Software Tools for Technology Transfer manuscript No.

(will be inserted by the editor)

Comparison of SPIN and VIS for Protocol Verification

Hong Peng, Sofiéene Tahar and Ferhat Khendek

Dept. of Electrical & Computer Engineering, Concordia University

1455 de Maisonneuve W., Montreal, Quebec, H3G 1M8 Canada

E-mail: {pengh,tahar,khendek}@ece.concordia.ca

The date of receipt and acceptance will be inserted by the editor

Key words: SPIN, VIS, Model Checking, Formal Ver-

ification, Protocols

Abstract. In this paper, we compare and contrast SPIN
and VIS, two widely used formal verification tools. In
particular, we devote a special attention to the efficiency
of these tools for the verification of communications pro-
tocols that can be implemented either in software or
hardware. As a basis of our comparison, we formally de-
scribe and verify the Asynchronous Transfer Mode Ring
(ATMR) medium access protocol using SPIN and its
hardware model using VIS. We believe that this study
is of particular interest as more and more protocols, like
ATM protocols, are implemented in hardware to match

high speed requirements.

1 Introduction

For the last two decades, verification techniques have
been applied successfully in software and hardware en-
gineering. Various techniques have been proposed in the
literature [6]. They range from pure simulation to model
checking. The widely used simulation techniques can-
not cover all design errors, especially for large systems.
Like testing techniques, they are used to detect errors,
but not to prove the correctness of the design. During
the past decade, model checking techniques have estab-
lished themselves as significant means for design vali-
dation, namely a given design is validated against spe-
cific and general properties. Two different fields of model
checking have arisen: formal verification of software pro-
tocols and software systems, like SPIN [9], and formal
verification of digital hardware, like VIS [2].

The SPIN software verification tool, developed by G.
J. Holzmann at Bell Labs in 1989, is based on an inter-

leaving model of concurrency, in which unlike hardware,

2 Hong Peng, Sofiene Tahar and Ferhat Khendek: Comparison of SPIN and VIS for Protocol Verification

only one component of the system state is allowed to
change at a time. SPIN checks if the protocol specifica-
tion is logically consistent. It reports errors in the pro-
tocol such as deadlock, livelock, or unreachable code. It
also validates properties specified as linear time tempo-
ral logic (LTL) [8] formulas.

The VIS (Verification Interacting with Synthesis) tool,
developed in 1995 by University of California at Berkeley
and University of Colorado at Boulder, is based on syn-
chronous models where any number of components can
change state at a time. VIS integrates formal verification,
simulation, and synthesis of finite-state hardware sys-
tems. It uses the Verilog hardware description language
(HDL) as its input language. VIS supports branching
time temporal logic (CTL) [8] symbolic model checking
with fairness constrains [13].

The aim of this paper is to compare and contrast
the SPIN (XSPIN version 3.3.3) and VIS (VIS release
1.3) tools using a software and a hardware model of the
ATMR protocol [12] as a case study. We developed the
software and hardware models independently and for-
mally verified them in SPIN and VIS, respectively. Since
the modeling language of SPIN and VIS are different, we
cannot say explicitly that the two verified models, the
VIS and the SPIN one, are exactly the same with respect
to their semantics. However, we did follow the modeling
and coding style of each of these tools. To expose the ad-
vantages and disadvantages of these two types of tools,

we report and compare the verification CPU time, mem-

B

Channel

Channel

Channel

Channel Channel

C Access Unit

E | Access Unit

Fig. 1. ATMR structure with 5 nodes

ory usage, and state space generated. Furthermore, we
describe the modeling techniques of asynchronous pro-
tocols in SPIN and VIS, and also analyze the source of
the complexity in the verification.

The rest of the paper is structured as follows. We
begin with an overview of the ATMR protocol (Section
2). We then describe the ATMR specification and ver-
ification in SPIN (Section 3) and VIS (Section 4), re-
spectively. Finally, we conclude the paper with the com-
parison and contrast of SPIN and VIS (Section 5). The
PROMELA and Verilog codes of the ATMR protocol are

provided in the Appendix.

2 ATM Ring Protocol

The Asynchronous Transfer Mode Ring (ATMR) proto-
col [12] is an ISO standard based on a high speed shared
medium connecting a number of access nodes by chan-
nels in a ring topology. Figure 1 gives an example ring
with five nodes connected via a channel transferring cells

between the nodes. For controlling access to this type of

Hong Peng, Sofiene Tahar and Ferhat Khendek: Comparison of SPIN and VIS for Protocol Verification 3

ocT
1 ACF ACF/RVCI
2
3 RVCI
4
RESERVED

5 HEADER CHECK SEQUENCE

6

ADAPTION LAYER
7
8

USER INFORMATION
53

Fig. 2. Format of an ATMR cell

shared medium, the ring is first initialized with a fixed
number of ATM cells continuously circulating around
the channel from one node to another. Within each ac-
cess node there is an access unit which performs both the
physical layer convergence function and the access con-
trol function. Access to the ring is requested by the client
and controlled by a combination of a window mechanism
and a reset procedure. The client can issue a sending re-
quest to the access unit and receive a data cell. The
window mechanism limits the number of cells a node
can transmit at a time, called the “credits” of this node.
The reset procedure reinitializes the window in all ac-
cess units to a predefine credit value. The format of an
ATMR cell is shown in Figure 2.

It contains an access control field (ACF), which in-
cludes a reset bit, a monitor bit and a busy address.

When an access node releases an empty cell, it will fill

Reg==1
Credit>0

Empty

Reg==1
Credit<0

?Data

Fig. 3. FSM of an ATMR entity

its own address in the busy address field. The ATM cell
is routed by using a ring virtual channel ID (RVCI) in

the cell header.

The state transition diagram of the ATMR is shown
in Figure 3, where “?” means receiving a message. The
protocol entity of an access unit begins from an IDLE
state. When the access unit has cells queued for trans-
mission, it enters a SEND state and sends them in empty
slots received at the ring interface with the address of
the destination in the RVCI field of the cell header.
The RVCI field in the header of all cells received at the
ring interface of each node is checked and, if the cell
is addressed to this node, the cell contents are copied
and passed to the appropriate convergence sublayer. The
RVCI field is then set to zero, which indicates an empty
cell, and the cell is relayed to the next node in the ring. If

a match is not found, then, this cell remains unchanged.

4 Hong Peng, Sofiene Tahar and Ferhat Khendek: Comparison of SPIN and VIS for Protocol Verification

Transmissions on the ring occur in cycles during which
each access unit is allocated a fixed window size credit.
This credit indicates the number of cells the access unit
can transmit in this cycle before issuing or receiving a re-
set cell from the ring interface. A window credit counter
is maintained by each access unit. Whenever this value is
less than zero, the protocol entity enters a WAIT state
to wait for a new credit. This value is initialized to the
window size credit each time the ring is reset, namely
the protocol entity is in a RESET state and the credit is
decremented by one each time the access unit transmits
a cell from its transmission queue. This mechanism is fol-
lowed by all access units in the ring and hence eventually
all units become inactive and the flow of cells around the

ring ceases.

To reinitialize the transmission of the cells, an ac-
tive access unit always overwrites its own address in the
busy address field in the head of all cells passing the
ring interface. This way, if an active access node receives
a cell with its own address in the busy address field,
it concludes that other nodes are inactive. Then after
completely sending any remaining queued data from the
higher layer, it creates a reset cell by setting the re-
set bit in the header of the next cell passing the ring
interface. The reset cell circulates around the ring and
causes all other access units to reinitialize their window
credit counters. Once reinitialized, any access unit hav-
ing data queued for transmission regains the active state

and restarts sending cells.

The ATMR, protocol was first modeled and checked
by Charpentier and Padiou [4] who used UNITY to con-
duct a pencil-and-paper verification of it. Their valida-
tion abstracts away from any implementations, be it in
software or in hardware. In next sections, we describe
the modeling and verification of the ATMR protocol in

SPIN and VIS, respectively.

3 Verification Using SPIN

SPIN [9] targets the verification of software systems and
has been used in the past to trace design errors in dis-
tributed systems design, such as operating systems, data
communications protocols, switching systems, concur-
rent algorithms, railway signaling protocols, etc. [10,3].
The tool checks the logical consistency of a protocol
specification and reports design errors like deadlock, live-

lock, unreachable code and so on.

SPIN uses full LTL model checking, supporting all
correctness requirements expressible in linear time tem-
poral logic. It can also be used as an efficient on-the-
fly verifier for more basic safety and liveness properties.
Many of the latter properties can be expressed, and ver-
ified, without the use of LTL though. Correctness prop-
erties can be specified as system or process invariants
(using assertions), or as general linear temporal logic re-
quirements (LTL), either directly in the syntax of next-

time free LTL, or indirectly as Biichi Automata (called

Hong Peng, Sofiene Tahar and Ferhat Khendek: Comparison of SPIN and VIS for Protocol Verification 5

never claims). If a property is invalid, an error trace is
provided by the tool.

SPIN uses PROMELA (Process Meta Language) [9]
as input modeling language. PROMELA allows abstrac-
tions in the protocol description by neglecting details
that are irrelevant to process interaction. The intended
use of SPIN is to verify fractions of process behavior,
which for one reason or another are considered suspect.
The relevant behavior is modeled in PROMELA and ver-

ified.

3.1 ATMR Specification

In order to test the capability of the SPIN tool, we tried
to build a model as large as possible and let the tool do
the reduction work. In this way, the verification engine
works on its up-limit load, so that we can test the per-
formance of the engine in a real situation. As an ATMR,
protocol can have n nodes and p channels [12], we will
perform our verification on the model shown in Figure 1
including 3, 4, 5, and 6 ATMR nodes and a channel size
of 6, 8, 10, and 12 cells. The channel length between two
neighboring nodes is two cells. We realized through ex-
perimentation that the five node model is the maximum
model size that can make a comparison between SPIN
and VIS within the memory available in the machine we
used (Sun Sparc with 2 GB memory). However, for the
purpose of comparison, we also put the experimental re-
sults of the ATMR model with three, four, five, and six

nodes.

In the SPIN ATMR model, each node is specified as

a process

proctype Atmr(byte ID; chan in, out)

where ID is the identification of the present node; in is
the input channel and out is the output channel of the
node. Since the nodes are in a ring form, the input chan-
nel of node B, for instance, will be the output channel
of node A (Figure 1).

Since SPIN’s strength is in proving properties of in-
teractions in a distributed system, but not in proving
things about local computation or data dependency, we
can try to make the model more general, more abstract.
Namely, we will put only the behavior between the ac-
cess unit and the channel into the model. Besides, we
assume that the queue between the client and the ac-
cess unit will be automatically refilled once it is empty.
Thus, we can have a simple model while not affecting
the behavior of the access unit.

An additional way of reducing the complexity is to
remove everything that is not related to the property we
are trying to prove, such as redundant data. For exam-
ple, due to state space explosion, we did not succeed in
verifying the whole data-path of the ATMR model. In
order to simplify this latter, we abstract away all the in-
formation which will not affect the behavior of the ring
accessing scheme, namely the HCS field, the adaption
layer field and the user information field. The reduced
cell format on which we based our verification is shown

in Figure 4, where only 5 bits ACF and 3 bits RVCI

6 Hong Peng, Sofiene Tahar and Ferhat Khendek: Comparison of SPIN and VIS for Protocol Verification

ocT
1 ACF (5 bit) RVCI (3 bit)
2
3 RVCI
4 | RESERVED

® ADAPTION LAYER

7

I
USER INFORMATION

53

Fig. 4. Simplified Cell Format

will be used (non-shaded boxes in Figure 4). Because
we kept all the access control information in the header
format, namely the ACF and RVCI fields, the control
behavior of ATMR with simplified cell format is exactly
the same as that of the original one. After the reduction,

the structure of the cell becomes:

typedef MSDU_struct {
byte Busy_Add;
byte Dest_Add;
s

where Busy_Add is the busy address and Dest_Add is
the destination address. MSDU_struct is the type defi-
nition of the cell. The cells are classified into DataCell,
which contains user data, EmptyCell, which is available
for loading, and ResetCell, which is to reset the credit of
the access units in the ring.

Asynchronous channels are a significant source of

complexity in the verification since there are lots of inter-

leavings in the channel. Generally, the exclusive read/write

option provided by SPIN is a good partial order re-
duction approach [11], which can reduce the verification
CPU time.

Besides, in order to reduce the interleavings in the
model, one of the possible solutions is to make as many
statements as possible become atomic. For example, in
the initialization process, we put all the initialization

statements as atomic:

init
{
MSDU_struct d;

atomic{ d.Dest_Add=0;
Credit[1]=MaxCredit;

We can also reduce the interleavings of the model
significantly by making atomic each state transition. For

example, instead of

(State == state_name)->
other_statements

we can use

:: atomic{(State == state_name) ->
other_statements}

The exhaustive experiments we conducted show that the
state space can be reduced for at least one order of mag-
nitude in this way. However, in this case, the PROMELA
model becomes synchronous which is not our intention.
In the sequel, we did not use these atomic statements.
The PROMELA ATMR model is shown in Appendix
A, where ID is the identifier of this unit, and in and
out are the incoming and outgoing channels of this unit,

respectively. There are four states, Idle, Send, Reset, and

Hong Peng, Sofiene Tahar and Ferhat Khendek: Comparison of SPIN and VIS for Protocol Verification 7

WaitCredit. In each state, the unit can receive DataCell,

EmptyCell, ResetCell.

An advantage of SPIN is that we can easily check
deadlock using timeout statement in the model. Since
in the deadlock status, the state transition stops, the

timeout statement in a state can be easily checked out.

3.2 ATMR Verification

Once the ATMR model established, we validate it against
a set of basic consistency properties. For illustration pur-
poses, we present here six properties including liveness
and safety. In the following descriptions, “[]”, “<>”,

“ ” W

==" and “—” mean “always”,

7 W

eventually”, “logic equal-
ity” and “imply”, respectively.
Property 1: Once an access unit exhausts its window
size credit, the credit will eventually be renewed.
[((credit == 0) <> (credit == 6))
where credit stands for the number of credits which is
being held by an access unit and 6 is the preset maxi-
mum value.
Property 2: A client’s request will be eventually ac-
knowledged.
[J((reg ==1) <> (ack == 1))
where req is a cell sending request signal from a client to
an access unit. If the requested cell has been sent out,
the access unit will return an ack signal to the client.

Property 3: An access unit will eventually exit the RE-

SET state and enter the SEND state.

[|((state == RESET) —<> (state == SEND))
where state stands for the current state of an access unit.
Property 4: An access unit will eventually exhaust its
window size credit.

[((credit = 6) =<> (credit == 0))
here, 6 is the preset maximum credit value. We expect
that all the credits will be consumed during the sending
procedure.

Property 5: The number of reset cells in the ring cannot
exceed the number of access units.

[[(NumofRst < NumofUnit)
where NumofRst is the number of reset cells in the ring
and NumofUnit is the number of access units.
Property 6: In the SEND state, a given station cannot
send more cells than allowed by its credits.

[|((state == SEN D) — (Outmsgs <= 6))
here, Outmsgs is the number of cells sent by a given
station in the SEND state.

The verification of the above six properties was per-
formed on a Sun Sparc workstation with 2 GB of mem-
ory. We used two kinds of reachability analysis methods
provided by the SPIN tool. One is the exhaustive explo-
ration, the other is the supertrace/bitstate exploration
which is an approximate approach, which can only pro-
vide maximum coverage search. In the ATMR verifica-
tion, we first tried the exhaustive exploration. But this
approach could not finish the ATMR verification due to
an out of memory error, even when we applied the model

compress techniques (-DCOLLAPSE, -DMA).

Hong Peng, Sofiene Tahar and Ferhat Khendek: Comparison of SPIN and VIS for Protocol Verification

3 nodes 4 nodes
Property || CPU Time (s) | Memory (MB) States CPU Time (s) | Memory (MB) States
P1 7.5 46.084 1335725 359.8 89.802 6.61796e6
P2 19.7 45.982 340879 941 87.345 1.56626e7
P3 5.2 46.084 122671 271.6 90.007 4.648e6
P4 18.6 46.084 390387 828.9 73.521 1.5796e7
P5 5.5 46.084 92322 236.6 89.086 4.3443e6
P6 3.2 44.982 101015 167.3 45.187 5.95003e6
5 nodes 6 nodes
Property || CPU Time (s) | Memory (MB) States CPU Time (s) | Memory (MB) States
P1 1632.5 127.225 3.26899e7 3261.4 1192.077 4.36862e7
P2 2273.6 264.906 3.41975e7 2883 264.19 4.98607e7
P3 2218.1 962.66 3.22636e7 2842.7 258.998 3.61413e7
P4 1255.3 258.25 2.9685e7 2783.9 298.487 3.69046e7
P5 2187.5 1441.086 4.32634e7 - - -
P6 1313.8 584.864 3.33867e7 2765 1729.955 4.53676e7

Table 1. ATMR verification with SPIN

In contrast, the supertrace/bitstate (bit-state hash-
ing) could finish the verification of the properties. Al-
though the coverage is not one hundred percent, this
latter still can give us some confidence about the cor-
rectness of the model. The supertrace/bitstate model
checking experimental results are reported in Table 1,
including CPU time in seconds, memory usage in MB
and the number of states stored. Graphic illustrations of
the experimental results are plotted in Figures 5, 6, and

7.

From the graphic illustrations, we found that the in-
crement of the state space is becoming steady when the
model becomes larger, and so does the CPU time. This
means that SPIN can handle larger models, while, affect-

ing the state coverage (i.e., the number of visited stated

relative to the number of actual states), however. Gen-
erally, For a hash-factor between 10 and 100, SPIN gives

an expected coverage of 98% on average.

Bit-state hashing is an approximate approach. On
the other hand, when compared with classical random
simulation techniques, it is always better to use bit-state
hashing because the coverage is usually much better than
that achieved with random simulation. During the ver-
ification, we found that the more nodes are included in
the ATMR model, the less is the coverage. In the 3-node
verification, the coverage is greater than 99.9%, but in

the 6-node verification, the coverage is less than 98%.

There are some variance in the memory usage, es-
pecially in the 6-node model for Property 3. We think

there may be two reasons. One is that we are using the

Hong Peng, Sofiene Tahar and Ferhat Khendek: Comparison of SPIN and VIS for Protocol Verification 9

4000
=& Property p

—©- Property p2

—7— Property p3

3500 H —&— Property p4 4
—6— Property p5

—#—_ Property p6

3000 b

2500 q

2000 q

CPU time

1500~ il

1000~ il

500~ il

ATMR Nodes

Fig. 5. SPIN verification CPU time

1800

=5 Property pl
—o- Property p2
~v— Property p3
16001 A Property p4
—— Property p5
—*— Property p6

1400~

1200

1000

Memory (MB)

@
<3
S}

600

400

200

ATMR Nodes

Fig. 6. SPIN verification memory usage

approximate method. This method is actually a “ran-
dom” approach. The other is that we are working in a
multi-user operating system. The variance in the system

load will affect the experimental results.

4 Verification Using VIS

VIS [2] is a verification and synthesis tool for finite-state
hardware systems, developed at University of California
at Berkeley and University of Colorado at Boulder. It

uses the Verilog HDL as the input language and supports

x 10

—= Property pT
—S- Property p2
4.5/ ~v— Property p3
~£— Property p4
—— Property p5
4 L% Property p6

States stored
N
2
T
I

ATMR Nodes

Fig. 7. SPIN verification state space

CTL model checking with fairness constrains. Its funda-
mental data structure is a multi-level network of latches
and combinational gates. The variables of a network are
multi-valued, and logic functions over these variables are
represented by an extension of BDDs: multi-valued de-

cision diagrams.

VIS operates on the intermediate format BLIF-MV
[5]. It includes a compiler from Verilog to BLIF-MV
and extracts a set of interacting FSMs that preserves
the behavior of the Verilog program defined in terms of
simulated results. Through the interacting FSMs, VIS
performs CTL model checking under Biichi fairness con-
straints, i.e., sets of states that must be visited infinitely
often. The language of a design is given by sequences
over the set of reachable states that do not violate the
fairness constraint. If model checking fails, VIS reports

the failure with a counter-example.

10 Hong Peng, Sofiene Tahar and Ferhat Khendek: Comparison of SPIN and VIS for Protocol Verification

Client

,,,,,,,,,,,,,,,,,,,,,,

Access Unit

call cal |

out in

Channel Module

Fig. 8. Modified ATMR ring structure

Besides model checking, VIS supports equivalence
checking, cycle-based simulation, and synthesis functions,

such as state minimization and state encoding.

4.1 ATMR Specification

Since VIS is built on synchronous models, it is impossible
to directly describe the original asynchronous ATMR in
VIS, e.g., how to describe the cell transmission between
two access units using synchronous Verilog. We hence
need to build a pseudo-asynchronous ATMR protocol
to simulate the ATMR, protocol in the synchronous VIS
environment. There are many methods to simulate an
asynchronous system in a synchronous environment [1].
Here, because we only request that cell transmission be
asynchronous and the module itself be synchronous, we
propose to simply add a module channel in the Verilog
specification. This channel model will play the role of a

queue between two ATMR nodes (see Figure 8).

All the cells sent or received by the access unit will
hence be queued in the channel module. When the ac-
cess unit wants to read a cell from the channel, it actually
reads the cell from the head of the queue. If the destina-
tion is the current node, the cell will be processed in this
access unit. Otherwise, the cell will be forwarded to the
next node via the channel module. This way, the sending
and the receiving processes within the ring can remain
asynchronous. The channel is defined as follows.

channel (ch_out, ch_in, ID);
where ch_out and ch_in are wired connections to and
from the nodes; ID is the identification of the channel.

In this case, the access unit becomes.

mac_ctrl_node (req, ack, ch_out, ch_in, ID);

where req is the cell request signal from the client; ack
is the acknowledgment; ch_out and ch_in are the output
and input channels for each node; ID is the identifica-
tion of the node. Here, we do not put the clock signal
because we use the implicit clock source provided by VIS.
The req/ack pair follows the same rule as we defined in
the SPIN modeling, namely once ack becomes true, req
will be true in the next clock. Because Verilog instances
are synchronized by the clock, we have to put the req
generator in another instance and put a wire connection
between these two instances.

Except above features, the ATMR model (Figure 9)
we verified in VIS is very similar to that we used in
SPIN. The cell format is here again a simplified one,

containing only the ACF and RVCI fields (Figure 4).

Hong Peng, Sofiene Tahar and Ferhat Khendek: Comparison of SPIN and VIS for Protocol Verification 11

Channel Channel
Module Module
Channel Channel Channel
Module Module Module
{ ! {
E | Access Unit D | AccessUnit C Access Unit

Fig. 9. Modified ATMR ring structure

Note that given the specification nature in SPIN and
VIS, all components in VIS are true concurrent, while
they are interleaved in SPIN.

The Verilog pseudo-asynchronous ATMR, model is
given in Appendix B, where clk is the system clock; regq
and ack are the signals from/to the clients; out_cell and
in_cell are the output/input cells of this unit; id is the
identifier of this unit. The states and the cell types are
the same as that of SPIN model. The only difference is
that because Verilog does not have chan (channel) data
type and miype (message type) variable, we have to ex-

amine the data bit in the cell format explicitly.

4.2 ATMR Verification

We verified the same properties as in the SPIN study.
The only difference is that, in VIS, properties will be ex-
pressed in CTL and not in LTL. We present here the six
liveness and safety properties of Section 3.2 in CTL. In

the following descriptions, “=", “—=” and “ *” mean log-

ical “ equality”, “implication” and “and”, respectively.
“AG” and “AF” mean “all paths in all states” and “all
paths in future states”, respectively.

Property 1: Once an access unit exhausts its window

size credits, the credits will eventually be renewed.

AG(((credit[2] = 0) * (credit[1] = 0) *
(credit[0] = 0)) = AF(credit[2] = 1)* (credit[1] = 1)x
credit[0] = 0));
where credit is composed of three bits: credit[2], credit[1]
and credit[0].
Property 2: A client’s request will eventually be ac-

knowledged.

AG((req =1) —» AF (ack = 1));
Property 3: An access unit will eventually exit the RE-

SET state and enter the SEND state (see Figure 4).

AG((state = RESET) — AF (state = SEND));
Property 4: An access unit will eventually exhaust its

window size credit.

AG(((credit[2] = 1) * (credit[l] = 1)
(credit[0] = 0)) = AF ((credit[2] = 0) * (credit[1] = 0)x
(credit[0] = 0)));
In this property, we expect that all the credits will be
consumed during the sending procedure.
Property 5: The number of reset cells in the ring cannot

exceed the number of access units.

AG(NumofRst < NumofUnit);
In this property, NumofUnit is set to the number of ac-

cess units in the verification, i.e., 3, 4, 5, 6, respectively.

12 Hong Peng, Sofiene Tahar and Ferhat Khendek: Comparison of SPIN and VIS for Protocol Verification

Property 6: At SEND state, a given station cannot
send more cells than allowed by its credits.

AG((state == SEN D) — (Outmsgs <= 6))
here, Outmsgs is the number of cells which a given sta-
tion sends at the SEND state.

The experimental results of the CTL model checking
obtained in VIS are reported in Table 2, including CPU
time in seconds, memory usage in MB and the number
of BDD nodes allocated. The graphical representations
are given in Figures 10, 11, and 12. These experiments
were conducted on the same machine as the SPIN ver-
ification. During the verification, we used the advanced
ordering, window and sift [2] to reduce the BDD/MDD
size. VIS also provides a cone of influence model reduc-
tion [7] technique for invariant properties. However, in
the verification of liveness properties, this technique can-
not be applied. Besides, VIS provides a limited abstrac-
tion mechanism, namely the user must explicitly specify
which signal in the model can be abstracted in one spe-
cific property verification. This technique, however, can
only be used in a fairly simple situation and cannot be
applied in our case. Since the modeling language of SPIN
and VIS are different, we cannot say explicitly that the
two verified models, the PROMELA one and the Verilog
one, are exactly the same with respect to their semantics.
However, what we did is trying to follow the modeling
methods and coding styles of Verilog and PROMELA,
respectively. We also tried to keep these two models to

their minimum size in either tool, in order to be able to

x 10"

9

=5~ Property pT
-6- Property p2
—7 Property p3
—A— Property p4
—— Property p5
—4— Property p6

)

CPU time (s)

ATMR Nodes

Fig. 10. VIS verification CPU time

1400

—&= Property pT
- Property p2
~¥~ Property p3
—A— Property p4
—— Property p5
—% Property pé

1200 H

1000

Memory (MB)
®
3
S
T

@

<}

S
T

200

ATMR Nodes

Fig. 11. VIS verification memory usage

compare the efficiency of SPIN and VIS in the verifica-

tion of interleaving and concurrent models, respectively.

The VIS verification approach is not directly scalable
to large designs due to state space explosion. From the
verification results, we see that in the 3,4,5-node model,
the verification can be finished. However, the state space
blows up quickly with respect to the model size. In the
verification of the 6-node model, only Property 2 can

be finished. The other properties fail short of memory.

Hong Peng, Sofiene Tahar and Ferhat Khendek: Comparison of SPIN and VIS for Protocol Verification 13
3 nodes 4 nodes
Property || CPU Time (s) | Memory (MB) States CPU Time (s) | Memory (MB) States
P1 57 13.59 1513196 4290 26 680963412
P2 4.6 10.04 318106 10.1 11.85 732167
P3 6.3 11.91 528411 1962.1 201.69 346168207
P4 25.6 13.72 1166100 467.7 19.99 83736894
P5 4.1 9.87 308435 8.1 11.72 550583
P6 4.8 9.98 314168 9.6 11.66 565248
5 nodes 6 nodes
Property || CPU Time (s) | Memory (MB) States CPU Time (s) | Memory (MB) States
P1 19640.7 124.49 1811363276 - - -
P2 31 13.79 3920178 79324.5 844.01 3947015525
P3 20146.9 118.98 1829837953 - - -
P4 11372.3 105.04 1152672565 - - -
P5 14734.3 289.57 1231510174 - - -
P6 24.2 13.77 2492626 70920.1 752.69 2606471216

x10°

Table 2. ATMR verification with VIS

—=- Property pI
-6 Property p2
4.5 ~— Property p3
—A— Property p4
—— Property p5
—£— Property p6

States allocated
N w
o w @
T T T

N
T

15-

05

ATMR Nodes

Fig. 12. VIS verification state space

In this paper, we formally verified the asynchronous ATMR

5 Conclusions

VIS can finish an exhaustive search.

small models (less than 6 node), we found out that the

memory usage in VIS is more efficient than SPIN since

There are two reasons for the state space explosion. One
is the introduction of the channel module which is com-
posed of 19 latches. The other is the circular dependency
of the nodes in the ring. To solve this problem, we believe
that the data complexity must be decreased by more ef-

ficient abstraction and reduction techniques. Finally, for

protocol in both SPIN and VIS. Generally, when a pro-
tocol is implemented in hardware, it cannot be handled
only by a software (protocol) verification tool, like SPIN,
since most of these tools are based on an interleaving
current model and cannot reflect the true concurrency
aspects of a hardware implementation. A verification in
VIS leaves us, however, with the obligation of simulating

an asynchronous protocol in a synchronous environment.

14 Hong Peng, Sofiene Tahar and Ferhat Khendek: Comparison of SPIN and VIS for Protocol Verification
Feature H SPIN VIS
Target system Software Hardware
Basic model Interleaving model Synchronous model

Property language LTL CTL

Specification language PROMELA Verilog

Verif. of asynch. protocol Yes Additional channel module
CPU time usage Faster Slower
Main memory usage Larger Smaller
Detect dead-lock, live-lock, etc. Yes Indirectly via temporal formulas

Graphic User Interface Yes No

Table 3. Comparison of SPIN and VIS

Because of the inherent weakness of model checking,
both SPIN and VIS are not directly scalable to large
designs due to state space explosion. Thus, it is impor-
tant to find techniques that can be used in conjunction
with model checking tools like SPIN and VIS to extend
the size of the systems that can be verified. In this pa-
per, we used a data abstraction approach to reduce the
model of the ATMR protocol for both the SPIN and VIS

verifications.

Unlike VIS, SPIN is based on interleaving models,
and hence runs generally faster than VIS because each
state update is a simpler operation, being restricted to
one component only. Comparing the two sets of verifi-
cation results, we can find generally the verification in
SPIN is faster. For example, in the 3-node model veri-
fication, the verifications of Properties 1, 3, 4 and 6 in
SPIN are faster than those in VIS. Although the ap-
proximate technique used in the SPIN verification may
contribute to this difference, we do not think this is the

major factor because the SPIN coverages of the 3-node

model properties are greater than 99.9 percent. From
this point of view, it is a disadvantage for VIS not pro-
viding an easy-to-use approximate technique. In SPIN,
one possible way to reduce the interleavings is to make
the statements atomic if these statements can be syn-
chronous. Experiments showed that in this way the state

space can be reduced for at least one order of magnitude.

SPIN uses explicit state enumeration while VIS uses
implicit state enumeration (symbolic model checking).
Generally, VIS can use the memory more efficiently. From
our experiments, we found that VIS can finish the ex-
haustive search in the 3,4, and 5-node models. The on-
the-fly approach in SPIN does not show advantages be-

cause the model is large and the properties are global.

Since both SPIN and VIS are not scalable to large de-
signs, model reduction techniques are very important for
verification. Both tools provide model reduction options,
namely partial order and cone of influence, respectively.
Partial order reduction can only be used in the inter-

leaving model and is not feasible in a tool like VIS. The

Hong Peng, Sofiene Tahar and Ferhat Khendek: Comparison of SPIN and VIS for Protocol Verification 15

model reduction techniques in VIS are limited and need
a lot of human interaction.

Another weakness in VIS is that it cannot directly re-
port deadlocks, livelock and unreachable code. We have
to express these properties with temporal formulas. For
example, a deadlock, is expressed as: “Sender is not in
send state and receiver is not in receiving state and there
is at least one cell in the channel.” Generally, this prop-
erty is difficult to specify in CTL. In SPIN, a deadlock
can be easily found using a timeout statement.

Finally, two practical features of these tools are worth
mentioning. Namely, while VIS has a Verilog front-end
allowing industrial designs to be imported and verified,
SPIN comes with a graphic user’s interface which greatly
eases the use of the tool compared to VIS.

A summary of the main comparison mentioned above

and throughout the paper is given in Table 3.

Acknowledgments

This work is partially supported by a Concordia gradu-
ate student scholarship and NSERC research grants no.

0OGP0194302 and no. OGP0194234.

References

1. Rajeev Alur and Thomas A. Henzinger. Reactive mod-
ules. Formal Methods in System Design: An Interna-
tional Journal, 15(1):7-48, July 1999.

2. R. K. Brayton et al. VIS: A system for verification and
synthesis. In Proceedings of Computer Aided Verification,
volume 1102 of LNCS, pages 428-432. Springer Verlag,
Rutgers University, NY, USA, July 1996.

3. E. Brinksma and A. Mader. Verification and optimiza-
tion of a PLC control schedule. In Proceedings of the
7th SPIN Workshop, pages 73-92, Stanford University,
California, USA, September 2000.

4. M. Charpentier and G. Padiou. Specification and ver-
ification of the ATMR protocol using UNITY. In Pro-
ceedings of International Workshop on Formal Methods
for Parallel Programming, pages 26-36, University of
Geneva, Switzerland, April 1997.

5. S. T. Cheng, R. K. Brayton, G. York, K. A. Yelick, and
A. Saldanha. Compiling verilog into timed finite state

machines. In Proceedings of International Verilog Con-

ference, 1995.

6. E. M. Clarke, O. Grumberg, and D. Long. Verifica-
tion tools for finite-state concurrent systems. In REX
School/symposium on a Decade of Concurrency: Reflec-

tions and Perspectives, pages 124-175, Noordwijkerhout,
The Netherlands, June 1993.

7. E. M. Clarke, O. Grumberg, and D. Peled. Model Check-
ing. MIT Press, 2000.

8. E. A. Emerson. Temporal and modal logic, Handbook of
theoretical computer science. Elsevier Sciences B.V. J.

van leeuwn north Holland edition, 1990.

9. G. J. Holzmann. Design and validation of computer pro-

tocols. Prentice Hall, 1991.

10. G. J. Holzmann. The engineering of a model checker:
the Gnu i-protocol case study revisited. In Proceed-
ings of Spin Workshop, pages 233-244, Toulouse, France,

September 1999.

11. G.J. Holzmann and D. Peled. An improvement in for-
mal verification. In Proceedings of International Confer-
ence on Formal Description Techniques for Distributed
Systems and Communications Protocols, pages 177-194,

Bern, Switzerland, September 1994.

12. ISO. Specification of the Asynchronous Transfer Mode
Ring (ATMR) Protocol, 2.0 edition, January 1993.

13. K. L. McMillan. Symbolic Model Checking. Kluwer Aca-
demic Publishers, 1993.

16

A

proctype AccessUnit(byte ID; chan in, out){

Hong Peng, Sofiene Tahar and Ferhat Khendek: Comparison of SPIN and VIS for Protocol Verification

PROMELA model of the ATMR

byte State=Idle;
MSDU_struct data;
Xr in;

Xs out;

start: do

:: (State==Idle)—>
if
:: (Msgs[ID]1>0)—>
if
::(Credit[ID]>0)->State=Send;
goto start;
:: (Credit [ID]<=0)-—>
State=WaitCredit;goto start;
fi
:: (Msgs[ID]==0)->
Msgs [ID] =MaxMsgs;
ack[ID]=0; req[ID]=1;
if
::in?DataCell(data)->
if
::(data.Dest_Add==ID)->
data.Dest_Add=0;
out!EmptyCell(data) ;
::(data.Dest_Add!=ID)->
out!DataCell(data);
fi
::in7ResetCell(data)->
Credit[ID]=MaxCredit;
out!ResetCell(data);
::in7EmptyCell (data)->
if
:: (data.Busy_Add==ID)->
Receive_RstReq[ID]=1;
out!ResetCell(data);
Send_Rst[ID]=1;
State=Reset;

:: (data.Busy_Add!=ID)->
out!EmptyCell (data) ;
State=Idle;

fi;

Msgs[ID]=
((A[ID]*PreMsgs[ID]+C[ID]);
ack[ID]=0; req[ID]=1;
PreMsgs[ID]=Msgs[ID];
fi;
fi;
:: (State==Send) >
if
::in7EmptyCell (data)->
data.Dest_Add=
((A[ID]*PreDest [ID]+C[ID]);
if
::(data.Dest_Add==ID)->

data.Dest_Add=(data.Dest_Add;

::(data.Dest_Add!=ID)->;
fi;
PreDest[ID]=data.Dest_Add;
data.Busy_Add=ID;
out!DataCell(data);
Msgs[ID]--;
ack[ID]=1; req[ID]=0;
Credit[ID]--;State=Idle;
::in7DataCell(data)—>
data.Busy_Add=ID;
if
:: (data.Dest_Add==ID)->
data.Busy_Add=ID;
data.Dest_Add=0;
out !EmptyCell(data) ;
::(data.Dest_Add'=ID)->
data.Busy_Add=ID;
out!DataCell(data);
fi
::in7ResetCell(data)->
Credit [ID]=MaxCredit;
out !ResetCell(data);
State=Idle;
fi

:: (State==Reset) >

if
::in7DataCell(data)—>
if
:: (data.Dest_Add==ID)->
data.Dest_Add=0;
out !EmptyCell(data);
::(data.Dest_Add!'=ID)->
out!DataCell(data);
fi
::in7ResetCell(data)->
Credit [ID]=MaxCredit;
Send_Rst [ID]=0;
Receive_RstReq[ID]=0;
data.Busy_Add=ID;
out !EmptyCell(data) ;
State=Idle;
:in?EmptyCell (data)->
out!EmptyCell(data) ;
::timeout->
data.Busy_Add=ID;

out !ResetCell(data) ;NumofRst++;

fi

:: (State==WaitCredit)->

if
::in7DataCell(data)—>
if
::(data.Dest_Add==ID)->
data.Dest_Add=0;
out!EmptyCell(data);
::(data.Dest_Add!=ID)->
out!DataCell(data);
fi

Hong Peng, Sofiene Tahar and Ferhat Khendek: Comparison of SPIN and VIS for Protocol Verification 17

::in?EmptyCell(data)-> if (in_cell[7:5] == id)

if begin

:: (data.Busy_Add==ID)-> out_DA=0;
Receive_RstReq[ID]=1; out_celltype=Empty;
out!ResetCell(data); end
Send_Rst [ID]=1; end

State=Reset;
:: (data.Busy_Add!=ID)->

Reset: begin
crdt = 6;//MaxCrdt;

out!EmptyCell(data) ; end
fi Empty: begin
::in?ResetCell(data)-> if (in_cell[4:2] == id)
Credit[ID]=MaxCredit; begin
out !ResetCell (data); out_celltype=Reset;
State=Idle; state=RESET;
fi end
od end//empty
} endcase
end
SEND:

case (in_celltype)

Empty: begin
out_celltype=Data;
out_BA=id;
out_DA=(id+1);
if (out_DA >4)

B Verilog model of the ATMR

module mac_ctrl(clk, req, ack, out_cell, in_cell, id);

input clk; :
input [0:7] in_cell; begin
input req; out_DA = 0;
input [0:2] id; end
output [0:7] out_cell; crdt=crdt-1;
output ack; ack=1;

reg [0:7] out_cell; state=IDLE;

end

mac_state reg [0:1] state;

mac_celltype reg [0:1] in_celltype,out_celltype; Data: begin

reg [0:2] crdt,out_BA,out_DA; out_BA=id;
reg ack; if (in_cell[7:5] == id)
initial begin begin
in_celltype=Empty;out_celltype=Empty; out_BA=id;
out_DA=0;out_BA=0; out_DA=0;
ack=0;state=IDLE;crdt=6;//MaxCrdt; out_celltype=Empty;
out_cell[1:0]=1; end
out_cell[4:2]=id; end
out_cell[7:5]=0; Reset: begin
end crdt = 6;//MaxCrdt;
always @(clk or incell) begin state=IDLE;
out_BA = in_cell[4:2]; end
out_DA = in_cell[7:5]; endcase
case(state) RESET:

IDLE: case (in_celltype)

Data: begin

if (req == 1)
if (in_cell[7:5] == id)

if (crdt > 0)

state=SEND; begin
else out_DA=0;
state=WAITCRDT; out_celltype=Empty;
else end
begin end

case (in_celltype)
Data: begin

Reset: begin

if

(in_cell[4:2] == id)

18 Hong Peng, Sofiene Tahar and Ferhat Khendek: Comparison of SPIN and VIS for Protocol Verification

begin
crdt=6;//MaxCrdt;
out_BA=id;
out_DA=0;
out_celltype=Empty;
state=IDLE;
end
end
Empty: ;
endcase
WAITCRDT:
case (in_celltype)
Data: begin
if (in_cell[7:5] == id)
begin
out_DA=0;
out_celltype=Empty;
end
end
Reset: begin
crdt=6;//MaxCrdt;
state=IDLE;
end
Empty: begin
if (in_cell[4:2] == id)
begin
out_celltype=Reset;
state=RESET;
end
end
endcase
endcase
case (out_celltype)
Data: out_cell[1:0]=0;
Empty: out_cell[1:0]=1;
Reset: out_cell[1:0]=2;
endcase
out_cell[4:2]=out_BA;
out_cell[7:5]=out_DA;
end//always
endmodule

