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ABSTRACT

Vibrations of Thickness-and-width Tapered Laminated Composite Beamsvith

Rigid and Elastic Supports

Pooya Salajegheh

Variablewidth variablethickness laminated composite beams provide stiffness
tailoring and mastailoring design capabilities. They are increasingly and widely being
usedin engineering applications including robotic manipulators, aircraft wings, space
structures, helicopter blades and yokes, turbine blades, and civil infrastructure. These
structures are subjected to thwarying loadings. In the present work, the feewlthe
forced vibration response of symmetric lingdiicknessandwidth-tapered laminated
composite beamsre considered.Considering a variety of tapered configurations
according to diferent types of plies drepff configurations, both conventional and
advanced finite element formulatiom are developed based on the Kirchho#éind
cylindrical laminated beambending theaies Natural frequenciesmode shapesand
forced vibration responsef different types of internallyapered composite beams are
determinedRigid and elastic supportre considered fathe free vibration responsef
the beamsRigid supportsare considered fahe forcedvibration responsef the beams.
Comparison of the finite element solution with the RayldRitz solution is performed.
A parametric study is conducted to investigate the effects of taper configurations,
thicknesstapering angle, widthnatios, dampingnd boundary conditions on the fraed
forced vibration responseof the variablethickness variablavidth laminatedcomposie

beams.



ACKNOWLEDGEMENT

It is a great pleasure to thank many people who made this thesis possible

First and foremost, | would like to thank my dear parents Mr. Ali Salajegheh and
Mrs. Maliheh Karegary for all their love, encouragement and supipan thankful to
my brothers, Mr. Sina Salajegheh and Dr. Nima Salajegheh for their support and
encouragement during my masterods study.

Then, | offer my sincerest gratitude to my supervisor, Dr. Rajamohan Ganesan,
who has supported me, throughout my thesis rekBeaith his enthusiasm, inspiration,
patience and immense knowledge. Throughout my tvesisg period, he provided
encouragement, sound advice, good teaching, and lots of good ideas.

| am thankful to all my friends at graduate research office EV 13ah@7/my dear
friend Mr. Kian Gorji who supported me by sharing ideas and discussion during my
research studies.

| gratefully acknowledge the funding sources for my Masters Thesis provided by

the NSERC and Concordia University.

Thank You.



Table of Corntents

N 1Y) I 2 O PSPPSR i

ACKNOWLEDGEMENT ...t reee e e e e e e e e e e e e e e e ammmraneeeees I\

LIST Of FIQUIES......eeiieiiiteee ettt e e e e e et e e e e e ix

IS A ) = ] =S P XV

N[ 1T Tl F= L | =P PUTT XViii
Chapterl

Introduction, literature survey and scope of the thesis

1.1. Vibration analysis in mechanical deSign.............couviiiiiiieeeiiiieeee e 1

1.2. Composite materials and StrUCLUIES. .......ueuiiii i e eeeeen e 2

1.3. Finite element Method..............oooiiiiii e 4

1.4. LItErature SUIVEY.......ieeiieeiiiieteiie et e e e e e e e e e emmma s e e e e e e e e e e e e e e eeesaenneeas 5

1.5. Objectives of the theSIS..........cooiiiiiiieeee e 9

1.6. Layout Of the theSIS........cooiiiieee e e e 11
Chapter2

Conventional finite element formulation for free viboatianalysis of composite beams

2.1. pTigoTo [FTol 1 o] o U PP PPP P PPRROPPPPPPR 13
2.2. Uniform and uniformthickness widtktapered beams.............cccooooeiiiiiieeeennnn. 14
2.2.1. Conventional finite element formulation................ceeviiiieeeiiii e 16
2.2.1.1. Cylindrical bending theory (plane strain).................coovvvvieaeee. 17
2.2.1.2. Onedimensional laminated beam theory (plane stress)........ 18
2.2.1.3. Coefficients of element stiffness and mass matrices............. 18



2.2.1.4.

2.2.1.5.

2.2.2.

2.2.3.

2.3.

2.3.1.

2.3.1.1.

2.3.1.2.

2.3.2.

2.4,

2.4.1.

2.4.2.

2.5.

Derivation of shape funNCtions............cccoeeeeeiiiiieeeiie e 20

Stiffness and Mass MatriCes...........ccovvvvvveviiimemne e 21
Exact natural frequencies of uniform laminated compds#ams........................ 22
AV £z 11 e F= 4o o PP PP TP SUTRPPPPPRR 23
Uniform-width thicknesgapered beams...............oovvvviiiiiccciieceeci s 31
Conventional finite element formulatian...............ccuvvveivieemiiiiiii e 32

Derivation of coefficients of stiffness and mass matrices.....33

Stiffness and Mass MatriCes............covvvvvvviiviemmee e 34
LY Z= 11 F= 11 o] o T 35
Width-tapered thicknesgpered beams.............cccoevvvviviceee e 41
Conventional finite element formulatian...............ccuvvvviiieemiiiiiiie e 42
RV £= 11T =0 o 1RSSR 43
DisScusSION ath CONCIUSION..........coviiiieiiiiiiiecmme et eere e 54

Chapter3

Advanced finite element formulation for free vibration analysis of composite beams

3.1.

3.2.

3.2.1.

3.2.1.1.

3.2.1.2.

3.2.2.

0T (3o 1o ISP 56
Uniform and uniformthickness widtitapered beams...............ccccvvvviiiieennnnnns 57
Advanced finite element formulation..............cccoooeiiiiieceiiiiii e 57
Derivation of shape functions..............ccccuvvviiieemniiiiiiiiiieeee, 57
Stiffness and Mass MatriCes............ooovvvvviiiiiemme e 59
LV 4211 =4[ o PP 60

Vi



3.3. Width-tapered thicknestpered beams............oouvviiiiiiiiccceeiii e 65

3.3.1. Advanced finite element formulation...............oooooi i 65

3.3.1.1. Derivation of coefficients of stiffness and mass matrices.....65

3.3.2. [V £z UL F= 1o o HO TSP PP P PP PP PPRPPPRPPN 67

3.4. DiscusSioN and CONCIUSION...........uviiiiieeiireei e rmmee e 74
Chapterd

Forced vibration analysis of laminated composite beams using conventional and

advanced finite element formulations

4.1. INEFOTUCTION ...ttt e bbb eeer e e e e e 76
4.2. Undamped forced vibration analysSiS...........ccveeiiiiiiecciiiieeeeeeeeeeeen 76
4.2.1. FIOWCRAIT ...t e e e e e e s eeer e e e e e e e e eeas 78
4.2.2. [V £z U Lo £= Ui [0 o TR SO P OO PP PPPPPPN 79
4.3. Damped forced vibration analySiS.............ueeeeiiiiiiieeciiiiiiiieeeeeeee e 92
4.3.1. FOIMUIBLION. ... eeer e e 93
4.2.3. AV =11 Lo F= 11 [ o PP PP PPPPP 95
4.4. DiscusSion and CONCIUSION...........uuiiiiieiiiieeeiiiee e rmees e 104
Chapters

Vibration analysis of tapered laminated composite beams with elastic supports

5.1. I Ti oo (8o o] o DU PP PP PP PP P PP PRSP 106
5.2. Advanced and convemwtnal finite element formulations....................ooooeeee. 107
5.3. AV 4= UL To F= i o] o PP PP PP PP TPPTTPPP 108
5.3.1. UNIfOrM DEAML...... e 108



5.3.2. Thicknesstapered widtitapered composite beams.................eeiiiiccceeeiinnnnnes 120

5.4. DiscusSIioN and CONCIUSION........eeee e 137
Chapter6

Conclusions and recommendations

6.1. Major CONEHDULIONS.......coiiiieeeieeiiiii et e e e e e e 139
6.2. (@] 3 Tod 181510 o 1= PR TRRRTSPPPN 140
BIBLIOGRAHY ..ottt e e e e e e e eees s e e e e e e e e e e e e e e e e amnnsaaeeeaeeeeeaeeeeees 144

APPENDIX 151

I- Coefficients of the stiffness matrix for widthpered thickneswpered laminated
compositebeams using advanced finite element formulation..............cccoovveeee 151
II- Coefficients of the mass matrix for widthpered thicknestapered laminated
composite beams using advanced finite element formulation...............c.ccccceee oo 154
Il - Coefficients of the stiffness matrix for thicknegsgered laminated composite beams

using conventional finite element formulation....................oovie i 157

viii



List of Figures

Figure 2.1: A Uniform DEaAM........uuii i reee e e 15
Figure 2.2: A uniforrthickness widtitapered beam.............ccooeevviiivieeee e 15
Figure 2.3: Uniform and uniforsthickness widtitapered laminated beams............. 16
Figure 2.4: Element degrees of freedm.............ceiiiiiiiceciiiiiiciie e eeee 19

Figure 2.5:Uniform beam with simply supported, clampigde and clampedlamped
boundary CONAILIONS.............ooviiiiiiiiice e et e e e e e e e e e e e aeeee e e as 24
Figure 2.6:Convergence of the natural frequencies obtained using conventiital
element formulation of uniform a) simply supported, b) clarvipee and c) clamped

clamped laminated composite beams, when the number of elements increases from 1 to

Figure 2.7 First three mode shapes of uniform laminated composite beams with different
boundary CONAILIONS.............ooviiiiiiiicce e et e e e e e e e e e e e aeeer e e as 27
Figure 2.8: The effect of ply orientations on free vibration of uniform laminated

composite beamwith simply supported, clampdae and clampedlamped boundary

(olo] Lo [110] 0 £ 3 PO PPPPOPUPPPPPP 29
Figure 2.9Four different configurations of internally thicknespered beams......... 32
Figure 2.10Arbitrary ply in the thicknestapered composite beam......................... 33
Figure 2.11Uniform-width thicknesgapered beam, 206 plies................ccevvvvvnnnnnne. 37

Figure 2.12: Sideiiew of the upper half of the thicknetspered beams made of

configurations A, B, C and D with 3B2 plieS..........ccoooeiiiiiiiiiiiieeee e 38



Figure 2.13:First threefinite element natural frequencies for unifemndth thickness
tapered beams (configurations A, B, C and D) and exact natural frequencies of uniform
beams With 12 and 36 PlIES........ueeiiiiiiiiiii e 40
Figure 2.14Width-tapered thicknesgpered beams............ccccciiiiiic 42
Figure 2.15Fundamental natural frequencies obtained using conventional finite element
formulation for constant thicknegapering angle varying widthatio of simply
supported, clampeftee and clampedlamped beams............cccoooiiiiiiiiiceciiiiiii. 47
Figure 2.16Fundamental natural frequencies obtained using conventional finite element
formulation of constant width rati¢0.5) varying thicknestapering angle beams with
simply supported, clampddee and clampedlamped boundary conditions............. 51
Figure 2.17: Natural frequencies of thicknésgered widtkitapered aminated composite

beams with different ply Orentations............ooovveeiiiiiiiccc e 53

Figure 3.1: First three natural frequencies of unifbiinkness widtktapered laminated
composite beam obtained using Conventional Finite Element Method (CFEM) and

Advanced Finite Element Method (AFEM)........ccooiiiiiiiiiiiiiieeei e 64

Figure 4.1: Modal analysis procedure for composite beamg fisite element methat8
Figure 4.2: Points of force application and the corresponding response points of uniform
laminated composite beams with clamyfiexe, clampeelamped and simply spprted
[oToTUT T F= Ty YA o 0] T 111 0] o T 80
Figure 4.3:Forced vibration response of simply supported, clanfpssl and clamped

clamped uniform laminated COMpOoSIte DEAMS.........covvviiiiiiiieiciie e 32

X



Figure 4.4: Forced vibration response of simply supported, unifloickness width
tapered laminated composite beams with different width ratias...................vueeee. 85
Figure 4.5: Fored vibration response of clampé&de, uniformthickness widthitapered
laminated composite beams with different width ratios..............cccccoviicciieieiiinnns 86
Figure 4.6: Forced vibration response of clamplanped, uniforrthickness width
tapered laminated composite beams with different width ratias.................c..vueeee. 87
Figure 4.7: Forced vibration response of simply supported, thiciktapesed width
tapered laminated composhlieams, configurations A, B, Cand.D.......................... 89
Figure 4.8: Forced vibration response of clampred, thicknesgapered widtkitapered
laminated composite beams, configurations A, B, C and.D...........cooviiiiiaannnnn! 90
Figure 4.9: Forced vibration response of clamplkdnped, thicknestapered width
tapered laminated composite beams, configurations A, B, C and D..................... 91
Figure 4.10: Amplitude of deflection versus frequency of vibration determined using
conventional finite element and Rayleiifitz methods for uniforathickness width
tapered laminated composite beams with simply supported, claimrggednd clamgd
clamped boundary CONAITIONS .........ciuiiiiiiiiii e 96
Figure 4.11: Amplitude of deflection versus frequency of vibration obtained using
conventional finite element method for uniform laminated composite beamsimigty
supported, clamped free and clamped clamped boundary conditions.................. 98
Figure 4.12: Amplitude of deflection versus frequency of vibration determined using
conventional finite element methddr simply supported, clampédee and clamped

clamped thicknestapered widtkitapered laminated composite beams with Configuration

Xi



Figure 4.13: Amplitude of deflection versus frequerayvibration determined using
conventional finite element method for simply supported, clanfigesd and clamped

clamped thicknestapered widthtapered laminated composite beams with Configuration

Figure 4.14: Amplitude of deflection versus frequency of vibration determined using
conventional finite element method for simply supported, clanfiged and clamped

clamped thicknestapered widtkitapered laminated composite beams with Configuma

Figure 4.15: Amplitude of deflection versus frequency of vibration determined using
conventional finite element method for simply supported, clanfiesd and clamped

clamped thicknestapered widtkitapered laminated composite beams with Configuration

Figure 5.1: Uniform beam clamped at one end with a translational spring attached to the
other end of the DEAIML..........oooiiiii e 108

Figure 5.2: Uniform a) fre&ranslational spring, b) simply supportdnslational spring

and c) clampedranslational spring beams..............cccooiiiiieeeii e, 111

Figure 5.3: Uniform laminated composite beam with a)-frapslational spring, b)
simply supportedranslational spring, c¢) clampédanslational spring, d) clamped
rotational spring, and e) freetational spring boundamgonditions........................... 114

Figure 5.4: First three natural frequencies of a uniform clarmeedbeam and a uniform
clampedsimply supported beam and a uniform clampadslational spring beam when

the diffness of the spring increases from zerd @ KN/M..........ccoooeeiiiiiiiiiiieennnnn. 117

Xii



Figure 5.5: Clampedimply supported uniform beam with a rotational spring attached to
the simply supported end of the beam.............ccooiiii e 118
Figure 5.6: First three natural frequencies of a uniform clarspagly supported beam
and a uniform clampedlamped beam and a uniform clamgsohply supported beam
with a rotational spring attachdad the simply supported end of the beam when the
stiffness of the spring increases from zero to 10 KN.m/rad................cceevveeeeennnn. 119
Figure 5.7: Thicknestpered widtitapered beam, 206 plies.............ccccvvvviiierienn. 121
Figure 5.8: First three natural frequencies of uniftinickness widtkitiapered beams with
16 and 20 plies and a 2® plies thicknestapered widthtapered beam with clamped
translational spring boundary Ghition..............cccuuiiiiiiiiieee e 122
Figure 5.9: First three natural frequencies of uniftinickness widtkitapered beams with
16 and 20 plies and a 2® plies thicknestapered widthtapered beam with clamped
rotatioral spring boundary coNdition...............ooeviiiiiii e 123
Figure 5.10: First three natural frequencies of thick#tagssred widthtapered laminated
composite beams with clampéee, clampesimply supported and clamge
translational spring boundary conditions made of configurations A and.B.......... 125
Figure 5.11: First three natural frequencies of thickutassred widthtapered laminated
composite beams with clgadfree, clampeeimply supported and clamped
translational spring boundary conditions made of configurations C and.D.......... 126
Figure 5.12: First three natural frequencies of thickutagsred widt-tapered laminated
composite beams with clampstnply supported, clampedamped and clamped

translational and rotational springs boundary conditions made of configurations A and B

Xiii



Figure5.13: First three natural frequencies of thickAaggered widthtapered laminated
composite beams with clampsdnply supported, clampedamped and clamped

translational and rotational springs boundary conditions made of configurations C and D

Xiv



List of Tables

Table 2.1 Mechanical properties of unidirectional NE&3D1 graphiteepoxy prepreg.. 14
Table 2.2Mechanical properties of resin material.................ccooeeveeeeiiiiiiei e, 14
Table 2.3 Exact and approximate lowest three natural frequencies for simply supported
UNIfOrmM DEAM (FAA/S) ... i ee e e it e ernnnes 24
Table 2.4:Exact and approximate lowest three natural frequencies for clafmgeed
UNIfOrm DEAM (FAA/S) ... .o iee e e ennnees 25
Table 2.5:Exact and approximate lowetsiree natural frequencies for clampddmped
UNIfOrmM DEAM (FAA/S) .. ..o iee i e eennees 25
Table 2.6: First three natural frequencies of simply supported uniform laminated
composite beams with different ply ori@afions.................ovvviiiiiccceee 27

Table 2.7: First three natural frequencies of clardped uniform laminated composite
beams with different ply orientations.............cccooeeiiiiiieeeii e 28

Table 2.8: First three natural frequencies of clamgathped uniform laminated
composite beams with different ply orientatians...............cccceeiiicccveeiviiiicicceeeee. 28

Table 2.9: Comparison of the natural frequencies deieed using finite element
formulation and the existing results obtained using RayRigh Method for uniform
thickness widtktapered laminated composite beams................ccooovieeeiiiie 30

Table 2.10:Comparison of tb results for thicknesspered beams with that of uniform
(01T 0L TP PPPPPPPPPPPP 37
Table 2.11: Comparison of the natural frequencies of thickrtepered beams

determined using conventional finite elementdatation with existing results [4].....39

XV



Table 2.12:Comparison of the natural frequencies obtained using conventional finite
element and RayleigRitz methods for laminated composite beams witnstant
thicknesstapering angle and varying Widthtio...................cccociimnniicii 44
Table 2.13:Comparison of finite element natural frequencies of constant sagiring
angle variable thicknedspering angle beanwsth RayleighRitz solution.................. 48
Table 2.14: Natural frequencies of thicknémgered widtitapered laminated composite

beams (configurations A, B, C and D) having different ply orientatians............... 52

Table 3.1:Comparison of exact and finite element natural frequencies for a simply
supported UNIform DEAM.............uuiiii e 61

Table 3.2:Comparison of exact and finite element natural frequencies for a claingeed
UNITOIM DBAIML ...t et e e e e e e e s sense e e e eeaeaeaeeas 61

Table 3.3:Comparison of exact and finite element natural frequencies for gpethm
clamped uniform DEAML..........oooiiiii e eeenas 62

Table 3.4: Comparison of the natural frequencies obtained using advanced and
conventional finite element methods for laminated composite beams with constant
thicknes-tapering angle and varying width ratio.................ccccoiiiicccrieeeeiiviiiiceeeenn, 68

Table 3.5: Comparison of the natural frequencies obtained using advanced and
conventional finite element methods for laminated composite beams warthng

thicknesstapering angle and constant width ratio.............ccccccoviiieeer i 12

Table 5.1: Material properties of aluminum alloy 7075.............cccevvvivvieeeciiiinnnnne. 109

XVi



Table 5.2: First two natural frequencies of a uniform isotropic clanvaedlational
spring beam determined using conventional and advanced finite element formulations
and the comparison with the existing resultS...........oooooiii e 110

Table 5.3: First five natural frequencies of uniform isotropic beams with- free
translational spring, simply supportgdnslational spring and clampé@nslational
spring boundary conditions obtained using advdnaed conventional finite element
formulations and RayleigRitz method............ooeviiiiiiiieee e 112

Table 5.4: First four natural frequencies of uniform laminated composite beams with
free-translational spring, simplysupportedranslational spring, clampedanslational
spring, clampedotational spring and freetational spring boundary conditions obtained
using conventional finite element formulation and Rayléfgtz method.................. 115

Table 5.5: Natural frequencies of clamgege and clampettranslational spring
thicknesstapered widtltapered beams............cccuuiiiiiiiieemri e 130

Table 5.6: Natural frequencies of clamgeele and clampetbtational spring thickness
tapered widtlHapered DEAMS..........ccoiiiiii e 132

Table 5.7: Natural frequencies of clamgeahslational spring and clampé@nslational

and rotational spring thicksetapered widtkitapered beams..............cccvvviiiiieeenne 134

Table 5.8: Natural frequencies of clampethational spring and clampéchnslational

and rotational spring thicknesapered widthHapered beams.............cccoevviiiiieee.. 136

Xvil



Nomenclature

O Height of the laminate

O Height of the beam at the left section

Og Ply thickness

0 Specific ply thickness ithe z direction

L Length of the beam

a Length of the element

B Uniform width of the beam

0,0 Width at the left section and the right section of the beam
@ ® Width of the beam at coordinate x

&) Width of the element at the mjabint of the element
i Width ratio

() Longitudinal direction of the laminated beam

W Transverse direction of the laminated beam

a Thickness direction of the laminated beam

a Distance ofth&dt h ply i nterface from the
&) Intercept of the centre line of each ply

0 Time

0 ofD The transverse displacement of the beam

= Longitudinal modulus

E, Transverse modulus

Gz In-plane sheamodulus

Xvili



G23 Out-of-plane shear modulus
Density of ply

Mass per unit length per unit width

312 Maj or Poissondés ratio
321 Minor Poissm 6 s r ati o

O The first coefficient of bending stiffness matrix
6 ,0 Coefficients of coupling stiffnesmatrix

[A], [B], [D] Laminate stiffness matrices

~
g

0 Coefficient of the @mnsformed reduced stiffness matrix
0 Bending moment per unit width about thexis

0 Bending moment

Q Curvature

0 Axial force per unit width along thx-axis

0,0 Shape functions of the beam

n w Distributed transverse load per unit width

€ Number of plies

Rotations about the-gxis

Q Coefficient of the element stiffness matrix
o) Element Stiffness matrix

0 Global stiffness matrix
a Coefficient of the element mass matrix

a Elementmass matrix

0 Global mass matrix

XixX



[C] Damping matrix

Square of the natural frequency of the beam

0 Eigenvector
W Vector of displacements in theursformed coordinates
O Force vector
1 Natural frequency
FEM Finite Element Method
CFEM Conventional Finite Element Method
AFEM Advanced Finite Element Method
R-R RayleighRitz method
. Thicknesstapering angle
Y Orthonormal eigenvector matrix

| Mass proportional Rayleigh damping constant

I Stiffness proportional Rayleigh d@mng constant
TS Translational spring
RS Rotational spring

XX



Chapter-1

Introduction, literature survey and scope of the thesis

1.1. Vibration analysis in mechanical design

Mechanical vibration is a timdependent phenomenon whideals with the
repetitive motion of an object relative to a stationary frame of reference or nominal
position. More often, vibration is undesirable, not only because of the waste of energy
and the reduction in the performance and the resulting unpteasations but also
because of creating unwanted sound and noise. Vibration may also lead to fatigue and
unpredictable failure of the structure or machine due to the created dynamic stresses in
the structure. Noise is generally considered to be undesgaibe. The study of noise or
sound (pressure waves) and vibration are closely related since noise is generally produced
by the vibration of structures. Hence in order to reduce the unwanted noise often the
problem of controlling the vibration of the strup is encountered.

The vibration of a system may occur due to an excitation generated by initial
displacement and/or initial velocity of the mass (free vibration) or may occur due to an
excitation created by harmonically excited force (forced vibrationihe first case (free
vibration), mechanical system will vibrate at one or more of its natural frequencies. In
this case, damping or friction from material itself or surrounding medium will cause the
vibration to stop. In the second case (forced vibmtithe system is forced to vibrate at
the same frequency as that of the excited harmonic force. In this case if the frequency of

exciting force gets close to the natural frequencies of the system, the structure will



undergo a vibration resonance in whtble system will respond at greater amplitude than
it does at other frequencies. There are many examples of structures failing or not meeting
objectives or heavily reduced lifetime due to vibration resonances, fatigue or high noise

levels in the system whiccan be avoided by proper vibration analysis.

1.2. Composite materials and structures

Composite materialefers to material that is created by the synthetic assembly of
two or more organic or inorganic materials in order to obtain specific material properties
such as high strength and high modulus to weight ratio, corrosion resistance, thermal
properties, fatigue life and wear resistance and increased tolerance to ftain@gebon
fiber is one of the most important higlerformance ibers for military and aerospace
applications. Higkstrength carbon fiber came out of the development laboratories in
Japan, England, and the United States in the late 1960s. The initial fibers were very
expensive (more than 400 to 500 dollars per pourtdgiwlimited their applications to
high-value military aerospace and space systems. The results of early military composite
development programs can be seen today in systems fielded by each of the military
services. For example, more than 350 parts oFtB2 Raptor, accounting for 25 percent
of the structural weight, are carbepoxy composites. But in the early 1970s, continuous
processes were developed and the cost declined steadily over the next decade. The Air
Force Materials Laboratory took the lead U.S. governmersponsored material
development and hardware demonstration. By the late 1970s, composite materials were
used in the production of primary structures for military aircraft and missiles. These
applications were followed by selective useammercial aircraft. For 20 years, between

1969 and 1989, the carbon fiber industry had phenomenal technological success and

2



doubledigit annual growth in aerospace and defense industries, with additional use in
sports equipment and some limited use iroedgtive and industrial applications. This
growth attracted many large international companies into the industry. The vision was
that continued growth in military and commercial aircraft use would be followed by a
very large indstrial market by the year Q0[2].

Development and design of polymer composite materials and structures is the
fastest growing segment of lightweight (durable and sustainable) construction and
product engineering (in general 'moving and moved beings')e $iteen years for each
five years period the world market volume of advanced polymer composites was doubled
(100 percent growth per quinquennial). For the first decade of this millennium a growth
of at least 700 percent was foreseen (350 percent grewthpumnquennial). The majority
of structural parts in novel aircraft and space platform designs will be materialized in
polymer composite materials. In case of fireproof interiors including floors and
supporting structures (beams and brackets) the appldgime of composites are
reaching the maximum of almost 100 percent and for the high performance and durable
exterior shell structures almost 80 percent by volume is within the reach.

The same trends and developments are true for inshore and offshoreinind
blade designs (wing structures possessing a radius equal to the total span of a Boeing
747) and the development of the latest fast transport systems varying from trains, cars,
ferries, trucks to ships and yachts, shows similar tendej3iies

In Some specific applications of composite structures such as helicopter yoke,
robot arms, turbine blades and satellite antenna, the laminates need to be stiff at one

location and flexible at another location. For example in a heBcopke, a progressive



variation in the thickness of the yoke is required to provide high stiffness at the hub and
flexibility at the middle of yoke length to accommodate for flapping. This type of
structure is created by terminating or dropping off deteplies at specific locations to

reduce the stiffness of that structure which is callethastapered composite structure

[4].

1.3. Finite element method

Finite element method is a numerical technique derived from variational method
for finding approximate solutions to problems. This method overcomes the disadvantage
of the traditional variational methods by providing a systematic procedure for the
derivation of the approximation functions over subregions of the domain. The method is
endowed with three basic features that account for its superiority over other competing
methods. First, a geometrically complex domain of the problem is represented as a
collection of geometrically simple subdomains, called finite elements. Second,acher e
finite element, the approximation functions are derived using the basic idea that any
continuous function can be represented by a linear combination of algebraic polynomials.
Third, algebraic relations among undetermined coefficients (i.e., nodalsyalue
obtained by satisfying the governing equations, often in a weighteegral sense, over
each element. Thus, the finite element method can be viewed, in particular, as an
elementwise application of the RayleigRitz or weighteeresidual methods. Ehfinite
element method is one of the most powerful numerical techniques ever devised for
solving differential (and integral) equations of initial and boundaiye problems in
geomrically complicated regiong5]. The greatestadvantage of the finite element

method is its flexibility to analyse structures with arbitrary geometry, boundary
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conditions as well as arbitrary shape of #immogeneous structures that are made up of
numerous different material regionSonsequently, iis one of the most accurate and
powerful tools used to predict the behaviour of complex mechanical structures such as
the vibration of tapered laminated composite beams.

The convergence and accuracy of the results determined using finite element
formulaion depend strongly on the selected type of element. Two types of element are

considered for the finite element formulation in this study. Four degrees of freedom per

node(deflectionu , rotation —, curvature — and the gradient of curvature—) and
two nodes per element are considered for the advanced finite element formulation and
two degrees of freedom per node (deflectibrand rotatiém —) and two nodes per

element are considered for the conventional finite element formulation. It can be
predicted thain order to obtain accurate results using conventional finite element method

compared to advanced finite element methodglamgmber of elements are required.

1.4. Literature survey

In this section, a comprehensive andtoqulate literature survey on the important
works done on the free and forced vibration response of uniform, urifeckness
width-tapered and thicknesapered wdth-tapered laminated composite beams is
presentedThere is a wealth of literature available for the vibration analysis of laminated
plates and shells. Study on the vibration analysis and especially the forced vibration
analysis of laminated beams on tbther hand, has been very limited despite their

applicability in the industry.



Abarcar and Cunniff6] obtained experimental results for natural frequencies and
mode shapes of uniform clamp#&de laminated composite beams madeg@phite
epoxy and borompoxy composite material without considering the effects of shear
deformation and rotary inertia. Miller and Adanjg] have studied the vibration
characteristic of orthotropic clampécee uniform beamssing classical laminated beam
theory without considering the effect of shear deformation. Chen and [Britave
studied the static and dynamic response of symmetrically laminated composite beams.
Chandrashekhara et gPB] have studied the free vibrations and obtained the natural
frequencies of advanced composite beams. They have considered the effect of rotary
inertia and shear deformation in the free vibration analysis of the beams. Hodges et al.
[10] conducted the free vibration analysis of composite beams using exact integration
method. Krishnaswamy et dlL1] obtained analytical solutions to the free vibration of
generally laminated composite beamesluding the effect of transverse shear and rotary
inertia in the energy formulation. Reddy and Khd&R] have studied the free vibration
of laminated composite beams with arbitrary boundary conditions. Vinson and
Sierakowski[13]obtained the exact solutions for the natural frequencies of a simply
supported uniform laminated composite beam based on classical laminated beam theory.
Abramovich[14] obtained exact solutions rfdhe free vibrations of composite beams
including the effect of rotary inertia and shear deformation. R¢tisly Berthelot[16],
Whitney [17] and Jone$18] have found the exact solutions for the free vibrations of
uniform laminated composite beamdramovich and Livshit§l9] established analytical
solution of free vibration and obtained the mode shapes and the natural ¢requmn

nonsymmetrical crosply laminated beamdVatsunagg20] have studied the vibration



of multi-layer composite beams based on highreler deformation theories. Rao and
Ganesan[21] investigated tb harmonic response of uniforwidth thicknesgapered
composite beams with general boundary conditions using finite element method.
Farghaly and Gadelraj22] have studied the free vibration of stepped unifevidth
thicknesstapered Timoshenko composite beams using finite element method. He et al.
[23] presented a complete review of different configurations of tapered composite
structures. Singh and Abdelnasd2d] examined theforced vibration response of
composite beams considering a third order shear deformation theory. Chandrashekhara
and Banger#§25] studied the free vibration characteristics of laminated composite beams
using a third order shear fdemation theory.Asghar et al[26] conducted the forced
vibration analysis developed by the modal superposition technique and the layer wise
theory of Reddy to study the low velocity impact response of laminated plates. Ketdivar
al. [27] studied the forced vibration of an unsymmetrical laminated composite beam
subjected to moving loads. They studied a-dimeensional element with 24 degrees of
freedom, which included the effects of transverse shearrdation, rotary and higher
order inertia to get the response. Fdi28] analyzed the free and the forced vibrations of
nontuniform composite beams in the Laplace domain. He adopted Timoshenko beam
theory in the derivation of g@vning equationHassan an&abuncy29] have conducted

the stability analysis of a cantilever composite beam resting on elastic supports.
Karnovsky and Lebed30] have studied the free vibrations of wmih beams having
elastic supportsMarur and Kanf31] conducted the free vibration analysis of uniform
laminated composite beams using finite element formulation. They have proposed three

higher order refined displacement mod@se model with five degrees of freedom per



node and two models with four degrees of freedom per node) for the free vibration
analysis of composite beam fabrications. Shi and [3&hhave studied the free vibration

of laminated omposite beams using third order shear deformation theory and finite
element method. Ganapathi et B3] used a three node beam element in the finite
element formulation based on Hermite cubic functions for deflection and t¢jaadra
functions for rotations and linear functions for axial displacements to obtain the natural
frequencies of uniform laminated composite beams. The two end nodes have four degrees
of freedom (axial displacement, deflection, slope and rotation) each, aghie center

node has one degree of freedom (rotation). Ab#&ksoud[34] presented a dynamic
analysis of uniform and uniforwidth variablethickness composite beams using
conventional and advanced finite element formulatiaisnkiewicz [35], Cook [36],
Reddy[5] have used finite element method to analyze the vibration of beams. They have
used two nodes per element and two degrees of freedom per (deflection and
rotation) in the formulations. T[87] have considered four degrees of freedom per node
(deflection, rotation, curvature and gradient of curvature) and two nodes per element in
the finite element formulations wrder to obtain stiffness and mass matrices for linearly
tapered beams based on EiBernoulli beam theory. Gupta and R&8] have used two
nodes per element and two degrees of freedom per node in the finite element formulation
to obtain the stiffness and mass matrices of linearly tapered and twisted beams. Heyliger
and Reddy[39] established a higher order beam finite element for bending and vibration
problems. Zabihollaj40] analyzed the free vibration and buckling of unifewidth
thicknesstapered composite beams using both conventional and advanced finite element

formulations. He has used two nodes per element and four degrees of freedom per node



(deflection, slope, curvate, derivative of curvature) in the advanced finite element
formulations. Uniform-width thicknesgapered laminated composite beams have been
studied for their dynamic response in the works of GanesaZamtollah[41] and[42]

using an advanceféinite element formulation and parametric studyvo nodes per
element and four degrees of freedom per node (deflection, slope, curvature, derivative of
curvature) were considered in the advanced finite elemambhufations. Nabi and
Ganesarj43] developed a general finite element formulation based on aofulst shear
deformation theory with 16 degrees of freedom per element to study the free vibration
characteristics of laminated copngite beams. They also conducted a parametric study on
the influence of beam geometry and boundary conditions on the natural frequencies of
the beam Eftakher[4] conducted freeand forced vibration analysis of uniforwidth
thicknesstapered laminated composite beams using RayRigh method and
conventional and advanced finite element formulatidte. has used two nodes per
element and four degrees of freedom (deflection, slope, curvature and gradient of
curvature) per node ithe advanced finite element formulati@@hen[44] has studied the

free vibration response of tapered composite beams using hierarchical finite element
method and RayleigRitz method. Vijay[45] conducté the free and forced vibration
analysis of thicknestapered widtktapered laminatedomposite beams using Rayleigh

Ritz method.

1.5. Objectives of the thesis

The dynamic response of varialtlkeckness variablevidth laminated composite
beams is concerned withthe present thesis. The objectives of the work are: 1) To

investigate the free vibration response of unitdhickness widtktapered, uniforrwidth
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thicknesstapered and thicknesapered widtkitapered laminated composite beams using
conventional and a@nced finite element formulations and to conduct a detailed
parametric study on the effects of width ratio, thickreg®ring angle, taper
configuration, laminate configurations and boundary conditions on the free vibrations of
the beams; The convergenard accuracy of the results obtained using advanced and
conventional finite element formulations are illustrated; 2) To investigate the forced
vibration response of undamped and damped varthlikness variablgvidth laminated
composite beams using camtional and advanced finite element formulations and to
conduct a detailed parametric study on the effects of damping, width ratio, thickness
tapering angle, taper configuration and boundary conditions on the forced vibrations of
the beams (the amplitudef deflection). Similar variabléhickness variablgvidth
laminated composite beams to those that were considered for the free vibration analysis
are considered for the forced vibration analysis; 3) To compare the free and forced
vibration response of taped laminated composite beams obtained using conventional
and advanced finite element formulations with the results obtained using Reglegh
method[45]; 4) To investigate the free vibration response of varitthtkness vaable
width laminated composite beams with rigid and elastic supports modeled using
translational and rotational springs attached to the beams and to study the effects of
different combinations of translational and rotational springs with different sttsemn
the natural frequencies of these beams.

The dynamic response of varialtleckness variablevidth laminated composite
beams is determined based on classical laminated beam theory using conventional and

advanced finite element formulations.
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1.6. Layout of the thesis

The present chapter provides a brief introduction and literature survey on free and
forced vibrations of variablthickness and variablidth laminated composite beams
using conventional and advanced finite element formulations.

In chapter 2,free vibration analysis of variabthickness variablevidth
laminated composite beams is carried out using conventional finite element formulation
based on Kirchhoff and cylindrical laminated beam bending theories. Free vibration of
beams with different dundary conditions, width ratios, thickndsgpering angles,
laminate configurations and thickness taper configurations is studied. Determined natural
frequencies are compared and validated with the existing results obtained using Rayleigh
Ritz method.

In chapter 3, free vibration analysis of variabieckness variablavidth
laminated composite beams is carried out using advanced finite element formulations.
Advantages of using advanced finite element formulation compared to the conventional
finite elementformulation in the convergence of the natural frequencies and the accuracy
of the results are demonstrated in this chapter.

In chapter 4, forced vibration response of undamped and damped variable
thickness variablevidth laminated composite beams is saablusing modal analysis and
conventional and advanced finite element formulations. Numerous plots of amplitude of
deflection of the response point versus frequency of vibration are presented in order to
show the effects of damping, boundary conditions thickness taper configuration on
the amplitude of deflection of the beams. Determined results are compared and validated

with the existing results obtained using RayleRjtz method.
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In chapter 5, free vibration analysis of variatlleckness variablevidth
laminated composite beams with elastic supports is carried out using conventional and
advanced finite element formulations. Elastic supports are modeled using translational
and rotational springs with arbitrary stiffness values. Determined result®@Eaced
and validated with the existing results. The effect of the spring stiffness on the free
vibration response of the beams is illustrated.

The thesis ends with chapter 6, which provides the overall conclusions of the

present work.
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Chapter-2
Conventional finite element formulation for free vibration analysis of composite

beams

2.1. Introduction

Laminated composite beams are increasingly and widely being used in
engineering applications including robotic manipulators, aircraft wings, spacaistgjc
helicopter blades and yokes, turbine blades and civil infrastructure due to their enhanced
stiffnessto-weight and strengtlo-weight ratios. These structures are subjected to-time
varying loadings.In this chapter free vibration analysis of uniferomiform-thickness
width-tapered and widttapered thicknestpered laminated composite beams is
conducted using conventional finite element formulation. Simply supported, clamped
free and clampedlamped boundary conditions are considered in this sthdyte
element method is one of the most accurate and powerful tools used to predict the

behaviour of complex mechanical structures such as the vibration of tapered laminated
composite beams. Two degrees of freeddefl¢ctionv, rotation —) per node and

two nodes per element are considered in the conventional finite element formdihgon.
material chosen in this study is NE&SD1 graphiteepoxy prepred46] which is available

in the laboratory of Concordia Centre f@omposites (CONCOM). The mechanical
properties of the ply and the resin are given in the Tables 2.1 and 2.2. Symmetric

laminate is considered in all problems.
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Table 21: Mechanical properties of unidirectional N&ED1 graphiteepoxy prepreg

Longitudinal modulus (B 113.9 GPa
Transverse modulus {E 7.985 GPa
Es=E, 7.985 GPa
In-plane shear modulus (& 3.137 GPa
Out-of-plane shear modulus & 2.852 GPa
Densityy)of p 1480 kg/m
Maj or Poi s90n 0.288
Minor Poi s89nbd 0.018

Table 22: Mechanical properties of resin material

Elastic modulus (E) 3.93 GPa
Shear modulus (G) 1.034 GPa
Density of resiny() 1000 kg/m
Poi ssongps r af 0.37

2.2.  Uniform and uniform -thickness widthtapered beams

When the crossection area of a beam is constant through the length of the beam,
it is considered a uniform beam as shown in Figures 2.1 and 2.3. In the case of a uniform
beam, the properties of the beam are constant throudertyin of the beam. Laminated
composite beams which are considered in this section have uniform thickness,
consequently the P (the first coefficient of bending stiffness matrix) is constant through

the length of these beams, while the width of the beamss linearly through the length
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of the beam with respect to Width-tapering isachievedby cutting the beam on the

surfaces perpendicul to the mieplane of the beam as shown in Figures 2.2 and 2.3.

Figure 21: A uniform beam

Figure 22: A uniform-thickness widtkitapered beam
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Figure 23: Uniform and wiform-thickness widtktaperel laminatedoeams

In Figures 2.2 and 2.3, Benotes the width at the left section andi@&otes the

width at the right section of the beam.
2.2.1. Conventional finite element formulation

The equation of motion based on classical laminated beam theory isag[i&i:

d)(bUT’ N w (I)(b”To P
[ To

in which o denotes the width of the beam. For a linearly widitered beam:
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ww 0 —‘a(b c¥
0 denoteshe bending momenper unit widthabout the yaxis, 0 is the axial

force per unit width along the-axis, 0 is the deflection in the thickness directign
is the distributed transverse lopdr unitlength ” is mass peunit length pewunit width

andorepresents time.

In the present study widitapering is described by the width ratio)(as
1 0 &
3 C
One can write the bending moment for a symmetric laminated composite beam

using two diferent approacheg16]: (a) cylindrical bending theory and (b) ene

dimensional laminated beam theory.
2.2.1.1. Cylindrical bending theory (plane strain)

In this approach the bending moment is given as:

. v . ., 10 ,T0 T 0O
) WWwo — 0 — O —— c8
w w Tw

—a

in whiché andd denote coefficients of coupling stiffness, which are equal to

zero for symmetric beams accordiied16]:

P
C
O is the coefficient of bending stiffness whits given as

S
O —
- 0 oa a c®
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in which ¢ denotes the number of plie8, represents # coefficient of the
transformed reduced stiffness matdk 'Qth ply andd is the distance ofhe ‘Qth ply
interfacefrom the center line of the beam.

Consequently for a symmetric laminated composite beam, the bending moment

based on cylindricaldnding theory is given as:

AYaYe) (bT 0
U o X
2.2.1.2. One-dimensional laminated beam theory (plane stress)

Using one dimensital laminated beam theory assumption, one can find the

relation between moments and curvatureld 6

0 o o o Q
O © (@) Q Ry
0 O © 0O T
jQ ,O z O z O z 0
Q o o0o° 0o0° UL N
-Q ,O z ,O z ,O z [‘)
. ~PT U
U (JO,O—ZT T C$) T
, p .., ,
o] 3 OO0 ©O <P p
Y 00 O ¢cO OO0 0O O 0O O 0O O P ¢
2.2.1.3. Coefficients of element stiffness and mass matrices

In this chapter, conventional finite element method is used to analyze the free

vibration of symmetric laminated composite beams. Two degrees of freedomdaer no
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(deflection0 and rotation —) and two nodes per element are used in the formulation

as shown in Figure 2.4.

»
>
>

'y

Figure 24: Element degrees of freedom

In Figure 2.40 andyU represent the deflections in the thickness direction at the

first and the second node respectively anénd , denote the rotations about thexis

at the first and the second node respectively.

Coefficients of el ement 0wnag40]ahdidhess and

TQ A ,O ’Ql'j ’QG .Q\
W0 — Q0w o
®
0 AN p’QUQG’Qm T
O w P
a D" 00Q® P

In the equation (2.13)Q represents the coefficient of the element stiffness

matrix usingcylindrical bending theorywhile in the equation (2.14)t denote the
coefficient of the element stiffness matrix usorge-dimensional laminated beam theory.

In the equation (23), & represents the coefficient of the elememssmatrix. In

equations (2.13), (2.14) and (2.16),and0 represent the shape functions of the beam.
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2.2.1.4. Derivation of shape functions

Having two degrees of freedom per node and four degrees of freedom per
element, ahird-order polynomial is required for the expression of deflection to satisfy
the boundary conditns as below:

0 W © OO OO OO X0

'l T l:)(b Il TN TN 5
W CWWw o0Ww P @

Applying the boundary conditions considering the first node at x=0 and the

second node at=t, one will have:

b mo O P X
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O O 0 P W
- D 0 P R
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Having two nodes and two degrees of freedom per node the interpolation

functions are derived §40]:
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2.2.15. Stiffness and mass matrices

Using MATLAB® software and solving equatisif2.13), (2.14) and (2.15}he
stiffness and mass matrices for an element of a uniform or a unifickmess width

tapered beam aderived as:

. (0} oo @ ou
. wO 3 ce ¢ "
0 S : oa cq oa 0(‘ c&
a @ oa @ oo
o0 o o0 ca
. [0) oo @ od
% cw o0 ca o« ”
« 30 ¢ od ¢ o & m
o0 o oo ca
.. PLO® CQ VT pa
W : : y : -
4 CqQ Ta pa od & B

TCmMUT pad puO GQ
p a o0 CcQ TG

in which @ denotes the average width of the element @isdthe length of the
element.In the equation¢® ™, Q representghe element #tness matrix using
cylindrical bending theorywhile in the equationc& ™, Q denotes the element
stiffness matrix usingne-dimensional laminated beam theory. In the equatiy®) 1,
A represents the elemamniassmatrix.

Having the stiffness and mass matrices determined using conventional finite
element formulation, one can analyze the free vibration of a beam element as:

a v Q0 T & p
Knowing the stiffness and mass matrices for each element based on the

conventional finite element formulation, the global stiffness matrix and the global
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mass matrix0 can be established for the beam. The free vibraifdhe beam can be
analyzed solving the below eigenvalue problem.
o _0 0 T & C

in which _ denotes the square tiie natural frequercof the beamand 0
denotes the eigenvector (mode shape) corresponding to each specific natural frequency.
Solvingequation (2.22using MATLAB® software the natural frequencies and the mode
shapeof uniform and uniforrthickness widtkitapered lamina&d composite beantan
be determined.

Since the determined results using bathindrical bending theoryand me
dimensional laminated beam theame very close for the considered beams in this study

only the results determined usiogindrical bendingheoryare presented.
2.2.2. Exact natural frequencies of uniform laminated composite beams

The exact natural frequencies of a uniform beam for the three boundary
conditions considered in thisstudy (simply supported, clampéee and clamped
clamped) can be detained aexplainedn Refs.[13] and[16] .

Exact natural frequencies of a simply supported uniform ba@rgivenin [13]

and[16] as

é [
a §O)

o

8 @

in which ¢ represents the mode number of the natural frequency considered,
denotes the thickness of the bednis the density andis the legth of the beam.

Exact natural frequencies of a clamgese uniform beanare givenin [13] and
[16] as
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in which, o p,¢ ¢ @Guoand, QX TP

Exact natural frequencies of clampedmped uniform beanare givenin [13]

and[16] as

, © ¢ &
a "0 S

in which, Ton,x1T X& v and, p B0 W.Q
2.2.3. Validation

In order b validate the results obtained using the conventional finite element
formulation and to understand how many elements should be considered for the
convergence of the natural frequencies, the results havecbegrared with the exact
natural frequencies aneiisting results obtained using finite element formula{ido
and RayleigkRitz method45].

Uniform beams are considered with a) simply supported, b) clafngednd c)
clampedclamped boundary cortihns, as shown in Figure 2.5. These beams are made of
36 plies of NCT 30l1graphiteepoxy prepregnith 25 cm length and 2 cm width. The

laminate configuration if)/90]s.

The first three natural frequencies and mode shapes of the beams are considered.

23



25 cm |

a) Simply Supported
Uniform Composite Beam

25 cm

b) Clamped-Free Uniform
Composite Beam

N

S
-

25 cm
c) Clamped-Clamped
Uniformm Composite Beam

Figure 25: Uniform beam with simply supported, clampiede and clampedlamped boundary
conditions

The natural frequencies have been determined, validated and compared with the
exact natural frequeeies as shown in Tables 2.3, 2.4 and 2.5. As it can be understood, as
the number of elements increases the results become more accurate. The convergence of
the calculated natural frequencies is shown in Figure 2.6 for the torsdered
boundary conditins.In Figure 2.6, the solid lines represents the exact natural frequencies
and the dotted lines indicate the results obtained using conventional finite element

formulation.

Table 23: Exact andapproximatdowest three naturdtequencies for simply supported uniform
beam (ad's)

First, second and third natural frequencies {xa€l/s) for simply supported uniform beam
Mode Exact NF 1E 2E 3E 4E 10E
1™ 1.37 1.52 1.37 1.37 1.37 1.37
2" 5.47 6.95 6.07 5.53 5.49 5.47
3¢ 12.3 _ 15.25 13.65 12.52 12.31

in which E denotes the number of elemeartd NF denotes Natural Frequency.
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Table 24: Exact andapproximatelowest three natural frequencies for clamyes uniform

beam (ad's)
First, second anthird natural frequencies (x1€ad/s) for clampedree uniform beam
Mode Exact NF 1E 2E 3E 4E 10 E
N 0.49 0.49 0.49 0.49 0.49 0.49
2" 3.05 4.82 3.08 3.06 3.05 3.05
3¢ 8.54 _ 10.41 8.65 8.61 8.55

Table 25: Exad andapproximatdowest three natural frequencies for clamjotaimped uniform

beam (ad’s)
First, second and third natural frequencies {xa@/s) for clampealamped Uniform Beam
Mode Exact NF 1E 2E 3E 4E 10E
™ 3.1 B 3.15 3.11 3.1 3.1
2™ 8.54 B 11.35 8.71 8.62 8.54
3¢ 16.74 _ _ 20.26 17.1 16.76

As it can be understood from the above tables, when applying the conventional
finite element method and using only one element for the analysis, only the first and
second natural frequencies of gieply supported and clampéee beams and none of
the natural frequencies of the clampzdmped beam can be derived. In these tables the
blank units indicate the results which cannot be derived using that specific number of

elements for the correspondi boundary condition.
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Figure 26: Convergence of the natural frequencies obtained using conventional finite element
formulation of uniforma) simply supportedb) clampedfree andc) clamped-clamped laminated
composite beamsvhen the number of elements increases from 1 to 10

Having the eigenvectors obtained from equatior? Z& these uniform beams
one canhavethe mode shapes tfieseuniform laminated composite beantirst three
mode shapes of uniform laminated composite beams with sirappported, clamped
free and clampedlamped boundary conditions are shown in Figui® 1. Figure 2.7,
the dotted lines, the dashed lines and the dashed dotted lines represent the first, the

secondand the third mode shapes of the beams respectively.
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(a) Simply Supported (b) Clamped-Free (c) Clamped-Clamped

Figure 27. First three mode shapes of uniform laminated composite beamsdiffighent
boundary conditionsdotted line represents th& mode, dashed line represents tAtn2ode and
dashed dotted line represents tfer®de

Uniform beams are considered with a) simply supported, b) clafnpednd c)
clampedclamped boundary conditions. These beams are made of 36 plies of NCT 301
graphite-epoxy prepregandhave 25 cm length and 2 cm width. Five different laminate
configurations [0/9Q\os, [90]18s [0]18s [0/45F45]¢s and [45/-45/(69 are consideredThe
effect of ply orientation on the free vibration of these uniform laminated csitepo
beams is consideredlhe first three natural frequencies tie beams are to be

determined.

Table 26: First three natural frequencies of simply supported uniform laminated composite
beams with different plorientations

Natural Frequencies of a Uniform Laminated Simply Supported Beam with 36 Plies (rad/s)
Fiber Orientations [90]1ss [0/45/-45]6s [0/90] s [45/-45/0]6s [O]1ss
¥ 478 1273 1367 1368 1804
2™ 1911 5093 5467 5474 7218
3¢ 4302 11464 12307 12323 16247
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Table 27: First three natural frequencies of clamgegk uniform laminated composite beams
with different py orientations

Natural Frequencies of a Uniform Laminated Clampezk Beam with 36 Plies (rad/s)
Fiber Orientations [90]18s [0/45/-45]s [0/90]es [45/-45/0]es [0]18s
1 170 454 487 488 643
2 1067 2842 3051 3055 4028
3¢ 2987 7961 8546 8557 11281

Table 28: First three natural frequencies of clamymtgimped uniform laminated composite

beams wih different py orientations

Natural Frequencies of a Uniform Laminated Clam@&imped Beam with 36 Plies (rad/s)
Fiber Orientations [90]18s [0/45/-45]ss [0/90]es [45/-45/0]s [0]18s
1™ 1083 2886 3098 3102 4090
2" 2986 7958 8542 8553 11277
3¢ 5858 15611 16759 16780 22124

It can be understood from the natural frequencies that the closer the orientation of
plies are to zero degree with respect to the x axis, the stiffer the beams will become, and

the least stiff beams are the beams with plies orignted at 90 degrees. These results

are shown in Figure 2.8.
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The Effect of Ply Orientations on Natural Frequencies of
Uniform Laminated Composite Beams
With Simply Supported, Clamped-Free and Clamped-Clamped Boundary Conditions

requency

equency

Natural Frequency (rad/s)

al Frequency

[90] P o SR
[0/45/-45] —
[0/90] —L

[45/-45/0]

Ply Orientation

Figure 28: The effect of pJ orientations on free vibratioof uniform laminated composite beams
with simply supported, clanga-free and clampedlamped boundary conditions

Uniform-thickness widtktapered beams are considered with a) simply supported,
b) clampeedfree, c) clampedlamped and d) freelamped boundary conditions. Beams
are made of 36 plies of NCT 301 grapkefgoxy prepreg and arg5 cm long. Width of
the beams at the left section is 1.66 cm. The laminate configurati@i9Bjes. Nine
width ratios (the ratio of the width of the beam at the right section to that of the beam at
the left section) .01, 0.02, 0.050.1, 0.2, 0.4, 0.6, 0.8 and &je considered for these
beams.

The firstthree natural frequencies of the beams are considered. Comparison is
made with the existing resulf45] obtained usindrayleighRitz method and shown in

TaHe 2.9.
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Table 29: Comparison of the natural frequencittermined usininite elemenformulationand
the existing results obtained usifRayleighRitz Method for uniforrthickness widtktapered
laminated composite beams

0.01 0.02 0.05
Width Ratio
RR FEM Difference (%) RR FEM Difference (%) RR FEM Difference (%)
- 1(rad/s) 1199 1199 0.07 1203 1204 0.1 1214 1216 0.13
SS . 2(rad/s) 5056 5055 0 5063 5065 0.05 5077 5083 0.11
. 3(rad/s) 11438 11428 0.09 11446 11446 0 11460 11470 0.08
. 1(rad/s) 2475 2439 1.45 2511 2495 0.65 2591 2591 0.01
GC . o(rad/s) 7264 71%9 1.45 7328 7273 0.75 7470 7462 0.11
. 3(rad/s) 14657 14505 1.04 14754 14679 0.51 14971 14958 0.08
. 1(rad/s) 902 904 0.14 886 887 0.14 841 842 0.14
GF . o(rad/s) 3917 3922 0.13 3851 3855 0.13 3692 3696 0.13
. 3(rad/s) 9531 9542 0.12 9385 9396 0.12 9068 9079 0.12
. 1(rad/s) 151 150 0.66 167 167 0.04 199 199 0.19
FC . (rad/s) 2019 2015 0.22 2075 2076 0.07 2186 2190 0.17
. 3(rad/s) 6879 6868 0.16 6981 6985 0.07 7173 7184 0.16
0.1 0.2 0.4
Width Ratio
RR FEM Difference (%) RR FEM Difference (%) RR FEM Difference (%)
. 1(rad/s) 1227 1229 0.14 1244 1246 0.14 1260 1261 0.12
SS . 2(radls) 5088 5094 0.13 5091 5098 0.13 5086 5092 0.12
. 3(rad/s) 11464 11478 0.12 11456 11471 0.13 11439 11453 0.12
. 1(rad/s) 2674 2677 0.13 2761 2766 0.14 2836 2839 0.12
GC . o(rad/s) 7614 7621 0.08 7759 7770 0.14 7874 7883 0.12
. 3(rad/s) 15188 15178 0.07 15383 15370 0.14 15485 15504 0.13
. 1(rad/s) 781 782 0.14 694 695 0.13 590 591 0.12
GF . o(rad/s) 3511 3515 0.13 3300 3304 0.13 3090 3093 0.12
. 3(rad/s) 8760 8771 0.13 8456 8467 0.13 8200 8210 0.12
. 1(rad/s) 233 233 0.16 279 280 0.15 341 342 0.13
FC . 2(rad/s) 2300 2303 0.16 2438 2442 0.14 2599 2603 0.12
. 3(rad/s) 7348 7359 0.16 7531 7542 0.14 7709 7719 0.13
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0.6 0.8 1
Width Ratio
RR FEM Difference (%) RR FEM Difference (%) RR FEM Difference (%)
. 1(rad/s) 1267 1268 0.11 1269 1270 0.1 1270 1271 0.08
SS . 2(rad/s) 5082 5087 0.11 5080 5085 0.1 5080 5084 0.08
. 3(rad/s) 11432 11444 0.11 11429 11440 0.1 11430 11440 0.08
. 1(rad/s) 2865 2868 0.11 2876 2879 0.1 2879 2881 0.08
GC . (rad/s) 7915 7924 0.11 7931 7939 0.1 7936 7943 0.08
. 3(rad/s) 15533 15550 0.11 15552 15567 0.09 15558 15571 0.08
. 1(rad/s) 527 528 0.11 484 485 0.1 452 453 0.08
GF . o(rad/s) 2974 2977 0.11 2895 2898 0.1 2835 2838 0.08
. 3(rad/s) 8076 8085 0.11 7997 8004 0.1 7939 7946 0.08
. 1(rad/s) 386 387 0.11 422 423 0.1 452 453 0.08
~C . o(rad/s) 2701 2704 0.11 2776 2779 0.1 2835 2838 0.08
. 3(rad/s) 7810 7818 0.11 7882 7889 0.1 7939 7946 0.08

In Table 2.9,R-R denotes RayleigRitz method and FEM represents Finite
Element Method. In Table 2.9, the comparison of the natural frequencies obtained using
conventional finite elemeribrmulationand RayleighRitz methodis done with respédo

the results obtained using RayleiBitz method.

2.3.  Uniform-width thickness-tapered beams

Generally, there are three types of thickregered beams: externally tapered,
mid-plane tapered and internaligpered beams. Thicknetsgpering is achieved by
terminating selected plies at specific locations through the length of the beam. In the
present study, four types of internally thicknéssered configurations corresponding to
four different types of plies drepffs are considered, as shown in Figure Zl8e width

of beams is constant through the length of the beams. Conventional finite element method
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is used to analyze the free vibration response of these symmetric beams. Two nodes per
element and two degrees of freedom (deflection and rotation) peran@densidered in

this method.

Configuration B

Configuration A

Configuration C Configuration D

Figure 29: Four different configurations of internally thicknegspered beams

2.3.1. Conventional finite element formulation

In a thicknesdapered beam, the propertidgire beam vary through the length of
the beam. As a result, the stiffness matrix and the mass matrix are different for each

element.
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2.3.1.1. Derivation of coefficients of stiffness and mass matrices

For a thicknesstapered beam using cylindrical bending theorg thending
moment is given agl0]:

T 0
— & T

0 O AT O
Tw

in which « denotes the thicknesaperng angle which is shown in Figure 2.10

andO  for a thicknesgapered beam is given as belf\@]:

C

0 w

Ql©

Q Q cg& v

in which 0 is the first coefficient of the transformed reduced ply stiffness
matrix."Q and"Q denote distances to the top and to the bottom interfaces of each ply

from the centerline of the beanspectively and are shown in Figure 2.10.

\/

Figure 210: Arbitrary ply in the thicknestapered composite beam
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Inserting equation (24) into equation (2.1)pone can derive the equation of
motion foruniform-width thicknesgapered beams as:

' o wiio -2 ol me o2 =« &
"o To T o S

—a
—a

Coefficients o f el ement 6s sti ffness a-width ma s s

thicknesstapered beam arevgn ag40]:

Q DO ‘A'l'G’QG'QG'Q‘ A
ww w W

TR C& X

& OO 00 & X

It is important to mention that for an element of a thicksiepsred beam which

might have both composite plies and resin pogKetis given as:

" O g Y

in which¢ denotes the number of plies dhdis the density of eagbly.
In the equatios ¢& ¥ and ¢& %, Q andd denotethe coefficiens of the
element stiffnes@and mass matricesf a symmetric, thicknesmpered uniforrwidth

laminated composite beam respectively.
2.3.1.2. Stiffness and mass matrice

Integrating equations (27a) and (27b) using MATLAB® software, one can find
the coefficientof the stiffness andhe mass matrices faan elementEquations ¢& 1
and ¢& 1 provide the first and the last coefficients of the stiffness matrik,adinthe

other coefficients are listed in the Appendix A.
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In the equation (2.30§yrepresents the length of the eleméntis the slope of an
arbitrary ply andodenotes the intercept of the centre line of each ply with respect to the x
axis.

In the derivation of the element mass matrix of a thicktessred beam, it
should be noted that the cressction area varies through the length of the beam and each
element may have both composite plies and resin pockets, consequenslypuld be
found using equation (2.28). Using equation (2.20c) and havirigr an element, one
can derive the element mass matrix for a thickit@ssred beam.

Knowing the sfifness and mass matrices for each element based on the
conventional finite element formulation, the global stiffness matrix and the global
mass matrix 0 can be established for th®am. The free vibration of uniformidth
thicknesstapered beams nabe analyzed solving the similar eigenvalue problem to that

considered in equation (2.22) using MATLABoftware.
2.3.2. Validation

Validation of results is performedr two casess follows (i) Natural frequeng

of a thicknesgapered beam for each mode slaoo¢ between the exact natural frequenc
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of that mode of uniform beams with number of plies equal to the number ofaptles

thick section andat the thin section of the thicknetspered beamUniform beams
considered here should have the simifaateral properties, length, width and ypl
orientationsas those of the thicknesspered beamNote that there exists an exception
for clampedfree boundary condition in which the decrease in the weight at the free end
of the beam will cause it to have higheaturalfrequencies than a uniform beam with
number of plies equal to the number of plies at the thick section of the thidkpessd
beam. (ii) Comparing the present results with the existing rddiilts

Uniform-width thicknes-tapered beams are considered with a) simply supported,
b) clampeefree and cxlampedclamped boundary conditionShese beams araade of
20 plies at the thiclsectionand 16 plies at the thisectionand are made oNCT-301
graphiteepoxy prepreg as siwn in Figure 2.11Length of these beams is equal to 25
cm, their width is equal to 2 cm anketlaminate configuration at the thiskctionis
[0/90]ss.

First three natural frequencied the beams are considered. Obtained natural
frequencies for each badary condition of these uniformidth thicknesgapered beams
should lie between the exact natural frequencies of a uniform beam with 20 plies and a
uniform beam with 16 plies with the same boundary condition as that cbtisédered
uniform-width thicknesstapered beam. These results are derived and shown in Table

2.10.
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Figure 211 Uniform-width thicknesdapered bean20-16 plies

Table 210: Comparson ofthe resultdor thicknesstapered beams witihat ofuniform beams

25cm

Natural Frequency (rad/s)

Simply Supported Beam

ClampedFree Beam

ClampedClamped Beam

Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 | Mode 3
Exact NF, Uniform 20 Plig 684 2735 6154 244 1526 4274 1550 4272 8376
20-16 Thicknes3apered 619 2477 5572 251 1439 3925 1403 3868 7581
Exact NF, Uniform 16 Plig 537 2147 4830 191 1198 3355 1217 3353 6574

In the Table 2.10, NF denotes Natural Frequency.

As illustrated and expected, except tinst natural frequency of the clampéee

beam, all the natural frequencies of the thickriapsred beam lie between the exact

natural frequencies of uniform beams with 16 plies and 20 plies.

Uniform-width thicknesgapered beams are considered witlsiajply supported,

b) clampeefree and c) clampedlamped boundary conditions. Hebeams are made of

configurations A, B, C and D as shownHFigure 212. These beams are made of 36 plies

at the thick section and 12 plies at the tbattion and are madd NCT-301 graphite
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epoxy prepregThe laminate configuration at the thick section is [(J9®eams are 3.45
cm long and their width is equal to 0.5.cm

First three natural frequencies of the beams are considered. Natural frequencies
determined using cwentional finite element formulation are validated using the existing

results[4] and are shown ifable 2.11.

\/
\j

Qonfiguration A Configuration B

A\

Configuration C Configuration D

Figure 212 Sideview of the upper half of théhicknesstapered beams made of configurations
A, B, C and D with 3612 plies

As it is shown in Figure 2.12, these configurations have different patterns of ply
droppingoff, the size and the location of the resin pocketsl also, the wayhe resin
pockets are gearatedis different for each configuratiorn this study it will be shown
that configuration D is the stiffestonfiguration considered. Thas becausein
configuration D, large resin pockets are separated with tacoatinuous composite ply
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which inceases the stiffness of this configuration whereas in the other configurations
composite plies are dropped somehow that there does not existoatiguousply
between the resin pockets.is shown that irthe configuration A, there exist one large
resin cket which reduces its stiffnesand in configurations B and C, small resin

pockets are connected which decreases the stiffness of the structure.

Table 211: Comparison othe natural frequencies of thicknaspered beams deteined using
conventional finite element formulation with existing res(#s

Natural Frequencies 1@4 rad/seq
Mode- | Mode- | Mode- Pl:;/ceerr?gege Mode- | Mode- | Mode- P':;lczr:t%Ze

1 2 8 Error ! 2 8 Error
Existing Resulfgl] | 4.268 | 17.502 | 39.183 4540 | 18.776 | 43.886

S; CFEM Results 4.121 | 16.788 | 37.500 3.940 4.407 18.315 i 40.999 3.992
Percentage Error | 3.446 4.079 4.295 2.943 2.455 6.578
Existing Resug{4] 2.635 | 11.613 | 29.028 2.839 | 12.057 i 30.451

Configuraton | | crem Results | 2553 11196 27.884| 3545 | COMITAON| 2875 12284 30486 1048
Percentage Error | 3.098 3.595 3.940 -1.145 | -1.884 : -0.115
Existing Resul{g] 9.697 | 26.855 : 52.777 10.175 : 28.682 i 59.052

% CFEM Results 9.336 | 25.755 | 50.506 4.041 10.230 ;{ 28.168 | 55.201 2.951
Percentage Error | 3.725 4.096 4.303 -0.539 1.793 6.521
Existing Resultgl] 4520 i 19.2 | 45.114 5.132 | 21.635: 50.139

z CFEM Results 4.492 | 18.683 | 41.812 3.679 5.165 | 20.821 | 45911 4.280
Percentage Error | 0.630 3.089 7.320 -0.647 | 3.761 8.432
Existing Resulgl] 2.955 | 12.541 | 31.605 2.824 | 13.241 | 34.908

Conﬁ%rati"” © | CFEMResuts | 2983 12602 31204 0900 CO”“%‘""“"” 2811 13321 34147| 1075
Percentage Error | -0.949 | -0.483 | 1.268 0.438 | -0.606 | 2.181
Existing Resultgl] 10.555 ; 29.823 | 60.967 11.463 ; 33.027 | 67.663

% CFEM Results 10.469 : 28.812 : 56.443 3.873 11.109 : 31.540 : 61.489 5.571
Percentage Error | 0.807 3.391 7.421 3.086 4.503 9.125

In the Table 2.11, CFEM denotes Conventional Finite Element Method.
In Table 211, the natural frequencies of the unifewidth thicknesstapered

laminated composite beams with simply supported, claAmgedand clampedlamped
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boundary conditions and four thickndspering configurations (configurations A, B, C

and D) are obtained using conventional finite element formulation. A awopais

performed with respect to the existing resy#ty, and excellent agreement has been

observedThese rests are also shown in Figure 2.13
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Figure 213 First threefinite elementnatural frequencies for uniformidth thicknesgapered
beams ¢onfiguratiors A, B, C and D) and exact natural frequencies of uniform beams with 12

and 36 plies
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In the Figure 2.13Con A, Con B, Con C and Con D denote configuregié, B,

C and D respectively.

2.4.  Width-tapered thicknesstapered beams

As explained previouslyhtcknesstapering is achieved by terminating selected
plies at specific locations through the length of the beam. Similarly, sag#ring is
done by linearlycutting the beam on the surfaces perpendicular to theplargk of the
beam. In this chaptey we consider four types of internallgicknesstapered
configurations corresponding to four different types of plies -affg as shown in
Figure2.14

Thebeah s wi dt h varies | i Beaax=0yoB,atlxeIh,g

as shown in Figurg.14
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Configuration B
Configuration A 9

B B,

Configuration D

B,

Figure 214: Width-tapered thicknesspered beams

2.4.1. Conventional finite element formulation

Free vbration analysis has been done on these symmetric vaviaditle variable
thickness laminated composite beams using conventional finite eldoremilation
Similar steps to those that were performed in the previous sections are follotisl in
section n order to derive stiffness and mass matrices for the beams.

Integrating the equation of motion based on clastrainated beam theory for a

variablewidth variablethickness laminated composite beam through the length of the
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beam, one can derive the dan coefficients ofstiffness and mass matrices to those
representedn equation (27). The only difference is that the width of each element is
different and needs to be considered in the formulakonthis reason, width at the mid
point of each eleent is considered in the formulations of the element stiffness and mass
matrices.

Knowing the stiffness and mass matriceb each element based on the
conventional finite element formulation, the global stiffness matrix and the global
mass matrix0 can be established for the bearhe free vibration of thicknegapered
width-tapered beams can be analyzed solving the similar eigenvalue problem to that
considered in the equation (2.28ing MATLAB® software.

In the present study widifapering anglés described by the width rat{the ratio
of the width of the beam at the right section to that of the beam at the left sastion)

shown in the equation (2.3).
2.4.2. Validation

Validation of results is performed using the existing results obtained using
Rayldagh-Ritz method[45]. Obtained results have been validated using two cases: i)
beams with constant thicknetsgpering angle and different width ratios, and ii) beams
with constant width ratio and different thickndgapering angle.

Thicknesstaperedwidth-tapered beams are considered with a) simply supported,
b) clampeedfree and c) clampedlamped boundary conditions. Five width ratio values
are consideredfor these beams (0.2,4).0.6, 0.8 and 1)The beams are made of
configurdions A, B, C and D as shown kigure 2.2. These beams are made of 36 plies
at the thick section and 12 plies at the thin section and are made eBOCJraphite
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epoxy prepreg These bams are 15 cm long and their width is equal to 1.5 cm at the left
end. Laminate configuration if)/90]ss at the thick section.

First three natural frequencies of sedheams are considered. Comparisodone
with existing resultsobtainedusing RayleighRitz method[45] and is shown in Table

212.

Table 212: Comparison of th natural frequencies obtained usaugventional finite element and
RayleighRitz methods folaminated composite beamgth constant thicknestapering angle
andvarying widthratio

Configuraton A-SS Configuration BSS
width ratio — 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
w; (R-R) 1943 | 2022 | 2047 | 2075 | 2091 | 2188 | 2256 | 2293 | 2317 | 2333

w; (FEM) 2003 | 2087 | 2129 | 2160 | 2178 | 2200 | 2294 | 2350 | 2383 | 2405
% difference 3.09 | 3119 | 403 | 410 | 420 | 0.56 1.67 | 247 2.86 | 3.12

w; (R-R) 9016 | 9005 | 8996 | 8992 | 8991 | 10142 | 10088 | 9954 | 9931 | 9915
w, (FEM) 9034 | 8972 | 8928 | 8900 | 8880 | 10486 | 10400 | 10346 | 10308 | 10281

% difference 0.20 | 0.37 | 0.76 | 1.02 123 | 340 | 3.09 | 393 | 3.80 | 3.69

w3 (R-R) 20286 | 20254 | 20238 | 20232 | 20230 | 22683 | 22577 | 22515 | 22478 | 22454
ws (FEM) 2009% | 19979 | 19910 | 19866 | 19836 | 23379 | 23235 | 23150 | 23093 | 23054

% difference 0.94 1.36 1.62 1.81 1.95 3.07 2.92 2.82 2.73 2.67

Configuration ACC Configuration BCC
width ratio — 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
w; (R-R) 4890 | 5021 | 5071 | 5091 | 5096 | 5837 | 5850 | 5809 | 5765 | 5713

w; (FEM) 5006 | 5032 | 5009 | 4975 | 4938 | 6071 | 6072 | 6027 | 5972 | 5916

% difference 2.38 0.22 1.22 2.27 3.09 4.01 3.80 3.76 3.60 3.55

w, (R-R) 13740 | 13941 | 14013 | 14040 | 14046 | 15653 | 15754 | 15602 | 15573 | 15536
w, (FEM) 13722 | 13755| 13721 | 13674 | 13623 | 16218 | 16238 | 16186 | 16117 | 16047

% difference 0.13 1.33 2.08 2.61 3.01 3.61 3.07 3.74 3.49 3.29

w3 (R-R) 27179 | 27418 | 27499 | 27529 | 27535 | 30398 | 30517 | 30516 | 30486 | 30444
ws (FEM) 26826 | 26863 | 26824 | 26771 | 26715 | 31447 | 31477 | 31419 | 31345 | 31270

% dif ference 1.30 2.02 2.45 2.75 2.98 3.45 3.15 2.96 2.82 2.71
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Configuration ACF

Configuration BCF

width ratio — 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
w; (R-R) 1929 | 1671 | 1499 | 1386 | 1293 | 2464 | 2115 | 1926 | 1777 | 1667
w; (FEM) 1999 | 1726 | 1557 | 1438 | 1347 | 2551 | 2193 | 1999 | 1848 | 1740
% difference | 3.59 | 3.28 | 390 | 3.77 | 419 | 352 | 3.68 | 3.78 | 4.00 | 4.40
w; (R-R) 6758 | 6268 | 6032 | 5871 | 5749 | 7941 | 7421 | 7137 | 6954 | 6812
w;, (FEM) 6905 | 6454 | 6211 | 6047 | 5924 | 8227 | 7689 | 7397 | 7197 | 7046
% difference | 2.17 | 2.97 | 296 | 299 | 305 | 360 | 3.61 | 365 | 3.49 | 3.44
w3 (R-R) 15411 | 14799 | 14574 | 14291 | 14186 | 17993 | 17413 | 17122 | 16929 | 16786
w3 (FEM) 15851 | 15326 | 15060 | 14883 | 14752 | 18641 | 18014 | 17691 | 17474 | 17310
% difference | 2.85 | 356 | 3.34 | 414 | 399 | 360 | 345 | 332 | 322 | 3.12

Configuration GSS Configuration BSS

width ratio — 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
w; (R-R) 2110 | 2182 | 2222 | 2248 | 2265 | 2843 | 2931 | 2980 | 3010 | 3030
wy (FEM) 2184 | 2269 | 2322 | 2357 | 2378 | 2691 | 2792 | 2854 | 2894 | 2923
% difference | 3.51 | 4.00 | 448 | 488 | 5.01 | 534 | 473 | 422 | 386 | 3.53
w; (R-R) 9791 | 9722 | 9677 | 9649 | 9630 | 12460 | 12390 | 12343 | 12313 | 12293
w, (FEM) 10073 | 10000 | 9948 | 9915 | 9892 | 12816 | 12750 | 12703 | 12673 | 12657
% difference | 2.88 | 2.86 | 280 | 276 | 273 | 286 | 291 | 292 | 292 | 2.96
w;(R-R) 21687 | 21570 | 21504 | 21462 | 21434 | 27857 | 27720 | 27644 | 27596 | 27565
w3 (FEM) 22436 | 22303 | 22224 | 22173 | 22137 | 29009 | 28817 | 28697 | 28615 | 28557
% difference | 3.45 | 3.40 | 335 | 331 | 3.28 | 413 | 3.96 | 381 | 3.69 | 3.60

Configuration GCC Configuration BCC

width ratio — 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
w; (R-R) 5364 | 5413 | 5404 | 5378 | 5347 | 6920 | 6999 | 6998 | 6972 | 6938
w; (FEM) 5629 | 5653 | 5625 | 5586 | 5542 | 7172 | 7166 | 7108 | 7038 | 6967
% difference 4.95 4.43 4.09 3.86 3.65 3.64 2.39 1.57 0.94 0.41
w; (R-R) 14596 | 14672 | 14660 | 14624 | 14581 | 19051 | 19170 | 19168 | 19132 | 19086
w, (FEM) 15367 | 15404 | 15366 | 15312 | 15254 | 18957 | 19053 | 19041 | 19000 | 18952
% difference | 5.28 | 4.99 | 482 | 470 | 462 | 049 | 0.61 | 066 | 0.69 | 0.70
w;(R-R) 28449 | 28543 | 28531 | 28492 | 28446 | 37330 | 37472 | 37470 | 37431 | 37380
w3 (FEM) 30003 | 30048 | 30005 | 29946 | 29883 | 38051 | 38138 | 38103 | 38042 | 37975
% difference | 5.46 | 5.27 | 517 | 510 | 505 | 193 | 1.78 | 169 | 1.63 | 1.59
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Configuration GCF

Configuration DCF

width ratio — 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
w; (R-R) 2238 | 1931 | 1738 | 1621 | 1524 | 2858 | 2455 | 2205 | 2054 | 1931
w1 (FEM) 2319 | 1997 | 1806 | 1684 | 1579 | 2958 | 2548 | 2300 | 2143 | 2012

% difference | 3.64 | 3.39 | 394 | 390 | 359 | 350 | 3.80 | 430 | 4.31 | 4.20
w; (R-R) 7599 | 7108 | 6841 | 6659 | 6522 | 9249 | 8649 | 8325 | 8105 | 7939
w;, (FEM) 7788 | 7276 | 7000 | 6813 | 6672 | 9582 | 8954 | 8603 | 8364 | 8179
9% difference | 2.49 | 2.36 | 232 | 231 | 230 | 360 | 353 | 3.34 | 3.20 | 3.03
w3 (R-R) 17217 | 16661 | 16377 | 16033 | 15892 | 21492 | 20798 | 20447 | 20217 | 20045
w3 (FEM) 17779 | 17180 | 16874 | 16672 | 16521 | 21987 | 21263 | 20906 | 20675 | 20506
% difference | 3.26 | 3.11 | 3.03 | 3.99 | 396 | 230 | 224 | 225 | 227 | 2.30

In the Table 2.12, R denotes RayleigRitz method.

In the Table 2.12, the comparison of the natural frequencies obtained using

conventional finite element and Rayleifitz methods is done with respect to the results

obtained usig RayleighRitz method Excellent agreement has been observed

Fundamentalnatural frequencies of these beams are shown in FiguEet@.1

demonstrate the effect of width ratio on the natural frequencies of -teipiéned

thicknesstapered beams.
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Figure 215. Fundamentalnatural frequenciesobtained using conventional finite element
formulation for constant thickneswpering angle varying widthatio of simply supported,
clampedfree and clamgd-clamped beams

Thicknesstapered widtitapered beams are considered with a) simply supported,
b) clampedfree and c) clampedlamped boundary conditions. Width ratio of these
beams is constant and is equal to 0.5. The beams are made of configuraBors @nd
D. These beams are made of 36 plies at the thick section and 12 plies at the thin section
and are made of NG301 graphiteepoxy prepreg as shown in Figure 2.Different

thicknesstapering angles are considered for these beams. Thietapegag angle varies
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with the change in the length of the beams from 0.344 degrees to 0.86 dé@tpees.
laminate configuration at the thick section is [0/Q0JVidth is equal to 1.5 cm at the left
end and 0.75 cm at the right end

First three natural frequeres of the beams are considered. Natural frequencies
determined using conventional finite element formulation are validated using the existing

results obtained using Rayleigtitz method45] and are represented in Table 2.13.

Table 213 Comparison of finite element natural frequencies of constant sagiring angle
variable thicknestapering angle beams wiRayleighRitz solution

Configuration A-SS Configuration B-SS
ThicknessTapering| 544 | 043 | 0573 | o086 | 0344 | 043 | 0573 | 086
Angle (deg)
L (m) 0.25 0.2 0.15 0.1 0.25 0.2 0.15 0.1
0
— 56 44 33 22 56 44 33 22
Q
0
— 17 13 10 7 17 13 10 7
Oy
w; (R-R) 781 1219 2165 4868 820 1282 2277 5115
w; (FEM) 760 1188 2110 4745 838 1307 2322 5230
% difference 2.61 2.57 2.55 2.53 2.14 2.02 1.98 2.25
W, (R-R) 3244 5069 9000 20219 3655 5696 10121 22741
w, (FEM) 3221 5033 8949 20134 3733 5833 10369 23327
% difference 0.70 0.71 0.57 0.42 2.15 2.41 2.45 2.58
ws (R-R) 7298 11402 20245 4548 8126 12681 22541 50549
ws (FEM) 7179 11217 19940 44867 8348 13043 23187 52167
% difference 1.63 1.63 1.50 1.35 2.73 2.86 2.87 3.20
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Configuration A-CC

Configuration B-CC

w; (R-R) 1821 2845 5052 11349 2136 3322 5898 13225
wy (FEM) 1808 2826 5024 11302 2179 3404 6051 13619
% difference 0.71 0.69 0.55 0.41 2.02 2.47 2.60 2.98
W, (R-R) 5041 7877 13985 31420 5716 8910 15810 35548
w, (FEM) 4947 7730 13742 30918 5838 9121 16215 36483
% difference 1.87 1.86 1.74 1.60 2.13 2.37 2.56 2.63
w3 (R-R) 9902 15470 27468 61711 11092 17283 30643 68897
ws (FEM) 9665 15101 26847 60405 11323 17692 31452 70762
% difference 2.39 2.38 2.26 2.12 2.08 2.37 2.64 2.71
Configuration A-CF Configuration B-CF
w; (R-R) 563 878 1552 3520 733 1139 2025 4541
w; (FEM) 583 913 1617 3682 752 1170 2081 4694
% difference 3.53 4.01 4.20 4.60 2.54 2.71 2.78 3.36
W, (R-R) 2213 3457 6137 13919 2644 4130 7337 16477
w, (FEM) 2274 3554 6317 14218 2710 4234 7526 16939
% difference 2.79 2.79 2.93 2.15 251 2.52 2.58 2.80
w; (R-R) 5238 8184 14531 32646 6276 9804 17418 39123
ws (FEM) 5463 8536 15176 34147 6420 10031 17833 40122
% difference 4.29 4.30 4.44 4.60 2.29 2.32 2.38 2.55
Configuration C-SS Configuration D-SS
w; (R-R) 810 1268 2247 5054 1066 1665 2959 6647
w; (FEM) 827 1296 2299 5175 1020 1591 2826 6366
% difference 2.16 2.21 2.35 241 4.31 4.44 4.48 4.23
W, (R-R) 3494 5457 9700 21821 4454 6958 12364 27776
w, (FEM) 3590 5609 9971 22433 4581 7158 12725 28629
% difference 2.75 2.79 2.79 2.80 2.84 2.87 2.92 3.07
ws (R-R) 7841 12238 21740 48911 9972 15577 27677 62179
ws (FEM) 8013 12521 22259 50081 10351 16173 28750 64684
% difference 2.20 2.32 2.39 2.39 3.81 3.82 3.88 4.03

49




Configuration C-CC

Configuration D-CC

w; (R-R) 1950 3046 5412 12154 2523 3941 7003 15733
w; (FEM) 2031 3174 5642 12693 2570 4016 7141 16067
% difference 4.15 4.19 4.24 4.44 1.87 1.89 1.96 2.12
w; (R-R) 5287 8258 14671 32946 6909 10792 19176 43080
W, (FEM) 5540 8657 15389 34624 6860 10717 19052 42865
% difference 4.80 4.83 4.89 5.09 0.71 0.69 0.64 0.50
w3 (R-R) 10525 16456 29242 65697 13503 21093 37478 84198
w3 (FEM) 10812 16893 30031 67566 13726 21447 38126 85779
% difference 2.72 2.65 2.70 2.85 1.65 1.68 1.73 1.88
Configuration C-CF Configuration D-CF
w; (R-R) 651 1026 1807 4093 850 1326 2355 5295
w; (FEM) 681 1070 1891 4269 869 1357 2412 5425
% difference 4,57 4.29 4.66 4.31 2.22 2.33 2.39 2.47
w; (R-R) 2437 3806 6761 15182 3089 4826 8568 19262
w, (FEM) 2564 4007 7123 16026 3154 4928 8761 19712
% difference 5.24 5.28 5.35 5.56 2.13 2.11 2.26 2.34
ws (R-R) 5834 9112 16343 36699 7422 11594 20601 46280
ws (FEM) 6123 9567 17008 38265 7583 11848 21062 47386
% difference 4.96 4.99 4.07 4.27 2.16 2.19 2.24 2.39

In Table 2.13;0 denotes the height oli¢ beam at the left section. In this table,

the comparison of the natural frequencies determined using conventional finite element

formulation is done with respect to the results obtained using RayRighmethod.

Excellent agreement has been observed.

Fundamental natural frequencies of these beams are used in Figute &tbw

the effect of thicknesstapering angle on the natural frequencies of widfered

thicknesstapered beams.
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Figure 216. Fundamentalnatural frequenciesobtained using conventional finite element

formulation of constant width ratio (0.5) varying thicknespering angldbeams withsimply
supported, clampefiee and clampedlampedboundary conditions

Thicknesstapeed widthtapered laminated composite beams are considered with
configurations A, B, C and DSimply supported, clampedee and clampedlamped
boundary conditions are considered for these beams. Width ratio of these beams is
constant and equal to 0.5, tlemgth ofthe beams is also constant and equal to 25 cm.
Five different laminate configurations ([0/99][90/0]es, [90]1gs [0]18s [0/45F45]ssand
[45/-45/0}¢) are consideredat the thick section of the beam%he effect of pf

orientatiors on the fee vibrations of thicknegsspered widtitapered laminated
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composite beams is consideré&tiese beams are made of 36 plies at the thick section and
12 plies at the thin section and are made of NBOT graphiteepoxy prepreg as shown in
Figure 2.2. Width is equal to 1.5 cm at the left end and 0.75 cm at the right end of the
beam First three natural frequencies of these beams are derived and represented in Table

2.14.

Table 214: Natural frequencies of thicknetapered widtktapered laminated composite beams
(configurations A, B, C and D) having different ply orientations

NFs of Simply Supported Configuration A (rad/s) NFs of Simply Supported Configuration C (rad/s)
Origr:?aet:ons [90] | [0/90] [02455]/- [90/0] 4[145%] [0l Orie':rll?aeitzons [90] | [0/e0] [02‘:35]/- [90/0] 4[,‘;%] [0l
1" NF 278 | 705 708 798 799 | 1029 1 NF 262 | 672 674 770 772 088
2“'NF 1192 | 3000 3010 3375 3382 4359 2" NF 1142 | 2942 2953 3349 | 3357 | 4311
3UNF 2657 | 6683 6704 7530 7546 9718 3UNF 2546 | 6554 6580 7473 7492 9614
NFs of Clampedfree Configuration A (rad/s) NFs of Clamped#free Configuration C (rad/s)
1" NF 222 556 557 600 601 788 1% NF 223 587 588 645 646 843
2" NF 844 | 2129 2134 2360 2364 3065 2" NF 822 2132 2139 2398 | 2403 | 3103
3UNF 2018 | 5081 5096 5692 5703 7363 3YNF 1946 | 5025 5044 5701 | 5714 | 7350
NFs of Clampe&lamped Configuration A (rad/s) NFs of Clampe&lamped Configuration C (rad/s)
1°'NF 676 1688 1694 1896 1900 2449 1% NF 648 1672 1679 1899 1904 2448

2“'NF 1841 | 4613 4629 5193 5205 6704 2"'NF 1764 | 4542 4561 5174 | 5188 | 6660

3NF 3591 | 9012 9043 | 10157 | 10180 | 13106 3NF 3439 | 8851 8888 | 10096 | 10122 | 12987

NFs of Simply Supported Configuration B (rad/s) NFs of Simply Supported Configuration D (rad/s)
Fiber [0/45]- [45/- Fiber [0/45/- | [45]-
Orientations [90] | [0/90] 45] [90/0] 45/0] [l Orientations [90] | [0/e0] 45] 45/0] [90/0] [0l
1" NF 271 | 701 702 787 789 | 1019 1 NF 281 | 343 594 964 964 | 1015
2"'NF 1223 | 3181 | 3189 3532 | 3539 | 4599 2" NF 1302 | 1801 2766 4340 | 4341 | 4657

3NF 2731 | 7095 7122 7894 | 7906 | 10270 3NF 3027 | 4061 6652 9871 | 9875 | 10972

NFs of Clampedfree Configuration Bré&d/s) NFs of Clampedree Configuration Dréd/s)
1" NF 257 684 685 724 725 963 1NF 285 493 643 847 848 998
2"“'NF 899 | 2360 | 2364 | 2576 | 2580 | 3379 2" NF 961 | 1462 2168 3027 | 3029 | 3442
3UNF 2106 | 5493 5502 6067 6077 7918 3UNF 2172 | 3288 4687 7174 7176 7755
NFs of Clampedlamped Configuration B (rad/s) NFs of Clampedlamped Configuration D (rad/s)
1" NF 720 1880 1885 2070 2075 2706 1% NF 789 1249 1800 2464 2465 2838
2"'NF 1919 | 4993 | 5006 5533 | 5544 | 7213 2"'NF 1993 | 3138 4339 6508 | 6510 | 7094

3NF 3715 | 9656 9702 | 10728 | 10734 | 13967 3NF 3988 | 5420 8669 | 13068 | 13073 | 14360
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Figure 217: Natural frequencies of thicknetapered widtkitapered laminated composite beams
with different pl orientations
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It can be understood from the natural frequencies represented in Table 2.14 and
Figure 2.7 that the closer the orientation of plies are¢oo degree with respect to the x
axis, the stiffer the beams will become, and the least stiff beams are the beams with plies

only oriented at 90 degrees. This is a common observation for all the configurations.

2.5. Discussion and conclusion

In this chapter,he conventional finite element formulation has been developed
for the free vibration analysis of uniform and variathleekness variablevidth laminated
composite beams based on classical laminate theory. Stiffness and mass matrices have
been derived forhie beams. A set of examples were provided in order to validate the
obtained results. The first three natural frequencies of the beams were obtained and
validated with the existing results and they were presented in variety of graphs and tables.

The effectsof boundary condition, thicknegapering configuration, width ratio
andorientation of plies on the free vibration of laminated composite beams were studied.
As illustrated, among the boundary conditions considered in this study (cldreped
simply suported and clampedamped), beams with clampethmped boundary
conditions have the highest natural frequencies, whilst clafitpedbeams have the
lowest natural frequencies. It also can be observed that the closey tireeptations are
to zero degrewvith respect to the x axis, the stiffer the beam will becddased on the
results obtained, configuration D has the highest natural frequencies, configuration C and
configuration B have the second highest and the third highatstral frequencies
respedwely. Configuration A has the lowest natural frequencies amonteitonsidered
configurations. Itcan alsobe concluded that the natural frequenashe clamped

clamped andthe simply supported thicknegapered beams, lie between the natural
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frequencies of the same mode of unifotimcknessbeams with the number of plies equal

to the number of plies at the thick section and at the thin section of the thithkpes=d
beams which hae the same length, width, material properties and orientationes. pi

the case o& clampedree thicknessapered beam, on the other hand, since the watght

the free end of the beam is reduced, its natural frequencies might be higher than the
natural frequencies of a uniform beam with the number of plies eqtia¢ toumber of

plies at the thick section of the thickngapered beam which has the same length, width,

material properties and orientation of plies.
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Chapter-3

Advanced finite element formulation for free vibration analysis of composite beams

3.1. Introduction

In order to have the results with acceptable accuracy in vibration analysis and
calculation of natural frequencies of the beams using conventional finite element method,
the beam needs to be dividedto many elements. Moreoveuyse of low degree
polynomial displacement functions in conventional finite element method yields crude
curvature distributions and discontinuous bending moments across element interfaces.
Using alvanced finite element methad analysis, on the other hand, acceptabhkults
can be obtained using reasonable number of elements by increasing the number of

degrees of freedom ieachelement. In this studyfour degrees of freedom per node

(deflectionv, rotation —, curvature — and the gradient of curvature—) and two

nodes per elemerare considered for the advanced finite element analysis of variable
thickness variablavidth laminated composite beanThe material chosen in this study is
NCT-301 graphiteepoxy prepred46] which is available in the laboratory of Concordia
Centre for Composites (CONCOM). The mechanical propertiesegbly and the resin

were given in the Table® 1 and2.2. Symmetric laminate is considered in all problems.
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3.2.  Uniform and uniform -thickness width-tapered beams
3.2.1. Advanced finite element formulation

Having four degrees of freedom per node and eight degrees of freedom per
element, a seventbrder polynomibfor the expression of deflection is required to satisfy
the boundary conditiong]:

. 0w - - - - . . .
s WD TT ” W CWW oL T VWO WO XOO
oRQ
A T l’) ('0 ol IR G il ol Gt
0 oo T CW PWW PEW (MW O0CHW TEW
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o 0 Y T 0 (b I IR R ) ) 3
Ou oo o W CWW MW pCUWW ¢ PUIW odQ
3.2.1.1. Derivation of shape functions

Applying the boundary conditions considering the first node at x=0 and the

second node atsk,
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Having the equations (3.and (3.2) in the matrix form one has:
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Having two nodes and four degrees of freedom per node the intespolati

functions arederived ag4]:
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3.2.1.2. Stiffness and mass matrices

Using MATLAB® program and solvingquations(2.13) and (2.15) andaving
interpolation functionsthe stiffnes@andmass matdesfor an element of a uniform beam
or a uniformthickness widtktapered beam using advanced finite element method with

eight degreesf freedom per element are determined as:
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in which@ denoteghe width of the element at the midpoint of #lementanda

representshe length of the element
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Knowing the stiffness and mass matrices for each element based on the advanced
finite element formulation, the glabstiffness matrix0 and mass matrix0 can be
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established for the beam. The free vibration of uniform and unitbichness width
tapered beams can be analyzed solving the similar eigenvalue problem to that considered
in equation (2.22using MATLAB® software. Obviously as the number of elements

increases in the analysis the results become more accurate.
3.2.2. Validation

Similar beams to those considered in the second chapter are investigated to
validate the formulation. Natural frequencies have been rdutaior each beam using
different number of elements and have been compared with the exact natural frequencies
of the beam. This comparison shows the convergence of the ré&dedtsits obtained
using conventional and advanced finite element methods heee hsed in this
comparison. This comparison indicates better accuracy of the results obtained using
advanced finite element method compared to those obtained using conventional finite
element method, especially when the number of elements is less.

Uniform beams are considered with a) simply supported, b) claffipedand c)
clampedclamped boundary conditions, as shown in Figure 2.4. Beams are made of 36
plies of NCT301 graphiteepoxy prepregand have 25 cm length and 2 cm width. The
laminate configuratio is[0/90]gs.

The first three natural frequencies of the beams are considered. Comparison needs
to be madewith existing results obtained using conventional finite element methdd
the exact naturaffrequencies. Accuracy of the results obtained usiigpiaced finite
element method compared to the results obtained using conventional finite element

method is shown in Tables1332 and 33.
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Table 31: Comparison of exact and finite element natural frequencies for a simplyrsgpo

uniform beam

The Lowest Three Natural Frequencies {xa6l/s) for Simply Supported Uniform Beam

Mode | Exact NF 1E 2E 3E 4E 10E
Natural Frequency 1.5169 1.3721 1.3678 1.367 1.3667
CFEM
Percentage Error 10.99 0.39 0.08 0.03 0
1 1.3667
Natural Frequency 1.3667 1.3667 1.3667 1.3667 1.3667
AFEM
Percentage Error 0 0 0 0 0
Natural Frequency 6.9514 6.0676 5.5314 5.4883 5.4673
CFEM
Percentage Error 27.16 10.99 1.18 0.39 0.01
2 5.4667
Natural Frequency 5.4669 5.4668 5.4667 5.4657 5.4667
AFEM
Percentage Error 0 0 0 0 0
Natural Frequency - 15.2515 | 13.6522 | 12.5249 | 12.3068
CFEM
Percentage Error - 23.99 10.99 1.83 0.05
3 12.3002
Natural Frequency 12.6444 | 12.3004 | 12.3002 | 12.3002 | 12.3002
AFEM
Percentage Error 2.8 0 0 0 0

Table 32: Comparison of exact and finite element natural frequencies for a clangeedniform

beam
The Lowest Three Natural Frequencies fxad/s) for Clamped-ree Uniform Beam
Mode | Exact NF 1E 2E 3E 4E 10E
c Natural Frequency 0.4892 | 0.4871 | 0.4869 | 0.4869 | 0.4869
FEM
Percentage Error 0.48 0.05 0.01 0 0
1 0.4869
Natural Frequency 0.4869 | 0.4869 | 0.4869 | 0.4869 | 0.4869
AFEM
Percentage Error 0 0 0 0 0
c Natural Frequency 48199 | 3.0771 | 3.0612 | 3.0548 | 3.0513
FEM
Percentage Error 57.97 0.85 0.33 0.12 0.01
2 3.0511
Natural Frequency 3.0513 3.0512 3.0512 | 3.0512 | 3.0512
AFEM
Percentage Error 0.01 0 0 0 0
c Natural Frequency - 10.4073 | 8.6499 | 8.6096 | 8.5457
FEM
Percentage Error - 21.81 1.24 0.77 0.02
3 8.544
Natural Frequency 8.5532 8.5435 8.5435 | 8.5435 | 8.5435
AFEM
Percentage Error 0.11 -0.01 -0.01 -0.01 -0.01
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Table 33: Comparison of exact and finite element natural frequencies for a clastgrapged

uniform beam

The LowesThree Natural Frequencies (XI@d/s) for ClampeeClamped Uniform Beam

Mode | Exact NF 1E 2E 3E 4E 10E
Natural Frequency - 3.1483 | 3.1108 3.1022 3.0982
CFEM
Percentage Error - 1.62 0.41 0.13 0
1 3.0981
Natural Frequency 3.0982 3.0981 | 3.0981 3.0981 3.0981
AFEM
Percentage Error 0 0 0 0 0
Natural Frequency - 11.3515| 8.7106 | 8.6191 | 8.5423
CFEM
Percentage Error - 32.93 2 0.93 0.03
2 8.5397
Natural Frequency 8.5429 8.5401 8.5401 8.5401 8.5401
AFEM
Percentage Error 0.04 0.01 0.01 0.01 0.01
Natural Frequency - - 20.2594 | 17.0996 | 16.7585
CFEM
Percentage Error - - 21 2.13 0.09
3 16.7432
Natural Frequency | 17.6737 | 16.7447 | 16.742 16.742 16.742
AFEM
Percentage Error 5.56 0.01 -0.01 -0.01 -0.01

In Tables 31, 32 and 33, NF denotes Natural Frequency and E represents the

number of elements used.

finite element method and using only one element for the analysis, only the first and

As it can be understood from the above tables, when applying the conventional

second natural fregencies of the simply supported and clamfree¢ beams and none of

the natural frequencies of the clamp#dmped beam can be derived. Whereas when

applying the advanced finite element method, all the first three natural frequencies of the

simply supportecind clampedree beams as well as the first two natural frequencies of

the clampeetlamped beam can be obtainéu.these tables the blank units indicate the
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results which cannot be derived using that specific number of elements for the
corresponding bowtary condition and the method used.

Uniform-thickness widtitapered laminated composite beams are considered with
a) simply supported, b) clampéee and c) clampedamped boundary conditions.
Beams are made of 36 plies of NGU1 graphiteepoxy prepregLength of the beams is
equal to 25 cm, and they have 1.5 cm width at the left end, width ratio is 0.5 (the ratio of
the width of the beam at the right section to that of the beam at the left section) and the
laminate configuration if)/90]gs.

The first tiree natural frequeres of these beams are to be determibefierent
numbers of elements ammployedto derive the results usindg) advanced andl)
conventional finite element methodSonvergence of the natural frequencies obtained
using advanced fite element method and conventional finite element metttoeh the

considered number of elements for the analysis increases is represented in Figure 3.1.
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Figure 31. First three natural frequncies of uniforrthickness widtiapered laminated
composite beams obtaineding WnventionalFinite Element Method (CFEM) andd&ancel
Finite Element Method (REM)
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In Figure 3.1 SS, CF and CC respectively denote simply supported, cldraped
and clampd-clamped boundary conditions. AFEM and CFEM denote advanced and

conventional finite element methods respectively.
3.3.  Width -tapered thicknesstapered beams
3.3.1. Advanced finite element formulation

Similar thicknesgapered widtitapered beams to that studied ime tsecond
chapter using conventional finite element method are considered in this chapter to be
analyzed using advanced finite element method. These beams are sikogurer?.1.

Two nodes per element and four degrees of freedom per (dedection 0,

rotation —, curvature —— and the gradient of curvature—) are assumed in the

advanced finite element formulation for the free vibration analysis of thickapssed

width-tapered laminated composite beams
3.3.1.1. Derivation of coefficients of stiffness and mass matrices

Having the equations for the coefficients of the stiffness and mass matrices as in
equations ¢& ¥ and c& ¥ for an element, and inserting the interpolation functions
as in equationso&8® "Q, one can find the coefficients of the stiffness and mass
matrices for the advanced finite element method.

Equations o@® and o®w provide the first and the last coefficients of the

stiffness matrix, and all the other coefficients are listed il\ghgendix A.
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in which k; represents the coefficient of the element stiffness matrix in advanced
finite element formulation for the thicknetapered widtktapered laminated composite
beam, n represents the number of plies in the eleri@dénotes element thicknesds
the element length) s the first coefficient of the reduced stiffness matrix of the ply,
0 denotes the specific ply thickness in the z directioshasvn in Figure 2.84 is the
slope of the ply in the thicknesapered laminatapis the intercept of the centre line of
each ply with x axis is the width of the element an®® is the first coefficient of
bending stiffness matrixt @éhe left end of the element ani® s thefirst coefficient of
bending stiffness matrix at the right end of the element.

Equations o§ and o&® provide the first and the last coefficients of the mass
matrix, and all the other coefficiemare listed in the Appendix A.

" p TTTC ¢ oA

a CuxT ogw
a” D LG -
llHPJT’P‘ o8&

o @ T axp@

in whicha represents the coefficient of element mass matrix in advanced finite
element formulation for the thicknetapered widtkitapered laminated comptes beam
and” denotes density of the ply material.

Having equations (3.6) and (3.7), one can find the element stiffness [K] and mass
[m] matrices of a thicknesspered widtitapered laminated composite beam using
advanced finite element method. Knowitlge stiffness and mass matrices for each

element based on the advanced finite element formulation, the global stiffness matrix
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and mass matrix0 can be established for the beam. The free vibration of thickness
tapered widtitapered beams can be Brzad solving the similar eigenvalue problem to

that considered in equation (2.28ingMATLAB © software.
3.3.2. Validation

Validation of results is performed using the existing results obtatrseag
conventional finite element and Rayleifffitz methods. Simila beams to those
considered in the previous chapter are chosen to be analyzed.

Thicknesstapered widtitapered beams are considered with a) simply supported,
b) clampeedfree and c) clampedlamped boundary conditions. Five width ratio values
are consideredfor these beams (0.2,4).0.6, 0.8 and 1). The beams are made of
configurations A, B, C and D as shownHFigure 2.11 These beams are made of 36 plies
at the thick section and 12 plies at the thin section and are made e8DICgraphite
epoxy prepregBeams are 15 cm long and their width is equal to 1.5 cm at the left end
Laminate configuration ig0/90]ys at the thick section.

First three natural frequencies of sedheams are consideredatural frequencies
obtained using advanced finite element rodtlare validated using the existing results
obtained using conventional finite element method. The results are presented in Table

34.
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Table 34: Comparison of tb natural frequencies obtained usattyancd and conventiondinite
elementmethodsfor laminated composite beanwith constant thicknesspering angleand
varying widthratio

Configuration A-SS Configuration B-SS
width
ratio 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
W1
(AFEM) 2246 2332 2380 2411 2432 2133 2222 2273 2306 2329
Wy
(CFEM) 2253 2337 2386 2413 2436 2145 2232 2298 2318 2340
0,
dif/f"er 0.35 0.22 0.23 0.1 0.18 0.54 0.42 1.08 0.53 0.48
Wo
(AFEM) 10027 9976 9938 9912 9895 9826 9769 9727 9698 9678
(Cl\évéM) 10068 | 10005 9961 9932 9913 9876 9808 9765 9728 9705
0,
% 0.41 0.29 0.23 0.2 0.19 0.51 04 0.39 0.3 0.27
differ
( AI‘:"’EM) 22342 | 22252 | 22194 | 22155 | 22129 | 21894 | 21799 | 21736 | 21695 | 21666
(C;"EM) 22438 | 22319 | 22248 | 22202 | 22172 | 22010 | 21887 | 21814 | 21762 | 21727
% 0.43 0.3 0.24 0.21 0.2 0.52 0.4 0.36 0.31 0.28
differ
Configuration A-CC Configuration B-CC
width
ratio 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
Wy
(AFEM) 5604 5633 5614 5581 5545 5534 5550 5523 5485 5445
Wy
(CFEM) 5563 5604 5587 5555 5519 5492 5520 5497 5467 5417
0,
differ 0.73 0.52 0.49 0.48 0.47 0.77 0.53 0.46 0.33 0.51
( A;"EM) 15403 | 15435 | 15405 | 15359 | 15309 | 15113 | 15131 | 15092 | 15040 | 14987
(CE‘EM) 15301 | 15359 | 15332 | 15288 | 15238 | 15025 | 15058 | 15032 | 14979 | 14922
0,
dif?er 0.67 0.5 0.47 0.46 0.47 0.58 0.48 0.4 0.41 0.44
( A;"EM) 30148 | 30171 | 30132 | 30081 | 30028 | 29512 | 29524 | 29478 | 29421 | 29364
(CE‘EM) 29963 | 30029 | 29999 | 29949 | 29894 | 29354 | 29401 | 29365 | 29306 | 29250
0,
dif?er 0.62 0.47 0.44 0.44 0.45 0.54 0.42 0.38 0.39 0.39
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Configuration A-CF

Configuration B-CF

width
ratio 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
W1
(AFEM) 2135 1837 1657 1534 1443 2233 1928 1743 1617 1523
W1
(CFEM) 2149 1842 1661 1547 1455 2284 1865 1759 1649 1459
0,
dif/r"er 0.64 0.32 0.21 0.84 0.79 2.23 3.33 0.88 1.91 4.41
W
(AFEM) 7515 7049 6795 6621 6490 7508 7040 6783 6609 6477
Wo
(CFEM) 7601 7105 6836 6657 6521 7603 7100 6837 6646 6508
0,
dif/f"er 1.13 0.79 061 0.54 0.47 1.25 0.85 0.78 0.57 0.48
( AI‘:"{;M) 17383 | 16882 | 16620 | 16445 | 16312 | 17150 | 16645 | 16380 | 16201 | 16067
(CZVEM) 17610 | 17028 | 16733 | 16539 | 16395 | 17379 | 16801 | 16500 | 16302 | 16154
0,
diff’er 1.29 0.86 0.67 0.57 0.5 1.32 0.93 0.73 0.62 0.54
Configuration C-SS Configuration D-SS
width
ratio 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
Wy
(AFEM) 2172 2264 2316 2351 2374 2535 2625 2675 2707 2729
Wy
(CFEM) 2184 2272 2322 2355 2378 2550 2649 2680 2721 2739
0,
differ 0.55 0.34 0.24 0.18 0.15 0.57 0.9 0.18 0.53 0.36
( A;"’éM) 10028 9968 9924 9894 9873 11104 | 11072 | 11041 | 11019 | 11002
(C;"éM) 10074 9998 9949 9915 9893 11158 | 11112 | 11071 | 11050 | 11032
0,
dig"er 0.45 0.3 0.25 0.21 0.2 0.49 0.36 0.27 0.28 0.27
( AI‘:"’EM) 22334 | 22233 | 22168 | 22125 | 22094 | 24502 | 24409 | 24345 | 24303 | 24273
(CIZVI;M) 22436 | 22303 | 22224 | 22172 | 22137 | 24608 | 24483 | 24404 | 24360 | 24326
0,
diff’er 0.46 0.31 0.25 0.22 0.19 0.43 0.3 0.24 0.24 0.22
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Configuration C-CC Configuration D-CC

width

ratio 0.2 0.4 0.6 0.8 1 0.2 0.4 06 0.8 1
( A,‘:’EM) 5665 | 5679 | 5650 | 5610 | 5568 | 5908 | 5964 | 5962 | 5942 | 5914
(C;VEM) 5630 | 5653 | 5624 | 5586 | 5544 | 5870 | 5927 | 5934 | 5909 | 5883

di:if’er 062 | 047 | 046 | 043 | 043 | 065 | 062 | 048 | 056 | 052
( A,‘:’EM) 15458 | 15473 | 15430 | 15375 | 15319 | 16778 | 16854 | 16848 | 16818 | 16779
(C;VEM) 15368 | 15404 | 15366 | 15312 | 15255 | 16681 | 16783 | 16777 | 16745 | 16709

di(;fe .| 059 | 044 | 042 | 041 | 042 | 058 | 043 | 042 | 043 | 042
( A;’VESM) 30167 | 30173 | 30123 | 30063 | 30003 | 32765 | 32833 | 32816 | 32780 | 32737
(C;VEM) 30004 | 30049 | 30005 | 29946 | 29883 | 32553 | 32667 | 32657 | 32621 | 32576

di(;/r‘)er 054 | 041 | 039 | 0.39 0.4 065 | 051 | 049 | 049 | 0.49

Configuration C-CF Configuration D-CF

width

ratio 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
( A,‘:’EM) 2301 | 1986 | 1797 | 1667 | 1570 | 2211 | 1910 | 1724 | 1595 | 1499
(CI\:NEM) 2322 | 1996 | 1806 | 1672 | 1577 | 2253 | 1808 | 1719 | 1555 | 1537

e | 092 | 049 | 05 03 | 043 | 185 | 063 | 031 | 26 | 251
( A,‘:’EM) 7695 | 7216 | 6954 | 6775 | 6640 | 8158 | 7639 | 7358 | 7169 | 7027
(C;VEM) 7787 | 7277 | 7001 | 6814 | 6673 | 8245 | 7713 | 7397 | 7207 | 7055

di(;fer 118 | 083 | 067 | 057 | 049 | 106 | 095 | 052 | 053 | 0.39
( A,‘:"I’;M) 17540 | 17024 | 16753 | 16570 | 16433 | 19161 | 18607 | 18325 | 18138 | 17999
(CI\:NI;_’M) 17778 | 17179 | 16874 | 16672 | 16521 | 19408 | 18778 | 18450 | 18244 | 18092

di(;fer 1.34 0.9 072 | o061 | 053 | 127 | 091 | o068 | 058 | 051
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In Table 34, the comparison of the natural frequencies obtained using advanced
and conventional finite element methods is done with respect to the results obtained using
conventional finite element method.

Thicknesstapered widtitapered beams are considered with a) simply supported,

b) clampedree and c)clampedclamped boundary condition$Vidth ratio of these
beams is constant and is equal to 0.5. The beams are made of configurations A, B, C and
D. Thesebeans aremade 0f36 plies at the thick section and 12 plies at the thin section
and are madef NCT-301 graphiteepoxy prepreg Different thicknesgapering angles

are considered for these beams. Thickit@pering angle varies with the change in the
length of thebeams from 0.344 degrees to 0.86 degré&hs.laminate configuration at

the thicksectionis [0/90]es. Width is equal to 1.5 cm at the left end and 0.75 cm at the
right end

First three natural frequencies of sedheams are consideredatural frequencie
obtained using advanced finite element method are validated using the existing results
obtained using conventional finite element method. The results are presented in Table

3.5.
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Table 35: Comparison of tb natural fregencies obtained usiravancd and conventional finite
elementmethodsfor laminated composite beamsith varying thicknessgapering angleand
constant widthratio

Configuration ASS Configuration BSS
ThicknessTapering| 0344 | 043 | 05m | o086 | 0344 | 043 | 0573 | 086
ngle (deg)
L (m) 0.25 0.2 0.15 0.1 0.25 0.2 0.15 0.1
= 56 44 33 22 56 44 33 22
(% 17 13 10 7 17 13 10 7
w; (AFEM) 758 1184 2104 4734 810 1266 2251 5063
w; (CFEM) 760 1188 2110 4745 816 1270 2260 5055
% differ 0.36 0.34 0.27 0.22 0.71 0.34 0.42 0.16
W, (AFEM) 3211 5017 8920 20068 3509 5482 9746 21927
W, (CFEM) 3221 5033 8949 20134 3520 5500 9771 21997
% differ 0.32 0.3 0.32 0.33 0.33 0.32 0.25 0.32
w3 (AFEM) 7156 11180 19876 44718 7835 12243 21764 48965
w3 (CFEM) 7179 11217 19940 44867 7863 12284 21839 49136
% differ 0.32 0.32 0.32 0.33 0.35 0.33 0.34 0.35
Configuration ACC Configuration BCC
w; (AFEM) 1820 2843 5054 11371 1994 3116 5539 12461
w; (CFEM) 1808 2826 5024 11302 1984 3105 5511 12403
% differ 0.62 0.61 0.6 0.61 0.49 0.34 0.5 0.47
W, (AFEM) 4977 7776 13824 31102 5441 8502 15114 34005
W, (CFEM) 4947 7730 13742 30918 5418 8467 15053 33854
% differ 0.6 0.6 0.6 0.6 0.44 0.42 0.41 0.44
w3 (AFEM) 9720 15187 26998 60742 10622 16596 29503 66377
w3 (CFEM) 9665 15101 26847 60405 10581 16531 29389 66113
% differ 0.57 0.57 0.56 0.56 0.39 0.39 0.39 0.4
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Configuration ACF Configuration BCF
w; (AFEM) 581 908 1614 3632 657 1027 1826 4108
w; (CFEM) 583 913 1617 3682 677 1053 1856 4300
% differ 0.31 0.59 0.19 1.38 2.96 2.46 1.65 4.47
W, (AFEM) 2258 3527 6271 14109 2483 3880 6897 15517
w, (CFEM) 2274 3554 6317 14218 2506 3906 6952 15672
% differ 0.74 0.73 0.73 0.77 0.92 0.68 0.78 0.99
Wz (AFEM) 5419 8467 15052 33866 5939 9280 16497 37114
w3 (CFEM) 5463 8536 15176 34147 5987 9352 16633 37415
% differ 0.81 0.81 0.82 0.82 0.81 0.77 0.82 0.81
Configuration GSS Configuration DSS
w; (AFEM) 826 1290 2293 5160 955 1493 2653 5969
w; (CFEM) 827 1296 2299 5175 959 1502 2654 6035
% diff er 0.21 0.47 0.26 0.3 0.41 0.65 0.03 1.08
W, (AFEM) 3580 5594 9944 22372 3980 6219 11056 24873
W, (CFEM) 3590 5609 9971 22433 3992 6240 11093 24953
% differ 0.27 0.28 0.27 0.27 0.29 0.34 0.33 0.32
w3 (AFEM) 7991 12486 22197 49940 8775 13711 24374 54836
w3 (CFEM) 8013 12521 22259 50081 8800 13750 24446 54989
% differ 0.27 0.28 0.28 0.28 0.28 0.28 0.29 0.28
Configuration GCC Configuration BCC
w; (AFEM) 2040 3188 5667 12750 2148 3357 5967 13424
wy (CFEM) 2031 3174 5642 12693 2137 3343 5940 133%8
% differ 0.44 0.43 0.45 0.45 0.51 0.4 0.46 0.5
W, (AFEM) 5564 8693 15454 34769 6069 9482 16856 37922
W, (CFEM) 5540 8657 15389 34624 6044 9443 16790 37773
% differ 0.42 0.42 0.42 0.42 0.4 0.41 0.39 0.39
Ws (AFEM) 10855 16960 30151 67834 11819 18467 32829 73857
w3 (CFEM) 10812 16893 30031 67566 11761 18376 32671 73503
% differ 0.4 0.4 0.4 0.4 0.5 0.5 0.48 0.48
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Configuration GCF Configuration DCF

w; (AFEM) 677 1058 1882 4233 651 1017 1808 4066
wy (CFEM) 681 1070 1891 4269 674 998 1780 3931

% differ 0.5 1.07 0.48 0.84 341 1.88 1.55 3.46
W, (AFEM) 2545 3977 7070 15906 2694 4209 7482 16833
w, (CFEM) 2564 4007 7123 16026 2713 4235 7527 16911

% differ 0.74 0.75 0.75 0.75 0.71 0.61 0.6 0.46
ws (AFEM) 6074 9491 16873 37961 6642 10378 18448 41505
ws (CFEM) 6123 9567 17008 38265 6692 10455 18591 41826

% differ 0.79 0.79 0.8 0.8 0.75 0.74 0.77 0.77

In Table 35, 'O denotes the height of the beam at the left sectiohis table,
the comparison of the natural frequencies obtainedguadvanced and conventional
finite element methods is done with respect to the results obtained using conventional

finite element method.

3.4. Discussion and conclusion

In this chapter, the advanced finite element formulation has been developed for
the free vibration analysis of uniform and variakilickness variablevidth laminated
composite beams based on classical laminate theory. In the case of uniform laminated
composite beams, natural frequencies obtained using advanced finite element method
have been aopared with the exact natural frequencies and with those obtained using
conventional finite element method.

It has been indicated that use of advanced finite element method in free vibration
analysis of the beams results in better accuracy of the obtagwedal frequencies
compared to those obtained usicgnventional finite element method, especially when
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using low number of elements in the analy3ike advantages of using the advanced
finite element method for the analysis of the laminated compositem$ean be further
explained in the stress analysis of the beams.

The advanced finite element method of analysis has also been applied for the free
vibration analysis of variablthickness variablevidth laminated composite beaniur
configurations (confgurations A, B, C and D) and three boundary conditions (clamped
clamped, simply supported and clamygesk) have been considered for these beams. The
obtained natural frequencies have been validated using the existing results obtained using
conventionalihite element method.

Based on the results obtained, configuration D has the highest natural frequencies,
and then configurations C and B respectively have the second highest and the third
highest natural frequencies. The configuration A has the lowestahdtequencies

among all configurations.
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Chapter-4
Forced vibration analysis of laminated composite beams using conventional and

advanced finite element formulations

4.1. Introduction

In this chapter, forced vibration analysis of laminated compdstms is carried
out using modal analysi®eflection of an arbitrary point through the length of a beam is
to be derived when a sinusoidal force is applied at a point through the length of the beam.
Advanced and conventional finite element formulati@me used in order to derive
systems matrices.

Obtained results have been compared wethisting results obtained using
RayleighRitz method45]. The material chosen in this study is NGU1 graphiteepoxy
prepreg[46] which is available in the laboratory of Concordia Centre for Composites
(CONCOM). The mechanicgroperties of thely and the resin are given in the Tables

2.1 and2.2. Symmetric laminattbeams areonsidered in all problems.
4.2. Undamped forced vibration analysis
The equation of motion of an undamped linear system is given as:
0 v 0 0 O e
in which 0 denotes the mass matrix) is the stiffness matrix,0 represents the

displacement vector andO is the force vector of the beam. Stiffness and mass matrices

for the beam can be obtained using advanced and conventional finite element
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formulations as it has been explained in previous chapters. The forced vibration of the
composite laminated beams is determined using mode superposition method.
Having the stiffnes and the mass matrices for a laminated composite beam and
solving a similar eigenvalue problem as in equation (2.26) UdiAGLAB © software,
one can find the eigenvalues and the orthonormal eigenvector matrof the beam.
Eigenvalues are equal to the square of natural frequencies and the orthonormal
eigenvector matrix'Y can be used to decouple the equations of motion.
One can decouple the equations of motion by transforming the coordinates using
eigervector matrix as:
0 YW 8
Substituting equation (4.2) into equation (4.1) andrpudtiplying by Y leads
to:
YO YO YU Yo YO T®
in the equation (4.3)0 and U respectively denote mass and stiffness matrices of the
beam which an be derived based darmulations explained in the previous chapters
using advanced or conventional finite element methods. is the vector of

displacements in the transformed coordinat&3.is the force vector applied to the beam
which representthe nodal forces applied to the beam. In the equation (4Y3)0 °Y

is an identity matrix and”Y 0 "Y is a diagonal matrix in which its diagonal
coefficients represent the square of natural frequencies of the beam. Thesetdvearia
be used to check the system matripgsr to the forced vibration analysis of the beam.

Equation (4.3) contains m(u mber of beamo s)daamped eaions f f
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which can be solved forcy, using MATLAB® software. In order to find the
displacements in the original coordinate, dréhonormal eigenvector matrix should be

used again as was used in equation (4.2).
4.2.1. Flowchart

The chart in the Figure 4.1 explains all the steps that need to be carried out in
order to derive the forced vibrati response of an undamped beam at any point through

its length.

Properties of material (prepreg and resin),
geometry of the beam and the number of
elements

Boundary condition, and the amplitude of the
sinusoidal force or momentum applied

L

Q and Qbar matrices for each ply and A, B
and D matrices for each element

Y

Stiffness [k] and mass [m] matrices for each element

For n=1:Number
of elements

Y

Inserting the stiffness and mass matrices of each element inside the global
stiffness [K] and mass [M] matrices according to their corresponding degrees
of freedom

Y

Applying the boundary conditions

Y

Solving the eigenvalue problem, finding the natural
frequencies and matrix of eigenvectors (S)

Y

Creating the force vector

Y

Decoupling the equation of motion of the beam,
[S"IMISHug+[SIKISHug=S"{F}

Y

Running the frequency of vibration for a range that will cover the first three natural frequencies and solving the decoupled equation of motion
for each frequency and finding the amplitude of transformed deflection or rotation at each node {u}

Y

Transforming the vector of the amplitude of deflections and rotations to
the original coordinate {x}=S{u}

Figure 41: Modal analysis procirefor composite beams using finite element method
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In this chapter forced vibration analysis of anthed and dampedariablewidth
variablethickness laminated composite beams is carried out using advanced and
conventional finite element methods. Magnitudethte deflectionof an arbitrary point
through the length of the beam versus frequency of varas desiredwhen applying
sinusoidal force to the bearfihe obtained results are validated and compared with the
existing results obtained using Rayleigitz method. The results will be shown in graphs
which represent amplitude of deflection in metesssus frequency of vibration in
radians per second. The frequency range of the forced vibration that each beam
undergoes is chosen such that at least the first three natural frequencies of that beam will

lie in that frequency range.

4.2.2. Validation

The resultobtained using advanced aocodinventional finite element methods are
compared with the existing results obtained usRayleighRitz method[45] for three
cases (uniform beam, uniforthickness widtitapered beam and widthpered
thicknesstapered beam) of the undamped laminated composite beams.

In the first case, uniform beams are considered with a) simply supported, b)
clampedfree and c) clampedamped boundary conditions, as shown in Figure 2.4.
Beams are made of 36 pliesN€T-301 graphiteepoxy prepregThese beams are 25 cm
long and have 2 cm width. The laminate configuration conside{@#8]ss The natural
frequencies and the deflection of the response point versus frequency of vibration is to be
determined using comwntional and advanced finite element methddsese results are

compared with the existing results obtained using RayRighmethod45].
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Sinusoidal force with the magnitude of 2 N is applied to the beamspdihe
where the drce is applied to is chosen based on the Bednundary conditionsas
explained in Figure 4.2. In order to avoid applyihg force to the nodal points dhe
second mode shajpéthe uniform beams, the force is not appke@ctly at the middle of
the clampedclamped and simply supported beams as is shown in Figure 4.2. Considering
ten elements and 11 nodes for ebelam, thdocation of the point where the force is
applied toand the coesponding point of response afeown in Figure 4.2or all the

boundary conditions considered in this study

Point of Force Application

A 4

Clamped-Free \

Point of Response

Point of Force Application

[ [ [ N [ T [ [ |

l Clamped-Clamped
Point of Response
Point of Force Application
v
. 1 [ [ T [T |
& \ Simply Supported &

Point of Response

Figure 42: Points of force application and the corresponding response points of uniform
laminated composite beams with clamyfiesk, clampeatlamped ad simply supported boundary
conditions
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Exact natural frequencies of these uniform beams are obtained using equation (2.27) and

are given as:
a) Simply supported beam:

Natural frequencies:*INF= 1271 (rad/s),"® NF= 5084 (rad/s), '8 NF= 11445

(rad/s)
b) Clampedfree beam:

Natural frequencies:SINF= 452 (rad/s), ¥ NF= 2837 (rad/s), "8 NF= 7947

(rad/s)
C) Clampedclamped beam:

Natural fequencies: L NF= 2881 (rad/9, 2" NF= 7944 (rad/9, 3¢ NF= 15585
(rad/9
in which NF denotes natural frequency.

The fored vibration response of the beams are shown in Figure 4.3 for simply
supported, clampeftee and clampedlamped boundary conditions of uniform laminated
composite beams using advanced and conventional finite element formulations, and

RayleighRitz method
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Figure 43: Forced vibration response of simply supported, clanipssl and clampedlamped
uniform laminated composite beams
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