
AIRCRAFT JET ENGINE CONDITION MONITORING

THROUGH SYSTEM IDENTIFICATION BY USING

GENETIC PROGRAMMING

Seyed Hosein Nayyeri

A thesis

in

The Department

of

Electrical and computer Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Electrical Engineering

Concordia University

Montréal, Québec, Canada

April 2013

c© Seyed Hosein Nayyeri, 2013

Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Seyed Hosein Nayyeri

Entitled: Aircraft Jet Engine Condition Monitoring through Sys-

tem Identification by using Genetic Programming

and submitted in partial fulfillment of the requirements for the degree of

Master of Electrical Engineering

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining commitee:

Dr. Raut, Chair

Dr. Hashtrudi Zad, Examiner

Dr. Dolatabadi, Examiner

Dr. Khorasani, Supervisor

Approved by

Dr. W. E. Lynch

Department of Electrical and Computer Engineering

2013

Dr. Robin A. L. Drew, Dean

Faculty of Engineering and Computer Science

Abstract

Aircraft Jet Engine Condition Monitoring through System

Identification by using Genetic Programming

Seyed Hosein Nayyeri

In this thesis a new approach for aircraft jet engine condition monitoring is proposed

based on system identification and by using Genetic Programming (GP). This ap-

proach consists of two fault detection and isolation parts. In the detection part, the

relationship between the engine Exhaust Gas Temperature (EGT), as a major in-

dicator of the engine health condition, and other engine parameters and operating

conditions corresponding to different phases of the flight is modelled using the GP

technique. Towards this end, flight characteristics are divided into several phases such

as the take-off and the cruise. The GP scheme is then used to discover the structure

of the interrelations among engine variables. The constructed model is then used to

detect abrupt faults in the engine performance.

For the isolation purpose, a hierarchical approach is proposed which narrows down

the number of possible faults toward the target fault. The GP algorithm is then

exploited to extract a series of nonlinear functions of the engine variables called fault

indices. These indices attempt to magnify the signature of a fault in the engine by

combining the effects of a fault on the engine parameters. These indices subsequently

provide the necessary residuals for classifying the faults.

The approaches developed in this thesis provide an effective strategy for inspecting

the aircraft jet engine health condition without requiring any specific information on

the engine internal characteristics. The main advantage of the proposed approaches

over other data driven methods such as neural networks is that our approaches provide

a simple and tangible mathematical model of the engine rather than a black box

model. The performance of the proposed algorithms are demonstrated and illustrated

by implementing them on a double spool jet engine data that is generated by using

the Gas turbine Simulation Program (GSP) software.

iii

Acknowledgments

I would like to dedicate this thesis to my dear wife for all the supports and love

she gave to me. I would like to sincerely thank my supervisor, Dr K. Khorasani,

for his constant support, encouragement and inspiring advices through the course of

this thesis. I would also like to thank all my friends and colleagues at Concordia

University.

iv

Contents

List of Figures viii

List of Tables xii

1 Introduction 1

1.1 Problem Statement . 3

1.2 Literature Review . 3

1.2.1 Fault Detection, Isolation and Identification 3

1.2.2 FDI in the Jet Engines . 6

1.2.3 Genetic Programming . 8

1.3 Thesis Contributions . 11

1.4 Thesis Outline . 11

1.5 Conclusions . 12

2 Background Information 13

2.1 Fault Detection, Isolation and Identification 13

2.2 Jet Engine Overview . 17

2.2.1 Jet Engine Modelling . 18

2.2.2 Faults in the Jet Engine . 22

2.2.3 Engine Performance Parameters and Condition Monitoring . . 23

2.3 Evolutionary Algorithms . 25

2.4 Basic Concepts of Genetic Programming (GP) 26

2.4.1 Representation of Models . 27

2.4.2 Mutation Operator . 28

2.4.3 Crossover Operator . 29

2.4.4 Fitness . 30

v

2.4.5 Parameter Estimation . 30

2.5 GSP Software . 33

2.6 Conclusions . 35

3 GP Algorithm for Jet Engine Fault Detection 37

3.1 Methodology . 37

3.1.1 Health Monitoring Procedure 38

3.1.2 GP Implementation and Computational Limitations 40

3.1.2.1 Fitness Definition . 42

3.1.2.2 Data Normalization 43

3.2 Simulation Results . 43

3.2.1 Take-off mode . 44

3.2.1.1 GP Algorithm Implementation 44

3.2.1.2 Model Generation and Validation 46

3.2.1.3 Modeling Error . 55

3.2.1.4 Impact of the Number of Training Points 57

3.2.1.5 Fault Detection Process 58

3.2.1.6 Smallest Detectable Fault (Confusion Matrix) 63

3.2.2 Cruise Mode . 75

3.2.2.1 Model Generation and Validation 75

3.2.2.2 Modelling Error . 80

3.2.2.3 Fault Detection Process 82

3.2.2.4 Smallest Detectable Fault (Confusion Matrix) 86

3.3 Chapter Contributions . 93

3.4 Conclusions . 94

4 GP Algorithm for Jet Engine Fault Isolation 95

4.1 Methodology . 95

4.1.1 Definition of Fault Indices and Fault Residuals 96

4.1.2 Fault Isolation Logic . 98

4.1.3 GP Implementation . 103

4.1.3.1 Fitness Function Definition 103

4.2 Simulation Results . 106

4.2.1 Fault Tree Construction . 106

vi

4.2.2 Take-off Results . 110

4.2.2.1 Threshold Definition 121

4.2.2.2 Performance Evaluation (Confusion Matrix) 122

4.3 Chapter Contributions . 129

4.4 Conclusions . 129

5 Conclusions and Future Work 131

5.1 Conclusions . 131

5.2 Future Work . 132

Bibliography 134

vii

List of Figures

1.1 Hardware redundancy methodology 4

1.2 FDI approaches classification . 5

2.1 Time dependency of faults: (a) abrupt, and (b) incipient, (c) intermit-

tent . 14

2.2 Simple residual generation process. 15

2.3 Model-based fault detection process 16

2.4 System identification approaches . 17

2.5 Turbofan engine components . 18

2.6 Engine parameters and components interactions 19

2.7 A simple gas turbine unit. 1-Stagnation conditions at compressor in-

let. 2-Stagnation conditions at compressor outlet, and 3-Stagnation

conditions at turbine inlet. 4-Stagnation conditions at turbine outlet 20

2.8 Engine variables and their location in the engine 24

2.9 The flow chart depicting the GP modelling process. 27

2.10 An example tree of an individual structure. 28

2.11 Mutation operation. 29

2.12 Crossover operation. 29

2.13 Simplex in R3 and R2. 31

2.14 Simplex transform calculated points 33

2.15 GSP software modeling environment 34

2.16 Compressor map in the GSP database 35

3.1 Symbolic simplification of the individual models. 41

3.2 Parents initialization of the models. 45

3.3 Model EGT output vs GSP software EGT output in the take-off mode,

equation (3.2.1). 48

viii

3.4 Model EGT output vs GSP software EGT output in the take-off mode,

equation (3.2.2). 49

3.5 Distribution of the Wf , altitude and Mach number. 51

3.6 Model EGT output vs GSP software EGT output in the take-off mode,

equation (3.2.1). 52

3.7 Model EGT output vs GSP software EGT output in the take-off mode,

equation (3.2.2). 53

3.8 Model EGT output vs GSP software EGT output in the take-off mode,

equation (3.2.1). 54

3.9 Model EGT output vs GSP software EGT output in the take-off mode,

equation (3.2.2). 55

3.10 Absolute mean error vs the number of data used to obtain the model

coefficients. 58

3.11 Threshold definition in the take-off mode by using equation (3.2.1). . 59

3.12 Threshold definition in the take-off mode by using equation (3.2.2). . 60

3.13 Model EGT output vs GSP software EGT output in the take-off mode

with fault injected at the 50th sample point corresponding to equation

(3.2.1). 61

3.14 Model EGT output vs GSP software EGT output in the take-off mode

with fault injected at the 50th sample point corresponding to equation

(3.2.2). 62

3.15 Fault in the LCflow. 67

3.16 Fault in the HCflow. 68

3.17 Fault in the HTflow. 69

3.18 Fault in the LTflow. 70

3.19 Fault in the LCeff . 71

3.20 Fault in the HCeff . 72

3.21 Fault in the HTeff . 73

3.22 Fault in the LTeff . 74

3.23 Distribution of the Wf , altitude and Mach number. 76

3.24 Model EGT output vs the GSP software EGT output in the Cruise

mode corresponding to equation (3.2.9). 78

ix

3.25 Model EGT output vs the GSP software EGT output in the Cruise

mode corresponding to equation (3.2.10). 79

3.26 Threshold definition in the cruise mode by using the external states

corresponding to equation (3.2.9). 82

3.27 Threshold definition in cruise mode by using the internal and external

states corresponding to equation (3.2.10). 83

3.28 Model EGT output vs GSP software EGT output in the cruise mode

with fault injected at the 50th sample point corresponding to equation

(3.2.9). 84

3.29 Model EGT output vs GSP software EGT output in the cruise mode

with fault injected at the 50th sample point corresponding to equation

(3.2.2). 85

3.30 Fault in the LCflow. 89

3.31 Fault in the HTflow. 90

3.32 Fault in the LTflow. 90

3.33 Fault in the LCeff . 91

3.34 Fault in the HCeff . 92

3.35 Fault in the HTeff . 92

3.36 Fault in the LTeff . 93

4.1 Each residual divides the faults into two groups. 98

4.2 An example fault tree. 100

4.3 Defining the threshold by decreasing and increasing the faults severities

in the two classes. 102

4.4 Faults isolation tree and hierarchy of the corresponding fault residuals. 110

4.5 Residual R1 response to different types of faults. 113

4.6 Residual R2 response to different types of faults. 113

4.7 Residual R3 response to different types of faults. 114

4.8 Residual R4 response to different types of faults. 114

4.9 Residual R5 response to different types of faults. 115

4.10 Residual R6 response to different types of faults. 115

4.11 Residual R7 response to different types of faults. 116

4.12 Detection of a 2% fault in low pressure compressor flow capacity. LCflow124

4.13 R1 residual response to a 2% fault in LCflow 124

x

4.14 R3 residual response to a 2% fault in LCflow 125

4.15 R6 residual response to a 2% fault in LCflow 126

4.16 Detection of 0.5% fault in high pressure turbine efficiency HTeff . . . 127

4.17 R1 residual response to a 0.5% fault in HTeff 127

4.18 R2 residual response to a 0.5% fault in HTeff 128

4.19 R4 residual response to a 0.5% fault in HTeff 129

xi

List of Tables

2.1 Uknown engine parameters that need to be determined. 20

2.2 The description of the considered component faults. 23

2.3 Engine variables and the operating condition parameters. 25

3.1 Models obtained for estimating EGT in different flight phases. 38

3.2 GP algorithm settings and the parameter optimization settings. . . . 46

3.3 Engine operational conditions ranges. 51

3.4 Mean square error and the maximum error for 15 test data set using

equation (3.2.1). 56

3.5 Mean square error and the maximum error for 15 test data set using

equation (3.2.2). 57

3.6 The confusion matrix. 63

3.7 Minimum detectable faults and the confusion matrices in the take-off

mode by using equation (3.2.1). 65

3.8 Minimum detectable faults and the confusion matrices in the take-off

mode by using equation (3.2.2). 66

3.9 Engine operational conditions ranges. 75

3.10 Mean square error and maximum error for 15 test data set by using

equation (3.2.9). 81

3.11 Mean square error and maximum error for 15 test data set by using

equation (3.2.10). 81

3.12 Minimum detectable fault and the confusion matrix corresponding to

equation (3.2.9). 87

3.13 Minimum detectable fault and the confusion matrix corresponding to

equation (3.2.10). 88

4.1 The N1 parameter correlation matrix for different faults. 107

4.2 The N1 parameter correlation matrix for different faults. 108

xii

4.3 Number of the highly correlated fault pairs. 109

4.4 Fault indices for seven levels of fault isolation. 111

4.5 Fault indices numerical coefficients values. 112

4.6 Fault indices thresholds. 122

4.7 Isolation residuals minimum and maximum detectable faults. There

are no limits for the blank cells. 122

4.8 Fault isolation confusion matrix. 123

xiii

List of Abbreviations and Symbols

am Ambient
C Compressor
CC Combustion chamber
η Efficiency
f Fuel
Hu Fuel specific heat, J

Kg

R Gas constant, J
Kg.K

HC High pressure compressor
HT High pressure turbine
γ Heat capacity ratio
d Intake
LC Low pressure compressor
LT Low pressure turbine

ṁ Mass flow rate, Kg
s

M Mach number
n Nozzle
P Pressure, pascal
P0 Pressure at sea level at standard day
WC Power consumed by compressor, W
WT Power generated by turbine, W

J Rotor moment of inertia, Kg
m2

N Rotational speed, rpm
N1 Rotational speed of spool connecting the low pressure compressor to the low

pressure turbine, rpm
N2 Rotational speed of spool connecting the high pressure compressor to the low

pressure turbine, rpm
cp Specific heat at constant pressure, J

Kg.K

cv Specific heat at constant volume, J
Kg.K

T Turbine
T Temperature, K
T0 Temperature at sea level at standard day

xv

Chapter 1

Introduction

With the development of air travel industry and transportation, aircraft have become

an inevitable part of the everyday life. Growing demand and manufacturing costs and

constraints necessitate aircraft to be able to stay in service as long as possible and fly

more frequently with the lowest possible costs. On the other hand, safety considera-

tions and reliability issues are the key factors in the success of any aerial business [1].

This trade-off between safety requirements and maintenance and operational costs

have resulted in significant efforts to develop efficient health monitoring systems that

are able to reduce maintenance costs as well as increasing the flight reliability.

Among all parts of an aircraft, engines are probably the most complex, expen-

sive and critical component. Any major fault in an aircraft engine can lead to a

tragedy. The traditional approach in maintaining aircraft engines is a time-based

schedule. However, due to human safety and uncertainties embedded in this ap-

proach, extremely conservative and high safety factors are considered in time-based

scheduling, resulting in unnecessary or sometimes late maintenance actions. Conse-

quently, finding an optimal time in which the engine has used most of its useful life

without violating safety thresholds are of much interest. A lot of efforts have been

made to develop flexible maintenance schedules and health monitoring systems that

1

enable one to monitor the aircraft engine performance and even predict the critical

conditions.

Engine health management solutions are used in performing fault detection, iden-

tification and isolation and consequently, in prediction of the system health parame-

ters. Engine degradation or ageing can be estimated by using such algorithms. Engine

performance deviation is linked to the change in the monitored health parameters of

the engine. Not necessarily any change in the system states can be attributed to a

fault, as such changes can be caused due to the system operating conditions changes.

By properly detecting engine degradation, maintenance actions can be taken before

a fault actually occurs. In most cases unscheduled maintenance actions that are

triggered by faults are more expensive to resolve than scheduled and condition-based

maintenance. Furthermore, by early anomaly detection it becomes possible to prevent

damages to the engine that are caused by the initial fault propagation [2].

The importance of aircraft jet engine health monitoring and management has been

well recognized in the literature. Research approaches in this area can be mainly cat-

egorized into model-based approaches and intelligent-based approaches. The main

advantage of the model-based approaches is their analytical properties while most of

intelligent-based approaches are basically a black box which provide no or low intu-

ition about their operation. In addition to this in many practical applications there

is a possibility of having limited recorded snapshot data from the engine variables

(sensors) that are collected over a flight. In this case it is difficult to train data driven

models such as neural networks. On the other hand, model-based approaches usually

contain more simplifying assumptions than intelligent-based approaches. In addition,

model-based approaches require knowledge about the engine physics and operation.

Recently hybrid approaches have become popular as they can provide advantages of

both approaches in one scheme while minimizing the corresponding disadvantages at

2

the same time [3].

1.1 Problem Statement

The main objective of this research is to combine two model-based and intelligent-

based approaches in the context of fault detection and isolation (FDI) technology in

jet engines. Towards this end, in this thesis the main goal is to develop a scheme based

on the genetic programming (GP) algorithm to capture degradations and abrupt

faults in a dual spool aircraft jet engine. The goal is to simultaneously take advantage

of benefits of both data driven techniques and model-based approaches for developing

a fault detection and isolation methodology.

In comparison with model-based approaches, the main advantage of using GP

algorithm is that no information on the engine components characteristics such as the

turbine and the compressors maps are required. On the other hand, in comparison

with data driven approaches such as neural networks, the GP approach provides

simple, practical, and explicit models (and not black box models) for the engine at

different operating points.

1.2 Literature Review

1.2.1 Fault Detection, Isolation and Identification

The need for ensuring reliable and safe systems has attracted a significant research to-

wards the health monitoring and fault detection and isolation (FDI) problem. Health

monitoring refers to techniques and processes used to monitor the condition of the

system through the so-called indicating parameters. Changes in these parameters

3

correlate to deviation of the system from normal operation. Health monitoring en-

ables one to predict the possible failure in the system due to a fault or as a result of

scheduled and required maintenance actions to prevent more damage to the system.

It is more cost effective to predict the condition of the engine and take preventive

actions before it suffers from suboptimal and unsafe performance which may decrease

the efficiency and eventually turn into a total failure. Traditional approach towards

FDI is to use hardware redundancy, such as multiple sensors to measure specific sys-

tem parameters and compare the results with other sensor measurements and seek for

incompatibilities between their outputs (Figure 1.1). Although this approach is very

reliable but the main problem with it is the high cost of the required equipment and

extra weight and space necessary for them in some applications such as aircraft. These

limitations have motivated researchers toward developing software health monitoring

or analytical redundancy techniques that have led to the development of a large body

of FDI schemes in the literature.

Figure 1.1: Hardware redundancy methodology [4].

4

Recent surveys on different FDI techniques can be found in [4] and [5]. Figure 1.2

shows a summary of the common FDI approaches that are available in the literature.

Figure 1.2: FDI approaches classification [5].

Software redundancy methods are divided into quantitative and qualitative ap-

proaches. Quantitative approaches use explicit mathematical model of the system

while qualitative approaches use implicit models developed using artificial intelligence

methods [4]. A key element in any FDI approach is finding a set of robust residuals

that have low sensitivity to noise and disturbances. Available techniques for gener-

ating residuals can be classified into several classes. Such as (a) observer-based and

Kalman filter-based approaches [6, 7, 8], (b) unknown input observers [9, 10, 11], and

(c) parity relations approaches [12, 13, 14]. Another approach for generating robust

residuals is to convert the residual generation problem into an optimization problem

in which minimizing the cost function leads to the development of the residuals with

maximum sensitivity to the fault and minimum sensitivity to the disturbances. A

survey of different approaches in this area can be found in [15].

System identification that is also the topic of this thesis is another technique to

5

determine the required FDI residuals. FDI can be accomplished through system iden-

tification or parameter estimation. In this approach a model of the healthy operating

system is developed by using online or offline measured data. With the assumption

that a fault in the system shows itself through changes in the model parameters one

can perform the FDI by comparing the output of this model and the actual system

output. A survey on current practices in this area is provided in [16].

1.2.2 FDI in the Jet Engines

The sensitivity and importance of the aircraft engine has made it a point of interest

for many researches in the field of FDI. Many researchers have selected jet engine

systems to validate and examine their novel methods. The references [17] and [18]

represent some examples. Research approaches in this area can be mainly catego-

rized into model-based approaches and intelligent-based approaches. In model-based

approaches, the main objective is to construct an analytical relationship among the

engine variables, and develop an explicit criterion for health monitoring. In intelligent-

based approaches, it is common to use neural networks that is trained to implicitly

learn the relationship among the engine critical variables and the engine health sta-

tus, and generate reliable health status reports. Model-based methods are applicable

when an accurate mathematical model of the engine and its components character-

istics are available [19]. Various approaches are applied to model the changes in the

engine parameters. A common approach to calculate engine unknown variables is

using linearized engine model and estimation algorithms [20]. Nonlinear approaches

can also be found in the litrature [21]. Intelligent-based methods need experimental

aircraft data such as the flight recorded data. Data driven fault diagnosis methods

cover a vast range of approaches, namely machine learning, statistical methods, and

competitive learning techniques [22, 23, 24, 25, 26].

6

One of the main techniques in the jet engine fault diagnosis is the Gas Path Anal-

ysis (GPA) approach. Physical faults and degradations in the jet engine components

result in changes in the thermodynamic performance of the engine, and consequently

changes in the engine states such as temperature, pressure and rotational speeds. The

most common type of fault in engine components are corrosion, compressor fouling,

external objects, etc. [27]. These faults are characterized by components efficiencies

and flow capacities. In the GPA approach one tries to analyze the engine health

condition by comparing measurements such as pressure and temperature from dif-

ferent stages of the engine with estimated data from the engine model. Reference

[27] has done a comprehensive survey on the available techniques in the GPA. This

approach was extensively developed by Urban [28] and Volponi [29]. In this regard,

using Kalman filter as an estimator is very common. References [30, 31] implemented

different types of Kalman filters in engine analysis. Reference [32] provided a com-

parison survey on different filtering approaches for aircraft engine health estimation.

In [1] authors use a differential analysis scheme to identify significant deviations in

the performance of two engines on a single aircraft.

Artificial intelligence approaches such as neural networks [33, 34], and Bayesian

networks [35], have also been widely used to estimate the health parameters in the

gas path analysis. Variety of neural networks have been implemented for the FDI in

gas turbines such as modular neural network system [36] and the feed forward back

propagation neural networks [37]. Reference [38] provided a study on the effective

feature extraction using neural networks for novelty detection in highly dynamic sys-

tems such as the gas turbines. A comprehensive review of neural network-based FDI

methods can be found in [39]. Support vector machines and fuzzy logic networks have

also been introduced for fault diagnosis of jet engines in the literature [40].

Hybrid approaches have also been used in FDI of gas turbines. A hybrid automata

7

is proposed in [41] as a tool to perform FDI in the gas turbine engine. References [42]

proposed a hybrid neural-network by using influence coefficients to model part of the

system.

Among all engine parameters the Exhaust Gas Temperature (EGT) is known as

the major indicator of the health condition of the engine [43]. Many researchers have

investigated the engine performance by studying the EGT as a time series data. There

are a number of methods that are available for change detection in one-dimensional

time series data. These include statistical approaches [2, 44, 45], signal processing

techniques [46] and computational intelligence techniques such as neural networks

[47], and fuzzy logic [48]. Reference [49] applied univariate change detection tech-

niques and multivariate change detections in aircraft engine fault diagnosis. Genetic

algorithm (GA) has also been implemented in the field of gas turbine fault diagnosis.

In [50] the authors introduced a multiple operating point fault diagnosis method using

genetic algorithm analysis for the gas turbine fault diagnosis. Sensors fault diagnosis

system with measurement noise and sensor biases are investigated in [51] through

optimization of a cost function using a genetic algorithm.

1.2.3 Genetic Programming

In the context of system identification problem the main interest is on finding a

mathematical model that can describe a real system with sufficient accuracy. System

identification reduces to parameter estimation in case of physical systems with phe-

nomenological models whose structures are built from physical considerations [52].

However, most of the practical systems have a complex nonlinear structure which

makes it difficult to represent all the physical considerations underlying the phe-

nomenon structures [52].

A common approach to deal with nonlinear complex systems is to linearize the

8

model. Although linear system identification methods provide simple and efficient

tools for vast range of applications, there are applications in which this approach is

not accurate enough. Model-based fault diagnosis is an example of these types of

analysis [53]. The linearization modelling error in this case may lead to failure in

detecting the fault or wrong fault alarms. As a result finding nonlinear models that

can describe the system with high precision is of great importance.

Many system identification algorithms are introduced in the literature [54]. The

most common approach in artificial intelligence is system modelling using neural

networks. Neural networks have been successfully applied to many applications. In

spite of the capabilities of neural networks to capture the input-output map of the

system there is no systematic way to extract the structure of the model making the

model a black box representation. Therefore many experiments are necessary to find

an appropriate model. On the other hand in most cases any change in the system

parameters requires new training of the model.

Genetic programming (GP) is an alternative approach for system identification.

The GP is a powerful tool for modeling and identification of nonlinear systems. It

allows one to develop nonlinear model structures that best fit the experimental data

[55]. The GP is a relatively new field. It was first introduced by Koza in 1992 [56].

The GP is a generalization of the better understood genetic algorithm. The main

difference between GP and GA is that in GP individuals are parse trees instead of

fixed-length binary strings in GA. It is successfully used to develop nonlinear models

in several applications such as finding appropriate Lyaponov functions in systems

control [57, 58], identification of chemical processes [59] and [60], and the development

of signal processing algorithms [61]. Reference [52] proposed an observer-based fault

detection approach using genetic programming. It is shown that this observer is

convergent under specific conditions and GP can be used to increase the convergence

9

of the proposed observer.

In [55] a twin water tank system is modelled by applying the GP algorithm. In

addition, it is shown that GP is able to extract a meaningful model for an helicopter

system using flight data. A hybrid approach composed of the GP and Simulated

Annealing is proposed in [61] to automate the adaptive filter design procedure in

digital signal processing applications. Reference [62] is an example of GP application

in image processing. In that work GP is used to enhance the interest point design

scope by automatically producing optimal interest point detectors to improve the

human-machine innovation viewpoint. Both single and multi-objective optimizations

are analyzed in that paper.

Reference [63] suggested augmenting GP with Orthogonal Least Square (OLS)

algorithm to increase the speed and efficiency of the GP in finding order and structure

of nonlinear models. Basically OLS is used to evaluate the contribution of each

branch of the individual’s structure tree. An interesting fully automated algorithm

based on GP is presented in [64] to debug and repair computer codes. It is shown

that this algorithm successfully repaired ten C programs with a total of 63000 lines.

In [65] GP algorithm is used as a feature extraction tool in the power transformer

Dissolved Gas Analysis (DGA) field. It is shown that three artificial neural networks

(ANN), support vector machine (SVM) and K-nearest neighbour (KNN) classifiers

augmented with GP have better classification performances. A fault diagnosis scheme

for establishing the fault type of the power transformers insulation based on fuzzy

model and genetic programming (GPFM) is proposed in [66]. In this method the

structural fuzzy relationships among fuzzy variables are built by using GP.

10

1.3 Thesis Contributions

To the best of the author knowledge, the GP algorithm has not been used in the field

of fault diagnosis and system identification of jet engines. The major contributions

of this work are as following:

• A fault detection scheme has been introduced based on system identification of

the jet engine using genetic programming technique for offline health monitoring

of the aircraft engine.

• Four mathematical models are presented for estimating the engine exhaust gas

temperature of a dual spool jet engine model using the GSP software [67] for

the take-off and cruise phases of the aircraft flight. These models can predict

the EGT with an error less than 0.2%.

• An enhanced fault isolation methodology is introduced to isolate eight types of

faults in the dual spool jet engine. Seven analytical expressions are obtained as

isolation residuals to isolate the faults.

• Mathematical models obtained for two take-off and cruise phases of flight are

statistically validated by comparing the results with the industrial jet engine

modeling software GSP.

1.4 Thesis Outline

This thesis consists of five chapters as follows: Chapter 2 includes an overview of

the fault detection and isolation terminology. It also provides necessary notions and

ideas in the field of evolutionary algorithms with focus on genetic programming. This

chapter also includes a brief introduction to the jet engine mathematical models and

thermal equations. An introduction to the GSP software is provided at the end of this

11

chapter. The proposed fault detection strategy and simulation results and discussions

are presented in Chapter 3. Chapter 4 describes the methodology and simulation

results for isolating eight types of faults in the dual spool jet engine. Future work

and conclusions are summarized in Chapter 5.

1.5 Conclusions

This chapter provided an introduction to the problem of FDI in jet engines. The

problem under the study was described and literature review on different approaches

in the field of fault detection and isolation with focus on jet engines and state of the

art researches using the GP algorithm are briefly reviewed.

12

Chapter 2

Background Information

2.1 Fault Detection, Isolation and Identification

The term fault in dynamical systems corresponds to any unusual deviation of the

system from operating point or system parameters from nominal values [68]. Fault

is different from failure. Failure is defined as permanent breakdown in the system

in which system cannot continue to perform its tasks. Usually a growth of a fault

leads to failure in the system. Generally faults are classified into three categories,

actuator faults, sensor faults and component faults [26]. Fault in sensors corresponds

to the cases when the output of a sensor is different from the actual value of the

measured quantity. Some examples of sensor faults are zero offset, change of gain

and change of hysteresis. In actuator faults, actuators are not working properly.

In this situation system properties are not affected but the controlling capability is

modified or disabled. Component faults are changes in system elements that modify

the dynamical input-output characteristics of the system.

Faults are also categorized based on time, namely abrupt, incipient (degradation)

and intermittent. Abrupt faults are sudden permanent changes in a system character-

istic while for the incipient fault a system feature gradually deviates from its normal

13

value. Intermittent faults are short time lasting abrupt faults, as shown in Figure 2.1.

Figure 2.1: Time dependency of faults: (a) abrupt, and (b) incipient, (c) intermittent
[68].

The task of health monitoring a system is to continuously monitor the system

operation in order to find possible faults and prevent them to become a failure. A

health monitoring and fault diagnosis system consists of the following subsystems:

Fault detection: Determining if a fault has occurred in the system or not,

Fault isolation: Finding the location of the fault in the system e.g. which actuator

or sensor is faulty,

Fault identification: Determining the severity and the type of the fault.

The process of fault detection consists of the following steps:

Residual generation: residuals are signals that reflect the presence of a fault.

Residuals are generally considered as the difference between the real system outputs

and outputs from the system model.

14

Residual evaluation: The residuals are analyzed to find the time and location of

the fault occurrence. An ideal residual reacts only to the fault to be detected but

because of unknown inputs and noise in the measurements and also modelling errors,

there are some variations in the residual even when there is no fault in the system. As

a result to prevent false alarms wider thresholds must be considered. However, large

threshold levels causes low severity faults not be detectable. Consequently, there is

a trade off between the smallest possible detectable faults and the robustness of the

detection residual. This situation can be improved by maximizing the sensitivity of

the residual to the fault, filtering high frequency noise, by using adaptive thresholds

and increasing the model precision [68]. Figure 2.2 shows a simple residual generation

scheme.

Figure 2.2: Simple residual generation process.

All model-based approaches more or less use a mathematical model of the system

to generate residuals. Consequently, the most important part of this approach would

be to obtain an accurate system identification [69]. Figure 2.3 shows the general

configuration of a model-based fault detection system. Process model provides a

mathematical representation of the relation between the input signal U and the output

measurement Y . This model extracts required features of the process for different

fault diagnosis techniques. The feature can be a physical system parameter or system

state. Fault detection can be accomplished by comparing the estimated feature with

expected or nominal value of the feature [68].

15

Figure 2.3: Model-based fault detection process [68].

Model-based FDI approaches are mainly classified into observer-based approaches,

parity space methods and parameter identification approaches [68]. In many practical

applications the precise model of the system is not available. Consequently, system

identification must be applied to find the appropriate system model. Figure 2.4 shows

different identification methods.

16

Figure 2.4: System identification approaches [68].

2.2 Jet Engine Overview

Figure 2.5 shows a schematic of the principal components of a jet engine. Briefly

stated in one cycle of a single spool jet engine air flows inside the engine, the com-

pressor compresses the input air and increases its pressure. This high pressure stream

then enters the combustion chamber in which the fuel is injected into it and is burned.

The combustion increases the pressure and temperature of the process gas. This high

pressure and temperature flow enters the turbine and its energy converts to mechani-

cal energy. As the flow passes through the turbine its temperature and pressure drops

and finally expands to the ambient pressure from the end nozzle. This high speed

gas produces required thrust for the aircraft to move forward. Although in a broad

overview jet engines seem to operate in a same manner but closer look at it reveals a

complex interaction among its components [70].

17

Figure 2.5: Turbofan engine components [71].

Varieties of engine designs are available in the industry. One classification of the

jet engine is based on the number of compressors and turbines namely single, twin

and three spools engines. Single spool engines are rarely used these days [72]. In a

twin shaft engine two shafts connect the high temperature and the low temperature

turbines to the high pressure and the low pressure compressors, respectively. In this

thesis a twin spool turbofan engine model in the GSP software [67] is used to generate

the required engine measurements. In the turbofan engine, a jet engine is used to

rotate the fan at the front of the engine. In this engine, part of the incoming air

passes through the fan directly producing the thrust and part of it enters the core jet

engine which provide the required power to rotate the fan.

2.2.1 Jet Engine Modelling

Jet engines are built in many shapes and configurations. In general, different com-

ponents in a jet engine are strictly coupled resulting in a complex nonlinear dynamic

system. Figure 2.6 shows the information flow of the engine variables in a dual spool

18

engine module. In this figure dash lines show the flow of information and solid lines

represent material flow among different components of the engine. The variable ṁf

represents the fuel flow to the combustion chamber. The air flow, temperature and

pressure at different stages of the engine are shown by ṁ∗∗, T∗∗ and P∗∗, respectively.

The variable N1 is the rotational speed of the low pressure turbine and compressor

and N2 is the rotational speed of the high pressure turbine and compressor.

Figure 2.6: Engine parameters and components interactions [73].

19

Gas turbine engine in the simplest form can be modeled as a compressor, combus-

tion chamber and turbine (Figure 2.7). Gas turbine operation at each stage in the

engine can be identified by finding a collection of unknowns as summarized in Table

2.1.

Figure 2.7: A simple gas turbine unit. 1-Stagnation conditions at compressor inlet.
2-Stagnation conditions at compressor outlet, and 3-Stagnation conditions at turbine
inlet. 4-Stagnation conditions at turbine outlet [74].

Parameter Description Parameter Description
P02

P01
Compressor pressure ratio N√

T03
Turbine non dimensional rotational speed

N√
T01

Compressor non dimensional rotational speed ṁ
√
T03

P03
Turbine mass parameter

ṁ
√
T01

P01
Compressor mass parameter ηturb Turbine efficiency

ηcomp Compressor efficiency �T034

T03
Temperature decrease in turbine

�T021

T01
Temperature increase in compressor T03

T01
Turbine inlet temperature to compressor

inlet temperature ratio
P03

P02
Combustion chamber pressure ratio Wnet Net power output

P03

P04
Turbine pressure ratio

Table 2.1: Uknown engine parameters that need to be determined.

The above unknowns can be found by solving thermodynamical equations and

component compatibility equations. The number of unknowns is more than the avail-

able equations and the process of finding the unknowns is an iterative process. For the

compressor and turbine it is common to write the equations based on non-dimensional

parameters as given below

20

ṁ
√
T1

P1

= f1(
N√
T1

,
P2

P1

) (2.2.1)

ηcomp = f2(
N√
T1

,
P2

P1

) (2.2.2)

ṁ
√
T3

P3

= f3(
P3

P4

) (2.2.3)

ηturb = f4(
N√
T3

,
P3

P4

) (2.2.4)

The explicit expressions for the non-dimentional functions f1, f2, f3 and f4, are

provided by manufacturers in chart format called compressor and turbine operating

maps. The temperature change equations are given by

ΔT21

T1

=
1

ηcomp

[(
P2

P1

) γ−1
γ

− 1

]
(2.2.5)

ΔT34

T3

=
1

ηturb

[
1−

(
P2

P1

) γ−1
γ

]
(2.2.6)

The engine components input and output are matched together by using compatibility

equations for the rotating speed and the mass flow rate and the pressure ratios as

follows

21

N√
T3

=
N√
T1

√
T1

T3

(2.2.7)

ṁ
√
T1

P1

=
ṁ
√
T3

P3

P3

P2

P2

P1

√
T1

T3

(2.2.8)

P3

P4

=
P3

P2

P2

P1

P1

P4

P4 = P1 (2.2.9)

2.2.2 Faults in the Jet Engine

By an abrupt fault one implies rapid reduction in the engine components performances

such as reduction in the compressor or the turbine efficiencies. Engine degradation is

a gradual reduction in the engine performance during its operation. An example of

this kind of fault is the engine degradation that results from fouling or erosion [1].

Faults in a jet engine can occur in sensors, components or actuators. Sensor

fault happens when the output of the sensor is different from the actual value of the

measured parameters while actuator fault is the reduction in the actuating capability

of the actuators. Examples of sensor fault and actuator fault in the engine are the

wrong temperature reading of the thermocouple and the fuel valves failure to open

or close correctly. The focus in this thesis is on component faults. Examples of

common component faults in jet engines are fouling and erosion. Fouling results from

accumulation of small particles on the turbine or the compressor blades resulting in

reduction of the blades cross sections and overall reduction in the flow capacity in that

component. Erosion results from collision of small particles with the compressor and

the turbine blades. Both of these faults reduce the performance of the corresponding

22

engine components.

In mathematical modeling of the jet engine it is common to model physical faults

in different components by considering some percent reduction in the component flow

capacity or efficiency. In a typical dual spool jet engine 8 types of faults can be

defined as shown in Table 2.2.

Component Fault Description
HTflow Decrease in the High pressure Turbine Mass flow capacity
HTeff Decrease in the High pressure Turbine Efficiency
HCflow Decrease in the High pressure Compressor Mass flow capacity
HCeff Decrease in the High pressure Compressor Efficiency
LTflow Decrease in the Low pressure Turbine Mass flow capacity
LTeff Decrease in the Low pressure Turbine Efficiency
LCflow Decrease in the Low pressure Compressor Mass flow capacity
LCeff Decrease in the Low pressure Compressor Efficiency

Table 2.2: The description of the considered component faults.

2.2.3 Engine Performance Parameters and Condition Moni-

toring

Condition monitoring is used to capture deviations in the engine that occur over many

flights. Data used in the trend analysis is a set of engine status parameters that are

sampled at the same time. These parameters include gas properties such as temper-

ature T and pressure P at different stages of the engine and control parameters such

as fuel value, bleeding valve, etc. and also operational conditions such as ambient

temperature Tamb and altitude H. Depending on the application, methodology and

the flight phase, the data are either gathered continuously as a time series or as indi-

vidual snapshots in each flight. Continuous sampling is useful for studying transient

behaviour and short time phases of the engine operation such as the engine start up.

Snapshots are used to monitor engine health status and performance deviation in the

23

long term. Each data point is collected when the engine has reached its steady state

condition. It is common to take one snapshot in each flight and for each of the cruise

or the take-off phases. In this research individual snapshots are used to analyse engine

health status. GSP software is used to simulate the aircraft flights. Because of change

in the weather conditions, flight distances and mission requirements a typical aircraft

has different flight profiles during each mission. As a result the collected snapshots

belong to an n-dimensional space of the engine variables, where n is the number of

measured variables in each data snapshot. Table 2.3 summarizes the engine variables

and their definition that are used in obtaining the results in this thesis. Part or all

of these variables are considered as engine snapshot in different simulation scenarios

in the next chapters.

Figure 2.8: Engine variables and their location in the engine [75].

24

Engine variables
Wf Fuel flow
Tlpt(EGT) Temperature after low pressure turbine
Plpt Pressure after low pressure turbine
Thpt Temperature after high pressure turbine
Phpt Pressure after high pressure turbine
Tlpc Temperature after low pressure compressor
Plpc Pressure after low pressure compressor
Thpc Temperature after high pressure compressor
Phpc Pressure after high pressure compressor
N1 High speed spool
N2 Low speed spool
Operating conditions parameters
H Altitude
M Mach
Ta Ambient temperature

Table 2.3: Engine variables and the operating condition parameters.

2.3 Evolutionary Algorithms

Evolutionary algorithms (EAs) are a class of optimization algorithms inspired by

the natural biological evolution and Dariwinian theory of evolution in order to find

the optimum solution of a predefined problem. Artificial evolutionary algorithms

generally consist of the following steps:

1. A coding system that enables the algorithm to represent a population of prob-

lem solutions that are referred to as individuals. In the GP a tree-based structure is

a commonly used approach.

2. A fitness function is selected that evaluates the performance of each individual

and ranks the individuals according to their assigned fitness value. The definition of

this function depends on the problem objective and formulation. This fitness function

value determines the probability of survival of each individual for the next generation

in each evolution.

25

3. A set of operations that produce new individuals by manipulation of an in-

dividual or subset of individuals. Two commonly used operations are mutation and

crossover. Mutation operation consists of creating small changes in an individual to

obtain a new one. Crossover operation deals with recombination of two individuals

in order to create new possible solutions.

4. A stochastic selection mechanism that decides which individual is to be passed

on to the next generation and be used to produce the new populations thereafter [76].

Fitness-proportional selection, combined with mutation and crossover operators

produce generation after generation of solutions. Since solutions with higher fitnesses

values are given higher probabilities to reproduce, one can expect the solutions to be

improved as generations continue.

2.4 Basic Concepts of Genetic Programming (GP)

The GP is arguably the most advanced and complex technique that is used in evolu-

tionary computation, a generalization of the better understood and more widely used

genetic algorithm (GA) [77], [78].

It is a symbolic-based optimization technique, that was developed by John Koza.

Conventional optimization techniques usually consider a fixed structure for obtaining

the possible solution and try to tune the parameters of the model. In contrast GP

methods not only manipulate the parameters of the model but also attempt and use

different model structures. The GP algorithm is summarized in Figure 2.9.

26

Figure 2.9: The flow chart depicting the GP modelling process.

2.4.1 Representation of Models

Individual models in GP are commonly constructed in a tree-like architecture using

basic functions (non-terminal nodes) linking nodes of states and parameters (terminal

nodes) [63]. In commonly used GP algorithms, individual solutions are represented

through parse trees because this structure can be implemented by using simple com-

puter programs, functions and mathematical operators [76].

The set of operators (non-terminal nodes) can contain the basic arithmetic opera-

tions, mathematical functions, conditional operators, Boolean operators or any other

specifically defined function. For the sake of computational simplicity in this work

27

we just consider the following set of operators O = {+,−, ∗, /, }̂.
The set of terminal nodes S contains the arguments and parameters of the func-

tions. For example, we use S = {x1, x2, a, b} with x1 and x2 denoting two independent

variables and a and b representing the parameters.

With the above two sets a candidate model can be represented by a tree with or-

dered branches, using operators from the operations set and arguments or parameters

from the terminal set. Figure 2.10 depicts an example tree.

�

� �

���

�� �

�

� ���

�	
��

��� �	

�
�����������
�
��

����������
��

�
����
�����

Figure 2.10: An example tree of an individual structure.

2.4.2 Mutation Operator

Mutation creates new features in the solution space by generating random perturba-

tions in the model. Mutation operator randomly selects a node in an individual that

is selected for mutation operation and replaces it with a new expression in order to

obtain a new individual. Figure 2.11 shows an example of the mutation operation.

28

�

� ���

��� �	

�

� ���

��� �	

Figure 2.11: Mutation operation.

2.4.3 Crossover Operator

Crossover operator randomly selects two nodes of the two selected individuals and

then exchanges their related subtrees to create new individuals. Figure 2.12 shows

an example of the crossover operator.

*

* /

x2a x1

*

^ tan

x2x3 x3

*

*

x2a

*

tan

x3

x2

/

x1 x2

^

x2x3

Figure 2.12: Crossover operation.

29

2.4.4 Fitness

In every iteration, the GP algorithm needs to evaluate the individuals. The fitness

function quantifies and evaluates the goodness of a potential model. The probability

of the selection of an individual is proportional to this value. Usually, the fitness

function is defined based on the mean square error (MSE) between the calculated

outputs from an individual model and the measured outputs from the actual system,

as given by equation (2.4.1), namely

Fit =
1

1
N

∑N
i=1 (y(i)− y′(i))2

(2.4.1)

where N is the number of the data-points that are used for the identification of the

model, y is the measured data points and y
′
is the output from the actual model.

2.4.5 Parameter Estimation

Each model structure in the GP algorithm needs to be augmented with adequate

tunable numerical parameters. A model structure alone may not give good results but

the parameterized model does. To prevent loosing suitable model structures because

of poor parameterization it is necessary to optimize and select these parameters for

each nonlinear model before evaluating its fitness. The models are randomly generated

and can therefore contain linearly dependent parameters or also contain parameters

that have no effect on the output. Consequently, gradient based methods cannot be

used. For this reason, other optimization methods such as the Nedler-Simplex and the

simulated annealing methods can be applied to determine these parameters [79, 55].

In this thesis , the Nedler-Mead optimization technique has been implemented to

optimize these parameters in each model [80].

Nedler-Mead algorithm is a simplex-based method which belongs to the more

30

general familiy of optimizations called direct search algorithms. It is designed to

perform unconstrained optimization of a scalar nonlinear function f : Rn → R by

just using the function value and without using any gradient. More information about

direct methods are available in [81]. The simplex is the convex hull that is composed

of n + 1 nodes x0, x1, ..., xn in the Rn space. A simplex in R2 is a triangle and a

simplex in R3 is a tetrahedron [82].

Figure 2.13: Simplex in R3 and R2.

In each step of the Nedler-Mead algorithm the current working simplex evolves to

another simplex by computing several test points in a way that the value of the target

function decreases. This process continues until the termination criteria is satisfied.

To construct the initial simplex an initial guess is required. Assuming that X0 is the

initial guess to build a simplex around it a 5% is added to each element of the vector

X0 to X0. These points together with X0 compose an n + 1 points simplex. The

simplex is modified by using the following steps.

Let Si be the set of points in the current simplex. The value of the target function

f(x) is calculated for each of points in the simplex and sorted from the lowest f(x1)

to the highest f(xn + 1).

-Find the reflected point xr with respect to the point c and corresponding f(xr)

31

by using the following equation

xr = 2c− xn+1 (2.4.2)

where c is the centroid of the best side
∑n

i=1
xi

n
.

- If f(x1) ≤ f(xr) < f(xn) stop the iterations and accept the reflection point.

- If f(xr) < f(x1) find the expansion point xe and f(xe) by using the following

equation

xe = c+ 2(c− xn+1) (2.4.3)

- If f(xe) < f(xr) stop the iteration and accept the expansion point otherwise use xr

and accept the reflection point.

- If f(xr) ≥ f(xn) find the contraction point xc by using the better of the two

points xn+1 and xr.

- If xn+1 is better than xr (f(xr) < f(xn+1)) then xc = c+(xrc)/2. If f(xc) < f(xr)

stop iteration and accept xc, namely contract outside.

- If xr is better than xn+1 (f(xn+1) < f(xr)) then xc = c + (xn+1c)/2. If f(xc) <

f(xn+1) stop the iteration and accept the xc namely contract inside.

- Find n new vertices using the following equation and the corresponding function

values for j = 2 to n+ 1

xj = x1 + (xi − x1)/2 (2.4.4)

Construct the next working simplex using x1, xj, j = 2 to n + 1. Figure 2.14 shows

possible points that are calculated during the simplex transform step.

32

Figure 2.14: Simplex transform calculated points [82].

2.5 GSP Software

Gas turbine Simulation Program (GSP) [67] is a powerful modeling and simulation

environment developed by the National Aerospace Laboratory (NLR) for offline anal-

ysis of gas turbine engines. It has been widely used in industrial gas turbines as well as

aerospace applications such as off-design performance analysis, control system design

and engine degradation and fault diagnostics. GSP is a graphical component based

simulation environment. Different types of gas turbine engines can be constructed in

this environment by adding and rearranging engine components. Both transient and

steady state behaviour in the engine can be modelled using GSP [83]. Figure 2.15

shows the GSP software modeling environment.

33

Figure 2.15: GSP software modeling environment [83].

Each of engine components such as the compressor and the turbine has a series of

characteristics that either can be set by the user interests or extracted from the soft-

ware data base. GSP uses a zero dimensional (non-dimentional) analysis to model the

engine operation. Zero dimensional implies that at each cross section area between

two engine components the average of the working flow properties is considered. In

this method the thermodynamical equations of the working fluid in each component

is solved by using inlet and outlet boundary conditions. Starting from the first com-

ponent which has the flight conditions as its boundary, for example inlet, GSP finds

the components characteristics step by step by using the output of the previous com-

ponent in the model as the inlet conditions for the next component. Input conditions

and characteristic maps of each component are used to solve a set of nonlinear ther-

mal and dynamical equations of the process gas to find the component outputs [67],

[84]. A typical map of the compressor in the GSP database is shown in Figure 2.16.

Operational maps provide relations between component parameters such as efficiency,

34

flow rate and pressure ratio at different operating points.

Figure 2.16: Compressor map in the GSP database [75].

2.6 Conclusions

In this chapter a review on the concepts and methods that are applied in this re-

search were presented. First general notions in fault diagnosis were explained. Jet

engine operation and components and different types of faults in the jet engine were

discussed in the second part. Basic concepts in the GP algorithm and parameter

estimation techniques were described in the third part. The GP algorithm starts

from a generation of randomly generated models known as parents. These models are

basically a series of nonlinear functions built from a set of basic functions and states.

Basic functions set can contain simple mathematical operators, boolean operators or

any defined function. Through the GP algorithm this first generation evolves and

the best models defined by the highest fitnesses survive to the next generation. As

a result the final generation is a collection of system models that best describe the

35

system operation. A brief review on the GSP software were also provided at the end

of this chapter.

36

Chapter 3

GP Algorithm for Jet Engine Fault

Detection

As mentioned in the previous chapter, we are interested in detecting the faults and

performance deviations in the aircraft engine in order to reduce the maintenance and

operating costs as well as risk of human catastrophes. Towards this end, in this

thesis the focus is on offline analysis of the collected data during the aircraft flight.

In the previous chapter the GP algorithm as a powerful optimization and system

identification tool was introduced. In this chapter we are going to use the capabilities

of the GP algorithm in the context of fault detection in a jet engine.

3.1 Methodology

In the offline health monitoring of the jet engine, the recorded data from the aircraft

engine are usually a set of snapshots of the engine states and operational condi-

tions during each flight and for different phases of the flight such as take-off and

cruise. Since most data is recorded in the steady state conditions, one can expect

that the interrelationship of the engine parameters can be approximated by a static

37

nonlinear function corresponding to a range of flight conditions. By invoking this

assumption, our goal is to construct the structure of such interrelationships by using

the GP scheme. The main idea here is to use the GP technique to find a non-

linear function that relates the engine gas temperature (EGT) as a major engine

degradation indicator to the other engine parameters and operational conditions as

EGT = f(Ti, Pi,Wf , N1, ...). The resulting model is then used to detect abrupt faults

in the engine performance.

Table 3.1 summarizes the obtained models for the two take-off and cruise phases of

the flight. These models are explained subsequently in the simulation results section.

Faults or degradations in the aircraft jet engine usually manifest themselves through

increases in the engine EGT. By comparing the estimated EGT from the GP model

and the measured data from the engine flights one can identify the deviations and

faults in the engine performance.

Take-off models EGT = aN1

3P3+6N1+dWf

EGT = 1
2
(a
D
Wf +

b
D
W

cM
2∗Tam+D+2

f + 1)

Cruise models EGT = aM3−bH+C

dN
3N2
1

EGT =
aWf+B

cH2−dHT 2
am+E

Table 3.1: Models obtained for estimating EGT in different flight phases.

3.1.1 Health Monitoring Procedure

The key element in this approach is finding an accurate model to estimate the engine

EGT and compare it with the measured EGT from the engine. The fault detection

residual can be defined as the difference between these two values. Once the model

is found in short term we can expect that small changes in the engine do not alter

the entire structure of the model and these changes can be captured by optimizing

38

the parameters of the related model structure at each time period. From the long-

term perspective due to ageing, the engine dynamics may deviate significantly that

in addition to the numerical parameters the structure of the model also needs to

be modified. In this case the new structure can be found by applying the GP ap-

proach again. In summary, the following steps can be identified in our proposed fault

detection procedure.

Use the GP technique and collected engine snapshots to find the best model

fitted to the selected data in each category. This is done by minimizing the difference

between the model EGT and the measured EGT. The number of required data points

depends mainly on the complexity of the selected engine, range and diversity of the

data points and the number of engine parameters used in constructing the models

structures. The fault detection residual is then constructed as the difference between

the estimated EGT using this model and the measured EGT values. If the error

is more than a predefined threshold, a fault has occurred in the engine or engine is

degraded more than an acceptable threshold. Appropriate maintenance decision can

then be made based on the type and severity of the fault.

In time and with engine ageing the accuracy of the model may reduce and the

obtained structure may not be able to estimate the engine accurately enough. In this

case the GP algorithm needs to be run again to find the new models for the older

engine. Since it is not possible to obtain a general expression for the engine in all

flight phases and operating conditions, if the collected data in flight are quite diverse

then in order to get better estimation, it is appropriate to divide the data points into

several categories based on the engine operating conditions and extract a model for

each category separately. For example, the flight data in the cruise phase can be

categorized based on the flight altitude range and the Mach number.

39

3.1.2 GP Implementation and Computational Limitations

As mentioned in the previous chapter in the GP scheme each individual is structured

in a tree-like fashion, with basis functions linking nodes of inputs and parameters.

In evaluating the fitness value of individuals in the GP scheme, it is common to

add parameters to each structure and then tune them in order to obtain an optimal

structure. The problem with this classical approach is that by increasing the depth

of the tree the number of numerical coefficients increases drastically. On the other

hand since the models are generated randomly simple models may find a very but

not necessarily complicated form that is difficult to understand and investigate.

In order to reduce the number of required numerical coefficients and simplify

the candidates form, in this thesis models are represented in a symbolic format.

Although this approach makes the algorithm implementation more complicated but

this technique enables us to use Matlab symbolic power to simplify the models before

performing parameter optimization or applying the GP operator (refer to Figure 3.1).

In addition, this approach enables one to directly consider some of the numeri-

cal coefficients in the generation evolution instead of adding them to the structure

afterwards. Consequently, the numbers and the form of these coefficients are also opti-

mized during the training process. It was observed experimentally that this approach

leads indeed to better results.

40

Figure 3.1: Symbolic simplification of the individual models.

As mentioned in the previous chapter, in the course of the GP run and in finding

each individual’s fitness, the corresponding numerical coefficients needs to be deter-

mined using the simplex optimization method. Simplex method success in finding

the global minimum depends on the initial conditions (initial simplex) and also the

number of iterations. As a result to increase the chance of the simplex algorithm in

finding the best parameters of a model structure corresponding to its minimum error

one can use several initial guesses instead of a fixed initial condition. However, due to

the fact that the individual models are generated randomly one does not have any a

priori knowledge about the range of these numerical coefficients. Consequently, it is

necessary to define some intervals for the initial guesses and select the initial simplex

randomly or by partitioning these intervals.

Another issue is that depending on the number of numerical coefficients n of a

model the search space is an n-dimensional space. Although the simplex algorithm

is very efficient in practice, however its performance reduces extremely by increasing

41

the number of its parameters. It is shown in [85] that the worst-case complexity of

the simplex method is exponential in time. To overcome this problem, we have to

limit the number of numerical parameters of each model structure. Since the algo-

rithm calls the fitness function frequently due to these limitations it is not possible

to consider a large number of initial points and iterations during the GP algorithm

run. As a result, during the GP algorithm run we use a fixed number of iterations

and a maximum number of parameters that are added to each model. Although it

may lead to omitting some appropriate structures but it reduces the computational

load and enables the algorithm to search more model structures. Finally, the output

model structure of the GP algorithm will be fine tuned by adding more number of

numerical coefficients and higher number of initial conditions.

3.1.2.1 Fitness Definition

For the fault detection model generation the fitness function is defined based on the

mean square error (MSE) between the calculated EGT from an individual model and

the measured EGT from the GSP engine model at the same operating conditions for

the set of training data points, as given by equation (3.1.1)

Fit =
1

1
N

∑N
i=1 (EGTm(i)− EGTGSP (i))

2 (3.1.1)

where N is the number of the data snapshots from the GSP engine model that

are used for the characterization of the model, EGTm is the output from an individ-

ual model in the GP algorithm and EGTGSP is the gas temperature from the GSP

software.

42

3.1.2.2 Data Normalization

The collected parameters from the engine have different units and diverse scales. For

example, the rotational speed numbers are in the order of 50000 rpm while the Mach

number vary between 0 and 1. Directly using these values in the GP algorithm causes

the smaller numbers to be ignored. It also reduces the efficiency of the optimizer

in finding the correct numerical coefficients. To overcome these problems, different

quantities are adjusted to a common scale where the min-max normalization technique

is used which normalizes data by mapping each set of parameters to the range of 0

to 1. This is done by using equation (3.1.2), where Xmax and Xmin are the maximum

and the minimum of an engine parameter in all the data set and X is the parameter

that is going to be normalized, that is

Xn =
Xmax −X

Xmax −Xmin

(3.1.2)

3.2 Simulation Results

In this section, the method that was described in the previous sections is validated

through simulations by using the GSP and the Matlab software. We have used the

GSP software to simulate the aircraft engine and obtain the measured data points.

Engine faults is modelled by abrupt reduction in the efficiencies and flow capac-

ities of the engine components. To model different flight situations, the operating

conditions of each data point is selected different from the others that are compatible

to the considered take-off or the cruise flight modes. A dual spool jet engine model is

selected from the GSP databases for which the maximum flow rate of the combustion

chamber is 2.4912kg/s. The engine is simulated for the take-off and the cruise modes

seperately.

43

3.2.1 Take-off mode

The take-off mode is the time that an aircraft is accelerating in the run way to take-

off from the ground. In this phase of flight, aircraft has its maximum weight and

the engines are working at the maximum power to provide the required trust. As a

result changes due to degradation and fault in the engine health parameters are more

dominant in the take-off mode [43]. In this section, the results that were summarized

in Table 3.1 are explained in details.

3.2.1.1 GP Algorithm Implementation

To obtain models shown in equations (3.2.1) and (3.2.2), initial parents models were

produced randomly by combining the set of engine states and mathematical operators

{+,−, ∗, /, }̂ building a set of nonlinear expressions. Each of these structures was

augmented with the appropriate number of parameters (Figure 3.2).

The added parameters to these expressions were optimized by using the simplex

optimization algorithm and 20 snapshots of the engine data (corresponding to 20

flights) to best match the corresponding EGT from the GSP software by using the

fitness function as described in equation (3.1.1). It is shown in Section 3.2.1.4 that

by using more data points to optimize the parameters does not affect the results

significantly. The best model structure is the model with the smallest error or the

highest fitness. These initial models evolved in the GP algorithm to converge to the

best models are shown in equations (3.2.1) and (3.2.2).

44

Figure 3.2: Parents initialization of the models.

The settings of the GP algorithm and the simplex optimizer algorithm are sum-

marised in Table 3.2

45

GP Value Description
Settings
NP 30 Number of population
NTB 60 Total number of new born individuals

in each generation
Pmut 0.7 Mutation probability
PCross 0.3 Cross over probability
Ngen 50 Number of generations
Npast 3 Number of best individuals from current generation

to be added to the new born children to keep good
individuals

Optimization
Settings
Nparam 5 Maximum number of parameters inserted in an

individual model
Minerr 0.02 Minimum error value in simplex optimizer to stop

the optimization process
Itmax 150 Maximum number of iterations in the optimizer

algorithm to stop the optimization
Rp -1000,1000 Rp is the range of initial guesses of the

numerical coefficients in the simplex algorithm

Table 3.2: GP algorithm settings and the parameter optimization settings.

3.2.1.2 Model Generation and Validation

It was shown that two different sets of inputs were used to obtain the two models to

estimate the engine EGT. In the first model the only inputs to the GP algorithm are

the external states and the operating conditions of the engine. These inputs consist

of the altitude H, ambient temperature Ta, fuel flow Wf and the Mach number M . In

the approach some internal sates of the engine namely the rotational speed of the low

speed and the high speed spools N1, N2 and pressures after high pressure compressors

P3 are also fed into the GP algorithm in addition to the previous parameters.

The two obtained models for only the external states inputs and both internal

and external states are shown in equations (3.2.1) and (3.2.2), respectively

46

EGT =
1

2
(
a

D
Wf +

b

D
W

cM
2∗Tam+D+2

f + 1) (3.2.1)

a 257.13
b 76.408
c 150.42
D -645.845

EGT =
aN1

3P3 + 6N1 + dWf

(3.2.2)

a 2.93
b -3.967

These models performances are represented by comparing the EGT output of the

obtained models and a set of test data from the GSP software. Typical results are

plotted in Figure 3.3 and Figure 3.4. In these figures the 20 first data are the data

points that were used to find the model and optimize the model parameters. The

remaining data are the test data. The maximum error of the estimated EGT from

these models and GSP model is less than 0.2 %.

47

0 10 20 30 40 50 60 70 80 90 100
720

725

730

735

740

E
G

T
 (

°C
)

Sample Points

Take−off mode, Comparision of obtained model with GSP model

EGT from GSP

EGT from GP

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

E
rr

o
r

Sample Points

Figure 3.3: Model EGT output vs GSP software EGT output in the take-off mode,
equation (3.2.1).

48

0 10 20 30 40 50 60 70 80 90 100
725

730

735

740

E
G

T

Sample Points

Take−off mode, Comparison of obtained model with GSP model

EGT from GSP

EGT from GP

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

E
rr

o
r

Sample Points

Modelling error

Figure 3.4: Model EGT output vs GSP software EGT output in the take-off mode,
equation (3.2.2).

49

The main advantage of the first approach over the second one is that the resulting

model estimates the healthy engine EGT at all time since it only depends on the engine

operating conditions and not on the internal states of the engine. In addition, this

model can even be used to predict the EGT in future flights by knowing the aircraft

flight schedule and operating conditions. This property is useful when one is interested

in prognosis and estimating the remaining useful life of the engine. However, this

model’s precision is less than the second model. Also, it may not be possible to find

such a model in case of complicated engine model or real experimental data. On the

other hand, the second model uses internal states of the engine to estimate the engine

EGT. It implies that when the engine is faulty the data provided to the model is

faulty and although the model depict the deviation of the engine behaviour but the

estimated EGT does not necessarily represent the EGT from the healthy engine at

the same operating condition.

In obtaining these models and their parameters, the required data snapshots of

the engine parameters were obtained by using the aforementioned dual spool engine

model in the GSP software for a range of different operating conditions and throttle

settings. We have tried to select these operating conditions and throttle settings close

to the flight profile of an actual aircraft during a period of few months. To account

the changes in airports elevations the aircraft take-off altitude is considered to vary

between 0 to 1000 m.

The models shown in equations (3.2.1) and (3.2.2) were statistically validated by

testing them for 15 different sets of data. Table 3.3 summarizes the range of the

operational conditions used to generated these data sets. Each data set consists of

100 flights samples. Figure 3.5 shows the distribution of Wf , altitude and Mach

number parameters within these 15 data sets.

50

Parameter min max
Wf (kg/s) 1.6 2

Altitude(m) 0 1000
Mach 0.42 0.56

Tam(C) 23 28

Table 3.3: Engine operational conditions ranges.

100
200

300
400

500
600

700
800

900
1.7

1.8

1.9

20.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

Wf(kg/s)

Data distribution

Height(m)

M
a

c
h

data1

data2

data3

data4

data5

data6

data7

data8

data9

data10

data11

data12

data13

data14

data15

Figure 3.5: Distribution of the Wf , altitude and Mach number.

Figures 3.6 to 3.9 show the model output for typical responses of the models to

two different sets of data.

51

10 20 30 40 50 60 70 80 90 100

720

725

730

735

E
G

T
(°C

)

Sample Points

Take−off mode, Comparision of obtained model with GSP model

EGT from GSP

EGT from GP

10 20 30 40 50 60 70 80 90 100

0.2

0.4

0.6

0.8

1

1.2

E
rr

o
r

Sample Points

Modelling error

Figure 3.6: Model EGT output vs GSP software EGT output in the take-off mode,
equation (3.2.1).

52

10 20 30 40 50 60 70 80 90 100

722

724

726

728

730

732

734

736

738

E
G

T
(°C

)

Sample points

Take−off mode, Comparision of obtained model with GSP model

EGT from GSP

EGT from GP

10 20 30 40 50 60 70 80 90 100

0.1

0.2

0.3

0.4

0.5

0.6

E
rr

o
r

Sample points

Figure 3.7: Model EGT output vs GSP software EGT output in the take-off mode,
equation (3.2.2).

53

10 20 30 40 50 60 70 80 90 100
720

725

730

735
E

G
T

(°C
)

Sample points

Take−off mode, Comparision of obtained model with GSP model

EGT from GSP

EGT from GP

10 20 30 40 50 60 70 80 90 100

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

E
rr

o
r

Sample points

Figure 3.8: Model EGT output vs GSP software EGT output in the take-off mode,
equation (3.2.1).

54

10 20 30 40 50 60 70 80 90 100

722

724

726

728

730

732

734

736

738

E
G

T
(°C

)

Sample points

Take−off mode, Comparision of obtained model with GSP model

EGT from GSP

EGT from GP

10 20 30 40 50 60 70 80 90 100

0.2

0.4

0.6

0.8

1

E
rr

o
r

Sample points

Figure 3.9: Model EGT output vs GSP software EGT output in the take-off mode,
equation (3.2.2).

3.2.1.3 Modeling Error

To obtain the overall modelling errors statistically the parameters of the model struc-

tures obtained from the GP algorithm (equations (3.2.1) and (3.2.2)) were optimized

for 15 different sets of data as mentioned in the previous section. Each data set

consists of 100 flights samples in which 20 sample points were used to optimize the

parameters and the rest were used as testing data. The mean square error between

the two GP and GSP models for each data set and the maximum error for the sim-

ulations were selected as thresholds to be applied in the subsequent fault detection

simulations.

The mean error and maximum error in each simulation is shown in Tables 3.4 and

55

Data set MSE Max Error
1 0.51 1.47
2 0.44 0.72
3 0.39 1.29
4 0.56 1.01
5 0.64 1.61
6 0.81 1.3
7 0.33 1.31
8 0.47 0.54
9 0.64 1.84
10 0.38 1.55
11 0.59 1.35
12 0.73 1.63
13 0.37 0.63
14 0.61 1.1
15 0.55 0.92

Table 3.4: Mean square error and the maximum error for 15 test data set using
equation (3.2.1).

3.5. The maximum error for all simulations is 1.9 C and 1 C (less than 0.2%) for the

model in equation (3.2.1) and equation (3.2.2), respectively.

56

Data set MSE Max Error
1 0.21 0.51
2 0.19 0.54
3 0.28 0.98
4 0.22 0.83
5 0.35 0.89
6 0.23 0.46
7 0.36 0.55
8 0.29 0.54
9 0.42 0.84
10 0.31 0.55
11 0.43 0.61
12 0.46 0.57
13 0.29 0.63
14 0.38 0.42
15 0.47 0.96

Table 3.5: Mean square error and the maximum error for 15 test data set using
equation (3.2.2).

It can be seen that the maximum error that is obtained by using both the external

and internal states is less than the model obtained by only using the external states

of the engine.

3.2.1.4 Impact of the Number of Training Points

To investigate the effects of the number of the training data points on the accuracy of

the obtained model, the parameters of the model in equations (3.2.2) and (3.2.1) are

optimized by using different number of data points. Figure 3.10 shows the absolute

mean error of the model output EGT and the EGT from the GSP software for different

number of data points that are used to optimize the numerical parameters of the

models. As shown, the error reduces with increasing the number of data points until

it reaches a level which does not change significantly. Since the optimizer algorithm

does not converge to exactly the same parameters because of different initialization

there is a fluctuation in the error at this level. One can note that even with small

57

number of points and as few as 3 points one could have obtained the model parameters.

This is one of the advantages of using this approach as compared to neural networks

which usually needs a lot more data points for training.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

15

16

17

18

19

20

21

22

23

A
b
s
o
lu

te
 m

e
a
n
 e

rr
(°

 C
)

Number of data points

Mean error vs number of data points used to find numerical parameters

Ext&Int states as input

Ext. states as input

Figure 3.10: Absolute mean error vs the number of data used to obtain the model
coefficients.

3.2.1.5 Fault Detection Process

As mentioned earlier for the purpose of fault detection one can build the required

residuals from the difference between the EGT output of the developed models and

the measurement data from the engine flight or in our case the GSP software. Because

of the existence of modelling errors and noise, the residual is not zero even when

there is no fault in the engine and the residual fluctuates around its zero mean. To

account for this type of uncertainty a threshold has to be defined. In this thesis,

the maximum modelling error that is obtained in Section 3.2.1.3 is considered as the

residual threshold. If the residual passes this threshold a fault detection alarm is

fired. Figures 3.11 and 3.12 show the error between the estimated EGT using the two

58

aforementioned models in equations (3.2.1) and (3.2.2) and the EGT from the GSP

software for different sets of data.

Figure 3.11: Threshold definition in the take-off mode by using equation (3.2.1).

59

Figure 3.12: Threshold definition in the take-off mode by using equation (3.2.2).

A typical response of the engine model to fault in the high pressure turbine effi-

ciency HTeff is shown in Figures 3.13 and 3.14. In these simulations a 1% fault in

HTef is injected at the 50th sample point. It can be seen that the outputs of the

GSP and the GP model deviate from each other after the fault occurrence resulting

in increase in the residual (difference between two model output EGT). More results

corresponding to different types of faults are presented in Section 3.2.1.6.

60

0 10 20 30 40 50 60 70 80 90 100
710

720

730

740

750

E
G

T
(°C

)

Sample Points

Take−off mode− 1% fault in HT
 eff

EGT from GSP

EGT from GP

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

R
e
s
id

u
a
l

Sample Points

Residual

Threshold

Figure 3.13: Model EGT output vs GSP software EGT output in the take-off mode
with fault injected at the 50th sample point corresponding to equation (3.2.1).

61

0 10 20 30 40 50 60 70 80 90 100
720

725

730

735

740

745

750

E
G

T
(°C

)

Sample Points

Take−off mode− 1% fault in HT
 eff

EGT from GSP

EGT from GP

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

R
e
s
id

u
a
l

Sample Points

Take−off mode−HT
 eff

Fault

Residual

Threshold

Figure 3.14: Model EGT output vs GSP software EGT output in the take-off mode
with fault injected at the 50th sample point corresponding to equation (3.2.2).

62

3.2.1.6 Smallest Detectable Fault (Confusion Matrix)

Different faults in the engine affect the EGT differently. Some faults such as the

HTeffi have severe effects on the engine operation while faults such as LCflow have

minor effects. Consequently, with the defined thresholds the level of detectability

differs for different faults.

In this work confusion matrix is used to illustrate and evaluate the performance

of the proposed detection algorithm. Confusion matrix in general is a table with four

cells containing the number of true positive, true negative, false positive and false

negative classifications. The definition of these expressions in our application are as

follows:

• True positive (t.p.): The number of simulations classified as faulty and the

engine is also faulty.

• False positive (f.p.): The number of simulations classified as faulty while the

engine is healthy.

• True negative (t.n.): The number of simulations classified as healthy and the

engine is also healthy.

• False negative (f.n.): The number of simulations classified as healthy while the

engine is faulty.

True Positive False Negative
False Positive True Negative

Table 3.6: The confusion matrix.

To evaluate the performance of the fault residual in correctly detecting faults a

confusion matrix is constructed based on a series of simulations and using different

sets of data and for different operating conditions and fault severities. Using these

63

confusion matrices one can construct the accuracy,precision,true positive rate,true

negative rate, false positive rate and false negative rate indicators that are defined as

follows:

Accuracy =
true positive+ true negative

true positive+ true negative+ false positive+ false negative

(3.2.3)

Precision =
true negative

true negative+ false negative
(3.2.4)

TruePositiveRate(TPR) =
true positive

true positive+ false negative
(3.2.5)

FalsePositiveRate(FPR) =
false positive

false positive+ true negative
(3.2.6)

TrueNegativeRate(TNR) =
true negative

true negative+ false positive
(3.2.7)

FalseNegativeRate(FNR) =
false negative

true positive+ false negative
(3.2.8)

The accuracy parameter gives a measure of the fault residual performance. For

each fault the minimum detectable fault severity can be determined by considering

an accuracy level and finding the smallest fault severity such that in the resultant

confusion matrix the accuracy indicator is above the considered accuracy level. The

minimum detectable faults and the corresponding confusion matrices for the two

models in equations (3.2.1) and (3.2.2) are shown in Tables 3.7 and 3.8 for the 70%

accuracy level. Other values for accuracy can also be used. The minimum detectable

64

fault increases by considering higher levels for the accuracy indicator. To obtain the

confusion matrix for each fault severity 15 data sets with 100 snapshots are used.

Fault Minimum Confusion Accuracy Precision TPR FPR TNR FNR
type detectable matrix (%) (%) (%) (%) (%) (%)

fault (%)
9 1

LTefi 1% 2 3 80 75 90 40 60 10
8 2

HTefi 0.1% 1 4 80 66 80 20 80 20
7 3

LCefi 1% 1 4 73.3 57 70 20 80 30
6 4

HCefi 0.1% 0 5 73.3 55 60 0 100 40
8 2

LTflow 0.5% 2 3 73.3 60 80 40 60 20
8 2

LCflow 1% 1 4 80 66 80 20 80 20
8 2

HTflow 0.5% 1 4 80 66 80 20 80 20
6 4

HCflow 3% 0 5 73.3 55 60 0 100 40

Table 3.7: Minimum detectable faults and the confusion matrices in the take-off mode
by using equation (3.2.1).

65

Fault Minimum Confusion Accuracy Precision TPR FPR TNR FNR
type detectable matrix (%) (%) (%) (%) (%) (%)

fault (%)
9 1

LTefi 1% 1 4 86.6 80 90 20 80 10
8 2

HTefi 0.1% 1 4 80 66 80 20 80 20
8 2

LCefi 0.8% 1 4 80 66 80 20 80 20
8 3

HCefi 0.1% 0 4 80 57 72 0 100 28
9 2

LTflow 0.4% 1 3 80 60 81 25 75 19
8 2

LCflow 1% 1 4 80 66 80 20 80 20
8 2

HTflow 0.4% 1 4 80 66 80 20 80 20
7 2

HCflow 2% 2 4 73.3 66 77 33 66 22

Table 3.8: Minimum detectable faults and the confusion matrices in the take-off mode
by using equation (3.2.2).

For each type of fault, Figures 3.15 to 3.22 show a typical behaviour of the residual

to different types of faults that are used to determine the minimum detectable faults

in Table 3.8 and the model in equation (3.2.2). One can observe that before a fault

occurs the model has a good agreement with the measured data from the GSP software

but after the fault occurrence at the 50th data point the residuals start increasing

until they pass the defined thresholds. Similar results were obtained for the model in

equation (3.2.1).

66

0 10 20 30 40 50 60 70 80 90 100
725

730

735

740

E
G

T
(°C

)

Sample Points

Take−off mode− 1% fault in LC
flow

EGT from GSP

EGT from GP

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

R
e
s
id

u
a
l

Sample Points

Take−off mode−LC
flow

Fault

Residual

Threshold

Figure 3.15: Fault in the LCflow.

67

0 10 20 30 40 50 60 70 80 90 100
720

725

730

735

740

E
G

T
(°C

)

Sample Points

Take−off mode− 2% fault in HC
flow

EGT from GSP

EGT from GP

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

R
e
s
id

u
a
l

Sample Points

Take−off mode−HC
flow

Fault

Residual

Threshold

Figure 3.16: Fault in the HCflow.

68

0 10 20 30 40 50 60 70 80 90 100
720

725

730

735

740

E
G

T
(°C

)

Sample Points

Take−off mode− 0.4% fault in HT
flow

EGT from GSP

EGT from GP

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

R
e
s
id

u
a
l

Sample Points

Take−off mode−HT
flow

Fault

Residual

Threshold

Figure 3.17: Fault in the HTflow.

69

0 10 20 30 40 50 60 70 80 90 100
720

725

730

735

740

E
G

T
(°C

)

Sample Points

Take−off mode− 0.4% fault in LT
flow

EGT from GSP

EGT from GP

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

R
e
s
id

u
a
l

Sample Points

Take−off mode−LT
flow

Fault

Residual

Threshold

Figure 3.18: Fault in the LTflow.

70

0 10 20 30 40 50 60 70 80 90 100
725

730

735

740

E
G

T
(°C

)

Sample Points

Take−off mode− 0.8% fault in LC
 eff

EGT from GSP

EGT from GP

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

R
e
s
id

u
a
l

Sample Points

Take−off mode−LC
 eff

Fault

Residual

Threshold

Figure 3.19: Fault in the LCeff .

71

0 10 20 30 40 50 60 70 80 90 100
720

725

730

735

740
E

G
T

(°C
)

Sample Points

Take−off mode− 0.1% fault in HC
 eff

EGT from GSP

EGT from GP

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

R
e
s
id

u
a
l

Sample Points

Take−off mode−HC
 eff

Fault

Residual

Threshold

Figure 3.20: Fault in the HCeff .

72

0 10 20 30 40 50 60 70 80 90 100
715

720

725

730

735

740

745

E
G

T
(°C

)

Sample Points

Take−off mode− 0.1% fault in HT
 eff

EGT from GSP

EGT from GP

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

R
e
s
id

u
a
l

Sample Points

Take−off mode−HT
 eff

Fault

Residual

Threshold

Figure 3.21: Fault in the HTeff .

73

0 10 20 30 40 50 60 70 80 90 100
715

720

725

730

735

740

745

E
G

T
(°C

)

Sample Points

Take−off mode− 1% fault in LT
 eff

EGT from GSP

EGT from GP

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

R
e
s
id

u
a
l

Sample Points

Take−off mode−LT
 eff

Fault

Residual

Threshold

Figure 3.22: Fault in the LTeff .

74

3.2.2 Cruise Mode

In the previous section, engine EGT was modelled in the take-off mode. As mentioned

earlier the engine fault and deviations are more visible in the take-off mode in which

the engine is working at its maximum load [43]. In this section, a similar model is

obtained but for the cruise mode in which the engine works most of its life. The same

mathematical engine model is used to generate a set of data points corresponding to

the cruise mode. In the cruise mode the aircraft usually flies at a constant altitude

and Mach number.

3.2.2.1 Model Generation and Validation

To make the simulation more realistic flights are supposed to occur between a wide

range of altitudes from 3000 m to 14000 m. Using 20 points of the data snapshots

the GP algorithm was ran to find the best matching structure. Table 3.9 summarizes

the range of the operational conditions used to generated these data sets. Each data

set consists of 100 flights samples. Figure 3.23 shows the distribution of Wf , altitude

and Mach number parameters corresponding to these 15 data sets.

Parameter min max
Wf (kg/s) 0.9 1.55

Altitude(m) 3000 14000
Mach 0.55 0.95

Tam(C) -44 34

Table 3.9: Engine operational conditions ranges.

75

4000
6000

8000
10000

12000
14000

1
1.1

1.2
1.3

1.4
1.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Height(m)

Data distribution

Wf(kg/s)

M
a
c
h

data1

data2

data3

data4

data5

data6

data7

data8

data9

data10

data11

data12

data13

data14

data15

Figure 3.23: Distribution of the Wf , altitude and Mach number.

Similar to the take-off mode we try to obtain two models. One by just using

the external states and operational conditions, namely the altitude H, the ambient

temperature Ta, the fuel flowWf and the Mach numberM as input to the model. The

second model is obtained by using the engine internal states N1 and N2 and pressure

after high pressure compressor P3 as input in addition to previous parameters. We

expect that these additional states improve the accuracy of the model. The best

obtained models are shown in equations (3.2.9) and (3.2.10), respectively.

EGT =
aWf +B

cH2 − dHT 2
am + E

(3.2.9)

76

a -92.099
B -360.187
c 264.939
d 213.52
E -89.315

EGT =
aM3 − bH + C

dN3N2
1

(3.2.10)

a -92.14
b -17.778
C -203.87
d -164.707

In obtaining these models the same settings as the take-off mode are applied (Table

3.2). Similar to the take-off mode the obtained model performance is represented by

comparing its EGT output with the GSP model output. Figures 3.24 and 3.25 show

the two model outputs. The maximum error between the two models and the GSP

are less than 1.8% and 1.2%, respectively. It can be seen that in some points the

error is higher. This is partly the result of the engine parameters that may not

been considered in our modelling as well as due to modelling errors. These jumps

in the error can be reduced by looking at the flights in a smaller range of operating

conditions.

77

0 10 20 30 40 50 60 70
650

700

750

800

850

900

950

E
G

T

Sample Points

Cruise mode, Comparision of obtained model with GSP model

EGT from GSP

EGT from GP

0 10 20 30 40 50 60 70
0

5

10

15

E
rr

o
r

Sample Points

Figure 3.24: Model EGT output vs the GSP software EGT output in the Cruise mode
corresponding to equation (3.2.9).

78

0 10 20 30 40 50 60 70
650

700

750

800

850

900

950

E
G

T

Sample Points

Cruise mode, Comparision of the obtained model with GSP model

EGT from GSP

EGT from GP

0 10 20 30 40 50 60 70
0

2

4

6

8

10

E
rr

o
r

Sample Points

Figure 3.25: Model EGT output vs the GSP software EGT output in the Cruise mode
corresponding to equation (3.2.10).

79

3.2.2.2 Modelling Error

We used the same strategy as in the take-off to determine the modelling error for

the cruise mode. The parameters of the model structures that are obtained in the

previous section were optimized for 15 different sets of data. Each data set consists

of 65 flight samples in which 20 sample points were used to optimize the parameters

and the rest were used as the testing data. The mean square between the GP and

GSP models calculated for each data set and at the end the maximum error in the

simulations were selected as thresholds to be applied in the subsequent fault detection

simulations. The mean error and maximum error in each simulation is shown in Tables

3.10 and 3.11. The maximum error in all simulations is 16 C and 11 C (less than 2%)

for the model of equation (3.2.9) and equation (3.2.10), respectively.

It can be seen that the maximum error in the model that is obtained by using

both the external and internal states is less than the model obtained by using only

the external states of the engine.

80

Data set MSE Max Error
1 2.65 13.99
2 4.20 15.16
3 2.89 11.16
4 2.15 9.39
5 3.8 15.35
6 3.11 10.97
7 2.835 9.81
8 3.40 14.25
9 3.56 10.16
10 3.25 12.94
11 2.99 10.65
12 2.59 11.39
13 4.02 11.43
14 3.35 11.44
15 4.87 15.28

Table 3.10: Mean square error and maximum error for 15 test data set by using
equation (3.2.9).

Data set MSE Max Error
1 2.46 9.91
2 2.85 10.62
3 2.48 10.89
4 2.53 9.85
5 2.49 9.11
6 2.61 10.54
7 1.34 5.97
8 2.47 9.27
9 2.53 10.97
10 2.47 10.62
11 2.04 6.83
12 2.52 9.21
13 2.39 7.75
14 2.57 9.90
15 2.12 8.11

Table 3.11: Mean square error and maximum error for 15 test data set by using
equation (3.2.10).

81

3.2.2.3 Fault Detection Process

The maximum modelling error that is obtained in Section 3.2.2.2 is considered as

the residual threshold. Figures 3.26 and 3.27 show the modelling error for the two

aforementioned models by using the internal and the external states, respectively.

The dashed lines denote the maximum error in each simulation.

0 10 20 30 40 50 60
0

2

4

6

8

10

12

14

16
Modelling error and threshold definition in cruise mode

E
G

T
 e

s
ti
m

a
ti
o
n
 e

rr
o
r

(°C
)

Sample points

Maximum error in
each simulation

Used as
threshold

Figure 3.26: Threshold definition in the cruise mode by using the external states
corresponding to equation (3.2.9).

82

0 10 20 30 40 50 60
0

2

4

6

8

10

12
Modelling error and threshold definition in cruise mode

E
G

T
 e

s
ti
m

a
ti
o
n
 e

rr
o
r

(°C
)

Sample points

Maximum error in
each simulation

Used as
threshold

Figure 3.27: Threshold definition in cruise mode by using the internal and external
states corresponding to equation (3.2.10).

If the residual passes this threshold a fault detection alarm is fired. Typical

responses of the engine model to fault in the high pressure turbine efficiency HTeff

is shown in Figures 3.28 and 3.29. In these simulations a 3% fault in HTef is injected

at the 35th sample point. It can be seen that the outputs of the GSP and the GP

model deviate from each other after the fault occurrence resulting in increase in the

residual (difference between two model output EGT). More results to different types

of faults are presented in Section 3.2.2.4.

83

0 10 20 30 40 50 60 70
650

700

750

800

850

900

950

E
G

T

Sample Points

Cruise mode− 3% fault in LT
 eff

EGT from GSP

EGT from GP

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

R
e
s
id

u
a
l

Sample Points

Residual

Threshold

Figure 3.28: Model EGT output vs GSP software EGT output in the cruise mode
with fault injected at the 50th sample point corresponding to equation (3.2.9).

84

0 10 20 30 40 50 60 70
650

700

750

800

850

900

950

E
G

T

Sample Points

Cruise mode− 3% fault in LT
 eff

EGT from GSP

EGT from GP

0 10 20 30 40 50 60 70
0

5

10

15

20

25

R
e
s
id

u
a
l

Sample Points

Residual

Threshold

Figure 3.29: Model EGT output vs GSP software EGT output in the cruise mode
with fault injected at the 50th sample point corresponding to equation (3.2.2).

85

3.2.2.4 Smallest Detectable Fault (Confusion Matrix)

Same as in the take-off mode the confusion matrix is used to derive the minimum

detectable faults in the cruise mode. Confusion matrix is obtained statistically by

simulating 15 different sets of data and different levels of fault between 1 to 9% in

the corresponding components. Faults with severities more than 9% are considered

too extreme and are not investigated here. Minimum detectable faults and the cor-

responding faults are shown in Tables 3.12 and 3.13. The results shown here are

obtained by considering 70% level for the accuracy indicator and finding the mini-

mum severity of the fault that the resultant accuracy from the simulations are more

than 70%. Other levels of accuracy can also be used. The minimum detectable fault

increases by considering higher levels for the accuracy indicator. Compatible with

the previous arguments the minimum detectable faults in the cruise mode are signif-

icantly higher than the take-off mode. It can be seen that in most cases even with

the high level of 9% fault in the engine the effects of the fault is not detectable in the

cruise mode. Although the modelling error is small, nevertheless the obtained model

is not precise enough to detect these changes.

86

Fault Minimum Confusion Accuracy Precision TPR FPR TNR FNR
type detectable matrix (%) (%) (%) (%) (%) (%)

fault (%)
7 3

LTefi 3% 1 4 73.33 57 70 20 80 30
9 1

HTefi 6% 2 3 80 75 90 40 60 10

LCefi 9% –
8 2

HCefi 6% 1 4 80 66 80 20 80 20

LTflow 9% –
7 4

LCflow 6% 0 4 73.3 50 63 0 100 36

HTflow 9% –
7 3

HCflow 7% 1 4 73.3 57 70 20 80 30

Table 3.12: Minimum detectable fault and the confusion matrix corresponding to
equation (3.2.9).

87

Fault Minimum Confusion Accuracy Precision TPR FPR TNR FNR
type detectable matrix (%) (%) (%) (%) (%) (%)

fault (%)
8 2

LTefi 3% 1 4 80 66 80 20 80 20
8 2

HTefi 6% 1 4 80 66 80 20 80 20

LCefi 9% –
8 2

HCefi 5% 1 4 80 66 80 20 80 20

LTflow 9% –
9 1

LCflow 6% 2 3 80 75 90 40 60 10

HTflow 9% –
7 3

HCflow 6% 1 4 73.3 75 70 20 80 30

Table 3.13: Minimum detectable fault and the confusion matrix corresponding to
equation (3.2.10).

88

For each type of fault, Figures 3.30 to 3.36 show a typical behaviour of the residual

to different faults that are used to determine the minimum detectable faults in Table

3.12 and the model in equation (3.2.9). One can observe that before a fault occurs the

model has a good agreement with the measured data from the GSP software but after

the fault occurrence at the 35th data point the residuals start increasing until they

pass the defined thresholds. Similar results were obtained for the model in equation

(3.2.10).

0 10 20 30 40 50 60 70
650

700

750

800

850

900

E
G

T

Sample Points

Cruise mode− 6% fault in LC
flow

EGT from GSP

EGT from GP

0 10 20 30 40 50 60 70
0

10

20

30

40

R
e
s
id

u
a
l

Sample Points

Residual

Threshold

Figure 3.30: Fault in the LCflow.

89

0 10 20 30 40 50 60 70
650

700

750

800

850

900

950

E
G

T

Sample Points

Cruise mode− 9% fault in HT
flow

EGT from GSP

EGT from GP

0 10 20 30 40 50 60 70
0

5

10

15

20

R
e
s
id

u
a
l

Sample Points

Residual

Threshold

Figure 3.31: Fault in the HTflow.

0 10 20 30 40 50 60 70
650

700

750

800

850

900

950

E
G

T

Sample Points

Cruise mode− 9% fault in LT
flow

EGT from GSP

EGT from GP

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

R
e
s
id

u
a
l

Sample Points

Residual

Threshold

Figure 3.32: Fault in the LTflow.

90

0 10 20 30 40 50 60 70
650

700

750

800

850

900

950

E
G

T

Sample Points

Cruise mode− 9% fault in LC
 eff

EGT from GSP

EGT from GP

0 10 20 30 40 50 60 70
0

5

10

15

20

R
e
s
id

u
a
l

Sample Points

Residual

Threshold

Figure 3.33: Fault in the LCeff .

91

0 10 20 30 40 50 60 70
650

700

750

800

850

900

950

E
G

T

Sample Points

Cruise mode− 6% fault in HC
 eff

EGT from GSP

EGT from GP

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

R
e
s
id

u
a
l

Sample Points

Residual

Threshold

Figure 3.34: Fault in the HCeff .

0 10 20 30 40 50 60 70
650

700

750

800

850

900

950

E
G

T

Sample Points

Cruise mode− 6% fault in HT
 eff

EGT from GSP

EGT from GP

0 10 20 30 40 50 60 70
0

20

40

60

80

100

R
e
s
id

u
a
l

Sample Points

Residual

Threshold

Figure 3.35: Fault in the HTeff .

92

0 10 20 30 40 50 60 70
650

700

750

800

850

900

950

E
G

T

Sample Points

Cruise mode− 3% fault in LT
 eff

EGT from GSP

EGT from GP

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

R
e
s
id

u
a
l

Sample Points

Residual

Threshold

Figure 3.36: Fault in the LTeff .

3.3 Chapter Contributions

The main contribution of this chapter was to provide simple mathematical models of

the aircraft jet engine in the steady state working conditions for two modes of the

flight operation, namely the take-off and the cruise modes. The developed models

provide an efficient tool to monitor the engine condition without getting involved in

the complicated dynamics of the engine. By deriving the structure of the relationships

among the engine parameters it is only necessary to modify the model numerical

coefficients to adjust it for the deviations in the engine.

Another advantage of this approach is the fact that a few data points were nec-

essary to find the model parameters unlike other approaches which consist of a large

number of weights and numerical parameters. This is because in addition to the

numerical parameters of a model the structure of the model was also evolved and

93

optimized.

The other aspect of these models is extracting some analytical relations among

engine states without having any a priori information about the engine components

performance charts and the operating maps. In fact the obtained models provide and

approximate the interaction of these components characteristics in a portion of their

operating maps.

A fault detection (FD) scheme using the developed model was introduced and

different aspects of it were investigated through numerical simulations. It was shown

that the proposed FD scheme is useful for monitoring the engine health condition and

is able to detect faults in a specified severity range.

3.4 Conclusions

In this chapter the GP algorithm was used to develop a set of static nonlinear models

that relate EGT as a major engine degradation indicator to the other engine pa-

rameters and operational conditions. Using this approach we were able to obtain

mathematical models of the engine operation without any information about the en-

gine components characteristics such as turbine or compressor maps. The resulting

models were later used to detect abrupt faults in the engine performance. It was

shown that with a few snapshots of the engine variables in flight we were able to

develop a model that is able to estimate the engine EGT with error less than 0.2% in

the take-off and 2% in the cruise modes. As expected, the faults in the cruise mode

were less observable than the faults in the take-off mode. Although the error between

the generated model and the GSP output is small in the cruise mode (less than 2%),

however the effect of the faults are less than this modelling error and more precise

models are necessary to capture these changes for this mode.

94

Chapter 4

GP Algorithm for Jet Engine Fault

Isolation

The next step in the FDI problem after successfully detecting the fault is the isolation

task. To have a complete monitoring system fault isolation is as important as the fault

detection. Isolation refers to finding the location and the type of the fault. It helps

making right decisions and efficient recovery actions. A fault in the jet engine can

be either actuator fault, sensor fault or component fault. In this research our focus

is on engine component faults. In this chapter, a hierarchical approach is proposed

for isolating different kinds of faults in a jet engine. It consists of using a series of

nonlinear functions called fault indices as classifiers which step by step narrow down

the possible fault type toward the actual fault location.

4.1 Methodology

In the previous chapter we used the engine EGT parameter to construct the residual

and detect the fault occurrence in the engine. While for detecting the fault one

residual is enough, for the task of fault isolation more residuals are necessary [86].

95

According to the discussion in Chapter 2 the isolation residual set can be built either

as structural residuals or directional residuals. In the structural residuals approach,

which has been used in this thesis, residuals have sensitivity to the specific fault or

faults but are insensitive to other faults. When a fault occurs in an engine component

all engine internal states such as temperatures and pressures are more or less affected.

However each type of fault affects a group of engine variables more than others. For

example, faults in the high pressure turbine efficiency HTeff affect the THT more

than other types of faults. At the same time it affects other engine states with less

severity.

The main idea here is to introduce a series of nonlinear functions that are com-

posed of the engine states and operating conditions that can amplify a fault effect by

combining its effect on all the engine parameters. We call these nonlinear functions

as fault indices. These nonlinear functions later provide the required residuals for the

task of fault isolation.

In the detection part the residuals were constructed by using the difference be-

tween the developed engine model and the measured EGT from the GSP software.

The maximum modeling error was statistically calculated and used as fault detection

thresholds. Obviously to isolate 8 types of faults that are summarized in Table 2.2

more residuals are necessary. In the next section, we first define the notion of fault

indices and subsequently use them to generate a new notion of residual to perform

the fault isolation task.

4.1.1 Definition of Fault Indices and Fault Residuals

A fault index is defined as a nonlinear function that accepts engine parameters and

engine operating conditions as inputs and produces a scalar output which has the

following characteristics:

96

- For a range of input data corresponding to healthy engine operation its value

remains within a constant band.

- It is sensitive to one or a group of faults while remains insensitive to the others.

As an example, and without loss of generality, consider 3 faults f1,f2 and f3 be-

longing to two classes 1 and 2 and a fault index F = f(Wf , N1, N2, Tam, ...) that is

insensitive to faults f1 and f2 in class 1 and sensitive to fault f3 in class 2. Insen-

sitive means that the value of F does not change significantly if its input variables

correspond to the faulty engine in class 1 and remains within a band around the F

values for the healthy input data. Sensitive means that if the input data changes from

healthy to faulty the output value of the function changes significantly and passes a

defined band around the mean of the F healthy values. The idea is to use this de-

viation as a tool to classify the faults. By defining a threshold on the amount of

deviation due to the fault, classification can be done as follows:

- For the previous example and a detected fault if the change in the value of the

fault index F from the mean value of F for the training data is more than a predefined

threshold the fault belongs to class 2

- Otherwise, if the value of the fault index remains within the threshold the fault

belongs to class 1.

In the literature, it is common to define a residual as a signal that has zero or

close to a zero value when there is no fault and has a non-zero value when the fault

occurs. In this chapter for the task of fault isolation a residual is defined as a signal

that assigns a fault to one of the two classes. It remains zero or close to zero when the

detected fault belongs to one class and non-zero when it belongs to the other class.

Previously defined fault index can perform the same classifying task, however

since a fault index in general is a nonlinear function of the engine variables it is not

necessarily zero or close to zero when its inputs belong to the healthy data or the

97

insensitive faults class. However, according to the definition its value must remain

within a band around a mean value that can be a value other than zero. The fault

index terminology is used to prevent confusion with the standard definition of the

residuals.

By knowing a fault index function, residual can be constructed by removing the

mean of the fault index function value for a set of training data. The objective is to

exploit GP to find a set of fault indices and subsequently construct the residuals by

removing the non-zero biases from these indices in the healthy condition. This can be

done by subtracting the mean value of a fault index obtained from healthy training

data. Note that the only difference between the residual and the fault index is this

shift.

Figure 4.1: Each residual divides the faults into two groups.

4.1.2 Fault Isolation Logic

Using the argument in previous section a residual can assign a detected fault to one

of the two faults classes. For the eight types of engine faults one approach could be

98

to try to find a residual for each fault in a way that it is only sensitive to that fault

and insensitive to all the other types of faults (as in the dedicated residual scheme

[86]). Consequently, fault isolation can be done simply by looking at these residuals

and see which one respond to the fault. The problem with this approach is that due

to the correlation among the engine variables and the fact that a fault in one engine

component more or less affects all the engine variables it is difficult to find a residual

that reacts to only one type of fault without reacting to all the other types of faults.

To overcome this difficulty, a hierarchical fault isolation procedure is developed

by defining fault residuals for a subset of faults instead of one fault at each isolation

step. In this case the GP has less constraints and more probability of finding the

appropriate results. As an example, consider the fault isolation tree shown in Figure

4.2. The isolation task can be performed by defining four fault residuals and following

this tree and corresponding fault residual, at each step. Starting from the top, if the

value of R1 residual is more than its predefined threshold Thr1, the detected fault

belongs to class 1, otherwise it belongs to the class 2. Knowing that the fault belongs

to one of these classes one can move to the next level and examine the residual R2

if the fault belongs to class 1 or residual R3 if it belongs to class 2. Following this

procedure one can finally isolate the type of fault.

Fault Tree Construction

Before starting to construct the fault residuals for the isolation purpose it is necessary

to construct the fault isolation tree structure. Randomly dividing the faults into some

classes and trying to find the residuals that classify the faults in those classes is not a

proper approach since some faults have similar affects and signatures on the engine.

Putting similar faults in the same class specially at the higher levels of the isolation

tree provides a better contrast and more feasibility for the GP in obtaining a fault

99

Figure 4.2: An example fault tree.

index and prevents a conflicting condition in determining the numerical coefficients

of the fault index. For example, if two faults that have similar effects on the engine

are placed into two different classes GP algorithm tries to construct a residual which

is sensitive to the first one and insensitive to the second one. Because of the fault

similarities, the GP can not produce an index function that is strongly reactive to

the first fault and at the same time remains insensitive to the other one. For this

purpose and to avoid conflicts an initial classification is necessary. In this thesis, the

correlation analysis is used to accomplish this task.

The correlation matrix gives a measure of the amount of linear relationship be-

tween two sets of data. The correlation coefficient between two random variables Xi

and Xj is defined as

corr(Xi, Xj) =
E((Xi − μXi)(Xj − μXj))

σXi
σXj

(4.1.1)

where E is the expected operator, μXi and μXj are the standard deviations and σXi

and σXj
are their covariances [87]. The implementation details and resultant classes

are explained subsequently in the simulation results, Section 4.2.1.

100

Threshold Definition

For the same amount of fault severity in component efficiencies or flow capacities,

different faults have different levels of impact on the engine variables. Faults in some

components as in high pressure turbine have sever effects on the engine variables while

the same severity of fault in the low pressure turbine efficiency has a minor effects on

the engine variables.

In the previous section fault tree and classifier residuals were introduced. Each

of these residuals classifies two or more faults into two classes by reacting to faults

in the first class and not responding to faults in the second one. In the ideal case,

the residual remains zero when faults in the second class occur however since any

fault in the engine affects more or less all the engine variables the fault residual is

not completely insensitive to faults in the second class and respond to them within a

band. The width of this band depends on the severity of these faults. Consequently,

a sufficiently high severity fault in the second class may lead to a response which may

pass a pre-defined threshold for isolating faults in in the first class. This results in a

false classification.

Consequently, a limit must be defined on the smallest isolable faults for the faults

in the first class and the largest isolable fault severity for the faults in the second

class. Obviously there is a trade off between the level of the threshold, the lowest

severity isolable fault in the first class and the highest severity level of fault in the

second class at each level of the fault isolation process.

Figure 4.3 shows a fault residual which is designed to assign a fault to one of the

two LTflow and HTflow faults by responding to HTflow and staying inactive to LTflow

fault. As can be seen although the residual is supposed to stay zero if the LTflow

fault occurs but there are small responses to this fault (compared to response to the

HTflow fault). A threshold can be selected at the intersection of the maximum LTflow

101

fault severity and the minimum HTflow fault severity. For this residual the two fault

severities correspond to the intersection of the maximum LTflow fault and minimum

HTflow fault that are isolable by using the residual in this example.

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Sample Points

R
e

s
id

u
a

l

HT
flow

 3% fault

HT
flow

 4% fault

HT
flow

 5% fault

Healthy
engine

LT
flow

 0.5% fault

LT
flow

 1% fault

LT
flow

 2% fault

Figure 4.3: Defining the threshold by decreasing and increasing the faults severities
in the two classes.

For the cases that the classes contain more than one fault, in order to define a

threshold related to each residual, the severity of the least sensitive fault in the first

class can be reduced while at the same time the amount of fault in the most sensitive

fault in the second class is increased until the resulting residual value from the two

faults converge to each other. In this case, the value of the residual is considered as the

threshold, and the severity of the fault in the first class as the minimum isolable fault

for that fault and the severity of fault in the second class as the maximum isolable

fault for that fault. Similarly, to determine the minimum or the maximum isolable

fault for the other faults in the two classes the fault severities can be decreased or

increased until they reach to the previously determined threshold.

102

4.1.3 GP Implementation

In the same manner as in the previous chapter, the objective is to use genetic pro-

gramming technique to construct the fault indices and subsequently fault residuals

and optimize them in such a way that each one has the most sensitivity to one class

of faults while at the same time it has the lowest possible sensitivity to the other

classes of faults.

In the simulations it is assumed that all engine variables as shown in Table 2.3

are available. Each residual is a function of all or part of these variables. During

the course of the algorithm run less significant variables on the target faults would

be eliminated automatically. The temperature Tcc after the combustion chamber is

not considered since in practice one usually does not have physically sensory data

due to very high temperature at this stage. Different types of faults in the jet engine

components are modelled by changes in the efficiency and flow capacity of the main

components.

The same settings as in the fault detection phase are used for the GP parameters

and optimizer parameters. These settings are provided in Table 3.2. The main

difference here is in the definition of the fitness function. To find each fault index it

is necessary to run the GP with an specified fitness function.

4.1.3.1 Fitness Function Definition

The key factor in obtaining an effective fault index function with highest sensitivity to

a class of faults and lowest sensitivity to the faults in other classes is to appropriately

modify the fitness function in the GP algorithm. A special fitness function should be

defined such that during the algorithm run better candidates gain more grade than

the others. The total fitness consists of four parts as shown in equation (4.1.2). Each

part is designed to comply with one of the objectives

103

Fitness = fit1 + fit2 + fit3 + fit4 (4.1.2)

where fiti, i = 1, ..., 4 denote fitness functions that are defined as follows:

The fitness function fit1: Suppose that the fault index that one is looking for is

responsible for recognizing the faults belonging to an assumed class A by only reacting

to the faults belonging to class A and remains inactive to faults in the other considered

classes.

In this case, an fault index function F = f(N1, N2, THT ,Wf , ...) must have highest

deviation from the healthy condition if the input engine variables to this index func-

tion belong to the faults in class A. This can be fulfilled by considering the equation

(4.1.3). In this equation, Xk
Healthy and Xk

faultj
are the vector of engine variables in the

kth snapshot and F (Xk
Healthy) and F (Xk

faultj
) are the corresponding values of a can-

didate fault index for that kth snapshot as inputs, respectively, nhealthy
data is the number

of snapshots in the healthy training data and n
faultj
data is the number of snapshots in

the faultj training data, and nClassA is the number of faults belonging to calss A

fit1 =

nClassA∑
j=1

| 1

n
faultj
data

n
faultj
data∑
k=1

F (Xk
faultj

)− 1

n
faultj
data

n
faultj
data∑
k=1

F (Xk
Healthy)| (4.1.3)

The fitness function fit2: At the same time the fault index corresponding to class

A must have also the least deviation from the healthy value if the input engine

variables to it belong to the faults in a class rather than A. Equation (4.1.4) achieves

this aim. In this equation Xk
faultj

is the vector of engine variables in the kth snapshot

and nothers is the number of faults belonging to the other classes than A

104

fit2 =

⎡
⎢⎣nothers∑

j=1

| 1

n
faultj
data

n
faultj
data∑
k=1

F (Xk
faultj

)− 1

n
faultj
data

n
faultj
data∑
k=1

F (Xk
Healthy)|

⎤
⎥⎦
−1

(4.1.4)

The fitness function fit3: Using only the two previous defined fitness functions

for finding the fault indices can result in a signal with large oscillations. The fault

index should have fluctuations as small as possible. Large oscillations of a fault index

function makes it difficult to define an efficient threshold resulting in poor events

detection under low severity faults. It also increases the number of false alarms. To

overcome this problem we add the term fit3 shown in equation (4.1.5) to our fit-

ness function which basically attempts to minimize the variance of the corresponding

index. Consequently, individuals with less fluctuations would be assigned higher fit-

nesses values. In this equation nfault is the total number of faults to be classified by

F , [F]faultj and [F]Healthy are the vectors of fault index values for the faulty input

snapshot data, that is

[
F (X1

faultj
), F (X2

faultj
), ..., F (X

nfault
data

faultj
)

]
and healthy input data[

F (X1
Healthy), F (X2

Healthy), ..., F (X
nhealthy
data

Healthy)

]
, respectively

fit3 =

[
nfault∑
j=1

(V AR([F]faultj)) + V AR([F]Healthy)

]−1

(4.1.5)

The fitness function fit4: The simplex optimization algorithm implemented for

finding the numerical coefficients of the individual models is an unconstrained opti-

mization and there are no limitations on the values that the coefficients can take on.

Consequently, the algorithm may increase the fitness only by giving the numerical

coefficients a very large or very small values. To make the model coefficients remain

within a limited band we introduce equation (4.1.6). In this equation ‖x‖ is the Eu-

clidean length of a vector x, Vcoefficients is the vector of a model numerical coefficients.

105

The first term in this equation prevents the optimizer to converge to very large values

for numerical coefficients of a candidate structure and the second terms prevents the

optimizer to converge to very small values during the optimization process

fit4 = ‖Vcoefficients‖+
[
‖Vcoefficients‖

]−1

(4.1.6)

The best solution is considered the one that has the maximum total fitness value.

During the optimization process the algorithm tries to find the coefficients correspond-

ing to each structure in a way that the fitness has its maximum value. Finally, when

one of the algorithm termination criteria namely, the maximum iterations or termi-

nation fitness value is satisfied the algorithm stops and the best solution with highest

fitness value will be selected as the fault index of the corresponding classification.

4.2 Simulation Results

As described earlier the isolation task can be fulfilled by constructing a fault tree

and then using a set of classifying residuals to move through the fault tree from high

levels towards the lower branches and finally recognizing the actual fault location.

In this section, first the eight types of engine faults are regrouped and arranged in a

fault tree using the correlation analysis performed on the training data. Then GP is

implemented to drive seven classifying residuals required for the developed fault tree.

Because of the weak detection capability of the model developed for the cruise mode

the isolation is only performed for the take-off mode.

4.2.1 Fault Tree Construction

In order to construct the fault tree one can use the correlation analysis to capture the

similarities that exist among the engine faults. Fault classes can be built by putting

106

similar faults in the same class. Towards this end, for each of the eight types of

faults and the healthy engine a series of data snapshots were produced using the GSP

software corresponding to the same operating conditions. The severity of faults in

all data are 2% and each data set contains 100 snapshots. Each snapshot is a vector

consisting of the engine variables as shown in Table 2.3. For each engine variable, the

change of that variable with respect to its value in a healthy engine was calculated.

For example, for the fault in the high pressure compressor efficiency HTeff and

the spool speed parameter N1 we have a set of n changes (N1) corresponding to n

data snapshots as follows

	N1 = N1HTeff
−N1Helthy

(4.2.1)

A correlation matrix is found for the changes for each variable and among different

types of faults. This analysis results in 10 correlation matrices for 10 engine variables.

Each element in the correlation matrix shows the correlation between two faults for

the corresponding engine variable. A typical correlation matrix for the engine variable

N1 is shown in Table 4.1.

LTeff HTeff LCeff HCeff LTflow LCflow HTflow HCflow

LTeff 1 0.83 0.56 0.81 -0.13 -0.64 -0.59 -0.024
HTeff 0.83 1 0.61 0.98 0.07 -0.65 -0.56 0.07
LCeff 0.56 0.61 1 0.58 -0.29 -0.45 -0.36 -0.05
HCeff 0.81 0.98 0.58 1 0.13 -0.65 -0.58 0.05
LTflow -0.13 0.07 -0.29 0.13 1 0.26 0.095 .20
LCflow -0.64 -0.65 -0.45 -0.65 0.26 1 0.69 0.52
HTflow -0.59 -0.56 -0.36 -0.58 0.09 0.69 1 0.17
HCflow -0.024 0.07 -0.05 0.05 0.20 0.52 0.17 1

Table 4.1: The N1 parameter correlation matrix for different faults.

It can be seen that strong correlations exist for some faults. In the next step, the

correlation matrices are rounded off with a threshold on the amount of the correlation

between each fault pair. Specifically, the value 0.8 is applied as the threshold for

107

rounding off the correlations. This value is used since it was observed that with

smaller value of the threshold as seen in Table 4.3 a large number of similar values

are present which makes it impossible to detect clear classes.

Each correlation between a pair of faults with higher values than this threshold is

assigned the value of 1, and otherwise 0 (Table 4.2). This procedure is repeated for

all the correlation matrices corresponding to all the 10 engine variables.

LTeff HTeff LCeff HCeff LTflow LCflow HTflow HCflow

LTeff 1 1 0 1 0 0 0 0
HTeff 1 1 0 1 0 0 0 0
LCeff 0 0 1 0 0 0 0 0
HCeff 1 1 0 1 0 0 0 0
LTflow 0 0 0 0 1 0 0 0
LCflow 0 0 0 0 0 1 0 0
HTflow 0 0 0 0 0 0 1 0
HCflow 0 0 0 0 0 0 0 1

Table 4.2: The N1 parameter correlation matrix for different faults.

In the next step, for each pair of faults the number of ones in the rounded off

correlation matrices are counted and sorted in a matrix. This matrix is shown in

Table 4.3. Each element of this table shows the number of high correlations among

two faults for all the engine variables. For example, the value 5 in the raw 4 and

column 5 shows that LTflow and HCeff faults have strong correlation in 5 engine

variables. Fault pairs with a larger value in this table have stronger correlations in

more engine variables and more similar effects on the engine performance.

108

LTeff HTeff LCeff HCeff LTflow LCflow HTflow HCflow

LTeff 10 2 1 2 0 1 0 1
HTeff 2 10 1 10 4 0 0 0
LCeff 1 1 10 1 0 0 0 0
HCeff 2 10 1 10 5 0 0 0
LTflow 0 4 0 5 10 0 3 0
LCflow 1 0 0 0 0 10 0 7
HTflow 0 0 0 0 0 0 10 0
HCflow 1 0 0 0 0 7 0 10

Table 4.3: Number of the highly correlated fault pairs.

By looking at this table one can note that HTeff , HCeff ,and LTflow have high

values of highly correlated variables. This means that they have similar manifestation

in the engine. This similarity in fault signatures can make their separation more

difficult. LCflow and HCflow have also high values of correlated variables and are

similar. Other variables have small values of correlated variables and do not have

much similarities. Based on this analysis, in our fault isolation tree and at the top

isolation levels we try to put similar faults in the same class. Therefore , we avoid

differentiating similar faults at these levels which have fewer feasible search spaces,

and consequently increasing the algorithm success in finding the acceptable results.

The different classes at each level of the fault isolation is shown in Figure 4.4.

109

Figure 4.4: Faults isolation tree and hierarchy of the corresponding fault residuals.

By constructing the fault tree at each level of the fault isolation we divide the

faults into two groups and use one residual to narrow down the possible faults to one

of the classes. Seven fault residuals are defined for the fault isolation as shown in

Figure 4.4. Each residual is defined explicitely as follos:

Ri = Fi − E{Fi}, i = 1, ..., 7 (4.2.2)

where Fi denotes the ith fault index. At each level, the corresponding residual

narrows down the possible number of faults to the smaller number of faults in one of

the classes as one proceeds to the next lower level.

4.2.2 Take-off Results

In previous section eight types of engine faults were arranged in a fault tree. Referring

to Figure 4.4 in order to completely isolate a fault seven residuals are necessary. In

this section first by using the GP algorithm and the fitness function defined is Section

4.1.3.1 seven isolation residuals are constructed. Subsequently the threshold values

related to each residual is determined based on the discussion in Section 4.1.2. Table

110

4.4 summarizes the seven fault indices Fi, i = 1, ..., 7, that are obtained by running the

GP algorithm using the training data and the corresponding fitnesses functions. As

mentioned before these nonlinear functions are called fault indices since their values

in healthy situation does not vary around zero. In the simulation results presented

in Figures 4.5 to 4.11 the residuals are constructed from these fault indices and by

subtracting the mean values of each index function corresponding to the train data.

Fault indices

F1 =
aN2

2PHC + bPHT

+ 2

F2 = (2TLC + 2− (2aT 4
LT − 2W 2

f + bPHT − 1)2)2

F3 =
2(aN3

2 + 4TLCTLT)

bTHTTLT

F4 =
4PHT + aWf − 2PLCTHT

bTLT

F5 =
(aTHCPHT + bWf)

(cPLCN2
2)

F6 =
aM

bPLTT 2
HT − cPLP − 1

F7 =
aT 2

HC − 2PHT + 4TLCPHC

2P 2
HT (bTLT − 1)

Table 4.4: Fault indices for seven levels of fault isolation.

As can be seen each fault index function is a nonlinear function of a subset of

engine variables and operation conditions. In fact, as the algorithm is running, it

gradually eliminates the less effective variables and keeps the most important ones.

Every fault index model contains a few number of numerical parameters. These

coefficients are optimized during the algorithm run using the simplex algorithm as

described in Chapter 2. These coefficients and their values are summarized in Table

111

4.5.

Fault Indices Parameters
Parameters a b c

F1 -0.1831 -1.9551
F2 5.3373 -9.1079
F3 5.9717 -0.2906
F4 2.7551 -7.8149
F5 -6.6837 1.0690 -0.1187
F6 10.158 -16.2151 -8.3866
F7 0.5566 -0.0413

Table 4.5: Fault indices numerical coefficients values.

To reduce noise and false alarms we have also used a windowing filter to smoothen

the residuals. The length of this window in Figures 4.5 to 4.11 are selected to be 15

points. Figures 4.5 to 4.11 show the behaviour of these residuals for different faults

when a fault occurs at the sample point 50. In Figure 4.5 the residual for the first level

of fault isolation tree R1 has reacted to four faults (LTflow, HTeff , HCeff , HTflow)

belonging to the first class in the fault tree and remained close to zero to the four other

faults (LTeff , LCeff , LCflow, HCflow) belonging to the second class. Consequently,

by observing this residual, one can conclude that a fault is within the first class if it

starts to grow and pass the predefined threshold or belongs to the second class if the

residual stays below the threshold (as explicitly in Section 4.2.2.1). Note that here it

is assumed that the fault detection has already been performed and fault occurrence

is already detected.

112

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

6

7

8

9

Sample Points

R
e

s
id

u
a

l

 Healthy

LT
 eff

HT
 eff

LC
 eff

HC
 eff

LT
flow

LC
flow

HT
flow

HC
flow

Figure 4.5: Residual R1 response to different types of faults.

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Sample Points

R
e
s
id

u
a

l

 Healthy

HT
 eff

HC
 eff

LT
flow

HT
flow

Figure 4.6: Residual R2 response to different types of faults.

113

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

Sample Points

R
e

s
id

u
a

l

 Healthy

LT
 eff

LC
 eff

LC
flow

HC
flow

Figure 4.7: Residual R3 response to different types of faults.

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

6

7

Sample Points

R
e
s
id

u
a

l

 Healthy

HT
 eff

HC
 eff

Figure 4.8: Residual R4 response to different types of faults.

114

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Sample Points

R
e

s
id

u
a

l

 Healthy

LT
flow

HT
flow

Figure 4.9: Residual R5 response to different types of faults.

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

3

3.5

Sample Points

R
e
s
id

u
a

l

 Healthy

LC
flow

HC
flow

Figure 4.10: Residual R6 response to different types of faults.

115

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Sample Points

R
e

s
id

u
a

l

 Healthy

LT
 eff

LC
 eff

Figure 4.11: Residual R7 response to different types of faults.

116

Training Data

Following the discussion in the previous section, one needs seven residuals to isolate all

the eight types of faults. Towards this end, nine series of data are used for extracting

the fault indices functions and their corresponding residuals and finding the numerical

coefficients values. One set of data corresponds to the healthy engine working at

different operating conditions. Each of the other data sets corresponds to a fault in

one engine component. All data correspond to either 3% change in the component

efficiency or the component flow capacity as given by equation (4.2.3). Each data set

contains 100 engine variable snapshots. These sample points were randomly selected

from the same range as take-off detection that was shown in Table 3.3.

SHealthy = {X|X belongs to healthy engine}

SHTeff
= {X|X belongs to engine with 3%fault in HTeff}

SHCeff
= {X|X belongs to engine with 3%fault in HCeff}

SLTeff
= {X|X belongs to engine with 3%fault in LTeff}

SLCeff
= {X|X belongs to engine with 3%fault in LCeff}

SHTflow
= {X|X belongs to engine with 3%fault in HTflow}

SHCflow
= {X|X belongs to engine with 3%fault in HCflow}

SLTflow
= {X|X belongs to engine with 3%fault in LTflow}

SLCflow
= {X|X belongs to engine with 3%fault in LCflow}

(4.2.3)

Fitnesses Definitions

During the GP run for determining a fault index function the goodness of each in-

dividual structure is determined by using fitness function and the training data. In

determining the fitness value of a candidate structure the data sets shown in equation

117

(4.2.4) are calculated from the training data sets shown in equation (4.2.3) and for

each value of the numerical coefficients. These values are then used in determining

the fitness of the structure. The fitnesses defined for finding each one of fault indices

functions that are represented in Table 4.4 are shown in equations (4.2.5) to (4.2.11).

In these equations mean(.) represents the mean value of the data and |.| represents
the absolute value of its argument. To calculate the fitness of a candidate structure

the simplex optimizer changes the numerical coefficients of the structure and recalcu-

lates the values in equations (4.2.4) and the corresponding fitness to obtain the best

fitness value and returns the maximum obtained fitness and corresponding numerical

coefficients. This fitness is then considered as the fitness of that structure candidate

in the GP algorithm. Specifically, we have

SHealthy
F = {F (X)|X ∈ SHealthy}

S
HTeff

F = {F (X)|X ∈ SHTeff
}

S
HCeff

F = {F (X)|X ∈ SHCeff
}

S
LTeff

F = {F (X)|X ∈ SLTeff
}

S
LCeff

F = {F (X)|X ∈ SLCeff
}

S
HTflow

F = {F (X)|X ∈ SHTflow
}

S
HCflow

F = {F (X)|X ∈ SHCflow
}

S
LTflow

F = {F (X)|X ∈ SLTflow
}

S
LCflow

F = {F (X)|X ∈ SLCflow
}

(4.2.4)

118

Fault index function F1:

fit1 = |mean(S
HTeff

F1
)−mean(SHealthy

F1
)|+ |mean(S

HCeff

F1
)−mean(SHealthy

F1
)|

+ |mean(S
LTflow

F1
)−mean(SHealthy

F1
)|+ |mean(S

HTflow

F1
)−mean(SHealthy

F1
)|

fit2 =

[
|mean(S

LCflow

F1
)−mean(SHealthy

F1
) + |mean(S

HCflow

F1
)−mean(SHealthy

F1
)|

+ |mean(S
LTeff

F1
)−mean(SHealthy

F1
)|+ |mean(S

LCeff

F1
)−mean(SHealthy

F1
)|
]−1

fit3 =

[
V ar(SHealthy

F1
) + V ar(S

HCeff

F1
) + V ar(S

HTeff

F1
) + V ar(S

LTeff

F1
) + V ar(S

LCeff

F1
)

+ V ar(S
HTflow

F1
) + V ar(S

HTflow

F1
) + V ar(S

HCflow

F1
) + V ar(S

LTflow

F1
)

]−1

fit4 = ‖numericalcoefficients‖+
[
‖numericalcoefficients‖

]−1

fit = fit1 + fit2 + fit3 + fit4

(4.2.5)

Fault index function F2:

fit1 = |mean(S
HTeff

F2
)−mean(SHealthy

F2
)|+ |mean(S

HCeff

F2
)−mean(SHealthy

F2
)|

fit2 =

[
|mean(S

LTflow

F2
)−mean(SHealthy

F2
)|+ |mean(S

HTflow

F2
)−mean(SHealthy

F2
)|
]−1

fit3 =

[
V ar(SHealthy

F2
) + V ar(S

HTeff

F2
) + V ar(S

HCeff

F2
) + V ar(S

LTflow

F2
) + V ar(S

HTflow

F2
)

]−1

fit4 = ‖numerical coefficients‖+
[
‖numericalcoefficients‖

]−1

fit = fit1 + fit2 + fit3 + fit4

(4.2.6)

119

Fault index function F3:

fit1 = |mean(S
LCflow

F3
)−mean(SHealthy

F3
)|+ |mean(S

HCflow

F3
)−mean(SHealthy

F3
)|

fit2 =

[
|mean(S

LTeff

F3
)−mean(SHealthy

F3
)|+ |mean(S

LCeff

F3
)−mean(SHealthy

F3
)|
]−1

fit3 =

[
V ar(SHealthy

F3
) + V ar(S

LCflow

F3
) + V ar(S

HCflow

F3
) + V ar(S

LTeff

F3
) + V ar(S

LCeff

F3
)

]−1

fit4 = ‖numerical coefficients‖+
[
‖numericalcoefficients‖

]−1

fit = fit1 + fit2 + fit3 + fit4

(4.2.7)

Fault index function F4:

fit1 = |mean(S
HTeff

F4
)−mean(SHealthy

F4
)|

fit2 =

[
|mean(S

HCeff

F4
)−mean(SHealthy

F4
)|
]−1

fit3 =

[
V ar(SHealthy

F4
) + V ar(S

HTeff

F4
) + V ar(S

HCeff

F4
)

]−1

fit4 = ‖numerical coefficients‖+
[
‖numericalcoefficients‖

]−1

fit = fit1 + fit2 + fit3 + fit4

(4.2.8)

Fault index function F5:

fit1 = |mean(S
LTflow

F5
)−mean(SHealthy

F5
)|

fit2 =

[
|mean(S

HTflow

F5
)−mean(SHealthy

F5
)|
]−1

fit3 =

[
V ar(SHealthy

F5
) + V ar(S

LTflow

F5
) + V ar(S

HTflow

F5
)

]−1

fit4 = ‖numerical coefficients‖+
[
‖numericalcoefficients‖

]−1

fit = fit1 + fit2 + fit3 + fit4

(4.2.9)

120

Fault index function F6:

fit1 = |mean(S
LCflow

F6
)−mean(SHealthy

F6
)|

fit2 =

[
|mean(S

HCflow

F6
)−mean(SHealthy

F6
)|
]−1

fit3 =

[
V ar(SHealthy

F6
) + V ar(S

LCflow

F6
) + V ar(S

HCflow

F6
)

]−1

fit4 = ‖numerical coefficients‖+
[
‖numericalcoefficients‖

]−1

fit = fit1 + fit2 + fit3 + fit4

(4.2.10)

Fault index function F7:

fit1 = |mean(S
LTeff

F7
)−mean(SHealthy

F7
)|

fit2 =

[
|mean(S

LCeff

F7
)−mean(SHealthy

F7
)|
]−1

fit3 =

[
V ar(SHealthy

F7
) + V ar(S

LTeff

F7
) + V ar(S

LCeff

F7
)

]−1

fit4 = ‖numerical coefficients‖+
[
‖numericalcoefficients‖

]−1

fit = fit1 + fit2 + fit3 + fit4

(4.2.11)

4.2.2.1 Threshold Definition

Following the discussion in Section 4.1.2 in order to define the threshold related to

each residual, the severity of the least sensitive fault in the first class (class that the

residual is sensitive to its faults) is reduced while at the same time the amount of

fault in the most sensitive fault in the second class (class that residual is insensitive to

its faults) is increased until the resulting residual value from the two faults converge

to one value. This situation corresponds to the worst case scenario. Tables 4.6 and

4.7 summarize the determined thresholds and the minimum and maximum isolable

faults for the residuals.

121

Fault indices Threshold
R1 0.12
R2 0.25
R3 0.2
R4 1.4
R5 0.6
R6 0.3
R7 0.6

Table 4.6: Fault indices thresholds.

Fault Fault types
residuals

HTeff HCeff LTflow HTflow LCflow HCflow LTeff LCeff

R1
min 0.3% 0.1% 0.5% 1%
max 8% 8% 9% 8%

R2
min 0.2% 0.1%
max 6% 6%

R3
min 1% 0.5%
max 5% 6%

R4
min 0.2%
max 10%

R5
min 0.5%
max 8%

R6
min 0.4%
max 10%

R7
min 0.5%
max 10%

Table 4.7: Isolation residuals minimum and maximum detectable faults. There are
no limits for the blank cells.

4.2.2.2 Performance Evaluation (Confusion Matrix)

Similar to the detection part confusion matrix has been used to analyze the perfor-

mance of the isolation algorithm. To evaluate the performance of the fault isolation

in correctly isolating the faults a confusion matrix is constructed based on a series

of simulations by using different sets of data corresponding to different operating

conditions and different fault severities.

122

For each type of fault 6 fault severities were randomly selected between 0.1% to

10% and for each one 100 snapshots were generated using GSP software that resulted

in 48 simulations. The selected fault severities for each type of fault were selected

between the minimum and the maximum isolable fault severities as shown in Table

4.7. The resulting confusion matrix is shown in Table 4.8.

In this confusion matrix the t.p denotes the number of correct detection and

isolation. f.p denotes the number of correct detection but faults isolation. f.p and f.n

denote the number of faults not detected but correctly isolated and the number of

faults not detected and not isolated correctly.

Confusion Accuracy Precision TPR FPR TNR FNR
matrix (%) (%) (%) (%) (%) (%)

33 6
7 2 68 25 84 77 22 15

Table 4.8: Fault isolation confusion matrix.

To show the performance of the detection and isolation schemes two typical fault

scenarios are shown here. In the first scenario it is assumed that a 2% fault in the low

pressure compressor flow capacity LCflow has occurred at the 50 data point. Figure

4.12 shows the detection residual. The fault is correctly detected since the residual

has passed the detection threshold. Figures 4.13 to 4.15 show the residuals R1, R3 and

R6 responses. In the isolation step the first classifier residual R1 has not responded

to this fault and remained below its threshold (refer to Table 4.6). Therefore, the

fault belongs to the right branch of the fault tree in Figure 4.4. In the second level

the residual R3 has responded to the fault which shows that the fault is either LCflow

or HCflow, and finally at the last level R6 has responded to the fault and has passed

the threshold that implies that the detected fault is LCflow.

123

10 20 30 40 50 60 70 80 90 100

725

730

735

740

E
G

T

Sample Points

Take−off mode− 2% fault in LC
flow

EGT from GSP

EGT from GP

10 20 30 40 50 60 70 80 90 100

0.5

1

1.5

2

R
e

s
id

u
a

l

Sample Points

Residual

Threshold

Figure 4.12: Detection of a 2% fault in low pressure compressor flow capacity. LCflow

0 10 20 30 40 50 60 70 80 90
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

R
1
, 2% fault in LC

flow

Sample Points

R
e
s
id

u
a
l

 Healthy

LC
flow

Threshold

Figure 4.13: R1 residual response to a 2% fault in LCflow

.

124

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
3
, 2% fault in LC

flow

Sample Points

R
e
s
id

u
a
l

 Healthy

LC
flow

Threshold

Figure 4.14: R3 residual response to a 2% fault in LCflow

.

125

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

3

R
6
 , 2% fault in LC

flow

Sample Points

R
e
s
id

u
a
l

 Healthy

LC
flow

Threshold

Figure 4.15: R6 residual response to a 2% fault in LCflow

.

The second scenario shows the case that a 0.5% fault has ocured in the high

pressure turbine efficiencyHTeff at the 50 data point. Figure 4.16 shows the detection

residual. The fault is correctly detected since the residual has passed the detection

threshold. Figures 4.17 to 4.19 show the residuals R1, R2 and R4 responses. In this

case the R1 has responded to this fault and has passed the corresponding threshold.

It implies that the fault belongs to the left branch (Class1 in Figure 4.4). In the

second level the residual R2 has also responded to the fault which shows that the

fault is either HTeff or HCeff , and finally at the last level R4 has responded to the

fault that implies that the detected fault is HTeff .

126

10 20 30 40 50 60 70 80 90 100

725

730

735

740

E
G

T

Sample Points

Take−off mode− 0.5% fault in HT
 eff

EGT from GSP

EGT from GP

10 20 30 40 50 60 70 80 90 100

1

2

3

4

5

R
e

s
id

u
a

l

Sample Points

Residual

Threshold

Figure 4.16: Detection of 0.5% fault in high pressure turbine efficiency HTeff

.

0 10 20 30 40 50 60 70 80 90
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

R1, 0.5% fault in HT
eff

Sample Points

R
e
s
id

u
a
l

 Healthy

HT
 eff

Threshold

Figure 4.17: R1 residual response to a 0.5% fault in HTeff

.

127

0 10 20 30 40 50 60 70 80 90
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

R
2
, 0.5% fault in HT

eff

Sample Points

R
e
s
id

u
a
l

 Healthy

HT
 eff

Threshold

Figure 4.18: R2 residual response to a 0.5% fault in HTeff

.

128

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

R
4
 , 0.5% fault in HT

eff

Sample Points

R
e
s
id

u
a
l

 Healthy

HT
 eff

Threshold

Figure 4.19: R4 residual response to a 0.5% fault in HTeff

.

4.3 Chapter Contributions

Fault isolation goal was carried out by developing a hierarchical approach in which

a series of residuals are used step by step to eliminate the number of potential fault

cases in the engine to ultimately converge to the correct fault type. These residuals

attempt to amplify the signature of a fault in the engine by combining the effects of

the fault on different engine parameters. Seven analytical expressions are obtained

as isolation residuals to isolate the eight types of faults in a dual spool engine. Each

of the residuals is optimized to have the maximum sensitivity to a class of faults and

minimum sensitivity to the other faults.

4.4 Conclusions

In this chapter, a hierarchical fault isolation scheme was developed for the jet engine.

In this approach a series of residuals are used to step by step eliminate the number

129

of potential faults in the engine to ultimately converge to the correct fault type in

the engine. Each of the residuals has maximum sensitivity to the related detected

fault and minimum sensitivity to the other faults. This approach provides an efficient

and simple way to isolate faults. In contrast to other intelligent-based approaches

such as neural networks where the models are basically black boxes in proposed

method the residuals are analytical functions that can be inspected and analyzed with

available engine mathematical models. On the other hand, by using this method we

can increase the isolation efficiency of the scheme by combining the fault effects on

all the engine variables.

130

Chapter 5

Conclusions and Future Work

5.1 Conclusions

The main objective of this research was to combine model-based and intelligent-based

approaches in the context of health monitoring of jet engines. Towards this end, ge-

netic programming (GP) technique was used which has benefited from the capabilities

of the genetic algorithm as a powerful data driven methodology and simultaneously

provides analytical models. For the detection task, the GP algorithm was exploited to

develop a set of static nonlinear models that relate the EGT as a major engine degra-

dation indicator to the other engine parameters and operational conditions. Using

this approach we were able to obtain mathematical models for the engine operation

without any information about the engine component characteristics.

The resulting models were later used to detect abrupt faults in the engine perfor-

mance. It was shown that with a few snapshots of the engine variables in flight we

were able to develop a model that is able to estimate the engine EGT with errors less

than 0.2% in the take-off and 2% in the cruise modes. Four mathematical models

were presented for estimating the engine EGT in the take-off and cruise modes of the

aircraft flight. As expected the faults in the cruise mode were less observable than

131

the faults in the take-off mode. Although the error between the generated model

and the GSP output was small (less than 2%) the effects of faults were less than this

modeling error. Fault isolation was carried out by developing a fault isolation tree

in which a series of fault indices and corresponding residuals were introduced to step

by step eliminate the number of potential faults in the engine to ultimately converge

to the correct fault type. The residuals attempt to amplify the signature of a fault

in the engine by combining the effects of the fault on the engine parameters. Seven

analytical expressions were obtained as fault indices and residuals to isolate the eight

types of faults in the dual spool engine.

5.2 Future Work

In this work the applicability of the GP technique in the off-line health monitoring

of the aircraft engine was demonstrated by applying it to the simulated data using

the GSP software. However, its capability in finding acceptable models needs to be

verified with experimental data and real flight parameters.

The GP approach was implemented by using a set of fixed settings for the num-

ber of iterations and the operators probabilities. Investigating the effects of changing

these parameters on the results is another aspect that needs more research. In addi-

tion, in this work basic mathematical operators were used for constructing the model

structures. Another enhancement to current research could be to apply more compli-

cated operators and functions to construct the models.

Provided models are static models and were developed by assuming that the engine

has reached its steady state condition at its operating point. This assumption has

limited the applicability of this approach to off-line analysis. The GP can be adjusted

to be also able to model the engine dynamics. One way of doing this could be

by considering the values of the engine parameters from the previous flights in the

132

modeling phase. This is also left as a topic of future research.

One limitation of the GP algorithm compared to neural networks is its less flexi-

bility. Neural networks use a series of simple activation functions connected together

using weight functions and has the ability to match itself to the training data by

changing its number of neurons and weights. However the GP algorithm uses a de-

fined set of mathematical operators and has less flexibility in changing its structure.

To increase the efficiency and flexibility of the GP algorithm one can combine it with

neural networks. It can be done by using neural networks as building blocks of the

mathematical model of the engine in the GP instead of directly using engine states

and operating conditions. At the low level a neural network uses parts of the engine

states and operating conditions as input and produces an output. At the high level

the GP algorithm can use these neural networks to construct different engine models

by combining them using its defined mathematical operator set. This technique en-

hances the GP in finding more complicated models and at the same time reduces the

complexity of the neural networks. It also provides the opportunity to better model

the engine dynamics by using dynamical neural networks inside the building blocks.

133

Bibliography

[1] N. Daroogheh, A. Baniamerian, H. Nayyeri, and K. Khorasani, “Deterioration

detection and health monitoring in aircraft jet engines,” in Proceedings of 2012

ASME International Mechanical Engineering Congress & Exposition,Houston,

Texas, USA, 2012.

[2] D. Malladi and J. Speyer, “A generalized shiryayev sequential probability ra-

tio test for change detection and isolation,” IEEE Transactions on Automatic

Control, vol. 44, no. 8, pp. 1522 –1534, Aug 1999.

[3] V. Patel, V. Kadirkamanathan, G. Kulikov, V. Arkov, and T. Breikin, “Gas tur-

bine engine condition monitoring using statistical and neural network methods,”

in Modeling and Signal Processing for Fault Diagnosis (Digest No.: 1996/260),

IEE Colloquium on, sep 1996, pp. 1/1 –1/6.

[4] I. Hwang, S. Kim, Y. Kim, and C. Seah, “A survey of fault detection, isolation,

and reconfiguration methods,” IEEE Transactions on Control Systems Technol-

ogy, vol. 18, no. 3, pp. 636 –653, May 2010.

[5] Y. Zhang and J. Jiang, “Bibliographical review on reconfig-

urable fault-tolerant control systems,” Annual Reviews in Con-

trol, vol. 32, no. 2, pp. 229 – 252, 2008. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S1367578808000345

134

[6] R. Patton and J. Chen, “On eigenstructure assignment for robust fault diagno-

sis,” International Journal of Robust and Nonlinear Control, vol. 10, no. 14, pp.

1193–1208, 2000.

[7] P. Frank and X. Ding, “Survey of robust residual generation and evaluation

methods in observer-based fault detection systems,” Journal of Process Control,

vol. 7, no. 6, pp. 403–424, 1997.

[8] L. Van Eykeren, Q. Chu, and J. Mulder, “Sensor fault detection and isolation us-

ing adaptive extended kalman filter,” in Fault Detection, Supervision and Safety

of Technical Processes, vol. 8, no. 1, 2012, pp. 1155–1160.

[9] J. Chen, R. Patton, and H. Zhang, “Design of unknown input observers and

robust fault detection filters,” International Journal of Control, vol. 63, no. 1,

pp. 85–105, 1996.

[10] J. Chen and R. Patton, “Robust residual generation using unknown input ob-

servers,” Robust Model-based Fault Diagnosis for Dynamic Systems, pp. 65–108,

1999.

[11] D. Wang and K. Lum, “Adaptive unknown input observer approach for aircraft

actuator fault detection and isolation,” International Journal of Adaptive Control

and Signal Processing, vol. 21, no. 1, pp. 31–48, 2007.

[12] J. Gertler, “Fault detection and isolation using parity relations,” Control Engi-

neering Practice, vol. 5, no. 5, pp. 653–661, 1997.

[13] R. Patton and J. Chen, “Review of parity space approaches to fault diagnosis for

aerospace systems,” Journal of Guidance Control Dynamics, vol. 17, pp. 278–

285, 1994.

135

[14] H. Mohamed Basri, K. Lias, W. Wan Zainal Abidin, K. Tay, and H. Zen, “Fault

detection using dynamic parity space approach,” in 2012 IEEE International

Conference on Power Engineering and Optimization (PEOCO), 2012, pp. 52–

56.

[15] J. Stoustrup and H. H Niemann, “Fault estimationa standard problem ap-

proach,” International Journal of Robust and Nonlinear Control, vol. 12, no. 8,

pp. 649–673, 2002.

[16] I. Hwang, S. Kim, Y. Kim, and C. Seah, “A survey of fault detection, isolation,

and reconfiguration methods,” IEEE Transactions on Control Systems Technol-

ogy, vol. 18, no. 3, pp. 636–653, 2010.

[17] R. J. Patton and J. Chen, “Robust fault detection of jet engine sensor systems

using eigenstructure assignment,” J. Guidance, Contr., Dyn., vol. 15, no. 6, pp.

1491 –1497, 1992.

[18] R. Patton, J. Chen, and H. Zhang, “Modelling methods for improving robust-

ness in fault diagnosis of jet engine system,” in Decision and Control, 1992.,

Proceedings of the 31st IEEE Conference on, 1992, pp. 2330 –2335 vol.2.

[19] J. Luo, M. Namburu, K. Pattipati, L. Qiao, M. Kawamoto, and S. Chi-

gusa, “Model-based prognostic techniques [maintenance applications],” in AU-

TOTESTCON 2003. IEEE Systems Readiness Technology Conference. Proceed-

ings, Sept. 2003, pp. 330 – 340.

[20] S. B. Johnson, T. Gormley, S. Kessler, C. Mott, A. Patterson-Hine, K. Reichard,

and P. Scandura Jr, System Health Management: With Aerospace Applications.

Wiley, 2011, vol. 34.

136

[21] R. Patton, J. Chen, and H. Y. Zhang, “Modelling methods for improving ro-

bustness in fault diagnosis of jet engine system,” in Decision and Control, 1992.,

Proceedings of the 31st IEEE Conference on, 1992, pp. 2330–2335 vol.2.

[22] S. Ofsthun and T. Wilmering, “Model-driven development of integrated health

management architectures,” in Aerospace Conference, 2004. Proceedings. 2004

IEEE, vol. 6, March 2004, pp. 3692 – 3705.

[23] A. Babbar and V. Syrmos, “Data driven approach for fault detection and iden-

tification using competitive learning techniques,” in European Control Conf.,

2007.

[24] X. Yin, J. He, , and Z. Zhou, “Using neural network for fault diagnosis,” in

International Joint Conference on Neural Networks, Como, Italy, July 2000, pp.

217–220.

[25] G. Betta, C. Liguori, and A. Pietrosanto, “An advanced neural-network-based

instrument fault detection and isolation scheme,” IEEE Transactions on Instru-

mentation and Measurement, vol. 47, no. 2, pp. 507 –512, Apr 1998.

[26] J. Gertler, Fault detection and diagnosis in engineering systems. Marcel Dekker,

1998.

[27] Y. Li, “Performance-analysis-based gas turbine diagnostics: A review,” Proceed-

ings of the Institution of Mechanical Engineers, Part A: Journal of Power and

Energy, vol. 216, no. 5, pp. 363–377, 2002.

[28] L. Urban, “Gas path analysis applied to turbine engine condition monitoring,”

in Proceedings of the AIAA/SAE 8th Joint Propulsion Specialist Conference,

72-1082. AIAA No., 1991, pp. 72–1082.

137

[29] A. Volponi, “Foundations of gas path analysis, parts i & ii,” in Lecture Notes for

the Von Karman Institute Lecture Series, Jan. 2003, pp. 13–17.

[30] T. Kobayashi and D. L. Simon, “Application of a bank of kalman filters for

aircraft engine fault diagnostics,” in NASA Report 212526, 2003.

[31] E. Naderi, N. Meskin, and K. Khorasani, “Nonlinear fault diagnosis of jet engines

by using a multiple model-based approach.” ASME, 2011.

[32] D. Simon, “A comparison of filtering approaches for air-

craft engine health estimation,” Aerospace Science and Technol-

ogy, vol. 12, no. 4, pp. 276 – 284, 2008. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S1270963807000818

[33] R. Joly, S. Ogaji, R. Singh, and S. Probert, “Gas-turbine diagnostics using arti-

ficial neural-networks for a high bypass ratio military turbofan engine,” Applied

energy, vol. 78, no. 4, pp. 397–418, 2004.

[34] S. Simani and C. Fantuzzi, “Fault diagnosis in power plant using neural net-

works,” Information Sciences, vol. 127, no. 3, pp. 125–136, 2000.

[35] C. Romessis, K. Mathioudakis et al., “Bayesian network approach for

gas path fault diagnosis,” Journal of Engineering for Gas Turbines and

Power(Transactions of the ASME), vol. 128, no. 1, pp. 64–72, 2006.

[36] M. Zedda and R. Singh, “Fault diagnosis of a turbofan engine using neural net-

works: a quantitative approach,” in The 34th AIAA/ASME/SAE/ASEE Joint

Propulsion Conference and Exhibit,(Cleveland, OH), 1998.

[37] G. Torella and G. Lombardo, “Utilization of neural networks for gas turbine

engines,” in ISABE- International Symposium on Air Breathing Engines, 12 th,

Melbourne, Australia, 1995, pp. 358–366.

138

[38] J. D. Addison, S. Wermter, and J. MacIntyre, “Effectiveness of feature extrac-

tion in neural network architectures for novelty detection,” in Artificial Neural

Networks, 1999. ICANN 99. Ninth International Conference on (Conf. Publ. No.

470), vol. 2. IET, 1999, pp. 976–981.

[39] L. Marinai, D. Probert, and R. Singh, “Prospects for aero gas-turbine diagnos-

tics: a review,” Applied energy, vol. 79, no. 1, pp. 109–126, 2004.

[40] D.-H. Seo, T.-S. Roh, and D.-W. Choi, “Defect diagnostics of gas turbine engine

using hybrid svm-ann with module system in off-design condition,” Journal of

mechanical science and technology, vol. 23, no. 3, pp. 677–685, 2009.

[41] R. Mohammadi, S. Hashtrudi-Zad, and K. Khorasani, “Hybrid fault diagnosis:

Application to a gas turbine engine.” ASME, 2009.

[42] A. J. Volponi, H. DePold, R. Ganguli, and C. Daguang, “The use of kalman

filter and neural network methodologies in gas turbine performance diagnostics:

a comparative study,” Journal of engineering for gas turbines and power, vol.

125, no. 4, pp. 917–924, 2003.

[43] A. Babbar, V. Syrmos, E. Ortiz, and M. Arita, “Advanced diagnostics and

prognostics for engine health monitoring,” in Aerospace conference, 2009 IEEE,

March 2009, pp. 1 –10.

[44] V. Morgenstern, B. Upadhyaya, and M. Benedetti, “Signal anomaly detection

using modified cusum method,” in Decision and Control, 1988., Proceedings of

the 27th IEEE Conference on, Dec 1988, pp. 2340 –2341 vol.3.

[45] A. Willsky and H. Jones, “A generalized likelihood ratio approach to the detec-

tion and estimation of jumps in linear systems,” IEEE Transactions on Auto-

matic Control, vol. 21, no. 1, pp. 108 – 112, Feb 1976.

139

[46] M. Imhoff, M. Bauer, U. Gather, and D. Lohlein, “Statistical pattern detection

in univariate time series of intensive care on-line monitoring data,” Intensive

Care Med., vol. 24, pp. 1305–1314, 2004.

[47] N. Ramirez-Beltran and J. Montes, “Neural networks for on-line parameter

change detection in time series model,” Computer and Industrial Engineering,

vol. 33, pp. 337–340, 1997.

[48] K. Kumar and B. Wu, “Detection of change points in time series analysis with

fuzzy statistics,” International Journal of System Science, vol. 32, pp. 1185–1192,

2001.

[49] H. X., H. Qiu, and N. Iyer, “Multivariate change detection for time series data in

aircraft engine fault diagnostics,” in IEEE International Conference on Systems,

Man and Cybernetics, 2007. ISIC. IEEE, 2007, pp. 2484–2489.

[50] A. Gulati, D. Taylor, and R. Singh, “Multiple operating point analysis using

genetic algorithm optimization for gas turbine diagnostics,” in ISOABE, ISABE-

International Symposium on Air Breathing Engines, 15 th, Bangalore, India,

2001.

[51] M. Zedda and R. Singh, “Gas turbine engine and sensor fault diagnosis using

optimization techniques,” Journal of Propulsion and Power, vol. 18, no. 5, pp.

1019–1025, 2002.

[52] M. Witczak, A. Obuchowicz, and J. Korbicz, “Genetic programming based

approaches to identification and fault diagnosis of non-linear dynamic systems,”

International Journal of Control, vol. 75, no. 13, pp. 1012–1031, 2002. [Online].

Available: http://www.tandfonline.com/doi/abs/10.1080/00207170210156224

140

[53] R. Patton, P. Frank, and R. Clark, Issues of fault diagnosis for dynamic systems.

Springer, 2000.

[54] O. Nelles, Nonlinear system identification: from classical approaches to neural

networks and fuzzy models. Springer, 2000.

[55] G. Gray, D. J. Murray-smith, Y. Li, and K. C. Sharman, “Nonlinear model

structure identification using genetic programming,” vol. 6, pp. 1341–1352, 1996.

[56] J. Koza, Genetic Programming: On the Programming of Computers by Means of

Natural Selection. Cambridge, MA: MIT Press, 1992.

[57] C. Banks, “Searching for lyapunov functions using genetic programming,” Vir-

ginia Polytech Institute, unpublished, 2004.

[58] J. McGough, A. Christianson, and R. Hoover, “Symbolic computation of lya-

punov functions using evolutionary algorithms,” in Proceedings of the 12th

IASTED International Conference, vol. 15, 2010, p. 17.

[59] K. Bettenhausen, P. Marenbach, S. Freyer, H. Rettenmaier, and U. Nieken, “Self-

organizing structured modelling of a biotechnological fed-batch fermentation by

means of genetic programming,” in Genetic Algorithms in Engineering Systems:

Innovations and Applications,, Sep 1995, pp. 481 –486.

[60] P. Marenbach and K. Bettenhausen, “Signal path oriented approach for genera-

tion of dynamic process models,” in Proc. 1st Anual Conf. on Genetic Program-

ming, 1996, pp. 327 –332.

[61] A. Alcázar and K. Sharman, “Some applications of genetic programming in digi-

tal signal processing,” in Late Breaking Papers at the Genetic Programming 1996

Conference Stanford University. Citeseer, 1996, pp. 24–31.

141

[62] G. Olague and L. Trujillo, “Evolutionary-computer-assisted design of image

operators that detect interest points using genetic programming,” Image

Vision Comput., vol. 29, no. 7, pp. 484–498, Jun. 2011. [Online]. Available:

http://dx.doi.org/10.1016/j.imavis.2011.03.004

[63] J. Madár, J. Abonyi, and F. Szeifert, “Genetic programming for the identification

of nonlinear input-output models,” Industrial & engineering chemistry research,

vol. 44, no. 9, pp. 3178–3186, 2005.

[64] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, “Automatically

finding patches using genetic programming,” in Proceedings of the 31st

International Conference on Software Engineering, ser. ICSE ’09. Washington,

DC, USA: IEEE Computer Society, 2009, pp. 364–374. [Online]. Available:

http://dx.doi.org/10.1109/ICSE.2009.5070536

[65] A. Shintemirov, W. Tang, and Q. Wu, “Power transformer fault classification

based on dissolved gas analysis by implementing bootstrap and genetic pro-

gramming,” Systems, Man, and Cybernetics, Part C: Applications and Reviews,

IEEE Transactions on, vol. 39, no. 1, pp. 69 –79, Jan. 2009.

[66] Z. Zhang, K. Fang, and W. Huang, “A genetic programming based fuzzy model

for fault diagnosis of power transformers,” in Intelligent Networks and Intelligent

Systems (ICINIS), 2010 3rd International Conference on. IEEE, 2010, pp. 455–

458.

[67] W. Visser and M. Broonhead, “Gsp, a generic object-oriented gas turbine simu-

lation environment,” ASME TURBO EXPO 2000, Munich, Germany, 2000.

[68] R. Isermann, Fault-diagnosis systems: an introduction from fault detection to

fault tolerance. Springer, 2005.

142

[69] M. Goosens, F. Mittelbach, and A. Samarin, Modelling and estimation strategies

for fault diagnosis of non-linear systems. Lecture notes in control and information

sciences. Berlin: Springer, 2007.

[70] K. Hunecke, Jet engines: fundamentals of theory, design and operation. Zenith

Press, 1997.

[71] “http://upload.wikimedia.org/wikipedia/commons/7/75/turbofan operation

.svg,” accessed on 28/1/2013.

[72] Z. Husain, Air Breathing Engines. IK International Pvt Ltd, 2010.

[73] D. Shanno et al., “Conditioning of quasi-newton methods for function minimiza-

tion,” Mathematics of computation, vol. 24, no. 111, pp. 647–656, 1970.

[74] “http://sounak4u.weebly.com/gas-power-cycle.html,” accessed on 28/1/2013.

[75] GSP user manual. National Aerospace Laboratory NLR Anthony Fokkerweg,

2 1006 BM Amsterdam The Netherlands, January 2013.

[76] G. Olague and L. Trujillo, “Evolutionary-computer-assisted design of image op-

erators that detect interest points using genetic programming,” Image and Vision

Computing, vol. 29, pp. 484–498, June 2011.

[77] K. D. Jong, Evolutionary Computation: A Unified Approach. Cambridge, MA:

MIT Press, 2001.

[78] R. Poli, W. Langdon, and N. McPhee, A field guide to genetic programming.

Lulu Enterprises Uk Limited, 2008.

[79] W. Press, T. S., V. W., and F. B., Numerical Recipes in C. Cambridge University

Press., 1992.

143

[80] J. Lagarias, J. Reeds, M. Wright, and P. Wright, “Convergence properties of the

nelder–mead simplex method in low dimensions,” SIAM Journal on Optimiza-

tion, vol. 9, no. 1, pp. 112–147, 1998.

[81] R. Lewis, V. Torczon, and M. Trosset, “Direct search methods: then and now,”

Journal of Computational and Applied Mathematics, vol. 124, no. 1, pp. 191–207,

2000.

[82] S. Singer and J. Nelder, “Nelder-mead algorithm,” vol. 4, no. 2, p. 2928, 2009.

[83] “Gas turbine performance simulation,” National Aerospace Laboratory NLR,

2012.

[84] W. Visser, O. Kogenhop, and M. Oostveen, “A generic approach for gas turbine

adaptive modeling,” Proceedings of ASME Turbo Expo. Viena, 2004.

[85] V. Klee and G. J. Minty, “How good is the simplex algorithm?” in Inequalities,

III (Proc. Third Sympos., Univ. California, Los Angeles, Calif., 1969; dedicated

to the memory of Theodore S. Motzkin). New York: Academic Press, 1972, pp.

159–175.

[86] N. Meskin and K. Khorasani, Fault Detection and Isolation: Multi-Vehicle Un-

manned Systems. Springer, 2011.

[87] G. Box, J. Hunter, and W. Hunter, Statistics for experimenters: design, innova-

tion, and discovery. Wiley Online Library, 2005, vol. 13.

144

