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Abstract

Due to the ever increasing importance of the Internet, interoperability

of heterogeneous data sources is as well of ever increasing importance.

Interoperability could be achieved for instance through data integra-

tion and data exchange. Common to both approaches is the need for

the database management system to be able to store and query incom-

plete databases. In this thesis we present PossDB, a database manage-

ment system capable of storing and querying incomplete databases.

The system is a wrapper over PostgreSQL, and the query language is

an extension of a subset of standard SQL. Our experimental results

show that our system scales well, actually better than comparable

systems.
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Chapter 1

Introduction

1.1 Data Uncertainty and Incomplete Informa-

tion

Management of uncertain and incomplete data has long been recognized as an

important direction of research in data bases. With the tremendous growth of in-

formation stored and shared over the Internet, and the introduction of new tech-

nologies able to capture and transmit information, it has become increasingly

important for Data Base Management Systems (DBMS) to be able to handle

uncertain and probabilistic data. As a consequence, there has lately been signifi-

cant efforts by the database research community to develop new systems able to

deal with uncertainty, either by annotating values with probabilistic measures or

defining new structures capable of capturing missing information.

Uncertainty management is an important topic also in data exchange and

information integration. In these scenarios the data stored in one database has

1



1. Introduction

to be restructured to fit the schema of a different database. The restructuring

forces the introduction of “null” values in the translated data, since the second

schema can contain columns not present in the first. In the currently commer-

cially available relational DBMS’s the missing or unknown information is stored

with placeholder values denoted null. It is well known that this representation

has drawbacks when it comes to query answering, and that a logically coherent

treatment of the null is still lacking from most DBMS’s.

Irrespectively of how an incomplete database instance I is represented, con-

ceptually it is a (finite or infinite) set of possible complete database instances I

(i.e. databases without null values), denoted Poss(I). Each I ∈ Poss(I) is called

a possible world of I. A query Q over a complete instance I gives a complete

instance Q(I) as answer. For incomplete databases there are three semantics for

query answers:

1. The exact answer. The answer is (conceptually) a set of complete instances,

each obtained by querying a possible world of I, i.e. {Q(I) : I ∈ Poss(I)}.
The answer should be represented in the same way as the input database,

e.g. as a relation with meaningful nulls.

2. The certain answer. This answer is a complete database containing only the

(complete) tuples that appear in the query answer in all possible worlds.

In other words, Cert(Q(I)) =
⋂

I∈Poss(I) Q(I).

3. The possible answer. This answer is also a complete database, containing

the tuples that appear in the answer to the query in at least one possible

2



1. Introduction

world. Poss(Q(I)) =
⋃

I∈Poss(I) Q(I).

1.2 The PossDB System and Conditional Tables

This thesis introduces a new database management system called PossDB (Pos-

sibility Data Base) able to fully support incomplete information. The purpose

of the PossDB system is to demonstrate that scalable processing of semantically

meaningful null values is indeed possible, and can be built on top of a standard

DBMS.

The PossDB system is based on conditional tables (c-tables) [24] which gen-

eralize relations in three ways. First, in the entries in the columns, variables,

representing unknown values, are allowed in addition to the usual constants. The

same variable may occur in several entries, and it represents the same unknown

value wherever it occurs. A c-table T represents a set of complete instances, each

obtained by substituting each variable with a constant, that is, applying a valu-

ation v to the table, where v is a mapping from the variables to constants. Each

valuation v then gives rise to a possible world v(T ). The second generalization

is that each tuple t is associated with a local condition ϕ(t), which is a Boolean

formula over equalities between constants and variables, or variables and vari-

ables. The final generalization introduces a global condition Φ(T ), which has the

same form as the local conditions. In obtaining complete instances from a table

T , we consider only those valuations v, for which v(Φ(T )) evaluates to True, and

include in v(T ) only tuples v(t), where v(ϕ(t)) evaluates to True.

The c-tables support the full relational algebra [24], and are capable of re-

turning the possible, the certain and the exact answers. A (complete) tuple t is

3



1. Introduction

in the possible answer to a query Q, if t ∈ Q(v(T )) for some valuation v, and t

is in the certain answer if t ∈ Q(v(T )) for all valuations v. The exact answer of

a query Q on a c-table T is a c-table Q(T ) such that v(Q(T )) = Q(v(T )), for all

valuations v.

C-tables are the oldest and most fundamental instance of a semiring-labeled

database [19]. By choosing the appropriate semiring, labeled databases can model

a variety of phenomena in addition to incomplete information. Examples are

probabilistic databases, various forms of database provenance, databases with

bag semantics, etc. It is our view that the experiences obtained from the PossDB

project will also be applicable to other semiring based databases.

1.3 Motivation

Over the past years the growth of information shared over the Internet reached

immense volumes, but unfortunately without having a common schema, data

integration became a huge problem. Researchers are trying to find new data

models to deal with uncertain information. Unfortunately a lot of research paper

claim that the c-tables have not found application in practice. The c-tables

appeared in 1984 and have not been implemented, researchers tend to ignore c-

tables and try to find new approaches. To the best of our knowledge, PossDB is

the first implemented system based on c-tables. Our goal in this thesis is to show

that the c-tables can be a data model for a scalable uncertainty management

system and show that the c-tables do have applications in practice.

4



1. Introduction

1.4 Running Example

This thesis uses the relations defined below for a running example. Let us assume

that there are two companies merging and each one of has a different schema given

below.

• Company 1: Emp1(Name, Marital Status, Dept)

• Company 2: Emp2(Name, Gender, Marital Status)

The merged company decides to use the schema given below:

Emp(Name, Gender, Marital Status, Dept)

It is known that in the merged company, all the employees from Company 2 will

work under the same department, which will either be ’IT’ or ’PR’. Now consider

the initial data from both companies:

Emp1

Name Marital Status Dept

Alice married IT

Bob married HR

Emp2

Name Gender Marital Status

David M married

Ella F single

In a standard relational DBMS the instance of the merged company database

would be represented as given below table:

5



1. Introduction

Emp

TID Name Gender Marital Status Dept

1 Alice null married IT

2 Bob null married HR

3 David M married null

4 Ella F single null

In order to keep track of the tuples, the tuple id (TID) column is added to the

Emp relation.

With this incomplete database consider now the following two simple queries:

Q: Select Name From Emp Where

(Gender = ’M’ AND Marital Status = ’married’) OR Gender = ’F’

Q2: Select E.Name, F.Name From Emp E, Emp F

Where E.Dept = F.Dept AND E.Name != F.Name

The expected answer from the first query is to return all employee names,

because it is a known fact that a gender of a person can be either male or female,

since two employees in the Emp relation are married they will satisfy the condition

in any cases, other tuples have no unknown data in their gender and marital status

columns, hence they satisfy the where condition. The expected answer from the

second query is to return the tuple {(David, Ella)}, because we know that those

employees are coming from the Company 2 and it is a known that they will

work in the same departement. Unfortunately by the default way null values are

treated in standard systems the first query returns the set {(David, Ella)} and

the second query would return the an empty set.

6



1. Introduction

The given Emp relation above can be represented by using variables instead

of nulls. The representation of the Emp relation by using variables instead of

null values is given below:

Emp

TID Name Gender Marital Status Dept

1 Alice x1 married IT

2 Bob x2 married HR

3 David M married x3

4 Ella F single x4

In the Emp relation above, the variables can be assigned to constant values,

possible constant values for the variables are given below:

• x1 = {M,F}

• x2 = {M,F}

• x3 = {IT, PR}

• x4 = {IT, PR}

Note that by defining the possible constant values, the domain becomes finite, in

order to achive an infinite domain, the possible valuations should not be given.

In this thesis we introduce a new database management system called PossDB

(Possibility Data Base) able to fully support incomplete information. The purpose

of the PossDB system is to demonstrate that scalable processing of semantically

meaningful null values is indeed possible, and can be built on top of a standard

DBMS.

7



1. Introduction

1.5 Thesis Organization

The rest of the thesis is organized as follow: In chapter 2, we introduce the

related work and their data models. In chapter 3, we introduce the conditional

tables and the PossDB system with its features. In chapter 4, we introduce the

query language of the PossDB system and its implementation on top of PossDB

system. In chapter 5, we introduce the algorithms that are used to implement

conditional tables over the relational database management system. In chapter

6, experimental results show the performance of our system with the performance

of other comparable systems. In chapter 7, our conclusions and recommendations

for future works are presented.

8



Chapter 2

Related Work

This chapter surveys previous work in data uncertainty and incomplete informa-

tion. There has lately been significant efforts by the database research community

to develop new data models able to deal with uncertainty. These efforts include

not only the theoretical solutions but also the practical system implementations.

2.1 Probabilistic Approach

In order to deal with incomplete information tuples have been annotated with

probabilistic measures. Each tuple has a probability which ranges between 0 and

1. Probability 1 means the tuple is a certain tuple in the relation and probability

0 means that tuple should not be in the relation, it can be ignored as if it never

existed. The probabilistic representation of our running example is given below:

9



2. Related Work

Emp

TID Name Gender Marital Status Dept Probability

1 Alice M married IT 0.5

1 Alice F married IT 0.5

2 Bob M married HR 0.5

2 Bob F married HR 0.5

3 David M married IT 0.5

3 David M married PR 0.5

4 Ella F single IT 0.5

4 Ella F single PR 0.5

Note that probabilities are assumed to be uniformly distributed as the same

weight for the each possible world. The important part of this approach is group-

ing the tuples, where each group has a probability value 1. As it can be seen

from the example above, tuples are grouped by the TID column, each group has

a probability value 1 in sum. In the possible worlds only one tuple can show

up from each group. Each tuple has 2 possibilities, since we have 4 tuples, the

number of possible worlds are 24 = 16. The challenging part of this approach is

representing correlated tuples. Correlated tuples can occur when existence of a

tuple depends on the existence of another tuple. As an example let us assume

that the employees David and Ella will work in the same department in the new

merged company. In this case there exists a correlation between Ella and David,

which is difficult to express in the probabilistic approach.

10



2. Related Work

2.1.1 Probabilistic Systems

Orion (previously known as U-DBMS) [13] is an extended relational DBMS with

uncertainty management functionalities which has built-in support for probabilis-

tic data. The main purpose of the system is to provide uncertainty management

for constantly evolving data, such as temperature, pressure or location data.

Orion uses an uncertainty data structure where each tuple has an uncertainty

attribute with 2 elements:

• An uncertainty interval

• An uncertainty probability distribution function

An uncertainty interval is a value for a uncertain constantly evolving data, that

defines the upper and lower bounds of the uncertain data. An uncertainty prob-

ability distribution function, uses the distribution of the known data to identify

the unknown data distribution. An example uncertainty probability distribution

function is the Gaussian distribution or the Uniform distribution, which models

the measurement inaccuracy of temperature data. Orion supports both attribute

and tuple uncertainty with arbitrary correlations.

MystiQ [12] is a system that uses probabilistic approach to find answers in

large number of heterogeneous data sources. Unlike the other implemented prob-

abilistic systems, MystiQ does not have a data structure to store data in a struc-

tured way, instead it has query semantics to query multiple data sources and

answers the queries by adding the probabilities of the tuples appearing in the re-

sult [14]. It provides a powerful means to query inconsistent data across multiple

data sources. Mainly MystiQ is a working prototype for a new querying paradigm

11
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over multiple resources which causes uncertain and incomplete data. BayesStore

[31] and PrDB [30] is aimed to capture the uncertainties which have complex

correlations among each other that appear in real-world application domains.

To achieve that goals, both systems are based on the most popular uncertainty

modeling technique called probabilistic graphical models [5] developed by the

statistics and machine learning communities.

Trio [4] and MayBMS-2 [22] are also probabilistic systems but they combine

probabilistic approach with other approaches, they will be explained in the section

2.3.1 and 2.4.1.

2.2 World-Set Decomposition

The complexity of the probabilistic approach let researchers investigate on new

approaches in data uncertainty and incomplete information field. World-set de-

composition [26] is one of the accomplished and efficient approach. The approach

is based on relational product decomposition. A world-set is basically a relation

where each row represents a possible world. The world-set decomposition decom-

poses the world-set relation into several relations such that their cartesian product

gives us the world-set relation. For each world-set a unique representation exists

and it can be efficiently computed [26]. The world-set relation representation of

our running example is:

12



2. Related Work

(TID) Name Gender Marital Status Dept

1 Alice {M,F} married IT

2 Bob {M,F} married HR

3 David M married {IT,PR}
4 Ella F single {IT,PR}

When we decompose it we get:

t1.Name

Alice
×

t1.Gender

M

F

× t1.Marital Status

married
× t1.Dept

IT
× t2.Name

Bob
×

t2.Gender

M

F

× t2.Marital Status

married
× t2.Dept

HR
× t3.Name

David
× t3.Gender

M
×

t3.Marital Status

married
×

t3.Dept

IT

PR

× t4.Name

Ella
× t4.Gender

F
×

t4.Marital Status

single
×

t4.Dept

IT

PR

The number of possible worlds can be calculated by multiplying the number of

tuples from each decomposed relations. In the example above we have 1 × 2 ×
1× 1× 1× 2× 1× 1× 1× 1× 1× 2× 1× 1× 1× 2 = 16 possible worlds. When

some correlation exists between tuples, it is easy to represent in the decomposed

13



2. Related Work

world-set representation. Let us assume again David and Ella will work under

the same department. In this case we can merge t3.Dept and t4.Dept together,

after the merge we get:

t1.Name

Alice
×

t1.Gender

M

F

× t1.Marital Status

married
× t1.Dept

IT
× t2.Name

Bob
×

t2.Gender

M

F

× t2.Marital Status

married
× t2.Dept

HR
× t3.Name

David
× t3.Gender

M
×

t3.Marital Status

married
×

t3.Dept t4.Dept

IT IT

PR PR

× t4.Name

Ella
× t4.Gender

F
×

t4.Marital Status

single

Since our decomposition changed, the number of possible worlds changed as well.

When we calculate the new number of possible worlds we get 1× 2× 1× 1× 1×
2× 1× 1× 1× 1× 1× 2× 1× 1× 1 = 8 possible worlds.

2.2.1 World-Set Decomposition Systems

The system that uses world-set decomposition model is called MayBMS. Since

there are two MayBMS versions available, the one that uses the world-set decom-

position is called MayBMS-1 [7]. MayBMS-1 is built on World Set Decomposi-

tions in theory, but in practice, there are some differences. Because of database

14
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systems do not support relations of arbitrary arity, MayBMS-1 uses a structure

called “Uniform World Set Decompositions”. Uniform World Set Decompositions

has a fixed schema which stores all possible values. That fixed schema contains

2 relations.

1. F(Relation, TID, Attribute, Component ID)

The relation F stores the mapping between the tuple fields and component

identifiers. Note that the underlined attributes creates an unique key.

2. C(Component ID, Local World ID, Value)

The relation C stores each value from component together with its local

world identifiers. In order to find a component Relation Name, TID and

Attribute Name is needed. Local World ID identifies the possible worlds

and Value is an ID of the given local possible world.

The Uniform World Set Decomposition representation of our running example is

given below:

Emp

TID Name Gender Marital Status Dept

1 Alice null married IT

2 Bob null married HR

3 David M married null

4 Ella F single null

15
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F

Relation TID Attribute Component ID

Emp 1 Gender C1

Emp 2 Gender C2

Emp 3 Dept C3

Emp 4 Dept C4

C

Component ID Local World ID Value

C1 1 M

C1 2 F

C2 1 M

C2 2 F

C3 1 IT

C3 2 PR

C4 1 IT

C4 2 PR

The Uniform World Set Decomposition can be seen as an extension of the Or-

tables [23]. MayBMS-1 also can be extended to probabilistic database easily by

adding one more relation to the fixed schema which maps the probabilities to the

local worlds.

The MayBMS-1 system is build on top of PostgreSQL, an open source relational

database management system. In the case where there is no incomplete informa-

tion, MayBMS-1 works exactly like classical DBMS’s. The biggest disadvantage

of the MayBMS-1 system is each operation needs to join with F and C relations,
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even if there is a simple select operation, join needs to be performed behind the

scenes.

2.3 X-Relations

X-Relations [29] is a specific formalism for uncertain databases, it is also known

as ULDBs (Uncertainty Lineage Databases) data model. X-Relations are com-

prised of x-tuples where x-tuples consist of one or more alternatives. Since ULDB

relations are comprised of x-tuples it is called as x-relations. Unlike the prob-

abilistic approach, in the x-relations a tuple can represent one or more possible

worlds. Another important property of an x-tuple is that it can be annotated

by a maybe (?) annotation, which shows that the uncertainty of the tuple even

though each attributes in the tuple has only one valuation. The representation

of our running example in x-relations is given below:

Emp

TID Name Gender Marital Status Dept

1 Alice M || F married IT ?

2 Bob M || F married HR ?

3 David M married IT || PR ?

4 Ella F single IT || PR ?

As it can be seen from the above example, the first and the second tuple contains

alternatives in their Gender attribute, also the third and the fourth tuple contains

alternatives in their Dept attribute. This approach is clearly more space efficient

approach than probabilistic approach but unfortunately it does not provide an

efficient structure for correlated tuples.
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2.3.1 X-Relation Systems

Trio [4] [32] is a DBMS which combines data, uncertainty, and lineage. Trio uses

ULDB data model (X-Relations) which is explained in the previous section. Trio

manages uncertainty with probabilistic measures but it also has lineage function-

ality which makes Trio different than other implemented probabilistic systems.

By the lineage functionality of the system, it is also possible to keep track of where

the data is derived from. Trio is implemented on top of PostgreSQL DBMS and

x-relations are represented in the relational tables. Trio supports a SQL-based

query language called TriQL. TriQL queries given by the user are converted to

SQL queries automatically by the Trio system. The core system is implemented

in Python. The Trio system can be used with probability or without probabil-

ity. Trio system converts ULBS to the relational model by using two identifiers.

One of them is AID (globally unique alternative identifier), which identifies the

alternatives with a unique id and the other one is xid (x-tuple identifier), which

identifies the tuple with a unique tuple id. It can be noted that even though the

theory of the ULDB seems practical, implementing that theory on top of recent

DBMS requires more work.

2.4 U-Relations

U-Relations [6] represent uncertainty on the attribute level, u-relations decom-

poses attribute level uncertainty vertically. Basically u-relations consist of dis-

crete independent (random) variables, a tuple id column, a set of variable and

value assignment(V �→ D), and a set of value columns. In u-relations each pos-

sible world defined by the values assigned to the variables. We can represent our
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running example in u-relations as given below:

UEmp[Name]

V �→ D TID Name

1 Alice

2 Bob

3 David

4 Ella

UEmp[Gender]

V �→ D TID Gender

x �→ 1 1 M

x �→ 2 1 F

y �→ 1 2 M

y �→ 2 2 F

3 M

4 F

UEmp[MaritalStatus]

V �→ D TID Marital Status

1 married

2 married

3 married

4 single

UEmp[Dept]

V �→ D TID Dept

1 IT

2 HR

z �→ 1 3 IT

z �→ 2 3 PR

t �→ 1 4 IT

t �→ 2 4 PR

In order to represent possible worlds, we need to choose a valuation for each

variable. As an example one possible world is given by the valuation {x �→
1, y �→ 2, z �→ 1, t �→ 1}.
Let us assume again David and Ella will work under the same department, in

this case we can use the same variable z for the tuple 4 instead of using variable

t. Our new decomposed UEmp[Dept] table will be:
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UEmp[Dept]

V �→ D TID Dept

1 IT

2 HR

z �→ 1 3 IT

z �→ 2 3 PR

z �→ 1 4 IT

z �→ 2 4 PR

2.4.1 U-Relation Systems

MayBMS-2 [22] is also a probabilistic database implementation which uses the

U-Relations. MayBMS-2 has the same system architecture as MayBMS-1 but it

uses a different data model than MayBMS-1. MayBMS-2 is aimed to develop

as a probabilistic database by supporting complex probabilistic measures unlike

MayBMS-1 which only supports naive probabilistic approach. MayBMS-2 has

has its own query language called I-SQL [8]. I-SQL is designed for managing

uncertain and incomplete information and is an extension of SQL language.

2.5 Other Systems

There are other systems not covered in detail in this thesis, which are considered

as uncertain database systems but their purpose is more different than our prob-

lem domain. These systems are MauveDB [15], MCDB [25]. Their main purpose

is censor data management [20], where the data occur repetitively.
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2.6 Summary

From the prior works explained in this chapter, it becomes apparent that there is

growing interest in incomplete information and uncertainty management. Each

approach explained in this chapter has its own unique characteristics, but all of

them serve the same purpose. All the explained models require some work to

implement on top of a DBMS. Since the implementation requires more work, the

final product needs more knowledge to do operations on it.

In the light of these facts, we are proposing the conditional tables for un-

certainty management, which can be adapted to recent DBMS’s with minor

extensions. C-Tables require less space than any of the other approaches ex-

plained above. Since the space efficiency plays a huge role in execution time,

the uncertainty management system based on c-tables could be faster than other

approaches.
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Chapter 3

The PossDB System

The PossDB system is a DBMS system based on conditional tables. The PossDB

system has notions, system specific operations, and functions related to c-tables.

This chapter explains these features. To illustrate these features, our running

example will be used.

3.1 Conditional Tables

Conditional Tables(c-tables)[24][17] have characteristics given below:

• In the entries in the columns, variables, representing unknown values, are

allowed in addition to the usual constants.

• Each tuple t is associated with a local condition denoted by ϕ(t), which

is a Boolean formula over equalities between constants and variables, or

variables and variables.

• Database contains a Boolean formula called global condition which is com-
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mon to a individual c-tables in the database, since the same variable can

occur in several tables. Global condition is denoted by Φ(T ).

• The same variable may occur in several entries, and it represents the same

unknown value wherever it occurs.

• A c-table T represents a set of complete instances, each obtained by sub-

stituting each variable with a constant, that is, applying a valuation v to

the table, where v is a mapping from the variables to constants.

• Each valuations in a c-table (v(T ), v(ϕ(t))) must not be contradictory to

the global condition.

3.2 The Global Condition

The Global Condition is associated with the entire database. Even though the

global condition in our example is written as Φ(Emp), it is associated with the

entire database instead of associating with only the Emp relation. The Global

Condition consists of a Boolean formula. In the PossDB system the formula is

stored as CNF formula, which allows the system to make faster satisfiability check

along with the Local Conditions.

The global condition in our running example is:

ϕ(Emp) =def {(xi = ’M’ ∨ xi = ’F’) : i = 1, 2} ∪ {x3 = ’IT’ ∨ x3 = ’PR’}

This set corresponds to a CNF formula, where each conjunct contain all possible

values for a given variable.
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The CNF form of our global condition is given below:

Φ(Emp) = (x1 = ’M’∨x1 = ’F’)∧ (x2 = ’M’∨x2 = ’F’)∧ (x3 = ’IT’∨x3 = ’PR’)

It can be clearly seen that each variable occupies one of the conjuncts of the

CNF formula, and in each disjunct in each conjunct gives the valuation for that

variable. For instance the variable x2 occupies the second conjunct of the CNF

formula.

(x1 = ’M’ ∨ x1 = ’F’)︸ ︷︷ ︸
First Conjunct

∧ (x2 = ’M’ ∨ x2 = ’F’)︸ ︷︷ ︸
Second Conjunct

∧ (x3 = ’IT’ ∨ x3 = ’PR’)︸ ︷︷ ︸
Third Conjunct

The valuations for the varaible x2 are stored in the disjuncts of the second con-

junct of the CNF formula.

( x2 = ’M’︸ ︷︷ ︸
First Disjunct

∨ x2 = ’F’︸ ︷︷ ︸
Second Disjunct

)

Since the CNF formula is formed of conjuncts which each of them are related

to one unique variable, the CNF formula can be stored in a hashed structure.

Storing the CNF formula in a hashed structure speeds up the process of evaluating

satisfiability and tautology. For each variable the hash function will return all the

possible values for that variable. Although the hashed global condition structure

seems restricted, it fulfills all the requirements in an uncertainty management

system. The PossDB system depends on this hashed global condition structure

and it gains its power from this structure.

In our running example the merged incomplete relation Emp would be repre-
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sented as the following c-table with the global condition given below.

Φ(Emp) = (x1 = ’M’∨x1 = ’F’)∧ (x2 = ’M’∨x2 = ’F’)∧ (x3 = ’IT’∨x3 = ’PR’)

Emp

TID Name Gender Marital Status Dept ϕ(t)

1 Alice x1 married IT True

2 Bob x2 married HR True

3 David M married x3 True

4 Ella F single x3 True

3.3 C-Table Creation

C-Table creation is almost the same as table creation in recent DBMS. The

PossDB system automatically adds the local condition column to each relation

whenever a new relation is created. That local condition column stores the local

conditions in string data type.

Example 3.1 Creating the Emp relation in our running example.

The user should create the relation with given schema below:

Emp(Name, Gender, Marital Status, Dept)

but in the PossDB, created relation will have the schema given below:

Emp(Name, Gender, Marital Status, Condition)
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Note that the column Condition automatically added to the relation by the

system.

3.4 Selection

Select(σ) operator for the c-tables returns the tuples with the their local condi-

tions from the given relation. Select statement in the PossDB not only returns

the exact answer, but also optimizes the c-table by removing tuples t, where

ϕ(t)∧Φ(T ) is a contradiction, and replacing with true local conditions of tuples

t, where the formula Φ(T ) → ϕ(t) is a tautology.

A local condition ϕ(t) in the result of a select statement is the conjunction of

the local condition and the select condition. Let say for the tuple t, the local

condition is λ and the select statement is: σθ(R), where θ is a Boolean formula,

in this case ϕ(t) = θ(t) ∧ λ. Note that θ(t) is the select condition(θ) where all

the attribute names are replaced with the attribute values in that tuple t.

Example 3.2 The query that returns all employees from the ’IT’ department

σDept=′IT ′(Emp)

The query results is in the following c-table:

26



3. The PossDB System

TID Name Gender Marital Status Dept ϕ(t)

1 Alice x1 married IT True

2 Bob x2 married HR False

3 David M married x4 x4 = ’IT’

4 Ella F single x4 x4 = ’IT’

As it can be seen above, during the evaluation t1 has a local condition ϕ(t1) =

(’IT’ = ’IT’∧True) since ’IT’ = ’IT’ returns True, the new local condition keeps

its value ϕ(t1) = True.

For tuple t2 the local condition is: ϕ(t2) = (’HR’ = ’IT’∧True), since ’HR’ = ’IT’

returns False, ϕ(t2) = (False∧True) = False, which represents a contradiction,

hence t2 is removed from the result. Similarly for t3 and t4, the same steps are

applied, and as a result the new local conditions for t3 and t4 are set to local

conditions in the result.

3.5 Projection

The projection operation has the same property of table creation in the PossDB

system. It works as projection in recent DBMS. The projection operation returns

the local condition with the projected columns.

Example 3.3 Projecting the Emp relation with attributes Name and Gender in

our running example.
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πName,Gender(Emp)

In the PossDB, the result will have the schema given below:

Emp(Name,Gender, Condition)

3.6 Join

The join and cross product operations work similarly to their standard SQL

counterparts. The local conditions for each resulted tuple is a conjunction of the

local conditions of the tuples that contributed by join, the condition induced by

the select condition of the select statement and the join condition. Resulted local

conditions are being checked for satisfiability and tautology. If the local condition

is a contradiction, it is removed from the result and if it is a tautology, the local

condition is replaced by True.

Example 3.4 The following Project-Join query that returns all pairs of names

of employees that work in the same department such that the first employee is

a male and the second employee is a female. Note that the / operator is the

renaming operator.

C1 ← πName1/Name,Gender1/Gender,Dept1/Dept

C2 ← πName2/Name,Gender2/Gender,Dept2/Dept

πName1,Name2(σDept1=Dept2∧Gender1=′M ′∧Gender2=′F ′(C1 × C2))
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The exact answer for this query is:

TID Name1 Name2 ϕ(t)

1 Alice Ella x1 = ’M’ ∧ x4 = ’IT’

2 Bob Ella x2 = ’M’ ∧ x4 = ’HR’

3 David Alice x1 = ’F’ ∧ x4 = ’IT’

4 David Bob x2 = ’F’ ∧ x4 = ’HR’

5 David Ella True

Unlike the example 3.2, second and the fourth tuples are eliminated because of

the global condition. The conjunction of the local condition and the global con-

dition produce contradiction.

For t2,

ϕ(t)∧Φ(T ) = (x2 = ’M’)∧x4 = ’HR’ ∧ (x4 = ’IT’ ∨ x4 = ’PR’)︸ ︷︷ ︸
Contradiction

∧(x2 = ’M’∨ . . .).

For t4,

ϕ(t) ∧ Φ(T ) = x2 = ’F’ ∧ x4 = ’HR’ ∧ (x4 = ’IT’ ∨ x4 = ’PR’)︸ ︷︷ ︸
Contradiction

∧(x2 = ’M’ ∨ . . .).

Also the local condition for t5 is a tautology as both employees “David” and

“Ella” share the same variable as department even though the name of the de-

partment is unknown. The local condition x4 = x4 produces True.

3.7 Insertion

Insertion as expected inserts a tuple with the local condition, the local condition,

which can be empty or in other words True. The important function of the insert
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operation is evaluating and converting the local condition. In the first step the

given local condition is being evaluated. If it is satisfiable, in the next step it

is being checked for tautology. If it is tatutology, the local condition is replaced

by True. If the local condition is not a tautology but satisfiable then the local

condition is converted into Disjunctive Normal Form (DNF) and stored in that

format for faster process in the future operations. If the given local condition is

not satisfiable, the given insert statement will be ignored by the PossDB.

3.8 Special Functions

The PossDB system returns the exact answer as a c-table. This has the drawback

that the answer may contain two mutually exclusive tuples. In some cases this

c-table might have convoluted local conditions, and it might be difficult for the

user to understand the structure. In order to overcome this, the PossDB system

has two new functions Is Possible and Is Certain. These functions are used to

query for certainty and possibility of a tuple in a c-table.

3.8.1 Is Possible

One of the unique functionality of the PossDB system is, checking the possibility

of a tuple in a database instance. Is Possible function in the PossDB takes a

tuple from the user and decides if the tuple is possible in a c-table. Intuitively a

tuple is possible in a given c-table if there exists a valuation for the c-table that

contains that tuple.

To check if the given tuple if it is possible in a c-table, the PossDB system takes

values given in a tuple and decides if they are possible or not.
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Example 3.5 Check if the following tuple is possible in the Emp relation in our

running example.

Name Gender Marital Status Dept

David M married IT

In order to check the possibility, the PossDB system checks all given attribute

values in the Emp c-table. First it retrieves all the data from the Emp which

satisfies the Name = ’David’ And Gender = ’M’ And Marital Status = ’married’

And Dept = ’IT’ condition. Since there is only one tuple which satisfies that

condition, the PossDB only considers that tuple in the following steps. Note that

in the first step the system automatically satisfies the variable constant equations,

in this example the system satisfies the equation x3 = ’IT’ because it contains

a variable. The next step is checking the variables. Since the Dept attribute

contains a variable, the PossDB system needs to check if the given constant value

satisfies the variable stored in the Dept. The stored value in the Dept attribute is

x4, hence x4 = ’IT’ needs to be check against the global and the local condition.

Since the local condition is empty it is considered as True. The conjunction

of global and the local condition is: ϕ(t) ∧ Φ(T ) = True ∧ (x1 = ’M’ ∨ x1 =

’F’) ∧ (x2 = ’M’ ∨ x2 = ’F’) ∧ (x3 = ’M’ ∨ x3 = ’F’) ∧ (x4 = ’IT’ ∨ x4 = ’PR’)

The Boolean formula (x4 = ’IT’)∧ϕ(t)∧Φ(T ) is satisfiable, hence the tuple given

above is possible in the Emp c-table.
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3.8.2 Is Certain

Similarly to Is Possible function the Is Certain function takes a tuple as a pa-

rameter, and returns True if the tuple is certain in the given c-table. Certain

means that the tuple appears under all possible interpretations of the nulls. An

easy example of a certain tuple in Emp relation is:

Name Gender

David M

Under any interpretation of nulls, that tuple appears, hence the given tuple is

a certain tuple in our c-table. Even though it seems that certainty depends on

constants to constants mapping from given tuple to a c-table, it is not the case.

Let us consider there is a name and surname database and in the database there

is a name that we are not sure if it is written as Denis or Dennis. One way of

representing this uncertainty is given below with a global condition True.

TID Name Surname Condition

1 Denis Brown x = 1

2 Dennis Brown x 
= 1

If there exist a correlation with those tuples to other tuples the variable x can be

used. Whenever x = 1 is being used in some other tuple, it means the existence of

that tuple depends on existence of the tuple with TID 1. Albeit it is not the best

representation, it is a valid c-table representation, hence it makes the certainty

check more complicated than possibility check. Let us assume the tuple:
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Name Surname

Denis Brown

Since each attribute value of the tuple maps with a constant in the c-table, it does

not cause a certainty, because it depends on a condition x = 1. Nevertheless, not

all the conditions yield uncertainty, there might be some conditions which yield

certainty. Let us consider the c-table below with a global condition True:

TID Name Surname Department Condition

1 George Costanza y y = ’Sales’

2 George Costanza y y 
= ’Sales’

In the given c-table below there exist 2 employees who have the same name but

one of them probably works in the sales department, and the other one works in

a department other than sales. When we check the certainty of a tuple below:

Name Surname

George Costanza

When the system checks the certainty, it retrieves the c-table given below:

Name Surname Condition

George Costanza y = ’Sales’

George Costanza y 
= ’Sales’
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Both tuples depend on a condition, but an alternative representation of the above

c-table is:

Name Surname Condition

George Costanza y = ’Sales’ ∨ y 
= ’Sales’

As it can be seen easily y = ’Sales’ ∨ y 
= ’Sales’ generates True, hence the given

tuple is certain tuple in the given c-table.

3.9 System Architecture

The PossDB system is built on top of PostgreSQL DBMS. On the middle tier

Java R© is being used. Java is used to implement the query processing part,

displaying the results, evaluating conditions, and connecting to the PostgreSQL

database server.

This Java application is working with input and output streams, hence it can

be easily ported to the any kind of application server or simply used through a

console. The connection between the Java middle tier and PostgreSQL database

server is done through JDBC.

Figure 3.1: System Workflow
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C-SQL

This chapter describes the language that is used to operate the PossDB system.

The language is called “C-SQL”, which is the abbreviation of Conditional Struc-

tured Query Language. C-SQL is an extension of the ANSI SQL. The goal of

extending the ANSI SQL language is to provide the PossDB users a familiar and

adaptable language environment. Since the C-SQL is an extension of the ANSI

SQL, a standard DBMS user can easily adapt to C-SQL language with a little

effort. The C-SQL is a language which is being converted to an SQL behind the

scenes and the converted language is executed on the DBMS. The query conver-

sion from CSQL to SQL is called as translation rule in this thesis. This chapter

will explain the query language for conditional tables with the translation rules

from C-SQL to SQL.

Translation from CSQL to SQL is achieved by using the ANTLR parser gener-

ator [27] and to parse Boolean formulas we used the ZQL parser [2]. Note that

the PossDB system is currently based on integer numbers, constant values are

represented as positive integer numbers and variables are represented as negative
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integers, hence the C-SQL is implemented as typeless language, the type integer

is automatically completed by the system if necessary during the conversion.

4.1 Table Creation

The Create Table statement is used to create a c-table in the PossDB system.

Since the PossDB system is an uncertainty management system, c-tables are the

only tables can be created in the system.

C-SQL Create Table Syntax:

CREATE TABLE <Table Name>(

<Column 1>,

<Column 2>,

...,

<Column n>

)

In order to illustrate creating a c-table with C-SQL let us consider the given ex-

ample below:

Example 4.1 Creating the Emp relation as a c-table in our running example.

CREATE TABLE Emp(

Name,

Gender,

Marital Status,

Dept

)

The translation rule for the create table from C-SQL to SQL is given below:
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CREATE TABLE <Table Name>( → CREATE TABLE <Table Name>(

<Column 1>, → <Column 1> integer,

<Column 2>, → <Column 2> integer,

... → ...

<Column n> → <Column n> integer,

Condition text

) → )

As it can be seen above, the column type integer is being added to the column

names and as a last column the Condition column is being added to the newly

created table. During the translation process the C-SQL statement turned into

an SQL statement, which can be executed on the PostgreSQL.

4.2 Selection

The Select statement is used to select data from the c-table in the PossDB system.

C-SQL Select Syntax:

Select *

From <Table Name>

Where <Select Condition>

The Where section in the syntax can be omitted from the syntax. It is being used

to apply condition to the select statement, the <Select Condition> should have

one of the structure which are defined below.

Note that supported operators in the PossDB system are; the equality operator
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“=” and the unequality operator “ 
=”.

• <Column Name> <Operator> <Column Name>

• <Column Name> <Operator> <Constant>

• <Constant> <Operator> <Column Name>

• <Constant> <Operator> <Constant>

• Disjuncts or Conjuncts of any items in this list

In order to illustrate selecting from a c-table with C-SQL let us consider the

example below:

Example 4.2 Select all the attributes of the employees from the Emp relation,

who has the name “Alice” or “Bob”, and who works under the ’IT’ department.

Select *

From Emp

Where (Name = ’Alice’ OR Name = ’Bob’)

And Dept = ’IT’

The translation rule for the selection from C-SQL to SQL is given below.

Select * → Select *

From <Table Name> → From <Table Name>

Where <Select Condition> → Where <New Select Condition>

The translation rule above introduces a new notion <New Select Condition>,

this is the select condition for the c-tables. Since c-tables may contain variables
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represented as negative integers, the PossDB system needs to retrieve those tuples

to validate against the global condition. In order to retrive those tuples the select

condition should be extended. The negative integers are variables and the positive

integers are constants in the PossDB system, thus the following steps need apply

to the each predicate in the select condition.

• If there is a column A in relation R and the condition is R(A) = a, where

a is a constant value, replace it with R(A) = a ∨R(a) < 0

• If there is a column A and B in relation R and there exist an equality such

R(A) = R(B), replace it with (R(A) = R(B)) ∨ (R(A) < 0) ∨ (R(B) < 0)

As an example let assume that we have a select condition as Age = 24, the given

condition should be replaced by (Age = 24) ∨ (Age < 0), this condition gives us

all the tuple which has 24 in their age attribute, but also it gives us the tuples

which has a variable in their age attribute.

4.3 Projection

The project operation is implemented, as expected, as an extension of the SELECT

statement. It can be used to select some attributes instead of selecting all the

attributes from the c-tables.
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C-SQL Project Syntax:

Select <Column 1>,

<Column 2>,

...

<Column n>

From <Table Name>

Where <Select Condition>

Example 4.3 Select all the employee names who works in the ’IT’ department.

Select Name

From Emp

Where Dept = ’IT’

The translation rule for the projection from C-SQL to SQL is given below:

Select <Column 1>, → Select *

<Column 2>,

...

<Column n>

From <Table Name> → From <Table Name>

Where <Select Condition> → Where <New Select Condition>

In the translation rule above, in order to select all the columns, the selected

columns are replaced with the asterisk (*) symbol. The reason is that there

might be some conditions in the select condition depends on the non-selected

columns. In order to process the variables in the non-selected column, we need
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to retrieve the data from those columns to process them. Also it will retrieve

the Condition column as well. After the variable checking the projection will be

applied as a last step.

The <Select Condition> is replaced by <New Select Condition>, which was ex-

plained in section 4.2.

4.4 Join

The join and cross product operations work similarly with their standard SQL

counterparts. The PossDB system only supports inner joins.

C-SQL Join Syntax:

Select <Table Name (1-2)>.<Column 1>,

<Table Name (1-2)>.<Column 2>,

...

<Table Name (1-2)>.<Column n>

From <Table Name 1>

Inner Join <Table Name 2> ON

<Join Condition>

...

Where <Select Condition>

Since Join statement is an extended version of the Select statement, all the rules

apply to Select statement also apply to the join statement. The important differ-

ence between the Join statement and the Select statement is each selected column

needs to be specified with the table name.
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In order to illustrate join operation with C-SQL let us consider the example below:

Example 4.4 Retrieve all the pair of employee names that work in the ’IT’ de-

partment.

Select Emp1.Name as Name1,

Emp2.Name as Name2

From Emp Emp1

Inner Join Emp Emp2 ON

Emp1.Name != Emp2.Name

Where Emp2.Dept = ’IT’

The translation rule for the projection from C-SQL to SQL is given below:

Select → Select

<Table Name (1-2)>.<Column 1>, → <Table Name 1)>.*,

<Table Name (1-2)>.<Column 2>, → <Table Name (2)>.*

... → Merge Condition(

<Table Name (1-2)>.<Column n> → <Table Name 1>.Condition,

<Table Name 2>.Condition

) As Condition

From <Table Name 1> → From <Table Name 1>,

Inner Join <Table Name 2> ON → <Table Name 2>

<Join Condition> → Where <New Select Condition>

Where <Select Condition> → And <New Join Condition>
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The translation rule above uses the asterisk symbol, for the same reason as the

Project operation explained in the section 4.3.

The translation rule above introduces three new notions:

1. <Join Condition>

It is used to join two c-tables with given columns, it is the same join con-

dition in the standard SQL.

2. <New Join Condition>

It is the extended<Join Condition> for c-tables, which is is extended as the

same way as the<Select Condition> extended to the<New Select Condition>.

3. <Merge Condition()>

It is a user defined function coded in the PostgreSQL, which takes any

number of parameters as a string and outputs the conjunction of the given

Boolean formulas. Let us assume that given parameters are P,Q and R,

the output of the function depending on the given parameters is P ∧Q∧R.

4.5 Insertion

The Insert statement is used to insert data into a c-table in the PossDB sys-

tem. C-SQL extends the standard SQL Insert statement by allowing the users

to also specify a local condition associated with the inserted tuple. In case the

CONDITION clause is not specified in the INSERT statement, by default the PossDB

system considers the local condition tautological, i.e. True.
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C-SQL Insert Syntax:

Insert Into <Table Name>

Values (<Column 1 Value>

<Column 1 Value>,

<Column 2 Value>,

...

<Column n Value>)

Condition (<Local Condition>)

The <Local Condition> in the syntax refers to the local condition associated with

the inserted tuple. In order to illustrate inserting a tuple to a c-table with C-SQL

let us consider the example below.

Example 4.5 Insert the Employee “Ella” to the Emp relation in our running

example.

Insert Into Emp

Values (’Ella’,’F’,’single’)

In the given example above, since there is no local condition, the condition

statement is not being used. The C-SQL statement below is the equivalent state-

ment as the above C-SQL statement.

Insert Into Emp

Values (’Ella’,’F’,’single’)

Condition (True)

The translation rule for the Insert statement from C-SQL to SQL is given

below:
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Insert Into <Table Name> → Insert Into <Table Name>

Values (<Column 1 Value>, → Values(<Column 1 Value>

<Column 2 Value> → <Column 2 Value>

... → ...

<Column n Value>) → <Column n Value>,

Condition(<Local Condition>) → <New Local Condition>)

The translation rule above introduces new notion <New Local Condition>, it is

the DNF formula of the local condition given by the user. If the CONDITION

keyword has not been used in the syntax, <New Local Condition> considered as

True.

4.6 Tuple Possibility

The Is Possible statement is used to trigger the tuple possibility function on c-

tables. The Is Possible function takes a tuple and a c-table as a parameter, the

c-table parameter can be given in two ways

1. A Select Statement

2. A C-Table Name
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C-SQL Is Possible Syntax:

Is Possible(<Column 1>,<Column 1 Value>,

<Column 2>,<Column 2 Value>,

...

<Column n>,<Column n Value>)

In <C-Table>

The <C-Table> in the syntax can be written as a c-table name or as a select state-

ment, which returns a c-table. In order to illustrate Is Possible function in the

PossDB system let us consider the example below:

Example 4.6 Is there exist a male employee who works under the ’HR’ depart-

ment and named as ’Bob’ in the Emp relation of our running example.

Is Possible (Name, ’Bob’, Gender, ’M’, Dept, ’HR’)

In Emp

The C-SQL statement below is the equivalent statement as the above C-SQL

statement.

Is Possible (Name, ’Bob’, Gender, ’M’, Dept, ’HR’)

In Select * From Emp

The translation rule for the Is Possible statement from C-SQL to SQL is given

below:
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Is Possible(<Column 1>, → Select * From <C-Table>

<Column 1 Value>, Where(

(<Column 1> = <Column 1 Value>

Or <Column 1> < 0)

And

<Column 2>, → (<Column 2> = <Column 2 Value>

<Column 2 Value>, Or <Column 2> < 0)

And

... → ...

<Column n>, → (<Column n> = <Column n Value>

<Column n Value> Or <Column n> < 0)

In <C-Table> → )

Since the PossDB system based on integers, and the variables are encoded as

negative integers, the given syntax above is sufficient for retrieving all the tuples

which satisfy the conditions or contain variables. Please note that converted SQL

statement is not enough for possibility checking, more process is required to check

if the tuples satisfy the global condition, necessary processes will be explained in

chapter 5.

4.7 Tuple Certainty

The Is Certain statement is used to trigger the tuple certainty function on c-

tables. It has the same syntax as the Is Possible statement, only difference is it

answers the certainty instead of possibility.
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C-SQL Is Certain Syntax:

Is Certain(<Column 1>,<Column 1 Value>,

<Column 2>,<Column 2 Value>,

...

<Column n>,<Column n Value>)

In <C-Table>

Since the Is Certain statement has the same syntax as the Is Possible statement,

let us consider a different and more complicated example than the example de-

scribed in the section 4.6. Consider the example below:

Example 4.7 In the Emp relation in our running example, is there exist a cer-

tain data which states that, a single employee works in a department, which the

department has a married employee.

Is Certain (MStat1, ’single’, MStat2, ’married’)

In Select e1.Marital Status as MStat1,

e2.Marital Status as MStat2

From Emp e1,

Emp e2

Where e1.Dept = e2.Dept

The translation rule for the Is Certain statement from C-SQL to SQL is given

below:
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Is Certain(<Column 1>, → Select * From <C-Table>

<Column 1 Value>, Where(

(<Column 1> = <Column 1 Value>

Or <Column 1> < 0)

And

<Column 2>, → (<Column 2> = <Column 2 Value>

<Column 2 Value>, Or <Column 2> < 0)

And

... → ...

<Column n>, → (<Column n> = <Column n Value>

<Column n Value> Or <Column n> < 0)

In <C-Table> → )

Please note that converted SQL statement is not enough for certainty check-

ing, more process is required to check if the tuples are certain with the global

condition, necessary processes will be explained in chapter 5.
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Chapter 5

The Algorithms

This chapter describes the algorithms used in the PossDB system implementa-

tion. The algorithms related to the PossDB features and are applied after the

C-SQL queries are transformed to SQL queries and executed on the PostgreSQL

DBMS. The algorithms implemented for extending DBMS functionalities to an

uncertainty management system functionality. In the recent DBMSs all the data

are certain and each operation is implemented for the certain data. Since in the

PossDB system we deal with the uncertain data, we need to extend each func-

tionality. As an example the Select operation in the DBMS should be extended

to deal with uncertain data.

If there is no algorithm explained in this chapter it means that the converted

C-SQL statement is sufficient to fulfill promised functionality.
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5.1 Preliminaries

5.1.1 Global Condition

The global condition in the PossDB system, as it explained in the chapter 3,

has the structure of CNF formula, each variable only belongs to one conjunct of

the CNF formula. Since the Global Condition has this structure, each variable

can be considered as a set, each member of the set is considered as the possible

valuation of that variable.

Let us consider our running example, the global condition of the running example

is: Φ(T ) = (x1 = ’M’∨x1 = ’F’)∧ (x2 = ’M’∨x2 = ’F’)∧ (x3 = ’IT’∨x3 = ’PR’).

The set representation of the global condition is given below.

x1 = {M,F}
x2 = {M,F}
x3 = {IT, PR}
In order to get the possible valuations of a variable from a global condition,

the Global(<variable name>) function has been used. This function returns

all possible values of the given variable. If the function returns the empty set, it

means that the given variable does not have any valuation in the global condition.

5.1.2 Boolean Expression Tree

In the PossDB system, the Boolean formulas are kept as a Boolean expression

trees. The Boolean expression tree consists of nodes, where all the nodes are

connected to at least one another node. A node that has no children is called

leaf node. On top of the tree there exist a node called root node. The root node
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contains one of the operators given below.

• Equality Operator (=)

• Unequality Operator ( 
=)

• And Operator (∧)

• Or Operator (∨)

A node can contain an operator, a leaf can contain an operand. In the PossDB

system, there exist two types of operands, one of them is a variable and the other

one is a constant. Let us consider the example below:

Example 5.1

(x = 1 ∨ y = 3 ∨ z = 5) ∧ (w 
= 2)

The Boolean expression tree for the given example is given below.

∧

∨

=

x 1

=

y 3

=

z 5


=
w 2

Figure 5.1: A Boolean Expression Tree

In the expression tree a leaf node can only contain an operand. The Boolean

Expression Tree helps to convert Boolean formula to different forms. Also the

Boolean Expression Tree helps us to annotate variables or operators. Annotat-

ing the nodes or the leafs provides a fast traversing characteristic in a Boolean

formula.
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5.1.3 Disjunctive Normal Form (DNF)

Disjunctive Normal Form is a normalization of a Boolean formula, the abbrevi-

ation “DNF” is being used for this form. DNF is a normal form which consists

of disjunction of clauses, each disjunctive clause contains a conjunctive clauses.

Even though the DNF is disjunction of conjuncts, in some cases a Boolean for-

mula might not contain a disjunct, hence a DNF formula can also consist of only

conjuncts. A DNF formula can be in one of the form given below:

• p

• p ∧ q ∧ . . .

• p ∨ q ∨ . . .

• (p ∧ q) ∨ (r ∧ s ∧ . . .) ∨ . . .

Note that p, q, r, s are Boolean formulas over equalities between constants and

variables, or variables and variables or their negations.

5.1.4 Conjunctive Normal Form (CNF)

Conjunctive Normal Form is, similarly as DNF, a normalization of a Boolean

formula, the abbreviation “CNF” is being used for this form. CNF is a normal

form which consists of conjunction of clause, each conjunctive clause contains a

disjunctive clause. Even though the CNF is conjunction of disjuncts, in some

cases a Boolean formula might not contain a conjunct. A CNF formula can exist

in one of the form given below:
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• p

• p ∧ q ∧ . . .

• p ∨ q ∨ . . .

• (p ∨ q) ∧ (r ∨ s ∨ . . .) ∧ . . .

Note that p, q, r, s are Boolean formulas over equalities between constants and

variables, or variables and variables or their negations.

5.2 Auxiliary Algorithms

Algorithms explained in this section are the algorithms that used to support main

functions in the PossDB system. Main functions in the PossDB system are the

functions which extend the DBMS functionalities, such as Selection, Projection.

5.2.1 Check Satisfiability

Check Satisfiability functionality in the PossDB system, checks if the given con-

dition is satisfiable or not. The given condition also should not be contradictory

when it is used with the global condition. Each condition in the PossDB system

needs to be checked against the global condition. The satisfiability check depends

on other functions and an operator, which are:

1. Check Global Satisfiablility: Checks the generated substitutions along

with the global condition, and decides if the substitutions are consistent

with global condition or not.
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2.
⊗

Operator: Conjugates the substitutions of the AND operator members.

3. Generate Substitution: Generates possible substitutions from the given

Boolean formula.

4. Is Satisfiable: Returns if the condition is satifsiable or not, it is the entry

point of satisfiabilily check functionality, it calls necessary auxiliary func-

tions.

The main purpose of these four algorithms is to check if the given condition

is satisfiable in the system. Since the PossDB system based on c-tables, and the

c-tables are formed with Boolean formulas, these algorithms plays an important

role.

Algorithm 1 Check Global Satisfiablility

Input: Substitution Set: ϑ

1: function G Sat(ϑ)
2: for all elements υ in ϑ do
3: if υ is x1/x2 then
4: return Global(x1) ∩Global(x2) 
= ∅
5: else if υ is x1/a then
6: return a ∈ Global(x1)
7: else if υ is a set then 	 {x1/x2, x3/a, . . .}
8: for all elements ζ in υ do
9: if G SAT(ζ) is False then
10: return False
11: return True
12: else 	 e.g. ∅
13: return False

The algorithm 1 checks the given variable valuations if they are contradictory

with the global condition or not. Note that the Global() function in the line 4

and 6 returns the valuation set of the given variable from the Global Condition.
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Let us assume that the given substitution is x1/a. The algorithm checks if there

exist a valuation which is x1 = a in the global condition. If there is no x1 in

the global condition, it means that the given valuation is not satisfiable. If there

exist x1 in the global condition but there is no x1 = a, it also means that the

given valuation is not satisfiable and the algorithm returns False.

Example 5.2 Assume that the global condition is:

Φ(T ) = (x = 1 ∨ x = 2 ∨ x = 3) ∧ (y = 6 ∨ y = 7)

And the input substitution set is: {x/3, y/7}.

Note that the substitution set {x/3, y/7} comes from the Boolean formula

(x = 3∧ y = 7), which will be explained in the algorithm 3. In this example, the

input is a set of substitutions, hence each substitution in the set should have a

valuation in the global condition. The algorithm checks the substitution x/3 if

there exist v(x) = 3 in the global condition, since x = 3 is in the global condition,

x/3 substitution is not contradictory. The same process apply for the substitution

y/7. Since both substitutions are satisfiable in the global condition, the function

returns True, which means that the substitution set is not contradictory with

the global condition.

The algorithm 2 is used to conjugate valuations in case when a Boolean ex-

pression tree contains an AND operator. Since AND operator is an operator

which may yields contradiction, each valuation needs to be checked with the

other valuations. As an example let us assume that the given Boolean formula is

x = 1 ∧ y = 1 ∧ x = 3. When we split the formula into three, each subformula is

satisfiable, but when we check the each sub formula with other subformulas, we
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Algorithm 2
⊗

Operator

Input: Left Operand (Substitution): ξ
Input: Right Operand (Substitution): ψ

1: function
⊗

(ξ, ψ)
2: if ξ and ψ have the same variable then 	 ξ → x = a, ψ → x = b
3: return ξ ∩ ψ
4: else if ξ and ψ have different variables then 	 ξ → x = a, ψ → y = b
5: return ξ ∪ ψ
6: else if ξ and ψ have inverse variables then
7: if |ξ ∩ ψ| > 0 then 	 ξ → x = a, ψ → x− = a
8: return ∅
9: else 	 ξ → x = a, ψ → x− = b
10: return ξ ∪ ψ

can see that x = 1 ∧ x = 3 yields a contradiction, hence the given formula is not

satisfiable. Note that in the algorithm 2 on line 6 the notion inverse variables

has been used. The inverse variable refers to a variable which is used in a formula

with the unqeuality and the equality operator. As an example let us assume the

formula x 
= 2, the substitution of the given formula will be x−/2, where x− is

considered as inverse variable of x.

Example 5.3 Consider three different cases used in the algorithm 2.

1. x/3
⊗

x/4

Note that it comes from the Boolean formula x = 3 ∧ x = 4, which will be

explained in the algorithm 3.

In this case, the algorithm returns an empty set, because this formula is

not satisfiable, a variable can only be assigned to one constant value.

2. x/3
⊗

y/5
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Note that it comes from the Boolean formula x = 3∧y = 5. In this case, the

algorithm returns substitutions x/3 and y/5, because they do not contradict

each other.

3. x/3
⊗

x−/3

Note that it comes from the Boolean formula x = 3 ∧ x 
= 3. In this case,

the algorithm returns an empty set, because this formula is not satisfiable.

On the other hand if the Boolean formula was x = 3 ∧ x 
= 4, the operator

would return substitutions x/3 and x−/4, because they do not contradict

each other.

Algorithm 3 Generate Substitution

Input: Condition: ϕ(t)

1: function Subs(ϕ(t))
2: if ϕ(t) is x = a then 	 Variable and Constant Equality
3: return x/a
4: else if ϕ(t) is x = y then 	 Variable and Variable Equality
5: return {x/y, y/x}
6: else if ϕ(t) is x 
= a then 	 Variable not equal to Constant
7: return x−/a
8: else if ϕ(t) is x 
= y then 	 Variable not equal to Variable
9: return {x−/y, y−/x}

10: else if ψ ∨ ξ then 	 Disjunct of atoms
11: return {SUBS(ψ),SUBS(ξ)}
12: else if ψ ∧ ξ then 	 Conjunct of atoms
13: return SUBS(ψ)

⊗
SUBS(ξ)

The algorithm 3 generates the substitution of the given formula. The gen-

erated substitution can be a single substitution or a set which contains all the

substitutions of the given formula. Note that returned substitution in a set is
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different from the substitution which is not in a set. If the formula is returned in

a set it means that the substitution is coming from an OR operator and if one of

the substitution is satisfiable there is no need to check other substitutions in the

set. On the other hand if the returned substitution is not a set, it means that it

is coming from an AND operator and each substitution needs to be checked for

the satisfiability.

Example 5.4 Consider six different cases used in the algorithm 3.

1. x = 2

Returns the substitution x/2.

2. x = y

In this case both operands are variables, hence the function returns the

substitutions x/y, y/x.

3. x 
= 4

Returns the substitution x−/4.

4. x 
= y

In this case both operands are variables, hence the function returns the

substitutions x−/y, y−/x.

5. x = 3 ∨ x = 5

In this case the function returns substitutions in a set. The return set is

{x/3, x/5}.
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6. x = 3 ∧ y = 5

In this case the function splits the Boolean function and generates the sub-

stitutions separately. Since the AND operator might yield contradiction,

more work needed while generating the substitution, for this reason algo-

rithm 2 is needed to generate this substitution. The return value of the

function with the given Boolean formula is: x/3, y/5.

Algorithm 4 Is Satisfiable

Input: Local Condition: ϕ(t)
Ensure: ϕ(t) is in Disjunctive Normal Form

1: function Sat(ϕ(t))
2: ϕ(t) = Calculate Transitivity(ϕ(t))
3: if ϕ(t) is in (a = b ∧ c = d) ∨ (e = f ∧ g = h ∧ . . .) ∨ . . . form then
4: for all each disjunct ρ in do
5: if G SAT(SAT(SUBS(ρ))) is True then
6: return True
7: return False
8: else
9: return G SAT(SUBS(ϕ(t))) 	 DNF formula ϕ(t) is in other form

Note that in the algorithm 4, Calculate Transitivity function reveals the hidden

relations between the variables and the constants. As an example let say the

given formula is x = 1∧x = y, after the Calculate Transitivity function applied

to the formula it will be changed to x = 1∧ y = 1∧ x = y. Satisfiability function

works only with functions which are in form DNF, formulas given in other forms

fails the algorithm.

Example 5.5 Assume that the global condition is:

Φ(T ) = (x = 1 ∨ x = 2 ∨ x = 3) ∧ (y = 4 ∨ y = 5) ∧ (z = 6 ∨ z = 7)
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And we want to check if the condition given below is satisfiable or not.

(x = 1∧y = 6)∨(x = 5∧y = 5∧z = 6)∨(x = y∧x = 1)∨(x = 1∧y = 4∧z = 7)

In this example since the given condition is DNF, converting to DNF is not

needed. As a first step we need to call the function SAT. The SAT function first

calculates the transitivity and the given condition formula turns into a formula

given below:

(x = 1∧y = 6)∨(x = 5∧y = 5∧z = 6)∨(x = 1∧y = 1∧x = y)∨(x = 1∧y = 4∧z = 7)

After that, SAT function splits the DNF into four subformulas and iterates over

each subformula.

First subformula is x = 1 ∧ y = 6 and the substitutions should be gener-

ated over this formula. The substitution set generated by the SUB function is

(x/1, y/6), the next step is checking the substitutions if they are contradictory

with the global condition or not. Since there is no y = 6 in the global condition,

these substitutions are not satisfiable and we need to continue to checking other

subformulas.

Second subformula is x = 5 ∧ y = 5 ∧ z = 6 and the substitutions are

(x/5, y/5, z/6). When we check the substitutions by using the G SAT func-

tion, the function returns False because in the global condition x = 5 does not

exist.

Third subformula is x = 1 ∧ y = 1 ∧ x = y and the substitution of the

formula is (x/1, y/1, x/y, y/x). Since there is no y = 1 in the global condition,

this subformula is also not satisfiable.
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Last subformula is x = 1 ∨ y = 4 ∨ z = 7 and the substitution of the formula

is (x/1, y/4, z/7). Since all of them are in the global condition, this subformula

is satisfiable and it returns True, which means that the given condition in this

example is a satisfiable condition.

5.2.2 Is Tautology

Is Tautology is a Boolean function, which returns if the given condition is True

for all valuations. Satisfiability is the preprocess of Tautology control. A Boolean

formula can be a tautology in two ways in the PossDB system. One of them is

the Boolean formula itself can be a tautology, such as x = 3 ∨ x 
= 3, and the

other one is when Φ(T ) → ϕ(t) produces a tautology. The algorithms used for

the tautology check are given below. Note that, the some of the functions called

in these algorithms were explained in the previous sections.

Algorithm 5 Check Global Tautology

Input: Valuation Set: ϑ

1: function G Taut(ϑ)
2: for all variable xn in ϑ do
3: Create a set G′

xn
= ∅

4: for all elements υ in ϑ do
5: if υ is x1/a then
6: G′

x1
= G′

x1
∩ {a}

7: else if υ is x−
1 /a and a ∈ Global(x1) then

8: return False
9: for all Created set G′

x do
10: if G′

x 
= Global(x) then
11: return False
12: return True

The algorithm 5 checks if the given formula is already in the global condition.
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Instead of using the whole global condition, this algorithm uses the valuations

and checks one by one in the global condition. This one by one checking speeds up

the process because it does not require to go over on the whole global condition.

Consider the example below:

Example 5.6 Φ(T ) = (x = 1∨x = 2∨x = 3)∧(y = 6∨y = 8∨y 
= 10)∧(z = 4)

ϕ(t) = (z = 4)

In the given example above, in theory we need to apply Φ(T ) → ϕ(t), which is

¬Φ(T ) ∨ ϕ(t) = ((x 
= 1 ∧ x 
= 2 ∧ x 
= 3) ∨ (y 
= 6 ∧ y 
= 8 ∧ y = 10) ∨ (z 
= 4))

∨ (z = 4). As it can be seen (z 
= 4) ∨ (z = 4) yields to tautology but we needed

to use the whole global condition. The algorithm 5 checks tautology by using the

substitution in the local condition and checks just the local condition substitu-

tions one by one. Since the global condition is stored in a hashed structure, the

algorithm gains speed while checking the tautology.

The algorithm 6 solves the tautology which is caused by the condition itself.

In this case we do not need to check the tautology with the global condition. As

it shown in the algorithm 6 on line 8, a Boolean formula can be tautology in three

cases, they are :

1. x = a ∨ x 
= a

In this case, Boolean formula is tautology regardless the possible valuations

of the variable x.

2. x = x

In this case, Boolean formula is tautology because the variable x is equal

to itself in any valuation of the variable x.
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Algorithm 6 Is Tautology

Input: Local Condition: ϕ(t)
Ensure: ϕ(t) is in conjunctive normal form
Ensure: ϕ(t) is Satisfiable

1: function Taut(ϕ(t))
2: ϕ(t) = Calculate Transitivity(ϕ(t)) 	 Calculate Transitivity
3: if root of ϕ(t) is AND operator in expression tree then
4: for all conjunct ρ in ϕ(t) do
5: if TAUT(ρ) is False then
6: return False
7: else if root of ϕ(t) is OR operator in expression tree then
8: if ϕ(t) contains both “x = a and x 
= a” or a = a or x = x then
9: return True
10: else
11: return G TAUT(SUB(ϕ(t)))

12: else
13: return G TAUT(SUB(ϕ(t)))

14: return True

3. a = a

In this case, Boolean formula is tautology because there is no variable and

the constant value is equal to itself.

Example 5.7 Assume that the local condition is x = 1 ∨ y = 5 ∨ x 
= 1. This

local condition produces tautology because in the formula x = 1∨ x 
= 1 is true in

any valuation of the variable x and y.

If the given Boolean formula does not yield a tautology, it needs to be checked

with the global condition. In order to check the given Boolean formula with the

global condition, the substitution of the given formula needs to be generated and

with the generated substitutions the G TAUT function needs to be called.
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5.3 Select

In c-tables a tuple can contain variables or Boolean formulas. Since variables and

the Boolean formula need to be checked with the valuations, the Select operation

of the DBMS needs to be extended.

In the PossDB system, after the C-SQL statement converted to SQL state-

ment and executed on the PostgreSQL, the output table is processed by a Java

application. The algorithm explained below takes the tuples one by one from the

output c-table and processes the tuples. The input c-table is the result of the

converted C-SQL query result.

Algorithm 7 Select

Input: Select Condition: θ
Input: Conditional Table: T

1: function Select(T, θ)
2: for all tuples t in T do
3: θt = θ
4: for all attribute names in θt do
5: Replace attribute name with attribute value from tuple t

6: if SAT(DNF(θt ∧ φ(t))) then
7: if TAUT(CNF(θt ∧ φ(t))) then
8: ϕ(t) = True.
9: else

10: ϕ(t) = θt ∧ ϕ(t)

11: else
12: Remove t from T
13: return T .

Note that, the CNF () and DNF () functions used in the algorithm above to con-

vert the Boolean formula into form of DNF or CNF. The algorithm 7 extends the

Select algorithm by adding variable checking and Boolean formula satisfiability

control.
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Example 5.8 Select * From Emp Where Dept = ’IT’

The result for the C-SQL query from the DBMS before applying the algorithms

is given below:

Name Gender Marital Status Dept ϕ(t)

Alice x1 married IT True

David M married x3 True

Ella F single x3 True

Note that, before applying the select algorithm, the local conditions of the tuples

were True. When the selected table above sent to the Select function, each tuple

is going to be evaluated with the select condition (Dept = ’IT’). Since none of

the tuples have a local condition, the conjunction of the where condition and the

local condition is going to be the same. If the table had different local conditions

each tuple would have a different local condition which is the conjunction of the

local condition and the given where condition in the select statement. In the

second and the third tuple Dept attribute contains a variable, hence the Dept

will be replaced with that variable, after changing the attribute name, the local

condition will be converted to x3 =’IT’ and it will be placed in the local condition

of the processed tuple. After applying the select algorithm, the table above will

be changed to the table given below:

Name Gender Marital Status Dept ϕ(t)

Alice x1 married IT True

David M married x3 x3 =’IT’

Ella F single x3 x3 =’IT’
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5.4 Project

The projection operation is implemented, as expected, as an extension of the

Select operation in the PossDB system. The algorithm explained in the Select

section applies to the Project operation as well.

Example 5.9 Select Name,Gender From Emp Where Gender = ’F’

The result for the C-SQL query from the DBMS before applying the algorithms

is given below:

Name Gender ϕ(t)

Alice x1 True

Bob x2 True

Ella F True

For the first tuple when we apply the algorithm, the local condition will be

generated as x1 = ’F’, as the same way, the second tuple will generate the local

condition x2 = ’F’. Since x1 = ’F’ and x2 = ’F’ are both satisfiable but not

tautology, the generated local conditions will be displayed in the final result. The

final result is given below:

Name Gender ϕ(t)

Alice x1 x1 = ’F’

Bob x2 x2 = ’F’

Ella F True

Note that the Project operation only discards the unneeded columns, besides

that, it works as the same way as the Select operation.
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5.5 Join

The Join operation built based on the Select operation as the standard SQL.

The keyword INNER JOIN distinguishes the Select operation from the Join oper-

ation. Since the join operation implemented on top of the Select operation, Join

operation keeps all the features of the Select operation.

Algorithm 8 Join

Input: Select Condition: θ
Input: Join Condition: ω
Input: Joined Table : T

1: function Join(T, θ, ω)
2: for all tuples t in T do
3: θt = θ ∧ ω ∧Θ(t)
4: for all attribute names in θt do
5: Replace attribute name with attribute value from t

6: if SAT(DNF(θt)) then
7: if TAUT(CNF(θt)) then
8: ϕ(t) = True
9: else

10: ϕ(t) = θt

11: else
12: Remove the tuple t from T

13: return T

The join algorithm works almost the same way as the select algorithm, the

main difference is on the line 3, each local condition consist of with three items,

which are:

1. θ: Represents the Select Condition, which is given after the WHERE keyword

in C-SQL.

2. ω: Represents the Join Condition, which is given after the INNER JOIN . . .

ON keywords in C-SQL.

68



5. The Algorithms

3. Θ(t): Represents the local condition which is appeared after executing the

converted C-SQL statement. Θ(t) comes from theMerge Condition() func-

tion, which is explained in the section 4.4. Merge Condition() function

returns the conjunction of the condition columns from the tables which are

participated to join.

Example 5.10 Assume that there is a relation Dept which stores the phone num-

bers and the locations of the departments. Consider joining the Dept relation and

the Emp relation of our running example to show the phone numbers and the lo-

cations of the employees. The Dept relation is given below:

Dept

Name Location Phone Condition

AC 101 2090 True

HR 103 1010 True

PR 201 2450 True

IT 301 4270 True

To join the Emp andDept relations, we need to run the C-SQL query given below:

Select E.Name Employee,

D.Phone Phone,

D.Location Location

From Emp E

Inner Join Dept D ON

E.Dept = D.Name
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After the C-SQL query converted to SQL and run on the DBMS, it returns

the given table below:

E.Name E.Dept D.Name D.Location D.Phone Condition

Alice IT IT 301 4270 True

Bob HR HR 103 1010 True

David x3 AC 101 2090 True

David x3 HR 103 1010 True

David x3 PR 201 2450 True

David x3 IT 301 4270 True

Ella x4 AC 101 2090 True

Ella x4 HR 103 1010 True

Ella x4 PR 201 2450 True

Ella x4 IT 301 4270 True

Note that E.Gender and E.Marital Status is also in the result set, but since they

are not needed, we have not showed those columns in the result. After getting

the table above from the DBMS, we need to apply the Join algorithm.

In this example we only have the join condition which is (E.Dept = D.Name).

In this condition each attribute name will be replaced with the attribute value.

For the first tuple E.Dept will be replaced with IT and D.Name will be replaced

with IT , then the condition will turn into IT = IT , since it is a tautology the

tuple will be in the result of the join operation with the local condition True.

Same procedure applies to the second tuple.

For the third tuple, when we replace the condition with attribute values of the

tuple, we get x3 = AC, since it is not satisfiable because of the global condition,
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it will be eliminated from the result. Same procedure applies to the fourth tuple.

For the fifth tuple, when we replace the condition with attribute values of the

tuple, we get x3 = PR, since it is satisfiable but not tautology, it will be in the

result with the local condition x3 = PR.

After all the tuples has been processed, the column projection applies and

projects selected columns and returns the final result. Final result of the exam-

ple is given below:

E.Name D.Location D.Phone Condition

Alice 301 4270 True

Bob 103 1010 True

David 201 2450 x3 = PR

David 301 4270 x3 = IT

Ella 201 2450 x4 = PR

Ella 301 4270 x4 = IT

5.6 Insert

Insert operation is almost the same operation as in the standard SQL. The only

difference is that if there exist a local condition given, that local condition should

be satisfiable otherwise, the insertion should be aborted by the PossDB system.

After the local condition passes the satisfiability check, it also checked against

the tautology and if it is tautology the local condition will be converted to True

automatically, otherwise the DNF form of the local condition will be inserted.
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Algorithm 9 Insert

Input: Tuple: t
Input: Local Condition: ϕ(t)

1: function Insert(t, ϕ(t))
2: if SAT(ϕ(t)) then
3: if TAUT(ϕ(t)) then
4: ϕ(t) = True
5: else
6: ϕ(t) =DNF(ϕ(t))

7: else
8: return
9: Insert t with the local condition ϕ(t)

5.7 Is Possible

Is Possible function is a unique function which has no counterpart in standard

SQL. The Is Possible function returns True if the given tuple exist in some

valuation of the nulls and it returns False if the given tuple does not exist in any

of the valuations of the nulls. The C-SQL query returns the answer where all the

nulls treated as satisfiable conditions, after that the Is Possible function checks

the variables in the tuple if there exist a valuation with constant values.

Algorithm 10 Is Possible

Input: Conditional Table: T
Input: Tuple: t

1: function Is Poss(T, t)
2: θ = True
3: for all tuple element en in t do
4: θ = θ∧ (Name of en = Value of en)

5: if |SELECT(T,θ)| > 0 then 	 If there exist a tuple in the result
6: return True
7: return False

In order to check the valuation, the given tuple is converted to a Boolean formula
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and the c-table is selected with the generated Boolean formula. The line 3 gener-

ates the Boolean formula. When we call the Select function, which is explained

in the algorithm 7, with the generated Boolean formula, it returns us a c-table.

Returned c-table shows us if the tuple is possible in the c-table or not. Note that

the Select operation checks all the variable to constant mappings in the PossDB

system. Select operation returns a non empty c-table in two cases:

1. The given tuple exists in the c-table without containing any varaibles. Note

that in this case, the given tuple is also a certain tuple in the c-table.

2. There exist a tuple in the c-table which contains variables and those vari-

ables can have the constant valuation that has been queried.

Let us consider the example below:

Example 5.11 Is Possible(Name,Bob,Gender,M,Dept,HR) In Emp

The tuple generates the Boolean formula given below.

True ∧ (Name = ’Bob’) ∧ (Gender = ’M’) ∧ (Dept = ’HR’)

the equivalent normalized version of the given formula is:

(Name = ’Bob’) ∧ (Gender = ’M’) ∧ (Dept = ’HR’)

Now we need to Select Emp relation with the given condition above.

Select(Emp,(Name = ’Bob’) ∧ (Gender = ’M’) ∧ (Dept = ’HR’))
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The Select function above returns us a c-table. The result of the Select function

is given below:

Name Gender Marital Status Condition

Bob x2 married x2 = ’M’

Since the c-table is not empty, it means that the given tuple is possible in the

given Emp relation.

5.8 Is Certain

Is Certain function is also an unique function as the Is Possible function. The

Is Certain function needs more steps than the Is Possible function needs because

each possible world needs to be checked. In practice in c-tables, whenever there

exist a local condition with True, it means the the tuple is certain. Unfortunately

sometimes the local condition does not seem to be True to the user or the tuple

can occur in a different forms in the c-table which is difficult to catch by the user

that they are not mutually exclusive. The Is Certain function solves the above

mentioned unseen tautologies.

Let us consider the example below.

Example 5.12 Is there exist a certain tuple which has Comedian Jerry in the

given c-table below:

Name Job ϕ(t)

Jerry Comedian x 
= ’Comedian’

Jerry x x = ’Comedian’
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Algorithm 11 Is Certain

Ensure: Given tuple is possible in the c-table
Input: Conditional Table: T
Input: Tuple: t

1: function Is Cert(T, t)
2: θ = True
3: for all tuple element e in t do
4: θ = θ∧ (Name of e = Value of e)

5: T ′ = SELECT(T,θ)
6: θ′ = False
7: for all tuple t′ in T ′ do
8: θ′ = θ′ ∨ ϕ(t′)

9: return TAUT(θ′)

In the c-table above, there exist two people who are names as Jerry. Both are

depend on a local condition, which states that they are possible tuples in the

c-table but not certain. On the other hand, the other representation of the given

tuple c-table is given below:

Name Job ϕ(t)

Jerry Comedian x = ’Comedian’ ∨ x 
= ’Comedian’ True

The local condition of the only tuple of the above c-table is a tautology, which

states that it is certain, the tuple exists in any valuations of the null values.
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Experimental Results

This chapter describes the experimental results of the PossDB system. The

main idea behind the experimental results is to demonstrate the scalability of

the system. Our experiments benchmark the system with the most similar sys-

tem MayBMS, which is implemented for the same purpose as the PossDB system.

MayBMS also returns the exact answer to queries as PossDB does, and the scala-

bility of MayBMS has been proven [9]. Furthermore, both PossDB and MayBMS

are built on top of PostgeSQL. Note that MayBMS system has two accessible

versions, we conduct our experiments with the first available version of MayBMS

[9] system, which does not have the probabilistic features.

6.1 Data Set

The experiments are based on the queries and data which were used for the

MayBMS experimental evaluation [9]. Their experiment used a large census

database encoded as integers [28]. The large census database contains the real
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United States of America (USA) census data from 1990. The database contains

the 5 percent of the real census data, which amounts to 10 million tuples. The

large census database has only one relation which is named as R and the at-

tributes of the relation R are given in the table 6.1 with their descriptions. Since

the census data is complete data, noise was introduced by replacing some values

with variables that could take between 2 and 8 possible values. A noise ratio of

n% meant that n% of the values were perturbed in this fashion. In every experi-

ment which is compared with the MayBMS, the same noised data set have been

used. The MayBMS system and the noise generator has been obtained from [1].

Attribute Name Description

YEAR Census year
DATANUM Data set number
SERIAL Household serial number
HHWT Household weight
STATEFIP State (FIPS code)
GQ Group quarters status
PERNUM Person number in sample unit
PERWT Person weight
STEPPOP Probable step/adopted father
SUBFAM Subfamily membership
CBSFTYPE Subfamily type (original Census Bureau classification)
SEX Sex
MARST Marital status
CITIZEN Citizenship status
SPEAKENG Speaks English
OCC1990 Occupation, 1990 basis
MIGPUMA PUMA of residence 5 years ago
VETSTAT (general) Veteran status [general version]
VETSTATD (detailed) Veteran status [detailed version]
VET75X80 Veteran, served 1975 to 1980
VET55X64 Veteran, served 1955 to 1964
VETOTHER Veteran of other period

Table 6.1: Census Database Attributes
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6.2 System Settings

The experiments were conducted on Intel R©CoreTMi5-760 processor machine with

8 GB RAM, running Windows 7 Enterprise, PostgreSQL 9.0, and Java SE Run-

time Environment build 1.6.027.

6.3 MayBMS & PossDB Benchmark

This section provides the benchmark results of the PossDB system with the

MayBMS system. Both systems were tested with the same data set, in the same

PostgreSQL system with an empty database cache. Since there is no special query

language in MayBMS system, both systems are tested with the SQL queries, the

query conversion time does not included. Three queries were chosen to show

the behaviour of different operation characteristics. Each query has a different

character from the others, as a result, we expect to see different execution times.
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Experiment 1 Selection over the relation R. The given query below used to test

both systems.

SELECT * FROM R WHERE VETSTAT = 8 AND CITIZEN = 9

The results for the given query is given below.

Figure 6.1: Selection with %0.005 Noise
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Figure 6.2: Selection with %0.05 Noise

Figure 6.3: Selection with %0.1 Noise
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In the experiment 1, we wanted to check our systems scalability with an

easy query. The query returns the USA citizens who is military veteran. As

expected in a simple query, the PossDB system processes the data much faster

than the MayBMS, it is because of the MayBMS system needs to perform the join

operation even though the query is just a simple query. In the PossDB system the

only process during the query execution time is tuple by tuple variable valuation

check if the tuple contains variable in the VETSTAT or CITIZEN attribute.

Experiment 2 Selection and Projection experiment, where there are few columns

projected. The given query below has been used to test both systems.

SELECT STATEFIP, OCC1990 FROM R

WHERE SPEAKENG = 3

The results for the given query is given below.

Figure 6.4: Projection with two columns and %0.005 Noise
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Figure 6.5: Projection with two columns and %0.05 Noise

Figure 6.6: Projection with two columns and %0.1 Noise
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In the experiment 2, we wanted to benchmark our system with MayBMS with

the most similar case. In the MayBMS theory, the less column you select the less

decomposed world you get. This brings us almost the same amount of data in

both systems. The query returns the state of residency and occupations of all the

USA citizens who can only speak English.

As it can bee seen from the graphs, when there exist only a few variables in

the database, the both systems works with almost with the same speed. Unfor-

tunately when the number of variables increases, the decomposed world sets gets

bigger and the MayBMS starts to loose its fast execution speed.

Experiment 3 Selection and Projection experiment, where there is a column -

column equality in the condition. The given query below has been used to test both

systems.

SELECT STATEFIP, OCC1990, CITIZEN, SUBFAM FROM R

WHERE (SUBFAM > 4)

AND (CITIZEN = 1)

AND (STATEFIP = OCC1990)

The results for the given query is given below.
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Figure 6.7: Projection with column-column equality and %0.005 Noise

Figure 6.8: Projection with column-column equality and %0.05 Noise
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Figure 6.9: Projection with column-column equality and %0.1 Noise

In the experiment 3, the main goal is to check the PossDB system with a more

complex query. We achieved the complex query by adding two columns equality

condition. The column to column equality brings us a variable to variable equality

in some cases and it is more complex valuation check rather than variable to

constant equality. This query returns the USA citizens who was born outside of

the USA, lives with more then 4 people in the house, and works in the field which

is specific for their state of residence.

As we expected the variable to variable equality takes more time to check

variable to constant equation, because in the variable to variable equality cases,

the intersection needs to be done to both variable valuation set, and finally the

intersect set should be considered to find the answer.
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6.4 Summary

In this chapter, we tested our system with MayBMS-1 and analyzed the results.

The results show that PossDB clearly outperforms MayBMS. This is mostly be-

cause of the MayBMS needs to use two more extra relations to express possible

valuations for the nulls, but in the PossDB, there is no extra relation needed to

store possible valuations. In the PossDB system each valuation for the variables

stored in the memory with the hashed structure. This helps the PossDB system

for checking the valuations in less time than MayBMS. The MayBMS system

needs to perform joins in order to check valuations against the constant values.

As it can be seen from the graphics, the PossDB system works more efficiently

than the MayBMS system with large number of data. This can be explained as

the same way as the first experiment, since MayBMS needs to join tables, it needs

more space and it needs to use secondary storage [16, 21], but the PossDB needs

to go over tuple by tuple, and it does not require to do join.
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Conclusion and Future Work

The PossDB system presented in this thesis is capable of storing incomplete

data using c-tables. Even if the c-tables data model is well known, it has not

been implemented before, although many probabilistic systems essentially use

probabilistic versions of c-tables.

In this thesis we show not only that the conditional table is a good candidate

for storing incomplete information and we also show that the system indeed is

scalable. For now PossDB is able to process positive queries.

Possibility and Certainty checking functionalities could be extended so that

the user could ask if a set of tuples is possible or certain. Thus we could

also determine whether two possible tuples are mutually exclusive, by issuing

IS POSSIBLE t1, IS POSSIBLE t2, and IS POSSIBLE {t1, t2}. If the first two

answers are True and the third answer is False, it means that both t1 and t2 are

possible tuples, but they are mutually exclusive (i.e. cannot co-exist in the same

possible world). We note that the IS CERTAIN would still run in polynomial

time in this generalization, as would also the IS CERTAIN function, provided
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the number of tuples in the set were fixed [3].

The future work should be extending the system to allow general SQL queries,

including also certain/possible nested subqueries. This requires non-trivial exten-

sions to the current C-SQL language.

Another extension is to integrate a state-of-the-art SAT-solver, e.g. [10] or

[11]. The SAT-solver would then handle the satisfiability and tautology tests,

which is likely to further improve the performance of the system.

Finally, the system can be extended by implementing the chase based proce-

dure on conditional tables [18] in order for the new system to be also usable in

other applications, such as Data Exchange, Data Repair and Data Integration.
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