Hybrid Verification Integrating HOL Theorem Proving with MDG Model

Checking
Rabeb Mizouni ?, Sofiene Tahar #, and Paul Curzon®

aDepartment of Electrical & Computer Engineering,
Concordia University, Montreal, Quebec,

H3G 1M8, Canada

{mizouni,tahar} @ece.concordia.ca

bDepartment of Computer Science,

Queen Mary University of London, Mile End, London,

E1 4NS, UK
pc@dcs.qmul.ac.uk

In this paper, we describe a hybrid tool for hardware formal verification that links the HOL (Higher-Order-Logic)
theorem prover and the MDG (Multiway Decision Graphs) model checker. Our tool supports abstract datatypes
and uninterpreted function symbols available in MDG, allowing the verification of high level specifications. The
hybrid tool, HOL-MDG,;, is based on an embedding in HOL of the grammar of the hardware modeling language,
MDG-HDL, as well as an embedding of the first-order temporal logic £,,44 used to express properties for the MDG
model checker. Verification with the hybrid tool is faster and more tractable than using either tools separately.
We hence obtain the advantages of both verification paradigms.

1. Introduction

Hybrid verification approaches that link inter-
active proof tools with automated (e.g. BDD
based) proof tools are now common. Such links
gain the automation of the BDD tools instead of,
for example, using the interactive tool to man-
age the proof. Whilst abstraction can be dealt
with by the interactive tool, it is advantageous
if it could also be dealt with by the automated
tool. In this paper, we describe a hybrid tool
that does this. It combines the HOL theorem
prover [13] and the MDG model checker [20].
HOL (Higher-Order Logic) is an interactive the-
orem prover based on higher-order logic. The
MDG (Multiway Decision Graphs) system is a
decision diagram based verification tool for Ab-
stract State Machines (ASM) verification encoded
by multiway decision graphs [7]. The latter ex-
tend Reduced-Ordered Binary Decision Diagrams
(ROBDD) [4] with abstract datatypes and unin-
terpreted function symbols. It is this feature that
allows abstract designs to be verified automati-

cally using MDG, rather than needing to do such
proof wholly in the theorem prover HOL. The
down side of this abstraction facility is that in
some cases the state reachability algorithm may
not terminate [2]. This is due to the fact that
edges may be labelled by terms that are arbitrary
large and hence arbitrarily many. In a pure sys-
tem for this rare case, the user would have to use
one of many heuristics provided in [2,22]. The
proposed hybrid tool gives ways to overcome the
problem.

There has been a great deal of effort combining
model checking tools with proof systems. Simi-
lar work to ours, though based on binary decision
diagrams rather than multiway ones, includes Ra-
jan et al’s [16] integration of a propositional u-
calculus model checker with PVS, and Schneider
and Hoffmann [15] who linked the CTL model
checker SMV to HOL. Gordon [8] took a different
approach with the BuDDy BDD package, provid-
ing a secure and general programming infrastruc-
ture to allow users to implement their own BDD-
based verification algorithms integrated within

the HOL system rather than tools being linked
externally. Sugar2.0 [3] has also been embedded
in HOL in order to prove meta-theorems. Sugar
provides ways to specify properties for both simu-
lation and formal verification, providing the users
with an interface to combine both theorem prov-
ing and model checking, with simulation tech-
niques. Forte [12], based on the work of Aagarad
et al. [1] is one of the maturest formal verifica-
tion environments based on tool integration in-
cluding simulation. It has been used in large-
scale industrial verification projects at Intel. Its
power comes from the very tight integration of the
two provers, using a single functional language, as
both the theorem prover’s meta-language and its
object language.

The tool described here extends the capabil-
ities of an earlier HOL-MDG tool and method-
ology [17,11] for hierarchical hardware verifica-
tion. The main contribution of the current work
is that our hybrid tool supports the abstract
datatypes of MDG in addition to concrete (enu-
meration/Boolean) sorts in [11,17]. This allows
abstract designs to be passed from HOL to MDG
for verification. This allows, for example, larger
data paths to be dealt with automatically than
with a BDD based linkage. In particular, we ex-
tended a previous HOL formalization of the MDG
modeling language, MDG-HDL [14]. We also im-
plemented an interface that automatically sup-
ports the communication between the MDG and
HOL tools. It generates the necessary MDG files
from the HOL files, passing them to the model
checker, takes back the MDG results, interprets
them, and finally submits them to HOL in an ap-
propriate form (see Figure 1).

The tool supports both equivalence checking
and model checking of abstract designs: a fur-
ther extension of the original hybrid tool. This
involved embedding the MDG temporal prop-
erty specification language, £,,4, in HOL. An
additional novel aspect is the explicit support of
model reduction in HOL based on the natural de-
sign hierarchy and the specification being verified.

The rest of the paper is organized as follows.
Section 2 describes the embedding of MDG-HDL
language and the L£,,4,. In Section 3, we present
the proposed hybrid verification procedure. Sec-

R. Mizouni, S. Tahar and P. Curzon

HOL : H : MDG
0
I L I
| _ |
: v
' HoL D MDG
f——— G |————
I Theoren Result |

Figure 1. The Hybrid Tool Overview

tion 4 describes the internal structure of the hy-
brid tool. In Section 5, we display some sample
experimental results. Finally, Section 6 concludes
the paper.

2. Embedding MDG Specification Lan-
guages in HOL

2.1. MDG-HDL

The MDG tools accepts model descriptions in
a Prolog-style HDL (Hardware Description Lan-
guage) called MDG-HDL [21]. MDG-HDL mod-
els are then compiled into Abstract State Ma-
chines (ASM), which are encoded using internal
MDG data structures.

The syntax used in MDG-HDL is based on
an ordinary many-sorted first order logic. The
vocabulary consists of sorts, constants, variables
and function symbols, with a distinction between
abstract and concrete sorts. Concrete sorts have
an enumeration while abstract sorts do not. This
enumeration represents a set of distinct constants
of one defined sort. These constants are referred
to as individual constants. Tt is possible to de-
fine a constant for an abstract sort, referred to as
generic constants. The distinction between ab-
stract and concrete sorts leads to a distinction
between three kinds of function symbols. Let f be
a function symbol of type a; X as X ... X a, —
Qnt1- If @,y is an abstract sort, then f is an
abstract function symbol. 1If all the aq...aq,41
are concrete, then f is a concrete function sym-
bol. If a4 is concrete while at least one of the
Q1 ...qn is abstract, then f is referred to as a
cross-operator. Concrete function symbols must

Hybrid Tool Integrating HOL with MDG

have an explicit definition, since they are elimi-
nated before computing the MD@G, while abstract
function symbols and cross-operators are uninter-
preted. This means implementation models can
include abstract features such as n-bit words, and
abstract functions.

MDG-HDL supports structural descriptions,
behavioral ASM descriptions, or a mixture of
both. As part of the MDG software package, the
user is provided with a large set of pre-defined
modules such as logic gates, multiplexers, reg-
isters, bus drivers, etc. Besides the logic gates
which only use Boolean signals, the other com-
ponents allow signals with both concrete and ab-
stract types. Moreover, a special table structure
is defined. Tables can be used to describe func-
tional blocks in both implementations and spec-
ifications. A table is similar to a truth table. It
has as entry values first-order terms in the rows.
It is composed of a list of rows which define is a
list of inputs values and their corresponding out-
put. A default value of the output is defined if
the inputs sequence given does not fit the defined
TOWS.

The table structure as well as the MDG com-
ponents library have been embedded previously
in HOL [5]. Since the grammar of the language
itself was not embedded, the differentiation be-
tween various terms (abstract and concrete) was
not previously possible. We overcome this limi-
tation in the current work.

Embedding :

To embed the grammar of the MDG-HDL lan-
guage in HOL, it is necessary to cover the syntax
of the subset of many sorted first-order logic used
by MDG. In HOL, we define an abstract sort to
be of type a to string as seen in the definition
below. The second parameter in this definition is
specified mainly to permit the user to impose a
specific abstract sort like word5 or word10, rather
than the default abstract MDG sort wordn (used
for n-bit words).

MDG_sort = ABSTRACT of ’a => string
| CONCRETE of string => string list

Predicates that specify which kind of sort we are
dealing with are also defined .

Functions, MDG_Fun, are specified by their in-
put list and their output. For MDG, a function
has a unique output.

MDG_Fun = MDG_FUN of string =>
(’a MDG_VAR) list => (’a MDG_VAR)

Since the domain of the function is a list of vari-
ables, to determine if the function is abstract, we
test if both inputs and output are of abstract sort.
So, we define a predicate to determine recursively
if the list is composed of abstract variables. The
test is first done on h, the head of the list, and it
is repeated recursively on #l, the tail of the list,
until reaching the empty list.

Fdef AbstractVarList(h::tl) =
((IsAbstractVar h) A
(AbstractVarList tl)) A
(AbstractVarList [] =T)

Thereafter, a function is abstract if both its
domain and range are abstract:

Fdief AbstractFunc (MDG_FUN nm InputVarList OutVar)=
(AbstractVarList InputVarList) A
(IsAbstractVariable OutVar)

After defining all the different elements of the
MDG vocabulary, we can define the different
kinds of MDG terms. An MDG_term is either:

e a concrete constant, CONC_Const, one of
the concrete sort enumeration;

e a generic constant, GEN_Const, a constant
defined for an abstract sort;

a variable, VAR_Term, either from a con-
crete sort or an abstract sort;

a function, FN_Term, from the MDG_Fun
HOL datatype defined above or

e a composed term.

The latter is created wusing the construc-
tor TERM. It takes as argument a defined
MDG_Term and returns a new MDG_Term.

MDG_term — GEN_Const of 'a
|CONC_Const of string
|VAR_Term of MDG_VAR
|FN_Term of MDG_Fun
|TERM of MDG_term => MDG_term

Based on the embedding of the MDG-HDL
grammar, an MDG table entry, called Table_Val
is defined as follows:

Table_Val = TABLE_VAL of 'a MDG_term
| DONT_CARE

A function that returns back the value of a table
entry is also defined:

TableVal_to_Val=
(TableVal_to_Val (TABLE_VAL(v:'a MDG_term))= v)

The above HOL definition specifies a new HOL
datatype Table_Val, which has two constructors :
TABLE_VAL and DONT_-CARE. The latter can
take any type. Curzon et al. [5] defined the
matching of input values to table values. A match
occurs if either the table value is don’t-care, or the
value on the input is identical to the table value.
This property must hold for each table entry. It
is defined recursively by the function table_match.

Fgef (Table_match inputs [] (t:num) = T)
A (Table_match inputs (CONS v vs) t) =
(((HD(inputs) t) =
TableVal_to_Val (v:’a Table_Val))
V (v = DONT_CARE))
A (Table_match (TL inputs) vs t)

Next, we give the definition table stating that
the Table_match test is first done on the first el-
ement in the input list. If there is a match on
a given row, the output has the corresponding
value. Otherwise it is repeated on the rest of the
list until reaching the empty list. If there is no
match, the output of the considered entry will be
assigned the default value.

R. Mizouni, S. Tahar and P. Curzon

Faef (table inps (out:num —> ’b)
([1:(a Table_Val list) list)
V_out default t =
(out t = default t))
A (table inps out
(CONS v vs) V_out default t =
((Table_match inps v t) =>
(out t = (HD V_out) t)))
| (table inps out vs (TL V_out)
default t)))

A given table will relate a given input to a given
output, if the table relation is true at all times:

F4ef TABLE inps (out:num —> 'b)
(V_outs:('a Table_Val list) list)
V_out default =
Vt. table inpsout V_outs V_out default t

Finally, note that the outputs of the table are
always considered as signals, which explains their
definition according to the time t.

In summary, we have semantically embedded
the full version of the MDG hardware description
language, MDG-HDL, supporting abstract, vari-
ables and uninterpreted functions in HOL. All
redefined modules, such as logic gates, registers,
multiplexers, etc., have been defined in HOL and
verified against behavioral specifications in terms
of tables. This provides the basis of a trusted
integration of HOL and MDG. MDG hardware
descriptions can be written directly in HOL via
the developed embedding.

2.2, Loy
Lmag [19] is the properties specification lan-
guage of the MDG model checker. It is a sub-
set of first-order linear time logic, which supports
abstract data sorts and uninterpreted functions.
The properties allowed in £,,4, can have the
following templates:
Property :
Next_let_formula
| G(Next_let_formula)
| F(Next_let_formula)
| (Next_let_formula)U(Next_let_formula)
|
|

G(
G((Next_let_formula) —
((Next_let_formula) U (Next_let_formula)))

(Next_let_formula)— (F(Next_let_formula)))

Hybrid Tool Integrating HOL with MDG

G, F, and U are the standard linear time logic
operators: for all time, at some time, and until,
respectively. A Next_Let_Formula is defined as:

e cach atomic formula is a Next_Let_Formula,

e if p and ¢ are Next_Let_Formulas, then so
are: Ip (mot p), p&q (p and q), plg (p or
q), p — q (p implies q), Xp (p holds in the
next state), and LET (v =t) IN p where ¢
is an ASM _variable (input, state or output
variable) and v an ordinary variable.

A path 7 is a sequence of states. We use m;
to denote a path starting from s;, where s; de-
notes the i'" state in 7. All formulas in £,,4, are
path formulas. We write (7, ¢) |= p to mean
that a path formula p is true at path = under a
1p-compatible assignment o to the ordinary vari-
ables. We use Val,,u,(v) to denote the value
of term v under a ¢)-compatible assignment s to
state variables, input variables, and output vari-
ables, and a w-compatible assignment o to the
ordinary variables. The = is inductively defined
as follows [19]:

w0 E vy =y iff Valg,us(v1) = Valz,us(v2) .
7w, 0 = LET (v =) INpiff 7, o' = p where
o' = {(vi,0(v1))} U{(v1, Valz,us(v2))}-

m, o |= Ip iff it is not the case that 7, ¢ = p.
m, oo p&qiffm, 0 = pand 7w, 0 |=q¢q.

m, o plgiffn, 0 E porm, o Eq.
moE p—oqiffn, 0 Elporm, o Eq.

7w, 0= Gpiff 7j, 0 = pforall j>0.

w, 0 = Fpiff 7j, o = p for some j > 0.

m, o Xpifft m, o E p.

m, o = qUp iff for some k > 0, 7, 0 E ¢, and
mj, 0 = pforallj (0<j<k).

Embedding :

In our HOL embedding of £,,4,, we consider
that each logical proposition (property) p is a
function of the path, expressed here by s, and
the current state. The path can be formulated
as a history function keeping trace of the states,
where the property holds. For instance, the HOL
definition of the G operator is defined as follows:

Fgef LMDG.Gps = Vt. pst

That is, for all time ¢, property p holds of path s
at that time. Note that we do not need to quan-
tify over the history function s, while we have to
verify that the property p holds over the different
states of a given path. So, LMDG_G (p s) holds
if for all states, p(s(t)) holds.

A similar HOL definition is provided for each
operator of Lyqq.

}_def LMDG_F p s
}_def LMDG_X p s
}_def LMDG_U P q

Jt. (pst

U!d‘“

A (VEl. t1 <t — q s t1)

In addition, let, negation, disjunction, conjunc-
tion, and implication of predicates are defined as
functions of path formulas p and ¢, as follows:

Fdef LMDG_LET (v1,v2) p s t =
Avi.pst) = (Av2. pst)

Fdgef LMDGNOT pst = - pst

F4gef LMDGAND pgst = pstA gst

Fgef LMDGLORpPgst = pstV gqst

Fief LMDG_IMP pgst = —(pst)V gst

In summary, we have semantically embedded
the property specification language of MDG in
HOL. £,,44 specifications can be written directly
in the theorem prover using the embedding. This
opens the way for writing MDG style model
checking goals in HOL, proving them using HOL
or MDG.

3. Hybrid Verification with HOL-MDG

The hybrid tool developed consists of an in-
terface integrating the HOL theorem prover and
the MDG model checker. During the verifica-
tion procedure, the user deals mainly with HOL.
As shown in Figure 2, the user starts by giv-
ing the HOL design model, property specifica-
tion, and the goal to be proven. The respective
MDG files (property specification, design model,
symbol order, algebraic specification, and fair-
ness constraints) are generated automatically and
sent to the MDG tool for model checking. If the
property holds, a HOL theorem is created. This

R. Mizouni, S. Tahar and P. Curzon

Hol goal

No
Accepted

Yes
Input files Output files
Prop (HOL) Order (MDG)
Model (HOL) Prop (MDG)
| Model (MDG)
Alg (MDG)
Fair (MDG)

Call MDG and
do Verification

‘ Mal

ke Theorem ‘ ‘ Regular HOL proof

Figure 2. Verification Procedure with the H

ybrid Tool

could be used in higher HOL proofs, for example
proving theorems about the consequences of the
properties. If the verification within the MDG
tool fails (due to the property checking to false,
non-termination or state explosion), we have to
perform the proof interactively using the theorem
prover.

The tool does not accept any arbitrary HOL
specification: only MDG-style models and prop-
erties using the embedded HOL theories pre-
sented. The HOL goal should also be an implica-
tion:

F Model D Property

Since the verification is done in MDG, we need to
formalize the (MDG) result in HOL. Therefore,
we convert the MDG results into a form that can
be used [18]:

F FormalizedM DGresult D Model D Property

A formalized version of this general conversion
theorem into HOL has been proved in HOL [18].

The proved theorem can be instantiated for any
design and any property under consideration.

MDG model checking result is converted to a
form that can be used in HOL to infer the prop-
erties from the design model [18].

Our hybrid tool also supports hierarchical ver-
ification, where it is able to extract in HOL the
block about which we want to check a property,
then generating files of the specific block only.
This is achieved by defining the structure “block”
in a recursive manner. So, for each block, we are
able to determine its subblocks (see Figure 3).
Hence, the model checker deals with the verifica-
tion of the considered block only, not the whole
design. As a result, we save on model size without
constraining the user to write another specifica-
tion for the appropriate block. This idea of pro-
gram slicing is well-known in the model checking
literature [6]. The difference in our work is the
fact that the “slices” are extracted while expand-
ing the proof goal by the theorem prover HOL,
and based on the definition of the design block. In

Hybrid Tool Integrating HOL with MDG

Figure 3. Block Extraction

our approach, it is therefore done formally within
HOL rather than informally outside the tool.

4. HOL-MDG Hybrid Tool Structure

Our hybrid tool is written in SML. It is com-
posed of five main modules: the Hybrid Tool In-
terface, the Property Module, the Description File
Module, the HOL Goal Parser Module and the
MDG Interaction Module (Figure 4). The user’s
interface [9] to the hybrid tool is a Java GUL. It
is responsible for:

1. getting the HOL goal, the property file and
the model description file,

2. passing the files to HOL,

3. loading the L,,4, and MDG-HDL theories,
and

4. communicating the result to the user at the
end of the verification process.

The user thus sees the hybrid tool as an inte-
grated system but one that is more powerful than
MDG alone. In the second module, the Prop-
erty Parser generates as output a data structure
from which the MDG File Generator produces
the MDG property file, and the Property Type

| ! ‘ |
| | ! |
| : ‘ |
| | ! |
| : ‘ |
| | ! |
| : ‘ |
| | ! |
| : ‘ |
| | | |
| | ! |
l | - ‘ _____ ' Block ‘ |
| I [| e | ! .
1| [subbloc ’SUbblOCh ’ subbloclk | | Extraction ! subblock] | Generation
I | | | |
: | ‘ ‘
| | ! |
| : ‘ |
| | ! |
| : ‘ |
| | ! |
| : ‘ |
| | ! |
| : ‘ |

HOL-New Model

Y

MDG files
—

’subblock‘ ’ subblocl{ ’subblock‘

Generator provides the property type. The lat-
ter contains information about the type of prop-
erty submitted to the tool, according to which,
it calls the appropriate property checking algo-
rithm. The Description File Module flattens the
specification by removing hierarchy.

When parsing the goal, we obtain the name of
the property and the block to check. The lat-
ter can be either the main module in the model
description or one of its submodules. If the speci-
fication is written in a hierarchical way, it is possi-
ble to extract the target module, and its submod-
ules, discarding the others. The Block Extraction
Module achieves this task. In the next step, the
corresponding MDG files are generated, includ-

ing:
e MDG model and MDG property files,

e an algebraic file containing sorts, functions,
and rewriting rules,

e an order file, giving a total order of variables
and function symbols, and eventually

e fairness files, each describing an imposed
fairness constraint.

The MDG file generation is done automati-
cally. The HOL specification file contains two

Property (HOL)

'

Model (HOL)

R. Mizouni, S. Tahar and P. Curzon

Goal (HOL)

' '

’ Hybrid Tool Interface ‘

Generator

Generator Type

|

|

|

|

|

|

|

|

|

|

| MDG-HDL
|

|

|

|

|

|

|

|

: Prop Type
|

Fair (L_MDG): :
Prop (L_MDG} :

’ Model Parsefr ’ Goal Parser‘

BlockSpecID
Blockimp
PropID
Y
MDG_Term BlockSpec/
MDG_Fun Blockimp
MDG_Type

]

MDG Code Generator ‘

Order (MDG-HDL)
l Model (MDG-HDL)

|
|
|
|
|
|
|
|
|
Bloc Extractor l
|
|
|
|
|
|
|
|
|
|
|

’ ASM Generation Interface ‘

Alg (MDG-HDL)

!

’ MDG Interaction

‘ Y/N (MDG)

’ MDG-Result Interpreter ‘

‘ Y/IN (HOL)

Correctness
Theorem Generator

‘ Correctness theorem (HOL)

Figure 4. Hybrid Tool Structure

main parts. The first is dedicated to the defi-
nition of the different sorts, functions, and MDG
terms used. The second is dedicated to the tables
definitions. Using a syntactical analysis of the
submitted HOL files, our tool extracts the useful
information from them to generate the MDG files
in the appropriate MDG-HDL syntax.

Before proceeding with the model checking op-
eration, the MDG tool has to encode the MDG-
HDL syntax to generate ASMs. Since we wanted
the communication between the linked tools to
be automatic, we implemented a special module,
called ASM Generation Interface that implicitly
executes the appropriate MDG instructions. The
MDG Interaction Module does the communica-
tion with MDG. It takes all the generated MDG
files, the property type and the fairness number.

The latter are provided by the property parser
module. They indicate respectively the number of
fairness constraints in the HOL property, if they
exist, and their temporal type. All these files
are supplied to the MDG tool, which performs
the verification process and passes the result to
HOL through the MDG Result Interpreter Mod-
ule. If the property holds, a theorem is generated
in HOL.

5. Experimental Results

We have experimented with our hybrid tool us-
ing a number of benchmark designs including the
Island Tunnel Controller (ITC) [14] (Figure 5),
which experimental results we report here. The
ITC controls the traffic lights at both ends of

Hybrid Tool Integrating HOL with MDG 9
mrl _ mg iu ie
mgl Mainland my Tunnel . Islz-and ix
Light Light
me Controller g irl
Controller |_mu | — =1 Controller
mx MLC) | mr m |y (ILC) ig|
ic+ ic- tc- tc+
ic tc
Island Counter Tunnel Counter

Figure 5. ITC Structure

a tunnel connecting a mainland and island. It
was chosen for two reasons. First, its specifica-
tion contains abstract sorts and functions. It was
not possible to express the specification of this
example in the tool in [11]. Second, the same
example was verified in [22], where the authors
faced a problem of non-termination in the Island
Counter module. The hybrid tool offers the solu-
tion of doing a hybrid verification, such that the
subblocks causing the non-termination problem
are verified within the HOL theorem prover in-
teractively, while those which do not are verified
within the MDG model checker.

The input specifications for the ITC were writ-
ten in HOL, using the HOL MDG-HDL theory
[14]. It is composed of a term declaration of the
MDG part, the different table specifications and
the main modules. The specification is written
in a hierarchical way. FEach component is rep-
resented by the conjunction of its tables. The
whole system therefore is the conjunction of the
five mentioned blocks.

Experimental results on the verification of a
set of properties are given in Table 1. It gives
CPU time, verification memory usage and num-
ber of MDG nodes generated as well as the num-
ber of components and signals of the reduced (ex-
tracted) design model effectively used for model
checking in MDG. It is clear that verification is
much faster than doing the proof interactively

with HOL. At the bottom of Table 1, we give the
example experimental results of checking Prop-
erty 1 and Property 3 without block extraction
done in the theorem prover side, i.e., on the whole
model. We can clearly see that the CPU time and
memory consumption were decreased by more
than half in the former case, which is due to the
block extraction. The results here are similar to
those in [20], where only the MDG tool is used on
the full model. This fact proves that our hybrid
tool achieves the verification without obstructing
the model checker.

6.

Conclusions

In this paper, we presented a hybrid verification
approach and tool integrating the HOL theorem
prover and the MDG model checker. In an ear-
lier HOL-MDG tool, where HOL and the MDG
equivalence checker were linked, neither abstract
data sorts nor abstract functions were supported.
The main contribution of our work is the exten-
sion of this tool to handle these main features of
MDG compared to BDD based model checkers as
with other tools. For this purpose, we embedded
in HOL the grammar of the MDG input languages
Lmag and MDG-HDL. Next, we provided a new
link between HOL and the MDG model checker.
Our system handles abstraction for model check-
ing and equivalence checking. Furthermore, it di-
rectly supports hierarchical proof to be conducted

10

Table 1

Experimental Results on the ITC

Property CPU(, | Memory) | MDG Nodes || #Components | #Signals
Propertyl 0.32 0.66 318 18 32
Property2 0.36 0.77 313 13 31
Property3 0.41 0.73 401 16 34
Property4 1.12 1.91 1266 13 29
Propertyb 0.91 1.26 1027 10 26
Property6 0.93 1.77 1166 13 29
Property7 1.15 1.39 11002 16 33
Property8 1.15 1.39 11002 16 33

Property1(*) 0.74 1.38 870 26 62

Property3(*) 0.87 1.46 1027 26 62

R. Mizouni, S. Tahar and P. Curzon

saving verification time and memory usage. It
also provides a way of overcoming the non termi-
nation problem of MDG. The tool has been tested
on several examples, including the Island Tunnel
Controller reported here. In a future work, we in-
tend to apply our tool on more complex designs
as well as looking into ways to render the MDG-
HOL specification templates more user-friently.

REFERENCES

1.

M.D. Aagaard, R. Jones, and C. Seger. Lifted-
FL: A Pragmatic Implementation of Com-
bined Model Checking and Theorem Proving.
In Theorem Proving in Higher Order Logics,
LNCS 1690, pages 323-340, Springer Verlag,
1999.

O. Ait Mohamed, X. Song, and E. Cerny. On
the Non-termination of MDG-based Abstract
State Enumeration. In Theoretical Computer
Science, 300: 161-179, 2003.

I. Beer, S. Ben-David, C. Eisner, D. Fisman,
A. Gringauze, and Y. Rodeh. The Temporal
Logic Sugar. In Computer Aided Verification,
LNCS 2102, pages 363-367, Springer Verlag,
2001.

R. Bryant. Symbolic Boolean Manipulation
with Ordered Binary Decision Diagrams.
In ACM Computing Surveys, 24(3):293-318,
September 1992.

P. Curzon, S. Tahar, and O. Ait-Mohamed.
Verification of the MDG Components Library

10.

11.

12.

in HOL. Supplementary Proc. International
Conference on Theorem Proving in Higher-
Order Logics, pages 31-45, Canberra, Aus-
tralia, September 1998.

E.M. Clarke, O. Grumberg, and D. Peled.
Model Checking. MIT Press, 2000.

F. Corella, Z. Zhou, X. Song, M. Langevin,
and E. Cerny. Multiway Decision Graphs for
Automated Hardware Verification. In Formal
Methods in System Design, 10(1):7-46, 1997.
M. Gordon. Combining Deductive Theorem
Proving with Symbolic State Enumeration. 21
Years of Hardware Formal Verification, Royal
Society Workshop to mark 21 years of BCS
FACS, U.K., December 1998.

R. Hum, H. Yip, H. Li, R. Mizouni, and S.
Tahar. A GUI for linking HOL to MDG. Tech-
nical report, ECE Dept., Concordia Univer-
sity, June 2002.

J. Joyce and C. Seger. The HOL-Voss Sys-
tem: Model-Checking inside a General Pur-
pose Theorem-Prover. In Higher Order Logic
Theorem Proving and Its Applications, LNCS
780, pages 185-198, Springer Verlag, 1994.

I. Kort, S. Tahar, and P. Curzon. Hierar-
chical Formal Verification Using a Hybrid
Tool. Software Tools for Technology Transfer,
4(3):313-322, May 2003, Springer Verlag.

T. Melham. Integrating Model Checking and
Theorem Proving in a Reflective Functional
Language. In Integrated Formal Methods,
LNCS 2999, pages 36-39, Springer Verlag,

Hybrid Tool Integrating HOL with MDG

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

2004.

T. Melham and M. Gordon. Introduction to
Higher Order Logic, Theorem Proving Envi-
ronment for Higher Order Logic. Cambridge
University Press, 1993.

R. Mizouni. Linking HOL Theorem Proving
and MDG Model Checking. Master’s thesis,
Electrical and Computer Engineering Dept.,
Concordia University, 2003.

K. Schneider and D. Hoffmann. A HOL Con-
version for Translating Linear Time Temporal
Logic to w-Automata. In Theorem Proving in
Higher Order Logics, LNCS 1690, pages 255-
272, Springer Verlag, 1999.

S. Rajan, N.Shankar, and M.Srivas. An Inte-
gration of Model-Checking with Automated
Proof Checking. In Computer Aided Verifica-
tion, LNCS 939, pages 84-97, Springer Verlag,
1995.

V.K. Pisini, S. Tahar, O. Ait-Mohamed, P.
Curzon, and X. Song. Formal Hardware Ver-
ification by Integrating HOL and MDG. In
ACM 10th Great Lakes Symposium on VLSI,
pages 23-28, Chicago, Illinois, USA, 2000.

H. Xiong, P. Curzon, and S. Tahar. Importing
MDG Verification Results into HOL. In The-
orem Proving in Higher Order Logics, LNCS
1690, pages 293-310, Springer Verlag, 1999.
Y. Xu and E.Cerny and X. Song and F.
Corella and and O. Ait-Mohamed. Model
checking for a first-order temproal logic us-
ing Multiway Decision Graphs. In Computer
Aided Verification, LNCS 1427, pages 219-
231, Springer Verlag, 1998.

Y. Xu. Model Checking for a First-Order
Temporal Logic Using Multiway Decision
Graphs. PhD Thesis, University of Montreal,
Canada, April 1999.

Z. Zhou and N. Boulerice. MDG Tools(V1.0)
User’s Manual. University of Montreal, Dept.
D’TRO, 1996.

Z. Zhou, X. Song, S. Tahar, E. Cerny, F.
Corella, and M. Langevin. Formal Verification
of the Island Tunnel Controller Using Multi-
way Decision Graphs. In Formal Methods in
Computer-Aided Design, LNCS 1166, pages
233-247, Springer Verlag, 1996.

