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ABSTRACT

Distributed Control of Networked Nonlinear Euler-Lagrange Systems

Alireza Mehrabian, Ph.D.

Concordia University, 2013

Motivated by recent developments in formation and cooperative control of

networked multi-agent systems, the main goal of this thesis is development of ef-

ficient synchronization and formation control algorithms for distributed control of

networked nonlinear systems whose dynamics can be described by Euler-Lagrange

(EL) equations. One of the main challenges in the design of the formation control

algorithm is its optimality and robustness to parametric uncertainties, external dis-

turbances and ability to reconfigure in presence of component, actuator, or sensor

faults. Furthermore, the controller should be capable of handling switchings in the

communication network topology.

In this work, nonlinear optimal control techniques are studied for developing

distributed controllers for networked EL systems. An individual cost function is

introduced to design a controller that relies on only local information exchanges

among the agents. In the development of the controller, it is assumed that the com-

munication graph is not fixed (in other words the topology is switching). Addition-

ally, parametric uncertainties and faults in the EL systems are considered and two

approaches, namely adaptive and robust techniques are introduced to compensate

for the effects of uncertainties and actuator faults.

Next, a distributed H∞ performance measure is considered to develop dis-

tributed robust controllers for uncertain networked EL systems. The developed
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distributed controller is obtained through rigorous analysis and by considering an

individual cost function to enhance the robustness of the controllers in presence of

parametric uncertainties and external bounded disturbances. Moreover, a rigorous

analysis is conducted on the performance of the developed controllers in presence

of actuator faults as well as fault diagnostic and identification (FDI) imperfections.

Next, synchronization and set-point tracking control of networked EL sys-

tems are investigated in presence of three constraints, namely, (i) input saturation

constraints, (ii) unavailability of velocity feedback, and (iii) lack of knowledge on

the system parameters. It is shown that the developed distributed controllers can

accomplish the desired requirements and specification under the above constraints.

Finally, a quaternion-based approach is considered for the attitude synchro-

nization and set-point tracking control problem of formation flying spacecraft. Em-

ploying the quaternion in the control law design enables handling large rotations

in the spacecraft attitude and, therefore, any singularities in the control laws are

avoided. Furthermore, using the quaternion also enables one to guarantee bound-

edness of the control signals both with and without velocity feedback.



ACKNOWLEDGEMENTS

I would like to express my acknowledgements and thanks to all the people

who helped me during my Ph.D. studies at Concordia University. Specifically, I

would like to cordially thank Nastaran for her kindness, patience and continuous

support during my good days and bad days in the past five years. In addition,

I would like to sincerely thank both my supervisors, Professor K. Khorasani and

Dr. S. Tafazoli, for their very kind support and guidance throughout my Ph.D. pro-

gram. My special thanks belongs to Professor Khorasani for his prompt feedbacks

on my reports, papers and thesis as well as his efforts to arrange my defence session

in a timely manner.

I would also like to specially thank the members of my doctoral committee for

reviewing my thesis and providing me valuable comments during my Ph.D. studies

and the final version of my Ph.D. thesis.

I would like to thank all my friends, Concordia University staff and people

who provided me a source of support and hospitality.

iv



This thesis is dedicated to:

Nastaran,

Tahmineh and Hassan,

Ameneh and Rizwan.

v



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Formation Control . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Consensus Algorithms . . . . . . . . . . . . . . . . . . . . . 6

1.2.3 Synchronization Control of Networked EL systems . . . . . . 13

1.2.4 Spacecraft Formation Flying . . . . . . . . . . . . . . . . . . 14

1.2.5 FDI Approaches in Robotic Systems . . . . . . . . . . . . . . 18

1.3 General Problem Statement . . . . . . . . . . . . . . . . . . . . . . 25

1.4 Thesis Overview and Research Objectives . . . . . . . . . . . . . . 26

1.5 Thesis Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2 Background, Preliminaries and Definitions 33

2.1 Multi-Agent Systems . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 Euler-Lagrange (EL) Systems . . . . . . . . . . . . . . . . . . . . 34

2.3 Examples of Nonlinear Euler-Lagrange Systems . . . . . . . . . . . 38

2.3.1 Two-Link Robot Manipulator . . . . . . . . . . . . . . . . . . 38

2.3.2 Spacecraft Attitude Dynamics . . . . . . . . . . . . . . . . . 40

2.4 The Kronecker Product . . . . . . . . . . . . . . . . . . . . . . . . 46

2.5 Vector/Matrix Calculus . . . . . . . . . . . . . . . . . . . . . . . . 47

2.6 Definition of a Saturation Function . . . . . . . . . . . . . . . . . . 48

2.7 Information Structure and Neighboring Set . . . . . . . . . . . . . 49

vi



2.8 Hamilton-Jacobi-Bellman (HJB) Equations . . . . . . . . . . . . . 52

2.9 Stability Analysis and Theorems . . . . . . . . . . . . . . . . . . . 53

2.9.1 Lyapunov Stability Theorem . . . . . . . . . . . . . . . . . . 55

2.9.2 Input to State Stability Theorem . . . . . . . . . . . . . . . . 57

2.9.3 Stability Analysis of Switched Systems . . . . . . . . . . . . 58

2.10 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 62

3 Distributed Optimal Formation Control of Euler-Lagrange Systems 63

3.1 Introduction and Problem Statement . . . . . . . . . . . . . . . . . 63

3.1.1 Communication Network Topology . . . . . . . . . . . . . . . 64

3.1.2 Synchronization Error . . . . . . . . . . . . . . . . . . . . . . 65

3.1.3 Statement of the Problem . . . . . . . . . . . . . . . . . . . . 66

3.2 Optimal Synchronization Control of the EL Systems . . . . . . . . 67

3.2.1 Discussion on the Existence of a Solution . . . . . . . . . . . 73

3.2.2 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . 75

3.3 Synchronization Control of Uncertain EL Systems . . . . . . . . . . 77

3.3.1 Adaptive Control of Uncertain EL Systems . . . . . . . . . . 78

3.3.2 Robust Synchronization Control of Uncertain EL Systems . . 80

3.4 Control Recovery in Presence of Additive Actuator Faults . . . . . . 84

3.5 Simulation Studies: Distributed Control of Networked Spacecraft . . 88

3.5.1 Control of Networked Uncertain Spacecraft . . . . . . . . . . 91

3.5.2 Control of Networked Spacecraft Subject to Actuator Fault . . 92

3.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 100

4 Distributed H∞-Optimal Formation Control of EL Systems 105

4.1 Introduction and Problem Statement . . . . . . . . . . . . . . . . . 105

4.1.1 Communication Network Topology and Synchronization Error 107

vii



4.1.2 The L2-Gain of General Networked Nonlinear Systems . . . . 107

4.1.3 ISS of General Networked Nonlinear Systems . . . . . . . . . 108

4.1.4 Statement of the Problem . . . . . . . . . . . . . . . . . . . . 110

4.2 Distributed H∞ State Synchronization Control of EL Systems . . . . 110

4.2.1 Discussions on Existence of a Solution . . . . . . . . . . . . . 115

4.2.2 Stability Analysis of the Networked EL Systems . . . . . . . . 118

4.3 ISS of the Networked EL Systems . . . . . . . . . . . . . . . . . . 120

4.3.1 ISS with Switchings in the Communication Topology . . . . . 121

4.4 Control Recovery in Presence of Additive Actuator Faults . . . . . . 123

4.4.1 Reconfiguration w/ Imperfection in the Fault Detection . . . . 124

4.4.2 Reconfiguration w/ Imperfection in the Fault Identification . . 126

4.4.3 Reconfiguration w/ Imperfection in the Fault Isolation . . . . . 130

4.5 Simulation Studies: Distributed Control of Networked Spacecraft . . 131

4.5.1 Robust Distributed Control of Networked Spacecraft . . . . . 131

4.5.2 Robust Reconfigurable Control of Networked Spacecraft . . . 137

4.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 144

5 Constrained Synchronization Control of Networked EL Systems 145

5.1 Introduction and Problem Statement . . . . . . . . . . . . . . . . . 145

5.1.1 Communication Network Topology . . . . . . . . . . . . . . . 146

5.1.2 Statement of the Problem . . . . . . . . . . . . . . . . . . . . 147

5.2 Distributed Constrained Nonlinear Control . . . . . . . . . . . . . . 148

5.2.1 Distributed State Synchronization w/ Bounded Input . . . . . . 150

5.3 Distributed Output Feedback Constrained Nonlinear Control . . . . 154

5.3.1 Output Feedback Synchronization w/ Bounded Input . . . . . 155

5.4 Cooperative Reconfiguration w/ Actuator Saturation Faults . . . . . 159

viii



5.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 167

5.5.1 Synchronization Control with Input Saturation Constraints . . 167

5.5.2 Cooperative Controller Reconfiguration . . . . . . . . . . . . 179

5.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 182

6 Quaternion-Based Spacecraft Formation Control 186

6.1 Introduction and Problem Statement . . . . . . . . . . . . . . . . . 186

6.1.1 Spacecraft Attitude Error Dynamics . . . . . . . . . . . . . . 187

6.2 Formation Attitude Synchronization and Tracking with Bounded Input189

6.3 Formation Control with Bounded Input without Velocity Feedback . 193

6.4 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . 198

6.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 215

7 Conclusions and Future Work Directions 217

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

7.2 Suggestions for Future Research . . . . . . . . . . . . . . . . . . . 220

A Simulation Validation 223

A.1 Simulation Validation . . . . . . . . . . . . . . . . . . . . . . . . . 224

ix



LIST OF FIGURES

1.1 Applications for multi-agent coordinated control. . . . . . . . . . . 3

1.2 Hierarchical decomposition of a cooperative team design. . . . . . . 4

2.1 A space robot system with n manipulators. . . . . . . . . . . . . . . 38

2.2 Three sample communication network topologies. . . . . . . . . . . 51

3.1 The communication topologies considered in the simulations. . . . . 89

3.2 Attitude synchronization under the proposed adaptive controller. . . 93

3.3 Velocity synchronization under the proposed adaptive controller. . . 94

3.4 Attitude synchronization under the proposed robust controller. . . . 95

3.5 Velocity synchronization under the proposed robust controller. . . . 96

3.6 Control efforts under the proposed adaptive controller. . . . . . . . 97

3.7 Control efforts under the proposed robust controller. . . . . . . . . . 98

3.8 Spacecraft attitudes with additive actuator fault. . . . . . . . . . . . 101

3.9 Spacecraft angular velocities with additive actuator fault. . . . . . . 102

3.10 Attitude synchronization recovery under the proposed algorithm. . . 103

3.11 Velocity synchronization recovery under the proposed algorithm. . . 104

4.1 The three communication graphs considered in the simulations. . . . 132

4.2 Spacecraft attitudes under the proposed adaptive control law. . . . . 134

4.3 Spacecraft attitudes rates under the proposed control law. . . . . . . 135

4.4 Fault magnitude vs its estimate. . . . . . . . . . . . . . . . . . . . . 139

4.5 Spacecraft attitudes without controller reconfiguration. . . . . . . . 140

4.6 Controller reconfiguration with imperfection in the fault identification.142

4.7 Controller reconfiguration with imperfection in the fault isolation. . 143

x



5.1 The communication network in the first two case studies . . . . . . 168

5.2 The communication network in the second part of the simulations . 171

5.3 The angular positions of the networked robots w/o velocity feedback 173

5.4 The angular velocities of the networked robots w/o velocity feedback 174

5.5 The control efforts of the networked robots w/o velocity feedback . 175

5.6 The angular positions. . . . . . . . . . . . . . . . . . . . . . . . . . 176

5.7 The angular velocities. . . . . . . . . . . . . . . . . . . . . . . . . 177

5.8 The control efforts. . . . . . . . . . . . . . . . . . . . . . . . . . . 178

5.9 Reconfig. control of three robotic manipulators. . . . . . . . . . . . 183

5.10 Scaled responses of three robotic manipulators. . . . . . . . . . . . 184

6.1 The quaternions w/ velocity feedback and the gains set #1 . . . . . . 200

6.2 The angular velocities w/ velocity feedback and the gains set #1 . . 201

6.3 The control efforts w/ velocity feedback and the gains set #1 . . . . 202

6.4 The quaternions w/o velocity feedback and the gains set #1 . . . . . 203

6.5 The angular velocities w/o velocity feedback and the gains set #1 . . 204

6.6 The control efforts w/o velocity feedback and the gains set #1 . . . . 205

6.7 The quaternions w/ velocity feedback and the gains set #2 . . . . . . 206

6.8 The angular velocities w/ velocity feedback and the gains set #2 . . 207

6.9 The control efforts w/ velocity feedback and the gains set #2 . . . . 208

6.10 The quaternions w/o velocity feedback and the gains set #2 . . . . . 209

6.11 The angular velocities w/o velocity feedback and the gains set #2 . . 210

6.12 The control efforts w/o velocity feedback and the gains set #2 . . . . 211

A.1 Simulation software validation. . . . . . . . . . . . . . . . . . . . . 224

xi



LIST OF TABLES

3.1 Physical parameters for each spacecraft in the network . . . . . . . 90

3.2 Nominal physical parameters of the spacecraft in the network . . . . 90

3.3 Monte Carlo simulation results . . . . . . . . . . . . . . . . . . . . 99

4.1 The mean values for the control efforts . . . . . . . . . . . . . . . . 136

4.2 The state synchronization errors comparison . . . . . . . . . . . . . 136

4.3 Comparing the synchronization errors w/ a controller in the literature 137

5.1 Physical parameters for each manipulator in the network . . . . . . 167

5.2 Performance of the state synchronization control strategies. . . . . . 169

6.1 The two sets of selected controller gains . . . . . . . . . . . . . . . 199

6.2 Performance of proposed constrained controllers . . . . . . . . . . 213

6.3 Performance of proposed constrained velocity-free controllers . . . 213

6.4 Performance loss in absence of angular velocity feedback . . . . . . 214

6.5 Performance comparison and analysis. . . . . . . . . . . . . . . . . 216

xii



LIST OF SYMBOLS

(.)T Matrix transpose

(.)−1 Matrix inverse

(.)−T Transpose of an inverted matrix

(.)⊗ (.) Kronecker product operator

inf Infimum

C(.) The vector of Coriolis and centrifugal forces

D(.) The general inertia matrix

di( j) Indegree of the j-th node of a graph

do( j) Outdegree of the j-th node of a graph
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Chapter 1

Introduction

1.1 Motivation

Synchronization and cooperative behavior in nature can be observed in several

places. Examples of such behavior are the collective animal behavior, i.e. flock-

ing of birds, shoaling and schooling fish, swarming behavior of insects, and herd

behavior of land animals. Such behaviors happen in human societies as well. As

an example, large stock market trends often begin and end with periods of frenzied

buying (bubbles) and selling (crashes). Many observers cite these episodes as clear

examples of herding behavior that is irrational and driven by emotion – greed in the

bubbles, fear in the crashes, which is mainly due to the fact that individual investors

join the crowd of others in a rush to get in or out of the market [1].

Researchers have studied these behaviors in different fields of science. For

example, the phenomenon of herd behavior was among the first topics studied in

social psychology [2]. Collective decision making and swarm intelligence of ani-

mals are also studied by several researchers (see [3, 4] and references therein). In

addition, by studying and modeling swarm behavior of creatures, in recent years,
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many optimization algorithms have been introduced [5, 6, 7].

In recent years, there has been an increasing interest in the systems and con-

trol community for studying cooperative and distributed control of networked multi-

agent systems. Networked multi-agent systems consist of several dynamically de-

coupled agents. However, these agents need to coordinate their states (or outputs) in

order to accomplish missions that neither can do alone. This coordination and coop-

eration requires exchange of information between the agents’ controllers, therefore,

a network of agents is created. Networked multi-agent systems have many interest-

ing applications. This new technology enables cooperation between agents in a

network for completing complex tasks that cannot be accomplished alone. Exam-

ples of such tasks include cooperative control of multiple uninhabited (unmanned)

ground, air or marine vehicles (UGVs, UAVs, or MAVs) for search, exploration,

surveillance, rescue operations and mapping unknown or partially known environ-

ments (see Fig. 1.1(a)). In the space domain, this technology will enable one to

design efficient control algorithms for control of multiple spacecraft (SC) or space

robots in a formation for observation of distant planets/stars or on-orbit repairing

and servicing (see Fig. 1.1(b)). Furthermore, this technology can be employed to

move large objects, drill holes and pitch tents in tight coordination by using au-

tonomous rovers on the Earth or other planets (see Figs. 1.1(c) and Fig. 1.1(d)).

1.2 Literature Review

Synchronization, cooperation and formation control in a network of uninhabited

autonomous systems has been studied extensively in the past few years. Different

frameworks and several approaches to formulating and solving this problem have
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(a) Multi-agents for search, exploration,
surveillance.

(b) Artist’s concept of Terrestrial Planet
Finder (TPF). Picture courtesy: JPL,
NASA

(c) Cooperative object transportation us-
ing quad-rotors. Work done at GRASP
Lab, University of Pennsylvania.

(d) Cooperative robots share the load.
Picture courtesy: NASA

Figure 1.1: Possible applications for multi-agent synchronization and coordinated
control.

been investigated and different information flow architectures have been consid-

ered [8, 9, 10, 11, 12]. Moreover, the problem of cooperation in a network has

been considered at different levels. At the high-level, one may consider task as-

signment, timing and scheduling, navigation and path planning, as well as recon-

naissance and map building [13, 14, 15] (see Fig. 1.2). In the mid-level, coopera-

tive rendezvous, formation keeping, application of consensus algorithms, collective

motion, and formal methods based on flocking/swarming ideas can be considered

[8, 10, 12, 16, 17]. In low-level one can consider individual energy management,

communication management, input/output management and data acquisition man-

agement.
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Resource 
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and Group 
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Figure 1.2: Hierarchical decomposition of a cooperative team design.

The present research work, only covers cooperation in the mid-level, there-

fore, the literature reviewed in this section are on the mid-level cooperation, i.e. for-

mation control and consensus algorithms.

1.2.1 Formation Control

The main goal in formation control of a network of systems (agents) is to make

sure that the agents in the network achieve a predefined and given geometry or

posture and possibly follow a desired set-point or trajectory that is provided by

a supervisor. This posture should be preserved during the mission, therefore, the

agents in the network should, ideally, behave as a single rigid body. Based on this

4



property, a predefined trajectory is usually provided to the agents, e.g. in the form of

a (virtual) leader command [12]. The agents in the network should follow this given

and desired set-point or trajectory while the agents keep their relative positions and

preserve the required posture, consequently, the stability of the entire formation

should be guaranteed.

Reference [18] proposed the following five different architectures, which can

be considered for the formation control of networked of agents, namely: (i) Multi-

Input Multi-Output (MIMO) approach, (ii) leader-follower approach, (iii) virtual

structure approach (or virtual leader), in which the entire formation is considered as

a virtual structure, (iv) cyclic approach with non-hierarchical control architecture,

and (v) behavioral approach.

In the MIMO architecture, the entire dynamics of the networked agents is

considered as a single MIMO system. Hence, in this architecture any form of con-

ventional control strategies, e.g. optimal, nonlinear, or robust control strategies can

be implemented to achieve the formation objectives.

The most commonly employed approach in the literature is the leader-follower

architecture [19, 20, 21]. In this approach a hierarchical control architecture is con-

sidered with one or more of the agents as the leader(s), and other agents as the

followers. The followers receive leader information and should track their states.

This structure can also be constructed in a tree form. The advantages of this ap-

proach are that it has a predictable and understandable behavior, the formation is

preserved even if the leader is perturbed, and that group behavior can be inspected

by properly setting the leader actions. However, lack of an explicit feedback to the

formation, from the followers to the leader, is a disadvantage of this structure. Also,

the failure of the leader implies the failure of the entire formation as mentioned in

[8, 16].
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In the virtual structure approach, the entire formation is treated as a single

unit. Three steps are considered for a control design by using the virtual structure

approach, i.e. (i) defining the desired dynamics of the virtual structure, (ii) trans-

forming the states of the virtual structure into the states of individual agents, and

(iii) designing the control laws for each agent accordingly. One can point out the

following advantages for this approach, namely, its simplicity in defining the coor-

dinated behavior of the group, keeping the formation during different maneuvers,

and existence of a feedback from the agents to the virtual structure. The disadvan-

tage of this structure is in its limitation in applications to time-varying or frequently

changing formations.

In the cyclic architecture, the agents are connected to each other in a cyclic

form rather than a hierarchical architecture [22]. In the behavioral approach several

commands are combined to reach different and probably competing goals or several

behaviors, e.g. collision avoidance, obstacle avoidance, and formation keeping for

agents. The control law for each agent is a weighted average of the control for

each behavior. Since competing behaviors are averaged, occasionally strange and

unpredicted behaviors may occur. Despite the advantages of simple derivation of

the control strategies, as well as an explicit feedback to the formation, and capability

of decentralized implementation, there are some weaknesses as well. For example,

in some scenarios, group behavior cannot be explicitly defined and mathematical

stability analysis is not straightforward to accomplish as mentioned in [16].

1.2.2 Consensus Algorithms

An early study on decision making process in a team (or networked agents) has

appeared in [23], which was followed by studies in [24, 25, 26]. More recently,
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references [11, 12, 17, 19, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38] considered

this problem. In these studies, each agent in the network has access to limited

information from other agents, or to information of its neighbors. The final state of

the agents in the network is decided by the network members.

Consensus algorithms are one of the tools that are used for analysis of net-

worked systems where the network information structure has a vital effect on the

control law design where only part of the information is available to each agent.

As discussed in [17], consensus problems deal with the agreement of a group of

agents upon specific “quantities of interest”. In this configuration the agents try

to decide and agree among themselves upon what the final state should be. The

state where all the “quantities of interest” are the same is called the consensus state

[12]. One can set the states of the agents (e.g. positions and velocities in the case of

Euler-Lagrange systems) as the “quantities of interest”.

In [17], linear and nonlinear consensus protocols are applied to directed and

undirected networks with fixed and switching topologies. A disagreement function

was introduced as a Lyapunov function to provide a tool for convergence analysis

of an agreement protocol in a switching network topology. The authors have shown

that the maximum time-delay that can be tolerated by a network of integrators ap-

plying a linear consensus protocol is inversely proportional to the largest eigenvalue

of the Laplacian of the information flow graph or the maximum degree of the nodes

of the network.

In [19], the coordination problem is discussed for a team of agents using

“nearest neighbor rule” for both leaderless and leader-follower configurations. The

main focus of this work is on heading angle alignment in undirected graphs where

the agents have simple integrator dynamics and the agents have the same speed

but have different headings. In the leader-follower case, the leader can affect the
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followers whenever it is in their neighboring set. However, there is no feedback

from the followers to the leader. It is shown that the connectivity of the graph on

average (connection of union of graphs) is sufficient for convergence of the head-

ing angles of the agents. The neighboring set assignment is switching and so the

team structure is dynamic. In [39], asynchronous protocols for consensus seeking

are introduced. Some updating rules for the control input of agents with discrete-

time dynamical equations are suggested so that the consensus state would take a

desirable predefined value [12].

In [40], passivity is used as a tool to achieve network agreement (or consen-

sus) for a class of agents with dynamics which can satisfy the passivity conditions.

The group main goal is to reach at a predefined common velocity (or any other in-

terpretation of the derivative of a state), while the relative positions (the difference

between a common state in the group) converge to a desired compact set. Based on

this method a Lyapunov function can be constructed for stability analysis in a dis-

tributed communication network with bidirectional links. The designed controller

is a filter which has a nonlinear function of the relative states as its input and is

designed based on passivity properties. The relation between the topology and the

stability of the formation is provided. In [41], a wider class of systems, i.e. nonlin-

ear dissipative systems are considered and synchronization in a strongly connected

network of agents with this dynamical property is discussed.

In some references, the communication delay is considered in modeling of a

network of agents with point-mass model. For an example, one can refer to [17]

in which directed and undirected networks with fixed and switching topologies are

considered. It is assumed that the delayed information from other agents is com-

pared with the delayed value of the agent’s own dynamics at each time step. On the

other hand in [42] the delayed information of the neighbors are compared with the
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current value of the agents’ state. In this work, uniformly delayed communication

links are analyzed for consensus algorithms.

Distributed consensus control of double-integrator systems is considered in

[30, 31]. In [31] the authors consider both switching in the communication net-

work topology with constant (fixed) communication network delay. The authors in

[30] consider two general settings, namely, the setting where the interaction topolo-

gies for the position and velocity information flows is modeled by different graphs

and the setting where the interaction topologies for the position and velocity in-

formation flows being modeled by the same graph. In the first setting, the authors

have derived some sufficient conditions on the fixed communication topologies for

the agents to achieve consensus. In the second setting, the consensus algorithm

under both fixed and time-varying directed interaction topologies is investigated.

Observed-based consensus control for linear multi-agent systems is considered in

[32] and heading consensus of networked systems with communication time-delay

is studied in [33]. Consensus control of a class of multi-agent nonlinear systems

with sampled data information exchange is studied recently in [34], where the au-

thors by constructing a Lyapunov-Krasovskii functional and using Finsler’s lemma,

we have theoretically proved that consensus with time-varying velocities in strongly

connected networks can be achieved if the sampling interval is less than the maxi-

mal allowable sampling interval, which can be obtained by solving a feasible linear

matrix inequality (LMI). A a discrete-time second-order consensus algorithm for

networks of agents with nonuniform and time-varying communication delays un-

der dynamically changing communication network topologies in a sampled-data

setting is investigated recently in [35]. Consensus control of linear systems with

switching in the communication network topology is considered recently in [36].
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Broadcast gossip algorithms are employed for development of quantized consen-

sus in networked multi-agent systems recently in [37]. The authors in [38] studied

consensus with Markovian switching topologies and data-sampled communication.

In reference [24] a Linear Quadratic Regulator (LQR) problem was solved

by “using” a team of decision makers and not “in” a team of decision makers. In

other words, each decision maker is responsible for design of an optimal control

at one (or some) time instant where the other decision makers should decide what

the best (optimal) actions for the next time instants are to minimize a common cost

function. Therefore, although the problem is dynamic in the sense that at the outset

an optimal controller is designed to minimize a cost function with a given dynamical

constraint, none of the decision makers has an individual dynamics. This implies

that each decision maker can be interpreted as the state of a discrete-time system at

one time only and not as an independent dynamical system.

In more recent literature, an optimal approach to networked multi-agent sys-

tems is considered in [43, 44, 45, 46, 47] for formation control and in [12, 48, 49,

50, 51, 52, 53, 54, 55] for consensus seeking.

The approach in [45] is based on individual agent cost optimization for achiev-

ing team goals under the assumption that the states of the other team members are

constant. The concepts of Nash equilibrium, penalty function as well as Pareto op-

timality are used for design of optimal controllers. In [47, 52] the effects of the

amount of information on the value of the cost function is investigated. The authors

have shown that the centralized architecture will result in the lowest cost value

whereas the decentralized solution will increase the cost value. In order to solve an

optimal consensus problem, the authors in [49] have assumed an individual agent

cost for each team member. In evaluating the minimum value of each individual

cost, the states of the other agents are assumed to be constant. For a switching
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network structure the dwell-time that provides stability of the network subject to

the switching structure is found. In [50] an H2 optimal semi-stable methodology

for stabilization of linear discrete-time systems is proposed. The authors then pro-

posed a consensus algorithm and have shown that this protocol is a semi-stable con-

troller which can solve the consensus seeking problem. The authors in [51] have

shown that a specific type of graphs, i.e. de Bruijn’s graph, is optimal for consensus

seeking problem and with respect to a given cost function. An individual cost func-

tion is considered in [12] for obtaining a consensus protocol in a network of linear

multi-agent systems, by considering two types of network structures, i.e. leader-less

and leader-follower networks, where the leader receives feedback from the follow-

ers in the neighboring set. The authors in [53] consider nonlinear communication

protocols for the consensus problem. Maximization of the second eigenvalue of

the weighted graph Laplacian is considered in [54] to enhance robustness of the

networked agents to disturbances.

In most of the referenced work in the previous paragraph, the optimal control

problem is based on the individual cost definition for the team members. How-

ever, a single team cost function formulation has been proposed in only a few work

[44, 46]. In [46], optimal control strategy is applied for formation keeping and a

single team cost function is utilized. The authors in [44] assumed a distributed opti-

mization technique for formation control in a leader-follower structure. The design

is based on dual decomposition of local and global constraints. However, in this

approach, the velocity and position commands are assumed to be available to the

entire team. In [48], the dynamics of the entire network are decomposed into two

components, namely one in the consensus space and the other in its orthogonal sub-

space. A set of Linear Matrix Inequalities (LMIs) are then used to guarantee the

stability and consensus achievement using an H2 design strategy. In [12] a team
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cost function is defined and a min-max problem was solved to obtain a cooperative

optimal solution for the consensus seeking problem based on game theory and us-

ing linear matrix inequalities (LMIs). It was shown that the results obtained by this

approach yield a lower cost values when compared to the values obtained by the

LMI-based optimal control technique.

The problem of team cooperation, and specifically consensus seeking with

switching topologies, has received a wide attention in recent years and has been

discussed in the literature from different perspectives [56, 57, 58, 59, 60, 61]. The

work conducted in [56] can be considered as one of the pioneer work in this area

in which algorithms for distributed computation in a network with a time-varying

network structure are analyzed. Specifically, in [57] for a discrete-time model of

processors and a given number of tasks, convergence of a consensus algorithm in

a time-varying structure is discussed given that some restrictions are imposed on

the frequency of availability of the inter-agent communication links. One of the

underlying assumptions in many of the related work on switching networks is that

the graph describing the information exchange structure is a balanced graph. The

authors in [61] considered balanced information graphs and have shown the stabil-

ity under switching time-delayed communication links. The analysis is performed

by introducing a Lyapunov functional and then by showing the feasibility of a set

of linear matrix inequalities (LMIs). In [11, 58] switching control laws are de-

signed for a network of agents with undirected and connected underlying graphs

whereas in [60], consensus in a directed, jointly connected and balanced network is

discussed. The necessary conditions for achieving consensus in a network are dis-

cussed in [59]. The concept of “preleader-follower” is introduced as a new approach

to achieve consensus in a network of discrete-time systems. The basic properties of

stochastic matrices are used to guarantee consensus achievement in a network with
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switching topology and time-delayed communication links.

1.2.3 Synchronization and Formation Control of Networked EL

systems

Synchronization and formation control of multiple EL systems have attracted atten-

tion of several researchers recently [62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73,

74, 75]. Reference [62] considered output and state synchronization of multi-agent

EL systems. This study also considers communication delays and changes in the

communication topology in the design of the synchronization controllers. However,

it considerers complete knowledge of the states (for state synchronization) and the

EL systems structure and parameters. The author also provides a solution to the bi-

lateral teleoperation problem (which considers one master robot and a single slave

robot) in presence of parameter uncertainty and communication delays. Synchro-

nization of networked EL systems in presence of control effort saturations is consid-

ered in [63] by considering full and partial state feedback. However, the algorithm

introduced in [63] considers fixed communication network topology. Adaptive con-

trol algorithms are employed for distributed synchronization and formation control

and state synchronization of networked EL systems in [64, 71, 72]. The authors in

[64] proposed a formation control algorithm in presence of communication delays

and parameter uncertainty. However, the communication topology is assumed to

be fixed and full state measurements is required. In addition, the authors assume

availability of the desired trajectory to all the agents in the formation. For devel-

opment of the formation control law in [71], similar to [64], the authors assume

availability of the desired trajectory to all the agents in the formation. State syn-

chronization (consensus seeking) in presence of switchings in the communication
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network topology is considered in [72]. The authors have shown that synchroniza-

tion can be achieved in presence of constant communication time-delay. Reference

[65] considers formation control in presence of multiple leaders on a directed graph.

The parameters of the EL system are assumed to be constant and unknown.

The authors in [66, 67, 70, 75] employ potential functions to develop con-

sensus and formation control algorithms, which allow the agents to avoid obstacles

and collisions during the formation maneuver. Parameter uncertainties are handled

by using adaptive control schemes in [67] and [75]. Nonholonomic constraints are

considered in [68] and time-varying communication delays are handled similar to

the scattering approach in [62]. Synchronization control of multiple robotic manip-

ulators over a fixed and strongly connected communication graph with and without

full state measurement is studied and validated experimentally in [69]. Distributed

robust control in presence of parameter uncertainty is considered in [73] on strongly

connected fixed graphs. Time-varying communication network topologies is con-

sidered in [74] for systems with parameter uncertainty.

1.2.4 Spacecraft Formation Flying

Spacecraft (SC) formation flying is a new technology which plays an important role

in the future space missions such as NASA’s Terrestrial Planet Finder (TPF)Mission

and Space Telescope assembly [76, 77], the European Space Agency’s (ESA) simi-

lar mission, called Darwin [78], among many others. Several algorithms have been

proposed for the attitude and/or position synchronization and control of multiple SC

in deep space and in low orbit [16, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91].

In this thesis, we consider attitude synchronization and tracking, therefore, we re-

view recent literature on this topic in this subsection. Position synchronization

14



problem for spacecraft formation flying missions is not considered in this thesis.

The single SC attitude control and fault-tolerant attitude control with/without

using angular velocity measurement is also studied in the literature [92, 93, 94, 95,

96]. Reference [79] is one of the earliest papers on coordinated attitude control of

SC. This paper investigates the use of one-leader, multiple-leader, and barycenter

coordination strategies. The one-leader coordination strategy requires that one SC

serves as the reference SC, the leader, for the rest of the SC, the followers, in the

formation. The followers then track the leader, possibly with a constant offset. The

multiple-leader approach involves splitting the formation into two or more groups

and assigning one or more fleet leaders. In this case, the fleet leaders act as the

reference SC for the group leaders, which in turn, act as the reference SC for the

group followers. This approach results in a hierarchical communication topology.

The most interesting coordination strategy discussed is the barycenter strategy. In

this strategy, the j-th SC uses the position information of the neighboring SC to

determine the barycenter of their locations. The barycenter is then used as the

desired location of the j-th SC. In a subsequent paper [80] the authors use the

same type of formulation to develop one-leader based coordinated control laws for

position and attitude control of a SC formation. The interesting addition of this

paper is the application of the one leader coordinated control strategy to the problem

of Michelson stellar interferometry.

The authors in [84] developed a distributed controller for the SC formation at-

titude control problem that they term the coupled dynamics controller. The coupled

dynamics controller uses a ring communication topology, where each SC knows the

state of two other SC in the formation. The desired state and the state of the two

other SC are used to determine the appropriate control torque. A convergence proof
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is provided; however the proof does not ensure global convergence of the forma-

tion attitude. It requires that the SC begin with no angular rate and that the initial

formation error is below a certain limit.

In [86] the authors developed a passivity-based controller for the SC forma-

tion attitude control problem. The passivity-based controller uses only attitude in-

formation to determine control actions, thus alleviating the need for angular rate

measurements. The authors also analytically determine the domain of attraction

for the passivity-based controller and the coupled dynamics controller. Later in

[16] a more general architecture for SC formation attitude control is introduced

by the same authors. The architecture is designed to subsume the leader-follower,

behavior-based, and virtual-structure coordination strategies. The authors claim

that the architecture is “amenable to analysis via control theoretic methods.” A

brief descriptive list of some formation control problems that can be analyzed using

the architecture is given. The authors demonstrate the usefulness of the architecture

by applying it to the practical problem of Michelson stellar interferometry.

In [97] the authors investigate a centralized implementation of virtual struc-

ture coordination strategy using the general architecture. The primary contribution

of the paper is the addition of formation feedback to the SC formation. The authors

prove the virtual structure control law guarantees the stability and convergence of

the system.

A fundamentally difference approach is proposed in [82] for dealing with the

SC formation control problems. In this paper, each SC in the formation uses its cur-

rent desired state and state information communicated by the other SC to determine

a quasi-desired state using the reference projection. The quasi-desired state is then

used by the SCs attitude controller to determine the appropriate control action. Dif-

ferent types of coordination are possible using the appropriate reference projection.
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In the paper, a reference projection is developed for the leader-follower, general-

ized leader-follower, and the virtual desired attitude coordination strategies. The

leader-follower reference projection for the leader is the desired state of the forma-

tion, and the current state of the leader is the reference projection for the follower

SC. The generalized leader-follower strategy differs in that the reference projection

for the followers is a compromise between the desired state and the current state of

the leader. The only truly decentralized coordination strategy is the virtual desired

attitude strategy, where the reference projection for each SC is a compromise be-

tween the desired state and the average state of the SC in the formation. In a later

paper [90], the authors discuss applying the idea of reference projections to tracking

control and in [91] the authors investigate the idea further and present simulation

results.

More recently, [98] introduce a distributed algorithm for SC formation atti-

tude control. The authors consider unit-quaternion in their analysis, which enables

large attitude maneuvers. However, the authors consider fixed communication net-

work and full state measurement in their analysis. Communication delays are con-

sidered in [99], which extends the results in [98]. Modified Rodriguez Parameters

(MRP) are also used in the controller design for SC formation flying in [100]. Com-

munication time-delays are considered in [101]. However, when using MRP SC full

attitude rotation maneuvers cannot be executed.

SC attitude synchronization and coordination control without requiring angu-

lar velocity feedback is very useful specially when this information is not available

due to sensor failure. This problem is considered recently in the literature. Specifi-

cally, authors in [89] developed a velocity free attitude tracking algorithm for SC by

using leader-follower approach. Consequently, failure of the leader SC will result

in failure of the mission.
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More recently, [88] developed an attitude synchronization and tracking al-

gorithm for multiple SC formation by using MRP for attitude representation. The

advantage of these two studies ([89] and [88]) is that they do not require sharing

the estimate of the angular velocity among the SC in the formation, and this con-

siderably reduces the communication load in the formation. Another recent study

on velocity-free attitude control of SC formation is reported in [87]. In this paper,

the authors use unit-quaternion to describe the SC attitude and extend the results

reported in [94] for velocity control of a single SC to SC formation flying. How-

ever, in this algorithm it is required that an estimate of the angular velocity is shared

among the SC in the formation. Therefore, the algorithm does not reduce the com-

munication among the SC in the formation. However, it is interesting to note that

in this algorithm boundedness of the control effort is guaranteed.

1.2.5 Fault Detection and Isolation (FDI) Approaches in Robotic

Systems

As it was discussed earlier in this chapter, robotic systems play an important role

in automation industries, including manufacturing, assembly, and biotechnology.

In addition, there is a growing need for unmanned operation in different service

and research sectors such as search and rescue, nuclear waste clean up, planetary

exploration, and others where robotic manipulators play an equally important role.

However, notwithstanding their widespread applicability and use, robotic systems

are known to fail during normal operations due to various faults that include sensor

and actuator faults, and component failure [102]. Hence, automated monitoring of

the robotic systems and manipulators for any faults and effective accommodation

of such faults play a crucial role in the use of robotic manipulators as autonomous

18



systems.

In this section we provide an overview of FDI approaches presented in the

literature for robotic systems. It is, however, important to note that studying FDI

algorithms for robots and EL systems is not the main focus of this thesis and it is

discussed in this section for elaboration, presentation and introducing the reader to

FDI algorithms available in the literature.

Model-based approaches for fault diagnosis of robotic manipulators

Implementation methods for model-based fault detection by using analytical redun-

dancy (AR) can be classified into two groups: (1) indirect implementation, based on

diagnostic observers for state or parameter estimation; and (2) direct implementa-

tion based on parity relation techniques [102, 103]. Early state estimation fault de-

tection algorithms developed for robotic manipulators relied on the assumption that

the process is linear (see for example [104]). However, it is shown later that the fault

capability of the nonlinear observer-based fault detection approach is significantly

better than the linear Luenberger observer based fault diagnosis approach. Vari-

ous nonlinear diagnostic observer designs have been proposed and implemented on

robotic manipulators to detect sensor and actuator faults [105, 106, 107, 108, 109].

Most of the studies on fault detection consider either a sensor fault or an actua-

tor fault. A method based on generalized momenta for actuator fault detection is

proposed in [105]. However, the proposed method could not detect sensor faults

and was not robust in the presence of disturbance, noise and model-plant mismatch

(MPM). The authors, however, presented an adaptive and robust scheme to en-

compass uncertain robot dynamics in [106, 109]. In [107], a model-based fault-

detection approach was successfully demonstrated experimentally. This approach

was based on the generation of residuals through a filtered torque estimate which
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does not rely upon the measurement of acceleration quantities. Adaptive and robust

detection algorithms were also developed in [107] to take into account possible un-

certainty in the robot parameters. Sliding mode-based scheme for fault detection

for robotic manipulators was also studied in [110].

Parameter estimation methods are used in [111] and [112] to monitor and

identify changes in critical parameters due to faults in robotic systems. The method

introduced in [111] was shown to be effective for certain types of faults. However

the underlying dynamic model was highly simplified (constant inertias and coupling

between joints was neglected), which implies again the need for either conservative

thresholds, or probable false alarms [107]. A more rigorous approach to the syn-

thesis of fault detection residuals was presented in [113], in which the theoretical

maximum number of independent residuals were derived for a manipulator with

redundant sensing, based on linearized dynamics for the robot. Dynamic thresh-

olds were developed based on full (nonlinear) manipulator dynamics. The results

were promising, however the thresholds required the measurement or estimation of

manipulator acceleration which is problematic in practice [107].

Conceptually, direct implementation based on a parity relation is more straight-

forward than the observer based approach [114]. The literature on parity relation

based fault detection of robotic manipulator is not rich. This is mainly due to lack

of theoretical work on parity relations for nonlinear systems. Most research results

on parity based fault detection techniques are for linear systems. The origin of par-

ity relations based on AR can be found in [103] for linear systems. However, since

a robotic manipulator is a nonlinear system, the above-mentioned results cannot be

directly applied.
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Model-free approaches for fault Diagnosis of robotic manipulators

Model-free approaches to manipulator fault detection include neural networks and

fuzzy logic to generate residuals, which relies on the approximation capabilities

of these approaches in presence of modeling uncertainty. In [115], a fuzzy logic

approach is used to allow for such disturbances, however the approach remains

somewhat heuristic. A neural network approach to manipulator fault detection was

adopted in [116, 117]. However, the fault detection algorithms are based on a user

defined bound on the modeling uncertainty. A comparison among three architec-

tures for residual analysis for robotic manipulator is studied in [118]. Combinations

of fuzzy logic and neural network are also employed for fault detection and isola-

tion schemes for robot manipulators in [119]. A combination of H∞ approach and

Radial Basis Functions (RBFs) neural network is introduced in [120].

FDI approaches for single and networked mobile robots

Several FDI approaches have been proposed for mobile robots in the literature. One

of the approaches to achieve FDI on mobile robots is based on multiple models

and a bank of observers [121]. This fault detection algorithm is presented in [122]

where only two possible faults are analyzed: a reduction in the radius of one tire and

a periodic bump, without processing the information in the residuals extensively. In

[123] the work in [122] is extended through the use of multiple hypotheses to isolate

sensor faults. The probability of each hypothesis is calculated using the residuals

of the corresponding Kalman filter, showing good results in FDI. Regretfully, in

this work there is no description of the isolation criteria used to determine which

fault has occurred. A similar bank of Kalman filters is used in [124] to determine
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faults (on sensors and actuators) on a four-wheel robot, but in this case the resid-

uals are processed through a neural network to isolate the faults. Similarly, two

approaches based on extended Kalman filter and neural networks are developed for

detection of two types of faults, namely the loss-of-effectiveness fault and locked-

in-place fault in [125]. Another isolation method is presented in [126] where the

bank of Kalman filters is combined with a Markov model representation to identify

the faults through probability calculations. Another neural networked-based model

free fault detection algorithm for mobile robots is presented in [127].

Although these works present important advances in FDI, they detect faults

only in speed related sensors (e.g., gyros and encoders), leaving behind other im-

portant sensors such as sonars, GPS, and magnetic compasses, where FDI is a more

complex task [121]. However, in [128] a combination and integration of Kalman

filter based sensor fusion and a parity equation based scheme is introduced to con-

tinuously monitor all the sensors used in the ground vehicle navigation to ensure

the system’s health, excluding Differential GPS. Authors in [129] consider non-

linear dynamics for detection of change in the wheel radius fault and slipping or

skidding faults, which is obtained by extension of the result reported in [107]. Fault

detection in the robot navigation system by using hardware redundancy is consid-

ered in [130]. Additionally, detection and identification of control software faults

for mobile robots is considered in [131]. Soft computing techniques have also been

employed for mobile robot fault detection and isolation. For example, an execution

monitoring algorithm for mobile robots has been proposed in [132]. An efficient

new hybrid approach for multiple sensor fusion and fault detection is proposed in

[133] addressing the problem with multiple faults, which is based on conventional

fuzzy soft clustering and artificial immune systems. For this new approach, requires

no prior knowledge or information about the sensors, or the system behavior, and
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no learning processes are required.

Several researchers have proposed multiple approaches for FDI of networked

mobile robots [113, 121, 134, 135, 136, 137, 138, 139]. In [134] the authors explain

how the redundancy present in cooperative mobile robots can be used to increase

the robustness of the group, thus improving the efficiency, but no fault detection sys-

tem is described. The ALLIANCE architecture presented in [135] shows a simple

fault detection system for cooperative robots based on behavioral programming, but

fault detection process is limited to detect when a robot has suffered a fatal failure

and the authors indicate that it presents a slow response. Using another approach,

the work [136] shows a distributed localization scheme for resource limited mobile

robots. The algorithm takes advantage of measurement redundancy to improve the

localization of each robot and, at the same time, it is used to detect which local-

ization measurements are incorrect, eliminating them from the system. Authors in

[137, 138] present a cooperative approach for differential GPS fault detection in

unmanned aerial vehicles (UAV). The proposed scheme uses artificial vision-based

relative position measurements, aiming to detect wrong GPS absolute position mea-

surements. The approach is based on the fact that in multi-UAV missions, it is

possible to take advantage of the capabilities that the team of UAVs offers, to aug-

ment each of the individual FDI systems. In [113, 139] multiple layer approaches

have been used to achieve FDI in different classes of robotic systems (systems with

different levels of resources), so the FDI system can be adapted depending on the

redundancy that exists, but the idea of having a cooperative layer within the archi-

tecture was not implemented. The result in [121] presents a layered architecture

for FDI on cooperative robots that combines the advantages of single and multiple

robots fault detection mechanisms, where the different layers can be implemented

depending on capabilities and resources of the robots. The proposed architecture
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combines existing methods for single robot FDI, where local information is used

in order to detect the presence of faults, with the ideas present in cooperative robot

FDI systems, where additional information obtained from multiple robots is used

for detecting faults in any of the group members; yielding an architecture capable

of detecting a wider range of faults in comparison with local information-based FDI

systems. In addition, a distributed sensor fault detection for multiple mobile robots

is presented in [140]. Also, a distributed, model-based, qualitative fault-diagnosis

approach for formations of mobile robots is presented in [141]. This approach is

based on a bond-graph modeling framework that can deal with multiple sensor types

and isolate process, sensor, and actuator faults. The diagnosis scheme employs rela-

tive measurement orderings to discriminate among faults by exploiting the temporal

order of measurement deviations.

FDI approaches for space mobile robots and robotic arms

Particle filter (also known as sequential Monte Carlo) is a promising approach for

mobile robot fault diagnosis, and has received considerable attention in the past few

years [142, 143, 144, 145, 146, 147, 148, 149]. Specifically, a combination of Un-

scented Kalman Filter (UKF) and the Variable Resolution Particle Filter (VRPF) is

proposed in [146]. Decision-theoretic variable resolution particle filter is employed

in [142] for fault detection of a six-wheel rocker-bogie rover. An adaptive particle

filter is employed in [143]. Softcomputing techniques are also employed for mobile

robot fault detection as well [144]. In addition, in [150] a combination of particle

filters with Kalman filters is employed for fault detection.

Fault diagnostics and fault tolerant control of space robotic arms have been

considered in the literature [151, 152, 153, 154]. A fault detection for robotic arms

in presence of measurement noise without using velocity information is introduced
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in [151]. A knowledge-based fault detection algorithm for a space robotic arm

is presented in [154]. The notion of Variable Assignment Problem (VAP) is in-

troduced in [153] as an abstract framework for characterizing fault diagnosis in

space robots. In [152] a fault tolerant approach for space robots is introduced. An

overview of recent research work on fault tolerant control of space robots at the

University of Texas at Austin is provided in [155].

1.3 General Problem Statement

The main goal of this work is the development of efficient synchronization and for-

mation control algorithms for distributed control of networked nonlinear systems

whose dynamics can be described by EL equations. The formation controller must

be able to guarantee several properties, including synchronization of their states and

following a pre-defined position or trajectory. One of the main challenges in the de-

sign of formation control algorithm is its robustness and its ability to reconfigure in

the presence of component faults. In other words, it is highly desirable to design

a formation control algorithm which can maintain the group behavior and accom-

plish mission objectives in the presence of undesirable events such as component

faults in the agents of the network. Therefore, the designed formation controller

must have the capability of changing its gain or restructure in the presence of com-

ponent faults. As a result, emphasis is put on the development of distributed control

strategies that are easy to implement and can be reconfigured in the presence of

component faults requiring minimum knowledge from the plant’s dynamics. It is

also important to make sure that the control algorithm requires minimum informa-

tion exchange between the agents to accomplish its objectives in normal operation

mode. Furthermore, the developed formation control algorithm, in the presence of
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component faults should have the ability to reconfigure in order to accomplish mis-

sion objectives by requiring minimum information exchange between the agents. It

is also highly desirable that the reconfiguration happen as soon as possible in the

presence of component faults. Furthermore, there could be some constraints on the

availability of information and hence other issues like unavailability of full state

measurements must be considered in the design.

1.4 Thesis Overview and Research Objectives

The objectives that are pursued in this thesis are as follows. The organization of the

thesis is also outlined below.

• In Chapter 2 basic assumptions and definitions for multi-agent and Euler-
Lagrange (EL) systems are provided. We provide the basic assumptions and

details on the class of EL systems that is considered in this thesis. We provide

two examples of EL systems, which are the two-link manipulators and SC at-

titude kinematics and dynamics. Definition of the unit quaternions, which is

a singularity-free attitude coordinate is also provided in this chapter. Next,

we provide the definition of the Kronecker product, a saturation function as

well as the information structure that will be used subsequently in this thesis.

An overview of the Hamilton-Jacobi-Bellman (HJB) equations for minimiza-

tion of a general nonlinear cost function is provided, which is followed by an

overview on the stability analysis tools, such as Lyapunov theorem, invari-

ance principle and Barbalat’s lemma for autonomous and nonautonomous

systems. Input-to-state stability (ISS) theorem as well as stability analysis

tools for switched systems are provided at the end of this chapter.
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• In Chapter 3 we consider distributed state synchronization (or consensus
seeking) protocol and set-point tracking control of networked EL systems

from optimal control point of view by introducing an objective function to

minimize. The EL systems’ dynamics are re-written in the state-space form

and an optimal general solution is provided by employing HJB equations for

switching network topology. A discussion on the existence of a solution to

the optimal control problem is provided. Stability analysis of the closed-loop

networked EL systems with switchings in the network topology is provided.

Parameter uncertainties in the EL systems is also considered in this chapter.

Specifically, we modify and amend the developed optimal control structure

in order to compensate for the effects of parameter uncertainties. We also

discuss and provide a controller reconfiguration strategy to deal with addi-

tive actuator fault (both intermittent and permanent) in the system is our last

objective of this chapter.

• Parameter uncertainties and external disturbances always affect operation and
performance of EL systems. Therefore, in Chapter 4, we considerH∞-optimal

formation control of Euler-Lagrange systems. We formulate the problem of

state synchronization (or consensus) protocol and set-point tracking control

of multi-agent EL systems as an H∞ optimal control problem in presence of

parametric uncertainty, external disturbances, and actuator faults. We show

that state synchronization protocol and set-point tracking controllers can be

formally derived by employing our proposed analysis. In addition, we for-

mally show that our proposed distributed control algorithm is input-to-state

stable (ISS) where the input is considered to be the parameter uncertainty

as well as external disturbances for both fixed and switching communication
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network topologies. We also consider controller reconfiguration in presence

of actuator faults. Note that the controller recovery algorithm that is pro-

posed in Chapter 3 requires the knowledge of the fault bounds for controller

reconfiguration. This information has to be provided by the fault detection,

isolation and identification (FDI) algorithm that is working in parallel with

the controller. However, in this chapter, we propose an adaptive distributed

reconfigurable control algorithm, which has the capability of estimating the

faults (both intermittent and permanent). We incorporate the information pro-

vided by the FDI module in the design of the adaptive controller. We consider

three main types of imperfections in the FDI algorithm, namely, (1) fault de-

tection imperfection, that is when fault is not detected by the FDI algorithm,

(2) fault isolation imperfection, that is when the fault is detected in the wrong

channel or in the wrong agent, and (3) fault identification imperfection, that

is when the fault estimation is not exact. We show that our proposed dis-

tributed reconfigurable controller can maintain the closed-loop networked EL

systems stability under these scenarios and can improve the performance of

the closed-loop networked EL systems in the third case.

• In Chapter 5 we consider two constraints in the state synchronization con-
trol design protocol and set-point tracking control of multi-agent EL systems.

Specifically, the first constraint is on the control input the second constraint is

on availability of partial state feedback. Therefore, as out first contribution in

this chapter, we develop bounded distributed synchronization and set-point

tracking controllers with full state feedback. It is shown that boundedness

of the control effort is guaranteed globally and independent of initial con-

ditions. Our next contribution in this chapter is concerned with the design
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of distributed output feedback controllers for synchronization and set-point

tracking of networked EL systems. Our third main objective in this chapter

is to design a reconfigurable controller for multi-agent networked EL sys-

tem in presence of actuator saturation fault. Finally, our last objective of this

chapter is to present a switching-based control reconfiguration strategy that

is utilized in case of an actuator fault or an actuator saturation constraint to

accomplish cooperative control of EL systems. Towards this end, we first

introduce a class of distributed controller (denoted as the unconstrained nom-

inal controller) that can be used for accomplishing cooperative state synchro-

nization and set-point tracking control objectives. We then introduce a class

of distributed constrained controller (denoted as the constrained reconfigured

controller) that can be used to maintain the overall control objectives of the

EL system in presence of actuator faults and actuator constraints. Finally,

we introduce a procedure that can be employed to switch between the two

distributed constrained controllers (namely, the constrained nominal and the

constrained reconfigured controllers). In presence of actuator faults and ac-

tuator saturations, a switching mechanism is introduced to provide a recon-

figurable controller for the networked EL system to ensure and maintain the

overall mission objectives and requirements.

• In Chapter 6 we extend and modify our proposed controllers in Chapter 5 to
introduce two quaternion-based attitude synchronization and set-point track-

ing controllers for networked SC. Our proposed control algorithms guarantee

boundedness of the control efforts for all initial conditions. Furthermore, by

using our proposed control laws, the desired attitude coordinates are only

provided to a subset of the SC in the formation designated as the formation
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leaders. This essentially increases flexibility in the design of the formation

structure which increases robustness of the formation to component faults.

We then propose a control law which does not require exchange of SC angu-

lar velocities (or their estimates) among the SC in the network. Furthermore,

we use bidirectional communication between the agents, which increase ro-

bustness of the formation to component faults. In the simulations presented

our proposed constrained attitude controllers are compared to the controller

that is proposed recently in the literature and is shown through simulations

that our proposed controller has a better performance.

• Finally, Chapter 7 concludes this thesis and provides guidelines for future
research on distributed state synchronization protocol and set-point tracking

control of networked EL systems.

1.5 Thesis Contribution

This thesis claims the following major contributions to the field of distributed con-

trol of networked multi-agent Euler-Lagrange systems:

1. The first main contribution of this thesis is systematic distributed controller

synthesis for networked multi-agent EL systems. Unlike most of the con-

troller design approaches in the literature for networked-multi-agent EL sys-

tems (cf. [62, 63, 64, 71, 156] and references therein), which only rely on

stability analysis, in this thesis we provide a performance index for each EL

system. This performance index is a suitable measure for expected perfor-

mance of each EL system in the network. By minimizing this performance

index we obtain a distributed controller for each agent that guarantees global
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state synchronization and set-point tracking for EL systems in the network.

2. The second main contribution of this thesis is considering parameter uncer-

tainty in networked EL systems and switchings in the communication net-

work topology. Both of these problems have been considered separately in

the literature, however, since in practice these two challenges may occur con-

currently, new stability analysis based on switched systems theory is neces-

sary to demonstrate stability of the entire EL systems network.

3. The third main contribution of this thesis is in the design of controller recon-

figuration strategy for multi-agent EL systems subject to both intermittent

and permanent additive actuator faults. Reconfigurable controller is a chal-

lenging problem which is being only considered for single EL systems in the

literature. This problem for multi-agent EL systems with switchings in the

communication network topology is considered for the first time.

4. The fourth contribution of this thesis is in the development of distributed

control of networked EL systems in presence of parameter uncertainties and

external disturbances based on H∞ optimal control approach. Specifically, in

this thesis for the first time in the literature we employ H∞ synthesis to design

the state synchronization and set-point tracking for networked EL systems.

We also discuss input-to-state stability (ISS) of the networked EL systems

for the first time in the literature.

5. The fifth contribution of this thesis is in the analysis and prediction of the

performance of the networked EL systems in presence of actuator faults when

the developed H∞ controller is utilized. The following realistic scenarios are

considered in our analysis: (1) fault detection imperfection, that is when fault
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is not detected by the FDI algorithm, (2) fault isolation imperfection, that is

when the fault is detected in the wrong channel or in the wrong agent, and (3)

fault identification imperfection, that is when the fault estimation is not exact.

6. The sixth contribution of this thesis is in the development of controller recon-

figuration strategy to improve the performance of our proposed H∞ controller

in presence of fault identification imperfection. To the best of our knowledge

this realistic problem has not been considered before for single and multi-

agent EL systems in the literature.

7. The seventh contribution of this thesis is in the development of distributed

control algorithms for multi-agent EL systems in presence of both actuator

saturation constraints and in absence of velocity measurements. We have

shown in our simulations that our proposed controllers outperform the exist-

ing distributed constrained controllers for networked EL systems.

8. The eighth contribution of this thesis is in the development of controller re-

configuration strategy to compensate for the effects of actuator faults which

results in a change in the available maximum control effort.

9. The ninth contribution of this thesis is in the extension and modification of

our proposed constrained velocity-free controllers for EL systems to attitude

control of SC formation flying missions. It is shown in the simulations that

our proposed controller outperforms similar controllers in the literature.
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Chapter 2

Background, Preliminaries and

Definitions

2.1 Multi-Agent Systems

Multi-agent systems, in this thesis, refers to a network of multiple dynamical sys-

tems. The dynamics of these systems is not coupled individually, however, the

system’s dynamic states are coupled through a common (shared) control law. In

this thesis we consider a class of nonlinear systems, which are known as Euler-

Lagrange (EL) systems. The coupling among the agents of the network can be

considered for all the states or only for parts of the states, e.g. outputs of the agents.

The control law, which constitutes the connection among the agents in the network

can be classified into three general types. The first type of the controllers, which

are known as centralized controllers (e.g. Multi-Input Multi-Output controllers in

[18]), receive the information from all of the agents in the network. The control

command, in this case, is generated by a central controller and transmitted to all

the agents in the network. The second type of controllers, known as decentralized
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controllers [157], receive information only from the agent. In this type the commu-

nication among the controllers is not preplanned (or predefined) and the commu-

nication among the agents can be considered as an stochastic process. Therefore,

the controller must make decisions based on the agent’s own states. The third type

of controllers, known as distributed controllers [12], receive information from the

associated agent and the neighboring agents. The controller command is then gen-

erated based on the information the controller receives. Therefore, the controller

needs to know the neighboring agent’s states and must have a general knowledge of

the network structure.

2.2 Euler-Lagrange (EL) Systems

Two basic approaches have been typically used for modeling physical systems with

lumped parameters namely: (1) Derivation of the equations of motion using forces

and torque laws, which is also known as the Newton-Euler equations; or (2) Ap-

plication of variational principles to selected energy functions [158]. Generally

speaking the link among different subsystems is that they transform energy within

each other. Therefore, it seems natural and advantageous to formulate the modeling

problem in terms of energy quantities. The starting point of the variational approach

to modeling is the definition of energy functions in terms of sets of generalized

coordinates, q ∈ Rk (typically position and charges for mechanical and electrical
systems, respectively), where k is the system’s degree of freedom. This procedure

leads to introduction of the Lagrangian function. In this thesis, it is assumed that

the Lagrangian function has the following structure:

LNC(q, q̇, t) =K (q, q̇)+
∫ t

0
F (q̇)dt− (P(q)+PNC(q, t)) (2.1)
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where LNC(q, q̇, t) is a non-conservative Lagrangian function, K (q, q̇) is the ki-

netic energy function, P(q) is the potential energy function, PNC(q, t) is a non-

conservative energy function, andF (q̇) is the Rayleigh dissipation function which

satisfies q̇T F (q̇)
∂ q̇ ≥ 0 and ∂F

∂ q̇ (0) = 0.

Now, let δq denote the virtual displacement corresponding to the variation of

q. D’Alembert’s principle indicates that the total virtual work of the total forces on

a particle, augmented by the inertial forces, vanishes for reversible displacements

[159]. This results in the following equation,

δW =∑
j
(Fj− ṗ j)δq j = 0 (2.2)

where δW is the virtual work, Fj is the total force on the j-th particle, p j is the mo-

mentum of the j-th particle and is defined as p j = mjq̇ j [159, 160]. Consequently,

by applying D’Alembert principle to the Lagrangian defined in (2.1) one obtains

[160]:

d
dt

(
∂K (q, q̇)

∂ q̇

)
− ∂K (q, q̇)

∂q
= ζ (2.3)

where ζ (q, q̇, t) =
∫ t
0F (q̇)dt − (P(q) +PNC(q, t)) is known as the generalized

force.

We assume in this thesis that the non-conservative energy function has the

following structure,

PNC(q, t) =−(u+δ (t))Tq (2.4)

where δ (t) ∈ Rk is an external signal (disturbance), which is a vector of uniformly
bounded and piecewise continuous functions of time, i.e. supt>0 δ (t) < ∞. Further-

more, it is further assumed that u ∈ Rk is the input to the system. It is assumed
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in this thesis that the number of inputs is equal to the number of generalized coor-

dinates, i.e. the EL system is a fully actuated system. We further assume that the

potential energy functionP is explicitly independent of time, that isP ≡P(q).

Consequently, by noting (2.3), (2.4) the equations of motion can be expressed by

the following equation,

d
dt

(
∂L (q, q̇)

∂ q̇

)
− ∂L (q, q̇)

∂q
+
∂F (q̇)
∂ q̇

= u+δ (t) (2.5)

where L (q, q̇) =K (q, q̇)−P(q) is known as a conservative Lagrangian. In this

thesis, equation (2.5) is called the (first) differential equations of the EL or in short

EL equations.

Euler-Lagrange systems with quadratic kinetic energy function

In this subsection, we consider a special class of Lagrangians. This class will be the

basis of all the Lagrangians we will consider in this thesis. Note that for the devel-

opment of the EL equation (2.5) it was assumed that the potential energy function

P is independent of time and q̇. We further assume in this thesis that the kinetic

energy function is a quadratic function of the vector q̇ of the form:

K (q, q̇) =
1
2
q̇TD(q)q̇ (2.6)

where D(q) ∈ Rk×k is a symmetric positive definite matrix known as the general
inertia matrix. In view of the above assumptions, equation (2.5) can be re-written

in the following equivalent form [158]:

D(q)q̈+C(q, q̇)q̇+G(q)+
∂F (q̇)
∂ q̇

= u+δ (2.7)
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where C(q, q̇)q̇ is the vector of Coriolis and centrifugal forces and

G(q) =

[
g1(q), . . . ,gk(q)

]T
� ∂
∂q

P(q)

which is denoted as the gravitational generalized force vector (GFV).

A space robot system is an example of a dynamic system satisfying the model

(2.7) (refer to Fig. 2.1).

Additional properties and assumptions

In this thesis, we consider EL systems satisfying the following important additional

properties. These properties will be used subsequently in the development of the

control laws and our analysis [158].

Property 2.1.1: Boundedness: the general inertia matrix is bounded, specif-

ically, ∃k > 0,k > 0 such that: k Ik < D(q) < k Ik, ∀q, where Ik is an k× k iden-
tity matrix. GFV is also upper bounded, that is, 0 ≤ supq∈Rk{|gi(q)|} ≤ gi, ∀i ∈
{1, . . . ,k}, where gi(q) denotes the elements of G(q).

Property 2.1.2: Skew symmetry property: Ḋ(q)−2C(q, q̇) is a skew-symmetric

matrix, i.e. xT [Ḋ(q)−2C(q, q̇)]x = 0 for any nonzero vector x.

Property 2.1.3: Linearity in the parameters: D(q)a+C(q, q̇)b+G(q) +

∂F (q̇)
∂ q̇ = Y(q, q̇,a,b)Θ, for all vectors a,b ∈ Rk, where Y(q, q̇,a,b) is the regres-

sor matrix and Θ is a vector of unknown but constant parameters.
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Figure 2.1: A space robotic system with n manipulators [161].

2.3 Examples of Nonlinear Euler-Lagrange Systems

2.3.1 Two-Link Robot Manipulator

A two-link planar robot manipulator has been selected as a representative exam-

ple in nonlinear control theory and robotics research communities (refer to [162]

for more details). This system has two degrees-of-freedom with q = [θ1, θ2]T .

The moment of inertia about the center of mass of each manipulators is given by

Ii = 1
12mil

2
i , i ∈ {1,2}, where l1 and l2 are the length of the first and the second

manipulator and m1 and m2 denote the mass of the first and the second manipula-

tors, respectively. The dynamics of this system can be expressed by using the EL
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equation (2.7), as follows [162],

D(q) =

⎡
⎢⎣I1+ I2+m1l2c1+m2(l21+ l2c2+2l1lc2 cos(q2)) I2+m2(l2c2+ l1lc2 cos(q2))

I2+m2(l2c2+ l1lc2 cos(q2)) I2+m2l2c2

⎤
⎥⎦

C(q, q̇) =

⎡
⎢⎣−m2l1lc2 sin(q2)q̇2 −m2l1lc2 sin(q2)(q̇1+ q̇2)

m2l1lc2 sin(q2)q̇1 0

⎤
⎥⎦

G(q) =

⎡
⎢⎣(m1lc1+m2l1)gcos(q1)+m2lc2gcosq1+q2

m2lc2gcos(q1+q2)

⎤
⎥⎦

(2.8)

where g is the Earth’s gravitational constant and lc1 and lc2 are the distances from the

center of the gravity of the first and the second manipulators to their corresponding

joints. In addition, for this system ∂F (q̇)
∂ q̇ = 0.

It can be shown that the parameters of the two-link manipulator given above
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satisfy Properties 2.1.1–2.1.3. Specifically, the parametrization of this robot ac-

cording to Property 2.1.3 is [162]:

Y(q, q̇,a,b) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 0

a1+a2 a1+a2

cos(q2)(2a1+a2)− sin(q2)(q̇1b2+ q̇2b2+ q̇2b1) cos(q2)a1

gcos(q1) 0

gcos(q1) 0

gcos(q1+q2) gcos(q1+q2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

Θ=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m1l2c1+m2l
2
1+ I1

m2l2c2+ I2

m2l1lc2

m1lc1

m2l1

m2lc2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.9)

2.3.2 Spacecraft Attitude Dynamics

Sets of coordinates that completely describe the orientation (attitude) of a rigid body

relative to some reference coordinate frame are known as the attitude coordinates.

There are many different ways to describe the attitude of a rigid body in the 3D

space. The four fundamental facts on the rigid body attitude coordinates are listed

below [163]:

1. A minimum of three coordinates is required to describe the relative angular

displacement between two reference frames.

40



2. Anyminimal set of three attitude coordinates will contain at least one geomet-

rical orientation where the coordinates are singular, at least two coordinates

are undefined or not unique.

3. At or near such a geometric singularity, the corresponding kinematic differ-

ential equations are also singular.

4. The geometric singularities and associated numerical difficulties can be avoided

altogether through a regularization. Redundant sets of four or more coordi-

nates exist which are universally determined and contain no geometric singu-

larities.

We review the two most commonly used attitude representations below. An

interested reader can refer to [163] for more details.

Euler angles

The most commonly used sets of attitude parameters are the Euler angles. Aircraft

and spacecraft orientations are commonly described through the Euler angles roll,

pitch and yaw (φ , θ , ψ). The popularity of Euler angles stems from the fact that the

relative attitude is easy to visualize.

The equations of motion of the spacecraft attitude dynamics are given by

[163, 164],

q̇ =R̄ω (2.10a)

Jω̇ =−S(ω)Jω+ρ (2.10b)

where q = [θ ,φ ,ψ]T is the vector of the Euler angles, ω = [ω1,ω2,ω3]T is the

vector of spacecraft angular velocities in the body frame, ρ = [ρ1,ρ2,ρ3]T is the
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vector of external torque inputs in the body frame, J= JT ∈ R3×3 is the spacecraft
positive definite moment of inertia matrix, and R̄ is defined by,

R̄=
1
cθ

⎡
⎢⎢⎢⎢⎣
cθ sφ sθ cφ sθ

0 cφcθ −sφcθ
0 sφ cφ

⎤
⎥⎥⎥⎥⎦

where cθ stands for cos(θ), sθ stands for sin(θ), sφ stands for sin(φ), and cφ stands

for cos(φ). In addition, S(x) is the skew-symmetric matrix operator that is given

by,

S(x) =

⎡
⎢⎢⎢⎢⎣
0 −x3 x2

x3 0 −x1
−x2 x1 0

⎤
⎥⎥⎥⎥⎦

From equation (2.10a), we have ω = R̄−1q̇, which implies that ω̇ = ˙̄R−1q̇+

R̄−1q̈. Consequently, one can re-write equation (2.10b) as R̄−TJR̄−1q̈+R̄−TJ ˙̄R−1q̇+

R̄−TS(R̄−1q̇)JR̄−1q̇ = R̄−Tρ . Therefore, the 3-degrees of freedom (DOF) atti-

tude dynamics of a spacecraft can be written in the form of equation (2.7) with

g(q) = ∂F (q̇)
∂ q̇ = 0, and where we specifically have,

D(q) =R̄−TJR̄−1 (2.11a)

C(q, q̇) =R̄−TJ ˙̄R−1+ R̄−TS(R̄−1q̇)JR̄−1 (2.11b)

u =R̄−Tρ (2.11c)

When replacing the above terms in (2.7) one notices all the terms are left multiplied

by R̄−T . However, one should not cancel out this common term, which would then

result in having a non-symmetric D(q).
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Remark 2.3.1. Note that the Euler angle kinematic differential equations encounter

a singularity at θ = ±90 degrees for three successive rotations about the 3rd, 2nd
and 1st body axis (labeled (3-2-1) set for short).

The spacecraft inertia matrix with a vector a = [a1,a2,a3]T can be written as

[165],

Ja = O(a)Θ (2.12)

where O(a) =

⎡
⎢⎢⎢⎢⎣
a1 0 0 0 a3 a2

0 a2 0 a3 0 a1

0 0 a3 a2 a1 0

⎤
⎥⎥⎥⎥⎦ and

Θ=

[
J11, j J22, j J33, j J23, j J13, j J12, j

]T

Consequently, we obtain

D(q)a+C(q, q̇)b =R̄−TJR̄−1a+ R̄−TJ ˙̄R−1b+ R̄−TS(R̄−1q̇)JR̄−1b

�Y(q, q̇,a,b)Θ
(2.13)

where Y(q, q̇,a,b) = R̄−T
[
O(R̄−1a)+O( ˙̄R−1b)+S(R̄−1q̇)O(R̄−1b)

]
.

The Euler angles provide a compact, three parameter attitude description

whose coordinates are easy to visualize. One main drawback of these angles is

that a rigid body or reference frame is never further than a 90 degree rotation away

from a singular orientation. Therefore their use in describing large, and especially,

arbitrary rotations is limited. One can use the unit quaternions to overcome this

difficulty as described next.
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Unit quaternions (Euler parameters)

Unit quaternions (also known as Euler parameters) are another popular set of atti-

tude coordinates. They provide a redundant, nonsingular attitude description and

are well-suited to describe arbitrary, large rotations [163]. The unit quaternion for

the a spacecraft is defined as:

�q =

⎡
⎢⎣esin(ϕ2 )
cos(ϕ2 )

⎤
⎥⎦ =

⎡
⎢⎣ q̄

q̂4

⎤
⎥⎦ (2.14)

where e = [e1,e2,e3]T ∈R3×1 is the Euler axis, ϕ is the Euler angle, q̄ is the vector
part, and q̂4 is the scalar part of the quaternion, satisfying the constraint

q̂24+ q̄T q̄ = 1 (2.15)

Therefore, q̂4 = ±1 correspond to the same orientation in SO(3). The matrix de-

noted by R̄(�q) ∈ SO(3) represents the rotation from the inertial frame F I to the

body frame of the spacecraft, FB. The rotation matrix is related to the quaternion

through [164]:

R̄(�q) = (q̂24− q̄T q̄)I3+2q̄q̄T −2q̂4q̄× (2.16)

where In is an n×n identity matrix. In general,+�q and−�q both represent the same

rotation matrix.
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The equation of motion for the attitude dynamics and kinematics of a space-

craft is then given by [164]:

Jω̇+C(q̄,ω)ω =u

˙̄q− 1
2
Ē(�q)ω =0

˙̂q4+
1
2
q̄Tω =0

(2.17)

where u = [u1,u2,u3]T ∈ R3×1 is the input vector and ω = [ω1,ω2,ω3]T ∈ R3×1 is
the angular velocity of the spacecraft with respect to the inertial frame. In addition,

the matrix Ē(�q) is given by

Ē(�q) = q̂4I3×3+ q̄× (2.18)

When thrusters are used C(q̄,ω) can be chosen as C(q̄,ω) = ω×J, and when

momentum actuators (e.g. reaction wheels and control moment gyros) are chosen

C(q̄,ω) will be a function of the spacecraft rotation matrix and the angular momen-

tum of actuators and the spacecraft in the body frame [166, 167]. In both cases,

however, C(q̄,ω) is a skew symmetric matrix [167].

Remark 2.3.2. Note that the parameters of the dynamic equation (2.17) satisfy the

Properties 2.1.1–2.1.4 that are provided in Section 2.2.

With reference to Remark 2.3.2 and by assuming that the spacecraft inertia

matrix is expressed in the principal axis, one concludes that J is a diagonal matrix.

45



2.4 The Kronecker Product

IfA is anm-by-nmatrix and B is a p-by-qmatrix, then the Kronecker productA⊗B
is the mp-by-nq block matrix [168]:

A⊗B=

⎡
⎢⎢⎢⎢⎣
a11B · · · a1nB
... . . . ...

am1B · · · amnB

⎤
⎥⎥⎥⎥⎦

To be more precise, the above equation can be rewritten as:

A⊗B=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11b11 a11b12 · · · a11b1q · · · · · · a1nb11 a1nb12 · · · a1nb1q

a11b21 a11b22 · · · a11b2q · · · · · · a1nb21 a1nb22 · · · a1nb2q
...

... . . . ...
...

... . . . ...

a11bp1 a11bp2 · · · a11bpq · · · · · · a1nbp1 a1nbp2 · · · a1nbpq
...

...
... . . . ...

...
...

...
...

... . . . ...
...

...

am1b11 am1b12 · · · am1b1q · · · · · · amnb11 amnb12 · · · amnb1q

am1b21 am1b22 · · · am1b2q · · · · · · amnb21 amnb22 · · · amnb2q
...

... . . . ...
...

... . . . ...

am1bp1 am1bp2 · · · am1bpq · · · · · · amnbp1 amnbp2 · · · amnbpq

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

It can be shown that the Kronecker product has the following properties [168],

A⊗ (B+C) = A⊗B+A⊗C

(A+B)⊗C= A⊗C+B⊗C

(kA)⊗B= A⊗ (kB) = k(A⊗B)

(A⊗B)⊗C= A⊗ (B⊗C)
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where A, B and C are matrices and k is a scalar.

2.5 Vector/Matrix Calculus

In this thesis, we encounter problems with analysis of several variables. Vec-

tor/Matrix calculus extends calculus of one variable into that of a vector or a matrix

of variables.

Definition 2.5.1. Vector gradient [169]: Let w ∈ Rn and f (w) : Rn→ R be a dif-

ferentiable scalar function of w. Then the vector gradient of f (w) with respect to w

is the n-dimensional vector of partial derivatives of f (w), i.e.

∂ f (w)

∂w
� ∇w f =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂ f (w)
∂x1
∂ f (w)
∂x2
...

∂ f (w)
∂xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

�

Definition 2.5.2. Jacobian matrix [169]: Letw∈Rn and f(w)= ( f1(w), f2(w), . . . , fm(w)) :

R
n→ R

m be a differentiable vector function of w. Then the Jacobian matrix is de-

fined as:

∂ f(w)

∂w
� J(f(w)) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂ f1(w)
∂x1

∂ f2(w)
∂x1

· · · ∂ fm(w)
∂x1

∂ f1(w)
∂x2

∂ f2(w)
∂x2

· · · ∂ fm(w)
∂x2

...
... . . . ...

∂ f1(w)
∂xn

∂ f2(w)
∂xn · · · ∂ fm(w)

∂xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

�
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In the vector convention above, the columns of the Jacobian matrix are gra-

dients of the corresponding components functions fi(w) with respect to the vector

w.

Definition 2.5.3. Let w,y ∈ Rn, f(w) = ( f1(w), f2(w), . . . , fn(w))T : Rn → R
n be

a differentiable vector function of w and F(w) =

[
f 1(w) f 2(w) . . . f n(w)

]
be a

n×n matrix. Then we define:

∂F(w)

∂w
y =

[
J(f 1(w))y J(f 2(w))y . . . J(f n(w))y

]

�

Based on the definition provided above, ∂F(w)
∂w y is a n×n matrix.

2.6 Definition of a Saturation Function

Definition 2.6.1. [158] A saturation function denoted by Sat(x) : R→ R, is an odd

function with the following properties ∀x ∈R, namely, (i) Sat(x) = 0, if and only if

x= 0; (ii) |Sat(x)| ≤ 1; (iii) Sat(−x) =−Sat(x); (iv) ∂
∂x Sat(x)≥ 0 and ∂ Sat(x)

∂x �= 0,
when x = 0; and (v) there exists a constant b > 0 such that ∀x ∈ [−b,b], we have
Sat(x) = γ x, where γ > 0. �

The following lemma will be used subsequently in this thesis.

Lemma 2.6.1. The saturation function defined above has the following property,

∫ x1

0
sat(x)dx≥ 1

2
sat(x1)x1 ≥ 0, x1 ∈ R

Proof: Proof can be found in [158]. �
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2.7 Information Structure and Neighboring Set

In this thesis, the information exchanges among the m EL systems is represented

by a graph. We provide here some basic terminologies and definitions from graph

theory in order to facilitate understanding of the subsequent analyses and develop-

ments. An interested reader can refer to [170, 171] for more details.

A directed-graph (digraph) G consists of a node set V = {1, . . . ,m}, an edge
set E ⊆ V ×V , and a weighted adjacency matrix Λ= [λ jn] ∈Rm×m. The m agents
in the network are considered as nodes of a digraph. The communication links

among the agents are considered as the digraph edge set, where self-connection is

not allowed.

Two vertices j and n are called adjacent if at least one edge exists between

them i.e. ( j,n) ∈ E , which is also denoted by j ↓ n. If j ↓ n then node j is the
parent of node n and node n is the child of node j. The weighted adjacency ma-

trix Λ = [λ jn] is defined such that λ jn is a positive weight if n ↓ j, while λ jn = 0,

otherwise. The indegree and outdegree of node j are given by di( j) = ∑nλn j and

do( j) =∑nλ jn respectively. Associated with Λ we introduce a matrix known as the

Laplacian matrix L = [l jn] ∈ Rm×m such that l j j = ∑mn=1,n�= j λ jn and l jn = −λ jn,
where k �= j. This implies that L is a zero row sum matrix. A path of length

lp in a digraph is a sequence ( j0, . . . , jl) of lp distinct vertices such that for every

i ∈ {0, . . . , lp− 1}, ( ji, ji+1) is an edge. A digraph is strongly connected if for any
pair of distinct vertices j and n, there is a directed path from j to n. Furthermore, if

the digraph is strongly connected, L has a simple eigenvalue 0 with an associated

right eigenvector of k̄1m, where 1m is an m× 1 column vector of ones and k̄ is a
positive number, i.e. L 1m = 0. All the other eigenvalues of L are positive if and

only if the digraph G is strongly connected [171]. For a given node j, the set of
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agents from which it can receive information is called a neighboring set N j, that

is ∀ j = 1, . . . ,n :N j = {n|(n, j) ∈ E }. In addition, the number of neighbors of the
j-th node is denoted by

∣∣N j
∣∣ (which is also known as the cardinality of the j-th

node). Also, the graph size |E | is the number of edges.
An undirected-graph is a digraph with an additional property, i.e. j ↓ n⇔ n ↓

j. This implies that λ jn = λn j and di( j) = do( j) for all j,n ∈ V . An undirected-
graph is connected if and only if it is strongly connected. Let us denote (L ⊗Ip)x
as a column stack vector of all ∑mj=1λn j(xn− x j), n ∈ V with x = [xT1 , . . . ,xTm]

T ∈
R
p.m×1. It can be shown that xT (L ⊗Ip)x= 1

2∑
m
n=1∑

m
j=1λn j

∥∥xn−x j∥∥2.
We next define two general communication network topologies, which will

be used subsequently in this thesis.

Definition 2.7.1. A finite set of h communication graphs G = {G1, . . . ,Gh} are
characterized by having the same node set, i.e. V1 = . . . = Vh = V . Further-

more, the edge set for each communication graph is different from the others, i.e.

E1 �= . . . �= Eh. This results in a different weighted adjacency matrix for each com-

munication graph, specifically, Λ1 �= . . . �= Λh. Consequently, the Laplacian matrix

associated with each j ∈H , whereH = {1, . . . ,h}, communication graph denoted
by L j, will also be different. All the h communication graphs are assumed to be

connected, therefore,L j is a positive semi-definite matrix ∀ j ∈H . �

Definition 2.7.2. A finite set of h connected communication graphs is denoted by

Ḡ = {G1, . . . ,Gh} and is characterized by having the same node set, i.e. V1 = . . . =

Vh. Furthermore, the edge set for h communication graphs are different from the

others, i.e. E1 �= . . . �= Eh. However, it is assumed that the indegree and the num-

ber of neighbors for each node are the same for all graphs. This will result in a

different weighted adjacency matrix for each communication graph. Consequently,
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Figure 2.2: The three communication network topologies that are considered in this
work according to the Definition 2.7.1.

the Laplacian matrix associated with each i ∈H , where H = {1, . . . ,h}, com-
munication graph, denoted by L j, will also be different. Due to the fact that the

communication digraphs are strongly connected,L j is a positive semi-definite ma-

trix ∀ j ∈H . �

An example of the communication graph G is depicted in Fig. 2.2. All the

three networks are strongly connected and the connections are bi-directional.

The following lemma will be used subsequently in this thesis.

Lemma 2.7.1. Consider a symmetric matrix Λ = ΛT ∈ Rk×k. Let us denote λi j as
the i j-th element of this matrix. The following equality then holds:

1
2

k

∑
i=1

k

∑
j=1

λi j (yi− y j) χ(xi− x j) =
k

∑
i=1

k

∑
j=1

λi j yi χ(xi− x j) (2.19)

where χ(x) is any odd function.
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Proof: The left hand side of (2.19) can be written as:

1
2

k

∑
i=1

k

∑
j=1
λi j (yi− y j) χ(xi− x j)

=
1
2

k

∑
i=1

k

∑
j=1

λi j yi χ(xi− x j)− 12
k

∑
i=1

k

∑
j=1

λi j y j χ(xi− x j)

=
1
2

k

∑
i=1

k

∑
j=1

λi j yi χ(xi− x j)− 12
k

∑
j=1

k

∑
i=1

λ ji yi χ(x j− xi)

By noting λi j = λ ji and χ(xi−x j) =−χ(x j−xi) one obtains (2.19). This completes
the proof of the lemma. �

2.8 Hamilton-Jacobi-Bellman (HJB) Equations

Minimization of a general nonlinear cost function, either unconstrained or subject

to certain constraints, may be solved by using the HJB equations. In this thesis un-

constrained minimization problem is considered. The HJB equations in the general

form for an infinite horizon scenario are provided below [172, 173]. Assume that

the model of a dynamical system is given by

ẋ = f (t,x,u) (2.20)

where f : [0,∞)×Rn×Rm→ R
n is continuous in t and Lipschitz in x and u. The

solution to the following optimization problem

min
u
J =

∫ ∞

0
g(t,x,u)dt

subject to ẋ = f (t,x,u)

x(0) =x0

(2.21)
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whereJ is denoted as the performance index (PI) is obtained if the following HJB

equations with appropriate boundary conditions have a solution:

− ∂Y (x, t)
∂ t

=min
u
Φ(t,x,u)

Φ(t,x,u) =
∂Y (x, t)

∂x
ẋ+g(t,x,u)

(2.22)

whereΦ(t,x,u) is denoted as the Hamiltonian andY (x, t) is referred to as the value

function and is chosen such that the above Partial Differential Equation (PDE) is

satisfied.

2.9 Stability Analysis and Theorems

In this section, we present theorems for stability analysis of general smooth non-

linear systems as well as switched nonlinear systems. These theorems will be used

frequently in this thesis to analyze the stability of the closed-loop networked sys-

tems. Our first definition is provided below from [174].

Definition 2.9.1. A continuous function α : [0,a)→ [0,∞) is said to belong to class

K if it is strictly increasing and α(0) = 0. It is said to belong to classK∞ if a= ∞

and α(r)→ ∞ as r→ ∞. �

Definition 2.9.2. A continuous function β : [0,a)× [0,∞)→ [0,∞) is said to belong

to class K L if, for each fixed s, the mapping β (r,s) belongs to class K with

respect to r and, for each fixed r, the mapping β (r,s) is decreasing with respect to s

and β (r,s)→ 0 and s→ ∞. �

We present the following additional definitions.

Definition 2.9.3. A real-valued function α : R→ R is said to be smooth if it has

continuous derivatives of arbitrary order. We denote its k-th derivative by αk(·). �
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Given W : Rn→ R and f : Rn→ R
n, we use the following notation:

L1fW (x) =L fW (x) � ∂W
∂x

f (x)

Li+1f W (x) �L
(
LifW (x)

)
, i ∈ℵ

Definition 2.9.4. A function W (x) : Rn → [0,∞) is said to be positive definite if

W (0) = 0 and W (x) > 0 for all x �= 0. It is said to be positive semi-definite if

W (0) = 0 and W (x)≥ 0 for all x �= 0. �

Definition 2.9.5. A function W (x) : Rn → [0,∞) is said to be negative definite

(semi-definite) if −W (x) is positive definite (semi-definite). �

Definition 2.9.6. A function W (x) is said to be radially unbounded if ‖x‖ → ∞⇒
W (x)→ ∞. �

The following additional definition, which will be used subsequently, is taken

from [174].

Definition 2.9.7. The space Lmr for 1≤ r < ∞ is defined as the set of all piecewise

continuous functions u : [0,∞)→ R
m such that

‖u‖Lr =
(∫ ∞

0
‖u(t)‖r dt

)1/r
< ∞

The subscript r in Lmr refers to the type of r-norm that is used to define the space,

while the superscript m denotes the dimension of u. �

Remark 2.9.1. It follows from Definition 2.9.7 that for a given scalar function e(t),

we have e(t) ∈ L1 if and only if ‖e‖L1 =
∫ ∞
0 |e(t)|dt < ∞.
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2.9.1 Lyapunov Stability Theorem

We consider autonomous systems of the form

ẋ = f (x) (2.23)

where f (x) is a smooth continuous and Lipschitz function over Rn.

Definition 2.9.8. A smooth functionW (x) :Rn→ [0,∞) is a weak Lyapunov func-

tion for the system (2.23) if it is positive definite and

Ẇ (x) = L fW (x)≤ 0, x ∈ Rn

�

Definition 2.9.9. A smooth functionW (x) :Rn→ [0,∞) is a strong Lyapunov func-

tion for the system (2.23) if it is positive definite and

Ẇ (x) = L fW (x) < 0, x ∈ Rn

�

We use the standard definitions of exponential, global exponential, asymp-

totic, and global asymptotic stability for general nonlinear systems (see Definition

4.4, Lemma 4.5 and Definition 4.5 in [174] for details).

The following theorem, provided without proof, considers stability of a gen-

eral autonomous system. The proof can be found in [174].

Theorem 2.9.1. Let x= 0 be an equilibrium point of the system (2.23) and D⊂Rn

be a domain containing x= 0. Let W (x) : D→ R be a continuously differentiable
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unbounded function. If the function W (x) is a weak Lyapunov function, then x= 0

is stable. Moreover, if the function W (x) is a strong Lyapunov function, then x= 0

is asymptotically stable. If the Lyapunov function is radially unbounded, i.e. D =

R
n, and x= 0 is the unique equilibrium point of the system (2.23), then the stability

results are global.

In the next theorem we show that if in a domain about the origin we can find a

weak Lyapunov function and we can establish that no trajectory can stay identically

at points where Ẇ (x) = 0, except at the origin, then the origin is asymptotically sta-

ble. This idea follows from LaSalle’s invariance principle. We first define positively

invariant sets and then state LaSalle’s theorem.

Definition 2.9.10. A set S is said to be a positively invariant set with respect to

ẋ = f (x), if x(0) ∈S ⇒ x(t) ∈S , ∀t ≥ 0. �

We are now ready to state LaSalle’s theorem [174].

Theorem 2.9.2. LetΩ∈D be a compact set that is positively invariant with respect
to the system (2.23). Let W (x) : D→ R be a continuously differentiable function

such that Ẇ (x)≤ 0 in Ω. Let E be the set of all points in Ω where Ẇ (x) = 0. Let

S be the largest invariant set in E. Then, every solution starting in Ω approaches

toS as t→ ∞.

The following lemma, which is known as Barbashin–Krasovskii lemma [174],

can be employed for stability analysis of nonlinear autonomous systems.

Lemma 2.9.1. Let x = 0 be an equilibrium point of the system (2.23) and D ⊂ Rn

be a domain containing x= 0. Let W (x) : D→ R be a continuously differentiable

unbounded function such that Ẇ (x)≤ 0. LetS = {x ∈D|Ẇ (x) = 0} and suppose
that no solution can stay identically in S , other than the trivial solution x(t) = 0.
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Then, the origin is asymptotically stable. Furthermore, if the Lyapunov function is

radially unbounded, i.e. D = R
n, and x = 0 is the unique equilibrium point of the

system (2.23), then the stability results are global.

Let us now consider nonautonomous systems of the form

ẋ = f (t,x) (2.24)

where f (t,x) is a smooth continuous and Lipschitz function. Theorem 2.9.2 and

Lemma 2.9.1 are not valid for nonautonomous systems. Therefore, analysis of

asymptotic stability of nonautonomous systems is generally more difficult than

that of autonomous systems. The following lemma, which is known as Barbalat’s

lemma, can be employed in these cases. The proof of this lemma can be found on

page 323 of [174].

Lemma 2.9.2. Let α :R→R be a uniformly continuous function on [0,∞). Suppose

that limt→∞
∫ t
0 α(τ)dτ exists and is finite. Then, α(t)→ 0 as t→ ∞.

2.9.2 Input to State Stability Theorem

The following definition is provided from [174].

Definition 2.9.11. The system (2.20) is said to be input-to-state stable (ISS) if there

exist a classK L function β and a classK function γ such that for any initial state

x(t0) and any bounded input u(t), the solution x(t) exists for all t ≥ t0 and satisfies

‖x(t)‖ ≤ β (‖x(t0)‖ , t− t0)+ γ

(
sup
t0≤τ≤t

‖u(τ)‖
)

(2.25)

The above inequality guarantees that for any bounded input u(t), the state x(t) will

be bounded. Furthermore, as t increases, the state x(t) will be ultimately bounded
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by classK function of supt≥t0 ‖u(t)‖. Input-to-state stability implies that the origin
of the unforced system with u(t) = 0 is globally uniformly asymptotically stable. �

The following Lyapunov-like theorem gives a sufficient condition for input-

to-state stability [174].

Theorem 2.9.3. LetW (t,x) : [0,∞)×Rn→R be a continuously differentiable func-

tion such that

α1(‖x‖)≤W (t,x)≤ α2(‖x‖)
∂W
∂ t

+
∂W
∂x

f (t,x,u)≤W0(x), ∀‖x‖ ≥ ρ(‖u‖) > 0

∀(t,x,u) ∈ [0,∞)×Rn×Rm, where α1, α2 are class K∞ functions, ρ is a class

K function, and W0(x) is a continuous positive definite function on Rn. Then, the

system (2.20) is input-to-state stable.

Proof: Is the same as in Theorem 4.19 in [174], and is, therefore omitted. �

2.9.3 Stability Analysis of Switched Systems

In this subsection, we briefly define switched systems that will be used subsequently

in the thesis. We consider a family of systems [175],

ẋ = fp(x, t), p ∈P (2.26)

where x∈Rn is the state vector,P= {1, . . . ,N} and each fp(x, t) :Rn× [0,∞)→R
n

is smooth and Lipschitz over Rn with fp(0, t) = 0. We define the switching signal

σ(t) : [0,∞)→ P, which is a piecewise constant function of time, with a finite

number of discontinuities over every bounded time interval, which are denoted as
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the switching times. The switching signal takes a constant value on every interval

between two consecutive switching times. The role of σ is to specify, at each time

instant t, the index σ(t) ∈P of the active subsystem.

The following two definitions and lemma are taken from [176].

Definition 2.9.12. There is a non-vanishing dwell-time for a given switched system

if there exists a sequence {τk} of switching times such that infk{τk+1− τk} ≥ τ̄ .

Any value of τ̄ > 0 for which this inequality holds is denoted as the non-vanishing

dwell-time. �

Definition 2.9.13. There is an average dwell-time for a given switched system,

denoted by τad > 0, if the number of switchings on an arbitrary interval (t1, t2),

which is denoted by Nsw, satisfies,

Nsw ≤ t2− t1τad

This implies that there exists a τad > 0 such that no switching occurs on any interval

smaller than τad . �

Lemma 2.9.3. [176] If a switched system has an average dwell-time τad, then it

has a non-vanishing dwell-time, τ̄ ∈ (0, τad). �

The following two definitions will be used subsequently in the thesis.

Definition 2.9.14. [177] A smooth decrescent function W (x, t) : Rn × [0,∞) →
[0,∞) is a weak common Lyapunov function for the switched system (2.26) if it

is positive definite, V1(x) ≤W (x, t) ≤ V2(x), where V1(x) and V2(x) are continu-

ous positive definite functions, and

Ẇ (x, t) =
∂W
∂ t

+
∂W
∂x

fp(x, t)≤ 0, x ∈ Rn, p ∈P
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�

Definition 2.9.15. [177] A smooth decrescent function W (x, t) : Rn × [0,∞) →
[0,∞) is a strong common Lyapunov function for the switched system (2.26) if it is

positive definite, V1(x) ≤W (x, t) ≤ V2(x), where V1(x) and V2(x) are continuous

positive definite functions, and

Ẇ (x, t) =
∂W
∂ t

+
∂W
∂x

fp(x, t) < 0, x ∈ Rn, p ∈P

�

The first lemma on stability of switched systems is provided next.

Lemma 2.9.4. Let x= 0 be an equilibrium point of the switched system (2.26) and

D⊂ Rn be a domain containing x= 0. Let W (x, t) : D× [0,∞)→ R be a continu-

ously differentiable, decrescent and unbounded function. If the functionW (x, t) is a

weak common Lyapunov function (as per Definition 2.9.14), then x= 0 is uniformly

stable. Moreover, if the functionW (x, t) is a strong common Lyapunov function (as

per Definition 2.9.15), then x= 0 is uniformly asymptotically stable. If V1(x) is ra-

dially unbounded, i.e. V1(x)→ ∞ as ‖x‖ → ∞, and D= R
n, then x= 0 is globally

uniformly asymptotically stable.

Proof: Is similar to that of the Proposition 2.6 in [177], and is, therefore

omitted. �

Next, we present a result that will be employed for stability analysis of nonau-

tonomous switched systems, which is similar to Barbalat’s lemma 1.

Lemma 2.9.5. Let us define a switched signalS (t) = ξp(t), p ∈P, where ξp(t) is
a uniformly continuous function and assume ξp(t) is upper bounded, i.e. supt{ξp(t)}<

1A similar argument has appeared in the proof of Theorem 7 in [176].
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∞. This consequently implies supt{S (t)}< ∞. Let ξ̇p(t)≤ 0. Then, Ṡ (t)→ 0 as

t→∞ provided that there exists a non-vanishing dwell-time between two sequential

switchings.

Proof: Without loss of generality, consider any two consecutive switching

of the p-th and the p̄-th systems, where p, p̄ ∈ P, p �= p̄. Let th1 , th2 , . . . denote an

infinite sequence of switching times for the p-th system, and th1+1, th2+1, . . ., denote

another infinite sequence of switching times for the p̄-th system. The difference

between any two consecutive time intervals, namely, [the , the+1), e = 1,2, . . . is not

less than τ̄ . We denote the union of these intervals by Ē , i.e. Ē � ⋃∞
e=1[the , the+1).

Now let us introduce a new function,

yĒ (t) =

⎧⎪⎨
⎪⎩
− d
dt ξp(t) if t ∈ Ē

0 otherwise
(2.27)

Note that we have sup{ξp(t)} < ∞ and ξ̇p ≤ 0. Consequently, we have yĒ (t) =

|yĒ (t)|,∀t ≥ 0, and therefore, from Definition 2.9.7 and Remark 2.9.1 we have

yĒ (t) ∈ L1. Next, we show that yĒ (t)→ 0 as t→∞. Let us suppose that yĒ (t) �→ 0

as t → ∞. Then, there exists a sequence tn̄ in [0,∞) such that tn̄ → ∞ as n̄→ ∞,

and ‖yĒ (tn̄)‖ ≥ ε > 0 for all n̄, where n̄ ∈ N. Note that yĒ (t) is uniformly contin-

uous on Ē . Non-compactness of Ē would not impact our analysis since − d
dt ξp(t)

is properly defined and is uniformly continuous (refer to the Continuous Extension

Theorem on page 165 of [178] for more information). By the uniform continuity of

yĒ (t) on Ē , it follows that there exists a δ > 0 such that for all n̄ and all 0≤ t ∈ Ē ,
we have ‖tn̄− t‖ ≤ δ ⇒ ‖yĒ (tn̄)− yĒ (t)‖ ≤ ε

2 .

In other words, for all t ∈ [tn̄, tn̄+ δ ] and for all n̄ we have (recall that the
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length of each interval in Ē is bounded from below by τ̄ > 0):

‖yĒ (t)‖= ‖yĒ (tn̄)− (yĒ (tn̄)− yĒ (t))‖ ≥ ‖yĒ (tn̄)‖−‖yĒ (tn̄)− yĒ (t)‖ ≥ ε− ε
2

=
ε
2

This contradicts the assertion stated earlier that yĒ (t) ∈ L1. Therefore, yĒ (t)→ 0

as t→ ∞, and therefore, we have S (t)→ 0 as t→ ∞. This completes the proof of

the lemma. �

2.10 Concluding Remarks

This chapter summarized basic assumptions and theorems that will be employed

subsequently in this thesis. We provided definitions of multi-agent systems as well

as Euler-Lagrange (EL) dynamical systems. As it is discussed in this chapter, space-

craft attitude dynamics can be described by using EL formulation. Furthermore, we

review basic assumptions and preliminaries from graph theory and optimal control

theory. Finally, stability theorems for nonlinear and switched systems are provided.
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Chapter 3

Distributed Optimal Formation

Control of Euler-Lagrange Systems

3.1 Introduction and Problem Statement

The general objective of this thesis is to study synchronization and set-point track-

ing control of a network of Euler-Lagrange (EL) systems. To be more specific, our

objective is to design a distributed control law for each EL system in the network

(which is equivalently called as the agent) to guarantee the states of the agents

reach to a common value with possibility of pre-defined distances (which is also

denoted as the consensus state, consensus value or formation-keeping behavior in

this thesis) and the agents follow a desired common set-point signal (if it is pro-

vided), which is equivalently denoted as the station-keeping behavior in this thesis.

We consider several practical constraints in the design of the controllers, including

parameter uncertainties, external disturbances, actuator faults and input saturation

constraints. Therefore, we use controller design and synthesis techniques, such as

optimal control techniques, robust and adaptive approaches to meet our objectives.

63



Our objective in this chapter is to employ synthesis-based control techniques

to satisfy formation-keeping as well as station-keeping objectives by employing

optimal control techniques to guarantee satisfaction of a performance index. Ad-

ditionally, we consider parameter uncertainty in this chapter and propose two ap-

proaches, namely, adaptive and robust, to compensate for the effects of parameter

uncertainty in the system. It is important to note that in this chapter we assume the

communication network topology, which will be defined subsequently, is not fixed

and it is switching. In other words, we assume that the number of the neighbors

of an agent are not fixed and the agents are allowed to communicate with different

agents in different times.

3.1.1 Communication Network Topology

In this chapter, it is assumed that information exchanges among the m EL systems

can be represented by a graph G . This graph consists of a node set V , an edge set

E ⊆ V ×V , and a weighted adjacency matrix Λ= [λ jn] ∈ Rm×m. The m agents in
the network are considered as nodes of this graph. The communication links among

the agents are considered as the graph edge set. In the following, we provide the

definition of the communication network topology that is considered in this chapter.

Definition 3.1.1. Afinite set of h communication graphs is denoted by Ḡ = {G1, . . . ,Gh}
which is characterized by having the same node set, i.e. V1= . . . =Vh. Furthermore,

the edge set for f ( f ≤ h) communication graphs are different from the others, i.e.
E1 �= . . . �= E f . In addition, h− f ≥ 0 communication graphs with the same node
set and edge set(s) have different weighted adjacency matrices. This results in a

different weighted adjacency matrix for each communication graph, specifically,

Λ1 �= . . . �= Λh. Consequently, the Laplacian matrix associated with each i ∈H
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communication graph, that is denoted byLi, whereH = {1, . . . ,h}, is also differ-
ent. All the h communication graphs are assumed to be connected, therefore,Li is

positive semi-definite ∀i ∈H . �

3.1.2 Synchronization Error

Let us denote the position synchronization error between the j-th and the n-th EL

system agents as,

q jn(t) = q j(t)−qn(t)−q�
jn, j ∈ V ,n ∈N j (3.1)

where q�
jn is a positive constant added to allow non-zero distances among the agents

in the steady-state. The velocity synchronization error, which is the time derivative

of q jn(t), is given by q̇ jn(t) = q̇ j(t)− q̇n(t), j ∈ V ,n ∈N j.

Let us now designate s jn as a “weighted” synchronization error according to,

s jn = q̇ jn+ K̄ jq jn (3.2)

where K̄ j ∈ Rk×k is a positive definite diagonal matrix.
One can decompose the term q�

jn as follows q
�
jn = q�

j − q�
n, j,n ∈ V , j �= n,

where q�
j and q�

n are constant positive numbers that are provided to the j-th ad the

n-th EL systems by the command and control center to avoid the agents collision.

Furthermore, let us denote the desired constant position for the networked EL sys-

tems to be q�.

Definition 3.1.2. The EL systems that receive the desired position, q�, are defined

as the leaders. The other EL systems, which do not have access to this desired

position are denoted as the followers. We label, without loss of generality, the EL
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systems 1 to ‘l’ as the leaders and the EL systems ‘l+1’ to ‘m’ as the followers. �

Let us now define the error vectors for the leaders, q̃ j(t), according to:

q̃ j(t) = q j(t)−q�
j−q�, j ∈ {1, . . . , l} (3.3)

The error vectors for the followers are defined according to

q̃ j(t) = q j(t)−q�
j, j ∈ {l+1, . . . ,m} (3.4)

Consequently, one can designate s j as a “weighted” error according to: s j = ˙̃q j+

K̄ jq̃ j, j ∈ V . One can then show that s jn = s j − sn for the j-th and the n-th EL

systems in the network. It can also be shown that the weighted synchronization

error can be re-written as: s jn = ˙̃q jn+K̄ jq̃ jn, where ˙̃q jn = ˙̃q j− ˙̃qn and q̃ jn = q̃ j− q̃n.

Remark 3.1.1. It should be noted that the constant term q�
jn is introduced to ef-

fectively avoid the EL system agents from colliding at the steady-state. However,

during the transient phase of the mission one needs to consider an obstacle avoid-

ance penalty function and add an extra term to the controllers in order to avoid

collision among the agents. This aspect is, however, beyond the scope of this chap-

ter. An interested reader can refer to [21, 179] for more details. It should be noted

that in applications such as spacecraft attitude synchronization for formation flying

missions, which is considered in this chapter, adding a collision avoidance term is

not required since the spacecraft attitude do not collide with one another.

3.1.3 Statement of the Problem

Consider a network of ‘m’ heterogeneous nonlinear EL systems with a set of ‘h’

communication graphs as per Definition 3.1.1. The j-th EL system in the network,
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j ∈V , is governed by the dynamic equation (2.7). Our objective is to design and de-
velop distributed optimal control laws which can guarantee state synchronization of

the networked EL systems as well as position tracking. In other words, we employ

optimal control techniques to develop distributed control laws which guarantee the

following requirements: (r1) stability of the closed-loop networked EL systems,

(r2) synchronization of the EL system coordinates (which is also denoted as the

consensus seeking or the formation-keeping), that is q jn→ 0 and q̇ jn→ 0 as t→∞,

and (r3) tracking of the desired position by the networked EL systems (which is

also denoted as the station-keeping), i.e. q̃ j → 0 and ˙̃q j → 0 as t → ∞. The above

requirements will guarantee that the EL systems reach, at the steady-state, the same

relative posture. The controller that guarantees the requirements (r1) and (r2) is

denoted as the formation-keeping controller and the controller that guarantees the

requirements (r1) and (r3) is denoted as the station-keeping controller.

The constraints that we consider for the development of our optimal control

laws are as follows: (c1) the communication network topology is not fixed and is

switching, and (c2) the EL systems parameters are not known a priori.

Remark 3.1.2. In this chapter δ (t) in (2.7) is used to represent additive actuator

faults in Section 3.4. It is therefore, assumed to be equal to zero in this chapter,

unless otherwise stated.

3.2 Optimal Synchronization Control of the Hetero-

geneous Euler-Lagrange Systems

Our goal in this section is to introduce an optimal distributed control law which

satisfies the three requirements (r1), (r2) and (r3) and the first constraint (c1) as
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introduced in Section 3.1.3.

We employ the following modified computed-torque control law to the j-th

EL system for the corresponding i-th communication network topology, i.e.,

u j,i = D j(q j)ṙ j+C j(q j, q̇ j)r j+G j(q j)+
∂F (q̇ j)
∂ q̇ j

+ τ j,i, j ∈ V , i ∈H (3.5)

where τ j,i is an auxiliary control input and r j = −K̄ j q̃ j. The dynamics of the

closed-loop system (2.7) and (3.5) is now reduced to

D j(q j)( ¨̃q j+ K̄ j ˙̃q j)+C j(q j, q̇ j)( ˙̃q j+ K̄ jq̃ j) = τ j,i (3.6)

which can be written in the following nonlinear state-space form 1,

ẋ j = F j(x j)x j+G j(x j)τ j,i (3.7)

where x j = [q̃Tj , ˙̃q
T
j ]
T , and

F j(x j) =

⎡
⎢⎣ 0 Ik

−D−1j C jK̄ j −D−1j C j− K̄ j

⎤
⎥⎦ ,

G j(x j) =

⎡
⎢⎣ 0

D−1j

⎤
⎥⎦

The auxiliary control input τ j,i is now decomposed into,

τ j,i = τ̄ j+ ∑
n∈N j,i

F jn,ixn (3.8)

1This is obtained by re-writing (3.6) in the following form: ¨̃q j = D−1j (q j)τ j,i −
D−1j (q j)C j(q j, q̇ j)K̄ jq̃ j−

(
D−1j (q j)C j(q j, q̇ j)+ K̄ j

)
˙̃q j.
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where F jn,i represents the interaction terms among the agents and is to be selected

according to the i-th communication graph, i ∈H , and τ̄ j represents the depen-

dence of the agent j control input on its local information.

To derive an optimal feedback control law for τ̄ j, the following quadratic

performance index (PI) for the j-th EL system is introduced corresponding to the

i-th communication network topology,

J j,i =
∫ ∞

0

[
1
2
xTjQ j,ix j+ τ̄Tj R j,iτ̄ j+

1
4 ∑n∈N j,i

(x j−xn)TQ jn,i(x j−xn)

]
dt (3.9)

where R j,i is a symmetric positive definite matrix and

Q j,i = (1−α j,i)Q̄ j,i

and ∑n∈N j,iQ jn,i = α j,iQ̄ j,i, and Q̄ j,i is a symmetric positive semi-definite matrix.

We further assume that ∑n∈N j,iQ jn,i = ∑ j∈Nn,iQn j,i. For the leader EL system PI

the parameter α j,i is selected as 0< α j,i < 1 and for the follower EL system PI this

parameter is set to α j,i = 1. The parameter α j,i plays an important role in weighting

two specific criteria for the leader EL system. Specifically, the smaller the value

of α j,i, the less emphasis is placed on the state synchronization over the set-point

tracking requirement. On the other hand, by selecting higher values for α j,i one

can put more emphasis on the state synchronization requirement and less on the

set-point tracking. By minimizingJ j,i for the follower EL system (α j,i = 1), one

can guarantee (x j−xn)→ 0 and τ̄ j→ 0 in the steady state, which is defined as the

state synchronization (consensus seeking or formation-keeping). Consequently, by

minimizing the cost function (3.9) our goal is to guarantee that all the agents in a

neighboring set would synchronize their states and all the agents follow the desired
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position despite the fact that this information is only available to the leaders.

Our objective is to find the control law τ̄ j that minimizes (3.9) subject to

the constraints that are imposed on (3.7). This optimal control law is denoted by

τ̄∗j . By invoking arguments that are presented in Section 2.8, one can show that a

sufficient condition for existence of a smooth control input τ̄∗j that minimizes (3.9)

and satisfies the constraint (3.7) is that there exists a function Y j,i(x j, t) such that

the following Hamilton-Jacobi-Bellman (HJB) equation is satisfied,

−∂Y j,i(x j, t)
∂ t

=min
τ̄ j
Φ j,i(t,x j, τ̄ j)

Φ j,i(t,x j, τ̄ j) =
∂Y j,i(x j, t)

∂x j
ẋ j+ τ̄Tj R j,iτ̄ j+

1
2
xTjQ j,ix j

+
1
4 ∑n∈N j,i

(x j−xn)TQ jn,i(x j−xn)

(3.10)

where Φ j,i(t,x j, τ̄ j) is known as the Hamiltonian. Since the matrix
∂ 2Φ j,i(t,x j,τ̄ j)

∂ τ̄2j
=

R j,i is positive definite and is independent of x j, then the smooth input τ̄ j that

satisfies ∂Φ j,i(t,x j,τ̄ j)
∂ τ̄ j = R j,iτ̄ j +

∂Y j,i(x j,t)
∂x j G j(x j) = 0 is the solution to the optimal

control problem. In the above formulation, Y j,i(x j, t) is referred to as the value

function for the i-th communication network topology. Our first main result is now

presented below.

Theorem 3.2.1. Consider the PI (3.9) for ‘m’ heterogeneous nonlinear EL systems

where the j-th agent dynamics is governed by (3.7) subject to the corresponding i-th

network topology, i ∈H . Suppose there exists a symmetric positive definite matrix

P j,i(x j) ∈ R2k×2k that is only a function of q̃ j such that the following dynamic
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Riccati equation is satisfied

Ṗ j,i(x j)+P j,i(x j)F j(x j)+F
T
j (x j)P j,i(x j)+Q j,i+ ∑

n∈N j,i

Q jn,i

−P j,i(x j)G j(x j)R
−1
j,i ×GTj (x j)P j,i(x j) = 0

(3.11)

The distributed control law for the j-th system that is given by

τ j,i �−12R
−1
j,i G

T
j

[
∂Y j,i(x j, t)

∂x j

]T
︸ ︷︷ ︸

τ̄∗j

+ ∑
n∈N j,i

F jn,ixn
(3.12)

where F jn,i is chosen such that P j,iG j∑n∈N j,i F jn,i =
1
2∑n∈N j,iQ jn,i, is an optimal

controller in the sense that it minimizes the PI (3.9).

Proof: Let us introduce the following value function for the j-th EL system

corresponding to the i-th communication network topology,

Y j,i(x j) =
1
2
xTj P j,i(x j)x j (3.13)

Consequently, the HJB equation (3.10) can be written as:

d
dt
Y j,i(x j)+ τ̄Tj R j,iτ̄ j+

1
2
xTjQ j,ix j+

1
4 ∑n∈N j,i

(x j−xn)TQ jn,i(x j−xn) = 0

Since d
dtY j,i(x j) = xTj P j,i(x j)ẋ j+

1
2x
T
j Ṗ j,i(x j)x j, we obtain,

1
2
xTj

(
Ṗ j,i+P j,iF j+F

T
j P j,i+Q j,i

)
x j+xTj P j,iG j

(
τ̄∗j + ∑

n∈N j,i

F jn,ixn

)

+
(
τ̄∗j

)T
R j,iτ̄∗j +

1
4 ∑n∈N j,i

(x j−xn)TQ jn,i(x j−xn) = 0
(3.14)
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Next we show that ∂Y j,i(x j,t)∂x j G j= xTj P j,iG j. Given the fact that
∂Y j,i(x j,t)

∂x j = 1
2x
T
j
∂P j,i
∂x j x j+

xTj P j,i
2 and since P j,i(x j) is only a function of q̃ j we have:

∂Y j,i(x j,t)
∂x j =

[
1
2x
T
j
∂P j,i
∂ q̃Tj

x j 0
]
+

xTj P j,i. Therefore,
∂Y j,i(x j,t)

∂x j G j can be written as
∂Y j,i(x j,t)

∂x j G j=

[
1
2x
T
j
∂P j,i
∂ q̃Tj

x j 0
]
G j+

xTj P j,iG j, which reduces to:
∂Y j,i(x j,t)

∂x j G j = xTj P j,iG j. Noting this and by using

(3.12), expression (3.14), can be re-written as,

m

∑
j=1

1
2
xTj

(
Ṗ j,i+P j,iF j+F

T
j P j,i+Q j,i−P j,iG jR

−1
j,i G

T
j P j,i

)
x j

+
m

∑
j=1

xTj P j,iG j ∑
n∈N j,i

F jn,ixn+
1
4

m

∑
j=1

∑
n∈N j,i

(x j−xn)TQ jn,i(x j−xn) = 0

which can be further simplified to

m

∑
j=1

1
2
xTj

(
Ṗ j,i+P j,iF j+F

T
j P j,i+Q j,i−P j,iG jR

−1
j,i G

T
j P j,i

)
x j

+
1
2

m

∑
j=1

xTj ∑
n∈N j,i

Q jn,ixn+
1
2

m

∑
j=1

∑
n∈N j,i

xTjQ jn,i(x j−xn) = 0
(3.15)

Consequently, one obtains

m

∑
j=1

1
2
xTj

(
Ṗ j,i+P j,iF j+F

T
j P j,i+Q j,i+ ∑

n∈N j,i

Q jn,i−P j,iG jR
−1
j,i G

T
j P j,i

)
x j = 0

Therefore, by satisfying the dynamic Riccati equation (3.11), one can conclude that

the above expression is also satisfied and P j,i(x j) can be employed to obtain the

value function (3.13). Hence, the control law (3.12) is a solution to the optimal

control problem and this completes the proof of the theorem. �
2For the definition of ∂P j,i∂x j

x j refer to Definition 2.5.3.
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3.2.1 Discussion on the Existence of a Solution

It is not straightforward, in general, to obtain a solution to the nonlinear Riccati

equation (3.11) for an arbitrary selection of the matrices P j,i, Q j,i, Q jn,i and R j,i.

Therefore, in order to guarantee existence of a solution to this Riccati equation,

we assign specific structures to the matrices P j,i, Q j,i, Q jn,i and R j,i. Specifically,

inspired from [180], let P j,i and R j,i be chosen as follows,

P j,i(x j) �

⎡
⎢⎣K̄ jD jK̄ j+ K̄ jK j,i K̄ jD j

K̄ jD j D j

⎤
⎥⎦ and R j,i =K−1j,i

where K j,i ∈ Rk×k is a positive definite diagonal matrix. One can now show that

according to Property 2.1.2 we have Ṗ j,i+P j,iF j +FTj P j,i =

⎡
⎢⎣ 0 K̄ jK j,i

K̄ jK j,i 0

⎤
⎥⎦.

In addition, we obtain P j,iG jR
−1
j,i G

T
j P j,i ≡ P j,iG jK j,iG

T
j P j,i =

⎡
⎢⎣K̄2jK j,i K̄ jK j,i

K̄ jK j,i K j,i

⎤
⎥⎦.

Consequently, we have Q j,i+∑n∈N j,iQ jn,i = Q̄ j,i �

⎡
⎢⎣K̄2jK j,i 0

0 K j,i

⎤
⎥⎦. This guaran-

tees that the Riccati equation has a solution. By using the above parameterizations,

one now obtains ∑n∈N j,i F jn,i =
1
2 [K̄ jK j,i K j,i].

One can further assume thatQ jn,i =Q jk,i where n �= k and n,k ∈N j,i, i ∈H .

It can then be shown according to (3.12) and using the parameterizations provided

above that the control law for the j-th leader EL system that is corresponding to the
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i-th communication network topology is obtained as,

τ leaderj,i �− 1
2
K j,i( ˙̃q j+ K̄ jq̃ j)+

α j,i
2
K j,i ∑

n∈N j,i

1∣∣N j,i
∣∣( ˙̃qn+ K̄ jq̃n)

=− 1
2
(1−α j,i)K j,i( ˙̃q j+ K̄ jq̃ j)

− α j,i
2
K j,i ∑

n∈N j,i

1∣∣N j,i
∣∣
[
( ˙̃q j+ K̄ jq̃ j)− ( ˙̃qn+ K̄ jq̃n)

] (3.16)

and the control law for the j-th follower EL system that is corresponding to the i-th

communication network topology is obtained as,

τ followerj,i �− 1
2
K j,i( ˙̃q j+ K̄ jq̃ j)+

1
2
K j,i ∑

n∈N j,i

1∣∣N j,i
∣∣( ˙̃qn+ K̄ jq̃n)

=− 1
2
K j,i ∑

n∈N j,i

1∣∣N j,i
∣∣
[
( ˙̃q j+ K̄ jq̃ j)− ( ˙̃qn+ K̄ jq̃n)

] (3.17)

The following lemma summarizes our results in this subsection.

Lemma 3.2.1. Consider a network of ‘m’ heterogeneous EL systems whose dynam-

ics are governed by (3.7) and subject to the control law (3.16) for the j-th leader

and the control law (3.17) for the j-th follower corresponding to the i-th commu-

nication network topology (i ∈H ). The control law (3.16) is optimal in the sense

that it minimizes the PI (3.9) with R j,i =K−1j,i , ∑n∈N j,iQ jn,i = α j,i

⎡
⎢⎣K̄2jK j,i 0

0 K j,i

⎤
⎥⎦,

Q j,i = (1−α j,i)

⎡
⎢⎣K̄2jK j,i 0

0 K j,i

⎤
⎥⎦, and 0 < α j,i < 1, and the control law (3.17) is

optimal in the sense that it minimizes the PI (3.9) with R j,i =K−1j,i , ∑n∈N j,iQ jn,i =⎡
⎢⎣K̄2jK j,i 0

0 K j,i

⎤
⎥⎦, and Q j,i = 0, where K j,i, K̄ j are positive definite diagonal matri-

ces.
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Proof: Follows along the constructive lines that are derived above. �

3.2.2 Stability Analysis

In this subsection, we demonstrate the global stability of the networked heteroge-

neous EL systems under the distributed control laws (3.5) and (3.16) for the j-th

leader and the control laws (3.5) and (3.17) for the j-th follower. Our second main

result is formally stated below.

Theorem 3.2.2. Consider a network of ‘m’ heterogeneous EL systems where agents

are governed by the dynamics (2.7) with δ = 0 and subject to the distributed con-

trol laws (3.5) and (3.16) for the j-th leader and the distributed control laws (3.5)

and (3.17) for the j-th follower, corresponding to the i-th communication network

topology, where K j,i, K̄ j are positive definite diagonal matrices. It then follows

that the closed-loop EL system satisfies the requirements (r1)–(r3) as specified in

Section 3.1.3 in presence of average dwell-time switchings in the communication

network topologies.

Proof: Let us consider the following radially unbounded Lyapunov function

candidate for the networked closed-loop system (2.7), (3.5), (3.16) and (3.17),

X1 �Wi =
m

∑
j=1

W j =
1
2

m

∑
j=1

sTj D j(q j)s j =
1
2

m

∑
j=1

xTj

⎡
⎢⎣K̄ jD jK̄ j K̄ jD j

K̄ jD j D j

⎤
⎥⎦x j (3.18)

The above function is positive definite since k Ik < D(q) < k Ik, ∀q according to
property Property 2.1.1:.
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The time derivative of the above Lyapunov function candidate along the tra-

jectories of the closed-loop system is given by

Ẋ1 =
m

∑
j=1

1
2
sTj Ḋ js j+

m

∑
j=1

sTj D j ṡ j

=
m

∑
j=1

1
2
( ˙̃q j+ K̄ jq̃ j)

T Ḋ j( ˙̃q j+ K̄ jq̃ j)+
m

∑
j=1

( ˙̃q j+ K̄ jq̃ j)
T×

[
τ j,i−C j(q j, q̇ j)( ˙̃q j+ K̄ jq̃ j)

]

=
m

∑
j=1

( ˙̃q j+ K̄ jq̃ j)
T
[
1
2
Ḋ j−C j(q j, q̇ j)

]
( ˙̃q j+ K̄ jq̃ j)

+
l

∑
j=1

( ˙̃q j+ K̄ jq̃ j)
T

[
−1
2
(1−α j,i)K j,i( ˙̃q j+ K̄ jq̃ j)

− α j,i
2
K j,i ∑

n∈N j,i

( ˙̃q j+ K̄ jq̃ j)− ( ˙̃qn+ K̄ jq̃n)∣∣N j,i
∣∣

]
+

m

∑
j=l+1

( ˙̃q j+ K̄ jq̃ j)
T×

[
−1
2
K j,i ∑

n∈N j,i

( ˙̃q j+ K̄ jq̃ j)− ( ˙̃qn+ K̄ jq̃n)∣∣N j,i
∣∣

]

The above can be simplified to

Ẋ1 =− 1
2

l

∑
j=1

(1−α j,i)sTjK j,is j−
l

∑
j=1

α j,i
4 ∑

n∈N j,i

1∣∣N j,i
∣∣sTjnK j,is jn

−
m

∑
j=l+1

1
4 ∑n∈N j,i

1∣∣N j,i
∣∣sTjnK j,is jn ≤ 0

(3.19)

where s jn = s j− sn � ( ˙̃q j+ K̄ jq̃ j)− ( ˙̃qn+ K̄ jq̃n) and K j,i, K̄ j are positive definite

diagonal matrices.

Given the fact that the Lyapunov function candidate is identical for all the

communication topologies one notes that the Lyapunov functionX1 is a weak com-

mon Lyapunov function for the considered switched system (refer to Definition

2.9.14). Note that since the Lyapunov function is radially unbounded and Ẋ1 ≤ 0,
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all the signals remain globally bounded and the closed-loop EL system is globally

stable. Note that Lemma 2.9.3 implies that there exists a non-vanishing dwell time

τ̄ ∈ (0, τad) among each switchings in the communication network topologies.

Now given thatX1 is upper bounded and Ẋ1 ≤ 0, by invoking Lemma 2.9.5
one can conclude that under non-vanishing dwell-time we have s jn→ 0 as t → ∞.

This implies that s jn ∈ L2, ∀ j,n ∈ V , j �= n. By invoking Lemma A.12 in [158],

one can also conclude that q jn→ 0 and q̇ jn→ 0 as t→ ∞. In addition, by invoking

Lemma 2.9.5 one can conclude that under non-vanishing dwell-time we have s j→
0, j ∈ {1, . . . , l} as t → ∞. Consequently, due to the fact that the communication

network topology is connected, boundedness and asymptotic stability of s j, ∀ j are
also guaranteed. Therefore, the requirements (r1)–(r3) are formally shown to be

satisfied. This completes the proof of the theorem. �

3.3 Synchronization Control of Uncertain EL Systems

In the development of the optimal control laws in the previous section it was as-

sumed that an exact knowledge of the EL system parameters is available. In this

section, the control laws are generalized by taking into account that parameter un-

certainties are present. In other words, our goal is now to solve the problem under

both constraints (c1) and (c2) as stated in Section 3.1.3. We first introduce an adap-

tive control approach to compensate for the effects of parametric uncertainties. Our

second result involves design of a robust control approach to compensate for these

uncertainties.
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3.3.1 Adaptive Control of Uncertain EL Systems

In developing our control algorithms in this subsection we assume no a priori

knowledge on the system constant parameters. Instead of the controller (3.5), we

propose the following adaptive law to compensate for the effects of the parametric

uncertainties in the EL systems,

u j,i =Y j(q j, q̇ j, ṙ j,r j)Θ̄ j+ τ j,i, j ∈ V , i ∈H (3.20a)

˙̄Θ j =−Σ jY j(q j, q̇ j, ṙ j,r j)s j (3.20b)

where Y j(q j, q̇ j, ṙ j,r j) denotes the regressor function as per property 2.1.3, Θ̄ j de-

notes an estimate of the parameters of the j-th EL system, Σ j is a positive definite

diagonal matrix, and τ j,i is given by equation (3.16) for the j-th leader and by

(3.17) for the j-th follower. Using the Property 2.1.3, it follows that the dynamics

of the closed-loop system (2.7), (3.16), (3.17), (3.20a) and (3.20b) is reduced to

D j(q j)ṡ j+C j(q j, q̇ j)s j = Y j(q j, q̇ j, ṙ j,r j)Θ̌ j+ τ j,i, where Θ̌ j = Θ̄ j−Θ j and with

Θ j denoting the actual but unknown constant parameters of the EL systems. Our

third main result is provided in the following theorem.

Theorem 3.3.1. Consider a network of ‘m’ heterogeneous EL systems, where the

j-th system is governed by the dynamics (2.7) with δ = 0 and is subject to the

distributed control laws (3.16), (3.20a) and (3.20b) for the j-th leader, and the dis-

tributed control laws (3.17), (3.20a) and (3.20b) for the j-th follower corresponding

to the i-th communication network topology. It then follows that the closed-loop EL

system satisfies the requirements (r1)–(r3) as specified in Section 3.1.3 as well as

the global boundedness of the update parameters Θ̄ j in presence of average dwell-

time switchings in the communication network topologies.
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Proof: Let us consider the following positive definite radially unbounded

Lyapunov function candidate for the networked closed-loop system (2.7), (3.16),

(3.17), (3.20a) and (3.20b),

X2 �Wi =
1
2

m

∑
j=1

(
sTj D j(q j)s j+ Θ̌Tj Σ

−1
j Θ̌ j

)
(3.21)

The time derivative of the above function along the trajectories of the closed-

loop system is given by,

Ẋ2 =
m

∑
j=1

1
2
sTj Ḋ js j+

m

∑
j=1

sTj D j ṡ j+
m

∑
j=1

Θ̌Tj Σ
−1
j
˙̌Θ j

=
m

∑
j=1

1
2
sTj Ḋ js j+

m

∑
j=1

sTj

[
Y jΘ̌ j+ τ j,i−C js j

]
−

m

∑
j=1

Θ̌Tj Y js j

which can be simplified to

Ẋ2 =− 1
2

l

∑
j=1

(1−α j,i)sTjK j,is j−
l

∑
j=1

α j,i
4 ∑

n∈N j,i

1∣∣N j,i
∣∣sTjnK j,is jn

−
m

∑
j=l+1

1
4 ∑n∈N j,i

1∣∣N j,i
∣∣sTjnK j,is jn ≤ 0

(3.22)

Consequently, the Lyapunov functionX2 is a weak common Lyapunov func-

tion for the considered switched system. Since X2 is radially unbounded, all the

signals of the closed-loop system remain globally bounded, i.e. the states q̃ j, ˙̃q j,

and Θ̄ j are globally stable. Note that Lemma 2.9.3 implies that there exists a non-

vanishing dwell time τ̄ ∈ (0, τad) among each switchings in the communication

network topologies.

Since X2 is upper bounded and Ẋ2 ≤ 0, by invoking Lemma 2.9.5 one can
conclude that under the non-vanishing dwell-time we have s jn→ 0 as t→ ∞. This
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implies that s jn ∈ L2, ∀ j,n ∈ V , j �= n. By invoking Lemma A.12 in [158], one

can further conclude that q jn→ 0 and q̇ jn→ 0 as t → ∞. In addition, by invoking

Lemma 2.9.5 one can conclude that under non-vanishing dwell-time we have s j→
0, j ∈ {1, . . . , l} as t → ∞. Consequently, due to the fact that the communication

network topology is connected, boundedness and asymptotic stability of s j, ∀ j are
also guaranteed. Consequently, the requirements (r1)–(r3) are formally shown to

hold. This completes the proof of the theorem. �

3.3.2 Robust Synchronization Control of Uncertain EL Systems

In the previous subsection, an adaptive control approach was introduced to com-

pensate for the effects of parametric uncertainties in the networked EL systems. In

the development of the adaptive control laws no a priori knowledge of the con-

stant parameters of the system was assumed. In this subsection, we assume certain

a priori knowledge of the nominal EL system’s parameters. However, to gener-

alize our results we now assume and allow that the system’s parameters could be

time-varying, although the exact values of the parameters are not known precisely.

However, the bounds on the parameters are assumed to be known a priori. We make

this assumption explicit as indicated below.

Let the j-th nominal EL system be governed by the nonlinear dynamic equa-

tion,

D̂ j(q j)q̈ j+Ĉ j(q j, q̇ j)q̇ j+ Ĝ j(q j)+ F̂ j � Y j(q j, q̇ j, ṙ j,r j)Θ̂ j = u j (3.23)

where Θ̂ j denotes the vector of constant parameters of the nominal EL system.

The parameters Θ̂ j could represent the designer’s best knowledge or estimate of

the actual parameters of the EL system. Let the difference between the nominal
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values of the j-th EL system’s parameters Θ̂ j and the actual values of the j-th EL

system’s parameters that are denoted by Θ j(t) and that are unknown and possibly

time-varying be given by Θ̃ j(t) = Θ j(t)− Θ̂ j. We make the following assumption

on Θ̃ j(t).

Assumption 3.3.1. Let the difference between the nominal values of the EL sys-

tem’s parameters and the actual values of the EL system’s parameters be upper

bounded and let this upper bound be known a priori. Specifically,
∥∥Θ̃ j(t)

∥∥ ≤ ρ j,

where ρ j > 0 is a known constant parameter.

We propose the following robust control law to compensate for the effects of

the parametric uncertainties in the EL systems,

u j,i = Y j(q j, q̇ j, ṙ j,r j)(Θ̂ j+ν j)+ τ j,i (3.24)

where ν j is to be specified subsequently.

By using the Property 2.1.3, the dynamics of the closed-loop system (2.7),

(3.16), (3.17) and (3.24) is reduced toD j(q j)ṡ j+C j(q j, q̇ j)s j=Y j(q j, q̇ j, ṙ j,r j)(Θ̂ j+

ν j)+ τ j,i. Our fourth main result is provided in the following theorem.

Theorem 3.3.2. Consider a network of ‘m’ heterogeneous EL systems, where the

j-th EL system is governed by the dynamics (2.7) with δ = 0 and is subject to the

distributed control laws (3.16) and (3.24) for the j-th leader and the distributed

control laws (3.17) and (3.24) for the j-th follower corresponding to the i-th com-

munication network topology. Let the control input ν j be selected as

ν j =

⎧⎪⎨
⎪⎩
−ρ j sgn(Y js j) if

∥∥Y js j∥∥ > ε j

−ρ j
ε jY js j if

∥∥Y js j∥∥ < ε j
(3.25)
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where ε j is a small positive constant. It then follows that the closed-loop system

is: (A1) globally stable, and (A2) the state synchronization and set-point tracking

errors remain globally bounded under average dwell-time switchings in the com-

munication network topologies, where the bound is a function of ε j.

Proof: Let us consider a positive definite radially unbounded decrescent Lya-

punov function candidate (3.18) for the networked closed-loop EL system (2.7),

(3.16), (3.17), (3.24) and (3.25). The time derivative of this function along the

trajectories of the closed-loop system is given by,

Ẋ1 =
l

∑
j=1

sTj

[
−1
2
(1−α j,i)K j,is j− α j,i2 K j,i ∑

n∈N j,i

s jn∣∣N j,i
∣∣ +Y j(q j, q̇ j, ṙ j,r j)(Θ̂ j+ν j)

]

+
m

∑
j=l+1

sTj

[
−1
2
K j,i ∑

n∈N j,i

s jn∣∣N j,i
∣∣ +Y j(q j, q̇ j, ṙ j,r j)(Θ̂ j+ν j)

]

(3.26)

Let us first assume that
∥∥Y js j∥∥ > ε j. Given the control law (3.25), it can be shown

that Ẋ1 in equation (3.26) satisfies,

Ẋ1 ≤
l

∑
j=1

sTj

(
−1
2
(1−α j,i)K j,is j− α j,i2 K j,i ∑

n∈N j,i

s jn∣∣N j,i
∣∣
)

+
m

∑
j=l+1

sTj

(
−1
2
K j,i ∑

n∈N j,i

s jn∣∣N j,i
∣∣
)

+
m

∑
j=1

(∥∥sTj Y jΘ̂ j
∥∥−ρ j ∥∥sTj Y j∥∥

)

≤
l

∑
j=1

sTj

(
−1
2
(1−α j,i)K j,is j− α j,i2 K j,i ∑

n∈N j,i

s jn∣∣N j,i
∣∣
)

+
m

∑
j=l+1

sTj

(
−1
2
K j,i ∑

n∈N j,i

s jn∣∣N j,i
∣∣
)
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It follows along similar lines and arguments that were invoked in the proof of The-

orem 3.2.2 that the properties (A1) and (A2) hold. Now let
∥∥Y js j∥∥ < ε j. Given the

control law (3.25) we obtain

Ẋ1 ≤
l

∑
j=1

sTj

(
−1
2
(1−α j,i)K j,is j− α j,i2 K j,i ∑

n∈N j,i

s jn∣∣N j,i
∣∣
)

+
m

∑
j=l+1

sTj

(
−1
2
K j,i ∑

n∈N j,i

s jn∣∣N j,i
∣∣
)

+
m

∑
j=1

∥∥sTj Y j(Θ̂ j+ν j)
∥∥

Following along the similar lines as those used in [162], it follows that the term∥∥∥sTj Y j(Θ̂ j+ν j)
∥∥∥ is upper bounded by ε jρ j/4. Therefore, the above inequality is

reduced to,

Ẋ1 ≤−
l

∑
j=1

sTj

(
1
2
(1−α j,i)K j,is j+

α j,i
2
K j,i ∑

n∈N j,i

s jn∣∣N j,i
∣∣
)

−
m

∑
j=l+1

sTj

(
1
2
K j,i ∑

n∈N j,i

s jn∣∣N j,i
∣∣
)

+
m

∑
j=1

ε jρ j/4

(3.27)

It then follows that

Ẋ1 ≤−
l

∑
j=1
k1,i(s j)−

m

∑
j=1
k2,i(

m

∑
n=1

s jn)+
m

∑
j=1

ε jρ j/4≤−
m

∑
j=1
k2,i(

m

∑
n=1

s jn)+
m

∑
j=1

ε jρ j/4

for some class K∞ functions k1,i(.) and k2,i(.). Note that the inequality (3.27) is

satisfied irrespective of the value of
∥∥Y js j∥∥. Let k3,i(ε j) = k−12,i (∑

m
j=1 ε jρ j/2). Let

us define the region D = {s jn|k3,i(ε j) ≤ ∑mj=1∑
m
n=1

∥∥s jn∥∥ , X1 ≤ l̄}, where l̄ is a

83



sufficiently large number. In this region we have,

Ẋ1 <−1
4

m

∑
j=1
k2,i(

m

∑
n=1

∥∥s jn∥∥)≤ 0
which implies that Ẋ1 is decreasing in D. Therefore, any solution starting in D will

remain in D and cannot leave it.

SinceX1 is upper bounded, by invoking Lemma 2.9.5 one can conclude that

Ẋ1→ 0 as t→ ∞ under the condition of average dwell-time switchings on D. This

essentially implies that∑lj=1 k1,i(
∥∥s j∥∥)+∑mj=1 k2,i(∑mn=1∥∥s jn∥∥) is upper bounded by

∑mj=1ρ j
ε j
4 in the steady-state under the condition of average dwell-time switchings

∀i ∈H . This from the definition of s jn implies that q̇ jn and q jn are also bounded in

the steady-state. In addition, in this region we have
∥∥Y js j∥∥ < ε j. Consequently, ˙̃q j

and q̃ j are also bounded in the steady-state as t→∞. Therefore, the properties (A1)

and (A2) are formally shown to hold and this completes the proof of the theorem. �

Remark 3.3.1. The constant ε j should be chosen such that a good performance

in the closed-loop system response is obtained. However, to avoid any numerical

problems one should not this constant too small.

3.4 Synchronization Control Recovery in Presence of

Additive Actuator Faults

In this section, we introduce a controller reconfiguration strategy for state synchro-

nization of networked EL systems in presence of additive actuator faults. Our ob-

jective is to reconfigure the “nominal” controller (which is given by equations (3.5)

and (3.16) for the j-th leader and given by (3.5) and (3.17) for the j-th follower)
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such that state synchronization of the EL system is achieved subject to the con-

straint (c1) that was stated in Section 3.1.3. To accomplish this goal, we add a term

ν̄ j to the nominal control law, i.e., u j = unomj + ν̄ j.

Let δ in equation (2.7) represent an additive actuator fault in this section. We

impose the following assumption on the magnitude of the actuator fault δr| j(t,q j, q̇ j,u j),
namely ∥∥δr| j(t,q j, q̇ j,u j)∥∥≤ ρr| j(t,q j, q̇ j,qn, q̇n)+σr| j(t)

∥∥ν̄ j∥∥ (3.28)

for all r∈{1, . . . ,k}, j∈V and n∈N j. In addition, ρr| j : [0, ∞)×(2k+2k
∣∣N j

∣∣)→
ℜ represents a non-negative continuous function, which can be either linear or non-

linear depending on the fault and we have 0≤ σr| j(t) < 1. It is important to empha-

size that the functions ρr| j(t,q j, q̇ j,qn, q̇n) and σr| j(t) are the only information that
one needs regarding the fault. Note that ρr| j can be an arbitrary function of states
and time, which is more complex than the representation that is employed in [181]

in which ρr| j is assumed to be only a linear function of the states of the j-th agent.
Also note that unlike [182] we do not make any assumption on the magnitude and

the structure of the function ρr| j. One can invoke an appropriate fault detection and
identification (FDI) scheme (as in for example [183, 184, 185, 186, 187, 188, 189])

to estimate the functions and parameters in equation (3.28), although a formal dis-

cussion on this is beyond the scope of this thesis.

We are now in a position to introduce the main result of this section.

Theorem 3.4.1. Consider a network of ‘m’ heterogeneous EL systems where each

agent is governed by the dynamics (2.7) subject to additive faults under the follow-

ing distributed control law for the i-th communication network topology

u j,i = unomj,i + ν̄ j,i, j ∈ V , i ∈H (3.29)
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where unomj,i is defined according to

unomj,i =D j(q j)ṙ j+C j(q j, q̇ j)r j+G j(q j)+
∂F (q̇ j)

∂ q̇ j

− 1
2
(1−α j,i)K j,i( ˙̃q j+ K̄ jq̃ j)

− α j,i
2
K j,i ∑

n∈N j,i

1∣∣N j,i
∣∣
[
( ˙̃q j+ K̄ jq̃ j)− ( ˙̃qn+ K̄ jq̃n)

] (3.30)

for the j-th leader and according to

unomj,i =D j(q j)ṙ j+C j(q j, q̇ j)r j+G j(q j)+
∂F (q̇ j)

∂ q̇ j

− 1
2
K j,i ∑

n∈N j,i

1∣∣N j,i
∣∣
[
( ˙̃q j+ K̄ jq̃ j)− ( ˙̃qn+ K̄ jq̃n)

] (3.31)

for the j-th follower, with

ν̄ j =−η j(t,q j, q̇ j,qn, q̇n)sgn(s j) (3.32)

where sgn(s j) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
1 if s j > 0

0 if s j = 0

−1 if s j < 0

. In addition, η j(q j, q̇ j,qn, q̇n) satisfies the fol-

lowing inequality

ηr| j(t,q j, q̇ j,qn, q̇n)≥
ρr| j(t,q j, q̇ j,qn, q̇n)

1−σr| j(t) (3.33)

where r ∈ {1, . . . ,k},n ∈N j and the set of ‘h’ communication graphs satisfies the

properties that are stated in Definition 3.1.1. Provided that there exists an average

dwell-time (refer to Definition 2.9.13) when switching between any of the commu-

nication graphs and any switchings from the nominal controller to the reconfigured
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controller and vice versa, one can guarantee that all the closed-loop system signals

remain globally bounded, and moreover the requirements (r1)–(r3) are satisfied.

Proof: ConsiderX1 as a radially unbounded continuously differentiable Lya-

punov function candidate for the i-th communication topology. The time derivative

of this function along the trajectories of the closed-loop system (3.30) and (3.31) is

governed by

Ẋ1 =− 1
2

l

∑
j=1

(1−α j,i)sTjK j,is j−
l

∑
j=1

α j,i
4 ∑

n∈N j,i

1∣∣N j,i
∣∣sTjnK j,is jn

−
m

∑
j=l+1

1
4 ∑n∈N j,i

1∣∣N j,i
∣∣sTjnK j,is jn−

m

∑
j=1

η j(t,q j, q̇ j)
∥∥s j∥∥+

m

∑
j=1

sTj δ j

which can be re-written as

Ẋ1 ≤− 12
l

∑
j=1

(1−α j,i)sTjK j,is j−
l

∑
j=1

α j,i
4 ∑

n∈N j,i

1∣∣N j,i
∣∣sTjnK j,is jn

−
m

∑
j=l+1

1
4 ∑n∈N j,i

1∣∣N j,i
∣∣sTjnK j,is jn+

m

∑
j=1

∥∥s j∥∥(−η j(1−σ j)+ρ j
)

From (3.33) it now follows that

Ẋ1 ≤− 12
l

∑
j=1

(1−α j,i)sTjK j,is j−
l

∑
j=1

α j,i
4 ∑

n∈N j,i

1∣∣N j,i
∣∣sTjnK j,is jn

−
m

∑
j=l+1

1
4 ∑n∈N j,i

1∣∣N j,i
∣∣sTjnK j,is jn ≤ 0

(3.34)

which is a decrescent negative semi-definite function for all i ∈H . By invoking an

argument similar to the argument presented in Theorem 3.2.2 one can conclude that

the requirements (r1)–(r3) are satisfied. This completes the proof of the theorem. �
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The discontinuity of the control laws (3.29) and (3.32) can cause complica-

tions for the numerical solvers in simulations. It also can lead to chattering phe-

nomenon (high-frequency actuation and vibration) in practice. This is due to the

fact that the discontinuity term, sgn(s j), keeps switching from a positive s j to a

negative s j that can be damaging to the actuators. To avoid chattering, alternatively

we can use the following

ν̄ j =

⎧⎪⎨
⎪⎩
−η j(t,q j, q̇ j)sgn(s j) if η j(t,q j, q̇ j)

∥∥s j∥∥≥ ε j
−η2j (t,q j,q̇ j)

ε j s j otherwise
(3.35)

where ε j > 0. By application of the modified control law (3.35) to the networked EL

system (2.7) one can guarantee that the synchronization errors approach to a neigh-

borhood of the origin. In other words, one can guarantee that the synchronization

errors remain ultimately bounded.

3.5 Simulation Studies: Distributed Control of Net-

worked Spacecraft

In the simulations that are conducted in this section we consider a network of eight

(8) spacecraft, with two leaders (to ensure “hardware” redundancy in case one

leader is “lost” due to a severe and catastrophic fault) and six followers. The actual

values of each spacecraft moment of inertia matrix are provided in Table 3.1 and

the nominal physical parameters that are assumed to be known to the controllers

are provided in Table 3.2. The initial angular velocities are selected randomly in

the interval ±0.005 (rad/sec) and the initial angular positions are chosen randomly
between 0 and 0.4 (rad) for conducting the simulations.
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Figure 3.1: The three communication topologies that are considered in the simula-
tions according to the Definition 3.1.1. The EL systems that are shown by a square
are the leaders and the ones that are shown by a circle are the followers.
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We consider three communication graphs (h= 3 according to Definition 3.1.1)

as depicted in Fig. 3.1. All the three networks are strongly connected and the con-

nections are bi-directional. In the simulations we randomly switch among these

communication graphs every 10 seconds.

3.5.1 Control of Networked Uncertain Spacecraft

We demonstrate the performance of our proposed controllers for achieving synchro-

nization control of networked spacecraft in this subsection. The parameters of the

controller (3.16) are set to α j,i = 0.8, K j,i = 62.5I3, and K̄ j = 0.1I3. This results

in the following parameters for the PI (3.9) of the j-th leader EL system, namely,

R j =
1
62.5I3, Q j = diag([0.125,0.125,0.125,62.5,62.5,62.5]), and ∑n∈N j,iQ jn =

diag([0.5,0.5,0.5,50,50,50]), j ∈ {1,6}, i ∈ {1,2,3}. Furthermore, the parame-
ters of the controller (3.17) is set to K j,i = 50I3 and K̄ j = 0.1I3. This results in

the following parameters for the PI (3.9) of the j-th follower EL system R j = 1
50I3

and ∑n∈N j,iQ jn = diag([0.5,0.5,0.5,50,50,50]), j ∈ {2,3,4,5,7,8}, i ∈ {1,2,3}.
According to the above controller gains selection, more emphasis will be placed on

the angular velocity synchronization as compared to the attitude synchronization.

The gains for the adaptive controller (3.20b) is set to Σ j = 1 I3. The parameters

of the robust controllers as given by (3.24) and (3.25) are set according to ρ j = 20

and ε j = 1. Note that depending on the mission requirements by selecting proper

controller gains one can put more weight on attitude synchronization as compared

to angular velocity synchronization. This is a trade-off and the choice is made by

the designer.

The response of the closed-loop system states using our proposed adaptive

and robust controllers with the same initial conditions are depicted in Figures 3.2,
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3.3, 3.4, and 3.5 respectively. One can observe from these figures that the state

synchronization and set-point tracking are achieved by using both control strategies.

It is also observed that the state synchronization is achieved prior to the set-point

tracking in simulations. The control efforts for the spacecraft are depicted in Figures

3.6 and 3.7 by using our proposed adaptive and robust controllers, respectively. One

can observe that the control efforts are reasonable for both control strategies. The

discontinuities in the robust control efforts are due to the switching in the control

law.

In order to compare the performance of the two proposed controllers, we

executed 10 Monte Carlo simulation runs, and the results are reported in Table 3.3.

In this table we consider synchronization and set point-tracking errors as well as

the control efforts for the spacecraft #1 (as a leader) and the spacecraft #8 (as a

follower) in order to compare the performance of our proposed controllers. From

this table, one can conclude that our proposed adaptive controller outperforms the

robust controller in all cases. The only case when the robust controller is superior

to the adaptive controller is in following the reference velocity of the spacecraft

#1. One can also conclude from this table that the leader spacecraft #1 requires

more control effort as compared to the follower spacecraft #8. Furthermore, the

spacecraft #1 has a higher synchronization error, and at the same time it has a lower

set-point tracking error when compared to the spacecraft #8.

3.5.2 Control of Networked Spacecraft Subject to Actuator Fault

In this subsection, we consider state synchronization control of the networked space-

craft with actuator faults. We consider the following scenario. Assume that an ad-

ditive fault occurs in the first input channel of the spacecraft #2 at t = 22 seconds,

92



0 200 400 600 800
−10

0

10

20

30

θ
 [d

eg
]

time [sec]

0 200 400 600 800
−30

−20

−10

0

10

20

φ
 [d

eg
]

time [sec]

0 200 400 600 800
−5

0

5

10

15

20

ψ
 [d

eg
]

time [sec]

Figure 3.2: The attitudes of the eight networked spacecraft under our proposed
adaptive synchronization controller. The dotted line represents the reference set-
point that is only available to the network leaders, i.e. the spacecraft #1 and #6.
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Figure 3.3: The angular velocities of the eight networked spacecraft under our pro-
posed adaptive synchronization controller. The dotted line represents the reference
set-point.
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Figure 3.4: The attitudes of the eight networked spacecraft under our proposed
robust synchronization controller. The dotted line represents the reference set-point
that is only available to the network leaders, i.e. the spacecraft #1 and #6.
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Figure 3.5: The angular velocities of the eight networked spacecraft under our pro-
posed robust synchronization controller. The dotted line represents the reference
set-point.
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Figure 3.6: The control efforts of the eight networked spacecraft under our proposed
adaptive synchronization controller.
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Figure 3.7: The control efforts of the eight networked spacecraft under our proposed
robust synchronization controller.
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Table 3.3: Monte Carlo simulation results
Performance measure Adaptive control algorithm Robust control algorithm∫ 800

0 ‖u1‖2 dt 0.213 0.22

∑ j=2,...,8
∫ 800
0

∥∥q1 j∥∥2 dt 3.058 4.42

∑ j=2,...,8
∫ 800
0

∥∥q̇1 j∥∥2 dt 0.031 0.042∫ 800
0 ‖q̃1‖2 dt 4.582 4.169∫ 800
0

∥∥ ˙̃q1∥∥2 dt 0.024 0.02∫ 800
0 ‖u8‖2 dt 0.133 0.167

∑ j=1,...,7
∫ 800
0

∥∥q8 j∥∥2 dt 2.577 3.14

∑ j=1,...,7
∫ 800
0

∥∥q̇8 j∥∥2 dt 0.026 0.031∫ 800
0 ‖q̃8‖2 dt 5.131 5.877∫ 800
0

∥∥ ˙̃q8∥∥2 dt 0.025 0.025

and the fault is removed at t = 530 seconds. The fault magnitude is assumed to be

represented by δ2 = [0.4×q1,2+0.6× q̇1,2+0.8× q̃1,3,0,0]T and σ1(t) = 0. Note

that the above fault corresponds to an intermittent actuator fault.

We first demonstrate the performance of our proposed optimal controllers

(3.16) and (3.16) in presence of the actuator faults defined above. The attitude re-

sponses of the eight spacecraft are shown in Figures 3.8 and 3.9 for the first 50

seconds. One can easily observe that the state synchronization and set-point track-

ing requirements can no longer be achieved. One can also note that θ(t) grows and

produces a very undesirable response in presence of the additive actuator faults.

We now demonstrate the performance of our proposed reconfigurable con-

trollers (3.29), (3.30), (3.31) and (3.32). It is assumed that it takes 20 seconds for

the fault detection and identification module to detect and estimate the severity of

the fault and to automatically reconfigure the controllers, i.e. the controller for the

spacecraft #2 is reconfigured at t = 42 seconds. In the simulations conducted we

have set η j = [1.6× ∣∣q1,2∣∣+2.8× ∣∣q̇1,2∣∣+1.2× ∣∣q̃1,3∣∣ ,0,0]T . It is also assumed that
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after removal of the fault, the reconfigured controllers are automatically changed

to the nominal controllers at t = 580 seconds for the spacecraft #2 (that is, with a

delay of 50 seconds after the removal of the faults).

The closed-loop EL system positions are depicted in Figures 3.10 and 3.11

for the first 800 seconds. It follows from this figure that subsequent to the initiation

of the reconfigurable controllers at t = 42 seconds the eight spacecraft states do

remain bounded and the state synchronization and set-point tracking objectives are

indeed achieved despite the presence of additive actuator faults. In addition, after

removal of the fault at t = 530 seconds and consequent removal of the controller re-

configuration part at t = 580 seconds, the performance of the networked spacecraft

is preserved and state-synchronization and set-point tracking is guaranteed.

3.6 Concluding Remarks

In this chapter optimal control techniques are employed in this paper to formally

design a distributed controller which addresses state synchronization and set-point

tracking of a team of multi-agent nonlinear EL systems. In addition, we consider

adaptive and robust control approaches to compensate the effects of parametric un-

certainty. Additive actuator faults are also considered in this chapter. We introduce

a robust distributed control technique to compensate effect of the faults in the net-

work. Several simulation studies on the control of networked spacecraft in deep

space are conducted to demonstrate merits of our proposed control algorithms.
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Figure 3.8: The attitudes of the eight networked spacecraft in presence of additive
actuator fault for the first 50 seconds.
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Figure 3.9: The angular velocities of the eight networked spacecraft in presence of
additive actuator fault for the first 50 seconds.
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Figure 3.10: The attitudes of the eight networked spacecraft in presence of additive
actuator fault under our proposed controller reconfiguration algorithm. The dotted
line represents the reference set-point that is only available to the network leaders,
i.e. the spacecraft #1 and #6.
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Figure 3.11: The angular velocities of the eight networked spacecraft in presence
of additive actuator fault under our proposed controller reconfiguration algorithm.
The dotted line represents the reference set-point.
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Chapter 4

Distributed H∞-Optimal Formation

Control of Euler-Lagrange Systems

4.1 Introduction and Problem Statement

In this chapter, we formulate the problem of state synchronization (or consensus)

protocol and set-point tracking control of multi-agent EL systems as an H∞ optimal

control problem in presence of parametric uncertainty, external disturbances, and

actuator faults. We show that the state synchronization (or consensus) protocol and

set-point tracking controllers can be formally derived by employing our proposed

analysis. This implies that our proposed method is indeed a formal approach to de-

rive distributed and robust set-point tracking control and state synchronization (or

consensus) protocols for networked nonlinear EL systems. This can be considered

as one of the key features of the work presented in this chapter when compared to

the other approaches that are reported in the literature. In addition, we formally

show that our proposed distributed control algorithm is input-to-state stable (ISS)

where the input is considered to be subject to the parameter uncertainty as well as
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external disturbances for both fixed and switching communication network topolo-

gies.

We also consider controller reconfiguration in presence of actuator faults in

this chapter. Note that, the controller recovery algorithm that is proposed in the pre-

vious chapter requires the knowledge of fault bounds for controller reconfiguration.

This information has to be provided by the fault detection, isolation and identifi-

cation (FDI) algorithm that is working in parallel with the controller. However,

in the present chapter, we propose an adaptive distributed reconfigurable control

algorithm, which has the capability of estimating the faults (both intermittent and

permanent). We incorporate the information provided by the FDI module in the de-

sign of the adaptive controller. We consider three main types of imperfections in the

FDI algorithm, namely, (1) fault detection imperfection, that is when the fault is not

detected by the FDI algorithm, (2) fault isolation imperfection, that is when the fault

is detected in the wrong channel or in the wrong agent, and (3) fault identification

imperfection, that is when the fault estimation is not exact. We show that our pro-

posed distributed reconfigurable controller can maintain the closed-loop networked

EL systems stability under these scenarios and can improve the performance of the

closed-loop networked EL systems in the third case.

Simulation results for the attitude control of a network of spacecraft demon-

strate the effectiveness and capabilities of our proposed distributed control algo-

rithms.
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4.1.1 Communication Network Topology and Synchronization

Error

In this chapter we consider a communication network topology according to Defini-

tion 3.1.1. Let the position synchronization error between the j-th and the n-th EL

system agents be represented by (3.1). We assume in this chapter that the desired

constant position for the networked EL systems, q�, is available to all the EL sys-

tems in the network. Consequently, the set-point tracking error is defined according

to (3.3) for all j ∈ V .

4.1.2 The L2-Gain of General Networked Nonlinear Systems

Definition 4.1.1. [190] Consider the following nonlinear system

ẋ j = f j(x j)+g j(x j)u j+ ḡ j(x j)w j

y j =h j(x j)
(4.1)

where x j ∈ Rn̄, u j ∈ Rm̄, y j ∈ Rp, w j ∈ Rl , g j(x j) ∈ Rn̄×m̄, and ḡ j(x j) ∈ Rn̄×l . Let
γ̄ j ≥ 0 and w j(t) = 0,∀t ≥ 0. The above nonlinear system is said to have L2-gain
from the input u j(t) to the output y j(t) less than or equal to γ̄ j if

∫ T

0

∥∥y j(t)∥∥2 dt ≤ γ̄2j ∫ T

0

∥∥u j(t)∥∥2 dt
is satisfied for all the initial conditions T ≥ 0 and all y j(t),u j(t) ∈ [0,T ). �

Definition 4.1.2. Consider a network of ‘m’ heterogeneous nonlinear systems where

the dynamics of the j-th agent can be expressed by (4.1). The nonlinear state-

feedback H∞ control problem is to find the control u j = Kj(x j)+Kjn(x jn), where

x jn= x j−xn, for the j-th nonlinear system withKj(0)= 0 andKjn(0)= 0, such that
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the L2 gain from the disturbance u j(t) to the block vector of outputs y j(t), y jn(t),

where n ∈N j and y jn(t) = y j(t)− yn(t), and the input u j(t) is less than γ̄ j ≥ 0. In
other words, there exists functions Kj(x j)� 0 and Kjn(x jn)� 0 such that,

∫ ∞

0

(
k1

∥∥y j(t)∥∥2+ k2 ∑
n∈N j

∥∥y jn(t)∥∥2+ k3∥∥u j(t)∥∥2
)
dt

≤ k4γ̄2j
∫ ∞

0

∥∥w j(t)∥∥2 dt, j ∈ V ,n ∈N j

(4.2)

is satisfied for some weighting parameters ki > 0, i = {1, . . . ,4}, all initial condi-
tions and all y j(t),u j(t),w j(t) ∈ [0,∞). The H∞ optimal control problem is to find,

if it exists, the smallest value γ̄�
j of the L2 gains γ̄ j. �

4.1.3 Input-to-State Stability of General Networked Nonlinear

Systems

In this subsection, we extend the standard definition (Definition 2.9.11) of the input-

to-state stability (ISS) of general nonlinear systems to general networked nonlinear

systems.

Definition 4.1.3. Consider a network of ‘m’ heterogeneous nonlinear systems where

the dynamics of the j-th agent can be expressed by (4.1). A nonlinear state-feedback

control law u j = Kj(x j)+Kjn(x jn) for the j-th nonlinear system, with x jn = x j−
xn, j ∈ V ,n∈N j, Kj(0) = 0 and Kjn(0) = 0, is said to be ISS if for the closed-loop

system there exists a class K L function β̄ j and a class K function γ̄ j such that

for any initial conditions x j(0) and x jn(0), where n ∈N j, and any bounded input

w j(t), the solutions x j(t) and x jn(t) exist for all t ≥ 0 and satisfy,

∥∥x j(t)∥∥+
∥∥x jn(t)∥∥≤ β̄ j(∥∥x j(0)∥∥+

∥∥x jn(0)∥∥ , t
)

+ γ̄ j
(
sup
0≤ξ≤t

∥∥w j(ξ )∥∥) (4.3)
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The above inequality guarantees that for any bounded disturbance w j(t), the states

x j(t) and x jn(t) will remain bounded. In addition, as time evolves (t increases)

the states x j(t) and x jn(t) will remain ultimately bounded by a classK function of

sup0≤ξ≤t
∥∥w j(ξ )∥∥. One can further show that ifw j(t)→ 0 as t→∞, then, x j(t)→ 0

and x jn(t)→ 0 as t→ ∞. �

The ISS can be shown by using a Lyapunov-like theorem as discussed below.

Lemma 4.1.1. Consider a network of ‘m’ heterogeneous nonlinear systems where

the dynamics of the j-th agent can be expressed by (4.1). Suppose there exists a

nonlinear state-feedback control law u j = Kj(x j)+Kjn(x jn) for the j-th nonlinear

system, with Kj(0) = 0 and Kjn(0) = 0, and a continuously differentiable positive

definite radially unbounded Lyapunov functionW for the networked heterogeneous

nonlinear system such that for the closed-loop system we have,

Ẇ ≤− ¯̄γ(∥∥x j(t)∥∥+
∥∥x jn(t)∥∥)+ γ

∥∥w j(t)∥∥ , and

Ẇ ≤− γ(∥∥x j(t)∥∥+
∥∥x jn(t)∥∥)⇔ ∥∥x j(t)∥∥+

∥∥x jn(t)∥∥≥ ρ(∥∥w j(t)∥∥) (4.4)

for all x j(t), x jn(t), and w j(t), where ¯̄γ , γ , and γ are classK∞ functions and ρ is a

classK function. Then the system is ISS.

Proof: The proof is similar to the proof of Theorem 4.19 in [174] and is

therefore omitted. �

Definition 4.1.4. Any positive definite radially unbounded Lyapunov function W

which satisfies (4.4) is denoted as the ISS-Lyapunov function. �
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4.1.4 Statement of the Problem

Consider a network of ‘m’ heterogeneous nonlinear EL systems with a set of ‘h’

communication graphs as per Definition 3.1.1. The j-th EL system in the network,

j ∈ V , is governed by the dynamic equation (2.7). Our objective is to design and
develop distributed robust control laws which can guarantee boundedness of state

synchronization and set-point tracking for the networked EL systems in presence

of external disturbances and parameter uncertainties. In other words, we employ

robust control techniques to develop distributed control laws which guarantee the

following requirements in presence of external disturbances: (r1) boundedness of

synchronization error of the EL system coordinates, and (r2) boundedness of set-

point tracking errors of the networked EL systems.

The constraints that we consider for the development of our optimal control

laws are as follows: (c1) the EL systems parameters are not exactly known, and

(c2) the communication network topology is not fixed and is switching.

Remark 4.1.1. In this chapter δ (t) in equation (2.7) is used to represent external

disturbances in Sections 4.2 and 4.3. It is used to represent additive actuator faults

in Section 4.4.

4.2 Distributed H∞ State Synchronization Control of

Networked Euler-Lagrange Systems

We employ the following modified computed-torque control input, i.e.,

u j = D̂ j(q j)ṙ j+ Ĉ j(q j, q̇ j)r j+ ĝ j(q j)+
∂F̂ (q̇ j)
∂ q̇ j

+ τ j (4.5)
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where D̂ j(q j), Ĉ j(q j, q̇ j), ĝ j(q j) and F̂ j are estimations of D j(q j), C j(q j, q̇ j),

g j(q j) and F j, respectively. In addition, τ j is an auxiliary control input vector

and r j = −K̄ j q̃ j− ¯̄K j
∫ t
0 q̃(ξ ) jdξ , where K̄ j and ¯̄K j are positive definite diagonal

matrices. Then the dynamics of system (2.7) is reduced to

D j(q j)( ¨̃q j+K̄ j ˙̃q j+ ¯̄K jq̃)+C j(q j, q̇ j)( ˙̃q j+ K̄ jq̃ j+ ¯̄K j

∫ t

0
q̃(ξ )dξ ) = τ j+w j(t)

(4.6)

where w j(t) is a new disturbance applied to the system and it is defined below,

w j =D̃ j(q j)( ¨̃q j+ K̄ j ˙̃q j+ ¯̄K jq̃)+ C̃ j(q j, q̇ j)( ˙̃q j+ K̄ jq̃ j+ ¯̄K j

∫ t

0
q̃(ξ )dξ )

+ g̃ j(q j)+ F̃ j+δ (t)
(4.7)

where D̃ j = D j− D̂ j, C̃ j = C j− Ĉ j, g̃ j = g j− ĝ j, and F̃ j =
∂F (q̇ j)
∂ q̇ j

− ∂F̂ (q̇ j)
∂ q̇ j

.

The dynamics system (4.6) can be written in the following state-space form,

ẋ j = F̄ j(x j, t)x j+ Ḡ jτ j+ Ḡ j(x j, t)w j (4.8)

where x j = [
∫ t
0 q̃
T
j dξ , q̃Tj , q̇

T
j ]
T ∈ R3k, and

F̄ j(x j, t) =

⎡
⎢⎢⎢⎢⎣

0 Ik 0

0 0 Ik

−D−1j C j ¯̄K j −D−1j C jK̄ j− ¯̄K j −D−1j C j− K̄ j

⎤
⎥⎥⎥⎥⎦

Ḡ j(x j, t) =

⎡
⎢⎢⎢⎢⎣
0

0

D−1j

⎤
⎥⎥⎥⎥⎦
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The auxiliary control input vector τ j can be decomposed as:

τ j = τ̄ j+ ∑
n∈N j

F jnxn (4.9)

where F jn represents interaction among the agents and τ̄ j represents the depen-

dence of the control input of the agent j on its local information. To derive the

H∞ feedback control law for the control input vector τ̄ j, we introduce the following

inequality for the networked EL systems,

m

∑
j=1

∫ ∞

0

[
1
2
xTjQ jx j+ τ̄Tj R jτ̄ j+

1
4 ∑n∈N j

(x j−xn)TQ jn(x j−xn)

]
dt

≤
m

∑
j=1

1
2
γ̄2j

∫ ∞

0
wTj w jdt

(4.10)

where Q j � 0, R j � 0 and Q jn � 0 are diagonal matrices. We further assume that
Q jn is chosen such that ∑n∈N jQ jn = ∑ j∈NnQn j, j,n ∈ V , j �= n.

Our first result is concerned with a network of general nonlinear systems

whose dynamic equations can be written in the state-space form (4.8).

Lemma 4.2.1. Consider a network of ‘m’ heterogeneous nonlinear EL systems with

the state-space dynamics governed by (4.8). Let γ̄ j > 0. Suppose there exist smooth

functions Y j(x j, t) in class K L with Y j(0, t) = 0, ∀ j ∈ {0, . . . ,m} such that the
following Hamilton-Jacobi-Isaacs (HJI) partial differential inequality is satisfied

∂Y j(x j, t)
∂ t

+
∂Y j(x j, t)

∂x j
F̄ j(x j, t)x j+

1
2

∂Y T
j (x j, t)

∂x j

[
1
γ̄2j
ḠTj Ḡ j

− 1
2
ḠTj R

−1
j Ḡ j

]
∂Y j(x j, t)

∂x j
+
1
2
xTj

(
Q j+ ∑

n∈N j

Q jn

)
x j ≤ 0

(4.11)
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Now consider the following distributed control law for the j-th system

τ j �−12R
−1
j τ̄

�
j︸ ︷︷ ︸

τ̄ j

+
1
2 ∑n∈N j

ϒ jQ jn︸ ︷︷ ︸
∑n∈N j F jn

xn
(4.12)

where τ̄�
j = ḠTj

∂Y T
j (x j,t)
∂x j , and ϒ j is chosen such that

∂Y j(x j,t)
∂x j Ḡ jϒ j = x j. Then by

choosing the distributed control law (4.12) for the j-th EL system it is guaranteed

that the expression (4.10) is satisfied for all t ≥ 0.

Proof: Let us introduce the following value function for the j-th nonlinear

system,

Y j(x j) =
1
2
xTj P jx j (4.13)

where P j(q̃ j) ∈ R3k, P j = PTj � 0. Consequently, by noting (4.11) and (4.12) we
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have

d
dt
Y j =

∂Y j

∂x j
F̄ j(x j, t)x j+

∂Y j

∂x j
Ḡ jτ j+

∂Y j

∂x j
Ḡ jw j

≤1
4

∂Y T
j

∂x j
ḠTj R

−1
j Ḡ j

∂Y j

∂x j

− 1
2
1
γ̄2j

∂Y T
j

∂x j
ḠTj Ḡ j

∂Y j

∂x j
− 1
2
xTjQ jx j− 12x

T
j ∑
n∈N j

Q jnx j

+(τ̄�
j )
T︸ ︷︷ ︸

∂Y j
∂x j

Ḡ j

[−1
2
R−1j τ̄

�
j +

1
2 ∑n∈N j

ϒ jQ jnxn]︸ ︷︷ ︸
τ j

+
∂Y j

∂x j
Ḡ jw j

≤− 1
2
γ̄2j

∥∥∥∥∥w j− 1
γ̄2j
ḠTj

∂Y T
j

∂x j

∥∥∥∥∥
2

− 1
2
xTjQ jx j− 12x

T
j ∑
n∈N j

Q jn(x j−xn)

+
1
2
γ̄2j

∥∥w j∥∥2− τ̄Tj R jτ̄ j
≤− 1

2
xTjQ jx j− 12x

T
j ∑
n∈N j

Q jn(x j−xn)+
1
2
γ̄2j

∥∥w j∥∥2− τ̄Tj R jτ̄ j
Consequently,

d
dt
Y ≤

m

∑
j=1

[
−1
2
xTjQ jx j− 12x

T
j ∑
n∈N j

Q jn(x j−xn)+
1
2
γ̄2j

∥∥w j∥∥2− τ̄Tj R jτ̄ j
]

≤
m

∑
j=1

[
−1
2
xTjQ jx j− 14 ∑n∈N j

(x j−xn)TQ jn(x j−xn)+
1
2
γ̄2j

∥∥w j∥∥2− τ̄Tj R jτ̄ j
]

(4.14)

where Y � ∑mj=1Y j. By integrating from t ∈ [0,∞) we obtain,

∫ ∞

0

m

∑
j=1

[
1
2
xTjQ jx j+ τ̄Tj R jτ̄ j+

1
4 ∑n∈N j

(x j−xn)TQ jn(x j−xn)

]
dt

≤ 1
2

m

∑
j=1

γ̄2j
∫ ∞

0

∥∥w j∥∥2 dt+Y (0)−Y (∞)

(4.15)
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SinceY is non-increasing with time, the results follows. This completes the proof. �

4.2.1 Discussions on Existence of a Solution

Our next result provides a solution to the value function (4.13) for general nonlinear

EL systems.

Lemma 4.2.2. Consider a network of ‘m’ heterogeneous EL systems with dynamics

governed by (4.8). Select the value function (4.13) for the j-th system, with,

P j =

⎡
⎢⎢⎢⎢⎣
¯̄K jD j

¯̄K j+
¯̄K jK̄ jK j

¯̄K jD jK̄ j+
¯̄K jK j

¯̄K jD j

K̄ jD j
¯̄K j+

¯̄K jK j K̄ jD jK̄ j+ K̄ jK j K̄ jD j

D j
¯̄K j D jK̄ j D j

⎤
⎥⎥⎥⎥⎦ (4.16)

where K j is a positive definite symmetric matrix and K̄2j > 2 ¯̄K j. This selection of

the matrices guarantees positive definiteness of the matrix P j. One can show that

the HJI inequality (4.11) for this system is satisfied if the following Riccati equation

is satisfied,

Ṗ j+P jF̄ j+ F̄
T
j P j+Q j+ ∑

n∈N j

Q jn−P jḠ jR
−1
j Ḡ

T
j P j+

1
γ̄2j
P jḠ jḠ

T
j P j = 0 (4.17)

.

Proof: One can show that ∂Y j∂ t +
∂Y j
∂x j F̄ j(x j, t)x j =

1
2(Ṗ j+P jF̄ j+ F̄ jP j). One

can also show that ∂Y j∂x j Ḡ j = xTj P jḠ j [180]. Consequently, the HJI equation (4.11)

can be written as (4.17). This completes the proof. �

It is not straight-forward to solve the Riccati equation (4.17) for an arbitrary

selection of the weighting matrices Q j, Q jn and R j. In our next result, we provide
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a guideline for selecting the weighting matrices in order to guarantee existence of a

solution for the Riccati equation (4.17).

Lemma 4.2.3. For a given γ̄ j > 0 choose K j such that K j − 1
γ̄2j
I3 � 0. Let the

weighting matrix R j to be designed as

R j =

(
K j− 1

γ̄2j
I3

)−1
(4.18)

and the weighting matrices Q j, and Q jn to be selected as follows,

Q j+ ∑
n∈N j

Q jn =

⎡
⎢⎢⎢⎢⎣
¯̄K2jK j 0 0

0 K j(K̄
2
j −2 ¯̄K j) 0

0 0 K j

⎤
⎥⎥⎥⎥⎦ (4.19)

Then the Riccati equation (4.17) is satisfied along with (4.13) and (4.16).

Proof: By noting (4.18) one can simplify (4.17) as,

Ṗ j+P jF̄ j+ F̄
T
j P j+Q j+ ∑

n∈N j

Q jn−P jḠ jK jḠ
T
j P j = 0 (4.20)

One can show by noting the Property 2.1.2 that

Ṗ j+P jF̄ j+ F̄
T
j P j =

⎡
⎢⎢⎢⎢⎣

0 ¯̄K jK̄ jK j
¯̄K jK j

¯̄K jK̄ jK j 2 ¯̄K jK j
¯̄K jK j

¯̄K jK j K̄ jK j 0

⎤
⎥⎥⎥⎥⎦ (4.21)

116



In addition, one can show that

P jḠ jK jḠ
T
j P j =

⎡
⎢⎢⎢⎢⎣

¯̄K2jK j
¯̄K jK̄ jK j

¯̄K jK j

¯̄K jK̄ jK j K̄2jK j K̄ jK j

¯̄K jK j K̄ jK j K j

⎤
⎥⎥⎥⎥⎦ (4.22)

Consequently, by adding (4.21) and (4.22) and noting (4.20) one obtains (4.19).

This completes the proof. �

Now define 0 < α j < 1 such that (1−α j)K̄2j −2 ¯̄K j � 0. Consequently, one
obtains

∑
n∈N j

Q jn = α j

⎡
⎢⎢⎢⎢⎣
¯̄K2jK j 0 0

0 K̄2jK j 0

0 0 K j

⎤
⎥⎥⎥⎥⎦ (4.23)

As a result, one gets

Q j =(1−α j)

⎡
⎢⎢⎢⎢⎣
¯̄K2jK j 0 0

0 K̄2jK j 0

0 0 K j

⎤
⎥⎥⎥⎥⎦−

⎡
⎢⎢⎢⎢⎣
0 0 0

0 2 ¯̄K jK j 0

0 0 0

⎤
⎥⎥⎥⎥⎦ (4.24)

We also assume thatQ jn =Q jk where n �= k and n,k ∈N j. The parameter α j plays

an important weighting role. Specifically, smaller values of α j (α j → 0) put more

weight on the trajectory tracking control law over the state synchronization control

law (follows from (4.23) and (4.24) and the “cost” function in (4.10)). On the other

hand, by selecting larger values for α j (α j→ 1) one can put more emphasis on the

state synchronization of the agents and less emphasis on the trajectory tracking.

It can be shown by noting (4.12) and (4.18) with the parameterizations pro-

vided above that one obtains the following control law for the j-th EL system in the
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network:

τ j �− 12

(
K j− 1

γ̄2j
I3

)
(q̇ j+ K̄ jq̃ j+ ¯̄K j

∫ t

0
q̃ jdξ )

+
α j
2
K j ∑

n∈N j

1∣∣N j
∣∣(q̇n+ K̄ jq̃n+ ¯̄K j

∫ t

0
q̃ndξ )

(4.25)

4.2.2 Stability Analysis of the Networked Euler-Lagrange Sys-

tems

The purpose of this section is to demonstrate global asymptotic stability of the

networked EL systems (4.8) under the distributed control law (4.25) in absence of

modeling uncertainty and external disturbances.

Theorem 4.2.1. Consider a network of ‘m’ heterogeneous EL systems that are gov-

erned by the dynamics (4.8) and subject to the distributed control law (4.25) for the

j-th system. Suppose for a given γ̄ j > 0 the controller gains, ¯̄K j, K̄ j, K j, and α j

are selected such that the following conditions are satisfied,

K̄ j � 0, ¯̄K j � 0, K j− 1
γ̄2j
I3 � 0, (4.26)

1> α j > 0 (4.27)

(1−α j)K̄2j −2 ¯̄K j � 0 (4.28)

Consequently, P j,Q j,R j, andQ jn are positive definite matrices ∀ j∈{1, . . . ,m}, j �=
n. Then, in absence of modeling uncertainty and external disturbances the closed-

loop system is globally asymptotically stable and the networked EL systems syn-

chronize their states and follow the desired trajectory, i.e.
∫ t
0 q jn(ξ )dξ → 0, q jn→

0, and q̇ jn→ 0, as t→ ∞, and
∫ t
0 q j(ξ )dξ → 0, q j→ 0, and q̇ j→ 0, as t→ ∞.
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Proof: Consider the following function as the positive definite, radially un-

bounded, Lyapunov function candidate for the networked system,

W =
1
2

m

∑
j=1

sTj D js j (4.29)

where s j = q̇ j+K̄ jq̃ j+ ¯̄K j
∫ t
0 q̃(ξ )dξ . The time derivative of the Lyapunov function

candidate along the trajectories of the closed-loop system (2.7), (4.5), and (4.25) is

given by Ẇ =∑mj=1
1
2s
T
j Ḋ js j+∑mj=1 sTj D j ṡ j. This by noting (4.6) can be written as:

Ẇ =
m

∑
j=1

1
2
sTj (Ḋ j−2C j)s j+

m

∑
j=1

sTj
(
τ j+w j

)

=
m

∑
j=1

sTj

[
−1
2

(
K j− 1

γ̄2j
I3

)
s j+

α j
2
K j ∑

n∈N j

1∣∣N j
∣∣sn

]
+ sTj w j

≤− 1
2

m

∑
j=1

sTj

(
K j− α jγ̄2j

I3

)
s j− α j2 sTjK j

[
∑
n∈N j

1∣∣N j
∣∣(s j− sn)

]

+
∥∥s j∥∥∥∥w j∥∥

≤− 1
2

m

∑
j=1

sTj

(
K j− α jγ̄2j

I3

)
s j− α j4 (s j− sn)TK j

[
∑
n∈N j

1∣∣N j
∣∣s jn

]

+
∥∥s j∥∥∥∥w j∥∥

(4.30)

where s jn= s j−sn. When
∥∥w j∥∥= 0 for all t ≥ 0, i.e. no disturbance is applied to the

system and there is no modeling uncertainty, then by noting (4.26) and (4.27) one

can conclude that (4.30) is a negative definite decrescent function; this by noting

that the Lyapunov function W (in (4.29)) is radially unbounded, implies that all

the signals remain globally bounded. By invoking Theorem 2.9.1 one can conclude

that the closed-loop system is globally asymptotically stable in absence of external

disturbances, i.e. s j → 0, and s jn → 0 as t → ∞. By invoking Lemma A.12 in

119



[158] one can conclude that
∫ t
0 q jn(ξ )dξ → 0, q jn→ 0, and q̇ jn→ 0, as t→ ∞, and∫ t

0 q̃ j(ξ )dξ → 0, q̃ j → 0, and q̇ j → 0, as t → ∞. This completes the proof of the

theorem. �

4.3 Input-to-State Stability (ISS) of the Networked

Euler-Lagrange Systems

The purpose of this section is to demonstrate that the networked EL systems (4.8)

under the distributed control law (4.25) in presence of the modeling uncertainty and

external disturbances is ISS.

Theorem 4.3.1. Consider a network of ‘m’ heterogeneous EL systems that are gov-

erned by the dynamics (4.8) and subject to the distributed control law (4.25) for the

j-th system. Suppose for a given γ̄ j > 0 the controller gains, ¯̄K j, K̄ j, K j, and α j

are selected such that the conditions (4.26), (4.27), and (4.28) are satisfied. Conse-

quently, P j, Q j, R j, and Q jn are positive definite matrices ∀ j ∈ {1, . . . ,m}, j �= n.

Then, in presence of the modeling uncertainty and external disturbances (nonzero

w j(t)) the closed-loop system is input-to-state stable (cf. Definition 4.1.3) and the

synchronization and tracking trajectory errors remain globally ultimately bounded.

Proof: Consider (4.13) as the positive definite, radially unbounded, Lya-

punov function candidate for the j-th system. Let Y � ∑mj=1Y j be the Lyapunov

function candidate for the network. One can show, similar to (4.14), that the

time derivative of the Lyapunov function candidate Y along the trajectories of the
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closed-loop system (4.8), (4.18), (4.23), (4.24) and (4.25) can be written as

Ẏ ≤− 1
2

m

∑
j=1

xTj

[
Q j+

1
2
P jḠ jR jḠ

T
j P j

]
x j

− 1
4

m

∑
j=1
∑
n∈N j

(x j−xn)TQ jn(x j−xn)+
1
2

m

∑
j=1

γ̄2j
∥∥w j∥∥2 (4.31)

Positive definite matrices Q j, R j, and Q jn ∀ j ∈ {1, . . . ,m}, n ∈N j imply that the

first two terms on the right hand side of the inequality (4.31) areK∞ function of x j

and (x j−xn), respectively. Define the bounded regionBr that includes the origin,

that is

Br =

{
x j,(x j−xn) | 12x

T
j

[
Q j+

1
2
P jḠ jR jḠ

T
j P j

]
x j

+
1
4 ∑n∈N j

(x j−xn)TQ jn(x j−xn)≤ 12 γ̄
2
j
∥∥w j∥∥2

}

For all x j and x jn outside of this region we have d
dtY < 0. Consequently, by in-

voking Lemma 4.1.1 one can conclude that the closed-loop networked EL systems

under the distributed control law (4.25) for the j-th system is ISS and the synchro-

nization and tracking trajectory errors remain globally ultimately bounded. This

completes the proof of the theorem. �

4.3.1 ISS with Switchings in the Communication Topology

Finally, we now consider the situation for switchings in the communication network

topology.

Lemma 4.3.1. Consider a network of ‘m’ heterogeneous EL systems that is gov-

erned by the dynamics (4.8) and is subject to the distributed control law for the j-th
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system and the i-th communication network topology as given by

τ j,i �−12

(
K j− 1

γ̄2j,i
I3

)
s j+

α j,i
2
K j ∑

n∈N j,i

1∣∣N j,i
∣∣sn (4.32)

Suppose that for a given γ̄ j,i > 0 the controller gains ¯̄K j, K̄ j, K j, and α j,i are se-

lected such that the conditions (4.26) and (4.27) are satisfied for all i ∈ {1, . . . ,h}.
Consequently, P j(x j),Q j,i,R j,i, andQ jn,i are positive definite matrices ∀ j∈V , j �=
n and for all i ∈ {1, . . . ,h}. It then follows that in presence of modeling uncertainty
and external disturbances the closed-loop system is ISS stable and the synchro-

nization and the tracking trajectory errors remain globally ultimately bounded for

arbitrary switchings in the communication network topologies.

Proof: The proof is based on the existence of a common ISS-Lyapunov func-

tion (as per Definition 4.1.4) for the considered switched system. Let Y �∑mj=1Y j

be the Lyapunov function candidate for the EL system network. It follows from

Theorem 4.3.1 that the closed-loop networked system is ISS for the i-th commu-

nication network topology that is given in Definition 3.1.1. In addition, note that

P j(x j) is the same for all the communication network topologies. Consequently,

the function Y is a common ISS-Lyapunov function. By invoking Theorem 3.1 in

[191] one can conclude that the closed-loop system is ISS under arbitrary switch-

ing in the communication network topologies. This completes the proof of the

lemma. �
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4.4 Control Recovery in Presence of Additive Actua-

tor Faults

In this section, we consider m > 1 Euler-Lagrange (EL) systems, where the j-th

system is governed by the following nonlinear dynamic equations,

D j(q j)q̈ j+C j(q j, q̇ j)q̇ j+G j(q j)+
∂F j(q̇ j)
∂ q̇ j

= DI j(u j)+δ j (4.33)

where DI j(.) is a nonlinear function of inputs, i.e. DI j(u j) � ū j(t)+u j(t), where

ū j(t) = [ū j,1(t), . . . , ū j,k(t)]T ∈ Rk

The vector ū j(t) represents additive actuator faults and the corresponding FDI im-

perfections.

We make the following assumption explicit.

Assumption 4.4.1. The function ū j,1(t) is defined as ū j,1(t) = ū j,1,l(t), for tl−1 ≤
t < tl, l = 1,2, . . ., where ū j,1,l(t) ∈ C1 (class of continuously differentiable func-
tions). This implies that ū j(t) is a vector of piecewise bounded continuous functions

of time. The time derivative of ū j(t) is well-defined everywhere except at time tl

where d
dt ū j(t) consists of a Dirac delta function.

The input imperfection ū j(t) considered in Assumption 4.4.1 is a function of

time. Therefore, through this formulation one can represent both intermittent and

permanent actuator faults.

Assumption 4.4.2. The disturbance signal d(t)∈Rk is a vector of uniformly bounded
and piecewise continuous functions of time, i.e. supt>0 d(t) < ∞.

123



We also assume that an FDI unit is operating in parallel with the distributed

controller (4.5) and (4.25). In presence of a fault the term Γ j is added to the dis-

tributed control law (4.25) to compensate for the effects of a fault and recover, as

much as possible, the performance of the closed-loop system. In reality, however,

no FDI algorithm is 100% perfect and reliable. Consequently, the controller must

be robust to imperfections in the FDI algorithm. Let the fault in the j-th system

satisfy Assumption 4.4.1. We now consider the following three cases.

Case 1. The FDI algorithm is not capable of detecting the fault. Consequently, the

controller for the j-th system will not reconfigure itself in presence of the fault.

This is designated as imperfection in the fault detection.

Case 2. The FDI algorithm has detected the fault in an incorrect input channel or

an incorrect agent. Consequently, the controller is reconfigured in an inappropriate

channel or agent. This is designated as imperfection in the fault isolation.

Case 3. The FDI algorithm has detected the fault in the correct input channel or

agent. However, the magnitude or the severity of the fault is not correctly identi-

fied. In other words, the FDI algorithm provides a piecewise continuous estima-

tion of the vector ū j(t), which is denoted by ū∗j(t) such that
∥∥∥ū∗j − ū j

∥∥∥ is always
bounded, i.e. supt>0

∥∥∥ū∗j − ū j
∥∥∥ < ∞. This is designated as imperfection in the fault

identification.

4.4.1 Control Reconfiguration Subject to Imperfections in the

Fault Detection Module

In presence of imperfection in the fault detection module the controller is not re-

configured appropriately. However, one can still guarantee boundedness of the syn-

chronization and the trajectory tracking errors in presence of the fault. Our next
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result is provided in the following lemma.

Lemma 4.4.1. Consider a network of ‘m’ heterogeneous nonlinear EL systems (2.7)

under the distributed control laws (4.5) and (4.25). Suppose for a given γ̄ j > 0 the

controller gains, ¯̄K j, K̄ j, K j, and α j are selected such that the conditions (4.26),

(4.27), and (4.28) are satisfied. Then under Assumption 4.4.1 the closed-loop net-

worked system remains globally bounded under Case 1 for t ≥ 0.

Proof: When no fault recovery is invoked one can combine the actuator fault

signal ū j(t) as part of the disturbance δ (t). Consequently, let δ̄ (t) = ū j(t)+ δ (t).

Now, consider the expression (4.13) as the positive definite, radially unbounded,

ISS-Lyapunov function candidate for the j-th system.

Let Y � ∑mj=1Y j be the ISS-Lyapunov function candidate for the networked

EL systems. One can show that the time derivative of the ISS-Lyapunov function

candidate Y along the trajectories of the closed-loop system (2.7), (4.5), (4.18),

(4.23), (4.24), and (4.25) can be written as

Ẏ ≤− 1
4

m

∑
j=1

xTj
[
P j(x j)Ḡ j(x j)R jḠTj (x j)P j(x j)

]
x j

− 1
2

m

∑
j=1

xTjQ jx j− 14
m

∑
j=1
∑
n∈N j

xTjnQ jnx jn+
1
2

m

∑
j=1

γ̄2j
∥∥δ̄ j∥∥2 (4.34)

The positive definite matrices Q j, R j, and Q jn ∀ j ∈ V , n ∈N j imply that the first

two terms in the right hand side of the inequality (6.16) areK∞ function of x j and

x jn, respectively. Define the bounded regionBr that includes the origin, that is

Br =

{
x j,(x j−xn) | 12x

T
j

[
Q j+

1
2
P j(x j)Ḡ j(x j)R jḠTj (x j)P j(x j)

]
x j

+
1
4 ∑n∈N j

xTjnQ jnx jn ≤ 12 γ̄
2
j
∥∥δ̄ j∥∥2

}
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For all x j and x jn outside this region we have d
dtY < 0. Consequently, by invoking

Lemma 4.1.1, one can conclude that the closed-loop networked EL system under

the distributed control laws (4.5) and (4.25) is ISS and the synchronization and the

tracking trajectory errors remain globally ultimately bounded. �

Lemma 4.4.1 guarantees boundedness of the synchronization and the trajec-

tory tracking errors in presence of a fault. However, in presence of actuator faults

and without invoking a controller reconfiguration, this bound may be too large and

may exceed the mission specifications (as shown in the simulations in Section 4.5).

Therefore, one may need to appropriately adjust the controller to recover the per-

formance of the networked EL systems as described in the next subsection.

4.4.2 Control Reconfiguration Subject to Imperfections in the

Fault Identification Module

Consider that Case 3 described in Section 4.4 holds. The purpose of this subsection

is to design Γ j = diag(γ1, j, . . . ,γk, j) ∈ Rk in order to compensate for the effects of
the FDI imperfections and actuator faults. Our result is now presented below.

Theorem 4.4.1. Consider a network of ‘m’ heterogeneous EL systems that are gov-

erned by the dynamics (2.7) and subject to the distributed control laws (4.5) and

(4.25) for the the j-th system. Given that the conditions in Case 3 hold, let us set

γp, j according to,

γp, j =−sgn(sp, j)ûp, j(t), p ∈ {1, . . . ,k}, j ∈ {1, . . . ,m} (4.35)
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where ûp, j(t) is an estimate of ūp, j(t) and is governed by

˙̂up, j(t) = σ̄p, jsp, j− ēp, j[ûp, j(t)− ū∗p, j(t)] (4.36)

where σ̄p, j > 0, ū∗p, j denotes the estimate of the fault severity that is provided by the

FDI algorithm, and ēp, j > 0, p ∈ {1, . . . ,k} are diagonal elements of the positive
definite matrix Ē j � 0. Then under Assumption 4.4.1 and by application of the
distributed adaptive control law (4.36) the closed-loop states of the j-th nonlinear

EL system, i.e. x̄ j = [xTj ũTj ]
T , with ũ j = û j− ū j remain globally bounded under

Case 3 for all t ≥ 0.

Proof: The time derivative of the estimation error ũp, j(t) defined as ũp, j(t) =

ûp, j(t)− ūp, j(t), along the trajectories of (4.36) is given by

˙̃up, j(t) = ˙̂up, j(t)− ˙̄up, j(t)

=σ̄p, jsp, j− ē j[ûp, j(t)− ū∗p, j(t)]− ˙̄up, j(t)

=σ̄p, jsp, j− ē jũp, j(t)+ ē j[ū∗p, j(t)− ūp, j(t)]− ˙̄up, j(t)

Consider the following positive definite radially unbounded function as the

ISS-Lyapunov function candidate for the closed-loop networked EL system

W (x̄ j) =
m

∑
j=1

[
Y j(x j)+

k

∑
p=1

1
2σ̄p, j

ũ2p, j

]
(4.37)

where x̄ j = [xTj , ũ
T
j ]
T and Y j(x j) is given by (4.13) and

P j(x j) =

⎡
⎢⎢⎢⎢⎣
¯̄K jD j

¯̄K j+
¯̄K jK̄ jK j

¯̄K jD jK̄ j+
¯̄K jK j

¯̄K jD j

K̄ jD j
¯̄K j+

¯̄K jK j K̄ jD jK̄ j+ K̄ jK j K̄ jD j

D j
¯̄K j D jK̄ j D j

⎤
⎥⎥⎥⎥⎦ (4.38)
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where P j(x j) is a positive definite matrix provided that the conditions (4.26), (4.27),

and (4.28) are satisfied. This essentially implies that there exist positive scalars k0

and k̄0 such that k0
∥∥x̄ j∥∥2 ≤ W (x̄ j) ≤ k̄0

∥∥x̄ j∥∥2. Therefore, W (x̄ j) is a positive

definite radially unbounded function.

The time derivative of the ISS-Lyapunov function candidate along the trajec-

tories of the closed-loop system is obtained as,

d
dt
W =

m

∑
j=1

[
∂Y j

∂x j
F̄ j(x j)x j+

∂Y j

∂x j
Ḡ j(x j)τ j+

∂Y j

∂x j
Ḡ j(x j)δ j+ ũTj Σ̄

−1
j
˙̃u j

]

=
m

∑
j=1

[
1
2
xTj [Ṗ j(x j)+P j(x j)F̄ j(x j)+ F̄

T
j (x j)P j(x j)]x j+xTj P j(x j)Ḡ j(x j)τ j

+xTj P j(x j)Ḡ j(x j)δ j+ ũTj Σ̄
−1
j
˙̃u j

]

≤−1
4

m

∑
j=1

xTj P jḠ jR
−1
j Ḡ

T
j P jx j−

1
2

m

∑
j=1

xTjQ jx j− 14
m

∑
j=1
∑
n∈N j

xTjnQ jnx jn

−
m

∑
j=1

ũTj Σ̄
− 12
j Ē jΣ̄

− 12
j ũ j+

m

∑
j=1

ũTj Σ̄
− 12
j Ē jΣ̄

− 12
j (ū∗j − ū j)

−
m

∑
j=1

ũTj Σ̄
−1
j
˙̄up, j+

m

∑
j=1

∥∥s j∥∥∥∥δ j∥∥
(4.39)

where Σ̄ j = diag(σ̄1, j, . . . , σ̄k, j) ∈ Rk. Consequently, we obtain,

d
dt
W ≤− 1

4

m

∑
j=1

xTj P jḠ jR jḠ
T
j P jx j−

1
2

m

∑
j=1

xTjQ jx j− 14
m

∑
j=1
∑
n∈N j

xTjnQ jnx jn

−
m

∑
j=1

ũTj Σ̄
− 12
j Ē jΣ̄

− 12
j ũ j+

m

∑
j=1

ũTj Σ̄
− 12
j Ē jΣ̄

− 12
j (ū∗j − ū j)

−
m

∑
j=1

ũTj Σ̄
−1
j
˙̄up, j+

m

∑
j=1

∥∥s j∥∥∥∥δ j∥∥
(4.40)
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which implies that there exists constant positive scalars ki, i ∈ {1, . . . ,8}, such that

d
dt
W ≤

m

∑
j=1

[
−k1

∥∥x j∥∥2− k2∥∥ũ j∥∥2− k3∥∥x jn∥∥2+ k4∥∥ũ j∥∥∥∥ū∗j − ū j
∥∥

+ k5
∥∥ũ j∥∥∥∥ ˙̄u j∥∥+ k6

∥∥δ j∥∥2
]

≤
m

∑
j=1

[
−k7

∥∥x̄ j∥∥2+ k5∥∥x̄ j∥∥∥∥ ˙̄u j∥∥+ k8
∥∥x̄ j∥∥∥∥v̄ j∥∥

]

where
∥∥v̄ j∥∥ =

∥∥∥ū∗j − ū j
∥∥∥+

∥∥δ j∥∥2. Consequently,
k0

m

∑
j=1

d
dξ

∥∥x̄ j∥∥2 ≤− k7 m

∑
j=1

∥∥x̄ j∥∥2+ k5 m

∑
j=1

∥∥x̄ j∥∥∥∥ ˙̄u j∥∥+ k8
m

∑
j=1

∥∥x̄ j∥∥∥∥v̄ j∥∥

Therefore, when
∥∥x̄ j∥∥ �= 0 one obtains,

m

∑
j=1

d
dξ

∥∥x̄ j∥∥≤−k7k0
m

∑
j=1

∥∥x̄ j∥∥+
k5
k0

m

∑
j=1

∥∥ ˙̄u j∥∥+
k8
k0

m

∑
j=1

∥∥v̄ j∥∥
By integrating the above inequality we obtain

m

∑
j=1

∥∥x̄ j(t)∥∥≤ m

∑
j=1

∥∥x̄ j(0)∥∥e− k7k0 (t) + m

∑
j=1

∫ t

0

k5
k0
e
k7
k0
ξ ∥∥ ˙̄u j(ξ )∥∥dξ

+
m

∑
j=1

∫ t

0

k8
k0
e
k7
k0
ξ ∥∥v̄ j∥∥dξ

≤
m

∑
j=1

∥∥x̄ j(0)∥∥e− k7k0 (t) + k9+ k8
k7

m

∑
j=1
v̄ j,0

(4.41)

where v̄ j,0 = supt≥0
∥∥v̄ j∥∥ and k9 = ∑mj=1

∫ t
0
k5
k0
e
k7
k0
ξ ∥∥ ˙̄u j(ξ )∥∥dξ . Assumption 4.4.2

implies that v̄ j,0 < ∞. Consequently, in view if Assumption 4.4.1 one can conclude

that the states of the j-th closed-loop system, x̄ j(t), are globally uniformly bounded.

This completes the proof of the theorem. �
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The overall distributed adaptive control law can be written in the following

form,

u j =D j(q j)ṙ j+C j(q j, q̇ j)r j+g j(q j)−
1
2
sTj

(
K j− α jγ̄2j

I3

)
s j

− α j
4
sTjnK j ∑

n∈N j

1∣∣N j
∣∣s jn− sgn(s j)T û j(t)

(4.42)

with

˙̂u j(t) = Σ̄ js j− Ē j[û j(t)− ū∗j(t)] (4.43)

where ū∗j(t) is an estimate of ū j(t) provided by the FDI module.

4.4.3 Control Reconfiguration Subject to Imperfections in the

Fault Isolation Module

In presence of an imperfection in the fault isolation, the controller is reconfigured

according to (4.42) and (4.43) but for an incorrect agent or an incorrect input chan-

nel. The stability of the networked EL system, however, can still be guaranteed.

Our specific result is now given in the following lemma.

Lemma 4.4.2. Consider a network of ‘m’ heterogeneous EL systems that are gov-

erned by the dynamics (2.7) and subject to (4.5) and (4.25) for the j-th system. Let

conditions of Case 2 hold. For the p-th input channel of the j-th agent, which is

fault-free, let us set γp, j according to (4.35) and let the time derivative of ûp, j(t) be

chosen according to (4.36), where σ̄p, j > 0, and ēp, j > 0, p ∈ {1, . . . ,k} are diag-
onal elements of the positive definite matrix Ē j � 0. Then under Assumption 4.4.1
and by application of the distributed adaptive control law the closed-loop system
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states of the j-th nonlinear EL system, i.e. x̄ j = [xTj ũ
T
j ]
T , remain globally bounded

under Case 2 for all t ≥ 0.

Proof: The proof is straightforward and can be carried out similar to the

proofs of Lemma 4.4.1 and Theorem 4.4.1, and is therefore omitted. �

Remark 4.4.1. The discontinuity of the distributed adaptive control law (4.42) can

cause complications for the numerical solvers in performing simulations. It also

can lead to chattering phenomenon of the system (high-frequency actuation and

vibration) in practice. This chattering is due to the fact that the variables s j are

never exactly zero in control calculations. Therefore, the discontinuous term keeps

switching from a small positive s j to a small negative s j. To avoid chattering, a

saturation function can replace the sign function in the control law (4.42). The

saturation function is continuous around the surface s j = 0, which allows s j to

smoothly converge to a neighborhood of origin.

4.5 Simulation Studies: Distributed Control of Net-

worked Spacecraft

4.5.1 Robust Distributed Control of Networked Spacecraft

In this section, our proposed distributed control strategy is applied to attitude syn-

chronization for the spacecraft formation flying problem. As discussed in Section

2.3.2, the 3-degrees of freedom (DOF) attitude dynamics of a spacecraft can be

written in the form of (2.7).

We consider three communication graphs as depicted in Fig. 4.1 with 8 space-

craft. Note that all the three networks are strongly connected and the connections

131



1 8

4 5

6
7

3
2

1 8

4 5

6
7

3
2

1 8

4 5

6
7

3
2

The Communication 

Network Topology #1

The Communication 

Network Topology #2

The Communication 

Network Topology #3

Figure 4.1: The three communication network graphs considered in the simulations.

are bi-directional. Furthermore, we randomly switch among the three communica-

tion graphs every 10 seconds.

For simulations we set γ̄ j,i = 0.6, α j,i = 0.86, ∀ j ∈ {1, . . . ,8}, i ∈ {1,2,3}.
In addition, in view of (4.26) and (4.27) the distributed controller (4.32) gains are

selected as: K j = 20I3, K̄ j = 0.4I3, and K̄ j = 0.02I3. This studies in the fol-

lowing parameters for the j-th EL system, namely, R j,i = 13.75I3, ∑n∈N jQ jn,i =

diag([5.5e−3, 5.5e−3, 5.5e−3, 2.2, 2.2, 2.2, 13.75, 13.75, 13.75]), andQ j,i =

diag([2.5e− 3, 2.5e− 3, 2.5e− 3, 0.2, 0.2, 0.2, 6.25, 6.25, 6.25]). The above
selection of the controller gains puts more emphasis on the state synchronization

specification of the spacecraft attitudes and their attitude rates and considerably

less emphasis on the state regulation specification. Our desired objective is to keep

the spacecraft states in the close to zero. Note that depending on the mission re-

quirements by selecting proper controller gains one can put more weight on attitude

regulation as compared to attitude synchronization.
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In all of the simulation scenarios the initial attitudes of the spacecraft are se-

lected randomly between zero to 60 degrees and the disturbance δ j(t) is considered

to be a Rayleigh distributed noise with the fading envelope of 0.09 and sampling

time of 0.5 seconds.

In the first part of the simulation results in this subsection, we consider±10%
uncertainty in the inertia matrices of the 8 spacecraft in the network. The spacecraft

attitudes with the above-mentioned initial conditions and disturbances are depicted

in Fig. 4.2 for the first 200 seconds. The corresponding attitude rates are depicted

in Fig. 4.3.
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Table 4.1: The mean values for the control efforts for spacecraft #1 under the con-
trollers (4.5) and (4.25) versus the controller in [63] for the first 200 seconds.

u1 [N.m] u2 [N.m] u3 [N.m]
W/ 10% uncertainty in J j −0.3494 −0.3416 −0.3399
W/ 50% uncertainty in J j −0.3494 −0.3414 −0.3407
Equation (7) in [63] −0.3495 −0.3417 −0.3459

Table 4.2: The mean values for the state synchronization errors for spacecraft #1
under the controllers (4.5) and (4.25) versus the controller in [63] for the first 200
seconds.

q1(θ) q2(φ) q3(ψ)
W/ 10% uncertainty in J j 6.1940 5.4541 6.0248
W/ 50% uncertainty in J j 8.6281 8.3233 7.6036
Equation (7) in [63] 9.8578 10.0208 9.4797

One can conclude from Figs. 4.2 and 4.3 that the state synchronization is

achieved by using our proposed robust controller in presence of parameter uncer-

tainties and external disturbances.

In the second part of the simulations in this subsection, we compare the per-

formance of our proposed distributed controllers (4.5) and (4.25) without switch-

ings in the communication network topologies with the distributed controller that

is proposed in [63] (see (7) in [63]), which does not require the numerical values of

the matrices D j and C j. In order to make the comparison fair, the controller gains

are selected such that the mean values of the control efforts for both controllers are

almost the same under the communication network topology #1 (cf. Table 4.1) over

10 simulation runs. The mean values for the state synchronization errors for space-

craft #1 are provided in Table 4.2 over 10 simulation runs. The results in this table

show that our proposed distributed controller produces lower state synchronization

errors.
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Table 4.3: The mean values for the state synchronization errors for spacecraft #1
under the controllers (4.5) and (4.32) versus the controller in [62] for the first 200
seconds.

q1(θ) q2(φ) q3(ψ)
W/ 50% uncertainty in J j 7.1742 7.5310 6.9247
Equation (3.23) in [62] 10.4092 11.2602 12.0256

Finally, we would like to compare the performance of our proposed robust

distributed controller with the distributed controller that proposed in [62] (refer to

equstion (3.23) in [62]) with switchings in the communication network topologies.

In order to make the comparison fair, the controller gains are selected such that the

mean values for the control efforts for both controllers are almost the same for the

spacecraft #1 over corresponding to 10 simulation runs. The mean values for the

state synchronization errors for the spacecraft #1 are provided in Table 4.3. The

results in this table show that our proposed distributed controller produces lower

state synchronization errors.

4.5.2 Distributed Robust Reconfigurable Control of Networked

Spacecraft

In this subsection, we demonstrate the performance of our proposed reconfigurable

control strategy in presence of actuator faults for the spacecraft formation flying

missions.

In the simulations in this subsection, we set γ j= 0.6, α j= 0.86, ∀ j∈{1, . . . ,8}.
In addition, in view of (4.26), (4.27), and (4.28) the distributed controllers (4.42)

and (4.43) gains are selected as: K j = 20I3, K̄ j = 0.16I3, and K̄ j = 0.001I3. This
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results in the following parameters for the j-th EL system, namely, R j = 17.22I3

∑
n∈N j

Q jn= diag([0.17e−4,0.17e−4,0.17e−4,0.44,0.44,0.44,17.22,17.22,17.22])

and Q j = diag([0.27e−5, 0.27e−5, 0.27e−5, 0.031e−3, 0.031e−3, 0.031e−
3, 2.78, 2.78, 2.78]). The above selection of the controller gains imposes more

emphasis on the synchronization of the spacecraft attitudes and their attitude rates

and considerably less emphasis on the state regulation. Our desired objective is to

keep the spacecraft attitude states close to the origin. Note that depending on the

mission requirements by selecting proper controller gains one can put more weight

on attitude regulation as compared to attitude synchronization. This is a trade-off

and the choice made by the designer.

In this subsection, we assume that the inertia matrix of the spacecraft in the

network is known within a ±10% accuracy, i.e. J j = Ĵ j± 0.10Ĵ j, where J j is the
actual spacecraft inertia matrix and Ĵ j is it’s nominal value. The disturbance d(t) is

considered to be a Gaussian distributed noise with the mean value of zero and vari-

ance of 0.001. The initial attitudes of the spacecraft are selected randomly between

zero to 60 degrees.

An additive actuator fault occurs in the third input channel of the first space-

craft, i.e. ū1,3(t) = 0.05sin(0.02t)+0.6 for 40≤ t ≤ 240. The fault and its estimate,
which is provided by a typical FDI algorithm (which is beyond the scope of this

work) are depicted in Fig. 4.4. One can observe from this figure that there exists an

error in the fault identification by the FDI algorithm.
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Figure 4.4: Fault magnitude in the third input channel of the spacecraft # 1 (blue
line) versus its estimate obtained from the FDI algorithm (dashed green line).

Distributed Control of Spacecraft Formation Subject to Imperfections in the

Fault Detection Module and without Controller Reconfiguration

In the first part of our simulation results we assume imperfections in the fault de-

tection module where the controller is not reconfigured in presence of the actuator

fault, i.e. Γ j(t) = 0, ∀ j ∈ 1, . . . ,8, t ≥ 0. Attitudes of the spacecraft in this scenario
are shown in Fig. 4.5 for the first 300 seconds.

Fig. 4.5 shows that without controller reconfiguration the attitude synchro-

nization is not achieved. However, in view of the fact that the proposed controller

is robust to input disturbances and actuator faults (refer to Lemma 4.4.1), the states

remain bounded and stable.
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Figure 4.5: Spacecraft attitudes without controller reconfiguration for the first 300
seconds. The dash-dotted line represents the spacecraft # 1.
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Distributed Control of Spacecraft Formation with Controller Reconfiguration

Subject to Imperfections in the Fault Identification Module

In this part of simulations we assume that the adaptive reconfiguration part of the

controller is present. The parameters of the controller (4.42) and (4.43) are selected

as: Σ̄ j = 0.5I3 and Ē j = I3. Furthermore, it is assumed that it takes 5 seconds for

the FDI algorithm to detect the fault and activates the controller reconfiguration.

Fig. 4.6 depicts the attitudes of the eight spacecraft in the formation under

the distributed adaptive control laws (4.42) and (4.43) for the first 300 seconds.

By comparing Fig. 4.6 with Fig. 4.5 one notices a great improvement in the syn-

chronization and tracking performance of the closed-loop networked EL systems.

Specifically, the synchronization error is considerably decreased by employing the

adaptive controller. In addition, the attitudes are closer to zero when compared with

those obtained in Fig. 4.5.

Distributed Control of Spacecraft Formation with Controller Reconfiguration

Subject to Imperfections in the Fault Isolation Module

In the last part of our simulation results we consider imperfections in the fault iso-

lation module. Specifically, we assume that the FDI algorithm detects the fault,

however, it incorrectly reconfigures the second input channel of the first spacecraft.

Attitudes of the networked eight spacecraft are shown in Fig. 4.7. By com-

paring the results presented in Fig. 4.6 with those of Fig. 4.7 the degradations in

the synchronization of the roll angle, φ(t) can be observed. This is in addition to

the performance degradations in the third channel, ψ . This, however, confirms our

analysis (refer to Lemma 4.4.2) which guarantees boundedness of the closed-loop

signals in presence of imperfections in the fault isolation module.
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Figure 4.6: Spacecraft attitudes with the the controller reconfiguration for the first
300 seconds subject to imperfection in the fault identification. The dash-dotted line
represents the spacecraft # 1.
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Figure 4.7: Spacecraft attitudes with the controller reconfiguration for the first 300
seconds subject to imperfection in the fault isolation. The dash-dotted line repre-
sents the spacecraft # 1.
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In other words, despite the incorrect application of the controller reconfigura-

tion to a healthy actuator and no controller reconfiguration to a faulty actuator, the

overall closed-loop networked EL system still remains stable.

4.6 Concluding Remarks

This chapter provided formal development of distributed state synchronization and

tracking control laws for nonlinear Euler-Lagrange (EL) systems by employing

H∞ control techniques, in presence of parametric uncertainty and external distur-

bances by using only local information. Next, formal extension of the developed

distributed adaptive state synchronization and set-point tracking control laws for

nonlinear Euler-Lagrange (EL) systems for three types of FDI imperfections in ac-

tuator faults are discussed. It is shown that in presence of actuator faults, our pro-

posed distributed control algorithm has the capability of compensating for the fault

and taking proper controller reconfiguration actions.
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Chapter 5

Constrained Synchronization

Control of Networked

Euler-Lagrange Systems

5.1 Introduction and Problem Statement

Our first main objective in this chapter is to design synchronization and set-point

tracking control for a network of multi-agent EL systems by taking into account

constraints on the control input and also by using partial state feedback. In actu-

ality, there are always constraints on the maximum input an actuator can produce,

and these constraints should ideally be taken into account in the design of control

laws. Furthermore, availability of full state measurements and a fixed communi-

cation network topology cannot be guaranteed at all times for networked nonlinear

EL systems. Therefore, we first develop a bounded distributed synchronization (or

consensus seeking) and set-point tracking controllers with full state feedback. It is
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shown that boundedness of the control effort is guaranteed independent of the ini-

tial conditions and for all times. Our next contribution in this chapter is concerned

with the design of distributed output feedback (i.e. without full state feedback) con-

trollers for synchronization and set-point tracking of networked EL systems.

Our third main objective is to design a reconfigurable controller for multi-

agent EL system in presence of actuator saturation faults. Finally, our last objective

of this chapter is to present a switching-based control reconfiguration strategy that

is utilized in case of an actuator fault or an actuator saturation constraint to accom-

plish cooperative control of EL systems. Towards this end, we first introduce a

class of distributed controllers (denoted as constrained nominal controller) that can

be used for accomplishing cooperative state synchronization and set-point tracking

control objectives. We then introduce a class of distributed constrained controllers

(denoted as constrained reconfigured controller) that can be used to maintain the

overall control objectives of the EL systems in presence of actuator faults and actu-

ator constraints. Finally, we introduce a procedure that can be employed to switch

between the two distributed constrained controllers (namely, the constrained nomi-

nal and the constrained reconfigured controllers). In presence of actuator faults and

actuator saturations, a switching mechanism is introduced to provide a reconfig-

urable controller for the networked EL systems to ensure and maintain the overall

mission objectives and requirements.

5.1.1 Communication Network Topology

The communication network topology considered in this chapter is defined accord-

ing to Definition 3.1.1. In addition, we let the position synchronization error be-

tween the j-th and the n-th EL system agents be represented by (3.1). We assume
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in this chapter that the desired constant position for the networked EL systems, q�,

is available to only the first ‘l’ EL systems in the network, which are denoted as the

leaders. The EL systems that do not receive the desired coordinates information are

denoted as the followers, i.e. agent 1 to l are the leaders and agent ‘l+ 1’ to ‘m’

are followers. Consequently, the set-point tracking error for the leader is defined

according to (3.3) and for the follower is defined according to (3.4).

5.1.2 Statement of the Problem

Consider a network of ‘m’ multiple heterogeneous nonlinear EL systems with a set

of ‘h’ communication graphs as per Definition 3.1.1. The j-th EL system in the

network, j ∈ V , is governed by the dynamic equation (2.7) with δ (t) = 0. Our

objective is to design and develop distributed nonlinear control laws which can

guarantee state synchronization of the networked EL systems as well as position

tracking. In other words, we employ nonlinear control techniques to develop dis-

tributed control laws which guarantee the following requirements: (r1) stability of

the closed-loop networked EL systems, (r2) synchronization of the EL system coor-

dinates (which is also denoted as the consensus seeking or the formation-keeping),

that is q jn→ 0 and q̇ jn→ 0 as t→∞, and (r3) tracking of the desired position by the

networked EL systems (which is also denoted as the station-keeping), i.e. q̃ j → 0

and q̇ j → 0 as t → ∞. The above requirements will guarantee that the EL systems

reach, at the steady-state, to the same relative posture. The controller that guaran-

tees the requirements (r1) and (r2) is denoted as the formation-keeping controller

and the controller that guarantees the requirements (r1) and (r3) is denoted as the

station-keeping controller.

The constraints that we consider for the development of our control laws are
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as follows: (c1) the communication network topology is not fixed and is switching,

(c2) the EL systems parameters are not known, (c3) there exist actuator constraints

on the maximum control efforts, i.e. ur| j(t)≤ ūmaxr | j, where r= 1, . . . ,k, j ∈ V and

ūmaxr | j, and (c4) velocity measurement is not available for feedback and exchange
among the EL systems in the network.

We make the following assumption explicit in this chapter.

Assumption 5.1.1. We assume in this chapter that the weights of the adjacency

matrix are the same for all the nodes of the communication graph, i.e. we have

λ jn = λ jn̄, where j ∈ V and n, n̄ ∈N j.

5.2 Distributed Constrained Nonlinear Control

We introduce the following distributed nonlinear controller for the j-th EL system

for the i-th communication network topology (as per Definition 3.1.1) to satisfy

the objectives that are introduced in the previous section, while satisfying the con-

straints (c1) and (c2) simultaneously,

uleaderj = u0j +usj+u fj,i

ufollowerj = u0j +u fj,i, where{
u0j =G j(q j){
usj =−Λpj χ(q̃ j+Λdj q̇ j){
u fj,i =−∑n∈N j,iΛ

p
jn,i χ(q jn+Λdj q̇ j+Λdj q̇ jn)

(5.1)
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where χ(x) = col[χ(x1), . . . ,χ(xn)] denotes a monotonically increasing odd func-

tion. The term u0j is denoted as the feed-forward controller and is added to compen-

sate for the effects of the GFV. The term usj is denoted as the station-keeping con-

troller and the term u fj,i is denoted as the formation-keeping controller. In addition,

the controller gains Λpj , Λ
d
j , Λ

p
jn,i and Λ

d
jn,i are positive definite diagonal matrices

corresponding to proportional and derivative terms (the superscript ‘p’ denotes the

proportional and the superscript ‘d’ denotes the derivative).

The following lemma is used subsequently in this chapter.

Lemma 5.2.1. Consider the following algebraic equations that correspond to a

strongly connected network of ‘m’ agents

Λpj χ(q̃ j)+ ∑
n∈N j

Λpjn χ(q jn) = 0, j,n ∈ {1, . . . ,m}, j �= n (5.2)

where q̃ j ∈Rk, χ(x) is a monotonically increasing odd function, and Λpjn =Λpn j are

positive definite matrices. Furthermore, assume that Λpj is a positive definite diag-

onal matrix for only 0< l ≤ m number of equations (corresponding to ‘l’ leaders)
and is zero, otherwise. If we have ∑lj=1Λ

p
j χ(q̃ j) = 0, then the only solution to

equation (5.2) is q̃ j = 0,∀ j ∈ {1, . . . ,m}.

Proof: We prove this lemma by contradiction. First note that equation (5.2)

implies that if for the j-th algebraic equation we have Λpj = 0 (corresponding tom−
l ≥ 0 followers), then ∑n∈N j Λ

p
jn χ(q jn) = 0. Therefore, equation (5.2) essentially

reduces to Λpj χ(q̃ j)+∑n∈N j Λ
p
jn χ(q jn) = 0, j,n ∈ {1, . . . , l}, j �= n. Now, let us

assume that the claim does not hold, i.e. q̃ j �= 0,∀ j ∈ {1, . . . , l}. This in view of
∑lj=1Λ

p
j χ(q̃ j) = 0, implies that there exists at least one system (let’s say the l-

th system, without loss of any generality) for which we have: ∑l−1j=1Λ
p
j χ(q̃ j) =
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−Λpl χ(q̃l) ≡ Λpl χ(−q̃l), which implies that the sign of the l-th system error is

opposite to that of the others in the network. Without loss of generality, let us

assume q̃l = −ε jq̃ j, j = 1, . . . , l− 1, where ε j > 0, and that q̃ j > 0, j = 1, . . . , l−
1. Thus, from equation (5.2) we have: Λpl χ(q̃l)+Λpl,1 χ(q̃l − q̃1)+Λpl,2 χ(q̃l −
q̃2) + · · ·+Λpl,l−1 χ(q̃l − q̃l−1) = 0, which can be re-written as: −Λpl χ(ε1q̃1)−
Λpl,1 χ[(ε1+ 1)q̃1]−·· ·−Λpl,l−1 χ[(εl−1+ 1)q̃l−1] = 0. The statement above does

not hold when q̃ j �= 0, ∀ j ∈ {1, . . . , l}, which is a contradiction. Therefore, the only
solution to the problem is to have q̃ j = 0, j = 1, . . . , l. Consequently, from equation

(5.2) we have ∑n∈N j Λ
p
jn χ(q jn) = 0,∀ j,n ∈ {1, . . . ,m}, j �= n, which by the strong

connectivity of the communication graph, and the fact that χ(x) is a monotonically

increasing odd function implies that q jn = 0,∀ j,n ∈ {1, . . . ,m}, j �= n. Therefore,

in view of equation (3.1), one obtains q̃ j = 0, j = l+ 1, . . . ,m. Hence, we have:

q̃ j = 0,∀ j ∈ {1, . . . ,m}. This completes the proof of the lemma. �

Our first main result of this section is provided in the next subsection.

5.2.1 Distributed State Synchronization Control with Bounded

Input

We present the following assumption which will be used subsequently.

Assumption 5.2.1. We assume the communication among the agents is a function

of distances among the agents. Specifically, we assume when the communication

link among two agents j and n are removed we have
∥∥q jn∥∥ > r0, where r0 is a

positive constant. Furthermore, when the communication link among two agents

j and n are established we have
∥∥q jn∥∥ < r0. In addition, at each switching instant

when a communication link among the j-th and the n-th agents is removed and a

new communication link among the j-th and the n̄-th agents is established one has
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∥∥q jn̄∥∥≤ ∥∥q jn∥∥.
The above assumption implies that at the switching instant the distance among

the j-th and the n̄-th agents is less than the distance among the j-th and the n-th

agents. We now present the first result of this chapter.

Theorem 5.2.1. Consider a network of ‘m’ (m > 1) heterogeneous EL systems

where each agent is governed by the dynamics (2.7) with δ = 0. Without loss of gen-

erality, let the first ‘l’ agents (l ≥ 1) denote the formation leaders and ‘l+1, . . . ,m’
denote the formation followers as per Definition 3.1.2. Let the j-th agent’s con-

troller be given by (5.1). Then, under Assumptions 5.1.1 and 5.2.1 and in presence

of an average dwell-time switching (refer to Definition 2.9.13) among the ‘h’ com-

munication network topologies that satisfy Definition 3.1.1, the EL systems synchro-

nize their states asymptotically and follow the desired set-point. The boundedness

of the control efforts command (constraint (c3) in Subsection 5.1.2) is also guar-

anteed globally provided that one sets χ(x) � Sat(x) and one selects the controller

gain matrices Λpj and Λ
p
jn,i such that the following inequalities are satisfied for all

the EL systems,

gr| j+λr|pj + ∑
n∈N j,i

λr|pjn,i < ūmaxr | j, r ∈ {1, . . . ,k}, j ∈ {1, . . . , l}

gr| j+ ∑
n∈N j,i

λr|pjn,i < ūmaxr | j, r ∈ {1, . . . ,k}, j ∈ {l+1, . . . ,m}
(5.3)

where λr|pj represents the r-th diagonal element of Λpj and λr|pjn,i represents the r-th
diagonal element of Λpjn,i.

Proof: We first show that the distributed control law (5.1) guarantees global
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asymptotic state synchronization under switchings among the communication net-

work topologies. Consider the following radially unbounded positive definite Lya-

punov function candidate for the closed-loop system under the ī-th communication

network topology (ī ∈H ),

Wī =
1
2

m

∑
j=1

(
q̇Tj D j(q j)q̇ j+ ∑

n∈N j,ī

k

∑
r=1

∫ q jn

0
λr|pjn,īχ(x)dx

)
+

l

∑
j=1

k

∑
r=1

∫ q̃ j

0
λr|pj χ(x)dx

Positive definiteness of the above function follows from the Property 2.1.1 and

Lemma 2.6.1.

The time derivative of the above function along the trajectories of the closed-

loop system (2.7) and (5.1) is obtained as

Ẇī =
m

∑
j=1

[
q̇Tj D j(q j)q̈ j+

1
2
q̇Tj Ḋ j(q j)q̇ j+

1
2 ∑n∈N j,ī

q̇TjnΛ
p
jn,īχ(q jn)

]
+

l

∑
j=1

q̇Tj Λ
p
j χ(q̃ j)

=
l

∑
j=1

{
q̇Tj

[
−Λpj χ(q̃ j+Λdj q̇ j)+Λpj χ(q̃ j)

]}

+
m

∑
j=1

{
q̇Tj

⎡
⎣− ∑

n∈N j,ī

Λpjn,ī χ(q jn+Λdj q̇ j+Λdj q̇ jn)

⎤
⎦+

1
2 ∑n∈N j,ī

q̇TjnΛ
p
jn,īχ(q jn)

}

=
l

∑
j=1

{
q̇Tj

[
−Λpj χ(q̃ j+Λdj q̇ j)+Λpj χ(q̃ j)

]}

+
m

∑
j=1

{
q̇Tj

⎡
⎣− ∑

n∈N j,ī

Λpjn,ī χ(q jn+Λdj q̇ j+Λdj q̇ jn)

⎤
⎦+

1
2 ∑n∈N j,ī

q̇TjnΛ
p
jn,īχ(q jn)

}

=−
l

∑
j=1

{
q̇Tj

[
Λpj χ(q̃ j+Λdj q̇ j)+Λpj χ(q̃ j)

]}

−
m

∑
j=1

∑
n∈N j,ī

{
q̇Tj Λ

p
jn,ī

[
χ(q jn+Λdj q̇ j+Λdj q̇ jn)− χ(q jn)

]}

The definition of χ(x) implies that χ(x+ y)− χ(x) > 0⇔ y > 0, and χ(x+ y)−
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χ(x) < 0⇔ y< 0. Therefore, the sign of Ẇī is the same as the sign of the following

expression,

Ξ1 =−
l

∑
j=1
k1q̇Tj q̇ j− k2

m

∑
j=1

∑
n∈N j,ī

q̇Tj (q̇ j+ q̇ jn)

=−
l

∑
j=1
k1q̇Tj q̇ j− k2

m

∑
j=1

∑
n∈N j,ī

q̇Tj q̇ j−
k2
2

m

∑
j=1

∑
n∈N j,ī

q̇Tjnq̇ jn ≤ 0
(5.4)

for some positive numbers k1 and k2. Consequently, we have Ẇī ≤ 0.
First, note that since the Lyapunov function is radially unbounded, all signals

remain globally bounded. Without loss of generality, let the i-th network topol-

ogy (i ∈H ) has the maximum graph size, i.e. |Eī| < |Ei|, ī ∈H , i �= ī. There-

fore, under Assumption 5.1.1 we have Wī(t)≤Wi(t),∀t ≥ 0. Let th1 , th2 , . . . denote
an infinite sequence of switching time to the i-th communication network topol-

ogy, and th1+1, th2+1, . . ., denote another infinite sequence of switching times from

the i-th communication network topology. It can be shown that at any switching

times to the i-th communication network topology under Assumption 5.2.1 we have

Wi(th1)≥Wi(th2)≥ . . .≥Wi(the), with e→ ∞.

Note that Lemma 2.9.3 implies that there exist a non-vanishing dwell time

τ̄ ∈ (0, τad) among each switchings in the communication network topology. One

can, therefore, invoke Lemma 2.9.5 to conclude that under non-vanishing dwell-

time switching one has Ẇi → 0 as t → ∞. Now, from (5.4) and by noting strong

connectivity of the communication graph (refer to Definition 3.1.1) we have q̇ j→ 0

and q̇ jn→ 0 as t→∞. Again, by invoking Lemma 2.9.5 one can show that we have

q̈ j→ 0 as t→∞, which by studying the closed-loop system dynamics and invoking

Lemma 5.2.1 it implies that q̃ j → 0 and q jn → 0 as t → ∞. Therefore, the state
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synchronization and set-point tracking are achieved globally under average dwell-

time switchings. It is straightforward to show that by setting χ(x)� Sat(x), and by

selecting the controller gains according to (5.3) the constraints on the control efforts

are always satisfied globally, i.e. ur| j(t) ≤ ūmaxr | j for all times. This completes the
proof of the theorem. �

Corollary 5.2.2. Consider a network of ‘m’ (m > 1) heterogeneous EL systems

where each agent is governed by the dynamics (2.7). Let the j-th agent’s con-

troller be given by ufollowerj in (5.1). Then, under Assumptions 5.1.1 and 5.2.1 and

in presence of an average dwell-time switching (refer to Definition 2.9.13) among

the ‘h’ communication network topologies that satisfy Definition 3.1.1, the EL sys-

tems synchronize their states asymptotically. The boundedness of the control efforts

command (constraint (c3) in Subsection 5.1.2) is also guaranteed globally provided

that one sets χ(x)� Sat(x) and one selects the controller gain matrix Λpjn,i such that

the following inequalities are satisfied for all the EL systems,

gr| j+ ∑
n∈N j,i

λr|pjn,i < ūmaxr | j, r ∈ {1, . . . ,k}, j ∈ {1, . . . ,m} (5.5)

where λr|pjn,i represents the r-th diagonal element of Λpjn,i.

Proof: It follows from Theorem 5.2.1.

5.3 Distributed Dynamic Output Feedback Constrained

Nonlinear Control

The following distributed dynamic output feedback nonlinear controller for the j-th

EL system is proposed to satisfy the objectives that are introduced in Subsection
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5.1.2, while satisfying the three constraints (c1), (c2), and (c4) simultaneously,

uleaderj = u0j +usj+u fj,i

ufollowerj = u0j +u fj,i, where{
u0j =G j(q j)⎧⎪⎨

⎪⎩
usj =−Λpj χ(q̃ j+Λdjϑ j)

ϑ j =z j+ B̄q̃ j, ż j =−Ā(z j+ B̄q̃ j)⎧⎪⎪⎨
⎪⎪⎩

u fj,i =− ∑
n∈N j,i

Λpjn,i χ
(
q jn+Λdjϑ j+Λdjϑ jn

)
ϑ jn =z̄r+ B̄q jn, ˙̄zr =−Ā(z̄r+ B̄q jn)

(5.6)

where r = 1, . . . ,
∣∣N j,i

∣∣, χ(x) = col[χ(x1), . . . ,χ(xn)] denotes a monotonically in-

creasing odd function, Ā � diag[ā1, . . . , āk] and B̄ � diag[b̄1, . . . , b̄k] are positive

definite diagonal matrices. The controller term u0j is denoted as the feed-forward

controller, the controller term usj is denoted as the velocity-free station-keeping con-

troller, and the controller term u fj,i is denoted as the velocity-free formation-keeping

controller. In addition, the controller gains Λpj , Λ
d
j , Λ

p
jn,i, and Λ

d
j are positive def-

inite diagonal matrices representing the positive proportional and derivative terms

(the superscript ‘p’ denotes the proportional and the superscript ‘d’ denotes the

derivative).

5.3.1 DistributedOutput Feedback Synchronization Control with

Bounded Input

We now present the first result of this subsection.

Theorem 5.3.1. Consider a network of m (m> 1) heterogeneous EL systems where
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each agent is governed by the dynamics (2.7) with δ = 0 under the controller given

in equation (5.6). Then, under the Assumptions 5.1.1 and 5.2.1 and in presence of

an average dwell-time switching (refer to Definition 2.9.13) among the ‘h’ commu-

nication network topologies that satisfy Definition 3.1.1, there exist matrices Ā and

B̄ such that the EL systems globally synchronize their states and follow the desired

set-point asymptotically. This is achieved under the constraints (c1), (c2) and (c4)

given in Subsection 5.1.2. The boundedness of the control efforts command (con-

straint (c3)) is also guaranteed globally provided that one sets χ(x) � Sat(x) and

one selects the controller gain matrices Λpj and Λ
p
jn,i such that the inequalities (5.3)

are satisfied for all j ∈ V .

Proof: We first show that under the distributed velocity-free control law (5.6)

one can guarantee global asymptotic state synchronization and set-point tracking

under average dwell-time switching. Consider the following radially unbounded

positive definite Lyapunov function candidate for the closed-loop system under the

ī-th communication network topology (ī ∈H ),

Wī =
1
2

m

∑
j=1

q̇Tj D j(q j)q̇ j+
l

∑
j=1

k

∑
r=1

[∫ q̃ j

0
λr|pj χ(x)dx+

∫ ϑr| j
0

λr|pj
b̄r

χ(x)dx
]

+
1
2

m

∑
j=1

∑
n∈N j,ī

k

∑
r=1

[∫ q jn

0
λr|pjn,īχ(x)dx+

∫ ϑr| j+ϑr| jn
0

λr|pjn,ī
b̄r

χ(x)dx
]

Positive definiteness of the above function follows from the Property 2.1.1 and

Lemma 2.6.1.

The time derivative of this function along the trajectories of the closed-loop
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system (2.7) and (5.6) is governed by

Ẇī =−
l

∑
j=1

q̇Tj Λ
p
j χ

(
q̃ j+Λdjϑ j

)
−

m

∑
j=1

∑
n∈N j,ī

q̇Tj Λ
p
jn,ī χ

(
q jn+Λdjϑ j+Λdjϑ jn

)

+
l

∑
j=1

q̇Tj Λ
p
j χ

(
q̃ j
)

+
1
2

m

∑
j=1

∑
n∈N j,ī

q̇TjnΛ
p
jn,ī χ

(
q jn

)
+

l

∑
j=1

[−Āϑ j+ B̄q̇ j]TΛpj B̄−1χ(ϑ j)

+
1
2

m

∑
j=1

∑
n∈N j,ī

[−Ā(ϑ j+ϑ jn)+ B̄(q̇ j+ q̇ jn)]
TΛpjn,īB̄

−1χ(ϑ j+ϑ jn)

=−
l

∑
j=1

q̇Tj Λ
p
j

[
χ
(
q̃ j+Λdjϑ j

)
−χ(q̃ j)

]

− 1
2

m

∑
j=1

∑
n∈N j,ī

q̇TjnΛ
p
jn,ī

[
χ
(
q jn+Λdjϑ j+Λdjϑ jn

)

−χ(q jn)
]
+

l

∑
j=1

[−Āϑ j+ B̄q̇ j]TΛpj B̄−1χ(ϑ j)+
1
2

m

∑
j=1

∑
n∈N j,ī

[−Ā(ϑ j+ϑ jn)

+ B̄(q̇ j+ q̇ jn)]
TΛpjn,īB̄

−1χ(ϑ j+ϑ jn)

(5.7)

Consequently, by noting χ(x+ y)−χ(x) > 0⇔ y> 0, and χ(x+ y)−χ(x) < 0⇔
y< 0, one has

Ẇī ≤− k1
l

∑
j=1

q̇Tj χ
(
ϑ j

)− k2 m

∑
j=1

∑
n∈N j,ī

q̇Tjnχ
(
ϑ j+ϑ jn

)
+ k3

l

∑
j=1

[−Āϑ j+ B̄q̇ j]T B̄−1χ(ϑ j)

+ k4
m

∑
j=1

∑
n∈N j,ī

[−Ā(ϑ j+ϑ jn)+ B̄(q̇ j+ q̇ jn)]
TΛpjn,īB̄

−1χ(ϑ j+ϑ jn)

for some positive constants k1, k2, k3 and k4. One can re-write the above equation
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as

Ẇī ≤−k1
l

∑
j=1

ϑTj ĀB̄−1χ(ϑ j)− k2
m

∑
j=1

∑
n∈N j,ī

(ϑ j+ϑ jn)T ĀB̄−1χ(ϑ j+ϑ jn)≤ 0

Consequently, Ẇī is a negative semi-definite function ∀ī ∈H . First, note that since

the Lyapunov function is radially unbounded and Ẇī ≤ 0, all the signals remain
globally bounded. Without loss of generality, let the i-th network topology (i ∈H )

has the maximum graph size, i.e. |Eī|< |Ei|, ī∈H , i �= ī. Therefore, under Assump-
tion 5.1.1 we have Wī(t)≤Wi(t),∀t ≥ 0. Let th1, th2, . . . denote an infinite sequence
of switching time to the i-th communication network topology, and th1+1, th2+1, . . .,

denote another infinite sequence of switching times from the i-th communication

network topology. At any switching times to the i-th communication network topol-

ogy under Assumption 5.2.1 we haveWi(th1)≥Wi(th2)≥ . . .≥Wi(the), with e→∞.

Note that Lemma 2.9.3 implies that there exists a non-vanishing dwell time

τ̄ ∈ (0, τad) among each switchings in the communication network topology. One

can invoke Lemma 2.9.5 to conclude that under non-vanishing dwell-time switching

one has Ẇi→ 0 as t→ ∞.

From equation (5.7) and by noting strong connectivity of the communication

graph (refer to Definition 3.1.1) it now follows that ϑ j→ 0 and ϑ jn→ 0 as t → ∞

under non-vanishing dwell-time switching. This from (5.6) implies that z j+ B̄q̃ j→
0 and z̄r+ B̄q jn → 0 as t → ∞. Therefore, by invoking Lemma 2.9.5 one obtains

ϑ̇ j→ 0 and ϑ̇ jn→ 0 as t→∞. Consequently, we have ż j+ B̄q̇ j = 0 and ˙̄zr+ B̄q̇ jn =

0 at steady-state. This from (5.6) implies that −Āϑ j + B̄q̇ j → 0 and −Āϑ jn +
B̄q̇ jn → 0 as t → ∞. Noting the fact that ϑ j = ϑ jn = 0 at steady-state we obtain

q̇ j→ 0 and q̇ jn→ 0 as t→∞. This implies that z j = ż j = ˙̄zr = z̄r = 0 at steady-state

and q̈ j → 0 as t → ∞. Therefore, the state synchronization is achieved globally
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with only position feedback and exchange among the agents under average dwell-

time switching. It is straightforward to show that by using equation (5.6), setting

χ(x) � Sat(x), and selecting the controller gains λl|pj and λl|pjn,i according to the
inequalities (5.3) the constraints on the control efforts are always satisfied globally,

i.e. ur| j(t)≤ ūmaxr | j for all times. This completes the proof of the theorem. �

Corollary 5.3.2. Consider a network of m (m> 1) heterogeneous EL systems where

each agent is governed by the dynamics (2.7) under the controller ufollowerj given in

equation (5.6). Then, under the Assumptions 5.1.1 and 5.2.1 and in presence of an

average dwell-time switching (refer to Definition 2.9.13) among the ‘h’ communi-

cation network topologies that satisfy Definition 3.1.1, there exist matrices Ā and B̄

such that the EL systems globally synchronize their states. This is achieved under

the constraints (c1), (c2) and (c4) given in Subsection 5.1.2. The boundedness of

the control efforts command (constraint (c3)) is also guaranteed globally provided

that one sets χ(x) � Sat(x) and one selects the controller gain matrix Λpjn,i such

that the inequalities (5.5) are satisfied for all j ∈ V .

Proof: It follows from Theorem 5.3.1.

Remark 5.3.1. The distributed controller (5.6) requires no local velocity feedback,

no velocity measurement exchanges, and no velocity estimation exchanges among

the networked agents.

5.4 Cooperative Controller Reconfiguration under Ac-

tuator Saturation Constraints Faults

The objective of this section is to introduce a controller reconfiguration strategy

which can be employed in presence of actuator faults. Specifically, we design two
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control laws that are denoted as constrained nominal and constrained reconfigured

controllers. In presence of an actuator fault, a stable switching mechanism is de-

veloped to reconfigure (switch from) the constrained nominal controller to the con-

strained reconfigured controller. Furthermore, once the fault is cleared or removed

(that is corresponding to an intermittent actuator fault) the proposed mechanism

will switch from the constrained reconfigured controller to the constrained nominal

controller. This process can take place as often as applicable and stability of the

networked EL systems is guaranteed by using the developed switching strategy.

We make the following assumptions explicit.

Assumption 5.4.1. The following conditions are assumed to hold for the considered

EL systems:

(a) In presence of actuator faults, the maximum control effort for the i-th actuator

of the j-th EL system may fall below ūmaxr | j and this maximum bound could be
time-varying, in general, and is denoted by u(t)maxr | j;

(b) The maximum control effort available in presence of the worst-case actuator

faults, u(t)maxr | j, is bounded from below. Specifically, the least upper bound of
the available control effort for the i-th actuator of the j-th EL system under all

possible faults and constraints is known a priori and is denoted by umaxr | j;

(c) The control bounds described above satisfy, 0 ≤
∥∥∥M−1j G j(q j)

∥∥∥ <
∥∥∥umaxj ∥∥∥ ≤∥∥∥u(t)maxj ∥∥∥. This implies that the actuators should maintain the j-th system at

rest corresponding to all desired positions in presence of a fault.

We now present the formal definitions of the constrained controllers.
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Definition 5.4.1. A distributed controller is called constrained nominal if the con-

trol law is given by

unomj =−Λpj χ1(q̃ j)−Λdj χ1(q̇ j)+G j(q j)− ∑
n∈N j

Λpjn χ1(q jn)− ∑
n∈N j

Λdjn χ1(q̇ jn)

(5.8)

where ‘nom’ stands for nominal with χ1(x) � Sat(x). The controller gains are se-

lected as

Λpj = diag(λ p1 | j, . . . ,λ
p
k | j)

Λdj = diag(λ
d
1| j, . . . ,λ

d
k | j)

Λpjn = diag(λ p1 | jn, . . . ,λ
p
k | jn)

Λdjn = diag(λ d1| jn, . . . ,λ
d
k | jn)

such that the following constrained conditions are satisfied

λ pr | j+λ dr | j+ ∑
n∈N j

λ pr | jn+ ∑
n∈N j

λ dr | jn+gr| j ≤ umaxr | j, r ∈ {1, . . . ,k}, j ∈ {1, . . . ,m}
(5.9)

corresponding to the nominal EL systems operation. Note that for the follower EL

system we have Λpj = Λdj = 0. �

Definition 5.4.2. A distributed controller is called constrained reconfigured if the

control law is given by

urfgj =−Λpj χ2(q̃ j)−Λdj χ2(q̇ j)+G j(q j)− ∑
n∈N j

Λpjn χ2(q jn)− ∑
n∈N j

Λdjn χ2(q̇ jn)

(5.10)

where ‘rfg’ stands for reconfigured with χ2(x) � Sat(x). The controller gains are
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selected as

Λpj = diag(λ p1 | j, . . . ,λ pk | j)

Λdj = diag(λ
d
1| j, . . . ,λ dk | j)

Λpjn = diag(λ p1 | jn, . . . ,λ pk | jn)

Λdjn = diag(λ d1| jn, . . . ,λ dk | jn)

such that the following constrained conditions are satisfied

λ pr | j+λ dr | j+ ∑
n∈N j

λ pr | jn+ ∑
n∈N j

λ dr | jn+gr| j ≤ umaxr | j, r ∈ {1, . . . ,k}, j ∈ {1, . . . ,m}
(5.11)

corresponding to the faulty EL systems operation. Note that for the follower EL

system we have Λpj = Λdj = 0. �

Note that the above definitions allow the functions χ1(x) and χ2(x) to be

different. In other words, the functions χ1(x) and χ2(x) given in Definitions 5.4.1

and 5.4.2 are saturation functions with possibly different structures, respectively.

In presence of actuator faults, the maximum control effort available to each

actuator may change (as per Assumption 5.4.1, parts (a) and (b)). In this case,

the nominal controller must be reconfigured in order to satisfy the constraints on

the control effort due to the actuator fault. Note that the nominal and reconfigured

controllers do not have the same structure and do not employ the same gains. The

control reconfiguration is to be accomplished and achieved by switchings between

the constrained nominal and the constrained reconfigured controllers.

In this section it is shown that by any number of switchings between these

two controllers, it follows that: (A) a globally stable closed-loop EL system is ob-

tained; (B) the synchronization errors asymptotically converge to zero; and (C) the
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set-point tracking errors asymptotically converge to zero, provided that certain con-

ditions are satisfied. These are very useful properties as they show that in case of

a fault and presence of a subsequent actuator saturation constraint, one can switch

from the constrained nominal controller to the constrained reconfigured controller

while still ensuring desirable behavior of the overall networked EL system. Further-

more, when the injected actuator fault is removed (corresponding to an intermittent

fault), one can safely switch back from the constrained reconfigured controller to

the constrained nominal controller.

One of the advantages of the above switching strategy is that the only infor-

mation that is required for controller reconfiguration is the knowledge of the fault

occurrence, which can be determined through a large body of fault detection algo-

rithms that are available in the literature (refer to recent works in [183, 185, 187]

and references therein). The proposed reconfigurable approach does not rely and

require exact knowledge of the severity of the fault (fault identification) as long as

Assumption 5.4.1 parts (b) and (c) are satisfied. Furthermore, the requirements for

the switching operation is rather straightforward to satisfy and implement in prac-

tice. We now state the following definition and assumption before presenting our

main result of this section.

Definition 5.4.3. Let W1(x) be represented by

W1=
m

∑
j=1

(
1
2
q̇Tj D j(q j)q̇ j+

k

∑
r=1

λ pr | j
∫ q̃i, j

0
χ1(x) dx+

1
2 ∑n∈N j

k

∑
r=1

λ pr | jn
∫ qi, jn

0
χ1(x) dx

)
(5.12)

Furthermore, let W2(x) be given by

W2=
m

∑
j=1

(
1
2
q̇Tj D j(q j)q̇ j+

k

∑
r=1

λ pr | j
∫ q̃i, j

0
χ2(x) dx+

1
2 ∑n∈N j

k

∑
r=1

λ pr | jn
∫ qi, jn

0
χ2(x) dx

)
(5.13)
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Assumption 5.4.2. The following conditions are assumed to hold:

(a) The controller gains and the saturation functions are selected such thatΛpj χ1(x)≥
Λpj χ2(x), ∀x and Λ

p
jn χ1(x) ≥ Λpjn χ2(x), ∀x. This from Definition 5.4.3 im-

plies thatW1(x)≥W2(x),∀x, where x= [q̇Tj , q̃Tj , q jnT ]T . We denote [−b̄, b̄] as
the region where Λpj χ1(x) = Λpj χ2(x) and Λ

p
jn χ1(x) = Λpjn χ2(x).

(b) At every switching instant from the constrained reconfigured controller to the

constrained nominal controller (this instant is at the designer’s disposal since

the fault is no longer present) one needs to ensure that q̃i, j,qi, jn ∈ [−b̄, b̄], i=
1, . . . ,k, j,n∈{1, . . . ,m}, j �= n (existence of such a region is guaranteed in part
(a)), whereas at the switching instant from the constrained nominal controller

to the constrained reconfigured controller (this instant is not at the designer’s

disposal since the fault detection time is unknown) one cannot guarantee the

size of qi, j and qi, jn.

(c) The switchings between the nominal and the reconfigured controllers satisfy

the requirement of an average dwell-time switching as per Definition 2.9.13.

We are now in a position to state the main result of this section.

Theorem 5.4.1. Consider a network of ‘m’ (m> 1) EL systems where the j-th agent

dynamics is governed by equation (2.7) and which is subject to the constrained

nominal distributed control law that is given by Definition 5.4.1. Also consider

the same network and communication topology which is subject to the constrained

reconfigured distributed cooperative control law that is given by Definition 5.4.2.

Any switchings between the constrained nominal and the constrained reconfigured

closed-loop systems will yield a globally stable EL system, and moreover, the state
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synchronization and the set-point tracking errors globally asymptotically converge

to the origin provided that the conditions of Assumptions 5.4.1 and 5.4.2 hold.

Proof: We can pick an infinite subsequence of switching times from the con-

strained reconfigured controlled system to the constrained nominal controlled sys-

tem. One can show that the time derivative of the Lyapunov function candidate W1

along with the trajectories of the closed-loop system (2.7) and (5.8) is given by

Ẇ1 =−
l

∑
j=1

q̇Tj Λ
d
j χ(q̇ j)−

m

∑
j=1

q̇Tj
∂F j(q̇ j)
∂ q̇ j

−
m

∑
j=1
∑
n∈N j

q̇TjnΛ
d
jn χ(q̇ jn)≤ 0 (5.14)

which is a negative semi-definite decrescent function. In addition, one can show that

the time derivative of the Lyapunov function candidate W2 along the trajectories of

the closed-loop system (2.7) and (5.10) is given by

Ẇ2 =−
l

∑
j=1

q̇Tj Λ
d
j χ(q̇ j)−

m

∑
j=1

q̇Tj
∂F j(q̇ j)
∂ q̇ j

−
m

∑
j=1
∑
n∈N j

q̇TjnΛ
d
jn χ(q̇ jn)≤ 0 (5.15)

which is a negative semi-definite decrescent function.

Furthermore, from the condition (v) of Definition 2.6.1, and by using con-

ditions (a) and (b) of Assumption 5.4.2, one can show that at each switching in-

stant from the constrained reconfigured controller to the constrained nominal con-

troller, we have λ pr | j
∫ q̃r, j
0 χ1(ξ ) dξ = λ pr | j

∫ q̃r, j
0 χ2(ξ ) dξ and λ

p
r | jn

∫ qr, jn
0 χ1(ξ ) dξ =

λ pr | jn
∫ qr, jn
0 χ2(ξ ) dξ . These properties along with Definition 5.4.3 imply that at

each switching instant from the constrained reconfigured controller to the con-

strained nominal controller we have W2(ȳ) =W1(ȳ), where ȳ= [q̇Tj , q̃Tj , q jnT ]T .
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Additionally, from condition (v) of Definition 2.6.1, and by using condi-

tions (a) and (b) of Assumption 5.4.2, one can show that at each switching in-

stance from the constrained nominal controller to the constrained reconfigured con-

troller, we have λ pr | j
∫ q̃r, j
0 χ1(ξ ) dξ ≥ λ pr | j

∫ q̃r, j
0 χ2(ξ ) dξ and λ

p
r | jn

∫ qr, jn
0 χ1(ξ ) dξ ≥

λ pr | jn
∫ qr, jn
0 χ2(ξ ) dξ . These properties along with Definition 5.4.3 imply that at

each switching instant from the constrained nominal controller to the constrained

reconfigured controller, we haveW1(ȳ)≥W2(ȳ). From equations (5.12) and (5.13),

we have sgn(Ẇ1(y)) = sgn(Ẇ2(y)), where y= [q̇Tj , q̇Tjn]
T . Consequently, when W1

is “non-increasing”, W2 is also “non-increasing”, and vise-versa. Therefore, it is

guaranteed that the value of W1 (W2) at the beginning of each interval on which the

constrained nominal controlled system (constrained reconfigured controlled sys-

tem) is active does not exceed the value of W1 (W2) at the end of the previous such

interval, if one exists.

Now by taking into account the strong connectivity of the communication

graph, and invoking Lemma 2.9.5 under part (c) of Assumption 5.4.2 it follows from

equations (5.14) and (5.15) that q̇ j→ 0 and q̇ jn→ 0, ∀ j,n∈{1, . . . ,m}, j �= n as t→
∞. In addition, under part (c) of Assumption 5.4.2 and by invoking Lemma 2.9.5

one can conclude that q̈ j → 0, ∀ j ∈ {1, . . . ,m} as t → ∞. Therefore, the closed-

loop dynamics of the j-th EL system can be written as D j(q j)q̈ j = −Λpj χ(q̃ j)−
∑n∈N j Λ

p
jn χ(q jn)→ 0, ∀ j,n∈{1, . . . ,m}, j �= n as t→∞. Given thatΛpjn=Λpn j and

χ(q jn) = −χ(qn j), it is straightforward to show that ∑mj=1∑n∈N j Λ
p
jn χ(q jn) = 0,

which implies that∑lj=1Λ
p
j χ(q̃ j) = 0. Therefore, the requirements of Lemma 4.2.1

are satisfied, and one can conclude that q̃ j→ 0, q jn→ 0, ∀ j,n ∈ {1, . . . ,m}, j �= n,

as t → ∞. In other words, (A) all the states and control signals of the closed-

loop networked EL system will remain bounded, (B) the synchronization errors

asymptotically converge to the origin, i.e., q jn → 0 and q̇ jn → 0 as t → ∞, and
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Table 5.1: Physical parameters for each manipulator in the network
Index m1 (kg) m2 (kg) l1 (m) l2 (m) lc1 (m) lc2 (m)

1 3 5 0.3 0.5 0.15 0.25

2 3.5 10.5 0.4 0.4 0.2 0.2

3 3.5 6.5 0.45 0.5 0.225 0.25

4 5.5 6.5 0.65 0.75 0.325 0.375

5 7.5 6.5 0.65 0.35 0.325 0.175

6 8.5 4.5 0.45 0.75 0.225 0.375

(C) the set-point tracking errors asymptotically converge to the origin, i.e., q̃ j→ 0,

q̇ j→ 0 as t→ ∞. This completes the proof of the theorem. �

5.5 Simulation Results

We divide the simulation results into two parts. The first part discusses synchro-

nization control with input constraints and in presence of switching in the commu-

nication network topology and absence of actuator faults. In the second part, we

only discuss controller reconfiguration strategy in presence of actuator saturation

faults.

5.5.1 Synchronization Control with Input Saturation Constraints

In simulations conducted in this subsection we consider a network of six 2-DOF

nonlinear manipulators with revolute joints. Each manipulator dynamics is de-

scribed by the EL model (2.7). Their inertia matrices, Coriolis and centrifugal

matrices can be found in Section 2.3.1, where the gravity vectors are assumed to be

zero. The physical parameters for each manipulator are provided in Table 5.1. We

set χ(x) � Sat(x) = x√
κ2+x2

, with κ = 0.5.
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Figure 5.1: The communication network considered in the first two case study sim-
ulations.

In the first part of the simulations below, we consider the synchronization

(formation-keeping) control (consensus control) objective with and without veloc-

ity feedback and exchange. We also compare the performance of our proposed

constrained controllers with the constrained synchronization controller that is pro-

posed in [63] (refer to equation (7) in [63]) with a fixed communication network

topology. In the second part of the simulations in this subsection, we consider the

synchronization and set-point tracking control objective in presence of switchings

in the communication network topology.
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State Synchronization Problem

In this part of simulations we only consider the problem of synchronization (formation-

keeping) control (consensus control) with and without velocity feedback and ex-

change subject to input constraints. The communication network topology is de-

picted in Fig. 5.1. It is assumed that the maximum torque capacity of the i-th

actuator for the j-th system is bounded by 1.2 [N.m], i.e. ūmaxl | j = 1.2, where

l ∈ {1,2}, j ∈ {1, . . . ,6} in this part of the simulations. Therefore, the con-

troller gain matrices are selected as: Λpjn = Λpn j = 0.4I2, Λ
d
jn = Λdn j = 0.8I2, where

j ∈ V , n ∈ N j. It is guaranteed according to the inequality (5.3) that the state

synchronization (formation-keeping) control effort is bounded by 1.2 [N.m] for all

times, with and without velocity feedback. Additionally, the initial conditions (both

positions and velocities) are chosen randomly between 0 and 1 in the simulations.

We now compare the performance of our proposed distributed state synchro-

nization controllers with the controller that is proposed in [63]. The gains of the

constrained controller developed in [63] are selected such that the control efforts do

not exceed the actuator limits. We have conducted 10 Monte Carlo simulation runs.

The average time integral of the squared position and velocity synchronization er-

rors as well as the average time integral of the squared control efforts are provided

in Table 5.2 for the first 200 seconds. This table clearly shows that the performance

of our proposed constrained distributed synchronization controllers (with velocity

feedback and without velocity feedback) are considerably superior to that of the

constrained controller that is proposed in [63] for both position and velocity syn-

chronization objectives. Our improved results are admittedly accomplished with

larger overall control efforts, however the available control effort is utilized more

efficiently. Note that the bounds on the control efforts have not been violated during
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3

4 6

1 5

Figure 5.2: The communication network considered in the second part of the simu-
lation studies in this subsection. The black vertices represent fixed communication
links and the dashed and dashed-dotted vertices represent switching communication
links. The agents shown with boxes are the leaders and agents shown by circles rep-
resent the followers.

the simulations. It also follows from Table 5.2 that when the velocity information

is not available for feedback and exchange among the agents, the overall veloc-

ity synchronization performance has not been compromised and adversely affected

significantly for the networked EL systems.

State Synchronization and Set-Point Tracking Control Problem with Switch-

ings in the Communication Network Topology

In the last part of simulations in this subsection, we consider the problem of both

synchronization (formation-keeping) control and set-point tracking (station-keeping)

control with and without velocity feedback and exchange subject to input con-

straints as well as switchings in the communication network topology. The com-

munication network is depicted in Fig. 5.2. The black vertices represent fixed com-

munication links and the dashed and dashed-dotted vertices represent non-fixed

(switching) communication links. Based on this figure, agent 3 always receives

information from agent 5, it also receives information from agents 1 and 2, how-

ever, this depends on the distance among them with agent 3. Specifically, based on

Assumption 5.2.1 if ‖q13‖ ≤ ‖q23‖ then agent 3 communicates with agent 1, oth-
erwise, it communicates with agent 2. Similarly, agent 3 receives information from
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agent 4, however, this depends on the distance among these two agents. Specifi-

cally, based on Assumption 5.2.1 if ‖q34‖ ≤ 0.01, then agent 3 communicates with
agent 4, otherwise, there will be no communication among these two agents. It is

assumed that only agents 1 and 5 receive the desired set-point and are equipped with

station-keeping and formation-keeping controllers. Other agents in the network are

only equipped with formation-keeping controllers. The gains of the constrained

controllers (5.1) and (5.6) are selected as: Λpj = 0.8I2, Λdj = 0.45I2, Λ
p
jn = 0.4I2,

Λdjn = 0.5I2, where j ∈ V , n ∈ N j. It is guaranteed according to the inequality

(5.3) that the control effort is bounded by 1.2 [N.m] for agents 2, 3 and 4 and it is

bounded by 2.0 [N.m] for agents 1 and 5 and bounded by 0.8 [N.m] for agent 6, for

all times, with and without velocity feedback. Additionally, the initial conditions

(both positions and velocities) are chosen randomly between -0.5 and 0.5 in the

simulations.

Figs. 5.3-5.5 show the angular positions, angular velocities, as well as control

efforts for the six manipulators in the network, respectively, with velocity feedback

for the first 250 seconds. From these figures one can observe that the synchroniza-

tion is achieved before trajectory tracking, and also the desired set-point is followed.

Fig. 5.8 also confirms that the limits on the control efforts are also satisfied. In

simulations conducted we observed 35 switchings in the communication network

topology, i.e. Nsw = 35. Consequently, one can show that τad = 7.14 seconds. This

from Lemma 2.9.3 implies that there exists a non-vanishing dwell-time, τ̄ , in the

interval (0,7.14) for the switched networked system.
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The angular positions, angular velocities, and control efforts for the six ma-

nipulators in the network are depicted in Figs. 5.6-5.8, respectively, without ve-

locity feedback for the first 250 seconds. From these figures one can observe that

the synchronization is achieved before the trajectory tracking, and also the desired

set-point is followed. In addition, one can observe that the limits on the control

efforts are also satisfied. In simulations conducted we observed 11 switchings in

the communication network topology, i.e. Nsw = 11. Consequently, one can show

that τad = 22.72 seconds. This from Lemma 2.9.3 implies that there exists a non-

vanishing dwell-time, τ̄ , in the interval (0,22.72) for the switched networked sys-

tem. These simulation results confirm our analytical results.

5.5.2 Cooperative Controller Reconfiguration

The reconfigurable control scheme that we have developed in the previous sections

is now applied to the problem of cooperative control of a team of robot manip-

ulators. The nonlinear dynamical models corresponding to the manipulators are

developed in the Matlab SimMechanics toolbox. We consider three non-identical

(heterogenous) manipulators (m = 3) with two rotational joints. We further con-

sider a fully bidirectionally connected communication graph with two leaders (the

manipulators #1 and #2, i.e. l = 2) and one follower (the manipulator #3). Note

that providing the desired coordinate vector to only one single leader creates the

possibility of a single point of failure in the network. Therefore, for the purpose of

conducting simulations we consider a team having two leaders and one follower.

Through the use of our proposed control approach, we will illustrate sub-

sequently that synchronization errors do indeed asymptotically converge to zero
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for the manipulators in the network while following the desired coordinate vec-

tor which is assumed to be identical for the three manipulators. It is assumed

that the torques that are applied to the joints are initially constrained during the

normal operation of the actuators with ūmaxj = 30 N-m, j ∈ {1, 2, 3}. How-

ever, due to an intermittent actuator fault in the manipulator #1, the maximum

torque that is available to the first joint is reduced to umax1 |1 = 6 N-m. This in-

termittent fault is injected at tfault = 370 sec and is cleared at t = 550 sec. The

constrained nominal controller gains for the manipulator #1 are selected as fol-

lows, namely, Λp1 = 4I2, Λ
d
1 = 6I2, Λ

p
12 = 4I2, Λ

d
12 = 6I2, Λ

p
13 = 4I2, Λ

d
13 = 6I2.

The constrained reconfigured controller gains for the manipulator #1 are selected

as follows, namely, Λp1 = Diag(0.5, 4), Λd1 = Diag(0.5, 6), Λp12 = Diag(2, 4),

Λd12=Diag(1,6), Λ
p
13=Diag(1, 4), Λ

d
13=Diag(1, 6). The constrained controllers

(nominal and reconfigured) gains for the manipulator #2 are selected as follows,

namely, Λp2 = Λp2 = 4I2, Λ
d
2 = Λd2 = 6I2, Λ

p
21 = 4I2, Λ

d
21 = 6I2, Λ

p
23 = Λp23 = 4I2,

Λd23 = Λd23 = 6I2, Λ
p
21 =Diag(2, 4), Λd21 =Diag(1,6). The constrained controllers

(nominal and reconfigured) gains for the manipulator #3 are selected as follows,

namely, Λp3 = Λp3 = 0, Λd3 = Λd3 = 0, Λp31 = 4I2, Λ
d
31 = 6I2, Λ

p
32 = Λp32 = 4I2,

Λd32 = Λd32 = 6I2, Λ
p
31 = Diag(2, 4), Λd31 = Diag(1,6).

We use the linear saturation function, i.e., χ1(x)=

⎧⎪⎨
⎪⎩
x if −1≤ x≤ 1
sgn(x) otherwise

,

for the constrained nominal controller and χ2(x) = x√
κ2+x2

for the constrained re-

configured controller in our simulations with κ = 0.2. The closed-loop responses

of the manipulators under the proposed nominal and reconfigured control strategies

are depicted in Fig. 5.9(a). The associated control efforts of the manipulator #1 for

joints 1 and 2 are depicted in Fig. 5.9(b). It follows from Fig. 5.9(a) that prior to the

injection of the fault, the angular positions settle down to their desired set-points by
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using the constrained nominal controller.

At t = 400 sec while the fault is still present the set-point of the joint 1 of all

the manipulators is changed. Due to the coupling effects, the change in the set-point

of joint 1 causes a change in the angular position of joint 2. It can be observed from

Fig. 5.9(b) that from t = 370 sec to t = 400 sec the control efforts do not exceed the

saturation limit of 6 N-m. However, the required torque to maintain the manipulator

#1 joint 1 at its desired angular position becomes higher than that of its actuator

limit as seen from Fig. 5.9(b). Consequently, this leads to the actuator saturation

and instability of the network of manipulators (from t = 400 sec to t = 430 sec).

It is now assumed that the control reconfiguration is implemented and invoked at

treconf. = 430 sec, that is the controller is switched from the constrained nominal to

the constrained reconfigured module.

Fig. 5.9(a) shows that after the controller reconfiguration at t = 430 sec, the

closed-loop networked system is stabilized and the angular position errors converge

to zero by utilizing the constrained control effort of 6 N-m in the first joint of ma-

nipulator #1. Moreover, to further demonstrate the stability of our switched system,

at time t = 550 sec the fault is removed or cleared from the actuator of the manip-

ulator #1. Subsequently, following the conditions of Assumption 5.4.2 we switch

from the constrained reconfigured controller to the constrained nominal controller

at time t = 600 sec (the top yellow boxes in Fig. 5.9(a) and Fig. 5.9(b) show the du-

ration when the fault is present and the bottom green boxes show the duration when

the constrained reconfigured control is active). It can be observed from Fig. 5.9(a)

that after t = 600 sec the tracking errors converge to zero as required.

For providing a more descriptive explanation on the behavior of the synchro-

nization error, in Fig. 5.10(a) the closed-loop EL system responses before and after

the controller reconfiguration are provided. One can observe from Fig. 5.10(b) that
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the synchronization errors are smaller when the constrained nominal controllers are

used as compared to the constrained reconfigured controllers. This is obviously due

to the fact that while the control effort constraints on the constrained nominal sys-

tem are satisfied, nevertheless, degradations in the performance of the faulty system

are unavoidable due to the reduction of the control effort. Therefore, it is highly rec-

ommended that one switches to the constrained reconfigured controller only when

a fault is present in the system. On the other hand, when the fault is removed or

cleared and during the healthy operation of the EL system agents, the constrained

nominal controller should be used exclusively.

5.6 Concluding Remarks

In this chapter, we provided two distributed bounded and nonlinear controllers

for state synchronization and set-point tracking of networked Euler-Lagrange sys-

tems in presence of input constraints and switchings in the communication network

topology. The first controller requires velocity feedback and exchange among the

agents, whereas the second controller does not require velocity measurements and

exchange among the agents. This considerably reduces the required communica-

tion load among the agents without sacrificing the overall networked system per-

formance. Our second contribution is development of a reconfiguration strategy for

cooperative control of a network of nonlinear EL systems subject to actuator faults.

The proposed nonlinear nominal and reconfigured constrained control strategies

each individually guarantee stability of the EL networked agents states and con-

trol signals and guarantee global convergence of set-point tracking errors and state
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(b) Zoomed control efforts of the robotic manipulator # 1 for clarity (the
actual bounds of the actuators are ±30 N-m).

Figure 5.9: Reconfigurable control of three robotic manipulators (R1 to R3) when
an intermittent fault is injected at t = 370 sec and cleared at t = 550 sec only in the
actuator # 1 of manipulator # 1.
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Figure 5.10: Scaled responses before an intermittent fault is injected only in the
joint #1 of manipulator #1 and after the control reconfiguration.
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synchronization errors to the origin despite the presence of actuator saturation con-

straints and intermittent or permanent actuator faults. The performance of our pro-

posed reconfigurable control strategy is demonstrated by simulation of networked

manipulators subject to an actuator fault and actuators saturation constraints.
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Chapter 6

Quaternion-Based Attitude

Synchronization and Tracking for

Spacecraft Formation

6.1 Introduction and Problem Statement

We propose two quaternion-based attitude synchronization and set-point tracking

for networked spacecraft (SC) in this chapter. Our proposed algorithms guaran-

tee boundedness of the control effort for all initial conditions. Furthermore, by

using our proposed control law, the desired attitude coordinates are only provided

to a subset of SC in the formation called the formation leaders. This essentially

increases flexibility in the design of the formation structure which increases robust-

ness of the formation to component faults. Our second proposed control law does

not require exchange of spacecraft angular velocities (or their estimates) among the

spacecraft in the network. Furthermore, we have used bidirectional communica-

tion between the agents, which increases robustness of the formation to component
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faults. In the simulations presented our proposed constrained attitude controllers

are compared to the controller proposed recently in the literature and it is shown in

the simulations that our proposed controllers have a better performance.

6.1.1 Spacecraft Attitude Error Dynamics

For a SC in a formation we define two error measures. These measures are the

station-keeping and the formation-keeping attitude state errors. The station-keeping

error is defined as the attitude state error of an individual SC with respect to its

absolute desired attitude state. The station-keeping error, δ�q j, is defined as:

δ�q j =Q(�q� −1
j )�q j (6.1)

where�q�
j is the desired attitude of the SC formation and the matrixQ(�q) is defined

as:

Q(�q) =

⎡
⎢⎣Ē(�q) q̄

−q̄T q̂4

⎤
⎥⎦

where Ē(�q) = q4I3×3+ q̄×. One can decompose the station-keeping error into a

vector and a scalar part, namely, δ�q j = [δ q̄Tj ,δ q̂ j,4]T .

The station-keeping angular velocity error, δω j, is defined as:

δω j = ω j−Ω j (6.2)

where Ω j =R(δ�q j)ω�, and ω� ∈C1 is the absolute desired angular velocity vector
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expressed in the absolute desired reference frame. The first derivative of the station-

keeping angular velocity error is obtained as [93]:

δω̇ j = ω̇ j−R(δ�q j)ω̇� +ω×j Ω j (6.3)

We can now express the governing equations for the attitude error δ�q j and

the angular velocity error δω j as follows:

δ�̇q j =
1
2
E(δ�q j)δω j (6.4)

J j δω̇ j = u j−ω×j J j ω j+J j
(
ω×j Ω j−R(δ�q j)ω̇�

)
(6.5)

where the matrix E(�q) is given by

E(�q) =

⎡
⎢⎣q4I3×3+ q̄×

−q̄T

⎤
⎥⎦≡

⎡
⎢⎣Ē(�q)

−q̄T

⎤
⎥⎦ (6.6)

Formation-keeping error, for the j-th SC is the attitude state error of the j-th

SC with respect to the other SC in the formation. The relative attitude error between

the j-th and the n-th SC is defined as:

�q jn =Q(�q−1n )�q j ≡Q(δ�q−1n )δ�q j (6.7)

The relative angular velocity vector of the j-th SC with respect to the n-th

SC, ω jn, can be written in terms of δω j and δωn, as follows

ω jn = δω j−R(�q jn)δωn (6.8)
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Consequently, the dynamics of the relative attitude error,�q jn is obtained as

�̇q jn =
1
2
E(�q jn)ω jn (6.9)

The following equations corresponding to the relative states of the j-th and

the n-th SC will be used subsequently [85], namely

R(�q jn) = RT (�qn j) and q̄n j =−q̄ jn =−R(�qn j)q̄ jn (6.10)

We define two objectives in this chapter. Our first objective is to design a dis-

tributed controller for each SC which commands the actuators in order guarantee

coordinated SC attitude and angular velocity alignment, i.e. q j → qn (or equiva-

lently,�q jn→ 0) and ω jn→ 0. This objective is designated as the formation-keeping.

Our second objective is to ensure that the designed controllers guarantee that each

SC attitude converges to the commanded attitude, i.e. δ�q j→ 0 and δω j→ 0. This

objective is designated as the station-keeping. Note that in the development of the

control laws it is assumed that the final angular velocity for the spacecraft net-

work is zero. We impose two constraints in the design, which are (1) there should

be no information exchange regarding the angular velocities of the SC in the for-

mation, and (2) there exist actuator constraints on the maximum control efforts,

i.e. ur| j(t)≤ ūmaxr | j, where f = 1,2,3, j ∈ V and ūmaxr | j is a known positive scalar.

6.2 Formation Attitude Synchronization and Track-

ing with Bounded Input

Our first result is provided in the following theorem.
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Theorem 6.2.1. Consider a network of ‘m’ (m> 1) SC with the dynamic and kine-

matic equation (2.17). It is assumed that the desired coordinates are provided to

only ‘l’ agents (l ≤ m) SC in the network that are designated as the network lead-
ers. Let the error dynamics and kinematics of the j-th SC be governed by (6.4) and

(6.5). Consider the following control law for the j-th leader SC,

uleaderj =−Δ jδ q̄ j−
m

∑
n=1

λ jnSat
(
q̄ jn+β jnδω j+

β jn
2
ω jn

)
(6.11)

and the following control law for the j-th follower SC (which does not receive the

desired coordinates),

u
follower
j =−

m

∑
n=1

λ jnSat
(
q̄ jn+β jnδω j+

β jn
2
ω jn

)
(6.12)

where Δ j ∈ R3×3 is a positive definite matrix and β jn is a positive constant that
satisfy the equality β jn = βn j. Furthermore, we assume the communication network

is bidirectional and connected, where λ jn is defined in Section 2.7. The application

of the control laws (6.11) and (6.12) will guarantee that the spacecraft synchronize

their state and the set-point tracking error is asymptotically stable, i.e. q̄ jn→ 0 and

ω jn→ 0 as t → ∞, in addition, δ q̄ j→ 0 and δω j→ 0 as t → ∞ for all spacecraft

in the network (both leaders and followers).

Additionally, the j-th control effort is bounded for all time and for all initial

conditions, i.e.
∥∥u j(t)∥∥ ≤ ∥∥∥umaxj ∥∥∥, provided that the controller gains Δ j, λ jn and

β jn for the leader SC are selected such that
∥∥Δ j∥∥+∑mn=1λ jn ≤

∥∥∥umaxj ∥∥∥, and for the
follower SC are selected such that ∑mn=1λ jn ≤

∥∥∥umaxj ∥∥∥.
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Proof: Consider the following radially unbounded decrescent Lyapunov func-

tion candidate for the SC formation,

U =
m

∑
j=1

1
2
β jnδωTj Δ−1j J j δω j+

l

∑
j=1

β jn
[
δ q̄Tj δ q̄ j+(1−δq j,4)2

]

+
1
2

m

∑
j=1

m

∑
n=1

β jnλ jn
(
q̄Tjnq̄ jn+(1−q jn,4)2

) (6.13)

Note that Δ−1 is a positive definite matrix and λ jn ≥ 0, this essentially implies that
the above function is positive definite. The time derivative of the Lyapunov function

candidate along the trajectories of the closed-loop system (6.4), (6.5), (6.11) and

(6.12) is given by

U̇ =
l

∑
j=1

β jn
(
−δωTj δ q̄ j+δωTj δ q̄ j

)
+
1
2

m

∑
j=1

m

∑
n=1

β jnλ jnωTjnq̄ jn

−
m

∑
j=1

m

∑
n=1

β jnλ jnδωTj Sat
(
q̄ jn+β jnδω j+

β jn
2
ω jn

)
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which can be re-written as

U̇ =−
m

∑
j=1

m

∑
n=1

β jnλ jnδωTj

[
Sat

(
q̄ jn+β jnδω j+

β jn
2
ω jn

)
−Sat(q̄ jn)

]

=− 1
2

m

∑
j=1

m

∑
n=1

β jnλ jnδωTj

[
Sat

(
q̄ jn+β jnδω j+

β jn
2
ω jn

)
−Sat(q̄ jn)

]

− 1
2

m

∑
j=1

m

∑
n=1

β jnλ jnδωTj

[
Sat

(
q̄ jn+β jnδω j+

β jn
2
ω jn

)
−Sat(q̄ jn)

]

=− 1
2

m

∑
j=1

m

∑
n=1

β jnλ jnδωTj

[
Sat

(
q̄ jn+β jnδω j+

β jn
2
ω jn

)
−Sat(q̄ jn)

]

− 1
4

m

∑
j=1

m

∑
n=1

β jnλ jnωTjn

[
Sat

(
q̄ jn+β jnδω j+

β jn
2
ω jn

)
−Sat(q̄ jn)

]

=− 1
2

m

∑
j=1

m

∑
n=1

λ jn
(
β jnδω j+

β jn
2
ω jn

)T [
Sat

(
q̄ jn+β jnδω j+

β jn
2
ω jn

)
−Sat(q̄ jn)

]

Consequently, by noting χ(x+ y)−χ(x) > 0⇔ y> 0, and χ(x+ y)−χ(x) < 0⇔
y< 0, one concludes that U̇ is negative semi-definite, i.e. U̇ ≤ 0.

This by invoking Lemma 2.9.2 (where α � U̇ ) essentially implies that ω jn→
0 and δω j → 0, j,n ∈ V , j �= n as t → ∞. Consequently, by studying the closed-

loop dynamics and invoking Lemma 5.2.1 one can now conclude that q̄ jn→ 0 and

δ q̄ j→ 0 as t→ ∞.

Now we show that the control effort is bounded under the control laws (6.11)

and (6.12). First note that
∥∥δ q̄ j∥∥≤ 1 for all times. Consequently, one can show that

for all the leader SC one has
∥∥u j(t)∥∥ ≤ ∥∥∥umaxj ∥∥∥ provided the controller gains are

selected such that
∥∥Δ j∥∥+∑mn=1λ jn(1+β jn)≤

∥∥∥umaxj ∥∥∥. Similarly, one can show that
for all the follower SC one has

∥∥u j(t)∥∥≤ ∥∥∥umaxj ∥∥∥ provided the controller gains are
selected such that ∑mn=1λ jn ≤

∥∥∥umaxj ∥∥∥. This completes the proof of the theorem. �
Corollary 6.2.2. Consider a network of ‘m’ (m > 1) SC with the dynamic and
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kinematic equation (2.17). Consider the control law (6.12) for the j-th SC, where we

set β jn = βn j. Furthermore, we assume the communication network is bidirectional

and connected, where λ jn is defined in Section 2.7. The application of the control

law (6.12) will guarantee that the SC synchronize their states and the formation-

keeping objective is achieved and the final angular velocity of the spacecraft in the

network is zero. Additionally, the j-th control effort is bounded for all time and for

all initial conditions, i.e.
∥∥u j(t)∥∥≤ ∥∥∥ūmaxj ∥∥∥, provided that the controller gains λ jn

for the j-th SC are selected such that ∑mn=1λ jn ≤
∥∥∥ūmaxj ∥∥∥.

Proof: It follows from Theorem 6.2.1.

6.3 Formation Attitude Synchronization and Track-

ing with Bounded Input without Velocity Feed-

back

Our last result is provided in the following theorem.

Theorem 6.3.1. Consider a network of ‘m’ (m> 1) SC with the dynamic and kine-

matic equation (2.17). It is assumed that the desired coordinates are provided to

only ‘l’ (l ≤ m) SC in the formation that are designated as the leaders. Consider
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the following control law for the j-th leader SC,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uleaderj =−Δ jδ q̄ j

−
m

∑
n=1

λ jnSat

[
q̄ jn+β jn

(
ĒT (δq j)

(−γz j+ γδ q̄ j
)

+ ĒT (q jn)(−γz jn+ γ q̄ jn)
)]

ż j =−γz j+ γδ q̄ j

ż jn =−γz jn+ γ q̄ jn

(6.14)

and the following control law for the j-th follower SC (which does not receive the

desired attitude coordinates),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u
follower
j =−

m

∑
n=1

λ jnSat

[
q̄ jn+β jn

(
ĒT (δq j)

(−γz j+ γδ q̄ j
)

+ ĒT (q jn)(−γz jn+ γ q̄ jn)
)]

ż j =−γz j+ γδ q̄ j

ż jn =−γz jn+ γ q̄ jn

(6.15)

where Δ j ∈ R3×3 is a positive definite matrix, β jn = βn j > 0 and γ > 0. Further-

more, we assume the communication network is bidirectional and connected, where

λ jn is defined in Section 2.7.

The application of the control laws (6.14) and (6.15) will guarantee that all

spacecraft in the network synchronize their states and set-point tracking error is

asymptotically stable, i.e. q̄ jn → 0, z jn → 0 and ω jn → 0 as t → ∞, in addition,

δ q̄ j → 0, z j → 0 and δω j → 0 as t → ∞ for all spacecraft in the network (both

leaders and followers). Furthermore, the control effort is bounded for all time and

for all initial conditions, i.e.
∥∥u j(t)∥∥ ≤ ∥∥∥umaxj ∥∥∥, provided that the controller gains
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Δ j, λ jn and β jn for the leader SC are selected such that
∥∥Δ j∥∥+∑mn=1λ jn ≤

∥∥∥umaxj ∥∥∥,
and for the follower SC are selected such that ∑mn=1λ jn ≤

∥∥∥umaxj ∥∥∥.
Proof: Consider the following positive-definite radially unbounded Lyapunov

function candidate for the SC formation,

Ū =
l

∑
j=1

[
1
2
δωTj Δ−1j J jδω j+

1
2
δ q̄Tj δ q̄ j+

1
2
(1−δq j,4)2

]

+
m

∑
j=1

β jn
γ

3

∑
k=1

∫ −γzk, j+γδqk, j
0

x dx

+
m

∑
j=1

m

∑
n=1

λ jn
(
1
4

[
q̄TjnΛ

p
jnq̄ jn+(1−q jn,4)2

]
+
β jn
2γ

3

∑
k=1

∫ −γzk, jn+γqk, jn
0

x dx
)

(6.16)

The time derivative of this function along the trajectories of the closed-loop system
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can be computed as:

˙̄U =−
l

∑
j=1

δωTj δ q̄ j+
l

∑
j=1

δωTj δ q̄ j+
m

∑
j=1

β jn
γ

(−γ ż j+ γ δ ˙̄q j)T ż j

−
m

∑
j=1

m

∑
n=1

λ jn
{
δωTj Sat

[
q̄ jn+β jn

(
ĒT (δq j)ż j+ ĒT (q jn)ż jn

)]

− 1
2
q̄Tjnω jn+

β jn
2γ

(−γ ż jn+ γ ˙̄q jn)T ż jn
}

=
m

∑
j=1

β jn
γ

(−γ ż j+ γ δ ˙̄q j)T ż j

−
m

∑
j=1

m

∑
n=1

λ jn
{
δωTj Sat

[
q̄ jn+β jn

(
ĒT (δq j)ż j+ ĒT (q jn)ż jn

)]

− 1
2
q̄Tjnω jn+

β jn
2γ

(−γ ż jn+ γ ˙̄q jn)T ż jn
}

=
m

∑
j=1

β jn
γ

(−γ ż j+ γ δ ˙̄q j)T ż j

−
m

∑
j=1

m

∑
n=1

λ jnδωTj

{
Sat

[
q̄ jn+β jn

(
ĒT (δq j)ż j+ ĒT (q jn)ż jn

)]

−Sat(q̄ jn)
}

+
m

∑
j=1

m

∑
n=1

λ jn
[
β jn
2γ

(−γ ż jn+ γ ˙̄q jn)T ż jn
]

which essentially has the same sign as the following expression,

Ξ2 =k1
m

∑
j=1

β jn
γ

(−γ ż j+ γ δ ˙̄q j)T ż j− k1
m

∑
j=1

m

∑
n=1

λ jn
[
β jnδωTj

(
ĒT (δq j)ż j+ ĒT (q jn)ż jn

)

− β jn
2γ

(−γ ż jn+ γ ˙̄q jn)T ż jn
]

for some positive constant k1. By noting the facts thatωTjnĒT (q jn)= ˙̄qTjn, δωTj ĒT (δq j)=

δ ˙̄qTj and β jn = βn j one can show that

n

∑
j=1

m

∑
n=1

λ jn
[
δωTj

(
ĒT (q jn)ż jn

)
− 1
2
˙̄qTjnż jn

]
= 0
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and

δωTj
(
ĒT (δq j)ż j

)
−δ ˙̄qTj ż j = 0

Therefore, we can further simplify Ξ2 as follows,

Ξ2 =−k1
m

∑
j=1

β jnżTj ż j− k1
m

∑
j=1

m

∑
n=1

β jn
2
żTjnż jn ≤ 0 (6.17)

This by invoking Lemma 2.9.2 essentially implies that ż jn→ 0 as t→ ∞, which by

noting strong connectivity of the communication graph implies ż j → 0 as t → ∞.

One can show, by noting (6.14) and (6.15), that when ż jn= z̈ jn≡ 0 we have ˙̄q jn≡ 0.
This result can be used along with (6.9) to show that ω jn ≡ 0. Furthermore, when
z̈ j ≡ 0 and ż j ≡ 0, j ∈ V one can use (6.14) to show that δ ˙̄q j ≡ 0. This from (6.4)
implies that δω j ≡ 0, j ∈ V . Consequently, by studying the closed-loop dynamics
and invoking Lemma 5.2.1 one can now conclude that q̄ jn → 0 and δ q̄ j → 0 as

t→ ∞. Therefore, since γ is positive, (6.14) and (6.15) also imply that z jn ≡ 0 and
z j ≡ 0. Consequently, all the spacecraft in the network synchronize their state and
set-point tracking error is asymptotically stable.

Now we show that the control effort is bounded under the control laws (6.14)

and (6.15). Note that
∥∥δ q̄ j∥∥ ≤ 1 for all times. Consequently, one can show that

for all the leader SC one has
∥∥u j(t)∥∥ ≤ ∥∥∥umaxj ∥∥∥ provided the controller gains are

selected such that
∥∥Δ j∥∥+∑mn=1λ jn ≤

∥∥∥umaxj ∥∥∥. Similarly, one can show that for

all the follower SC one has
∥∥u j(t)∥∥ ≤ ∥∥∥umaxj ∥∥∥ provided the controller gains are

selected such that ∑mn=1λ jn ≤
∥∥∥umaxj ∥∥∥. This completes the proof of the theorem. �

Corollary 6.3.2. Consider a network of ‘m’ (m> 1) SC with the dynamic and kine-

matic equation (2.17). Consider the control law (6.15) for the j-th SC, where we set

β jn = βn j. Furthermore, assume that the communication network is bidirectional
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and connected, where λ jn is defined in Section 2.7. The application of the control

law (6.15) will guarantee that the SC synchronize their states and the formation-

keeping objective is achieved and the final angular velocity of the spacecraft in the

network is zero. Additionally, the j-th control effort is bounded for all time and for

all initial conditions, i.e.
∥∥u j(t)∥∥≤ ∥∥∥ūmaxj ∥∥∥, provided that the controller gains λ jn

for the j-th SC are selected such that ∑mn=1λ jn ≤
∥∥∥ūmaxj ∥∥∥.

Proof: It follows from Theorem 6.3.1.

6.4 Simulation Studies

In this section, the performance of our proposed control algorithms for distributed

synchronization and set-point tracking control of multiple spacecraft with satura-

tion constraints in the network with and without velocity feedback is evaluated and

compared to the performance of the velocity-free controller proposed in [94]. We

consider four spacecraft in the network in the ring topology and we assume the

desired spacecraft coordinates are provided to the first spacecraft. The initial con-

ditions for the spacecraft in the network are set the same as the initial conditions

in [94], i.e. we set δq1(0) = [0,0,1,0]T , q2(0) = [1,0,0,0]T , q3(0) = [0,1,0,0]T ,

q4(0) = [0,0,sin(−π/4),cos(−π/4)]T , δω1(0) = [−0.5,0.5,−0.45]T , δω2(0) =

[0.5,−0.3,0.1]T , δω3(0) = [0.1,0.6,−0.1]T , and δω4(0) = [0.4,0.4,−0.5]T . The
moment of inertia matrices are set as J j =Diag(20,20,30)kg−m2, j = {1, . . . ,4}.
The desired attitude is set to be�q�

j = [0,0,0,−1]T .
Two sets of controller gains are considered in the simulations, which are pro-

vided in Table 6.1. The bounds on maximum control efforts for the leader and

the followers for the controller gain set #1 is ten times larger that the maximum

control efforts for the leader and the followers for the controller gain set #2. It is
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Table 6.1: The two sets of selected controller gains
Set # Δ j λ jn β jn

∥∥umax1

∥∥ ∥∥∥umaxj ∥∥∥ , j = 1,2,3

1 20 30 0.6 80 60

2 2 3 0.6 8 6

important to note that by selection of the controller gains, more emphasis is placed

on formation-keeping rather than station-keeping, since this is more important in

networked spacecraft control missions. Additionally, the gain γ is set to 20 for the

velocity-free control scheme.

The response of the closed-loop networked spacecraft using the controller

gains set #1 with velocity feedback and exchange among the agents are depicted in

Figs. 6.1–6.3. These figures imply that attitude and angular velocity synchroniza-

tion and set-point tracking are achieved and the bounds on the control efforts are re-

spected. Figs. 6.4–6.6 depict the response of the closed-loop networked spacecraft

using the controller gains set #1 without velocity feedback and exchange among

the agents. One can observe from these figures that attitude and angular velocity

synchronization and set-point tracking are achieved and the bounds on the control

efforts are respected.

The response of the closed-loop networked spacecraft using the controller

gains set #2 with velocity feedback and exchange among the agents are depicted

in Figs. 6.7–6.9. These figures imply that attitude and angular velocity synchro-

nization and set-point tracking are achieved and the bounds on the control efforts

are respected. Figs. 6.10–6.12 depict the response of the closed-loop networked

spacecraft using the controller gains set #2 without velocity feedback and exchange

among the agents. One can observe from these figures that attitude and angular

velocity synchronization and set-point tracking are achieved and the bounds on the
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Figure 6.1: The quaternions of the four spacecraft in the network with velocity feed-
back with the controller gains set #1. Spacecraft #1 receives the desired attitude.
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Figure 6.2: The angular velocities of the four spacecraft in the network with ve-
locity feedback with the controller gains set #1. Spacecraft #1 receives the desired
attitude.
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Figure 6.3: The control efforts of the four spacecraft in the network with veloc-
ity feedback with the controller gains set #1. Spacecraft #1 receives the desired
attitude.
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Figure 6.4: The quaternions of the four spacecraft in the network without veloc-
ity feedback with the controller gains set #1. Spacecraft #1 receives the desired
attitude.
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Figure 6.5: The angular velocities of the four spacecraft in the network without
velocity feedback with the controller gains set #1. Spacecraft #1 receives the desired
attitude.
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Figure 6.6: The control efforts of the four spacecraft in the network without ve-
locity feedback with the controller gains set #1. Spacecraft #1 receives the desired
attitude.
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Figure 6.7: The quaternions of the four spacecraft in the network with velocity feed-
back with the controller gains set #1. Spacecraft #1 receives the desired attitude.

control efforts are respected.

Next, we compare the performance of our proposed constrained controllers

with controller gain sets #1 and #2 to study the effects of changing the maxi-

mum control effort on the performance of the networked spacecraft. We execute

ten Monte-Carlo simulation studies. The initial conditions are selected such that

δqr, j(0)∈ [0,0.5] and δωr, j(0)∈ [−0.5,0.5], where r ∈ {1,2,3} and j ∈ {1, . . . ,4}.
We consider five performance measures, which are provided in Table 6.2. Table

6.2 summarizes the results that are obtained by using velocity-feedback controller
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Figure 6.8: The angular velocities of the four spacecraft in the network with ve-
locity feedback with the controller gains set #1. Spacecraft #1 receives the desired
attitude.
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Figure 6.9: The control efforts of the four spacecraft in the network with veloc-
ity feedback with the controller gains set #1. Spacecraft #1 receives the desired
attitude.
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Figure 6.10: The quaternions of the four spacecraft in the network without veloc-
ity feedback with the controller gains set #2. Spacecraft #1 receives the desired
attitude.
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Figure 6.11: The angular velocities of the four spacecraft in the network without
velocity feedback with the controller gains set #2. Spacecraft #1 receives the desired
attitude.
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Figure 6.12: The control efforts of the four spacecraft in the network without ve-
locity feedback with the controller gains set #2. Spacecraft #1 receives the desired
attitude.
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and Table 6.3 summarizes the results obtained by using the velocity-free controller.

One can conclude from Table 6.2 that by using a higher control effort the error in

the attitude and angular velocity synchronization as well as the error in the angular

velocity set-point tracking are reduced. However, the attitude set-point tracking er-

ror has increased. This change in the performance comes with a high price, which

is the increase in the overall spacecraft control effort by more than 640% for the

controller with the gain set #1. From the results provided in Table 6.3 one can

conclude that by increasing the bound on the control effort and by using our dis-

tributed velocity-free controllers one can improve the attitude synchronization and

set-pint tracking performance. However, one can note degradations in the angular

velocity synchronization and set-point tracking performance. This change in the

performance comes with a significant (more than 4400%) increase in the overall

control effort by spacecraft in the network.
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Table 6.4: Performance loss in absence of angular velocity feedback
Performance Performance change in

measure absence of velocity feedback

∑3i=1∑
4
j=1

∫ 3000
0 q2i, j(t)dt -83.33%

∑3i=1∑
4
j=1

∫ 3000
0 ω2i, j(t)dt -714.41%

∑3i=1∑
4
j=2

∫ 3000
0 q2j1,i(t)dt -185.04%

∑3i=1∑
4
j=2

∫ 3000
0 ω2j1,i(t)dt -404.03%

∑3i=1∑
4
j=1

∫ 3000
0 u2i, j(t)dt -437.05%

Now, we study the performance degradation when the velocity feedback is

not available for our proposed constrained control algorithms. Table 6.4 summa-

rizes the results. This table shows that the performance of the networked spacecraft

considerably degrades when the velocity information is not available for feedback

and exchange. Absence of the velocity feedback mainly reduces the angular veloc-

ity synchronization and set-point tracking performance of the system, and it also

results in an increase in the overall control effort of the spacecraft in the network.

Finally, we compare the performance of our proposed attitude synchroniza-

tion controllers with the velocity-free controller proposed in [94]. We consider the

network with the same setup and let the maximum control effort for the leader be

bounded by 8 N−m and the follower control effort be bounded by 6 N−m. The
results of ten Monte-Carlo simulation studies are provided in Table 6.5. This table

clearly shows that our proposed constrained velocity-free controller outperforms

the velocity-free controller proposed in [94] in terms of attitude and angular veloc-

ity synchronization and attitude set-point tracking performance with a significant

margin. In addition, our proposed velocity-free controller consumes much less en-

ergy, 437% less than the controller proposed in [94], which is critically important

for networked spacecraft missions as the thruster fuel is limited. It should be noted
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that the controller proposed in [94] produced lower angular velocity set-point error

when compared to our proposed velocity-free controller. However, this should not

be seen as a drawback for our proposed algorithm since in network spacecraft con-

trol, attitude and velocity synchronization errors are considerably more important

than the single spacecraft angular velocity set-point tracking error.

6.5 Concluding Remarks

In this chapter we consider controller development for attitude synchronization for

spacecraft formation flying missions. The control laws are developed subject to

four constraints, namely, (1) constraints on the maximum control effort available

to each SC in the network, (2) unavailability of velocity measurements, and, (3)

unavailability of information about the SC moment of inertia matrix. The closed-

loop performance of the control strategies proposed in this chapter are evaluated

extensively through numerical simulations.
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Chapter 7

Conclusions and Future Work

Directions

7.1 Conclusions

In this thesis we considered control of networked Euler-Lagrange (EL) systems with

nonlinear dynamics. We focused on development of distributed control laws with

several practical constraints. Specifically, in Chapter 3 optimal control techniques

are developed for a network of nonlinear EL systems subject to communication

topology switchings and parametric uncertainties. A formal design methodology

for selection of distributed controllers for tackling the state synchronization and

set-point tracking requirements for a team of multi-agent nonlinear EL systems

is introduced. Additionally, when parametric uncertainties are taken into account

explicitly, adaptive as well as robust distributed control techniques are proposed

and developed to compensate for the adverse effects of these uncertainties in the

networked EL systems. Moreover, additive actuator faults are considered and a
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controller reconfiguration mechanism is introduced to recover stability and per-

formance of the networked EL systems. Simulation studies corresponding to the

attitude control of a network of eight spacecraft are conducted to demonstrate the

merits, performance, and capabilities of our proposed control algorithms and also

to conduct comparative studies of their performances.

In Chapter 4 formal development of distributed state synchronization and set-

point tracking control laws for nonlinear EL systems by employingH∞ control tech-

nique is discussed. To be precise, in presence of parametric uncertainty and external

disturbances, H∞ optimal control techniques are utilized to formally design a dis-

tributed control law which addresses state synchronization and set-point tracking

of a team of multi-agent nonlinear EL systems given that the agents have access to

only local information. In addition, we formally show that our proposed distributed

control algorithm for EL systems is input-to-state stable (ISS) when the input is

considered as the parameter uncertainty and external disturbances for both fixed

and switching communication network topologies. The second main contribution

of this chapter is formal extension of the developed distributed adaptive state syn-

chronization and set-point tracking control law for nonlinear EL systems to FDI

imperfections in the actuator faults. Specifically, in presence of actuator faults, our

proposed distributed control algorithm has the capability of compensating for the

fault and taking proper controller reconfiguration actions. We consider three main

types of imperfections in the FDI algorithm, namely, (1) fault detection imperfec-

tion that arises when fault is not detected by the FDI algorithm, (2) fault isolation

imperfection that arises when the fault is detected in the wrong channel or in the

wrong agent, and (3) fault identification imperfection that arises when the fault

estimation is not accurate. We show that our proposed distributed controller can

maintain the closed-loop networked EL systems’ stability under all these scenarios,
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and can moreover improve the performance of the resulting closed-loop networked

EL systems corresponding to the last scenario. Simulation results for the attitude

control of a network of eight spacecraft demonstrate effectiveness and capabilities

of our proposed distributed control algorithms.

In Chapter 5 two distributed bounded and nonlinear controllers are proposed

for state synchronization and set-point tracking of networked EL systems in pres-

ence of input saturation constraints. The communication network is considered to

be undirected and switching. The first controller requires velocity feedback and

exchange among the agents, whereas the second controller does not require ve-

locity measurements and exchange among the agents. This considerably reduces

the required communication load among the agents without sacrificing the overall

networked system performance. The performance of our proposed state synchro-

nization and set-point tracking controllers are verified through simulations as well

as comparisons with other synchronization and set-point tracking controllers that

are available in the literature. It was shown that our proposed constrained dis-

tributed controllers yield a considerably improved performance for the closed-loop

networked nonlinear EL systems. Furthermore, a reconfiguration strategy for co-

operative control of a network of nonlinear EL systems subject to actuator faults

and constraints is also developed in this Chapter. The proposed nonlinear nomi-

nal and reconfigured constrained control strategies each individually guarantee sta-

bility of the EL networked agents states and control signals and guarantee global

convergence of the set-point tracking errors and state synchronization errors to the

origin despite the presence of actuator saturation constraints and intermittent or

permanent actuator faults. By using the proposed switching strategy between the

constrained nominal and the constrained reconfigured controllers, global stability
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of the closed-loop networked EL system states and control signals as well as con-

vergence of the synchronization errors and the tracking errors to origin can still be

ensured. In addition, the proposed control laws require minimum knowledge of

the system’s dynamics. The performance of our proposed reconfigurable control

strategy is demonstrated by simulations to three heterogenous 2-DOF networked

manipulators subject to an actuator fault and actuators saturation constraints.

The contribution of Chapter 6 is in the development of two constrained con-

trol algorithms for attitude synchronization for spacecraft formation flying mis-

sions. We used unit-quaternion to represent the spacecraft attitude dynamics as

it does not have singularities and therefore enable execution of large attitude ma-

neuvers. Our proposed constrained velocity-free attitude spacecraft controllers do

not require availability of spacecraft angular velocities for feedback and exchange

among the spacecraft in the network, which considerably reduces communication

load in the formation. Simulation studies are reported to demonstrate the merits of

our proposed control algorithms.

7.2 Suggestions for Future Research

Some suggestions for the future research are listed in followings as:

• Extension of the proposed control algorithms to distributed trajectory track-
ing problem: In the development of trajectory controllers for multi-agents

EL systems (see for example [64]) it is assumed that the desired trajectory is

available to all the agents in the network. However, this cannot be guaranteed

in the formation control problem for all times. It is, therefore, important to de-

velop a distributed control algorithm that enables development of distributed
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trajectory tracking problem when the desired trajectory is not available to all

the agents in the network.

• Extension of the proposed distributed control algorithms to general passive
nonlinear systems: Euler-Lagrange systems can be seen as a subset of pas-

sive nonlinear systems. It is interesting and useful to extend the developed

control algorithms in this thesis to a more general class of nonlinear systems,

i.e. passive nonlinear systems.

• Robustness analysis of the developed constrained controllers in Chapter 5 to
external disturbances: Mechanical systems in their daily operation are subject

to external disturbances. It is, therefore, interesting and very useful to study

robustness of the control developed in Chapter 5.

• Analysis and extension of the proposed control laws for directed communi-
cation networks: In several practical applications, the communication graph

is directed. Extension of the present work to directed communication graphs

will enhance applicability of the developed control algorithms.

• Extension of proposed control algorithms to EL systems with non-holonomic
constraints: Many robotic applications, like mobile wheeled robots, are sub-

ject to non-holonomic constraints. This constraint needs to be considered in

the development of the control law, specially, when full state measurement is

not available.

• Development of distributed velocity-free fault tolerant controllers: As dis-
cussed in this thesis, velocity measurements are not always available. It is,

therefore, practically useful to extend the results in this thesis for develop-

ment of the velocity-free fault tolerant controllers for multi-agent nonlinear
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EL systems.
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Appendix A

Simulation Validation

In this thesis we use Matlab/Simulink to for simulation purposes and to validate our

analytical results. MATLAB (MATrix LABoratory) is a numerical computing envi-

ronment and fourth-generation programming language. Developed by MathWorks,

MATLAB allows matrix manipulations, plotting of functions and data, implementa-

tion of algorithms, creation of user interfaces, and interfacing with programs written

in other languages, including C, C++, Java, and Fortran [192].

Simulink, developed by MathWorks, is a data flow graphical programming

language tool for modeling, simulating and analyzing multidomain dynamic sys-

tems. Its primary interface is a graphical block diagramming tool and a customiz-

able set of block libraries. It offers tight integration with the rest of the MATLAB

environment and can either drive MATLAB or be scripted from it. Simulink is

widely used in control theory and digital signal processing for multidomain simu-

lation and model-based design [193].
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A.1 Simulation Validation

In this subsection we validate our simulation results presented in Section 6.4. We

verify the results by showing that constraint (2.15) is always satisfied for all four

spacecraft in the formation. The Following four figures show that this constraint is

satisfied within an acceptable tolerance for all the four spacecraft in the formation.

0 500 1000 1500 2000 2500 3000
0.9999

1

1.0001

time [sec]

(a) Validation of constraint (2.15) for space-
craft #1 in the formation.

0 500 1000 1500 2000 2500 3000
0.9999
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time [sec]

(b) Validation of constraint (2.15) for space-
craft #2 in the formation.
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time [sec]

(c) Validation of constraint (2.15) for space-
craft #3 in the formation.
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0.9999
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time [sec]

(d) Validation of constraint (2.15) for space-
craft #4 in the formation.

Figure A.1: Simulation software validation by checking satisfaction of constraint
(2.15) for the four spacecraft in the formation.
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