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ABSTRACT

Fault Diagnosis of Gas Turbine Engines by Using Multiple Model Approach

Zahra Abbasfard

The field of fault detection and isolation (FDI) has attracted much attention in
control theory during the last three decades which has resulted in development
of sophisticated FDI algorithms. However, increasing the complexity of FDI
algorithms is not necessarily feasible. Particularly for on-line FDI, the FDI unit
must have the minimum possible computation cost to prevent any long delays in

fault detection.

In this research, we try to address the FDI problem of a single spool jet
engine by using a modified linear multiple model (MM). We first develop a
novel symbolic computation-based method for linearization purposes such that
the obtained linear models are subjected to the symbolic fault variables. By
substituting certain values for these symbolic variables, one can obtain different
linear models, which describe mathematically the healthy and faulty models. In
order to select the operating point, we use this fact that for a given constant fuel
flow (W), the system reaches a steady state, that is varying for different values of
Wy. Therefore, the operating points for linearization can be determined by the
level of the Power Level Angel (PLA) (different values of Wy). These operating
points are selected such that an observer, which is designed as a candidate for
the healthy mode, can accurately estimates the states of the system in healthy

scenario and the number of false alarm then would be kept to minimum. If the
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system works at different operating points one can then discretize the Wy into
different intervals such that in each interval a linear model represents the
behavior of the original system. By using the obtained models for different

operating points, one designs the corresponding FDI units.

Second, we provide a modified multiple model (MM) approach to
investigate the FDI problem of a single spool jet engine. The main advantage of
this method lies in the fact that the proposed MM consists of a certain set of
linear Kalman filter banks rather than using nonlinear Kalman filters such as the
Extended Kalman Filter which requires more computational cost. Moreover, a
hierarchical structural multiple model is used to detect and isolate multiple
faults. The simulation results show the capability of the proposed method when

it is applied to a single spool jet engine model.
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Chapter 1: INTRODUCTION

1.1. INTRODUCTION

There is a steady demand for man-made systems to be more efficient and accurate
which calls for more sophisticated control algorithms. On the other hand, safety is a
prominent requirement for every dynamical system [1]. The early fault detection can
enable the system to be more reliable. Moreover, Fault Detection and Isolation (FDI) can
play a critical role in decreasing the maintenance cost [2, 3]. Therefore, the FDI methods

are inevitable part of each control system [4].

In the literature, fault diagnosis is used interchangeably to refer to the fault
detection isolation and also fault detection, isolation and identification. The field of fault
diagnosis has attracted much attention in control theory in the past few decades [5, 6].
Based on the fact that continuously increasing the complexity of dynamical systems
calls for more sophisticated control algorithms, the FDI methods also have to be
modified to overcome the complications. However, increasing the complexity of an FDI
algorithm is not feasible in most of the applications particularly for on-line FDI in which
the FDI unit must have the minimum possible computation cost to prevent any large
delays in fault detection [5]. For example, if the fault detection information is supplied
with delay it can result in total failure of the system, which leads to more cost and

safety critical situations (a total fault in a jet engine may cause airplane crash [7]).

Faults can occur at any part of the system such as the sensors, actuators or even in
the components. Generally, Fault Detection (FD) can be defined as in detecting any

malfunction that has a negative effect on the performance of the investigated system



based on sensor measurements, while Fault Isolation (FI) involves determining the
location of the detected fault. In other words, the isolation of a fault (which is the next
step after detection) provides the necessary information to locate the fault [5]. For
example, after detecting a fault in the actuators of a dynamical system the FI unit
enables us to determine the faulty actuator. This information is useful for the recovery

and maintenance action [8].

Traditional approach for FDI is hardware redundancy by using multiple sensors,
actuators or components. In this approach, the FDI is based on the voting techniques
[9]. However, hardware redundancy suffers from the couple of drawbacks, namely cost,
complexity and physical limitations, which cause this approach to be impractical in
many applications [8, 10, 11, 12]. For example, in an aircraft engine the fault in the
efficiency of compressor cannot be resolved by hardware redundancy (using an extra

compressor is not possible in this application).

Another approach for fault diagnosis can be accomplished by performing certain
techniques and algorithms that are known as analytical redundancy. Based on the
available knowledge of the system, analytical redundancy can be categorized into three
main approaches, namely model based, data-driven based and expert systems [10, 11,
12]. In the model based approach the complete prior knowledge of the system allows
one to represent the system as a mathematical model [5, 8, 6], while in the other
approaches this mathematical model is not available. In the model based method, by
using the mathematical model of the system and measured data the FDI objective is
accomplished. In the data-driven based method [13], one first tries to fit a universal
mathematical model (such as a neural network) to the available data (by performing a
learning process) and then implements to FDI algorithms for this framework [9].

However, the third approach (expert systems) considers the investigated system as a set
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of rules (for example, a certain number of fuzzy rules) obtained from experts [14, 15]. In

this thesis we focus on the model based approach.

Each model based FDI approach consists of two main units, namely as a residual
generator unit and a decision-making unit [5, 10, 11, 12]. The residuals are generated by
using a set of estimators, where the discrepancy of measured signal and estimated
signal (that is provided by the estimator) is defined as the residual [5, 8]. Therefore, the
residual for a fault free system is close to zero and when a fault occurs the residuals
diverges from zero which indicates the fault occurrence [6]. The residual evaluation
(decision making) unit is in charge of detecting and isolating the faults based on the
residuals. Generally, the decision-making unit applies a decoding method to the

residuals to detect and isolate the faults [10, 11, 12].

1.2. MOTIVATION OF THE RESEARCH

The FDI problem of nonlinear systems is an active research area in the control
theory of dynamical systems. A highly complex FDI unit results in an increasing cost of
computation and time. For example, the nonlinear approaches such as nonlinear
Kalman filter demands a differentiation (for constructing the Jacobinan matrices ) in
each time step. The idea of using approaches with lower complexity such as linear
Kalman filter (with certain modifications) can overcome this problem. In this thesis, the
FDI problem of the nonlinear systems is investigated by using a modified linear
multiple model approach. As a case study, we apply the proposed method to a type of
gas turbine namely a single spool jet engine [16] . We focus on the aircraft jet engines in
the cruise mode. Nevertheless, the proposed method can be applied to the industrial
gas turbines, since the dynamics of this engine is similar to the aircraft engines in the

cruise mode [9, 16].



During the last two decades, the fault detection and isolation problem of gas
turbines has attracted an increasing interest [3, 16 (and reference therein)]. In addition
to reliability (which is critical quite for jet engines), since the maintenance of engines is a
highly cost and time consuming task, the early fault detection in these systems can

decrease the cost significantly [17, 18].

On one hand, in the analytical redundancy-based approaches, complexity of the
FDI unit is directly influenced by the complexity of the corresponding system. For
example, the FDI unit for nonlinear systems is more sophisticated than the linear ones
[8]. On the other hand, complicated FDI algorithms do not necessarily result in a better
and more accurate diagnosis achievement [3, 6]. Roughly speaking, sophisticated FDI
algorithms consume more time to perform the corresponding computations and
therefore, the delay in fault analysis is inevitable. Also, complex algorithms need more
hardware requirements. Hence, one needs to simplify the FDI algorithms as much as
possible. These requirements can be critical where the compactness plays a crucial role

in the system (for example, in aircraft and satellites) [6].

In this thesis, a novel FDI algorithm for a single spool jet engine is developed. As
we shall see, this system is a nonlinear dynamical system. However, the proposed
method is based on the linearized model of the original system. This approach allows
us to apply the linear FDI algorithms (for example Kalman filters) on the nonlinear
original system with certain modifications. This approach results in an FDI method
with lower complexity (compared with nonlinear algorithms such as unscented Kalman
filters [19]) which is easy to implement. Based on the fact that the linearized model is

only valid in small vicinity of the operating point' which is used for linearization, we

' By valid in small vicinity we mean that the discrepancy of the linearized system and the original one is
negligible only in a small neighborhood of the operating point.



utilize a certain set of linearized systems for different operating points to capture the

dynamical behavior of the original nonlinear system.

The original system of the single spool engine is a highly nonlinear system. The
main reason for this nonlinearity lies on the compressor and turbine maps [16]. The
compressor map describes the behavior of the compressor under different operating
points and is different from one engine to another one. Therefore, in order to linearize
the system one needs to utilize a computer-algebra based program. However, usually,
the compressor map cannot be represented by a closed form function and is provided
by manufactures as a look-up table, where linearization algorithms in MATLAB
software can be performed numerically [20]. In this thesis, a new symbolic computation
approach is developed to perform the linearization. By using this approach, one can
add the faults to output of the certain blocks and compute a linear, symbolic model that
is used to obtain different faulty models of the system for developing the multiple
model FDI algorithm. Also, one only needs to linearize the system once and by

substituting the corresponding value of faults obtains the different faulty models.

Moreover, for the FDI purpose, we develop a multiple model approach to detect,
isolate and identify a certain set of faults in the engine. Furthermore, a hierarchical
structure is developed to handle the diagnosis of the multiple fault scenarios. The
robustness of the proposed method in the sensor total fault is investigated and it is

shown that the approach is applicable with smaller set of measurements.

1.3. LITERATURE REVIEW

As mentioned earlier, in the model based FDI approach the mathematical model of
the investigated system is necessary to develop a residual generation unit that is based

on the difference between the measured and estimated variables [21]. It should be
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mentioned that this knowledge includes the differential equations (and more precisely

sate space equations) of the dynamical system.
1.3.1. FDI for Gas Turbine

The gas turbine model is represented by a nonlinear dynamical system [2, 22]. In
literature different methods for the FDI problem of gas turbine engines are provided.
The survey [21] focuses on the model based FDI that are applicable for aerospace
systems, and represents the key points of fault detection methods that rely on analytical
redundancy. In [19], by using an extended Kalman filter the nonlinear FDI problem of a
single spool jet engine is investigated. Because of complexity of the gas turbine engine
model, the statistical and empirical models have also been used for the FDI [21, 23].
Neural networks (such as dynamic and autoassociative) have been utilized for the
single spool jet engine FDI problem in [9]. The author in [9] uses the autoassociative
neural network for noise reduction purpose and dynamic neural network to accomplish
the FDI mission. The random forest method is used in [24]. The random forest method
is classified as a supervised learning method for the decision-making tree [24]. The FDI
problem of an aircraft engine is investigated by using fusion models in [25]. In [2] the
FDI problem of a dual spool jet engine is addressed. The authors in [2] propose a linear
multiple model (while the original system is nonlinear). In this thesis, we provide a
linear multiple model for fault diagnosis of the single spool jet engine. This work has
two main differences as compared with the approach proposed in [2]. First, here we
develop a novel linearization method based on the symbolic computation. Second, we
introduce a linear-based FDI algorithm for the single spool jet engines. This issue is not

completely investigated in [2].



1.3.2. Multiple-Model Based FDI

One of the popular approaches for FDI purpose is the multiple model [2, 7]. In this
subsection, we review the literature utilizing this scheme as an FDI approach. In the
multiple model method, by using a bank of Kalman filters (linear or nonlinear), the FDI
method has been performed. Particularly, this approach uses a set of Kalman filters
(that each of them is designed for detecting a specific fault) such that all the filters but
one have large output estimation error. According to the filter with the minimum error,
one can detect and isolate the corresponding fault. This approach is also applied for
nonlinear systems [26]. The author in [5] presents a survey on different model based
methods in fault detection and isolation (FDI) in dynamical systems. It studies the
robustness of the estimation (parameter and state) based techniques and investigates
these methods for different systems. Comparing experimental results in different
systems, it is pointed that the capability of the model based methods depends on the
model accuracy; hence while these methods are really reasonable in some mechanical
system such as aircraft, they are not very reliable in some other systems such as
chemical plants. One of important aspect of the model-based FDI algorithm is the
residual generation. In [5], the robustness of this unit is investigated on the number of

available measurements.

The authors in [27] explore the nonlinear behavior of aircraft during the fault
scenarios and create multiple linear models of the system with MATLAB and Simulink.
The controllability of the system at various points in the linear analysis can show that
multi linear model is useful. Also it is shown how to recreate the nonlinear system from
linear models [27]. In [28], the FDI problem of nonlinear systems is investigated where

the Lyapunov-based technique is used to show the stability of the filters.



As mentioned earlier, in the multiple model approach one uses a set of observers.
The Kalman filter is a suitable observer for state estimation; it has low computational
cost and low memory requirements. Kalman filters are very popular because they are
easy to use. In fact the Kalman filter is a well-known recursive state estimator for linear
systems. In practice the algorithm is often used for nonlinear systems by linearizing the
system’s process and measurement functions. Different Kalman filter variants linearize
the functions in different ways. The quality of the estimates from different Kalman filter
variants strongly depends on how these filters linearize the process and measurement

functions and how they take linearization errors into account.

The nonlinear Kalman filters are generally categorized into two subclasses, as
Unscented (UKF) and Extended (EKF) Kalman filters. The UKF linearize process and
measurement functions by a statistical linear regression of the functions through some
“sampling points” in the “uncertainty region” around the state estimate. It defines the
uncertainty due to the linearization errors as the covariance matrix of the deviations
between the function values of the nonlinear and the linearized function in the
sampling points. The EKF on the other hand only uses the function evaluation and its
Jacobian in the state estimate. Also it needs trial and error for each particular example to

obtain good values for the covariance matrix, which models the linearization errors [29].
1.3.3. Artificial Intelligence Based FDI

Like other areas in the control theory, the artificial intelligence (AI) including
fuzzy systems, neural networks and genetic algorithms has attracted a significant
interest in the FDI problem. The authors in [30] outline some recent approaches to the
generation of residual signals using methods by integrating quantitative and qualitative

system knowledge, based on Al techniques. Also it gives an outline of Al methods that



are considered a powerful extension to quantitative analytical approaches for the FDI of

dynamical systems.

An overview of the artificial intelligence techniques to identify the faults in HVDC
(High Voltage Direct Current) transmission system is provided in [31]. By using a
neural network, fault diagnosis of permanent magnet synchronous motors under
dynamic and mixed eccentricity fault diagnosis is investigated in [32] with artificial
neural network. In [33] a frequency pattern and competent criterion is introduced for
short-circuit-fault recognition in permanent magnet synchronous motors. In this
approach SVM cluster is used for fault isolation purpose. Also, the demagnetization
state of permanent magnets during fault conditions in a permanent magnet

synchronous motor is addressed in [34].

In [35] by using a fuzzy neural network, the authors first address the uncertainty
modeling and then the fuzzy rules are used for the fault diagnosis of the gas turbine
engines. Also, the dynamic neural networks is used for fault diagnosis purposes in [36].
This network is belongs to a special class of neural networks as locally recurrent
globally feed-forward. In [37], the FDI problem of the fuel-cell system is investigated,
and also the fault tolerant control is addressed. In particular, they derive the fuzzy rule
based on the measurements obtained from different cells, and then based on which unit
is faulty the corresponding controller is updated. In [38] the FDI of an aircraft jet engine
is accomplished by using dynamic neural networks. First, dynamic neural network is
utilized to learn the dynamics of jet engine and then this model is used for FDI
purposes. The authors in [39] propose an FDI algorithm for the turbine. This method is
based on fuzzy and support vector machine (SVM). First the normalized faulty
symptoms are used for training the SVM. Then by combining the advantages of fuzzy

theory with SVM a highly reliable FDI unit is designed. Moreover, in [40] condition



monitoring of a steam turbine by using neural networks is investigated. This approach

is validated with the experimental data to detect and isolate the turbine bearings faults.

By analyzing insulation oil systems in the transforms, an artificial intelligence (AI)
like neural network based FDI unit is developed in [41]. The fault detection is
accomplished by using the statistical approaches in [42]. More precisely, the kurtosis
and entropy of the output measurements are used to detect the fault. Then by using
these two statistics as the input to a neural network, the detected fault is isolated. In
[43], an artificial intelligence based approach is used for the FDI problem of a
navigation system gyroscope. This method is based on the Radial Basis Networks
(RBF), where in order to train the network a fuzzy-genetic algorithm is used. The FDI
problem in presence of uncertainty is addressed in [44]. The authors use two RBF
networks. First, one RBF is trained to approximate the unknown nonlinear dynamics of

the systems, and then the second network is utilized for the FDI purpose.

In [45] the FDI problem of the rotating machinery is investigated by using time
series analysis combined with artificial intelligence. Particularly, an Autoregressive
(AR) model is used to detect the faults. Also, a neural network (with coefficients of the
AR model as inputs and fault types as output) is applied to isolate the detected fault. In
[46] by combining the discrete wavelet transform and auto-associative neural network
an FDI algorithm is provided. The methodology for training neural networks in this
paper is Levenberg—-Marquardt (LM) algorithm. In [47] a new fault diagnosis technique
is presented in which Extended State Observer (ESO) and soft computing are combined

to overcome the lack of modeling knowledge.

Fault diagnosis in the computer networks has also made a great progress. In [48,

49] this problem is addressed by using three different artificial intelligent approaches.
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These approaches are expert systems, Bayesian networks and neural networks. The
authors in [50] develop an approach for the FDI problem of analog circuits. The hybrid
system that uses artificial neural networks and fuzzy systems is designed for this
purpose. In [51] a method of fault diagnosis of satellite attitude control system based on
data-driven combined with artificial intelligence is proposed in order to improve the

reliability of the navigation satellite during its mission.
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Chapter 2: BACKGROUND

In this chapter, we will provide a review on the background required to realize the
proposed approach in this thesis. First, the single spool jet engine model is described.
Then it is followed by a brief introduction to the fault diagnosis methods based on the

multiple model approach.
2.1. AIRCRAFT JET ENGINE MATHEMATICAL MODEL

A gas turbine engine is a complex system including upstream rotating compressor
joined to a downstream turbine, and a combustion chamber between these two parts.
Gas turbine is most commonly used for mobile propulsion in vehicles and portable
machinery. The applications include jet aircraft, helicopters, large ships and electric
generators [18]. In this section, the mathematical model of a single spool jet engine is
reviewed. There are several representations of gas turbine mathematical model in the
literature [16, 52, 22, 53]. By using thermodynamic and aerodynamic theories and basic
laws in mechanics, one can develop a single model which includes all major
components in the engine [19, 53, 52] such that the resulting nonlinear model can
capture the functional relations between the engine variables, namely as pressures,
temperatures and gas flow rates [53]. Particularly, rotor and volume dynamics are
considered in order to obtain a nonlinear dynamics for the system [9]. In this thesis the
modeling of the aircraft single spool jet engine which is available in [19] is used. The

dynamics of this nonlinear model is represented in the MATLAB Simulink.

The model of the engine components such as compressor and turbine are obtained

by the corresponding performance maps, which are following from Gas turbine
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Simulation Program (GSP) software [54]. The complete explanation of the components

and related equations corresponding to the engine dynamics are presented as follows.

turbine

compressor

exhaust

air intake  combustion
chamber

Figure 2.1: The Schematic of single spool jet engine [55].

Generally, each gas turbine has three main components namely compressor,
combustion chamber and turbine (Figure 2.1). Compressor is used to increase the
pressure of the inlet air. This component is followed by combustion chamber where the
temperature of the fluid (high pressure air and fuel mixture) is increased by heating. It
follows that combustion chamber is in charge of increasing the energy of the gas stream.
The product of the combustion chamber is forced into the turbine section. Therefore, a
large volume of the high velocity gas flow (that is output of the combustion chamber) is
directed through a nozzle over the turbine blades. The energy is released to the turbine
comes from the reduction in the temperature and pressure of the exhaust gas. A small
part of this energy, which spins the turbine, powers the compressor to compress the
inlet air. The rest of the energy is released as the thrust to generate the power. The

schematic of this closed cycle is shown in Figure 2.2.
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Figure 2.2: Schematic of the gas turbine working cycle [16].

Two basic equations that are inevitable to derive the mathematical model of the

engine components are provided as follows:
Rotor Dynamics:

Energy balance equation between the shaft and the compressor is given by [19]

dE
E = Nmech Wr — We

where ] and N are the shaft moment of inertia and speed, respectively. In this work, we

call N as the fan speed.
Volume Dynamic:

Generally, from an input-output point of view every component can be

represented by the following equation

o7 2.1)
P:7(me _Zmout)
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where P,R, T,V and ni are pressure, gas constant, temperature, volume and mass flow
rate respectively. This equation enables us to derive the compressor and turbine

models. In the following we review the gas turbine components in more detail.
2.1.1. Components

As mentioned earlier, each gas turbine engine has three main components namely
compressor, combustion and turbine. Nevertheless, in order to derive a comprehensive
model we need to consider two additional components as intake duct and nozzle.
Intake duct is used to improve the efficiency of the compressor by increasing the
temperature and pressure of the inlet air. Nozzle actually produces the outlet thrust.

Figure 2.3 shows the components of a single spool jet engine.
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Figure 2.3: The single spool jet engine (basic model) [19].
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2.1.1.1. Intake Duct

The intake duct is located before the compressor in order to recover as much of the
total pressure of the free air stream as possible and to deliver this pressure to the front
of the engine compressor. As a result, after intake duct, the temperature and the
pressure of the inlet air are increased simultaneously [19, 53]. The input-output relation

of the pressure in the intake duct is given by [19]

7 (2.2)
P A

IS S A VES T

Pamb 7_1

where Py, Pymp,Na, ¥ and M are inlet pressure, ambient pressure, inlet efficiency, heat

capacity ratio and Mach number, respectively. The inlet temperature ratio can be

expressed in terms of M (M is the Mach number in the air temperature and pressure) as

1 2.3)
L:H%Mz

amb

2.1.1.2. Compressor

The combustion of fuel and air at normal atmospheric pressure will not produce
sufficient energy to produce useful work. The energy released by combustion is
proportional to the mass of input stream and its pressure. Hence, the higher pressure
input gas results in a more efficient combustion cycle. The compressor in a gas turbine
engine is in charge of providing high-pressure air to the combustion chamber. The
compressor model is obtained by the related performance maps, which are following

from the GSP software [19, 54]. The compressor consists of three main parts [53]:

e Impeller
e Diffuser
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e Manifold

Air leaves the Impeller at high speed, and flows through the diffuser, which
converts high velocity, low-pressure fluid to the low-velocity, high-pressure stream.
The diffuser also serves to lead airflow to the compressor manifold to increase the

velocity and pressure that is satisfactory for high efficiency combustion cycle.

For a given pressure ratio (7,) and the rotational speed (%) , the mass flow rate

. V6
is obtained as m,—— where @ L and 5:5. Also, the efficiency (77,) is computed

o

from the performance map by using an appropriate interpolation technique [21].
According to these parameters, one can formulate the compressor temperature and the

mechanical power as:

-1
= 2.4
7;=Td[1+i(7z/ -1) (2.4)

c

. 2.5
WC:mcCp(TC_];l) ( )

where T, and T, are the input and output gas temperature of the compressor and W is
the power consumed by compressor, and ] and N are the shaft moment of inertia and
speed, respectively. Note that 7, is the diffuser output, and the ambient conditions are

set to standard condition and the Mach number is 0.7 as a typical Mach number in
cruise mode [9, 56]. Standard temperature and pressure (informally abbreviated as STP)
are temperature of 273.15 K (0-C, 32°F) and absolute pressure of 100 kPa (14.504 psi,
0.986 atm, 1 bar).

17



2.1.1.3. Combustion Chamber

In the combustion chamber, a large amount of fuel that are supplied through fuel
spray nozzles, is burned with extensive volumes of air that are provided by the
compressor. The releasing heat is performed such that the mixture gas is expanded and
accelerated to provide a smooth and uniform stream of heated flow. This task must be
accomplished with the minimum loss in pressure and with the maximum heat release
within the limited space available. In other words, the combustion chamber represents
both the energy accumulation and the volume dynamics between the pressure
compressor and the pressure turbine at the same time [19, 22]. The following equations

express the dynamics of the combustion chamber:

P, =%Tw R - 2.6)
I,.= Cm [(C e, + 1ecH i, — CpchmT)— Cvch(mc + i, — ity )] (2.7)

where 7,, and P, are the gas temperature and pressure in the combustion chamber

respectively.
2.1.1.4. Turbine

The product of the combustion chamber is forced into the turbine section, where
the high velocity and volume of the gas flow is directed through a nozzle over the
turbine blades. This flow spins the turbine which provides the necessary power for the
compressor. As compressor section, the behavior of the turbine is represented by

performance maps which vary from one engine to another. Again, for a given pressure
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. e
ratio (77;)and a specific fan speed (i) , the mass flow rate is obtained by (7, £).

7 5
where 8 =— and 5:£.
TO PO

Also, the turbine efficiency (77;) is computed from the performance map. In this
thesis we use the performance maps provided by the GSP software. According to these
parameters one can obtained the turbine temperature drop 7, and the mechanical

power W, as:

TT:TCC\}_”T[I_”JJ‘ @8)

) 2.9
WT:mTCP(TCC_TT) (2.9)

2.1.1.5. Nozzle

The nozzle is the exhaust duct of the jet engine. This is the final component of a jet
engine which actually produces the thrust [22, 19]. The energy depleted airflow that
passed the turbine, in addition to the colder air that bypassed the engine core, produces
a force when exiting the nozzle that acts to propel the engine, and therefore the
airplane, forward (or for the electrical generator this power is used to spin the shaft of
the generator). The combination of the hot air and cold air are expelled to produce an
exhaust, which causes a forward thrust. The relation between the input and output
temperature of the nozzle T, and T, , respectively, is represented by the following

equation:
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T -T :n-q"l—fﬁﬂ]a (2.10)

In the next subsection, we summarize the equations and provide the mathematical

model for the gas turbine engine system.
2.1.2. Complete Healthy Model

Asin [3, 9], we assume that P, =P, and T, =T,. Also, we assume that 7. =7, and
T, =T, where T. and T, are the temperature of input flows to the compressor and

turbine, respectively. Therefore, based on the preceding subsections and the fact that

fan speeds of turbine section and compressor are identical, one can write

ch :C—m[(CpTCmc +77CCHumf _CpTCCmt)_CvTCC<mC +mf _mt )]
N — ﬂmachthP(];c _T;)_mCCP(T; _Td)
2
/4
JN| —
[30j 2.11)
. RT
})t :—M mt +imc _mn
V., 1+
. P_ . T
Pcc =—= 7700 + 7R <~ (mc +m/' _mt)
T’C cc
n T + pm,.T
where T, _ T+ P Te and 7. and 7,are given by

rit, + P

1 1
I.=T,[1+— (7. » =1)]

C

r-1
T, :TCC[l_nT(l_ﬂ"T )]

(2.12)
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Note that we assume P, = P,,,. It follows that the equation (2.11) is the state

equation of the system. The output equation is given by [19]

2.13
y=[NT.,T,P. P (2.13)

In Section 5.1.1, we investigate the effects of different sets of outputs on the FDI

performance.
2.1.3. Faulty Model

In this section, we provide the faulty model of a single spool gas turbine engine.
First, let us to introduce the potential sources of faults in the investigated nonlinear

system.
2.1.3.1. Potential Faults

In this section, we define the faults that are considered in this work. As mentioned
in the previous chapter, fault is summarized as a malfunctioning in one of the system
components. As in other dynamical systems, all parts of a gas turbine engine are
subject to faults. Generally, there are three types of faults, namely component fault,
actuator fault and sensor fault. Investigation and finding the solution of component and
actuator faults are more critical than sensor faults in the gas turbine because for
preventing a sensor fault one can also use hardware redundancy but for the component
and the actuator faults this method is not practical and monitoring the model plays an

important role.

Also, the rotating parts of a gas turbine have high potential to be subjected to the
faults than other parts. For example, a very small crack in the turbine or compressor

blades is propagated easily because of the rotor speed [16]. Therefore, in this thesis, we
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consider five different types of faults, namely:

Decrease in the compressor flow capacity: F,

mc

Decrease in the compressor efficiency: F,.

Decrease in the turbine flow capacity: F,,

Decrease in the turbine efficiency: F,,

Decrease in the effectiveness of the fuel actuator: F,,

where corresponding to the fault free (or healthy) system, one can write

F,=F,.=F,=F,=F,=1. For the faulty system we set 0<F, <1, 0<F, <1,

mc

0<F, =<1, 0<F, <l and 0<F,, <1. For example, F, <l indicates that we have a

fault in the compressor that results in decrease in the compressor efficiency. Note that

F

et

the sever faults are represented by smaller values of F,

me

F ,F

mt >

F.. For instance,
the F, =0.2 denotes a fault in the compressor efficiency with a magnitude of 80%,

where as F,. =0.8 denotes the fault with a magnitude of 20%.

2.1.3.2. State Space Equations

From equations (2.11) and (2.12), it follows that the state space equation of a single

spool jet engine subjected to faults (as introduced above) is given by
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Fo=—1 [(C, T Fytit, +110c H Fyytit, —C, Toi Fy i)

mt* "t

CvaC
- C TCC (Fnumc + F Fmtmt )]
N — nmacthtth (T'cc _T) chmcc (T'c _Td)
2
JN(”)
30
}‘)I :ﬂ len./lt +iFm6mL _m}’l
Vy 1+p
. P . T
PCC = - ]-'CC + }R < (chm( +F le‘ml‘)
T
T +
Note that T,, = _ Tt P Te and 7T, and 7, are given by
m, + B,
71
T.=T,[1+ (me v =1)]
ec'IC

r-1
T :TCC[I_FetﬂT(l_”T )]

and the output equation is given by (2.13).

(2.14)

(2.15)

Remark: Although the outputs T, and T, are subject to faults in the compressor and

turbine efficiencies, respectively, these two faults are considered as sensor faults. The

reason lies on the fact that in the sensor faults the measurements and actual outputs of

the system have a discrepancy while here we assume that the measurement of all the

outputs are accurate. Moreover, the sensor fault does not have any effect on the

dynamics of the investigate system. However, by referring to equations (2.14) and

(2.15), it follows that the faults in the compressor and turbine efficiencies affect the

dynamics of the engine directly.
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2.2. MULTIPLE MODEL APPROACH

The goal of a fault detection and isolation system is to improve the reliability,
availability and safety of a system. As mentioned earlier the traditional method for FDI
is to use the hardware redundancy, and therefore fault diagnosis is achieved by using
extra instruments. By using this approach the number of sensors, components and
actuators increase and it causes an increase in the cost, weight, and complexity [5].
Another approach is to use the relations among the measured variables of different
system parts. This concept is known as analytical redundancy and applies the
redundant analytical relations among the different measured variables. The analytical
redundancy instead of using extra sensors or another equipment uses the mathematical

model of the system [57].

Multiple model (MM) based approach is one of the analytical FDI approaches that
has been proposed and applied to a large class of dynamical systems, such as jet
engines [8, 58, 7, 59, 60, 28]. The goal of the MM approach is to provide a structure
including a bank of filters for isolation and identification of faults. Typically, the filter
used in the MM method is the Kalman filter. Therefore, we first review the Kalman

tilter briefly in the following.
2.2.1. Kalman Filter

The Kalman filter is a set of mathematical equations to produce a statistically
optimal estimation of the underlying system state, recursively [58, 6] . The optimality is
accomplished by minimizing the mean of the squared error [61]. The inputs of this
algorithm are inputs and noisy measured outputs of the investigated linear dynamical
system [61]. The filter is very powerful from several points of view: it supports

estimations of past and present state. Also, practically it has been shown that the
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estimation accuracy is still acceptable even when the precise nature of the modeled
system is unknown and there is uncertainty in the modeling process [61]. Furthermore,
because of the algorithm's recursive nature, it can run in real time using only the
present measurements and the previous estimation information. In other words, no
additional past information is required [62, 1, 63, 64]. Based on these benefits as well as
simplicity of the implementation, this filter has been extensively applied to a wide
range of dynamical systems from chemical processes to flight control problems [61, 65,

66].

The Kalman filter has been extended to nonlinear systems through different
schemes namely the Extended Kalman filter and Unscented Kalman filter [67].
However, in this thesis we focus on the linear Kalman filter. In the following subsection,

the linear Kalman filter is reviewed in more detail.

The Kalman filter tries to estimate the state x € R" of a discretized controlled
system with input signal u€ R' that is expressed by the following linear stochastic

difference equation

x, =Ax,_ +Bu_ +w, (2.16)

where A and B are the dynamic (state) and input matrices, respectively. The
measurement of the systemze R" is given by

2.17
z, =Hx, +v, @17)

The random variables w, and v, denote the process and measurement noise,

respectively. These random variables are assumed to be independent with the Gaussian

probability distributions as
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plw)~N(0,0) (2.18)
p(v)~ N(O,R)

In practice, the process noise covariance Q and the measurement noise covariance
R matrices might change with each time step or measurement, however here we assume

that they are constant.

The Kalman filter can be written as a single equation, however it is most often
conceptualized as two distinct phases, namely as "Predict (Time update)" and "Update
(Measurement Update)" [61]. The predict phase uses the estimate state from the
previous time step to produce a primary estimation at the current time step. This
estimation is also known as the priori prediction (it does not include observation
information from the current time step). In the update phase, the priori prediction is
combined with current observation information to refine the final state estimation for

the current time step. This improved estimate is termed as the posterior estimation [61].

Typically, the two phases alternate, with the prediction advancing the state until
the next scheduled observation, and the update incorporating the observation. Also, if
an observation is unavailable for some reason, the update may be skipped and multiple
prediction steps performed. Likewise, if multiple independent observations are
available at the same time, multiple update steps may be performed (typically with

different observation matrices H,) [61]. These features optimize the computation time,

which is crucial for the online estimation purposes. In the next subsection, the equations

of a typical Kalman filter are provided.
2.2.1.1. Kalman Filter Equations

In this subsection, the equations of the Kalman filter are provided. As mentioned
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earlier, the filter has two set of operations namely predict and update [61]. These two

steps are summarized in Table 2.1 and Table 2.2 where %, is the estimation of x, .

Table 2.1: The time-update phase in the Kalman filter.

Predicted (a priori) state estimate Xyt = BX iy T BU,

. . . — T
Predicted (a priori) estimate covariance Pk\k_l = FkPk-uk—lEc +Qk

Table 2.2: The measurement-update phase in the Kalamn filter.

~ A

Innovation or measurement residual Ww=z,-H s
Innovation (or residual) covariance Se=H.P, H ¢ TR,
Optimal Kalman gain K, =Py, H; +R,
Updated (a posteriori) state estimate ‘)ek\k = ‘)ek\k—l +K,
Updated estimate covariance P Hk = (I-K.H)P, k-1

If the investigated model is accurate (there is no error in the modeling process)

and the values for fco‘o and PO‘O accurately reflect the distribution of the initial state

values which are unknown, then the following invariants are preserv (all estimates have

a mean error of zero):

Elx, _)ek\k] = El[x, _)ek\k—l] =0 (2.19)
E[y,]1=0

where E[-] denotes the expected value operator.
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The covariance matrices accurately reflect the covariance of estimates as follows:

P]{‘k = COV(xk —)%k‘k)
(2.20)

B = cov(x, _)’ek\k—l)

Sy =cov(y,)
2.2.2. Linear Multiple Model

The primary feature of MM approach is a bank of K Kalman filters operating in
parallel. These filters are dynamical systems with a vector of measurements z,and a
vector of actuator control commands u, as inputs and estimated output as the outputs.
At every sample period, each of these K filters produces an estimate of state x/, and a
vector of residuals 7/, for j=12,,...,K . The idea is that the filter which produces the

most well-behaved residuals, represent to the model that best matches the true failure
status of the system [61, 59]. For more clarification, consider following linear system:

x(k+1)= A, x(k)+ B,u(k)+w(k) (2.21)
y(k) = Cx(k)+ v(k)

where w and v are the input and output noise with known variances Q andR,

respectively. If a fault (for example a component fault) occurs at the time instant ,
then 4, =4,,4, , = 4,.In other words, at time k, the matrix A is changed. Therefore,

the dynamics of the system is changed from healthy to a faulty one. In the MM model, a
bank of observers is run in parallel such that each observer simulates a mode of the
system, for example healthy or faulty system. Based on the output error of the observers
(residuals), one can realize the valid observer. In another explanation, if the wvalid
observer (the observer with the minimum output error) is the healthy one, no fault is

detected in the system, otherwise based on which observer is selected then the fault is
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detected, isolated and identified (the observers are constructed for different values of
the fault magnitude). For more clarification assume that we have only two models,

healthy and faulty, respectively as

{xh(k+l) Axh( )+Bhu(k)+vk
y(k) = Cx,(k)+w, (2.22)
{xf(k ) fxf(k)+3fu(k)+vk

(k)=Cx,(k)+w,

where v, and w, are the system and output noise respectively. In the MM approach, an

observer is designed for each model. Therefore, for the above equation, the observers

are given by

{fch(k +1)= Axh(k)+Bhu(k)+L1y(k)
v, (k)= Cx, (k) (2.23)
{ ,(k+ ) fxf(k)+Bfu(k)+L2y(k)

(k)=C

%, (k)

><>

where L, and L, are the gain of the observers. Then based on the output error of the

observers the fault can be detected.

The selection of the valid observer is based on the hypothesis conditional

probability that can be formulated as [3]

p(k)=—L (k) |4, y(k=1))p, (k—1)
> L0, yle=1)p, (=1)

J=

(2.24)

where £ ( y(k)|i,y(k —1)) is the conditional probability density for current measurement

for the ith observer [2].
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Based on the value of p;’s, one can obtain the valid model. For example, assume
that at the time step k, the value of p; is close to one and consequently the value of other
pi’s are close to zero. In other words, the probability of model 1 is higher than the other
models. This information shows that the model 1 is the valid model at the time step k.
This approach is used in the FDI approach so that based on the highest probability one
can determine the valid model. If the valid model is the faulty model the corresponding

fault is detected and isolated.

2.3. CONCLUSION

In the model based FDI approaches, one needs the mathematical model of the
investigated system. In this chapter, the mathematical model of a single spool jet engine
has been reviewed. Generally, this model is a nonlinear dynamical system with four
states, namely the combustion pressure and temperature, fan speed and turbine
pressure. Also, five types of potential faults (that are loss of the turbine and compressor
mass flows and efficiencies and fuel flow) are formulated and the faulty nonlinear
model has been derived. Moreover, the multiple model approach which has a crucial
role in the proposed FDI approach has been briefly reiewed. In particular, we reviewed
Kalman filter that is followed by formulation for the probability of each model in the

multiple model approach.
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Chapter 3: SYMBOLIC LINEARIZATION

3.1. INTRODUCTION

In the engineering area computation usually refers to numerical manipulation
which deals with floating point numbers. However, during the last two decades
another area in mathematics and computer science has increasingly attracted the
attention which is called computer algebra or symbolic computation [20]. In this thesis
this is known as Symbolic Computation (SC). While the numerical manipulation is
performed (possibly with approximation) by the set of arithmetic operations on floating
point numbers, the SC method emphasizes the computations (necessarily exact) on the
mathematical expression containing variables and floating point numbers [20]. Based on
the strong condition of the exact computation, the SC methods cannot be developed for
systems with high complexity. Another limitation of the SC methods is presence of
uncertainty in the investigated system [20]. For example, in the MATLAB software the
equation including approximator unit such as neural networks or lookup tables cannot
be solved by using the SC toolbox [20]. As mentioned earlier in Section 2.1, the Simulink
model that is used in this work includes two lookup tables. Therefore, and based on the
above explanation the linearization on the system (nonlinear single spool jet engine)
cannot be accomplished by using the SC toolbox. However, to obtain the linear faulty
models one needs first to linearize the system symbolically where the faults are
expressed as variables. In this section we propose a novel method to overcome this

problem.
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3.2. A NOVEL SYMBOLIC LINEARIZATION METHOD

In this thesis an approach to utilize the symbolic computation is proposed which is
a cornerstone of the following FDI method explained in next chapters. Generally, the
proposed method is based on this idea that if the faults can be presented by
multiplication of fault variables and output of certain components of the system, then
each component is linearized numerically and the fault symbolic variables are
multiplied in the corresponding outputs. Before going into more details, it must be
mentioned that in order to numerically linearize a Simulink model, one can use the
linearize function that is embedded in MATLAB. The output of this function is four
matrices (i.e. A, B, C and D) which determine the state space equation of the linearized

system [20]. It is worth noting that this function also can be used for the algebraic model
oh

(that is y="A(u)). In this case the output of the function would be y=Du= e and the
u

matrices A, B and C are not defined.

In this section, we first explain the symbolic-based approach for the compressor
and turbine in details. Then the results for the single spool jet engine are provided. Let

us consider the compressor model that is presented in Figure 3.1.
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Compressor Block

Mass flow >
mc
EWL'
. Cc
> Efficiency |
FGC

Temperature ‘ >

\

\

Pcc

Cc

\

Tc

\

Figure 3.1: The compressor decomposition block.
The model of each sub-block in Figure 3.1 is presented by
me = gm(N’PCC)

€c :ge(NaPcc)
T, :gT(eC’PCC)

(3.1)

where m¢, e and T, are the compressor mass flow, efficiency and temperature,
respectively. Also, N and P denote fan speed and combustion chamber pressure. Note
that the sub-block models are algebraic (there is no dynamics in the compressor block).

Therefore, one can represent the compressor subsystem as

y"”’l’ = |:;}-ZC:| = gcmp (uc‘mp) (32)

where ucp, = [ PN ] Note that each sub-block is an algebraic system. For example, in the
cc

mass flow block up,, is the input and m( is the output. The input for the temperature
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e
sub-block is uy. = [ PCCC]. As mentioned above, one can linearize each block numerically

and our proposed method relates to how one combines these linear systems to obtain
the complete symbolic linearized model. Therefore, let us assume that the linearized
models of the sub-blocks shown in Figure 3.1 are available. It follows that the linear

model of the sub-blocks are given by

me”" cmp
eC Decucmp (33)
Te = Dyuy,
where
Dmc = [chDrlnc’ chDric]
3.4
Dec’ = [F;cDelc’ F;cDezc] ( )

D, =D}, D3]

Note that all sub-blocks in the compressor are algebraic and as mentioned earlier
the linearized system does not have the matrices A, B and C. Therefore, the linear model

of the compressor is given by

YVemp = Dopplh oy
5 {0 0}{ 0 0 }{chpjnc FmCD,fw}
v =\ p2 o] |F.oLD, FDLDL|T| o 0 (3-3)
F.D,  F.D.
) {Dz +F,D)D), FecD;L.D:j

It should be mentioned that one can compute the matrices D,,., D,. and Dr,
numerically and multiply the fault symbolic variables with the corresponding block
output. Hence, one can compute the symbolic linear model of the compressor by using

the numerically linearized model of the sub-blocks that are shown in Figure 3.1.
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Remark: In order to utilize the linearized function in the way explained above, one

should decompose the compressor in sub-blocks such that the fault variables are
multiplied with the output of certain sub-blocks. Also, these sub-blocks are not real
components in the engine. For example, the compressor component may not be
physically decomposed into them. However, we know that combination of these sub-
blocks express the compressor model and capture the nonlinear behaviour of this

component.

We can use the same approach to symbolically linearize the turbine component.
Consider the turbine block of the engine as provided in Figure 3.2. As shown in Figure
3.2, the turbine component can be presented as four interconnected sub-blocks such that

the corresponding faults are multiplied with certain outputs.

Turbine Block
( )
> T
S — » Temperature -
Tcc
| W—
Pcc
A4 - .
Pro: - Efficiency
Tc ﬁi Fe T
—_—l
N—
Pc
—»
. mi
> Mass flow h— >
>
- Bl N
> N -
~ J

Figure 3.2: Turbine block decomposition.
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Note that the sub-block N is the only one which is a dynamical system. In other
words, for the turbine block N is the state, and although T¢¢, Pc¢c and P,,, are the states
for the single spool gas turbine, they are considered as input to the turbine block. Also,
as can be observed from Figure 3.2 by decomposing the turbine component one can
present the faults as the multiplication variable in certain point (efficiency and mass
flow sub-blocks). Note that the symbolic variables denoting the faults (refer to Section
2.1.3.1) are added to the output of the corresponding sub-blocks. We merge these four
sub-blocks by using the method explained earlier to obtain a single state space model
for the turbine. Therefore, the turbine subsystem has the fault variable in the matrices A,

B, C, D (the state space model for the turbine). The nonlinear model of the turbine is

given by
N = gtr(N’utr)
T, (3.6)
ytr = mt = h(N’utr)
N
Tee
Pec
where u;, =|Pnoz|[and N is the fan speed.
Tc
Pc

Recall that T;; and P;; are combustion chamber temperature and pressure,
respectively. Also, P,,,, T¢ and P are the nozzle pressure and compressor temperature

and pressure, respectively. The nonlinear model of the sub-blocks shown in Figure 3.2 is

given by
N:gN(N’uN) (3.7)
Yy =N
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T, :grz(un)
mt :gmt(umt)

(3.8)
et = gel (uet)

where T, m, and e, are the turbine temperature, mass flow and efficiency, respectively
Also,

3

Q

P

cc

t T H umt = b uet = })noz (39)
F,

Q

N
=
|
m~° mﬂ
u:
S
|
8 a0
DN

~
S]
N

3

o
o
=

The linear model of these blocks are given by

N=A,N+B,u,

(3.10)
yy=N
T, = Dyuy,
11
mt = Dﬂll un‘lt (3 )
e=D,u

et et

Integration of the above sub-blocks result in the following faulty linear model for
the turbine that is given by

N = AtrN+Btrutr
ytr = CtrN+D u

wtr

where
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A, =A,+ByD!F +ByD:;D.F

mt~ mt et” et

3.12
8, =[8,.00.5.8, )+ 53[D}..0}.0;,.0.0] 12
+ [O’FetBlf/DTS"tDelt’FetBISVDZS"tDezt’O’O:I-i_ [FmtB;fD:nt’FmtBlé\l/Drit’FmtBIA\‘/Djzt’O’O]
and
0 DZS‘tD:tFet 0
C,=1[+ 0 + 0
0 0 D, F, (3.13
(p,.0;.0},.00)| [(0.F,D;D,.F,D;D2.00) 0ps
D tr = 01><5 + 01><5 + 01><5
01><5 01><5 (FmtDr]nt ’FmtDrit b FmtDr?'tt ’0’0)

where the superscripts denote the elements of the corresponding vector (or row-vector).

For example, D, denotes the first element of D,, or B, denotes the forth element of B, .

Based on the assumption that there is no fault in the nozzle and combustion

chamber block, one can linear these blocks numerically. The linear model of the nozzle

is given by
PIIOZ = AHOZR’IOZ + Bnozunnz (3 . 1 4)
ynoz = noz

. T,
where B,,, is the nozzle pressure and u,,, = [mt ] Note that A,,, and B,,, are 1x1
t

and 1 X 2 matrices, respectively. The linear model of the combustion chamber is also

given by
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W,
T T, P
‘CC — ACC|: CC:| + BCC C
P.. Fec T, (3.15)

where A¢c and By are 2 X 2 and 2 X 4 matrices, respectively.

In the next section, we provide the linear model of the single spool gas turbine by

using the linear models of the compressor, turbine, nozzle and combustion chamber.
3.3. COMPLETE SYMBOLIC LINEAR MODEL

In this section, we summarize the symbolic linearize model of the single spool gas
turbine. As mentioned earlier, we need to decompose the component such that the fault
variables are multiplied to the corresponding outputs. Figure 3.3 shows the

decomposition of the single spool gas turbine.

|_ > Govemor [
i T
. Umy
| L2
——p — — — 4} ] Combustion | _|_ _____
r e : Chamber .:
| e | T 1 ’;1
m : W tr
: o A R R e o I
1 (.. 2] (BB L
—A C: - .

L Compressor -~ [7.. 2] A Turbine
— P — N — =] [
——

|
—— - | P

iT
(Z,.B,] (L,.B] T |
vMr |
L

[E—— Intake Nozzle >
(Zamse Poms] [T.2]

Figure 3.3: The single spool gas turbine in which compressor and turbine decomposed in the
sub-blocks (also see Figure 3.1 and Figure 3.2).
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Based on the symbolic model of each component (compressor and turbine), one
can find the symbolic linear model of the single spool gas turbine as follows. The linear

model of the system is given by

Xx=Ax+ Bu (3.16)
y=Cx

Tec
where x = Pec

N and u = wf and y is defined in equation (2.13).

PTlOZ

The matrix A is given by

Bé’(zf Bé’é 0 Dé’l Déz 0 Bé’é 3,1 3,2 33 3,4
Al = [ACC ’02><2 ]+ |:Bz’2 82’3 0 Dz’l Dz,z 0 + 82’4 [Ctrn ’ Ctrn > Ctrn 2 Ctrn ]
cc cc c C cc

cmp 2 0

4, =B} B 4, B ]+ [311?4’33"’5{8’ ¥ 0}

cY o2 o o (3.17)
A = [O A ] +B tr, tr, t, t,
3 7 YIx32 “tnoz noz Cl,l C1,2 C1,3 Cl,4
t, t, t, t,
Al
A=|4,
A3
where
1,1 1,2 1,3 1,2 1,3
D[I’ Dli‘ Dll” Dli' D[I’ 0 0
C _ D2,1 D2,2 C D3,3 + DZ,Z D2,3 D
tr, — tr oo tro tr tr tr 0’ cmp ’0
D3 p32 D33 D32 p33
tr r tr r tr

The input matrix is given by
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11
wa B

_| FyB (3.18)

and finally the output matrix is provided by

Cl
C2
ool e (3.19)
3
C4
_C5 i
where
0 0
I M N
¢, =lo. 2, . 0% 0]
(3.20)

r 27t 2 0 O cmp ’0

:[D3,1 D32 3 D3"3]+[D3"4 DM—{O D 0}

G,
C, [CCC ) 02><2]
Cs = 01><3 > 1]

Note that each element of the linear system matrices is a symbolic polynomial of
the faults values. Also, based on the fact that a single spool engine is a strictly proper
system [54, 16], the matrix D is always equal to the zero matrix. In order to obtain a
faulty system with certain fault magnitude, one can substitute the corresponding value

F

et?

of the fault parameters (F

mc?

F ,F

mt

F,) in the symbolic state space model

represented by equations (3.17) to (3.20).
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3.4. SIMULATION RESULTS

In this section, we simulate the linearized system that is obtained in the previous
section for the fault free case. Moreover, we compare the linear and nonlinear systems
to show that the linear system can capture the dynamics of the original nonlinear
system. It must be mentioned that the linear system, in fact, includes a set of linear
systems for different operating points. As we explain in the next chapter the different
operating point of the single spool jet engine can be determined by different values of
fuel flow (Wy). We use the operating point with W} € {0.3,0.5,0.7,0.9} (the reason for this
selection is explained in the next chapter) to obtain the linearized systems. The profile of

Wy for the simulations below is shown in Figure 3.4.

Time(sec)
Figure 3.4: One profile of the fuel flow selected for the healthy scenario.

The outputs of the linear and nonlinear systems are summarized in Figure 3.5 to

Figure 3.9.
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Figure 3.5: The output N of the linearized and the original system for the healthy scenario.
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Figure 3.6: The output T of the linearized and the original system for the healthy scenario.
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Figure 3.7: The output Ty of the linearized and the original system for the healthy scenario.
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Figure 3.8: The output P, of the linearized and the original system for the healthy scenario.

44



.
o

N

Turbine pressure

3.5

Time(sec)

Figure 3.9: The output Py of the linearized and the original system for the healthy scenario.

It should be mentioned that the initial conditions for the simulations are the steady
state values of T¢c , Pcc , N and Pr when Wy = 0.3. In other words, by setting Wy = 0.3,
we run the Simulink model and the steady state values have been selected as the initial
conditions for the simulations. As follows we show the results for different sets of
initial conditions. In order to quantify the ability of the linearized model to capture the
nonlinear model, we define the metric as the mean value of the difference between the

linear and nonlinear models, namely

(3.21)

in which N, is number of all the available simulation data. Also, outi and out}, are the it

data for the investigated output of the linear and nonlinear models, respectively.

The simulation results for different values of the initial conditions are shown in

Table 3.1 where the initial conditions are determined by different values of Wy. Also, for
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each output we use equation (3.21) to compute the average error.

Table 3.1:The average output difference (equation (3.21)) between the nonlinear single spool
and the linear model obtained by the proposed symbolic linearization method.

itial condition

(Wr) 0.1 0.2 03 | 04 | 05 | 06 | 0.7 | 0.8 0.9 1

Outputs
N 33.79 12329 | 1441 | 8 8.8 | 8.11 | 9.67 | 11.69 | 13.49 | 15.05
Tc 143 |1 084 | 0.5 | 025|032 | 033|037 | 043 | 048 | 0.53
Tr 6.67 | 583 | 532 | 4.7 | 545 | 6.21 7 778 | 8.61 | 9.5
P 0.05 | 0.03 | 0.02 | 0.01 | 0.01 | 0.02 | 0.02 | 0.03 | 0.03 | 0.03
Pr 0.03 | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 | 0.02 | 0.02 | 0.02 | 0.02

By considering Figure 3.5 to Figure 3.9 and Table 3.1, it follows that the linearized
model can capture the behaviour of the nonlinear system quite closely. As we shall see

in the next chapter this linearized model can be utilized for the FDI purpose.

3.5. CONCLUSION

In this chapter a novel symbolic linearization method is developed for systems
that cannot be linearized symbolically by using the existing symbolic computation
toolboxes. By using this method, one can obtain the linearized model of a nonlinear
system such that the fault variables are represented as a set of symbolic variables. This
symbolic model enables us to track the effects of each fault in the linear system. Also,
the different faulty models corresponding to different values of the fault can be easily
obtained by substituting the value of the fault in the symbolic model. This method has
been applied to the nonlinear single spool jet engine to obtain the symbolic linearized
system for different operating points. The simulation results have also been provided to
show the capability of the linearized model. These results have been performed for

different set of initial conditions to show the accuracy of the obtained linear models.
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Chapter 4: FAULT DIAGNOSIS OF GAS
TURBINE

In this chapter, we provide the FDI logics that is used in this thesis for single fault
scenarios. In the next chapter, we provide a hierarchical structure for multiple fault
scenarios. The main difference between this approach and the approach proposed in [2]
can be viewed in the decision making unit. Here, we introduce a methodology to
measure the detection and isolation time. For this purpose, one needs to define a
threshold. This threshold is defined on the probability values rather than on the

observer errors. This threshold is obtained by Monte Carlo simulations.
4.1. MODIFIED MULTIPLE MODEL

As well-known, at a sufficiently small vicinity of each operating point, the
dynamics of a nonlinear system can be captured by a linear model [2], and hence in this
region the healthy and faulty models (that are used in multiple model approach) can be
expressed by the corresponding linear models. Therefore, one can accomplish the FDI
objective by using the linear multiple model provided that the original system operates

in this vicinity.

The operating points of the jet engine can be determined by the value of the fuel
flow (i.e. Wy) [2]. If the system works at different operating point one can discretize the
W into different intervals such that in each interval a linear model captures the
behavior of the original system. Then using the obtained models for different operating
points one performs the FDI objective. In this approach, we modify the multiple model

(MM) approach that is proposed in [3], which is a standard MM, equipped by a tool to
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select the correct linear bank of observers that are based on the value of W; for
distinguishing the fault detection and isolation. This enables us to quantify the multiple
model approaches which is useful for comparison purposes. In the proposed approach,
the current bank of observers in the MM method is selected based on the value of W;.
Then the current operating mode of the engine (healthy or faulty) is determined based
on the maximum probability of the current operating point that is selected based on the
value of W;. Finally, by defining a threshold on the model probabilities one can detect

and isolate the faults.

Furthermore, we show that with a smaller set of operating points as compared to
[3], the FDI objective can be accomplished. Moreover, it should be noted that in the
proposed method one needs to linearize the nonlinear model once, while in the
approach proposed in [2], for each fault, the nonlinear model must be linearized
separately. Therefore, our proposed method has lower computational cost, although as
we shall see in Section 4.2.6, the FDI approach is accomplished with the same accuracy

as that obtained in [2]. Below, we define a methodology for the FDI logic.
4.1.1. FDI Logic for Single Faults

As mentioned in Chapter 1, in the multiple model approach the probability of
different model enables us to determine the valid model. If the valid model is the
healthy one, then no fault is detected otherwise based on which model is valid the
corresponding fault is detected and isolated. However, when a fault occurs in the
system, it generally takes some time so that the probability of a corresponding model

reaches an acceptable level. For further clarification, consider the following Figure 4.1.
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Figure 4.1: The probability of multiple model for the scenario in which a fault occurs in the
compressor efficiency at #=5sec. It takes 1 sec for the probability of the corresponding model reaches to
0.91 (Pydenotes the healthy mode and P, — P¢ correspond to various faulty cases).

As can be observed from Figure 4.1, the probability of the healthy mode before the
fault occurrence is not exactly equal to one, and also there are some small fluctuation in
the probabilities which may result in false alarm flags. To overcome this problem, we
define a threshold such that the valid model is the model with a probability larger than
this threshold. In other words, if any probability is lower than this threshold the
corresponding model is not valid (refer to Figure 4.1). In this thesis, we assume the
threshold 7hr =0.91. We obtain this threshold after fifty (50) runs by using flag
generated Monte Carlo simulations randomly generated scenarios corresponding to

different operating conditions for the healthy case such that there are no false alarms.

Moreover, it follows from Figure 4.1 that the probability of the healthy model
decreases before the corresponding fault model probability reaches the threshold.
Hence, by defining the threshold one can obtain the detection time (the time instant that

probability of the healthy model exceeds the threshold and decreases) and the isolation
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time (the time when the corresponding faulty model passes the threshold and remains
above it). The isolation and detection times are shown in Figure 4.1. In the reminder of
this chapter the detection and isolation times are determined by using the method that

is explained above.
4.1.2. Normalization

In this section, we provide a method to decrease the false alarm flags that are
caused by noisy measurements. For the noise free case, the FDI method can detect and
isolate the faults. However, in the presence of noise the number of false alarms increases
significantly. For example assume a fault scenario in which a fault in the compressor
efficiency occurs at t = 5 sec with a magnitude of 0.02 (foc = 0.98). The simulation result
for the bank obtained (by using the proposed method in Section 4.1) is shown in Figure

4.2. On the other hand, the result for noisy measurement is provided in Figure 4.3.

Py Py

08
061
041

0.2

PPy iP5 Py

1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20
Time(sec)

Figure 4.2: The simulation result for the fault which occurs at t=5 sec in compressor efficiency
(noise free measurement).
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Figure 4.3: The simulation result for the fault which occurs at t=5 sec in compressor efficiency
(noisy measurement).

In order to address this problem we normalize the output of the models by using a
set of multiplicative factors. These scaling numbers are also used for the actual
corresponding measurements. Towards this end the following vector is used for this

purpose
[12000,590,900,8,3]

where 12000, 590, 900, 8 and 3 represent the nominal values of the outputs y; to ys ,
respectively in equation (2.13). The simulation results for the same scenario shown in
Figure 4.3 is now provided in Figure 4.4. However, as can be seen the detection and

isolation times are increased in this case (as compared to Figure 4.2).
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Figure 4.4: The simulation result for the fault which occurs at #=5 sec in compressor efficiency
(modified and normalized output).

4.1.3. Determining the Operating Points

As mentioned earlier, in this thesis we use a set of bank of filters where each filter
is valid for a vicinity of an operating point. With higher number of filters the results are
more accurate however the computational cost will be higher too. Therefore, there is a
trade-off between the number of operating points and computational cost. In this
subsection, we obtain the minimum number of operating points such that all the

considered faults are detectable.

To obtain the minimum interval between the operating points, we use a bank that

is obtained for W, =0.9 (the typical value of the fuel flow for the cruise mode changes

from 0.85 to 0.95 [2]). The proposed FDI approach is then performed for single fault

scenarios for different values of w,. Table 4.1 shows the results of the FDI for all faults

where x and v denote the false alarm flag and correct detection and isolation flag,

respectively. Note that the FDI logic that was explained in the preceding subsection was
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used to obtain the resolution Table 4.1.

Table 4.1: The FDI results for different incremental changes of nominal Wy and W; = 0.9 in
which the bank of observer is constructed. The symbol x denotes false alarm flag.

ncremental Change from
ominal W f
0.05 0.1 0.2 0.25 0.3
Faults
S v v v X X
foe v v v V X
St v v v X X
e \/ \ \ X X
f‘wf \/ \/ \/ \/ X

It follows from Table 4.1 that the incremental changes of 0.05, 0.1 and 0.2 yield
acceptable FDI results. According to the fact that with an interval of 0.2 we need less
bank of observers we select the interval as 0.2. Therefore, we construct the banks for
W, ={0.3,0.5,0.7,0.9}. Note that although the typical value of the ¥, is between 0.85 and
0.95, however the banks of observers for W, = {0.3,0.5,0.7,0.9} are used. In this way, one

can tackle the FDI problem for the other values of ¥, which can occur (not common) in

the cruise mode.
4.2. SINGLE FAULT SIMULATION RESULTS

In this section, the simulation results for different scenarios are provided. The
results are categorized into several subsections corresponding to various scenarios. In
the single fault scenarios, a comprehensive set of results for different magnitudes of
tfaults are provided. Furthermore, the simulation results by using the approach that is

proposed in [2] are also reported in this section for comparative study. Finally,
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summarizing tables are provided in the summary subsection of this section.

The simulations are performed on the cruise condition with four different values

of W,=1{0.4,0.55,0.7,0.85} . The ambient conditions are set to standard condition; that is

the Mach number is 0.7 as a typical number in the cruise mode [56]. Standard
temperature and pressure (informally abbreviated as STP) are temperature of 273.15 K

(0-C, 32°F) and absolute pressure of 100 kPa (14.504 psi, 0.986 atm, 1 bar).

By using several linearized models, which are obtained corresponding to several
operating points, we construct the bank of observers (Kalman filters). These operating

points are obtained based on different values of W, . For the simulations we choose as
the nominal W, given by W, = {0.3,0.5,0.7,0.9}, as explained in Section 4.1.3. The

scenarios in this section are as follows:
Scenario I (healthy scenario): In this scenario, no fault occurs in the system.

Scenario II (single fault in the turbine efficiency): In this scenario we assume

that a fault (decrease in the turbine efficiency) occurs at the time instant t =5 sec.

Scenario III (single fault in the compressor efficiency): In this scenario a fault

(decrease in the compressor efficiency) occurs at the time instant t =5 sec.

Scenario IV (single fault in the mass flow of turbine): This scenario simulates a

fault (decrease in the turbine mass flow) which occurs at the time instant t =5 sec.

Scenario V (single fault in the mass flow of compressor): This scenario simulates

a fault (decrease in the compressor mass flow) which occurs at the time instant t =5 sec.

Scenario VI (single fault in the effectiveness of fuel flow): In this scenario a loss
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of fuel flow effectiveness occurs at the time instant t =5 sec.

Note that the above scenarios with certain magnitudes are provided in the

following subsections. Each subsection is devoted to a specific magnitude. Also, we

show the results for, =0.85 and the results for the other values of W, are only

summarized in Section 4.2.6.

4.2.1. Faults with Magnitude 2%

In this subsection, the simulation results for the scenarios I-V are provided. The

magnitude of all the faults is 2%. The faulty models that are used for this subsection are

summarized in Table 4.2.

Table 4.2: The different models corresponding to the healthy and faulty modes that are used in
the simulation for each operating point.

Model Mode

#1

#2

#3

#4

#5

#6

Healthy

2% faultin F,

2% faultin F),,

2% faultin F),

2% faultin F,,,

5% fault in Wf

It is worth noting that the minimum detectable magnitude of the fault in the fuel

flow effectiveness (W, ) is 5%. For this reason we only consider this level of fault

severity in W .

4.2.1.1. Scenario I

The simulation results for the healthy scenario are shown in Figure 4.5. The

probability of each model is shown by p, where i denotes the model mode as provided

in Table 4.2. Also, u denotes the value of the probabilities which is between zero and

one.
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Figure 4.5: Simulation result for the healthy scenario by using the proposed method with
W = 0.85. p, denotes the probability of the healthy mode validity (for the mode labels refer to Table
4.2).

The simulation result by using the approach proposed in [2] is provided in Figure

4.6.
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Figure 4.6: Simulation result for the healthy scenario by using the approach proposed in [2] with
W, = 0.85. p, denotes the probability of the healthy model validity (for the mode labels refer to
Table 4.2) .
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4.2.1.2. Scenario 11

In this scenario, one fault occurs in the turbine efficiency at the time instant t = 5
sec. The magnitude of the fault is 0.02 (£, =0.98). Figure 4.7 shows the results for this

scenario. Figure 4.8 shows the results that are obtained by using the approach that is

proposed in [2] for comparison.

P3:P4:P5:Pg

1 1 1 1 1 |
0 2 4 6 8 10 12 14 16 18 20
Time(sec)

Figure 4.7: The simulation result for the scenario II by using the proposed method with W =
0.85. A fault with magnitude 0.02 (F,, = 0.98) occurs in the turbine efficiency at ¢ = 5sec (for the
mode labels refer to Table 4.2).
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Figure 4.8: The simulation result for the scenario II by using the approach proposed in [2] with

W, = 0.85. A fault with magnitude 0.02 (F,, = 0.98) occurs in the turbine efficiency at t = 5sec (for the
mode labels refer to Table 4.2).

4.2.1.3. Scenario III
In this scenario, one fault occurs in the compressor efficiency at time instant t = 5

sec. The magnitude of the fault is 0.02 (F,, =0.98). Figure 4.9 shows the result for this

scenario. Figure 4.10 shows the results that are obtained by using the approach that is

proposed in [2] for comparison.
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Figure 4.9: The simulation result for the scenario III by using the proposed method with
W, = 0.85. A fault with magnitude 0.02 (F,, = 0.98) occurs in the compressor efficiency at t = 5sec (for
the mode labels refer to Table 4.2).
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Figure 4.10: The simulation result for the scenario III by using the approach proposed in [2] with
W, = 0.85. A fault with magnitude 0.02 (F,, =0.98) occurs in the compressor efficiency at t = 5sec (for
the mode labels refer to Table 4.2).
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4.2.1.4. Scenario IV

In this scenario, we assume that the system is subjected to a fault in the turbine

mass flow at time instant ¢ = 5 sec. The magnitude of the fault is 0.02 (F,, = 0.98). Figure

4.12 shows the results that are obtained by using the approach that is proposed in [2] for

comparison.
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Figure 4.11: The simulation result for the scenario IV by using the proposed method with
W, = 0.85. A fault with magnitude 0.02 (F),, = 0.98) occurs in the turbine mass flow at t = 5sec (for
the mode labels refer to Table 4.2).
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Figure 4.12: The simulation result for the scenario IV by using the approach proposed in [2] with
W, = 0.85. A fault with magnitude 0.02 (F,,, = 0.98) occurs in the turbine mass flow at t = 5sec (for
the mode labels refer to Table 4.2).

4.2.1.5. ScenarioV

In this scenario a fault occurs in the compressor mass flow at t = 5sec. the

magnitude of the fault is 0.02 (£, =0.98). Figure 4.14 shows the results that are

obtained by using the approach that is proposed in [2] for comparison.
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Figure 4.13: The simulation result the for scenario V by using the proposed method with
W, = 0.85. A fault with magnitude 0.02 (F),. = 0.98) occurs in the compressor mass flow at ¢ = 5sec
(for the mode labels refer to Table 4.2 ).
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Figure 4.14: The simulation result for the scenario V by using the approach proposed in [2] with
W, = 0.85. A fault with magnitude 0.02 (F),. = 0.98) occurs in the compressor mass flow at ¢ = 5sec
(for the mode labels refer to Table 4.2)
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4.2.2. Faults with Magnitude 5%

In this subsection, the simulation results for the scenarios I-V are presented. The

magnitude of all the faults is 5%. The faulty models that are used for this subsection are

summarized in Table 4.3.

Table 4.3: The different models corresponding to the healthy and faulty modes (5% magnitude)
that are used in the simulation for each operating point.

Model Mode

#1

#2

#3

#4

#5

#6

Healthy

5% faultin F,

5% faultin F),.

5% faultin F),

5% faultin F,

5% fault in W p

4.2.2.1. Scenario 11

In this scenario, one fault occurs in the turbine efficiency at time instant t = 5 sec.

The magnitude of the fault is 0.05 (F,, =0.95). Figure 4.15 shows the result for this

scenario. Figure 4.16 shows the results that are obtained by using the approach that is

proposed in [2] for comparison.
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Figure 4.15: The simulation result for the scenario II by using the proposed method with

W, = 0.85. A fault with magnitude 0.05 (£, =0.95) occurs in the turbine efficiency at t = 5sec (for the
mode labels refer to Table 4.3).
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Figure 4.16: The simulation result for the scenario II by using the approach proposed in [2] with
W; = 0.85. A fault with magnitude 0.052 (£, = 0.95) occurs in the turbine efficiency at t = 5sec (for
the mode labels refer to Table 4.3).

4.2.2.2. Scenario 111

In this scenario, one fault occurs in the compressor efficiency at time instant t = 5
sec. The magnitude of the fault is 0.05 (F,. =0.95). Figure 4.17 shows the result for this

scenario. Figure 4.18 shows the results that are obtained by using the approach that is

proposed in [2] for comparison.
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Figure 4.17: The simulation result for the scenario III by using the proposed method with
W, = 0.85. A fault with magnitude 0.05 (F,, =0.95) occurs in the compressor efficiency at t = 5sec (for
the mode labels refer to Table 4.3).
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Figure 4.18: The simulation result for the scenario III by using the approach proposed in [2] with
W, = 0.85. A fault with magnitude 0.05 (F,. = 0.95) occurs in the compressor efficiency at t = 5sec (for
the mode labels refer to Table 4.3).
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4.2.2.3. Scenario IV

In this scenario, we assume that the system is subjected to a fault in the turbine

mass flow at time instant t = 5 sec. The magnitude of the fault is 0.05 ( £}, =0.95). Figure

4.20 shows the results that are obtained by using the approach that is proposed in [2] for

comparison.
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Figure 4.19: The simulation result for the scenario IV by using the proposed method with
W, = 0.85. A fault with magnitude 0.05 (F,, =0.95) occurs in the turbine mass flow at t = 5sec (for
the mode labels refer to Table 4.3).
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Figure 4.20: The simulation result for the scenario IV by using the approach proposed in [2] with
W, = 0.85. A fault with magnitude 0.05 (£, =0.95) occurs in the turbine mass flow at t = 5sec (for
the mode labels refer to Table 4.3).

4.2.2.4. Scenario V

In this scenario a fault occurs in the compressor mass flow at t = 5sec. the

magnitude of the fault is 0.05 (F,, =0.95). Figure 4.22 shows the results that are

obtained by using the approach that is proposed in [2] for comparison.
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Figure 4.21: The simulation result for the scenario V by using the proposed method with
W, = 0.85. A fault with magnitude 0.05 (F,, = 0.95) occurs in the compressor mass flow at t = 5sec
(for the mode labels refer to Table 4.3).
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Figure 4.22: The simulation result for the scenario V by using the approach proposed in [2] with
W, = 0.85. A fault with magnitude 0.05(F,,, = 0.95) occurs in the compressor mass flow at t = 5sec
(for the mode labels refer to Table 4.3).
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4.2.3. Faults with Magnitude 8%

In this subsection, the simulation results for the scenarios I-V are presented. The

magnitude of all the faults is 8%. The faulty models that are used for this subsection are

summarized in Table 4.4.

Table 4.4: The different models corresponding to the healthy and faulty modes (8% magnitude)
that are used in the simulation for each operating point.

Model Mode #1 #2 #3 #4 #5 #6

Healthy | 8% faultinF,, | 8% faultin F, | 8% faultin F,, |8%faultin F, | 8% faultin W,

4.2.3.1. Scenario 11

In this scenario, one fault occurs in the turbine efficiency at time instant t = 5 sec.
The magnitude of the fault is 0.08 (F,, =0.92). Figure 4.23 shows the result for this

scenario. Figure 4.24 shows the results that are obtained by using the approach that is

proposed in [2] for comparison.
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Figure 4.23: The simulation result for the scenario II by using the proposed method with
W, = 0.85. A fault with magnitude 0.08 (£, = 0.92) occurs in the turbine efficiency at t = 5sec (for
the mode labels refer to Table 4.4).
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Figure 4.24: The simulation result for the scenario II by using the approach proposed in [2] with
W, = 0.85. A fault with magnitude 0.08 (£, = 0.92) occurs in the turbine efficiency at t = 5sec (for
the mode labels refer to Table 4.4).

4.2.3.2. Scenario 111

In this scenario, one fault occurs in the compressor efficiency at time instant t = 5

sec. The magnitude of the fault is 0.08 (F,. =0.92). Figure 4.25 shows the result for this

scenario. Figure 4.26 shows the results that are obtained by using the approach that is

proposed in [2] for comparison.
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Figure 4.25: The simulation result for the scenario III by using the proposed method with
W; = 0.85. A fault with magnitude 0.08 (F,, =0.92) occurs in the compressor efficiency at t = 5sec (for
the mode labels refer to Table 4.4).
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Figure 4.26: The simulation result for the scenario III by using the approach proposed in [2] with
W, = 0.85. A fault with magnitude 0.08 (F,. =0.92) occurs in the compressor efficiency at t = 5sec (for
the mode labels refer to Table 4.4).
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4.2.3.3. Scenario IV

In this scenario, we assume that the system is subjected to a fault in the turbine

mass flow at time instant ¢t = 5 sec. The magnitude of the fault is 0.08 ( F,, =0.92). Figure

4.28 shows the results that are obtained by using the approach that is proposed in [2] for

comparison.
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Figure 4.27: The simulation result for the scenario IV by using the proposed method with
W, = 0.85. A fault with magnitude 0.08 (F,,, =0.92) occurs in the turbine mass flow at t = 5sec (for
the mode labels refer to Table 4.4).
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Figure 4.28: The simulation result for the scenario IV by using the approach proposed in [2] with
W, = 0.85. A fault with magnitude 0.08 (F,,, =0.92) occurs in the turbine mass flow at t = 5sec (for
the mode labels refer to Table 4.4).

4.2.3.4. Scenario V

In this scenario a fault occurs in the compressor mass flow at t = 5sec. the

magnitude of the fault is 0.08 (F, =0.92). Figure 4.30 shows the results that are

obtained by using the approach that is proposed in [2] for comparison.
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Figure 4.29: The simulation result for the scenario V by using the proposed method with
W, = 0.85. A fault with magnitude 0.08 (F,,. = 0.92) occurs in the compressor mass flow at t = 5sec
(for the mode labels refer to Table 4.4).
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Figure 4.30: The simulation result for the scenario V by using the approach proposed in [2] with
W, = 0.85. A fault with magnitude 0.02 (F,, = 0.92) occurs in the compressor mass flow at t = 5sec
(for the mode labels refer to Table 4.4).
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4.2.4. Faults with Magnitude 10%

In this subsection, the simulation results for the scenarios I-V are presented. The

magnitude of all the faults is 10%. The faulty models that are used for this subsection

are summarized in Table 4.5.

Table 4.5: The different models corresponding to the healthy and faulty modes (10% magnitude)
that are used in the simulation for each operating point.

Model Mode

#1

#2

#3

#4

#5

#6

Healthy

10% faultin F,

10% faultin F),

10% faultin F),,

10%faultin F

mc

10% fault in Wf

4.2.4.1. Scenario 11

In this scenario, one fault occurs in the turbine efficiency at time instant ¢ = 5 sec.

The magnitude of the fault is 0.1 (F,, =0.9). Figure 4.31

shows the result for this

scenario. Figure 4.32 shows the results that are obtained by using the approach that is

proposed in [2] for comparison.
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Figure 4.31: The simulation result for the scenario II by using the proposed method with
W; = 0.85. A fault with magnitude 0.1 (F,, =0.9) occurs in the turbine efficiency at t = 5sec (for the

mode labels refer
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Figure 4.32: The simulation result for the scenario II by using the approach proposed in [2] with
W; = 0.85. A fault with magnitude 0.1 (F,, =0.9) occurs in the turbine efficiency at t = 5sec (for the
mode labels refer to Table 4.5).

4.2.4.2. Scenario 111

In this scenario, one fault occurs in the compressor efficiency at time instant t = 5

sec. The magnitude of the fault is 0.1 (F,. =0.9). Figure 4.33 shows the result for this
scenario. Figure 4.34 shows the results that are obtained by using the approach that is

proposed in [2] for comparison.

76



0.8l
|

060

0.2

0.4
|
\
|
|
I

PP PsPg

1 1 1 1 1 1 1 1 1 |
0 2 4 6 8 10 12 14 16 18 20
Time(sec)

Figure 4.33: The simulation result for the scenario III by using the proposed method with
W; = 0.85. A fault with magnitude 0.1 (F,, =0.9) occurs in the compressor efficiency at t = 5sec (for
the mode labels refer to Table 4.5).
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Figure 4.34: The simulation result for scenario III by using the approach proposed in [2] with
W, = 0.85. A fault with magnitude 0.1(F,. = 0.9) occurs in the compressor efficiency at t = 5sec (for
the mode labels refer to Table 4.5).
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4.2.4.3. Scenario IV

In this scenario, we assume that the system is subjected to a fault in the turbine

mass flow at time instant t = 5 sec. The magnitude of the fault is 0.1 (F,, =0.9). Figure

4.36 shows the results that are obtained by using the approach that is proposed in [2]

for comparison.
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Figure 4.35: The simulation result for the scenario IV by using the proposed method with

W, = 0.85. A fault with magnitude 0.1 (F,,, = 0.9) occurs in the turbine mass flow at ¢ = 5sec (for the

mode labels refer to Table 4.5).
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Figure 4.36: The simulation result for the scenario IV by using the approach proposed in [2] with
W, = 0.85. A fault with magnitude 0.1 (F,,, = 0.9) occurs in the turbine mass flow at ¢ = 5sec (for the
mode labels refer to Table 4.5).

4.2.4.4. Scenario V

In this scenario a fault occurs in the compressor mass flow at ¢ = 5sec. the magnitude
of the fault is 0.1 (F,, =0.9). Figure 4.38 shows the results that are obtained by using

the approach that is proposed in [2] for comparison.

79



1+ e s wwwrﬂwqumwwww At e o A Al e e e o
H Py r Ps
)
08 |
/|
|
| ‘
060 1
. |
041 |
| ; ‘
L
0.21) ‘
)
‘ v\ J PyP3:P4:Pg
07 ) o VS
| | | | | | | | | |

Time(sec)

Figure 4.37: The simulation result for the scenario V by using the proposed method with
W, = 0.85. A fault with magnitude 0.1 (F,,, =0.9) occurs in the compressor mass flow at ¢ = 5sec (for
the mode labels refer to Table 4.5).
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Figure 4.38: The simulation result for the scenario V by using the approach proposed in [2] with
W, = 0.85. A fault with magnitude 0.1 (F,,. =0.9) occurs in the compressor mass flow at ¢ = 5sec (for
the mode labels refer to Table 4.5).
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4.2.5. Effectiveness Loss of Fuel Flow

In this scenario, we assume that a loss of effectiveness occurs in the fuel flow

actuator at t = 5 sec. The simulation results for different magnitudes of faults are

provided as follows.

4.2.5.1. Fault with Magnitude 5%

Figure 4.39 and Figure 4.40 provide the simulation results for the scenario VI

which simulates a single fault in the fuel flow actuator occurring at t = 5sec with a

magnitude of 0.05 (F,, =0.95).
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Figure 4.39: The simulation result for the scenario VI by using the proposed method with

W; = 0.85. A fault with magnitude 0.05 (F,, = 0.95) occurs in effectiveness of fuel flow actuator at

= 5sec (for the mode labels refer to Table 4.2).
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Figure 4.40: The simulation result for the scenario VI by using the approach proposed in [2] with
W; = 0.85. A fault with magnitude 0.05 (F,; = 0.95) occurs in effectiveness of fuel flow actuator at ¢

= 5sec (for the mode labels refer to Table 4.2).
4.2.5.2. Fault with Magnitude 8%

Figure 4.41 and Figure 4.42 provides the simulation results for the scenario VI

which simulates a single fault in the fuel flow actuator occurring at t = 5sec with a

magnitude of 0.08 (F,, =0.92).
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Figure 4.41: The simulation result for the scenario VI by using the proposed method with
W; = 0.85. A fault with magnitude 0.08 (F,, = 0.92) occurs in effectiveness of fuel flow actuator at ¢

= 5sec (for the mode labels refer to Table 4.4).
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Figure 4.42: The simulation result for the scenario IV by using the approach proposed in [2] with

W; = 0.85. A fault with magnitude 0.08 (F,, = 0.92) occurs in effectiveness of fuel flow actuator at t

= 5sec (for the mode labels refer to Table 4.4).

83



4.2.5.3. Fault with Magnitude 10%

Figure 4.43 and Figure 4.44 provides the simulation results for the scenario VI
which simulates a single fault in the fuel flow actuator occurring at t = 5sec with a

magnitude of 0.1 ( F,

, =0.9).
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Figure 4.43: The simulation result for the scenario VI with W = 0.85. A fault with magnitude
0.1 (F,, =0.9) occurs in effectiveness of fuel flow actuator at f = 5sec (for the mode labels refer to

Table 4.5).
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Figure 4.44: The simulation result for the scenario IV by using the approach proposed in [2] with
W; = 0.85. A fault with magnitude 0.1 (£, = 0.9) occurs in effectiveness of fuel flow actuator at t =

5sec (for the mode labels refer to Table 4.5).

4.2.6. Summary

In this subsection, we have summarized the simulation results for different values

of Wy ={0.4,0.55,0.7,0.85} . The results are provided in Table 4.6 to Table 4.13.

Table 4.6: The summary of simulation results for different values of wy by using our proposed

approach. 7, and f; denote the detection and isolation times, respectively. The magnitude of the faults
is equal to 2%.

Scenarios | Scenario Il Scenario Scenario Scenario V
111 vV
Fuel flow b |t |ty |t |, | |, |
w, =04 642 | 7.7 | 5.66 | 6.62 | 589 | 7.18 | 6.63 | 13.06
w, =0.55 597 | 7.27 | 535 | 6.23 | 5.61 | 6.62 | 5.72 | 7.83
w, =07 6.31 | 7.73 | 546 | 6.13 | 553 | 6.55 | 5.38 | 6.32
w, =0.85 6.32 | 7.87 | 536 | 6.23 | 552 | 6.4 | 5.44 | 6.95
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Table 4.7: The summary of simulation results for different values of w; by using the proposed
approachin [2]. 7, and #, denote the detection and isolation times, respectively. The magnitude of the
faults is equal to 2%.

Scenarios | Scenario II Scenario Scenario Scenario V
111 1\Y
Fuel flow S T R L P R R S
w, =04 6.42 | 7.65 | 5.71 | 6.65 | 5.64 | 6.62 | 6.54 | 12.39
w, =0.55 6.22 | 749 | 535 | 591 | 5.6 | 6.55 | 573 | 7.83
w, =0.7 6.32 | 7.7 | 548 | 6.98 | 5.79 | 6.57 | 5.58 | 6.88
w, =0.85 6.04 | 6.15 | 5.36 | 5.82 | 5.58 | 6.02 | 5.38 | 7.14

Table 4.8: The summary of simulation results for different values of wy by using our proposed
approach. 7, and f; denote the detection and isolation times, respectively. The magnitude of the faults
is equal to 5%.

Scenarios | Scenario Il Scenario Scenario Scenario V
I vV
Fuel flow ‘) ‘, ) :, ‘) ‘) ‘) t
w, =04 559 | 6.24 | 5.09 | 543 | 5.26 | 5.59 | 5.36 | 6.21
w, =0.55 579|611 | 51 | 53 | 533|562 514 | 542
w, =0.7 558 | 6.1 | 51 |514|533|562 511|534
w, =0.85 5.58 | 6.09 | 5.09 | 522 | 536 | 559 | 5.1 | 5.33
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Table 4.9: The summary of simulation results for different values of w; by using the proposed
approachin [2]. 7, and #, denote the detection and isolation times, respectively. The magnitude of the
faults is equal to 5%.

Scenarios | Scenario II Scenario Scenario Scenario V
il v
Fuel flow ‘) ‘, ‘) ‘ ‘) ‘ ‘) t
w, =04 5.94 | 6.34 | 512 | 529 | 5.38 | 5.56 | 5.38 | 5.83
w, =0.55 573 | 6.13 | 5.11 | 5.32 | 5.36 | 557 | 5.12 | 5.42
w, =07 553 | 6.1 |5.08 527|552 | 57 | 519|542
w, =0.85 5.58 | 5.71 | 5.08 | 52 | 535|542 | 5.14 | 5.27

Table 4.10The summary of simulation results for different values of w; by using our proposed
approach. 7, and ; denote the detection and isolation times, respectively. The magnitude of the faults

is equal to 8%.

Scenarios | Scenario II Scenario Scenario Scenario V
I v
Fuel flow ‘) ‘ ‘) ' ‘) ‘ ‘) t
w, =04 551 | 6.06 | 5.04 | 5.15 | 5.14 | 5.29 | 5.15 | 5.58
w,=0.55 551|573 | 5.05| 509|526 | 548 | 5.09 | 5.19
w,=0.7 55 | 5.88 | 504 | 507 | 526 | 5.34 | 5.08 | 5.19
w, =0.85 552 | 58 |5.04 | 511 | 5.25 | 5.37 | 5.07 | 5.19
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Table 4.11: The summary of simulation results for different values of w; by using the proposed
approachin [2]. 7, and #, denote the detection and isolation times, respectively. The magnitude of the
faults is equal to 8%.

Scenarios | Scenario II Scenario Scenario Scenario V
11 vV
Fuel flow

th t th t t t th t

w, =04 552 | 591 | 5.05 | 5.28 | 5.25 | 5.38 | 5.17 | 5.36

w, =0.55 5.66 | 5.86 | 5.05 | 5.08 | 5.26 | 5.37 | 5.08 | 5.16

w, =0.7 547 | 5.85 | 5.04 | 5.16 | 5.27 | 539 | 5.09 | 5.23

w, =0.85 545 | 5.72 | 5.04 | 5.07 | 525 | 539 | 5.1 | 5.17

Table 4.12: The summary of simulation results for different values of wy by using our proposed
approach. 7, and f; denote the detection and isolation times, respectively. The magnitude of the faults
is equal to 10%.

Scenarios Scenario II Scenario Scenario Scenario V
11 v
Fuel flow
t, |t |ty |t |ty |t |ty |t
w, =04 5.7 | 585 |5.04|516 | 5.12 | 5.37 | 5.11 | 5.36
w, = 0.55 547 | 5.61 | 5.03 | 5.07 | 5.24 | 5.33 | 5.08 | 5.15
w, =0.7 5.46 | 5.83 | 5.03 | 5.05 | 525 | 5.38 | 5.08 | 5.16
w, =0.85 536 | 561 | 503|509 | 51 | 5.37 | 5.05 | 5.15
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Table 4.13: The summary of simulation results for different values of w; by using the proposed

approachin [2]. 7, and #, denote the detection and isolation times, respectively. The magnitude of the

faults is equal to 10%.

Scenarios | Scenario II Scenario Scenario Scenario V
I1I vV

Fuel flow by |t |ty |t |, |t |t |t
w, =04 547|577 | 506 | 53 |5.21 (535|514 |5.29
Wf=0-55 5.44 | 5.77 | 5.04 | 5.18 | 5.25 | 5.34 | 5.08 | 5.22
w, =0.7 544 | 5.75 | 5.03 | 5.09 | 5.25 | 5.32 | 5.08 | 5.16
w, =0.85 543 | 56 | 5.03 | 513 | 523|532 |5.05]|5.13

It follows from the results provided in the above tables that

1. By increasing the magnitude of a fault not only the detection time decreases
(which is expected because of the difference between the faulty and the
healthy systems), but also the isolation time is lower as compared with smaller
fault magnitudes.

2. Although our proposed method has lower computational cost (note we
symbolically linearized the jet engine only once), the detection and isolation
times are almost the same another ones obtained by using the approach

introduced in [2].

4.3. NUMBER OF OBSERVERS

In the previous section, the number of modes in the multiple model is equal to 21

(that is one healthy mode and 20 faulty modes (for different values of W) as shown in
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Tables 4.2 to 4.5). In this section, we investigate the impact of the banks with larger
number of modes (observers) in our proposed approach. A bank with larger number of
tilters enables one to identify the fault magnitudes more accurately (that is higher
resolution). However, increasing the number of the filters can decrease the efficiency of
the MM method [7]. In this part, we run all the filters (one healthy model and 20 faulty
models for the fault 2%, 5%, 8% and 10%) in parallel. However, we investigate the
scenarios that the injected fault severities are not equal to these values. In other words,
the injected faults have the severities 3%, 6%, 7% and 9% in the scenarios II-V in the

previous section.

In this section, the probabilities of different modes are defined in follows: p;
denotes the probability of the healthy mode. p,, p;, p11 and p;5 denote the modes
corresponding to F,, =098, F,, = 0.95, F,; =0.92 and F,, = 0.9, respectively. The
probabilities of the modes corresponding to F,. =0.98, F,, =0.95, F,. =0.92 and
F,. = 0.9 are shown by pj3, pg, p12 and pye, respectively. p,, po, P13 and p;; denote the
probabilities of the modes corresponding to F,, = 0.98, F,, = 0.95, F,; = 0.92 and
Fne = 0.9, respectively. The faulty modes F,. =098, E,. =095, F,. =092 and
Epnc = 0.9 are denoted by ps, p1o, P14 and pyg, respectively. Finally, pg, 19, P20 denote the

faulty modes corresponding to F,, s = 0.95, F,s = 0.92 and F,,; = 0.9.

Figure 4.45 to Figure 4.48 show the results for scenario II with the magnitudes 3%,
6%, 7% and 9%. As can be seen in these figures, the filter which simulates the fault with
lower to the injected fault is valid. For example, in Figure 4.46 filter with magnitude 2%

is valid for fault 3%.
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Figure 4.45: The simulation result for the scenario II by using our proposed method. A fault with

magnitude 3% (F,, =0.97) occurs in the compressor efficiency at t = 5sec (in this simulation we run
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all filters in parallel).
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Figure 4.46: The simulation result for the scenario II by using our proposed method. A fault with

magnitude 6% (F,, =0.94) occurs in the compressor efficiency at t = 5sec (in this simulation we run

all filters in parallel).
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Figure 4.47: The simulation result for the scenario II by using our proposed method. A fault with
magnitude 7% (F,, = 0.93) occurs in the compressor efficiency at t = 5sec (in this simulation we run

all filters in parallel).
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Figure 4.48: The simulation result for the scenario II by using our proposed method. A fault with
magnitude 9% (£, = 0.91) occurs in the compressor efficiency at ¢ = 5sec (in this simulation we run

all filters in parallel).

The results of all scenarios are summarized in Table 4.14. In this table, it is shown
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the valid filter is shown by the corresponding fault. For example the valid filter for

Scenario II with a magnitude 3% is the filter simulate the faulty model for F,, = 0.98.

Table 4.14: The summary of simulation results for different severity of faults such that these

magnitudes are not match with the filters.

. ault Severity 39 6% 79 99,
Scenario
II F,; =0.98 F,; = 0.95 F,; =092 F,; = 0.92
III F,. =0.98 F,. = 0.95 F,. = 0.95 F,. =0.92
1A% Fn: =098 Fpe = 0.95 Fre = 0.95 Not Isolated
\Y E,. =0.98 E,. = 0.95 E,. = 0.95 E,. = 0.92

As can be seen from Table 4.14, except for Scenario IV (fault in m;) with
magnitude 9%, the faults are accurately detected and isolated, although the magnitudes

of the fault cannot be determined. The result for this scenario is shown in Figure 4.49.
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Figure 4.49: The simulation result for the scenario I'V by using our proposed method. A fault
with magnitude 9% (£, = 0.91) occurs in the compressor efficiency at f = 5sec (in this simulation we

run all filters in parallel).

One reason for this result lies on the fact that the filters corresponding to F,,; =

0.92 and F,;;; = 0.9 are almost the same after the faults these two filters have the highest

93



probabilities. Note that in this case, the fault is accurately detected.
4.4. CONCLUSION

In this chapter, the FDI logic that is used in this thesis is presented. In the
proposed method a set of observer banks is used for the FDI propose. This method has
been applied to the single spool gas turbine. The banks of Kalman filters are constructed
based on different operating points that are determined by the value of the fuel flow. It
is shown that by considering a predefined threshold for the model probabilities one can
decrease the false flags. By using this technique, it is shown that if the operating points

that are selected such that AW, =0.2 the proposed method can detect and isolate all

faults that are introduced in Chapter 1.
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Chapter 5 MODIFICATIONS TO THE FDI
APPROACH

In this chapter, two further issues related to the proposed approach are
investigated. We first address the multiple-fault scenarios in which the FDI approach
introduced in the previous chapter is not applicable. Then the robustness of the FDI
method with respect to total faults in the sensors is investigated. This study not only
shows the applicability of the proposed method in the sensor failure cases, but also

indicates that one can use a smaller set of measurements for the FDI purpose.

5.1. FDI DIAGNOSIS OF MULTIPLE FAULTS

As explained in the previous chapter, the proposed method can detect and isolate
a single fault. However, this approach is not applicable for multiple-fault scenarios. For
instance, Figure 5.1 shows the result of the proposed method for a multiple-fault
scenario. In this scenario, a decreasing fault (with a magnitude of 2%) in the turbine
efficiency occurs at the time instant t = 8sec, and a loss in the turbine mass flow (with a
magnitude of 5%) occurs at t = 20sec. As shown in Figure 5.1, although the proposed

method can detect and isolate the first fault, it is not able to isolate the second fault.
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Figure 5.1: The probability of the models for a multiple-fault scenario. The faults with
magnitude 2% and 5% occur in the turbine efficiency and mass flow at t=8esc and #=20sec, respectively.
The proposed method in the previous chapter cannot isolate the second fault.

Below a modified approach that is proposed in [3, 59] is utilized to overcome the
problem that is shown in Figure 5.1. Note that we apply this method to the linear banks
constructed by the method proposed in Chapter 3. As the method provided in the
previous chapter, the new approach is based on the multiple model methodology. In
this method a bank of observers are run in parallel in order to detect and isolate the first
fault. After the isolation of the first fault the bank is updated with the new structure that

is called the Level 2 bank such that the second fault can be detected and isolated.

More precisely, this method is a hierarchical approach. Based on the assumption
that the engine starts from the healthy condition, first Level 1 banks are active. The
Level 1 banks are those that are used in the previous chapters to detect and isolate the
first fault. It is worth nothing that the active bank is selected based on the value of W}

and at each time only one bank is active (the details for Level 1 banks have been
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provided in Section 4.1). After detection and isolation of the first fault, the
corresponding Level 2 bank (based on the isolated fault and W) is utilized to detect and

isolate the second fault.

Remark: The Level 2 bank used only when the first fault is isolated, and based on the
isolated fault only one Level 2 bank will be activated. Also, after the corresponding
Level 2 bank activation, the Level 1 bank is deactivated. This technique enables us to
decrease the computational cost as compared with the approach in which one runs all
models (models for a single fault and models for multiple faults) in parallel. Moreover,
in this approach we assume that there is no simultaneous multiple fault occurrence and
there is a minimum time interval between the first fault and the second one, and this
minimum time interval is greater than the time is needed to isolate the first fault (for

instance, see Table 4.6).

For more clarification, assume that at the time instant ¢ = ¢, sec the fault F,, =0.98 (a

fault in the turbine efficiency with a magnitude of 2%) is isolated. The corresponding
Level 2 bank for this case is shown in Table 5.1.

Table 5.1: The selected Level 2 bank after isolating the fault F,, = 0.02. Note that all models

include this fault.

Model

#1 #2 #3 #4 #5 #6
Modes

F,=098 | F,=098 | F,=098 | F,=0.98
F,=098 | F,, =098 | F,, =098 | F,, =095

mt mc

Model F. =098 | F,=095

Note that all models include the isolated fault F, =0.98. The model for F,, =0.95
can be viewed as a model with a faultF,, =0.98—0.03. One can construct the Level 2
bank for the other faults in the same way. Table 5.2 and Table 5.3 summarize the Level 1

and Level 2 banks that are used for the faults with a magnitude of 2% in Fg;, Foe, Fine,
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and F,. and 5% in F,.

Table 5.2: The Level 1 bank used for multiple fault diagnosis.

Models
Modes Healthy F,=098 | F,_ =098 | F,=098 | F,. =098 | F,=0.95
Table 5.3: The Level 2 banks that are used for multiple fault diagnosis.
Bank | First
ing Level 2 B
Label | Fault Corresponding Level 2 Bank
F,=098 | F,=098 | F,=098 | F, =098
1 F, | F,=098 | F,=095
F,.=098 | F,=098 | F, =098 | F,,=0.95
F,=098 | F.=098 | F,=098 | F, =0.98
2 F, | F, =098 | F, =095
F,=098 | F, =098 | F, =098 | F,,=0.95
F, =098 | F, =098 | F,=098 | F,, =098
3 F. F . =098 | F , =095
F,=098 | F,=098 | F,. =098 | F,, =095
F,. =098 | F,_=098 | F,_=098 | F, =098
4 F. F =098 | F =095
F,=098 | F,=098 | F,=098 | F,,=0.95
F,=095 | F, =095 | F, =095 | F, =095
5 F. F,=095 | F, =092 '
' ' ' F,=098 | F,.=098 | F,=098 | F, =098

5.1.1. Simulation Results

In this section, we provide the simulation results for the following scenarios. It is

worth noting that all the parameters, except the fault magnitude and occurrence time

are the same as in Section 4.2.

Scenario I (multiple faults in the turbine efficiency and compressor mass flow):

In this scenario we assume that a fault with a magnitude of 2% (decrease in the turbine

efficiency) occurs at the time instant ¢ =8 sec, and then at the time instant =20 sec another

fault with a magnitude of 2% occurs in the compressor mass flow. The results are

shown in Figure 5.2.
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Scenario II (multiple faults in the turbine): In this scenario a fault with a
magnitude of 2% (decrease in the turbine efficiency) occurs at the time instant t =8 sec,
and then at the time instant =20 sec another fault with a magnitude of 2% occurs in the

turbine mass flow. The results are shown in Figure 5.3.

Scenario III (multiple faults in the turbine efficiency and fuel flow): This
scenario simulates multiple faults (decrease) in the turbine efficiency and fuel flow
which occur at the time instant t =8 sec and =20 sec with magnitudes 2% and 5%,

respectively. The results are shown in Figure 5.4.

Scenario IV (multiple faults in the compressor mass flow and fuel flow): In this
scenario, multiple faults (decrease) in the compressor mass flow and fuel flow occur at
the time instant t =8 sec and =20 sec with magnitudes 2% and 5%, respectively. The

results are shown in Figure 5.5.

Scenario V (multiple faults in the turbine mass flow and compressor efficiency):
This scenario simulates multiple faults (decrease) in the turbine efficiency and
compressor mass flow and fuel flow which occur at the time instant ¢ =8 sec and =20 sec

with magnitudes 2% and 2%, respectively. The results are shown in Figure 5.6.

Figure 5.2 provides the result of Scenario I by using the proposed Level 2 method.
As can be seen, first the turbine efficiency fault is detected and then the bank label 1 in
Table 5.3 is activated. Then the second fault which is a fault in the compressor mass

flow is detected and isolated.
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Figure 5.2: Simulation results of Scenario I, multiple faults in the turbine efficiency and
compressor mass flow with a magnitude of 2% occurs at t=8sec and t=20sec, respectively.

Figure 5.3 shows the result of Scenario II by using the Level 2 method. As Figure

5.3 shows, first a fault in the turbine efficiency is detected and isolated and again the

bank label 1 in Table 5.3 is activated. However, in this scenario a fault in the turbine

mass flow is detected and isolated as the second fault.
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Figure 5.3: Simulation results of Scenario II, multiple faults in the turbine efficiency and mass
flow with a magnitude of 2% occurs at t=8sec and t=20sec, respectively.
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The result of Scenario III by using the Level 2 method is shown in Figure 5.4.
Again in this simulation, first a fault in the turbine efficiency is detected and isolated,

and then a fault in the fuel flow effectiveness is isolated.

0 5 10 15 20 25 30
Time(sec)

Figure 5.4: Simulation results of Scenario III, multiple faults in the turbine efficiency and fuel
flow with a magnitude of 2% and 5% occur at t=8sec and t=20sec, respectively.
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The result of Scenario IV by using the Level 2 method is shown in Figure 5.5.
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Figure 5.5: Simulation results of Scenario IV, multiple faults in the compressor mass flow and
fuel flow with a magnitude 2% and 5% occur at t=8sec and #=20sec, respectively.

In Figure 5.5, a fault in the compressor mass flow is detected and isolated as the
first fault. Then the bank number 4 in Table 5.3 is activated. The second fault which is a

fault in the fuel flow effectiveness is detected and isolated.

Figure 5.6 shows the result of Scenario V by using the Level 2 method. The first
fault that is a fault in the turbine mass flow is detected and isolated. Then the Bank label
3 is activated and a fault in the compressor efficiency is detected and isolated as the

second fault.
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Figure 5.6: Simulation results of Scenario V, multiple faults in the turbine mass flow and
compressor efficiency with a magnitude 2% occur at #=8sec and t=20sec, respectively.

Table 5.4 summarizes the results corresponding to Scenarios I-V

Table 5.4: The detection and isolation time of scenarios I-V. T|, and T; denote the detection and
isolation time, respectively. In all the scenarios, first fault occurs at t=8sec and second one occurs at

t=20sec.
Scenarios First fault Second fault
Ty T, Ty T,
I 8.36 9.48 20.05 20.11
II 8.35 9.48 20.19 20.82
III 8.35 9.48 20.09 20.17
1AV 8.06 8.17 20.09 20.19
\Y 8.16 8.73 20.2 20.69

5.2. OUTPUT SELECTION

As mentioned in Chapter 2, we consider the following outputs for a single spool

jet engine, that is
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y=|N.7.,1,P..P| (5.1

Ccortyo

where N,T,,T,,P.,P.denote the fan speed, the compressor temperature, the turbine

temperature, the compressor pressure and the turbine pressure. In this section, we show
that with lower number of measurements the FDI can still be accomplished. However,
detection and isolation times are increased. The output selection enables us to
investigate the robustness of the proposed methodology due to loss of measurements.

In this case we analysis two different set of outputs as follow

1. y=[N,T.,P.,P].

2. y=I[I.,P.R].

In this section, we first investigate the system observability for different sets of

outputs which is then followed by the simulation results.
5.2.1. Investigation of the Observability

Let us consider the nonlinear system (2.14), where one can find the linear model

for the different values of W, (recall that the steady state points are determined with

values of Wf ). For example, the fault free linear model for Wf =0.4 is given by
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[-1024 1015 -0.92 0
e 0.09 83 3.2 13.2
3.2 1548  —111 —0.001
.0 -0.001 -0.002 2025
-, 0 1 0 0 ] (5.2)
210 0 2425 001 0
p=| 136 , C=|0.77 —462 0.01 141.25
0 0 0 1 0
L 0 0 0 0 1]

in which we consider equation (5.1) as the output function.

By using the matrices 4and C one can test the observability of the corresponding
linear system. Therefore, we can investigate the observability of the linear systems for

different values of W, and different sets of output equations. Table 5.5 summarizes the

results for this investigation. It is worth noting that the symbols v and x denote that the

corresponding linear system is observable and unobservable, respectively.

Table 5.5: The Observability test results by using different sets of outputs and different values
of VVf . The symbols V and x designate the observability and unobservability, respectively.

Wr 0.4 0.5 0.6 0.7 0.8 0.9
Outputs
[N’;C’])C,B]T \ v v v V V
7. P R) " v :
[PCaPt]T x x x x x x
P x x x x x x
VR, RS v x v J » J
[N,Pt]T x x x x x x
I7..P.] x \ S S v x
T » » » » » »
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As can be observed, for the output sets y = [N T C,PC,B]T the linear models for all

steady state points are observable.
5.2.2. Simulation Results

In the following simulation results, we consider the following scenarios with

Scenario I: A fault in the turbine efficiency occurs at t=5sec with a magnitude of

2% (F, =0.98).

Scenario II: A fault in the compressor efficiency occurs at t=5sec with a magnitude

of 2% (F,, =0.98).

Scenario III: A fault in the turbine mass flow occurs at t=5sec with a magnitude of

2% (F,, =0.98).

Scenario IV: A fault in the compressor mass flow occurs at t=5sec with a

magnitude of 2% (F,,. =0.98).

Scenario V: A loss of effectiveness of fuel flow occurs at t=bsec with a magnitude

of 5% (F,, =0.95).
5.2.2.1. Simulation Results for y, =[N,TC,PC,E]

The simulation results for the Scenarios I to V are shown in Figure 5.7 to Figure

5.11 . In these simulations we consider y, = [N, T, C,PC,R] as the available measurement.

As can be observed from Figure 5.7 to Figure 5.11, the faults in all scenarios are detected

and isolated. Note that the system with y, = [N T C,PC,E]as measurement is observable
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for all value of Wy (Table 5.5).
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Figure 5.7: The probability of the models for Scenario I with y = [N TP F, ] A fault with a

magnitude of 2% occurs in the turbine efficiency at t=5sec.

0.8}

0.6

0.4

0.2

[
“w/h s T A S T R T o s
‘ “J | il 0
|
Yﬂ“‘ 3
u)
|
I
|
i
f
: PiP4Pg:P
J’L" Y Aol VDV SN " [N

0 2 4 6 8 10 12 14 16 18 20

Time(sec)

107



Figure 5.8: The probability of the models for Scenario II with y = [N TP, F, ] A fault with a

magnitude of 2% occurs in the compressor efficiency at t=5sec.
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Figure 5.9: The probability of the models for Scenario III with y = [N TP, P, ] . A fault with a

magnitude of 2% occurs in the turbine mass flow at t=5sec.
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Figure 5.10: The probability of the models for Scenario IV witha y = [N 0, P, t] A fault with

a magnitude of 2% occurs in the compressor mass flow at t=5sec.

AU A
| "
|
! i P2:P3:P4:Pg
‘b‘n LW MULAFMNA IOV RV TERT VU VOOV DADY YR W )

0 2 4 6 8 10 12 14 16 18 20
Time(sec)

Figure 5.11: The probability of the models for Scenario V with y = [N Ao, P, t] A loss of

effectiveness of fuel flow with a magnitude of 5% occurs at #=5sec.

5.2.2.2. Simulation Results for y = [7.,P..P]

The simulation results for the Scenarios I to V are shown in Figure 5.12 to Figure
5.16. In these simulations we consider y= [T ., P ] as the available measurement. By
using y= T, C,PC,B]the system is not observable for all W; (refer to Table 5.5). However,

for 0.7 < W < 0.9, the system is observable. Therefore, as can be observed from Figure

5.12 to Figure 5.16, the FDI unit can detect and isolate the faults properly.
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Figure 5.12: The probability of the models for Scenario I with y = [T P P ] . A fault with a

magnitude of 2% occurs in the turbine efficiency at t=5sec.
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Figure 5.13: The probability of the models for Scenario II with y = [T P P ] . A fault with a

magnitude of 2% occurs in the compressor efficiency at t=5sec.
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Figure 5.14: The probability of the models for Scenario III with y = [T - P P ] . A fault with a

magnitude of 2% occurs in the turbine mass flow at t=5sec.
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Figure 5.15: The probability of the models for Scenario IV with y = [T P P ] . A fault with a

magnitude of 2% occurs in the compressor mass flow at t=5sec.
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Figure 5.16: The probability of the models for Scenario V with y = [T B e ] A loss of

effectiveness of fuel flow with a magnitude of 5% occurs at t=5sec.

5.2.2.3. Summary

As can be observed from the preceding subsections, decreasing the number of
measurements affects the accuracy of the FDI results. Table 5.6 summarizes the
simulation results. In this table, 7, and #, denote the detection and isolation times,
respectively. It follows that the proposed approach is robust even when there are total

failures in some of the sensors.

Table 5.6The summary of simulation results for different set of measurements by using

W, =0.8. [;,and 7, denote the detection and isolation times, respectively.

S i S i
Scenarios Scenario I | Scenario II Ceﬁ?no ceIr{? o Scenario V

Outputs
t, |t |ty |t |ty |t |ty |t |ty |t

y=[N.T.,P.,P] 6 |702|527 614 51 |533|512| 59 | 52 | 557

y=|1.,P.,P] 599 | 7.03 | 527 | 615 | 5.1 | 534|513 | 59 | 512 | 5.7
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5.3. CONCLUSION

In this chapter, the proposed FDI approach in chapter 4 has been modified such
that the multiple-fault scenarios can be handled. Particularly, a hierarchical structure is
utilized in order to detect and to isolate multiple faults. In this structure, after isolating
the first fault a new bank is replaced. This bank which is called the Level 2 bank is in
charge of detecting and isolating the second fault. Furthermore, the robustness of the
proposed approach in the previous chapter is analyzed. We investigated the

observability of the linear models for different sets of outputs and steady state points. It
has been shown that the linear models with y=[N, 1..F..F ]T (without measuring the

turbine temperature) are still observable and the FDI mission can be accomplished.
Also, the simulation results for different fault scenarios indicate the capability of the

proposed FDI method even when one has a lower number of measurements.
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Chapter 6 CONCLUSIONS AND
SUGGESTIONS

In this thesis, the FDI problem of a special gas turbine (single spool jet engine in
cruise mode) has been investigated. Broadly speaking, we first develop a novel
symbolic linearization method for a class of nonlinear systems. By using the linearized
models for fault-free and faulty systems, we develop an FDI algorithm based on the
multiple-model approach. Finally, we applied our proposed method to single spool gas
turbine jet engine. Below, we first summarize the thesis by providing the main
contributions of the thesis in more precise terms, and then the suggestions for the future

work are provided.
6.1. CONTRIBUTIONS OF THE THESIS

6.1.1. Develop a Novel Symbolic Linearization Method

In this approach, we combine the numerical methods with a novel symbolic
computation approach to obtain a linear model of a nonlinear system such that the fault
variables affect the linear model symbolically. In particular, in order to implement the
proposed symbolic linearization method, the original nonlinear model is first
decomposed to sub-blocks such that the fault variables are multiplied whit the outputs
of a certain set of these sub-systems, and then each sub-block is linearized numerically.
Finally, these linear sub-blocks (by considering faults as the symbolic variables) are

combined to obtain the linear symbolic model.
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6.1.2. Develop the Modified Multiple Model FDI

The proposed FDI algorithm is based on the symbolic linear system that is
obtained in the previous step. More precisely, by using the symbolic model, the linear
models of the system for different operating points are obtained (this set of models
contains the linear fault-free and faulty systems). Then a modified linear multiple
model FDI algorithm (based on linear models) is performed on the original nonlinear
system. This modified approach is equipped with an observer selecting unit such that
for each vicinity around a certain operating point the corresponding bank of observer is
select. The observer of this bank is constructed based on the linear model of the original
nonlinear system at the corresponding operating point. Also, a hierarchical structure is
used to improve the FDI unit. By this modification the FDI algorithm can detect and

isolate multiple faults.

In summary, the proposed FDI algorithm has two main features namely linearity
and hierarchical structure. The linearity enables one to accomplish the FDI mission with
lower computational time as compared to the nonlinear model while the hierarchical

structure has been developed to handle multiple fault scenarios.
6.1.3. The FDI problem of the Single Spool Gas Turbine

In this part, as the case study, we consider a nonlinear model of a single spool gas
turbine engine. Because of the complexity of the model, particularly compressor and
turbine map, this system cannot be linearized symbolically by using the existing
symbolic computation toolboxes. Therefore, the proposed symbolic linearization
method has been applied to this system. Simulation results show that linear model
obtained by using the proposed method can capture the behavior of the nonlinear

system in a vicinity of the corresponding operating point.
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Also, for the FDI purpose the modified multiple model is applied to the
investigated system. This approach has two main features namely linearity and
hierarchical structure. To decrease the negative effects of the measurement noise, we
provide a relatively simple (however efficient) method that can decrease the false
alarms significantly. Moreover, to investigate the robustness of the proposed method
we performed the approach by using different set of measurements. The observability
of linear models has been investigated and it was shown that with a samller set of
measurements, one can still accomplish the FDI mission. The simulation results support

the capability of the proposed method.

6.2. SUGGESTIONS

In this section, we provide the suggestions for future work. These suggestions are
categorized into two different groups as theoretic and application. In the theoretic part,
we focus on the proposed linearization method, while in the application subsection the

suggestions for the case study (gas turbines) are provided.
6.2.1. Suggestions on the Theory

In this thesis, we use the multiple model approach to determine the fault severity.
This suffers from a drawback of high computational cost when one needs to estimate
the fault severity accurately. Based on the fact that the symbolic linear model includes
the fault variables as parameter, this symbolic model can also be used for fault severity

estimation.

Also, the proposed approach can be extended to modify the nonlinear multiple-
model approach such as the extended Kalman filter (EKF). More precisely, in the EKF

one needs to numerically linearize the original nonlinear system and for different faulty
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systems. Therefore, by using the proposed symbolic linearization methods the system is
tirst linearized and then by substituting different fault severities, one can obtain

different faulty models.

Moreover, in this thesis we assume a perfect model for the original system. In
presence of modeling error, one has to use the hybrid approaches by using artificial
intelligence and model based methods. Generalizing the proposed method for the
hybrid systems is another suggestion for future work. In other words, if the neural
network that is used to compensate for the modeling error is updated, can one compute

the linear model without performing the linearization process completely?
6.2.2. Suggestions on the Application

As mentioned in Chapter 1, the behavior of the power station plant and jet engine
(at cruise mode) are almost the same. Therefore, by applying the proposed method on
different types of gas turbines can be the first step for future work on the application

side.

The dual spool gas turbines have two compressors and turbines namely as high
pressure and low pressure. Hence, the nonlinear model of these engines is more
complicated as compared with the single spool ones. The proposed symbolic

linearization methodology can be investigated as well for dual spool gas turbines.
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