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Abstract

Molecular assignment of light-induced structural changes using site-directed mutant 

reaction centers 

 

Sasmit S. Deshmukh, Ph.D. 

Concordia University, 2013 

 

The photosynthetic reaction center from purple photosynthetic bacteria is a membrane-

bound protein-pigment complex that serves as an excellent model for studying biological 

energy conversion. This energy conversion takes place by electron transfer reactions, 

which occur within the protein and are often coupled to conformational changes that 

influence the lifetime of the charge-separated state. In order to identify these light-

induced conformational changes, near the bacteriochlorophyll dimer, wild type and 11 

different mutants of reaction centers from Rhodobacter sphaeroides were studied. Upon 1 

min illumination the recovery of the charge-separated states, characterized by steady-

state and transient optical spectroscopy, was nearly an order of magnitude slower in one 

group of mutants (including the wild type) than in mutants carrying the Leu to His 

mutation at the L131 position. The slower recovery, unlike in the mutants carrying His at 

the L131 position, was accompanied by a substantial decrease of the electrochromic 

absorption changes associated with the QY bands of the nearby bacteriochlorophyll 

monomers, plus a large proton release at pH 6, and a decrease up to 79 mV of the 

oxidation potential of the dimer during the illumination. The results in the mutants 

carrying His at the L131 position are modeled as arising from the loss of a proton 

conducting pathway from the dimer to the solvent, which inhibits the formation of the 
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long-lived charge-separated state. On the other hand, combination of the light-induced 

conformational changes and lipid binding near accessory bacteriochorophyll pigment 

under optimized conditions resulted in unprecedented 5 orders of magnitude increase in 

lifetime of the charge-separated state, which sheds light on a new potential application of 

the reaction center in energy storage as a light-driven biocapacitor. Moreover, these 

conformational changes near the dimer can also be blocked by Mn2+ binding. The metal 

ion binding induced a significant ~ 100 mV increase in the oxidation potential of the 

dimer and inhibition of formation of the long-lived charge-separated state similar to 

mutants carrying Leu to His mutation at L131 position. The elevation of oxidation 

potential of the dimer upon Mn2+ binding can make reaction center protein gain some 

specific functional features of much more complicated photosystem II.  
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Chapter 1 

Introduction  

 

1.1 Basic principles of photosynthesis 
 
 
Photosynthesis is the primary process of biological energy conversion, where light energy 

is converted into chemical energy. This process exploits solar energy to provide the 

energy for complex physico-chemical reactions of living organisms therefore sunlight is 

the ultimate energy source for all biological processes on Earth. Life began very early in 

Earth’s history in photosynthetic organisms (Figure 1.1) and even today’s life on Earth 

derives all its energy from this process.  

 

Figure 1.1 Earth’s biogeologic clock. The entire 4.6 billion year old history of Earth is 

represented in a circular clock. Life began ~3.8 billion years ago and there are records of the 

existence for primitive anoxygenic phototrophic bacteria as old as 3.6 billion years. Major 

development occurred in the abundance of life at ~2 billion years ago, when the oxygenic 

atmosphere was established by oxygen producing cyanobacteria.  The geological and molecular 

biological records of microorganisms indicate that photosynthetic organisms arose much earlier 

in Earth’s history.1 
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Essentially, all of our food are related to photosynthesis and all of our current fossil fuels 

are the products of ancient photosynthetic activities. Photosynthesis therefore serves as a 

vital link between the light energy of the sun and all living creatures. There are two types 

of photosynthesis: oxygenic and anoxygenic. Both oxygenic and anoxygenic organisms 

contain membrane bound protein-pigment complexes, photosystem II (PS II) and 

bacterial reaction center (BRC), respectively. As evidence indicates that oxygen 

producing photosynthesis made life possible for aerobic organisms (Figure 1.1).  

The first step of the conversion of light energy into chemical energy occurs in reaction 

centers (RC). In green plants and cyanobacteria water is used as the electron donor and 

carbon dioxide is the carbon source in the conversion of light energy into chemical 

energy, while sugars are synthesized and oxygen as a byproduct is released (Figure 1.2).  

 

Figure 1.2 Photosynthesis. The process of oxygenic photosynthesis, where carbon dioxide and 

water are converted into oxygen and glucose using the energy of light. 

 

 

In algae, cyanobacteria and chloroplasts of green plants, PS II reaction center is 

responsible for splitting the water into molecular oxygen, electrons, and protons while 

bacterial photosynthesis does not produce oxygen therefore it is termed as anoxygenic 

photosynthesis.  
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The structural and functional similarities between the evolutionarily related (Figure 1.1) 

but much more complex PS II and the simpler BRC make the latter an excellent model 

for studying biological energy conversion. 

 

 

1.2 Structure of the photosynthetic bacterial reaction center (BRC) 

 

The BRC, from purple photosynthetic bacterium Rhodobacter (Rb.) sphaeroides, has 

been for a long time the primary testing ground for our understanding of electron and 

proton transfer processes followed by conformational changes that occur in biological 

energy conversion.2 The three dimensional protein structure of the BRC has been 

identified by X-ray diffraction method at a resolution of 2.8 Å, which has helped to 

illustrate structure-function relationship.3,4 It is an integral membrane protein that 

contains three protein subunits namely L, M, and H, and 9 cofactors (Figure 1.3A). The 

BRC from Rhodobacter sphaeroides has around ~ 800 amino acid residues that includes 

five membrane spanning helices each for L and M subunit and several helices that do not 

span the membrane whereas H subunit has only one membrane spanning helix and a 

globular domain on the cytoplasmic side, that contains one helix and several -sheets, 

with a total molar mass of ~100 kDa (1 Da = 1 g/mol). Cofactors are associated with the 

L and M subunits forming a two fold symmetry axis, including one bacteriochlorophyll 

dimer (P) composed of two bacteriochlorophylls, two bacteriochlorophyll monomers (BL 

and BM), two bacteriopheophytins (HL and HM), two ubiquinones (QA: Primary quinone 

and QB: secondary quinone), and a non-heme iron (Figure 1.3B).  
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The H-subunit does not contain any cofactor but it is believed to be facilitating the 

electron transfer between QA and QB and transfer of protons to QB from the cytoplasm.5  

 

Figure 1.3 Structure of the bacterial reaction center (BRC) from Rhodobacter sphaeroides 

A. Cartoon representation of the isolated BRC structure showing the arrangement of protein 

subunits: L (salmon), M (green), and H (yellow). The molecules shown in red are the cofactors 

bound to the protein by non-covalent interactions. B. Details of the 9 cofactors of the BRC, which 

are aligned across the 2-fold symmetry axis that passes through vertically from the dimer (P) to 

non-heme iron (Fe2+). The membrane is represented by a gray shaded area. The periplasmic side 

of the membrane is near the top and cytoplasmic side is near the bottom of the structure.3 Figure 

was modified by using Pymol software from PDB file 1PCR.6 

 

 

1.3 Electron transfer process in the BRC 

 

The primary process of bacterial photosynthesis is a stepwise, light-induced, 

transmembrane electron transfer, which creates charge-separated states. Based on 

extensive spectroscopic studies since the middle of 1970s, it was established that the 

primary electron donor is the P,7-9 QA and QB are electron acceptors,10, 11 and BL and HL 

are intermediate acceptors.12  
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Absorption of photon excites the bacteriochlorophyll dimer to its electronic excited state 

and the electron is subsequently shuttled through series of intermediate steps creating 

P+QB  charge-separated state (Figure 1.4A). This electron transfer process takes place 

with the quantum yield of nearly unity, making it most efficient biological energy 

conversion process. Oxidized dimer (P+) can be re-reduced by exogenous electron donor 

cytochrome c2 (cyt c2) then after second light excitation a transfer of a second electron 

takes place and the secondary quinone can be reduced twice. During this process QB 

(accepts two protons from the cytoplasmic side to become quinol (QBH2). Despite 

apparent two-fold symmetry, QA and QB have differences in their environment which 

lowers the energy of QB relative to QA, which results electron transfer from QA  to QB. 

The QA is tightly bound, shielded from the external solvent, and functions as a one-

electron acceptor whereas QB is weakly bound, surrounded by polar residues, and can 

accept two electrons and two protons. Then quinol (QBH2) dissociates and is oxidized by 

cytochrome bc1 complex, releasing protons and electrons across the membrane.13 The 

first proton transfer to QB  from the cytoplasmic side is coupled with the second electron 

transfer from QA  to QB . Proton transfer pathway to QB is well established elsewhere by 

carrying out mutagenesis experiments.14-19 
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Figure 1.4 Light-induced electron transfer process in photosynthetic BRC. A. Light-induced 

electron transfer pathway. Phytyl chains are truncated for clarity purpose. B. The energy levels of 

various redox states formed during the electron transfer process. Indicated times represent the 

lifetime of the different redox states. Green arrows show the forward electron transfer while red 

arrows show the charge-recombination processes. 

 

 

Free energy levels suggest that forward electron transfer is favorable to the charge-

recombination from intermediate state because it is orders of magnitude faster (Figure 

1.4B). Several explanation for this phenomenon have been proposed, such as well-

positioned cofactors and surrounding amino acid residues making forward electron 

transfer energetically more favorable, and conformational changes accompany the 

formation of charge-pair making the charge-recombination less favorable.20 Although as 

mentioned above the cofactors are arranged in quasi-symmetric manner across two-fold 

axis joining P and iron, electron transfer only occurs through L branch to QB (Figure 

1.4A).  
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This is due to partly the interaction between three natural lipids (glycolipid, phospholipid, 

and cardiolipin) and cofactors.21 These integral lipids alter the energy levels of the 

charge-separated state making P+BM  at higher energy level than P+BL  (Figure 1.5). The 

electron transfer from QA  to QB is attributed by a conformational gating step, which 

causes the movement of QB from it’s distal to a proximal position22 and it is facilitated 

also by the different amino acid surroundings of the two quinones.  

 

Figure 1.5 Arrangement of natural integrated lipids along with the cofactors and their 

influence on the energetics of the unidirectional electron transfer. Glycolipid (GL, cyan 

molecule) binds near BL. The phospholipid phosphatidylcholine (PC, violet molecule) binds near 

the HM. The cardiolipin (CDL, slate molecule) binds near the M subunit without directly 

interacting with any cofactor. Due to the interactions of these integral lipids with cofactors, the 

energy levels of the different redox states are altered and therefore the electron transfer proceeds 

along “L-branch” only. Figure was prepared by using Pymol from PDB code 1M3X.21 
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1.4 Photosynthetic electron transfer cycle and generation of proton electrochemical 

gradient in the natural membrane of Rb. sphaeroides 

 

In a natural membrane environment, the transmembrane electron transfer takes place 

upon light excitation, which creates the charge-separated state P+QB . Water soluble cyt 

c2 then reduces the oxidized dimer (P+), a second light excitation transfers a second 

electron from the dimer to QA forming the P+QA QB  state. After accepting a proton from 

the cytoplasmic side QBH accepts a second electron from QA  and finally a second proton 

transfers to form QBH2. Then this quinol will be replaced by a new quinone from the 

quinone pool and the quinol becomes oxidized by cytochrome bc1 complex.20,23,24 During 

this whole process protons are released at the periplasmic side, generating proton 

electrochemical gradient to drive ATP synthase24 and electrons can be transferred from 

cyt bc1 complex to mobile electron carrier cyt c2 to complete the whole cycle (Figure 

1.6). 

In order to study BRC in detail, it needs to be isolated from the natural membrane 

environment because the studies of BRCs in membrane fragments (chromatophores) 

using optical techniques are hampered by the presence of light harvesting complex 

pigments (LH1 and LH2). After isolation, BRCs are dispersed in mild detergent 

micelles.25  
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Figure 1.6 The photosynthetic electron transfer cycle in the membrane of the photosynthetic 

bacterium Rb. sphaeroides. Electron transfer from the dimer of the BRC to the acceptor quinone 

(QB) via series of intermediate steps takes place upon light excitation. Reduced secondary 

quinone is then released and replaced by the new quinone from the quinone pool. Protons are 

pumped across the membrane and electrons released during oxidation of reduced quinone by 

cytochrome bc1. The mobile electron carrier cyt c2 transfers electron from cytochrome bc1

complex to the oxidized dimer to re-reduce it.24, 26  

 

 

1.4.1 Substitution of the natural membrane environment of the BRC with 

detergent micelles and artificial lipid bilayers  

 

Since the BRC is a membrane protein, it is surrounded by a large hydrophobic region of 

transmembrane helices and therefore it has to be in an amphiphilic environment to 

survive. In Nature, the membrane has different combination of phospholipids, 

phosphatidylcholine, phosphatidylethanolamine, and other lipids.27  
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These naturally occurring lipids vary depending on growth conditions of bacteria such as 

temperature or aerobic/semi-aerobic growth.27 After extraction of BRCs from natural 

membrane (chromatophores), it has to be incorporated in detergent micelles, which are 

substitutes for the membrane (Figure 1.7).  

 

Figure 1.7 Schematic representation of BRC protein in the natural membrane environment, 

in detergent micelles, and in liposomes. After isolation of BRCs from natural membrane 

environment into membrane substituent detergent micelles, latter will form belt-like structure 

around the hydrophobic region of the BRC. The BRC’s hydrophilic and hydrophobic regions are 

represented as yellow and pale orange colors, respectively. These BRCs can further be 

incorporated into liposomes by removing detergent micelles, which can mimic and to some extent 

restore the hydrophobic environment of the natural membrane.  

 

 

These detergent micelles encompass BRC’s hydrophobic region by forming belt like 

structure.28 Moreover, the lipid environment is known to have a significant influence on 

membrane morphology, but it is questionable whether it can affect the photosynthetic 

energy transfer process.29  
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A promising approach is to reconstitute the BRCs into liposomes with different lengths of 

fatty acid chains that results in different hydrophobic thickness of the lipid bilayers. 

These artificial liposomes can also mimic natural membrane environment. 

In BRCs isolated and crystallized from detergent micelles the hydrophobic thickness of 

the detergent belt was reported to be ~ 23 Å.28 This thickness is about 5 Å shorter than 

the length of the hydrophobic transmembrane helices of the BRC. The detergent 

molecules orient with their alkyl chains towards hydrophobic regions of BRC, while the 

hydrophilic head-groups are facing towards the external solvent (Figure 1.7). 

The structure of the detergent belt that surrounds the BRC was determined by low-

resolution neutron diffraction experiments28 (Figure 1.8A). For proper solubilization of 

BRCs, the detergent concentration has to be higher than the critical micelle concentration 

(c.m.c.) of the detergent. The c.m.c. is the minimum concentration of detergent required 

to form micelles spontaneously. Initially as detergent is added to water then hydrophobic 

tails point away from the water by concentrating at the surface to minimize the free 

energy of the solution. Once c.m.c. is reached then this can be done by forming micelles 

by orienting hydrophobic tails inward and hydrophilic head-groups outward. These 

detergent micelles then cover the hydrophobic region of the protein and help to disperse it 

in aqueous environment. Now the question becomes how good these membrane 

substituent detergent micelles are as compared to the natural membrane (Figure 1.8B and 

C). Indeed there are indications that thermodynamics and kinetics of electron transfer 

reactions in the BRCs have different features in chromatophores than in the membrane 

substituents. For instance the lifetime of the charge recombination from QB (i.e. P+QB   

PQB) is ~1 s in detergent micelles while it was measured as ~10 s in chromatophores.30  
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Figure 1.8 Protein interactions with its hydrophobic environment in BRC from Rb.

sphaeroides. A. Belt-like structure of detergent micelles (blue) around BRC (yellow) where 

thickness of the detergent belt (green bracket and dotted line) is 5 Å smaller than the hydrophobic 

thickness of the BRC (red bracket and dotted line).28 Schematic representation of BRC dispersed 

in (B) detergent micelles and (C) lipid bilayer. The BRC’s hydrophilic and hydrophobic regions 

are represented as yellow and pale orange colors, respectively. In the BRC, dimer (P) and 

quinones (QA and QB) are shown with the light-induced electron transfer pathway along with 

proton transfer from cytoplasmic side to QB. Thickness of the hydrophobic region of the BRC 

(pale orange color and red dotted line) can match the hydrophobic thickness of the lipid bilayer. 

 

 12



Various different detergent molecules are used as membrane substituents, such us 

lauryldimethylamine-oxide (LDAO, zwitterionic at pH 7 and above with pKa ~ 6.6), 31,32 

Triton X-100 (non-ionic), cetyltrimethylammonium bromide (cationic), and deoxycholate 

(anionic) detergents have been used to disperse the BRC protein having c.m.c. of 0.023%, 

0.033%, 0.036%, and 0.2% in the dispersion at 25 °C respectively. 

 

 

lauryldimethylamine-oxide (LDAO) (zwitterionic detergent) 

 

  

X = 9-10 

Triton X-100 (non-ionic detergent) 

 

 

Cetyltrimethylammonium bromide (CTAB) (cationic detergent) 
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Sodium deoxycholate (DOC) (anionic detergent) 

 

The properties of the detergents also play important role in protein structure-function 

relationship. For example, changes in temperature, detergent concentration, and 

functional group in the detergent may all cause change in the size, shape, and aggregation 

number of the micelle. For ionic detergents the aggregation number (the number of 

molecules present in a micelle) is less than 100 in aqueous solution with low ionic 

strength. It is due to the presence of a net head-group charge on detergent molecule that 

repel one another and hence destabilizing the micelle. On the other hand, at high ionic 

strength due to screening of the charges, this aggregation number increases substantially 

with formation of cylindrical micelles. Aggregation numbers of LDAO, Triton X-100, 

CTAB, and DOC detergents are 70, 140, 61, and 5 respectively in solutions without 

salt.33 

Moreover, an increase in the temperature causes small decrease in the aggregation 

number in aqueous solutions because thermal agitation increases the head-group area.33  
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Functional groups of the detergent or the general structure itself can affect the c.m.c. in 

aqueous solutions. If the number of carbon atoms in the hydrophobic group in the 

structure increases then c.m.c. decreases. This decrease in the c.m.c. is slightly larger in 

case of non-ionic and zwitterionic detergents; an increase by two methyl groups reduces 

the c.m.c. by an order of magnitude. Similarly, presence of phenyl group in hydrophobic 

chain is equivalent to three and one-half methyl groups. When the number of carbon 

atoms in the straight-chain increases beyond 18 then c.m.c. remains unchanged due to the 

coiling of these long chains in aqueous media.33   

Similar to detergent micelles different lipids such as cationic 1,2-dioleoyl-3-

trimethylammonium- propane (chloride salt) (DOTAP), anionic 1,2-dioleoyl-sn-glycero-

3-phospho-L-serine (sodium salt) (DOPS), zwitterionic 1,2-dioleoyl-sn-glycero-3-

phosphocholine (DOPC), zwitterionic 1,2-dilauroyl-sn-glycero-3-phosphocholine 

(DLPC), and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) can be used. These 

lipids contain fatty acid chains with carbon length of 18 with a one double bond at 9th 

carbon from the head-group except DLPC and DMPC, which have 12 and 14 carbon 

atoms in their acyl chain with no double bond, respectively. Lipids containing 18 carbon 

atoms with mono-unsaturation can naturally form bilayer structures with different 

curvatures and have several other properties in common with biological membranes. The 

thickness of the hydrophobic part of these lipid bilayers is in agreement with the natural 

membrane thickness of the BRCs.34  
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 18:1 DOTAP (cationic) 

 

 

18:1 DOPS (anionic) 

 

 

18:1 DOPC (zwitterionic) 

 

 

12:0 DLPC (zwitterionic) 

 

 

14:0 DMPC (zwitterionic) 
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Due to wide variety of lipids with different fatty acid chain lengths there will be different 

lipid-protein hydrophobic interactions. These interactions are discussed in detail in the 

following section. 

 

 

1.5 Hydrophobic interaction between the BRC and surrounding environment 

 

During and after isolation and purification, BRC’s can be incorporated into different 

detergent micelles or different liposomes (Figure 1.8B and C). Detergent micelles form 

belt-like structure around the BRC covering its hydrophobic region by orienting alkyl 

chains inward whereas liposomes form bilayer of lipid molecules to minimize solvent 

accessibility to the hydrophobic region (Figure 1.8B and C). The surrounding 

hydrophobic environment of the BRCs can alter the electron transfer significantly. For 

instance, the charge recombination from QB in detergent micelles (i.e. P+QB ) takes place 

in ~ 1 s while in liposome it takes ~ 10 s upon flash excitation.35 For optimal conditions it 

is necessary that the hydrophobic thickness of the protein should be equal to the 

hydrophobic thickness of the surrounding environment. These hydrophobic interactions 

play major role in stabilizing the membrane proteins and can significantly alter the 

functional parameters. When the hydrophobic region of the BRC is thinner or thicker 

than the surrounding hydrophobic region of the lipid bilayer or detergent micelles then 

tension is created to minimize the solvent accessible surface. This hydrophobic mismatch 

can be minimized by two ways36: 
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1. Deformation of lipid bilayer or detergent micelles, and/or 

2. Deformation of -helices of the BRC protein. 

 

1.5.1 Deformation of lipid bilayer or detergent micelles 

 

In order to minimize the hydrophobic mismatch at the interface of hydrophobic 

environment and the BRC, the lipid or detergent molecules near the BRC undergo 

deformation. If there is no hydrophobic mismatch at the interface of the BRC and its 

hydrophobic environment then there is no need of deformation (Figure 1.9A). If the 

hydrophobic tail length of the lipid or detergent is shorter or longer than the hydrophobic 

thickness of the protein then the lipid or detergent has to extend or compress so that the 

hydrophobic mismatch can be minimized (Figure 1.9B and C). Due to less curvature 

elasticity in detergent micelles this compensation from the detergent molecule is 

generally less than the lipid molecule.36 During this compensating mechanism several 

lipid molecules near the BRC will be affected and this perturbation in the bilayer extends 

over few molecules and recovers back to normal thickness in exponential function.37, 38  
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Figure 1.9 Compensation for hydrophobic mismatch from the lipids. A. Hydrophobic 

thickness of the protein matches exactly the hydrophobic chain length of the lipid. B. 

Hydrophobic thickness of the protein is greater than hydrophobic acyl chain length of the lipid 

hence, compensation occurs by extending the acyl chain length. C. Hydrophobic thickness of the 

protein is smaller than that of the acyl chain length of the lipid hence, compensation occurs by 

compressing the acyl chain length. 

 

 

This lipid response to the hydrophobic mismatch leads to the alteration in the phase 

transition temperature of the lipid. Lipids can either be in gel or liquid crystalline phase 

depending on what temperature they are at. In the gel phase the acyl chains are quite rigid 

and fully extended whereas in the liquid crystalline phase these acyl chains remain fluidic 

and randomly oriented.  
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At the phase transition temperature the lipid actually undergoes physical change from one 

phase to another.39 The interaction between the lipids and the BRC at the interface will 

determine the nature of upward or downward shift in the transition temperature of the 

lipid.  

 

1.5.2 Deformation of -helices of the BRC protein 

 

Similar to the deformation of lipid or detergent molecules, -helices of the protein can 

also tilt or stretch to compensate the hydrophobic mismatch (Figure 1.10). These 

structural rearrangements in the protein can also be found in the X-ray structure of the 

BRC where -helices were slightly tilted (Figure 1.3A).20,40,41 Aggregation of the proteins 

in response to the hydrophobic mismatch is also possible but it leads to the loss of 

function of the proteins. Tilting of the -helices is limited and therefore the hydrophobic 

mismatch that cannot be compensated by tilting alone, can be compensated by 

aggregation.  

 

Figure 1.10 Compensation for the hydrophobic mismatch from the protein. If there is 

hydrophobic mismatch between lipid bilayer and the protein then latter can also tilt its -helices 

to compensate for the hydrophobic mismatch. This can occur only up to certain extent and protein 

adjustment cannot compensate solely for hydrophobic mismatch. Figure was modified from ref.36 
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There are some conformational changes that occur in the BRC protein in the presence of 

different hydrophobic environment even if the deformation primarily occurs in the 

surrounding membrane. These structural changes can eventually alter the electron 

transfer and charge-recombination processes in different liposomes as compared to 

different detergents. Under physiological conditions, the primary charge recombination 

(P+QA   PQA) occurs in 100 ms while from secondary quinone (P+QB   PQB) occurs 

in 1 s upon flash excitation.42  

The light-induced electron transfer takes place from P to QA and then finally to QB 

depending on the occupancy of the secondary quinone binding site. This QB has two 

binding sites. As electron transfer between QA and QB takes place then QB moves in its 

binding pocket. This electron transfer step is facilitated by a conformational gating 

mechanism.22 During this process QB moves from its distal position to its proximal 

position by 5 Å along with the isoprenoid chain.22 These binding sites of QB were 

determined by freezing the BRC crystal to cryogenic temperature in the dark and under 

illumination.43,44 These structural differences occur as QB moves in to the proximity of 

the non-heme iron upon illumination (Figure 1.11).  

As conformational changes occur near the cytoplasmic side, two distinct structural 

changes were also reported on the periplasmic side near P+ depending on the type of 

detergent micelles in which the BRCs were dispersed.25,45 
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Figure 1.11 Structure of the BRC cofactors with two binding sites of secondary quinone 

demonstrating approximate symmetry between QA and QB (P) position. QB is bound at distal 

(D) position, which moves to proximal (P) position to facilitate electron transfer between QA and 

QB. The figure was prepared by using Pymol from PDB file 2UXK.44 

 

 

Continuous illumination can increase the lifetime of this charge recombination due to the 

formation of altered light-adapted conformations. The formation of these altered long-

lived conformational changes is independent of the presence of secondary quinone (QB). 

Spectroscopically, these long-lived conformational changes have similar features as that 

of flash induced P+QA  or P+QB .35,46 The nature of the hydrophobic environment plays 

crucial role in light-induced conformational changes. While detailed information 

concerning the conformational changes near the quinone (cytoplasmic side) have been 

identified, light-induced structural changes near the periplasmic side were still unclear at 

the time of the design of our research.  
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1.6 The significance of the structural changes  

 

In membrane proteins proton translocation across the membrane can be facilitated by two 

types of proton pumps: redox-driven and conformational proton pumps.47 In a redox-

driven proton pump the linear sequence of redox carriers should be localized in the 

membrane in a way that produces the observed proton translocation. In Nature, the BRC 

represents the first half of the transmembrane proton pumping and the redox loop is 

completed by the ubiquinol:cytochrome oxido-reductase enzyme (see Figure 1.6). Within 

this process the secondary quinone (QB) acts essentially as proton and electron carrier in 

two loops that leads proton translocation across the membrane by cyt bc1 complex.  

In case of conformational pump, such as bacteriorhodopsin from Halobacterium

halobium, due to a light-induced conformational change the dielectric properties of the 

protein change rapidly that in turn causes the protonational states of the amino acid 

residues to be altered, which results the translocation of the protons. Unlike in the redox-

driven proton pump, there is no need of proton and electron to bind the same 

component.48,49 

Regardless of the classification even in the isolated BRC, which is a redox-driven proton 

pump, the solvation of newly created charges by individual electron transfer steps is often 

facilitated by secondary compensating charge motions, which are coupled to 

conformational changes in the BRC protein. A large variety of conformational changes 

associated with the electron and proton transfer in BRCs in the vicinity of all cofactors 

have been reported: two distinct conformations of P+ were identified that depended on the 

polarity of detergent and the temperature.25  
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Illumination time and temperature dependent conformational change of the photoactive 

bacteriopheophytin L (HL) was determined by the freeze-trapping technique.50 On the 

microsecond to submillisecond time scale, protein relaxation before the QA   QB 

electron transfer was identified.51-54 As mentioned before a slow conformational 

rearrangement of the QB binding pocket has been reported to take place in minutes.55,56 

Even several tens of minutes have been reported as the relaxation time of the protein 

from a light-induced conformation to a dark-adapted one using photoacoustic55 or optical 

spectroscopic and protonational57 studies.  

Thus, descriptions of a functioning BRC call attention to the important role of protein 

motion and conformational reorganization in the electron transfer process over a wide 

range of time scales from nanoseconds to minutes.35,55-66 The study of slow 

conformational rearrangements upon illumination was inspired by the pioneering work of 

Kleinfeld and coworkers.46 Many groups have followed their path in the past quarter of a 

century and provided new insights to the details of these changes.35,56,57,65,67,68 Despite 

these extensive efforts, the exact molecular mechanism of such structural changes was 

not clear at the time of our project was designed. Therefore the molecular origin of the 

conformational changes can be of great importance in the quest of identifying the 

structural mechanism responsible for the altered lifetime of various charge-separated 

states, observed in earlier studies. 
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1.7 Electronic transitions of the pigment molecules in BRC 

 

As the BRC is a pigment-protein complex, the properties of the imbedded pigment 

molecules (bacteriochlorophylls and bacteriopheophytins, and quinones) are heavily 

dependent upon the immediate protein environment of the individual pigments. Given the 

unique protein environment of each pigment, the electronic absorption spectrum of the 

BRC (Figure 1.12A) shows distinct features for each pigments. Due to a great degree of 

conjugation in these molecules, the   * electronic transitions no longer fall into the 

ultraviolet (UV) spectral region but rather into the visible (VIS) or occasionally even into 

the near infrared (NIR) regime. Due to the complex planar structure of the molecules, 

each pigment possesses two dipole moments (QX and QY) along which electronic 

excitation can take place. The QX transition requires higher energy than that of the QY 

providing two absorption bands for each pigments. The QX transition has a dipole 

moment in the plane of ring 4 to ring 2 while the QY has a dipole moment in the plane of 

ring 3 to ring 1 (Figure 1.12B). The absorption spectrum of the BRC shows that the 

bacteriochlorophyll dimer absorbs around 865 nm, bacteriochlorophyll monomers (BL 

and BM) absorb around 800 nm, bacteriopheophytins (HL and HM) absorb around 760 nm 

and in the QX region, bacteriochlorophylls and bacteriopheophytins absorb around 600 

and 540 nm, respectively. The intense absorption band below 400 nm represents 

porphyrin macrocycle (Soret band) whereas 260 nm absorption band is characteristic to 

aromatic amino acids.69  
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Figure 1.12 UV-VIS-NIR electronic absorption spectrum of the BRC (A) and the structure 

of the bacteriochlorophyll molecule (B).  In the optical spectrum of the BRC, the dimer (P), two 

monomers (BL and BM), and two bacteriopheophytins (HL and HM) absorb around 865, 800, and 

760 nm in the QY transition region, respectively. In the QX region bacteriochlorophylls (BChl) 

and bacteriopheophytins (Bpheo) absorb around 600 and 540 nm, respectively. The 

bacteriochlorophyll molecule, which is a tetrapyrrole macromolecule with central magnesium. 

Ring 1 has 2-acetyl and ring 5 has 9-keto carbonyl group. Dipole moments of QX and QY are in 

ring 4-2 and ring 3-1 plane, respectively. Phy is a phytyl chain.  

 

 

The conjugation level of the macrocycle in the QY transition is more than the QX 

transition therefore the absorption bands are shifted to the longer wavelengths. The dimer 

has two halves of bacteriochlorophylls that are electronically coupled, which results even 

a higher wavelength for the absorption band at 865 nm. Since the absorption bands of the 

electronic transitions of the individual chromophores are sensitive to changes of their 

nearby protein environment, optical spectroscopy can be used to probe changes in the 

local electrostatics upon light excitation. 
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The internal electric field generated by the light-induced charge separation is always 

oriented in each BRC, and the electrochromic absorption changes are pronounced in the 

light-minus-dark optical difference spectrum even at room temperature. To investigate 

the changes in the local electric field due to the conformational changes, the band shifts 

of the tetrapyrroles at physiologically relevant temperatures can be monitored using 

optical spectroscopy. 

 

The absorption bands in the electronic absorption spectrum are induced by the absorption 

of the photon and subsequent electron transfer. The absorption bands of chromophores 

can be bleached, shifted, or broadened upon light excitation of the BRC. The former is 

due to the formation of new species whereas the latter two are due to the changes in the 

polarizability and dipole moment of the chromophores, respectively. These changes can 

happen due to the structural changes in the vicinity of these cofactors or by introducing 

charges on the dimer and quinones by light-induced electron transfer process. 

 

The NIR spectrum of the BRC is very informative because the dimer has strong 

absorption at ~ 865 nm in the dark-adapted state (Figure 1.13A). Light excitation causes 

transmembrane electron transfer from dimer to the quinone that creates the charge-

separated state (P+QX ; X: A or B), this results in bleaching of the dimer absorption band 

in the light-adapted state due to oxidized dimer (P+) (Figure 1.13A). The formation of the 

charge-separated state causes the hypsochromic shift in the bacteriochlorophyll monomer 

band and a bathochromic shift in the bacteriopheophytin absorption band due to 

electrochromic effects.  
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To identify the small changes in the spectrum as a result of illumination, light-minus-dark 

difference spectrum can be generated by subtracting dark-adapted spectrum from light-

adapted spectrum (red trace in Figure 1.13B).69 This light-minus-dark spectrum can be 

decomposed further into the band of the oxidized dimer (P+) and electrochromic shifts in 

the bacteriochlorophyll monomer and bacteriopheophytin bands (blue, pink, and green 

traces in Figure 1.13B). The presence of these spectral signatures is characteristic to the 

presence of the charge-separated state (P+QX ; X:A or B).  

 

Figure 1.13 Near-infrared (NIR) absolute and light-minus-dark difference spectrum of the 

BRC. A. The NIR dark-adapted spectrum of the BRC is shown in gray. The spectrum recorded 

under illumination is shown in black. Upon illumination, transmembrane electron transfer takes 

place from the dimer to the quinone resulting in bleached dimer band (red arrow), a 

hypsochromic shift in monomer (B) band (blue arrow), and a bathochromic shift in the 

bacteriopheophytin (H) band (dark green arrow) due to electrochromic effect. B. Light-minus-

dark difference spectrum (red trace) can be fitted by summation of Gaussians for the bleached 

dimer band (blue trace), shifts in the both monomer bands (BM in dashed pink and BL in solid 

pink traces), and bacteriopheophytin band (green trace) to determine shifts in the band positions 

from dark- to light-adapted states. Total fit is represented by black trace. The values of the fit are 

listed in the text. 
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The ground state spectrum has absorption bands centered around 760, 800, and 865 nm 

due to absorption of the bacteriopheophytins, bacteriochlorophyll monomers, and 

bacteriochlorophyll dimer, respectively (Figure 1.12A).69 The widths of the absorption 

bands can be determined by Gaussian fits of the individual bands of the optical spectrum, 

yielding band widths at half-maxima (BWHM) of 28 nm centered at 865 nm for the P 

band, 8 nm each centered at 790 and 810 nm for BL and BM, respectively contributing to 

the 800 nm band, and 14 nm centered at 760 nm for both bacteriopheophytins (HL and 

HM). The overall shift in the bacteriopheophytin band is much smaller and it is due to the 

formation of QA , therefore this band was not decomposed into two individual 

contributions of HL and HM for simplicity. 

Once the spectra were recorded for dark-adapted and light-adapted state of the BRCs then 

absorption changes at the dimer band position (865 nm) can be monitored for kinetic 

analysis (Figure 1.14).70 Before turning the light on there is no change in the kinetic trace 

but after turning on the external illumination a transmembrane electron transfer takes 

place creating the P+QB  charge-pair. Due to the instantaneous oxidation of the dimer 

there is sudden change in the kinetic trace (red portion of the kinetic trace in Figure 1.14). 

Upon further illumination this charge-separated state slowly converted to a different 

conformational state (light-adapted state) and this can be seen as a slow rise in the signal 

of the kinetic trace (blue portion of the kinetic trace in Figure 1.14). One must realize that 

this slow increase of the signal can only be observed if subsaturating illumination is used, 

namely only a fraction of the BRCs are in the charge-separated state at any given moment 

during the illumination.  
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Once the external illumination is turned off then the fraction of the BRC which is still in 

the dark-adapted state recovers rapidly whereas the fraction of the BRC, which 

underwent conformational changes recovers on longer time-scale (green and pink 

portions of the kinetic traces in Figure 1.14). 

 

Figure 1.14 Schematic representation of identification of different conformational states 

formed after the illumination by kinetic analysis. Multiple components were identified in the 

kinetic traces. Red component represents sudden change in the absorption upon illumination due 

to the formation of charge-separated state in the dark-adapted conformation. Prolonged non-

saturating illumination causes light-induced structural changes which can be attributed to the blue 

part of the kinetic trace that increases gradually. After turning off the illumination, charge 

recombination from the dark-adapted conformation takes place very rapidly (~ 100 ms from QA 

and ~ 1 s from QB), which is represented by unresolved green part of the trace. The fraction of P+ 

that is recovering from altered light-adapted state recovers on longer time-scale (pink part of the 

trace). Charge-recombination kinetics can have multiple components depending on light-adapted 

conformational sub-states but only one component was shown for simplicity (pink trace). 
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1.8 Site-directed mutants for altering the immediate vicinity of the primary electron 

donor 

 

The two halves of P contain two -conjugated groups: the 2-acetyl and the 9-keto 

carbonyl that are possible proton acceptors for hydrogen bonds (H-bonds) (Figure 

1.12B). Structural and spectroscopic data demonstrated that in the wild type (WT) Rb.

sphaeroides reaction center only one H-bond exists between His L168 and the 2-acetyl 

group of the L half of the dimer (PL) in addition to the Mg-coordinating His residues at 

L173 and M202.3,71,72 A series of mutants have been constructed to modify the H-

bonding pattern on the conjugated carbonyl groups of P by introducing histidine residues 

into each H-bonding position or replacing His L168 (Figure 1.15).73 In the mutants, Leu 

to His at L131, Leu to His at M160, Phe to His at M197, and His to Phe at L168, the 

formation and removal of H-bonds were confirmed by Raman, infrared, and special triple 

spectroscopies.74-76  

 

Figure 1.15 Top view of the two halves of the bacteriochlorophyll dimer (PL and PM in red) 

with nearby amino acid residues (salmon sticks). The four residues, Leu L131, Leu M160, His 

L168, and Phe M197, were modified to introduce or remove H-bonds. Coordinates were taken 

from Protein Data Bank entry 1PCR.6 
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Even though the spectroscopic properties of these mutants, including the shifts of the QY 

band of P caused by the mutations, have been extensively studied in the past, the shifts of 

the absorption bands of the surrounding cofactors upon extended illumination have not 

yet been scrutinized.77,78 

In WT reaction centers the carotenoid pigment was located near BM surrounded by 

mostly aromatic side chains that could place steric constraints on its conformation (Figure 

1.16B). Carotenoids are key elements necessary for the photosynthetic complexes. They 

transfer the energy to the dimer by harvesting the light energy where bacteriochlorophylls 

have weak absorbance. Under intense light condition they can prevent photo-degradation 

of pigments and can regulate light energy.79,80 If the carotenoid is removed from the BRC 

then the mutant is referred as R-26 (Figure 1.16A). Apart from the presence or absence of 

the carotenoid there are no other structural differences between these two strains, but due 

to absence of carotenoid pigment in R-26 mutant BM has access to external solvent.11  

 

 

Figure 1.16 Details of 9 cofactors of the BRC in (A) carotenoidless R-26 mutant and in (B) 

WT. The carotenoid molecule (cyan) binds near inactive BM. Other notations are similar to figure 

1.3. Coordinates were taken from PDB entries 4RCR81 and 2GMR82. 
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1.9 Research perspective 

During photosynthesis solar energy can be harnessed and this process has provided much 

of the world’s energy requirements for more than three billion years ever since life began 

on Earth.83 Additionally, photosynthesis is the source of carbohydrates in our food and 

the carbon that we burn in current fossil fuels, which are the products of ancient 

photosynthetic activities. Photosynthesis can offer an environmentally friendly way to 

convert the solar energy with the least amount of cost.84 Nature has created life on Earth 

in the form of photosynthetic bacteria, which has been present over billions of years, and 

represents the most efficient biological energy conversion system. Since the BRC has 

functional similarities to that of PS II but it is much simpler than the latter, it can be an 

excellent model for studying biological energy conversion and understand the structure-

function relationship. Light-induced transmembrane electron transfer is followed by the 

protein motion and conformational reorganization to solvate newly created charges. 

Nature’s photosynthetic apparatus offers at least three different model examples for solar 

energy conversion that can inspire humanity to develop artificial light-driven energy 

converters for future energy production and storage: (i) creation of long lived, energetic 

charge-separated states in many photosynthetic enzymes, (ii) generation of proton-

electrochemical gradient in both oxygenic and anoxygenic systems, and (iii) catalytic 

splitting of water in oxygenic photosynthetic organisms. Although these model examples 

are heavily dependent on charge stabilization via conformational changes, very little is 

known about the role of the conformational flexibility of the enzymes carrying out the 

reactions. 
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In a cell membrane, the BRCs along with the redox loop ubiquinol:cytochrome oxido-

reductase complete the electron and proton transfer processes, where oxidized dimer (P+) 

is reduced by cytochrome and quinol is replaced by new quinone from the quinone pool 

to complete the cycle (Figure 1.6). In the absence of secondary electron donor to the 

dimer and upon exhaustion of quinone pool in isolated BRCs, subsaturating continuous 

illumination causes structural changes to stabilize charge-pair. Extent of these structural 

changes depends on various factors such as pH, illumination time, nature of hydrophobic 

environment etc. to name a few.  

Many groups have studied the slow conformational rearrangements upon illumination 

and provided new insights to the details of these changes35,56,57,65,67,68 and much of this 

work has centered on the quinones i.e. cytoplasmic side (Figure 1.17)43,85.  
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Figure 1.17 Structure of the BRC (at the center) and highlighted periplasmic (at the top) 

and cytoplasmic (at the bottom) side of the reaction center cofactors. Top panel shows the top 

view of two halves of the bacteriochlorophyll dimer (PL and PM in red) and monomers (BL and BM 

in blue) along with nearby amino acid residues (Leu L131, His L168, Leu M160, and Phe M197 

in violet). The L, M, and H subunits are also shown in the background with salmon, green, and 

yellow colors, respectively. Since light-induced structural changes in the vicinity of the dimer 

(periplasmic side) are identified in this dissertation, it is highlighted by the pink box. Bottom 

panel shows primary and secondary quinone (QA and QB in orange) with non-heme Fe2+. This 

represents conformational gating mechanism for QB (distal (D) to proximal (P) movement) as part 

of the light-induced structural changes at the cytoplasmic side. The protein subunits are shown in 

the background. 
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In contrast to the detailed information concerning the conformational changes near the 

quinones, no specific light-induced structural changes involving tetrapyrrole macro 

cycles or specific amino acid residues near the periplasmic side have been identified. 

Therefore within this research project we used site-directed mutants to identify 

conformational changes near the dimer induced by continuous illumination (Figure 1.17). 

Preliminary results showed that the prolonged lifetime of the light-induced charge-

separated state is primarily observed due to the structural changes that are occurring in 

the vicinity of the dimer. To identify these structural changes in the BRC systematically, 

it is inevitable to study the effects of alterations in amino acid side chains near the P on 

the light-induced conformations of the BRCs in all site-directed mutant reaction centers.  

These studies by using site-directed mutants from Rb. sphaeroides were then extended to 

reaction centers from another strain, Rb. capsulatus, which has homologous structure to 

Rb. sphaeroides.  

The studied structural changes can be physiologically significant if environmental 

conditions, such as excess light or redox competitions limit the sizes of quinone and 

cytochrome pools and the normal function of the BRCs are suppressed. Our goal was also    

to systematically tune the conformational changes by controlling the environment and 

utilize the BRC as an artificial light induced charge-storage device. Within this research 

project alteration of the local environment of the BRC was done by binding different 

transition metal ions, detergent, or lipid molecules with different head-group charges. The 

nature and net head-group charge of these molecules was seen to influence the stability of 

charges by altering the local dielectric constant.  
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Under physiological conditions the light-induced transmembrane electron transfer creates 

positive and negative charges that are separated by a low dielectric medium i.e. 

hydrophobic core of the protein. The ability of the BRC protein to form light-induced 

charge-pair with an extended lifetime as compared to 100 ms (In Nature) can provide 

new opportunities to utilize BRC as a light-driven biocapacitor for energy storage.  

 

First, we have identified the molecular information behind the conformational changes 

that occur in the BRC, which leads to the extended lifetime of the charge-separated state. 

Further evidence was provided to support these structural changes by studying the 

reaction center from another strain Rb. capsulatus. Then we have demonstrated how to 

control these conformational changes by systematically changing various parameters like 

illumination time, binding of lipid or detergent molecules with different head-group 

charge, temperature, pH, binding of different metal ions etc. With these changes, the 

lifetime of the charge-separated state has been increased by an unprecedented 5 orders of 

magnitude.  
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Chapter 2 

Materials and methods 

 

2.1 Growth of Rb. sphaeroides bacterium 

Reaction centers from carotenoid-less mutant R-26 and WT of Rb. sphaeroides were 

grown and purified for all experiments according to Feher and coworkers.86 This process 

involves preparation of media, sterilization of media, inoculation, and finally growing 

bacteria photosynthetically.  

Growth media were prepared by using 4 g of casamino acid, 4 ml of growth factor 

(vitamin solution), 80 ml of concentrated base, 40 ml of potassium succinate, 80 ml of 

phosphate buffer (1M), and 25 ml of ammonium sulfate. Finally the volume was adjusted 

to 4 L. Then the media solution was autoclaved in a SV-120 scientific pre-vacuum 

sterilizer (using Pyrex glass bottles) for an hour and cooled to room temperature before 

doing inoculation.  

The solutions for the growth media are prepared as follows: 

The growth factor or vitamin solution was prepared by combining 2 mg of biotin, 50 mg 

of sodium bicarbonate, 100 mg of nicotinic acid, 50 mg of thiamine-hydrochloride, and 

100 mg of p-amino benzoic acid. The solution was boiled to dissolve all the ingredients 

and the final volume was adjusted to 100 ml. Once it is dissolved, the solution was 

autoclaved for an hour and cooled to room temperature. 
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Concentrated base was prepared by using 12 g of potassium hydroxide and 20 g of 

nitrilotriacetic acid. The solution was stirred for 20 minutes and only the supernatant was 

used. Then 58 g of magnesium sulfate heptahydrate, 6.8 g of calcium chloride dehydrate, 

200 mg of ferrous sulfate heptahydrate, and 4 ml of ammonium molibdenate solution in 

the portion of 1 ml were added slowly. All contents were dissolved before adding the 

next. Finally the ‘metals 44’ solution was added, pH adjusted to ~ 6.7 and volume 

brought to 2 L.  

‘Metals 44’ solution contains 200 mg of ethylenediaminetetraacetic acid (EDTA), 1.1 g 

of zinc sulfate heptahydrate, 500 mg of ferrous iron sulfate heptahydrate, 150 mg of 

manganous sulfate monohydrate, 40 mg of cupric sulfate pentahydrate, 20 mg cobalt 

chloride, 12 mg of boric acid, and 150 l of 6 N sulfuric acid. The volume was adjusted 

to 100 ml. The color was greenish at the beginning but becomes amber later.  

 

The potassium succinate solution with 20% concentration was prepared by pouring 200 g 

of succinic acid in a beaker with 250 ml water and stirring, it did not dissolve completely. 

In another beaker, 200 g of potassium hydroxide was dissolved and cooled. Using an ice 

bath, the potassium hydroxide was added slowly to the beaker containing succinic acid. 

The final volume was adjusted to 1 L and pH was brought to 7.0 by adding HCl.  

 

The 1 M phosphate buffer was prepared by adding 274 g of dibasic potassium phosphate 

trihydrate to 1200 ml of distilled water and dissolving 136 g of monobasic potassium 

phosphate in 800 ml of distilled water then slowly combining the solutions. Final volume 

was made to 2 L at a pH of 7.0.  
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The ammonium sulfate solution with 10% concentration was prepared by dissolving 50 g 

of ammonium sulfate in 500 ml of water and pH was adjusted to 7.0. 

All solutions were prepared in distilled water and final solutions were stored at   4 °C.  

Inoculation with bacteria was done near the Bunsen burner to avoid any external 

contamination. The inoculated media were put in the dark for a maximum of 6 hours in 

order to consume the oxygen. Rb. sphaeroides was grown under anaerobic conditions in 

the presence of light (60 W power) for two days. Once the cells were completely grown, 

they were centrifuged using a Beckman J2-HS centrifuge at 4 °C by generating force of 

7,000 g for 20 minutes with a JA-10 rotor. The supernatant was discarded and all cells 

were collected and stored at 20 °C.86  

 

 

2.2 BRC purification 

 

The BRCs were purified and dispersed in LDAO detergent micelles according to 

previously described standard procedure.87-89 Briefly, 100 g of collected cells were 

allowed to stir in 200 ml of distilled water and 2 ml of 1 M Tris buffer for 1 hour. At the 

end of stirring, a homogenized solution was obtained. Then 2 ml of EDTA, 1.25 g of 

sodium chloride (NaCl) salt for ionic strength and 1.7 ml of LDAO detergent was added. 

The cells were lysed with 40 minutes of pulsed sonication in 10 s intervals in an ice bath 

using a Mandel Scientific company’s ultrasound processor (Model XL2020, 

Farmingdale, New York, USA) to avoid excessive temperature.  
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The final volume of the solution was adjusted to 210 ml, which was filled in 8 tubes and 

centrifuged by generating force of 200,000 g at 4 °C for 2 hours in Beckman Optima XL-

100K ultracentrifuge (Fullerton, California, USA) with Ti-70 fixed angle rotor. After the 

first centrifugation, pellets were re-suspended in 205 ml of TEN buffer. TEN buffer 

contains 15 mM Tris-HCl, 1 mM EDTA, and 0.1 M NaCl. Then 4.66 ml of LDAO was 

added in the dark and allowed to stir for 10 minutes at room temperature. Centrifugation 

of this solution was done with same parameters as the above-mentioned ultracentrifuge 

procedure to solubilize BRCs in detergent micelles. Crude BRCs dispersed in detergent 

were collected from the supernatant discarding the pellets containing cell membranes. For 

220 ml of supernatant 72 g of ammonium sulfate and 7.3 ml of 30% LDAO were used for 

the isolation of crude BRCs. The mixture was allowed to stir for 15 minutes at room 

temperature. These crude BRCs were centrifuged by generating force of 10,000 g at 4 °C 

for 15 minutes in Beckman J2-HS centrifuge machine with a rotor type of JA-17 and re-

suspended in TEN buffer. Re-suspended BRCs were dialysed overnight, to remove 

ammonium sulfate, in TL0.1E which contains 15 mM Tris-HCl, 0.1% LDAO, and 1 mM 

EDTA.  

For further purification of the BRCs, diethylaminoethyl (DEAE) ion exchange column 

chromatography was used. The Toyopearl 650 M column was equilibrated with excess of 

TL0.1E buffer then protein was loaded onto the column, which binds to the column 

material. Then column material was washed with bound protein by using TL0.1E buffer 

until no more free pigment was coming out. To verify whether the free pigment was 

coming, optical spectrum of eluate was recorded every 10 minutes in 260 to 1000 nm 

range.  
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By creating a linear salt gradient from 0.03 to 0.25 M NaCl in TL0.1E buffer purified 

protein and other free pigments were separated. Afterwards the column material was 

cleaned with 1M NaCl. The purity of the BRC protein was checked by taking the ratio of 

the absorbances at 280 nm and 800 nm (A280/A800). This ratio was kept below 1.6 but for 

the purest protein this ratio has to be 1.2. Aromatic amino acids have absorbance at 280 

nm, which is 1.2 times that of bacteriochlorophyll monomer at 800 nm. For pure BRC, 

the ratio of amplitude of absorption bands of bacteriochlorophyll dimer, 

bacteriochlorophyll monomer and bacteriopheophytin has to be 1:2:1. After the column 

chromatography, excess salt from the BRC protein was removed by dialysis against salt 

free TL0.1E buffer. All dialysis were done at 4 °C in the dark using dialysis membranes 

with a molecular weight cut off (MWCO) of 12-14 kDa. The BRC protein dispersed in 

detergent micelles were further concentrated by ultra filtration using Millipore 

membranes having a nominal molecular weight limit (NMWL) of 30 kDa under nitrogen 

pressure. The concentration of BRC protein was checked by optical spectroscopy by 

determining absorption of bacteriochlorophyll monomer at ~ 800 nm where it has 

extinction coefficient of 288 mM-1 cm-1.90 In order to block the electron transfer from QA 

to QB, terbutryn, a potential inhibitor was routinely added at a 100 M concentration.32 

Purified protein was stored at 80 °C in the dark. The purified BRC can be dispersed into 

different detergent micelles by running same column chromatography technique 

explained before for the purification with TX0.1E (15 mM Tris-HCl, X: TX-100, DOC, or 

CTAB and 1 mM EDTA) buffer that has appropriate concentration of the detergent 

(above c.m.c.) and buffer with high salt concentration was applied to elute the protein. 

All used chemicals were ordered from Sigma-Aldrich. 
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2.3 Proteoliposome preparation 

 

Reconstitution of the BRCs from detergent micelles into the liposomes was done by the 

standard procedure.30 The proteoliposomes prepared in this work were from 

phosphatidylcholines and phosphoserine with different fatty acid chains and different 

head-group charge manufactured by Avanti Polar Lipids (Alabaster, Alabama, USA). 

These lipids were used without further purification (>99%). Briefly, 4 mg of 

phospholipids were dissolved in 200 L chloroform in a conical tube and chloroform was 

evaporated with continuous nitrogen stream to form a thin uniform film of phospholipids 

on a surface of the tube. The film can be stored at 20 °C for a month. This lipid film was 

dissolved in 0.5 mL of 4% sodium cholate solution prepared in respective buffer that has 

15 mM potassium chloride (KCl) and sonicated for 45-60 minutes with 10 s pulse 

interval using the same ultrasonic processor that was used to break the cells, to form 

lipid-detergent mixed micelles. After the addition of the BRC in ~ 2 M final 

concentration the mixture was agitated with a vortex mixer to allow the 

phospholipid/protein/detergent mixed micelle formation. This dispersion of BRCs with 

mixed micelles was then loaded into 15 cm long Sephadex G-50 superfine gel filtration 

column. The column was pre-equilibrated and packed with a respective buffer. 

Appropriate buffer was used to set desired pH of the experiment. During the elution, the 

mixed micelles containing BRCs were derived from detergents while phospholipids and 

protein could rearrange to form proteoliposome. The formation of these proteoliposomes 

was verified by light-scattering measurement superpositioned by active BRC absorption 

spectrum.91 
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The following lipids were used in this thesis. 

Zwitterionic 1,2-dilauroyl-sn-Glycero-3-Phosphocholine (DLPC), zwitterionic 1,2-

dimyristoyl-sn-Glycero-3-Phosphocholine (DMPC), zwitterionic 1,2-dioleoyl-sn-glycero-

3-phosphocholine (DOPC), cationic 1,2-dioleoyl-3-trimethylammonium-propane 

(DOTAP), anionic 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPS). Since lipids 

containing 18 carbon atoms with mono-unsaturation (dioleoyl family) form lipid bilayers 

that have hydrophobic thickness similar to the cell membranes of Rb. sphaeroides, the 

effect of head-group charge on light-induced conformational changes can be studied in 

proteoliposomes. Using shorter acyl chain length of lipids with same head-group the role 

of hydrophobic mismatch on stability of light-induced charge-pair can be identified.  

 

 

2.4 Construction of mutants 

 

A series of reaction center mutants have been constructed by our collaborators, J. C. 

Williams and J. P. Allen (Arizona State University, Tempe, Arizona, USA) in the 1990s, 

to modify the hydrogen bonding pattern on the conjugated carbonyl groups of P by 

introducing histidine residues in the hydrogen bonding position or replacing His L168.  In 

the mutants, Leu to His at L131, LH(L131), Leu to His at M160, LH(M160), Phe to His 

at M197, FH(M197), and His to Phe at L168, HF(L168), the formation and removal of 

hydrogen bonds were confirmed both by Raman and infrared spectroscopies.75,77,89,92,93,  
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Comparison of reaction centers with different combinations of hydrogen bonds in terms 

of the light-minus-dark optical difference spectra and the kinetics of the absorbance 

changes after long continuous illumination allowed us to identify the contribution of 

hydrogen bonds to possible structural changes involving P.   

The construction of the mutant strains of Rb. sphaeroides by oligonucleotide-directed 

mutagenesis has been described before78,89,92 and construction was done by our 

collaborators. For shorter abbreviations, the mutants will be identified in the text by only 

the position of the mutation. The term wild type used in this study refers to those isolated 

from the deletion strain complemented with a plasmid bearing the wild-type reaction 

center genes. Reaction centers were kept in 15mM Tris-HCl, pH 8.0, 0.025% LDAO and 

1 mM EDTA.  

 

 

2.5 pH buffer preparation 

 

Different buffers were used to alter the pH of the assay suspension. Buffer solutions were 

prepared from distilled water by using 15 mM of respective buffer, 1mM EDTA, and 

different detergents above their c.m.c. Following buffers were used to prepare assay 

suspensions at different pH values. 

pH 5.5: MES (2-(N-morpholino)ethanesulfonic acid) 

pH 6: MES (2-(N-morpholino)ethanesulfonic acid) 

pH 7: BIS-TRIS Propane (1,3-bis(tris(hydroxymethyl)methylamino)propane) 

pH 7: Phosphate buffer 
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pH 7: MOPS (3-(N-morpholino)propanesulfonic acid) 

pH 8: BIS-TRIS Propane (1,3-bis(tris(hydroxymethyl)methylamino)propane) 

pH 8: TRIS (tris(hydroxymethyl)aminomethane) 

pH 9: CHES (N-cyclohexyl-2-aminoethanesulfonic acid) 

pH 10: CAPS (N-cyclohexyl-3-aminopropanesulfonic acid) 

 

 

2.6 Biophysical techniques used in the characterization 

2.6.1 Laser flash photolysis (LFP) 

 

The kinetics of the charge recombination reactions upon flash excitation were recorded 

using a miniaturized LFP-112 laser flash photolysis (Luzchem Research Inc. Ottawa, 

Ontario, Canada) equipped with a pulsed Nd-YAG laser (Model MINILITE II from 

Continuum, Santa Clara, California, USA, 532 nm output wavelength) as a photo 

excitation source that generates 5 ns saturating laser pulse directed perpendicular to the 

direction of the monitoring beam. Data were collected by monitoring at the center of 

absorption band of the dimer (~ 865 nm) on a digital oscilloscope (Tektronix TDS-2012, 

Beaverton, Oregon, USA) in a DC-coupled mode, which was used as an analog to digital 

converter. The digitized signal was then processed using the software supplied with the 

LFP unit. The monitoring light was generated by an “Ozone-free” Xe lamp and was 

guided to the sample with fiber optics. To improve the signal to noise ratio, 25 traces 

were collected and averaged manually.  
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In these measurements 4 M BRCs along with 100 M terbutryn were used. The 

recorded traces were analyzed using Sigma-Plot software by decomposing the signals to 

exponentials using linear Marquardt algorithm.  

 

 

2.6.2 Steady-state absorption spectroscopy 

 

Measurements of light-induced charge recombination and structural changes were 

performed on a Cary 5000 UV-VIS-NIR spectrophotometer from Agilent (formerly 

Varian, Mulgrave, Victoria, Australia). The formation of light-induced states can be 

achieved by external, continuous wave excitation using 250 W tungsten lamp source 

(Oriel 6129, Stamford, Connecticut, USA) and delivering it through fiber optics 

(Newport Corp., Irvine, California, USA). Different light intensities (from 40 to 250 W) 

can be controlled using the power supply (AMETEK, Sorensen, DCS33-33E, San Diego, 

California, USA). The light intensity was set to ~ 30% of the saturating value for wild 

type at a 2 M reaction center concentration. The samples were prepared under very 

weak green light and were adapted to the dark in the spectrometers for ~ 30 min before 

being exposed to any illumination. Terbutryn was used at a concentration of 100 M to 

eliminate the secondary quinone activity. All measurements were performed in 3 ml 

quartz cuvette with the following parameters. 

Scanning wavelength: 700-1000 nm or 500-700 nm 

Average time to scan: 0.033 s  

Data interval: 0.5 nm 
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Scan rate: 909.091 nm/min 

Spectral bandwidth: 2 nm 

Baseline was corrected before measuring the spectra. For light-minus-dark difference 

spectra the baseline was taken with the BRC sample in the dark-adapted state. Then 

series of spectra were recorded during and after the prolonged non-saturating illumination 

with 1 minute intervals up to 5 minutes and with 5 minutes intervals until the signal 

recovered completely. During illumination, the spectra were recorded every minute. For 

the temperature measurements, a dual Peltier-cell accessory was used and the temperature 

was varied using external temperature controlling unit with 0.1 °C accuracy. To cool 

Peltier-cell water was continuously circulated using small aquarium pump. A small 

magnetic stirrer was used as needed to mix the solution in the cuvette which was 

controlled by Peltier-cell assembly. 

Kinetic analysis was done in the Kinetic mode of the spectrophotometer by monitoring 

the absorption changes at a single wavelength.  The kinetic traces were analyzed by 

decomposing them into exponentials using a Marquardt algorithm. 

For different binding studies of metal ions, detergents or lipids, the titrations were carried 

out in the cuvette and kinetic traces were recorded with external illumination. To remove 

EDTA the BRCs were dialysed extensively for 48 hours at 4 °C against EDTA-free 

buffer that has detergent. The dialysing baths were changed every 12 hours.  
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2.6.3. Spectroelectrochemical redox titrations 

 

The oxidation-reduction midpoint potential of the P/P+ couple was determined by 

spectroelectrochemical oxidation-reduction titration both in the dark and under a weak 

continuous, external illumination. For these measurements the ionic detergent, LDAO, 

was replaced with a non-ionic detergent, Triton X-100 (TX-100) by ion exchange 

chromatography.93 The intensity of the illumination was selected to achieve the bleaching 

of 3-7% of the dimer only depending on the mutants. This very weak illumination 

prevented the samples from suffering photo damage during the long experiments and also 

ensured that the vast majority of the dimer is in its reduced state at any given time 

without an applied potential. The angle of the illumination was ~ 45° with respect to the 

propagation of the monitoring beam to avoid stray light entering the detector chamber. 

The degree of the electrochemical oxidation of P was determined by monitoring the 

absorption at the maximum of the QY band centered at 865 nm in WT from the near-

infrared (700-1000 nm) spectra recorded at different ambient redox potentials with a Cary 

5000 spectrophotometer as described earlier.93,94 The ambient redox potential was 

adjusted with a CV-27 potentiostat from Bioanalytical Systems (West Lafayette, Indiana, 

USA), and the reaction centers were placed into a thin-layer spectroelectrochemical cell 

of local design containing a 333 lines/in. gold mesh (Precision Eforming, Cortland, New 

York, USA), similar to a system described earlier.94 A miniature calomel electrode (Cole 

Palmer, Vernon Hills, Illinois, USA) was used as the reference electrode. The calibration 

of the calomel electrode potential was done according to O’Reilly.95  
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Potassium hexacyanoferrate-(II) and potassium tetracyanomono(1,10-

phenanthroline)ferrate-(II) were added in 300 M concentration as redox mediators. The 

BRCs for the electrochemical titrations were concentrated to ~ 300 M and were kept in 

0.05% TX-100, 1mM EDTA, 15 mM MES, Tris-HCl, or MOPS depending on the pH. 

All measurements were performed at room temperature.  

 

 

2.6.4 Proton uptake/release measurements 

 

For these measurements the ionic detergent LDAO was replaced by 0.05% TX-100 by 

using ion-exchange column chromatography to eliminate the buffering capacity caused 

by the protonatable groups of LDAO. Then the buffer (15 mM Tris-HCl) and the EDTA 

were removed by a long (24-48 h) dialysis, with frequent changing of the dialysing 

medium (0.05% TX-100, 100 mM NaCl, pH 8.0). The ionic strength of the assay solution 

was kept constant by 100 mM NaCl to ensure a stable reading. Light-induced pH changes 

were measured by an Orion Ross semimicro combination pH electrode connected to an 

Orion 920A precision pH meter (Thermo Scientific). The net proton uptake or release 

was the difference of the electrode responses between the unbuffered (~ 1 M) and 

buffered (15 mM) samples. To determine the buffering capacity of the entire system, a 

known amount of strong acid (HCl) was added during extensive stirring of the sample 

solution. All measurements were performed at room temperature. All chemicals were 

stored under nitrogen pressure after preparation to avoid the absorption of carbon 

dioxide, which can act as a weak buffer in the carbonic acid and bicarbonate equilibrium.  
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2.7 Data analysis 

2.7.1 Analysis of the kinetic traces 

 

Kinetic traces, measured by LFP or absorption spectroscopy depending on the time-

scales, are characteristic to the various conformational sub-states. Decomposition of the 

kinetic traces was done into exponentials assuming three kinetic components according to 

the following equation:  

 

31 2( ) k tk t k tA t Be Ce De                                 (1) 

 

Where,  

A(t): total signal amplitude at any time t 

B, C, and D: amplitudes of the decaying kinetic components 

t: time  

k1, k2, and k3: rate constants of the decaying kinetic components 

 

Lifetime of the charge-separated state was determined by, 

Time constant ( ) = 1
k

               (2) 

Where, k is the rate constant of the kinetic component. 
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2.7.2 Analysis of metal binding 

 

The dissociation constant for metal binding study was determined based on a model that 

explained earlier.96 This model was later modified for the manganese binding site near 

the dimer97 and also used in similar context before.98 Kinetic traces in the presence of 

different concentrations of metal ion were analyzed according to equation (1) and 

dissociation constant of metal binding was determined by using following equation:  

 

2 2 2[ ] [ ] ([ ] [ ] ) 4[ ][ ]
2[ ]

D D
M

M RC K M RC K RC M
R

RC

2

          (3) 

Where,  

RM: fraction of the slow kinetic component 

[M2+]: added metal ion concentration 

[RC]: BRC protein concentration 

KD: dissociation constant 

 

The BRC concentration for these measurements was 1 M, which sets the lower limit for 

determining the value for KD to ~ 1 M.98 

During some measurements value of RM does not reach to unity even at the highest 

applied metal ion concentration.99 Therefore it is necessary to add an offset for these 

fitting models. With the addition of this offset the fraction of P+ can be given as follows: 

( ) 1
0

M
A

f P R
A

                (4)  
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Where, 

A : absorbance change at 865 nm at the highest applied metal concentration 

A0: absorbance change at 865 nm without any metal ion 

 

2.7.3 Decomposition of absorption spectrum into individual components 

 

Ground state spectrum of the BRC was fitted by Gaussians or sum of Gaussians for 

bacteriochlorophyll dimer, bacteriochlorophyll monomers (BL and BM), and 

bacteriopheophytin as follows:  

2
00.5

( )
W W

LA C a e                            (5) 

Where, 

A: absorbance at any given wavelength 

C: offset, applied if traces did not recover to zero 

a: peak absorbance 

W: wavelength 

W0: peak position in the wavelength scale 

L: bandwidth at half maxima (BWHM) 

 

2.7.4 Determination of P/P+ midpoint potential 

 

The Nernst equation was used to fit the data of fraction of P reduced as a function of 

applied potential to get the midpoint potential value of the P/P+ couple. The data were 

fitted with a one-electron Nernst equation as described earlier.93  
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During the measurements conducted under and within a certain time interval after weak 

illumination two/three populations of P had been observed with two/three different 

midpoint potentials and two/three components were used instead of one. This equation is 

given as follows: 

ln i
i m

i

RT OE E
nF R

                (6) 

Where, 

Ei: applied potential  

Ri: fraction reduced at applied potential 

Oi: fraction oxidized at applied potential 

Em: midpoint potential 

R: universal gas constant; R=8.314 JK-1mol-1 

T: absolute temperature 

n: number of electrons 

F: Faraday constant; F: 9.648 × 104 C mol-1 

 

2.7.5 Determination of proton dissociation constant 

 

The Henderson-Hasselbalch curve was used to explain pK shifts of the amino acid 

residues, which is expressed by the following equation: 

(

1( )
1 10 pH pKf H )                 (7) 
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Where, 

f(H): fraction protonated  

pK: negative logarithm of the proton dissociation coefficient 

 

2.7.6 Determination of redox properties of the dimer as a function of metal ion 

concentration 

The change in P/P+ potential as a function of pM (pM= log[M], [M]:metal ion 

concentration) is described by the following relation taken from previously used 

model100:  

0

1/2 1/2
10 10( / ) 0.059log
10 10 M

pMpM

pMpME E P P             (8) 

 

Where, 

E1/2 = applied potential  

E1/2 (P/P+) = midpoint potential  

pM=-log[M], [M]:metal ion concentration in moles 

[M0] = maximum applied metal ion concentration without binding  

[MM] = maximum applied metal ion concentration after binding  

This model was used to estimate the maximum P/P+ midpoint potential value in the 

presence of manganese metal ion by extrapolating the fitted data. 
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Chapter 3 

Identification of molecular mechanism behind the light-induced 

conformational changes using site-directed mutant reaction centers 

from Rhodobacter sphaeroides 

 

The results in this chapter are based on the following published papers: 

1. Deshmukh, S. S., Williams, J. C., Allen, J. P., and Kálmán, L. (2011) Light-

induced conformational changes in photosynthetic reaction centers: Dielectric 

relaxation in the vicinity of the dimer. Biochemistry, 50, 340-348.  

2. Deshmukh, S. S., Williams, J. C., Allen, J. P., and Kálmán, L. (2011) Light-

induced conformational changes in photosynthetic reaction centers: Redox-

regulated proton pathway near the dimer. Biochemistry, 50, 3321-3331. 

 

Author contributions: 

S. S. Deshmukh performed the experiments, analyzed the data, and contributed to writing 

the papers. L. Kálmán designed the research, guided the data analysis, and wrote the 

papers. J. C. Williams and J. P. Allen designed, constructed, and supplied the mutants 

and contributed to writing the papers.  
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In this chapter, we report the effects of alterations in amino acid side chains near P on the 

light-induced conformation of BRCs, as evidenced by the correlation between the 

electrochromic absorption changes of the light-minus-dark difference optical spectra and 

kinetics of the charge recombination after prolonged illumination. The combination of 

light-induced optical spectroscopy, electrochemical redox, and protonational 

measurements are used here to identify the characteristics of the conformational states 

such as energetics and protonational states. 

 

 

3.1 Characterization of mutant reaction centers by optical spectroscopy 

3.1.1 Light-minus-dark difference optical spectra

 

In the presence of terbutryn, the light-induced changes in the optical spectra of WT and 

the 11 mutants exhibited characteristic features associated with both P+ and QA . These 

changes include an absorption decrease of the QY band of P centered at 865 nm in WT 

but varied in the mutants, an electrochromic blue shift on the bacteriochlorophyll 

monomer (B) region around 800 nm and an electrochromic red shift on the 

bacteriopheophytin (H) band around 760 nm. Figure 3.1 shows these absorption changes 

recorded 1 min after the illumination had begun. The observed variations in the light-

minus-dark spectra of the mutants involved differences in the position of the QY band of 

P, and in the extent of the electrochromic changes around the B bands (vertical lines in 

Figure 3.1).  
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Some characteristic differences were also found in the spectra of the individual mutants 

recorded at different times during and after the illumination as discussed later. The 

position of the QY band of the dimer showed some correlation with the introduced H-

bonds. Generally, the formation of an H-bond with PM resulted in a blue shift in the 

position of the P-band, and the introduction of the H-bonds with PL caused red shifts in 

this parameter. Table 3.1 and Figure A1a of the Appendix A summarize the observed 

peak positions of the P band after 1 min illumination upon addition of each H-bond at the 

L168, M197, L131, and M160 positions. For example, the presence of the H-bond 

between the 2-acetyl group of the PL and the His L168 in the WT reaction center resulted 

in a 16 nm red shift relative to the position of the P band in the L168 mutant, which lacks 

any of the H-bonds. Interestingly, comparison of mutants with the symmetrical H-bond 

between the 2-acetyl group of PM with the His substitution at the M197 position shows 

almost the same value of 17 nm upon comparison of mutants with and without the His 

L168 change, namely, the M197 and M197+L168 double mutant. Formation of H-bonds 

with the 9-keto groups on both sides of P showed smaller quasi-symmetrical shifts of 9 

nm to the blue and 7 nm to the red in the M160+L168 and L168+L131 double mutants, 

respectively, compared to the L168 mutant. The differences in the position of the P band 

were smaller in mutants with more than one H-bond. For example, the hypsochromic 

shifts resulting from the H-bond at PM in the M160 and M197 mutants are only 1-3 nm 

relative to the WT, which has one H-bond. A bit larger bathochromic shift of 5 nm was 

observed in the presence of the H-bond at PL in the L131 mutant.  
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With the increase in the number of H-bonds from two to three and from three to four, the 

observed shifts of the dimer band from 865 nm became negligible (structure Figure 1.15 

and Figure A1a of the Appendix A).  

 

Figure 3.1 NIR light-minus-dark optical difference spectra of BRCs isolated from WT and 

11 hydrogen bonding mutant. The spectra were recorded after continuous illumination for 1 

min and were normalized to the center of the QY band of the dimer (832- 870 nm depending on 

the mutant). The position of the dimer (dotted-dashed line), the position of the positive band of 

the electrochromic absorption change of the monomers in the WT (dotted line), and the position 

of the dimer in the L168 mutant (short dashed line) are indicated by vertical lines for reference. 

The spectra of mutants that have L131 mutation are shown in red. The spectra are approximately 

arranged in increasing order of oxidation potential of the dimer.73 Conditions were as follows: 2 

M BRC in 15 mM Tris (pH 8), 0.1% LDAO detergent, 1 mM EDTA, 100 mM NaCl, and 100 

M terbutryn. The illumination time was 1 min (through a 870 nm interference filter using a 

water bath as a heat filter). The scanning rate was 800 nm/min. 
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Differences were also found in the electrochromic absorption changes involving the 

bands of BL and BM near 800 nm. The basis of the comparison was the position of the 

positive peak centered at 790 nm in the WT spectrum (Figure 3.1, vertical dotted line). 

The BRCs that have H-bonds at the L131 position exhibited a 6-9 nm blue shift in the 

position of this peak relative to the WT (red traces in Figure 3.1), while the other 

mutations resulted in only 0-2 nm changes. This trend is clearly visible in Figure A1b of 

the Appendix A, where the change in the position of the positive band near 790 nm is 

plotted as a function of the number of H-bonds upon introduction of any new H-bond into 

a particular mutant. 

 

 

3.1.2 Kinetics of formation and recovery of light-induced states

After recording the light-minus-dark difference spectra, the kinetics of the absorption 

changes caused by non-saturating illumination were measured at the center of the QY 

band of the dimer observed in the BRCs from each mutant (Figure 3.2). In the presence 

of terbutryn, the P+QA
 state was formed immediately after the light was turned on, 

resulting in a rapid absorption change. In addition, a further slower bleaching was also 

observed in all BRCs. Because the excitation was sub-saturating, with only ~ 30% of WT 

reaction centers excited at the beginning of the illumination, this slow increase can be 

interpreted as arising from another light-induced state being formed with a longer 

lifetime. Once the light is turned off, complex recovery kinetics that depended on the 

duration of the illumination and the mutation are observed (Table 3.1). 
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 For most measurements, the BRCs were poised at pH 8.0 and illuminated for 1 min for 

comparison of the recovery kinetics of the oxidized dimer in the mutants after prolonged 

illumination.  

 

Table 3.1 Kinetic and steady-state optical spectroscopic parameters of the WT and 11 H-

bond mutants measured in BRCs of Rb. sphaeroides. 

 
 
mutanta 

 
P positionb 

(nm) 
 

 
position 

790c (nm) 
 

 
kslow decayd 
(× 102 s-1) 

 

 
no. of 

H-bondse 

 

 
L168 
M160+L168 
M197+L168 

WT 
M160 
M197 
M197+M160 
 
L168+L131 
L131 
M160+L131 
M197+L131 
M197+M160+L131 

 
849 
840 
832 
 
865 
862 
863 
864 
 
856 
870 
868 
865 
865 

 
790 
788 
790 
 
790 
788 
790 
788 
 
784 
784 
781 
782 
784 

 
1.63 
1.72 
1.69 
 
1.96 
2.56 
3.33 
7.14 
 
9.58 
14.28 
12.50 
12.51 
14.28 

 
0 
1 
1 
 
1 
2 
2 
3 
 
1 
2 
3 
3 
4 

 

a Only the positions where the mutations were made are shown. The exact substitutions are listed 

in section 1.8.  
b Position of the QY band of the dimer in the light-minus-dark difference spectra of the mutants in 

QA active BRCs (data taken from Figure 3.1).  
c Position of the lower wavelength band of the electrochromic shift on bacteriochlorophyll 

observed at ~ 790 nm in the light-minus-dark difference spectrum of the WT (data determined 

from Figure 3.1).  
d Rate constants of the slowly decaying component of P+ after illumination for 1min (determined 

from Figure 3.2).  
e Number of H-bonds to P in the mutants. 
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During this 1 min illumination, the optical absorbance changes reached their saturating 

values in all mutants and were fully reversible even in the mutants with high dimer 

potentials. After the illumination was turned off, a fraction of the reaction centers 

followed the fast P+QA
   PQA charge recombination while the rest of P+ recovered on a 

much longer time scale. In the BRCs containing the Leu to His mutation at the L131 

position, the slower component of the P+ decay had a lifetime of 7-8 s, corresponding to 

rate constants of 1.2-1.4 × 10-1 s-1. Contrarily, in BRCs without this mutation, this kinetic 

parameter was much longer, with lifetimes of 30-63 s, corresponding to rate constants of 

1.6-3.3 × 10-2 s-1. The L168+L131 and M160+M197 mutants exhibited intermediate 

values with 11 and 14 s lifetimes, or kslow values of 9.58 × 10-2 and 7.1 × 10-2 s-1, for that 

slow phase, respectively. The relative amplitude of the slow phase in the formation 

(during the illumination) and recovery (in dark) was much smaller in the case of the L131 

family of mutants and the M160+M197 double mutant compared to the rest of the 

mutants (Figure 3.2). 
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Figure 3.2 Formation and disappearance of the continuous light-induced P+QA  redox states 

in the WT and 11 hydrogen bond mutants measured at the position of the P band (832-870 

nm depending on the mutant) at pH 8. A. Mutants containing the Leu to His mutation at the 

L131 position. B. All other mutants and WT. The illumination time is 1 min. The traces were 

normalized and vertically shifted for better comparison. The vertical up and down arrows indicate 

when the illumination was turned on and off, respectively. Conditions as described in the legend 

of Figure 3.1. 

 

 

3.1.3 Correlation between the slow kinetic components and the light-induced spectra

Comparison of the results shown in Figures 3.1 and 3.2 and also Figure A1a, b of the 

Appendix A suggests that there is no obvious correlation between the position of the QY 

band of the P and the kinetics of the recovery of the charge-pair after continuous 

illumination. Because the BRCs contain only QA and not QB due to the addition of the 

terbutryn, no significant differences are expected among the mutants in the spectra or 
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kinetics due to QA . On the other hand, the 6-9 nm blue shift from 790 nm in the light-

minus-dark spectra (red traces in Figure 3.1 and Figure A1b of the Appendix A) in the 

mutants carrying the Leu to His mutation at the L131 position was coupled to faster 

recovery kinetics of the P+QA  charge-pair after the continuous illumination was turned 

off. On the basis of this correlation, we decided to investigate the electrochromic 

absorption changes in the accessory B region around 800 nm thoroughly. These spectral 

changes are sensitive to the alteration of the local electric field near the B molecules 

because of both the charge separation and the conformational changes proposed in this 

work. Even though the resolution and the assignments of the spectral features would be 

more accurate in low-temperature spectra, we decided to perform the analysis at room 

temperature. Cooling the samples to cryogenic temperatures introduces additional 

changes in the spectra such as shift on the QY absorption band of P from 865 nm 

measured at room temperature to 890 nm at 77 K due to structural changes,77 and it 

would be difficult to separate these changes from those that were caused exclusively by 

the prolonged illumination. In the room-temperature, light-minus-dark spectra presented 

in Figure 3.1, the electrochromic changes near 800 nm are partially overlapped with 

contributions associated with the formation of QA  and bleaching of the P band. These 

overlapping contributions were removed by subtraction of the light-induced QA /QA 

difference spectrum and the photo-bleached P band from the light-minus-dark difference 

spectrum for each mutant and the WT. The resulting spectra contain spectral signatures 

that are exclusively characteristic of the accessory B monomers. The light-induced 

QA /QA difference spectra were recorded in each mutant and the wild type in the presence 

of a secondary electron donor, ferrocene (data shown for only the WT).  
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The treatment of the light-minus-dark difference spectra is presented for the WT as an 

example in Figure 3.3A. In the analysis, each monomer B is modeled as giving rise to an 

absorption band near 800 nm (794 and 810 nm for BL and BM, respectively) with three 

parameters, namely amplitude, width at half-maximum, and position. The spectra were 

fitted assuming that the 800 nm band is due to the two B monomers with each absorption 

band shifting and broadening in response to illumination. The resulting spectra featuring 

only the electrochromic absorption changes of the B monomers are shown for two 

representative BRCs: the WT and the L131 mutant in panels B and C of Figure 3.3, 

respectively. For the entire set of studied BRCs, these spectra can be reviewed in Figure 

A2 of the Appendix A. The light-induced electrochromic absorption changes of the 

accessory B monomers were analyzed by assuming shifts and broadenings of the bands 

of B (BL and BM) upon illumination for 1 min. The parameters of the fits for all mutants 

and the wild-type are listed in Table A1 of the Appendix A.  
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Figure 3.3 Analysis of the NIR light-minus-dark difference optical spectra. Panel A shows 

the treatment for the WT reaction center. The contribution of the dimer band (blue dotted line) 

and the QA /QA difference spectrum (green dotted line) were subtracted from the spectrum 

measured after illumination for 1 min (red trace). The resulting trace (thick pink solid line) 

represents the electrochromic absorption changes of BL and BM. Panels B and C show the 

electrochromic absorption changes of BL and BM after the subtractions performed in the spectra of 

WT and the L131 mutant, respectively. The electrochromic absorption changes were analyzed in 

terms of shifts (dashed dark cyan) and broadenings (dotted lines) of the QY absorption bands of 

BL and BM. The conditions and the parameters of the fit are described in the text and listed for all 

mutants in Table A1 of the Appendix A. 

 

 

Shifts in the absorption band of a chromophore are generally due to the change in the 

polarizability, while band broadenings are associated with the change in the dipole 

moment of the chromophore.101  
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The positions and the widths at half-maximum of the bacteriochlorophyll monomer bands 

were determined by Gaussian fits from the absolute absorption spectra of each BRC, 

assuming equal bands for each of the B monomers as introduced previously.102 The 

observed position of the B band at 803 nm is remarkably conserved in the room-

temperature absolute optical spectra of the mutants in this study and even in mutants that 

contain five or six amino acid substitutions near the dimer.97 The contributions of the two 

B monomers, however, to the light-induced spectra were found to be significantly 

different in the two groups of mutants. In the mutants containing the Leu to His mutation 

at the L131 position, the hypsochromic shift of the BM band from 810 nm was only 4.1-

5.3 nm, while in the rest of the mutants including the WT, this shift was approximately 

twice as large (6.9-11.3 nm). Contrarily, the blue shift of the BL band from 794 nm was 

found to be slightly larger in the group of the L131 family with values of 2.5-3.8 nm 

compared to the 0.3-2.7 nm shift in the family that lacks this mutation. It should be noted 

that the mutants that have no H-bonds with PL at all (L168, L168+M160, and 

L168+M197) exhibited negligible shifts in the BL band and the largest shifts in the BM 

band with values of 0.3-2.0 and 9.6-11.3 nm, respectively. In summary, the light-induced 

electrochromic shifts were almost balanced between the bands associated with BL and BM 

in the L131 family, whereas in the group whose members lack this mutation, the shift of 

the BM band outweighed the small to negligible shift of the BL band. Small broadenings 

with decreased peak absorbances had to be considered in most cases, indicating that not 

only the polarizability but also the dipole moment of the B molecules is changing upon 

illumination. These broadenings, however, were much less prominent than the shifts and 

mostly were below 1 nm (Figure A2 and Table A1 of the Appendix A). 
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3.1.4 Electron transfer rates in different conformational states

All 12 studied BRCs exhibited complex recovery kinetics for the P+QA
 charge-pair after 

illumination for 1 min with rate constants for the slow kinetic component ranging from 

1.63 × 10-2 to 1.42×10-1 s-1 (Figure 3.2). The flash-induced P+QA   PQA charge 

recombination is expected to be a single-exponential decay in the WT and the mutants 

used in this work with rate constants ranging between 4.5 and 25 s-1.93 Even if the QB 

activity of the BRCs is retained, there must be two components in the charge 

recombination kinetics in WT reaction centers with rate constants of ~ 10 and ~ 1 s-1 at 

pH 8.103 It has been shown previously by several groups that continuous illumination 

generates a heterogeneous population of detergent-isolated BRCs that have significantly 

longer lifetimes for the P+QA  or P+QB
 charge-pairs in the WT and in the R-26 strain 

compared to those obtained after single-flash excitation.35,46,56,57,65,67,68 The longer 

lifetimes determined using prolonged illumination were attributed to the recombination of 

the charge-pairs in BRCs that adopt different conformations induced by the illumination. 

The quantum yields of the proposed conformational changes were found to be low, and 

the light-adapted conformations could not be detected in the kinetic traces using single-

flash excitation. During continuous illumination or trains of flashes, however, these 

altered conformations can be built up because of the long lifetimes of the charge-

separated states in these different conformers. Although earlier studies used various 

different conditions (temperature, pH, detergent environment, illumination time and 

intensity, QB occupancy, etc.) that influence the recovery kinetics, the lifetimes 

determined in this study for the WT are in good agreement with those previously reported 

for the WT and R-26.57,65,68  
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The lifetime and the number of the kinetic components are variable and dependent on the 

illumination time, indicating that the conformational changes are strongly linked and 

some involve consecutive reactions.57,68 After the sample had reached equilibrium, two 

major components can be distinguished at pH 8 that are characteristic of the dark-adapted 

and one kind of light-adapted conformation, depending upon the conditions, such as pH 

and detergent environment as described elsewhere.57 The individual conformational 

changes that give rise to different lifetimes have not been identified yet at the molecular 

level, although most of the studies so far proposed conformational changes near the 

quinones,35,56,65,67 as supported by X-ray crystallographic analysis of the BRCs that had 

been illuminated.43,85,104 These studies, however, were either conducted at cryogenic 

temperatures or used very short, sub-second illuminations because it was found that the 

detergent-grown crystals do not diffract when exposed to prolonged illumination.104 The 

formation of the long-lived charge-separated states investigated in this work and many 

previous kinetic studies certainly requires an illumination time of much longer than 1 s at 

room temperature (Figure 3.2).35,56,57,65,68 Crystallographic and FTIR spectroscopic 

studies provided opposing models with regard to the movement of QB itself.43,105,106 Thus, 

while there is no doubt regarding the conformational changes near the cytoplasmic site of 

the BRC, it is questionable whether the low-temperature, light-induced X-ray 

crystallographic studies are fully applicable to the conformational changes observed at 

room temperature during illuminations that are orders of magnitude longer than sub-

seconds. In this study, we attempt to localize the conformational changes that give rise to 

the longest-lived kinetic component in the recovery kinetics after illumination for 1 min.  
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In Figure 3.4, we plotted the relative rate constants of the slowest kinetic component 

found in each mutant with respect to those measured for the WT (kslow mutant/kslow WT) as a 

function of the number of H-bonds. We grouped the mutants on the basis of the location 

of the H-bonds found in the L131, L168, M160, and M197 positions. The rate constants 

of the slowest kinetic component that represent the recovery of the P+QA
 state in the one 

kind of light-adapted conformation in four mutants with the H-bond of PL at the L131 

position (L131, M160+L131, M197+L131, and M160+M197+L131) showed no 

dependence on the number of H-bonds and were ~ 7 times higher than that measured in 

the WT. Similarly, the rate constants in the mutants that lack any H-bond with PL (L168, 

L168+M160, and L168+M197) exhibited quasi independence from the number of H-

bonds, while they were even slightly smaller than that in the WT. The L168+L131 double 

mutant that lacks the H-bond at the L168 position but has the one at the L131 position 

has been excluded from both groups, although it showed more similarity to members of 

the L131 family of mutants (Figure 3.4). It appears that the presence of the H-bond 

between PL and the L131 His is not allowing the formation of the longest-lived charge-

separated state regardless of whether the H-bond at the M160 or M197 position is 

established with PM if a 1 min illumination is used. On the other hand, the lack of any H-

bond with PL favors formation of the long-lived charge-separated state despite the 

presence of the H-bonds with PM. Furthermore, the rate constants in the mutants having 

H-bonds introduced into PM either at the M160 or at the M197 position exhibited a very 

pronounced and similar dependence on the number of H-bonds, provided the H-bond at 

L168 with PL was established (Figure 3.4).  
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Figure 3.4 Dependence of the relative rate constant (kslow mutant/ kslow WT) of slow recovery of 

the oxidized dimer on the number of H-bonds. The mutants are numbered according to Table 

3.1. Regression lines were generated through the data points associated with the mutants having 

H-bonds created with the dimer at positions L131 (thick solid red line), M160 (thick pink dashed 

line), and M197 (thin blue dashed line) or the existing H-bond removed at L168 (thin black solid 

line). The rate constants were determined from Figure 3.2 and were taken from Table 3.1. 

 

 

It is not obvious whether the H-bonds at the M160 and M197 positions have the same 

influence because two of the mutants (M197+M160 and M197+M160+L131) have both 

H-bonds. More evidence points toward the importance of the M197 position as the 

orientation of the 2-acetyl group of PM can be different when free or H-bonded.76 

Nonetheless, the lifetime of the long-lived charge-separated state is clearly sensitive to 

the number of H-bonds with PM, provided the H-bond with PL at the L168 position is 

present, but it becomes independent of it if either the H-bond with PL at L131 is present 

or that at L168 is removed. 
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3.2 Illumination time dependence of the light-induced spectral changes 

 

To identify the changes that occur in the spectral signatures in the dark- and light-adapted 

states during the illumination, near-infrared light-induced spectra were recorded at 

different times during and after the illumination for the studied BRCs with a 1800 

nm/min scanning rate. Figure 3.5A shows traces for WT and for the L131 mutant 

representing the two groups of reaction centers. For each sample, four spectra were 

measured: immediately after the onset of the illumination (red trace), after illumination 

for 1 min (black trace), 1 min after the illumination ceased (blue trace), and 6 min after 

the illumination ceased (pink trace) as labeled A-D, respectively, in Figure 3.5A. The 

spectra were normalized to the bleaching of the P band because it had been demonstrated 

previously using a very high (1 W/cm2), saturating illumination intensity that the 

oscillator strength of this band does not change during the illumination.57 It is clearly 

visible in the spectra that the absorption changes associated with the B monomers around 

800 nm are the largest immediately after the onset of illumination both in the WT and in 

the L131 mutant (red traces in Figure 3.5A).  
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Figure 3.5 A. Normalized light-minus-dark optical difference spectra of WT and the L131 

mutant recorded immediately after the light had been turned on (traces A in red), after 

illumination for 1 min (traces B in black), and 1 and 6 min after the illumination had been turned 

off (traces C in blue and D in pink, respectively). Traces C and D were magnified by 6-fold to 

match the absorption change at 865 nm with traces A and B in WT and also to emphasize the 

residual absorption changes around 800 nm. The inset shows the time dependence of the 

absorption changes and indicates the times at which the spectral traces were recorded. B. Double 

difference spectra (traces B-minus-A from panel A) for the WT and for the L131 mutant. 

Conditions as in Figure 3.1 except the traces were recorded at a scanning rate of 1800 nm/min. 

 

 

With increasing illumination time, these changes decreased with respect to the extent of 

P+. After illumination for 1 min, the decreases in the electrochromic absorption changes 

of the B bands were approximately twice as large in the WT versus the L131 mutant as 

evidenced by the double difference spectra (traces A and B in Figure 3.5A, and the 

difference spectrum, namely trace B-minus-trace A in Figure 3.5B).  
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In Figure 3.5A, we also show the spectra recorded 1 min after the illumination was turned 

off (traces C). For the WT, this spectrum represents the population of the BRCs still in 

the P+QA
 state but exclusively in the light-adapted conformation, while for the L131 

mutant, the spectrum reflects the light-adapted PQA ground state (see the inset in Figure 

3.5A). It should be noted that spectra recorded 6 min after the light was turned off still 

contained absorption changes around 800 nm in all samples even after the P+QA
 charge-

pair recovered completely (traces D of Figure 3.5A). All of these spectra recovered to the 

ground state ~ 1 h after it had been exposed to illumination for 1 min. Similar long-

lasting absorption changes around 800 nm were observed but not discussed earlier both in 

the low-temperature spectra and in the room-temperature spectra for BRCs dispersed 

either in LDAO or in n-dodecyl -D-maltoside after prolonged continuous illumination or 

trains of flashes.35,65,67 Analysis of the spectra for WT (traces A and C of Figure 3.5A) as 

described in section 3.1 and shown in Figure 3.3 confirmed that the BM band that has 

been blue-shifted from 810 to 801 nm as a result of the onset of the illumination moved 

back to 804 nm during the 1 min illumination in those fractions of the BRCs that 

exhibited long recovery kinetics of the P+QA
 charge-pair. No such relaxation of the BL 

band could be observed. Because of the much shorter lifetime of the P+QA  state in the 

L131 mutant, only the spectra recorded under illumination could be analyzed with the 

same emphasis (traces A and B). Only ~ 1 nm differences in the positions of the BL and 

BM bands could be determined as the illumination time increased from 0 to 1 min with 

values of 790-791 and 805-806 nm, respectively.  
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From the illumination time dependence of the electrochromic absorption changes, we 

conclude that prolonged illumination causes dielectric relaxations in the BRCs near P+ 

resulting in the smaller electrochromic absorption changes in the nearby B bands. In the 

WT, this relaxation was approximately twice as large as that found for the L131 mutant 

and predominantly involved BM, whereas in the L131 mutant, they affected both 

monomers. The absorption changes around 800 nm remained detectable for up to 1 h in 

the spectra under the conditions used. It must also be noted that in the spectra recorded 1 

min after the illumination had been turned off the electrochromic absorption changes near 

760 nm have also decreased in all of the mutants of the WT family, where the long lived 

charge-separated states could still be detected. This is indicative of a similar dielectric 

relaxation near the H molecules, most likely due to the stabilization of QA  and/or the 

weakening of the long-range electrostatic interactions between P and H molecules due to 

the structural changes near P. 

 

 

3.3 Effects of mutations and internal water molecules on light-induced structural 

changes 

3.3.1 Alterations in the local electric field by the H-bonds

 

The addition of the H-bonds may alter the local electric field by at least three 

mechanisms: (i) modifying the local dielectric constant by substituting more hydrophilic 

residues, (ii) changing the spin density distribution between the two halves of P, and (iii) 

displacing structural water molecules.  
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The H-bonds were created by substituting His residues for the highly hydrophobic 

residues, such as Leu or Phe, or the existing H-bond was removed by substituting the His 

with a highly hydrophobic Phe residue. These substitutions in the immediate vicinity of 

the dimer should modify the local dielectric constant and therefore the electrochromic 

absorption changes of the nearby BL and BM molecules. In the mutants that contained the 

H-bond between the PL and the L131 His residue, the contribution of the BM band to the 

electrochromic absorption changes was only approximately half of what was found for 

the other family of mutants including WT (Figure 3.3 and Figure A2 and Table A1 of the 

Appendix A). The smaller contribution of the BM band even without a detailed analysis 

can be observed as the shift of the positive absorption peak near 790 nm by 6-9 nm 

toward the blue spectral range of the light-minus-dark difference spectra in the mutants 

with the Leu to His substitution at the L131 position (Figure 3.1 and Figure A1b of the 

Appendix A). In the rest of the mutants and the WT, this shift was only 0-2 nm. It has 

been suggested that the local dielectric constant in the active, L branch near P is 

significantly larger than in the inactive, M branch.107 Because the interaction energies 

causing the electrochromic absorption changes are inversely proportional to the dielectric 

constant, the large difference in the electrochromic shifts of the BM and BL bands 

reported here for WT is in agreement with the assumption of a lower dielectric constant 

in the M branch (Figure 3.5). Substitution of a hydrophilic His residue near P increases 

not only the local dielectric constant but also the alteration of the sharing of the unpaired 

electron between the two halves of P upon formation of P+.  
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Special Triple ENDOR spectroscopy showed that in WT the unpaired electron is residing 

on PL and PM with a ~ 2:1 ratio favoring PL, whereas in the L131 mutant, it is distributed 

almost equally between the two halves of P.76 This trend is visible for all mutants that 

contain the Leu to His substitution at the L131 position. The addition of the H-bond at the 

L131 position in all mutants lowered the spin density ratio on PL by ~ 0.1 - 0.3, and with 

any given number of H-bonds, the mutants that possess the H-bond at the L131 position 

have the smallest spin densities on PL compared to those that lack the Leu to His 

substitution at the L131 position (Figure A1c of the Appendix A). The increase in the 

spin density on PM at the expense of that on PL in the L131 mutant should decrease the 

magnitude of the electrochromic absorption changes of BM because the axis of the QY 

transition (along the 3 and 1 rings) of BM is closer to the plane of PL than PM (Figure 

1.15). Moreover, BM is ~ 2 Å closer to PL than to PM.6 This is in agreement with the 

observed decrease in the contribution of BM to the electrochromic absorption changes in 

the L131 mutant compared to the WT (Figure 3.3B, C). The variation in spin density, 

however, does not fully account for the observed trend in the electrochromic absorption 

changes and the kinetics in the 11 mutants, not to mention the dielectric relaxation during 

the illumination shown in Figure 3.5. For example, both in the M160+L168 and in the 

M160+L131 mutants, the spin density distribution is very similar to that in the WT (~ 2:1 

favoring PL), but the kinetics of the absorption changes were ~ 7 times faster in the 

M160+L131 mutant than in the M160+L168 mutant and WT (Figure 3.2 and Table 3.1). 

Similarly, the electrochromic absorption changes were found to be quite different in these 

three reaction centers (Figure A2 of the Appendix A). 
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3.3.2 Internal water molecules

The X-ray crystal structure of the WT BRC identified five water molecules near the 

immediate vicinity of the four bacteriochlorophylls (Figure 3.6)6. All five water 

molecules are in key positions in terms of their potential to influence the electrochromic 

absorption changes. Two of the water molecules, namely, W728 and W729, appear to 

play clear structural roles as they bridge the B monomers, being within H-bond distance 

of the 9-keto carbonyl groups of BL and BM with distances of 2.7 and 2.8 Å , respectively, 

and also H-bonded to His M202 and L173 that coordinate the central Mg2+ of PM and PL. 

In these bridging positions, the two water molecules, W728 and W729, are 3.8 Å from 

Phe M197 and His L168, respectively. The other three water molecules, W723, W736, 

and W737, are also close to the amino acid residues that were replaced to establish H-

bonds with P. The W723 is 5.5 Å from Leu L131 and 7.2 Å from the 9-keto carbonyl 

group of PL. The W736 is 4.3 Å from Phe M197 and 5.1 Å from ring II of PM. The W737 

is 7.3 Å from His L168 and 4.1 Å from ring IV of PL.  

In each case, these water molecules are aligned with the QX or QY transition of P or one 

of the B monomers. Previous studies have led to the proposal that W728 when H-bonded 

to the 9-keto carbonyl of BL facilitates the ultrafast charge separation.109 It was 

demonstrated that introducing a positively charged Arg at the L181 position causes the 

displacement of W729 by ~ 5 Å that allowed this water molecule to serve as the sixth 

ligand to the central Mg2+ of BM.110 
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Figure 3.6 Top view of the four bacteriochlorophylls containing the dimer (PL and PM in 

red) and the monomers (BL and BM in blue) with nearby amino acid residues (salmon sticks) 

and internal water molecules (cyan spheres). The four residues, Leu L131, Leu M160, His 

L168, and Phe M197, were modified to introduce or remove H-bonds. Five water molecules, 

W723, W728, W729, W736, and W737 (cyan spheres), were identified in the immediate vicinity 

of the bacteriochlorophylls. This figure is color reproduction from ref. (108) and coordinates were 

taken from Protein Data Bank entry 1PCR6. 

 

 

One might speculate that the introduction of a positively charged His residue placed at 

L131 or M197 or, correspondingly, the replacement of His L168 with Phe may cause 

similar displacements of W723, W728, and W729 in the mutants with these substitutions. 

In the crystal structure of the mutant containing all three mutations at L131, M160, and 

M197, changes in the location of the water molecules were not modeled because of the 

limited resolution of the diffraction data.97 As demonstrated in Figure 3.1, the formation 

or removal of H-bonds with protons donated by histidine shifts the positions of the QY 

bands of the dimer substantially. Similarly, the formation of the H-bonds increased the 

potential of the dimer in all cases.93  
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The putative H-bonds between the 9-keto carbonyls of BL and BM with W728 and W729 

should also influence these bands and are probably altered by the replacement of Phe 

M197 and His L168, respectively. These observations are all consistent with the 

stabilization of the positive charge on P by dielectric relaxation upon illumination in WT 

and in those mutants where the conformational changes leading to the long-lived charge-

separated states are favored. Because W737 and W736 are along the QX transitions of PL 

and PM, any movement would be expected to cause a shift in the QX band of the 

bacteriochlorophylls around 600 nm.  

 

 

3.4 Effects of different pH values on kinetics of formation and recovery of light-

induced states 

 

Since it is clear from these experimental evidences that the extent of the change of the 

dielectric constant was found to be strongly dependent on the identity of the residue 

occupying the L131 position, further experiments are performed to understand the 

characteristics of the light-induced long-lived charge-separated and conformational states 

and the nature of the involvement of L131. The kinetics of the absorption changes caused 

by 1 min illumination with sub-saturating light intensity was measured at the center of the 

QY band of the P in each mutant and the WT at pH 6 and 8 (Figure 3.7). 
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Figure 3.7 Formation and disappearance of the light-induced redox states in the wild type 

and 11 hydrogen bonding mutants measured at the position of the dimer band at pH 6 

(solid lines) and at pH 8 (dashed lines) using 1 min illumination. Panel A. Mutants containing 

the Leu to His substitution at L131. Panel B. All other mutants and WT. The traces were 

normalized and vertically shifted for better comparison. The vertical up and down arrows indicate 

when the illumination was turned on and off, respectively. 

 

 

Under the applied conditions, in the presence of terbutryn, the P+QA  state was formed 

immediately. In addition to the unresolved, rapid absorption change, a further slower 

increase of the signal was also observed in all reaction centers at both pH values. As 

discussed earlier the slow increase of the signal was interpreted to be arising from altered 

populations of the BRCs generated by the continuous illumination.  
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After the illumination was turned off complex recoveries were detected with two or three 

components that had much different lifetimes than those observed after single flash 

excitation. The number of components, their relative amplitudes, and their lifetimes were 

strongly dependent on the pH at the given illumination time. As the illumination was 

turned off in a fraction of the BRCs a rapid, unresolved recovery was observed due to 

P+QA   PQA charge recombination from the dark-adapted conformation. The additional 

slower components were assigned to the recoveries from different light-induced 

conformations. As seen in Figure 3.7, the overall recovery kinetics were much longer at 

pH 6 than at pH 8 in WT and one set of the mutants, whereas in another set of mutants, 

all of which contain the Leu to His substitution at the L131 position, the kinetics 

appeared only slightly longer than at pH 8. All reaction centers exhibited reversible 

signals with the applied 1 min illumination. Longer illumination times (>3 min) resulted 

in a slight degree of photo-damage at pH 6 in the mutants with a highly oxidizing P such 

as the M197+M160+L131 and the M197+L131 mutants. The recovery kinetics with the 

applied illumination conditions at pH 8 were predominantly biphasic, while at pH 6 in all 

mutants except in the M197+M160+L131 mutant a third, very slow component was also 

detected. The rate constants of the slow and very slow components for pH 6 and 8 are 

plotted in Figure 3.8A as a function of the midpoint potential of the P/P+ couple that has 

been determined earlier for dark-adapted samples.93 From laser flash photolysis the rate 

constants of the flash-induced charge recombination are also plotted for reference for all 

mutants at pH 8 and for a few representatives for pH 6. The values measured at pH 8 are 

in agreement with those reported earlier.93  
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Figure 3.8 Dependence of the kinetic parameters obtained from the recovery kinetics of the 

oxidized dimer on the P/P+ potential. Panel A. Rate constants of the flash induced charge 

recombination (circles) and the slow (diamonds) and very slow (squares) components in the 1 

min illumination induced recovery kinetics. Open and closed symbols refer to the data obtained 

from the exponential fitting of the kinetic traces recorded at pH 8 and 6, respectively. Panel B. 

Amplitude of the very slow component at pH 6. The kinetic parameters of mutants that have 

L131 mutation are shown in red color.  

 

 

The rate constants of the flash-induced charge recombination from QA  to P+ were found 

to be very weakly dependent on pH in the mutants. This agrees with the conclusions of 

former studies conducted in WT and R-26.111  
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The rate constants of the slow component at pH 8 both in the mutants with H-bonds at the 

L131 position and in those that lack the H-bond at the L168 position were found to be 

independent of the P/P+ midpoint potential (see also Figure 3.4). The values of the rate 

constants for these two families of mutants, however, were about 7-8 times larger in the 

L131 family than in the L168 family with the most extreme values of 1.4 × 10-1 and 1.6 × 

10-2 s-1, respectively. At pH 6 the rate constants for the slow component were found to be 

faster than at pH 8 in the mutants that lack the H-bond at L131. For example in the WT 

this increase is almost 3-fold from 2.0 × 10-2 s-1 at pH 8 to 5.5 × 10-2 s-1 at pH 6. The rate 

constants of the very slow component at pH 6, which was not detectable at pH 8, after 1 

min illumination, was found also to be independent of the P/P+ potential in all mutants 

with a small variation between 1.6 × 10-3 and 2.3 × 10-3 s-1 in the 11 studied reaction 

centers. This component was not populated to detectable level in the M197+M160+L131 

triple mutant. These observations suggest that most likely the conformational state 

represented by the very slow component is formed in a consecutive reaction from the 

state characterized with the slow component. In general, the total amplitudes of the 

slower phases were larger at pH 6 than at pH 8, especially in the family of mutants that 

lack the L131 His substitution. The relative amplitude of the very slow component, 

however, is only 6-7% in most of the mutants in the L131 family and only 10% in the 

L168+L131 mutant that, although having the H-bond at the L131 position, lacks the one 

at the L168 position (Figure 3.8B). Contrarily, in the mutants that lack the H-bond at the 

L131 position the relative amplitude of this very slow component varied from as high as 

48% in the L168 mutant that lacks any H-bond to 12% in the M197+M160 mutant with 

three H-bonds. 
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3.4.1 Recovery rates

In the mutants the rate constants of the P+QA   PQA charge recombination after flash 

excitation followed the dependence on the midpoint potential as expected from the 

Marcus theory.93,112 The pH dependence of the P/P+ potential was reported to be very 

weak with only about ~ 5mV/pH slope between pH 6 and 10.113 Thus, the differences in 

the Marcus behavior should not be significant at different pH values (see Figure 3.7 for 

few representative mutants). In this work the use of prolonged continuous illumination, 

however, generated redox states in fractions of the reaction centers whose recovery 

kinetics no longer followed the classical Marcus dependence for the rate constants. In the 

two groups of mutants the rate constants for the slower phases were mostly independent 

of the midpoint potential of the dimer, indicating that the observed rate must be limited 

by another factor, e.g., the rate of protonation or a conformational change. Because some 

of these mutants have larger rate constants than other mutants with similar midpoint 

potentials, the presence of the Leu to His mutation at L131 is consistent with an increase 

in the electron transfer rate, so that the electron transfer rate is significantly faster than the 

observed rate. Several groups reported the multiphasic recovery kinetics associated with 

light-induced conformational changes in the minutes time scale, but very few of them 

studied their pH dependencies.35,46,56,57,65,67,68 The observed rate constants for the slower 

components at pH 8 agree well with those reported in these earlier studies for similar 

illumination times. As the illumination time increases new, longer-lived states were 

identified in the kinetic traces, resulting in some changes in the rate constants of the 

recovery kinetics.68 This indicates that some later conformational states are formed from 

the earlier ones as a result of consecutive reactions.  

 85



For example, the observation of the very slow component with the rate constant of ~ 10-3 

s-1 at pH 6 also resulted in the nearly 3-fold increase of the rate constant of the slow 

component from 2.0 × 10-2 at pH 8 to 5.5 × 10-2 s-1 at pH 6.  

 

 

3.5 Potential of the P/P+ couple in the light-induced states 

 

To identify the P/P+ midpoint potential in the altered light-induced conformation 

spectroelectrochemical titrations were performed at pH 8 and 6. The results of the 

spectroelectrochemical redox titrations at pH 8 for the WT and for the L168 and L131 

mutants in the dark and in the presence of a weak external illumination are presented in 

Figure 3.9. Without any external illumination the data could be fitted well with a single 

Nernst equation assuming only one population of P with midpoint potentials of 505, 415, 

and 585 mV for the WT and for the L168 and the L131 mutants, respectively. The error 

was estimated as ±7 mV based on the results obtained from different titrations in the 

dark. These values determined here are in a good agreement with those reported earlier 

for the P/P+ potentials in WT and in these mutant reaction centers.93  
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Figure 3.9 Spectroelectrochemical oxidation-reduction titrations of BRCs from WT, the 

L168, and the L131 mutant at pH 8. Open symbols represent the data obtained in dark-adapted 

samples, and the closed symbols represent the data determined in the presence of weak 

illumination. The continuous lines are the best fits to the Nernst equation with one (open 

symbols) or two (closed symbols) components with different potentials. The insets show 

difference spectra between two absolute spectra recorded at two different applied potential values 

indicated by the arrows, letters from A to F, and respective color codes (green for the dark-

adapted state and maroon for the light-adapted state). Conditions, errors, and the results of the fit 

are described in the text and in Figure 3.10. 
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Normally, the P/P+ midpoint potential is determined under dark conditions using dark-

adapted samples as described above, with the potential being adjusted either chemically 

or electrochemically while optically monitoring the amount of P and P+ present at each 

potential. Each measurement intrinsically takes few minutes in order for the protein to 

equilibrate with the applied potential, usually with the inclusion of mediators. The 

kinetics of this equilibration both in the dark and in the presence of a weak illumination is 

shown in Figure B1 of the Appendix B as the bleaching of the P-band at 865 nm in 

response to the onset and offset of +600 mV applied potential. Since the mediators are 

applied at nearly equimolar concentrations with the BRCs, they are not expected to serve 

as electron donors/acceptors in a second-order process to P+ or P, but their absence 

results in much longer equilibration times in both directions. The same kinetics for the 

equilibration in the presence and in the absence of the weak illumination verifies that 

neither the BRCs nor the mediators respond differently to the potential change and that 

the response does not depend on the conformational state of the protein. The titrations in 

the dark reveal the midpoint potential of the P+ state relative to the ground state 

exclusively in the dark-adapted conformation of the BRC. When the experiments were 

performed in the presence of weak illumination, it resulted in only a few percent of the 

BRCs being present in the charge-separated state, but the BRCs in the ground state were 

preferentially enriched in the light-adapted conformation rather than being only in the 

dark-adapted conformation. Thus, the measurements shown in Figure 3.9 resulted in two 

apparent midpoint potentials, corresponding to the two populations of P in BRCs with 

two different conformations.  
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While in the larger fraction of the BRCs the midpoint potential of the P/P+ couple did not 

change in the presence of the weak illumination, in the smaller fraction significantly 

lower values were determined in all reaction centers. In the WT upon illumination the 

potential of the dimer was shifted to 430 mV in 42% of the BRCs representing a 75 mV 

drop in the potential (Figure 3.9B). Similarly, a 79mV difference was obtained in the 

L168 mutant for the P/P+ potentials with values of 415 and 336 mV for the dark-adapted 

and light-adapted populations, respectively (Figure 3.9A). The fraction of the component 

with lower dimer potential slightly varied 27-31% and 41-45% in different measurements 

for the L168 mutant and WT, respectively, most probably due to the different positioning 

of the samples within the spectroelectrochemical cell resulting in slightly altered 

illumination conditions for the individual measurements. Contrarily, in the L131 mutant 

only 8% of P exhibited altered potentials with a value of 375 mV in the presence of the 

illumination. We would like to stress that even though it is obvious from Figure 3.9C that 

a two-component Nernst fit is required to describe the measured data well even in the 

L131 mutant due to the very small amplitude for this component the error of the potential 

is ± 32 mV as opposed to the error of ± 7 mV for the WT and the L168 mutant at pH 8. 

The insets in Figure 3.9 show the P+/P difference spectra determined as the differences of 

the absolute spectra recorded at two specific applied potentials (labeled as A-F) situated 

at different regimes of the Nernst curves. It is clearly visible from these insets that in the 

WT and in the L168 mutant the difference spectra in the dark (F-E) (green) are very 

similar to those fractions of the samples that had the same potential in the light (D-C) 

(green).  
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The difference spectra that represent the population of P with lower potential values (B-

A) (maroon color) show smaller electrochromic absorption changes around 800 nm. This 

observation is in line with the results of Figure 3.5, where during the illumination similar 

decreases of the electrochromic absorption changes of the bacteriochlorophyll monomer 

(B) bands were observed in BRCs that exhibited longer recovery kinetics after 

illumination. The decrease of the electrochromic absorption changes were attributed to 

light-induced structural changes, which increases the local dielectric constant and are 

responsible for the altered P/P+ potential. In Figure 3.9C, the insets for the L131 mutant 

show the similarities of the spectra obtained in the dark (F-E) (green spectrum) and the 

major component determined during the weak illumination (D-C) (green spectrum), but 

for the 8% component the difference spectrum is quite dissimilar (maroon spectrum). It 

exhibits the electrochromic red shift in the range of the B bands but has very little 

contribution from P+. Overall, this difference spectrum in the L131 mutant resembles the 

double difference spectrum obtained as the difference between two light-minus-dark 

difference spectra recorded after different illumination times (compare Figure 3.5B). As 

the electrochemical titrations cannot probe the photo-induced P+, only those that were 

generated by the electrical potential, these measurements suggest that even after the 

charges recovered heterogeneity exists in the BRCs. Figure B2 of the Appendix B shows 

the near-infrared optical difference spectra recorded at various times up to 7 h after the 

weak illumination was turned off. The reference spectrum for these measurements was 

the one that was recorded in the dark prior to the illumination.  
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Even though the spectral signatures of both P+ and QA  disappeared in WT within an hour 

after a prolonged illumination the electrochromic absorption changes around 800 nm, 

which were indicative of the altered local dielectric constant, remained until 5 h after the 

light was turned off. Similar, long-lasting spectral features were reported earlier for BRCs 

dispersed in LDAO35,67 and in n-dodecyl- -D-maltoside,65 indicating that the detergents 

have no influence on these electrochromic absorption changes. The 

spectroelectrochemical titrations were also performed in this 7 h dark relaxation in two 

different time intervals. The titration that was conducted between 1 and 3.5 h after the 

light was turned off still showed the presence of two different populations of P in 

accordance with the presence of the electrochromic changes. The fraction of the P with 

altered potential, however, decreased from 42% to 26% in WT compared to the value 

determined during the illumination (Figure B3, Table B1 from Appendix B). When the 

redox titration was conducted between approximately 6.5 and 8.0 h after the illumination 

was turned off, where the electrochromic changes were not present in the spectra 

anymore, the data could be described with a single-component Nernst fit with 501 mV 

midpoint potential for P, as was found before the illumination (Figure B3, Table B1 from 

Appendix B). Comparison of Figures B2 and B3 (Appendix B) shows that the fraction of 

the BRCs with an altered redox potential for P disappeared with the same kinetics as the 

electrochromic absorption changes involving the monomers, indicating that the source for 

the altered potential of P is the light-induced change of the dielectric constant.  
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Figure 3.10 Panel A pH dependence of the P/P+ potential for WT (green circles), the L168 

mutant (brown diamonds), and the L131 mutant (red triangles). The potential values determined 

in the dark and in the presence of weak external illumination are shown with open and filled 

symbols, respectively. Experimental errors are within the sizes of the symbols unless indicated by 

vertical lines. Panel B pH dependence of the amplitude of the component with lowered P/P+ 

potential determined from the titrations performed under weak illumination. Conditions: ~ 300 

M BRCs, 70 mM KCl, 300 M mediators in 0.05% TX-100. 

 

 

The P/P+ midpoint potentials were also determined at pH 6 and 10 and were plotted in 

Figure 3.10A. In the dark the P/P+ potentials followed very weak pH dependences 

corresponding to ~ 6 mV/pH and ~ 1 mV/pH slopes as the pH is raised from pH 6 to 

10 in the WT and in the L131 mutant, respectively. In the L168 mutant a trend very 

similar to WT was observed between pH 6 and 8 as the P/P+ potential is increased from 

415 to 425 mV while the pH was lowered from 8 to 6. In the presence of a weak 

illumination the decrease of the P/P+ potential was comparable with the ones measured at 

pH 8 with values of 55 and 64 mV at pH 6 and 10, respectively. The amplitude of the 

fraction that exhibited lowered potential in WT, however, increased to 60% at pH 6 and 

was found to be 38% at pH 10 compared to the 42% at pH 8 (Figure 3.10B). 
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Contrarily, in the L131 mutant this fraction did not change at pH 10 and decreased at pH 

6 to the detection limit of 4% from the value of 8% found at pH 8, making the error of 

determining the P/P+ potential for this small component as large as ± 80 mV at pH 6. 

 

3.5.1 Origins of the light-induced decrease of the dimer potential

Earlier studies indicated that the introduction of the H-bonds with His residues as proton 

donors at the M160, M197, and L131 positions increased the redox midpoint potential of 

the P/P+ couple between 65 and 125 mV at pH 8 depending on the position.93 Similarly, 

the removal of the H-bond found in the WT by substituting the L168 His with a Phe 

residue caused a 95 mV drop of the potential in the L168 mutant. Multiple substitutions 

have an additive effect on the potential, resulting in a 350 mV range for the potential of P 

between the lowest and the highest potential mutant. The redox midpoint potential of the 

P/P+ couple determined in the presence of a weak illumination showed that in the absence 

of the His residue at the L131 position the illumination caused the potential of the dimer 

to decrease by 75-79mV in a large fraction of WT and the L168 mutant at pH 8 (Figures 

3.9 and 3.10). In contrast, in the presence of the His at the L131 position only a marginal 

fraction of the BRCs exhibited a decreased dimer potential. 

Such a large change in the potential of P should originate from either within the 

bacteriochlorophyll molecules or from their immediate vicinity. As we reported earlier in 

section 3.3 that the light-induced structural changes noticeably altered the local dielectric 

constant near P in WT and in mutants that show long recovery kinetics after continuous 

illumination but not in the mutants that contained the Leu to His replacement  at the L131 

position.  
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The change of the redox potential upon the alteration of the dielectric constant is 

expected. For example, the difference in the in situ redox midpoint potentials of the same 

ubiquinone-10 molecule in BRCs occupying the hydrophobic, buried QA and the water 

accessible, polar, QB binding sites is ~ 60 mV.2 The P/P+ potential was shown to be 

regulated in mutants by the protonational state of introduced Asp and Glu residues to the 

M199 and L170 and L168 positions, situated within 6 Å from P.114 A potential drop of ~ 

60 mV was observed when the pH was elevated from 6.0 to 9.5, corresponding to a loss 

of one positive charge through the deprotonation of these Asp and Glu side chains in 

those mutants. In the WT reaction center there are very few amino acids with 

protonational side chains in the immediate vicinity of P (Figure 3.11).  

 

Figure 3.11 Structure of the bacteriochlorophyll dimer P and nearby amino acid residues 

Leu L131, Leu M160, His L168, and Phe M197. Alteration of each of these residues results in 

different patterns of hydrogen bonding to P. The residues with protonatable side chains, Arg 

L135, Cys L247, Arg M164, and Tyr M210 are also shown. This figure is color reproduction 

from ref. (115) and coordinates were taken from PDB entry code 4RCR81. 
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Under normal circumstances the positively charged Arg residues at the L135 and M164 

positions are expected to have high pKa values that should be outside the investigated pH 

range. In the presence of the positive charge on P about 10 Å away, however, the pKa 

values may be shifted downward to values that fall into the investigated range. If replaced 

by neutral residues the P/P+ potentials were reported to drop by 12-24 mV in dark-

adapted BRCs for the L135 and M164 positions, respectively.116 The pKa of the L247 

Cys in light-adapted samples was determined to be 8.7 in a tyrosine oxidizing mutant 

where this residue serves as a proton acceptor to the Tyr L167 residue.102 Tyr M210 is 

considered to be one of the key residues in the initial electron transfer process in BRC. 

Upon its replacement to Trp, Phe, or Leu the initial charge separation drastically slowed 

down, and the redox potential of the P/P+ couple in the dark was elevated by up to 50 

mV.117,118 Indirect evidence indicates that if the Trp residue is substituted at the M210 

position in mutants with very high P/P+ potentials that were designed to utilize Tyr 

residues at various positions as electron donors to P+, the P/P+ potential did not drop 

during continuous illumination.119-120 The assumption of a deprotonation-mediated 

stabilization of P+ requires the P/P+ potential to be strongly dependent on pH for the light-

adapted conformations provided the protons are in equilibrium with the surrounding 

solution and the pKa shifts are small.114 If, however, the interaction energy between the 

oxidized P and the deprotonating residue is high, then the pKa shift could be several pH 

units and the pH dependence should be moderate121 (Figure 3.10). Tyr M210 is in van der 

Waals contact with PM, and the effective local dielectric constant was reported to be only 

1.5-4.7 times larger than vacuum.107 These conditions are extremely favorable to a large 

pKa shift upon the oxidation of P. 
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For example, near QB in a medium with an effective dielectric constant of ~ 20, the pKa 

of the Glu L212 was reported to be upshifted by ~ 4 pH units to 9.8 due to the negative 

charge on the Asp L213 residue ~ 5 Å away.122 The light-induced change in the local 

dielectric constant not only should alter the P/P+ potential but also the pKa values of the 

nearby residues, since the interaction energies between the charges are inversely 

proportional to the dielectric constant. For example, the difference in the oxidation 

potentials of various quinones in organic solvents and in situ at the QA binding site 

showed a several hundred millivolts difference, demonstrating the strong dependence of 

the potential values on the dielectric properties of the environment.123 The observed 75 

mV drop in the potential of the P/P+ couple and its moderate pH dependence in WT upon 

prolonged illumination is consistent with the deprotonation of one very close residue plus 

one or more that have weaker interaction with the dimer. The most likely candidate for 

the strongly interacting residue is Tyr M210. Whether or not the deprotonation can take 

place and the released protons can reach the solvent or they are only delivered away from 

P is dependent upon the existence of a proton conducting pathway that extends from P to 

the surface. The proton transfer has very slow kinetics of proton release and the 

accompanying optical changes. This inefficiency is consistent with the proton pathway in 

WT being not efficient, presumably because it is not physiologically relevant due to the 

normally fast reduction of P+ by cytochrome in the cell. A large number of buried 

protonatable side chains have been reported to equilibrate with the solvent in the minute 

time scale.32 Several slow proton conducting pathways were characterized in mutants that 

were designed to oxidize nearby Tyr residues by P+ at positions L135, M164, and 

L167.102,119,124,125  
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The delivery or the trapping of the released phenolic protons were sensitive to the identity 

of the introduced proton acceptors and the pH. When a His is introduced at L131, the data 

are consistent with the loss of this proton pathway between Tyr M210 and the 

surrounding and ultimately the solvent. The loss of the pathway has several consequences 

for the properties of P+. The slow kinetics seen in the optical and proton release 

measurements of WT are now eliminated as the protons can no longer be transferred 

away from P+, resulting in only the rapid optical changes being evident. In WT, the long-

lived state has a lower P/P+ midpoint potential due to the redistribution of charges near P, 

with a loss of positive charge, but for L131 mutants the protons can no longer carried 

away and there is no redistribution or redox change. As reported earlier the light-induced 

change of the local dielectric constant upon continuous illumination is much smaller in 

these mutants than those found in WT (Figure 3.5). The proton pathway presumably 

involves water molecules rather than just amino acid side chains. The potential role of the 

structural water molecules near P in facilitating the structural changes was discussed in 

section 3.3. Two of these five structural water molecules (W736, W737) are very close to 

P, and one (W723) is very close to Leu L131, while all are within 7 Å distance from P. 

The introduction of His at the L131 does not allow the decrease of the P/P+ potential that 

leads to rapid recovery kinetics. A complementary explanation for the observed light-

induced decrease of the P/P+ potential also assumes the involvement of Tyr M210 and 

can address why the continuous illumination is unable to drive the entire population of 

the BRC to the long-lived state. Even though the heterogeneous population of the BRC 

after continuous illumination was observed in all previous studies, this problem was not 

scrutinized.  
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Situating within H-bond distance from the 2-acetyl group of PM Tyr M210 initially was 

modeled to be engaged in a H-bond, but later this assumption was dismissed.118,126 The 2-

acetyl group of PM was also modeled to be a potential ligand to the central Mg2+ of PL 

both in Rb. sphaeroides and earlier in Blastochloris viridis.6,127 These reports suggest the 

possibility of an axial ligand switch between the L173 His and the 2-acetyl group of PM 

to maintain the penta-coordination of the Mg2+, which is reported to be favored in 

proteins.110 A ligation of the 2-acetyl group of PM with the central Mg2+ of PL or an H-

bond with Tyr M210 with comparable probabilities could explain why the continuous 

illumination generated two major populations of the BRCs and was unable to drive the 

entire BRC population to the long-lived state even after prolonged illumination. Both the 

ligation to the Mg2+ of PL and the H-bond to Tyr M210 would force the 2-acetyl group 

out of the molecular plane and thus would not result in the change of the spin density 

distribution and the position of the QY absorption band of P.76 In the presence of the H-

bond between the His at the L131 position and the 9-keto group of P this switch is 

disrupted, and a rapid recovery is observed without stabilization of P+. Redox-induced 

conformational changes were reported in other proteins as well, for example in the sensor 

domain of Ec DOS protein and in receptor protein-tyrosine phosphatase.128,129 

 

 

3.6 Proton release 

 

Proton uptake/release measurements were performed in BRCs from WT and the L131 

mutant at pH 6 using prolonged, 5 min illumination (Figure 3.12A).  
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This longer illumination was necessary to reach the saturation values of the proton 

signals in the set up used for this measurement. After a 5 min illumination, in the WT a 

large proton release, with ~ 6.5 H+/BRC was observed. This value is in very good 

agreement with the proton release reported earlier for the R-26 strain at pH 6.57 In the 

L131 mutant, only a small release of ~ 0.3 H+/BRC was detected that may correspond to 

a ~ 5% fraction of the BRCs trapped in the longest-lived light-induced conformation. For 

both samples, the recovery of the proton release followed the recovery kinetics of the 

optical signals corresponding to the longest-lived states measured under the same 5 min 

illumination (Figure 3.12B).  

 

Figure 3.12 Kinetics of the light-induced proton release (A) and absorption changes (B) in 

WT (brown) and in the L131 (red) mutant at pH 6. The traces for panel A are the differences 

between the unbuffered and the strongly buffered measurements. Conditions for panel A: 2 M 

BRCs in 0.05% TX-100, 100mM NaCl, 100 M terbutryn; for the buffered signal +15mM MES. 

Conditions for panel B: same as for panel A except 0.1% LDAO instead of TX-100. Illumination 

time: 5 min through 870 ±15 nm interference filter using water bath as a heat filter. Panel C: pH 

dependence of the amplitude of the trapped states in the recovery kinetics of the absorption 

changes. 
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For better comparison, the light-induced kinetic traces were also recorded using a 5 min 

illumination. In the recovery kinetics after the light was turned off the amplitude of the 

slowest component increased from 35% to 60% in WT at pH 6 as the illumination time 

increased from 1 to 5 min (see Figure 3.7 for comparison). The rate constant of the 

longest-lived component on the other hand dropped only from 2.3 × 10-3 to 1 × 10-3 s-1 as 

the illumination time was increased by 5-fold. The observed kinetics in WT for prolonged 

illumination recorded here in LDAO is very similar to those found in the carotenoid-less 

mutant strain R-26 measured in TX-100.57 The matching kinetics of the proton release 

measured in TX-100 (Figure 3.12A) and the optical signals recorded in LDAO (Figure 

3.12B) for WT and in TX-100 for R-26 indicate that these two detergents do not alter the 

proposed structural changes or the redox states of the BRCs. The kinetics of the L131 

mutant at pH 6 remained almost the same as was seen at 1 min illumination. The vast 

majority of the reaction centers (95%) recovered immediately, and only the remaining 

5% featured the long recovery. At pH 8 even the longer, 5 min illumination could not 

generate the component with the rate constant of ~ 10-3 s-1 either in the WT or in the 

L131 mutant. The pH dependence of the relative extent of the slow and very slow 

components in WT and in the L131 mutant is displayed in Figure 3.12C and shows 

remarkable similarities to those that have been obtained from the spectroelectrochemical 

redox titrations for the fraction with lowered potential P (Figure 3.10B). The 

stoichiometry of the light-induced proton release at pH 6 correlates with the amplitude of 

the very slow component that could not have been observed at pH 8 (Figure 3.12).  
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The conformational state with a large proton release at pH 6 could only be built up 

significantly in the mutants that showed longer recovery kinetics, exhibited decreases in 

their P/P+ potential, and showed decreased electrochromic absorption changes in the B 

bands. The agreement between the kinetics of the recovery of proton release and the 

recovery of the charge-separated state at pH 6 is even more pronounced if we compare 

these data with those reported earlier for R-26.65  

 

 

3.7 Assigning the kinetic components to conformational changes 

 

Most of the earlier conformational studies argued that the origin of the long-lived states 

upon continuous illumination must stem from conformational changes near the 

quinones.35,56,65,67,68 This assumption was supported by structural studies where indeed 

electron density changes were observed upon illumination near QB and the H-subunit.43,85 

These X-ray crystallographic studies used, however, very short (<1 s) illuminations to 

generate the light-induced states as the crystals would not diffract if exposed to longer 

illuminations.85,104 It is obvious from this work as well as earlier illumination time-

dependent analyses that accumulation of the really long-lived states requires a much 

longer illumination time than 1 s.57,68 We present a model (Scheme 3.1) that explains the 

results of this work with a minimum of assumptions.  
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In the scheme the horizontal displacements are redox reactions (D  LH) and 

deprotonational steps (LH  L0), and the vertical displacements are structural changes 

between conformational levels (L1  L2  L3) from a dark-adapted conformation (L1), 

to an intermediate light-adapted conformation (L2), and to the final light-adapted 

conformation (L3).  

 

Scheme 3.1 Minimal model of the light-induced and redox reactions, conformational, and 

protonational changes in BRCsa 

 
a The BRCs are shown as large rectangles. The dark-adapted conformations for both P and QA are 

shown as small rectangles, and the different light-adapted conformations of the protein in the 

vicinity of P and QA are indicated with hexagons and ellipses, respectively. The horizontal 

changes indicate charge separation (forward arrow) and charge recombination (backward arrow) 

from the dark (D) to under light (LH) and the protonational changes between the protonated (LH) 

and the deprotonated (L0) forms of the BRCs are also shown with horizontal arrows. The 

approximate rate constants for the recovery processes are indicated near the corresponding 

arrows. A full description is found in the text. 
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In dark-adapted samples (L1) the charge separation forms the P+QA  state, and in the vast 

majority of the samples charge recombination takes place in the ~ 30-100 ms time scale 

depending on the pH and the mutants (Figure 3.8). Because of the very low quantum 

yield of the conformational changes, multiple turnovers are needed to build up the 

different conformational levels indicated by L2 and L3. The multiple turnovers can be 

achieved either by continuous illumination or trains of flashes as suggested in earlier 

studies.35,46,56,57,65,67,68 The populations of the different conformational levels are 

dependent upon the illumination time and the mutation. At very short illumination times 

(~ 1 s) the component with a rate constant of ~ 10-1 s-1 is the first to appear in the 

recovery kinetics among the slower components in the WT, and this component was 

predominantly observed even after longer illuminations in the mutants containing His at 

L131 (at level L2) besides the normal charge recombination. It can also be seen in 

virtually all mutants if another component with a similar rate constant does not mask it 

(Figure 3.8). When the reduced quinone was rapidly oxidized by excess ferricyanide after 

a flash excitation, P+ has been reported to scavenge an electron from the surroundings 

with a rate constant of ~ 10-1 s-1 in R-26 and also in Blastochoris viridis reaction 

centers.57,113,130 If an early light-induced conformational change around the quinones 

blocks the return of the electron to P+, one can assume a similar situation. Thus, we 

propose that the component with a rate constant of ~10-1 s-1 is most likely due to the 

recovery of P+ caused by the light-induced conformational changes taking place in the 

vicinity of the quinones, at the cytoplasmic side of the BRC. This assignment is in 

agreement with the X-ray crystallographic studies where after short illuminations (<1 s) 

structural changes were only reported near the quinones and in the H-subunit.43,85  
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While the L2 level appears to be populated for WT and all mutants, significant 

population of L3 is observed only for WT and mutants with the native Leu at L131. The 

component with rate constants of ~ 10-2 s-1 (at level L3) was only observed in the mutants 

that exhibited a large decrease of the P/P+ potential (Figures 3.8 and 3.9) and was also 

accompanied by decreased electrochromic absorption changes of the bacteriochlorophyll 

monomer band upon illumination that was assigned to the increase of the local dielectric 

constant (Figure 3.5). It should be noted that in the mutants with the M197 Phe to His 

substitution the recovery kinetics were the fastest in their group (Figure 3.7), but they 

were not as rapid as in the L131 family of mutants and exhibited some degree of 

dependence on the P/P+ potential (Figure 3.8). This is consistent with the models 

presented above since the M197 His is close to both the 2-acetyl group of PM and Tyr 

M210 (Figure 3.11). We assigned the L3 level as the conformational state formed due to 

structural changes occurring at the periplasmic side, near P. As the amplitude of the very 

slow component with a rate constant of ~ 10-3 s-1 at pH 6 was correlated with the extent 

of the proton release and was predominantly detected in the mutants that lack the L131 

His, we conclude that this component should also arise from conformational changes at 

the periplasmic side but from a different protonational state. The matching kinetics of the 

recovery of the proton release (Figure 3.12A) and the recovery of the charge-separated 

state (Figure 3.12B) indicates that the re-protonation step is rate limiting at the L3 level. 

After flash excitation, at the L1 level, the kinetics of the reuptake of the substoichiometric 

proton release was also found to be the same as the charge recombination.113  
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The unusual, large proton release that has also been reported earlier for R-26 was 

attributed to the different pKas of several protonatable residues near the periplasmic 

surface in the light- and dark-adapted conformations of the reaction center.57  

Since the proton release is not coupled with additional decrease of neither the P/P+ 

potential nor the electrochromic absorption changes of the monomer bands, most of the 

proton releasing residues must not be in the immediate vicinity of P or the B monomers. 

It has been discussed earlier that there are a total of 14 Glu, Asp, and His (not ligated) 

residues that are at least 10 Å away from P on the periplasmic side of the reaction center 

and may have their pKa values in the acidic pH range and can account for the 6.5 H+/BRC 

proton release here in WT and for the 6.0 H+/BRC in R-26 reported earlier.57 The 

increase of the local dielectric constant was shown to shift the pKa values of the side 

chains of the acidic residues downward and those of the basic residues upward in 

globular proteins.131 Because around pH 6 the Asp and Glu residues are more likely 

expected to undergo protonational changes than the basic ones, the observed proton 

release in WT and in R-26 is in agreement with the decrease of the pKas of the 14 

possible acidic residues. It was shown earlier that even after flash excitation proton 

release from near P+ can only be observed at low pH values.113,121 This indicates that the 

pKa values of the residues near P should be below pH 8 and explains why in this work 

and after flash excitation proton release was only observed at low pH and not at pH 8. 

The LH  L0 deprotonation step in Scheme 3.1 is therefore strongly pH dependent in all 

conformations.  
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While the proton release in the dark-adapted conformation (at level L1) after a single 

flash excitation is also caused by the shift of the pKas of the nearby residues, it can only 

be substoichiometric since it is due to the interaction of the single positive charge on P 

with the protonatable side chains.113,121 This can only provide very moderate stabilization 

for P+ due to proton release. At level L3, however, the increased value of the dielectric 

constant can shift the pKas of many residues, significantly resulting in a large proton 

release and almost an order of magnitude longer lifetime of the charge-separated state. 

According to the proposed Scheme 3.1, there are two different conformations of P: the 

dark-adapted conformation at levels L1 and L2 (indicated by squares) and the light-

adapted conformation, at level L3 (shown as hexagons). The relaxation time from L3 to 

the L2 (or L1) conformational level in the ground state was found to be ~ 6 h (rate 

constant of ~ 10-5 s-1) after prolonged illumination (Figure B2) and about 1 h after 1 min 

illumination. These conformational states are the sources for the two populations of P 

with different redox potentials in WT and in mutants with Leu at L131 (Figure 3.9 and 

Figure B3). As level L3 is not populated significantly in the mutants containing the His at 

L131, P predominantly exists only in the dark-adapted conformation (at levels L1 and 

L2) in these mutants (Figure 3.9 and Figure B3, Table B1). 

 

In summary, we have shown that the rate of the recovery of the oxidized dimer in the 

P+QA  state depends systematically on the protein environment of P+. In particular, 

replacement of the Leu to His at the L131 position appears to prevent the light-induced 

conformational changes that result in a very slow recovery of the charge-separated state, 

the drop of the P/P+ potential, and a large proton release at pH 6.  
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These events correlate with the extent of the light-induced change in the local dielectric 

constant near P. The long-lived P+ cannot be generated by electrochemical oxidation 

alone even in the light-adapted conformation (Figure B1) as it requires the presence of 

the electric field between QA  and P+ established by the light-induced charge separation 

and the subsequent structural changes that have low quantum yields. We have also shown 

that the kinetics of the light-induced conformational changes and the proton release in 

WT are very similar to those reported earlier in the carotenoid-less R-26 mutant, and they 

are independent of the detergents used.57 The extension of the lifetime of the charge-

separated state by up to 4 orders of magnitude via light-induced structural and 

protonational changes provides new opportunities to utilize the BRCs in energy storage 

as biocapacitors. The charges separated by a low dielectric medium can be prevented 

from recombination by systematic alteration of the environment of the charges (explained 

later in chapter 5), and the light can be used as a switch.  
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Chapter 4 

Effect of hydrophobic environment (detergents and lipids) on electronic 

structure of the primary electron donor 

 

The results in this chapter are based on the following published paper: 

 

Deshmukh, S. S., Akhavein, H., Williams, J. C., Allen, J. P., and Kálmán, L. (2011) 

Light-induced conformational changes in photosynthetic reaction centers: Impact of 

detergents and lipids on the electronic structure of the primary donor. Biochemistry, 

50, 5249-5262. 

 

Author contributions: 

S. S. Deshmukh performed the experiments, analyzed the data, and contributed to writing 

the paper. H. Akhavein performed experiments in liposomes, which are represented in 

figure 4.4 and 4.5. J. C. Williams and J. P. Allen supplied the strain from Rb. capsulatus 

and contributed to writing the paper. L. Kálmán designed the research, guided the data 

analysis, and wrote the paper.  

  

 

 

 

 

 

 108



As explained with experimental evidences in Chapter 3, structural changes near P are 

responsible for the very long lifetime of the charge-separated state after prolonged 

illumination. A correlation between the type of mutation and several electronic 

properties, including the redox midpoint potential of P, the light-induced electrochromic 

absorption changes of the bands of the nearby B molecules due to the increase of the 

local dielectric constant, and proton release from the periplasmic side, was interpreted in 

terms of structural changes of P and its local environment. In this chapter, these studies 

on BRCs from Rb. sphaeroides have been extended to BRCs from Rb. capsulatus, which 

shows pronounced spectral changes depending upon the choice of detergents. The 

structure of the BRC from Rb. capsulatus has not been determined, but it is presumed to 

be very similar to the structure of the BRC from Rb. sphaeroides based on the amino acid 

sequence similarity between the two species.126,132-134  

The overwhelming majority of the accumulated knowledge about the structure and the 

coupling between the electron and proton transfer reactions has been obtained using 

BRCs that were purified in detergents to substitute for the natural membrane 

environment. The isolation procedure and the selection of the detergent have been found 

to significantly alter the spectroscopic properties of the BRCs.135-137 

While in their native membranes the peak position of the QY absorption band of P in both 

Rb. sphaeroides and Rb. capsulatus is centered at 865 nm, this position of the P band in 

BRCs from Rb. capsulatus has been reported to be affected by the zwitterionic LDAO 

detergent, which is the most commonly used detergent for BRC isolation and 

characterization.138  

 

 109



When BRCs are purified using LDAO, the peak position of the P-band in Rb. 

sphaeroides stays at 865 nm, but it was reported to be downshifted by 15 nm in Rb. 

capsulatus to 850 nm. These positions can be systematically switched by selecting 

detergents with different head-group charges in both strains.25,138 This spectroscopic 

difference was identified earlier as an indicator for two different electronic structures of 

P.25 Here, the effects of prolonged, continuous illumination on the QY absorption band of 

P in BRCs from Rb. capsulatus are measured using steady-state and transient optical 

spectroscopy in both detergent micelles and in lipid bilayers. In particular, the light-

induced conversion between different spectral states, which has not been reported 

previously, is investigated. These optical shifts are characterized in terms of structural 

changes of P involving electrostatic and hydrophobic interactions with the surrounding 

membrane substituent and compared to those observed for BRCs from Rb. sphaeroides.

 

 

4.1 Comparison of the light-minus-dark spectra and the recovery kinetics of the 

dimer in detergent micelles and liposomes 

 

The absolute and light-minus-dark difference optical spectra were recorded during and 

various different times after the illumination for BRCs from Rb. capsulatus that were 

dispersed in DOC, CTAB, and LDAO detergents (Figure 4.1). The absolute spectra have 

three absorption bands in the 700-1000 nm region. The band centered at ~ 760 nm is 

assigned to the H molecules (H-band), the second band centered at ~ 800 to the B 

molecules (B-band), and the third at 850-870 nm to P (P-band).  
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The near-infrared absolute absorption spectrum is significantly different if the BRCs are 

dispersed in positively (CTAB) or negatively (DOC) charged detergent micelles as 

reported earlier. The most striking effect is a ~ 20 nm blue shift in the position of the P-

band that is clearly visible in the absolute spectra. The difference spectrum (thick black 

solid line in panel A of Figure 4.1) reveals an additional feature, namely a slight 

broadening of the B-band if the detergent is changed from DOC to CTAB.  

The band shift and broadening are two standard electrochromic responses to changes of 

the local electric field.101 The light-minus-dark difference optical spectra measured at 

different times after illumination are shown for DOC and CTAB in panels B and C of 

Figure 4.1, respectively. In both detergents the difference spectra feature bleaching of the 

P-band, an electrochromic blue shift of the B-band due to the presence of the positive 

charge on the nearby P, and an electrochromic red shift of the H-band due to the negative 

charge on QA.139 After illumination for 1 min, the spectra recovered fully but with 

different rates for BRCs in CTAB and DOC. In CTAB total recovery was observed 

within 2 min after the illumination was switched off, while in DOC the full recovery 

required a ~ 4 times longer time scale. The spectra for DOC and CTAB samples were 

insensitive to the illumination history of the sample, meaning that subsequent 

illuminations resulted in the same spectra, but this was not the case for the LDAO-

dispersed samples. Using strictly dark-adapted samples, the position of the P-band was 

863 nm, a value very close to 865 nm that is observed in TX-100 for Rb. capsulatus or 

for Rb. sphaeroides in both TX-100 and LDAO. During the very first illumination, 

however, the position of the P-band shifted to 855 nm and did not return even after 1 h 

dark adaptation (panel D of Figure 4.1). 
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Figure 4.1 NIR absolute (panels A and D) and light-minus-dark difference optical spectra 

(recorded at the end of 1 min illumination) and recovery in reaction centers dispersed in DOC (in 

blue) (B), CTAB (in red) (C), and LDAO during and after the first (in pale green) (E) and second 

(in dark green) (F) illumination. The position of the P-band in these samples is indicated by 

vertical dashed lines. The numbers in the difference spectra in panels B, C, E, and F show what 

time the spectra were recorded in minutes after the illumination was turned off. In LDAO the 

position of the P band was found to be different before and after the first illumination. The thick 

solid black lines in panels A, D, and E represent the difference spectra recorded in DOC and 

CTAB, before and after the first illumination in LDAO, and the residual spectra after the first 

illumination, respectively. These difference spectra are consistent with the shift of the P-band 

from 870 to 850 nm in panel A and from 863 to 855 nm in panels D and E, respectively. 

Conditions: 1.5 M BRC, 15 mM Tris-HCl, 1 mM EDTA pH 8. The concentrations of the 

detergents are listed in the text. 

 

 112



The difference spectrum in LDAO between the spectra collected after and before the first 

illumination shows the very same features as those determined between CTAB and DOC 

(panel A of Figure 4.1). Panel E shows the lack of full recovery after the first 

illumination. Subsequent illuminations, however, did not cause further shifts as the 

spectral features recovered fully (panel F of Figure 4.1). A single illumination causes 

only a fraction of the BRCs to be converted to a long-lived, conformationally altered state 

generating a heterogeneous population of the BRCs. Using subsequent exposures, the 

position of the P-band eventually shifted to 850 nm after five 1 min long illuminations 

followed by 10 min dark relaxation periods after each exposure and stayed there even 

after several hours dark adaptation. One full day in the dark resulted in a few nm red shift 

in the P-band position, indicating that a very small fraction of P may have returned to the 

dark-adapted 865 nm position. Such long time storage at room temperature, however, 

began to take a toll on the stability of the BRC protein as additional changes 

characteristic to degradation processes also appeared in the spectrum. It has to be noted 

that the recovery kinetics after the first illumination was slower than after the second 

illumination in LDAO, in the same manner as in DOC vs in CTAB (please compare 

panels B with E and panels C with F of Figure 4.1).  

Complex formation and recovery kinetics during and after illumination (Figure 4.2) 

indicates that the continuous illumination drives a fraction of the BRCs to a 

conformationally altered state as described in chapter 3 and previously.35,56,57,65,68  
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Figure 4.2 Kinetics of the light-induced absorption changes measured in the QY absorption band 

of P during and after 1 min illumination in the absence of any secondary donor for BRCs in (A) 

CTAB (red), (B) LDAO (1st and 2nd illumination in pale and dark green, respectively), and (C) 

DOC (blue). In LDAO the kinetics was dependent on whether the samples were dark-adapted or 

pre-illuminated. Note that the kinetic trace in LDAO after the first illumination does not recover 

completely to zero (see panel E in Figure 4.1 for comparison). Conditions as in Figure 4.1. 
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Analysis of the slow phase in the different detergents yielded rate constants of 9.8 × 10-3 

and 2.4 × 10-2 s-1 in DOC and CTAB, respectively. A similar, ~ 2-fold difference was 

observed in LDAO when comparing the slow phases of the first and second 

illuminations, which had rate constants of 9.4 × 10-3 and 1.9 × 10-2 s-1, respectively. The 

kinetic parameters are also listed in Table 4.1. These results indicate that the rate 

constants are essentially the same for BRCs that have the long-wavelength form of P and 

similar for those that have the short-wavelength form of P regardless of the identity of the 

detergent. As the position of the P-band in Rb. sphaeroides can only be shifted to 850 nm 

with the addition of cationic detergent (CTAB),25 the dependence of the recovery kinetics 

in the presence of CTAB was measured.  

 

Table 4.1 Kinetic parameters of the recovery of the P+QA  charge-pair after continuous 

illumination in BRCs from Rb. capsulatusa 

 
Head-group 

chargeb 

 
namec 

 

 
As

e 

 

 
ks × 102 

(s-1)f 

 
Avs

e 

 

 
kvs × 103 

(s-1)f 

 

 

 

 

 

detergent 

 

 

lipid 

 
+1 
0 
0 
-1 
 
 

+1 
0 
0 
-1 

 
CTAB C16 

LDAO C12 1st 
LDAO C12 2nd 

DOCd C22 
 
 

DOTAP C18 
DOPC C18 
DLPC C12 
DOPS C18 

 
0.53 
0.41 
0.50 
0.37 

 
 

0.24 
0.22 
0.42 
0.16 

 
2.4 
0.94 
1.9 
0.98 

 
 

1.8 
2.0 
1.1 
1.4 

 
ND 
ND 
ND 
ND 

 
 

0.30 
0.32 
ND 
0.51 

 
ND 
ND 
ND 
ND 

 
 

1.7 
2.5 
ND 
0.9 

 

a The BRCs were dispersed either in detergent micelles or in liposomes with various head-group 

charges and the kinetic parameters were determined from Figures 4.2 and 4.5, respectively.  
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ND: not detectable. 
b Net charge of the head-group at pH 7.4.  
c Abbreviated name of the detergent or lipid and the length of the hydrophobic chain.  
d Effective length C12-C13.  
e Relative amplitude of the slow (As) and very slow (Avs) components in the recovery of the 

P+QA  charge pair.  
f Rate constant of the slow (ks) and very slow (kvs) components. 

 

 

The normalized light-minus-dark difference spectra measured at the beginning of the 

illumination and 1 min after the illumination was turned off in Rb. capsulatus in DOC, 

CTAB, and LDAO are shown in Figure 4.3. The spectra recorded at the beginning of the 

1 min illumination are predominantly characteristic of the dark-adapted conformation of 

the BRC, while those recorded 1 min after the illumination is turned off represent the 

light-induced conformation in all samples.  

The differences between those two spectra are characteristic of the light-induced changes 

that took place during illumination. A decrease of the electrochromic absorption changes 

of the B-bands was detected in Rb. capsulatus in all three detergents regardless of the 

position of the P-band, which is similar to the findings for the BRCs from Rb.

sphaeroides (as discussed in chapter 3). However, in the strictly dark-adapted BRCs in 

LDAO, the double difference spectrum featured not only the shift in the B-band but also 

the shift in the P-band (Figure 4.3C). 
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Figure 4.3 Normalized light-minus-dark difference spectra (solid lines) recorded immediately 

after the onset of the light and 1 min after the illumination was turned off (dashed lines) for BRCs 

dispersed in DOC (blue) (A), CTAB (red) (B), and LDAO (C and D, for the first (1st) (pale 

green) and second (2nd) (dark green) illuminations, respectively). The thick black solid lines 

show the double difference spectra and feature changes around 800 nm consistent with the 

decrease of the electrochromic absorption changes involving the monomers during the 

illumination. The vertical dashed lines show the position of the P-band in DOC, CTAB, and in 

LDAO before and after the first illumination. Conditions as in Figure 4.1. 

 

 

Recovery rates of the redox states after prolonged illumination

In Rb. sphaeroides, where the position of the P-band in LDAO is 865 nm, the rate 

constant for the slow component in the recovery kinetics after prolonged illumination 

without a secondary electron donor was reported to be ~ 2 × 10-2 s-1 (Chapter 3). This 

value is in agreement with the rate constants observed for BRCs from Rb. capsulatus 

dispersed in DOC and LDAO if the samples were dark-adapted.  
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Upon the light- or detergent-induced shift of the P-band to 850 nm a ~ 2-fold acceleration 

was observed (Figure 4.2 and Table 4.1). The slow phase is assigned to the fraction of the 

BRCs that undergo a light-induced conformational change. The amplitudes of the slow 

phase are comparable (30-50%) in the two species and those found in different detergents 

in Rb. capsulatus (Figure 4.2). These observations suggest a close correlation between 

the lifetime of the charge-separated state in the light-induced conformation and the 

position of the P-band and thus the electronic structure of P. The light-induced shift of the 

P-band in Rb. capsulatus appears to be a consequence of conformational changes in the 

BRC, but the recovery rates change by a factor of 2 compared to a 1000-fold difference 

between the recovery kinetics in the dark- and light-adapted conformations (Figure 4.3). 

 

4.1.1 Influence of the lipids on the light-induced optical spectra and the kinetics of the 

recovery of the charge-pair in liposomes 

 

Light-minus-dark optical difference spectra were recorded in BRCs from Rb. capsulatus 

that were reconstituted into liposomes. The liposomes were formed using lipids that all 

contained the same mono-unsaturated dioleoyl (18 carbon atoms long, C18) fatty acid 

chain but with different head-groups, cationic (DOTAP), anionic (DOPS), or zwitterionic 

(DOPC) (Figure 4.4). This selection ensured that all three lipids were in their liquid 

crystalline phase at room temperature with only differences in their head-group charges. 

Following the same approach shown in Figure 4.3 for detergent micelles, the normalized 

spectra taken at the beginning of the illumination (solid lines) and 1 min after the 

illumination was turned off (dashed lines) are shown in Figure 4.4 for the liposomes.  
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Figure 4.4 Normalized light-minus-dark difference spectra (solid lines) recorded immediately 

after the onset of the light and 1 min after the illumination was turned off (dashed lines) for BRCs 

from Rb. capsulatus incorporated in DOPS (blue) (A), DOTAP (red) (B), DOPC (dark green) 

(C), and DLPC (pale green) (D) liposomes. The thick black solid lines show the double 

difference spectra and feature changes around 800 nm, consistent with the decrease of the 

electrochromic absorption changes involving the monomers during the illumination and in DLPC 

a marked shift in the P-band. The vertical dashed lines show the position of the P-band in DOPS, 

DOTAP, and DOPC at 868 nm. The vertical dotted line is indicating the position of the P-band in 

DLPC at 864 nm. Conditions: ~ 1.5 M BRC, 15 mM potassium phosphate, 15 mM KCl, 1 mM 

EDTA, 100 M terbutryn, pH 7.4. 

 

 

For comparison, the spectra recorded in BRCs that were incorporated to liposomes from 

DLPC with zwitterionic head-groups like DOPC but only a C12 fatty acid chain are also 

shown (Figure 4.4D). Unlike for the spectra recorded in detergent micelles (Figure 4.3), 

the head-group charges had no significant influence on the peak position of the P band as 

long as the fatty acid chains were C18.  
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All BRCs exhibited P band positions of 868 ± 1 nm in the dark and at the beginning of 

the illumination (vertical dashed lines in Figure 4.4, panels A-C). The prolonged 

illumination of these BRCs did not change the position of this band significantly as 

indicated by the lack of spectral features in the double difference spectra (thick solid 

lines) in the 840-900 nm range. If, however, the BRCs were reconstituted into liposomes 

from DLPC with a zwitterionic head-group and a C12 fatty acid chain, the observed 

position of the P-band at the beginning of the illumination (and in the dark prior to 

illumination) was already blue-shifted by 4 nm to 864 nm. Upon illumination the 

observed P band position shifted even further to lower wavelengths, though not as much 

as observed for reaction centers in zwitterionic LDAO detergent micelles (Figure 4.3C). 

Analysis of the double difference spectrum (thick solid line in Figure 4.4D) showed a 

shift of the P-band to 850 nm in 27% of the BRCs. The observed very small, light-

induced shift in DOTAP indicated only 7% of the BRCs as being affected (Figure 4.4B). 

Unlike BRCs in LDAO, the peak position of the P-band during the recovery returned to 

the value observed before the illumination both in DOTAP and in DLPC liposomes. The 

spectra recorded after the illumination was turned off were characteristic of the P+QA
 

state in the light-adapted conformation and showed decreased electrochromic shifts of the 

B-bands around 800 nm. The decrease of the electrochromic absorption changes 

involving the B bands around 800 nm upon illumination were present in all samples but 

with different extent (Figure 4.4). The recovery kinetics of the P+QA
 charge-pair after 

illumination is shown in Figure 4.5, and the kinetic parameters are tabulated in Table 4.1 

for reaction centers incorporated into liposomes.  

 120



The time required for the full recovery of the charge-separated state was found to be 

much longer in liposomes with C18 fatty acid chains (DOTAP, DOPC, and DOPS) than in 

DLPC liposomes with C12 fatty acid chain length. In DLPC liposomes and detergent 

micelles, the recovery kinetics were biphasic with the slow component being comparable 

in all detergent micelles and lipids (see also Figure 4.2 and Table 4.1). In liposomes with 

the lipids with C18 fatty acid chains, the recovery kinetics had a third, very slow 

component. This very slow component had nearly an order of magnitude smaller rate 

constant than that of the slow component (Table 4.1). 

 

Figure 4.5 Kinetics of the light-induced absorption changes measured in the QY absorption band 

of P during and after 2 min illumination in the absence of any secondary donor for BRCs in 

liposomes with different head-group charges: (A) DOTAP in red (positive), (B) DOPC in dark 

green and DLPC in pale green (zwitterionic), and (C) DOPS in blue (negative). Conditions as in 

Figure 4.4. 
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When BRCs from Rb. capsulatus were reconstituted into liposomes, the rate constants of 

the slow component were also found to be similar to those determined in detergent 

micelles, but further stabilization of the P+QA
 charge-pair was observed in liposomes 

from lipids with C18 fatty acid chains regardless of the head-group charge (Figure 4.5). 

This stabilization was characterized by the presence of the very slow kinetic component 

that has a rate constant of ~ 10-3 s-1 (Table 4.1). When this component was detected the P-

band stayed in its long-wavelength form during illumination (Table 4.1 and Figure 4.4 A-

C). Contrarily, if DLPC with a C12 fatty acid chain length was used to incorporate the 

BRCs, the very slow component was not observed and the P-band position has been blue-

shifted (Figure 4.4 D, Table 4.1, and Figure 4.5). The very slow component with a rate 

constant of ~ 10-3 s-1 was assigned in BRCs from Rb. sphaeroides to a stabilization of the 

conformationally altered state by proton release (Chapter 3). In the proton release Tyr 

M210 plays a critical role as it is situated within H-bond distance from the 2-acetyl group 

of PM. The lack of the very slow component in the recovery kinetics of BRCs 

reconstituted into DLPC with a blue-shifted P-band is consistent with the rotation of the 

2-acetyl group and the loss of the proton pathway between Tyr M210 and the solvent. 

 

 

4.1.2 Two distinct conformations of P

On the basis of their spectral features, the reaction centers can be divided into two classes 

depending on the observed position of the QY absorption band of P, with the band being 

at 865 and ~ 850 nm for first and second classes, respectively.138  
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Under most commonly used BRC purification conditions, the reaction centers from Rb.

sphaeroides and Rhodospirillum (Rps.) rubrum belongs to the first class and Rb. 

capsulatus and Rps. centenum were reported to belong to the second group. For BRCs 

from both Rb. capsulatus and Rb. sphaeroides, it is possible to shift the P-band position 

and thus convert one spectral form of P to another by changing the nature of the 

detergent.25,138 Positively charged detergents like CTAB fix the position of the P-band at 

~ 850 nm while neutral or negatively charged ones adjust the band position to ~ 865 nm. 

Contrarily to the behavior in LDAO the P-band position for BRCs from both species in 

chromatophores is reported as 865 nm.138 Our results showed that in liposomes formed 

from lipids with C18 fatty acid chains the P-band position was also preserved at the long-

wavelength form (Figure 4.4). Our results also indicate that illumination can shift the P- 

band from its long-wavelength form to its short-wavelength form regardless of the 

identity of the detergent and also in liposomes from DLPC with short fatty acid chain 

length. The quantum yield of this conversion is reasonably high in LDAO but low in TX-

100 and DOC as indicated by the differences in illumination times that are required to 

induce the shift (Figure 4.2). The conversion of the two spectral forms back and forth 

indicates that the spectral differences must be due to altered interactions of P with the 

environment and not due to inherent structural differences. The major difference between 

these two forms is the ability to delocalize the positive charge over the two halves of P. 

Extensive electron paramagnetic resonance (EPR) and electron nuclear triple resonance 

(special TRIPLE) studies have revealed that the observation of the long wavelength form 

is coupled to a larger degree of delocalization of the positive charge (electron hole) with a 

ratio of approximately 2:1 favoring PL over PM.140  
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Contrarily, the positive charge is almost completely localized on PL if the band position is 

found at 850 nm setting the same ratio to 5:1. The observed asymmetry was attributed to 

the change in the orbital energies of the two halves of the dimer.141 The change in the 

delocalization of the positive charge and thus the orbital energies was proposed to be 

caused by a change of the orientation of the 2-acetyl groups of PL and/or PM.25,45,76,140 

These studies indicated that 2-acetyl groups have different orientations when they are free 

or hydrogen bonded to nearby residues. Whether or not the rotation of the 2-acetyl group 

causes the shifts in the P-band position and in the spin density distribution between PL 

and PM is not clear. Removal of the native H-bond in Rb. sphaeroides between the 2-

acetyl group of PL and the L168 His by substituting this residue with a Phe resulted in the 

shift of the P-band to 850 nm, but the electron hole became almost evenly shared between 

the two halves of P instead of the predicted localization on PL.76 This is in contrast to 

what was observed in native BRCs dispersed in positively charged detergents, where the 

850 nm P-band position was coupled to an almost total localization of the hole on PL.25 

Similarly, if H-bonds were introduced in the symmetrical position between the 2-acetyl 

group of PM and a residue substituted to the M197 position depending on the identity of 

the residue different results were obtained. The formation of the H-bond was confirmed 

with both His and Tyr residues with various techniques.45,76,142 With His at M197 

significant changes could be observed neither in the spin density distribution nor in the 

position of the P-band in comparison with wild type.76,93 With Tyr at M197, however, 

both the blue shift of the P-band and the localization of the hole on PL were observed.142  
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The picture becomes even more complicated if we compare the changes of the reported 

P/P+ potentials caused by the removal or addition of the H-bonds and thus the rotation of 

the corresponding acetyl groups. The M197 His induced the largest increase of the P/P+ 

potential (130 mV) regardless of the lack of the spectral changes, while the Tyr only 

increased the potential by 30 mV.93,143 In the symmetrical position, L168, the 

replacement of His with Phe resulted in a 90 mV decrease in the potential of P.93 

 

 

4.1.3 Influence of the hydrophobic mismatch on the position of the dimer and on the 

light-induced conformational changes

 

The position of the QY band of P in the light-minus-dark spectra showed a different 

sensitivity to the head-group charge when the BRCs were in detergent micelles (Figure 

4.3) compared to liposomes (Figure 4.4). For BRCs dispersed in detergent micelles, the 

charge of the head-group induced a shift in the P-band position not only in BRCs from 

Rb. capsulatus but also in Rb. sphaeroides, converting one spectral form of P to another 

(Figure 4.3).25,138 The shift was primarily induced by a positively charged (both in Rb. 

capsulatus and in Rb. sphaeroides) or zwitterionic (Rb. capsulatus only) detergent. 

Interestingly, this shift was not detected in BRCs from Rb. capsulatus that were 

reconstituted into liposomes with various head-group charges provided the mono-

unsaturated fatty acid chain length was C18 for which P was in its long-wavelength form 

as also found in the natural membranes (Figure 4.4 A-C).  
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Contrarily to the findings in detergents, exposing these BRCs to light did not shift the 

position of the P band in the zwitterionic DOPC (Figures 4.3C and 4.4C). It was reported 

earlier that various negatively charged membrane lipids in Rb. sphaeroides do not alter 

the position of the P band if the fatty acid chain lengths are C16 or C18.91 Therefore, it was 

not expected that the spectrum recorded in the negatively charged DOPS would show any 

shift in the dimer position, and it is in agreement with the observation obtained in the 

negatively charged detergent, DOC (Figures 4.3A and 4.4A). In DOTAP liposomes only 

a tiny fraction (7%) of the BRCs experienced the light-induced hypsochromic shift. 

However, if we used a shorter lipid (DLPC) with a zwitterionic head-group, a 4 nm blue 

shift of the P-band was observed even in the dark, which was shifted even further upon 

prolonged illumination corresponding to 27% of P being converted to its short-

wavelength form upon illumination (Figure 4.4D). This fraction is in a reasonable 

agreement with the amplitude of the long-lived component in the recovery kinetics 

(Figure 4.4). All other spectral and kinetic features of the light-induced structural changes 

near P were present in all liposomes, namely the decrease of the electrochromic 

absorption changes of the B bands and the long-lived charge-separated state.  

On the basis of neutron diffraction studies of detergent-grown BRC crystals, the 

thickness of the detergent belt for LDAO and -octyl-glucoside micelles is only ~ 23 Å, 

whereas the thickness of the detergent phase along the transmembrane -helices of the L 

and M subunits is ~ 30 Å (Figure 4.6A).28,72 This difference provides a significant 

hydrophobic mismatch, which should be compensated for not only by the detergent but 

also by the protein (Section 1.5).36  
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Figure 4.6 Schematic cartoon representation of the BRC in a LDAO detergent micelle (A) and in 

a lipid bilayer with oleoyl fatty acid chains (B). The L, M, and H subunits are labeled with 

salmon, green, and yellow colors, respectively. The bacteriochlorophyll dimer (P) and the 

primary quinone (QA) are also shown as red and orange sticks, respectively. The differences in 

the hydrophobic thicknesses between the BRC and the lipid bilayer or detergent belt are shown, 

and this difference is proposed to alter the electronic structure of P and thus shift the position of 

the P-band. The coordinates for the BRCs were taken from PDB entry codes 1YST (A) and 

1OGV (B).34,72 The lipids and detergents are not shown as precise molecular structures but rather 

drawn only as schematic representations. The hydrophobic thicknesses of the detergent belt and 

the lipid bilayer were taken from refs 28 and 34, respectively. 

 

 

In the natural membrane environment, from an energetics point of view, it is expected 

that the hydrophobic thickness are matched; however, there are examples that do not 

match.144 For example, in eukaryotic cells the plasma membrane is thicker than the 

membranes of the endoplasmic reticulum; nonetheless, the proteins found in the plasma 

membrane are initially integrated in the endoplasmic reticulum.144 Furthermore, the 

composition of the natural membrane is not unique in different photosynthetic bacteria.145 

Even within the same strain, for example changes in growth conditions can alter the 

membrane composition in Rb. sphaeroides.27  
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Among the natural lipids the monounsaturated phospholipids are very common in the 

natural membrane and the thickness of the dioleoyl (C18) fatty acid chain was calculated 

to be also 30 Å, the same as the length of the -helices reported in Rb. sphaeroides.28,38 

The hydrophobic thickness of the DLPC bilayer in its liquid crystalline and gel phases 

was reported to be only 19.5 and 27.0 Å, respectively.38 It is expected that in part of the 

compensation for the hydrophobic mismatch the phase transition temperature of saturated 

DLPC at the interface is shifted from ~ 0 °C toward room temperature values. Even if the 

shift is dramatic, it still cannot match the ~ 30 Å thickness of the hydrophobic length of 

the transmembrane helices. It was suggested that membrane proteins can compensate for 

the hydrophobic mismatch by tilting their transmembrane -helices to reduce their 

effective thickness or adjust their hydrophobic length by changing the orientation of both 

the hydrophobic and hydrophilic side chains near the interface (Section 1.5).144 Recently, 

the crystal structure of Rb. sphaeroides was resolved in a lipidic cubic phase using also 

mono-unsaturated oleoyl lipids with C18 fatty acid chain lengths.34 Comparison with eight 

detergent-based structures revealed that the 2-fold symmetry axis passing through P and 

the non-heme Fe2+ is slightly tilted relative to the plane of the membrane, and the crystal 

contacts were structurally perturbed in the various structures by interactions with the 

surrounding detergent and lipid molecules. The crystal contacts along the symmetry axis 

were reported to be mediated by interactions between the periplasmic regions of the L 

and M subunits not far from P. In the lipid-based structure the membrane was clearly 

identifiable with a hydrophobic thickness of 34 Å, which is in a reasonable agreement 

with the predicted value for the thickness of the lipid bilayer and 10 Å larger than the 

thickness of the detergent belt (Figure 4.6B).27,38,28  
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As mentioned above, the orientation of the 2-acetyl groups of P, which primarily 

influence the position of the P-band, can systematically be altered by the local 

electrostatics if hydrophobic residues near P are replaced with charged ones or the nature 

of the detergent is altered.45,76 Besides the membrane lipids three integral lipid molecules 

were identified in one of the detergent-based structures in Rb. sphaeroides that most 

likely influence the rate of the electron transfer and contribute to the energetics of the 

unidirectional charge separation in the reaction center (Section 1.3).21 Of these three 

lipids cardiolipin was also resolved in the lipid-based structure.34 Even though the polar 

head-group of the cardiolipin is over 15 Å away from the closest cofactor, it is largely 

exposed and stabilized primarily by electrostatic interactions with Arg M267, His M145, 

and several water molecules. The cardiolipin was also proposed to be in contact with the 

membrane exposed surfaces of the H and M subunits.146 Thus, the influence of 

cardiolipin would most likely be different in BRCs isolated in detergents and in 

liposomes as it interacts with different hydrophobic chains.  

 

 

4.2 Reversible shifts of the P-band in the presence of secondary electron donors 

 

The possibility of inducing a shift of the P-band reversibly during illumination in BRCs 

that were dispersed in LDAO was also investigated. For this purpose, a secondary 

electron donor, 2, 3, 5, 6-tetramethyl-p-phenylenediamine (DAD), was added to strictly 

dark-adapted samples.  
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After illumination, the secondary donor reduces P+ and the measured spectra are 

characteristic only of the reduced quinone. Such spectra feature an electrochromic red 

shift of the H-band due to the negative charge on the nearby quinone and a much smaller 

electrochromic blue shift of the P-band.147 The influence of the negative charge on the 

shift of the P-band is very small given the almost 3 times larger distance between QA and 

P compared to the distance between QA and H. The requirement for an efficient 

secondary electron donor is that the electron donation should be faster than the charge 

recombination as these two processes are parallel reactions. The electron donation time of 

various, routinely used secondary donors spans over 3 orders of magnitude in time. The 

native secondary donor, cytochrome c2, donates an electron to P+ in one or a few 

microseconds depending on whether it was already bound to the BRC or it must diffuse 

to the binding site.148 Ferrocene donates an electron to P+ in ~ 250 s in reaction centers 

from Rb. sphaeroides.149 DAD is the slowest among the routinely used secondary donors 

with a donation time of >1 ms.150 This is still about 100-fold faster than the charge 

recombination and qualifies DAD as a sufficient secondary donor.  

For strictly dark-adapted BRCs after addition of DAD, the light-minus-dark difference 

spectrum has a pronounced electrochromic shift of the P-band that is strongly dependent 

upon pH (Figure 4.7A, solid lines). The amplitude of the electrochromic shift was very 

small at pH 6 and reached its maximum value at pH 8 with a slight decrease at higher pH 

values (Figure 4.7B, closed symbols). This electrochromic shift corresponds to the shift 

of the P band from 863 to 855 nm in a varying fraction of the BRCs.  
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Once the spectral features fully recovered several minutes after illumination, subsequent 

illuminations resulted in almost the same spectra with slightly smaller amplitudes of the 

electrochromic shifts on the P-band but without any decrease of the electrochromic shift 

of the H-band. However, if the BRCs were pre-exposed to illumination prior to the 

addition of DAD, the large electrochromic shift of the P-band was completely missing 

and the pronounced pH dependence was also lost (Figure 4.7A, dashed lines; Figure 

4.7B, open symbols). Pre-illumination on the other hand did not influence the 

electrochromic shifts of the H-band (Figure 4.7A). 

 

Figure 4.7 (A) Light-minus-dark difference optical spectra of the BRCs in the presence of a 

secondary donor (DAD) in the dark-adapted (thick solid pale green lines) and pre-illuminated 

samples (thin solid dark green lines) at the pH values of 6.0, 7.0, 8.0, and 9.1. In the pre-

illuminated samples the DAD was added after 10 min dark adaptation. Conditions as in Figure 

4.1 except +500 M DAD. (B) pH dependence of the peak-to-trough difference of the shift of the 

P-band measured at 885 and 835 nm in dark-adapted (closed pale green symbols) and pre-

illuminated samples (open dark green symbols). 
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After illumination, the electrochromic shift of the P-band recovered with biphasic 

recovery kinetics (Figure 4.8). Kinetic traces were recorded at the maximum values of the 

spectral changes, namely at 885 and 835 nm (Figure 4.7). For both wavelengths, the 

recovery had dominant amplitude (87-88%) with a rate constant of (1.2-1.4) × 10-1 s-1 

with the remaining 12-13% component having a rate constant of (1.1-1.5) × 10-3 s-1. In 

the pre-illuminated samples the rate constants were similar but the relative amplitudes 

differed as 75% recovered with a rate constant of ~ 10-1 s-1 and 25% with a rate constant 

of ~ 10-3 s-1. Using cytochrome c as a secondary donor, the large electrochromic shift of 

the P-band was not observed, and the recorded spectra were similar to those obtained for 

the pre-illuminated samples (data not shown). It is not clear whether this is due to 

electrostatic interactions associated with the docking of the cytochrome or the nearly 3 

orders of magnitude faster electron donation time for cytochrome c compared to DAD. 

Using ferrocene, which also donates an electron in a second order process like DAD, 

intermediate size electrochromic shifts were observed in the P-band, indicating that P+ 

should be present for at least a submillisecond time scale to build up the large 

electrochromic shifts. It should also be mentioned that in the presence of terbutryn, an 

inhibitor of electron transfer to QB, the large electrochromic shifts are not observed, even 

in dark-adapted samples, but in the presence of a different inhibitor, stigmatellin, the 

shifts were observed (data not shown). 
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Figure 4.8 Kinetics of the light-induced absorption changes in the presence of DAD as a 

secondary electron donor in dark-adapted (thick solid pale green lines) and in pre-illuminated 

(thin solid dark green lines) BRCs. The traces were measured at the maximum values (885 and 

835 nm, see Figure 4.7) of the spectral signatures associated with the blue shift of the P-band. 

Conditions as in Figure 4.7. 

 

 

In the presence of the secondary electron donor (DAD) the major kinetic component of 

the recovery associated with the shift of the P-band has a very similar rate constant (~ 10-

1 s-1) that was assigned to the recovery of P+ in BRCs with conformational changes only 

near the quinones due to the use of short light exposure (Figure 4.8) [Chapter 3]. In 

mutants of BRCs from Rb. sphaeroides, where the conformational changes were blocked 

near P due to the presence of the H-bond between the 9-keto carbonyl group of PL and the 

introduced His residue at the L131 position, the rate constant of the recovery after 

prolonged illumination was also ~ 10-1 s-1. 

 

 

 

 

 133



4.2.1 Donor-acceptor interactions 

In the presence of a secondary electron donor the QA /QA difference spectrum can be 

detected during the illumination.147 A small electrochromic shift of the P band has been 

routinely observed in BRCs from both Rb. capsulatus and Rb. sphaeroides and modeled 

as arising due to a long-range (28 Å) electrostatic interaction between these two 

cofactors.147 The large electrochromic shifts reported here (Figure 4.8) have not been 

observed before. The question arises as to whether these large electrochromic shifts in the 

P-band are due to strengthened interactions with the quinone during illumination in dark-

adapted LDAO-dispersed BRCs. There have been several reports in the literature that 

suggest stronger interactions between the periplasmic and the cytoplasmic side of the 

BRCs in Rb. capsulatus than in Rb. sphaeroides. In WT BRCs from Rb. capsulatus and 

the R-26 strain of Rb. sphaeroides, fractional proton uptake and release upon charge-

separation has been observed and associated with changes in the pKa values of the nearby 

protonatable side chains due to the transient charges on QA and P, respectively.113,121 

Amino acid replacements near QA at the M246 and M247 positions in BRCs from Rb.

capsulatus resulted in changes not only in the flash induced proton uptake but also in the 

proton release.151 The larger proton release in these mutants was interpreted as being due 

to a long-range electrostatic interaction between the QA binding site and residues near the 

periplasmic side. The light-induced conformational switch from the long-wavelength 

form to the short-wavelength form of P was blocked by terbutryn in our experiments but 

was allowed with the use of stigmatellin even though there was only about 10% QB 

activity in our samples.  
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The addition of these inhibitors did not prevent the formation of the long-lived charge-

separated state and the decreased electrochromic changes in the B-bands during 

illumination but altered the lifetime of the light-induced state by about a factor of 2 

(Figure 4.2). In chromatophores of Rb. capsulatus, the binding of various inhibitors that 

block the electron transfer between QA  and QB have been reported to alter the redox 

potential of P by as much as ~ 50 mV depending on the redox state of QA and the identity 

of the inhibitor.152 This suggests that only one element of the conformational change was 

turned on and off by the inhibitors, by the pre-illumination of the samples, or by the 

selection of the detergent.  

The effect of the presence or absence of QB on the light-induced conformational changes 

in Rb. sphaeroides is not clear. One group has found no difference,35 another reported 

significant differences whether QB was present or not,65 while a third group found only 

differences at high pH values57. These groups used different detergents to disperse the 

BRCs and also different inhibitors to block the electron transfer to QB. Terbutryn and 

stigmatellin were reported to bind to slightly different positions in the QB binding 

pocket.153-155 Without any inhibitor the QB binding pocket can either be empty or 

occupied by a distal or a proximal QB. In our case without the inhibitors the site has only 

~ 10 % QB occupancy. When stigmatellin is added, it binds to the proximal position 

whereas terbutryn binds to a more distal position. Since the observed shifts in the P-band 

were only seen in dark-adapted samples if this shift is coupled to donor-acceptor 

interactions, it is most likely disrupted by terbutryn that occupies the place of the dark-

adapted quinone and thus prevents the switch to a conformation that would move the 

quinone to the proximal position.  
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A coupling between the shift of the 2-acetyl group(s) of P and the distal to proximal 

repositioning of QB upon illumination of the dark-adapted samples is supported by our 

results. Kinetically resolved electrochromic and electrogenic measurements associated 

with the reduction of the quinones demonstrated the mobility of this region of the 

protein.51-53 These structural changes happen even if QB is not present and were 

associated with the structural changes that eventually facilitate the electron transfer 

between the quinones. The kinetics of these changes were reported to be in the hundreds 

of microseconds time scale, a good match to the kinetic limit for the shift of the P-band 

observed in the present study with the use of different secondary donors with a wide 

range of donation times. One might assume that the difference in the hydrophobicity of 

the applied secondary electron donors could also have some influence on the local 

electrostatics and thus on the shift of the P-band. Both DAD and ferrocene are neutral and 

sparingly soluble in water and can be expected to partition into a non-aqueous 

environment within the BRC-detergent complex. Upon oxidation they could create a 

local cation analogous to the CTAB head-group effect. The use of the water-soluble 

cytochrome c should not have this effect. Unlike in Rb. capsulatus the use of the same 

external electron donors in BRCs from Rb. sphaeroides did not result in large shifts of the 

P-band.147 Thus, we assume that the local electrostatic interactions with the oxidized 

forms of the secondary donors do not contribute to the large spectral features observed in 

LDAO. 

The pH dependence of the electrochromic shifts (Figure 4.7B) complements the pH 

dependence of the proton release reported in chapter 3 for BRCs from Rb. sphaeroides 

upon continuous illumination.57  
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At pH 6, where a large proton release was observed, a negligible shift of the P-band was 

detected (or more precisely, the shift was observed only in a very small fraction of the 

BRCs). At pH 8, where the proton release is reported to be the smallest the 

electrochromic signals associated with the shift of the P-band were the largest (Figure 

4.7). This indicates that the effect arises from the combination of various electrostatic 

interactions that participate in the solvation of the charges. 

 

 

4.3 Potential of the P/P+ couple in the light-induced states 

 

Similar to earlier redox measurements done in chapter 3 the P/P+ oxidation/reduction 

midpoint potential was measured for BRCs from Rb. capsulatus in TX-100 and DOC 

using spectroelectrochemical titrations (Figure 4.9). Without any external illumination 

the data were well described using the Nernst equation assuming only one population of 

P, yielding midpoint potentials (Em) of 500 and 480 mV in TX-100 and DOC, 

respectively. Under these conditions, the peak position of the P-band was at 865 and 870 

nm for TX-100 and DOC, respectively (Figure 4.1). The error is estimated to be ± 5 mV 

based upon the results obtained from different titrations in the dark. 
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Figure 4.9 Spectroelectrochemical redox titrations of the BRCs in the absence (open red 

circles) and in the presence (closed red circles) of a weak external illumination in TX-100 

and DOC. The data were fitted with a standard Nernst equation assuming one (in the dark) or 

two (in the presence of illumination) components. The fit yielded the following values for the 

P/P+ potentials: TX-100: 500 mV (100%) in the dark and 500 mV (60%) and 340 mV (40%) in 

the presence of illumination; in DOC: 480 mV (100%) in the dark and 480 mV (75%) and 360 

mV (25%) in the presence of illumination. The inserts show the difference spectra between two 

absolute spectra recorded at two different applied potentials in the appropriate range indicated by 

the arrows and letters from A to F with respective color code (green for the dark-adapted and 

maroon for the light-adapted state). The vertical dashed lines in the insets are drawn at 865 nm. 

Note the shifted P-band positions and the decreased electrochromic shifts in the spectra of the 

light-induced conformations. Conditions ~ 300 M BRC, 70 mM KCl, 1 mM EDTA, 0.05% TX-

100 or 0.05% DOC. 

 

 

The dependence of the fraction reduced on the potential required the use of a two-

component Nernst equation assuming two populations of P with different Em values as 

previously found for BRCs from Rb. sphaeroides (Chapter 3).  
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One population represents the BRCs that are in the dark-adapted conformation, and 

another fraction is characteristic of the light-adapted conformation. While the potentials 

of the fractions with an unchanged P-band position did not change, those with blue 

shifted P-band positions exhibited much lower P/P+ potentials with values of 340 and 360 

mV in TX-100 and DOC, respectively. These decreases of the Em value in BRCs from 

Rb. capsulatus are about twice as large as the values of the decreases reported in Rb. 

sphaeroides where the P-band position remained at 865 nm even in the light-adapted 

conformation (Chapter 3). Unlike in Rb. sphaeroides, prolonged illumination of BRCs 

from Rb. capsulatus results in the position of the P-band shifting in one fraction of the 

BRCs to 850 nm in TX-100 and DOC in addition to the decrease of the electrochromic 

shifts of the B-bands (see insets in Figure 4.9). The spectroelectrochemical redox 

titrations could not be performed for BRCs in LDAO due to an undermined but earlier 

reported interaction between the LDAO and the electrodes.93 Also, measurements could 

not be performed in CTAB due to instability of the samples. 

The orientations of the acetyl groups are proposed to influence the position of the P-band 

and the potential of P in the light-adapted conformation (Figure 4.9). Previously, the 

rotation of the acetyl group during light-induced conformational changes had been 

proposed in Rb. sphaeroides, but a shift of the P band was not observed for those BRCs 

(Chapter 3). It appears that only certain orientations cause the shift of the P-band. The 

possible influence of different orientations of the 2-acetyl groups of PL in BRCs from 

different organisms on the P-band position is supported by FT Raman investigations as 

the vibrational frequencies of the H-bonded acetyl groups of PL show small but 

significant variations when comparing Rb. sphaeroides and Rb. capsulatus.77  
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A similar two-state conformational model was proposed for a mutant reaction center from 

Rb. capsulatus for which amino acid residues M205 to M210 were replaced with the 

corresponding L subunit residues.137 In this mutant the shift of the P-band was even more 

pronounced, from 853 to 820 nm, and the potential of the P/P+ couple (in the dark) 

increased by ~ 50 mV. Similar changes were observed in a mutant of Rb. sphaeroides 

containing the replacement of Tyr M210 with Trp.117 In Rb. sphaeroides the phenol 

group of Tyr M210 is within H-bonding distance to the 2-acetyl group of PM and its 

possible involvement in the conformational change was proposed as a potential source for 

the light-induced rotation of the 2-acetyl group of PM.3,6,126, The residue Tyr M210 is 

conserved in Rb. capsulatus and is likely to be at a comparable distance to the 2-acetyl 

group of PM. Two amino acid residues near P, Phe M208, which is ~ 3 Å away from Tyr 

M210, and Val M192, which is ~ 10 Å from P, are Ala and Asp in BRCs from Rb.

capsulatus.126 Given the closeness of Phe M208 to Tyr M210, the difference between Phe 

and Ala might influence the rotational freedom of the 2-acetyl group of P. The light-

induced decrease of the P/P+ potential was measured to range from 55 to 79 mV in Rb. 

sphaeroides depending upon the pH (Chapter 3), while in Rb. capsulatus the decrease 

was twice as large at pH 8 (Figure 4.9) as discussed below. 

The 500 mV Em value from BRCs from Rb. capsulatus without external illumination is, 

within error, the same as the Em value of 505 mV determined for Rb. sphaeroides under 

the same conditions.93 The slight decrease of 20 mV in the potential for BRCs in DOC is 

attributed to an electrostatic stabilization of P+ by the negatively charged detergent head-

groups compared to the neutral head-groups in TX-100.  
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Such electrostatic stabilization of P+ can be observed in TX-100 at higher pH values 

where many amino acid side chains become deprotonated.113,114 The decrease of the P/P+ 

potential in the light-adapted conformation was ~ 120-160 mV in BRCs from Rb.

capsulatus depending on the detergent, where the position of the P-band in this 

population was found centered at 850 nm (Figure 4.9). In BRCs from Rb. sphaeroides, 

where the P-band position remained at 865 nm even in the light-induced conformation, 

the decrease of the potential was only 75 mV under the same conditions (Chapter 3). 

Since the dark-adapted conformations resulted in very similar potentials for the two 

species with the P-band position at ~ 865 nm, we conclude that the differences in the 

potentials in the light-adapted conformations are associated with the shift in the P-band 

position from 865-870 to 850 nm and arising from different orientations of the acetyl 

groups of P. Even though the decrease of the potential in the light-adapted conformation 

in TX-100 is about twice as large if the band position is shifted to 850 nm than if it 

remains at 865 nm after 1 min illumination, the trend in the recovery rates was found to 

be the opposite. The rate constants were found to be about twice as large in BRCs with P-

band position at 850 nm than in those with the P-band at 865 nm, indicating that the 

recovery from the light-induced conformation is not electron transfer limited. 

These results revealed that the conformations of the dimer in the isolated BRCs of Rb.

sphaeroides and Rb. capsulatus in zwitterionic LDAO micelles are essentially the same 

in the dark-adapted samples as indicated by the identical wavelength of the dimer band at 

865 nm. The same position is measured for BRCs in their native membrane environments 

and in liposomes with long (C18) hydrophobic chain lengths.  
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The band is blue shifted in Rb. capsulatus, but not in Rb. sphaeroides, for BRCs in 

zwitterionic detergent micelles and liposomes with short hydrophobic chains upon 

illumination. The P-band for BRCs from Rb. capsulatus was observed at 850 nm and 

thought to be irreversible, but these results show that the two spectral forms of P can 

interconvert with the proper selection of detergent or lipid and also by using light as a 

switch. The two optical states also have different redox potentials and lifetimes of the 

charge-separated state in addition to the previously reported differences in the 

distribution of the unpaired electron of P+. 

The electronic state of P is very sensitive to the properties of the lipids and detergents that 

surround the protein and demonstrates the utility of the BRC as a model system for 

membrane proteins. Alteration of the native lipid environment has a significant effect on 

P, including the energetics of the excited and oxidized states that are critical for the 

function. In addition to the previously identified influence of electrostatic interactions, 

hydrophobic interactions have a critical role in establishing the properties of P. In 

particular, the hydrophobic mismatch between the thickness of the detergent micelle and 

the length of the transmembrane helices is most likely responsible for the reported 

functional differences of the BRC in detergent micelles, liposomes, and natural 

membranes.62,151,156 These effects are expected to be general for all integral membrane 

proteins, in particular the properties of the primary electron donor of PS II. 
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Chapter 5 

Optimization of light-induced conformational changes to stabilize 

charge-separated state by lipid binding and phase transition of the 

membrane lipids 

 

The results in this chapter are based on the following published paper: 

 

Deshmukh, S. S., Tang, K., and Kálmán, L. (2011) Lipid binding to the carotenoid 

binding site in photosynthetic reaction centers. J. Am. Chem. Soc. 133, 16309-16316. 

 

 

 

Author contributions: 

S. S. Deshmukh performed the experiments, analyzed the data, and contributed to writing 

the paper. K. Tang performed preliminary experiment in DLPC liposome (data not 

included). L. Kálmán designed the research, guided the data analysis, and wrote the 

paper.  
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As discussed in chapter 3 and 4, the generation of a long-lived charge-separated state can 

be achieved by a single enzyme with the transfer of only one electron. The BRC from 

purple photosynthetic bacteria has been used widely as a structural and functional model 

for examining the general principles of biological electron transfer for decades.112 It has 

also played an important role in the design and construction of artificial photosynthetic 

complexes.157,158 As mentioned in the chapter 1 the WT BRC also incorporates a tightly 

bound carotenoid molecule in the close vicinity of the inactive bacteriochlorophyll 

monomer (BM) that is responsible for photoprotection of the BRC (Figure 5.1). This 

binding site was successfully reconstituted earlier with various carotenoids, and as 

demonstrated in Figure 5.1, detergent molecules, such as LDAO or octyl -glucoside 

(BOG) were also reported to bind to this site in the carotenoid-less mutant, R-26.81,159,160 

 

Figure 5.1 Structural view of the four bacteriochlorophylls constituting two halves of the 

dimer in red (PL and PM) and the monomers in blue (BL and BM) with the bound molecules 

near BM. The bound molecules are color-coded by their atoms: carbon (cyan), nitrogen (blue), 

and oxygen (red). The site near BM is shown occupied by a carotenoid (A), an LDAO (B), and an 

octyl -glucoside (BOG) (C), molecule. The empty pocket is also shown (D). Coordinates were 

taken from the following PDB entry codes for each panel: (A) 1PCR, (B) 1RG5, (C) 4RCR, and 

(D) 1OGV. 
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We have demonstrated (in chapter 3 and 4) that the lifetime of the P+QA  charge-pair can 

be increased from 100 ms to 16 min by the combination of systematic alteration of the 

environment of the charges and light-induced structural changes near P in BRCs from 

both Rb. sphaeroides and Rb. capsulatus. In this work we combine lipid binding to the 

carotenoid binding site near BM and replacement of the detergent micelles with liposomes 

to increase the lifetime of the P+QA  state even further to hours in the R-26 strain. 

Although the BRC is arguably the most studied integral membrane protein, very little is 

known about how individual lipid molecules influence the function of the protein. As 

mentioned earlier high resolution X-ray structures identified three integral lipid 

molecules (Figure 1.5), but a definite functional role could not be assigned to them 

unambiguously.21,146 In this chapter we report the effects of lipid binding near BM on the 

light-induced structural changes. 

 

 

5.1 Influence of added lipids on lifetime of the P+QA  state after prolonged 

illumination 

 

The BRCs from anaerobically grown WT and R-26 strains dispersed in TX-100 detergent 

micelles were illuminated in the presence and absence of various lipids, and the kinetics 

of absorption changes after prolonged, sub-saturating illumination was monitored at the 

center of the P-band at 865 nm at pH 7. Figure 5.2 shows these recovery kinetic traces 

recorded at two different temperatures: 22 °C (panel A) and 8 °C (panel B).  
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The illumination time was selected at both temperatures to meet the following criteria: (i) 

saturation of the signals in all samples before the illumination was terminated, (ii) fully 

recovering absorption changes at 865 nm, and (iii) maximizing the lifetime of the charge-

separated state.  

 

Figure 5.2 Kinetics of light-induced absorption changes at (A) 22 °C and (B) 8 °C, measured 

at the center of the QY absorption band of P after the illumination was turned off. The 

following samples were used: (a) R-26 (dark cyan), (b) R-26 + DOPC (green), (c) R-26 + DMPC 

(blue), (d) R-26 + DLPC (pink), (e) WT (dark brown), and (f) WT + DLPC (dark green). The 

illumination time was 5 and 20 min for panels A and B, respectively. The traces were normalized 

to the maximum absorbance changes at time = 0 and were shifted vertically for clarity. Thin solid 

lines are the best fits to the curves. The results of the fits are tabulated in Table C1 (Appendix C). 

Conditions: 1 M BRCs, 15 mM Bis-tris-propane, pH 7.0, 1 mM EDTA, and 0.05% TX-100. 

 

 

The complex recovery kinetics after the illumination indicates that long-lived, 

conformationally altered forms of the P+QA  charge-pair were formed in fractions of the 

BRCs besides the unresolved (in the minute scale) transient changes as reported earlier in 

chapter 3, 4 and also by many other studies.35,56,57,65  
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At 22 °C, the overall recovery kinetics was faster in the R-26 (trace a in dark cyan) than 

in WT (trace e in dark brown), and the fraction of BRCs that underwent light-induced 

structural changes was also smaller in R-26 than in WT. A similar observation was made 

for semi-aerobically grown WT and R-26 (Figure C1 in Appendix C). Rate constants and 

relative amplitudes for the slower kinetic components for the anaerobically grown 

samples are tabulated in Table C1 (Appendix C). In R-26 only the component with a rate 

constant of ~ 10-2 s-1 was detected, while in WT an additional, slower component with a 

rate constant of ~ 10-3 s-1 was also observed in a small fraction of BRCs. These long-lived 

kinetic components were identified in chapter 3 and 4 in BRCs from semiaerobically 

grown WT from Rb. sphaeroides and Rb. capsulatus as arising from conformational 

changes near P. The chosen lipids all had the same zwitterionic phosphocholine (PC) 

head-group with zero net charge at the selected pH to avoid electrostatic perturbations in 

the BRCs. The length of the fatty acid chain and the saturation level was altered by using 

dilauroyl (12 carbon atoms long chain with zero double bonds, C12:0), dimyristoyl 

(C14:0), and dioleoyl (C18:1) chains in DLPC, DMPC, and DOPC, respectively. 

Addition of lipids at 22 °C had only a minor effect on the kinetics in R-26, except for 

DMPC, and had practically no effect at all in WT (Figure 5.2A). In the presence of 

DMPC (trace c in blue), a slight increase of the lifetime was observed. At 8 °C the 

difference between the recovery kinetics in R-26 (trace a in dark cyan) and in WT (trace e 

in dark brown) became even more pronounced and the influence of the lipids altered the 

lifetime of the charge-pair very differently in R-26. The presence of DOPC (trace b in 

green) did not induce any change but both DMPC (trace c in blue) and DLPC (trace d in 

pink) increased the lifetime of the P+QA  state.  
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The effect was especially pronounced for DLPC where the recovery kinetics became 

unexpectedly longer in R-26 than in WT with rate constants of 7.0 × 10-4 s-1 and 1.1 × 10-

3 s-1 for the slowest components in R-26+DLPC and in WT, respectively. It must be noted 

that the pronounced effect of the saturated lipids were observed only if the samples were 

cooled with a slow, 0.2 °C/min, rate. Unlike in R-26 the addition of DLPC did not induce 

any further change in the lifetimes for WT regardless of the cooling rate (trace f dark 

green). 

 

 

5.1.1 Spectral signatures associated with bound carotenoid and lipid

Room-temperature light-minus-dark optical difference spectra of dark-adapted BRCs 

from WT and R-26 dispersed in TX-100 are expected to be similar in the near-infrared 

spectral region, as major differences are observed only in the 450-600 nm range due to 

absorption of the carotenoid in WT.161 Figure 5.3 shows these absorption changes 

recorded in anaerobically grown WT and R-26 (panels A and B) and in R-26 in the 

presence of DLPC lipid at 22 °C (panel C) and at 8 °C (panel D).  

Comparison of the presented spectra recorded immediately after the illumination started 

(solid lines) reveals that the extent of electrochromic absorption change of the B-band is 

considerably larger in WT (panel A), which binds a carotenoid molecule near BM, than in 

the carotenoid-less R-26 (panel B). A similar trend can be observed in BRCs from semi-

aerobically grown cells (Figure C2, Appendix C).  
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Although the presence of DLPC at room temperature did not alter the light-induced 

spectra of R-26 (panel C) at 8 °C, the extent of electrochromic absorption change of the 

B-band has increased significantly (panel D). 

 

Figure 5.3 Normalized light-minus-dark difference optical spectra, recorded (thin solid line) 

immediately after the onset of the light and (dashed line) 1 min after the illumination was 

turned off, for BRCs isolated from anaerobically grown cells: (A) WT (brown spectra); (B) R-

26 (dark cyan spectra); and R-26 + DLPC (pink spectra) at (C) 22 °C and (D) 8 °C. The thick 

solid lines (black) show the double difference spectra (dashed-minus-solid) and feature changes 

around 800 nm consistent with the decrease of electrochromic absorption changes involving the 

monomers during the illumination. Conditions were as described for Figure 5.2. 

 

 

Figure 5.3 also shows the normalized spectra recorded immediately after the prolonged 

illumination was turned off (dashed lines).  
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While the spectra recorded at the beginning of the illumination are characteristic to dark-

adapted reaction centers those collected after the prolonged illumination can be attributed 

to BRCs that underwent light-induced structural changes (Chapter 3).  

The decrease of electrochromic absorption change of the B-band during the prolonged 

illumination was also much smaller in R-26 than in WT, as indicated by the double 

difference spectra (thick solid lines). The extent of prolonged light-induced 

electrochromic absorption changes of the BM band was found to be a sensitive probe of 

the local electric field and of the light-induced structural changes near P in BRCs from 

both Rb. sphaeroides and Rb. capsulatus (Chapter 3 and 4). Corresponding to the smaller 

light-induced spectral changes in R-26, the amplitude of the long-lived P+QA  state in the 

recovery kinetics recorded at 865 nm was also smaller in the carotenoid-less mutant 

without added lipids (see Figure 5.2A, traces a and e, and Figure C1 and Table C1 in 

Appendix C). In the presence of DLPC at room temperature, the prolonged illumination-

induced decrease remained small but at 8 °C this decrease of the electrochromic 

absorption change of the B-band became very large. 

Since the peak-to-trough amplitude of the electrochromic absorption change was 

sensitive to the presence or absence of the hydrophobic carotenoid molecule, growth 

conditions, and added lipids, this parameter was measured as a function of temperature in 

the 6-30 °C range in BRCs mostly dispersed in TX-100. Moreover, this spectral feature 

was found to be correlated with the local dielectric constant near BM (Chapter 3).  
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As shown in Figure 5.4, the amplitude of this absorption change was large and was 

found, within error, to be independent of the temperature in both anaerobically and semi-

aerobically grown WT and in anaerobically grown R-26 dispersed in relatively high (1%) 

concentrations of LDAO.  

 

Figure 5.4 Temperature dependence of the peak-to-trough amplitude of the electrochromic 

absorption changes around 800 nm for BRCs isolated from anaerobically grown cells: (solid 

brown squares) WT, (solid dark green squares) WT + DLPC, (open dark cyan circles) R-26, 

(open green diamonds) R-26 + DOPC, (blue cross) R-26 + DMPC, (solid pink circles) R-26 + 

DLPC, and (solid dark cyan triangles) R-26 in 1% LDAO. For comparison, the same parameters 

in WT (brown crossed squares) and R-26 (dark cyan crossed circle) from semi-aerobic growth are 

also shown. The data were taken from light-minus-dark difference absorption spectra recorded 

immediately after the onset of illumination and normalized to the maximum of the P band. The 

error of the measurements is ± 0.02 absorbance unit. Conditions were as described for Figure 5.2 

except for (solid dark cyan), where 0.05% TX-100 was replaced with 1% LDAO. 
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In general, the electrochromic absorption changes in BRCs from semi-aerobically grown 

cells were larger than those found in BRCs from anaerobically grown cells for both WT 

and R-26 in TX-100 (see Figure 5.3 and Figure C2 in Appendix C).  

The presence of added DLPC did not change this value in WT. LDAO was specifically 

selected because an LDAO molecule was reported earlier to occupy the carotenoid 

binding site in R-26 for samples dispersed in LDAO detergent micelles (Figure 5.1C). In 

the presence of added DLPC and DMPC, the extent of electrochromic absorption change 

showed pronounced temperature dependence in anaerobically grown R-26. As the 

temperature was lowered, the initially small spectral changes in the 24-18 and 20-12 °C 

temperature ranges increased and then leveled off at lower temperatures in the presence 

of DMPC and DLPC, respectively. Interestingly, with decreasing temperature a moderate 

increase was also observed in the anaerobically grown R-26 even without added lipids, 

and DOPC also caused only moderate temperature dependence. The absorption changes 

in the presence of the saturated lipids were sensitive to the cooling rate as stated above. 

 

 

5.1.2 Carotenoid binding pocket

The bound carotenoid in WT is located ~ 11 Å from P, and it is in van der Waals contact 

with BM.162 Its closeness to both BM and P justifies the pronounced differences in both 

kinetics (Figure 5.2 and Figure C1 in Appendix C) and spectra (Figure 5.3 and Figure C2 

in Appendix C) between WT and R-26. The BM also has the single largest surface area 

contribution in the binding pocket.159 Besides BM, the pocket is composed of 29 mostly 

hydrophobic amino acids.  
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Both the natural and the reconstituted carotenoids bind to the same position, adopting the 

15-15'-cis configuration. The carotenoids used for reconstitution, however, were in all-

trans isomeric configuration upon addition, indicating that the isomerization must take 

place upon binding.159  

The molecules to be bound to the pocket should enter only from the entrance with tail-in-

first orientation since the other end was reported to be blocked by Phe M162, which 

serves as a gatekeeper.159 The binding pocket is quite flexible, as significant differences 

in the tunnel shape and diameter were reported in the presence and absence of the 

carotenoid.159 The much shorter LDAO molecule, with its chain length of 12 carbons, 

was reported to occupy the central portion of the pocket only 3.6 Å away from the acetyl 

group of BM. 

 

5.1.3 Dependence of binding on phase behavior of the lipid 

Comparison of the recovery kinetics of WT and R-26 BRCs dispersed in detergent 

micelles suggests that the presence of the bound carotenoid molecule in WT provides a 

larger degree of stabilization than the empty binding site in R-26 for the P+QA  charge-

pair in the light-adapted conformation (Figure 5.2 and Figure C1 in Appendix C). Of the 

three lipids used in this study, addition of DMPC to R-26 BRCs increased the lifetime of 

the charge-separated state at both 22 and 8 °C; DLPC had the greatest influence but only 

at 8 °C; and DOPC did not provide any stabilization at either temperature (Figure 5.2). 

As none of the lipids induced any change in either the spectra or kinetics in WT, our 

results are consistent with binding of the lipids to the carotenoid binding site in their 

ordered but not in their disordered phase.  

 153



In the liquid crystalline phase the acyl chains are disordered, requiring more space than in 

the ordered phase, where the chains become parallel and fully extended.  

The phase transition temperature of pure DMPC determined by light scattering 

measurements was reported as 24.7 °C, and the presence of the reaction center with a 

4000:1 lipid:BRC ratio in liposomes caused it to shift to 27 ± 2 °C.39,163 The same 

parameters for DLPC are 0 and 11 ± 3 °C, respectively.39 In the presence of the BRC 

protein, the phase transition curves of these lipids were also reported to be broadened by 

2.5-4 °C compared to the phase transition behavior of pure lipids. Due to these factors, 

the complete phase transition in the presence of the BRC protein was reported to occur at 

~ 28-25 °C and at ~ 17-7 °C for DMPC and DLPC, respectively.163 These reported ranges 

are in reasonable agreement with the temperature dependences of the electrochromic 

absorption changes of the B-bands that exhibited a pronounced increase in the ~ 24-18 °C 

range for DMPC and ~ 20-10 °C range for DLPC in mixed micelles (Figure 5.4). Besides 

the two main phases an intermediate phase, the ripple phase, was also observed in various 

saturated phospholipids upon phase transition.164,165 The structure of the ripple phase for 

DLPC was found to be heavily dependent upon the cooling rate.166 Slow cooling with 

rates between 0.1 and 1 °C/min favored the formation of a long ripple phase with higher 

degree of hydration than the short ripple phase obtained with rapid cooling (Figure 5.5). 

The lateral diffusion coefficients (DP ’) were reported to be dependent upon the hydration 

level with nearly 2 orders of magnitude slower values in the gel phase than in the liquid-

crystalline phase.167 The faster diffusion reported earlier in DLPC than in DMPC 

supports the longer lifetime caused by the presence of DLPC in this study (Figure 5.2).168  
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Figure 5.5 Schematic representation of the lipid membrane upon phase transition and the 

influence of cooling rate on the formation of the ripple phases.  

 

 

The absence of any influence of DOPC on the recovery kinetics in the detergent-

solubilized BRCs is consistent with the lack of binding of this lipid, as the phase 

transition temperature of DOPC (~ 20 °C) is well below the investigated temperature 

range. The lack of DOPC binding is also supported by the same temperature dependence 

of the electrochromic absorption change in the presence and absence of DOPC in R-26 

(Figure 5.4). 
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5.1.4 Orientation of the acetyl group of BM

A correlation between the orientation of the 2-acetyl group of BM and the extent of the 

electrochromic absorption changes can be established by comparing structural details 

with our results presented in Figure 5.4.  

Structural studies based on X-ray crystallography modeled the orientation of the acetyl 

group of BM differently, depending on the occupation of the carotenoid binding site 

(Figure 5.6, Table 5.1). In all cases the acetyl group was assumed to be more or less in 

the plane of the tetrapyrrole macrocycle and thus, part of the conjugation. This is in 

agreement with earlier spectroscopic studies and our present results that detected no 

significant blue shift in the absorption band of BM in the absolute optical spectra (Figure 

5.3 and Figure C2 in Appendix C). When the site was occupied with a spheroidenone 

molecule in BRCs from semi-aerobically grown WT (Figure 5.6A), the oxygen atom of 

the acetyl group was modeled facing inward.82,109,169,170 If, however, the site was 

occupied with spheroidene in WT (Figure 5.6B) from anaerobic growth, the oxygen of 

the acetyl group was modeled facing outward.6,44,72 Corresponding to these orientations, 

the electrochromic absorption changes in the semi-aerobically grown WT were 

significantly larger than in WT from anaerobically grown cells. In both cases these 

changes were temperature-independent, suggesting that the rotation of the acetyl group is 

not favored if a carotenoid molecule occupies the binding site (Figure 5.4 and Figure C2 

in Appendix C). 
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Figure 5.6 Surface representation of the carotenoid binding site near BM as viewed from the 

entrance of the cavity that has access to the surrounding (A-D) and top view of BM (E and 

F). Negatively charged regions are indicated with red, positively charged ones with blue, and 

neutral areas with gray. The BM molecule is color-coded by its atoms: carbon (green), nitrogen 

(blue), oxygen (red), and the central Mg2+ (magenta). The hydrophobic chains of the bound 

molecules are indicated with cyan. The site is shown occupied by a spheroidenone (A), a 

spheroidene (B), and an LDAO (C), molecule. The empty pocket is also shown (D). Top view of 

BM is shown with oxygen atom of 2-acetyl group oriented inside (E) and outside (F) as 

represented by red circle. Left (A, C, and E) and right (B, D, and F) panels show inward and 

outward orientations of oxygen atom of 2-acetyl group, respectively. Coordinates were taken 

from the following PDB entry codes for each panel: (A) 2GMR, (B) 1PCR, (C) 1RG5, (D) 

1OGV, (E) 1PCR, and (F) 1RGN. 
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It must be noted that the inward orientation was proposed in all cases when the binding 

site was reconstituted in the carotenoid-less R-26 mutant with spheroidene or 3,4-

dihydrospheroidene or when an LDAO molecule (Figure 5.6C, Table 5.1) was modeled 

to occupy this site.159 In contrast, the opposite orientation was found when the binding 

site was empty (Figure 5.6D) in R-26 when the crystals were grown from a lipidic cubic 

phase.34 The different levels measured for electrochromic absorption changes in TX-100 

and in the presence of 1% LDAO for R-26 are consistent with the proposed rotation of 

the acetyl group from “out” to “in” upon binding of LDAO. Our results in LDAO also 

suggest that the acetyl group should be oriented inward in the semi-aerobically grown R-

26. Since the electrochromic absorption changes are inversely proportional to the local 

dielectric constant around the interacting P and BM molecules, these changes in WT are 

expected to be larger than in R-26 due to the presence of a hydrophobic carotenoid 

molecule in the immediate vicinity of BM in WT (Figure 5.3 and Figure C2 in Appendix 

C). Our results also support the rotation of the acetyl group from the “out” to the “in” 

orientation in the 20-15 °C range as the temperature is lowered in the anaerobically 

grown  R-26 (Figure 5.4). This rotation appears to be required for the binding of a lipid 

molecule, as in the presence of DLPC and DMPC the electrochromic absorption changes 

followed similar temperature dependence, although with larger differences between the 

two extremes. The slight differences in this temperature dependence for DLPC and 

DMPC are most likely due to the different in situ phase transition temperatures of the 

lipids as discussed earlier. The inward orientation for lipid binding is also supported by 

crystallographic studies that modeled this conformation for any bound molecules other 

than the naturally synthesized spheroidene (Table 5.1). 6,44,72,159,160 
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Table 5.1 List of PDB codes for representative structures that show orientation of the acetyl 

group of BM depending on the molecule occupying the carotenoid binding site 

 
Strain 

Bound 
Molecule near 

BM 
 

 
a 

 
PDB code 

 

 
Reference 

spheroidenone in 2GMR,  
2BOZ,  
1UMX,  
1K6L,  
3DSY 

82 
109 
169 
170 

unpublished 

 
WT 

spheroidene out 1RVJ,  
1PCR,  
1YST,  
1KBY, 

2J8C, 2UWS 

171 
6 
72 
21 
44 

3,4-dihydro 
spheroidene 

in 1RQK 159 

spheroidene in 1RGN 159 
LDAO in 2HG3, 2HG9, 

1RG5 
160 
159 

 
R-26 

- out 1OGV 34 
a  is the orientation of oxygen atom of the acetyl group of BM viewed from the entrance of the 

binding pocket. 

 

 

Even though the correlation appears to be strong, it should also be mentioned that in 

moderate-resolution crystal structures (>2 Å), such as those available for the BRCs from 

Rb. sphaeroides, it could be challenging to determine the orientation of the acetyl group 

directly from the electron density. Since the expected electron density difference between 

the “in” and “out” orientations is very small, the best bet is usually based on 

identification of potential hydrogen-bonding partners for the carbonyl oxygen. 

Unfortunately, for BM a potential hydrogen-bond donor is absent in most of the cases.  
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Therefore the proposed orientation may suffer from bias by the molecular replacement 

starting model or automatic choice of chemical restraints, where one torsion angle is 

favored over the other. For example, in the case of the special pair, where His L168 and 

Tyr M210 were suggested to be hydrogen-bond donors for the carbonyl oxygen atoms, in 

some models the carbonyl oxygen is modeled pointing away from the potential hydrogen-

bond donor.82,171 In chapter 3 we proposed Tyr M210 to be hydrogen-bonded to the 

acetyl group of PM but only in the light-induced conformation. This indicates that the 

experimental conditions, in particular the dark adaptation of the BRCs, may have 

significant influence on this structural detail. 

 

 

5.2 Influence of liposomes on light-induced conformational changes 

 

Figure 5.7 shows the kinetics of recovery of the P+QA  charge-pair at 22 °C (panel A) and 

8 °C (panel B) in BRCs from anaerobically grown WT and R-26 that have been 

incorporated into liposomes formed from various lipids with different hydrophobic 

thicknesses and saturation levels. The kinetic traces were generated by plotting the 

absorption changes at 868 nm taken from the spectra recorded at different times during 

and after the illumination, as demonstrated for three data points in Figure 5.7B. Rate 

constants and relative amplitudes of the kinetic components in the recovery kinetics are 

tabulated in Table C2 (appendix C). At 22 °C, the lifetime of the P+QA   state in R-26 

was found to be 2.5-fold longer in liposomes from DOPC, which has a long fatty acid 

chain (C18), than in liposomes from DLPC with a shorter (C12) chain.  
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When BRCs from WT with the hydrophobic spheroidene molecule near BM were 

incorporated into the same DLPC liposomes, the lifetime was nearly a factor of 2 longer 

than in R-26. The relative amplitude of this long-lived component was also larger in WT 

than in R-26, in agreement with the observations made in detergent-dispersed BRCs 

(Figure 5.2 and Figure C1 in Appendix C). This relationship became radically different at 

8 °C, where the lifetimes were extremely long (~ 2 h) in DLPC liposomes for both WT 

(trace b) and R-26 (trace c), with rate constants of 1.5 × 10-4 s-1 and 1.3 × 10-4 s-1, 

respectively. Moreover, the fraction of the component with this ultra long lifetime 

reached 93% in R-26 as compared to 58% in WT. As seen from the inset in Figure 5.7B, 

the electrochromic absorption changes of the B-band were still observable even after 

complete recovery of the P+QA  charge-pair 8 h after the illumination was turned off 

(trace c). This very long lifetime, however, could be achieved only if the BRCs were 

cooled at a slow rate of 0.2 °C/min. Rapid cooling (4 °C/min rate) of BRCs from R-26 in 

DLPC liposomes resulted in exactly an order of magnitude faster recovery with a rate 

constant of 1.3 × 10-3 s-1 and in only 36% of the BRCs (trace c'). The same temperature 

decrease in DOPC liposomes caused the lifetime of the charge-separated state to change 

only by ~ 1.4-fold in R-26 BRCs. Unlike in DLPC, the cooling rate had no influence of 

the recovery kinetics in DOPC liposomes.  

 161



 

Figure 5.7 Kinetics of the light-induced absorption changes at (A) 22 °C and (B) 8 °C, 

measured at the center of the QY absorption band of P after the prolonged, continuous 

illumination was turned off in BRCs reconstituted into liposomes from various lipids. The 

following samples were used: (a, open dark cyan diamonds) R-26 in DOPC, (b, solid brown 

squares) WT in DLPC, (c, open and solid dark cyan circles) R-26 in DLPC, and (c', open dark 

cyan circles) R-26 in DLPC with rapid cooling. The traces were normalized to the maximum 

absorption changes at time = 0 and were shifted vertically for clarity. Thin solid lines are the best 

fits to the curves (equation 1). The results of the fits are tabulated in Table C2 (Appendix C). 

Conditions: ~ 1.5 M BRCs, 15 mM phosphate (mono- and disodium) buffer, pH 7, 15 mM KCl, 

100 M terbutryn. 

 

 

In R-26 at 8 °C in DLPC liposomes, the lifetime of the longest-lived charge-separated 

state was more than 5-fold longer than in TX-100 micelles mixed with DLPC (Figures 

5.2 and 5.7; Tables C1 and C2, Appendix C). Additionally, the amplitude of the longest-

lived component rose from 60% in detergent to 93% in liposomes. Thus, it is obvious that 

binding of DLPC to the carotenoid binding site alone cannot account for the very long 

lifetime of the charge-separated state measured at 8 °C in DLPC liposomes.  
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It has been shown that the lifetime of the P+QA  state at room temperature in the light-

induced conformation could be increased by 2-fold if the BRCs from Rb. capsulatus were 

incorporated into DOPC liposomes, where the lipid bilayer thickness was matched by the 

hydrophobic thickness of the BRC, but not in DLPC liposomes, with shorter than desired 

bilayer thickness (Chapter 4). As at 22 °C, neither DOPC nor DLPC is expected to bind 

to the carotenoid binding site; the nearly 2.5-fold longer lifetime in DOPC liposomes for 

R-26 is consistent with this earlier finding (Figure 5.7A and Table C2, Appendix C). A 

similar 2-fold difference in the rate constants could still be observed at 8 °C if the DLPC 

liposomes were cooled rapidly, suggesting that rapid cooling in DLPC liposomes 

prevents the binding of the lipid due to the dramatically decreased diffusion rate of the 

lipid as discussed above (trace c' in Figure 5.7B). In the gel phase the thickness of the 

DLPC bilayer was reported to be 27.0 Å, as opposed to 19.5 Å in the liquid crystalline 

phase, indicating that at 8 °C the DLPC bilayer may provide a reasonable hydrophobic 

thickness for the transmembrane -helices of the BRCs with a thickness of ~ 30 Å.38,72  
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Chapter 6 

Inhibition of light-induced conformational changes due to manganese 

binding 

 

The results presented in this chapter are part of a manuscript under preparation: 
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S. S. Deshmukh performed the experiments, and analyzed the data. M-Alexandru 

Ivanescu performed the experiments (data not included). L. Kálmán designed the 

research and guided the data analysis.  
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In earlier chapters we have demonstrated that by controlling light-induced structural 

changes systematically in the vicinity of the dimer the lifetime of the charge-separated 

state can be increased by up to 5 orders of magnitude. The BRC and PS II are 

evolutionarily related and share structural similarities such as the core cofactors and 

subunits are arranged symmetrically.20,172 Even though both complexes transfer electrons 

and protons across the membrane in similar way, they utilize different secondary electron 

donors. In PS II water is used as the electron donor, while BRC can only utilize a lower 

potential cytochrome. Despite these structural and functional similarities, PS II has 

unique ability to oxidize water into molecular oxygen. The oxidation of water in PS II is 

achieved by the following three key components: (i) the primary electron donor with high 

oxidizing potential, (ii) presence of Tyr residues at key position, which results transfer of 

electrons and protons, and (iii) presence of manganese cluster that can store four electron 

equivalents required for the overall reaction. 

It has been demonstrated that manganese ions can serve as an electron donor in 

photosynthetic organisms, which may have been an intermediate step in the evolution of 

water oxidation at a manganese complex.173,174 Manganese is often found in surface 

sediments and its wide scale availability might have provided primitive photosynthetic 

organisms as an electron source.  

Moreover, manganese is an essential trace element that has many different functions in 

the protein. It often plays important role in biological redox reactions in enzymes such as 

manganese superoxide dismutase, manganese peroxidase, manganese catalase etc. In 

these enzymes redox activity of manganese is established through protonatable amino 

acid residues or water as ligands.175  
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Binding of other transition metal ions (copper, cobalt) to a local protein environment has 

been shown to modulate the forward electron transfer and the charge recombination.176 

Some of the above-mentioned key components such as highly oxidizing P, electron and 

proton transfer through Tyr residue, and manganese oxidation can be introduced in the 

BRCs by genetic manipulation.70,119 Here in this work we attempted an alternative 

approach to explore the effect of manganese ion as a potential secondary donor by 

systematically altering the immediate surrounding of the BRC and in particular the 

assumed binding site of manganese ion.  In order for Mn2+ to serve as a secondary 

electron donor to P+ its in situ oxidation-reduction potential (Mn2+/Mn3+) should be lower 

than that of the P/P+ redox couple.  Since in WT or in R-26 the P/P+ midpoint potential 

was reported to be ~ 505 mV, physiologically it can only use secondary electron donors 

that have midpoint potentials lower than the dimer potential. The cytochrome c is such a 

molecule with a ~320 mV potential.177 In order to utilize manganese as a secondary 

electron donor, it is necessary to either increase the P/P+ midpoint potential of the BRC 

and/or lower the Mn2+/ Mn3+ potential. In the hexa-aquo complex the Mn2+/ Mn3+ 

potential is (~ 1.3 V) much higher than the dimer of the BRC. When one or more water 

molecule(s) are replaced by different anions such as bicarbonate, acetate, citrate, or 

malate the net positive charge decreases with each substitution and the oxidation of 

manganese in such complex becomes energetically more favorable (Figure 6.1).98 For 

example bicarbonate anion can form manganese-bicarbonate complexes that have  one or 

two bicarbonate  molecules replacing the water resulting in Mn2+/ Mn3+ potentials in 

these complexes, as 920 and 650 mV, respectively (Figure 6.1).178  
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Figure 6.1 Coordination of manganese (II) ion with six ligands to form octahedral geometry. 

The central Mn2+ coordinates with water molecules in solution but upon availability of 

bicarbonate (negatively charged) residue (blue text) binding affinity can be increased by lowering 

the net positive charge of the complex. 

 

 

In these complexes the potential is lowered by electrostatic stabilization of the manganese 

ion upon coordination with bicarbonate.179 The pH buffer bis-tris propane is also known 

to form complex with manganese ion and thereby would lower its potential.180 

Different transition metal ions, such as Zn2+, Cd2+, Ni2+ or Cu2+ have been proven to bind 

near the QB and therefore inhibiting the proton uptake from the environment181-183. 

However, Mn2+ is known not to bind to any of the known sites near the quinones and 

none of the above transition metals were  reported to bind near P.96,184 Recent studies 

focused on the design of metal binding sites in BRCs analogous to those found in PS II 

and other manganese binding proteins.70,97,99 Binding of Mn2+ ion in native BRCs was not 

accomplished so far. In this chapter, manganese ion binding in native BRCs from Rb. 

sphaeroides was studied to understand the effect of bound Mn2+ ion on light-induced 

conformational changes and whether it can alter the P/P+ potential. 
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6.1 Changes in light-minus-dark optical difference spectrum upon manganese 

binding 

 

Near-infrared light-minus-dark difference spectra were recorded at prompt after the 

illumination turned on, 5 min after the illumination turned on , and 1 min after the 

illumination was turned off in BRCs with and without the presence of added manganese. 

As the spectral intensities correlate with the fractions of the BRCs trapped in various 

conformational states the normalized spectra are displayed for better comparison in 

Figure 6.2A and B. Inset of the Figure 6.2 indicate the times at which the spectra were 

recorded. Spectra recorded at the beginning of the illumination are predominantly 

characteristic of the dark-adapted conformation, while further illumination generates the 

mixture of the spectra characteristic to both the dark- and light-adapted conformations. 

Spectra recorded 1 min after the illumination turned off correspond exclusively to the 

light-induced conformations of the BRCs. The double difference spectra between those 

recorded at the beginning and the end of the illumination (black dotted spectra-minus-red 

solid spectra in Figure 6.2) indicate the light-induced changes that occurred during 

illumination. A decrease in the electrochromic absorption changes around 800 nm with 

increasing illumination time was detected in BRCs without added manganese (red solid 

and black dotted traces in Figure 6.2A). This is in agreement with the previous findings 

for BRCs  and characteristic to long-lasting conformational substates (Figure 3.5, 4.3 and 

4.4). The double difference spectrum (solid black trace in Figure 6.2A) also shows 

structural changes associated with the bacteriochlorophyll monomers (around 800 nm).  
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In contrast, these spectral features were absent in the presence of added manganese 

indicating that the metal ion inhibits the light-induced conformational changes in the 

vicinity of the dimer (Figure 6.2B). 

 

Figure 6.2 Normalized light-minus-dark optical difference spectra of R-26, in the absence (A) 

and presence (B) of bound Mn2+, recorded immediately after the light had been turned on (red 

solid trace), after illumination for 5 min (black dotted trace), and 1 min after the illumination had 

been turned off (blue dotted trace). The inset shows the time dependence of the absorption 

changes and indicates the times at which the spectral traces were recorded. The thick solid lines 

(black) show the double difference spectra (black dotted-minus-red solid trace) and feature 

changes around 800 nm, consistent with the decrease of the electrochromic absorption changes 

involving the monomers during the illumination in (A) whereas these changes were not observed 

in (B). Conditions: ~ 1 M BRC, 15 mM bis-tris propane, 0.1 % LADO, 100 M terbutryn, 5mM 

MnCl2 for Mn2+ samples, pH 8.0.  
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6.2 Effects of bound transition metal ion on kinetics of the recovery of the charge-

separated states 

 

The kinetics of the absorption changes caused by 5 min illumination with subsaturating 

light intensity were recorded at the center of QY band of the dimer as different transition 

metal ions were titrated in the BRC protein. The recovery of the oxidized dimer showed a 

complex kinetics with three components. The fastest phase was attributed to the charge-

recombination in the dark-adapted conformation, while the slow and the very slow 

components were assigned to recoveries observed in various altered (light-adapted) 

conformations established in Chapter 3. The fraction of the slow (intermediate) 

component is plotted as a function of the applied metal ion concentration (Figure 6.3A) to 

determine dissociation constant (KD) of metal ions using equation 3 and 4 (Chapter 2). 

The KD values for Cu2+, Ni2+, Zn2+, and Co2+ are 4 M, 7 M, 4 M, and 4 M, 

respectively whereas for Mn2+ it is much higher, 282 M and 125 M, in the absence and 

presence of bicarbonate, respectively. Also the fraction of the slow component in the 

presence of Mn2+ increases to 50 % while other metal ions showed only less than 10 % 

increase in the fraction of the slow component (Figure 6.3A). The rate constants of both 

slow and very slow components were found to be independent of the metal ion 

concentration clearly separating two populations (Figure 6.3B). At very high 

concentration of Mn2+ (1 mM and above) the very slow component was not detected. 

These observations suggest that while the structural changes near the quinones (slow 

component) are not affected by the manganese, the presence of manganese ion 

completely blocks the structural changes near P. 
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Figure 6.3 Dependence of the kinetic parameters obtained from the recovery kinetics of the 

oxidized dimer on the metal ion concentration. A. amplitude of the slow component, 

continuous lines are the best fits to the measured data points (using equation 3 and 4 from 

Chapter 2) and B. rate constants of the slow and very slow components in the 5 min illumination 

induced recovery kinetics. The following transition metal ions were used: Mn2+ (open red circles), 

Cu2+ (open blue triangles), Ni2+ (open green diamonds), Co2+ (brown cross), and Zn2+ (open black 

squares). In the presence of bicarbonate the  KD value lowered for manganese (solid crossed red 

circles). Results are described in the text. Conditions as in Figure 6.2 except respective metal ions 

were used for binding study. 

 

 

It should be noted that the relative fraction of slow component increases in the presence 

of manganese and hence the formation of very slow component becomes inhibited 

(Figure 6.3A).  
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Since other metal ions that have known binding sites near QB show only very minor 

effect, their binding near P can be excluded. This conclusion has also been scrutinized by 

the effect of the metals on the P/P+ potential and will be presented later.   

The results indicate the manganese becomes associated with the BRC at high 

concentrations but the relatively high dissociation constant of ~ 282 M (and 125 M in 

the presence of bicarbonate) are consistent with the manganese not being tightly 

coordinated to the BRC. Use of anions such as bicarbonate enhances the binding of 

divalent metal ion. The binding is expected to be weak if many of the coordinating 

residues are protonated. The bicarbonate ions may increase the surface pH and facilitate 

the deprotonation of the residues in the binding pocket by altering the local pH.   

Since, all other studied transition metal ions have known binding site near QB, the high 

binding affinity (KD < 10 M) site was attributed to the quinone side while low binding 

affinity site (for Mn2+) was attributed to the dimer side. The results of the kinetic analysis 

indicate that manganese binding inhibits the formation of L3 conformational state, 

associated with structural changes in the vicinity of the dimer, in scheme 3.1 (Chapter 3). 

If Mn2+ ion binds close to P+ then the association of the manganese with the BRC is 

expected to alter the P/P+ potential due to electrostatic interactions.  

 

6.3 P/P+ oxidation-reduction midpoint potential 

The oxidation-reduction midpoint potential of the P/P+ redox couple was measured in the 

presence of added Mn2+ (Figure 6.4). Without any external illumination the data were 

well described using Nernst equation assuming only a dark-adapted population of P that 

yields a midpoint potential of 606 mV at pH 8 (open symbols in Figure 6.4B).  
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This measurement was also carried out in the presence of added 50 mM and 100 mM 

bicarbonate. These bicarbonate concentrations facilitate the formation of the 

[Mn(II)(H2O)5(HCO3)]+ and [Mn(II)(H2O)4(HCO3)2] complexes, respectively that reduce 

and neutralize the net positive charge of the divalent metal ion. As a consequence of the 

bicarbonate effect the midpoint potential of P/P+ couple dropped to 548 mV and 516 mV, 

respectively (open symbols in Figure 6.4C and D). The midpoint potentials were also 

measured while the samples were weakly illuminated according to the method described 

in Chapter 3. Under weak illumination the data required the use of three-component 

Nernst equation assuming three different populations of P (Mn2+ bound, dark-, and light-

adapted) in the presence of Mn2+. While the P/P+ midpoint potential of fraction that has 

bound Mn2+ remained unchanged, those that do not have bound Mn2+ showed values of 

505 mV (38 %) and 420 mV (12 %) (closed symbols in Figure 6.4B). Also in the 

presence of 50 mM bicarbonate we observed lowered potentials of 508 mV (20 %) and 

420 mV (11 %) along with 548 mV (69 %) for the fraction that has bound Mn2+ (closed 

symbols in Figure 6.4C), but in the presence of 100 mM bicarbonate lower value of 

potential was not observed (Figure 6.4D). For comparison purpose the P/P+ midpoint 

potentials of the WT BRC in the dark and under weak illumination was also presented 

here (Figure 6.4A; the data are taken from Figure 3.9B).  
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Figure 6.4 Spectroelectrochemical redox titrations of the BRCs in the absence (open symbols) 

and in the presence (closed symbols) of a weak external illumination in (A) WT (gray) (from 

Figure 3.9 for comparison), (B) R-26 + 5 mM Mn2+ (red), (C) R-26 + 5 mM Mn2+ + 50 mM 

bicarbonate (pale brown), and (D) R-26 + 5mM Mn2+ + 100 mM bicarbonate (dark brown). The 

data were fitted with a standard Nernst equation assuming one (in the dark), two or three (in the 

presence of illumination) components. Results of the fit are described in the text. Conditions as in 

figure 6.2 except: ~ 300 M BRC, 70 mM KCl, 0.05 % TX-100. 

 

 

A potential drop of ~ 60 mV was observed due to loss of one positive charge (Figure 

6.4A and Chapter 3). However, in the presence of divalent metal ion the midpoint 

potential was increased by ~ 100 mV which would be equivalent to addition of two 

positive charges in the close vicinity of the dimer (Figure 6.4B open symbols).  
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Since the net positive charge of the manganese decreases with each substitution of 

bicarbonate, two different concentrations of bicarbonate were studied to identify whether 

the increase in the dimer potential was due to only electrostatic interactions between P+ 

and Mn2+. The spectroelectrochemical redox titrations require high concentration of the 

BRC samples therefore relatively high concentration of bicarbonate was used.  

The presence of 50 mM bicarbonate lowers the P/P+ potential to ~ 548 mV, which is also 

in agreement with the loss of one positive charge due to the manganese-bicarbonate 

complex formation whereas in the presence of 100 mM bicarbonate the P/P+ potential 

dropped to 516 mV indicating loss of two positive charges in the vicinity of P+ (Figure 

6.4C and D open symbols). Excess bicarbonate is known to increase P/P+ midpoint 

potential by ~ 15mV,185 which is in line with the above-mentioned results.  

In the presence of weak illumination, however, Mn2+ becomes unbound in a fraction of 

BRCs due to over 2 h of prolonged illumination during the long experiments. As a result 

of this the fraction of BRCs that do not have bound Mn2+ show altered conformational 

state with lower potential resembling to WT BRCs (Compare Figure 6.4A and B closed 

symbols). This result was also observed in the presence of 50 mM bicarbonate (Figure 

6.4C), but in the presence of excess bicarbonate the lower potential was not observed 

with altered state mostly due to high binding affinity of the complex (Figure 6.4D). The 

P/P+ potential remained unchanged under weak illumination in the presence of excess 

bicarbonate. Experimental limitations hinder the measurements of the P/P+ potential at 

higher manganese concentration due to the change in optical quality of the sample. Thus 

to estimate the upper limit for the dimer potential in the presence of manganese, 

previously established model by Tommos and Babcock was used.100 
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Figure 6.5 shows the P/P+ potential as a function of pM (-log [M]; where [M]: added 

Mn2+ concentration in moles). The P/P+ couple has a pM dependent potential that 

increases by ~ 60 mV per pM unit and can have lower and upper limits of ~ 610 mV and 

~ 643 mV, respectively as determined by extrapolating the fits. Actual fitting to the 

measured data points yields P/P+ potential of ~ 625 mV, which is equivalent to two 

positive charges in the close vicinity of the dimer. 

 

Figure 6.5 P/P+ potentials measured by spectroelectrochemical redox titrations as a function of 

pM. The fit of the data is described by equation 8 (Chapter 2) that gives lower and upper limit for 

the increase in P/P+ potential (dotted and dashed lines, respectively). Solid line is the best fit to 

the measured data. The results are described in the text. Conditions as in figure 6.4. 

 

 

Since there is a large,  110 mV increase in the P/P+ potential in the presence of bound 

Mn2+, was detected it is also expected that the energy levels of the charge-separated 

(P+QA ) and/or of the ground state (PQA) are also shifted. To test this the flash-induced 

charge recombination from the primary quinone was studied in the presence of bound 

Mn2+.  
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The kinetics of the flash-induced charge recombination were measured by the recovery of 

the bleaching of the QY band of P in the presence of terbutryn (Figure 6.6). Without the 

addition of Mn2+ the P+QA   PQA charge recombination occurred with a lifetime of ~ 

86 ms, while in the presence of bound Mn2+ it decreased to ~ 66 ms (red trace in Figure 

6.6). It has been shown earlier that substitutions of positively charged amino acids near 

the dimer increase not only the P/P+ potential but also the rate of the charge 

recombination.93 For example, in the case of the mutant that contained the Leu to His 

substitution 5 Å from P at the M197 position (Figure 1.15, Chapter 1) the  potential of  

the dimer has increased to 630 mV and the lifetime of the charge recombination was 

measured to be 65 ms.93 Our result recorded in the presence of Mn2+ is in an 

exceptionally good agreement with those measured in the M197 mutant. This indicates 

that binding of Mn2+ destabilizes P+ leading to rapid charge recombination and confirm 

the presence of a binding site for Mn2+ near P. 

 

Figure 6.6 Normalized kinetic traces of the flash-induced charge recombination in R-26 reaction 

centers monitored at 865 nm with (red trace) and without (black trace) added Mn2+. The results 

are described in the text. Conditions as in figure 6.2 except ~ 4 M BRC. 
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6.4 Modeling of the proposed manganese binding site 

At most seven manganese(II)-ions were estimated to bind to the entire BRC based on an 

EPR (Electron Paramagnetic Resonance) study .70 All the experimental evidences suggest 

that the proposed binding site must be in the vicinity of the dimer. To model the binding 

site of Mn2+ in BRC, Q-site finder server (University of Leeds, Leeds, UK) was used, 

which predicted two such sites in the proximity of the dimer (Figure 6.7A). One site (Site 

1) is on top of the dimer along the QX of the bacteriochlorophylls and the another site 

(Site 2) is near BM where carotenoid is known to bind (Figure 6.7A). Site 1 involves Ser 

L158, Tyr L162, Ser M190, Gly L161, and Gly L165 amino acid residues along with 

three water molecules W736, W737, and W810 and Site 2 contains Ser M119, Met 

M122, and Tyr M177. None of these residues in either site are negatively charged that 

could electrostatically stabilize the binding of the divalent manganese(II), thus the 

elevated potential of P+ reported in our work is in a good agreement with the lack of 

electrostatic stabilization. It also explains why the binding of the manganese is found to 

be weak (KD = 282 M).  Enzymes such as manganese peroxidase, manganese 

superoxide dismutase or manganese catalase have strong manganese binding sites due to 

coordination to Asp, Glu or His residues, while residues in our proposed site can only 

weakly coordinate metal ion.186,187 Among the potential ligands to manganese Tyr L162 

is known to play important role in electron transfer process from external electron donor 

(cyt c2) to P+.24  

Since the P/P+ potential was increased by 110 mV, and the acceleration of the flash 

induced charge recombination was also modest we can conclude that manganese can bind 

predominantly to only one of the two proposed sites. 
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Figure 6.7 A. Cartoon representation of the BRC that shows two halves of the dimer (PL and PM 

in red sticks) and two monomers (BL and BM in blue sticks) with two predicted binding sites (Site 

1 and 2) for the metal ion (slate colored mesh). The amino acid residues representing the mesh are 

listed in the text. The L, M, and H subunits are shown in salmon, green and yellow, respectively. 

The transparency of the subunits is increased for clarity of the cofactors. Arrows indicate the QX 

transition moment of the two halves of the dimer. B. The structure of L-half of the dimer (PL) 

(salmon sticks) and monomer BL (slate sticks). The QX transition moment of the BL (shown by 

arrow) is in the plane of 9-keto carbonyl group of the PL. Coordinates were taken from PDB entry 

code 1PCR.6  

 

 

To study which of the two sites is more likely accommodating the manganese ion light-

minus-dark optical difference spectra of the BRC was recorded in the spectral range 

corresponding to the QX electronic transition of the bacteriochlorines (500-700 nm). Any 

structural change along the QX transition of bacteriochlorophylls would be expected to 

cause a shift in the QX absorption band of these pigments.  
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The spectra were recorded during and after the illumination in the QX region, where all 

four bacteriochlorophylls have absorption around ~ 600 nm. The spectra are shown in 

Figure 6.8  in the 500 700 nm region. Spectra recorded at the beginning of the 

illumination are characteristic to the pigments in BRCs in their dark-adapted 

conformation, while those recorded 1 min after the illumination turned off represent 

light-adapted conformation. The spectral intensities mirror the fractions of the BRCs 

found in the corresponding conformational states. In the spectrum that was recorded 1 

min after the illumination turned off without added metal ion, there was 16 nm blue shift 

in the bacteriochlorophyll band from 601 to 585 nm with almost half of fraction in altered 

conformational state, which recovers in long time-scale (Figure 6.8A). After addition of 

metal ion, this fraction became negligible and it recovered rapidly (Figure 6.8B). This 

observation is in line with the relative amplitudes of the kinetic components of Figure 

6.2. Since structural water molecules W737 and W736  are along the QX transitions of PL 

and PM (Figure 3.6), any displacement of these molecules would be expected to cause a 

shift in the QX band of bacteriochlorophylls around 600 nm. This light-induced structural 

change along the QX transition of bacteriochlorophylls was absent upon Mn2+ addition. 

This indicates that Mn2+ most likely has a binding site along the QX transition of one of 

the four bacteriochlorophylls, which is in agreement with Site 1 modeled with the Q-site 

finder server.  
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Figure 6.8 Light-minus-dark optical difference spectra recorded immediately after the onset of 

the light (red trace) and 1 min after the illumination turned off (pink trace) for R-26 BRCs in the 

absence (A) and presence (B) of Mn2+ in the QX region of the bacteriochlorophylls. Pink trace 

shows the light-adapted conformational state that was observed to be blue-shifted by 15 nm from 

601 nm of the dark-adapted state (red trace) in (A) whereas this conformational change was not 

observed in the presence of bound Mn2+ in (B). Conditions as in figure 6.2. 

 

 

In addition also within Site 1 the 9-keto group of the L-half of the dimer (PL) is also 

along the QX transition of monomer BL (Figure 6.7B). When Leu is mutated to His at 

L131 position to introduce H-bond with the dimer through 9-keto group then light-

induced structural changes were blocked. The lack of structural changes were explained 

by the loss of proton conducting pathway from the dimer to the solvent (Chapter 3). 

Thus, one can speculate that the manganese-binding to Site 1 can also block the proton-

conducting pathway to the solvent.  
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The Site 2 near the BM (Ser M119, Met M122, and Tyr M177) lies where carotenoid, 

detergent, and lipid molecules can bind, but no spectral feature was observed in the light-

minus-dark optical difference spectra in the presence of Mn2+ that leads to confirm this as 

a possible binding site. Since manganese binding to the native BRC can be achieved at 

high concentrations that leads to an increased in P/P+ potential, it is interesting to study 

the role of manganese as a secondary electron donor (discussed later in future plan).  
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Chapter 7 

Conclusion 

 

Nature’s photosynthetic apparatus offers at least three different model examples for solar 

energy conversion that can inspire humanity to develop artificial light-driven energy 

converters for future energy production and storage: (i) creation of long-lived, energetic 

charge-separated states in many photosynthetic enzymes, (ii) generation of proton-

electrochemical gradient in both oxygenic (PSII) and anoxygenic systems (BRCs), and 

(iii) catalytic splitting of water in oxygenic photosynthetic organisms. These model 

examples depend on electron and proton transfers and subsequent conformational 

changes. In the frame of this thesis we have localized the conformational changes in the 

BRCs at molecular level in the vicinity of P with the use of the wild type and 11 different 

mutants of Rb. sphaeroides. We have determined that the light-induced conformational 

changes that favor long-lived charge-separated states involve: (i) a dielectric relaxation of 

the protein that stabilizes the charge on the dimer (Chapter 3)108, (ii) decrease in the P/P+ 

potential and large proton release through a proton conducting pathway from the dimer to 

the solvent (Chapter 3)115 and, (iii) rotation of the 2-acetyl group of PM
108,115,188. We 

discovered and reported a novel lipid binding site near the dimer and through lipid 

binding we were able to extend the lifetime of the charge-separated state by an 

unprecedented 5 orders of magnitude from sub seconds to hours (Chapter 5).189 This 

expansion of the lifetime of the charge-pair at a convenient temperature range presented 

within this work provides new opportunities to utilize the BRC as a light-driven 

biocapacitor in energy storage (Figure 7.1).  
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Based on the different abilities of the BRCs to undergo structural changes with and 

without a bound hydrophobic molecule (lipid or carotenoid) we concluded that the light-

induced structural change serves as a protective  mechanism  against oxidative damage if, 

due to excess light, the BRC becomes saturated and the cyt c2 and/or quinone pools 

become exhausted (Chapter 5).189 We also demonstrated that the light-induced 

conformational changes are also sensitive to the hydrophobic membrane environment, 

such as types of detergent and liposomes in terms of their hydrophobic thicknesses or 

head-group charges (Chapter 4).188  

 

 

Figure 7.1 BRC as a biocapacitor. Cartoon representation of structure of the BRC with 9 

cofactors (red sticks). The L, M, and H subunits (with increased transparency) are shown in 

salmon, green, and yellow colors, respectively. Light-induced charge-separated state is shown by 

charges only at approximate positions. The membrane is represented by gray shaded area. 
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The principles leading to the ability of the BRC to store electric potential on an extended 

time-scale can be inspiring for the development of biomimetic systems that can form the 

basis of molecular-scale optoelectronic devices. It will give insights of how solar energy 

can be converted into chemical potential under laboratory conditions. Moreover, this may 

open the stage for widespread artificial methods to develop man-made solar energy 

converters. On the other hand, as demonstrated in Chapter 6, light-induced long-lived 

conformational states can be blocked by transition metal binding without genetical 

modifications, This makes BRC to gain some specific functional features that are similar 

to PS II. 
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Chapter 8 

Future work 

 

The zwitterionic lipid molecule with short acyl chain length (C12: DLPC) was shown to 

bind near BM in the carotenoid binding pocket of R-26 BRC. Binding of hydrophobic 

molecule and formation of ripple phase of lipid bilayer in proteoliposomes can stabilize 

the light-induced charge-separated state substantially. In order to extend the lifetime of 

charge-separated state further, systematic study will be done to identify whether binding 

of a lipid molecule with negatively charged head-group with same acyl chain length (C12: 

DLPS) is possible along with the formation of ripple phase of lipid bilayer in 

proteoliposomes.  

 

Evolutionarily related PS II utilizes manganese cluster as external electron donor in the 

process of water oxidation because manganese-bicarbonate complex has much lower 

oxidation potential (~ 0.8 V) than that of primary donor of PS II (~ 1.1 V) (Figure 8.1). 

The P/P+ potential of BRCs can be increased up to ~ 0.76 V by genetic alteration of 

hydrogen bonding pattern of the dimer (shown as shaded area in Figure 8.1) so that 

manganese-bicarbonate complex can be utilized as secondary electron donor. On the 

other hand it was demonstrated in Chapter 6 that binding of Mn2+ to the native BRC 

alone can increase the P/P+ potential by ~ 120 mV. Manganese was found to bind BRC at 

the similar site, where cyt c2 is known to bind. In order to use Mn2+ as a secondary 

electron donor besides increasing the P/P+ potential, Mn2+/Mn3+ potential has to be 

lowered. Even though manganese-bicarbonate complex has significantly lower midpoint 
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potential than the hexa-aquo form (Figure 8.1), it is still not low enough to use it as 

secondary electron donor to the P+ in Mn2+ bound native BRC. As the presence of 

bicarbonate, bis-tris propane, and higher pH were known to further lower Mn2+/Mn3+  

potential, potentially Mn2+ can serve as a secondary electron donor to P+ in native BRCs 

under optimum conditions. This Mn2+ binding study can further be extended to the 

liposomes with different net head-group charge (DOTAP: +1, DOPS: -1, DOPC: 0) to 

study the changes in the midpoint potential of the dimer, lifetime of the light-induced 

charge-separates states, and subsequent structural changes.  

 

Figure 8.1 Relative comparison of the midpoint potentials of the primary and secondary 

electron donors in PS II, mutant BRC, and BRC with bound Mn2+. The P/P+ potential of the 

BRC can be elevated by genetic alterations in the BRC (shown in shaded area). To use 

manganese as a secondary electron donor in native BRCs under optimized conditions, further 

studies will be done which may make BRC protein to gain some specific functional features of 

the evolutionary related PS II.  
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Appendix A 

Identification of molecular mechanism behind the light-induced 

conformational changes using site-directed mutant reaction centers 

from Rhodobacter sphaeroides

 

The results in this section are color reproduction of the supporting information of the 

following published paper: 

Deshmukh, S. S., Williams, J. C., Allen, J. P., and Kálmán, L. (2011) Light-induced 

conformational changes in photosynthetic reaction centers: Dielectric relaxation in 

the vicinity of the dimer. Biochemistry, 50, 340-348. 

 

Author contributions: 

S. S. Deshmukh performed the experiments, analyzed the data, and contributed to writing 

the paper. L. Kálmán designed the research, guided the data analysis, and wrote the 

paper. J. C. Williams and J. P. Allen designed, constructed, and supplied the mutants and 

contributed to writing the paper.  
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Figure A1. Properties of the WT and the 

11 mutant reaction centers. The position 

of the mutation (and the H-bond created 

or removed with it) is shown by the 

simplified structural model of P showing 

PL and PM at the top. Panel a: The position 

of the QY absorption band (panel a), the 

positive absorption peak near 790 nm 

(panel b) in the light-minus-dark 

difference optical spectra, and the spin 

density distribution (panel c) as a function 

of the number of H-bonds in the mutants. 

The lines represent the direction of the 

change upon introducing the H-bonds at 

the positions of L131 (thick solid line), 

M160 (thick dashed line), M197 (thin 

dashed line), and L168 (thin solid line).  

Data of panels a and b were taken from 

Figure 3.1. To construct panel c the data 

were taken from reference (76).  
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Figure A2.  Light-induced electrochromic 

absorption changes in BM and BL (thick pink 

dashed lines) deducted from near-infrared 

light-minus-dark absorption difference 

spectra of reaction centers isolated from wild 

type and 11 H-bonding mutants after 

removing contributions from reduced 

quinone and oxidized dimer (as shown in 

Figure 3.3A). The spectra were taken using 

non-saturating (30% of the saturating value 

for wild type) continuous illumination and 

were normalized to the dimer band position 

before removing contributions from reduced 

quinone and oxidized dimer. These deducted 

spectra were best fitted by the shifts (thin 

dark cyan dashed lines) and broadenings 

(thin black dotted lines) of BM and BL and 

thick solid lines represent the best fit to the 

spectra (fitting parameters are shown in 

Table A1). These mutants are categorized in 

two families: those which have L131 

mutation and those which do not have this 

mutation (separated by the line). The mutants 

which have the L131 mutation show 

comparable shifts in BM and BL whereas the 

mutants which do not have this mutation 

show larger shifts in BM. L168 mutant shows 

the shift in monomer band primarily from 

BM.   
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Table A1. Fitting parameters of bacteriochlorophyll monomer BM and monomer BL for wild 

type (WT) and 11 H-bonding mutants (for Figure A2).  

 
BM BL Mutant 

AI 
a AD 

b WI 
c WD 

d BI 
e BD 

f    AI 
a AD 

b WI 
c WD 

d BI 
e BD 

f     
 
M160+M197
+ L131 
 

 
0.92 

 
0.93 

 
804.90 

 
810.00 

 
9.60 

 
9.00 

 
0.93 

 
0.93 

 
790.20 

 
794.00 

 
9.00 

 
9.00 

 
M197+L131 
 

 
1.07 

 
1.10 

 
805.20 

 
810.00 

 
9.80 

 
9.10 

 
1.10 

 
1.10 

 
790.70 

 
794.00 

 
9.10 

 
9.10 

 
M160+L131 
 

 
1.05 

 
1.07 

 
805.90 

 
810.00 

 
10.00 

 
9.40 

 
1.04 

 
1.07 

 
791.50 

 
794.00 

 
10.10 

 
9.40 

 
L131 
 

 
1.06 

 
1.10 

 
806.00 

 
810.50 

 
10.00 

 
9.40 

 
1.10 

 
1.10 

 
790.90 

 
794.50 

 
9.50 

 
9.40 

 
L168+L131 
 

 
0.98 

 
1.10 

 
804.70 

 
810.00 

 
13.00 
 

 
9.60 

 
1.10 

 
1.10 

 
790.50 

 
794.00 

 
9.90 

 
9.60 

 
M160+M197 
 

 
1.05 

 
1.10 

 
802.00 

 
810.00 

 
10.70 

 
9.00 

 
1.08 

 
1.10 

 
791.60 

 
794.00 

 
9.90 

 
9.00 

 
M197 
 

 
1.08 

 
1.10 

 
803.10 

 
810.00 

 
9.50 

 
8.50 

 
1.10 

 
1.10 

 
791.30 

 
794.00 

 
8.70 

 
8.50 

 
M160 
 

 
1.09 

 
1.13 

 
803.00 

 
810.00 

 
11.00 
 

 
9.30 

 
1.10 

 
1.13 

 
791.80 

 
794.00 

 
10.10 

 
9.30 

 
WT 
 

 
1.04 

 
1.13 

 
802.60 

 
810.00 

 
10.00 

 
8.70 

 
1.07 

 
1.13 

 
792.20 

 
794.00 

 
9.50 

 
8.70 

 
M160+L168 
 

 
0.90 

 
0.90 

 
800.40 

 
810.00 

 
13.70 
 

 
13.70

 
0.90 

 
0.90 

 
792.00 

 
794.00 

 
13.70 

 
13.70 

 
M197+L168 
 

 
0.80 

 
0.80 

 
800.50 

 
810.00 

 
12.90 

 
12.90

 
0.80 

 
0.80 

 
792.00 

 
794.00 

 
12.90 

 
12.90 

 
L168 
 

 
1.00 

 
1.00 

 
798.70 

 
810.00 

 
13.50 

 
13.50

 
0.91 

 
1.00 

 
793.70 

 
794.00 

 
14.00 
 

 
13.50 

 
a, b Amplitude 1 minute after the illumination (AI) and before the illumination (AD) respectively; 
c, d Band position 1 minute after the illumination (WI) and before the illumination (WD) 

respectively; 
e, f Full width at half maximum 1 minute after the illumination (BI) and before the illumination 

(BD) respectively. 
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Appendix B 

Identification of molecular mechanism behind the light-induced 

conformational changes using site-directed mutant reaction centers 

from Rhodobacter sphaeroides

 

The results in this section are reproduction of the supporting information of the following 

published paper: 

Deshmukh, S. S., Williams, J. C., Allen, J. P., and Kálmán, L. (2011) Light-induced 

conformational changes in photosynthetic reaction centers: Redox-regulated proton 

pathway near the dimer. Biochemistry, 50, 3321-3331. 
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the paper. L. Kálmán designed the research, guided the data analysis, and wrote the 

paper. J. C. Williams and J. P. Allen designed, constructed, and supplied the mutants and 

contributed to writing the paper.  
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Figure B1. Equilibration of the BRC in 

response to the onset and offset of the +600 

mV applied potential monitored as the 

bleaching of the QY absorption band of the 

dimer centered at 865 nm. Black and red 

traces represent the kinetics in the dark and 

under weak continuous illumination that 

generated only 6% of the BRCs to be in 

charge-separated state, respectively. The 

nearly matching response to the sudden 

change for the two traces indicates that the 

illumination has no effect on the 

equilibration time.  
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Figure B2.  Near-infrared optical difference 

spectra of WT BRCs recorded immediately 

after the illumination turned on (red trace) 

and up to 7 hours after the illumination that 

lasted for 2.5 hours was ceased (maroon and 

black traces). The numbers indicate the time 

in hours after illumination, at which that 

particular spectrum was recorded. For better 

comparison of the spectral features the 

spectrum recorded during the illumination 

was scaled down to half of its original size 

and the spectra were vertically shifted for 

clarity. The intensity of the weak 

illumination was selected to be the same as 

used for the redox titrations. As seen from 

the maroon traces the electrochromic 

absorption changes of the monomers (near 

800 nm) are still present after 5 hours that is 

long after the spectral features of both P+ and 

QA  disappeared.   
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Figure B3. Spectroelectrochemical 

oxidation-reduction titrations of the dimer in 

WT reaction centers at pH 8. Open circles, 

closed circles, open diamonds, and open 

squares represent the data collected before 

any illumination, during the weak 

illumination, in time intervals of 

approximately 1-3.5 hours, and 6.5-8 hours 

after the illumination turned off, 

respectively; Solid lines show the best fit to 

Nernst curves with one or two components. 

The parameters of the fit are tabulated in 

Table B1. The data determined before (open 

black circles) and during (closed red circles) 

the illumination were taken from Figure 3.8 

to show all the titrations for better 

comparison.  
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Conformation 
Dark-adapted  Light-adapted 

 

Condition 

A1 a Em1
b 

(mV) 
A2

c  Em2
d 

(mV) 
D1 1 505 - - 

L 0.58 505 0.42 430 

D2 0.74 507 0.26 443 
D3 1 501 - - 

 

 

a, c  Amplitudes (A1, A2) in the dark- and light-

adapted conformations, respectively; 
b, d Midpoint potential values (Em1, Em2) of the 

dimer in the dark- and light-adapted conformations, 

respectively; 

Table B1. Fitting parameters of 

spectro-electrochemical oxidation-

reduction titrations of the dimer in 

WT BRCs before (D1), during (L), 

between 1 and 3.5 hours (D2), and 

between 7 and 9.5 hours (D3) after 

the weak illumination. Where needed 

two component Nernst-fit was 

applied resulting in two populations 

of the dimer with different fractions 

(A) and midpoint potential values 

(Em) representing the dark- and light-

adapted conformations, respectively. 
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Appendix C 

Optimization of light-induced conformational changes to stabilize 

charge-separated state by lipid binding and phase transition of the 

membrane lipids 

 

The results in this section are color reproduction of the supporting information of the 

following published paper: 

Deshmukh, S. S., Tang, K., and Kálmán, L. (2011) Lipid binding to the carotenoid 

binding site in photosynthetic reaction centers. J. Am. Chem. Soc. 133, 16309-16316. 

 

 

 

Author contributions: 

S. S. Deshmukh performed the experiments, analyzed the data, and contributed to writing 

the paper. K. Tang performed preliminary experiment in DLPC liposome (data not 

included). L. Kálmán designed the research, guided the data analysis, and wrote the 

paper.  
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Figure C1. Kinetics of the light-induced absorption changes in BRCs from semiaerobically 

grown WT (panel A in dark brown) and R-26 (panel B in dark cyan) measured at the center of the 

QY absorption band of P. The kinetic traces were recorded at two different illumination times for 

both BRCs: 0.2 and 1 min. Note the much larger amplitude of the longer lived components in 

WT. Conditions: 1 M BRCs, 15 mM Bis-tris propane pH 7.0, 1 mM EDTA, 0.05 % TX-100. 

 

Figure C2. Normalized light-minus-dark difference spectra (solid lines) recorded immediately 

after the onset of the light and 1 minute after the illumination was turned off (dashed lines) for 

BRCs isolated from semiaerobically grown cells from WT (dark brown) (A) and R-26 (dark 

cyan) (B). The thick black solid lines show the double difference spectra (dashed-minus-solid) 

and feature changes around 800 nm consistent with the decrease of the electrochromic absorption 

changes involving the monomers during the illumination. Note the larger decrease in WT than in 

R-26. Conditions as in Figure C1. 
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Table C1. Fitting parameters of the kinetic traces recorded in TX-100 and presented in Figure 5.2 

 
sample 

k(22 ºC)
a 

(s-1) 
×103 

A(22 ºC)
 b k(8 ºC)

 c 
(s-1) 
×103 

A(8 ºC)
 d 

WT 
 

48 
4 

0.33 
0.23 

75 
1.1 

0.45 
0.55 

R-26 12 0.34 9.6 0.6 

R-26+DOPC 15 0.66 8.6 0.62 

R-26+DMPC 8 0.35 3.1 0.53 

R-26+DLPC 13 0.43 0.7 0.6 

WT+DLPC 36 
2.6 

0.45 
0.15 

62 
1.1 

0.57 
0.43 

 

a, c Rate constant of the slower kinetic components observed in the recovery kinetics at 22 and 8 

°C, respectively; 
b, d Relative amplitudes of the slower kinetic components at 22 and 8 °C, respectively; 

 

Table C2. Fitting parameters of the kinetic traces recorded in proteoliposomes and presented in 

Figure 5.7 

 
sample 

k(22 ºC)
a 

(s-1) 
×103 

A(22 ºC)
b k(8 ºC)

c 
(s-1) 
×103 

A(8 ºC
d

) 

R-26-DLPC 41 
1 

0.5 
0.5 

0.13
28 

0.93 
0.07 

R-26-DOPC 7.8 
0.41 

0.5 
0.5 

2.5
0.4 

0.62 
0.38 

R-26-DLPC* ND ND 23
0.93 

0.68 
0.32 

WT-DLPC 12 
0.47

0.2 
0.8 

4.1 
0.15

0.42 
0.58 

 

a, c Rate constant of the observed kinetic components at 22 and 8 °C, respectively; 
b, d Relative amplitudes of the observed kinetic components at 22 and 8 °C, respectively; 
* Rapid cooling (4 °C/min); 

ND, not determined.  
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