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Abstract

Fault Detection, Isolation and Identification of Formation Flying

Satellites using Wavelet-Entropy and Neural Networks

Farshid Faal

The main objective of this thesis is to develop a fault detection, isolation and

identification (FDII) scheme based on Wavelet Entropy (WE) and Artificial Neural

Network (ANN) for reaction wheels (RW) that are employed as actuators in the

attitude control subsystem (ACS) of a satellites to perform the formation flying (FF)

missions. In this thesis two FDII approaches are proposed, i) Spacecraft-level fault

diagnosis and ii) Formation-level fault diagnosis.

In the "spacecraft-level" fault diagnosis scheme in order to analysis faults, abso-

lute attitude and angular measurements from a satellite are considered as diagnostic

signals. In order to detect the fault, the wavelet-entropy technique is employed on

diagnostic signals and the sum of the absolute wavelet entropies (SAWE) of the diag-

nostic signals are obtained and compared with an appropriately selected threshold. If

the SAWE passes the threshold the faulty condition is established. In order to isolate

the fault in a satellite the angular velocity measurements in a satellite are consid-

ered as diagnostic signals and the relative wavelet energy (RWE) of these signals are

obtained and compared to a threshold. In our proposed fault identification scheme,

the attitude measurements in a satellite are considered and the detail and approxi-

mation coefficients of the wavelet signals are obtained and these coefficients are used

as inputs to an artificial neural network to identify the type of the fault in a satellite.

Using a confusion matrix evaluation system we demonstrate that our spacecraft-level

FDII can detect, isolate and identify the high severity faults in a satellite however

this scheme cannot detect low severity faults in a satellite.
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Our proposed "formation-level" FDII scheme utilizes data collected from the rel-

ative attitudes and relative angular velocity measurements of the formation flying

satellites. In this fault diagnosis scheme, the relative attitude and relative angular

velocity measurements in a satellite with respect to each its neighbor’s in a formation

are considered as diagnostic signals. In order to detect the fault, the relative attitude

measurements in a satellite are considered as diagnostic signals. The wavelet-entropy

technique is utilized on diagnostic signals and the SAWEs with respect to each satel-

lite’s neighbor are obtained. These SAWEs are then compared with an appropriately

selected threshold. The faulty satellite is determined if these SAWEs pass the thresh-

olds. In order to isolate the fault in a faulty satellite, the relative angular velocity

measurements are considered as diagnostic signals. The RWE of these signals are

obtained and compared to a threshold. In our proposed fault identification scheme,

the relative attitude measurements in a satellite are considered as diagnostic signals.

In this scheme, the RWEs of the diagnostic signals are obtained and used as inputs to

an artificial neural network to identify the type of the fault in a satellite. According

to the simulation results, our proposed FDII scheme can detect, isolate and identified

both low severity and high severity faults in the reaction wheels of satellite.
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Chapter 1

Introduction

1.1 Statement of the Problem

The concept and associated challenges of spacecraft flying in formation have been

studied since the early days of the space program. Only recently, however, has the

idea of formation flying been applied to autonomous satellites [1,2,3,4,5,6,7,8]. The

development of multiple cooperating spacecraft has the potential to significantly ex-

pand the functionality, performance and reduce the overall operational costs. For

instance, a formation of interferometric imaging spacecraft can achieve an optical

imaging system with an aperture of kilometers long yielding the resolution that is

required to image planets in the other solar systems.

A formation of small satellites would be cheaper to develop and launch, but could

still perform the tasks of a large, single satellite mission through proper task dis-

tribution [9,10,11,12,13,14,15,16]. The system would exhibit gradual performance

degradations as individual satellites fail and tasks are redistributed, rather than the

total mission termination that is faced by single satellites during component failures.

By adding inexpensive replacement satellites, the cluster could be returned to

full mission specifications. In addition, reconfiguring the relative positions of the

constituent satellites in situ would permit a formation to engage in multiple mission

objectives. Finally, the capability of obtaining multiple simultaneous measurements

along a large baseline would enable satellite formations to accomplish goals that are
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difficult or impossible to achieve with a single satellite [100].

There are a number of formation flying missions for deep space environment (such

as ST-3, TPF, LISA, DARWIN [17,18,19] and formation flying missions for near-Earth

environment (EO-1, ION-F, PRISMA, CLS3, SMART-2 [19,20,21,22,23,24,25]). In

formation flying spacecraft, precise formation keeping during the execution of the

mission and collision avoidance between the agents of the formation during maneuvers

are some of the important and critical issues that must be considered in all missions.

These issues can be fulfilled with appropriate control laws and precise sensors and

actuators.

However, malfunction of any of these components can affect the performance of

the formation. Thus, early detection of faults is mandatory for this type of mission.

In general, faults are defined as deviations from the normal behavior in the plant or

its instruments. A fault detection system is making a binary decision that indicates

the system is working in normal (healthy) condition or something is going wrong with

the monitored system. Fault isolation is determination of the location of a fault in the

monitored system and fault identification determine and identify type of the fault in

a monitored system. A system with detection, isolation and identification capabilities

is known as Fault Detection, Isolation and Identification (FDII) system.

FDII systems for attitude control subsystems of spacecraft have been developed

in the past decade. There are different approaches that have been developed in the

literatures on FDII systems for faulty components such as sensors, actuators and

controllers ([25,26,27,28,29,30,31,32]).

However, majority of these works have been developed on a single spacecraft and

there is not as much as works on FDII for formation flying spacecraft in literatures.

Since there are complexities that are involved with formation flying missions, there

is an important area of research regarding the FDII in spacecraft formation flying.

In this thesis, FDII problem in spacecraft formation flying is considered in two

levels, spacecraft-level and formation-level fault diagnosis. In spacecraft-level fault

diagnosis, FDII is related to subsystem component fault diagnosis. Typically, subsys-

tem components are the sensors and actuators within the subsystems. For instance,
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in the case of attitude control subsystem, reaction wheels, thrusters, and attitude

sensors are the components. Our proposed spacecraft-level FDII, detects faults in

the reaction wheel actuator in a satellite and isolate the faulty reaction wheel in a

satellite and also identifies th type of faults in the reaction wheel.

The formation-level FDII is unique to multi-platform missions. Individual space-

craft in the formation are considered as different "components" of the formation

flying system. Therefore, at this level, fault detection is essentially the binary de-

cision making about whether or not any fault exist in the formation components,

i.e., in one or more satellites in the formation. Consequently, the objective of fault

isolation, in this level, is to identify particular spacecraft that are faulty. In our pro-

posed formation-level fault diagnosis, fault in the formation platform will be detected

and faulty satellite will be isolated, then the faulty reaction wheel in that satellite is

isolated and the type of fault in the reaction wheel will be identified as well.

In our proposed spacecraft-level FDII scheme, the absolute attitude measurements

in each satellite are considered as diagnostic signals. We will show that spacecraft-

level FDII can only detect and isolate high severity faults in the reaction wheel and

low severity faults can not detect in this FDII scheme. Hence, we will propose the

formation-level FDII scheme. In this scheme, the relative attitude measurements in

one satellite with respect to each of its neighbors in a formation are considered as

diagnostic signals. We will show that this FDII scheme can detect and isolate both

high severity and low severity faults in the reaction wheel actuator in a satellite.

There are different types of sensors and actuators that are utilized in the spacecraft

that depend on the mission objectives. For attitude maneuvers, magnetic torque,

reaction wheel and thrusters are actuators that are utilized in spacecraft for attitude

maneuvers.

Reaction wheel is the most commonly used actuator in spacecraft. It is a pre-

cise and reliable actuator. There are different approaches that are proposed in fault

detection and isolation for reaction wheel actuators in single spacecraft but the de-

velopment of an FDII system for detecting and isolating faults in reaction wheel of

spacecraft especially in formation of flying spacecraft is still a challenging problem.
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The desired FDII in formation flying spacecraft must have the capability of detecting

the faults in formation and isolating the faulty satellite and also identifying the type

of faults in the reaction wheels within a proper constraint.

1.2 Literature Review

Research into formation flying of satellites has gained in popularity during the 1990’s

and over the past decade and during these years numerous formation flying missions

have been conceived. Two such missions are ESA’s CLUSTER mission [97] and the

ESA/NASA GRACE mission [98].

CLUSTER comprises of four identical spacecraft launched into large, highly el-

liptical polar orbits around the Earth. These satellites fly in pre-determined relative

orbits designed so as to allow scientists to measure subtle changes in the interaction

between the Earth and the Sun. The CLUSTER satellites were launched in August

2000 for nine years and its mission is extended until 31 December 2014 [97,95].

Another mission that implements a formation flying technology is the GRACE

mission. The GRACE mission features two identical satellites in a leader-follower

formation (GRACE A and GRACE B) orbiting the Earth on the same orbital plane.

The purpose of this mission is to generate high-fidelity modeling of Earth’s gravita-

tional field. A secondary experiment that GRACE performs is examining how the

atmosphere affects GPS signals. The initial altitude of GRACE A and GRACE B

above the Earth was close to 500 km. Due to atmospheric drag, it will decrease to

about 300 km towards the end of the mission. It is originally funded for a five-year

period (2002 to 2007) however the mission was been further extended to 2009. As

the orbit decay has been slower than initially thought and the satellite’s current fuel

supply is expected to last another few years at the very least, the mission is likely to

continue until 2015 [98,95].

Another two ESA formation flying missions are PRISMA [99] and PROBA-3 [100].

PRISMA is a Swedish-led satellite project with the objective to develop and qualify

new technology necessary for future formation flying science missions. PRISMA con-
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sists of two spacecraft, with a total mass of about 200 kg. It contains several new

technologies within autonomous formation flying and rendezvous, small rocket en-

gines and Micro Electro Mechanical Systems (MEMS). The PRISMA satellites were

launched from Dnepr-1, Russia, on 15 June 2010 [95]. PROBA-3 [100] is the ESA

formation flying mission that is scheduled to be launched in 2017 for future forma-

tion flying missions. The PROBA-3 mission will demonstrate algorithms, sensors,

propulsion systems and other technologies needed for formation flying.

An important joint NASA/ESA mission, implementing a number of critical for-

mation flying technologies is the Laser Interferometer Space Antenna (LISA) [101].

LISA is designed to detect "ripples" in space-time, as predicted by Einstein’s general

theory of relativity. LISA’s three spacecraft will form an equilateral triangle with an

arm length of about 5 million km. Each spacecraft houses two free floating cubes

made of a gold-platinum alloy inside the spacecraft, shielded from adverse effects of

being in interplanetary space. The distance between the cubes in different spacecraft

is monitored using highly accurate laser-based techniques [101,95].

NASA has proposed many formation flying missions. Some of these missions

are currently under development, while others are in conceptual stages. One of

NASA’s main formation flying missions is the Magnetospheric Multiscale Mission

(MMS) [102]. MMS includes four identical spacecraft in a variably spaced tetrahe-

dron with a planned two-year mission lifetime. The system includes inter-spacecraft

ranging, communication and instrumentation, designed to measure magnetic and elec-

tric fields using electron and ion plasma spectrometers, providing high temporal and

spatial resolution. MMS is currently in the preliminary design stage and its launch

is planned for 2014.

The NASA’s future formation flying missions are the Stellar Imager (SI) [103] and

Milli-Arc-Second Structure Imager (MASSIM) [104] that all planned for the third

decade of the 21st century. The SI mission is a space-based ultraviolet (UV)/optical

interferometer with over 200 times the resolution of the Hubble space telescope. The

proposed MASSIM mission will image in X-rays the structure of astrophysical objects

with an angular resolution three orders of magnitude better than the present state of
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the art. An optics spacecraft carrying an array of diffractive/refractive lenses focuses

X-rays onto detectors on a spacecraft 1000 km behind.

1.3 Objective of the Thesis

The main objective of this thesis is to propose a fault detection, isolation and identi-

fication (FDII) scheme for attitude control subsystem of formation flying of satellites.

In this scheme, the reaction wheel is chosen as an actuator in order to verify the FDII

scheme in formation flying missions. In order to fulfill this objective, the dynamics

of actuator are presented and the formation flying control architectures are provided

and described in detail. Different fault scenarios in the reaction wheel actuators are

described and considered in this research. A hierarchical level FDII scheme based on

discrete wavelet transform and neural networks are proposed in this thesis that con-

sist of the spacecraft-level FDII scheme and the formation-level FDII scheme. These

two approaches are developed, described and evaluated for formation flying satellites

and extensive simulation results are also provided as well.

1.4 Contributions of the Thesis

The main contributions of this thesis are described as follows:

• A novel fault detection, isolation and identification scheme for a reaction wheel

that is used as an actuator in the attitude control subsystem of satellite is

proposed by employing wavelet entropy and neural networks. The proposed

scheme is capable of successfully detecting, isolating and identifying three classes

of commonly occurring faults in reaction wheel actuators.

• The results that are obtained through simulations indicate that formation flying

fault analysis scheme can detect, isolate and identify both low severity and high

severity faults in the reaction wheels however, single satellite fault diagnosis

scheme can only detect and isolate high severity faults in the reaction wheels.
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Hence, by employing formation-level fault diagnosis scheme, the accuracy and

precision of the fault analysis in formation flying of satellites is shown to be

improved.

• The results obtained through a large number of simulation scenarios demon-

strate a high level of accuracy and precision and classification accuracy. The

capability of the wavelet entropy and neural networks schemes in the fault di-

agnosis problem was successfully demonstrated.

There are several advantages to using spacecraft formation flying such as increased

reliability, accuracy, robustness, flexibility, cost energy efficiency and probability of

success. The proposed scheme for fault detection and isolation is capable of detecting

and isolating the faults autonomously and reducing significant amount of hours that

could have otherwise be spend by the ground station personal in order to analysis

the faults. The reliability and performance of the formation flying mission can also

be significantly improved.

1.5 Outline of the Thesis

The organization of this thesis is described as follows:

• In Chapter 2, the fault detection and isolation problems are presented and two

main categories of fault analysis methods are discussed. Furthermore, different

approaches in the literatures for FDII in satellites are presented.

• In Chapter 3, the concept of coordinate systems and different attitude represen-

tations are provided and, then the concept of spacecraft dynamics and formation

flying of spacecraft control architectures are explained. Furthermore, in this

chapter different types of sensors and actuators that are utilized in the space-

craft are described and the mathematical model of the reaction wheel actuator

is explained and finally, the mathematical models for the attitude disturbances

in the satellites are provided.
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• In Chapter 4, the wavelet-entropy fault detection scheme for single spacecraft

is proposed and developed. In this scheme the absolute attitude measurements

in the satellite are considered for fault diagnosis and different fault scenarios in

the reaction wheel actuators are explained and considered. The fault isolation

scheme based on relative wavelet energy is proposed and the fault identification

scheme based on discrete wavelet transform and neural networks for a single

satellite are developed and the metrics of accuracy and precision (from the

confusion matrix) are provided for the FDII scheme.

• In Chapter 5, the FDII scheme in the formation flying is proposed and devel-

oped. In this scheme the relative attitude measurements are considered for fault

diagnosis purposes. In order to evaluate this scheme in the formation flying, the

fault scenarios in the reaction wheels that are considered in Chapter 4 are simu-

lated and the accuracy and the precision of the proposed fault detection scheme

are evaluated and compared to the proposed FDII scheme in a single space-

craft that is explained in Chapter 4. Then, the fault isolation and identification

schemes for the formation flying are developed and evaluated.

• In Chapter 6, conclusions and the main contributions of this research are de-

scribed and possible future work based on these contributions are provided.
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Chapter 2

Fault Detection and Isolation

Problem

There is an increasing demand for modern control systems such as autonomous space-

craft to operate autonomously in the presence of faults and failures in sensors, ac-

tuators, and components. This requires a fault diagnosis system that is capable of

detecting plant, actuator and sensor faults when they occur and isolating the faulty

component. The main tasks of fault diagnosis are to detect and isolate occurring

faults in order to avoid overall failure of the monitored system. Fault diagnosis is an

essential component of an autonomous system. Hence, a high demand exists for the

development of intelligent systems that are able to autonomously detect the presence

and isolate the location of faults occurring in different components of complex dynam-

ical systems. Especially faults in a control loop are of particular importance as they

may instantly result in instability of the controlled system. Thus, it is crucial that

faults are efficiently and timely detected and isolated while the system is in operation.

2.1 Classification of Fault Diagnosis Systems

The fault diagnosis (that is fault detection, isolation and identification) techniques in

the literature can be divided into model-based and history-based categories [59]. The

model-based can be broadly classified as qualitative or quantitative. The model is
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Figure 2.1: Classification of fault diagnosis systems [59].

usually developed based on some fundamental understanding of the physics of the pro-

cess. In quantitative models this understanding is expressed in terms of mathematical

functional relationships between the inputs and outputs of the system. However, in

qualitative model these relationships are expressed in terms of qualitative functions

centered on different units in a process. In process history based methods only the

availability of large amount of historical process data is assumed. There are different

ways to transform and present these to a diagnostic system. This is known as the

feature extraction process from the process history data, and is done to facilitate

subsequent diagnosis. This extraction process can mainly proceed as either quanti-

tative or qualitative feature extractions. In quantitative feature extraction one can

perform either a statistical or a non-statistical feature extraction. The classification

of diagnostic systems is shown in Figure 2.1.
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Figure 2.2: Hardware and analytical redundancy schemes [117].

2.1.1 Model-Based Fault Diagnosis

A traditional approach to fault diagnosis is based on the hardware redundancy method

which uses multiple sensors, actuators, computers and software to measure or control

a particular system [33]. The major problems encountered with hardware redundancy

are the extra equipment, maintenance cost and the additional space required to ac-

commodate the redundant components. An alternative approach for fault diagnosis

is based on analytical redundancy which uses the redundant analytical relationships

among system inputs and measured system outputs to generate residual signals where

no extra hardware is required in this approach. In analytical redundancy schemes, the

resulting difference that is generated from consistency checks of different variables is

called a residual signal. Analytical redundancy schemes make use of a mathematical

model of the monitored system and is often referred to as the model-based approach

to fault diagnosis. Figure 2.2 illustrates the concepts of hardware and analytical

redundancy [33]. The principle of model based fault detection and isolation is de-

picted in Figure 2.3. As mentioned before, model based fault diagnosis is divided into

two categories, quantitative approaches and qualitative approaches. The quantitative

model-based method utilizes a mathematical model. The techniques commonly used

are based on observer approach, parameter estimation, parity space, and combination

of the first three [49,50,51].
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Figure 2.3: Model based fault detection and isolation approach [117].

In observer or state estimation approaches, two observer methods are used to

estimate the outputs of the system Luenberger observers in the deterministic setting

[34,35,36,37,38,39,40,41] or Kalman filters in a stochastic setting [42,43,44]. The

popularity of state-space models as well as the wide usage of observers in modern

control theory and applications has made the observer based fault diagnosis approach

as one of the most common approaches in this domain. In parity space approach,

the system input and output data checks over a given time window and the residual

signals (or parity vectors) are generated [45,46,47,48]. The Parameter estimation

method [52,53] is based on system identification techniques. This method is based on

the concept that faults typically affect the physical coefficients of the process such as

friction, mass, viscosity, resistance, etc. In this approach the parameters of the actual

process are estimated on-line and the results are compared with the parameters of

the reference model that is obtained under the healthy condition.

In recent years, fault diagnosis schemes for nonlinear systems have been widely

investigated. Most techniques in the literature utilize the extension of the meth-

ods that are described above for linear systems. Many nonlinear observer schemes
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were proposed and developed in the literature for solving the nonlinear system fault

diagnosis problem [54,55,56,57,58].

As mentioned before, in quantitative model-based methods, the understanding

of model is expressed in terms of mathematical functional relationships between the

inputs and outputs of the system. In contrast, in qualitative models the relationships

among system variables and parameters are used to describe the system behavior

in qualitative terms such as causalities and IF-THEN rules. The qualitative model

can be developed either as qualitative casual models or abstraction hierarchies. The

knowledge in the casual models can be represented qualitatively in various forms,

such as digraphs, fault trees or qualitative physics [60].

2.1.2 History-Based Fault Diagnosis

Model-based fault diagnosis approaches rely on the key assumption that a perfectly

accurate and complete mathematical model of the system under supervision is avail-

able. However, such an assumption may not always be valid in practice. This problem

has contributed to the development of history-based FDII methods. Fuzzy logic, neu-

ral networks and wavelet transform are three history-based approaches that have been

utilized in literature for fault diagnosis schemes.

These approaches become increasingly more appealing for situations where high-

fidelity mathematical model of the monitored system does not exist or is extremely

difficult to obtain. The main challenge though is to ensure that sufficient amount of

data from the healthy operational mode of the system is available. Fuzzy logic is now

being investigated as powerful modeling and decision making tool for nonlinear fault

diagnosis systems [61]. Fuzzy logic method for fault diagnosis problem belongs to the

sub-class of rule-based expert systems and it can express expert knowledge in terms

of natural language statements. It has the potential to formulate the qualitative

relationships among the model variables of the process being monitored using IF-

THEN rules.

Fuzzy sets perform a smooth interface between the qualitative variables involved

in the rules and the numerical data at the inputs and outputs of the model. The
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appealing feature of fuzzy logic is that its ability to deal with imprecise facts or noisy

data, and is therefore suited for application where complete information about fault

and system is not available to the fault diagnosis designer [62,63]. Whenever expert

knowledge is not available and the fuzzy rules are obtained using qualitative physics,

neural networks are profoundly used for learning (or determining) the parameters of

those rules from historical input−output data of the system, hence the name neuro-

fuzzy systems [63,64].

As mentioned above, neural networks are among the most widely used intelligent

techniques for fault diagnosis. This is mainly due to their distinguished ability to

approximate, to an arbitrary level of accuracy, any continuous nonlinear function,

given suitable network parameters (or weights), architecture, and learning algorithm

[65,66]. Indeed, neural networks are able to learn nonlinear functions from examples.

They have the ability to make intelligent decisions even in cases where system data are

corrupted with noise. They also have a highly parallel structure, which is expected to

achieve a higher degree of fault-tolerance than conventional function approximation

schemes and, last but not the least, they are readily applicable to multi-variable

systems. Neural networks can also be applied to process health monitoring, where

the focus is on identification of small irreversible changes in the process that may

develop into bigger faults [67,68,69,70,71].

The capability of wavelet in feature extraction of diagnosis signals in time and

frequency domain, leads to utilize this method in fault diagnosis schemes. Wavelet

decomposition has the property of well-localized in time and frequency domain and

time-frequency window can be adjusted with the practical signals. Furthermore,

wavelet-entropy represents the degree of chaos of the measured signal which can

provide useful information about the faults in the system. Many approaches have

been developed in the literature based on wavelet decomposition for fault diagnosis

of nonlinear systems [72,73,74,75,76,77,78].
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2.1.3 Hybrid Methods

One of the important points in fault diagnosis schemes is that no single method is

adequate to handle all the requirements for a diagnostic system. Though all the

methods are restricted, in the sense that they are only as good as the quality of infor-

mation provided, it was shown that some methods might better suit the knowledge

available than others. Some of these methods can complement one another resulting

in better diagnostic systems. Integrating these complementary features is one way

to develop hybrid methods that could overcome the limitations of individual solution

strategies. Hence, hybrid approaches where different methods work in conjunction

with one other to solve parts of the problem are attractive.

Wavelet decomposition has strong capability in dealing with signals in time and

frequency domains and can detect anomalies in signals and neural networks is a strong

nonlinear classifier and it has a strong capability in pattern recognition and pattern

classification. Hence, combining these two methods gives us a strong fault detection

and isolation scheme for nonlinear systems [72,73,74,76].

2.2 Desired Characteristics of Fault Diagnosis Sys-

tems

In order to compare various diagnostic approaches, it is useful to identify a set of

desirable characteristics that a diagnostic system should possess. According to [59]

the ideal fault detection and isolation (FDI) system must have the following charac-

teristics:

• Quick detection, isolation and identification

Quickness is a critical factor for fault diagnosis systems. The diagnosis system

must respond quickly in detection, isolating and identification malfunctions in

monitored system.

• Isolability
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Isolability is the ability of the diagnostic system in classification of different

faults in system. This ability depends to a great extend on the monitored

system characteristics.

• Robustness

Robustness with respect to noise, disturbances, uncertainties and unmodeled

dynamics is a desirable feature in fault diagnosis systems.

• Novelty identifiability

The FDI system must be able to decide if the monitored system works in normal

or abnormal condition and if abnormal, whether the cause is a known fault or

unknown fault.

• Classification error estimate

The FDI system must provide the classification error in monitored system. Such

error is useful to give the level of reliability of the FDI system.

• Adaptability

The monitored system may change due to structural changes or disturbances

and also changing in environmental condition. Thus the diagnostic system must

be adaptable to these changes.

• Explanation facility

The diagnostic system must also provide the explanation on the origination of

the faults in monitored system. This requires the reasoning ability on causes

and effects relationships in a system.

• Modeling requirements

For development of diagnosis classifier to perform in real-time the modeling

effort must be as minimal as possible.

• Storage and computational requirements
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The fault diagnosis system must implement algorithms that are computationally

not too complex and have high capability of storing relevant information.

• Multiple fault identifiability

The ability of detecting and isolating multiple faults is an important and also

difficult task in diagnostic systems.

2.3 Previous Work on Fault Diagnosis of Attitude

Control Subsystem (ACS) of Spacecraft

In recent years, there has been a special interest in developing autonomous fault diag-

nostic approaches for actuators of the attitude control subsystem (ACS) of spacecraft.

As mentioned previously, the research is focused on two major approaches, model

based and history based methods.

Reference [31] proposed a reliable failure classification system based on the fault-

tree method. This methods was tested with data extracted from a reaction wheel

actuator of a simulated attitude control subsystem of a satellite.

In [85], a neural network observer-based scheme for the actuator fault detection

and isolation in the spacecraft attitude control subsystem is presented. This FDI

system consists of three Elman recurrent neural networks and each of them is specific

for modeling the dynamics of the wheel on each axis separately and independently.

In [86], an actuator fault detection and isolation system for the ACS of a satellite

is proposed. This FDI system uses a recurrent adaptive time delay neural network

and has robustness and insensitivity characteristics due to the external disturbances

and noise.

In [26], a dynamic neural network residual generator based on the dynamic mul-

tilayer perceptron network (DMLP) is proposed. The developed neural observer is

applied to the reaction wheel model and the results are compared to the linear model-

based observer acting as a residual generator. Also, adaptive neural network classifier

based on learning vector quantization (LVQ) network is proposed in order to isolate
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the faults.

In [32], fault detection and isolation systems based on dynamic neural networks

for the pulsed plasma thrusters (PPTs) that are used in the ACS of a satellite in a

formation flying are proposed. In this work, three FDI schemes are developed: "low-

level" FDI, "high-level" FDI and "integrated" FDI. The low-level scheme utilizes the

absolute measurements from the actuator and the high-level used relative attitude

measurements in a satellite and the integrated scheme utilizes both previous schemes

in order to improve the results.

Reference [84] deals with the real-time fault diagnosis in the ACS of a satellite

based on sliding-window wavelet and dynamic recurrent neural networks. In this work,

the sliding-window technique is utilized in order to detect anomalies in reaction wheel

actuator and the dynamic recurrent neural network is used to isolate the faults in a

reaction wheel.

In [108] a hierarchical fault detection, isolation and recovery approach is developed

for avionics and spacecraft applications. Fault-three synthesis and neural networks are

utilized in [109] to develop a fault diagnosis approach for the RADARSAT-1 ACS.

Reference [110] provides a fault detection, isolation and recovery approach for the

ACS of the ESA GOCE satellite and references [111,112,113,114,115] deal with the

integration, reutilization, and standardization of FDI systems used in previous mis-

sions planned by the Jet Propulsion Laboratory (JPL) and European Space Agency

(ESA).

2.4 Conclusions

In this chapter the concepts of fault detection, isolation and identification (FDII)

have been provided and the characteristics of the desired FDII system are provided.

The FDII approaches are divided into two main categories; model based methods

and history based methods. The advantages and disadvantages for each group have

been discussed and compared. The previous works for FDII in spacecraft have been

provided and motivations for FDII in formation flying spacecraft have also been ex-
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plained.
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Chapter 3

Formation Flying of Satellites

The NASA’s Goddard Space Flight Center (GSFC) proposed the definition of space-

craft formation flying as follows [95]:

"The tracking or maintenance of a desired relative separation, orientation or po-

sition between or among spacecraft."

Hence, formation flying spacecraft is a particular case of a more general cate-

gory. There are several advantages to utilize formation of multiple spacecraft. These

includes robustness, accuracy, feasibility cost and energy efficiency. This chapter pro-

vides an overview on the fundamentals of formation flying control architectures and

defines the formation flying attitude control subsystem that is used to evaluate fault

diagnosis systems and also different sensors and actuators that are used in space-

craft. Section 3.1 introduces the concept of coordinate reference frames, Section 3.2

describes rotational matrix for coordinate frames transformation, in Section 3.3 dif-

ferent attitude presentations are described and in Section 3.4 the formation flying

of multiple spacecraft is discussed. In Section 3.5 the spacecraft sensors and actu-

ators are presented, while Section 3.6 discusses mathematical modeling of reaction

wheel actuators in spacecraft and finally, the mathematical modeling of the external

attitude disturbances are described in Section 3.7.
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3.1 Coordinate Reference Frame

In spaceflight analysis in order to know the position and motion of a satellite, one

must first select the correct coordinate system for the problem. A description of

the three main coordinate systems used in formation flying calculations is presented

below [88]. The representation of the satellite’s position and attitude is dependent

on these reference frames. Hence, the definitions of these reference frames, and how

to rotate vectors between them, are crucial for satellite formation flying studies.

3.1.1 Earth Centered Inertial (ECI) Frame

Figure 3.1: Earth-Center inertial frame, Fi [118].

This frame is fixed in space, which means that it is a non-accelerated reference

frame in which Newton’s Laws are valid. The origin of the frame is oriented at the
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center of Earth. The x axis points in the direction of the vernal equinox, z-axis points

toward the North Pole and y-axis completes the right hand Cartesian coordinate

system. This frame is denoted by Fi. Figure 3.1 illustrates the axes of the ECI frame

in space.

3.1.2 Body Frame

This frame is a moving reference frame which is fixed on the satellite. The orientation

of the satellite is determined relative to the Orbit frame, while angular velocities are

expressed in the Body frame. The origin of this frame is the center of mass of the

satellite body, the x-axis forward and z-axis is downward, y-axis completes the right

hand orthogonal system. The origin is at the center of the mass of the satellite. This

frame is denoted by Fb.

3.1.3 Orbital Frame

Figure 3.2: Satellite orbital and body frame.
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Orbit frame rotates relative to the inertial frame, with a rate of depending on the

altitude of the satellite. The origin is at the center of mass of the satellite. The y-axis

is in the orbit anti-normal direction. The z-axis points toward the center of Earth,

and the x-axis completes the right hand system. Figure 3.2 illustrates the orbital

frame and body frame of a satellite. This frame is denoted by FO.

3.2 Rotational Matrix

Rotation matrix is a description of the rotational relationship between two reference

frames. The rotation matrix C from frame m to n is denoted ba Cn
m. Rotation of a

vector from frame m to frame n, can be given as

vm = Cn
mv

n (3.1)

The orientation of the satellite is described using a rotation matrix (direction cosine

matrix) CB
O , which is denoted as

CB
O =


m11 m12 m13

m21 m22 m23

m31 m32 m33

 (3.2)

In this matrix each of the elements mij is named directional cosines and column

vectors can be arranged as:

m1 =


m11

m21

m31

 m2 =


m12

m22

m32

 m3 =


m13

m23

m33


Rotation matrix is an orthogonal matrix, thus m1, m2 and m3 are orthogonal. The

rotation matrix satisfies the following properties:

CA
B = (CB

A )−1 = (CB
A )T (3.3)
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CA
BC

B
A = I3×3 (3.4)

3.3 Attitude Representation

There are many ways to represent the attitude of a satellite in a reference frame. But

frequently Euler angles and Unit Quaternions are the two mostly used for present-

ing a satellite orientation. Euler angles are reliable, simple and accurate enough for

applications, however sometimes singularities occur in coordinate transformations.

In order to avoid singularities, Quaternion representation can be used as represen-

tation method as described below. In our simulation we have used unit quaternions

representation.

3.3.1 Euler Angles Representation

The Euler angles representation is often used in a user’s interface during attitude

computation because of its clear physical interpretation. Its parameters consist of

three rotation angles known as the roll angle φ, pitch angle θ and yaw angle ψ.

The angles roll, pitch and yaw represent the rotations about the x, y and z axis,

respectively in a rotation from one frame to another. These angles are illustrated in

Figure 3.3. The tranformation of a vector in an initial reference frame (xi, yi, zi) to a

new vector in the satellite body frame (xb, yb,zb) is given as follows


xb

yb

zb

 =


1 0 0

0 cos(φ) sin(φ)

0 −sin(φ) cos(φ)




cos(θ) 0 −sin(θ)

0 1 0

sin(θ) 0 cos(θ)




cos(ψ) sin(ψ) 0

−sin(ψ) cos(ψ) 0

0 0 1




xi

yi

zi


(3.5)

3.3.2 Unit Quaternions

Unit quaternions are the other way for the attitude representation. They were first de-

scribed by the Irish mathematician Sir William Rowan Hamilton in 1843 and applied

to mechanics in three-dimensional space. Unit quaternions has several advantages
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Figure 3.3: Euler angles in satellite [119].

over the Euler angles. Quaternions involve the use of algebraic relations to determine

the elements of the rotation matrix. The computations are faster and there are no

singularities as may occur on the Euler angle formulation. The disadvantage is that

there is no obvious physical interpretation of the rotation geometry.

Quaternion has 4 elements. Three of the elements are vectors which define an axis

of rotation and the fourth element is a scaler that defines the magnitude of a rotation

angle about the axis of rotation. A quaternion can be represented as:

Q =~iq1 +~jq2 + ~kq3 + q4 (3.6)

The qi (i = 1− 4) can be defined as:

q1 = m1sin
µ

2
q2 = m2sin

µ

2
q3 = m3sin

µ

2
q4 = cos

µ

2
(3.7)

where m1,m2,m3 are the rotation axis and µ is the rotation angle. The unit quater-

nion satisfy qT q = 1 which also means that q21 + q22 + q23 + q24 = 1. The rotation matrix
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from Body frame to the orbital frame can be expressed in quaternions as:

CO
B =


1− 2(q23 + q24) 2(q2q3 − q4q1) 2(q2q4 + q3q1)

2(q2q3 + q4q1) 1− 2(q22 + q24) 2(q3q4 − q2q1)

2(q2q4 − q3q1) 2(q3q4 + q2q1) 1− 2(q22 + q23)

 (3.8)

3.3.3 Satellite Attitude Dynamics

The satellite is modeled as a rigid body and its dynamic model is derived using the

Euler’s dynamical equation [89,90]. Euler’s dynamical equation is the equivalent of

Newton’s second law of motion for rotation about the center of mass. It is defined as

d~h

dt
= ~τ (3.9)

where ~h = I.~ω is the angular momentum, and τ is the sum of all external torques

acting on the body.

Equation (3.9) is expressed with respect to the inertial reference frame. With

respect to the body reference frame with an angular velocity ~ω, Euler’s equation

becomes
~̇h+ ~ω × ~h = ~τ (3.10)

The scaler form of this equation becomes

ḣx + ωyhz − ωzhy = τx

ḣy + ωzhx − ωxhz = τy

ḣz + ωxhy − ωyhx = τz (3.11)

where hx, hy, hz are the angular momentum components along the body coordinates

and ωx, ωy, ωz are the angular velocity components about the body axes and τx, τy, τz

are the body referenced external torques.

If we assume that the spacecraft body frame is aligned with the principal axes,
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then we can have

hx = Ixωx

hy = Iyωy

hz = Izωz (3.12)

so that equation (3.11) becomes

Ixω̇x − ωyωz(Iy − Iz) = τx

Iyω̇y − ωxωz(Iz − Ix) = τy

Izω̇z − ωyωz(Ix − Iy) = τz (3.13)

where Ix, Iy, Iz are the principal moments of inertia of the body. Equation (3.13)

describes the attitude dynamics of a rigid body satellite.

3.4 Formation Flying of Multiple Spacecraft

A spacecraft formation consists of two or more spacecraft in specific relative positions

and orientations. Dispersing the functions of a single spacecraft over a formation of

smaller spacecraft produces robust and fault-tolerant system architecture and reduces

the costs of the mission. A formation of small satellites would be cheaper to develop

and launch, but could still perform the tasks of a large, single satellite mission through

proper task distribution. The failure of a single spacecraft in a formation does not

necessarily lead to system failure as it would in a single, larger spacecraft. Upgrades

or repairs could be performed by simply replacing any obsolete or disabled spacecraft.

Finally, the capability of obtaining multiple simultaneous measurements along a large

baseline would enable satellite formations to accomplish goals that are difficult or

impossible to achieve with a single satellite. Three main architectures for formation

flying control are proposed in literature which can be defined as follows [95,96]:

• Leader-follower structure
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In the leader-follower strategy, one typically divides the spacecraft into sub-

groups. Within each subgroup one spacecraft is defined as the leader and the

rest are defined as followers. Leader spacecraft is controlled to a reference orbit

and the other follower spacecraft in the formation control their relative states

to that leader. This approach has the advantage that it allows most satellites

in the formation to follow the natural dynamics of the absolute orbit of the

leader, while only performing regular automatic control on the relative states of

the formation. The principal disadvantage of leader-follower is that the leader

spacecraft is by definition at its correct state and will not require as much fuel

use as the followers. Fuel use can be balanced among the satellites by periodi-

cally interchanging the designations of the leader and followers.

• Behavioral structure

In the behavioral strategy, the control action for each spacecraft is defined

by a weighted average of the controls corresponding to each desired behavior

for the spacecraft. This approach eases the implementation of conflicting or

competing control objectives, such as tracking versus avoidance. It is however

difficult to enforce group behavior, and to mathematically guarantee stability

and formation convergence.

• Virtual structure

In the third approach, virtual structure, the spacecraft formation is viewed as

a virtual rigid body. The desired states of a single spacecraft, may be specified

such that the formation moves as a single structure. In this scheme it is easy to

prescribe a coordinated group behavior and the formation may be maintained

well during maneuvers, given that the single spacecraft is able to follow its

trajectory and the chief advantage of this approach over the leader/follower

method is that state error will pertain to all the spacecraft in the formation.
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3.5 Formation Flying Missions

3.5.1 Formation Flying Architecture Control Design

In our simulations, in order to simulate the flying of formation spacecraft, a decentral-

ized architecture is developed to control the formation spacecraft via virtual structure

[91]. In this thesis, four coordinate reference frames are used for formation flying of

spacecraft. The inertial frame Fi, the formation frame FF which is fixed at the vir-

tual center of the formation, body frame Fb and reference frame F d
b which denotes

the desired configuration for each spacecraft. As described previously, in the virtual

structure approach, the entire desired formation is treated as a single structure with

a formation frame located at its virtual center of mass to represent its configuration.

The virtual structure has attitude qF and angular velocity ωF relative to inertial

frame. Let qi and ωi represent the attitude and angular velocity of the i-th spacecraft

relative to the inertial frame. Similarly, let qiF and ωiF represent attitude and angular

velocity of the i-th spacecraft relative to formation frame. The actual states of the ith

place holder represent the desired states of the ith spacecraft, hence these states are

denoted by qdiF and ωd
iF . Generally qdiF and ωd

iF can vary with time, that means the

formation shape is time-varying, however, in our simulations, we are concerned that

formation maneuvers must preserve the overall formation shape, i.e, each spacecraft

needs to preserve a fixed relative position and orientation in the virtual structure,

hence, qdiF should be constant, and ωd
iF should be zero. The state of the virtual

structure is defined as

ξ = [qTF , ω
T
F ]T (3.14)

If each spacecraft has knowledge of ξ and of its own desired position and orientation

with respect to the virtual structure, then formation keeping is transformed into an

individual tracking problem. Therefore, the vector ξ represents the minimum amount

of information needed by each spacecraft to coordinate its motion with the group.
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Given qF and ωF , the desired states for the i-th spacecraft are given by:

[qdi ]o = [qF ]o[q
d
iF ]F (3.15)

[ωd
i ]o = [ωF ]o (3.16)

3.5.2 Decentralized Architecture

In the decentralized architecture, each spacecraft in the formation instantiates a local

copy of the coordination variable ξi = [qTFi, ω
T
Fi]. The ξi represents the coordination

variable instantiated in the ith spacecraft corresponding to the coordination variable

ξ defined in equation (3.14).

Figure 3.4: Decentralized architecture via the virtual structure approach [91].

A bidirectional ring topology is used to communicate the coordination variable

instantiations, to bring each local instantiation into consensus. The decentralized ar-

chitecture via virtual structure approach is illustrated in Fig 3.4. In this figure, block

Gi is a discrete event supervisor for the i-th spacecraft, block Fi is the formation con-

trol module, which produces and broadcasts coordination variable, System Ki is the

local spacecraft controller for the i-th spacecraft, and Si represents the i-th spacecraft.

When the formation maneuver starts, each discrete event supervisor Gi outputs the
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current formation pattern to the formation control module Fi. Each formation con-

trol module implements a coordination variable instantiation ξi. Formation control

module Fi then sends its coordination variable instantiation ξi to the local spacecraft

controller Ki. Based on ξi the local controller Ki derives the desired states for the

i-th spacecraft.

3.5.3 Formation Control Strategy

Two major tasks need to be carried out in the decentralized formation control via the

virtual structure approach [95]:

• Propose suitable control law for each spacecraft

• Control each virtual structure instantiation into consensus.

Formation Control Strategy for Each Spacecraft

The control torque for the i-th spacecraft is given by [95]:

τi = Jiω̇
d
i +

1

2
ωi × Ji(ωi + ωd

i )− kqiq̂di qi −Kωi(ωi − ωd
i ) (3.17)

where kqi is a positive scalar, Kwi is a symmetrical positive-definite matrix, and q̂di qi

is the vector part of the unit quaternion qd∗i qi and q∗ is the conjugate of a quaternion

q.

Formation Control Strategy for Each Virtual Structure

The error state for the ith coordination variable instantiation is defined as

ξ̃i = ξi − ξd = [q̃TFi, ω̃
T
Fi]

T (3.18)

where ξd represents a desired formation pattern to be achieved. There are two objec-

tives for the coordination variable implemented in each spacecraft.
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The first objective is to reach its desired constant goal σd defined by the forma-

tion pattern set and the second objective is to drive each instantiation to consensus,

meaning that ξ1 = ξ2 = ... = ξn. The goal seeking error between ξi and ξd is defined

as

EG(t) =
n∑

i=1

∥∥∥ξi − ξd∥∥∥2 (3.19)

Also total consensus error between neighboring coordination variable instantiation is

defined as

ES(t) =
n∑

i=1

‖ξi − ξi+1‖2 (3.20)

where ξn+1 = ξ1 and ξ0 = ξn. Defining E(t) = EG(t) + ES(t), then the control

objective is to drive E(t) to zero asymptotically.

The proposed control torque τFi is given as [95]:

τFi = kG
̂qd∗F qFi − kS ̂qd∗F (i+1)qFi −DS(ωFi − ωF (i+1))− kS ̂qd∗F (i−1)qFi −DS(ωFi − ωF (i−1))

(3.21)

where KG > 0 and KS ≥ 0 are scalars, DS is symmetrical positive-semidefinite matrix

and q̂ represents the vector part of the unit quaternion.

3.6 Attitude Sensors and Actuators

Attitude determination is the process of determining the orientation and location of

the spacecraft relative to some reference frame. The most commonly used reference

vectors are the unit vectors directed toward the Sun, the center of the Earth, a known

star, or the magnetic field of the Earth. An attitude sensor measures the orientation

of a given reference vector relative to the spacecraft reference frame [90]. Sun sensors,

rate sensors, magnetometers and star cameras are among the various sensors that are

used in a satellite.

Star sensors are different types of sensors which can be used for the attitude

determination. The orientations of the spacecraft relative to the reference vectors

can be computed after the orientation of these vectors are determined relative to the
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spacecraft frame. The process of achieving and maintaining an orientation in space

is called attitude control. Spacecraft is reoriented from one attitude to another with

attitude maneuvering process.

After reorientation or an action that causes a change in attitude, the existing

attitude shall be maintained relative to some defined reference frame. This is defined

as attitude stabilization. Actuators are used for attitude control, stabilization or

maneuvering actions. They supply the desired control torques needed to perform

actions defined above. Different types of sensors and actuators are explained in the

sections given below [88,90].

3.6.1 Attitude Sensors

In this section, different types of sensors that are used in attitude determination are

explained [88,90].

Sun Sensors

Sun sensors are visible-light detectors which measure one or two angles between their

mounting base and incident sunlight. They are popular, simple, inexpensive, reliable

equipment with minimal power requirements but they require clear fields of view.

Star Sensors

Star sensors represent the most common sensors for high-accuracy missions. Star

sensors measure the star coordinates in the spacecraft frame and provide attitude

information when these observed coordinates are compared with known star directions

obtained from a star catalog. Star sensors are heavy, expensive, require more power,

and subject to interference from Sun, Earth, and other bright light sources. In spite

of these disadvantages, they are the most accurate means of attitude determination

with accuracies down to arc seconds.
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Horizon Sensors

The essential way for directly determining the relative attitude of a spacecraft with

respect to the Earth is to use horizon sensors. Horizon sensors are infrared devices that

detect the contrast between the cold of deep space and the heat of earth atmosphere.

Magnetometers

Magnetometers are sensors which measure the size and direction of the Earth’s mag-

netic field to determine the orientation of a spacecraft with respect to the local mag-

netic field. Magnetometers are widely used as attitude sensors since they are simple,

reliable, and lightweight and have low power requirements. But magnetometers are

not as accurate as star or horizon sensors. Due to a lack of complete knowledge of the

magnetic field model, the predicted direction and magnitude of the field at the space-

craft’s position are subject to errors. To improve the accuracy, their data usually are

combined with data from sun or horizon sensors.

GPS Receivers

GPS receivers are known as high-accuracy navigation devices and have been used for

attitude determination by employing the differential signals from separate antennas

on a spacecraft. These sensors are low cost and low weight and are being used in low

accuracy applications or as back-up sensors for low Earth orbit (LEO) missions.

Gyroscopes

Gyroscopes are inertial sensors which determine the attitude by measuring the speed

or angle of rotation of the spacecraft from initial reference without any knowledge

of an external or absolute reference. They are located internal to the spacecraft

and work at all points in an orbit. Since they measure a change instead of absolute

attitude, gyroscopes must be used along with other attitude hardware to obtain full

measurements.
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3.6.2 Attitude Actuators

An actuator is the mechanism that supplies control torque or force for the attitude

control system. The most common sources of force/torque are gas thrusters, magne-

torquers and reaction wheels [88,90].

Magnetic Torquers

Magnetic torquers are used to generate magnetic dipole moment for attitude control.

They apply a torque on the satellite by producing a magnetic field which interacts

with the earth’s magnetic field.

Thrusters

All thrusters produce thrust by expelling propellant in the opposite direction. Gas

thrusters can be hot gas, when energy is derived from a chemical reaction or cold gas

type when energy is derived from the latent heat of a phase change. The obtained

torques or forces can be used to control attitude, spin rate, speed of momentum

wheels, and to adjust orbits. Gas jets or magnetic coils can be used for the same

purposes at low Earth orbits (LEO). The main limitation on the use of thrusters is

the required propellant supply. Fuel budget is an important part of mission planning

for any system using gas thrusters. Gas thrusters also have complex and expensive

plumbing systems.

Reaction Wheel

Reaction wheels use the rotational variant of Newton’s third law. When the motor

applies a torque to speed up or slow down the rotor, it produces a reacting torque

on the body of the satellite [90]. Since the satellite is essentially a closed system, the

total angular momentum of the satellite body plus the reaction wheels is constant.

Thus any change in the angular momentum of a reaction wheel results in an equal

and opposite change of the angular momentum of the satellite body. Reaction wheels

are effective active control elements. They are particularly good for variable spin
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rate control. Active control of spacecraft by using reaction wheels is a fast, flexible,

precise way of attitude control and stabilization. On the other hand, it requires

rapidly moving parts which implies problems of support and friction. Normally, three

reaction wheels are used to control a satellite, with the wheel axes aligned with the

body principal axes. In the next section the high fidelity mathematical model for

reaction wheel actuators, that are used in our simulations to generate data, will be

described.

3.7 Mathematical Model of Reaction Wheel Actua-

tors

A high-fidelity nonlinear model of a reaction wheel has been obtained from Bialke

[92] and has been integrated into the ACS dynamics. A block diagram representation

of this high-fidelity reaction wheel model is shown in Figure 3.5. The reaction wheels

considered in this thesis are ITHACO "type A" reaction wheels. The values of model

parameters for this type of wheel are also obtained from [92] and are given in Table

3.1. As Fig 3.5 illustrates, there are five main blocks in the reaction wheel model,

motor torque control, speed limiter, EMF torque limiting, motor disturbances and

bearing friction and disturbances.

Motor Torque Control Block

This block consists of voltage controlled current source with a gain, Gd. The result

is a motor current directly proportional to the torque command voltage. The motor

has a torque constant Kt which produces torque proportional to the current driven

Im into it. The torque command voltage is restricted to be within [-5,+5].

Speed Limiter Block

The function of a speed limier block is to prevent the reaction wheel from reaching

unsafe speeds. Once the wheel ω speed exceeds an establishes speed threshold ωs,
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Figure 3.5: Detailed reaction wheel block diagram [92].
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Table 3.1: Reaction wheel model constants [92].
Variable Nomenclature Unit Value
Gd Driver Gain A/V 0.19
Kt Motor Torque Constant N −m/A 0.029
Ke Motor Back-EMF V/rad/sec 0.029
Ks Overspeed Circuit Gain V/rad/sec 95
ωs Overspeed Circuit Threshold rad/sec 690
ωd Driver Bandwidth rad/sec 2000
τc Coulomb Fiction N −m 0.002
J Flywheel Inertia N −m− s2 0.0077
N Number of Motor Poles — 36
B Cogging Torque Amplitude N −m Zero
Rin Input Resistance Ω 2
Kf Voltage Feedback Gain V/V 0.5
Pq Quiescent Power W 3
ωa Torque Noise High Pass Filter

Frequency
rad/sec 0.2

θa Torque Noise Angle Deviation rad 0.05
Rb Bridge Resistance Ω 2

Torque command range V [−5,+5]

the circuit provides a high gain negative feedback Ks into the torque command. The

heavy-side function Hs utilize to enables the negative feedback.

EMF Torque Limiting Block

In the low bus voltage condition, when reaction wheel runs at high speed the back-

EMF of the motor is increased and the motor torque may be limited. This eventually

eliminates the voltage headroom and reduces torque capacity. From the disturbance

stand point, since the motor torque is coupled directly to the bus voltage any fluctua-

tions in the bus voltage will be felt as torque disturbances. The nonlinear relationship

between Ibus and Vbus is defined as

Ibus =
I2mRB + 0.04 |IM |Vbus + Pq + ωImke

Vbus − 1
(3.22)

In order to eliminate the voltage drop when power is not being drown from the bus

a heavy-side function HB is included in the block.
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Motor Disturbance Block

The motor torque in reaction wheel can be a source of very high frequency distur-

bances due to the motor excitation and the magnetic construction. Recent reaction

wheels include brushless DC motors that exhibit torque ripple at the commutation

frequency and cogging at a frequency corresponding to the number of motor poles

and rate of rotation. Torque ripple is defined as amount of variation in the motor

torque due to the commutation method and the shape of the back-EMF. The amount

of spacecraft disturbances due to torque ripple is highly dependent on the torque

ripple frequency. Cogging is a disturbance torque which is always present in a con-

ventional brushless DC motor. ITHACO’s zero cogging motor completely eliminates

this potential source of jitter.

Bearing Friction and Disturbances Block

The friction in a reaction wheel mathematically is divided into viscous friction and

coulomb friction. The viscous friction τv varies with speed and temperature and gen-

erated in the bearing due to the bearing lubricant. Since the viscosity is temperature

dependent the lubricant has a strong sensitivity to temperature. This drag torque for

ITHACO’s reaction wheel is defined as

τv = (0.049− 0.0002
oC

(T + 30oC))
mN −m
rad/sec

(3.23)

The coulomb friction is constant with polarity dependent on the direction of rotation

of the reaction wheel. It is caused by rolling friction within the bearings. The loss in

torque is independent of wheel speed and temperature.

Torque Noise

Torque noise is the very low frequency torque variations from the bearings due to

lubricant dynamics. It is a function of lubricant behavior and it has the most signifi-

cant effect on the spacecraft pointing accuracy. This noise can be modeled as a sine
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wave with a high pass filter frequency as

τa = Jθaω
2
asinωat (3.24)

3.8 Mathematical Model of External Attitude Dis-

turbances

The attitude control subsystem of an Earth-orbiting satellite must tolerate the typical

external disturbance torques due to the gravity-gradient effects, the Earth’s magnetic

field, aerodynamic torques (dominant in the low-altitude orbits), and solar radiation

torque. Therefore, all these environmental disturbances need to be modeled and

properly incorporated into the ACS simulator to be able to evaluate the robustness

of the proposed fault detection and isolation algorithms with respect to them. As

a result, the following mathematical models of these disturbances are obtained from

[88] and are incorporated into the ACS simulator.

3.8.1 Solar Radiation

Solar radiation pressure produces a force on the satellite related to its distance to the

sun. Solar radiation has more effect at high altitudes. Surface area of the satellite

which faces the Sun is essential when determining the resulting acceleration caused

by solar radiation. Worst-case solar radiation torque is estimated as:

τs =
Fs

c
As(1 + r).cosis.(cps − cg) (3.25)

where Fs is the solar constant, c is the speed of the light in m/s, As is the surface

area for solar radiation in m2, r is the coefficient of reflectivity, is is the sun incidence

angle, cps is the location of the center of solar pressure, and cg is the center of gravity.

Coefficient of reflectivity r is a number between 0 and 1 with usual value of 0.6 for

most of satellites. In order to consider worst case this parameter is considered as 1

in our simulations.
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3.8.2 Gravity-Gradient Torque

Any non-symmetrical object in the orbit is affected by a gravitational torque because

of the variation in the Earth’s gravitational force over the object. There are many

mathematical models for gravity gradient torque. The most common one is derived

by assuming homogeneous mass distribution of the Earth as follows:

τg =
3µ(Ix − Iy)sin(2θ)

2R3
(3.26)

where τg is the max gravity torque, µ is the Earth’s gravity constant in m3

s2
, R is the

orbit radius in meter, θ is the maximum deviation of the z-axis from local vertical in

radians, Ix and Iy are moments of inertia about x and y axes in kg.m2.

3.8.3 Aerodynamic Drag

This disturbance is most effective on satellites orbiting below 400-500 km. The drag

force created by the air molecule interaction with satellite body produce a torque on

the satellite, thus reducing its velocity and resulting in a lower orbit for the satellite.

This torque is derived as:

τa = 0.5(ρcDAaeroV
2)(cpa − cg) (3.27)

where ρ is the atmospheric density in kg/m3, cD is the drag coefficient, which is

between 2 and 2.5, Aaero is the surface area for aerodynamic pressure in m2, V is the

satellite velocity, cpa is the center of aerodynamic pressure, and cg is the center of

gravity.

3.8.4 Magnetic Torque

This torque is resulting from the interaction of the geomagnetic field and spacecraft’s

residual magnetic field. The worst-case magnetic torque is estimated as:

τm = DrEmf (3.28)
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where Dr is the residual dipole of the satellite in amp − turn.m2, Emf = 2M
R3 is the

Earth’s magnetic field in Tesla, M is the magnetic moment of the Earth in Tesla.m3,

and R is the orbit radius or radius from the dipole (Earth) center to the satellite in

meter.

The values of the entire set of parameters of the environmental models are provided

in Table 3.2. The values of all the four external attitude disturbances are provided

in Table 3.3.

Table 3.2: Parameters of the disturbance models used in the ACS simulations.
Parameter Description Units Value

ρ Atmospheric density kg/m3 1.04 e-13
Aaero Contact surface aera for aerodynamic pressure m2 1
As Contact surface area for solar radiation m2 1
cD The drag coefficient 2.2
cpa The center of aerodynamic pressure 0.1
cg The center of gravity 0
cps The center of solar pressure 0.1
M Magnetic moment of Earth T.m3 7.96e15
Dr Residual dipole of the satellite Amp− turn.m2 0.8
Fs Solar constant W/m2 1366
r Reflectance factor 1
θ Maximum deviation in the local-vertical pointing rad 1.74e− 4
is Incidence angle deg 0

Table 3.3: Torque disturbances applied to the Spacecraft (Nm).

Parameter Description Value

τgravity Gravity gradient torque 4.7e− 6

τaero Aerodynamic drag torque 6.5e− 7

τmagnetic Magnetic torque 2.4e− 5

τsolar Solar Radiation Torque 9e− 7

3.9 Conclusions

In this chapter, the coordinate systems that are used for spacecraft maneuvers calcu-

lations have been explained and different attitude representations for spacecraft have
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been provided. The dynamics of satellite and the architecture of formation flying

control laws have been provided. Different sensors and actuators that are utilized

in spacecraft are presented and the mathematical model for a reaction wheel has

been explained. Finally, different attitude disturbance torques that effect the space-

craft attitude maneuvers have been provided and the mathematical models for the

disturbance torques are provided as well.
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Chapter 4

Spacecraft-level Fault Detection,

Isolation and Identification

The development of efficient algorithms that can autonomously detect and isolate

faults in spacecraft have been widely investigated during past decades. The complex

system like autonomous spacecraft and formation of spacecraft require intelligent and

autonomous technologies that can perform fault diagnosis in spacecraft with high level

of accuracy and precision. The accuracy and precision of fault diagnosis scheme are

strongly dependent on the availability of mathematical models of system. In complex

and nonlinear systems like spacecraft, developing precise models for all components

can be quite difficult. Due to these limitations in this chapter we propose our wavelet-

entropy spacecraft-level fault detection scheme on a three-axis ACS model. The

capability of wavelet entropy in detecting changes in signals make it a good choice

for use in fault analysis problems. A discrete wavelet transform (DWT) is used to

extract features from the original signals and wavelet entropy is used as a measure

of degree of chaos in the signal for detecting the faults. It is important to note that

in spacecraft-level fault diagnosis scheme, the absolute attitude measurements from

each satellite in the formation is considered as the diagnostic signals.
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4.1 Discrete Wavelet Transform andWavelet Entropy

4.1.1 Wavelet Transform Approach

The Wavelet Transform [107] provides a time-frequency representation of a signal.

It was developed to overcome the short coming of the Short Time Fourier Trans-

form (STFT), which can also be used to analyze non-stationary signals. While STFT

gives a constant resolution at all frequencies, the Wavelet Transform uses a multi-

resolution technique by which different frequencies are analyzed with different reso-

lutions, namely

CWT (τ, s) =
∫ ∞
−∞

x (t)
1√
s
ψ∗
(
t− τ
s

)
(4.1)

The Continuous Wavelet Transform (CWT) is provided by equation (4.1), where

x(t) is the signal to be analyzed, τ, s are translation and scale parameters respectively,

ψ(t) is a mother wavelet and ” ∗ ” denotes a complex conjugate.

All the wavelet functions used in the transformation are derived from the mother

wavelet through translation (shifting) and scaling [107]. The translation parameter

τ relates to the location of the wavelet function as it is shifted through the signal.

Thus, it corresponds to the time information in the Wavelet Transform. The scale

parameter s is defined as |1/frequency| and corresponds to the frequency information.

Scaling either dilates (expands) or compresses a signal. Large scales (low frequencies)

dilate the signal and provide detailed information hidden in the signal, while small

scales (high frequencies) compress the signal and provide global information about

the signal. The Discrete Wavelet Transform (DWT) [107], which is based on sub-band

coding, is found to yield a fast computation of the Wavelet Transform. It is easy to

implement and reduces the computation time and resources required. In the case of

DWT, a time-scale representation of the digital signal is obtained by using digital

filtering techniques. The signal to be analyzed is passed through filters with different

cutoff frequencies at different scales. The DWT is computed by successive low-pass

and high-pass filtering of the discrete time-domain signal. This is called the Mallat

algorithm or the Mallat-tree decomposition [94]. The Discrete Wavelet Transform is
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defined as follows

DWT (m,n) = 2
−m
2

∑
m

∑
n

x (n)ψ∗
(
t− n2m

2m

)
m,n ∈ Z (4.2)

At each level of decomposition, the high pass filter produces details, while the low

pass filter associated with scaling function produces approximations.

4.1.2 Wavelet Energy and Wavelet Entropy

4.1.3 Wavelet Energy

As stated previously, wavelet transform of a transient signal is expressed by multi-

resolution decomposition fast algorithm which utilizes the wavelet bases to decompose

the signal to components under different scales. It is equal to recursively filtering the

signal with a high-pass and low-pass filter pairs. The approximations are the high-

scale, that is low frequency components of the signal produced by filtering the signal

by a low-pass filter. The details are the low-scale, that is high frequency components

of the signal produced by filtering the signal by a high-pass filter. After each level

of decomposition, the sampling frequency is reduced by half. Then recursively one

decomposes the low-pass filter outputs (approximations) to produce the components

of the next stage.

Given a discrete signal x[n], that is being transformed at instant k and scale j,

it has a high-frequency component coefficient D[k] and a low-frequency component

coefficient A[k]. The frequency band of the information contained in the signal com-

ponents D[k] and A[k], obtained by reconstruction are as follows

Dj[k] : [2−(j+1)fs, 2
−jfs] (4.3)

Aj[k] : [0, 2−(j+1)fs] (4.4)

where fs is the sampling frequency. The original signal sequence x[n] can be repre-
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sented by the sum of all components as follows

x [n] = D1 [n] + A1 [n] = D1 [n] +D2 [n] + A2 [n] (4.5)

=
J∑

j=1

Dj [n] + AJ [n] (4.6)

The equation (4.5) indicates that in the first level of decomposition, x[n] is decom-

posed into approximation A1[n] and detail D1[n] and the next higher scale decom-

position is based on A1 [n] instead of x[n] i.e. in the next level of decomposition the

approximation A1[n] is decomposed into the detail D2[n] and approximation A2[n].

Since the wavelet bases are orthogonal, these decomposed signals could be regarded

as a direct estimation of local energies at different scales.

Thus, the wavelet energy of detail and approximation components at instant k

and scale j will be represented as follows

Ej,k = |Dj[k]|2 k = 1, 2, ..., N (4.7)

EJ+1,k = |AJ [k]|2 k = 1, 2, ..., N (4.8)

where N denotes the number of samples data at scale j.

The wavelet energy at each scale could be described as

Ej =
N∑
k=1

Ej,k j = 1, 2, ..., J + 1 (4.9)

where (J+1) scale denotes the approximation component. The total wavelet energy

is defined as

Etot =
J+1∑
j=1

Ej (4.10)

4.1.4 Wavelet Entropy

The concept of entropy is derived from thermodynamic entropy, which can be seen as

a measure of the degree of system chaos. Entropy is a common concept in many fields.

In mathematics, entropy is used to measure the uncertainty of problems. While in the
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information science, entropy is the average uncertainty of the information source. In

other word, entropy is a measure of irregularity of states such as imbalance and uncer-

tainty. A method for measuring the entropy appears as an ideal tool for quantifying

the ordering of non-stationary signals. In the information field, Shannon entropy [93]

represents the degree of chaos of a system. It provides an efficient criterion for an-

alyzing and comparing probability distributions. The Shannon entropy is defined as

follows:

Given a random variable X which takes a finite number of possible values x1, x2, ..., xn

with probabilities p1, p2, ..., pn, respectively, the Shannon entropy is defined as [97]:

H(X) = −
n∑

i=1

pilog(pi) (4.11)

The concept of wavelet entropy is inherited from the Shannon entropy. When a

fault appears in the diagnostic signal, the amplitude and frequency of the diagnostic

signal will change as the system changes from the normal state to the faulty state.

The Shannon entropy will change accordingly. Wavelet combined entropy [93] can

make full use of localized features at the time-frequency domains as wavelet analysis

deals with unsteady signals and can embody the ability where the information entropy

manifests the signal information.

Therefore, wavelet entropy not only can achieve the purpose of information emer-

gence, but also can analyze faulty signals more efficiently. Many types of wavelet

entropies have been defined [93] to solve different problems, and these methods can

achieve good detection and recognition performance. In this work, the Shannon en-

tropy is used to extract the features from signals.

The definition of Shannon entropy is as follows [93]

Entropy = −
∑
k

Ej,k logEj,k (4.12)

where Ej,k is the wavelet energy spectrum at scale j and at the instant k.
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Window-Wavelet Entropy Approach

The wavelet entropy represents the degree of chaos of the measured signal which can

provide useful information about the underlying state of the system. However, in

critical circumstances, such as reaction wheel operation in a satellite, actuator faults

should be detected immediately.

Gathering a large amount of data and performing a post-analysis is not prac-

tical. Therefore, the traditional wavelets transform needs to be improved for real-

time wavelet analysis. To provide a real-time fault detection, window wavelet tech-

nique is added to the diagnostic basis signal. To obtain the real-time wavelet en-

tropy of x(n) at instant k, a window of the time series must be picked out, i.e.

xw(n) = x(k−W + 1), ..., x(k) where k−W + 1 � 0, n = k−W + 1, k−W + 2, ..., k

and W is the width of the window. When a higher value for W is chosen more

information could be obtained, however, this implies more storage and calculations.

Therefore, the proper value of W must be considered. By selecting a proper value for

W, wavelet decomposition of a signal is produced as

xw(n) = AwJ(n) +
J∑

j=1

Dwj(n) n = k −W + 1, ..., k (4.13)

As defined in equations (4.9) and (4.10), the wavelet energy at each scale and total

wavelet energy is defined as

Ewj =
k∑

n=k−w+1

|AwJ(n)|2 +
J∑

j=1

k∑
n=k−w+1

|Dwj(n)|2 j = 1, 2, ..., J + 1 (4.14)

Ewtotal =
J+1∑
j=1

Ewj j = 1, 2, ..., J + 1 (4.15)

The relative wavelet energy is now defined as follows

Pj =
Ewj

Ewtotal

j = 1, 2, ..., J + 1 (4.16)

In equation (4.16), Pj represents the distribution of wavelet energy at different scales.
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According to equation (4.11) and (4.16), the wavelet entropy (WE) for each window

is now defined as follow

WE = −
J+1∑
j=1

Pjlog(Pj) (4.17)

4.2 Wavelet-Entropy Fault Detection Scheme

4.2.1 Proposed Fault Detection Algorithm

In our proposed fault detection scheme, wavelet entropy is used for spacecraft fault

detection. The main objective of wavelet analysis is to decompose signals into several

frequency bands. For the analysis of signals using discrete wavelet transform, selection

of appropriate wavelet and the number of decomposition levels are very important.

During the occurrence of faults, the amplitude and frequency characteristics of the

signal will change and the entropy will change accordingly. Wavelet combined entropy

can make full use of localized features at time-frequency domains.

The first step in the fault detection scheme is generating diagnostic signal that

must be monitored for fault detection purposes. In our proposed fault detection

scheme, the absolute attitude measurements in a satellite in terms of quaternion

parameters are considered. The proposed wavelet entropy fault detection scheme is

described as follows

• Diagnostic Signals: In the first step of our fault detection approach, the abso-

lute attitude measurements in a satellite in terms of quaternion parameters are

considered as monitored signals for fault detection purposes. In this step the

quaternion signals; q1, q2, q3 are considered for the next step.

• Window Discrete Wavelet Transform (WDWT): In this step, diagnostic signals

are decomposed into details and approximation coefficients using the WDWT

technique. In the WDWT technique, the proper window size must be selected.

When a higher value for window size is chosen more information could be ob-

tained, however, this implies more storage and calculations. Therefore, a proper

value of window size must be considered. In our simulations Daubechies wavelet
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[107,116] is selected and the number of decomposition levels for fault detection

step was chosen to be 2.

• Sum of Absolute Wavelet Entropy (SAWE): In this step, for each diagnostic

signal, the absolute wavelet entropy (AWE) of the produced coefficients is cal-

culated and then these absolute entropies are summed. In this step the SAWE

for each window is calculated as follows

SAWE =
4∑

i=1

abs

− J+1∑
j=1

Pjlog(Pj)

 (4.18)

where J is the decomposition level of the wavelet transform. In our simulations

we set J = 2.

• Fault Detection: The fault detection is accomplished by comparing the value

of the SAWE to a defined threshold. The fault will be detected if the SAWE

passes the threshold. Otherwise, the satellite is determined to be in a normal

or healthy condition.

In our fault detection scheme, in order to prevent false alarms due to noise in

the system when the SAWE passes a threshold, there is a time delay for declaring

the faulty condition by the fault diagnosis module, i.e. when the SAWE passes the

thresholds and this condition remains for period of σ seconds, then the faulty condition

is established. However, this delay may result in the fault detection times to become

longer but it prevents it from generating false alarms in our fault diagnosis system.

4.2.2 Time-varying Threshold Technique

Robustness in fault detection systems is the essential property that is required for

operation in the presence of disturbances and noise while maintaining sensitivity to

faults. This robustness could be achieved by defining time-varying thresholds [120] in

a fault detection scheme. In our proposed fault detection algotithm instead of using

fix thresholds, time-varying thresholds are considered. In our proposed method, two
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time-varying thresholds are considered to cover the monitored signal. These time-

varying thresholds consist of a filter, with leads the behavior that is driven by the

diagnostic signal. Figure 4.1 illustrates the schematic of the time-varying threshold

technique that is utilized.

Figure 4.1: Generation of a time-varying thresholds [120].

In this schematic, δ1 and δ2 denote the sensitivity parameters that are used to

adjust the thresholds and T1 and T2 are constants that are determined in the healthy

condition of a satellite. For the threshold, the parameters δ1, δ2, T1 and T2 are defined

by comparing the SAWE of a satellite under different healthy scenarios. After these

parameters are calculated the thresholds are calculated online in real-time. Under

the healthy scenario, the values for δ1 and δ2 are defined so that these values produce

two thresholds to cover the signals and detect faults in the system.

When the fault is injected in the reaction wheel, the SAWE of the satellite changes

and if it passes the threshold, in this condition the fault is said to be detected. The
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flow chart of our proposed fault detection algorithm is illustrated in Figure 4.2.

4.3 Characterization of Possible Fault Scenarios in

Reaction Wheels

In order to be able to develop the fault detection algorithm and to inject faults in

the ACS, the potential sources of faults in the reaction wheels must be identified.

Extensive experimental experience with reaction wheels in different satellite missions

has revealed that the following potential failures may occur in these actuators, namely

• Unexpected changes in the Bus Voltage (Vbus);

• Unexpected changes in the motor current (Im); and

• Viscous temperature faults.

There are three possible fault scenarios in the reaction wheel actuators and for each

fault scenario the proposed fault detection algorithm is performed to verify the capa-

bility of our proposed fault detection algorithm in the ACS of a satellite.

4.4 Simulation of the Reaction Wheel Operation

The simulations performed in this thesis have been implemented in Matlab and

Simulink. Using the high-fidelity mathematical model of the reaction wheel pre-

sented in Chapter 3, we have simulated the reaction wheel behavior for the generated

torque in a satellite. It is important to note that in order to perform fault analysis,

the absolute attitude measurements of a satellite in terms of quaternion parameters

is used as a diagnostic signal and the reaction wheel itself, though being an actuator

of the ACS, is not considered as the system being monitored directly.

In our simulations three reaction wheels are used in a 3-axis stabilized satellite

for the attitude control and in order to detect faults one fault analysis module need

to be dedicated for health monitoring in the ACS of the satellite. It is important to
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Measure diagnostic signals from
the attitude measurements

Perform the WDWT for
each diagnostic signal

Calculate the absolute wavelet
entropy for each diagnostic signal

Calculate the sum of abso-
lute wavelet entropy (SAWE)

The satellite operates
under healthy condition

SAWE > thresholdupper
or

SAWE < thresholdlower

The satellite operates
under faulty condition

no

yes

Figure 4.2: Flow chart of the proposed fault detection algorithm.
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note that in our simulations all fault validation results are obtained with a Gaussian

random noise for the attitude measurements.

Table 4.1: Simulation parameters for a satellite.
Parameters Value
Weight 120 Kg

Inertia Moment Ix = 9.8, Iy = 9.7, Iz = 9.75 Kgm2
Orbit 680 Km

Orbital attitude period 97 min
Initial Euler Angles [2,6,4]
Desired Euler Angles [15,25,50]

Desired angular velocity [0,0,0]

Our simulation data are obtained from the closed-loop ACS simulation of a 3-axis

stabilized LEO satellite. The simulations are carried out for 1000 sec of the ACS

operation and the simulated LEO satellite was in an altitude of about 680 km. The

simulation parameters are shown in Table 4.1.

4.4.1 Reaction Wheel Operation in the Healthy Condition

In the healthy (normal) condition, the reaction wheel works with its nominal speci-

fications and generates proper torque for a satellite. The parameters δ in threshold

formula is calculated based on the results under this condition, i.e. the process of de-

termining proper threshold is based on different operation of a satellite under healthy

conditions.

In order to determine the proper value for δ, different attitude missions in a

satellite in healthy operation condition are considered and the average of SAWEs for

each mission is calculated. By considering these SAWEs in the healthy operation

condition in a satellite the δ1 and δ2 are defined. These attitude missions and the

average of SAWEs for each mission are illustrated in Table 4.2.

In our simulations in this section the parameters δ1, δ2, T1 and T2 are chosen as:

δ1 = 0.00182 δ2 = 0.00165 T1 = 6 T2 = 0.4
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Table 4.2: The average of SAWEs in different attitude missions in healthy operation
condition in a satellite.
Desired attitude Average of the SAWEs Desired attitude Average of the SAWEs

[24, 209, 168] 1.7572 e-3 [89, 25, 17] 1.7840 e-3
[160, 110, 31] 1.7620 e-3 [43, 13, 80] 1.7885 e-3
[355, 126, 200] 1.7674 e-3 [340, 130, 300] 1.7945 e-3
[297, 303, 290] 1.7437 e-3 [30, 310, 45] 1.7802 e-3
[97, 257, 35] 1.7400 e-3 [124, 44, 19] 1.7913 e-3

[341, 166, 350] 1.7423 e-3 [90, 0, 0] 1.7900 e-3
[15, 40, 76] 1.7541 e-3 [173, 137, 86] 1.7873 e-3
[72, 64, 56] 1.7557 e-3 [45, 45, 45] 1.7799 e-3

[84, 279, 159] 1.7563 e-3 [20, 333, 31] 1.7535 e-3
[85, 66, 164] 1.7767 e-3 [0, 90, 0] 1.7605 e-3
[30, 45, 60] 1.7839 e-3 [180, 100, 57] 1.7617 e-3
[82, 3, 23] 1.7818 e-3 [0, 0, 90] 1.7567 e-3
[50, 29, 13] 1.7414 e-3 [22, 145, 35] 1.7590 e-3

[114, 227, 120] 1.7603 e-3 [10, 25, 90] 1.7619 e-3
[33, 89, 165] 1.7585 e-3 [30, 30, 30] 1.7609 e-3

[108, 130, 207] 1.7664 e-3 [43, 80, 34] 1.7577 e-3
[62, 11, 83] 1.7616 e-3 [12, 25, 46] 1.7594 e-3

[39, 103, 331] 1.7634 e-3 [90, 90, 90] 1.7706 e-3
[15, 25, 50] 1.7621 e-3 [67, 87, 69] 1.7823 e-3
[41, 60, 18] 1.7813 e-3 [13, 83, 41] 1.7734 e-3
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It is important to note that the fault analysis in a satellite is performed in steady state.

In our simulations the satellite has reached its steady state condition after t = 300sec,

hence the parameters δ1 and δ)2 are chosen based on the steady state charactristics of

a system. Due to noise in the satellite attitude measurements, if we chose the smaller

values for δ1 and δ2, the false alarms are increased in a monitored system, however

larger values for these parameters can decrease the ability of detecting low severity

faults in the reaction wheel. The time delay parameter σ is chosen as σ = 10 sec.

Figure 4.3: SAWE of a satellite under the healthy condition.

The SAWE of a satellite under a healthy condition and the thresholds are illus-

trated in Figure 4.3. As mentioned before, the window wavelet entropy technique is

used in our proposed scheme and SAWE is calculated for each window. In our sim-

ulations the window size is selected as W = 350. If the lower values for window size

are selected, some faults cannot be detected in the reaction wheel and if the higher

values are selected the computations and storage capacity becomes more complex and

larger. The comparison between different window sizes will be illustrated in Section

4.5.
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4.4.2 Reaction Wheel Operation under Bus Voltage Fault Sce-

nario

In this fault scenario, low bus voltage condition is considered as a fault in a reaction

wheel. In order to simulate this fault scenario, bus voltage is dropped by 25%, 26%,

27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39% and 40% from

its nominal value (Nominal value =24 volt). These faults are injected to a reaction

wheel in the steady state condition at t = 600sec.

Figure 4.4: SAWE of the satellite for a 27% drop in the bus voltage.
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Figure 4.5: SAWE of the satellite for a 28% drop in the bus voltage.

Figure 4.6: SAWE of the satellite for a 29% drop in the bus voltage.
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Figure 4.7: SAWE of the satellite for a 30% drop in the bus voltage.

Figure 4.8: SAWE of the satellite for a 33% drop in the bus voltage.

The SAWE of the satellite in this fault scenario is illustrated in Figures 4.4, 4.5,

4.6, 4.7 and 4.8.

As the results in these figures indicate, when the bus voltage is dropped by 27%,
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the SAWE didn’t pass the threshold and in these cases the fault is not detected. When

the bus voltage dropped by 28% the SAWE passes the thresholds but the system has

false alarm and when the bus voltage is dropped by at least 28%, the SAWE is changed

consequently and has passed the threshold, hence the fault is detected.

Table 4.3: Fault detection time in bus voltage fault scenario.

Percentage drop

in bus voltage

Fault injection

time (second)

Fault detection

time (second)

25 600 Not detected

26 600 Not detected

27 600 Not detected

28 600 Not detected

29 600 647

30 600 647

31 600 644

32 600 642

33 600 641

34 600 640

35 600 639

36 600 638

37 600 638

38 600 637

39 600 636

40 600 636

The fault detection times are indicated in Table 4.3. The results in Table 4.3

indicate that our proposed fault detection scheme can detect at least 29% drop in bus

voltage faults in a short and proper time period, however for lower than 29% drop in

the bus voltage this scheme can not detect the injected faults.
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4.4.3 Reaction Wheel Operation under Motor Current Fault

Scenario

The generated motor current from the motor control torque block is proportional to

the torque command voltage and the current is converted into torque through the

motor torque gain Kt. Therefore, any injected fault in the motor torque gain will

be reflected directly as fluctuations in the motor current and as result in the motor

torque.

Figure 4.9: SAWE of the satellite for a 4% drop of the motor gain torque in the

reaction wheel.
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Figure 4.10: SAWE of the satellite for a 6% drop of the motor gain torque in the

reaction wheel.

Figure 4.11: SAWE of the satellite for a 8% drop of the motor gain torque in the

reaction wheel.
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Figure 4.12: SAWE of the satellite for a 10% drop of the motor gain torque in the

reaction wheel.

Figure 4.13: SAWE of the satellite for a 16% drop of the motor gain torque in the

reaction wheel.
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Figure 4.14: SAWE of the satellite for a 20% drop of the motor gain torque in the

reaction wheel.

In the motor current fault scenario, the motor torque gain Kt of the reaction

wheel is changed as an injected fault. In this fault scenario in order to simulate

motor current fault, the motor torque constant Kt is dropped by 2%, 4%, 6%, 8%,

10%, 12%, 14%, 16%, 20%, 25%, 30% and 35% of its nominal value (nominal value

of Kt = 0.029) at t = 600sec. The SAWEs of the satellite in this fault scenario are

illustrated in Figures 4.9, 4.10, 4.11, 4.12, 4.13 and 4.14.
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Table 4.4: Fault detection time in motor current fault scenario.
Percentage drop

in motor gain

torque

Fault injection

time (second)

Fault detection

time (second)

2 600 Not detected

4 600 Not detected

6 600 Not detected

8 600 656

10 600 653

12 600 651

14 600 648

16 600 647

20 600 646

25 600 646

30 600 645

35 600 645

The fault detection times are indicated in Table 4.4. The results indicate that

this fault detection scheme can detect at least 8% drop in motor gain torque in the

reaction wheel in a reasonable time period, however for lower drop in the motor gain

torque, this scheme can not detect faults in the reaction wheel.
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4.4.4 Reaction Wheel Operation under Viscous Temperature

Fault Scenario

Figure 4.15: SAWE of the satellite for a 16% drop in the τv under viscous temperature

fault scenario.

Figure 4.16: SAWE of the satellite for a 18% drop in the τv under viscous temperature

fault scenario.
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Figure 4.17: SAWE of the satellite for a 20% drop in the τv under viscous temperature

fault scenario.

Figure 4.18: SAWE of the satellite for a 25% drop in the τv under viscous temperature

fault scenario.
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Figure 4.19: SAWE of the satellite for a 30% drop in the τv under viscous temperature

fault scenario.

Figure 4.20: SAWE of the satellite for a 35% drop in the τv under viscous temperature

fault scenario.
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Due to the unknown working environment of the reaction wheel in a satellite in outer

space the friction model is designed to work under a limited range of temperature.

Since the bearing viscosity is temperature dependent, in the fiction model of the

reaction wheel therefore any fluctuation in the temperature will be reflected as fluc-

tuations in the drag torque. In the reaction wheel, according to equation (3.23) any

change in τv is related to a change in the reaction wheel torque. Thus in this fault

scenario the value of the viscous friction τv decrease 3%, 5%, 7%, 10%, 12%, 14%,

16%, 18%, 19%, 20%, 25%, 30%, 35% and 40% of its value under a normal condition.

Figures 4.15, 4.16, 4.17, 4.18, 4.19 and 4.20 illustrate the SAWE in this fault condition

for a satellite and the fault detection times are indicated in Table 4.5.

Table 4.5: Fault detection time in viscous temperature fault scenario.

Percentage drop

in viscous fric-

tion τv

Fault injection

time (second)

Fault detection

time (second)

3 600 Not detected

5 600 Not detected

7 600 Not detected

10 600 Not detected

12 600 Not detected

14 600 Not detected

16 600 Not detected

18 600 Not detected

20 600 655

25 600 650

30 600 648

35 600 646

40 600 645

As the rsults in Table 4.5 show, the proposed algorithm is capable of detecting at

least 20% drop in the viscous friction in a proper time period, however this scheme
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can not detect lower drop in the viscous friction in the reaction wheel.

4.5 Window Size Effects on Fault Detection

As mentioned earlier, in our simulations the window size is selected as 350. Table 4.6

illustrate the fault detection time for different values of window in our simulations.
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Table 4.6: Comparison of different window sizes in the fault detection performance.

Window size Injected fault in t = 600sec Fault detection time (second)

50 29% drop in bus voltage Not detected

100 29% drop in bus voltage Not detected

150 29% drop in bus voltage 667

200 29% drop in bus voltage 660

250 29% drop in bus voltage 652

300 29% drop in bus voltage 647

350 29% drop in bus voltage 647

400 29% drop in bus voltage 647

450 29% drop in bus voltage 647

50 8% drop in motor torque gain Not Detected

100 8% drop in motor torque gain Not Detected

150 8% drop in motor torque gain Not Detected

200 8% drop in motor torque gain 679

250 8% drop in motor torque gain 668

300 8% drop in motor torque gain 663

350 8% drop in motor torque gain 656

400 8% drop in motor torque gain 656

450 8% drop in motor torque gain 656

50 20% drop in viscous friction Not detected

100 20% drop in viscous friction Not detected

150 20% drop in viscous friction Not detected

200 20% drop in viscous friction Not detected

250 20% drop in viscous friction 673

300 20% drop in viscous friction 664

350 20% drop in viscous friction 655

400 20% drop in viscous friction 655

450 20% drop in viscous friction 655
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By considering the results in Table 4.6, the window size for fault diagnosis is

selected as W=350.

4.6 Confusion Matrix Approach for Fault Detection

In order to evaluate the performance of the proposed fault detection algorithm, the

confusion matrix [110] approach is used. A confusion matrix consists of four elements,

namely the true positive, the true negative, the false positive, and the false negative

which are defined as follows

• True positive (t.p.): The number of samples detected as healthy while the

satellite is operating in the healthy mode.

• True negative (t.n.): The number of samples detected as faulty while the satellite

is operating in the faulty mode.

• False negative (f.n.): The number of samples detected as healthy while the

satellite is operating in the faulty mode.

• False positive (f.p.): The number of samples detected as faulty while the satellite

is operating in the healthy mode.

For each fault scenario a confusion matrix is calculated and the two parameters

of accuracy and precision are calculated to evaluate the performance of the fault

detection scheme. These two parameters are defined as follows

Precision =
t.n.

t.n.+ f.n.

Accuracy =
t.p.+ t.n.

t.p.+ t.n.+ f.p.+ f.n.
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Table 4.7: Confusion matrix for the bus voltage fault scenario.

Percentage

drop in bus

voltage

t.n. t.p. f.n. f.p. Accuracy Precision

25 N/A N/A N/A N/A N/A N/A

26 N/A N/A N/A N/A N/A N/A

27 N/A N/A N/A N/A N/A N/A

28 28 50 16 0 78% 56%

29 42 50 8 0 92% 84%

30 44 50 6 0 94% 88%

31 45 50 5 0 95 % 90%

32 47 50 3 0 97 % 94%

33 49 50 1 0 99 % 98%

34 50 50 0 0 100 % 100%

35 50 50 0 0 100 % 100%

36 50 50 0 0 100 % 100%

37 50 50 0 0 100 % 100%

38 50 50 0 0 100 % 100%

39 50 50 0 0 100 % 100%

40 50 50 0 0 100 % 100%

For a total number of 100 simulations for each fault scenario the confusion matrices

are produced. The confusion matrix for bus voltage fault scenario is illustrated in

Table 4.7. As the results show the proposed method is capable of detecting 29% drop

in the bus voltage with 78% accuracy and 56% precision, but it cannot detect lower

drops in the bus voltage in the reaction wheel.
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Table 4.8: Confusion matrix for motor current fault scenario.
Percentage drop

in motor torque

gain Kt

t.n. t.p. f.n. f.p. Accuracy Precision

2 N/A N/A N/A N/A N/A N/A

4 N/A N/A N/A N/A N/A N/A

6 N/A N/A N/A N/A N/A N/A

8 30 50 20 0 80% 60%

10 34 50 16 0 84% 68%

12 37 50 13 0 87% 74%

14 39 50 11 0 89% 78%

16 43 50 7 0 93 % 86%

20 46 50 4 0 96 % 92%

25 48 50 2 0 98 % 96%

30 50 50 0 0 100 % 100%

35 50 50 0 0 100 % 100%
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Table 4.9: Confusion matrix for viscous temperature fault scenario.

Percentage drop

in viscous fric-

tion τv

t.n. t.p. f.n. f.p. Accuracy Precision

3 N/A N/A N/A N/A N/A N/A

5 N/A N/A N/A N/A N/A N/A

7 N/A N/A N/A N/A N/A N/A

10 N/A N/A N/A N/A N/A N/A

12 N/A N/A N/A N/A N/A N/A

14 N/A N/A N/A N/A N/A N/A

16 N/A N/A N/A N/A N/A N/A

18 N/A N/A N/A N/A N/A N/A

20 31 50 19 0 81% 62%

25 35 50 15 0 85% 70%

30 41 50 9 0 91% 82%

35 46 50 4 0 96% 92%

40 49 50 1 0 99% 98%

Tables 4.8 and 4.9 indicate the confusion matrix values for the second and third

fault scenario, respectively. As the results in Table 4.8 show, the value of the precision

in the motor current fault scenario for 8% drop in the motor torque gain is not suitable

for fault detection purposes and also the proposed fault detection method cannot

detect motor current faults lower than 8% drop in Kt. In the third fault scenario, as

indicated in Table 4.9, the values of the precision for 20% drop in the viscous friction

are not satisfying the fault detection purpose and this fault detection method cannot

detect low severity faults in the viscous temperature fault scenario.
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4.7 Spacecraft-level Fault Isolation

When a fault is detected in a satellite, the next step is to isolate the fault. The

goal of the fault isolation is to determine the faulty reaction wheel in a satellite, i.e.

determine which reaction wheel in a x-axis, y-axis or z-axis of a satellite has a fault.

In order to isolate the fault in a satellite, the absolute angular velocity measurements

of a satellite are chosen as diagnostic signals in our fault isolation scheme. Therefore,

for fault isolation the diagnostic signals are ωx, ωy, ωz in a satellite.

Our proposed fault isolation scheme utilizes the relative wavelet energy (RWE)

technique as diagnostic signals. In order to determine the RWEs, first the diagnostic

signals are decomposed by using discrete wavelet transform and details and approxi-

mation coefficients are produced. In the next step, according to equation (4.16) the

RWEs of these coefficients are calculated. For L level of decomposition in each diag-

nostic signal, one has L relative wavelet energy with respect to detail coefficients and

one relative wavelet energy with respect to approximation coefficient. In our proposed

scheme, the level of decomposition for fault isolation is chosen as 1. For higher levels

of decomposition, the computation becomes more complex and it is required more

storage, hence L=1 is a proper level of decompostion for the proposed fault islation

scheme.

Table 4.10 illustrate the average of the RWEs of the angular velocity measurements

in three axe of a satellite under different fault scenarios. As this table shows, if the

fault occurs in one axis, the RWE of the approximation coefficients are increased in

that axis and the RWE of the other approximation coefficients do not change. Hence,

by considering the RWE of the approximation coefficients one can isolate the fault in

a satellite. Since the bus voltage is common in three reaction wheels, therefore the

RWEs of the approximation coefficients of the three axes are changed.
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Table 4.10: Average of the RWEs of the angular velocity measurements in a satellite.

Fault scenario ωx ωy ωz

Bus voltage [0.9921 0.0079] [0.9922 0.0078] [0.9920 0.008]

Motor current in x-axis [0.9391 0.0609] [0.5233 0.4768] [0.5233 0.4768]

Viscous temperature in x-axis [0.9792 0.0208] [0.5233 0.4768] [0.5233 0.4768]

Motor current in y-axis [0.5233 0.4768] [0.9443 0.0557] [0.5233 0.4768]

Viscous temperature in y-axis [0.5233 0.4768] [0.9797 0.203] [0.5233 0.4768]

Motor current in z-axis [0.5233 0.4768] [0.5233 0.4768] [0.9434 0.0566]

Viscous temperature in z-axis [0.5233 0.4768] [0.5233 0.4768] [0.9794 0.0206]

As the results in Table 4.10 indicate, we can isolate the fault in a satellite by

considering the change of the RWEs of the approximation coefficients. In order to

isolate the fault, we define the threshold for the RWEs of each diagnostic signal. If

the RWE of the ωx passes its threshold the fault has occurred in x-axis of a satellite, if

the RWE of the ωy passes its threshold the fault has occurred in y-axis and similarly

if the RWE of the ωz passes its threshold the fault has occurred in z-axis of a satellite.

If all RWEs of all three ωx, ωy, ωz pass their thresholds the bus voltage fault condition

is determined in the three axes of a satellite.

In order to define the threshold for each angular velocity measurements, the RWEs

in healthy condition are considered and according to thresholds scheme in Figure

4.1 the parameter δ is defined, and then the threshold is calculated online. Table

4.11 indicates the values of the RWEs in healthy condition for each angular velocity

measurements in a satellite.

The value of δ for fault isolation scheme is selected as δ = 0.32 and the param-

eters T1 and T2 are selected as T1 = 5, T2 = 0.4. The RWE of the approximation

coefficients in three axes of a satellite and the thresholds, under three fault scenar-

ios are illustrated in Figures 4.21, 4.22, 4.23, 4.24, 4.25, 4.26 and 4.27. As seen in

these figures, the fault can be isolated by considering the RWEs of the approximation

coefficients of the diagnostic signals.
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Figure 4.21: The RWEs of the approximation coefficients for three angular velocity

measurement in a satellite under the bus voltage fault scenario. a = ωx, b = ωy and

c = ωz.
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Figure 4.22: The RWEs of the approximation coefficients for three angular velocity

measurements in a satellite under the motor current fault scenario in the x-axis.

a = ωx, b = ωy and c = ωz.
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Figure 4.23: The RWEs of the approximation coefficients for three angular velocity

measurements in a satellite under the viscous temperature fault scenario in the x-axis.

a = ωx, b = ωy and c = ωz.
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Figure 4.24: The RWEs of the approximation coefficients for three angular velocity

measurements in a satellite under the motor current fault scenario in the y-axis.

a = ωx, b = ωy and c = ωz.

83



Figure 4.25: The RWEs of the approximation coefficients for three angular velocity

measurements in a satellite under the viscous temperature fault scenario in the y-axis.

a = ωx, b = ωy and c = ωz.
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Figure 4.26: The RWEs of the approximation coefficients for three angular velocity

measurements in a satellite under the motor current fault scenario in the z-axis.

a = ωx, b = ωy and c = ωz.
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Figure 4.27: The RWEs of the approximation coefficients for three angular velocity

measurements in a satellite under the viscous temperature fault scenario in the z-axis.

a = ωx, b = ωy and c = ωz.

In order to evaluate the performance of the proposed fault isolation scheme, the

confusion matrix criteria is used. In the fault isolation, there are three classes for

three axes of a satellite, hence the confusion matrix for fault isolation is a 3 × 3

matrix. The confusion matrices for the fault isolation is defined as follows

Confusion Matrix (CM) =


cm11 cm12 cm13

cm21 cm22 cm23

cm31 cm32 cm33

 (4.19)

where

• cm11= Number of data in the x-axis that is correctly classified as the x-axis.
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• cm12=Number of data in the y-axis that is incorrectly classified as the x-axis.

• cm13=Number of data in the z-axis that is incorrectly classified as the x-axis.

• cm21=Number of data in the x-axis that is incorrectly classified as the y-axis.

• cm22=Number of data in the y-axis that is correctly classified as the y-axis.

• cm23=Number of data in the z-axis that is incorrectly classified as the y-axis.

• cm31=Number of data in the x-axis that is incorrectly classified as the z-axis.

• cm32=Number of data in the y-axis that is incorrectly classified as the z-axis.

• cm33=Number of data in the z-axis that is correctly classified as the z-axis.

The confusion matrix for fault isolation is illustrated in Table 4.12.

Table 4.12: Confusion matrix for the fault isolation.
Fault scenario cm11 cm12 cm13 cm21 cm22 cm23 cm31 cm32 cm33

Bus voltage 10 0 0 0 10 0 0 0 10

Motor current 10 0 0 0 10 0 0 0 10

Viscous temperature 10 0 0 0 10 0 0 0 10

The parameters accuracy for fault isolation is defined as follows

Accuracy =
cm11 + cm22 + cm33

3∑
j=1

3∑
i=1

cij

As the results in Table 4.12 show, the proposed fault isolation scheme can isolate the

faults in a satellite with a 100% classification accuracy.

4.8 Spacecraft-level Fault Identification

The next step after fault isolation is the fault identification. In this step the type of

the fault in a reaction wheel is determined, i.e. in this step it is determined that the
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fault belongs to which categories of faults (bus voltage, motor current and viscous

temperature).

Fault identification is also known as pattern classification problem. In the pattern

classification problem, the first and most important stage is feature extraction. In

our proposed fault identification scheme, the feature extraction is accomplished by

discrete wavelet transform and these features are classified by a multilayer percep-

tron neural network (MLPNN). In this scheme, the absolute attitude measurements

in a satellite (q1, q2, q3) are considered as diagnostic signals and the detail and ap-

proximation coefficients of the diagnostic signals are extracted as features in order to

identify the fault. Figure 4.28 illustrate the proposed scheme for fault identification

in a satellite. As this figure shows, two major tasks must be done in order to identify

the fault; feature extraction and pattern classification.

Figure 4.28: Proposed scheme for fault identification in a satellite.

4.8.1 Feature Extraction

The feature extraction in our proposed fault identification scheme is performed by

utilizing the detail and approximation coefficients of the diagnostic signals. For L

level of decomposition in each diagnostic signal, one has L detail coefficients and

one approximation coefficient. These L + 1 coefficients signals are used for pattern

classification purposes.

In the proposed fault identification scheme, the level of decomposition is chosen as

L=3. The entropy of the attitude measurements in different levels of decomposition

are demonstrated in Figure 4.29 and the values of the entropies are indicated in Table

4.13. As the entropies indicate, when we increase the level of decomposition from 3

88



to 4 and higher the value of the entropy for D1 are about 10 times bigger than the

entropy of the D4, D5 and D6. Hence, by increasing the level of decomposition from

3 to higher values the detail coefficients do not contain any useful information about

the signal. Therefore, the level of decomposition is selected as L=3. With 3 levels

of decomposition, there are one approximation and three detail coefficients that are

used for pattern classification in the next step.

Table 4.13: The value of the entropy of the attitude measurements for different levels

of decomposition.

Detail Coefficient L=1 L=2 L=3 L=4 L=5 L=6

D1 5.3234 e-5 5.3234 e-5 5.3234 e-5 5.3234 e-5 5.3234 e-5 5.3234 e-5

D2 N/A 1.9323 e-5 1.9323 e-5 1.9323 e-5 1.9323 e-5 1.9323 e-5

D3 N/A N/A 1.5501 e-5 1.5501 e-5 1.5501 e-5 1.5501 e-5

D4 N/A N/A N/A 5.5564 e-6 5.5564 e-6 5.5564 e-6

D5 N/A N/A N/A N/A 3.1473 e-6 3.1473 e-6

D6 N/A N/A N/A N/A N/A 2.5748 e-6
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(a) L = 2

(b) L = 3 (c) L = 4

(d) L = 5 (e) L = 6

Figure 4.29: The entropy of the detail coefficients of the attitude measurements for

different levels of decomposition.
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4.8.2 Pattern Classification

The pattern classification in our proposed fault identification scheme is performed by

utilizing the multilayer perceptron neural network (MLPNN). The ability of neural

networks in pattern classification makes it as a powerful method for fault identification

purposes.

Neural Networks as a Pattern Classifier

In the classification problem an object needs to be assigned into a predefined class

based on a number of observed attributes related to that object. Neural networks

have emerged as an important tool for pattern classification. The recent vast research

activities in neural network classification have established that neural networks are a

promising alternative to various conventional classification methods. The advantages

of neural networks in the classification problem are described as follows:

• Neural networks are data driven self-adaptive methods and they can adjust

themselves to the data without any explicit specification of the functional or

distributional form for the underlying model, and

• Neural networks are nonlinear models, which make them flexible in modeling

real world complex relationships.

4.8.3 Proposed Scheme for Fault Identification

For fault identification, as mentioned before, the detail and approximation coefficients

of the DWT of the attitude measurements in a satellite are considered as inputs for

MLPNN. With L=3 levels of decomposition, there are 3 detail coefficients and 1

approximation coefficient for each diagnostic signal, hence there are 12 coefficients

with respect to q1, q2, q3 in a satellite. The output of the MLPNN are three fault

scenarios in the reaction wheel. Hence, the MLPNN in fault identification scheme

has 3 neurons as outputs. The proposed MLPNN for the fault identification has 12

inputs, 12 neurons in the hidden layer and 3 neurons as outputs. The three fault
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Table 4.14: Assigned classes for fault scenarios of the MLPNN.
Fault Scenario Assigned Class
Bus Voltage 0 0 1

Motor Current 0 1 0
Viscous Temperature 1 0 0

scenarios in the reaction wheels that are assigned for three classes in outputs of the

MLPNN are shown in Table 4.14.

The learning algorithm that is used in the MLPNN is back-propagation algorithm

and the learning rate for the MLPNN is chosen to be 0.005 and the activation functions

for hidden layers are selected as hyperbolic tangent and for the output layer is selected

as linear functions.

The data sets that are used for training, validating and testing the MLPNN are

obtained from detail and approximation coefficients of the diagnostic signals and these

data are normalized and fed into the neural networks for training step. Figure 4.30

illustrate the training performance of the network in terms of the root mean square

error (mse).
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Figure 4.30: Performance of proposed MLPNN learning for fault identification.

After the training step, the network is validated and tested with new data sets

to ensure the consistency in the performance of the network. Table 4.15 shows the

outputs of the MLPNN for the three fault scenarios in a faulty reaction wheel. In

order to evaluate the performance of the MLPNN for fault isolation, the confusion

matrix criterion is used.
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Table 4.15: Outputs of the MLPNN for fault identification.

Actual output Network output

0 0 1 0.0189 0.0753 0.9058

0 1 0 0.9901 -0.0098 0.0197

1 0 0 0.9901 -0.0099 0.0197

0 0 1 0.0197 -0.0097 0.99

0 1 0 0.0093 0.9814 0.0093

0 1 0 0.9603 0.0202 0.0194

0 0 1 0.0197 -0.0097 0.99

In the fault identification problem, there are three classes for three types of faults,

hence the confusion matrix for the fault identification is a 3 × 3 matrix. Similar to

the fault isolation case, the confusion matrix for the fault identification is defined as

follows

Confusion Matrix (CM) =


cm11 cm12 cm13

cm21 cm22 cm23

cm31 cm32 cm33

 (4.20)

where

• cm11=Number of data in the class 1 that is correctly classified as the class 1.

• cm12=Number of data in the class 2 that is incorrectly classified as the class 1.

• cm13=Number of data in the class 3 that is incorrectly classified as the class 1.

• cm21=Number of data in the class 1 that is incorrectly classified as the class 2.

• cm22=Number of data in the class 2 that is correctly classified as the class 2.

• cm23=Number of data in the class 3 that is incorrectly classified as the class 2.

• cm31=Number of data in the class 1 that is incorrectly classified as the class 3.
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• cm32=Number of data in the class 2 that is incorrectly classified as the class 3.

• cm33=Number of data in the class 3 that is correctly classified as the class 3.

where for the fault identification problem, class 1 refers to the bus voltage fault, class

2 refers to the motor current fault and the class 3 refers to the viscous temperature

fault.

Furthermore, the classification accuracy can be define as follows

Classification Accuracy =
Number of data that are correctly classified

Total number of data
(4.21)

The confusion matrix for the fault identification and the classification accuracy are

illustrated in Table 4.16.

Table 4.16: Confusion matrix for the fault identification.
cm11 cm12 cm13 cm21 cm22 cm23 cm31 cm32 cm33 Classification Accuracy

23 3 4 2 26 2 5 3 22 78.9%

As the results in Table 4.16 show, the proposed fault identification scheme can

identify the faults in a satellite with a 78.9% classification accuracy rate.

4.9 Conclusion

In this chapter, a wavelet-entropy algorithm developed to autonomously detect faults

in a reaction wheel actuators of a spacecraft. Our proposed fault detection scheme

requires data from the absolute attitude measurements of satellite. According to

the simulation results and confusion matrix evaluation criteria, it can be concluded

that the proposed fault detection scheme is capable of detect high-severity faults in

reaction wheel actuator, however our proposed fault detection scheme in not capable

of detecting low severity faults in the reaction wheel actuator. In order to isolate and

identify the faults in a satellite, the fault isolation and identification schemes were

proposed based on discrete wavelet transform (DWT), relative wavelet energy (RWE)
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and multilayer perceptron neural network (MLPNN). In the fault isolation scheme,

the features from diagnostic signals ( angular velocity measurements) are extracted

and by considering the RWE of the approximation coefficients with threshold the

fault is isolated. The fault identification is performed by obtaining the detail and

approximation of the diagnostic signals (attitude measurements) and utilize these

coefficients in an MLPNN for pattern classification. The results demonstrate that

our proposed fault isolation scheme can isolate the faults with a 100% accuracy,

however the proposed fault identification has a 78.9% classification accuracy rate. In

the following chapter, a formation-level fault detection, isolation and identification

(FDII) scheme based on relative attitude measurements and relative angular velocity

measurements will be proposed and the results will be compared with the spacecraft-

level FDII scheme.
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Chapter 5

Formation-level Fault Detection,

Isolation and Identification

Health monitoring in formation flying has an important and critical role in the space-

craft missions. It is obvious that formation of small spacecraft can perform the same

duties of a single large spacecraft when the coordination of those small spacecraft ful-

fills the mission’s requirements. Hence, detection of faults in actuators which could

result in loss of coordination is highly desirable. In Chapter 4 we have developed a

spacecraft-level fault detection, isolation and identification (FDII) scheme that was

based on wavelet entropy for health monitoring reaction wheel actuators of a single

spacecraft. The performance of our proposed fault detection scheme has been studied

under different faulty scenarios. Confusion matrix results showed that by considering

the absolute measurements in each satellite for fault detection, high-severity faults

could be detected, however in low-severity fault scenarios the precision of fault de-

tection is below requirements. Thus, development of an alternative fault detection

system in formation flying is desirable.

In this chapter a formation-level FDII approach for formation flying is devel-

oped based on relative attitude and angular velocity measurements. In our proposed

scheme, relative attitude and angular velocity measurements for each two neighboring

satellites are considered as diagnostic signals and wavelet entropy is employed to de-

tect faults in the spacecraft. An important advantage of this fault detection scheme is
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that only relative measurements are used to detect abnormalities in the actuators and

this fault detection method is independent with respect to absolute measurements in

each satellite.

5.1 Formation Flying Simulation Environment

As mentioned in Chapter 3, in our simulation in order to simulate formation of flying

spacecraft, a decentralized architecture is used to control a formation via virtual

structure and a bidirectional ring topology is used to communicate the coordination

variable instantiations, to bring each local instantiation into consensus.

Our simulations for the formation flying were developed in MATLAB and Simulink.

In our simulations, we consider four spacecraft that perform formation maneuver.

Each spacecraft in our simulation is distributed equally along a circle with a diameter

of 1000 meter in the plane. The parameters that were used in our simulations for the

formation flying of spacecraft are provided in Table 5.1.

Table 5.1: Simulation parameters for formation flying satellites.
Parameters Value

Satellite weight 120 Kg
Inertia moment for each satellite Ix = 9.8, Iy = 9.7, Iz = 9.75 Kgm2

Orbit 685 Km
Orbital Period 97 min

Initial Euler Angles for satellite 1 [5,3,2] deg
Initial Euler Angles for satellite 2 [8,1,6] deg
Initial Euler Angles for satellite 3 [2,4,7] deg
Initial Euler Angles for satellite 4 [1,6,4] deg

desired angular velocity for all satellites [0,0,0] rad
s

Desired Euler Angles [75,15,20] deg
Maximum relative distance 1000 m

From the control point of view, the goal of formation flying control law defined

in Chapter 3 is that the angular rotations and velocities of each spacecraft track a

set of desired angular rotations and velocities of the formation. Table 5.2 shows the

expected settling time and tracking errors that are used to evaluate the performance

of the formation flying control law. The simulations that are performed in this chapter
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have a final simulation time of 1000 sec.

Table 5.2: Expected settling time and tracking error in each satellite.
Variable Settling time (sec) Tracking error

q1 300 1e-03
q2 300 1e-03
q3 300 1e-03
ω1x 300 1e -5
ω1y 300 1e -5
ω1z 300 1e -5

Furthermore, the gains and parameters of the nonlinear controllers that are used

in equations (3.17) and (3.21) are indicated in Table 5.3.

Table 5.3: Controller gains for each satellite and virtual structure.
Parameter Value

KG 24I3×3
KS 24I3×3
KF 40I3×3
kq 40I3×3
kω 20I3×3

5.2 Proposed Formation-level Fault Detection Scheme

The formation-level fault detection is unique to multi platform missions. Individual

spacecraft in the formation are considered as different components of the formation

flying system. Therefore, at this level, fault detection is essentially the binary decision

determining whether or not any fault exists in the formation components, i.e., in one

or more satellites in the formation. At formation-level, fault detection is based on

relative attitude information. In this section, formation-level fault detection (FLFD)

approach is introduced and developed. In this approach, the spacecraft are in a ring

topology and each satellite has two neighbors. The definition of a neighbor is as

follows:

The satellite i is called a neighbor of satellite j, if satellite i receives attitude

information from satellite j and vice versa.
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For fault detection purposes, the similar steps that were used in Chapter 4 are

deployed. The difference between these two schemes is that in the formation-level

fault detection there are two relative diagnostic signals in each satellite that are used

for fault analysis. The proposed formation-level fault detection scheme is described

as follows:

• First, two relative signals in the fault analysis unit of each satellite are produced

with respect to each neighbors of a given satellite. These two relative signals

are the diagnostic signals of each spacecraft.

• The diagnostic signals are decomposed into details and approximation coeffi-

cients by using windowing discrete wavelet transform technique that is described

in Chapter 4.

• The wavelet entropy of the coefficients for each window is calculated and the

sum of the absolute wavelet entropy (SAWE) is calculated. In this step, there

are two SAWEs in the fault analysis unit of each satellite with respect to each

neighbor, the SAWE with respect to the neighbor left (SAWEnl) and the SAWE

with respect to the neighbor right (SAWEnr) of a given satellite.

• The two SAWEs are compared with time-varying thresholds thresholdnr and

thresholdnr defined as the threshold with respect to the neighbor left and the

threshold with respect to the neighbor right respectively. If two SAWEs in one

satellite have passed the threshold the fault will be detected and that satellite

is designated as the faulty satellite. These steps are illustrated in the flowchart

in Figure 5.1.

In order to analysis faults, first diagnostic signals must be produced in terms of the

quaternions parameters. To reach this goal, relative attitudes of each two neighbor’s

of a given satellite are calculated and stored in the fault analysis unit of a given

satellite. For instance; the relative attitude signals in the satellite 1 are produced as

follows:
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Measure diagnostic signals from
the relative attitude measurements

Perform the WDWT for
each diagnostic signal

Calculate the absolute wavelet
entropy for each diagnostic signal

Calculate the sum of absolute wavelet
entropy (SAWEnl and SAWEnr)

SAWEnl> thresholdnl(upper)
or

SAWEnl< thresholdnl(lower)

SAWEnr> thresholdnr(upper)
or

SAWEnr< thresholdnr(lower)

The satellite operates
under healthy condition

The satellite operates
under healthy condition

The satellite operates
under faulty condition

yes

no

yes

no

Figure 5.1: Flow chart of the proposed formation-level fault detection scheme.
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• Relative attitude in satellite 1 with respect to satellite 2 is Q1 −Q2

• Relative attitude in satellite 1 with respect to satellite 4 is Q1 −Q4

where satellite 2 and satellite 4 are the two neighbors of the satellite 1 and Q denoted

the attitude measurements of the satellites in terms of the quaternion parameters.

These relative signals are illustrated in Fig 5.2. In this figure, Qi represents the

quaternion parameters of the attitude measurements of the satellite i (i = 1, 2, 3, 4).

In the next step, the DWT is applied to these diagnostic signals to decompose

and produce details and approximation coefficients for each signal. Wavelet entropy

of these coefficients are calculated and sum of the absolute entropy is calculated for

each diagnostic signals as well. These SAWEs are compared with the time-varying

thresholds that are produced in each window and the fault will be detected if the two

SAWEs in each satellite have passed the thresholds. In formation-level fault detection

scheme, similar to Chapter 4, in order to prevent false alarm the time delay parameter

σ applied to our fault detection scheme. When the SAWEs passes the thresholds and

this condition remains for period of σ second, then the faulty condition is established.

In order to inject faults in the ACS and evaluate the proposed formation-level fault

detection scheme, the potential faults that were described in Chapter 4 are considered

below.

5.3 Formation Flying Simulation Results

As mentioned before, in our simulations we consider four spacecraft that perform

formation maneuver. We assume that the four spacecraft formation evolves like a

rigid structure, that is, the formation shape is preserved and each spacecraft preserves

a fixed relative orientation within the formation throughout the maneuvers. We

simulate a scenario where the four spacecraft start from rest with some initial position

and attitude errors and then perform a group rotation of desired attitude. Here,

we assume that each place holder in the formation has the same orientation, that

is, Q = [q1, q2, q3] is the same for each spacecraft. Since it is assumed that all four
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Figure 5.2: SAWEnl and SAWEnr in each fault analysis unit of four satellites in
formation.
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satellites are identical, hence in this section we show the simulation results for satellite

1 and these results are valid for the other satellites as well.

5.4 Simulation Results for the Healthy Scenario

Healthy scenario implies that the all the three reaction wheel actuators of each satellite

are working properly during the commanded maneuver. Similar to Chapter 4, in our

proposed FLFD scheme, we have used time-varying threshold technique to detect the

faults in the satellites. The thresholds in this scheme are produced similar to the

threshold scheme in Figure 4.1 in Chapter 4. The parameter δ must be defined under

the healthy condition of satellites. In order to define this parameter, different healthy

scenarios were simulated and by considering the SAWEs of the satellite in normal

condition the δ has been defined. Table 5.4 illustrate the different attitude missions

and the average of SAWEs of the satellite 1 in a formation flying mission under the

healthy condition.

In our simulations the parameters T1, T2, δ1 and δ2 are selected as:

δ1 = 3.172 δ2 = 3.038 T1 = 5 T2 = 0.4

The time delay parameter for fault detection is selected as σ = 10 sec. The

SAWEnl and SAWEnr for satellite 1 under the healthy condition and its thresholds

are illustrated in Fig 5.3.
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Table 5.4: The average of SAWEs in different attitude missions under the healthy
operation condition in the formation flying satellites.
Desired attitude Average of the SAWEs Desired attitude Average of the SAWEs

[24, 209, 168] 3.1292 [89, 25, 17] 3.1268
[160, 110, 31] 3.1253 [43, 13, 80] 3.1266
[355, 126, 200] 3.1215 [340, 130, 300] 3.1182
[297, 303, 290] 3.1284 [30, 310, 45] 3.1312
[97, 257, 35] 3.1294 [124, 44, 19] 3.1200

[341, 166, 350] 3.1237 [90, 0, 0] 3.1248
[15, 40, 76] 3.1304 [173, 137, 86] 3.1255
[72, 64, 56] 3.1225 [45, 45, 45] 3.1303

[84, 279, 159] 3.1274 [20, 333, 31] 3.1321
[85, 66, 164] 3.1223 [0, 90, 0] 3.1214
[30, 45, 60] 3.1189 [180, 100, 57] 3.1221
[82, 3, 23] 3.1218 [0, 0, 90] 3.1189
[50, 29, 13] 3.1319 [22, 145, 35] 3.1251

[114, 227, 120] 3.1298 [10, 25, 90] 3.1179
[33, 89, 165] 3.1208 [30, 30, 30] 3.1163

[108, 130, 207] 3.1171 [43, 80, 34] 3.1345
[62, 11, 83] 3.1180 [12, 25, 46] 3.1216

[39, 103, 331] 3.1232 [90, 90, 90] 3.1124
[15, 25, 50] 3.1151 [67, 87, 69] 3.1052
[41, 60, 18] 3.1263 [13, 83, 41] 3.1198
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(a) SAWEnl: SAWE of the satellite 1 with respect to

satellite 2

(b) SAWEnr: SAWE of the satellite 1 with respect to

satellite 4

Figure 5.3: SAWEnl and SAWEnr in the satellite 1 with respect to its neighbors

under the healthy scenario.

5.5 Simulation Results for the Bus Voltage Fault

Scenario

In the bus voltage fault scenario, low bus voltage condition is considered in the reac-

tion wheel in satellite 1 as a fault. In order to simulate this fault scenario, bus voltage

is dropped by 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%,

38%, 39% and 40% from its nominal value in t = 600sec. Similar to Chapter 4, all

simulation results are obtained with nominal level of noise in the satellites. The two

SAWEs for satellite 1 in this fault scenario are illustrated in Figures 5.4, 5.5, 5.6 and

5.7 and the fault detection times for this fault scenario are indicated in Table 5.5. As

the results show our proposed FLFD is capable of detecting at least 27% bus voltage

fault that this fault could not be detected in the spacecraft-level fault detection thar

proposed in Chapter 4. However, for smaller percentage drop in the bus voltage this

scheme cannot detect that faults in the reaction wheel.

The two SAWEs for satellite 2 with respect to its neighbors are illustrated in
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Figure 5.8. In this figure the SAWEnl in satellite 2 that is related to the satellite 1

was changed but SAWEnr that is related to the satellite 3 was not changed.

(a) SAWEnl: SAWE of the satellite 1 with re-

spect to satellite 2

(b) SAWEnr: SAWE of the satellite 1 with re-

spect to satellite 4

Figure 5.4: SAWEnl and SAWEnl in the satellite 1 with respect to its neighbors

under 25% drop in the bus voltage condition.

(a) SAWEnl: SAWE of the satellite 1 with re-

spect to satellite 2

(b) SAWEnr: SAWE of the satellite 1 with re-

spect to satellite 4

Figure 5.5: SAWEnl and SAWEnl in the satellite 1 with respect to its neighbors

under 26% drop in the bus voltage condition.
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(a) SAWEnl: SAWE of the satellite 1 respect to

satellite 2

(b) SAWEnr: SAWE of the satellite 1 with re-

spect to satellite 4

Figure 5.6: SAWEnl and SAWEnr in the satellite 1 with respect to its neighbors

under 27% drop in the bus voltage condition.

(a) SAWEnl: SAWE of the satellite 1 respect to

satellite 2

(b) SAWEnr: SAWE of the satellite 1 with re-

spect to satellite 4

Figure 5.7: SAWEnl and SAWEnr in the satellite 1 with respect to its neighbors

under 28% drop in the bus voltage condition.

Figures 5.6 and 5.7 indicate that when the fault was injected in one satellite the

two SAWEs in the faulty satellite are changed and pass the thresholds, hence fault

will be detected in the faulty satellite.
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(a) SAWEnl: SAWE of the satellite 2 with re-

spect to satellite 1

(b) SAWEnr: SAWE of the satellite 2 with re-

spect to satellite 3

Figure 5.8: SAWEnl and SAWEnr in the satellite 2 with respect to its neighbors in

the satellite 1 faulty condition.

However, as Figure 5.8 indicates in the satellite 2 just one of the SAWE has passed

the threshold (the one which is related to the satellite 1) and the other did not change.

Similar to satellite 2, when the fault is injected in the satellite 1, in the satellite 4 only

one of the two SAWEs has passed the thresholds and in the satellite 3, two SAWEs

did not change. One can conclude that when both SAWEs in one satellite have passed

the thresholds, that satellite is considered as a faulty satellite in the formation. Using

this technique one can isolate faulty satellite in the formation.
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Table 5.5: Fault detection time in satellite 1 for a bus voltage fault scenario.

Percentage drop

in bus voltage

fault injection

time (second)

fault detection

time (second)

25 600 Not detected

26 600 Not detected

27 600 638

28 600 622

29 600 618

30 600 617

31 600 617

32 600 617

33 600 616

34 600 616

35 600 616

36 600 615

37 600 615

38 600 615

39 600 615

40 600 615

5.6 Simulation Results for the Motor Current Fault

Scenario

In the motor current fault scenario, the motor torque gain Kt of the reaction wheel

is dropped by 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14% and

15% of its nominal value in satellite 1 at t = 600sec. The SAWEs of satellite 1 in

this fault scenario are illustrated in Figures 5.9, 5.10 and 5.11 and the fault detection

times are indicated in Table 5.6.

The results in these figures and Table 5.6 indicate that our proposed FLFD scheme
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(a) SAWEnl: SAWE of the satellite 1 with re-
spect to satellite 2

(b) SAWEnr: SAWE of the satellite 1 with re-
spect to satellite 4

Figure 5.9: SAWEnl and SAWEnr in the satellite 1 with respect to its neighbors
under 1% drop in the motor torque gain.

(a) SAWEnl: SAWE of the satellite 1 with re-
spect to satellite 2

(b) SAWEnr: SAWE of the satellite 1 with re-
spect to satellite 4

Figure 5.10: SAWEnl and SAWEnr in the satellite 1 with respect to its neighbors
under 2% drop in the motor torque gain.

is capable of detecting at least 2% drop in motor torque gain in the reaction wheel

however it cannot detect 1% drop in motor torque gain in the reaction wheel. As

the results indicate, our proposed scheme can detect both low-severity motor current

faults in the reaction wheel in proper time interval which these faults cannot be

detected in the spacecraft-level fault detection scheme.
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(a) SAWEnl: SAWE of the satellite 1 with re-
spect to satellite 2

(b) SAWEnr: SAWE of the satellite 1 with re-
spect to satellite 4

Figure 5.11: SAWEnl and SAWEnr in the satellite 1 with respect to its neighbors
under 3% drop in the motor torque gain.

Table 5.6: Fault detection time in the satellite 1 for the motor current fault scenario.
Percentage Drop

in the Motor

Torque Gain Kt

Fault Injection

Time (second)

Fault Detection

Time (second)

1 600 Not detected

2 600 651

3 600 638

4 600 627

5 600 625

6 600 624

7 600 622

8 600 621

9 600 620

10 600 620

11 600 619

12 600 619

13 600 619

14 600 618

15 600 618
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5.7 Simulation Results for the Viscous Temperature

Fault Scenario

In the viscous temperature fault scenario, the value of the viscous friction τv in satellite

1 decrease by 2%, 3%, 4%, 5%, 6%, 7%, 10%, 15%, 20%, 25% and of its value under

the normal condition at t = 600sec. Figures 5.12, 5.13, 5.14 and 5.15 illustrate the

two SAWEs in satellite 1.

(a) SAWEnl: SAWE of the satellite 1 with re-

spect to satellite 2

(b) SAWEnr: SAWE of the satellite 1 with re-

spect to satellite 4

Figure 5.12: SAWEnl and SAWEnr in the satellite 1 with respect to its neighbors

under 3% drop in τv.
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(a) SAWEnl: SAWE of the satellite 1 with re-

spect to satellite 2

(b) SAWEnr: SAWE of the satellite 1 with re-

spect to satellite 4

Figure 5.13: SAWEnl and SAWEnr in the satellite 1 with respect to its neighbors

under 4% drop in τv.

(a) SAWEnl: SAWE of the satellite 1 with re-

spect to satellite 2

(b) SAWEnr: SAWE of the satellite 1 with re-

spect to satellite 4

Figure 5.14: SAWEnl and SAWEnr in the satellite 1 with respect to its neighbors

under 5% drop in τv.
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(a) SAWEnl: SAWE of the satellite 1 with re-

spect to satellite 2

(b) SAWEnr: SAWE of the satellite 1 with re-

spect to satellite 4

Figure 5.15: SAWEnl and SAWEnr in the satellite 1 with respect to its neighbors

under 6% drop in τv.

The detection times for the temperature viscous fault scenarios are indicated in

Table 5.7. As the results illustrate, this fault detection scheme can not detect lower

than 4% drop in the viscous friction of the reaction wheel, however for at least 4%

drop in the viscous friction of the reaction wheel, our proposed formation-level scheme

can detect faults which these faults cannot be detected in the spacecraft-level fault

detection scheme.
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Table 5.7: Fault detection time in the satellite 1 for the viscous temperature fault

scenario.
Percentage Drop

in τv

Fault Injection

Time (second)

Fault Detection

Time (second)

2 600 Not detected

3 600 Not detected

4 600 660

5 600 646

6 600 638

7 600 636

10 600 626

15 600 622

20 600 620

25 600 619

30 600 619

5.8 Window Size Effects on Fault Detection

The sensevity of our scheme to the size of window is shown in Table 5.8. By chosing

W=300, we can have the best fault detection time and as well low calculation and

storage requirement in our simulations.
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Table 5.8: Comparison of different window size in fault detection.

Window size Injected fault in t = 600sec Fault detection time (second)

50 27% drop in bus voltage Not detected

100 27% drop in bus voltage Not detected

150 27% drop in bus voltage 647

200 27% drop in bus voltage 642

250 27% drop in bus voltage 638

300 27% drop in bus voltage 638

350 27% drop in bus voltage 638

400 27% drop in bus voltage 638

50 2% drop in motor torque gain Not detected

100 2% drop in motor torque gain Not detected

150 2% drop in motor torque gain Not detected

200 2% drop in motor torque gain 660

250 2% drop in motor torque gain 655

300 2% drop in motor torque gain 651

350 2% drop in motor torque gain 651

400 2% drop in motor torque gain 651

50 4% drop in viscous friction Not detected

100 4% drop in viscous friction Not detected

150 4% drop in viscous friction Not detected

200 4% drop in viscous friction Not detected

250 4% drop in viscous friction 662

300 4% drop in viscous friction 660

350 4% drop in viscous friction 660

400 4% drop in viscous friction 660
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5.9 Confusion Matrix for the Fault Detection

As mentioned in Chapter 4, in order to evaluate the performance of our proposed fault

detection scheme, the confusion matrix approach is used. From the total amount of

simulation results for the reaction wheel actuators, the results for three fault scenarios

are indicated in Tables 5.9, 5.10 and 5.11.

Table 5.9: Confusion matrix for the bus voltage fault scenario.

Percentage drop

in bus voltage

t.n. t.p. f.n. f.p. Accuracy Precision

25 N/A N/A N/A N/A N/A N/A

26 N/A N/A N/A N/A N/A N/A

27 49 50 1 0 99% 98%

28 49 50 1 0 99 % 98 %

29 50 50 0 0 100 % 100%

30 50 50 0 0 100 % 100%

31 50 50 0 0 100 % 100%

32 50 50 0 0 100 % 100%

33 50 50 0 0 100 % 100%

34 50 50 0 0 100 % 100%

35 50 50 0 0 100 % 100%

36 50 50 0 0 100 % 100%

37 50 50 0 0 100 % 100%

38 50 50 0 0 100 % 100%

39 50 50 0 0 100 % 100%

40 50 50 0 0 100 % 100%
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Table 5.10: Confusion matrix for the motor current fault scenario.
Percentage drop

in motor torque

gain Kt

t.n. t.p. f.n. f.p. Accuracy Precision

1 N/A N/A N/A N/A N/A N/A

2 46 50 4 0 96% 92%

3 49 50 1 0 99 % 98%

4 50 50 0 0 100% 100%

5 50 50 0 0 100% 100%

6 50 50 0 0 100% 100%

7 50 50 0 0 100% 100%

8 50 50 0 0 100% 100%

9 50 50 0 0 100% 100%

10 50 50 0 0 100% 100%

11 50 50 0 0 100% 100%

12 50 50 0 0 100% 100%

13 50 50 0 0 100% 100%

14 50 50 0 0 100% 100%

15 50 50 0 0 100% 100%
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Table 5.11: Confusion Matrix for the viscous temperature fault scenario.

Percentage drop

in viscous fric-

tion gain τv

t.n. t.p. f.n. f.p. Accuracy Precision

2 NA NA NA NA NA NA

3 NA NA NA NA NA NA

4 44 50 6 0 94 % 88 %

5 47 50 3 0 97 % 94 %

6 49 50 1 0 99 % 98%

7 50 50 0 0 100 % 100%

10 50 50 0 0 100 % 100%

15 50 50 0 0 100 % 100%

20 50 50 0 0 100 % 100%

25 50 50 0 0 100 % 100%

30 50 50 0 0 100 % 100%

The results in Table 5.9 indicate that for the bus voltage fault scenario, our pro-

posed scheme can detect 27% drop in the voltage bus with a high level of accuracy

(99%) and precision (98%). In the motor current fault scenario, our proposed FLFD

scheme can detect 2% drop in the motor gain torque with 92% precision and 96%

accuracy, and in the viscous temperature fault scenario, 4% drop in viscous friction

in the satellite 1 could be detected with 94% accuracy and 88% precision level. These

results indicate that our proposed formation-level fault detection scheme has strong

capability of detecting both high-severity and low-severity faults in the satellites with

high level of accuracy and precision as compared to the spacecraft-level fault detec-

tion scheme presented in Chapter 4.
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5.10 Proposed Formation-level Fault Isolation and

Identification Scheme

In our formation-level fault diagnosis system, there is one fault analysis unit in each

spacecraft that detect, isolate and identify the faults in a satellite. When a fault is

detected and the faulty satellite is determined, the next steps are to isolate the fault

in a satellite and identify the type of the fault (bus voltage, motor current or viscous

temperature fault). In order to isolate the fault in a satellite the relative angular

velocities are chosen as diagnostic signals and in order to identify the type of fault

in the reaction wheel, the relative attitude measurements are chosen as diagnostic

signals in our fault isolation and identification (FII) scheme.

Since in our simulations it is assumed that only one satellite has a fault and its

two neighbors are working under a healthy condition, there is no difference between

the two relative attitudes and angular velocities in the faulty satellite for the FII

step. Therefore, in our simulations as we injected fault in the satellite 1, we consider

relative angular velocities ω1− ω2 as diagnostic signal for fault isolation purpose and

also the relative attitude Q1 − Q2 in the satellite 1 as diagnostic signals for fault

identification, where ω1 = [ω1x, ω1y, ω1z], ω2 = [ω2x, ω2y, ω2z], Q1 = [q11, q12, q13] and

Q2 = [q21, q22, q23] are the angular velocities and the attitude measurements of the

satellite 1 and satellite 2, respectively.

5.10.1 Proposed Fault Isolation Scheme

In our proposed fault isolation scheme, in order to isolate the fault in a faulty satel-

lite, the relative wavelet energy (RWE) technique is used. As mentioned before, the

relative angular velocity measurements are used as diagnostic signals in our fault iso-

lation scheme. The level of decomposition in this scheme is selected as L=1. Similar

to Chapter 4, in this scheme the RWEs of approximation coefficients are considered

for fault isolation purpose. Table 5.12 illustrate the average of the RWEs of the rela-

tive angular velocity measurements in three axes of a satellite 1 under different fault
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scenarios.

Table 5.12: Average of the RWEs of the relative angular velocity measurements in a

satellite 1.
Fault scenario ω1x − ω2x ω1y − ω2y ω1z − ω2z

Bus voltage [0.9921 0.0079] [0.9922 0.0078] [0.9920 0.008]

Motor current in x-axis [0.9391 0.0609] [0.5233 0.4768] [0.5233 0.4768]

Viscous temperature in x-axis [0.9792 0.0208] [0.5233 0.4768] [0.5233 0.4768]

Motor current in y-axis [0.5233 0.4768] [0.9443 0.0557] [0.5233 0.4768]

Viscous temperature in y-axis [0.5233 0.4768] [0.9797 0.203] [0.5233 0.4768]

Motor current in z-axis [0.5233 0.4768] [0.5233 0.4768] [0.9434 0.0566]

Viscous temperature in z-axis [0.5233 0.4768] [0.5233 0.4768] [0.9794 0.0206]

As the results in Table 5.12 indicate, by considering the change of RWE of the

approximation the fault can be isolated in a satellite.

In order to isolate the fault, we consider a threshold for the RWEs of approximation

for ω1x − ω2x, ω1y − ω2y and ω1z − ω2z. If the value of the RWEs of each relative

angular velocity passes its threshold the fault is isolated. The process of determining

the threshold is similar to the fault isolation scheme in Chapter 4.

In order to define the threshold for each relative angular velocity measurement,

the RWEs in the healthy condition are considered and according to threshold scheme

in Figure 4.1 the parameter δ is defined. Table 5.13 indicate the values of the RWEs

in the healthy condition for each angular velocity measurement in a satellite.

The value of δ is selected as δ = 0.42 and the parameters T1 and T2 are selected

as T1 = 5 and T2 = 0.4. The RWE of the approximation coefficients in three axes of

a satellite under three fault scenarios are illustrated in Figures 5.16, 5.17, 5.18, 5.19,

5.20, 5.21 and 5.22. As seen in these figures, the fault can be isolated by considering

the RWEs of the approximation coefficient of the diagnostic signals.
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Figure 5.16: The RWEs of the approximation coefficients for three angular velocity

measurements in a satellite under the bus voltage fault scenario. a = ωx, a = ω1x−ω2x,

b = ω1y − ω2y, c = ω1z − ω2z.
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Figure 5.17: The RWEs of the approximation coefficients for three angular velocity

measurements in a satellite under the motor current fault scenario in the x-axis.

a = ω1x − ω2x, b = ω1y − ω2y, c = ω1z − ω2z.
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Figure 5.18: The RWEs of the approximation coefficients for three angular velocity

measurements in a satellite under the viscous temperature fault scenario in the x-axis.

a = ω1x − ω2x, b = ω1y − ω2y, c = ω1z − ω2z.
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Figure 5.19: The RWEs of the approximation coefficients for three angular velocity

measurements in a satellite under the motor current fault scenario in the y-axis.

a = ω1x − ω2x, b = ω1y − ω2y, c = ω1z − ω2z.
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Figure 5.20: The RWEs of the approximation coefficients for three angular velocity

measurements in a satellite under the viscous temperature fault scenario in the y-axis.

a = ω1x − ω2x, b = ω1y − ω2y, c = ω1z − ω2z.

128



Figure 5.21: The RWEs of the approximation coefficients for three angular velocity

measurements in a satellite under the motor current fault scenario in the z-axis.

a = ω1x − ω2x, b = ω1y − ω2y, c = ω1z − ω2z.
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Figure 5.22: The RWEs of the approximation coefficients for three angular velocity

measurements in a satellite under the viscous temperature fault scenario in the z-axis.

a = ω1x − ω2x, b = ω1y − ω2y, c = ω1z − ω2z.

The confusion matrix for the fault isolation is indicated in Table 5.14.

Table 5.14: Confusion matrix for the fault isolation.
Fault scenario cm11 cm12 cm13 cm21 cm22 cm23 cm31 cm32 cm33

Bus voltage 10 0 0 0 10 0 0 0 10

Motor current 10 0 0 0 10 0 0 0 10

Viscous temperature 10 0 0 0 10 0 0 0 10

The results in Table 5.4 indicate that our proposed formation-level fault isolation

can isolate all injected faults in a satellite without any misclassification.
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5.10.2 Proposed Fault Identification Scheme

After the fault is isolated in a satellite the next step is to identify the type of the

fault in a reaction wheel. This step in known as the fault identification. As mentioned

before, the diagnosis signals in our fault identification scheme are relative attitude

measurements in each satellite. Our proposed formation-level fault identification

scheme is illustrated in Figure 5.23. As this figure shows, two major tasks must be

performed in order to identify the faults: feature extraction and pattern classification.

Figure 5.23: Proposed scheme for formation-level fault identification.

Feature Extraction

The feature extraction in our proposed fault identification scheme is performed by

utilizing the relative wavelet energy (RWE) of the diagnostic signals. The diagnostic

signals are decomposed by using discrete wavelet transform and detail and approxima-

tion coefficients are produced and then the RWEs of these coefficients are calculated.

In our proposed fault identification scheme, the level of decomposition is chosen as

L=3. Figure 5.24 illustrates the average of the RWEs of the diagnostic signals for

different levels of decomposition. As this figure shows, by increasing the level of de-

composition from 3 to 4 and higher the values of RWE for added detail coefficients

did not give useful information as compared to the values of the other RWEs in the

diagnostic signal. Hence, with 3 levels of decomposition one can have enough infor-

mation about the diagnostic signal. By utilizing the RWEs of the relative attitude

measurements one can identify the type of fault in the reaction wheel. In this step, the

12 RWEs with respect to three diagnostic signals are used as inputs for the MLPNN

to identify the fault in the reaction wheel.
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(a) L = 1 (b) L = 2

(c) L = 3 (d) L = 4

(e) L = 5 (f) L = 6

Figure 5.24: Comparison between the RWEs of the diagnostic signal with respect to

different levels of decomposition.

For 3 levels of decomposition, we have 4 RWEs with respect to three details and
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one approximation coefficients in each diagnosis signal. Hence, there are 12 RWEs

with respect to three relative quaternions in a satellite that are used for pattern

classification in the next step.

Pattern Classification

As Figure 5.23 shows, the extracted features are used for the pattern classification

step. The pattern classification in our proposed fault identification scheme is per-

formed by utilizing the multilayer perceptron neural network (MLPNN). In this step

the RWEs of the diagnostic signals are used as inputs for the MLPNN in order to

identify the fault.

As mentioned earlier, the MLPNN has 12 RWEs as inputs. The outputs of the

MLPNN for fault identification are three types of the faults in a reaction wheel (bus

voltage, motor current and viscous temperature). These fault types are assigned to

three classes in the outputs of the MLPNN as shown in Table 5.15.

Table 5.15: Assigned classes for fault scenarios for the neural networks.

Fault Scenario Assigned Class

Bus voltage 0 0 1

Motor current 0 1 0

Viscous temperature 1 0 0

The MLPNN for the fault identification scheme has 12 inputs, 10 neurons in the

hidden layer and 3 outputs. The learning rate is chosen as 0.002 and the activation

functions for the hidden layer are selected as hyperbolic tangent and for the output

layer is selected as linear function. This network is trained with data under different

fault scenarios in different attitude missions. After the training step, the MLPNN

is validated to check the performance of the network. In the training phase, the

parameters of the MLPNN are adjusted and then in the testing and validation steps,

the network is tested and validated with new data sets to show that the accuracy of

the network is valid for new data sets. 120 data are randomly chosen from the entire
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210 data for training the network, 45 data are used for validating and 45 data are

used for testing the network. Figure 5.25 illustrate the performance of the network

in terms of the root mean square error.

Figure 5.25: Performance of the proposed MLPNN for fault identification.

Table 5.16 shows the actual outputs and network outputs of the MLPNN for

different fault scenarios in a satellite. In order to evaluate the performance of the

MLPNN for fault identification, the confusion matrix criterion is used. This confusion

matrix is a 3 × 3 that is defined in equation (4.19). The confusion matrix for fault

identification is illustrated in Table 5.17.
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Table 5.16: Output of the MLPNN for fault identification.

Actual output Network output

0 0 1 0.018918 -0.00967 0.99075

0 1 0 0.018752 0.990969 -0.00972

1 0 0 0.962059 -0.00812 0.046063

0 0 1 0.018918 -0.00967 0.99075

0 1 0 0.018664 0.985983 -0.00465

1 0 0 0.962071 -0.00892 0.046846

0 0 1 0.036154 -0.00965 0.9735

0 1 0 0.018652 0.991042 -0.00969

1 0 0 0.961794 0.98918 -0.95097

Table 5.17: Confusion matrix for the fault identification.
cm11 cm12 cm13 cm21 cm22 cm23 cm31 cm32 cm33 Classification accuracy

25 2 3 2 27 1 3 3 24 87.78%

As the results in Table 5.17 show, the proposed fault isolation scheme can isolate

the faults in a satellite with a 87.78% classification accuracy rate.

5.11 Conclusion

In this chapter, the formation-level fault detection, isolation and identification (FDII)

scheme based on discrete wavelet transform and neural networks is proposed and ex-

plained. In the fault detection method, the relative attitude measurements were

utilized as diagnostic signals and sum of the absolute entropies were calculated and

compared to their thresholds for fault detection purposes. The results illustrate that

this fault detection scheme is capable of detecting low-severity faults in the reac-

tion wheel actuator with high value of precision and accuracy as compared to the

spacecraft-level fault detection scheme. For the fault isolation in a satellite, the rela-

tive wavelet energy technique was used in order to extract features from the diagnostic
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signals and these features are compared to the defined thresholds to isolate the fault.

In our fault identification scheme, the RWEs of the relative attitude measurements

are utilized to identify the types of the faults in a satellite. The pattern classification

in this scheme is performed by a multilayer perceptron neural network (MLPNN).

The results illustrate that the classification accuracy for the fault identification in the

formation-level is better than the classification accuracy in the spacecraft-level fault

identification that were proposed in Chapter 4. These comparisons indicate that by

utilizing the relative measurements in a satellite in a formation instead of the absu-

lute measurements of each satellite, the fault detection and identification results have

been improved.
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Chapter 6

Conclusions and Future Work

In this thesis, the problem of fault detection, isolation and identification (FDII) in

formation flying of satellites has been discussed and investigated. In Chapter 2, the

fault detection and isolation problem was presented and different approaches for fault

diagnosis in satellites are provided. In Chapter 3, the concept of coordinate systems

and different attitude representations are provided and the formation flying architec-

tures are also discussed. In this chapter the control law for the formation flying has

been developed and different sensors and actuators that are used in the spacecraft

are described. Furthermore, the mathematical model for the attitude torque distur-

bances that effect the satellite are provided in this chapter. In Chapter 4, different

fault scenarios that may happen in the reaction wheel actuators are provided and

explained. These fault scenarios are considered in this thesis to verify the proposed

FDII scheme in satellites.

In this thesis the wavelet-entropy technique was used for fault detection purposes

and in order to isolate the faults relative wavelet energy are utilized and in the fault

identification scheme, the feature extraction is accomplished by the discrete wavelet

transform and these features are identified by using multilayer perceptron neural

networks (MLPNN). In this thesis two FDII systems have been proposed for fault

diagnosis analysis in the satellites namely i) the spacecraft-level FDII scheme that

has been proposed in Chapter 4, and ii) the formation-level FDII scheme that has

been proposed in Chapter 5. In the spacecraft-level fault diagnosis, absolute attitude
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measurements in terms of the quaternion parameters in a satellite are considered as

diagnostic signals. These signals are decomposed with discrete wavelet transform

and then the entropy of each signal is calculated. The sum of the absolute wavelet

entropies (SAWE) are calculated and compared with time-varying thresholds. If this

sum of absolute entropies passes the thresholds, the fault is detected otherwise the

system works in normal condition.

In order to evaluate the proposed method, three different fault scenarios in the

reaction wheel actuators are considered. The results indicate that the proposed

spacecraft-level fault detection scheme can only detect high severity faults in the

reaction wheels. In order to isolate the fault in a satellite, the angular velocity mea-

surements are considered as diagnostic signals. In this scheme, the relative wavelet

energy (RWE) technique is used to calculate the RWEs of diagnostic signals and these

RWEs are compared with thresholds to isolate the faults. In order to identify the

types of faults in reaction wheels, the fault identification scheme has been proposed.

In this method, the features from the absolute attitude measurements are extracted

with discrete wavelet transform (DWT) coefficients and these features are classified

using a multilayer perceptron neural network (MLPNN).

The spacecraft-level FDII scheme can only detect, isolate and identify the high-

severity faults in the reaction wheels, thus it is necessary to improve this method to

detect and identify both low severity and high severity faults in the reaction wheels.

For these reasons, the formation-level fault detection, isolation and identification

scheme was proposed. In the formation-level fault detection, instead of absolute

attitude measurements, relative attitude measurements in each satellite are considered

as diagnostic signals. In this approach, each satellite has two neighbors and the

SAWEs are calculated with respect to each neighbor. If the two SAWEs in one

satellite pass the thresholds, that satellite is considered as a faulty satellite in the

formation.

In the formation-level fault identification the relative angular velocity measure-

ments are considered and in the fault identification the RWE technique is used to

extract features from relative attitude measurements and these RWEs are fed into
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MLPNN in order to identify the faults in a satellite. The confusion matrices for the

formation-level fault isolation indicate that this FDII scheme can detect and isolate

low severity faults with a high level of precision and accuracy.

6.1 Future Work

Base on the results that have been provided in this thesis, the future work can be

concerned with the following issues:

• In this thesis, it is assumed that only one fault affects one of the reaction wheels

in a satellite. Hence, the condition for more than one fault affecting the reaction

wheels can be considered as a future work.

• The condition that more than one reaction wheel in a satellite were affected with

faults were not considered in this thesis. This fault condition may be considered

in future.

• This thesis focused on fault detection, isolation and identification in satellites.

Hence, fault recovery in satellites may be considered as a future work in this

area.

• In this thesis the ring topology is considered as a formation topology, hence

other topologies in a formation flying satellites may be considered as a future

work in fault diagnosis analysis.
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