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Abstract 

 
An integrated bearing prognostics method for remaining useful life prediction  

 
 

 

Nowadays, in order to improve the productivity and quality, more and more resources are 

invested in maintenance. In order to improve the reliability of an engineering system, ac-

curate predictions of the remaining useful lifetime of the equipment and its key parts are 

required. Bearing plays an important role in the rotating machines. The purpose of using 

a bearing is to reduce rotational friction and support the load imposed on it in radial and 

axial directions.   

The common types of bearing defects include damage in rolling elements, inner and outer 

races, etc. In this thesis, we focus on the spall propagation caused by rolling contact fa-

tigue. The existing bearing prognosis methods are either model-based or data driven. In 

this thesis, we develop an integrated bearing prognostics method, which utilizes both 

physical models and condition monitoring data. In the physical model part, a Hertz con-

tact model is used to analyze the stress developed from the contact point between two 

curved surfaces which are pressed together, the ball and the deep groove. Based on Paris’ 

law, a damage propagation model is used to describe the spall propagation process. It is 

difficult to measure a defect size when the machines are running. Therefore, online data 

is obtained and processed to transform raw signals into useful information. In this thesis, 

the uncertainty factors are considered, including material uncertainty, model uncertainty 

and measurement error. A Bayesian method is used to update the distribution of this un-

certainty factor by fusing the condition monitoring data, to achieve updated predictions of 
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remaining useful life.  

Finally, two sets of data are used to verify and validate the proposed integrated bearing 

prognostics method. The first set of data includes a group of simulated bearing degrada-

tion histories. The second set of data were collected from lab experiments conducted us-

ing the Bearing Prognostics Simulator. These examples demonstrated the effectiveness of 

the proposed method.  

The key contribution of this thesis is the development of an integrated bearing prognos-

tics method, where the uncertain model parameters are updated using the collected condi-

tion monitoring data, while the existing bearing prognostics methods are either model-

based or data driven. Both the development of the method and the experimental valida-

tion are significant contributions to the field of bearing prognostics.  
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Chapter 1  

Introduction 

In order to improve the reliability and reduce the operation cost, condition based mainte-

nance (CBM) is widely used by modern manufacturers. As an important part of CBM and 

prognostics and health management, prognostics provide different approaches to predict 

the remaining useful life of the equipments or the parts.  

Bearing plays an important role in the rotary machines to reduce rotational friction and to 

support the load imposed on it in radial and axial directions. In this thesis, we will try to 

establish an integrated method, which combines physical model and condition monitoring 

data, to predict the remaining useful life of bearings in a specific system. 

 

1.1     Background 

Nowadays, in order to improve productivity and quality, more and more money is spent 

on maintenance. Reliable production environment and accurate maintenance plan ensure 

high reliability and better quality. Manufacturers always make investment in R&D pro-

jects to develop new methods to achieve these goals. Normally, in a real production envi-

ronment, no matter how high-quality the equipments and the related parts are, they will 

wear down over time. Therefore, in order to improve the reliability of the entire system, 

accurate predictions of the remaining useful lifetime of equipments and key parts are re-
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quired.  

Different production systems are running under different conditions.  And even when 

they are operating under the same conditions, their lifespan most likely differ. Therefore, 

for a specific object such as bearing, the prediction of the remaining useful lifetime is dif-

ficult to make solely based on the historical data. Thus, a more accurate approach should 

be developed for these situations to improve the reliability level and reduce cost.  

 

1.2     Condition based maintenance 

Condition based maintenance is a maintenance strategy to optimize maintenance action 

based on condition monitoring data. As a type of preventive maintenance, the main pur-

pose of CBM is to ensure production without unnecessary downtime.CBM is consisted of 

two areas, diagnostics and prognostics. Diagnostic is for fault detection. A good diagnos-

tic method can detect the fault timely and accurately, and then maintenance can be im-

plemented effectively. Prognostics is the prediction of the remaining useful life of equip-

ments. CBM provides an optimal decision for maintenance action by using the condition 

monitoring data.  

 

1.3     Research Motivations & Contributions 

Reducing costs is always one of the main concerns of companies today. Every breakdown 

or replacement makes repair cost and unit cost go higher. More frequent routine mainte-
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nance and replacement would certainly improve the reliability. But at the same time, it 

means more downtime and higher maintenance cost. The biggest challenge for making an 

optimal maintenance plan is to predict the remaining useful life of objects accurately.  

The existing bearing prognosis methods are either model-based or data driven. However, 

both of them have many limitations. For physics model methods, in order to make the 

results accurately, we need to consider many parameters.  On the other hand, data driven 

method need a huge historical data base to derive the prediction. These data need to be 

collected from a number of real experiments. It always takes time and does not take into 

consideration of the uncertainties.  

In this thesis, an integrated method which utilizes both physical models and condition 

monitoring data will be proposed for bearing remaining useful life prediction under a cer-

tain condition. In the physical model part, a Hertz contact model is used to analyze the 

stress developed from the contact point between two curved surfaces which are pressed 

together, the ball and the deep groove. Based on Paris’ law, a damage propagation model 

is used to describe the spall propagation process. Compared to the common physical 

model methods; this approach needs limited parameters 

In this thesis, the uncertainty factors are considered, including material uncertainty, mod-

el uncertainty and measurement error. A Bayesian method is used to update the distribu-

tion of this uncertainty factor by fusing the condition monitoring data, to achieve refined 

predictions of remaining useful life. Finally, two sets of data are used to verify and vali-

date the proposed integrated bearing prognostics method. 
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The key contribution of this thesis is the development of an integrated bearing prognos-

tics method, where the uncertain model parameters are updated using the collected condi-

tion monitoring data, while the existing bearing prognostics methods are either model-

based or data driven. Both the development of the method and the experimental valida-

tion are significant contributions to the field of bearing prognostics.  

1.4     Thesis Organization 

The other chapters of the thesis are organized as below: 

In chapter 2, a literature review is given on the related methods of bearing diagnostics 

and prognostics.  

In chapter 3, we introduce our integrated prognostics methods and related techniques, 

such as Hertz contact stress theory, Monte Carlo simulation, Bayesian theorem, and so on. 

In chapter 4, we discussed how to use the proposed method. We use this integrated prog-

nostics method with simulation degradation data to predict the remaining useful life of a 

bearing under a specific condition. 

In chapter 5, two groups of experiments are carried out on a bearing prognostics simula-

tor. The first experiment shows the existence of the uncertainties. The second experiment 

is used to validate the integrated method with real data. 

In chapter 6, we draw conclusions from our research and discuss our future work.  
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Chapter 2    

Literature Review 
 

Bearings, a fundamental mechanical part, are widely used in modern industries. Applica-

tion of rolling element bearings is to reduce rotational friction and support the load im-

posed on it in radial and axial directions. As we know, bearing plays an important role in 

a mechanical system, and even a small defect of the bearing can lead to a serious conse-

quence. Thus, bearing failure is one of the foremost causes of breakdown in rotating ma-

chinery. In order to avoid the downtime and accidents, companies spend a lot on mainte-

nance of bearings. It is necessary to predict its health condition accurately, to decrease the 

cost and increase the reliability of the whole system.  

The common types of defect of bearing are pitting, surface damage, and rolling contact 

fatigue and so on. In this thesis, we will focus on the spall propagation caused by rolling 

contact fatigue (RCF).  

This literature review is based on the previous research work on diagnosis and prognosis 

of rolling element bearing. 

2.1     Bearing Diagnostics 

Despite of the fact that bearings are not very expensive in a machinery system, their fail-

ure can cause disastrous consequences. Therefore, rolling bearing diagnostics has been 

studied by many researchers. With the increase in demand for higher reliability of real 

production systems, accurate fault detection is required. All the faults need to be detected 
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before they occur without interrupting the whole production process. 

The main objectives of bearing diagnostics are to detect and identify the different types of 

faults or defects during operation. On the other hand, diagnostics can provide the data for 

prognostics. 

For bearing diagnostics, the common methods are time domain and frequency domain 

analysis of signals. The main signals, such as vibration signals and acoustic emission sig-

nals are collected by specific sensors. In data processing step, we transfer the raw signal 

into some statistical features like root-mean-square (RMS), peak value, kurtosis value, 

and crest factor value and so on. Dyer and Stewart (1978) used a statistical parameter, 

Kurtosis value, to describe and analyze bearing condition signals. It is a fourth order de-

viation from mean. Price et al. (2001) analyzed the faults of bearings by combining 

acoustic emission signals and vibration data. Khemili and Chouchane (2005) proposed a 

method to clean noisy signal by filters. Choudhary and Tandon (1997) developed a model 

to find the relationship between the vibration frequencies and amplitude for rolling bear-

ings. 

The surface damage defect of bearing is normally caused by improper installation, misa-

lignment of races or inadequate lubrication. Corrosion always occurs when water exists 

between bearing elements and leads to pitting on the surface of the bearing. These kinds 

of defect can be avoided by good operation method. A main failure of rolling bearings is 

spall propagation on the ball surface or race surface caused by contact fatigue (the spall is 

always initiated by a fatigue crack below the contact surface). Rosado et al. (2009) Naga-

raj et al. (2009) Nelson et al. (2009) investigated the rolling contact fatigue initiation and 
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spall propagation characteristics of three different bearings. They showed the whole pro-

cess of spall propagation by experiment. In fact, the experimental fatigue lives far exceed 

the calculated L10 life for bearings. In this thesis, we will focus on the spall propagation 

process. 

2.2     Methods for predicting remaining useful life (RUL) 

The estimations of traditional approach are based on event data. People estimate reliabil-

ity and remaining useful life by analyzing the distribution of the event data such as re-

placement data and failure time historical data. The models such as Weibull distribution, 

Poisson distribution, Exponential distribution and Normal distribution have been used to 

analyze system reliability, especially Weibull distribution. Their common point is using 

historical time to failure data to estimate the reliability or mean-time-to-failure. Using 

this estimation, the manufacturers or engineers can make reasonable maintenance plan. 

2.3     Prognostic approaches 

The main models of prognostic are physics-based models and data driven models. 

2.3.1     Physics-based models 

Physics-based model uses mathematical models to describe the physical process of fail-

ure, such as defect growth and spall propagation. The most important theory of crack 

analysis is on Paris’ formula, Li et al. (1999, 2000) developed a model to describe the re-

lation between the crack growth rate and the defect area size, and used it on bearing 

prognostics. Kotzalas and Harris (2006) described the crack progress by their progression 

model. Based on the above methods, Kacprzynski et al. (2004) proposed a prognostic 
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method in terms of material factors and data fusion algorithms. The uncertainty in factors 

such as load and material properties limits the reliability of prognostics systems. The lim-

itation of these models is that material constants are always determined empirically. 

Li et al. (2005) used an embedded model, gear dynamic model (finite element model) to 

predict the RUL. The advantages of this model is that finite element analysis (FEA) ena-

bles stress calculation based on gear geometry, speed, load, material properties and so on. 

But this method takes time and needs expensive software to analyze the vibration data 

and calculate the stress value, and the results relies on the accuracy of the defect size. 

Orsagh et al. (2004) provided a “comprehensive prognostics approach” for gas turbine 

engine bearings. This fatigue spall initiation and progression model can calculate the time 

to spall initiation and the time to failure under a defined condition. In order to obtain an 

ideal result, various physics parameters of this model should be determined accurately by 

numerical experiments. 

Qiu et al. (2002) developed method for bearing lifetime prognostics based on damage 

mechanics. He considered the rolling bearing systems as a single-degree-of-freedom vi-

bratory system. In the stiffness-based damage rule model, the natural failure frequency 

and the acceleration amplitude were related to the running time and failure time. In this 

model, the least-square scheme is similar to single-step adaptation in time series predic-

tion. As Orsagh’s models, various material constants need to be determined empirically.  

Oppenheimer and Loparo (2002) proposed a Forman law crack growth model. It showed 

the relation between CM data and crack growth, and then predicted the useful life of 
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cracked rotor shafts. As the basic assumption is simplified, the usefulness of this model is 

limited. Table.1 summarizes the merits and limitation of Physics-based prognostics mod-

els. 

Table 1 Physics-based models 

Physics- based prognostics models 

Models Merit Limitation 

Paris' law crack 

growth modeling 

Model parameters can be 

changed in condition based on 

the least-square scheme. 

a. Defect size is assumed to be 

linearly correlated to vibration 

RMS level. 

 b. Empirical material con-

stants. 

Paris' law crack 

growth modeling 

with FEA 

Stress can be calculated more 

accurately.(based on defect 

size, load,  geometry and rota-

tion speed) 

a. Accurate crack size estima-

tions are required. b. computa-

tionally expensive 

Fatigue spall initia-

tion and progres-

sion model 

a. Calculates the time from 

spall initiation to failure.  

b. Cumulative damage can be 

estimated based on test condi-

tion 

a. All the physics parameters 

should be determined by ex-

periment as accurate as possi-

ble. b. Expensive measurement 

equipments 

Damage rule model 

based on damage 

mechanics 

Relates failure frequency and 

acceleration amplitude and 

running and failure time 

Various material constants 

need to be determined accu-

rately 

Forman law crack 

growth modeling 

Relates condition monitoring 

data and crack growth 

More model parameters need 

to be determined for complex 

condition  

Compare to the other methods, physics-based models have high performance with low 

cost. They also require less data than data-driven models.  

2.3.2     Data driven models 

Date driven models are built based on the historical data. They produce the prediction and 
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estimation based on CM data directly instead of building comprehensive physics-based 

model. The biggest advantage of data-driven methods is simple to calculate. 

The common data driven methods are artificial neural network (ANN), hidden Markov 

method, auto-regression model, fuzzy logic and so on. ANN is widely used in data driven 

prognostic for rotary machines. For bearing systems, researchers always collect vibration 

or acoustic data by sensors for further research work. And then, all the data will be used 

to train the neural network to predict the results (failure time).  

The simplest ANN-based prognostics approach is time series model. These models have 

the same points:  

 Assume that failure occurs once the condition index exceeds the threshold; 

 Assume that condition indices represent the actual asset health;  

 Provide non-linear projection;  

 Can estimate future time step.  

Tian and Zuo(2009 ) proposed an extended recurrent neural network for health prediction 

of gearbox. Wang et al. (2001) developed a recurrent wavelet neural network to predict 

bearing crack propagation. Wang et al. (2004) developed a neuro-fuzzy network to pre-

dict spur gear condition. Tian et al. (2010) used ANN to predict the remaining useful life 

based on suspension histories and failure histories. They determined the optimal life pre-

diction for each history data in order to minimize the validation mean square error. 

Gebraeel et al. (2004) developed an exponential model to investigate the fatigue process 

of bearings in order to estimate the variation in bearings’ life. They assumed that all bear-
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ings degraded follow an exponential pattern. They analyzed single bearing and group of 

bearings networks with two models, trained one ANN for each historical dataset, and then 

predicted failure time based on the degradation signal data. These models estimate actual 

failure time instead of condition index at a future time period. Compared to the time se-

ries prediction, it has more accurate and realistic prediction by continuously engaging 

most recent condition data.   

Jantunen (2004) developed a model for prognostic of rolling bearing failure. This model 

is based on regression analysis and fuzzy logic. It emphasizes the most recent condition 

data and fuzzy logic classifies the bearing health state based on historical data. It doesn’t 

provide indication of time to failure or probability of failure. Zhang et al. (2007) pro-

posed a model to estimate reliability based on condition data by using recursive Bayesian 

technique. This model estimates reliability using CM data of individual assets, rather than 

event data. The accurate results of this model rely on the correct determination of thresh-

olds for various trending features. Zhang et al. (2005) developed a hidden Markov model. 

Their model can be trained to recognize different bearing fault types and states.  

Data driven methods do not need to estimate the physics parameters. And also these 

methods are easy to handle and use without prior knowledge. However, because all the 

results are derived from the historical data, the inaccurate forecasts maybe produced in 

conditions of change. Therefore, most of these models assume that the monitoring system 

is stable. The estimation of future degradation on past degradation is generally required a 

large amount of data. 

Table.2 summarizes the merits and limitation of data-driven models. 
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Table 2 Data-driven models 

Data-driven models 

Models Merit Limitation 

Time series predic-

tion by ANNs 

a. Easy to calculate 

b. Non-linear projection 

a. shorten prediction horizon  

b. Failure occurs once the con-

dition exceeds the presumed 

threshold. 

Exponential model 

using ANN 

a. Longer prediction horizon b. 

Estimates actual failure time 

a. Assume all the bearing deg-

radation follow an exponential 

pattern. 

b. Training one ANN for each 

dataset  

Regression and 

fuzzy logic model 

a.  Emphasizes the recent con-

dition information 

b. Fuzzy logic can classify 

conditions based on historical 

data. 

Cannot predict time to failure 

or probability of failure 

Recursive Bayesian 
Estimate reliability by CM da-

ta of individual bearing  

Requires an accurate determi-

nation of thresholds 

Hidden Markov 

model 

Recognize different bearing 

fault types by training 

Prognosis relies on accurate 

threshold 

 

2.3.3     Integrating reliability and CM data 

While CM data are the main source of information for prediction of physics-based model, 

it always doesn't render reliability data. In order to obtain comprehensive and accurate 

prediction, several valuable models have considered integrating reliability data into prog-

nostic. Goode et al. (2000) proposed a statistical approach to predict the remaining useful 

life of pumps. The “installation to potential failure” (IP) and the “potential failure to func-

tional failure” (PF) intervals were represented using Weibull distribution. This method 

combines reliability and CM data to limit the factors affecting the time-to-failure predic-
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tion. Then time to failure can be calculated in the PF interval taking into account vibra-

tion data. 

Jardine et al. (1973, 1987, 1989, and 2006) applied the proportional hazards model (PHM) 

to estimate the reliability of bearing. They assumed that hazards changes proportionately 

with covariates. They also used Weibull distribution to model the baseline hazard func-

tion in PHM. EXAKT, a software which combining proportional hazards modes, transi-

tion probability and a cost model, was developed to calculate the optimal maintenance or 

replacement time intervals. Accurate transition probability calculation required a relative-

ly large amount of CM historical data. 

Sun et al. (2006) proposed a proportional covariates model (PCM) to estimate hazard 

functions of mechanical components even without historical failure data. They pointed 

out that the change in CM covariates is the reason of change in system hazard. Wang et al. 

(2002, 2005) developed conditional residual time distribution model and proportional re-

sidual model. These models only use the current asset condition information instead of 

the historical data to predict future asset health. All the tests were initially assumed to fol-

low the Weibull delay time distribution model, as more CM data were obtained, the dis-

tribution was updated. This model requires the determination of a threshold level that in-

dicates defect initiation. Satish and Sarma (2005) proposed a method which combines 

ANN and fuzzy logic to detect bearing condition. This method has the advantages of non-

linear mapping through ANN and condition classification through fuzzy logic. Wu et al. 

(2007) developed an integrated neural network which is based on decision support system 

to predict remaining useful life of bearings. Tian (2009) proposed a new ANN model to 
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make more accurate RUL prediction. This model takes the age and multiple condition 

monitoring parameters at discrete inspection points. In this model, both of current points 

and historical points are inputs and the life percentage is the output. He trained ANN with 

fitted measurement values (from failure history) and it provides more accurate prediction 

than Wu’s model. Table.3 shows the merits and limitation of these models. 

Table 3 Integrating reliability and CM data 

Integrating reliability and CM data 

Approach Merit Limitation 

IP and PF using 

Weibull distribution 

Combines reliability and CM 

data to narrow down the distri-

bution of time-to-failure 

Requires an underlying distri-

bution 

Proportional haz-

ards model 

combines reliability and CM 

data to narrow down the distri-

bution of time-to-failure 

a. Accurate results depend on a 

large historical database  

b. PHM assumes the hazard 

changes proportionately with 

covariates (constant parameter) 

Proportional co-

variates model 

Do not require large historical 

failure data 

Hazard changes proportionate-

ly with covariates by a fixed 

constant 

Conditional residu-

al time distribution 

model and propor-

tional residual 

model 

Takes all CM data into account 

Hard to identify an accurate 

threshold that indicates the de-

fect initiation 

Intelligent estimator 

a. Find out the relationship be-

tween the actual health and 

measurement data. 

 b. Non-parametric 

Requires large historical data 

for ANN training 
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2.4     Physics models 

In this part, we will discuss the models which describe the spall propagation of ball bear-

ing. RCF causes material to flake off from the contact surfaces of rolling elements and 

raceways. The positions of the spalls are located at a) Surface of the ball; b) Surface of 

the inner or outer raceways, as shown in Figure.1. 

 

Figure 1 Spall 

    (a). Spall on the ball       ( b),(c). Spall on inner surface (Nagaraj et al. 2009) 

As spall propagation grows in the bearing system and lead to failure, we need to define 

the spall propagation process, the relation between stress and defect. We also need to use 

related model to predict the remaining useful life of the bearing.  

2.4.1    Kotzalas and Harris’s model 

While spall progression typically occurs more quickly than spall initiation, a study by 

Kotzalas and Harris showed that 3 to 20% of a particular bearings useful life remains af-

ter spall initiation. They analyzed two spall progression regions, stable and unstable spall 
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progression. Characteristics of stable spall progression are gradual spall growth and low 

broadband vibration amplitudes. The unstable spall progression has increasing broadband 

vibration amplitudes (Michael et al. 2008). 

Kotzalas and Harris published an empirical method for estimation of friction within a 

failed ball–raceway contact. The results of their work indicated that the friction within a 

failed ball–raceway contact was not significantly larger than that of the unfailed contact 

for a significant period of time after initial spall. 

The spall progression model by Harris (2001, 2006): 

                                        
dSp

dN
= C(Wsp)

m                                                                  (2.1) 

                                 wsp = (σmax + τavg)√πSp                                                     (2.2) 

The model relates the spall progression rate (dsp/dN) to the spall similitude (Wsp) using 

two constants (C and m) as shown above. The spall similitude is defined in terms of the 

maximum stress (σmax), average shearing stress (τavg), and the spall length (Sp). 

In this model, two spall length measurements should be known (initial and final values). 

Sp is the spall size, N is the loading cycles. So dsp/dN shows the relationship between 

spall size (damage size) and time (N/rpm) 

2.4.2     Damage Mechanics model 

There are two key elements needed to model spall propagation: determination of dynamic 

loads and stresses occurring in the material as a rolling element passes over the spall, and 
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development of a method relating this local stress field to damage accrued in the material.  

The stress field cannot be estimated by standard Hertzian contact methods since they as-

sume ideal surface geometry, and the material missing from a spall creates a discontinu-

ous contact area and significant impact forces. Numerical approaches are the only viable 

solution. A discrete damage mechanics model was developed by Marble et al. (2006). 

The damage is the projected area of the defect (SD) divided by the cross sectional area of 

the element (S). D is the damage size, a scalar value. 

D =
SD

S
                                                  (2.3) 

Defect reduces the effective area, thus increasing the effective stress. 

                             ̃ =
F

S−SD
=

F

S(1−
SD
S

)
                                                      (2.4) 

Substituting D into the equation, 

                                  ̃ =
F

S(1−D)
=



1−D
                                                        (2.5) 

D=0 means no damage; D=1 indicates a completely damage.  In this equation, D is the 

percentage of the damage. We can assume value of D based on the damage level.       

dD

dN
=

E
2Ctr

2ESE(1−D)²
εE +

p
2Ctr

2ESp(1−D)²
εp                                     (2.6) 
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2.4.3     Model by Li 

Li et al. (2000) published an empirical method for predicting spall progression rates for 

tapered roller bearings. 

dD

dn
= K1(D)K2                                                          (2.7) 

 K1 and K2 are empirical constants to be determined for all bearings and all operating 

conditions for which is used. 

 

2.4.4     Model by Lundburg and Palmgren 

Due to the stochastic nature of spall progression, the work of Lundburg and Palmgren 

(1947) was initially considered to model the spall progression phenomenon. Lundberg 

and Palmgren gave the probability of survival of an elemental volume dV loaded by a 

nonchanging cyclic stress as 

1

S(n)

dS(n)

dn
= −g[Γ(n)]

dΓ(n)

dn
dV                                          (2.8) 

It shows the relation between a beginning number of cycles Nstart and an ending number 

of cycles Nend and using the Ioannides and Harris (1985) definition of the function G 

yields the following equation. 

ln (
𝑆(𝑛𝑠𝑡𝑎𝑟𝑡)

𝑆(𝑛𝑒𝑛𝑑)
) = 𝐴 [

𝑇𝑠𝑡𝑎𝑟𝑡
𝑒 𝑛𝑠𝑡𝑎𝑟𝑡

𝑒

𝑧𝑠𝑡𝑎𝑟𝑡
ℎ −

𝑇𝑒𝑛𝑑
𝑐 𝑛𝑒𝑛𝑑

𝑒

𝑧𝑒𝑛𝑑
ℎ ] 𝑑𝑉                           (2.9) 
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Spall progression isn’t a continuous process. That is, when the spall progresses, the con-

tact area and stress abruptly change, and then do not change until the next spall progres-

sion event. Because of this, the assumption that the stress criterion in the equation re-

mains constant between spall progressions (Tstart=Tend=T) was made. 

nend = {nstart
e +

1

A∫ ln(
S(nend)

S(nstart)

Tc

zh)dV

}^(1/e)                              (2.10) 

S(nend) = exp {ln(S(nend)) −
ATc

zh (nend
e − nstart

e ) dV}                      (2.11) 

The equation above defines the number of cycles to cause a fatigue crack of critical size 

causing total failure within a given volume of material. 
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Chapter 3   

The Integrated Prognostics Method 
 

3.1     Framework of the integrated prognostics method 

 

Figure 2 Main process of this integrated method 

 

This framework, in Figure.2, shows the whole progress of this thesis.  In the physics 

model part, we will determine all the parameters of the propagation model, including 

stress intensity factor (SIF), material parameter C and m. In the propagation model, the 

SIF is changed with the spall size overtime. We will use the formulas of the spall simili-

tude to determine the values at different spall sizes. And then, SIF will be used in the deg-

radation model which is based on Paris’ Law. Then the failure time and the RUL distribu-

tion can be predicted considering the uncertainty of material parameter. On the other hand, 
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in the data-driven part, we will use a spall evaluation model to estimate the spall size by 

analyzing the condition monitoring data. The output of this model, the spall size, is seen 

as the real data. Then these real data can be used to update the distribution of the uncer-

tainty (we will focus on material parameter m), and thus to get a more accurate prediction 

of RUL by keeping updating the parameters and condition estimation. The Bayesian up-

dating method will be used for this purpose. Finally, we will validate the result by exper-

iment. 

3.2     Spall propagation model 

Laboratory results indicate that fatigue defect growth is affected by a variety of factors 

such as stress states, temperature, operation error, measurement error, lubrication, and 

material parameters. The damage propagation models are used to describe the propaga-

tion progress. Most of the models are based on Paris’ law, which consider the relationship 

between crack growth and stress. The following fatigue defect propagation model based 

on Paris’ formula has been adopted for many years. 

da

dN

= C0(∆K)n 

Where a is the instantaneous defect size of a crack and N represents running cycles. C0 

and n are regarded as material-dependent constants, and are related to factors such as ma-

terial properties. ∆K represents the range of stress intensity factor over one loading cycle. 

This model shows that crack growth rate per cycle is an exponential function of stress 

intensity factor range ∆K. In industry, the defect of a bearing is always represented by the 

spall size, rather than the length. 
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As we discussed above, once a spall initiates, it grows quickly with high vibration levels 

and high temperatures that finally lead bearing to failure. Because spall propagation oc-

curs quickly and affects bearing useful life greatly, Kotzalas and Harris showed that bear-

ing useful life had been shortened after spall initiation. In a stable environment, spall 

grows gradually with low vibration amplitudes. On the other hand, in unstable environ-

ment, the vibration amplitude increases.  

Kotzalas and Harris developed a spall progression model, as Equation (2.1) and (2.2). 

dSp

dN

= C(Wsp)
m 

wsp = (σmax + τavg)√πSp 

This model shows the relationship between  

a). spall size (Sp) and loading cycle number (N);  

b). the spall progression rate (dsp/dN) and the spall similitude (Wsp).  

C and m are two material constants. The spall similitude, is defined by the maximum 

stress (σmax), average shearing stress (τavg), and the spall length (Sp). They collected the 

data with a ball/v-ring test device. Only two spall lengths (initial and final value) were 

measured. 

Although this model can describe the propagation progress, we always get the different 

failure times for different units (same type), even under the same condition. The uncer-
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tainties such as human factors, operation factor and so on, which exist in these parameters 

are the main reasons. In this model, the parameters should have narrow distribution range 

when we take uncertainties into account. Once the distributions of the parameters are de-

termined, we can predict the RUL more accurately. The condition monitoring data can be 

used to analyze the distributions of the parameters. In order to make it more accurate, 

Bayesian method will be used to update the distribution.  

3.3     Determination of the model  

In this thesis we will use this model to analyze the spall progression and then predict the 

RUL of the bearing. Firstly, we need to know all the values in the model such as maxi-

mum stress, average shearing stress based on our test condition. Then we will calculate 

the progression rate (dsp/dN). Finally, we will use integrated approach to predict the RUL. 

Hertz contact stress theory is used to analyze the load capabilities and fatigue life in bear-

ings. The contact stress is developed from the surface between two curved surfaces which 

pressed together. The area of contacts is divided into two types, point contacts (spheres) 

and line contact (cylinders). With load pressing, the whole environment constitutes the 

principal stresses of three dimensions. It causes the deformation (slightly) and develop-

ment of a critical section below the surface of the bodies. Therefore, failure results in 

flaking or pitting on the surfaces of both bodies.  Hertz contact stress theory gives the 

contact stress as a function. The curvature and modulus of elasticity of both bodies are 

important parameters. 

 In a ball bearing system, the type of contact is point contact. Consider two spheres held 

in contact by force F, their point of contact expands into a circular area of radius a, given 
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as.  

a = √
3F[

1−v1
2

E1
+

1−v2
2

E2
]

4[
1

R1
+

1

R2
]

 

                                                      (3.1) 

where  1 and  2 are the module elasticity for spheres 1 and 2. ‘a’ is the radius of the cir-

cular contact area.   1 and  2 are the radiuses of the two spheres.  1 And  2 are Poisson’s 

ratios of the spheres. F is the force.  

 
Figure 3 Spheres contact (Utah University) 

This general expression for the contact radius can be applied to two additional common 

cases. 

1. Sphere in contact with a flat plane (d2=∞); 

2. Sphere in contact with an internal spherical surface or spherical groove (d2=-d).  
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Figure 4 Deep groove contact (Utah University) 

In Figure 3, 4, we can see that maximum contact pressure pmax occurs at the center point 

of the contact area is same as the two sphere cases.  

Pmax =
3F

2πa²
                                          (3.2) 

This is the maximum principal stress which is located at the center of the contact area. 

But material is compressed not only in the normal direction but in the lateral direc-

tions.The state of stress is computed based on the following mechanics. 

1. Two planes of symmetry in loading and geometry dictates that σx =σ ; 

2. The dominant stress occurs on the axis of loading: σmax =σz; 

3. The principal stresses are σ1=σ2=σx=σ  and σ3=σz given σ1 σ2 >=σ3; 

4. Compressive loading leads to σx, σ , and σz being compressive stresses. 
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                        (3.3) 

σ3 = σz =
−pmax

1+ζa
2                                                     (3.4) 

  a=z/a is the non-dimensional depth below the surface (roller tilting angle). V is Pois-

son’s ratio for the sphere examined (1 or 2).             

|τ1| =  |τ2| =  τmax = |
σ1−σ 

2
|            |τ3| = 0                       (3.5) 

Many authorities theorize that the maximum shear stress is generated at  a=0.48, meaning 

0.48a below the sphere surface, and crack originates at the point of maximum shear, then 

progresses to the surface and make it pitting. 

3.4     Uncertainty factor 

Uncertainties always exist which are caused by human factor, operation, measurement 

and other unexpected errors. The accuracy of physics model is limited, because  

 All models that describe the propagation progress only take the most important fac-

tors and parameters into account; 

 The real process is more complicate than the assuming environment;  

 In a machinery system, the uncertainty may be produced from the other related 

components. 

All the uncertainties will affect the prediction of failure time and RUL directly or indi-
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rectly. In order to reduce the effect of uncertainties and make the model more accurate, 

we need to consider the main uncertainties such as parameter uncertainty and model un-

certainty. Firstly, we will take material uncertainty and model uncertainty into account, 

and then use Paris’ law to predict the RUL. In the second step, update the prediction by 

adjusting the range of the value of uncertainty using Bayesian inference. 

Material parameters C and m are important factors in this physics model. And the values 

of them are acquired by experiments with specific measurement equipment in controlled 

environment (for example, Kuna et al. (2005)). As we mentioned before, uncertainties of 

different factor have effect in the variations in the values of C and m. We assume that pa-

rameter C and m have normal distributions. In order to simplify the environment factor, 

this degradation model is based on simple Paris’ law without considering other parame-

ters. 

An error term as model uncertainty, denoted by ε, is used to represent the difference be-

tween the real system mechanism and the result obtained by model. The modified model 

is written as. 

dSp

dN
= C(∆K)m  ε                                             (3.6) 

Measurement error τ is always produced in measurement process and estimation of spall 

size. The data of current spall size isn’t measured and collected directly. We estimated it 

based on the sensor data using data processing, and thus the uncertainty is also associated 

with the estimation of the current spall size. So the real value areal is assumed to follow 

normal distribution with mean (measured value) and standard deviation (τ). 
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areal～ N( ameasure τ²) 

3.5     RUL prediction 

As mentioned above, the spall propagation is following the Paris’ law. When the critical 

spall size ac is reached, the bearing is broken. At a certain inspection point t, suppose that 

we know the mean of current spall size at with standard deviation, measurement error ε, 

we can obtain the predicted failure time distribution. We can modify Equation (3.6) as. 

dN

dSp
=

1

C( sp)m  
                                                 (3.7) 

Wsp is the value of the stress intensity factor, obtained by Hertz contact theory. 

Define the cycle number at the inspection point as Ni, then the total number of remaining 

useful cycles (can be converted to time) can be calculated by discretizing Paris’ law. 

N(i+1)−Ni

a(i+1)−ai
= 1/ [C(Wspi)

m  ε]                                   (3.8) 

   Wsp 
̅̅ ̅̅ ̅̅ ̅ =

 sp + sp −1

2
                                                (3.9) 

 
 ( +1)−  

 ( +1)−  
= 1/ [ (

   (  +1)+   (  )

2
)
 

  ]                         (3.10) 

The sum of Ni, from the spall initiation to the critical spall size is reached, is the total re-

maining cycles, which can be converted as RUL. Due to fact that uncertainties exist in 

the whole process, we will use Monte-Carlo simulation to quantify these uncertainties in 

RUL prediction. 
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3.6     Monte Carlo simulation 

Monte Carlo method is usually used in computer simulations of mathematical and physi-

cal systems. It is a computational algorithm to compute the values of parameters or prob-

ability by repeating random samples, especially when it is infeasible to compute an exact 

value with a deterministic algorithm. It is used to model phenomena with uncertainties in 

inputs.  For example, it is difficult to compute the exact result of the spall propagation 

model even if we already knew the distribution of each parameter, such as C and m, be-

cause of the complexity of the calculation.  Monte Carlo method can simulate the model 

and compute the predicted value. In order to increase the accuracy of the result, more 

simulation runs should be done.  

Normally, we need to follow the procedures below: 

 Develop a simple probability model or random model. This model should describe 

the real process. 

 Based on the distributions of all the parameters, simulate the whole process by pro-

ducing random parameters and repeating this procedure. 

 Compute the random result  

 Provide the probability distribution of the result. In this study, the result is RUL. 

 

3.7     Prediction updating using Bayesian method 

3.7.1     Bayes’ theorem 

Bayes’ method shows the relationship between the probabilities of events A and B. For 

events A and B, the simple form is. 
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 P(A|B)=
P(B|A)P(A)

P(B)
                                     (3.11) 

P(A) and P(B) are the probabilities of A and B; P(A|B) and P(B|A) are the conditional 

probabilities of A given B and B given A. Bayes’ theorem defines A and B as proposition 

and evidence respectively： 

 P(A), the prior, is the initial degree of belief in A, 

 P(A|B), the posterior, is the degree of belief after B happen, 

 P(B) is the normalized constant, 

 P(B|A) is the likelihood, 

The prior is the probability of the event, represents what was estimated before obtaining 

the real data. The posterior is the conditional probability that is assigned after the rele-

vant evidence is taken into account. 

 

3.7.2     Bayes’ Theorem for a given parameter ‘’ 

When we have a prior belief that the probability distribution function is P (), and the ob-

servations data with the likelihood P (data), then the posterior probability is defined as.                 

P (|data)  = P(data|)  P () / P (data)                                     (3.12) 

In our study, the condition monitoring data contains specific information of the test bear-

ing under the experiment conditions.  The value of the spall size can be estimated at each 

time point. Thus, in order to get a more accurate result of RUL, we need to adjust and up-
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date the parameters of the physical model.  

For a large population of bearings, a widely distributed material parameter values exist. 

But for a specific bearing, the distribution of the parameter should be narrow.  Thus, the 

new condition monitoring data provide a chance to reduce the uncertainty in these pa-

rameters.  

We use Bayesian inference method to update the distributions of the material parameters. 

In order to simplify the situation, we only update parameter ‘m’. The other material pa-

rameter ‘C’ is regarded as a constant.  

The prior distribution of ‘m’ is fprior(m) and the likelihood to detect the real spall size is 

l(a|m). Thus, the formula to calculate posterior distribution fpost(m|a) is. 

fpost(m|a) =
l(a|m)fpr or(m)

∫ l(a|m)fpr or(m)dm
                                          (3.13) 

For a fixed ‘m’, the likelihood to detect the real spall size at each inspection point is af-

fected by two uncertainty factors, measurement error τ and model error ε. By discretizing 

Paris’ law, the mean of the real spall size at the inspection point can be estimated by the 

previous spall size and stress intensity factor at the previous inspection point.   

aj+1 = a[(i + 1)∆N] = a(i∆N) + (∆N)C[Wsp(a(i∆N))]mε  i=j,j+1,….      (3.14) 

We define ∆N as the increment of cycles.  aj is the estimated mean of spall size at inspec-

tion point j. It means we will inspect the spall size every ∆N cycles, which can be con-

trolled by time. Then the new spall size should be. 
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aj+1
real～N(aj+1 τ²)                                           (3.15) 

Based on central limit theory, the value of model error ε relies on its mean. Therefore, 

aj+1 is treated as a constant instead of a distribution due to model error.  The PDF of the 

real spall size due to measurement error, is defined as g(a). The probability to get the real 

spall size of aj is determined by g(aj). 

3.7.3     Prior distribution of m 

Different bearings may have different parameters ‘m’. Based on this situation, m follows 

a statistical distribution, denoted by N1. But for a specific bearing being monitored, the 

distribution of m should be very narrow or even close to a fixed value, denoted by N2. 

Because of the uncertainties, the value is difficult to determine accurately. So as men-

tioned before, we use condition monitoring data, which can reflect the property of the 

bearing, to update the distribution of m from a prior value then to get a posterior value. 

To determine the prior for m, first, we need a set of degradation paths of different tested 

bearings from historical data, denoted by P, and each path corresponding to bearing i ϵ P. 

And then, in order to obtain the prior distribution of m, we will estimate the material pa-

rameter m for each bearing based on these historical data. For path i, we need to collect 

the spall size data at specific inspection point j, and denoted by aj
mea,j=1,…M. The sec-

ond step, we generated a group of simulation data to describe the spall propagation pro-

cess, denoted by aapp(m), corresponding to parameter m using Equation (3.14), taking 

both model error and measurement error into account. We collected the spall size data 

from each bearing at the same inspection point INSPj, j=1…M, and the simulated spall 
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size values are aj
app

(m), j=1…M. Hence, at a specific inspection point, the difference be-

tween the actual value and the simulated value is, ej(m) = aj
mea(m)-aj

app
(m). We can ob-

tain the optimal material parameter value, denoted by mop, by minimizing the difference 

between the two values, in the actual paths and simulated paths. We used the mean of 

least-square criteria to optimize it. And then, the optimal material parameter ‘m’ for path i, 

should satisfies. 

∑ (ej(mop
i ))²M

j=1 ≤∑ (ej(m))²M
j=1                (3.16) 

Third, we fit the optimal material parameter values for all tested bearings by normal dis-

tribution. We can obtain the mean μprior
m  and standard deviation σprior

m  for the prior distri-

bution of ‘m’. Thus, the PDF of prior distribution of m becomes: 

 fprior(m)～N(μprior
m  σprior

m ² )                                     (3.17) 

Last, after getting fprior(m), we can update the distribution of the material parameter m 

by Bayesian method when the condition monitoring data is collected. 
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Chapter 4   

Numerical Examples 
 

In this section, we use simulated degradation paths to illustrate the proposed integrated 

prognostic method. The related parameters of the bearing models are the same as those in 

the bearing prognostics simulator in our lab. 

4.1     Conditions of the experiment 

Normally, the historical bearing failure data was produced from a real industrial envi-

ronment. However, it will be a time consuming process. In order to reduce the total dura-

tion, we need to accelerate the failure process. Two parameters are set as 1). Load in radi-

al direction, 2500lbf; 2). High constant rotation speed, 2000 RPM.  In these tests, the fac-

tors like load, rpm, and temperature etc, fixed from the beginning to the end. 

With this test condition, which is higher than the normal operation condition, the spall 

will be initiated after only few hours. The spall is located at the surface of one ball. When 

the critical spall size is reached, the experiment is finished. 

 The parameters of the test bearings are given as follows: 

a). Bearing: SKF 6205-2RSH Deep groove ball bearings (shown in Figure.5), single row, 

with solid oil, seal on both sides. 
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Figure 5 SKF 6205 Ball bearing  

b). The detail information of specification is shown in Figure.6. 

 

Figure 6 Detail information of SKF 6205 (SKF Canada limited) 
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The radius of the balls is 3mm and that of the groove is 24.8mm, denoted by  1 and  2, 

respectively. Based on experimental observations, we suppose the critical spall size is 

around 15 mm². 

c). The parameters of the materials: Poisson’s ratio is 0.3 (for steel); the elastic modulus 

is 300GPa. 

Using Hertz contact theory; we calculate the related Wsp value. For simplicity, Poisson’s 

ration of ball and groove  1 and  2 are taken as 0.3 in the following equations. The Equa-

tion (3.1) becomes 

a = 0.88  (
F(E1+E2) 1 2

E1E2( 1+ 2)
)1/3                                             (5.1) 

We assume that the material of the ball and groove is the same, substituting  2=- 2. We 

obtain the following equations. 

a = 0.88  (
2F  1 2

E( 2− 1)
)1/3                                                     (5.2) 

     x = 0.623  [  ²(
 2− 1

2 1 2
)²]1/3                                         (5.3) 

   From Equation (5.2) and (5.3), we obtained the values of a and  P   .  

                                                                a=0.6223mm 

                                                               Pmax= 1.38GPa 

From Equation (3.3) and (3.4), we obtain the values of σ1,σ2,σ3 σx,σ  and σz 
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                                                         σ1=σ2=σx=σ =-0.266GPa 

                                                                  σ3=σz=-1.12GPa 

From Equation (3.5), 

                                                                τ1=τ2=0.427GPa   τ3=0 

Figure.7 shows the relationship between Wsp and spall size. 

 

Figure 7 The values of Wsp at different spall size 

Now we can use these values in the spall propagation model. For steel, we assume that 

the values of material parameters C and m are 0.95E-11 and 3, and the initial spall size is 

0.01mm². 

4.2    Example using simulated degradation path 

In this example, we only update parameter m, and the other material parameter C is as-

sumed to be a constant when generating these paths. 
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For each path i, the parameter mi is defined as a random sample from the population dis-

tribution N1 (3, 0.2), and the value is fixed until the bearing is broken. Model error ε fol-

lows normal distribution. At each inspection time, the value of spall size is generated by 

Equation (3.14) plus random deviation caused by measurement error τ.  These paths are 

divided into two parts, training set and test set. The training set is used to define the prior 

distribution for m and the test set is used to validate the result and method. 

In these degradation paths, the related values and distributions are shown in Table.4.  

Table 4  Parameters of test 

  Description Value 

C Material parameter 9.50E-11 

  τ Measurement error 0.2 

m Material parameter N(3,0.2) 

ϵ Model error N(3,0.3) 

 

Base on Equation (3.14), we generate 10 degradation paths, shown in Figure.8, with spall 

size from initial size 0.01mm² to failure size 15mm².For each path i in training sets, the 

optimal value of m, mi
op

, i=1,2…7, satisfying the Equation (3.16) can be obtained by op-

timization. Through training, seven values of m were obtained. By fitting these values in 

normal distribution, we obtained the prior value of m.  
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Table 5 shows the values of m. The values on the left were used to generate the ten deg-

radation paths. Seven trained values are generated to find out the prior distribution of m 

by fitting them in normal distribution. 

fprior(m)～N(3.0712,0.1107²) 

Then we use 3 paths #8, #9, #10 to validate the integrated bearing prognostics method.  

At each inspection point for updating, the posterior distribution of m will become the pri-

or distribution for the next interval. 
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Figure 8 Ten degradation paths 



 

40 

Table 5   The real values and trained values of m 

Path Real value Trained value Trained err 

1 3.00518 3.00508 0.04724 

2 3.16193 3.1632 0.0766 

3 2.91813 2.9405 0.09446 

4 3.1816 3.18215 0.04385 

5 3.09653 3.09607 0.04258 

6 3.15289 3.1498 0.03971 

7 3.20326 3.19487 0.05417 

8 2.9381 
  9 2.82609 
  10 3.11276 
                                   

For path #8, the total number of loading cycles, that is, the failure time is 3.67e6 cycles. 

The real value of m is 2.938. The related values and updating process are shown in Table 

6 and Figure.9.  

Table 6   Related values of test #8 

updating point spall size mean of m std of m 

0 0.01 3.0712 0.1107 

6.00E+05 0.375 3.03 0.0497 

1.20E+06 0.45 2.9074 0.0142 

1.80E+06 0.363 2.8792 0.0102 

2.40E+06 1.26 2.9308 0.089 

3.00E+06 6 2.9364 0.003 
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(a) 

 
(b) 

 
(c) 

 

Figure 9  Updating process for test #8 
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For path #9 and #10, the total numbers of loading cycles are 4.4e6 and 1.95e6, respec-

tively. The details and parameters of updating process are shown in Table.7.  

Table 7  Related values of test #9 

updating point spall size mean of m std of m 

0 0.01 3.0712 0.1107 

3.00E+05 0.2505 3.24 0.0957 

6.00E+05 0.2445 3.0697 0.0594 

9.00E+05 0.312 3.0685 0.058 

1.20E+06 0.3345 3.0458 0.0538 

1.50E+06 0.4545 3.0349 0.0512 

1.80E+06 0.5625 3.0175 0.0474 

2.10E+06 0.684 2.9953 0.0421 

2.40E+06 1.44 2.9014 0.0252 

2.70E+06 1.6875 2.9249 0.0246 

3.00E+06 2.694 2.8527 0.0017 

3.30E+06 4.764 2.8499 0.0013 

  
(a)                                                                  (b) 

  
                                    (c)                   (d) 
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 (e) (f) 

 
                                     (g) (h) 

 
                                         (i) (j) 

Figure 10 Updating process for test #9 
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We also shorten updating intervals in path #9 from 6e5 to 3e5. The corresponding 

results are shown in Figure.10. After updating 11 times, the accuracy is similar to 

path #8 (updated 5 times), shown in Figure.9. In path #10, we also use the same up-

dating plan as path #9, updated every 3e5 cycles. The related values are shown in 

Table.8 and Figure.11. 
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Table 8 Related values of test #10 

updating point spall size mean of m std of m 

3.00E+05 0.1685 3.0712 0.1107 

6.00E+05 0.2090 3.0379 0.0980 

9.00E+05 0.3867 3.0526 0.0981 

1.20E+06 0.4855 2.9406 0.0726 

1.50E+06 0.8513 2.9618 0.0733 

1.80E+06 2.7860 3.1032 0.0076 
                                         

 
                                (a)                                                                      (b) 

 
                                 (c) (d) 
 

Figure 11   Updating process for test #10 
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3.0712 approaches the real value, when the condition monitoring data at each updating 

point are used. From the figures, the distribution of m becomes narrower gradually. 

Moreover, the standard deviation of m is reduced after applying the updating approach. 

As the result of the exponential form of Paris’ law, RUL is very sensitive to the value of 

m. Even with a small change in m, the result of RUL becomes very different.  

The predictions of failure time for these paths, #8 #9 and #10, are shown in Table.9. 
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Figure 13 RUL prediction of test #9 

 
Figure 14  RUL prediction of test #10 
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Table 9   The real RUL and the predicted RUL 

Path Real RUL prediction 

8 3.67E+06 3.45E+06 

9 4.40E+06 4.34E+06 

10 1.95E+06 1.84E+06 
                              

From Figures. 12, 13 and 14, we can see that the prediction of failure time distribution 

becomes closer to the real failure time. 

Comparing to the normal data-driven prognostics approaches, the significant advantage 

of this integrated method is that it predicts based on less historical data.  
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Chapter 5   

Experimental Validation 
 

In this chapter, we validate the proposed integrated bearing prognostics method by exper-

iments. This chapter contains the description and detail information of the experiment, 

such as test plan, related equipments, test condition, software and the validation results. 

Two groups of experiments were carried out on a bearing prognostics simulator. Experi-

ment 1 is used to show the existence of the uncertainties and collect historical data for 

experiment 2.  

5.1     Bearing prognostics simulator 

 

Figure 15  The bearing prognostics simulator 
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Bearing Prognostics Simulator (BPS), as shown in Figure.15, is used to perform bearing 

run-to-failures experiment. It is possible to accelerate the propagation process by apply-

ing high load. This test system can be driven in a constant rotational speed. This system 

provides an opportunity validate the prediction model of remaining useful life based on 

routine condition monitoring data.  

 

Figure 16   BPS overall schematic (Spectra Quest, Inc.) 

5.2     Subsystems 

As shown in Figure.16, the BPS system consists of four main subsystems: 

 The motor and its controlling system 

 The hydraulic loading system 

 The bearing shaft rotating system 

 The transducers and data acquisition system 
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The motor and controller are designed to control the rotation speed of the bearing shaft 

system. For our experimental plan, the BPS system runs at a constant rotation speed, 

2000 rpm. The controller is shown in Figure.17. 

 

Figure 17    Controller 

The hydraulic load system, shown in Figure.18, generates 500 lbf per 100 psi. A radial 

load can be applied at the test bearing from a load point.  

 

Figure 18   BPS hydraulic loading system 

The test bearing is installed on the shaft and mounted in the housing. The outer race is 

stationary and fixed to the housing. The inner race is fixed to the shaft. Installation is 

shown in Figure 19. 
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(a) 

. 

(b) 

 

Figure 19   Bearing installation 

(a) Related parts. Including shaft, housing and support bearing 

(b) The location of test ball bearing 
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A force column, with a ball end, transfers the load to the housing and creates a force in 

the radial direction. The direction of the force column is adjusted by pivoting the force 

alignment adjustment screws. These screws can be adjusted while observing the output of 

the torque bridge, in Volts. The goal is to minimize the torque bridge output, indicating 

the force direction is through the shaft center, shown in Figure.20. 

 

Figure 20 Friction torque system schematic (Spectra Quest, Inc.) 

Data acquisition is the process of acquiring signals from test bearings through continuous 

sampling. In our tests, we collected the vibration signal data using accelerometers. The 

main purpose of data acquisition of vibration signals is to measure the changes of the ob-

ject such as test bearing and test environment. The data helps us to detect the spall initia-

tion and monitor the spall propagation process. In case that change occurs, it appears in 

the form of related vibration motions.  

A piezoelectric accelerometer, IMI 608 A11 model sensor, shown in Figure.21, is mount-

ed to the housing which supports the test bearings. 
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Figure 21   IMI 608 A11 model sensor 

A specific equipment, “High speed USB carrier NSI USB-9162”, developed by National 

Instruments, shown in Figure.22, is used for data collection. The sampling frequency of 

this unit is 25 KHz, and thus 25600 data points of vibration amplitude can be collected 

every second.  

 

Figure 22   High speed USB carrier NSI USB-9162 
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National Instruments Lab View Signal Express 2009, shown in Figure.23,  is used to col-

lect and convert the vibration data. In our test, the vibration data were collected for two 

seconds every interval. The data processing and data analysis parts are performed using 

Matlab.  

 

Figure 23   National Instruments Lab View Signal Express 2009 

5.3     Experiment Data Analysis 

For bearing condition monitoring, effective damage detection algorithm is an important 

part for data processing and analysis. Therefore, selection of effective plays a vital role 

for prognostics purposes. 
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Time domain analysis is used to process the signals. Time domain analysis includes some 

basic features such as root mean square (RMS), Kurtosis value, Crest factor (CF) value 

etc.  

We used RMS and crest factor value to process our original data. RMS is a common sta-

tistical tool which is used to describe the whole process and performance of bearing vi-

bration level. It is the average of the overall vibration level. Therefore, it can detect and 

record the bearing defect propagation process and be used in different environments, es-

pecially in accelerated failure test. The equation of RMS value is. 

 MS = √
1

N
∑ Si²

N
i=1                                                (5.1) 

For a whole history data set S, N is the total number of data points and Siis the ith value. 

However, the limitation of RMS lies in the fact that it is difficult to detect the spall initia-

tion point. RMS is hard to show the change in early stages of bearing degradation. On the 

other hand, when the defect occurs, higher peak level will increase rapidly because of the 

short burst of high energy. Meanwhile, the related RMS value doesn’t change so quickly.  

Peak value of time series data is used to measure the peak amplitude of the signal. In our 

accelerated life test, peak value shows the slight and sudden changes in vibration ampli-

tudes when spall initiated. The equation of peak value is: 

            Peak Value =
maxS −minS 

2
                                       (5.2) 
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Figure 24  Crest Factor (Bruel&Kjaer Inc) 

The crest factor provides us an intuitive result of how much impact exists in the vibration 

signals. The root cause of the impact is associated with bearing damage. On the other 

hand, in the early stage, the RMS value only has a slight variation. Thus, as shown in 

Figure.24, when the damage occurs, the peak value will increase significantly, and the 

related crest factor will change synchronously. Therefore, as the Peak-to-RMS ratio, the 

crest factor value is a good indicator when the spall generates. The equation of crest fac-

tor is. 

Crest  actor =
Peak Value

 MS
                                           (5.3) 

If we collect the vibration data from undamaged bearings under a normal production en-

vironment, the level of crest factor are approximately 3.5. For the vibration data from 

damaged bearings, the crest factor is more than 6.6. For our experiments, we accelerated 

this propagation process by high loading and high speed. Therefore, the threshold of de-
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fect detection should be different from the normal situation. In order to determine the 

start point of spall propagation in the experiments, we defined 7.5 as the threshold of 

spall initiation. This value is obtained by our experiment.    

5.4     Experiment 1 

The first group of experiments are run-to-failure tests. The conditions of the experiment 1 

are shown in Table.10. 

Table 10    Test environment and related parameters 

Conditions of Experiment 

Load 2500lbf 

Temperature 24℃ 

Rotation Speed 2000RPM 

Type of Signal Vibration 

Signal Capture duration 2sec 

Data points 51200 

Collection Interval 5mins 

         

We monitored the whole propagation process and collected the vibration. The related data 

such as value of acceleration amplitude, RMS, peak value and crest factor value are 

shown in the following tables. 

As shown in Table.11, a data sample is given. 

Table 11  Sample of vibration data 

# 1 2 3 4 5 6 … 51200 

value 0.0837 0.0691 0.017 0.0352 0.0214 0.0439 … 0.0388 

                

For test #1, the total duration is 9.91 hours. Therefore, there are 119 collection points 

within the whole process, from the beginning to failure happens. The related values are 
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shown in Table.12 

Table 12 Feature values of test #1 

# 1 2 … 64 65 66 …… 119 

RMS 0.0479 0.0489 … 0.0469 0.0757 0.0478 … 2.3 

Peak Value 0.3122 0.2386 … 0.2562 0.5778 0.3252 … 5.1217 

CF value 6.5132 4.8751 … 5.4685 7.6347 6.797 … 2.6892 
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                                       (a) RMS value (b) Peak value (c) CF value 

 

As mentioned before, for detection of spall initiation, the threshold value of CF is 7.5.  

Based on these CF values shown in Figure 25(c), we can find the spall initiation point 

#65 (325 minutes). The duration of spall propagation process is 270 minutes. 

For Test 2.  

Table 13  Feature values of test #2 

# 1 2 … 58 59 60 …… 177 

RMS 0.031 0.0354 … 0.1836 0.175 0.1405 … 0.649 

Peak Value 0.1412 0.1697 … 1.6223 1.6259 1.0141 … 3.8657 

CF value 4.5521 4.7931 … 8.8392 9.2927 7.2167 … 5.9566 

              

 

Figure 25   Related features of test #1 
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                                    (a) RMS value (b) Peak value (c) CF value 

 

Figure 26     Related features of test #2 
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Based on CF values, shown in Table.13, we can find the spall initiation point #58 (290 

minutes), which is marked in Figure.26(c). The bearing was broken at point #177 

(885minutes). For Test 3. 

Table 14   Feature values of test #3 

# 1 2 … 1182 119 120 …… 137 

RMS 0.1482 0.1467 … 0.2692 0.3353 0.2736 … 0.6474 

Peak Value 0.6959 0.6301 … 0.2562 0.5778 0.3252 … 5.1217 

CF value 4.697 4.2967 … 5.2314 7.7967 5.3746 … 7.9118 
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                         (a) RMS value (b) Peak value (c) CF value 

 

Based on CF values, shown in Table.14, we can find the spall initiation point #119 (595 

minutes) in Figure.27(c). The bearing was broken at #137 point (685minutes). 

 

 

Figure 28   Lifetime of test #1, #2 and #3 
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Figure 27   Related features of test #3 
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Based on the results of these experiments, shown in Figure.28, we can draw a conclusion 

that different individual bearing may has different propagation processes because of the 

uncertainties. Therefore, in order to improve the accuracy of the prediction for an indi-

vidual bearing, we need to consider uncertainties as important factors, and reduce such 

uncertainties.  

 

5.5     Experiment 2 

The main purpose of this experiment is to validate the integrated method discussed before. 

Firstly, we determine the relationship between signal data and defect value. After data 

processing, the original vibration data were transformed into RMS data. We assume that 

there is a linear relationship between these two kinds of data. We can obtain a reasonable 

value of spall size when we get the related RMS level. Secondly, spall initiation point can 

be found by monitoring the crest factor value. Then we collected the vibration data and 

convert it to RMS data during the spall propagation process synchronously.  Thirdly, as 

online condition monitoring data, the related spall sizes are used to adjust model parame-

ter m and narrow down its distribution. Finally, we will test the accuracy of this method 

by comparing the predictions with values. 

Figure 29 showed the whole process. We use related historical data to define the linear 

parameter of RMS and spall size. The following figures show the change of RMS from 

spall initiation to the failure.  Figure. 30, 31 and 32 show the related RMS of test #1, #2, 

#3, respectively. 
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Figure 29   Validation process 

 

 

Table 15   Inspection points and related RMS of test #1 

Point 81 82 83 84 … 118 

RMS 0.08 0.08 0.09 0.12 … 0.3 

Determine the linear relationship 

between RMS and spall size

The parameter is provided by the 

historical data

Determine the spall initiation Monitor the Crest factor value

Collect the vibration data during test

Obtain values of RMS and spall size Data processing

Update the model Adjust m and narrow its distribution

Accuracy verification Result comparison
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Figure 30    RMS value of test #1 
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The spall size at failure point is 15mm² (by measure). 

 
 

 

 

Table 16    Inspection points and related RMS of test #2 

Point 53 54 55 56 … 177 

RMS 0.07 0.07 0.08 0.08 … 0.65 

The spall size at failure point is 30mm². 
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Figure 31      RMS value of test #2 

Figure 32   RMS value of test #3 
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Table 17    Inspection points and related RMS of test #3 

Point 53 54 55 56 … 113 

RMS 0.05 0.053 0.056 0.071 … 0.631 

The spall size at failure point is 28mm², shown in Figure.33. Table.15, 16 and 17 show 

the RMS levels at different inspection points. 

 
                                 (a)                                                                  (b) 

 
                                      (c)                                                                 (d) 

Figure 33    Spall on the testing balls 

                                (a) (b) (c) (d) spall on different balls 

The measured values are shown in the following table, Table.18. 

Table 18   Values of RMS and spall size 

RMS 0.08 0.07 0.05 0.07 0.05 0.04 

Spall size 0.01 0.01 0.01 0.01 0.01 0.01 

RMS 0.3 0.65 0.63 0.29 0.64 0.35 

Spall size 15 30 28 15 32 16 
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In order to obtain the linear relationship between these values, we analyzed it by regres-

sion model, shown in Figure.34. 

 

Figure 34   Regression analysis 

The linear relationship between spall size and RMS level in our experiment is. 

 Y = 51.501X - 2.3512 (5.4) 

where Y is spall size, X is RMS level. We used this equation to estimate the spall size in 

the next step.  

5.5.1 Validation test #1 

Then we ran new tests at the same condition mentioned above. By monitoring the online 

crest factor data, we can determine the spall initiation point, #37, shown in Table.19 and 

Figure.35. 

Table 19 CF values until spall initiation 

Point 1 2 3 4 … 37 

CF 4.1321 4.132 3.9934 4.4492 … 10.2642 

y = 51.501x - 2.3512 
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Figure 35     CF values 

In spall propagation stage, we collected the vibration signal data every 6e4 cycles, 30 

minutes. The RMS and spall size values of these inspection points are shown in Table.20. 

Table 20 Related values in the updating process 

point minute cycle RMS spall size 

38 0 0.00E+00 0.0363 0.01 

44 30 6.00E+04 0.0416 0.01 

50 60 1.20E+05 0.042 0.01 

56 90 1.80E+05 0.0461 0.0229961 

62 120 2.40E+05 0.0508 0.2498108 

68 150 3.00E+05 0.0636 0.9051836 

74 180 3.60E+05 0.0875 2.1288875 

80 210 4.20E+05 0.1273 4.1666873 
 

And then, we updated the mean value of m by Bayes’ method. The updating process is 

shown in Figure.36 and Table.21. 
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(a)                                                               (b) 

 
                                 (c)                                                                     (d) 

 
                                          (e) (f) 

Figure 36   Updating process 
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Table 21 Updating date 

updating point loading cycles spall size mean of m std of m 

1 6.00E+04 0.01 3 0.2 

2 1.20E+05 0.01 3.01 0.197 

3 1.80E+05 0.023 2.962 0.185 

4 2.40E+05 0.25 2.961 0.182 

5 3.00E+05 0.905 3.182 0.095 

6 3.60E+05 2.129 3.277 0.042 

7 4.20E+05 4.167 3.298 0.005 

As a result, the mean value of m was adjusted from 3 to 3.298. And also, from these fig-

ures, the distribution of m becomes narrower, and the standard deviation of m is reduced 

during the updating process. We can use these values and then predict the RUL. The fol-

lowing figure (Figure.37) shows the prediction of RUL. 

 

Figure 37     RUL prediction 
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Table 22 Updated prediction 

Point 1 2 3 4 5 6 7 

Prediction 1.40E+06 1.50E+06 1.60E+06 1.04E+06 4.28E+05 3.91E+05 4.3E+05 

    

From Table.22, we can see that the final prediction result of RUL is 4.3e5 cycles, equate 

to 215 minutes. Therefore, the total lifetime of this bearing is 400 minutes.  

As discussed before, we can find out failure point by monitoring RMS data. As shown in 

Figure 38, this test bearing was broken at 415 minutes. The duration of spall propagation 

process is 230 minutes, from spall initiation to failure. It can be seen that the prediction 

using our proposed method is very close to the real failure time. 

 

 

5.5.2 Validation test #2 

 

In order to verify the stability and accuracy of this method, more tests are performed. Test 
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Figure 38   RMS of whole process 
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#2 was run under the same condition.  This test bearing was broken at 595 minutes. The 

total time of the whole propagation process was 185 minutes. The result of the prediction 

is 186 minutes. The results of test #2 are shown in Table.23 and Figure.39. 

Table 23 Related values of experiment #2 

point minute cycle RMS spall size 

83 0 0.00E+00 0.04446 0.01 

89 30 6.00E+04 0.064614 0.944112505 

95 60 1.20E+05 0.075077 1.477715235 

101 90 1.80E+05 0.087654 2.119161522 

107 120 2.40E+05 0.104689 2.987947558 

113 150 3.00E+05 0.182683 6.965656073 
 

updating point mean of m std of m Prediction RUL Time 

1 3.264 0.0458 512846.9278 256.4234639 

2 3.31 0.0444 470545.5995 235.2727998 

3 3.295 0.058 382904.5574 191.4522787 

4 3.32 0.036 384709.4808 192.3547404 

5 3.35 0.006 371574.1532 185.7870766 
 

 

Figure 39  RUL Prediction of experiment #2 
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In order to compare with traditional model-based methods, we calculate the prediction 

solely based on the Paris’ law model. The results are shown in Table.24.  

Table 24 Compare with model-based method 

 

 

 

Comparing with the normal model-based methods, we find that the integrated method 

predicts the RUL more accurately. Based on these experiments, we can find that: a) by 

monitoring CF value, we can determine the spall initial point effectively; b) the experi-

mental results demonstrate that this proposed integrated method can effectively adjust the 

model parameter based on the on-line data, and lead to more accurate RUL prediction; c) 

comparing with sole model-based methods, we can obtain more accurate prediction re-

sults with this integrated method; d) using this integrated method, an accurate result can 

be achieved based on limited historical data. 

 

 

 

Experiment 1 Prediction  Real RUL Error rate 

Integrated method 215 230 6.50% 

Paris' law 175 230 24% 

Experiment 2 Prediction Real RUL Error rate 

Integrated method 186 185 0.50% 

Paris' law 175 185 5.40% 
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   Chapter 6   

Conclusions and Future work 

6.1     Conclusions 

Nowadays, in order to improve the productivity and quality, more and more resources are 

invested in maintenance. In order to improve the reliability of an engineering system, ac-

curate predictions of the remaining useful lifetime of the equipment and its key parts are 

required. Bearing plays an important role in the rotating machines. The purpose of using 

a bearing is to reduce rotational friction and support the load imposed on it in radial and 

axial directions.  

The common types of bearing defects include damage in rolling elements, inner and outer 

races, etc. In this thesis, we focus on the spall propagation caused by rolling contact fa-

tigue. The existing bearing prognosis methods are either model-based or data driven. In 

this thesis, we develop an integrated bearing prognostics method, which utilizes both 

physical models and condition monitoring data. In the physical model part, a Hertz con-

tact model is used to analyze the stress developed from the contact point between two 

curved surfaces which are pressed together, the ball and the deep groove. Based on Paris’ 

law, a damage propagation model is used to describe the spall propagation process. It is 

difficult to measure a defect size when the machines are running. Therefore, online data 

is obtained and processed to transform raw signals into useful information. In this thesis, 

the uncertainty factors are considered, including material uncertainty, model uncertainty 

and measurement error. A Bayesian method is used to update the distribution of this un-

certainty factor by fusing the condition monitoring data, to achieve refined predictions of 
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remaining useful life.  

Finally, two sets of data are used to verify and validate the proposed integrated bearing 

prognostics method. The first set of data includes a group of simulated bearing degrada-

tion histories. The second set of data were collected from lab experiments conducted us-

ing the Bearing Prognostics Simulator. These examples demonstrated the effectiveness of 

the proposed method.  

The key contribution of this thesis is the development of an integrated bearing prognos-

tics method, where the uncertain model parameters are updated using the collected condi-

tion monitoring data, while the existing bearing prognostics methods are either model-

based or data driven. Both the development of the method and the experimental valida-

tion are significant contributions to the field of bearing prognostics.  

 

6.2     Future work 

In order to improve the performance of this integrated bearing prognostics method, sev-

eral further studies can be conducted as follows: 

 In this thesis, we mainly use CF value to detect the spall initiation time. This 

method can only be used in a relative ideal environment, such as laboratory envi-

ronment. Thus, the function of this detection method is limited in a real produc-

tion environment. It is necessary to develop a more accurate and comprehensive 

method for detection of bearing fault initiation time 

 In this thesis, we have not investigated the fault type of the bearings via signals. 
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We can further develop methods for detection of bearing fault types. 

 In this thesis, we obtain the actual spall size by relating it to vibration RMS val-

ues, and consider the related measurement uncertainty. In future work, more ex-

perimental data such as spall size values at different time should be obtained in a 

more accurate way. Some more precise methods such as X-ray or heat-imaging 

may be used to collect these data.  

 In order to expand the use of this integrated prognostics method, we will investi-

gate this approach under varying load and speed. 
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