federal Reserve H15 database. The equity prices and S&P 500 

total return index data are obtained from Bloomberg. 

5.3 Regression results 

The panel regression results are reported in Table IV-9. Overall, the combination of 

the firm specific variables and macro variables is able to explain 63.9% of the deviations 

between the CDS and LCDS markets in the presence of transaction costs on average. The 

lowest R-square of 39.20% is observed for the regression for the failure firm sub-sample 

followed by an R-square of 46.81% for the regression for the investment grade sub-

sample. The R-squares for the junk-rated, not rated and non-failure subsets are all above 

79%. With the exception of the S&P 500, whose coefficient is not significant for all 

subsets, the coefficient estimates of all the independent variables are significant for most 

subsets. The signs of the estimated coefficients that are significant are generally 

consistent across the subsets.  

The leverage ratio consistently increases the profits of the arbitrage portfolio for all 

the samples apart from the not-rated firms and exhibits greater sensitivity for failure firms. 

A higher idiosyncratic volatility increases the arbitrage profits significantly across most 

of the samples except for the junk and failure firms. In particular, for the investment 
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grade firms the arbitrage profits increase by 0.37% on average for every 1% increase in 

idiosyncratic volatility. We also note that the impact of idiosyncratic volatility is much 

greater for the non-failure firms compared to that for the failure firms. In addition, 

although the logarithm of asset value has an expected positive relationship with arbitrage 

profits, its impact is unclear for the different sub-samples as all the coefficients are not 

significant.  

[Insert Table IV-9 about Here] 

For the macro factors, only the yield on 5-year US treasury bonds (TB5Y), the slope 

of the yield curve for treasury bonds (SL) and the spreads between Aaa and Baa 

corporate bonds (CBS) are significant at the conventional level for the full sample. The 

coefficients of the ISDA publication dummy are not significantly different from zero 

expect for the not-rated sub-sample. Compared to the rated firms, the ISDA regulations 

seem to be more important for not-rated firms in terms of the magnitude of their 

reduction in arbitrage profits of around 0.65% after the ISDA publications. According to 

Table IV-2, we note that the not-rated sample has the highest volatility for the profits 

compared to others. Since the purpose of the ISDA publications is to standardize and 

regulate the LCDS markets, their effect should be much more important for the samples 

with the most volatile profits, as in our empirical findings.  With the exception of the 

failure firms, the variables associated with the state of the economy generally have their 

expected impact on arbitrage profits, with economic downturns corresponding to higher 

profits. The impact of the yield of 5-year US treasury bonds on arbitrage profits is 

consistently negative for all sub-samples but not significant for not-rated and failure 

samples. Numerically, a 1% increase in the yield of 5-year US treasury bonds decreases 
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arbitrage profits by 0.51% on average for the full sample. The slope of the yield curve for 

treasury bonds positively affects arbitrage profits (it is not significant only for the failure 

sub-sample), which is consistent with theoretical predictions.  The spread between the 

yields on Aaa and Baa corporate bonds (CBS) significantly increases the profits on the 

arbitrage portfolio for the full sample. Since an increase in the yield spread is generally 

associated with an economic downturn, this is consistent with our predictions. Further, 

we note that the impact of CBS is more important for the not-rated firms compared to the 

rated firms. The sign of the S&P 500 total index return coefficient is negative and 

insignificant for the full sample and all the sub-samples.  

5.4 Robustness test 

The separate contributions of the macro and firm-specific factors are studied by 

conducting regressions for restricted models and the results are reported in Table IV-10. 

For the restricted model of fixed effects only, the goodness of fit of about 58.18% is 

slightly lower than that of the unrestricted model of about 63.90%. This implies that the 

cross sectional effect is much more important than the time series effect. Then, we restrict 

the model with only one firm-specific factor at a time in order to detect the maximum 

contribution of individual factors. As expected, LOGA and LEV are very important to the 

arbitrage profits. Interestingly, we find IDIO is also noticeably important, which 

emphasizes the role of information asymmetry in arbitrage profits. We also find that the 

coefficient of LOGA is now negative unlike its sign in the full sample due to its highly 

negative correlation with both LEV and IDIO. Hence, after removing the impact of LEV 

and IDIO, the relationship between LOGA and arbitrage profits becomes negative 
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(consistent with expectations), indicating that arbitrage profits decrease with higher total 

assets.  

[Insert Table IV-10 and Table IV-11 about Here] 

Although more than half of the coefficients of the macro factors are significantly 

different from zero, their contribution to arbitrage profits is much smaller compared to 

that of the firm-specific factors. Numerically, the maximum contribution of all macro 

factors is only approximately 1.87% in term of R-square.  In other words, the marginal 

contribution of macro variables to the explanation of abnormal profits is very small 

compared to that of firm specific factors.  

In addition, we also check the robustness of our findings when we reduce the 

frequency of our time series data. In these exercises, the daily profits are aggregated into 

weekly, monthly and quarterly time intervals and the panel regressions are repeated for 

the full sample in each case. The results are reported in Table IV-11. As the table shows, 

both the sign and (most of the times) the significance levels of the coefficients are very 

robust with respect to the level of aggregation, but their magnitude depends on the 

frequency of the data.   

In summary, the contribution of the cross sectional effect on arbitrage profits 

dominates that of the time series effect.  The firm-specific factors, especially firm size, 

leverage ratio and idiosyncratic volatility, are much more important than the macro 

factors in explaining the observed arbitrage profits. Our findings are very robust even 

with lower frequency data. 
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6. CONCLUSION 

We identify a model-free parity relation between CDS and LCDS contract spreads 

under the no arbitrage assumption in the absence of market frictions, as well as a non-

trading zone in the presence of market frictions. The parity relation uses only the 

observed CDS and LCDS spreads and the recovery rates of the underlying contracts in 

the event of default. We then examine whether these relations hold in a sample of paired 

CDS and LCDS contracts for exactly the same underlying firm, maturity, currency and 

restructure clauses. We document extensive violations of this parity relation, implying a 

time-varying and significant positive arbitrage profit from artificial default risk-free 

portfolios that simultaneously long the CDS contract and short the corresponding LCDS 

contract for each pair or vice-versa, depending on the direction of the violation of the 

parity.  

We verify whether the arbitrage profits are robust with respect to the inclusion of 

proportional trading costs. We find that such costs can explain at most 10% of the profits. 

We then examine the reliability of the recovery rates reported in the data base and used in 

the parity relation. Using reported recovery rates from defaulted firms, including some in 

our data base, we find that the reported recovery rates are, if anything, overestimates of 

the true ones and understate the assessed arbitrage profits.   

Given the inability of trading costs or recovery rate data to explain the observed 

arbitrage profits, we examine the possibility of inefficiency or market failure in the CDS-

LCDS market pair. We construct artificial implied recovery rates for CDS under the 

assumption that parity holds in the presence of trading costs, and we identify a large 
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number of data points for which these implied rates are negative. We also find a subset of 

firms for which CDS implied recovery rates are negative for at least ten consecutive days 

(the failure firm subset). We find that the failure firm subset differs significantly from the 

other firms in our data set in their levels of CDS and LCDS spreads, in their recovery 

rates, and in the size of every firm-specific variable used in our tests.     

We use panel regressions of the arbitrage profits in the presence of trading costs 

against macroeconomic and firm-specific variables. We disaggregate the sample between 

bonds of various rating classes, as well as between failure and non-failure firms. We find 

that there are some significant differences in the sign and significance of the coefficients 

and the explanatory power of the regressions between failure and non-failure firms, and 

also between bonds of different rating classes.  

We find that the contribution of the cross sectional effect to arbitrage profits 

dominates that of the time series effect.  We find that firm-specific factors are much more 

important than various macro variables in the explanation of the observed arbitrage 

profits identified herein. These firm-specific factors measure a high level of indebtedness 

and difficulties of recovery in case of default (leverage ratio) and large firm size. Other 

important explanatory factors associated with arbitrage profits are those related to 

measures of pricing uncertainty or informational asymmetry. We find that the 

standardization of contracts and clarifications of the contract rules reduce profits 

(measure of informational asymmetry), while a firm’s idiosyncratic volatility (measure of 

pricing uncertainty) from a Fama-French three-factor model is associated with positive 

profits.  
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Overall, we conclude that there is evidence of market inefficiency and failure of 

arbitrage to equalize the spreads in the CDS and LCDS markets. The failure is more 

prevalent in times of financial crisis, but is also present under more normal circumstances. 

Further, there is significant evidence that information asymmetry is an important 

contributing factor to this market failure. Last but not least, on the methodological side 

there is evidence that firm-specific variables play an important role in the determination 

of CDS and LCDS spreads, implying that structural models of the firm are more 

appropriate than reduced models to rationally value these spreads. 
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Appendix 

A: Some Details about the North American Loan CDS Documentation Published on 
April 5, 2010 by the ISDA110 

Document Name Abstract 
Bullet Syndicated Secured 
Loan Credit Default Swap 
Standard Terms Supplement 

“This template is designed to document credit default 
swap transactions where the Deliverable Obligations 
are limited to Syndicated Secured Loans of the 
Reference Entity. This form is primarily intended for 
use in the North American market. The contract: (a) 
has a "bullet" maturity, i.e. not subject to acceleration 
in the case where the Reference Entity's loans are 
repaid; (b) is subject to a credit event determination by 
a Determinations Committee; (c) provides for auction 
settlement if the Participating Dealers vote to hold an 
auction under the Bullet LCDS Auction Rules in 
relation to a Reference Entity and Designated Priority; 
and (d) contains specific rules and procedures for 
determining Successors to the Reference Entity (the 
procedures are contained in the Bullet LCDS 
Continuity Procedures). If no auction is held or the 
auction fails or is abandoned, Physical Settlement will 
apply to LCDS transactions under the most recently-
published form of LSTA Physical Settlement Rider, 
which is available from the LSTA’s website.” 

  
Bullet Syndicated Secured 
Loan Polling Rules 

“This document contains the rules and procedures that 
apply to determine whether a loan qualifies as a 
"syndicated secured" loan of the Reference Entity, for 
purposes of the syndicated secured list.” 

  
Bullet LCDS Auction Rules 
and LCDS Auction Settlement 
Terms 

“The Bullet LCDS Auction Rules and LCDS Auction 
Settlement Terms are designed to facilitate the 
settlement of Bullet Syndicated Secured Loan Credit 
Default Swap transactions.” 

  
Bullet LCDS Continuity 
Procedures 

“The Bullet LCDS Continuity Procedures contain the 
procedural rules for determination of a Successor 
under the Bullet LCDS documentation.” 

                                                 
110 The abstracts are quoted from ISDA website:http://www.isda.org/publications/isdacredit-deri-def-sup-
comm.aspx#ra 
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B: Restructuring Clause111 

Restructuring Clause Details 
Cum Restructuring (CR) or old 
restrucuring 

Any Restructuring event is qualified as a credit event 
and any bond of maturity up to 30 years is deliverable. 
(1999 ISDA credit derivative definition) 

  
Modified Restructuring (MR) Restructuring events are considered as a credit event 

and the bonds with maturity of 30 months or less after 
the termination date of the CDS contract are 
deliverable. (2001, ISDA credit derivative definition) 

  
Modified-Modified 
Restructuring (MM) 

Restructuring events are considered as a credit event 
and the bonds with maturity of 60 months or less for 
the restructured obligations and 30 months for all the 
other obligations after the termination date of the CDS 
contract are deliverable. (2003, ISDA credit derivative 
definition) 

  
Ex-Restructuring (XR) or 
without restructuring 

All the restructuring events are not considered as a 
credit event.  

 

                                                 
111 See Packer and Zhu (2005) and Berndt, Jarrow and Kang (2006). 
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Table IV-1: Summary Statistics 

This table reports the summary statistics for the full sample and sub-samples during the period from April 11th, 2008 
to March 30th, 2012. The idiosyncratic volatilities are the conditional daily volatilities of individual equity return 
residuals by fitting the Fama-French three-factor model. The total asset equals the sum of book value of total 
liabilities and market value of total equities. Leverage equals book value of total liabilities divided by the total asset 
value. Tangible ratio equals the book value of tangible assets divided by the total asset value. The current ratio 
equals the current asset divided by the current liabilities. 

 
CDS 

Spreads 

CDS 
Recovery 

Rates 

LCDS 
Spreads 

LCDS 
Recovery 

Rates 

Idiosyncratic 
Volatility 

Total Asset 
(Thousands) Leverage Current 

Ratio 

Full Sample (No. of Observations: 68147) 
minimum 0.0027 0.0125 0.0001 0.0750 0.0053 446.51 0.0834 0.2398 
maximum 0.9651 0.7050 0.8984 0.9775 0.8429 295142.56 0.9857 5.8299 

mean 0.0461 0.3817 0.0367 0.6523 0.0237 25193.94 0.6045 1.5413 
median 0.0311 0.4000 0.0243 0.7000 0.0203 13565.72 0.6126 1.4112 

standard deviation 0.0684 0.0567 0.0482 0.1128 0.0172 37329.28 0.1842 0.6878 
skewness 6.7356 -1.8116 6.4265 -0.7765 10.8217 4.17 -0.2464 1.3736 
1st Order 

Autocorrelation 0.9783 0.7730 0.9690 0.9273 0.8162 0.9904 0.9890 0.9874 

Investment Grades (Above and include BBB, No. of Observations: 41327) 
minimum 0.0027 0.0722 0.0001 0.0750 0.0053 446.5 0.0834 0.2398 
maximum 0.9453 0.6750 0.8671 0.8500 0.6991 295142.6 0.9746 5.2277 

mean 0.0418 0.3809 0.0331 0.6386 0.0229 31707.0 0.5912 1.4944 
median 0.0252 0.4000 0.0210 0.6750 0.0194 17942.9 0.5964 1.3890 

standard deviation 0.0614 0.0506 0.0497 0.1152 0.0161 40757.4 0.1834 0.6286 
skewness 5.4439 -3.2517 6.7415 -0.6919 8.5820 3.7 -0.2199 1.1164 
1st Order 

Autocorrelation 0.9659 0.7369 0.9346 0.8946 0.7962 0.9594 0.9709 0.9748 

Junk (Below BBB, No. of Observations: 11665) 
minimum 0.0028 0.0125 0.0001 0.3250 0.0054 446.51 0.0834 0.2398 
maximum 0.9651 0.7050 0.6253 0.8500 0.5781 257135.61 0.9794 5.2277 

mean 0.0543 0.3750 0.0384 0.6349 0.0240 23330.80 0.6341 1.4500 
median 0.0391 0.4000 0.0257 0.6500 0.0215 13154.38 0.6582 1.3259 

standard deviation 0.0765 0.0556 0.0416 0.1136 0.0155 38118.25 0.1939 0.6880 
skewness 7.5180 -2.3062 3.0163 -0.6069 8.1152 4.50 -0.4206 1.8634 
1st Order 

Autocorrelation 0.8493 0.6214 0.8495 0.8364 0.6903 0.8697 0.8719 0.8730 

Not Rated (No. of Observations: 15155) 
minimum 0.0037 0.0188 0.0001 0.1000 0.0056 450.51 0.1008 0.2398 
maximum 0.9463 0.7050 0.8984 0.9775 0.8429 249734.43 0.9857 5.8299 

mean 0.0515 0.3889 0.0449 0.7030 0.0255 8867.08 0.6178 1.7393 
median 0.0363 0.4000 0.0349 0.7250 0.0218 5739.02 0.6364 1.6201 

standard deviation 0.0781 0.0707 0.0476 0.0882 0.0209 15260.94 0.1746 0.7961 
skewness 7.4978 -0.2131 7.5601 -1.0831 13.8551 11.73 -0.1909 1.2968 
1st Order 

Autocorrelation 0.7864 0.7350 0.8066 0.8261 0.6336 0.8855 0.8320 0.8339 
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Table IV-2: Summary Statistics of Trading Profits 

This table reports the summary statistics of the trading profits generated by the risk-free portfolio when the CDS and 
LCDS parity is violated for the cross-sectional daily observations, firm daily average across the time span and index 
daily across all the available firms during the sample period from April 11th, 2008 to March 30th, 2012. Panel A 
reports the results in the absence of transaction cost and Panel B reports the results in the presence of transaction 
costs. It is assumed that the transaction costs are same under CDS and LCDS market. The daily transaction costs 
come from the daily average bid-ask spread observed in Bloomberg database with the sample firms in Table IV-3.  

Panel A: Profits in the absence of Transaction Costs 

Minimum maximum Mean Median Standard Deviation Skewness Kurtosis 
Cross-Sectional Daily Observations (68147 Observations) 

Full Sample 0.0000 1.6514 0.0375 0.0160 0.0754 8.4029 118.5388 
Investment 0 1.6514 0.0301 0.0118 0.0656 11.3542 229.9689 

Junk 3E-07 0.5186 0.0326 0.0142 0.0532 3.7779 18.3441 
Not Rated 8.3E-06 1.3179 0.0615 0.0389 0.1043 5.7209 42.1163 

Firm Daily Average Profits (120 Firm-Clause Contracts) 
Full Sample 0.0006 0.6853 0.0452 0.0250 0.0830 5.5332 36.6491 

Index Daily Profits (959 Daily Observations) 
Full Sample 0.0214 0.0950 0.0369 0.0319 0.0134 1.1235 0.5672 
Investment 0.0082 0.0823 0.0291 0.0253 0.0134 1.0790 0.7642 

Junk 0.0036 0.1495 0.0350 0.0298 0.0213 1.4305 2.4680 
Not Rated 0.0210 0.1499 0.0608 0.0500 0.0333 0.8264 -0.5001 

Panel B: Profits in the presence of Transaction Costs 
Minimum maximum Mean Median Standard Deviation Skewness Kurtosis 

Cross-Sectional Daily Observations (68147 Observations) 
Full Sample 0.0000 1.6471 0.0338 0.0124 0.0740 8.5618 123.3978 
Investment 0 1.6470 0.0266 0.0079 0.0649 11.6478 238.8615 

Junk 0 0.5149 0.0292 0.0106 0.0527 3.8685 19.0626 
Not Rated 0 1.2905 0.0568 0.0344 0.1015 5.7636 42.8601 

Firm Daily Average Profits (120 Firm-Clause Contracts) 
Full Sample 0.0000 0.6572 0.0413 0.0210 0.0811 5.4707 35.5509 

Index Daily Profits (959 Daily Observations) 
Full Sample 0.0166 0.0855 0.0332 0.0288 0.0120 1.0370 0.3901 
Investment 0.0057 0.0781 0.0257 0.0225 0.0122 1.0986 1.1091 

Junk 0.0012 0.1466 0.0315 0.0264 0.0207 1.4661 2.7208 
Not Rated 0.0135 0.1386 0.0562 0.0462 0.0316 0.8427 -0.4417 
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Figure IV-1: Distribution of Trading Strategies 

This figure depicts the distribution of trading strategies with and without transaction costs for the cross-sectional 
daily observations of the full sample during the sample period from April 11th, 2008 to March 30th, 2012.  
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Figure IV-2: Daily Average Profits 
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Table IV-3: Summary statistics of bid-ask spreads (Unit: basis points) 

This table reports the summary statistics of bid-ask spreads. The Firm Averages shows the average bid-ask spread 
for each firm during the period from January, 2nd, 2008 to November 23rd, 2012 upon the data availability. The Daily 
Average shows the average bid-ask spread for each day across all the available firms. The unit is basis points. 

 Firm Average  Daily Average (Cross Firms) 
Minimum 3.76  4.50 
Maximum 283.24  93.23 

Mean 35.15  26.13 
Median 17.68  21.62 

Standard Deviation 47.35  14.83 
Skewness 3.28  1.89 
Kurtosis 13.27  3.31 

No. of Observations 61 Firms  1219 Days 
 

Table IV-4: Summary Statistics of Implied Transaction Costs in the absence of Profits  

This table reports the summary statistics of the implied transaction costs under which the CDS and LCDS parity is 
not violated for the cross-sectional daily observations (Panel A), firm daily average across the time span (Panel B) 
and index daily across all the available firms (Panel C) during the sample period from April 11th, 2008 to March 30th, 
2012. It is assumed that the transaction costs are same under CDS and LCDS market. The transaction costs showed 
in the table are round trip transaction cost (Bid-Ask spread) in basis points. 

Panel A: Cross-Sectional Daily Observations (69805 Observations) 

maximum Minimum Mean Median Standard Deviation Skewness Kurtosis 
Full Sample 10254.70 0.00 199.89 73.49 404.40 8.97 159.88 
Investment 10254.70 0.00 175.04 55.08 429.77 10.58 194.06 

Junk 2547.22 0.00 172.70 44.46 350.95 3.61 14.41 
Not Rated 6401.14 0.00 288.59 227.50 356.07 5.91 71.13 

Panel B: Firm Daily Average Profits (141 Firm-Clause Contracts) 

maximum Minimum Mean Median Standard Deviation Skewness Kurtosis 
Full Sample 2032.92 0.00 202.52 116.02 288.07 3.46 16.24 

Panel C: Index Daily Profits (1036 Daily Observations) 

maximum Minimum Mean Median Standard Deviation Skewness Kurtosis 
Full Sample 509.57 101.39 196.01 162.59 74.94 1.24 0.49 
Investment 513.04 17.46 168.73 156.59 69.85 1.21 2.54 

Junk 826.96 19.63 191.45 159.44 119.70 1.25 1.75 
Not Rated 1084.12 111.29 283.12 216.36 168.70 1.78 2.53 
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Table IV-5: Real Recovery Rates versus Estimated Recovery Rates 

This table reports the means and medians of both real recovery rates and estimated recovery rates of the firms which 
have default events documented by Moody’s Default and Recovery Database during the sample period from April 
11th, 2008 to March 30th, 2012. The real recovery rates (Real RR) are the bonds market value one month after 
default events divided by the face value of the bonds retrieved from Moody’s Default and Recovery Database. The 
estimated recovery rates are the CDS recovery rates estimated by the data provided and reported in Markit datasets. 
Both real recovery rates and estimated recovery rates are all on senior unsecured bonds. 

Panel A: Observed Defaults in the Sample 

Ticker Default Type Observations 
Before Default 

Real RR 
(mean) 

Estimated RR 
(mean) 

Real RR 
(median) 

Estimated 
RR 

(median) 
CCU Distressed exchange 284 0.32 0.25 0.32 0.11 

GGC Missed interest payment 207 0.35 0.18 0.35 0.40 

LVLT Distressed exchange 123 0.96 0.33 0.96 0.36 

UIS Distressed exchange 185 0.99 0.21 0.99 0.16 

Total  799 0.58 0.25 0.35 0.24 

Panel B: All Moody’s Observed Defaults of Senior Unsecured Debts 

Default Types 
No. of 

Observed 
Default Issues 

Real RR 
(Mean) 

Real RR 
(Median) 

Real RR 
(Standard 
Deviation) 

Bankruptcy 7 0.3464 0.3650 0.0748 
Chapter 11 436 0.1377 0.1000 0.1185 
Chapter 7 1 0.0053 0.0053 

Distressed exchange 799 0.5439 0.6500 0.2284 
Missed interest payment 91 0.2794 0.2775 0.2034 

Missed principal and interest payments 40 0.1905 0.0850 0.1707 
Missed principal payment 8 0.3685 0.2500 0.2357 

Payment moratorium 8 0.2036 0.2100 0.0215 
Placed under administration 1 0.0700 0.0700 

Prepackaged Chapter 11 119 0.2404 0.1100 0.2818 
Receivership 5 0.2650 0.2650 0.0000 

Seized by regulators 16 0.0319 0.0300 0.0040 
Suspension of payments 4 0.2040 0.2075 0.0540 

Total 1535 0.3687 0.2975 0.2756 
Total(without Distressed Exchange) 736 0.1785 0.1000 0.1800 
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Figure IV-3: Index of Implied Recovery Rates 
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Figure IV-4: Trading Strategies of Failure and Non-Failure Firms 

 

Figure IV-5: Time Distribution of the Negative Implied Recovery Rates 

This figure depicts the percentage of the negative implied recovery rates over the total availabel observations for the 
full sample during the sample period from April, 11th . 2008 to March 30th, 2012. 
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Table IV-6: Event study of Negative Implied Recovery Rates 

This table reports the means and medians of the interesting variables on one day before (1 Day Before) and the first day (First Day) of the negative implied 
recovery rates for the full sample. Spread ratios are equal to the CDS spreads/LCDS spreads. Recovery Rates Ratios are equal to (1-CDS Recovery Rates)/(1-
LCDS Recovery Rates). For the means, the two-sides two-sample tests with normal  and t approximation are conducted and the corresponding p-values are 
reported as difference test. For the medians, the Wilcoxon median two-sample tests are conducted and the corresponding p-values are reported. ***, ** and * 
indicate the 1%, 5% and 10% significance level. 

 Mean  Median 

 1 day 
Before 

First 
Day 

Difference Test 
Student t 
(p-value) 

Difference Test 
Normal 

(p-value) 
 1 day 

Before 
First 
Day 

Wilcoxon Test 
(p-value) 

CDS Spreads 0.1424 0.1582 0.2163 0.2160  0.0918 0.0935 0.2446 

LCDS Spreads 0.0728 0.0639 0.1174 0.1169  0.0323 0.0309 0.1245 

Spreads Ratios 6.0397 7.9953 <.0001*** <.0001***  2.8469 3.3583 0.019** 

CDS Recovery Rates 0.3379 0.3405 0.4852 0.4852  0.3667 0.3667 0.5 

LCDS Recovery Rates 0.6277 0.5977 0.0270** 0.0265**  0.7000 0.6708 0.0799* 

Recovery Rates Ratios 1.9249 1.7988 0.0191** 0.0187**  2.0000 1.9355 0.0516* 

Profits 0.0293 0.0567 <.0001*** <.0001***  0.0222 0.0347 <.0001*** 

Equity Returns -0.0055 -0.0160 0.3304 0.3303  -0.0054 -0.0071 0.3224 

Idiosyncratic Volatility 0.0469 0.0405 0.3360 0.3358  0.0305 0.0311 0.2446 

Bid-Ask Spreads 0.0035 0.0034 0.3534 0.3532  0.0024 0.0024 0.3224 

No. Observations 150 150    150 150  



211 
 

Table IV-7: Summary Statistics of Failure Firms and Non-failure Firms 

This table reports the summary statistics of implied CDS recovery rates for the failure firms and non-failure firms during the sample period from April 11th, 2008 
to March 30th, 2012. The summary statistics of CDS and LCDS spreads and recovery rates, arbitrage profits and firms individual characteristics are reported as 
well. We define the market failure as that a firm has at least 10 consecutive negative implied recovery rates on all trading days. According to such criteria, we 
find 19 out of 102 firms experience market failures. 

 
CDS 

Spreads 
LCDS 

Spreads 

CDS 
Recovery 

Rates 

LCDS 
Recovery 

Rates 

Implied CDS 
Recovery 

Rates 

Idiosyncratic 
Volatility 

Total Asset 
(Thousands) Leverage Current 

Ratio 

Profit 
With 
TC 

Panel A: Failure Firms (19 Firms with 9745 observations) 
minimum 0.0060 0.0001 0.0125 0.0750 -6.1276 0.0078 1627.32 0.2795 0.2398 0.0000 
maximum 0.9651 0.8984 0.6750 0.8100 0.9001 0.8429 70984.20 0.9854 3.1077 1.6471 

mean 0.1059 0.0478 0.3443 0.6545 0.0255 0.0329 16019.43 0.6678 1.5216 0.0480 
median 0.0653 0.0224 0.4000 0.7000 0.2837 0.0280 9774.30 0.7012 1.5002 0.0168 

standard deviation 0.1421 0.0850 0.0905 0.1008 0.8329 0.0271 16562.91 0.1940 0.6384 0.1180 
1st order autocorrelation 0.9706 0.9648 0.8623 0.9386 0.9504 0.7896 0.9914 0.9913 0.9863 0.9360 

Panel B: Non-Failure Firms (83 Firms with 58402 observations) 
minimum 0.0027 0.0001 0.1500 0.3500 -12.3582 0.0053 446.51 0.0834 0.4169 0.0000 
maximum 0.7014 0.6200 0.7050 0.9775 0.9918 0.6991 295142.56 0.9857 5.8299 1.2905 

mean 0.0362 0.0348 0.3879 0.6519 0.5691 0.0221 26724.81 0.5939 1.5446 0.0314 
median 0.0291 0.0243 0.4000 0.7000 0.5582 0.0194 14131.86 0.6048 1.4050 0.0115 

standard deviation 0.0373 0.0385 0.0459 0.1147 0.2310 0.0144 39545.36 0.1803 0.6956 0.0635 
1st order autocorrelation 0.9797 0.9698 0.7551 0.9252 0.9234 0.8212 0.9903 0.9885 0.9876 0.9177 

Panel C: Difference Test (p-value) between Failure Firms and Non-Failure Firms 
Mean 

(Wilcoxon Paired  
t Approximation) 

<.0001 0.3461 <.0001 0.0002 <.0001 <.0001 <.0001 <.0001 0.0005 <.0001 

Median 
(Wilcoxon Median 

Test) 
<.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 
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Table IV-8: Correlation Matrix of Variables 

This table reports the correlation matrix of  firm specific and macro variables, including the profits in the presence 
of transaction costs (PR), publication of ISDA dummy (ISDA), total asset (LOGA), current asset over current 
liability ratio (CAL), leverage ratio (LEV), tangible asset ratio (TANG), idiosyncratic volatility (IDIO), 5-year US 
treasury bond yields (TB5Y),  slope of the yield term structure (SL), the spread between Aaa corporate bonds’ yield 
and Baa corporate bonds’ yield (CBS) and S&P 500 index return (SP). The numbers in the parentheses are the p-
values of Pearson correlation coefficients. 

PR ISDA LOGA CAL LEV TANG IDIO TB5Y SL CBS SP 

PR 
1.00 -0.09 -0.23 0.00 0.26 -0.02 0.24 0.03 0.02 0.12 0.00 

(<.0001) (<.0001) (0.47) (<.0001) (<.0001) (<.0001) (<.0001) (<.0001) (<.0001) (0.47) 

ISDA 
-0.09 1.00 0.05 0.03 -0.15 -0.05 -0.30 -0.62 -0.27 -0.55 0.01 

(<.0001) (<.0001) (<.0001) (<.0001) (<.0001) (<.0001) (<.0001) (<.0001) (<.0001) (0.00) 

LOGA 
-0.23 0.05 1.00 -0.13 -0.42 -0.14 -0.32 -0.01 0.08 -0.06 0.01 

(<.0001) (<.0001) (<.0001) (<.0001) (<.0001) (<.0001) (0.02) (<.0001) (<.0001) (0.11) 

CAL 
0.00 0.03 -0.13 1.00 -0.26 -0.16 0.02 -0.01 0.03 -0.04 0.00 

(0.47) (<.0001) (<.0001) (<.0001) (<.0001) (<.0001) (0.02) (<.0001) (<.0001) (0.50) 

LEV 
0.26 -0.15 -0.42 -0.26 1.00 0.41 0.39 -0.01 -0.05 0.19 0.00 

(<.0001) (<.0001) (<.0001) (<.0001) (<.0001) (<.0001) (0.11) (<.0001) (<.0001) (0.93) 

TANG 
-0.02 -0.05 -0.14 -0.16 0.41 1.00 0.11 0.01 0.01 0.07 0.00 

(<.0001) (<.0001) (<.0001) (<.0001) (<.0001) (<.0001) (0.04) (0.00) (<.0001) (0.93) 

IDIO 
0.24 -0.30 -0.32 0.02 0.39 0.11 1.00 0.13 -0.14 0.39 -0.03 

(<.0001) (<.0001) (<.0001) (<.0001) (<.0001) (<.0001)  (<.0001) (<.0001) (<.0001) (<.0001) 

TB5Y 
0.03 -0.62 -0.01 -0.01 -0.01 0.01 0.13 1.00 0.58 0.03 0.01 

(<.0001) (<.0001) (0.02) (0.02) (0.11) (0.04) (<.0001) (<.0001) (<.0001) (0.03) 

SL 
0.02 -0.27 0.08 0.03 -0.05 0.01 -0.14 0.58 1.00 -0.26 0.04 

(<.0001) (<.0001) (<.0001) (<.0001) (<.0001) (0.00) (<.0001) (<.0001) (<.0001) (<.0001) 

CBS 
0.12 -0.55 -0.06 -0.04 0.19 0.07 0.39 0.03 -0.26 1.00 -0.03 

(<.0001) (<.0001) (<.0001) (<.0001) (<.0001) (<.0001) (<.0001) (<.0001) (<.0001) (<.0001) 

SP 
0.00 0.01 0.01 0.00 0.00 0.00 -0.03 0.01 0.04 -0.03 1.00 

(0.47) (0.00) (0.11) (0.50) (0.93) (0.93) (<.0001) (0.03) (<.0001) (<.0001) 
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Table IV-9: Panel Regression with Important Events and Macro Economic Factors 

This table reports panel regression results with single name fixed effects during the sample period from April 11th, 2008 to March 30th, 2012. The variables are the 
intercept (INT), publication of ISDA dummy (ISDA), total asset (LOGA), current asset over current liability ratio (CAL), leverage ratio (LEV), tangible assets ratio 
(TANG), idiosyncratic volatility (IDIO), 5-year US treasury bond yields (TB5Y), slope of the yield term structure (SL), the spread between Aaa corporate bonds’ 
yield and Baa corporate bonds’ yield (CBS) and S&P 500 index returns (SP). The statistical significant coefficients are marked with ***, ** and * for significance at 
the 1%, 5% and 10% significance levels, respectively. The standard errors are calculated by the clustering standard error approach in order to remove the serial 
correlation effect. 

Variables Full Sample Investment 
Grades Junk Not 

Rated 
Failure 
Firms 

Non-Failure 
Firms 

INT -0.1465 
(0.5260) 

-0.2019 
(0.4530) 

0.0618 
(0.6767) 

-0.0836 
(0.8701) 

-0.2841 
(0.6363) 

0.0487 
(0.7067) 

ISDA -0.0018 
(0.4162) 

-0.0013 
(0.6660) 

-0.0027 
(0.3599) 

-0.0065* 
(0.0825) 

-0.0101 
(0.4049) 

-0.0014 
(0.5246) 

LOGA 0.0137 
(0.5266) 

0.0197 
(0.4374) 

-0.0041 
(0.7831) 

0.0015 
(0.9738) 

0.0172 
(0.7487) 

-0.0019 
(0.8745) 

CAL -0.0049 
(0.4120) 

-0.0045 
(0.4850) 

0.0002 
(0.9571) 

-0.0079 
(0.3768) 

-0.0324 
(0.1863) 

-0.0008 
(0.8244) 

LEV 0.1018*** 
(0.0064) 

0.1314* 
(0.0563) 

0.0811** 
(0.0190) 

0.0631 
(0.3233) 

0.2328* 
(0.0697) 

0.0582** 
(0.0248) 

TANG -0.0080 
(0.7717) 

-0.0124 
(0.7453) 

-0.0544** 
(0.0408) 

0.0319 
(0.6668) 

-0.0092 
(0.8933) 

-0.0300* 
(0.0576) 

IDIO 0.3187*** 
(0.0097) 

0.3669** 
(0.0291) 

0.2805 
(0.1047) 

0.1396* 
(0.0663) 

0.1745 
(0.2708) 

0.3882*** 
(0.0069) 

TB5Y -0.5131** 
(0.0351) 

-0.5193* 
(0.0984) 

-0.9028* 
(0.0568) 

-0.7315 
(0.1861) 

-0.5872 
(0.4409) 

-0.5936*** 
(0.0083) 

SL 1.3424*** 
(<.0001) 

0.8423** 
(0.0109) 

1.4500*** 
(0.0047) 

2.0243*** 
(0.0001) 

1.9844 
(0.1087) 

1.2105*** 
(<.0001) 

CBS 1.0319*** 
(0.0024) 

0.3169 
(0.4926) 

0.9649*** 
(0.0012) 

2.7882*** 
(<.0001) 

1.2291 
(0.5153) 

0.9769*** 
(<.0001) 

SP -0.0022 
(0.7171) 

0.0110 
(0.1467) 

-0.0138 
(0.3965) 

-0.0112 
(0.5405) 

0.0067 
(0.7537) 

-0.0016 
(0.7912) 

No. of Observations 68147 41327 11665 15155 9745 58402 
Adjusted R2 63.90% 46.81% 86.16% 81.72% 39.20% 79.35% 

MSE 0.0445 0.0474 0.0197 0.0435 0.0921 0.02887 
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Table IV-10: Regression Results of Restricted Models 

This table reports the regression results for restricted models. The standard errors are calculated by the clustering standard error approach in order to remove the 
serial correlation effect. 

Variables Macro 
Factors Only 

Firm Specific Factors with 
Fixed Effects Only 

Fixed 
Effects 
Only 

LOGA  
Only 

CAL  
Only 

LEV  
Only 

TANG  
Only 

IDIO  
Only 

INT -0.0013 
(0.9234) 

0.0700 
(0.1816) 

0.0299*** 
(<.0001) 

0.1855*** 
(0.0003) 

0.0333*** 
(<.0001) 

-0.0283*** 
(0.0098) 

0.0361*** 
(<.0001) 

0.0098 
(0.1105) 

ISDA 0.0004 
(0.9602)        

LOGA  -0.0107** 
(0.0134)  -0.0159*** 

(0.0019)     

CAL  -0.0002 
(0.9735)   0.0003 

(0.9424)    

LEV  0.0917*** 
(0.0028)    0.1026*** 

(<.0001)   

TANG  -0.0095 
(0.4759)     -0.0043 

(0.6282)  

IDIO  0.4087*** 
(0.0072)      1.0154*** 

(<.0001) 

TB5Y -0.0803 
(0.8027)        

SL 0.9902** 
(0.0194)        

CBS 1.4874*** 
(<.0001)        

SP -0.0051 
(0.4601)        

No. of 
Observations 68147 68147 68147 68147 68147 68147 68147 68147 

Adjusted R2 1.87% 61.67% 58.18% 5.44% .007% 6.52% 0.05% 5.58% 
MSE 0.0733 0.0459 0.0479 0.720 0.074 0.0715 0.0740 0.0719 
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Table IV-11: Regression Results for Low Frequency Data 

This table reports the regression results for lower frequency data. We aggregated the daily current payoffs 
for one week, one month and one quarter, respectively. The standard errors are calculated by the clustering 
standard error approach in order to remove the serial correlation effect. 

Variables Weekly Monthly Quarterly 

INT -0.1347 
(0.5570) 

-2.5571 
(0.5262) 

-4.7568 
(0.7071) 

ISDA -0.0014 
(0.5435) 

-0.0580 
(0.2988) 

-0.3634 
(0.2175) 

LOGA 0.0124 
(0.5614) 

0.2361 
(0.5244) 

0.4258 
(0.7036) 

CAL -0.0053 
(0.3549) 

-0.0998 
(0.3380) 

-0.0500 
(0.9141) 

LEV 0.1023*** 
(0.0042) 

2.1274*** 
(0.0045) 

6.5953*** 
(0.0037) 

TANG -0.0089 
(0.7458) 

-0.1265 
(0.8007) 

-0.2729 
(0.8632) 

IDIO 0.2727*** 
(0.0089) 

7.0576** 
(0.0104) 

21.2753*** 
(0.0026) 

TB5Y -0.4630* 
(0.0718) 

-15.5054*** 
(0.0018) 

-52.6298*** 
(0.0089) 

SL 1.3360*** 
(<.0001) 

29.6682*** 
(<.0001) 

63.8917*** 
(0.0008) 

CBS 1.0713*** 
(0.0019) 

11.5147* 
(0.0572) 

5.0155 
(0.8387) 

SP -0.0153 
(0.5129) 

-0.0034 
(0.9865) 

-0.9076 
(0.1086) 

No. of Observations 15077 3663 1303 
Adjusted R2 64.02% 62.30% 61.26% 

MSE 0.0446 0.8575 2.4245 
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