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Abstract

We extend the formalism of integrable operators à la Its-Izergin-Korepin-Slavnov to matrix-
valued convolution operators on a semi–infinite interval and to matrix integral operators with

a kernel of the form
ET1 (λ)E2(µ)

λ+µ
thus proving that their resolvent operators can be expressed in

terms of solutions of some specific Riemann-Hilbert problems. We also describe some applica-
tions, mainly to a noncommutative version of Painlevé II (recently introduced by Retakh and
Rubtsov) and a related noncommutative equation of Painlevé type. We construct a particular
family of solutions of the noncommutative Painlevé II that are pole-free (for real values of the
variables) and hence analogous to the Hastings-McLeod solution of (commutative) Painlevé
II. Such a solution plays the same role as its commutative counterpart relative to the Tracy–
Widom theorem, but for the computation of the Fredholm determinant of a matrix version of
the Airy kernel.
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1 Introduction and results

The paper aims at extending the general theory of integrable operators of Its-Izergin-Korepin-

Slavnov (IIKS for short) [12] to operators of “Hankel” form (see below). Leaving aside for the time

being any analytical consideration, the issue is the study of integral operators on L2(γ+,Cr) with

a kernel of the following form

K(λ, µ) =
ET1 (λ)E2(µ)

λ+ µ
, λ, µ ∈ γ+ (1.1)

where γ+ is a contour contained in a half-plane of C (so that the denominator does not vanish)4 and

the matrices Ej : γ+ → Mat(p× r,C) are suitable (analytic) functions. These operators are related

via a Fourier transform to (matrix) convolution operators on R+ as pointed out in Section 2: our

primary focus shall be the construction of a suitable Riemann–Hilbert problem for computing the

resolvent operator S = −K ◦ (1 + K)−1. The knowledge of the resolvent operator allows to write

variational formulæ for the Fredholm determinant of the operator Id+K : L2(γ+,Cr)→ L2(γ+,Cr)
via the well–known variational formula

∂ ln det (Id +K) = Tr ((Id + S) ◦ ∂K) . (1.2)

4 The contour could be -for example- R+ provided that the matrices in the numerator yield ET1 (0)E2(0) = 0.
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The situation is closely related to the IIKS theory mentioned above (with the tensorial extension

explained in [9]), which we briefly recall: let Σ ⊂ C be a collection of (smooth) contours and let

f ,g : Σ→ Mat(q × n,C) be smooth (analytic) functions on γ subject to the condition

fT (λ)g(λ) ≡ 0 , λ ∈ Σ . (1.3)

Consider the integral operator N : L2(Σ,Cn) with kernel given by

N(λ, µ) :=
fT (λ)g(µ)

λ− µ
(1.4)

Then the resolvent operator R = N ◦ (Id−N)−1 has a kernel (denoted with the same symbol R)

of the form5

R(λ, µ) =
fT (λ)ΘT (λ)Θ−T (µ)g(µ)

λ− µ
(1.5)

where Θ(λ) is the q × q matrix bounded solution of the following Riemann–Hilbert problem

Θ(λ)+= Θ(λ)−
(
1q − 2iπf(λ)gT (λ)

)
Θ(λ)= 1q +O(λ−1) , λ→∞ (1.6)

Furthermore the solution of the RHP (1.6) exists if and only if the Fredholm determinant det(Id−N)

is not zero.

The operator (1.1) is not immediately of the form (1.4) and hence the IIKS theory is not directly

applicable. Nevertheless the former situation is amenable -not surprisingly- to the latter (see also

[24]). In fact one could observe, for example, that K2 is an operator of the form (1.4)

K2(λ, µ)=
1

λ− µ
(
ET1 (λ)H1(µ)−H2(λ)E2(µ)

)
H1(µ) :=

∫
γ+

dξ
E2(ξ)ET1 (ξ)E2(µ)

µ+ ξ
, H2(λ) :=

∫
γ+

dξ
ET1 (λ)E2(ξ)ET1 (ξ)

ξ + λ
(1.7)

This observation shows that the IIKS theory is relevant also to the study of operators of the form

(1.1): however it is not practical to use (1.7) as a starting point for the analysis as this route is

impervious and is not the one we follow. We provide a direct treatment of K as well as K2 in a

unified fashion; the RHPs that are relevant are specified in Problems 3.1, 3.2 (please refer to the

statements there) for two matrix functions Γ,Ξ of size 2r × 2r. We also point out that the square

of integral operators is relevant to random matrix theory applications ([7], Sec. 9.6.1).

The two problems above are intimately related to each other in that the jump conditions are

identical while only the asymptotic behavior at λ = ∞ for Γ,Ξ differs. The solubility of the

5The superscript −T to a matrix denotes the inverse transposed matrix.
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Riemann–Hilbert Problems 3.1, 3.2 is equivalent to the non vanishing of the Fredholm determinants

of the operators Id
γ+
−K2 (Thm. 3.1) and Id

γ+
+ K (Thm. 3.2), respectively, which follows from

IIKS theory; we thus obtain the formula for the resolvents of K and K2 (Theorems 3.2 and 3.1)

−K ◦ (Idγ+ +K)−1(λ, µ) =

2µ
[
ET1 (λ),0p×r

]
ΓT (λ)Γ−T (µ)

[
0r×p
E2(µ)

]
λ2 − µ2

(1.8)

K2 ◦ (Idγ+
−K2)−1(λ, µ) = [ET1 (λ),0p×r]

ΞT (λ)Ξ−T (µ)

λ− µ

[
0r×p
E2(µ)

]
(1.9)

The knowledge of the resolvent operator allows to write variational formulæ for the respective

Fredholm determinants: however one may bypass formula (1.2) and write the variational formulæ

directly in terms of the solution of the respective RHPs (Thm. 4.1 4.2) using the ideas in [2]

∂ ln det(Idγ+ −K2)=

∫
γ+∪γ−

Tr
(
Ξ−1
− Ξ′−∂MM−1

) dλ

2iπ
(1.10)

∂ ln det(Idγ+ +K)=
1

2

∫
γ+∪γ−

Tr
(
Γ−1
− Γ′−∂MM−1

) dλ

2iπ
(1.11)

M(λ) := 12r − 2iπE1(λ)E2(λ)T
(
χγ+

⊗σ+ + χγ− ⊗σ−

)
, γ− := −γ+ (1.12)

where ′ is derivative w.r.t. λ, ∂ denotes any variation of the symbols Ej and σ+ (σ−) denotes the

2× 2 matrix with just one non-zero entry on the upper right corner (lower left corner).

In the second part of the paper we provide some applications to the study of matrix convolution

operators; our example of choice is a matrix version of the (scalar) convolution operator by the Airy

function [6]

Ais :L2(R+)→ L2(R+)

f(y) 7→ (Aisf)(x) :=

∫
R+

Ai(x+ y + 2s)f(y)dy (1.13)

The Fredholm determinant of the operator Id − Ais/2 is known to yield the Tracy-Widom gap

distribution F1(s) for the GOE [6] and –on the other hand- the Fredholm determinant of Id−Ai2s
yields the distribution F2(s) for the GUE [18] ; in fact it is well known that the kernel of the square

of the Airy-convolution operator is the celebrated Airy kernel

Ai2(x, y) :=

∫
R+

Ai(x+ z)Ai(y + z)dz =
Ai(x)Ai′(y)−Ai(y)Ai′(x)

x− y
=: KAi(x, y) (1.14)

F2 is expressed in terms of the Hastings-McLeod solution [10] to the second Painlevé equation [23]

while F1 can be expressed in terms of the Miura transform of the same transcendent. Alternatively
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(and equivalently) F1(s) can be expressed in terms of the unique solution of the Painlevé XXXIV

equation with a certain prescribed asymptotics6.

F2(s)= exp

(
−
∫ ∞
s

(x− s)u(x)2dx

)
, u2(s) = −∂2

s lnF2(s) (1.15)

F1(s)= exp

(
−1

2

∫ ∞
s

u(x)dx

)(
F2(s)

) 1
2

(1.16)

F1(s)= exp

(
−
∫ ∞
s

(x− s)w(x)dx

)
, w(s) = −∂2

s lnF1(s) (1.17)

u′′(s)= 2u(s)3 + su(s), u(s) ∼ Ai(s), s −→ +∞. (1.18)

w′′′(s)= 12w(s)w′(s) + 2w(s) + sw′(s), w(s) ∼ −1

2
Ai′(s), s −→ +∞. (1.19)

w(s)=
1

2
u2(s)− 1

2
u′(s) (1.20)

where (1.20) is the usual Miura transformation between solutions of modified KdV and KdV equa-

tions. Moreover we refer to (1.19) as the PXXXIV equation since, up to rescaling, this is the same

as the derivative of equation (30) in [4] (see also [17]).

The noncommutative analog of the whole preceding discussion arises in the study of a ma-

trix version of the Airy-convolution operator (see Section 5) which we have picked as exemplary

application:

(Ai~s ~f)(x):=

∫
R+

Ai(x+ y;~s)~f(y)dy (1.21)

Ai(x;~s):= [cjkAi(x+ sj + sk)]j,k . (1.22)

Here the matrix C = [cjk]j,k is an arbitrary r× r matrix with complex entries (in general) and the

dependence of Ai~s on C is considered as parametric (and it is understood in the notation). The

kernel of the square of this matrix-kernel does define a probabilistic model because it is a totally

positive kernel on the configuration space {1, . . . , r} × R as shown in Thm. 5.2. The analysis of

Ai~s and Ai2~s is then related to certain noncommutative analogs of the aforementioned Painlevé

equations and particular solutions thereof; in particular the Fredholm determinant of Ai2~s is related

to the noncommutative (matrix) Painlevé II equation7

D2U(~s) = 4 (sU(~s) + U(~s)s) + 8U3(~s) , s := diag (s1, . . . , sr) , D :=

r∑
j=1

∂

∂sj
. (1.23)

6The uniqueness of the solution w with the prescribed asymptotics is easily deduced from the uniqueness of the
Hasting-Mc Leod solution u of PII.

7Equation (1.23) reduces to (1.18) in the scalar case r = 1 with the change of variable x = 2s. Also, the r × r
matrix U(~s) in the body of the paper shall be denoted by β1(~s).
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which appeared recently in [20]: that paper provided special solutions in terms of quasideterminants

[8] in a more general context of noncommutative rings, but not a Lax-pair representation or a

connection to Riemann–Hilbert problems or Fredholm determinants. The isomonodromic approach

to the above equation yields a Lax pair representation contained in Section 5.1 and particularly

Lemma 5.1.

Of greater interest is the fact that the particular solution that is involved in the computation of

the Fredholm determinant of Ai2~s enjoys the same smoothness properties for ~s ∈ Rr as the Hastings-

McLeod solution. More precisely we prove (Prop. 5.1) that there is a unique solution of (1.23) with

the asymptotic

Uk`(~s) = ck`Ai(sk + s`) +O
(√
Se−

4
3 (2S−2m)

3
2

)
, S :=

1

r

∑
sj , m = max

j
|sj − S| , S→+∞ .

Additionally, this solution is pole free for ~s ∈ Rr if the maximal singular value of the matrix

C = [ck`] is one or less8, a condition which is sufficient if C is an arbitrary complex matrix and

becomes also necessary if C is Hermitean (Thm. 5.1 and Thm. 5.3). The analog of the third-order

ODE for F1 is now a system with noncommutative symbols (Thm. 5.4) that can be reduced to a

fourth order matrix ODE (Remark 5.6) and only in the scalar case is further reduced to an ODE

of the third order. The Fredholm determinant of Ai~s (the analog of F1) is then computed in terms

of the relevant solution in Corollaries 5.2, 5.3.

2 Matrix convolution operators on a semi–infinite interval.

Given a function C : R −→ Mat(r × r) decaying sufficiently fast at infinity, let’s consider the

convolution operator C acting on L2(R+,Cr) as follows:

(
Cϕ
)
(x) =

∫ ∞
0

C(x+ y)ϕ(y)dy ∈ L2([0,∞),Cr) (2.1)

Our aim is to study the Fredholm determinants det(Id + C) and det(Id− C2)9. Here C (and hence

the determinant) may depend on some parameters not explicitly indicated here (see below). Such

type of determinants appears in many applications; just to cite two of them let’s recall the Dyson

formula [5] in the inverse scattering for the Schrödinger operator and in the integral formula of the

Tracy-Widom distribution for GOE found by Ferrari and Spohn [6] (see below) for r = 1.

8The singular values of a matrix C are the (positive) squareroots of the eigenvalues of C†C: they coincide with
the absolute values of the eigenvalues of C if it is Hermitean (or more generally normal).

9Of course the sign in the expression det(Id + Cs) is inessential since we can always change C with −C.
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Remark 2.1 In the inverse scattering theory of the Schrödinger operator and other applications

the Fredholm determinant is written as the restriction to [s,∞) of the convolution by C:

f 7→
∫ ∞
s

C(x+ y)f(y)dy ∈ L2([s,∞)). (2.2)

This is identical to the setting above, up to translation. In fact it is enough to redefine C(x) 7−→
Cs(x) := C(x+ 2s) and let it act on L2([0,∞).

We will consider functions C(z) that admit the following representation (the factor of −i being

purely for later convenience)

C(z) = −i
∫
γ+

eizµr(µ)dµ (2.3)

where γ+ stands for a finite union of oriented contours in the upper-half plane with positive distance

from R and r(µ) is a bounded L1(γ+,Mat(r × r)) function on γ+ (with respect to the arc-length

measure). This assumption guarantees that C(z) is rapidly decaying at z = +∞ ∈ R with a simple

estimate10

|C(z)| ≤ e−zdist(γ+,R)

∫
γ+

|r(µ)||dµ|. (2.4)

An interesting example is as follows

Example 2.1 Let C(z) = −Ai(z) and r = 1: then

C(z) = −Ai(z + s/2) = − 1

2π

∫
γ+

ei
µ3

3 +i(z+s/2)µdµ (2.5)

where γ+ is a contour extending to infinity along the directions arg(µ) = π
2 ±

π
3 . This example is

relevant for applications since, as we have written in the introduction, the Fredholm determinant of

the corresponding convolution operator is equal to the Tracy-Widom distribution for GOE, namely

F1(s) = det(Id + C).

We would like to transfer the study of the Fredholm determinant of C on L2(R+) to the study

of a Fredholm determinant of an operator in L2(γ+); this is accomplished hereafter.

10The symbol |r| on a matrix stands for any norm on the matrices, for example the Hilbert-Schmidt norm or the
supremum of the absolute values of the entries. This is so not to overload the notation when considering norms in
some Lp.
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Proposition 2.1 Let C(z) as above, with r(µ) = E1(µ)ET2 (µ) and Ej ∈ L2 ∩L∞(γ+,Mat(r× p));
then the operator C is of trace–class on L2(R+,Cr) and also

det(IdL2(R+) + C) = det(IdH2
r

+ K̂) (2.6)

where H2
r is the Hardy space H2 ⊗ Cr (i.e. the unitary image of the Fourier–Plancherel transform

of L2(R+,Cr)) and where K̂ is the integral operator on H2
r ⊂ L2(R,Cr) with kernel

K̂(λ, µ) :=

∫
γ+

rT (ξ)dξ

2iπ(λ− ξ)(µ+ ξ)
(2.7)

Proof of Prop. 2.1. By Paley–Wiener theorem, L2(R+,Cr) is unitarily equivalent under Fourier–

Plancherel transform T to the subspace H2
r := H2⊗Cr, with H2 the Hardy space of the upper half

plane. Hence the convolution operator acts as follows

ψ(x) := (Cϕ)(x) =

∫ ∞
0

C(x+ y)ϕ(y)dy = −i
∫ ∞

0

dy

∫
γ+

dξ ei(x+y)ξr(ξ)ϕ(y) =

= −i
√

2π

∫
γ+

dξ eixξr(ξ)(T ϕ)(ξ)

so that (note that the x–integral below is convergent because ξ ∈ γ+ ⊂ C+)

(T ψ)(λ) =
1√
2π

∫ ∞
0

eiλxψ(x)dx = −i
∫ ∞

0

dx eiλx
∫
γ+

dξ eixξr(ξ)(T ϕ)(ξ) =

=

∫
γ+

dξ
r(ξ)

λ+ ξ
(T ϕ)(ξ) =

∫
γ+

dξ
r(ξ)

λ+ ξ
(T ϕ)(ξ) . (2.8)

We note that for a function in H2
r like f(µ) := T ϕ(µ), the evaluation at a point ξ ∈ C+ can be

written as

f(ξ) =

∫
R
f(µ)

dµ

2iπ(µ− ξ)
, (2.9)

which is Cauchy’s theorem. We shall thus define

K̂T := T −1CT (2.10)

(the reason for the transposition is solely for later convenience) with kernel given by

K̂T f(λ) =

∫
R

dµ

∫
γ+

dξ
r(ξ)

λ+ ξ

f(µ)

2iπ(µ− ξ)
⇒ K̂f(λ) =

∫
R

dµ

∫
γ+

dξ
rT (ξ)

λ− ξ
f(µ)

2iπ(µ+ ξ)
(2.11)

Finally, since the Fourier Plancherel transform from L2(R+,Cr) to H2
r is an isometry, the respective

Fredholm determinants are equal (if they exist). We note that K̂ extends to an integral operator on
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the whole of L2(R,Cr) with the same kernel: this extension automatically annihilates the orthogonal

complement of H2
r in L2(R,Cr), which is seen by closing the µ–integral with a half circle in the

lower half plane and then invoking Cauchy’s theorem. We will understand this extension in what

follows.

Therefore to conclude we need to show that C and K̂ are trace-class. By the unitary equivalence

given by the Fourier-Plancherel transform it suffices to show that K̂ is trace class: we shall present

K̂ as the product of two Hilbert-Schmidt operators, thus proving it of trace class. To this end recall

that r(µ) = E1(µ)ET2 (µ); thus

K̂f(λ) =

∫
R
dµ

∫
γ+

dξ
E2(ξ)

λ− ξ
ET1 (ξ)f(µ)dµ

2iπ(µ+ ξ)
= C2 ◦ C1f(λ) . (2.12)

where the two operators are defined as follows

C1: H2
r ⊂ L2(R,Cr)→ L2(γ+,Cp)

f 7→ (C1f)(ξ) := ET1 (ξ)

∫
R

f(µ)dµ

2iπ(µ+ ξ)
(2.13)

C2: L2(γ+,Cp)→ H2
r

h 7→ (C2h)(λ) :=

∫
γ+

E2(ξ)h(ξ)dξ

−ξ + λ
(2.14)

We embed H2
r and L2(γ+,Cp) as subspaces of L2(R ∪ γ+,Cr+p) as

H2
r 3 f 7→

[
f(λ)χR(λ)

~0p

]
, L2(γ+,Cp) 3 h 7→

[
~0r

h(λ)χγ+
(λ)

]
(2.15)

(they are then orthogonal but not complementary) and think of Cj as extended to the whole

L2(R ∪ γ+,Cr+p) in the trivial way (i.e. acting like zero on the orthogonal complements of the

H2
r , L

2(γ+,Cp), respectively). Analogously we extend trivially the action of K̂ to this enlarged

Hilbert space. Then it is promptly seen that they both are Hilbert Schmidt in L2(R ∪ γ+,Cr+p)
because ∫

γ+

|dξ|
∫
R
|dµ|

Tr
(
E†j (ξ)Ej(ξ)

)
|ξ ± µ|2

< +∞ (2.16)

thanks to our assumption that (the entries of) Ej are all in L2(γ+,C). Thus K̂ : H2
r → H2

r is trace

class, so is C and their determinants are the same. Q.E.D

Recall that if A : H1 → H2 and B : H2 → H1 are (bounded) operators between Hilbert spaces

and both AB, BA are trace class then (see for instance [21])

Tr
H1

(B ◦A) = Tr
H2

(A ◦B) . (2.17)
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Composing the operators Cj in the opposite order we obtain an operator on L2(γ+,Cp) as follows

(C1 ◦ C2f)(µ) =
ET1 (µ)

2iπ

∫
R

dξ

∫
γ+

dλ
E2(λ)f(λ)

(ξ − λ)(ξ + µ)
(2.18)

The ξ–integral can be closed with a big circle in the upper–half plane, thus picking up the residue

at ξ = λ to give

(C1 ◦ C2f)(µ) = ET1 (µ)

∫
γ+

dλ
E2(λ)f(λ)

λ+ µ
=: (Kf)(µ). (2.19)

Renaming the variables we obtain that

K(λ, µ) =
ET1 (λ)E2(µ)

λ+ µ
. (2.20)

The operator K is also trace class because the composition of two Hilbert-Schmidt operators in

L2(γ+∪R,Cr+p); clearly it defines an operator on L2(γ+,Cp) since it acts trivially on its orthogonal

complement (by construction). In particular

Corollary 2.1 The Fredholm determinants of C : L2(R+,Cr), K̂ : H2
r → H2

r and K : L2(γ+,Cp)→
L2(γ+,Cp) are all equal.

Given the fact that the operator K̂ (with kernel (2.7)) and K (with kernel (2.20)) have the same

Fredholm determinant, we shall continue our discussion by focusing on the latter. In the sequel

we will simply analyze operators with kernels as in (2.20) and forget about their origin as Fourier

transform of convolution operators.

Remark 2.2 It is worth mentioning that operators with kernel (2.20) with p = r = 1 (and E1 = E2)

belong to the same class considered in [24]. Using our formalism it is possible to re-derive the

connection between the Fredholm determinants of these operators and the mKdV/KdV hierarchies.

3 Riemann-Hilbert problems with different asymptotics and
their mutual relationship

Given a kernel K(λ, µ) as in (2.20) corresponding to the operator (denoted by the same symbol)

K : L2(γ+,Cp)→ L2(γ+,Cp) , K(λ, µ) :=
ET1 (λ)E2(µ)

λ+ µ
(3.1)

9



we construct two related Riemann-Hilbert problem on the collection of contours γ := γ+∪γ− (here

γ− := −γ+) and with jump matrix

M(λ) :=

[
1r −2iπr(λ)χγ+

−2iπr̃(λ)χ
γ−

1r

]
(3.2)

r(λ) = E1(λ)ET2 (λ) ∈ Mat(r × r) , r̃(λ) := r(−λ). (3.3)

where χ
X

denotes the indicator function of the set X. Here and below we denote with σi, i = 1, 2, 3

the Pauli matrices

σ1 :=

[
0 1
1 0

]
, σ2 :=

[
0 i
−i 0

]
, σ3 :=

[
1 0
0 −1

]
,

σ+ := (δi1δj2)i,j=1,2 and σ− its transpose. Furthermore we shall set

σ̂k = 1r⊗σk , k = ±, 1, 2, 3, (3.4)

where by the tensor notation can be taken to mean the matrix of size 2r× 2r split into 2× 2 blocks

of size r × r.
Note that the jump matrices M(λ) on γ := γ+ ∪ γ− satisfy

M(−λ) = σ̂1M(λ)σ̂1. (3.5)

We are going to formulate two Riemann-Hilbert Problems (Problems 3.1, 3.2) and we will show

how they are related between themselves (Prop. 3.2) and how they relate respectively to the two

Fredholm determinants det(Idγ+
+ K) and det(Idγ+

− K2) and the resolvents of the respective

operators. In the sequel we shall assume that Ej(λ) are smooth (beside the already imposed

conditions Ej ∈ L2(γ+) ∩ L∞(γ+)⊗Mat(r × p)).

Problem 3.1 Find the sectionally analytic function Ξ(λ) ∈ GL(2r,C) on C \ (γ+ ∪ γ−) such that

(with M(λ) given in (3.2))

Ξ+(λ) = Ξ−(λ)M(λ) λ ∈ γ+ ∪ γ− (3.6)

Ξ(λ) = 12r +
Ξ1

λ
+

Ξ2

λ2
+ . . . , λ→∞ . (3.7)
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Problem 3.2 Find the sectionally analytic function Γ(λ) ∈ GL(2r,C) on C \ (γ+ ∪ γ−) such that

(with M(λ) given in (3.2))

Γ+(λ) = Γ−(λ)M(λ) λ ∈ γ+ ∪ γ−, (3.8)

Γ(λ) = L(λ)

12r +

∞∑
j=1

Γj
λj

 , λ→∞ (3.9)

Γ(λ)L−1(λ) = O(1) , λ→ 0 (3.10)

Γ(−λ) = Γ(λ)σ̂1 (3.11)

Γ1 = a1⊗σ3 (3.12)

where the matrix L(λ) is defined as follows

L(λ) := 1r⊗L(λ) =

[
1r 1r
−iλ1r iλ1r

]
, L(λ) :=

[
1 1
−iλ iλ

]
(3.13)

The validity of the asymptotic expansions near infinity needs additional conditions on the jump

matrices if some component of γ+ extends to infinity (if this happens we assume that these com-

ponents extend to infinity along asymptotic directions) . A sufficient condition, which we hereby

tacitly assume, is that r(λ) = O(|λ|−∞) as |λ| → ∞ along any such component and extends to an

analytic function on an open sector containing the direction of approach in such a way that the

same asymptotic holds.

It is clear that the two Problems 3.1, 3.2 are closely related and the remainder of this section

is devoted to explaining their mutual relationship. It is a straightforward result that, if a solution

of Problem 3.1 exists, then it is unique. The uniqueness of the solution for the Problem 3.2 comes

from the following proposition.

Proposition 3.1 Let Γ(λ) be a sectionally analytic function that solves the RHP (3.8, 3.9, 3.10,

3.11).

If a solution exists then

1. det Γ(λ) = (2iλ)r;

2. Any matrix Γ̃ = (12r + c⊗σ−)Γ solves the same RHP with c ∈ Mat(r × r), constant;

11



3. Any solution has an expansion where the terms Γj in (3.9) have the symmetry

Γ(λ) = L(λ)

(
12r +

∞∑
k=1

Γk
λk

)
, Γj = (−1)j σ̂1Γj σ̂1 (3.14)

and hence

Γ2j = a2j⊗12 + b2j⊗σ1 , Γ2j+1 = a2j+1⊗σ3 + b2j+1⊗σ2 , aj , bj ∈ Mat(r × r) (3.15)

4. If we additionally require the condition (3.12) Γ1 = a1⊗σ3 (for some constant matrix a1) then

the solution is unique. This solution will be referred to as the gauge-fixed solution.

Proof of Prop. 3.1. 1. It is clear that the determinant has no jumps because the jump matrices are

unimodular. Moreover, from det L = (2iλ)r (see (3.13)) and (3.9) we have det Γ(λ) = (2iλ)r(1 +

O(λ−1)). Finally from (3.10) we have det Γ = O(det L) = O(λr), λ → 0, and hence it must be

det Γ ≡ (2iλ)r.

2. We note that

(12r + c⊗σ−)L(λ) = L(λ)

(
12r +

ic

2λ
⊗(σ3 − iσ2)

)
(3.16)

and hence the multiplication on the left by a constant matrix of such a form does not change the

form of the asymptotic expansion and does not change the jump conditions. This proves the second

point.

3. The statement is obvious once one notices that L(−λ) = L(λ)σ̂1.

4. Suppose Γ̃ is another solution satisfying the same requirements and denote by ãj , b̃j the

coefficients in its expansion as per (3.15). By point 1, any two solutions have the same determinant;

the ratio

S(λ) := Γ̃(λ)Γ−1(λ) (3.17)

must be a holomorphic matrix function on C \ {0}. However, from the condition (3.10) we see that

actually S(λ) must be analytic at 0 as well. Looking at the behaviour at infinity of Γ̃ and Γ one

finds by a direct computation that S(λ) is bounded and

S(λ) =

[
1r 0

ia1 − iã1 1r

]
(3.18)

Suppose now that ã1 6= a1; then

Γ̃(λ) =

[
1r 0

ia1 − iã1 1r

]
Γ(λ) (3.19)

12



But then one sees by direct matrix multiplication that b̃1 should equal ã1−a1

2 which violates the

normalization b̃1 = 0. This proves uniqueness. Q.E.D

In Proposition 3.2 and Proposition 3.3 we study the relationship between the Riemann–Hilbert

problems 3.1 and 3.2: in particular we shall see that they are not equivalent, in the sense that

if Problem 3.1 admits a solution then so does Problem 3.2 but, in general, not viceversa. We start

by observing that the symmetry (3.5) for the jump matrices implies the same symmetry for Ξ

Ξ(−λ) = σ̂1Ξ(λ)σ̂1 (3.20)

which in turns implies the following form for the coefficient Ξj in (3.7)

Ξ(λ) = 12r +

∞∑
k=1

Ξk
λk

, Ξ2j+1 = α2j+1⊗σ3 + β2j+1⊗σ2 , Ξ2j = α2j⊗12 + β2j⊗σ1 . (3.21)

Proposition 3.2 Let Ξ be the solution of Problem 3.1; then the solution of Problem 3.2 is

Γ(λ) =

[
1r 1r

−iλ1r − 2β1 iλ1r − 2β1

]
Ξ(λ) (3.22)

with β1 as in (3.21). In addition the coefficients of the expansions for Γ (3.15) and Ξ (3.21) satisfy

a1 = α1 − iβ1 , b1 = 0 (3.23)

a2j+1 = α2j+1 + iβ1(β2j − α2j) , b2j+1 = β2j+1 + β1 (β2j − α2j)

a2j = α2j − iβ1 (α2j−1 − iβ2j−1) , b2j = β2j − iβ1 (α2j−1 − iβ2j−1) (3.24)

Proof of Prop. 3.2. Since Γ and Ξ have the same jumps we must have Γ(λ) = R(λ)Ξ(λ) for some

R(λ) at most polynomial. From the symmetries we must have R(−λ) = R(λ)σ̂1 and detR = (2iλ)r.

The expansion of Γ and Ξ at infinity forces R to be of the form

R(λ) =

[
1r 1r

−iλ1r + 2ic iλ1r + 2ic

]
(3.25)

On the other hand, as we presently show, the gauge fixing (3.12) determines C; indeed

L−1R = 12r +
c

λ
⊗

[
−1 −1
1 1

]
= 12r +

1

λ
(−c⊗σ3 + ic⊗σ2) (3.26)

and therefore in the expansions of Γ and Ξ and matrix multiplications we have

12r+

∞∑
j=0

a2j+1⊗σ3 + b2j+1⊗σ2

λ2j+1
+

∞∑
j=1

a2j⊗12 + b2j⊗σ1

λ2j
= (3.27)

= 12r +
(α1 − c)⊗σ3 + (β1 + ic)⊗σ2

λ
+
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+

∞∑
j=1

(α2j − c(α2j−1 − iβ2j−1)) ⊗12 + (β2j − c(α2j−1 − iβ2j−1)) ⊗σ1

λ2j
+

+

∞∑
j=1

(α2j+1 − cα2j + cβ2j) ⊗σ3 + (β2j+1 − icβ2j + icα2j) ⊗σ2

λ2j+1
(3.28)

The gauge fixing (3.12) mandates b1 = 0 (i.e. the coefficient matrix of σ2 in the term λ−1 must be

absent) so that we must have c = iβ1 and equating the coefficients of the expansion above implies

(3.24). It only remains to show that R(λ)Ξ(λ)L−1(λ) is bounded at λ = 0 (condition (3.10)). Since

L−1 = 1r⊗L
−1 and L−1(λ) has only simple pole at λ = 0, then R(λ)Ξ(λ)L−1(λ) = c0

λ + O(1) as

λ → 0. On the other hand the symmetries imply R(λ)Ξ(λ)L−1(λ) = R(−λ)Ξ(−λ)L−1(−λ) and

hence c0 = −c0 so that c0 = 0. Q.E.D

Proposition 3.3 Let Γ(λ) ∈ GL(2r,C) be the solution of Problem 3.2 and denote the r × r blocks

of Γ by Γij, i, j = 1, 2; then the solution of Problem 3.1 for Ξ exists if and only if

det Γ11(0) 6= 0 .

Moreover

β1 = −1

2
Γ−1

11 (0)Γ21(0) = −i lim
λ→∞

λΞ12(λ)

Proof of Prop. 3.3. Let Γ(λ) be the solution of Problem 3.2. In particular Γ(λ) is bounded

everywhere (by definition) and we want now to find a matrix R(λ) of the form (3.25) such that

Ξ(λ) := R−1(λ)Γ(λ) (3.29)

solves Problem 3.1. It is clear that the jumps will be automatically satisfied and so the asymptotic

behaviour at infinity. The value of the constant matrix c must be determined by the requirement

that Ξ is bounded at λ = 0. From the symmetry (3.11) we have the matrix equations

Γ11(0) = Γ12(0) , Γ21(0) = Γ22(0) . (3.30)

A direct computation yields

R−1(λ)Γ(λ) = O(1) , λ→ 0 (3.31) 1r
2 + c

λ − 1r
2iλ

1r
2 −

c
λ

1r
2iλ

Γ(λ) = O(1) (3.32)

cΓ11(0) +
i

2
Γ21(0) = 0 ,⇒ c = − i

2
Γ−1

11 (0)Γ21(0) (3.33)

cΓ12(0) +
i

2
Γ22(0) = 0 , (3.34)
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The two equations are the same due to (3.30). Now, if det Γ11(0) 6= 0 then the solution for c is as in

(3.33) and the sufficiency is proved. As for the necessity, if det Γ11(0) = 0, then the equation (3.33)

may still be compatible. However this would mean that there are infinitely many c that solve the

matrix equation (3.33), which would violate the uniqueness of the RHP 3.1. Q.E.D

We conclude the section with the following two theorems, which we state side-by-side for the

sake of easy comparison.

Theorem 3.1 Let K(λ, µ) be the integral operator on L2(γ+,Cp) with kernel

K(λ, µ) :=
E1(λ)TE2(µ)

λ+ µ
(3.35)

Then the resolvent operator R++ = K2 ◦ (Idγ+
− K2)−1 of Idγ+

− K2 on L2(γ+,Cp) has kernel

R++(λ, µ) given by

R++(λ, µ) = [ET1 (λ),0p×r]
ΞT (λ)Ξ−T (µ)

λ− µ

[
0r×p
E2(µ)

]
(3.36)

where Ξ is the solution of Problem 3.1 with the jump matrix (3.2).

If r(λ) := E1(λ)ET2 (λ) is symmetric, r = rT (for example if E1 = E2 = E) then the resolvent

can be written more symmetrically as

R++(λ, µ) = i[ET1 (λ),0p×r]
ΞT (λ)σ̂2Ξ(µ)

λ− µ

[
E2(µ)
0r×p

]
(3.37)

The solution to Problem 3.1 exists if and only if the operator Idγ+
−K2 is invertible.

Theorem 3.2 Let K(λ, µ) be the integral same operator as in Thm. 3.1. Then the resolvent

operator S = −K ◦ (Idγ+
+K)−1 has kernel S(λ, µ) given by

S(λ, µ) =

2µ
[
ET1 (λ),0p×r

]
ΓT (λ)Γ−T (µ)

[
0r×p
E2(µ)

]
λ2 − µ2

(3.38)

where Γ is the solution of Problem 3.2 with the jump matrix (3.2). If r(λ) := E1(λ)ET2 (λ) is sym-

metric, r = rT (for example if E1 = E2 = E) then the resolvent can be written more symmetrically
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as

S(λ, µ) =

[
ET1 (λ),0p×r

]
ΓT (λ)σ̂2Γ(µ)

[
E2(µ)
0r×p

]
λ2 − µ2

(3.39)

This solution to Problem 3.2 exists if and only if the operator Idγ+ +K is invertible.

Proof of Thm. 3.1. We start observing that the jump M(λ) in Problem 3.1 can be written

as

M(λ)= 1− 2iπf(λ)gT(λ) (3.40)

f(λ)=

[
E1(λ)
0r×p

]
χ
γ+

(λ) +

[
0r×p
Ẽ1(λ)

]
χ
γ−

(λ) (3.41)

g(λ)=

[
0r×p
E2(λ)

]
χγ+

(λ) +

[
Ẽ2(λ)
0r×p

]
χγ− (λ) , Ẽj(λ) := Ej(−λ). (3.42)

By the IIKS theory, this RHP is associated to the kernel N acting on L2(γ+ ∪ γ−,Cp) with kernel

given by

N(λ, µ) =
fT(λ)g(µ)

λ− µ
=
ET1 (λ)Ẽ2(µ)χγ+

(λ)χγ− (µ) + ẼT1 (λ)E2(µ)χγ− (λ)χγ+
(µ)

λ− µ
(3.43)

According to the split L2(γ+∪γ−) = L2(γ+)⊕L2(γ−), using the naturally related matrix notation,

we can write N as

N =

[
0 G
F 0

]
, G : L2(γ−,Cp)→ L2(γ+,Cp) , F : L2(γ+,Cp)→ L2(γ−,Cp) (3.44)

where the operators F and G are integral operators with kernels

G(λ, ξ) =
ET1 (λ)Ẽ2(ξ)χ

γ+
(λ)χ

γ−
(ξ)

λ− ξ
, F(ξ, µ) =

ẼT1 (ξ)E2(µ)χ
γ−

(ξ)χ
γ+

(µ)

ξ − µ
(3.45)

We observe that the kernel of the composition reads

(G ◦ F)(λ, µ) = ET1 (λ)

(∫
γ−

Ẽ2(ξ)ẼT1 (ξ)

(λ− ξ)(ξ − µ)
dξ

)
E2(µ) = (3.46)

ET1 (λ)

(∫
γ+

E2(ξ)ET1 (ξ)dξ

(λ+ ξ)(ξ + µ)

)
E2(µ) = K2(λ, µ) (3.47)

and hence our task of computing the resolvent of Idγ+ −K2 is the same as computing the resolvent

of Idγ+
− G ◦ F . To this end we write first the resolvent of Idγ+∪γ− −N (using [12]):

R(λ, µ) =
fT (λ)ΞT (λ)Ξ−T (µ)g(µ)

λ− µ
(3.48)
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according to the projections in L2(γ±,Cp):

R(λ, µ)= R++(λ, µ) +R−+(λ, µ) +R+−(λ, µ) +R−−(λ, µ)

= [ET1 (λ),0p×r]
ΞT (λ)Ξ−T (µ)

λ− µ

[
0r×p
E2(µ)

]
χ
γ+

(λ)χ
γ+

(µ) + [0p×r,Ẽ
T
1 (λ)]

ΞT (λ)Ξ−T (µ)

λ− µ

[
0r×p
E2(µ)

]
χ
γ−

(λ)χ
γ+

(µ) +

+[ET1 (λ),0p×r]
ΞT (λ)Ξ−T (µ)

λ− µ

[
Ẽ2(µ)
0r×p

]
χγ+

(λ)χγ−(µ) + [0p×r, Ẽ
T
1 (λ)]

ΞT (λ)Ξ−T (µ)

λ− µ

[
Ẽ2(µ)
0r×p

]
χγ−(λ)χγ−(µ)

(3.49)

where the four addenda appears in the matrix notation induced by the splitting L2(γ+ ∪ γ−) =

L2(γ+)⊕ L2(γ−);

(Idγ+∪γ− −K)−1 =

[
Idγ+

+R++ R+−
R−+ Idγ− +R−−

]
On the other hand we have[

(Idγ+ − G ◦ F)−1 0
F ◦ (Idγ+ − G ◦ F)−1 Idγ−

]
=

[
Idγ+ − G ◦ F 0
−F Idγ−

]−1

=

=

[
Idγ+ −G
−F Idγ−

]−1

◦
[

Idγ+ −G
0 Idγ−

]
=

[
Idγ+ +R++ R+−
R−+ Idγ− +R−−

]
◦
[

Idγ+ −G
0 Idγ−

]
so that the entry (1, 1) of the equation above gives

(Idγ+ − G ◦ F)−1 = Idγ+ +R++

and the equation (3.49) gives the precise form of the kernel R++(λ, µ).

In case of symmetry r = rT this form simplifies because Ξ−1(λ) = σ̂2ΞT (λ)σ̂2 (which is proved

along the same lines as in Thm. 3.2). The statement about the existence is a direct application of

IIKS theory. Q.E.D

Proof of Thm. 3.2. The idea of the proof is to reduce as much as possible the theorem to the

theory of integrable operators of Its-Izergin-Korepin-Slavnov (IIKS). We can write the operator as

K(λ, µ) :=
E1(λ)TE2(µ)

λ+ µ
=

(λ− µ)E1(λ)TE2(µ)

λ2 − µ2
(3.50)

We now introduce the coordinate z := λ2 and w := µ2. Since γ+ is in the upper half-plane, its image

under the square map is well-defined and lies in C \ R+. Since the arc-length of γ+ differs in the

z-plane and λ-plane, we must introduce the square-roots of the Jacobians. The integral operator

(3.50) reads

K(z, w) :=
(
√
z −
√
w)E1(

√
z)TE2(

√
w)

2(zw)
1
4 (z − w)

=

−
[
ET1 (
√
z),−i

√
zET1 (

√
z)
] [ E2(

√
w)

− i√
w
E2(
√
w)

]
2(z − w)

(w
z

) 1
4

(3.51)

17



We have to construct the resolvent of Idγ+ +K = Idγ+ − (−K). We have now an integrable kernel

in the sense of Its-Izergin-Korepin-Slavnov where the matrices f ,g can be chosen as

(−K)(z, w) =
fT (z)g(w)

z − w
, f(z) =

1
4
√
z

[
E1(
√
z)

−i
√
zE1(

√
z)

]
, g(z) =

1

2
4
√
z

[
E2(
√
z)

− iE2(
√
z)√

z

]
(3.52)

We immediately observe that

f(z) =
1
4
√
z
L(
√
z)

[
E1(
√
z)

0r×p

]
=: L(

√
z)f0(z) , (3.53)

g(z) = 4
√
z(L−1)T (

√
z)

[
0r×p
E2(
√
z)

]
= L−T (z)g0(z). (3.54)

The construction of the resolvent is then associated, in the standard way [12], to the following

Riemann–Hilbert Problem

Θ(z)+ = Θ(z)−
(
12r − 2iπf(z)gT (z)

)
, z ∈ γ+ (3.55)

Θ(z) = 12r +O(z−1) , z →∞ (3.56)

We can rewrite the jump matrix as follows

12r − 2iπL(
√
z)(r(

√
z)⊗σ+)L−1(

√
z) (3.57)

r(
√
z) := E1(

√
z)ET2 (

√
z) (3.58)

Consequently we introduce the new matrix Θ(z)L(
√
z), where L(

√
z) := 1r⊗L(

√
z). In order to

connect with Problem 3.2 we define

Γ̂(λ) = Θ(λ2)L(λ) (3.59)

and we see immediately that Γ̂(−λ) = Γ̂(λ)σ̂1. Furthermore Γ̂(λ)L−1(λ) = Θ(λ2) = O(1) as λ→ 0.

Thus Γ̂ solves Problem 3.2 except for the gauge-fixing (3.12), which we now take into consideration:

if we denote by a1 the (1, 2) block of size r × r in

Θ(z) = 1 +
1

z

[
? −a1

? ?

]
+O(z−2) (3.60)

then one verifies by matrix multiplication that the relation between Γ̂ and the gauge–fixed Γ is

(12r + a1⊗σ+) Γ̂(z) = Γ(z) , (3.61)
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The resolvent operator, according to the general theory, is

S(λ, µ) =
fT (z)ΘT (z)Θ−T (w)g(w)

z − w
√

dzdw = (3.62)

=
fT0 (z)LT (λ)ΘT (λ2)Θ−T (µ2)L−T (µ)g0(w)

z − w
√

dzdw = (3.63)

= 2
√
λµ

fT0 (λ)ΓT (λ)Γ−T (µ)g0(µ)

λ2 − µ2

√
dλdµ = (3.64)

=

2µ
[
ET1 (λ),0p×r

]
ΓT (λ)Γ−T (µ)

[
0r×p
E2(µ)

]
λ2 − µ2

(3.65)

Finally, note that

L−T (λ) =
1

2iλ
σ̂2L(λ)σ̂2 (3.66)

and if r = rT then

Γ−T (µ) =
1

2iµ
σ̂2Γ(µ)σ̂2 (3.67)

which can be checked by verifying that 2iµσ̂2Γ−T (µ)σ̂2 solves the same Problem 3.2 and hence

equals Γ. In this case the formula for the resolvent takes a more symmetric form

S(λ, µ) =

[
ET1 (λ),0p×r

]
ΓT (λ)σ̂2Γ(µ)

[
E2(µ)
0r×p

]
λ2 − µ2

(3.68)

As for the statement of existence; Γ exists if and only if Θ exists, which is equivalent to the

invertibility of the mentioned operator by the IIKS general theory. Q.E.D

4 Tau functions and Fredholm determinants

Slightly generalizing the definition in [2] (which is itself a generalization of the notion of isomon-

odromic tau function introduced in the work of Jimbo-Miwa-Ueno [16, 14, 15]) we associate, to the

space of deformations of the Riemann–Hilbert problems 3.1 and 3.2 the two differentials below.

Definition 4.1 We define the two forms over the space of deformations of Problem 3.2 and Problem

3.1

ωΞ(∂) :=

∫
Tr
(
Ξ−1
− Ξ′−∂MM−1

) dλ

2iπ
(4.1)
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and

ωΓ(∂) :=
1

2

∫
Tr
(
Γ−1
− Γ′−∂MM−1

) dλ

2iπ
(4.2)

where ∂ denotes any deformation of the jump matrices, ’ the derivatives with respect to the spectral

parameter and the integration is extended to all the contours where the jumps are supported, γ+∪γ−.

In the cases in which these two differential forms are closed it is defined, up to a constant, the

corresponding tau function given by ∂ ln τΞ/Γ = ωΞ/Γ(∂).

A particular case (of great interest) of deformations is when the jump matrices have the form

M(λ; s) = eT (λ)M0(λ)e−T (λ) , (4.3)

and T (λ) is a diagonal matrix depending on deformation parameters, while M0(λ) is assumed

independent of them. A typical case is T (λ) =
∑N
k=0 Tkλ

k and the diagonal matrices Tk are taken

as deformation parameters.

The relation between the Definition 4.1 and Fredholm determinants is elucidated in the following

two theorems, stated side-by-side for comparison.

Theorem 4.1 Given an operator K as in Section 2 and the Riemann-Hilbert Problem 3.1 (with

the same r(µ)) we have the equality

∂ ln τΞ =

∫
γ+∪γ−

Tr
(
Ξ−1
− Ξ′−∂MM−1

) dλ

2iπ
= ∂ ln det(Idγ+ −K2) (4.4)

Theorem 4.2 Given an operator K as in Section 2 and the Riemann-Hilbert Problem 3.2 (with

the same r(µ)) we have the equality

∂ ln τ
Γ

=
1

2

∫
γ+∪γ−

Tr
(
Γ−1
− Γ′−∂MM−1

) dλ

2iπ
= ∂ ln det(Idγ+

+K) (4.5)

Proof of Thm. 4.1. In [3] (see Theorem 2.1) it was proved (for the case of scalar operators,

but the proof does not differ significantly as we see below) that

∂ ln τΞ = ∂ ln det(Idγ+∪γ− −N) (4.6)
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where the integral operator N , acting on L2(γ+ ∪ γ−) is the one expressed in (3.43). On the other

hand we have the identity

det(Idγ+∪γ− −N) = det(Idγ+ −F ◦ G) = det(Idγ+ −K2) (4.7)

where the first equality follows from

det

(
Idγ+∪γ− −

[
0 G
F 0

])
= det

(
Idγ+∪γ− −

[
0 G
F 0

])
det

[
Idγ− G

0 Idγ+

]
= (4.8)

det

(
Idγ+∪γ− −

[
0 0
F F ◦ G

])
= det

(
Idγ+

−F ◦ G
)
. (4.9)

and the second is (3.47). The above computation is formal inasmuch as one would need to prove

that all the operators involved are of trace-class. To see that we now prove that both F ,G are

trace-class in L2(γ+ ∪ γ−,Cp). Recalling their definition (3.45) we augment the Hilbert space as

Ĥ := L2(γ+ ∪ γ−,Cp) ⊕ L2(R,Cr), and extend trivially the definition of F ,G to the augmented

space. This allows to represent them as the composition of two Hilbert–Schmidt operators (thus

immediately implying the trace class property). Indeed (for example for F) we have the identity

below

F(ξ, µ) =
ẼT1 (ξ)E2(µ)χ

γ−
(ξ)χ

γ+
(µ)

ξ − µ
=

∫
R

dζ

2iπ

ẼT1 (ξ)χγ− (ξ)

(ξ − ζ)

E2(µ)χγ+
(µ)

(ζ − µ)
(4.10)

which follows from Cauchy’s residue theorem by closing the ζ integration either in the upper or in

the lower half-plane. This realizes F as the composition of two operators between the subspaces

L2(γ+,Cp)→ L2(R,Cr)→ L2(γ−,Cp), each of which is Hilbert–Schmidt:

∫
γ−

|dξ|
∫
R
|dζ|

Tr
(
Ẽ†1(ξ)Ẽ1(ξ)

)
|ξ − ζ|2

<∞ >

∫
γ+

|dµ|
∫
R
|dζ|

Tr
(
E†2(µ)E2(µ)

)
|µ− ζ|2

(4.11)

For the sake of self-containedness we shall re-derive (4.6) below. let us denote by Ξ = [A,B]

the two block-columns of Ξ (of sizes 2r × r) and by Ξ−1 =

[
C
D

]
the block rows of Ξ−1 (of sizes

r × 2r). Then ∫
γ+∪γ−

Tr
(
Ξ−1
− Ξ′−∂MM−1

) dλ

2iπ
= (4.12)

−
∫
γ+

Tr

([
C−
D−

]
[A′−,B

′
−]∂r⊗σ+

)
dλ−

∫
γ−

Tr

([
C−
D−

]
[A′−,B

′
−]∂r̃⊗σ−

)
dλ = (4.13)

−
∫
γ+

Tr (DA′∂r) dλ−
∫
γ−

Tr (CB′∂r̃) dλ (4.14)
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where we have used that C and A are analytic across γ+ and D,B analytic across γ−. On the

other hand the jump relations imply

A(λ) =

[
1r

0r×r

]
−
∫
γ−

B(µ)r̃(µ)dµ

µ− λ
, B(λ) =

[
0r×r
1r

]
−
∫
γ+

A(µ)r(µ)dµ

µ− λ
(4.15)

and these identities can be differentiated on γ+ (for A) and γ− (for B). We thus have

−
∫
γ+

Tr (DA′∂r) dλ−
∫
γ−

Tr (CB′∂r̃) dλ = (4.16)

=

∫
γ+

dλ

∫
γ−

dµTr

(
D(λ)

B(µ)r̃(µ)

(µ− λ)2
∂r(λ)

)
dλ+

∫
γ−

dλ

∫
γ+

dµTr

(
C(λ)

A(µ)r(µ)

(µ− λ)2
∂r̃(λ)

)
(4.17)

On the other hand these two terms exactly compute 11

− Trγ+
(R+− ◦ ∂F)− Trγ− (R−+ ◦ ∂G) = −Trγ+∪γ−

((
Idγ+∪γ− +R

)
◦ ∂N

)
=

= ∂ ln det(Idγ+∪γ− −N) (4.18)

where R is the resolvent of the operator with kernel N already used in (3.43) and R has been

decomposed as in (3.49) and F ,G defined in (3.45). Q.E.D

Proof of Thm. 4.2 We start analyzing the l.h.s. of the equation and observing that ∂ ln τΓ is

equal to 1
2∂ ln τΞ plus an additional term. Indeed, from Γ = R(λ)Ξ(λ) with R defined in (3.25), we

find

Γ−1Γ′ = Ξ−1Ξ′ + Ξ−1R−1R′Ξ = Ξ−1Ξ′ +
1

2λ
Ξ−1(λ)(1− σ̂1)Ξ(λ) (4.19)

so that

2∂ ln τΓ − ∂ ln τΞ =

∫
γ+∪γ−

Tr
(
Γ−1
− Γ′−∂MM−1

) dλ

2iπ
−
∫
γ+∪γ−

Tr
(
Ξ−1
− Ξ′−∂MM−1

) dλ

2iπ
=

=

∫
γ+∪γ−

1

2λ
Tr

(
Ξ−1
− (λ)σ̂1Ξ−(λ)

[
0r×r ∂rχ+

∂r̃χ− 0r×r

])
dλ =

=

∫
γ+

1

2λ
Tr
(
Ξ−1
− (λ)σ̂1Ξ−(λ)σ̂+∂r(λ)

)
dλ+

∫
γ−

1

2λ
Tr
(
Ξ−1
− (λ)σ̂1Ξ−(λ)σ̂−∂r̃(λ)

)
dλ =

=

∫
γ+

1

λ
Tr
(
Ξ−1
− (λ)σ̂1Ξ−(λ)σ̂+∂r(λ)

)
dλ =

∫
γ+

1

λ
Tr (D(λ)σ̂1A(λ)∂r(λ)) dλ (4.20)

11here we used the symmetries

B(λ) = σ̂1A(−λ), D(λ) = C(−λ)σ̂1.
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We want to identify this last integral; recall the notation Ξ−1 =
[
C
D

]
and that the jumps for Ξ−T

imply for the column CT

CT (λ) =

[
1r
0

]
+

∫
γ+

DT (ξ)rT (ξ)dξ

ξ − λ
(4.21)

Moreover, by definition of inverses we have

C(λ)A(λ) ≡ 1r ≡ D(λ)B(λ). (4.22)

Consider

(R++ ◦ ∂K)(λ, µ) =

∫
γ+

R++(λ, ξ)
ET1 (ξ)∂E2(µ) + ∂ET1 (µ)E2(ξ)

µ+ ξ
dξ =

=

∫
γ+

ET1 (λ)AT(λ)DT (ξ)E2(ξ)

λ− ξ
ET1 (ξ)∂E2(µ) + ∂ET1 (ξ)E2(µ)

ξ + µ
dξ =

= ET1 (λ)AT(λ)

(∫
γ+

DT (ξ)rT (ξ)dξ

(ξ + µ)(λ− ξ)

)
∂E2(µ) +

∫
γ+

E1(λ)AT (λ)DT (ξ)E2(ξ)

λ− ξ
∂ET1 (ξ)E2(µ)

ξ + µ
dξ =

=
ET1 (λ)AT (λ)

µ+ λ

(∫
γ+

(
1

ξ + µ
− 1

ξ − λ

)
DT (ξ)rT (ξ)dξ

)
∂E2(µ) +

+

∫
γ+

ET1 (λ)AT (λ)DT (ξ)E2(ξ)

λ− ξ
∂ET1 (ξ)E2(µ)

ξ + µ
dξ =

= −E
T
1 (λ)AT(λ)

µ+ λ

(
CT (λ)−CT (−µ)

)
∂E2(µ) +

∫
γ+

ET1 (λ)AT(λ)DT (ξ)E2(ξ)

λ− ξ
∂ET1 (ξ)E2(µ)

ξ + µ
dξ =

= −E
T
1 (λ)AT(λ)

µ+ λ

(
CT (λ)− σ̂1D

T (µ)
)
∂E2(µ) +

∫
γ+

ET1 (λ)AT(λ)DT (ξ)E2(ξ)

λ− ξ
∂ET1 (ξ)E2(µ)

ξ + µ
dξ =

=
ET1 (λ)AT(λ)σ̂1D

T (µ)∂E2(µ)

µ+ λ
− ET1 (λ)∂E2(µ)

λ+ µ
+

∫
γ+

ET1 (λ)AT(λ)DT (ξ)E2(ξ)

λ− ξ
∂ET1 (ξ)E2(µ)

ξ + µ
dξ(4.23)

(note that we used (4.21)). Taking the trace we have to set µ = λ and integrate over γ+: the last

term in (4.23) can then be simplified as well∫
γ+

dλ

∫
γ+

dξ
Tr
(
ET1 (λ)AT(λ)DT (ξ)E2(ξ)∂ET1 (ξ)E2(λ)

)
(λ− ξ)(ξ + λ)

= (4.24)

=

∫
γ+

dλ

∫
γ+

dξ
Tr
(
rT (λ)AT(λ)DT (ξ)E2(ξ)∂ET1 (ξ)

)
(λ− ξ)(ξ + λ)

=

= Tr

[∫
γ+

dλ

∫
γ+

dξ rT (λ)AT(λ)
1

2ξ

(
1

λ− ξ
− 1

λ+ ξ

)
DT (ξ)E2(ξ)∂ET1 (ξ)

]
= (4.25)

= −Tr

[∫
γ+

BT (ξ)−BT (−ξ)
2ξ

DT (ξ)E2(ξ)∂ET1 (ξ)dξ

]
= (4.26)
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= −
∫
γ+

Tr
(
(1r −AT (ξ)σ̂1D

T (ξ))E2(ξ)∂ET1 (ξ)
)

2ξ
dξ (4.27)

Taking the trace of (4.23) we thus have

Tr (R++ ◦ ∂K) = −

=Tr ∂K︷ ︸︸ ︷∫
γ+

dλ
Tr
(
ET1 (λ)∂E2(λ) + ∂ET1 (λ)E2(λ)

)
2λ

(4.28)

+ Tr

[∫
γ+

dξ
AT(ξ)σ̂1D

T (ξ)∂E2(ξ)ET1 (ξ)

2ξ
+

∫
γ+

dξ
AT(ξ)σ̂1D

T (ξ)E2(ξ)∂ET1 (ξ)

2ξ

]
(4.29)

Together we thus have

Tr (R++ ◦ ∂K) = −Tr ∂K +

∫
γ+

dλ
Tr
(
AT(λ)σ̂1D

T (λ)∂rT (λ)
)

2λ
, (4.30)

and therefore∫
γ+∪γ−

Tr
(
Γ−1
− Γ′−∂MM−1

) dλ

2iπ
−
∫
γ+∪γ−

Tr
(
Ξ−1
− Ξ′−∂MM−1

) dλ

2iπ
= (4.31)

= 2 Tr(R++ ◦ ∂K) + 2 Tr ∂K (4.32)

In summary, using Theorem 4.1, we have∫
γ+∪γ−

Tr
(
Γ−1
− Γ′−∂MM−1

) dλ

2iπ
= ∂ ln det(Idγ+

−K2) + 2 Tr(R++ ◦ ∂K) + 2 Tr ∂K (4.33)

On the other hand we now show that the r.h.s. of (4.33) is precisely 2∂ ln det(Idγ+ + K) at which

point the proof shall be then complete. To verify this last point we have (using Theorem 3.1)

(Idγ+ +K)−1 = (Idγ+ −K2)−1(Idγ+ −K)
Thm. 3.1

= (Idγ+ +R++)(Idγ+ −K)

= Idγ+
−K +R++ −R++K (4.34)

from which we can compute the variations of the determinant

2∂ ln det(Idγ+ +K)= 2 Tr((Idγ+ +K)−1∂K) =

= 2 Tr (∂K −K∂K +R++∂K −R++K∂K) =

= −Tr((Idγ+
+R++)∂(K2)) + 2 Tr(∂K) + 2 Tr(R++∂K) =

= ∂ ln det(Idγ+
−K2) + 2 Tr(R++∂K) + 2 Tr(∂K) (4.35)

Q.E.D

When the dependence on the deformation parameter is in the form specified in (4.3) then we

can write the differentials in terms of formal residues as shown here.

24



Proposition 4.1 Suppose that M(λ) in (3.2) can be written as M(λ) = eT (λ)M0(λ)e−T (λ) where

T (λ) is a polynomial diagonal matrix without constant term in λ (T (0) = 0) whose entries depend on

the deformations and such that T (−λ) = σ̂1T (λ)σ̂1. Let ∂ be the derivative w.r.t. one deformation

parameter. Then

∂ ln τΓ= ωΓ(∂) = −1

2
res
∞

Tr

(
Γ−1(λ)Γ′(λ)∂T (λ)

)
dλ, (4.36)

∂ ln τΞ= ωΞ(∂) = − res
∞

Tr

(
Ξ−1(λ)Ξ′(λ)∂T (λ)

)
dλ (4.37)

where the residues are understood as formal residues, or the coefficient of λ−1 in the expansion at

infinity.

Proof of Prop. 4.1. The equivalence of the formal residues (4.36) with the integral represen-

tation (4.1) (or (4.2)) was proven in [2] in a more general context, but we recall here the gist of it.

The formal residue in (4.36) (for the case of ωΓ, the other case being completely analogous) can be

written as an integral on an expanding counterclockwise circle (with the piecewise-defined Γ) and

then it can be transferred by the use of Cauchy theorem to the integral

− 1

2
res
λ=∞

Tr(Γ−1Γ′∂T )dλ = +
1

2
lim
R→∞

∮
|λ|=R

Tr(Γ−1Γ′∂T )
dλ

2iπ
= (4.38)

=
1

2

∫
γ+∪γ−

Tr
[(
−Γ−1

+ Γ′+ + Γ−1
− Γ′−

)
∂T
] dλ

2iπ
+
�����������1

2

∮
|λ|=ε

Tr(Γ−1Γ′∂T )
dλ

2iπ
= (4.39)

= −1

2

∫
γ+∪γ−

Tr
[(
M−1Γ−1

− Γ′−M +M−1M ′ − Γ−1
− Γ′−

)
∂T
] dλ

2iπ
=

= −1

2

∫
γ+∪γ−

Tr
[
Γ−1
− Γ′−

(
M∂TM−1 − ∂T

)
+M−1M ′∂T

] dλ

2iπ
(4.40)

Firstly, the term crossed out is zero because T (λ) = O(λ) ⇒ ∂T (λ) = O(λ) (as λ→ 0) and Γ−1Γ′

may have at most a simple pole at λ = 0 (thanks to (3.10)) so that the term is analytic at λ = 0.

Secondly, note that M−1M ′ is (piecewise) strictly upper or lower triangular on γ+ ∪ γ− and ∂T

is diagonal, hence the term Tr(M−1M ′∂T ) ≡ 0 on γ+ ∪ γ−. On the other hand from the formula

(4.3) follows immediately that M∂TM−1 − ∂T = −∂MM−1 and hence (4.36) gives exactly (4.2).

Q.E.D

The following corollary follows from direct matrix multiplications using the asymptotic forms

(3.9) and (3.7) together with the special structure of the expansion matrices (3.15) and (3.21).

Corollary 4.1 If ∂T (λ) = iλ ekk⊗σ3 with ekk the diagonal elementary (r × r) matrix, then

ωΓ(∂) = −1

2
res
∞

(
Γ−1Γ′λekk⊗σ3

)
dλ = −i(a1)k,k (4.41)
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Similarly

ωΞ(∂) = − res
∞

(
Ξ−1Ξ′λekk⊗σ3

)
dλ = −2i(α1)k,k (4.42)

To conclude this section we prove that, when r = 1 the relation between the two Riemann–

Hilbert problems, and in particular equation (3.23), can be interpreted as a Miura transformation

between the two tau functions.

Proposition 4.2 Suppose r = 1 (but possibly p ≥ 1) and M(λ) := eisλσ3M0(λ)e−isλσ3 (i.e. a

special case of Prop. 4.1). Then the tau functions (Fredholm determinants) τΞ, τΓ are related

through the Miura transformation

(∂s ln τΞ − 2∂s ln τΓ)
2

= −∂2
s ln τΞ (4.43)

Equivalently we may simply write

(ωΞ(∂s)− 2ωΓ(∂s))
2

= −∂sωΞ(∂s) (4.44)

Proof of Prop. 4.2. The solution Ξ of Problem 3.1 is such that

∂s
(
Ξ(λ; s)eisλσ3

)
= U(λ; s)Ξ(λ; s)eisλs3 (4.45)

U(λ; s) := iλσ3 + 2β1(s)σ1 (4.46)

which can be easily proved by noticing that U has no jumps, hence it is entire, and then by looking

at the behavior at infinity using the expansion of Ξ. On the other hand then comparing the terms

in the expansion of the two sides of (4.45) one finds that

∂sα1 = −2iβ2
1 . (4.47)

Now, Corollary 4.1 (i.e. Prop. 4.1) yields

∂s ln τ
Ξ

= − res
λ=∞

Tr
(
Ξ−1Ξ′∂sT

)
dλ = −2iα1 (4.48)

∂s ln τ
Γ

= −1

2
res
λ=∞

Tr
(
Γ−1Γ′∂sT

)
dλ = −ia1 (4.49)

Rewriting (3.23) as 2β2
1 = (2ia1 − 2iα1)2 and using the equations (4.47), (4.48), (4.49) we obtain

the statement of the proposition. Q.E.D

Remark 4.1 Defining u := 2∂2
s ln τΓ and v2 := −∂2

s ln τΞ we obtain the usual formulation of the

Miura transformation

u = −v2 ± ∂sv.
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5 Applications: Fredholm determinants and noncommuta-
tive Painlevé II, XXXIV

We now consider the Fredholm determinant for the convolution operator on L2(R+,Cr) given by

(Ai~s f)(x):=

∫
R+

Ai(x+ y;~s)f(y)dy (5.1)

Ai(x;~s):=

∫
γ+

eθ(µ)Ceθ(µ)eixµ
dµ

2π
= [cjkAi(x+ sj + sk)]j,k (5.2)

θ :=
iµ3

6
1r +


is1µ

is2µ
. . .

isrµ

 =
iµ3

6
1 + isµ (5.3)

s := diag(s1, s2, . . . , sr) (5.4)

The matrix C is a constant r × r matrix and the contour γ+ is a contour contained in the upper

half plane and extending to infinity along the directions arg(z) = π
6 ,

5π
6 .

Here the matrices E1, E2 can be chosen as

E1(λ) = − 1

2iπ
eθ(λ)C, E2(λ) = eθ(λ) , r(λ) = − 1

2iπ
eθ(λ)Ceθ(λ) (5.5)

The first issue is whether the solutions of Problems 3.2, 3.1 exist for real values of the parameters

~s. We shall -in fact- show an existence theorem for Problem 3.1, which immediately implies existence

of the solution of Problem 3.2 by Proposition 3.2.

Theorem 5.1 Suppose C = C† is a Hermitean matrix; then the solution to Problem 3.1 with r as

in (5.5) exists for all values of ~s ∈ Rr if and only if the eigenvalues of C are all in the interval

[−1, 1]. If C is an arbitrary complex matrix with singular values in [0, 1] then the solution still exists

for all ~s ∈ Rr. (The singular values of a matrix are the square roots of the eigenvalues of C†C)

Proof of Thm. 5.1 The proof is based on the estimate of the operatorial norm of the operator

Ai~s (with parameter C ∈ Mat(r×r,C)); the invertibility of the operator Id+Ai~s will be guaranteed

if the norm of Ai~s is less than one.

On the other hand the invertibility is equivalent to the non-vanishing of the respective Fredholm

determinant; hence from Corollary 2.1 we have (in the present notation, with p = r)

det
(
IdR+

±Ai~s
)
L2(R+,Cr)

= det
(
Idγ+

±K
)
L2(γ+,Cp)

⇒ (5.6)

det
(
IdR+ −Ai2~s

)
L2(R+,Cr)

= det
(
Idγ+ −K2

)
L2(γ+,Cp)

(5.7)
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Thus, if ‖|Ai~s‖| < 1 then ‖|Ai2~s‖| < 1 and thus the Fredholm determinants on the line (5.7) do not

vanish. This is sufficient for the existence of the solution of Problem 3.1 as shown in Thm. 3.1.

Let us then estimate the norm ‖|Ai~s‖|; first of all note that L2(R+) ' L2([s,∞)) by simple

translation; with this in mind we can express the operator Ai~s as the operator Ai~0 but acting on

the space

H~s= L2([s1,∞))⊕ . . .⊕ L2([sr,∞)) (5.8)

Ai~0 :H~s → H~s (5.9)

(f1, . . . fr) 7→

(
r∑

k=1

Cjk

∫
R

Ai(x+ y)χ[sk,∞)fk(y)dy

)
j=1,...,r

(5.10)

Let P~s be the orthogonal projector

P~s : L2(R,Cr)→ H~s , P~s = diag(χ
[s1,∞)

, . . . , χ
[sr,∞)

) (5.11)

Then we have Ai~s ' P~sAi~0P~s. On the other hand it is evident that the operator Ai~0 : L2(R,Cr)→:

L2(R,Cr) is the tensor product Ai~0 = C⊗L where we have denote L the scalar convolution operator

with the Airy function on R+

L :L2(R)→ L2(R) (5.12)

Lf(x) :=

∫
R

Ai(x+ y)f(y)dy (5.13)

This operator squares to the identity (as it is easily seen in Fourier transform, but is also well known

[23]) and hence has unit norm (in fact it is a unitary operator, an easily verified fact in Fourier

transform). Therefore

‖|Ai~0‖| = ‖|C ⊗ L‖| = ‖|C‖|‖|L‖| = ‖|C‖| , (5.14)

and hence

‖|Ai~0‖| = ‖|P~sAi~0P~s‖| ≤ ‖|P~s‖| |||Ai~0||| |||P~s‖| < ‖|C‖| (5.15)

Since |||C||| is the maximal singular value the first part of the theorem is proved because |||C||| ≤ 1

implies that the norm of our operator is strictly less than one.

To prove necessity in the case C = C† Hermitean, suppose that C has an eigenvalue κ ∈
R \ [−1, 1] with eigenvector ~v0 (for Hermitean (and more generally normal) matrices the singular

values are simply the absolute values of the eigenvalues). We need to show that for some choice of ~s

the Fredholm determinant vanishes; we will accomplish this by finding a special value of ~s for which
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the square of Ai~s has an eigenvector and hence it is not invertible, thus implying the non-solubility

of Prob. 3.1. To this end we take ~s = (s, s, s, s . . . , s) and ~f(y) = ~v0ϕ(y) with ϕ(y) ∈ L2(R+). Then

(Ai2~s ~f)(x) = κ2~v0

∫
R+

KAi(x+ s, y + s)ϕ(y)dy (5.16)

where KAi is the well known Airy kernel

KAi(x, y) =
Ai(x)Ai′(y)−Ai′(x)Ai(y)

x− y
=

∫
R+

Ai(x+ z)Ai(z + y)dz (5.17)

It is well–known that KAi on L2([s,∞)) is self-adjoint and of trace-class. Let Λ(s) be the maximum

eigenvalue. This is a continuous function of s and tends to 1 as s→ −∞ (it clearly tends to zero as

s→ +∞) [23]. Let ϕs(y) be the corresponding eigenfunction and use now f(y) = ~v0ϕs(y). Then

(Ai2~s ~f)(x) = Λ(s)κ2 ~f(x) (5.18)

If κ2 > 1 there is a value of s0 ∈ R for which (Ai2~sf)(x) = f(x), thus proving that Id−Ai2~s cannot

be invertible for ~s = (s0, . . . , s0). This concludes the proof. Q.E.D

The reader may now wonder whether these kernels have a “physical” interpretation. The answer

is in the affirmative

Theorem 5.2 If C is real or Hermitean then the kernel Ai2~s is totally positive on the set {1, 2, . . . r}×
R.

Proof It is a general result that if (X,dµ) is a measure space then for any W ⊂ X we have

k! det

[∫
W

fa(ζ)gb(ζ)dµ(ζ)

]
a,b=1..k

=

∫
Wk

det[fa(ζc)] det[gb(ζd)]

k∏
j=1

dµ(ζj) (5.19)

In our case we take X = {1, . . . , r} × R with the counting measure times Lebesgue measure.

A function on X is then equivalently interpreted as a vector of usual functions: ξ = (j, x) ⇒
f(ξ) = f((j, x)) =: fj(x). With this understanding the kernel Ai2~s is understood as a scalar function

on X ×X to wit

Ai2~s(ξ1, ξ2) = (5.20)

= [Ai2~s]j1,j2(x1, x2) =

r∑
k=1

cj1kckj2

∫
R+

dzAi(x1 + z + sj1 + sk)Ai(x2 + z + sj2 + sk) = (5.21)

=

∫
X+

dµ(ξ)F (ξ1, ζ)F (ζ, ξ2) (5.22)
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where we have set

F (ξ1, ζ) := cj1,kAi(x1 + sj1 + z + sk) (5.23)

ζ = (k, z) ∈ X+ := {1, . . . , r} × R+ ⊂ X (5.24)

The statement of total positivity amounts to checking that for any K ∈ N and any ξ1, . . . , ξK ∈ X
we have

det
[
Ai2~s(ξa, ξb)

]
a,b≤K > 0 (5.25)

To this end we use the previous fact (5.19) and we have

det
[
Ai2~s(ξa, ξb)

]
1≤a,b≤K = det

[∫
X+

dµ(ξ)F (ξa, ζ)F (ζ, ξb)

]
a,b

= (5.26)

=
1

K!

∫
XK+

det [F (ξa, ζc)] det [F (ζc, ξa)]

K∏
c=1

dµ(ζc) =
1

K!

∫
XK+

|det [F (ξa, ζc)]|2
K∏
c=1

dµ(ζc) > 0 (5.27)

where the modulus occurs if C is complex Hermitean (in which case F (ξ, ζ) = F (ζ, ξ)), while if C

is any real matrix then we have a simple square (which is anyway positive). Q.E.D

Theorem 5.2 allows us to interpret the kernel Ai2~s as defining a determinantal point process

on the space of configurations X = {1, . . . , r} × R [22]. The Fredholm determinant is then a

multi-level gap distribution for said process on the interval [S,∞) (after a translation x 7→ x− S).

5.1 Noncommutative Painlevé II and its pole-free solutions

We consider first Problem 3.1 for Ξ; the jump is written (r defined in 5.5)

Ξ+ = Ξ− (12r − 2iπr(λ)⊗σ+) , λ ∈ γ+ (5.28)

Ξ+ = Ξ− (12r − 2iπr(−λ)⊗σ−) , λ ∈ γ− (5.29)

The matrix Ψ(λ) := Ξ(λ)eθ(λ)⊗σ3 , with θ(λ) as in (5.3), solves a RHP with constant jumps

Ψ+= Ψ− (12r + C⊗σ+) , λ ∈ γ+

Ψ+= Ψ− (12r + C⊗σ−) , λ ∈ γ−
Ψ(λ)=

(
12r +O(λ−1)

)
eθ(λ)⊗σ3 , λ→∞ (5.30)

It would be simple to show that Ψ(λ) solves a polynomial ODE in λ (of degree 2, see Lemma 5.1),

which eventually would lead to showing that β1(~s) solves a noncommutative version of the Painlevé

II equation (whence the title of the section). In this perspective, the above jumps are a particular

choice of Stokes’ multipliers associated to such an ODE, exactly as in the scalar commutative Lax

representation of PII [13]. We thus describe in the next section below, ex ante, the most general

set of generalized monodromy data for the ODE (5.46).
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5.1.1 The general Stokes’ data/Riemann–Hilbert problem for Ψ

Denote by ∆ ⊂ Cr the set of diagonals

∆ := {~s ∈ Cr : sj = s`, j 6= `} . (5.31)

Let ~s(0) ∈ Cr \∆ and choose a ray γR := R+e−ϕR in such a way that =z(s(0)
k − s

(0)
` ) 6= 0 for z ∈ γR.

Let γL := −γR. We introduce the ordering k ≺ ` as follows

k ≺ ` ⇔ =(eiϑR(s
(0)
k − s

(0)
` )) < 0 (5.32)

For a fixed γR this ordering is constant in a suitable open conical neighborhood of ~s(0) not

intersecting the diagonals ∆ (as should be clear by a simple continuity argument): we shall under-

stand such choice of neighborhood and keep the chosen ordering fixed. We shall say that a matrix

N is upper(lower)-triangular relative to the ordering (5.32) if Nk` = 0 for k ≺ ` (` ≺ k,

respectively) and Nkk = 0.

Example 5.1 If s1 < s2 < . . . sr are real and ordered, then the notion of upper(lower) triangularity

relative to any ray arg z = (−π, 0) is the usual one.

We define the six additional contours

γj := R+e
ikπ
3 +π

6 , k = 0, . . . , 5 (5.33)

Let C0, . . . C2 three arbitrary r × r matrices, Su = 1r + Nu, Sl = 1r + Nl with Nu, Nl two

upper/lower triangular matrices relative to the ordering (5.32) determined by the choice of γR, and

let M = diag(µ1, . . . , µr) ∈ SL(r,C) (traceless). The entries of M will be referred to as exponents

of formal monodromy.

Problem 5.1 Let Ψ(λ) be a sectionally analytic function on C \γ0 ∪ . . . γ5 ∪γL ∪γR, bounded over

compact sets of C and solving the following Riemann–Hilbert problem

Ψ+= Ψ−(12r + C0⊗σ+) , λ ∈ γ0 , Ψ+ = Ψ−(12r + C1⊗σ−) , λ ∈ γ1 (5.34)

Ψ+= Ψ−(12r + C2⊗σ+) , λ ∈ γ2 , Ψ+ = Ψ−(12r + C0⊗σ−) , λ ∈ γ3 (5.35)

Ψ+= Ψ−(12r + C1⊗σ+) , λ ∈ γ4 , Ψ+ = Ψ−(12r + C2⊗σ−) , λ ∈ γ5 (5.36)

Ψ+= Ψ− [(1r + Su)⊕ (1r + Sl)] , λ ∈ γR (5.37)

Ψ+= Ψ− [(1r + Sl)⊕ (1r + Su)] , λ ∈ γL (5.38)

Ψ+= Ψ−e−iπM⊗12 , λ ∈ R± (5.39)

Ψ(λ)=
(
12r +O(λ−1)

)
e−iεπM⊗12λM⊗12eθ(λ)⊗σ3 , λ→∞ (5.40)
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where in (5.40) ε = 1 in the upper half-plane, ε = 0 in the lower half-plane and arg(λ) ∈ [−π, π).

The matrices C0, . . . , Cr, Su, Sl,M are chosen satisfy the no-monodromy condition stating that

the product of the jumps is the identity. (We choose γR 6= R± and all the rays are oriented towards

infinity).

Since the rays γL, γR may lie in between different γj ’s depending on the value of ~s the no-monodromy

condition may take different forms. For example, if ~s ∈ Rr \∆ we can choose arg(γR) = π
2 + ε and

the no-monodromy condition takes the form[
1 + Su 0

0 1 + Sl

]
(12r + C0⊗σ+)(12r + C2⊗σ−)(12r + C1⊗σ+)e−iπM ×

×
[

1 + Sl 0
0 1 + Su

]
(12r + C0⊗σ−)(12r + C2⊗σ+)(12r + C1⊗σ−)e−iπM = 12r (5.41)

Remark 5.1 The problem associated to the Fredholm determinant of the operator as in Thm. 5.1

corresponds to the particular choice Su = Sl = C1 = M = 0 and C0 = C = −C2.

Note that the jumps satisfy the symmetry M(−λ) = σ̂1M(λ)σ̂1 and hence we also have (noticing

that θ(−λ)⊗σ3 = σ̂1θ(λ)⊗σ3σ̂1 since θ(−λ) = −θ(λ) as per (5.3))

Ψ(−λ) = σ̂1Ψ(λ)σ̂1 (5.42)

The dimension of the manifold (C0, C1, C2, Su, Sl,M) of solutions of (5.41) can be computed by

noticing that there are a total of 3r2 + 2 r(r−1)
2 + r − 1 = 4r2 − 1 variables. The equation (5.41) is

of the form Aσ̂1Aσ̂1 = 12r and hence –due to the symmetry of conjugation by σ̂1– there are only

2r2 independent equations. Of these, one is redundant since the determinant of A is already unit.

Hence there are 2r2 − 1 independent equations and thus the manifold of solutions has dimension

2r2.

Lemma 5.1 Let the matrix Ψ(λ) be the solution of the Problem 5.1 and denote the asymptotic

expansion at ∞ as

Ψ(λ)eiεπM⊗12λ−M⊗12e−θ(λ)⊗σ3 = 12r +

∞∑
j=1

Ξj
λj

,

Ξ2j+1 = α2j+1⊗σ3 + β2j+1σ2 , Ξ2j = α2j⊗1 + β2jσ1 , (5.43)

(recall that ε = 1 for =λ > 0 and ε = 0 for =λ < 0) where the expansion is valid sectorially and

independent of the sector. Then

∂sjΨ= UjΨ , Uj = iλ ej⊗s3 + i[α1, ej ]⊗1 + {β1, ej}⊗σ1 (5.44)

∂λΨ= A(λ)Ψ , A(λ) =
λ

2

r∑
j=1

Uj −
1

2
D (α1⊗σ3 + β1⊗σ2) + is⊗σ3 = (5.45)

A(λ) = i
λ2

2
σ̂3 + λβ1⊗σ1 −

1

2
Dβ1⊗σ2 + i(β2

1 + s)⊗σ3 (5.46)
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where

D :=

r∑
j=1

∂sj , ej := diag(0, 0, . . . , 1, 0, . . .) (5.47)

with the one in the j-th position.

Proof The fact that the expansion for (recall that arg(λ) ∈ [−π, π))

Ξ(λ) :=

 Ψ(λ)eiπMλ−M⊗12e−θ(λ)⊗σ3 =λ > 0 , |λ| > 1
Ψ(λ)λ−M⊗12e−θ(λ)⊗σ3 =λ < 0 , |λ| > 1

Ψ(λ) |λ| < 1
(5.48)

near λ = ∞ is of the form in (5.43) follows from the symmetry Ψ(−λ) = σ̂1Ψ(λ)σ̂1 which then

implies the same symmetry for Ξ. The function Ξ has then no jumps on R± \ {|λ| < 1} and the

remaining jumps are those of Ψ conjugated by e−iεMλM⊗12eθ(λ)⊗σ3 . The fact that the expansion

is independent of the sector is a consequence of the fact that the jumps for Ξ along the eight rays

are analytic in a small open sector around said rays and of the form

Ξ+(λ) = Ξ−(λ)(1 +O(λ−∞)) , λ→∞, λ ∈ γ0 ∪ . . . γ5 ∪ γL ∪ γR (5.49)

uniformly within said sectors. The fact that Uj and A are polynomials is an immediate consequence

of the fact that the jumps of Ψ are independent of λ,~s. Using Liouville’s theorem and the fact

that ∂sjΨΨ−1 is entire (a simple consequence of the independence on sj of the jumps) we deduce

immediately that Uj(z) can only be a polynomial of degree 1. Then

∂jΞ(λ) + iλΞ(λ)ej⊗σ3 =
(
U

(1)
j λ+ U

(0)
j

)
Ξ(λ)

∂j(α1⊗σ3 + β1⊗σ2)

λ
+ . . .+ iλ

(
1 +

α1⊗σ3 + β1⊗��σ1σ2

λ
+
α2⊗1 + β2⊗σ1

λ2
+ . . .

)
ej⊗σ3 =

=
(
U

(1)
j λ+ U

(0)
j

)(
1 +

α1⊗σ3 + β1⊗��σ1σ2

λ
+
α2⊗1 + β2⊗σ1

λ2
+ . . .

)
(5.50)

Comparing the coefficients of the powers of λ we have

λ : ⇒ U
(1)
j = iej⊗σ3 (5.51)

λ0 : ⇒ i [α1⊗σ3 + β1⊗σ2, ej⊗σ3] = U
(0)
j (5.52)

λ−1 : ⇒ ∂sj (α1⊗σ3 + β1⊗��σ3σ2) = −i [α2⊗1 + β2⊗σ1, ej⊗σ3] + U
(0)
j (α1⊗σ3 + β1⊗��σ1σ2)

∂sj (α1⊗σ3 + β1⊗��σ3σ2) = −i [α2⊗1 + β2⊗σ1, ej⊗σ3] + U
(0)
j (α1⊗σ3 + β1⊗σ2) (5.53)

If we sum up for j = 1, . . . , r we obtain the differential equation

D (α1⊗σ3 + β1⊗σ2)= −i [α2⊗1 + β2⊗σ1,1⊗σ3] + i [α1⊗σ3 + β1⊗σ2,1⊗σ3] (α1⊗σ3 + β1⊗σ2) =

= 2β2⊗σ2+2β1⊗σ1 (α1⊗σ3 + β1⊗σ2) = 2β2⊗σ2 + 2iβ1α1⊗σ2 − 2iβ2
1⊗σ3 (5.54)
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In particular

Dα1 = −2iβ2
1 . (5.55)

If we look also at the λ−2 coefficient we find

Dβ1 = 2β2+2iβ1α1 , β2 =
1

2
Dβ1 − iβ1α1. (5.56)

Exactly as before we argue that A(z) is a polynomial of degree 2. Then we compute

∂λΞ(λ) + Ξ(λ)

(
i
λ2

2
1r + is

)
⊗σ3 =

(
A2λ

2 +A1λ+A0

)
Ξ(λ) (5.57)

. . .+

(
1 +

α1⊗σ3 + β1⊗σ2

λ
+
α2⊗1 + β2⊗σ1

λ2
+ . . .

)(
i
λ2

2
1r + is

)
⊗σ3 = (5.58)

=
(
A2z

2 +A1z +A0

)(
1 +

α1⊗σ3 + β1⊗σ2

z
+
α2⊗1 + β2⊗σ1

z2
+ . . .

)
(5.59)

Collecting the coefficients

λ2 : ⇒ A2 =
i

2
λ21⊗σ3 (5.60)

λ1 : ⇒ A1 =
i

2
[α1⊗σ3 + β1⊗σ2,1⊗σ3] (5.61)

λ0 : ⇒ A0 = is⊗σ3 +
i

2
[α2⊗1 + β2⊗σ1,1⊗σ3]−A1 (α1⊗σ3 + β1⊗σ2) = (5.62)

A0 = is⊗σ3 −
1

2
D (α1⊗σ3 + β1⊗σ2) (5.63)

where we have used formula (5.54). The second expression for A(λ) (5.46) follows from (5.55). The

rest of the proof is a simple computation. Q.E.D

Lemma 5.2 Let Ψ be as in Lemma 5.1 and denote by β1 = β1(~s) the r × r coefficient matrix

in Ξ1 = α1⊗σ3 + β1⊗σ2 of the expansion as in the mentioned Lemma. Then the matrix function

β1(~s) ∈Mat(r × r,C) satisfies the noncommutative Painlevé II equation.

D2β1 = 4{s, β1}+ 8β3
1 , s := diag(s1, . . . , sr) , D :=

r∑
j=1

∂

∂sj
, {X,Y } = XY + Y X (5.64)

Proof. We use the zero curvature equations

DΨ =

r∑
j=1

UjΨ =: UDΨ , ∂λΨ = AΨ (5.65)

(∂λUD + UDA−DA−AUD) ≡ 0 (5.66)
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with the Uj ’s introduced in Lemma 5.1. We have

UD = iλ1⊗σ3 + 2β1⊗σ1 , A =
λ

2
UD −

1

2
D (α1⊗σ3 + β1⊗σ2) + is⊗σ3 (5.67)

A =
i

2
λ21⊗σ3 + λβ1⊗σ1 −

1

2
D (α1⊗σ3 + β1⊗σ2) + is⊗σ3 (5.68)

We now compute this expression (for simplicity we denote with a prime the action of D, noting

that Ds = 1r)

∂λUD= i1⊗σ3 (5.69)

DA= λβ′1⊗σ1 −
1

2
(α′′1⊗σ3 + β′′1 ⊗σ2) + i1⊗σ3 (5.70)

[UD, A]=

[
iλ1⊗σ3 + 2β1⊗σ1,−

1

2
(α′1⊗σ3 + β′1⊗σ2) + is⊗σ3

]
= (5.71)

= λβ′1⊗σ1 − 2iβ1α
′
1⊗σ2 + i{β1, β

′
1}⊗σ3 − 2{β1, s}⊗σ2 (5.72)

Hence

0 ≡∂λUD −DA+ [UD, A] = (5.73)

=
1

2
α′′1⊗σ3 +

1

2
β′′1 ⊗σ2 − 2iβ1α

′
1⊗σ2 + i{β1, β

′
1}⊗σ3 − 2{β1, s}⊗σ2 (5.74)

Using now (5.55) we have α′′1 = −2i{β1, β
′
1} and hence we are left only with(

1

2
β′′1 − 4β3

1 − 2{β1, s}
)
⊗σ2 ≡ 0 (5.75)

Q.E.D

Thus Lemma 5.1 and the matrices (5.65) provide a Lax matrix representation for the general

solution of the noncommutative Painlevé equation (5.88) which is parametrized by the 2r2 initial

values β1(~s) and Dβ1(~s) at any point ~s.

It should also be clear that any solution β1 of the noncommutative Painlevé II equation (5.88)

yields a compatible Lax pair A(λ;~s) (5.46) and UD(λ;~s) (5.65); the Stokes’ phenomenon (generalized

monodromy data) for the ODE ∂λΨ = AΨ can be seen to be given exactly by the data specified

in Problem 5.1 (we refer to [25] for the general theory of Stokes’ multipliers). Thus any solution of

(5.88) is obtained via the above Lax-pair.

Remark 5.2 The generic solution of β1(~s) of the noncommutative PII equation will have non-

movable singularities on the diagonals ~s ∈ ∆; this is due to the presence –in general– of nontrivial

Stokes multipliers along the rays γR, γL. If those multiplier are trivial as well as the exponents of
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formal monodromy i.e. M = 0, Su = 0 = Sl then those singularities will be absent. In this case the

no-monodromy condition (5.41) can be spelt out more clearly as

[C0, C1] = 0 , [C1, C2] = 0, [C0, C2] = 0 (5.76)

C0 + C2 + C1 + C0C1C2 = 0 (5.77)

which yields a manifold of dimension r2 + r (the matrices can be generically diagonalized simulta-

neously and a simple counting yields this number). The condition (5.77) resembles very closely the

ordinary situation r = 1 of the commutative Lax representation for PII [11]12.

The importance of the isomonodromic representation for the noncommutative Painlevé II equa-

tion is that it implies automatically the Painlevé property [19] that the only singularities of the

solution are poles except -possibly- the singularities on the diagonal manifold ~s ∈ ∆ if the Stokes’

matrices Su, Sl are nonzero.

Remark 5.3 Another important remark is that the solution β1(~s) as a function of the barycentric

variables

S :=
1

r

r∑
j=1

sj , δj = sj − S (5.78)

has only poles as a function of S (note that D = ∂S) if ~s 6∈ ∆; this is so because changing S does

not change the differences between the sj’s and hence never crosses the diagonal manifold.

Remark 5.4 To our knowledge, the noncommutative Painlevé equation (5.64) has appeared first

in the recent [20] where the authors construct special rational solution using the theory of quasi-

determinants [8]. Previously, a version with scalar independent variable (hence replacing the anti-

commutator by simply sβ1) was studied in [1], where the Painlevé test was applied. It seems that

the Lax representation for the noncommutative version of [20] appears in the present manuscript

for the first time. It seems possible to generalize the Lax-pair representation by allowing a pole at

λ = 0 in the Lax matrix A(λ) (exactly as in the scalar case). For example the compatibility of the

following two Lax matrices

A(λ)=
iλ2

2
σ̂3 + λβ1⊗σ1 + i

(
s + β2

1

)
⊗σ3 −

1

2
β′1⊗σ2 +

1

λ
Θσ̂1 , UD = iλσ̂3 + 2β1⊗σ1 (5.79)

[∂λ −A(λ),D− UD(λ)] = 0 (5.80)

12Their matrix Ψ(λ) has the symmetry Ψ(−λ) = σ2Ψ(λ)σ2, which means that it should be compared with ours

after conjugation by ei
π
4
σ3 .
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with Θ an arbitrary scalar (i.e. commutative symbol). The zero-curvature equations are easily

verified to yield

D2β1 = 4{s, β1}+ 8β3
1 − 4Θ (5.81)

which is precisely (with different symbols) the Painlevé II equation studied in [20]. From the isomon-

odromic method, however, the above equation appears to be not the most general that one may obtain

by allowing a pole in A(λ). We do now dwell further into the matter since it is peripheral to the

focus of the present paper.

The compatibility equations for the operators ∂sj − Uj , ∂sk − Uk and ∂λ − A yield additional

equation listed in the Corollary below, which is proved along the same lines (but we will not report

the proof here since it is unnecessarily long, straightforward and anyway this has no bearing for our

goals)

Corollary 5.1 The matrices β1, α1 satisfy the systems (∂j = ∂sj , D =
∑
∂j, j = 1, . . . , r)

∂jβ1 =
1

2
{ej ,Dβ1} − i{ej , β1a1}+ iej [α1, β1] + iα1ejβ1 + iβ1ejα1 (5.82)

1

2
∂jDβ1 =i(∂jβ1)α1 + {{β1, ej}, s} −

i

2
[ej , α1]Dβ1 +

[
[α1, ej ], β1

]
α1 +

+β1{ejβ1}β1 −
i

2
{Dβ1α1, ej}+ {ej , β3

1} (5.83)

1− ej + i

[
s, [α1, ej ]

]
+

1

2

[
[β1,Dβ1], ej

]
= 0 (5.84)

{ej , ∂kβ1} − {ek, ∂jβ1} =i[β1ek, α1ej ] + i[ejβ1, ekα1] + iek[β1, α1]ej +

+iej [α1, β1]ek + i[α1ek, β1ej ] + i[ejα1, ekβ1] , (5.85)

i[ek, ∂jα1]− i[ej , ∂kα1] =ekα
2
1ej − ejα

2
1ek + ekβ

2
1ej − ejβ

2
1ek +

+[ekβ1, ejβ1] + [β1ek, β1ej ] + [ejα1, ekα1] + [α1ej , α1ek] . (5.86)

5.2 Pole-free solutions of noncommutative Painlevé II and Fredholm de-
terminants

We now return to the specific situation of the RHP associated to the integrable kernel Ai2~s; this is

the special case of the setting as explained in Remark 5.1.
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Theorem 5.3 Let Ξ = Ξ(λ;~s) be the solution of Problem 3.1 with r as in (5.5); let

β1(~s) := −i lim
λ→∞

λΞ12(λ;~s) (5.87)

where Ξij denote the r × r blocks of Ξ, i, j = 1, 2. The matrix function β1(~s) ∈ Mat(r × r,C)

satisfies the noncommutative Painlevé II equation.

D2β1 = 4sβ1 + 4β1s + 8β3
1 , s := diag(s1, . . . , sr) , D :=

r∑
j=1

∂

∂sj
(5.88)

The asymptotic behavior of the particular solution associated to the Problem 3.1 is as follows: if

S := 1
r

∑r
j=1 sj → +∞ and δj := sj − S, j = 1, . . . , r are kept fixed, |δj | ≤ m, then

[β1]k` = −ck`Ai(sk + s`) +O
(√

Se−
4
3 (2S−2m)

3
2

)
(5.89)

If C is Hermitean then so is the solution β1(~s) of the noncommutative Painlevé equation (5.88) and

it is pole-free for all ~s ∈ Rr if and only if the eigenvalues of C are within [−1, 1]. If C is arbitrary

and its singular values lie in [0, 1] then the solution is also pole free for ~s ∈ Rr.
Finally, the Fredholm determinant τ(~s) := det

(
Id−Ai~s2

)
satisfies

det
(
Id−Ai~s2

)
= exp

(
−4

∫ ∞
S

(t− S) Tr(β2
1(t+ ~δ))dt

)
(5.90)

where t+ ~δ := (t+ δ1, . . . , t+ δr).

The last statement is the noncommutative (matrix) equivalent of the celebrated Tracy–Widom

distribution [23]. Before giving the proof of Thm. 5.3 we prove the uniqueness of the solution.

Proposition 5.1 For any r× r matrix C there is a unique solution of noncommutative PII (5.88)

with the asymptotics (5.89).

Proof of Prop. 5.1. The proof does not differ significantly from the scalar case as in [10]. In

barycentric and relative coordinates S, δj as in Thm. 5.3 we have D = ∂S . The regime we consider

is S → +∞ and all δj bounded below. We note that the function

[U(~s)]k` := −ck`Ai(sk + s`) = −ck`Ai(2S + δk + δ`) (5.91)

is a solution of the linear part of (5.88):

D2Uk` = −4ck`Ai′′(sk + s`) = −4ck,`(sk + s`)Ai(sk + s`) = 4(skUk` + Uk`s`). (5.92)
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Then any solution (β1)k` with the specified asymptotic also solves the integral equation13

[β1]k` = Uk` + 4π

∫ ∞
S

(Ai(2S+δk+δ`)Bi(2t+δk+δ`)−Ai(2t+δk+δ`)Bi(2S+δk+δ`)) [(β1)3]k`dt(5.93)

Equation (5.93) can be solved by iterations for S sufficiently large, as noted in [10] for the scalar

case.

The local uniqueness follows from the local uniqueness of the solution of the ODE (5.88) (in S).

The solution is easily seen to be locally analytic in ~s because of the analyticity of the ODE and also

from the integral equation. We also point out that since the generalized monodromy data associated

to this solution have Su = Sl = 0 = M (see Problem 5.1) then there are no critical singularities at

all in ~s and we may only have poles at most (the Fredholm determinant is analytic in ~s, hence can

only have zeroes). Thus the solution is globally defined for ~s ∈ R by analytic continuation. Q.E.D

Remark 5.5 Because of (5.89) and Prop. 5.1 we may call the special solution of noncommutative

PII arising above the noncommutative Hastings-McLeod solution(s).

Proof of Thm. 5.3. The fact that β1 solves the noncommutative PII equation (5.88) follows from

Lemma 5.2 since this is a special case of that with Su = Sl = C1 = M = 0 and C = C0 = −C2.

Asymptotics. Suppose that S = 1
r

∑
sj is large and positive and δj := sj − S are bounded by

-let’s say- m. We rewrite the RHP in the scaled variable z := λ√
S

. The jump on the contours γ±

of the form 1− 2iπr⊗σ+,1− 2πr̃⊗σ− can be factored into (commuting) matrices (here below ek` is

the elementary matrix)

1− 2iπr⊗σ+ =

r∏
k,`=1

(
1 + ck`e

iS
3
2

(
1
3 z

3+(2+
δk+δ`
S )z

)
ek,`⊗σ+

)
(5.94)

1− 2iπr⊗σ− =

r∏
k,`=1

(
1 + ck`e

−iS
3
2

(
1
3 z

3+(2+
δk+δ`
S )z

)
ek,`⊗σ−

)
(5.95)

Each factor has a saddle point at z = ±i
√

2 + δk+δ`
S and the contours γ± supporting the single

jump can be split according to the factorization (5.94) so that each of the factor is supported on a

different contour γ
(k,`)
± of steepest descent for the corresponding phases. Proceeding this way the

reader realizes that each factor

M
(k,`)
± (

√
Sz) = 1 + ck`e

±iS
3
2

(
1
3 z

3+
(

2+
δk+δ`
S

)
z
)
ek,`⊗σ± , z ∈ γ(k,`)

± (5.96)

is close to the identity jump in any Lp(γ
(k,`)
± ), 1 ≤ p ≤ ∞ with the supremum norm given by

‖1−M (k,`)‖∞ = |ck`|e−
2
3 (2S+δk+δ`)

3
2 → 0 . (5.97)

13We recall that Bi is the solution of f ′′ = xf such that Wr(Ai,Bi) = π−1.
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This shows that the RH problem may be solved by iterations; the first iteration for Ξ yields

Ξ(
√
Sz)= 1−

∫
γ+

r(
√
Sw)⊗σ+dw

(w − z)
−
∫
γ−

r̃(
√
Sw)⊗σ−dw

(w − z)
+O

(
e−

4
3 (2S−2m)

3
2

1 + |z|

)
= (5.98)

= 1− i

λ
[ck`Ai(sk + s`)]⊗σ+ +

i

λ
[ck`Ai(sk + s`)]⊗σ− +O

(√
Se−

4
3 (2S−2m)

3
2

√
S + |λ|

)
(5.99)

where the notation [Ak`] stands for a matrix with entries Ak`. This yields

[β1]k` = −i lim
λ→∞

λΞ12(λ) = −ck`Ai(sk + s`) +O
(√

Se−
4
3 (2S−2m)

3
2

)
(5.100)

Poles. It follows from Thm. 5.1 that under the stated conditions β1 exists and finite for all ~s = Rr

and hence cannot have poles.

Symmetry. If C = C† then (for ~s ∈ Rr) rT (λ) = −r(−λ) (see (5.5)) and the jump matrices M(λ)

then satisfy

M†(λ) = σ̂3M
−1(−λ)σ̂3 , M(λ) = 12r + eθ(λ)Ceθ(λ)⊗

(
σ+χγ+

(λ) + σ−χγ− (λ)
)
. (5.101)

The contours of jump satisfy (also) γ+ = γ−. Then Ξ−†(λ) := Ξ−T (λ) = σ̂3Ξ(λ)σ̂3. This implies

(σ3σ2σ3 = −σ2)

Ξ(λ) = 1 +
α1⊗σ3 + β1⊗σ2

λ
+ . . . ⇒ Ξ−1(λ) = 1− α1⊗σ3 + β1⊗σ2

λ
+ . . . (5.102)

Ξ−†(λ) = 1− α†1⊗σ3 + β†1⊗σ2

λ
+ . . . ⇒ σ̂3Ξ−†(λ)σ̂3 = 1 +

−α†1⊗σ3 + β†1⊗σ2

λ
+ . . . (5.103)

which shows immediately β1 = β†1 (as well as α1 = −α†1).

Formula for the determinant. From Corollary (4.1) we deduce that D ln det(Id − Ai2~s) =

−2iTrα1 and together with eq. (5.55) we have

D2 ln det(Id−Ai2~s) = −4 Tr(β2
1) (5.104)

from which the formula follows immediately by integration as in the usual Tracy–Widom distribu-

tion. Q.E.D

5.3 Noncommutative PXXXIV

Similarly we can prove
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Theorem 5.4 Let a1, a2 be the coefficient matrices in the expansion of the solution Γ of Problem

3.2 as in formula (3.15) and define Φ(λ) := Γ(λ)eθ(λ)⊗σ3 . Then

∂sjΦ= VjΦ , ∂λΦ = BΦ (5.105)

Vj := λ2ej⊗σ− + i[a1, ej ]⊗1− 2{b2, ej}⊗σ− − ej⊗σ+ . (5.106)

B(λ)=

[
0 −λ2

λ3

2 +λ
(
s− i

2a
′
1

)
0

]
+

1

λ

[
i[a1, s]− i

4a
′′
1 −s− i

2a
′
1

2ia1+2[a2, s]+2[s, a1]a1− 1
2 (a′1)2 1+i[a1, s]+ i

4a
′′
1

]
(5.107)

Denoting by D =
∑r
j=1 ∂sj , so that Ds = 1, we have

DΦ = VDΦ , VD = λ21⊗σ− − 2iDa1⊗σ− − 1⊗σ+ =

[
0 −1

λ2 − 2iDa1 0

]
(5.108)

The matrices a1, a2 satisfy the equations (prime denotes action of D)

a′′′1 = 8i[a1, s]a1 + 8a1 + 8i[s, a2] + 6i(a′1)2 + 4{a′1, s} (5.109)

a′2 = a′1a1 (5.110)

Remark 5.6 Differentiating (5.109) and using (5.110) one obtains an ODE for the matrix a1

aiv1 = 6i{a′′1 , a′1}+ 8ia′1[s, a1] + 8i[a1, sa
′
1] + 8is[a′1, a1] + 4{s, a′′1}+ 16a′1 (5.111)

Remark 5.7 If r = 1, then we are in the commutative setting and s = s is just a scalar. Then the

term involving a2 in (5.109) drops out and we obtain (′ = ∂s)

a′′′1 = 8a1 + 6i(a′1)2 + 8s a′1 (5.112)

If we take the equation (5.112) and we differentiate once we obtain, for a′1, the equation (1.19)

(up to rescaling). For this reason we will call the system (5.109, 5.110) the noncommutative

Painlevé XXXIV equation.

Corollary 5.2 Denoting by F
(nc)
1 (~s) the Fredholm determinant of the operator Id + Ai(•;~s) on

L2(R+,Cr) we have

∂sjF
(nc)
1 (~s) = i(a1)jj (5.113)

and a1 is a solution of the noncommutative PXXXIV equation (5.109, 5.110). In particular

DF
(nc)
1 (~s) = iTr a1. (5.114)
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Proof of Cor. 5.2. The Fredholm determinant equals the determinant of Id + K as explained

already in the proof of Thm. 5.1. Then the formulas above follow simply from Thm. 4.2 and

Corollary 4.1. Q.E.D

Before concluding the paper with the proof of Thm. 5.4 we point out that –in a sense– all the

relevant information is already contained in Thm. 5.3 because of the matrix Miura relation

a1(~s)
Prop. 3.2

= α1(~s)− iβ1(~s)
eq. (5.55)

= −2i

∫ ∞
S

β2
1(t+ δ1, . . . , t+ δr)dt− iβ1(~s) (5.115)

where ~s = (S + δ1, . . . S + δr) and β1 is the noncommutative Hastings–McLeod family of solutions

(depending on C) in Theorem 5.3. This immediately yields the

Corollary 5.3 The Fredholm determinant of the matrix Airy convolution kernel Ai~s satisfies

det (Id+Ai~s) = exp

[∫ ∞
S

Tr
(
β1(t+ δ1, . . . , t+ δr) + 2(t− S)β2

1(t+ δ1, . . . , t+ δr)
)

dt

]
(5.116)

where β1(~s) is the Hastings-McLeod family of solutions to noncommutative Painlevé II as in Thm.

5.3.

Proof of Thm. 5.4. Recall that L = 1⊗L and

Lσ3L
−1 =

i

λ
σ+ − iλσ− , Lσ2L

−1 =
1

λ
σ+ + λσ− , Lσ1L

−1 = σ3 (5.117)

∂jΓ(λ) + iλΓ(λ)ej⊗σ3 =
(
V

(2)
j λ2 + V

(1)
j λ+ V

(0)
j

)
Ξ(λ)

L(λ)
∂j(a1⊗σ3)

λ
+ . . .+ iλL(λ)

(
1 +

a1⊗σ3 + b1⊗σ1

λ
+
α2⊗1 + b2⊗σ1

λ2
+ . . .

)
ej⊗σ3 =

=
(
V

(2)
j λ2 + V

(1)
j λ+ V

(0)
j

)
L

(
1 +

a1⊗σ3

λ
+
a2⊗1 + b2⊗σ1

λ2
+ . . .

)
(5.118)

− i∂ja1⊗σ− +
i

λ2
∂ja1⊗σ+ +

a2⊗1 + b2⊗σ3

λ2
+ . . .+ (5.119)

+iλ

(
1− ia1⊗σ− +

i

λ2
a1⊗σ+ +

a2⊗1 + b2⊗σ3

λ2
+ . . .

)
ej⊗

(
i

λ
σ+ − iλσ−

)
=(

V
(2)
j λ2 + V

(1)
j λ+ V

(0)
j

)(
1− ia1⊗σ− +

i

λ2
a1⊗σ+ +

a2⊗1 + b2⊗σ3

λ2
+ . . .

)
(5.120)

= λ2(1− ia1⊗σ−)ej⊗σ− + (ia1⊗σ+ + a2⊗1 + b2⊗σ3) ej⊗σ− − (1− ia1⊗σ−)ej⊗σ+ =

= λ2V
(2)
j (1− ia1⊗σ−) + V

(2)
j (ia1⊗σ+ + a2⊗1 + b2⊗σ3) + V

(0)
j (1− ia1⊗σ−) (5.121)
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We thus have

V
(2)
j (1− ia1⊗σ−) = (1− ia1⊗σ−)ej⊗σ− ⇒ V

(2)
j = ej⊗σ− (5.122)

V
(0)
j = i[a1, ej ]⊗1 +

(
[a2, ej ]− {b2, ej} − [a1, ej ]a1 − i∂ja1

)
⊗σ− − ej⊗σ+ (5.123)

Looking at the λ−1 coefficient one finds the following identity

− i∂ja1 = [ej , a2] + [a1, ej ]a1 − {ej , b2} (5.124)

which allows us to rewrite

V
(0)
j = i[a1, ej ]⊗1− 2{b2, ej}⊗σ− − ej⊗σ+ (5.125)

Summing up (5.124) for j = 1, . . . r we also have

Da1 = −2ib2 . (5.126)

We will need also more information from (5.118) by looking at the coefficients of the negative powers

of λ in particular we will need this for VD :=
∑r
j=1. To do so it is convenient to multiply (5.118)

on the left by L−1. Below we list the results of lengthy but completely straightforward inspections.

We list the entry of the coefficient of λj in the form [λj ]k,`.

[λ−1]1,2 b2 =
i

2
a′1

[λ−2]1,2 b3 = −1

2
a′1a1 −

i

4
a′′1

[λ−2]1,1 a′2 =
1

2
a′1a1 − ib2a1 = a′1a1

[λ−3]1,2 b4 = i
4a
′
1b2 + 1

2b
2
2 + i

4a
′
1a2 + 1

2b
′
3 + 1

2b2a2 = − 1
2 (a′1)2 + i

2a
′
1a2 − 1

4a
′′
1a1 − i

8a
′′′
1

(5.127)

A similar and completely straightforward computation (involving longer algebra) yields

B(λ)=

[
0 −λ2

λ3

2 + λ (s− b2) 0

]
+

+
1

λ

[
b3 − ib2a1 + i[a1, s] −s− b2

ia1 − b4 − {s, b2} − ib3a1 + [a2, s] + [s, a1]a1 + b2(b2 − a2
1 + a2) i[a1, s] + ib2a1 − b3 + 1

]
The expression can be simplified using (5.127) to give

B(λ)=

[
0 −λ2

λ3

2 + λ
(
s− i

2a
′
1

)
0

]
+ (5.128)

+
1

λ

[
i[a1, s]− i

4a
′′
1 −s− i

2a
′
1

ia1 + [s, a2]− i
2{s, a

′
1}+ [x, a1]a1 + 1

4 (a′1)2 + i
8a
′′′
1 1 + i[a1, s] + i

4a
′′
1

]
(5.129)
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One then has to write the zero-curvature equations

∂λVD −DB + [VD, B] = 0 (5.130)

which yield

a′′′1 = 8i[a1, s]a1 + 8a1 + 8i[s, a2] + 6i(a′1)2 + 4{a′1, s} (5.131)

a′2 = a′1a1 (5.132)

where the first equation comes from the entry (1, 1) of the coefficient in λ−1 of (5.130), while the

second equation comes from (5.127); all other entries of (5.130) are then automatically zero. One

can use (5.131) to simplify further the expression for B as given in the statement of the theorem.

Q.E.D
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