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.ukIn this paper, we des
ribe a hybrid tool for hardware formal veri�
ation that links the HOL (Higher-Order-Logi
)theorem prover and the MDG (Multiway De
ision Graphs) model 
he
ker. Our tool supports abstra
t datatypesand uninterpreted fun
tion symbols available in MDG, allowing the veri�
ation of high level spe
i�
ations. Thehybrid tool, HOL-MDG, is based on an embedding in HOL of the grammar of the hardware modeling language,MDG-HDL, as well as an embedding of the �rst-order temporal logi
 Lmdg used to express properties for the MDGmodel 
he
ker. Veri�
ation with the hybrid tool is faster and more tra
table than using either tools separately.We hen
e obtain the advantages of both veri�
ation paradigms.1. Introdu
tionHybrid veri�
ation approa
hes that link inter-a
tive proof tools with automated (e.g. BDDbased) proof tools are now 
ommon. Su
h linksgain the automation of the BDD tools instead of,for example, using the intera
tive tool to man-age the proof. Whilst abstra
tion 
an be dealtwith by the intera
tive tool, it is advantageousif it 
ould also be dealt with by the automatedtool. In this paper, we des
ribe a hybrid toolthat does this. It 
ombines the HOL theoremprover [13℄ and the MDG model 
he
ker [20℄.HOL (Higher-Order Logi
) is an intera
tive the-orem prover based on higher-order logi
. TheMDG (Multiway De
ision Graphs) system is ade
ision diagram based veri�
ation tool for Ab-stra
t State Ma
hines (ASM) veri�
ation en
odedby multiway de
ision graphs [7℄. The latter ex-tend Redu
ed-Ordered Binary De
ision Diagrams(ROBDD) [4℄ with abstra
t datatypes and unin-terpreted fun
tion symbols. It is this feature thatallows abstra
t designs to be veri�ed automati-


ally using MDG, rather than needing to do su
hproof wholly in the theorem prover HOL. Thedown side of this abstra
tion fa
ility is that insome 
ases the state rea
hability algorithm maynot terminate [2℄. This is due to the fa
t thatedges may be labelled by terms that are arbitrarylarge and hen
e arbitrarily many. In a pure sys-tem for this rare 
ase, the user would have to useone of many heuristi
s provided in [2,22℄. Theproposed hybrid tool gives ways to over
ome theproblem.There has been a great deal of e�ort 
ombiningmodel 
he
king tools with proof systems. Simi-lar work to ours, though based on binary de
isiondiagrams rather than multiway ones, in
ludes Ra-jan et al.'s [16℄ integration of a propositional �-
al
ulus model 
he
ker with PVS, and S
hneiderand Ho�mann [15℄ who linked the CTL model
he
ker SMV to HOL. Gordon [8℄ took a di�erentapproa
h with the BuDDy BDD pa
kage, provid-ing a se
ure and general programming infrastru
-ture to allow users to implement their own BDD-based veri�
ation algorithms integrated within1



2 R. Mizouni, S. Tahar and P. Curzonthe HOL system rather than tools being linkedexternally. Sugar2.0 [3℄ has also been embeddedin HOL in order to prove meta-theorems. Sugarprovides ways to spe
ify properties for both simu-lation and formal veri�
ation, providing the userswith an interfa
e to 
ombine both theorem prov-ing and model 
he
king, with simulation te
h-niques. Forte [12℄, based on the work of Aagaradet al. [1℄ is one of the maturest formal veri�
a-tion environments based on tool integration in-
luding simulation. It has been used in large-s
ale industrial veri�
ation proje
ts at Intel. Itspower 
omes from the very tight integration of thetwo provers, using a single fun
tional language, asboth the theorem prover's meta-language and itsobje
t language.The tool des
ribed here extends the 
apabil-ities of an earlier HOL-MDG tool and method-ology [17,11℄ for hierar
hi
al hardware veri�
a-tion. The main 
ontribution of the 
urrent workis that our hybrid tool supports the abstra
tdatatypes of MDG in addition to 
on
rete (enu-meration/Boolean) sorts in [11,17℄. This allowsabstra
t designs to be passed from HOL to MDGfor veri�
ation. This allows, for example, largerdata paths to be dealt with automati
ally thanwith a BDD based linkage. In parti
ular, we ex-tended a previous HOL formalization of the MDGmodeling language, MDG-HDL [14℄. We also im-plemented an interfa
e that automati
ally sup-ports the 
ommuni
ation between the MDG andHOL tools. It generates the ne
essary MDG �lesfrom the HOL �les, passing them to the model
he
ker, takes ba
k the MDG results, interpretsthem, and �nally submits them to HOL in an ap-propriate form (see Figure 1).The tool supports both equivalen
e 
he
kingand model 
he
king of abstra
t designs: a fur-ther extension of the original hybrid tool. Thisinvolved embedding the MDG temporal prop-erty spe
i�
ation language, Lmdg in HOL. Anadditional novel aspe
t is the expli
it support ofmodel redu
tion in HOL based on the natural de-sign hierar
hy and the spe
i�
ation being veri�ed.The rest of the paper is organized as follows.Se
tion 2 des
ribes the embedding of MDG-HDLlanguage and the Lmdg . In Se
tion 3, we presentthe proposed hybrid veri�
ation pro
edure. Se
-
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Figure 1. The Hybrid Tool Overviewtion 4 des
ribes the internal stru
ture of the hy-brid tool. In Se
tion 5, we display some sampleexperimental results. Finally, Se
tion 6 
on
ludesthe paper.2. Embedding MDG Spe
i�
ation Lan-guages in HOL2.1. MDG-HDLThe MDG tools a

epts model des
riptions ina Prolog-style HDL (Hardware Des
ription Lan-guage) 
alled MDG-HDL [21℄. MDG-HDL mod-els are then 
ompiled into Abstra
t State Ma-
hines (ASM), whi
h are en
oded using internalMDG data stru
tures.The syntax used in MDG-HDL is based onan ordinary many-sorted �rst order logi
. Thevo
abulary 
onsists of sorts, 
onstants, variablesand fun
tion symbols, with a distin
tion betweenabstra
t and 
on
rete sorts. Con
rete sorts havean enumeration while abstra
t sorts do not. Thisenumeration represents a set of distin
t 
onstantsof one de�ned sort. These 
onstants are referredto as individual 
onstants. It is possible to de-�ne a 
onstant for an abstra
t sort, referred to asgeneri
 
onstants. The distin
tion between ab-stra
t and 
on
rete sorts leads to a distin
tionbetween three kinds of fun
tion symbols. Let f bea fun
tion symbol of type �1 � �2 � : : : � �n !�n+1. If �n+1 is an abstra
t sort, then f is anabstra
t fun
tion symbol. If all the �1 : : : �n+1are 
on
rete, then f is a 
on
rete fun
tion sym-bol. If �n+1 is 
on
rete while at least one of the�1 : : : �n is abstra
t, then f is referred to as a
ross-operator. Con
rete fun
tion symbols must
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it de�nition, sin
e they are elimi-nated before 
omputing the MDG, while abstra
tfun
tion symbols and 
ross-operators are uninter-preted. This means implementation models 
anin
lude abstra
t features su
h as n-bit words, andabstra
t fun
tions.MDG-HDL supports stru
tural des
riptions,behavioral ASM des
riptions, or a mixture ofboth. As part of the MDG software pa
kage, theuser is provided with a large set of pre-de�nedmodules su
h as logi
 gates, multiplexers, reg-isters, bus drivers, et
. Besides the logi
 gateswhi
h only use Boolean signals, the other 
om-ponents allow signals with both 
on
rete and ab-stra
t types. Moreover, a spe
ial table stru
tureis de�ned. Tables 
an be used to des
ribe fun
-tional blo
ks in both implementations and spe
-i�
ations. A table is similar to a truth table. Ithas as entry values �rst-order terms in the rows.It is 
omposed of a list of rows whi
h de�ne is alist of inputs values and their 
orresponding out-put. A default value of the output is de�ned ifthe inputs sequen
e given does not �t the de�nedrows.The table stru
ture as well as the MDG 
om-ponents library have been embedded previouslyin HOL [5℄. Sin
e the grammar of the languageitself was not embedded, the di�erentiation be-tween various terms (abstra
t and 
on
rete) wasnot previously possible. We over
ome this limi-tation in the 
urrent work.Embedding :To embed the grammar of the MDG-HDL lan-guage in HOL, it is ne
essary to 
over the syntaxof the subset of many sorted �rst-order logi
 usedby MDG. In HOL, we de�ne an abstra
t sort tobe of type � to string as seen in the de�nitionbelow. The se
ond parameter in this de�nition isspe
i�ed mainly to permit the user to impose aspe
i�
 abstra
t sort like word5 or word10, ratherthan the default abstra
t MDG sort wordn (usedfor n-bit words).MDG_sort = ABSTRACT of 'a => string| CONCRETE of string => string list

Predi
ates that spe
ify whi
h kind of sort we aredealing with are also de�ned .Fun
tions, MDG Fun, are spe
i�ed by their in-put list and their output. For MDG, a fun
tionhas a unique output.MDG_Fun = MDG_FUN of string =>('a MDG_VAR) list => ('a MDG_VAR)Sin
e the domain of the fun
tion is a list of vari-ables, to determine if the fun
tion is abstra
t, wetest if both inputs and output are of abstra
t sort.So, we de�ne a predi
ate to determine re
ursivelyif the list is 
omposed of abstra
t variables. Thetest is �rst done on h, the head of the list, and itis repeated re
ursively on tl, the tail of the list,until rea
hing the empty list.`def Abstra
tVarList(h::tl) =((IsAbstra
tVar h) ^(Abstra
tVarList tl)) ^(Abstra
tVarList [ ℄ = T )Thereafter, a fun
tion is abstra
t if both itsdomain and range are abstra
t:`def Abstra
tFun
 (MDG_FUN nm InputVarList OutVar)=(Abstra
tVarList InputVarList) ^(IsAbstra
tVariable OutVar)After de�ning all the di�erent elements of theMDG vo
abulary, we 
an de�ne the di�erentkinds of MDG terms. An MDG term is either:� a 
on
rete 
onstant, CONC Const, one ofthe 
on
rete sort enumeration;� a generi
 
onstant, GEN Const, a 
onstantde�ned for an abstra
t sort;� a variable, VAR Term, either from a 
on-
rete sort or an abstra
t sort;� a fun
tion, FN Term, from the MDG FunHOL datatype de�ned above or� a 
omposed term.



4 R. Mizouni, S. Tahar and P. CurzonThe latter is 
reated using the 
onstru
-tor TERM. It takes as argument a de�nedMDG Term and returns a new MDG Term.MDG_term = GEN_Const of 0a|CONC_Const of string|VAR_Term of MDG_VAR|FN_Term of MDG_Fun|TERM of MDG_term => MDG_termBased on the embedding of the MDG-HDLgrammar, an MDG table entry, 
alled Table Valis de�ned as follows:Table_Val = TABLE_VAL of 0a MDG_term| DONT_CAREA fun
tion that returns ba
k the value of a tableentry is also de�ned:TableVal_to_Val=(TableVal_to_Val (TABLE_VAL(v:0a MDG_term))= v)The above HOL de�nition spe
i�es a new HOLdatatype Table Val, whi
h has two 
onstru
tors :TABLE VAL and DONT CARE. The latter 
antake any type. Curzon et al. [5℄ de�ned themat
hing of input values to table values. A mat
ho

urs if either the table value is don't-
are, or thevalue on the input is identi
al to the table value.This property must hold for ea
h table entry. Itis de�ned re
ursively by the fun
tion table mat
h.`def (Table_mat
h inputs [ ℄ (t:num) = T)^ (Table_mat
h inputs (CONS v vs) t) =(((HD(inputs) t) =TableVal_to_Val (v:0a Table_Val))_ (v = DONT_CARE))^ (Table_mat
h (TL inputs) vs t)Next, we give the de�nition table stating thatthe Table mat
h test is �rst done on the �rst el-ement in the input list. If there is a mat
h ona given row, the output has the 
orrespondingvalue. Otherwise it is repeated on the rest of thelist until rea
hing the empty list. If there is nomat
h, the output of the 
onsidered entry will beassigned the default value.

`def (table inps (out:num �> 0b)( [ ℄:(0a Table_Val list) list)V_out default t =(out t = default t))^ (table inps out(CONS v vs) V_out default t =((Table_mat
h inps v t) =>(out t = (HD V_out) t)))|(table inps out vs (TL V_out)default t)))A given table will relate a given input to a givenoutput, if the table relation is true at all times:`def TABLE inps (out:num �> 0b)(V_outs:(0a Table_Val list) list)V_out default =8t. table inpsout V_outs V_out default tFinally, note that the outputs of the table arealways 
onsidered as signals, whi
h explains theirde�nition a

ording to the time t.In summary, we have semanti
ally embeddedthe full version of the MDG hardware des
riptionlanguage, MDG-HDL, supporting abstra
t vari-ables and uninterpreted fun
tions in HOL. Allrede�ned modules, su
h as logi
 gates, registers,multiplexers, et
., have been de�ned in HOL andveri�ed against behavioral spe
i�
ations in termsof tables. This provides the basis of a trustedintegration of HOL and MDG. MDG hardwaredes
riptions 
an be written dire
tly in HOL viathe developed embedding.2.2. LmdgLmdg [19℄ is the properties spe
i�
ation lan-guage of the MDG model 
he
ker. It is a sub-set of �rst-order linear time logi
, whi
h supportsabstra
t data sorts and uninterpreted fun
tions.The properties allowed in Lmdg 
an have thefollowing templates:Property :Next let formulaj G(Next let formula)j F(Next let formula)j (Next let formula)U(Next let formula)jG((Next let formula)!(F(Next let formula)))j G((Next let formula) !((Next let formula) U (Next let formula)))



Hybrid Tool Integrating HOL with MDG 5G, F, and U are the standard linear time logi
operators: for all time, at some time, and until,respe
tively. A Next Let Formula is de�ned as:� ea
h atomi
 formula is a Next Let Formula,� if p and q are Next Let Formulas, then soare: !p (not p), p&q (p and q), pjq (p orq), p ! q (p implies q), Xp (p holds in thenext state), and LET (v = t) IN p where tis an ASM variable (input, state or outputvariable) and v an ordinary variable.A path � is a sequen
e of states. We use �ito denote a path starting from si, where si de-notes the ith state in �. All formulas in Lmdg arepath formulas. We write (�; �) j= p to meanthat a path formula p is true at path � under a -
ompatible assignment � to the ordinary vari-ables. We use V al�0[�(v) to denote the valueof term v under a  -
ompatible assignment s tostate variables, input variables, and output vari-ables, and a  -
ompatible assignment � to theordinary variables. The j= is indu
tively de�nedas follows [19℄:�; � j= v1 = v2 i� V al�0[�(v1) = V al�0[�(v2) .�; � j= LET (v1 = v2) IN p i� �; �0 j= p where�0 = f(v1; �(v1))g [ f(v1; V al�0[�(v2))g.�; � j= !p i� it is not the 
ase that �; � j= p.�; � j= p&q i� �; � j= p and �; � j= q.�; � j= pjq i� �; � j= p or �; � j= q.�; � j= p! q i� �; � j= !p or �; � j= q.�; � j= Gp i� �j ; � j= p for all j � 0.�; � j= Fp i� �j ; � j= p for some j � 0.�; � j= Xp i� �1; � j= p.�; � j= qUp i� for some k � 0; �k; � j= q; and�j ; � j= p for all j (0 � j � k).Embedding :In our HOL embedding of Lmdg, we 
onsiderthat ea
h logi
al proposition (property) p is afun
tion of the path, expressed here by s, andthe 
urrent state. The path 
an be formulatedas a history fun
tion keeping tra
e of the states,where the property holds. For instan
e, the HOLde�nition of the G operator is de�ned as follows:

`def LMDG_G p s = 8t. p s tThat is, for all time t, property p holds of path sat that time. Note that we do not need to quan-tify over the history fun
tion s, while we have toverify that the property p holds over the di�erentstates of a given path. So, LMDG G (p s) holdsif for all states, p(s(t)) holds.A similar HOL de�nition is provided for ea
hoperator of Lmdg.`def LMDG_F p s = 9t. p s t`def LMDG_X p s t = p s (t+1)`def LMDG_U p q s =9t. (p s t ^ (8t1. t1 < t ! q s t1)In addition, let, negation, disjun
tion, 
onjun
-tion, and impli
ation of predi
ates are de�ned asfun
tions of path formulas p and q, as follows:`def LMDG_LET (v1,v2) p s t =(� v1. p s t ) =) (� v2. p s t )`def LMDG_NOT p s t = : p s t`def LMDG_AND p q s t = p s t ^ q s t`def LMDG_OR p q s t = p s t _ q s t`def LMDG_IMP p q s t = :(p s t) _ q s tIn summary, we have semanti
ally embeddedthe property spe
i�
ation language of MDG inHOL. Lmdg spe
i�
ations 
an be written dire
tlyin the theorem prover using the embedding. Thisopens the way for writing MDG style model
he
king goals in HOL, proving them using HOLor MDG.3. Hybrid Veri�
ation with HOL-MDGThe hybrid tool developed 
onsists of an in-terfa
e integrating the HOL theorem prover andthe MDG model 
he
ker. During the veri�
a-tion pro
edure, the user deals mainly with HOL.As shown in Figure 2, the user starts by giv-ing the HOL design model, property spe
i�
a-tion, and the goal to be proven. The respe
tiveMDG �les (property spe
i�
ation, design model,symbol order, algebrai
 spe
i�
ation, and fair-ness 
onstraints) are generated automati
ally andsent to the MDG tool for model 
he
king. If theproperty holds, a HOL theorem is 
reated. This
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Figure 2. Veri�
ation Pro
edure with the Hybrid Tool
ould be used in higher HOL proofs, for exampleproving theorems about the 
onsequen
es of theproperties. If the veri�
ation within the MDGtool fails (due to the property 
he
king to false,non-termination or state explosion), we have toperform the proof intera
tively using the theoremprover.The tool does not a

ept any arbitrary HOLspe
i�
ation: only MDG-style models and prop-erties using the embedded HOL theories pre-sented. The HOL goal should also be an impli
a-tion: `Model � PropertySin
e the veri�
ation is done in MDG, we need toformalize the (MDG) result in HOL. Therefore,we 
onvert the MDG results into a form that 
anbe used [18℄:` FormalizedMDGresult �Model � PropertyA formalized version of this general 
onversiontheorem into HOL has been proved in HOL [18℄.

The proved theorem 
an be instantiated for anydesign and any property under 
onsideration.MDG model 
he
king result is 
onverted to aform that 
an be used in HOL to infer the prop-erties from the design model [18℄.Our hybrid tool also supports hierar
hi
al ver-i�
ation, where it is able to extra
t in HOL theblo
k about whi
h we want to 
he
k a property,then generating �les of the spe
i�
 blo
k only.This is a
hieved by de�ning the stru
ture \blo
k"in a re
ursive manner. So, for ea
h blo
k, we areable to determine its subblo
ks (see Figure 3).Hen
e, the model 
he
ker deals with the veri�
a-tion of the 
onsidered blo
k only, not the wholedesign. As a result, we save on model size without
onstraining the user to write another spe
i�
a-tion for the appropriate blo
k. This idea of pro-gram sli
ing is well-known in the model 
he
kingliterature [6℄. The di�eren
e in our work is thefa
t that the \sli
es" are extra
ted while expand-ing the proof goal by the theorem prover HOL,and based on the de�nition of the design blo
k. In
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Figure 3. Blo
k Extra
tionour approa
h, it is therefore done formally withinHOL rather than informally outside the tool.4. HOL-MDG Hybrid Tool Stru
tureOur hybrid tool is written in SML. It is 
om-posed of �ve main modules: the Hybrid Tool In-terfa
e, the Property Module, the Des
ription FileModule, the HOL Goal Parser Module and theMDG Intera
tion Module (Figure 4). The user'sinterfa
e [9℄ to the hybrid tool is a Java GUI. Itis responsible for:1. getting the HOL goal, the property �le andthe model des
ription �le,2. passing the �les to HOL,3. loading the Lmdg and MDG-HDL theories,and4. 
ommuni
ating the result to the user at theend of the veri�
ation pro
ess.The user thus sees the hybrid tool as an inte-grated system but one that is more powerful thanMDG alone. In the se
ond module, the Prop-erty Parser generates as output a data stru
turefrom whi
h the MDG File Generator produ
esthe MDG property �le, and the Property Type

Generator provides the property type. The lat-ter 
ontains information about the type of prop-erty submitted to the tool, a

ording to whi
h,it 
alls the appropriate property 
he
king algo-rithm. The Des
ription File Module 
attens thespe
i�
ation by removing hierar
hy.When parsing the goal, we obtain the name ofthe property and the blo
k to 
he
k. The lat-ter 
an be either the main module in the modeldes
ription or one of its submodules. If the spe
i-�
ation is written in a hierar
hi
al way, it is possi-ble to extra
t the target module, and its submod-ules, dis
arding the others. The Blo
k Extra
tionModule a
hieves this task. In the next step, the
orresponding MDG �les are generated, in
lud-ing:� MDG model and MDG property �les,� an algebrai
 �le 
ontaining sorts, fun
tions,and rewriting rules,� an order �le, giving a total order of variablesand fun
tion symbols, and eventually� fairness �les, ea
h des
ribing an imposedfairness 
onstraint.The MDG �le generation is done automati-
ally. The HOL spe
i�
ation �le 
ontains two
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Figure 4. Hybrid Tool Stru
turemain parts. The �rst is dedi
ated to the de�-nition of the di�erent sorts, fun
tions, and MDGterms used. The se
ond is dedi
ated to the tablesde�nitions. Using a synta
ti
al analysis of thesubmitted HOL �les, our tool extra
ts the usefulinformation from them to generate the MDG �lesin the appropriate MDG-HDL syntax.Before pro
eeding with the model 
he
king op-eration, the MDG tool has to en
ode the MDG-HDL syntax to generate ASMs. Sin
e we wantedthe 
ommuni
ation between the linked tools tobe automati
, we implemented a spe
ial module,
alled ASM Generation Interfa
e that impli
itlyexe
utes the appropriate MDG instru
tions. TheMDG Intera
tion Module does the 
ommuni
a-tion with MDG. It takes all the generated MDG�les, the property type and the fairness number.

The latter are provided by the property parsermodule. They indi
ate respe
tively the number offairness 
onstraints in the HOL property, if theyexist, and their temporal type. All these �lesare supplied to the MDG tool, whi
h performsthe veri�
ation pro
ess and passes the result toHOL through the MDG Result Interpreter Mod-ule. If the property holds, a theorem is generatedin HOL.5. Experimental ResultsWe have experimented with our hybrid tool us-ing a number of ben
hmark designs in
luding theIsland Tunnel Controller (ITC) [14℄ (Figure 5),whi
h experimental results we report here. TheITC 
ontrols the traÆ
 lights at both ends of
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Figure 5. ITC Stru
turea tunnel 
onne
ting a mainland and island. Itwas 
hosen for two reasons. First, its spe
i�
a-tion 
ontains abstra
t sorts and fun
tions. It wasnot possible to express the spe
i�
ation of thisexample in the tool in [11℄. Se
ond, the sameexample was veri�ed in [22℄, where the authorsfa
ed a problem of non-termination in the IslandCounter module. The hybrid tool o�ers the solu-tion of doing a hybrid veri�
ation, su
h that thesubblo
ks 
ausing the non-termination problemare veri�ed within the HOL theorem prover in-tera
tively, while those whi
h do not are veri�edwithin the MDG model 
he
ker.The input spe
i�
ations for the ITC were writ-ten in HOL, using the HOL MDG-HDL theory[14℄. It is 
omposed of a term de
laration of theMDG part, the di�erent table spe
i�
ations andthe main modules. The spe
i�
ation is writtenin a hierar
hi
al way. Ea
h 
omponent is rep-resented by the 
onjun
tion of its tables. Thewhole system therefore is the 
onjun
tion of the�ve mentioned blo
ks.Experimental results on the veri�
ation of aset of properties are given in Table 1. It givesCPU time, veri�
ation memory usage and num-ber of MDG nodes generated as well as the num-ber of 
omponents and signals of the redu
ed (ex-tra
ted) design model e�e
tively used for model
he
king in MDG. It is 
lear that veri�
ation ismu
h faster than doing the proof intera
tively

with HOL. At the bottom of Table 1, we give theexample experimental results of 
he
king Prop-erty 1 and Property 3 without blo
k extra
tiondone in the theorem prover side, i.e., on the wholemodel. We 
an 
learly see that the CPU time andmemory 
onsumption were de
reased by morethan half in the former 
ase, whi
h is due to theblo
k extra
tion. The results here are similar tothose in [20℄, where only the MDG tool is used onthe full model. This fa
t proves that our hybridtool a
hieves the veri�
ation without obstru
tingthe model 
he
ker.6. Con
lusionsIn this paper, we presented a hybrid veri�
ationapproa
h and tool integrating the HOL theoremprover and the MDG model 
he
ker. In an ear-lier HOL-MDG tool, where HOL and the MDGequivalen
e 
he
ker were linked, neither abstra
tdata sorts nor abstra
t fun
tions were supported.The main 
ontribution of our work is the exten-sion of this tool to handle these main features ofMDG 
ompared to BDD based model 
he
kers aswith other tools. For this purpose, we embeddedin HOL the grammar of the MDG input languagesLmdg and MDG-HDL. Next, we provided a newlink between HOL and the MDG model 
he
ker.Our system handles abstra
tion for model 
he
k-ing and equivalen
e 
he
king. Furthermore, it di-re
tly supports hierar
hi
al proof to be 
ondu
ted



10 R. Mizouni, S. Tahar and P. CurzonTable 1Experimental Results on the ITCProperty CPU(s) Memory(MB) MDG Nodes #Components #SignalsProperty1 0.32 0.66 318 18 32Property2 0.36 0.77 313 13 31Property3 0.41 0.73 401 16 34Property4 1.12 1.91 1266 13 29Property5 0.91 1.26 1027 10 26Property6 0.93 1.77 1166 13 29Property7 1.15 1.39 11002 16 33Property8 1.15 1.39 11002 16 33Property1(*) 0.74 1.38 870 26 62Property3(*) 0.87 1.46 1027 26 62saving veri�
ation time and memory usage. Italso provides a way of over
oming the non termi-nation problem of MDG. The tool has been testedon several examples, in
luding the Island TunnelController reported here. In a future work, we in-tend to apply our tool on more 
omplex designsas well as looking into ways to render the MDG-HOL spe
i�
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