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Abstract 

Price dynamics of the natural gas futures market: the role of market 

fundamentals 

Yawei Wei 

In this thesis, I examine the effect of market fundamentals upon the price of the natural 

gas futures contract.  The market fundamentals that I address capture the effects of the demand 

for natural gas, such as weather effects, and the supply of natural gas, such as inventory effects.  

I also address the effect of key macroeconomic variables, such as the returns on the stock 

market, which is measured by the return on the S&P 500 futures contract, and the price of crude 

oil, which is measured by the returns on the crude oil futures contract.  I focus my analysis on 

the conditional mean and the conditional variance of the return on the natural gas futures 

contract.  My results indicate that weather and inventory shocks do not have a significant effect 

upon the conditional mean of the natural gas futures returns, which is, however, significantly 

negatively related to the return on the S&P 500 futures contract and significantly positively 

related to the return on the crude oil futures contract.  The conditional variance of the natural 

gas futures return is significantly higher in winter, on inventory announcement days and on 

Mondays.  Furthermore, by comparing the conditional variance of the three most liquid futures 

contracts, I find evidence supporting the “Samuelson effect” that the futures volatility decreases 

as the contract horizon increases.  
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Chapter 1.  Introduction 

In recent years, natural gas futures prices exhibited an upward trend in the North 

American market. This raises the question as to what is the reason for this upward trend. 

The presumption is that economic fundamentals such as the demand and supply of natural 

gas, which include weather, inventory levels, imports, and transportation costs determine 

the price that American households and industries pay for the use of natural gas. 

Many theories have been developed to explain natural gas futures price dynamics. 

The theory of storage (Fama and French, 1987) suggests that supply and demand, which 

influence inventory, directly affect futures prices and volatility. Samuelson (1965) asserts 

that futures contracts which are closer to maturity will exhibit greater volatility in prices as 

compared to more distant maturity contracts. Mu (2007) suggests that weather should also 

be recognized as one factor that is responsible for the seasonality pattern in futures prices 

and volatility. In contrast, other researchers (Kaufmann, 2011) maintain that futures price 

changes are caused by the structure of the market and speculation, and are not due to 

economic fundamentals.  

The objective of my thesis is to investigate whether market fundamentals are the 

main drivers of natural gas futures prices and volatility. Since natural gas has become one 

of the most active commodities in the U.S. futures market, an understanding of the 

influential factors and volatility dynamics for risk becomes important for investment and 

hedging decisions. 
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My thesis contributes to the studies of natural gas futures price dynamics in several 

ways. First, few earlier studies have explored the importance of the weather effect in natural 

gas futures volatilities determination.  My thesis fills this gap by addressing the effect of 

weather upon the volatility of natural gas futures returns. 

Second, in my model, I address the impact of storage surprises. I construct a 

seasonal ARIMA model to forecast the expected storage level over the period 2003 to 2012 

and use the difference between the current storage level and the expected storage level to 

represent the storage surprise. Lin and Zhu (2004) estimate the expected storage level as the 

sum of the previous period’s inventory level and the net change in the inventory level in the 

previous period.  Thus their indicator of storage surprises is represented as the difference in 

the net storage between the two consecutive periods. They disregard an important time 

series data characteristic. The weekly storage level provided by the Energy Information 

Administration (EIA) exhibits a seasonal pattern. Thus, in calculating the expected storage 

level, considering seasonality effects is important. I use a seasonal ARIMA model to 

address the seasonal effect, which is unaddressed by Linn and Zhu (2004). 

Third, I use ARMA-GARCH model with exogenous variables to model the price 

dynamics of the natural gas futures contract.  The ARMA-GARCH model addresses the 

autocorrelation in the equations for the conditional mean and conditional variance. This 

improves upon the model used in Mu (2007), which disregards the autocorrelation and 

seasonality in mean returns. 

To conduct the analysis, I construct several hypotheses 

Hypothesis 1: Market fundamentals have an impact on the natural gas futures price. 
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Hypothesis 2: There is a causal relationship between market fundamentals and 

natural gas futures price volatility. 

Hypothesis 3: The seasonality in the natural gas futures price and volatility could be 

attributed to the effect of the seasons and inventory. 

Use of updated empirical methods to examine the primary sources of price changes 

and price volatilities has provided several interesting results: (1) Weather shocks and 

inventory are negatively related with futures returns. (2) Changes in crude oil futures prices 

significantly positive affect natural gas futures returns.  (3) The volatility of futures returns 

show a strong seasonal pattern, which is higher in winter and lower in other seasons. (4) On 

Mondays and on inventory announcement days, the volatility of natural gas futures returns 

is significantly higher than on other weekdays. Aside from these findings, we also provide 

evidence to support Samuelson’s (1965) hypothesis that commodity futures contracts’ 

volatilities decline with increases in the contracts’ time to maturity.  

Chapter 2 provides the necessary theoretical background for the analysis of natural 

gas demand, storage and other fundamental factors that have an influence on the natural gas 

futures price. Chapter 3 describes the possible driving factors for the natural gas futures 

price.  Chapter 4 presents the characteristics of the data used to test the hypotheses. Chapter 

5 specifies the model used for price and volatility. Chapter 6 reports and interprets the 

results. Chapter 7 provides conclusions and describes potential future research. 
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Chapter 2. Literature review 

2.1 Futures prices and the theory of storage 

A graph of futures prices against the time to maturity of a futures contract could be 

upward or downward sloping. When the futures price is below the current spot price and the 

curve is downward sloping, the situation is termed backwardation. The reverse situation, in 

which the futures price is above the current spot price and the curve is upward sloping, is 

termed contango. There is a wealth of literature, focused on the theory of storage, to explain 

such graphs. The theory of storage asserts that the fundamental factors, such as inventory 

and demand conditions, determine the basis which is defined as the difference between spot 

and futures prices. Working (1949) provides the theory of storage which implies that the 

inter-temporal price difference is related to inventories and the costs of holding the 

commodity. He shows that the supply of the commodity could be a significant indicator to 

influence the inter-temporal futures-spot price relation.  When the nearby futures prices are 

not larger than the further futures prices, costs of carrying large stocks would play an 

important role in explaining the “inverse carrying charges” in futures market.  Brennan 

(1958) and Brennan and Schwartz (1985) reworked the theory to include the convenience 

yield, a value introduced by Kaldor (1939) that could offset the cost of storage through the 

ownership of the physical commodity. They find that the net marginal cost of storage was 

equal to the sum of the opportunity cost of capital, a risk premium and direct warehousing 

and insurance costs minus the convenience yield. If the inventory of the commodity is low 

and its demand increases, the convenience yield would rise sharply. Therefore, the net 

marginal cost of carrying stocks could be negative if the convenience yield is sufficiently 
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high, and the nearby futures price would be higher than the distant futures price, while the 

spot price would be higher than the futures price.  Consequently, the convenience yield 

plays a central role in explaining backwardation in a futures market.  

The theory of storage has also been used to explain the volatility of the futures price.  

Fama and French (1987, 1988) applied the theory to explain the dynamics of spot and 

futures prices and their relative volatilities. Based on the theory of storage, they confirmed 

that the convenience yield was negatively related to inventory. In addition, they found that 

in periods in which the basis was negative, which were periods characterised by low 

inventory levels, the volatility of changes in the spot price was greater than the volatility of 

changes in the futures price. In periods in which the basis was positive, the volatilities of 

spot and futures price changes were almost the same. The reason is that when the inventory 

level is low, the supply of a commodity cannot absorb the pressure from a sudden increase 

in demand. As a result, short-run demand shocks would create larger price changes in the 

spot price than in the futures price. So the volatility of the spot price would increase more 

than that of the futures price.  In periods of high inventory, the quantity of supplies in 

storage can satisfy a sudden increase in demand, leading to a lower variation spot price 

changes, and volatilities of the spot and futures price changes which are close to each other. 

Ng and Pirrong (1994), Pindyck (1994), and Heaney (2002) demonstrated that the behavior 

of futures prices and of relative volatility are consistent with the theory of storage. 

   2.2 Mean reversion in spot and futures prices 

Spot and futures prices exhibit mean reverting behavior, which is caused by the 

interaction between demand and supply.  When a shortage occurs, the price of a commodity 
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will rise, leading producers to enter the market, which will lead to a higher supply of the 

commodity and lower prices. Bessembinder et al (1995) tested for mean reversion in spot 

prices by using the term structure of futures prices with the assumption of no futures risk-

premium. The test detected that mean-reversion occurred in equilibrium spot prices of 

eleven commodities, especially for agriculture and energy. Positive correlation between 

spot prices and convenience yield was mainly used to explain the behavior. According to 

the theory of storage, when the commodity is in short supply, the spot price of the 

commodity would rise and its futures price would not change so much, as the increase in 

the convenience yield would offset the predicted capital loss implied by the reversion in 

prices. With the assumption of no arbitrage, the futures price would be an indicator of the 

expected future spot price and would exhibit mean-reverting behavior. As an extension of 

Bessembinder et al (1995), Schwartz (1997) used a simple one factor (the logarithm of the 

spot price) model, a two factor model (adding a stochastic convenience yield) and a three 

factor model (adding stochastic interest rates) to analyse the stochastic behavior of 

commodity prices. His results support mean-reversion in spot price returns and volatility in 

copper and oil markets. Recently, Bernard et al (2008) also investigated the behavior of 

aluminium spot and futures prices with three models: 1) a random walk model with 

consideration of generalized autoregressive conditional heteroskedasticity (GARCH) 

effects; 2) a Poisson-based jump-diffusion model with GARCH effects; and (3) a mean 

reverting model with inclusion of a convenience yield. The mean-reverting model with a 

stochastic convenience yield outperformed the other two models in forecasting futures 

prices. 
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From the empirical tests, it is evident that mean-reversion is an important feature in 

the analysis of commodity spot and futures prices. 

2.3 Relationship between futures price volatility and maturity 

There is a relationship between the volatility of futures prices and the time to 

maturity of the contract. Samuelson (1965) showed that the volatility of futures prices 

would increase as the futures contract approaches closer to maturity, because the futures 

price would react more quickly to new information at that time.  The work of Castelino and 

Francis (1982), and Milonas (1986) provides strong empirical support for the maturity 

effect for agricultural markets, while the evidence for other commodities is weaker. In 

recent studies, Movassagh and Modjtahedi (2005) applied several statistical procedures to 

analyze the efficiency of the natural gas futures market, using data from January 1991 to 

November 2003. They considered the martingale property of the futures price when they 

addressed the price increments in the futures price and the spot price. As a result, they 

found that the standard deviation of price increments became larger as the time to maturity 

decreased. This provided evidence to support the existence of a Samuelson effect in the 

natural gas futures market.  In contrast, Routledege et al (2000) developed an equilibrium 

model of inventory with the assumption of nonnegative storage costs to analyse spot and 

forward prices. Their results indicate that the conditional volatilities exhibited the 

“Samuelson effect” when inventory levels of the commodity was low. However, at high 

levels of inventory, the long-term contracts’ volatilities were higher than the short-term 

contracts’ volatilities.  

  2.4 Seasonality in futures and spot prices 
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A fourth characteristic of futures price behavior is its seasonal pattern. In recent 

studies, seasonality in commodity markets has been addressed by many researchers.  These 

are due to the cycles in demand and supply caused by fundamental factors.  Srensen (2002) 

demonstrated the existence of a seasonal pattern in the prices of soybean, wheat and corn 

markets. Manoliu and Tompaidis (2002) conducted an empirical study of a one-factor 

model—a deterministic seasonality factor and one random factor driven by a mean-

reverting process—and a two-factor model —a deterministic seasonality factor and two 

random variables in which one was driven by a mean-reverting process and the other was 

driven by Brownian motion.  They used a dataset which included historical information on 

natural gas futures prices over the period September 1997 to August 1998 and estimated the 

parameters of the two models by a combination of a Kalman (1960) filter approach and 

maximum likelihood estimation. As a result, they found that for both the models, the 

monthly seasonality indices of the natural gas futures prices were higher in winter than in 

summer, which supports the conclusion that seasonality effects affect the natural gas futures 

price.  

In addition to the seasonal pattern of the commodity futures price, the commodity 

spot and futures price also exhibit seasonal pattern in the volatility (Choi and Longstaff 

(1985), Milonas (1987), Symeonidis et al (2012)). Anderson (1985) examines two theories 

on the volatility of futures prices. The first theory is that of Samuelson (1965).  The second 

theory emerged from analyses of the determinants of equilibrium prices in futures markets. 

It implied that the volatility of futures prices would be relatively high in periods in which 

supply and demand are significantly high.  Anderson recognized that seasonality was a 

more important factor than maturity as an influence on the futures price volatility. Suenage 
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et al (2008) analyzed the price of the natural gas futures contract traded on the NYMEX for 

the period January 2nd 1991 to December 31st 2003 by using the partially overlapping 

time-series model of Smith (2005), which treated the daily prices of a contract as a single 

time series. They found that the unconditional variance of daily price changes for each 

contract was greater in the winter than in the summer. The volatility displayed a large 

increase in the early winter (November to January) and reached the highest level in the late 

winter (middle of January to March). Such volatility dynamics have a very close 

relationship with the seasonal pattern in U.S. natural gas storage in a way consistent with 

the theory of storage. In winter, the marginal cost of natural gas production is high and the 

demand is highly inelastic, which means that the demand shock cannot be absorbed by 

inventory and thus a small change in demand would cause a large price swing. 

For most energy markets, seasonality is a significant feature of futures price, which 

originates mainly from the demand side. Thus, when I consider the relationship between 

market fundamentals and futures price dynamics, seasonality is an important characteristic 

to analyse.  

  2.5 Empirical research on natural gas futures price dynamics and fundamentals 

Over the last few years, a broad literature has emerged on natural gas futures price 

dynamics, especially in analysing the effect of market fundamentals. Pindyck (2004) 

examined the theory of short-run commodity price dynamics and inventory, focusing on the 

behavior and role of volatility. The higher the volatility, the higher the convenience yield 

and this would lead to inventory buildup, resulting in price increases in the short-run. 

Volatility may also have an effect onmarginal production costs. As  volatility is increased, 
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the production volume might decrease because of the real options held by producers, under 

which they can opt to decrease supply. As a result, the price would increase. This provides 

partial support that short-run commodity price dynamics can be explained by fundamentals. 

Mu (2007) studies the short-term price dynamics of natural gas futures, focusing on 

the effect of weather shocks and storage shocks, and examined how the volatility of the 

futures price was influenced by the important fundamental factors. He used daily data on 

natural gas futures from the Commodity Research Bureau for the period January 1997 to 

December 2000. Using a single equation model with a GARCH error process, he found that 

in the mean equation, the estimated coefficient of the weather shock variable was positive 

and significant at the 1% level, which indicated that the price would increase (decrease) if 

the demand was high (low).  The coefficient of the storage shock was negative and 

significant at the 5% level, implying that when the announced storage level was above the 

market expectation, the futures price would decrease. In the variance equation, the 

coefficient of the weather shock was positive and statistically significant and the coefficient 

of the storage shock was also significantly positive, which indicated that the release of the 

storage report was associated with increased volatility. These results demonstrate that 

shocks to natural gas supply and demand would shift the mean price or cause fluctuations 

around the mean. 

Ates and Want (2007) used daily data from the Commodity Futures Trading 

Commission (CFTC) database to examine the inter-market dynamics of natural gas and 

heating oil spot and futures prices. They constructed a nonlinear error correction model 

with a bivariate GARCH error process to document that extreme low temperature and 

inventory shocks were the factors for demand and supply, which affected the spot and 
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futures price change volatility. In the conditional mean equation for the nearby futures price 

change, the coefficient of the extreme low temperature variable was positive but not 

significant and the coefficient of inventory surprises was negative and significant at the 5% 

level. The conditional variance showed a strong monthly seasonal variation. In the 

conditional variance equation, both inventory and extreme low temperature variables 

showed negative signs and were significant at the 1% level. These results support the 

hypothesis that the natural gas futures price would increase as a result of an increase in 

demand due to the abnormally cold weather and of a decrease in supply due to the 

abnormally low inventory levels. 

Fazzio (2006) attempts to explain the price dynamics of the natural gas Henry Hub 

futures contract through a statistical survey based on the analysis of the variables 

influencing the price and volatility of the contract. In accordance with the theory of storage 

(Working (1949), Samuelson (1971)) and the theory of shocks in natural gas (Engle 

(2001)), he chose weather shocks, a bullish/bearish inventory report indicator to represent 

the shocks which could affect either the demand or supply of natural gas and a inventory 

cycle which depended on exogenous demand shocks, analyst quality and several macro-

factors to represent basic market fundamentals which could have an influence on the futures 

price volatility.  His results show that the bullish/bearish inventory report indicator, 

backwardation and the steepness of the interest rate term structure are significantly 

negatively related with the natural gas futures returns.  In addition, he finds that the price 

volatility exhibited a strong seasonal pattern and was significantly related to the inventory 

supply and the stage of the inventory cycle. When the natural gas market was under-

supplied, the near-term Henry Hub natural gas futures contracts became almost twice as 
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volatile as in an over-supplied market. The volatility was particularly strong in the extremes 

of the inventory cycle (near peak injection or withdrawal). His research suggests that the 

factors which may influence supply and demand will have a relationship with the natural 

gas futures price dynamics.  

 

  Chapter 3. Factors influencing natural gas futures prices 

  3.1 Demand 

The EIA classifies the end-users for natural gas into four sectors: residential, 

commercial, industrial and power generators. Figure 1 shows the total consumption for 

natural gas in the U.S. from January 2003 to December 2012. 

Figure 3. 1 Monthly total consumption of natural gas in the US 
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The total consumption of natural gas peaks between December and January, which 

is a result of increased residential and commercial customers’ space heating demand. The 

total consumption tumbles to its lowest level in summer when the heating demand is low. In 

July and August, the consumption reaches a “local peak” as the increased cooling demand 

caused by the needs for natural gas from power generators.  

Temperature is the main driver for heating and cooling demand and weather is an 

important factor that affects the natural gas industry demand side. Furthermore, weather 

variation is also a good indicator for the variability of natural gas demand as the industrial 

demand does not vary so much in the short term. Consequently, over the short term, 

residential and commercial heating demand is weather sensitive and exhibits a highly 

seasonal pattern.  

  3.2 Supply 

On the supply side, inventory plays an important role to smooth production and to 

balance demand and supply. In winter (from November to March), the total consumption of 

natural gas is high, so natural gas is withdrawn from storage.  In summer (from April to 

October), the total consumption of natural gas is low, and thus natural gas inventory builds 

up. The theory of storage states that the futures price is equal to the spot price plus the cost 

of storage minus the marginal convenience yield. During the injection period (summer), a 

sudden shift in demand which results from lower than usual temperature will lead to a high 

convenience yield. As a result, the price of natural gas futures will be lower. During the 

withdrawal period (winter), the high level of inventory will absorb any change in demand. 
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The convenience yield will be relatively stable and the futures price will be relatively 

higher due to the cost of storage.  

The EIA conducts a weekly survey of natural gas storage levels across the U.S. 

These reports notify the market of current levels of inventory and have an influence on the 

change in natural gas prices. Also, the unexpected variations can lead to severe price 

volatility.  

We attempt to capture the effect of the above factors which influence natural gas 

prices. These variables will serve as the main variables in the analysis. 

 

Chapter 4. Data 

Natural gas futures contracts began trading on the New York Mercantile Exchange 

(NYMEX) on April 3, 1990. The futures contract trades in unit of 10,000 million British 

thermal units (MMBtu).  The price is based on delivery at the Henry Hub, the largest 

centralized natural gas hub in the United States which can interconnect the production 

regions, including the Gulf of Mexico and the onshore Louisiana and Texas regions, with 

the consumption area.  

The liquid traded futures contracts are considered. This means that only contracts 

with maturities ranging from one to twelve months are included. We obtain the daily last 

traded price of each futures contract in US dollars per MMBtu from January 2nd 2003 to 

December 31st 2012 from Bloomberg.  
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Each day’s maximum temperature, minimum temperature, cooling degree day and 

heating degree day from January 1st 1973 to December 31st 2012 are obtained from 

Bloomberg for Chicago, which is the main consumption area for natural gas. Therefore the 

Henry Hub price is more closely related to Chicago weather than any other areas. (Bopp 

(2002)). 

The data on inventory of natural gas are from the EIA website and are obtained on a 

weekly basis for the period December 31st 1993 to December 31st 2012. The EIA provides 

historical information about overall natural gas inventory levels and the inventory levels in 

three regions—consuming region east, consuming region west and producing regions, in 

the “Weekly underground natural gas storage report”. This report is released each 

Thursday.  

Other variables that we use in are the daily prices of the closest to maturity West 

Texas Intermediate (WTI) crude oil futures contracts, which are obtained from Bloomberg, 

the three-month Treasury bill rate which is obtained from the Federal Reserve Economic 

Data (FRED) and the S&P 500 index which is from the University of Chicago Center for 

Research in Security Prices (CRSP) database, for the period January 2nd 2003 to December 

31st 2012. 

The sample period is from Jan 2nd 2003 to Dec 31st 2012. The sample period is 

limited by the availability of weather data. One variable —weather shocks—in the dynamic 

model for natural gas futures returns is obtained based on the previous 30 years’ average 

degree days level. The earliest data on weather that I can find from Bloomberg is from 

January 1st 1973. Thus I will start my analysis from January 2nd 2003. For the price 
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dynamics model, I will use daily data to estimate the relationship between market 

fundamentals and the natural gas futures price. 

 

Chapter 5. Methodology 

5.1 Variables used in the analysis 

5.1.1 Returns and Unconditional Volatilities 

I calculate a time series of daily returns and unconditional volatilities for the futures 

contract as follows: 

                                                ܴ௧ = ln ௧ܲ − ݈݊ ௧ܲ−ଵ = ݈݊ ௉�௉�−భ                                                 (1) 

௧ܲ  is the futures price at time t , ௧ܲ−ଵ is the futures price at time t-1, and ܴ௧ is the 

return on the futures contract at time t. 

Figure 2 shows a Box-Whisker plot of the natural gas futures daily returns.  It 

indicates that for the twelve closest to maturity futures contracts, NG1-NG12, there are 

extreme outliers in returns, both on the up- and down-side. The nearby contract NG1 has 

the largest record high return. As the maturity increases, the largest return for each series 

decreases. The distance between maximum and minimum points in the box plot for NG1 is 

higher than that of contracts farther in the term structure, implying that the range of returns 

for the closest to maturity contract is higher than for the others. 

Figure 5. 1 Daily returns for the 12 closest to maturity natural gas futures contracts 
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Volatility is a latent factor. I use the high-low, the range based on extreme values, to 

measure daily volatility of the natural gas futures price. This method is based on the 

assumption that the return is conditionally normally distributed with conditional volatility. I 

choose this method because it is less affected by market microstructure noise (Parkinson 

(1980)).  The daily unconditional volatility estimator based on a price process which 

follows a geometric Brownian motion is (Bollen and Inder (2002)): 

                                          �௧ଶ = ሺ௟௡��−௟௡௅�ሻమସ௟௡ଶ                                                              (2)                                                                 

�௧ is the unconditional volatility at day t, ܪ௧ and ܮ௧ denote the highest price and 

lowest price on day t , respectively. 

Figure 3 shows the daily unconditional volatility for the 12 closest to maturity 

futures contracts NG1-NG12.It is clear from the figure that there is a downward trend in the 
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unconditional volatility as the maturity of the contract increases. This provides evidence to 

support the Samuelson effect (1965). 

   Figure 5. 2 Daily unconditional volatility for the 12 closest to maturity natural gas futures 

contracts 

       

I analyse the daily return and the daily unconditional volatility of the natural gas 

futures contract over a variety of time horizons. The efficient markets theory suggests that 

the asset price includes the best information about fundamental values and that volatility is 

driven by news about these fundamentals.  To test the efficiency of the natural gas futures 

market, I first conduct unit toot tests (ADF) and tests of the autocorrelation of the daily 

returns and daily unconditional volatilities for the 12 contracts with times to expiration 

1,2,3….12 months. In addition, non-stationarity in the data implies that any shocks to the 

data series will have a permanent effect. Unlike a stationary series, which reverts to its 

mean after a shock, a non-stationary time series does not revert to its pre-shock level. In 
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such a situation, any conventional economic techniques applied to the non-stationary time 

series will provide misleading results. 

 Next, I examine the mean returns and standard deviations of the returns of the 

natural gas futures contracts over the entire time period as well as for each month and each 

weekday. By doing this, I can determine whether the prices and volatility of natural gas 

futures exhibit a seasonal pattern and whether the price dynamics of natural gas futures is 

related with the storage announcement day. 

5.1.2 Weather 

Temperature is the main driver of the demand in different seasons.  In this thesis, I 

focus on temperature shocks, a proxy for demand shocks, and examine their effect on 

volatility.   

There are two ways to measure weather shocks. One is the weather forecast error, 

which was used by Roll (1984) to investigate the effect of weather on orange juice futures 

prices. The other is to use “weather anomalies” which is the deviation of weather from the 

normal level. This paper adopts the second approach.  Following Mu (2007), temperature is 

converted into degree days ܦܦ௧ which is the sum of the cooling and heating degree days 

denoted by ܦܦܥ௧ and ܦܦܪ௧, respectively as follows: 

௧ܦܦ                                      = ௧ܦܦܥ +  ௧                                                          (3)ܦܦܪ

௧ܦܦܥ                         = ,ቀͲ ݔܽܯ �௠௔��+�௠௜௡�ଶ − ͸ͷ଴ܨቁ                                          (4) 

௧ܦܦܪ                         = ,ሺͲ ݔܽܯ ͸ͷ଴ܨ − �௠௔��+�௠௜௡�ଶ ሻ                                           (5) 
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where ܶ݉ܽݔ௧ and ܶ݉݅݊௧ are the maximum and minimum temperature at a certain 

day t, and  ܦܦ௧  is the degree days variable on day t. CDDs and HDDs are widely used in 

the energy industry and they represent the cooling demand and heating demand. Thus, DD 

is the measure for both heating demand in winter and cooling demand in summer.  

Next, I create a standardized measure of the weather shock, as defined below: 

                                        ܹܵ௧ =  ���−��ேைோெ��ேைோெ�                                                         (6)   

Following the convention of the National Weather Service,  ܯܴܱܰܦܦ௧ , the normal 

degree days, is defined as  the average normal degree days for the previous 30 years for a 

certain day t. �ܱܴܰܯ௧ is the standard deviation for the normal degree days based upon the 

previous 30 years for day t. 

The time series plot of Figure 4 suggests that there are strong monthly seasonal 

variations in weather. In winter, the weather shock is large and in summer, the weather 

shock is small. 

In addition to the weather shock variable and its squared value (a measurement of 

the level of demand shock), we also include one dummy for winter ( ௧ܹ), which is equal to 

one from November to March and equal to zero in other seasons. This variable will directly 

capture the seasonal pattern, if any, in natural gas futures prices.  
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Figure 5. 3 The daily weather shock variable for the period January 1st 2003 to December 

31st 2012 

       

5.1.3 Storage 

For the third part of the analysis of the influencing factors, I concentrate on the 

variable used to capture storage effects. Natural gas consumption is seasonal while its 

production is not. Thus in the summer, the inventory of natural gas is built up and in the 

winter it is drawn down. This seasonality leads to higher prices in winter and lower prices 

in summer. 

As stated earlier, the theory of storage shows that shocks to demand and supply will 

have an impact on both the futures price and the volatility of the futures price. The periodic 

information about natural gas storage may shift the mean of returns and the volatilities to 

the extent that it surprises the market. Fama and French (1987) show that commodity prices 
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are inversely related to inventory levels. So the price may increase if the reported inventory 

amount is below the market’s expectation and vice versa. Linn and Zhu (2004) find that the 

natural gas report announcement is responsible for considerable volatility at the time of its 

release. Thus the release of the weekly natural gas storage report may increase the volatility 

in the market.  I use weekly data on natural gas storage released by the EIA at 10:30 AM 

each Thursday to measure the storage surprise. 

The storage surprise is the difference between the announced natural gas storage 

level change and its seasonal norm, which is defined as:  

                                      ܵܵ� = ∆ܵ� −  ሺܵ�ሻ                                                           (7)ܧ∆

Where ܵܵ�  is the storage surprise in week �; ∆ܵ�is the change in the storage level in 

week �; ∆ܧሺܵ�ሻ is the market’s expected change in the storage level in week �. 

As the inventory level exhibits a seasonal pattern, to form the measure of the 

market’s expectation of the change in the storage level, I use a seasonal autoregressive 

integrated moving average(ARIMA) model which predicts a particular value of a time 

series as a linear combination of past values, past errors, and seasonal terms. The data used 

to estimate the parameters of the seasonal ARIMA model is the weekly inventory storage 

level from January 1994 to December 2002. The seasonal ARIMA model requires the 

specification of differencing orders (d, D) and the order of both non-seasonal and seasonal 

autoregressive (AR) operators (p, P) and moving average (MA) operators (q, Q). Thus, the 

seasonal ARIMA model− ܣܯܫܴܣ ሺ݌, ݀, ሻݍ × ሺܲ, ,ܦ ܳሻ௦  can be expressed as: 

                 ∅௣ሺܤሻ�௉ሺܤ௦ሻሺͳ − ሻௗሺͳܤ − �ܵ�௦ሻܤ = �௤ሺܤሻ�ொሺܤ௦ሻ(8)                       �ߝ 
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    ∅௣ሺܤሻܽ݊݀ �௉ሺܤ௦ሻ are the autoregressive operators. �௤ሺܤሻ ܽ݊݀ �ொሺܤ௦ሻ  are the moving      

     average operators. All of them can be represented as a polynomial in the back shift 

operator: 

                                           ∅௣ሺܤሻ=ͳ − ∅ଵܤ − ∅ଶܤଶ − ⋯ − ∅௣ܤ௣                                       (9) 

                                      �௉ሺܤ௦ሻ = ͳ − �௦ܤ௦ − �ଶ௦ܤଶ௦ − ⋯ − �௉௦ܤ௉௦                             (10) 

                                          �௤ሺܤሻ = ͳ −  �ଵܤ − �ଶܤଶ − ⋯ − �௤ܤ௤                                     (11)  

                                      �ொሺܤ௦ሻ = ͳ − �௦ܤ௦ − �ଶ௦ܤଶ௦ − ⋯ − �ொ௦ܤொ௦                              (12)  

where p is the order of the non-seasonal autoregressive terms, P is the order of the 

seasonal autoregressive terms, d is the order of differencing, D is the order of differencing 

based on season cycle, q is the order of the non-seasonal moving-average process and Q is 

the order of the seasonal moving average process.  s represents the number of observations 

in a seasonal cycle. Since I use weekly data, “s” is set equal to 52. B is the backshift 

operator which could be defined as ܤ௞ܵ� = ܵ�−௞.  ሺͳ −  ሻௗ  is the nonseasonal operatorܤ

and ሺ ͳ − ,∅ .� ௦ ሻ� is the seasonal operator. ܵ� is inventory level at weekܤ Φ θ, and Θ are 

the parameters for each factor.  

Before the parameter estimation, I preprocess the data of inventory level through 

non-seasonal and seasonal differencing, which are often used to stabilize the time series, as 

the seasonal ARIMA model requires that the time series be stationary. Then, I approach to 

the model building through an iterative process of model identification, parameter 

estimation and diagnostic checks. Based on the Schwarz information criterion (SIC) and 

autocorrelation test, the model ARIMA ሺͳ,ͳ,Ͳሻ × ሺͳ,ͳ,ͳሻହଶ fits the inventory data well. I 
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estimate the parameters using maximum likelihood estimation.  The resulting model is 

described by 

Table 5. 1 Maximum Likelihood Estimation 

Parameter Coefficient 
Standard 

Error 
t Value 

Approx 

Pr > |t| Θs 0.9996 45.8922 0.0200 0.9826 ∅ଵ 0.3120*** 0.0409 7.6400 <.0001 ϕs 0.0241 0.0646 0.3700 0.7094 

                         *** denotes statistical significance at the 0.01 level. 

I use the result above to forecast the weekly inventory level for the period from 

January 2nd 2003 to December 31st 2012 to represent the market’s expected inventory level. 

Figure 5 shows the forecasted inventory and the actual inventory in the sample period. The 

actual level of inventory follows a strong seasonal pattern which indicates that the futures 

price should exhibit seasonal variations. Low inventory levels are observed during winter 

months while high levels are observed during summer months. In the early years, the 

forecast inventory levels are generally closer to actual inventories.  As time passes, the 

forecasting power of the seasonal ARIMA model weakens, but the forecasted inventory still 

follows the variation in the actual inventory. 

 

 

 

 

 



25 

 

Figure 5. 4 Forecast inventory and actual inventory over the period January 2nd 2003 to 31st 

December 2012 

  

Next, I use equation (6) to obtain the weekly storage shocks ܵܵ� . As the analysis is 

based on daily data, the weekly series ܵܵ� is expanded to daily. Linn and Zhu (2004) find 

that the volatility caused by storage announcements disappeared in 30 minutes, which 

means that the price of the natural gas futures contract reaches a new equilibrium after 30 

minutes of trading following the release of the storage report. Therefore, the distribution of 

natural gas futures price should shift from week to week due to the storage surprise. I define 

the storage surprise ܵܵ௧ as 

ܵܵ௧ = ܵܵ�−ଵ ݓℎ݁݊ ܵܦܣ௧ = ͳ ݐ݋ℎ݁݋ݐ ݈ܽݑݍ݁ ݏ݅ ݁ݏ݅ݓݎ Ͳ 
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ܵܵ௧ is the storage surprise on day t and ܵܵ�−ଵ is the storage surprise at week � − ͳ. 

SAD is the dummy variable for the storage announcement day. It is equal to one for 

Thursday. 

Also, I include ܵܦܣ௧ in the conditional variance equation to examine whether the 

“announcement day” has a significant effect on conditional volatility. 

5.1.4 Crude oil price 

As the explanatory variable, I include crude oil futures returns (ܴܱܥ௧) in the 

conditional mean equation. Natural gas is seen as a close substitute to crude oil in the U.S. 

for industry use and electric power generation. Industry and electric power generators will 

choose the energy source which is less expensive. Thus, the crude oil price should influence 

the natural gas futures price directly.  In addition, to cover the possible volatility spillovers 

between the crude oil and natural gas futures markets, I include the volatility of crude oil 

returns (ܸܱܴ௧) in the conditional variance equation. The crude oil return ܴܱܥ௧  is defined 

as: 

௧ܴܱܥ                                  = lnሺܱܲ௧ሻ − ln ሺܱܲ௧−ଵሻ                                              (13) 

Where ܱܲ௧ is the price of the closest to maturity crude oil futures contract on day t 

and ܱܲ௧−ଵ is the price of the closest to maturity crude oil futures on day t-1. The daily 

crude oil price data is from Bloomberg. Figure 6 shows that crude oil futures returns evolve 

over time and the square of return, which represents volatility, exhibits volatility clustering 

in year 2008 and 2009. Thus to construct the time-varying volatility, I use an ARMA 

(Autoregressive Moving Average)-GARCH (Generalized Autoregressive Conditional 
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Heteroskedasticity) model to obtain the fitted conditional variance of crude oil futures 

returns. The ARMA(a,b)-GARCH ( m, n) model is defined as: 

Figure 5. 5 Daily returns COR and squared daily returns COR2 for the crude oil futures 

contract 

 

௧ܴܱܥ                                   = ܿ + ∑ ௧−௜ܴܱܥ௜ߤ + ∑ �௝�௧−௝ + �௧௕௝=ଵ௔௜=ଵ                                 (14) 

                                                               �௧ = ܼ௧ℎ௧                                                                (15)  

                             ℎ௧ଶ = ݀ + ∑ ݁௜�௧−௜ଶ௠௜=ଵ + ∑ ௝݂ℎ௧−௝ଶ௡௝=ଵ                                          (16)                                                           

Where ܴܱܥ௧ is the crude oil futures’ return at time t and �௧ is an independent and 

identically distributed standard normal random variable.  ߤ is the autoregressive coefficient 

and � is the moving average coefficient.  ܼ௧ denotes an i.i.d location zero, scale unity 
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random variable, which is represented as ܼ௧~ܰሺͲ,ͳሻ.  ℎ௧ଶ is the conditional variance of the 

process at time t, which depends on the squared residuals of the previous m periods and the 

conditional variance of the previous n periods. Furthermore, the coefficients in the 

conditional variance equation should satisfy the following requirements: ݀ > Ͳ, ݁௜ >Ͳ ݂ݎ݋ ݅ = ͳ,ʹ,͵, … … ݉ and  ௝݂ > Ͳ ݂ݎ݋ ݆ = ͳ,ʹ,͵, … … , ݊ . The polynomials ሺͳ − ଵܼߤ −⋯ … − ௔ܼ௔ሻ andሺͳߤ − �ଵܼ − ⋯ − �௕ܼ௕ሻ have no common factors. 

I perform a tentative ARMA order identification using the smallest canonical 

(SCAN) correlation method, the extended sample autocorrelation function (ESACF) 

method and the minimum information criterion (MINIC) method. Based on the minimum 

SIC, I choose to fit the data with a GARCH(1,1), which is the most effective one to model 

the conditional volatility. As the residuals in equation (14) exhibit non-normality, I use a 

student t-distribution for the standardized error to capture the observed fat tails in the return 

series. Thus the log likelihood function of the GARCH model with student-t distribution 

based error is: 

ሺ�௧|ܺሻ ܮ = ܶ {݈݊� ቀ�+ଵଶ ቁ − ݈݊� ቀ�ଶቁ − ଵଶ ln[�ሺݒ − ʹሻ]} − ଵଶ ∑ [lnሺ�௧ଶሻ + ሺͳ +�௧=ଵ
ሻݒ ln ቀͳ + ��మ�−ଶቁ]                                                                                                                  (17)  

 represents the degrees of freedom, which is equal to 10.66264. X is the vector of ݒ

estimated parameters. Γ(.) is gamma function. The estimated model is: 
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Table 5. 2 ARMA-GARCH model for crude oil futures 

Parameter Estimate Standard Error t Value 
Approx 

Pr > |t| 

Constant 0.00091** 0.00040 2.30591 0.02110 

Variance Equation 

Constant 0.00001*** 0.00000 2.87607 0.00400 ݁ଵ 0.05350*** 0.00927 5.76841 0.00000 ଵ݂ 0.93008*** 0.01239 75.06138 0.00000 

T-DIST. DF 10.66264*** 1.81461 5.87598 0.00000 

***, **, and * denote statistical significance at the 0.01, 0.05, and 0.1 level, respectively. 

5.1.5 Macroeconomic factors 

The risk free rate, which proxies for the current economic conditions in the U.S. and 

contains information about the market’s expectation of inflation, is another important factor 

which should influence natural gas futures returns. Here, I choose the annual yield of 3-

month Treasury bills (ܴܶܤ௧), obtained from the Federal Reserve Economic Data, to 

represent the risk free rate.  The interest rate is a significant component of the cost of 

carrying inventories. Thus the Treasury bill rate may affect the natural gas futures returns.  I 

will use the variable in the conditional mean equation.  

Another important factor is given by the daily return on the S&P 500 index (denoted 

as ܵܲܺ௧), which is a proxy for the equity market return. The SPX includes overall 

information about market sentiment and thus economic demand for commodities like 

natural gas. I expect a negative impact of the variable on the commodity futures returns in 

the short term, as shown by Gorton and Rouwenhorst (2004). 

5.2 Model Specification 
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I use the ARMA-GARCH model with exogenous variables, which can remove the 

serial correlation in the data and is appropriate for the residuals if conditional 

heteroscedasticity is detected, to construct the relationship between market fundamentals 

and natural gas futures return and its volatility. I choose the minimum SIC to find the 

appropriate order for the AR and MA terms.  This accounts for serial correlation in the 

residuals.  I also choose the appropriate GARCH model as the one that minimizes the 

information criteria.  The estimation is done using daily data. 

The ARMA process for the conditional mean of the futures returns is specified as: 

ܴ௧ = ଴ߙ + ∑ ௜ܴ௧−௜ߛ + ∑ �௝ߝ௧−௝௟௝=ଵ + ଵܹܵ௧ߙ + ଶܵܵ௧ߙ + ௧ܴܱܥଷߙ + ௧ܴܤସܶߙ +௞௜=ଵߙହܵܲܺ௧ + ௧݊݋ܯ଺ߙ +  ௧                                                                                                     (18)ߝ

                                                        ሺߝ௧|Ω௧−ଵሻ ~ ܰ ሺͲ, �௧ሻ                                                  (19)   

For conditional variance �௧, 

�௧ = ଴ߚ + ∑ �௜�௧−௜ + ∑ ௧−௝ଶߝ௜ߜ + ଵ௤௝=ଵ௣௜=ଵߚ ܹܵ௧ଶ + ଶߚ ௧ܹ + ௧ܦܣଷܵߚ + ସܸܱܴ௧ߚ +                         ௧݊݋ܯହߚ

(20) 

Where ߝ௧  is an independent and identically distributed normal random variable.   Ω௧−ଵ  is the information set available at time t-1 and �௧ is the conditional variance at time t. ݇ is the order for autoregressive process. ݈ is the order for moving average process. ݌,  are ݍ

the best orders for GARCH model.  ߛ, �, ,ߙ �, ,ߜ  .are parameters to be estimated ߚ ݀݊ܽ

I estimate equations (19) and (21) by using maximum likelihood estimation. The 

likelihood function is 
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,ଵݔሺܮ                              ,ଶݔ … … , ;௡ݔ  �ሻ = ∏ �݂ ሺݔ௜;  �ሻ௡                                      (21) 

where there are n sets of sample data, �݂ሺݔ; �ሻ is the probability density function, � 

represents the parameters of the probability density function which are assumed constant 

across the sampled data.  

I select the orders of the ARMA process by using the Smallest CANonical 

correlation method, the extended sample autocorrelation function method and the minimum 

information criterion method.  The best ARMA and GARCH models are based on 

minimization of the SIC   The Ljung-Box test (LB hereafter) is used to test for the presence 

of autocorrelation and the Engle test (LM hereafter) for the presence of the ARCH effect. 

As the Generalized Error Distribution (GED) (Nelson, (1991)) is suitable for both 

leptokurtic and platykurtic distributions, I choose the GED to estimate parameters.  

Thus, the density function is given by: 

                                                 �݂ = � ௘−భమ|��|��ଶ�+భ� �[భ�]                                                          (22) 

Where 

ߣ                                                 = [ଶ−మ��[భ�]�[య�] ]଴.ହ
                                                        (23) 

 is the degree of freedom, Γ(.) is gamma function ݒ

For the ARMA-GARCH model, causality relationships from market fundamentals 

to natural gas futures prices and to futures volatility exist if the coefficient of each term is 
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statistically significant. The recent history of natural gas futures price movements and 

exogenous variables will shape the short-run pricing dynamics. 

 

 

Chapter 6. Results 

6.1 Data properties 

6.1.1 Summary statistics  

Table 6.1 presents the summary descriptive statistics of the returns for the twelve 

natural gas futures contracts. The means and medians are all negative. The distance 

between the maximum value and the minimum value of the return is highest for the closest 

to maturity contract NG1.  The standard deviations of returns for longer maturity natural 

gas futures contracts are consistently smaller than those for nearby futures contracts. This is 

consistent with the “Samuelson effect”, under which volatilities decline across time-to-

maturity. I also note that the kurtosis of each series appears much higher than 3 (the 

kurtosis for the normal distribution), which indicates that the returns distribution is fat-

tailed. Based on the Jarque-Bera statistics in Table 1, it is found that the hypothesis of 

normality of the returns distribution is strongly rejected. These results highlight the 

potential advantage of using the generalized error distribution of the ARMA-GARCH 

model in my analysis. 

Table 6. 1 Summary Statistics of returns on the Natural gas futures contract 

 

Mean Median Max. Min. 

Std. 

Dev. 

Skew 

ness Kurtosis 

Jarque-Bera test 

statistic 
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NG1 -0.00014 -0.00093 0.32435 -0.19899 0.03507 0.93454 10.06998 5599.60400*** 

NG2 -0.00013 -0.00108 0.23443 -0.21422 0.03233 0.69220 8.14676 2974.31800*** 

NG3 -0.00011 -0.00052 0.21636 -0.15510 0.02908 0.63645 7.29846 2104.32500*** 

NG4 -0.00010 -0.00036 0.18236 -0.19370 0.02625 0.38854 7.89096 2568.00900*** 

NG5 -0.00009 0.00000 0.21736 -0.22929 0.02484 0.23044 11.78297 8099.49300*** 

NG6 -0.00009 -0.00009 0.19295 -0.22367 0.02302 0.35906 11.05136 6841.65000*** 

NG7 -0.00009 -0.00024 0.13715 -0.28084 0.02232 -0.45137 17.44112 21921.82000*** 

NG8 -0.00008 -0.00025 0.11621 -0.20757 0.02070 -0.12220 9.86731 4944.30000*** 

NG9 -0.00008 0.00000 0.15934 -0.20828 0.02039 -0.34766 14.13914 13042.88000*** 

NG10 -0.00008 0.00000 0.13115 -0.22219 0.01962 -0.94200 18.66274 26058.84000*** 

NG11 -0.00007 0.00000 0.13022 -0.21108 0.01873 -1.24415 20.61758 33147.60000*** 

NG12 -0.00007 -0.00020 0.118611 -0.17438 0.01762 -1.03726 16.60946 19844.42000*** 

*** denotes statistical significance at the 0.01 level. 

6.1.2 Stationary tests  

Each return series is tested for the presence of a unit root by using the Augmented 

Dickey-Fuller (ADF) test. The results are reported in Table 6.2. In all instances, the null 

hypothesis of nonstationarity is verified. The observed level of futures returns and the first 

lag of futures returns reject the unit root hypothesis at the 1% significant level. Thus, the 

prices for all futures contracts are integrated of order I(1), while the returns are stationary. 

These findings support the choice of the ARMA-GARCH model since the series satisfies 

the requirement that data series should be stationary. 

Table 6. 2  Unit root test in levels and differences for daily returns on the 12 futures contracts 

  Level   Difference 

  Tau-statistics Probability Tau-statistics Probability 

NG1 -52.97*** <.0001 -92.18*** <.0001 

NG2 -53.63*** <.0001 -93.69*** <.0001 

NG3 -52.04*** <.0001 -92.26*** <.0001 

NG4 -52.28*** <.0001 -92.08*** <.0001 

NG5 -51.38*** <.0001 -91.2*** <.0001 

NG6 -52.48*** <.0001 -92.34*** <.0001 

NG7 -52.5*** <.0001 -91.03*** <.0001 

NG8 -52.56*** <.0001 -89.82*** <.0001 
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NG9 -52.02*** <.0001 -89.04*** <.0001 

NG10 -52.04*** <.0001 -88.36*** <.0001 

NG11 -50.86*** <.0001 -88.07*** <.0001 

NG12 -51.65*** <.0001 -89.64*** <.0002 

*** denotes statistical significance at the 0.01 level. 

6.1.3 Autocorrelation analysis 

The autocorrelation structure tells us how a series is related to its past values. Table 

6.3 reports the autocorrelation coefficients for the twelve return series. The returns for 

NG1-NG7 display significant serial correlation, while the returns for NG8-NG12 do not 

show any significant autocorrelation even at a large number of lags. Note that with regard 

to the autocorrelation coefficients for NG1-NG7, I find that there is evidence of statistically 

significant negative autocorrelation (mean reversion) at lag 1 for these returns, followed by 

positive autocorrelation (trend) at lag 2. At a large number of lags, the coefficients have 

alternatively negative and positive signs for the returns on NG1, NG2 and NG3, which 

means any shock effects for these three contracts price will disappear very soon. Thus, in 

the following analysis of the short-term dynamics of prices, I focus on these three contracts.   

Table 6. 3 Autocorrelation of natural gas futures (NG1- NG12) daily return 

lag NG1 NG2 NG3 NG4 NG5 NG6 NG7 NG8 NG9 NG10 NG11 NG12 

1 -0.054*** -0.066*** -0.037* -0.042** -0.024 -0.045** -0.046** -0.047** -0.037* -0.037* -0.014 -0.030 

2 0.039*** 0.052*** 0.056*** 0.049*** 0.051** 0.05*** 0.028** 0.007* 0.004 -0.008 0.01 0.021 

3 -0.033*** -0.031*** -0.032*** -0.039*** -0.04*** -0.031*** -0.02** -0.007 -0.009 -0.027 -0.03 -0.026 

4 0.008*** 0.005*** 0.001*** -0.019*** -0.028*** -0.022*** -0.021* -0.01 -0.017 -0.01 -0.032 -0.018 

5 -0.052*** -0.045*** -0.053*** -0.05*** -0.031*** -0.02*** -0.013* -0.029 -0.029 -0.032 -0.027 -0.038* 

6 0.002*** 0.01*** 0.018*** 0.011*** 0.002** 0.008** 0.006 0.033* 0.038 0.025 -0.007 -0.007 

7 0.043*** 0.022*** 0.018*** 0.006*** 0.005** 0.031** 0.041** 0.024* 0.025 0.022 0.006 0.015 
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8 -0.008*** 0.007*** 0.019*** 0.011*** 0.006** -0.016*** 0.005* -0.003 -0.006 -0.004 -0.015 0.005 

9 -0.012*** -0.029*** -0.033*** -0.031*** -0.02** -0.004*** 0.01 0.002 -0.025 -0.029 -0.032 -0.015 

10 0.015*** 0.015*** 0.022*** 0.051*** 0.05*** 0.042*** 0.037* 0.037 0.015 0.028 0.026 0.029 

11 -0.018*** -0.034*** -0.045*** -0.042*** -0.037*** -0.037*** -0.034** -0.036* -0.029 -0.047** -0.045* -0.051* 

12 0.041*** 0.049*** 0.041*** 0.047*** 0.045*** 0.036*** 0.03** 0.021* 0.008 -0.022** 0.004 0.001* 

***, **, and * denote statistical significance at the 0.01, 0.05, and 0.1 level, respectively. 

6.1.4 Natural gas daily returns by day of week and by month 

Table 6.4 presents the mean returns and the standard deviations of RET1, RET2 and 

RET3. The means of returns on weekdays show a day of week effect, as the returns are 

positive on Monday and Friday, which could be due to the release of weekly storage 

information. The mean returns on months for the three contracts are negative from 

November to March in which supply and demand have greatest uncertainty.  

Next, by studying pattern of volatilities for the three returns, I find that most of the 

standard deviations are higher than the means, which implies that the market has high 

volatility. The standard deviations of RET1 are higher than those of RET2 and the standard 

deviations of RET2 are consistently greater than that of RET3. The “Samuelson effect” is 

evident. Note the volatilities on weekdays, the standard deviations on Monday are the 

highest. And the standard deviations on Thursday are the second largest, which is the result 

of storage shock. Also, the standard deviations in winter are higher than other seasons, 

which is consistent with the winter cycle in natural gas. In winter, the demand for natural 

gas reaches the peak and the supply is short.  

Table 6. 4  Mean returns and standard deviation of the three closet to maturity natural gas 

futures contracts  
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Panel A. NG1 

 
Monday Tuesday Wednesday Thursday Friday All days 

Jan 0.0038 -0.0069 -0.0008 -0.0120 0.0080 -0.0018 

 
0.0480 0.0389 0.0331 0.0397 0.0266 0.0377 

Feb 0.0047 0.0013 -0.0072 -0.0038 0.0073 0.0002 

 
0.0684 0.0275 0.0250 0.0429 0.0288 0.0397 

March -0.0072 0.0033 0.0002 -0.0047 -0.0028 -0.0022 

 
0.0329 0.0258 0.0182 0.0381 0.0222 0.0284 

April 0.0035 -0.0041 0.0028 -0.0051 0.0017 -0.0003 

 
0.0279 0.0250 0.0181 0.0279 0.0237 0.0248 

May 0.0095 0.0002 0.0070 -0.0049 0.0028 0.0026 

 
0.0289 0.0253 0.0261 0.0331 0.0259 0.0281 

June 0.0043 -0.0062 -0.0028 0.0050 -0.0008 -0.0001 

 
0.0340 0.0205 0.0286 0.0430 0.0196 0.0304 

July -0.0009 -0.0018 0.0002 0.0020 -0.0023 -0.0005 

 
0.0396 0.0275 0.0289 0.0391 0.0231 0.0320 

Aug -0.0099 0.0062 -0.0019 -0.0109 -0.0062 -0.0045 

 
0.0441 0.0273 0.0265 0.0349 0.0268 0.0330 

Sep 0.0099 0.0132 0.0106 -0.0013 -0.0027 0.0057 

 
0.0470 0.0496 0.0487 0.0577 0.0358 0.0484 

Oct -0.0030 0.0152 0.0004 0.0068 -0.0009 0.0036 

 
0.0385 0.0345 0.0339 0.0530 0.0359 0.0399 

Nov -0.0069 0.0012 0.0087 -0.0117 0.0000 -0.0013 

 
0.0365 0.0324 0.0457 0.0287 0.0292 0.0358 

Dec -0.0011 -0.0040 -0.0005 -0.0026 -0.0065 -0.0029 

 
0.0449 0.0358 0.0297 0.0415 0.0310 0.0367 

All seasons -0.0001 0.0015 0.0014 -0.0034 -0.0002 -0.0001 

 
0.0411 0.0321 0.0315 0.0410 0.0279 0.0351 

Panel B. NG2 

 
Monday Tuesday Wednesday Thursday Friday All days 

Jan 0.0046 -0.0073 -0.0006 -0.0131 0.0081 -0.0020 

 
0.0459 0.0365 0.0321 0.0421 0.0253 0.0371 

Feb 0.0012 -0.0040 -0.0022 -0.0028 0.0063 -0.0004 

 
0.0455 0.0338 0.0293 0.0427 0.0229 0.0350 

March -0.0036 0.0037 0.0011 -0.0022 -0.0022 -0.0006 

 
0.0255 0.0222 0.0183 0.0360 0.0211 0.0254 

April 0.0032 -0.0037 0.0019 -0.0042 0.0022 -0.0002 

 
0.0273 0.0240 0.0189 0.0264 0.0241 0.0243 

May 0.0092 -0.0005 0.0061 -0.0049 0.0029 0.0022 

 
0.0278 0.0245 0.0253 0.0327 0.0247 0.0273 

June 0.0038 -0.0063 -0.0026 0.0049 -0.0011 -0.0003 

 
0.0325 0.0201 0.0267 0.0418 0.0191 0.0293 
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July -0.0007 -0.0031 0.0007 0.0031 -0.0017 -0.0003 

 
0.0396 0.0276 0.0279 0.0391 0.0230 0.0319 

Aug -0.0056 0.0055 0.0043 -0.0035 -0.0007 0.0000 

 
0.0493 0.0264 0.0365 0.0449 0.0429 0.0406 

Sep 0.0059 0.0081 0.0095 0.0049 -0.0037 0.0049 

 
0.0389 0.0351 0.0417 0.0500 0.0243 0.0389 

Oct -0.0042 0.0100 -0.0009 0.0010 0.0002 0.0011 

 
0.0293 0.0268 0.0246 0.0347 0.0269 0.0288 

Nov -0.0086 -0.0019 0.0058 -0.0114 -0.0016 -0.0032 

 
0.0335 0.0264 0.0384 0.0250 0.0262 0.0309 

Dec -0.0006 -0.0041 -0.0008 -0.0033 -0.0071 -0.0031 

 
0.0427 0.0321 0.0267 0.0397 0.0287 0.0342 

All seasons -0.0001 -0.0002 0.0019 -0.0024 0.0001 -0.0001 

 
0.0368 0.0285 0.0296 0.0387 0.0265 0.0323 

Panel C. NG3 

 
Monday Tuesday Wednesday Thursday Friday All days 

Jan 0.0063 -0.0058 0.0001 -0.0091 0.0067 -0.0007 

 
0.0365 0.0306 0.0274 0.0324 0.0229 0.0303 

Feb 0.0002 -0.0041 -0.0029 0.0008 0.0060 0.0000 

 
0.0380 0.0340 0.0228 0.0289 0.0209 0.0290 

March -0.0032 0.0041 0.0014 -0.0010 -0.0020 -0.0001 

 
0.0244 0.0200 0.0176 0.0343 0.0207 0.0241 

April 0.0033 -0.0035 0.0018 -0.0044 0.0015 -0.0004 

 
0.0260 0.0228 0.0182 0.0257 0.0216 0.0231 

May 0.0089 -0.0003 0.0053 -0.0055 0.0025 0.0019 

 
0.0264 0.0233 0.0243 0.0309 0.0230 0.0259 

June 0.0045 -0.0058 -0.0022 0.0056 -0.0010 0.0002 

 
0.0311 0.0198 0.0247 0.0401 0.0183 0.0281 

July 0.0026 -0.0034 0.0025 0.0083 0.0018 0.0024 

 
0.0465 0.0267 0.0281 0.0480 0.0347 0.0377 

Aug -0.0035 0.0047 0.0036 -0.0005 -0.0002 0.0008 

 
0.0391 0.0220 0.0272 0.0389 0.0309 0.0321 

Sep 0.0031 0.0036 0.0071 0.0003 -0.0023 0.0023 

 
0.0317 0.0241 0.0314 0.0287 0.0192 0.0271 

Oct -0.0039 0.0075 -0.0012 -0.0044 -0.0010 -0.0006 

 
0.0269 0.0244 0.0219 0.0264 0.0240 0.0249 

Nov -0.0089 -0.0026 0.0043 -0.0113 -0.0020 -0.0038 

 
0.0348 0.0254 0.0365 0.0240 0.0248 0.0301 

Dec -0.0005 -0.0056 -0.0006 -0.0050 -0.0068 -0.0036 

 
0.0381 0.0332 0.0248 0.0414 0.0276 0.0334 

All seasons 0.0004 -0.0008 0.0016 -0.0020 0.0003 -0.0001 

 
0.0337 0.0259 0.0258 0.0343 0.0245 0.0291 
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6.1.5 Causality Tests  

I examine causal relationships between the fundamental variables, including 

weather shocks, crude oil return, interest rates, the S&P 500 return, storage shocks and 

Monday effects,  and the returns on the three closest to maturity natural gas futures 

contracts. The null hypothesis is the variable will not cause the change of daily returns of 

NG1, NG2 and NG3.  Table 6.5 shows the chi-square statistics for the tests of Granger 

causality.  

Table 6. 5  Granger causality test between fundamental variables and daily returns of NG1-

NG3 

variables NG1 NG2 NG3 

weather shocks 14.27** 10.17** 7.46 

crude oil return 11.89** 8.48 9.66* 

interest rate 4.58 7.59 8.07 

S&P 500 return 1.60 2.34 3.76 

storage shock  14.82** 15.80** 12.26** 

Monday effect 5.10 2.11 2.84 

***, **, and * denote statistical significance at the 0.01, 0.05, and 0.1 level, respectively. 

 

The chi-square statistics strongly reject the null hypothesis that weather surprises do 

not “granger cause” natural gas futures returns for the two closest to maturity futures 

contracts NG1 and NG2. The crude oil return is significant for NG1 and NG3. Storage 

shocks exhibits strong causal relationship with futures returns for NG1, NG2 and NG3. 

These results provide support for hypothesis 1: that market fundamentals have an impact on 

natural gas futures prices. 

6.2 Model Results 
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In this section, I empirically examine the influence of market fundamentals on the 

mean  and  conditional variance of the return on the natural gas futures contracts for the 

three closest to maturity futures contracts NG1-NG3, the most liquid futures contracts.  

Through Ljung-box test and Engle test, I find that the best model for NG1 is ARMA (0,1)–

GARCH (2,1), for NG2 is ARMA(2,1)-GARCH (1,2) and for NG3 is GARCH(1.2). 

Detailed results are presented in Appendix A.1, A.2 and A.3).  Tables 6.6 to 6.8 report the 

outcomes of the ARMA-GARCH model if I start from using the model without any 

explanatory variables and then add further additional factors until the model described in 

the former section is reached. All results are presented separately for each considered 

futures contract. 

  The closest to maturity natural gas futures contract (NG1) 

In the mean equations, the coefficients of the weather shock variable (WS) are 

negative but insignificant. The crude oil return (COR) exerts a positive impact and is 

significant at the 1% level for all the regressions. The coefficients of the variable are around 

0.42, which means one percent increase in crude oil return leads to a 0.42 percentage 

increase in the conditional mean of the return. The conditional mean of the return is also 

affected by S&P 500 return (SPX), as the coefficient is negative and significant at the 10% 

level. The storage shock (SS) does not influence the conditional mean return. The estimated 

coefficients of the interest rate (TBR) and the Monday effect (Mon) are not significant 

either.  

In the variance equations the square of the weather shocks variable (WS^2) shows a 

positive effect on the conditional variance. The dummy variable for winter (W) exerts a 
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significant positive impact.  The ARCH and GARCH coefficients and the constant are also 

significantly positive. Both the storage announcement day (SAD) effect and the Monday 

effect (Mon) are positive and significant at the 1% level. The conditional volatility of crude 

oil (VOL) returns is positive but not significant.  

The log likelihood increases from 5190.703 to 5199.675 as more exogenous 

variables are included. 

Table 6. 6  ARMA-GARCH Model for the closest to maturity natural gas futures contract 

                     Coefficient           Coefficient    Coefficient     Coefficient         Coefficient           Coefficient 

Conditional Mean           

 
(1) (2) (3) (4) (5) (6) 

constant -0.001150 -0.000289 -0.001166 -0.001170 -0.001104 -0.001103 

 
(-1.58925) (-0.198274) (-1.613880) (-1.617821) (-1.525893) (-1.533455) 

MA(1) -0.031397 -0.017437 -0.031475 -0.031701 -0.031800 -0.032284 

 
(-1.541131) (-0.528975) (-1.539130) (-1.548794) (-1.551223) (-1.581854) 

WS -0.000727 -0.000864 -0.000702 -0.000705 -0.000755 -0.000768 

 
(-1.331647) (-0.970898) (-1.316644) (-1.321968) (-1.444788) (-1.465646) 

COR 0.427778*** 0.424755*** 0.428784*** 0.42798*** 0.422476*** 0.421512*** 

 
(19.764960) (12.931470) (19.758040) (19.431790) (19.308530) (19.273820) 

TBR 0.000151 0.000141 0.000160 0.000160 0.000196 0.000213 

 
(0.523357) (0.268542) (0.553236) (0.556182) (0.680394) (0.741915) 

SPX -0.067729* -0.048805 -0.069077* -0.06911* -0.064425 -0.060392 

 
(-1.664208) (-0.635979) (-1.685149) (-1.651954) (-1.548152) (-1.443656) 

SS -0.000028 -0.000006 -0.000029 -0.000029 -0.000025 -0.000026 

 
(-1.099158) (-0.139447) (-1.165227) (-1.17138) (-0.931496) (-0.944624) 

MON -0.000066 0.001627 0.000031 0.000030 -0.000193 -0.000199 

 
(-0.052733) (-0.692427) (-0.024899) (-0.023567) (-0.152987) (-0.153002) 

Conditional Variance         

constant 0.000018*** 0.000906*** 0.000018*** 0.000016*** -0.000040** -0.000064*** 

 
(3.094925) (29.740580) (3.124079) (2.668258) (-2.334042) (-2.778802) 

ARCH(1) 0.091331*** 0.122526*** 0.092155*** 0.092195*** 0.095646*** 0.092469*** 

 
(4.432757) (4.426630) (4.286709) (4.300178) (4.487776) (4.410171) 

ARCH(2) -0.015948 -0.023276 -0.026670 -0.027983 -0.031753 -0.026875 

 
(-0.717046) (-1.242662) (-1.196648) (-1.260954) (-1.438530) (-1.222585) 

GARCH(1) 0.909672*** 0.455096*** 0.922644*** 0.922521*** 0.922585*** 0.919162*** 
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(63.334230) (11.895640) (74.866800) (73.854520) (74.899850) (71.200760) 

WS^2 
 

0.000083*** 0.000004 0.000001 0.000003 0.000002 

  
(8.886891) (1.107740) (1.035688) (1.378208) (1.607394) 

W 
  

0.000011** 0.000010** 0.000007 0.000007** 

   
(2.044926) (1.966789) (1.335938) (2.532820) 

VOL 
   

0.005980 0.007073 0.007093 

    
(0.821271) (0.967410) (0.928674) 

SAD 
    

0.000278*** 0.000318*** 

     
(3.397338) (3.819146) 

MON 
     

0.000338*** 

      
(3.286746) 

Adjusted R 0.078500 0.078200 0.078500 0.078500 0.078700 0.078700 

Log likelihood 5190.703000 5191.636000 5192.938000 5193.478000 5199.675000 5200.903000 

***, **, and * denote statistical significance at the 0.01, 0.05, and 0.1 level, respectively. 

  

  The second closest to maturity natural gas futures contract (NG2) 

For NG2, the futures contract that is second closest to maturity, a different picture 

emerges. In the mean equation, both the autoregressive process and the moving average 

process are strongly significant. The coefficient of the variable weather shock (WS) is 

negative and significant at the 10% level. The coefficient of the variable is around -

0.00076. The crude oil return (COR) exerts a strongly positive effect on the conditional 

mean of the returns. The coefficients are around 0.41, implying that a 1% increase in crude 

oil return leads to a 0.41% increase in NG2 returns. The interest rate (TBR), the S&P 500 

return (SPX), the storage shocks (SS) as well as the Monday effect (MON) do not play a 

significant role. In line with the results for the closest to maturity futures contract NG1, the 

conditional variance is much better described by the included variables than the conditional 

mean. All the variables, except the square of weather shocks and the conditional volatility 

of crude oil futures returns have a significant positive influence on the conditional variance 

of returns.  
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The log likelihoods are higher than those of Table 6.6. Consistent with the results 

for the closest to maturity futures contract, the log likelihood is increased with exogenous 

variables added. 

Table 6. 7 ARMA-GARCH Model for the second closest to maturity natural gas futures contract 

                           Coefficient       Coefficient    Coefficient       Coefficient      Coefficient    Coefficient 

Conditional Mean 

 
(1) (2) (3) (4) (5) (6) 

constant -0.001137* -0.001145* -0.001158* -0.001155* -0.000956 -0.000917 

 
(-1.665391) (-1.677027) (-1.697210) (-1.691241) (-1.411958) (-1.370643) 

AR(1) -0.932291*** -0.934891*** -0.938326*** -0.937362*** -0.953448*** -0.939129*** 

 
(-14.457760) (-15.520330) (-16.051010) (-15.806910) (-20.618520) (-16.858170) 

AR(2) -0.015735 -0.015884 -0.016420 -0.016466 -0.018778 -0.016957 

 
(-0.796519) (-0.807399) (-0.837424) (-0.838452) (-0.966141) (-0.871298) 

MA(1) 0.904369*** 0.906885*** 0.910316*** 0.908955*** 0.925234*** 0.910566*** 

 
(14.784190) (15.997410) (16.611690) (16.318590) (22.252700) (17.478740) 

WS -0.000794* -0.000764* -0.000762* -0.000762* -0.000750* -0.000775* 

 
(-1.680394) (-1.659288) (-1.654308) (-1.656805) (-1.655600) (-1.689532) 

COR 0.410593*** 0.411681*** 0.412433*** 0.410918*** 0.407300*** 0.404512*** 

 
(20.343070) (20.479600) (20.428060) (19.952390) (19.760760) (19.560680) 

TBR 0.000220 0.000223 0.000227 0.000227 0.000196 0.000218 

 
(0.806783) (0.814130) (0.832509) (0.836501) (0.722425) (0.807724) 

SPX  -0.059941 -0.059938 -0.060378 -0.060651 -0.053883 -0.044096 

 
(-1.594120) (-1.594476) (-1.595895) (-1.558752) (-1.390834) (-1.129870) 

SS -0.000020 -0.000020 -0.000020 -0.000020 -0.000020 -0.000020 

 
(-0.976630) (-1.015981) (-1.013316) (-1.014679) (-0.793320) (-0.845972) 

MON -0.000040 0.000010 0.000058 0.000049 -0.000137 -0.000210 

 
(-0.034207) (0.008554) (0.049760) (0.041922) (-0.113433) (-0.158107) 

Conditional Variance 

constant 0.000016** 0.000018** 0.000018** 0.000016* -0.000059*** -0.000110*** 

 
(2.237628) (2.137121) (2.086103) (1.901149) (-2.991488) (-4.610961) 

ARCH(1) 0.061053*** 0.060054*** 0.058793*** 0.057349*** 0.080751*** 0.073420*** 

 
(2.683085) (2.671476) (2.648644) (2.616556) (5.868900) (5.767300) 

GARCH(1) 0.902697** 0.906071** 0.880602** 0.874552** 0.284526*** 0.380722*** 

 
(2.199127) (2.188985) (2.079611) (2.028995) (3.339076) (3.77681) 

GARCH(2) 0.019932 0.018359 0.046315 0.051658 0.603818*** 0.509502*** 

 
(0.051854) (0.047277) (0.116252) (0.127404) (7.279196) (5.211623) 

WS^2 
 

0.000003 0.000003 0.000010 0.000007 0.000004 

  
(1.012743) (0.089376) (0.277085) (1.260454) (0.967189) 
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W 
  

0.000008 0.000007 0.000002 0.0000017** 

   
(1.321979) (1.240800) (1.193844) (2.239825) 

VOL 
   

0.007161 0.012699 0.012009 

    
(0.987363) (1.234663) (1.206097) 

SAD 
    

0.000429*** 0.000461*** 

     
(4.727123) (5.210411) 

MON 
     

0.000247*** 

      
(3.392536) 

Adjusted R 0.091684 0.091640 0.091601 0.091670 0.091649 0.091786 

Log likelihood 5360.883000 5361.593000 5362.714000 5363.648000 5374.33000 5381.212000 

***, **, and * denote statistical significance at the 0.01, 0.05, and 0.1 level, respectively. 

 

   The third closest to maturity natural gas futures contract (NG3) 

In table 6.8, it is found that in all six specifications, the coefficients of the weather 

shock variable are around -0.00066. The coefficients of the crude oil return (COR) have 

positive signs and are statistically significant at the 1% level. The interest rate (TBR) is still 

not significant in the equations for the mean return. The coefficients of the S&P 500 return 

(SPX) have negative signs and are significant at least at the 10% level. The variable storage 

shock (SS) still shows a negative impact which is not significant. The Monday effect does 

not play a significant role in determining the conditional mean return. 

In the conditional variance equations, the picture changes slightly. The ARCH and 

GARCH coefficients are positively significant at least at the 5% level.   The square of the 

weather shock variable (WS^2) has a positive effect and is significant at least at the 10% 

level. The dummy variable for winter is still positive but not significant. The conditional 

volatility of crude oil returns (VOL) is also positive but shows less influence. Both the 

storage announcement day effect (SAD) and the Monday effect (Mon) are positive and 

statistically significant at the 1% level. 
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The log likelihood increases from 5592.311 to 5615.717 with the addition of 

exogenous variables.   

Table 6. 8 ARMA-GARCH Model for the third closest to maturity natural gas futures contract 

                Coefficient       Coefficient    Coefficient     Coefficient       Coefficient     

Coefficient 

Conditional Mean 

 
(1) (2) (3) (4) (5) (6) 

constant -0.000803 -0.000818 -0.000820 -0.000828 -0.000612 -0.000636 

 
(-1.241325) (-1.264827) (-1.268576) (-1.278335) (-0.954874) (-1.003054) 

WS -0.000721 -0.000695 -0.000696 -0.000691 -0.000658 -0.000703 

 
(-1.504511) (-1.503450) (-1.503547) (-1.493128) (-1.458902) (-1.525612) 

COR 0.392924*** 0.392949*** 0.393392*** 0.391992*** 0.386704*** 0.383390*** 

 
(21.178020) (21.293170) (21.280270) (20.677190) (20.368590) (20.101850) 

TBR 0.000167 0.000171 0.000172 0.000176 0.000149 0.000169 

 
(0.649078) (0.657940) (0.660936) (0.681391) (0.578755) (0.658888) 

SPX -0.058218* -0.057895* -0.057869* -0.057765 -0.050018 -0.043210 

 
(-1.670365) (-1.660262) (-1.654591) (-1.590773) (-1.381287) (-1.185053) 

SS -0.000032 -0.000032 -0.000032 -0.000032 -0.000030 -0.000032 

 
(-1.470192) (-1.503171) (-1.505978) (-1.500667) (-1.125994) (-1.221476) 

MON -0.000095 -0.000055 -0.000033 -0.000056 -0.000189 -0.000337 

  (-0.087055) (-0.050161) (-0.030480) (-0.051078) (-0.167177) (-0.267417) 

Conditional Variance 

constant 0.000014** 0.000017** 0.000017** 0.000015** 
-

0.000470*** 
-0.000100*** 

 
(2.270910) (2.285794) (2.264197) (2.068575) (-3.025507) (-4.911763) 

ARCH(1) 0.053924*** 0.052963*** 0.052419*** 0.049901*** 0.073021*** 0.064070*** 

 
(2.754485) (2.797716) (2.789989) (2.720053) (5.367643) (5.223893) 

GARCH(1) 0.907748** 0.887413** 0.882049** 0.876043** 0.248872** 0.364512*** 

 
(2.426288) (2.349672) (2.320779) (2.239619) (3.212082) (3.971871) 

GARCH(2) 0.019444 0.041519 0.048104 0.053402 0.634987*** 0.523945*** 

 
(0.055390) (0.116774) (0.134288) (0.144910) (8.439618) (6.005960) 

WS^2 
 

0.000004 0.000003 0.000003 0.000010** 0.000007* 

  
(1.426495) (0.901885) (1.094586) (2.278318) (1.838949) 

W 
  

0.000003 0.000002 0.000007 0.000008 

   
(0.644221) (0.495888) (0.980180) (1.328515) 

VOL 
   

0.007663 0.014252 0.013600 

    
(1.216520) (1.535585) (1.543393) 

SAD 
    

0.000376*** 0.000404*** 

     
(5.172623) (5.707512) 
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MON 
     

0.000246*** 

      
(3.867365) 

Adjusted R 0.093905 0.093893 0.093889 0.093909 0.094090 0.094156 

Log 

likelihood 
5592.311000 5593.843000 5594.056000 5595.622000 5607.011000 5615.717000 

  Discussions of the Results 

Overall, I find that the results of Table 6.6-6.8 are similar. The negative effect of 

weather shocks indicates that an increase in temperature, which goes along with a decrease 

in demand, causes a decrease in the natural gas futures return. The sign of the effect agrees 

with the results of Kremser and Rammerstorfer (2012), who examine the impact of 

macrofactors and weather in the European natural gas markets . The crude oil return is an 

important factor that influences the price of natural gas futures, which is backed by the most 

significantly positive results from the conditional mean for the three closest to maturity 

futures contracts. The result supports the theory of the price of a substitute. For industrial 

use, crude oil is the closest substitute commodity for natural gas. When the price of crude 

oil increases, industries will choose natural gas as an alternative. Thus the returns of natural 

gas futures increase.  The S&P 500 return represents the state of the equity market. For all 

three futures contracts, this variable is negatively and significantly related to the mean 

return at the 10% level, which is in line with Gorton and Rouwenhorst (2004). The results 

indicate that in recessions, when stocks perform badly, the natural gas futures perform well 

and in expansions, a good time for equities, the futures returns fall off.  Thus, this futures 

contract may be used to diversify the systematic component of risk. The sign of the storage 

shocks, although not significant, is consistent with the results of Ates and Want (2007), 

who examine the inter-market dynamics for natural gas spot and futures price. When the 

announced storage inventory level is greater than the market expectation (supply is high), 

the price of natural gas futures will decrease.  These results provide empirical evidence to 
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support hypothesis 1, that market fundamentals partially influence natural gas futures 

prices. 

Next, the results for the conditional variance of returns indicate that the volatility of 

natural gas futures prices depends on past futures market shocks (ARCH) and past futures 

returns volatility (GARCH). The positive coefficient of the square of the weather shock 

variable implies that a higher demand shock leads to greater volatility. Together with 

weather shocks, the significantly positive dummy variable for winter suggests strong 

seasonality of the conditional variance of natural gas futures returns. In the winter, a period 

of low inventory, the conditional variance is high. Thus, these results are consistent with the 

hypothesis that relatively higher conditional variance occurs in colder winters and in lower 

inventory periods. With regard to the volatility spillover effect, the non-significance of the 

conditional volatility of crude oil returns indicates that the volatility in natural gas futures is 

not significantly affected by the crude oil futures volatility. The significantly positive 

storage announcement day (SAD) and Monday (Mon) effects are in line with previous 

findings in the literature (Murry and Zhu (2004), Lin and Zhu (2004), which focus on the 

impact of information on futures volatility). As the price of natural gas is weather sensitive, 

the Monday effect indicates that individuals have time to process weather information over 

the weekend and may implement their trade decisions on Monday.  Based on such trading 

behavior, the trading activity in natural gas futures tend to increase. As a result, the 

volatility is higher on Monday. Also, the significant storage announcement day effect 

reflects the importance of macro information upon volatilities. The release of storage 

information would generate volatilities of futures returns. The log likelihood, reported in 

the last rows of the three tables, is lowest when the exogenous variables are not included in 
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the variance equation. When the exogenous variables are included, the log likelihoods 

increase. These results are consistent with hypothesis 2, which is that a causal relationship 

exists between market fundamentals and natural gas futures return volatilities. 

To shed light on the existence of the Samuelson effect for conditional volatility, I 

obtained the estimated conditional variance for of returns for the three closest to maturity 

futures contracts and denote them as NCV1, NCV2 and NCV3, respectively (Figure 7). I 

find that the conditional variance of the return on the futures contracts increases when the 

time to delivery decreases, which is consistent with the Samuelson effect. 

Figure 6. 1 Conditional volatility of returns on the three closest to maturity futures contracts 

      

 

 

.000

.002

.004

.006

.008

.010

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

NCV1 NCV2 NCV3



48 

 

Chapter 7. Conclusion and Further Discussion 

This paper quantifies the role of supply and demand fundamentals in order to 

determine the asset price dynamics in the US natural gas futures market. My results can be 

summarized as follows. 

First, as predicted, weather shocks and inventory surprises have a negative impact 

on the conditional mean of natural gas futures returns, though the effects are not significant.  

Second, crude oil futures prices influence natural gas futures prices based on the 

substitution effect. 

Third, there are strong monthly seasonal variations in the conditional volatility of 

natural gas futures returns. The conditional volatility is higher in winter and lower in 

summer. This pattern is consistent with the implications of the theory of storage.  

Fourth, I find that both storage announcements and the Monday effect have 

significant positive effects on the conditional variance of the natural gas futures returns. 

Fifth, the increase in the explanatory power of ARMA-GARCH models with 

additional exogenous variables is consistent with the hypothesis that market fundamentals 

have an impact on the price and the volatility of the natural gas futures market. 

In summary, the results for the natural gas futures contract provide clear support for 

the hypothesis that natural gas futures price dynamics are related to the variations in supply 

and demand conditions. 



49 

 

However, the model cannot explain the conditional mean very well. For the variable 

storage surprise, I use a seasonal ARIMA model to measure the market expectation of 

inventory level. The forecast power of the model decreases, which may lead to a bias in 

market expectations and hence decrease the explanatory power of storage surprises. While 

natural gas consumption displays a similar seasonal pattern with temperature, both 

consumption and temperature are related to storage levels. In future research, adding the 

consumption level and temperature into the model can be considered to improve the 

precision of inventory estimation. 

Furthermore, to better understand the importance of market fundamentals, we could 

examine the impact of events, which occurred during period 2003-2012 such as the shits in 

Shale gas exploration, plummeting gas share from the Gulf of Mexico, which might have 

further influence on supply and demand conditions. Another extension could be addressing 

the effect of market fundamentals versus that of speculation on the sharp price changes of 

natural gas futures contracts.   
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Appendix A.1 

Table A.1 NG1 model selection 

  AIC SBC LM Q-stat Adj. R-sq 

GARCH(1,1) -3.86439 -3.82701 8.71217*** 2.78700* 0.07777 

GARCH(1,2) -4.16519 -4.12548 4.50771** 1.22430 0.07738 

GARCH(2,1) -4.15943 -4.11759 2.28805 1.32300 0.07728 

ARMA(1,0)-GARCH(1,1) -4.16107 -4.12134 5.70784** 0.51970 0.07872 

ARMA(2,0)-GARCH(1,1) -4.16039 -4.11832 5.13107** 2.34300 0.07808 

ARMA(0,1)-GARCH(1,1) -4.16008 -4.12037 4.17851** 0.51270 0.07875 

ARMA(0,2)-GARCH(1,1) -4.15932 -4.11727 4.25197** 2.35120 0.07816 

ARMA(1,1)-GARCH(1,1) -4.16035 -4.11829 5.54789** 2.06500 0.07832 

ARMA(2,2)-GARCH(1,1) -4.16158 -4.11483 6.82251*** 4.91140** 0.07974 

ARMA(1,2)-GARCH(1,1) -4.16159 -4.11720 6.90118*** 1.29480 0.08057 

ARMA(2,1)-GARCH(1,1) -4.16192 -4.11751 6.72386*** 1.02400 0.08084 

ARMA(1,0)-GARCH(1,2) -4.16637 -4.12431 7.55757*** 0.49420 0.07883 

ARMA(2,0)-GARCH(1,2) -4.16573 -4.12132 6.60000** 2.32840 0.07821 

ARMA(0,1)-GARCH(1,2) -4.16544 -4.12339 4.78670** 0.52700 0.07887 

ARMA(0,2)-GARCH(1,2) -4.16468 -4.12030 4.87381** 2.35520 0.07829 

ARMA(1,1)-GARCH(1,2) -4.16565 -4.12126 7.6221*** 2.07950 0.07843 

ARMA(2,2)-GARCH(1,2) -4.16667 -4.11758 9.05587*** 4.72750** 0.07982 

ARMA(1,2)-GARCH(1,2) -4.16480 -4.11807 6.42591** 1.94130 0.07776 

ARMA(2,1)-GARCH(1,2) -4.16702 -4.12028 9.49862*** 0.86900 0.08094 

ARMA(1,0)-GARCH(2,1) -4.16066 -4.11860 3.79897* 0.42890 0.07872 

ARMA(2,0)-GARCH(2,1) -4.16001 -4.11560 3.30577* 2.25740 0.07807 

ARMA(0,1)-GARCH(2,1) -4.15963 -4.11972 2.51067 0.47850 0.07875 

ARMA(0,2)-GARCH(2,1) -4.15888 -4.11450 2.55803 2.27860 0.07815 

ARMA(1,1)-GARCH(2,1) -4.15995 -4.11555 3.84281* 1.97040 0.07831 

ARMA(2,2)-GARCH(2,1) -4.15871 -4.10962 5.03573** 6.38050** 0.07927 

ARMA(1,2)-GARCH(2,1) -4.15944 -4.11271 3.24848* 1.92000 0.07829 

ARMA(2,1)-GARCH(2,1) -4.16146 -4.11471 4.96782** 0.95240 0.08084 

MA(0,5)-GARCH(1,1) -4.15910 -4.11005 4.45867** 1.07180 0.08077 

MA(0,5)- GARCH(1,2) -4.16453 -4.11314 5.07436** 0.99700 0.08108 

MA(0,5)-GARCH(2,1) -4.15871 -4.10732 2.63761 1.00820 0.08077 

ARMA(1,5)-GARCH(1,1) -4.15941 -4.10800 5.95385** 2.88630* 0.08052 

ARMA(1,5)-GARCH(1,2) -4.16477 -4.11102 8.12806*** 3.18280* 0.08082 

ARMA(1,5)-GARCH(2,1) -4.15932 -4.10558 5.48217** 7.09910*** 0.07941 

***, **,* denotes significant at 1%, 5%, 10% level respectively 



54 

 

Appendix A.2 

Table A.2 NG2 model selection 

  AIC SBC LM Q-stat Adj. R-sq 

GARCH(1,1) -4.29754 -4.26017 0.62215 1.57460 0.08760 

GARCH(1,2) -4.30449 -4.25945 0.30548 1.54380 0.08765 

GARCH(2,1) -4.29016 -4.25045 0.0806 2.12660 0.08683 

ARMA(1,0)-GARCH(1,1) -4.29854 -4.25882 1.05064 0.31900 0.08970 

ARMA(2,0)-GARCH(1,1) -4.29798 -4.25591 1.04942 1.88080 0.08934 

ARMA(0,1)-GARCH(1,1) -4.29773 -4.25802 0.56191 0.38280 0.08970 

ARMA(0,2)-GARCH(1,1) -4.29693 -4.25488 0.56078 1.92450 0.08936 

ARMA(1,1)-GARCH(1,1) -4.29781 -4.25575 1.05298 2.02000 0.08924 

ARMA(2,2)-GARCH(1,1) -4.29882 -4.25207 1.03332 4.26810*** 0.09052 

ARMA(1,2)-GARCH(1,1) -4.29701 -4.25261 1.04936 2.30690 0.08894 

ARMA(2,1)-GARCH(1,1) -4.29915 -4.25474 1.16590 1.61800 0.09167 

ARMA(1,0)-GARCH(1,2) -4.30557 -4.26351 0.69985 0.28830 0.08976 

ARMA(2,0)-GARCH(1,2) -4.305 -4.26059 0.55751 1.87340 0.08931 

ARMA(0,1)-GARCH(1,2) -4.30471 -4.26267 0.27930 0.34330 0.08976 

ARMA(0,2)-GARCH(1,2) -4.30391 -4.25953 0.28103 1.92120 0.08934 

ARMA(1,1)-GARCH(1,2) -4.30521 -4.26081 0.63175 2.37340 0.08803 

ARMA(2,2)-GARCH(1,2) -4.3077 -4.25862 0.43693 8.92640*** 0.08848 

ARMA(1,2)-GARCH(1,2) -4.30404 -4.25731 0.70745 2.24920 0.08892 

ARMA(2,1)-GARCH(1,2) -4.30619 -4.26478 0.90784 2.39450 0.09179 

ARMA(1,0)-GARCH(2,1) -4.29236 -4.2503 0.09424 0.42210 0.08917 

ARMA(2,0)-GARCH(2,1) -4.29105 -4.24664 0.11225 2.25370 0.08883 

ARMA(0,1)-GARCH(2,1) -4.29066 -4.24861 0.06304 0.43980 0.08894 

ARMA(0,2)-GARCH(2,1) -4.28992 -4.24554 0.06351 1.99910 0.08869 

ARMA(1,1)-GARCH(2,1) -4.29091 -4.24652 0.09552 2.02420 0.08789 

ARMA(2,2)-GARCH(2,1) -4.2907 -4.24161 0.05436 9.08450*** 0.08762 

ARMA(1,2)-GARCH(2,1) -4.29034 -4.24361 0.08146 1.92950 0.08745 

ARMA(2,1)-GARCH(2,1) -4.29038 -4.24364 0.06592 2.90730* 0.08832 

MA(0,5)-GARCH(1,1) -4.29736 -4.2483 0.78598 0.45410 0.09179 

MA(0,5)- GARCH(1,2) -4.30431 -4.25292 0.43196 0.60500 0.09173 

MA(0,5)-GARCH(2,1) -4.29029 -4.2389 0.10101 2.51460 0.09035 

ARMA(1,5)-GARCH(1,1) -4.29753 -4.24612 1.37263 1.39720 0.09154 

ARMA(1,5)-GARCH(1,2) -4.30452 -4.25078 0.94805 1.75380 0.09148 

ARMA(1,5)-GARCH(2,1) -4.2906 -4.23686 0.11328 4.39201** 0.09019 
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ARMA(5,0)-GARCH(1,1) -4.29884 -4.2497 1.48534 0.46870 0.09188 

ARMA(5,0)- GARCH(1,2) -4.30576 -4.25429 1.07801 0.52900 0.09188 

ARMA(5,0)-GARCH(2,1) -4.29178 -4.24031 0.12114 1.62030 0.09071 

ARMA(3,1)-GARCH(1,1) -4.29852 -4.25176 1.23639 4.84810** 0.08973 

ARMA(3,1)- GARCH(1,2) -4.30564 -4.25654 0.86452 4.79380** 0.08967 

ARMA(3,1)-GARCH(2,1) -4.29097 -4.24187 0.64327 5.76260** 0.08869 

***, **,* denotes significant at 1%, 5%, 10% level respectively 

 

Appendix A.3 

Table A.3 NG3 model selection 

  AIC SBC LM Q-stat Adj. R-sq 

GARCH(1,1) -4.48676 -4.44705 3.31014* 0.25920 0.09403 

GARCH(1,2) -4.49542 -4.45338 1.98027 0.18110 0.09415 

GARCH(2,1) -4.48148 -4.43944 0.58308 0.20560 0.09406 

MA(0,5)-GARCH(1,1) -4.48665 -4.43526 3.81863* 0.70440 0.09683 

MA(0,5)- GARCH(1,2) -4.49527 -4.44155 2.41289 0.85400 0.09707 

MA(0,5)-GARCH(2,1) -4.48156 -4.42783 0.78387 2.52320 0.09695 

ARMA(5,0)-GARCH(1,1) -4.48725 -4.43577 5.02973** 0.40290 0.09703 

ARMA(5,0)- GARCH(1,2) -4.49565 -4.44183 3.59486* 0.56210 0.09731 

ARMA(5,0)-GARCH(2,1) -4.4841 -4.43029 0.82237 1.76700 0.09716 

ARMA(1,3)-GARCH(1,1) -4.48615 -4.43709 4.53685** 4.30770** 0.09429 

ARMA(1,3)- GARCH(1,2) -4.49458 -4.44318 3.11158* 4.43910** 0.09446 

ARMA(1,3)-GARCH(2,1) -4.48106 -4.42965 0.73003 8.64350*** 0.09419 

ARMA(1,0)-GARCH(1,1) -4.48629 -4.44423 4.41861** 0.42340 0.09418 

ARMA(2,0)-GARCH(1,1) -4.48595 -4.44154 4.40978** 4.10830* 0.09381 

ARMA(0,1)-GARCH(1,1) -4.48621 -4.44416 3.23830* 0.52570 0.09422 

ARMA(0,2)-GARCH(1,1) -4.48541 -4.44103 3.24300* 4.11730* 0.09399 

ARMA(1,1)-GARCH(1,1) -4.48671 -4.44231 4.47194** 3.94810** 0.09359 

ARMA(2,2)-GARCH(1,1) -4.48502 -4.43594 4.29767** 10.33300*** 0.09307 

ARMA(1,2)-GARCH(1,1) -4.48597 -4.43924 4.47176** 4.10520* 0.09287 

ARMA(2,1)-GARCH(1,1) -4.48727 -4.44052 4.65660** 2.47680 0.09698 

ARMA(1,0)-GARCH(1,2) -4.49487 -4.45047 3.04488* 0.52490 0.09437 

ARMA(2,0)-GARCH(1,2) -4.49464 -4.44789 3.00244* 4.28790** 0.09400 

ARMA(0,1)-GARCH(1,2) -4.49492 -4.45054 1.98606 0.61960 0.09439 

ARMA(0,2)-GARCH(1,2) -4.49413 -4.44741 1.99016 4.32420** 0.09416 
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ARMA(1,1)-GARCH(1,2) -4.49529 -4.44855 3.11911* 4.22400** 0.09370 

ARMA(2,2)-GARCH(1,2) -4.49743 -4.44601 2.43013 4.76960** 0.09891 

ARMA(1,2)-GARCH(1,2) -4.49451 -4.44544 3.10364* 4.29680** 0.09312 

ARMA(2,1)-GARCH(1,2) -4.49593 -4.44685 3.22009* 2.58010 0.09716 

ARMA(1,0)-GARCH(2,1) -4.48217 -4.43778 0.60235 0.48950 0.09404 

ARMA(2,0)-GARCH(2,1) -4.48119 -4.43444 0.60766 4.89560** 0.09375 

ARMA(0,1)-GARCH(2,1) -4.48082 -4.43644 0.62083 0.44980 0.09413 

ARMA(0,2)-GARCH(2,1) -4.48003 -4.43332 0.62241 4.63560** 0.09397 

ARMA(1,1)-GARCH(2,1) -4.48297 -4.43624 0.59525 5.47960*** 0.09368 

ARMA(2,2)-GARCH(2,1) -4.48014 -4.42872 0.64543 11.21300*** 0.09265 

ARMA(1,2)-GARCH(2,1) -4.48132 -4.43225 0.64914 4.32330** 0.09305 

ARMA(2,1)-GARCH(2,1) -4.48094 -4.43186 0.64441 4.33600** 0.09299 

***, **,* denotes significant at 1%, 5%, 10% level respectively 
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