
Hybrid Veri�ation Integrating HOL Theorem Proving with MDG ModelChekingRabeb Mizouni a, So��ene Tahar a, and Paul CurzonbaDepartment of Eletrial & Computer Engineering,Conordia University, Montreal, Quebe,H3G 1M8, Canadafmizouni,taharg�ee.onordia.abDepartment of Computer Siene,Queen Mary University of London, Mile End, London,E1 4NS, UKp�ds.qmul.a.ukIn this paper, we desribe a hybrid tool for hardware formal veri�ation that links the HOL (Higher-Order-Logi)theorem prover and the MDG (Multiway Deision Graphs) model heker. Our tool supports abstrat datatypesand uninterpreted funtion symbols available in MDG, allowing the veri�ation of high level spei�ations. Thehybrid tool, HOL-MDG, is based on an embedding in HOL of the grammar of the hardware modeling language,MDG-HDL, as well as an embedding of the �rst-order temporal logi Lmdg used to express properties for the MDGmodel heker. Veri�ation with the hybrid tool is faster and more tratable than using either tools separately.We hene obtain the advantages of both veri�ation paradigms.1. IntrodutionHybrid veri�ation approahes that link inter-ative proof tools with automated (e.g. BDDbased) proof tools are now ommon. Suh linksgain the automation of the BDD tools instead of,for example, using the interative tool to man-age the proof. Whilst abstration an be dealtwith by the interative tool, it is advantageousif it ould also be dealt with by the automatedtool. In this paper, we desribe a hybrid toolthat does this. It ombines the HOL theoremprover [13℄ and the MDG model heker [20℄.HOL (Higher-Order Logi) is an interative the-orem prover based on higher-order logi. TheMDG (Multiway Deision Graphs) system is adeision diagram based veri�ation tool for Ab-strat State Mahines (ASM) veri�ation enodedby multiway deision graphs [7℄. The latter ex-tend Redued-Ordered Binary Deision Diagrams(ROBDD) [4℄ with abstrat datatypes and unin-terpreted funtion symbols. It is this feature thatallows abstrat designs to be veri�ed automati-

ally using MDG, rather than needing to do suhproof wholly in the theorem prover HOL. Thedown side of this abstration faility is that insome ases the state reahability algorithm maynot terminate [2℄. This is due to the fat thatedges may be labelled by terms that are arbitrarylarge and hene arbitrarily many. In a pure sys-tem for this rare ase, the user would have to useone of many heuristis provided in [2,22℄. Theproposed hybrid tool gives ways to overome theproblem.There has been a great deal of e�ort ombiningmodel heking tools with proof systems. Simi-lar work to ours, though based on binary deisiondiagrams rather than multiway ones, inludes Ra-jan et al.'s [16℄ integration of a propositional �-alulus model heker with PVS, and Shneiderand Ho�mann [15℄ who linked the CTL modelheker SMV to HOL. Gordon [8℄ took a di�erentapproah with the BuDDy BDD pakage, provid-ing a seure and general programming infrastru-ture to allow users to implement their own BDD-based veri�ation algorithms integrated within1

2 R. Mizouni, S. Tahar and P. Curzonthe HOL system rather than tools being linkedexternally. Sugar2.0 [3℄ has also been embeddedin HOL in order to prove meta-theorems. Sugarprovides ways to speify properties for both simu-lation and formal veri�ation, providing the userswith an interfae to ombine both theorem prov-ing and model heking, with simulation teh-niques. Forte [12℄, based on the work of Aagaradet al. [1℄ is one of the maturest formal veri�a-tion environments based on tool integration in-luding simulation. It has been used in large-sale industrial veri�ation projets at Intel. Itspower omes from the very tight integration of thetwo provers, using a single funtional language, asboth the theorem prover's meta-language and itsobjet language.The tool desribed here extends the apabil-ities of an earlier HOL-MDG tool and method-ology [17,11℄ for hierarhial hardware veri�a-tion. The main ontribution of the urrent workis that our hybrid tool supports the abstratdatatypes of MDG in addition to onrete (enu-meration/Boolean) sorts in [11,17℄. This allowsabstrat designs to be passed from HOL to MDGfor veri�ation. This allows, for example, largerdata paths to be dealt with automatially thanwith a BDD based linkage. In partiular, we ex-tended a previous HOL formalization of the MDGmodeling language, MDG-HDL [14℄. We also im-plemented an interfae that automatially sup-ports the ommuniation between the MDG andHOL tools. It generates the neessary MDG �lesfrom the HOL �les, passing them to the modelheker, takes bak the MDG results, interpretsthem, and �nally submits them to HOL in an ap-propriate form (see Figure 1).The tool supports both equivalene hekingand model heking of abstrat designs: a fur-ther extension of the original hybrid tool. Thisinvolved embedding the MDG temporal prop-erty spei�ation language, Lmdg in HOL. Anadditional novel aspet is the expliit support ofmodel redution in HOL based on the natural de-sign hierarhy and the spei�ation being veri�ed.The rest of the paper is organized as follows.Setion 2 desribes the embedding of MDG-HDLlanguage and the Lmdg . In Setion 3, we presentthe proposed hybrid veri�ation proedure. Se-

MDG−HDL(MDG)

Lmdg(MDG)

MDG

MDGHOL

Result

H
O
L

M
D
G

−

Theorem

Lmdg(HOL)

HOL

MDG−HDL(HOL)

Figure 1. The Hybrid Tool Overviewtion 4 desribes the internal struture of the hy-brid tool. In Setion 5, we display some sampleexperimental results. Finally, Setion 6 onludesthe paper.2. Embedding MDG Spei�ation Lan-guages in HOL2.1. MDG-HDLThe MDG tools aepts model desriptions ina Prolog-style HDL (Hardware Desription Lan-guage) alled MDG-HDL [21℄. MDG-HDL mod-els are then ompiled into Abstrat State Ma-hines (ASM), whih are enoded using internalMDG data strutures.The syntax used in MDG-HDL is based onan ordinary many-sorted �rst order logi. Thevoabulary onsists of sorts, onstants, variablesand funtion symbols, with a distintion betweenabstrat and onrete sorts. Conrete sorts havean enumeration while abstrat sorts do not. Thisenumeration represents a set of distint onstantsof one de�ned sort. These onstants are referredto as individual onstants. It is possible to de-�ne a onstant for an abstrat sort, referred to asgeneri onstants. The distintion between ab-strat and onrete sorts leads to a distintionbetween three kinds of funtion symbols. Let f bea funtion symbol of type �1 � �2 � : : : � �n !�n+1. If �n+1 is an abstrat sort, then f is anabstrat funtion symbol. If all the �1 : : : �n+1are onrete, then f is a onrete funtion sym-bol. If �n+1 is onrete while at least one of the�1 : : : �n is abstrat, then f is referred to as aross-operator. Conrete funtion symbols must

Hybrid Tool Integrating HOL with MDG 3have an expliit de�nition, sine they are elimi-nated before omputing the MDG, while abstratfuntion symbols and ross-operators are uninter-preted. This means implementation models aninlude abstrat features suh as n-bit words, andabstrat funtions.MDG-HDL supports strutural desriptions,behavioral ASM desriptions, or a mixture ofboth. As part of the MDG software pakage, theuser is provided with a large set of pre-de�nedmodules suh as logi gates, multiplexers, reg-isters, bus drivers, et. Besides the logi gateswhih only use Boolean signals, the other om-ponents allow signals with both onrete and ab-strat types. Moreover, a speial table strutureis de�ned. Tables an be used to desribe fun-tional bloks in both implementations and spe-i�ations. A table is similar to a truth table. Ithas as entry values �rst-order terms in the rows.It is omposed of a list of rows whih de�ne is alist of inputs values and their orresponding out-put. A default value of the output is de�ned ifthe inputs sequene given does not �t the de�nedrows.The table struture as well as the MDG om-ponents library have been embedded previouslyin HOL [5℄. Sine the grammar of the languageitself was not embedded, the di�erentiation be-tween various terms (abstrat and onrete) wasnot previously possible. We overome this limi-tation in the urrent work.Embedding :To embed the grammar of the MDG-HDL lan-guage in HOL, it is neessary to over the syntaxof the subset of many sorted �rst-order logi usedby MDG. In HOL, we de�ne an abstrat sort tobe of type � to string as seen in the de�nitionbelow. The seond parameter in this de�nition isspei�ed mainly to permit the user to impose aspei� abstrat sort like word5 or word10, ratherthan the default abstrat MDG sort wordn (usedfor n-bit words).MDG_sort = ABSTRACT of 'a => string| CONCRETE of string => string list

Prediates that speify whih kind of sort we aredealing with are also de�ned .Funtions, MDG Fun, are spei�ed by their in-put list and their output. For MDG, a funtionhas a unique output.MDG_Fun = MDG_FUN of string =>('a MDG_VAR) list => ('a MDG_VAR)Sine the domain of the funtion is a list of vari-ables, to determine if the funtion is abstrat, wetest if both inputs and output are of abstrat sort.So, we de�ne a prediate to determine reursivelyif the list is omposed of abstrat variables. Thetest is �rst done on h, the head of the list, and itis repeated reursively on tl, the tail of the list,until reahing the empty list.`def AbstratVarList(h::tl) =((IsAbstratVar h) ^(AbstratVarList tl)) ^(AbstratVarList [℄ = T)Thereafter, a funtion is abstrat if both itsdomain and range are abstrat:`def AbstratFun (MDG_FUN nm InputVarList OutVar)=(AbstratVarList InputVarList) ^(IsAbstratVariable OutVar)After de�ning all the di�erent elements of theMDG voabulary, we an de�ne the di�erentkinds of MDG terms. An MDG term is either:� a onrete onstant, CONC Const, one ofthe onrete sort enumeration;� a generi onstant, GEN Const, a onstantde�ned for an abstrat sort;� a variable, VAR Term, either from a on-rete sort or an abstrat sort;� a funtion, FN Term, from the MDG FunHOL datatype de�ned above or� a omposed term.

4 R. Mizouni, S. Tahar and P. CurzonThe latter is reated using the onstru-tor TERM. It takes as argument a de�nedMDG Term and returns a new MDG Term.MDG_term = GEN_Const of 0a|CONC_Const of string|VAR_Term of MDG_VAR|FN_Term of MDG_Fun|TERM of MDG_term => MDG_termBased on the embedding of the MDG-HDLgrammar, an MDG table entry, alled Table Valis de�ned as follows:Table_Val = TABLE_VAL of 0a MDG_term| DONT_CAREA funtion that returns bak the value of a tableentry is also de�ned:TableVal_to_Val=(TableVal_to_Val (TABLE_VAL(v:0a MDG_term))= v)The above HOL de�nition spei�es a new HOLdatatype Table Val, whih has two onstrutors :TABLE VAL and DONT CARE. The latter antake any type. Curzon et al. [5℄ de�ned themathing of input values to table values. A mathours if either the table value is don't-are, or thevalue on the input is idential to the table value.This property must hold for eah table entry. Itis de�ned reursively by the funtion table math.`def (Table_math inputs [℄ (t:num) = T)^ (Table_math inputs (CONS v vs) t) =(((HD(inputs) t) =TableVal_to_Val (v:0a Table_Val))_ (v = DONT_CARE))^ (Table_math (TL inputs) vs t)Next, we give the de�nition table stating thatthe Table math test is �rst done on the �rst el-ement in the input list. If there is a math ona given row, the output has the orrespondingvalue. Otherwise it is repeated on the rest of thelist until reahing the empty list. If there is nomath, the output of the onsidered entry will beassigned the default value.

`def (table inps (out:num �> 0b)([℄:(0a Table_Val list) list)V_out default t =(out t = default t))^ (table inps out(CONS v vs) V_out default t =((Table_math inps v t) =>(out t = (HD V_out) t)))|(table inps out vs (TL V_out)default t)))A given table will relate a given input to a givenoutput, if the table relation is true at all times:`def TABLE inps (out:num �> 0b)(V_outs:(0a Table_Val list) list)V_out default =8t. table inpsout V_outs V_out default tFinally, note that the outputs of the table arealways onsidered as signals, whih explains theirde�nition aording to the time t.In summary, we have semantially embeddedthe full version of the MDG hardware desriptionlanguage, MDG-HDL, supporting abstrat vari-ables and uninterpreted funtions in HOL. Allrede�ned modules, suh as logi gates, registers,multiplexers, et., have been de�ned in HOL andveri�ed against behavioral spei�ations in termsof tables. This provides the basis of a trustedintegration of HOL and MDG. MDG hardwaredesriptions an be written diretly in HOL viathe developed embedding.2.2. LmdgLmdg [19℄ is the properties spei�ation lan-guage of the MDG model heker. It is a sub-set of �rst-order linear time logi, whih supportsabstrat data sorts and uninterpreted funtions.The properties allowed in Lmdg an have thefollowing templates:Property :Next let formulaj G(Next let formula)j F(Next let formula)j (Next let formula)U(Next let formula)jG((Next let formula)!(F(Next let formula)))j G((Next let formula) !((Next let formula) U (Next let formula)))

Hybrid Tool Integrating HOL with MDG 5G, F, and U are the standard linear time logioperators: for all time, at some time, and until,respetively. A Next Let Formula is de�ned as:� eah atomi formula is a Next Let Formula,� if p and q are Next Let Formulas, then soare: !p (not p), p&q (p and q), pjq (p orq), p ! q (p implies q), Xp (p holds in thenext state), and LET (v = t) IN p where tis an ASM variable (input, state or outputvariable) and v an ordinary variable.A path � is a sequene of states. We use �ito denote a path starting from si, where si de-notes the ith state in �. All formulas in Lmdg arepath formulas. We write (�; �) j= p to meanthat a path formula p is true at path � under a -ompatible assignment � to the ordinary vari-ables. We use V al�0[�(v) to denote the valueof term v under a -ompatible assignment s tostate variables, input variables, and output vari-ables, and a -ompatible assignment � to theordinary variables. The j= is indutively de�nedas follows [19℄:�; � j= v1 = v2 i� V al�0[�(v1) = V al�0[�(v2) .�; � j= LET (v1 = v2) IN p i� �; �0 j= p where�0 = f(v1; �(v1))g [f(v1; V al�0[�(v2))g.�; � j= !p i� it is not the ase that �; � j= p.�; � j= p&q i� �; � j= p and �; � j= q.�; � j= pjq i� �; � j= p or �; � j= q.�; � j= p! q i� �; � j= !p or �; � j= q.�; � j= Gp i� �j ; � j= p for all j � 0.�; � j= Fp i� �j ; � j= p for some j � 0.�; � j= Xp i� �1; � j= p.�; � j= qUp i� for some k � 0; �k; � j= q; and�j ; � j= p for all j (0 � j � k).Embedding :In our HOL embedding of Lmdg, we onsiderthat eah logial proposition (property) p is afuntion of the path, expressed here by s, andthe urrent state. The path an be formulatedas a history funtion keeping trae of the states,where the property holds. For instane, the HOLde�nition of the G operator is de�ned as follows:

`def LMDG_G p s = 8t. p s tThat is, for all time t, property p holds of path sat that time. Note that we do not need to quan-tify over the history funtion s, while we have toverify that the property p holds over the di�erentstates of a given path. So, LMDG G (p s) holdsif for all states, p(s(t)) holds.A similar HOL de�nition is provided for eahoperator of Lmdg.`def LMDG_F p s = 9t. p s t`def LMDG_X p s t = p s (t+1)`def LMDG_U p q s =9t. (p s t ^ (8t1. t1 < t ! q s t1)In addition, let, negation, disjuntion, onjun-tion, and impliation of prediates are de�ned asfuntions of path formulas p and q, as follows:`def LMDG_LET (v1,v2) p s t =(� v1. p s t) =) (� v2. p s t)`def LMDG_NOT p s t = : p s t`def LMDG_AND p q s t = p s t ^ q s t`def LMDG_OR p q s t = p s t _ q s t`def LMDG_IMP p q s t = :(p s t) _ q s tIn summary, we have semantially embeddedthe property spei�ation language of MDG inHOL. Lmdg spei�ations an be written diretlyin the theorem prover using the embedding. Thisopens the way for writing MDG style modelheking goals in HOL, proving them using HOLor MDG.3. Hybrid Veri�ation with HOL-MDGThe hybrid tool developed onsists of an in-terfae integrating the HOL theorem prover andthe MDG model heker. During the veri�a-tion proedure, the user deals mainly with HOL.As shown in Figure 2, the user starts by giv-ing the HOL design model, property spei�a-tion, and the goal to be proven. The respetiveMDG �les (property spei�ation, design model,symbol order, algebrai spei�ation, and fair-ness onstraints) are generated automatially andsent to the MDG tool for model heking. If theproperty holds, a HOL theorem is reated. This

6 R. Mizouni, S. Tahar and P. Curzon
Input files Output files

Order (MDG)

Prop (MDG)

Model (MDG)

Alg (MDG)

Fair (MDG)

Model (HOL)

Prop (HOL)

Make Theorem Regular HOL proof

 Hol goal

No
Accepted

Call MDG and
do Verification

Yes

Yes

Result

No

Figure 2. Veri�ation Proedure with the Hybrid Toolould be used in higher HOL proofs, for exampleproving theorems about the onsequenes of theproperties. If the veri�ation within the MDGtool fails (due to the property heking to false,non-termination or state explosion), we have toperform the proof interatively using the theoremprover.The tool does not aept any arbitrary HOLspei�ation: only MDG-style models and prop-erties using the embedded HOL theories pre-sented. The HOL goal should also be an implia-tion: `Model � PropertySine the veri�ation is done in MDG, we need toformalize the (MDG) result in HOL. Therefore,we onvert the MDG results into a form that anbe used [18℄:` FormalizedMDGresult �Model � PropertyA formalized version of this general onversiontheorem into HOL has been proved in HOL [18℄.

The proved theorem an be instantiated for anydesign and any property under onsideration.MDG model heking result is onverted to aform that an be used in HOL to infer the prop-erties from the design model [18℄.Our hybrid tool also supports hierarhial ver-i�ation, where it is able to extrat in HOL theblok about whih we want to hek a property,then generating �les of the spei� blok only.This is ahieved by de�ning the struture \blok"in a reursive manner. So, for eah blok, we areable to determine its subbloks (see Figure 3).Hene, the model heker deals with the veri�a-tion of the onsidered blok only, not the wholedesign. As a result, we save on model size withoutonstraining the user to write another spei�a-tion for the appropriate blok. This idea of pro-gram sliing is well-known in the model hekingliterature [6℄. The di�erene in our work is thefat that the \slies" are extrated while expand-ing the proof goal by the theorem prover HOL,and based on the de�nition of the design blok. In

Hybrid Tool Integrating HOL with MDG 7

subblock subblock subblock

...subblock subblocksubblock

...

block

HOL-Model

HOL-Property

Extraction

Block

Generation

MDG files

subblock subblock subblock

subblock

HOL-New Model

HOL-Property

Figure 3. Blok Extrationour approah, it is therefore done formally withinHOL rather than informally outside the tool.4. HOL-MDG Hybrid Tool StrutureOur hybrid tool is written in SML. It is om-posed of �ve main modules: the Hybrid Tool In-terfae, the Property Module, the Desription FileModule, the HOL Goal Parser Module and theMDG Interation Module (Figure 4). The user'sinterfae [9℄ to the hybrid tool is a Java GUI. Itis responsible for:1. getting the HOL goal, the property �le andthe model desription �le,2. passing the �les to HOL,3. loading the Lmdg and MDG-HDL theories,and4. ommuniating the result to the user at theend of the veri�ation proess.The user thus sees the hybrid tool as an inte-grated system but one that is more powerful thanMDG alone. In the seond module, the Prop-erty Parser generates as output a data struturefrom whih the MDG File Generator produesthe MDG property �le, and the Property Type

Generator provides the property type. The lat-ter ontains information about the type of prop-erty submitted to the tool, aording to whih,it alls the appropriate property heking algo-rithm. The Desription File Module attens thespei�ation by removing hierarhy.When parsing the goal, we obtain the name ofthe property and the blok to hek. The lat-ter an be either the main module in the modeldesription or one of its submodules. If the spei-�ation is written in a hierarhial way, it is possi-ble to extrat the target module, and its submod-ules, disarding the others. The Blok ExtrationModule ahieves this task. In the next step, theorresponding MDG �les are generated, inlud-ing:� MDG model and MDG property �les,� an algebrai �le ontaining sorts, funtions,and rewriting rules,� an order �le, giving a total order of variablesand funtion symbols, and eventually� fairness �les, eah desribing an imposedfairness onstraint.The MDG �le generation is done automati-ally. The HOL spei�ation �le ontains two

8 R. Mizouni, S. Tahar and P. Curzon
MDG−HDL
Generator

Model (HOL) Goal (HOL)Property (HOL)

Y/N (HOL)

Correctness

Y/N (MDG)

Goal ParserModel Parser

BlockSpecID
BlockImp
PropID

Bloc Extractor

MDG_Term
MDG_Fun
MDG_Type

Hybrid Tool Interface

Property Parser

Generator Type

BlockImp
BlockSpec/

GeneratorMDG Code

Correctness theorem (HOL)

Fair (L_MDG)

Generation InterfaceASM Alg (MDG−HDL)

Theorem Generator

Prop (L_MDG)
Order (MDG−HDL)

Model (MDG−HDL)
Prop Type

MDG−Result Interpreter

MDG Interaction

Figure 4. Hybrid Tool Struturemain parts. The �rst is dediated to the de�-nition of the di�erent sorts, funtions, and MDGterms used. The seond is dediated to the tablesde�nitions. Using a syntatial analysis of thesubmitted HOL �les, our tool extrats the usefulinformation from them to generate the MDG �lesin the appropriate MDG-HDL syntax.Before proeeding with the model heking op-eration, the MDG tool has to enode the MDG-HDL syntax to generate ASMs. Sine we wantedthe ommuniation between the linked tools tobe automati, we implemented a speial module,alled ASM Generation Interfae that impliitlyexeutes the appropriate MDG instrutions. TheMDG Interation Module does the ommunia-tion with MDG. It takes all the generated MDG�les, the property type and the fairness number.

The latter are provided by the property parsermodule. They indiate respetively the number offairness onstraints in the HOL property, if theyexist, and their temporal type. All these �lesare supplied to the MDG tool, whih performsthe veri�ation proess and passes the result toHOL through the MDG Result Interpreter Mod-ule. If the property holds, a theorem is generatedin HOL.5. Experimental ResultsWe have experimented with our hybrid tool us-ing a number of benhmark designs inluding theIsland Tunnel Controller (ITC) [14℄ (Figure 5),whih experimental results we report here. TheITC ontrols the traÆ lights at both ends of

Hybrid Tool Integrating HOL with MDG 9
Mainland

Light

Controller

(MLC)

mg

my

mu

mr

mrl

mgl

me

mx

irl

igl

ie

ixTunnel

Controller
Light

Controller

Island

(TC) (ILC)

ir

iu

iy

ig

Island Counter Tunnel Counter

ic
ic+

tc
tc+ic- tc-

Figure 5. ITC Struturea tunnel onneting a mainland and island. Itwas hosen for two reasons. First, its spei�a-tion ontains abstrat sorts and funtions. It wasnot possible to express the spei�ation of thisexample in the tool in [11℄. Seond, the sameexample was veri�ed in [22℄, where the authorsfaed a problem of non-termination in the IslandCounter module. The hybrid tool o�ers the solu-tion of doing a hybrid veri�ation, suh that thesubbloks ausing the non-termination problemare veri�ed within the HOL theorem prover in-teratively, while those whih do not are veri�edwithin the MDG model heker.The input spei�ations for the ITC were writ-ten in HOL, using the HOL MDG-HDL theory[14℄. It is omposed of a term delaration of theMDG part, the di�erent table spei�ations andthe main modules. The spei�ation is writtenin a hierarhial way. Eah omponent is rep-resented by the onjuntion of its tables. Thewhole system therefore is the onjuntion of the�ve mentioned bloks.Experimental results on the veri�ation of aset of properties are given in Table 1. It givesCPU time, veri�ation memory usage and num-ber of MDG nodes generated as well as the num-ber of omponents and signals of the redued (ex-trated) design model e�etively used for modelheking in MDG. It is lear that veri�ation ismuh faster than doing the proof interatively

with HOL. At the bottom of Table 1, we give theexample experimental results of heking Prop-erty 1 and Property 3 without blok extrationdone in the theorem prover side, i.e., on the wholemodel. We an learly see that the CPU time andmemory onsumption were dereased by morethan half in the former ase, whih is due to theblok extration. The results here are similar tothose in [20℄, where only the MDG tool is used onthe full model. This fat proves that our hybridtool ahieves the veri�ation without obstrutingthe model heker.6. ConlusionsIn this paper, we presented a hybrid veri�ationapproah and tool integrating the HOL theoremprover and the MDG model heker. In an ear-lier HOL-MDG tool, where HOL and the MDGequivalene heker were linked, neither abstratdata sorts nor abstrat funtions were supported.The main ontribution of our work is the exten-sion of this tool to handle these main features ofMDG ompared to BDD based model hekers aswith other tools. For this purpose, we embeddedin HOL the grammar of the MDG input languagesLmdg and MDG-HDL. Next, we provided a newlink between HOL and the MDG model heker.Our system handles abstration for model hek-ing and equivalene heking. Furthermore, it di-retly supports hierarhial proof to be onduted

10 R. Mizouni, S. Tahar and P. CurzonTable 1Experimental Results on the ITCProperty CPU(s) Memory(MB) MDG Nodes #Components #SignalsProperty1 0.32 0.66 318 18 32Property2 0.36 0.77 313 13 31Property3 0.41 0.73 401 16 34Property4 1.12 1.91 1266 13 29Property5 0.91 1.26 1027 10 26Property6 0.93 1.77 1166 13 29Property7 1.15 1.39 11002 16 33Property8 1.15 1.39 11002 16 33Property1(*) 0.74 1.38 870 26 62Property3(*) 0.87 1.46 1027 26 62saving veri�ation time and memory usage. Italso provides a way of overoming the non termi-nation problem of MDG. The tool has been testedon several examples, inluding the Island TunnelController reported here. In a future work, we in-tend to apply our tool on more omplex designsas well as looking into ways to render the MDG-HOL spei�ation templates more user-friently.REFERENCES1. M.D. Aagaard, R. Jones, and C. Seger. Lifted-FL: A Pragmati Implementation of Com-bined Model Cheking and Theorem Proving.In Theorem Proving in Higher Order Logis,LNCS 1690, pages 323-340, Springer Verlag,1999.2. O. Ait Mohamed, X. Song, and E. Cerny. Onthe Non-termination of MDG-based AbstratState Enumeration. In Theoretial ComputerSiene, 300: 161-179, 2003.3. I. Beer, S. Ben-David, C. Eisner, D. Fisman,A. Gringauze, and Y. Rodeh. The TemporalLogi Sugar. In Computer Aided Veri�ation,LNCS 2102, pages 363-367, Springer Verlag,2001.4. R. Bryant. Symboli Boolean Manipulationwith Ordered Binary Deision Diagrams.In ACM Computing Surveys, 24(3):293-318,September 1992.5. P. Curzon, S. Tahar, and O. Ait-Mohamed.Veri�ation of the MDG Components Library

in HOL. Supplementary Pro. InternationalConferene on Theorem Proving in Higher-Order Logis, pages 31-45, Canberra, Aus-tralia, September 1998.6. E.M. Clarke, O. Grumberg, and D. Peled.Model Cheking. MIT Press, 2000.7. F. Corella, Z. Zhou, X. Song, M. Langevin,and E. Cerny. Multiway Deision Graphs forAutomated Hardware Veri�ation. In FormalMethods in System Design, 10(1):7-46, 1997.8. M. Gordon. Combining Dedutive TheoremProving with Symboli State Enumeration. 21Years of Hardware Formal Veri�ation, RoyalSoiety Workshop to mark 21 years of BCSFACS, U.K., Deember 1998.9. R. Hum, H. Yip, H. Li, R. Mizouni, and S.Tahar. A GUI for linking HOL to MDG. Teh-nial report, ECE Dept., Conordia Univer-sity, June 2002.10. J. Joye and C. Seger. The HOL-Voss Sys-tem: Model-Cheking inside a General Pur-pose Theorem-Prover. In Higher Order LogiTheorem Proving and Its Appliations, LNCS780, pages 185-198, Springer Verlag, 1994.11. I. Kort, S. Tahar, and P. Curzon. Hierar-hial Formal Veri�ation Using a HybridTool. Software Tools for Tehnology Transfer,4(3):313-322, May 2003, Springer Verlag.12. T. Melham. Integrating Model Cheking andTheorem Proving in a Reetive FuntionalLanguage. In Integrated Formal Methods,LNCS 2999, pages 36-39, Springer Verlag,

Hybrid Tool Integrating HOL with MDG 112004.13. T. Melham and M. Gordon. Introdution toHigher Order Logi, Theorem Proving Envi-ronment for Higher Order Logi. CambridgeUniversity Press, 1993.14. R. Mizouni. Linking HOL Theorem Provingand MDG Model Cheking. Master's thesis,Eletrial and Computer Engineering Dept.,Conordia University, 2003.15. K. Shneider and D. Ho�mann. A HOL Con-version for Translating Linear Time TemporalLogi to !-Automata. In Theorem Proving inHigher Order Logis, LNCS 1690, pages 255-272, Springer Verlag, 1999.16. S. Rajan, N.Shankar, and M.Srivas. An Inte-gration of Model-Cheking with AutomatedProof Cheking. In Computer Aided Veri�a-tion, LNCS 939, pages 84-97, Springer Verlag,1995.17. V.K. Pisini, S. Tahar, O. Ait-Mohamed, P.Curzon, and X. Song. Formal Hardware Ver-i�ation by Integrating HOL and MDG. InACM 10th Great Lakes Symposium on VLSI,pages 23-28, Chiago, Illinois, USA, 2000.18. H. Xiong, P. Curzon, and S. Tahar. ImportingMDG Veri�ation Results into HOL. In The-orem Proving in Higher Order Logis, LNCS1690, pages 293-310, Springer Verlag, 1999.19. Y. Xu and E.Cerny and X. Song and F.Corella and and O. Ait-Mohamed. Modelheking for a �rst-order temproal logi us-ing Multiway Deision Graphs. In ComputerAided Veri�ation, LNCS 1427, pages 219-231, Springer Verlag, 1998.20. Y. Xu. Model Cheking for a First-OrderTemporal Logi Using Multiway DeisionGraphs. PhD Thesis, University of Montreal,Canada, April 1999.21. Z. Zhou and N. Boulerie. MDG Tools(V1.0)User's Manual. University of Montreal, Dept.D'IRO, 1996.22. Z. Zhou, X. Song, S. Tahar, E. Cerny, F.Corella, and M. Langevin. Formal Veri�ationof the Island Tunnel Controller Using Multi-way Deision Graphs. In Formal Methods inComputer-Aided Design, LNCS 1166, pages233-247, Springer Verlag, 1996.

