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Abstract 

A Simplified Heat Wave Warning System 

Arya Nakhaie Ashtiani 

Extreme heat is a natural hazard that could rapidly increase in frequency, duration, 

and magnitude in the 21st century. During the summer, the combined effect of urban heat 

island (UHI), climate change and global warming increases ambient air temperature. This 

leads to a rise in indoor environment temperature, reduction of thermal comfort, increase 

of cooling demand, and heat related morbidity and mortality especially among vulnerable 

people such as the elderly and those who are living in buildings without mechanical 

ventilation systems. 

Cities are developing tools to predict the indoor air temperature during extreme heat 

waves in order to be able to provide emergency plans if necessary. To do so, it is required 

to find a relationship between the indoor and outdoor conditions. Hence there is an urgent 

need to develop a reliable method for indoor air temperature prediction by taking into 

consideration not only the outdoor conditions but also the socio-economic aspects of the 

neighborhood. 

The objective of this study is to develop a warning system to predict the indoor air 

thermal condition during heat wave events in buildings without mechanical ventilation 

systems. In order to develop a regional heat warning system, two different methods were 

proposed and tested for an indoor air temperature forecasting application with respect to 

neighborhood parameters. The first method was based on regression and the second one 

was based on the Artificial Neural Network (ANN) model. The inputs and outputs to the 
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proposed models were the field measurement data which has been collected on Montreal 

Island during the summer of 2010 (Park et al, 2010). To find the most practical approach, 

both proposed models were compared with respect to their accuracy and the required 

resources. A comparison of the proposed regression and ANN models was conducted by 

two different levels of simulation. The ANN model showed better accuracy in predicting 

the indoor dry-bulb temperature, but it was more complicated to apply. 
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Chapter 1 

Introduction 

1.1 Urban Heat Island (UHI) 

Due to the increase in urbanization, industrialization, and human activities, 

especially after the Second World War, cities experience higher temperatures than their 

nearby rural areas. This phenomenon, known as Urban Heat Island (UHI), is being 

investigated worldwide, and first was documented by Luke Howard in 1818 (Mirzaei and 

Haghighat 2010; Sailor and Dietsch, 2007). The phenomena of UHI is already documented 

in many cities i.e., London (Chandler, 1965), Montreal Island (Oke and East, 1971), 

Toulouse (Estournel et al., 1983), Paris (Escourrou, 1991), Mexico (Oke et al., 1999), and 

Atlanta (Bornstein and Lin, 2000). 

The undesired side effects of UHI on decreasing outdoor air quality, increasing air 

conditioning energy consumption, heat related illness and mortality make it a hazardous 

issue that motivates scholars to study its influential parameters, mitigation strategies and 

prediction methods. Heat waves rank first as the cause of human mortality compared to 

other meteorological hazards i.e., floods, hurricanes, and tornadoes. It poses threats to 

property and human health (Wilhelmi et al., 2004). Hajat et al. (2002) defined heat wave 

as a three day rolling average above the 97th percentile value of 21.5° C. 

Studies showed that heat can aggravate medical problems particularly with the 

elderly, children, and the ill (Smoyer 1998; Nakai et al. 1999). Hospitalizations were 

increased in London and Chicago during the 1995 heat waves (Rooney et al., 1998; 



2 

 

Semenza et al., 1999). People suffering from cardiovascular, cerebrovascular, and 

respiratory diseases experience an increase in overall mortality during and following heat 

waves (Kilbourne 1997). The human physiological response to excessive heat entails an 

increase in surface blood circulation, in order to increase heat loss through radiation, 

convection, and increased rates of evaporative cooling by sweating (Bouchama & Knochel, 

2002). An increase in cardiac output is needed to increase circulation, but is limited by 

maximum heart rate and vascular volume. Under excessive levels of heat stress, the body 

can no longer maintain temperature balance and death may occur (Sheridan and Kalkstein 

2004).  

The National Weather Service Office of Climate, Water, and Weather Services 

estimated that a total of 2,248 people throughout the United States lost their lives due to 

extreme heat waves between 1986 and 2000. Moreover, they estimated 2,200 million 

dollars were lost to extreme heat weather during the same period (Wilhelmi et al., 2004). 

The deaths of around 50,000 people in August 2003, in Europe is the recent example of a 

heat wave contributing to mortality (Mirzaei and Haghighat 2010). 

In addition to above information, UHI affects the indoor thermal environment 

conditions such as temperature and humidity especially in dwellings where HVAC systems 

and mechanical ventilation systems are not available (Health Canada, 2009). Therefore, 

studying the UHI phenomena can be useful to improve indoor thermal conditions 

prediction. By considering the fact that the vulnerable groups of people may spend more 

time in their places during the day (Oikonomou et al., 2012),  knowing the indoor thermal 

conditions (instead of outdoor thermal conditions) may help city planners to provide better 
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emergency plans for vulnerable people. A better emergency plan leads to an improvement 

in human health survival by reducing morbidity and mortality.  

Moreover, knowing the indoor air temperature is important to evaluate the strict 

thermo-hygrometric environment in museums (Ascione et al., 2009). Balaras et al. (2007) 

reported that an accurate knowledge of the room temperature required assessing the indoor 

air quality of hospital operating rooms for patients and medical persons. Also, the 

knowledge of room temperature is required to analyze the thermal comfort and indoor air 

quality evaluation of naturally ventilated buildings (Yan et al., 2008; Wei et al., 2011). 

1.2 Climate Change and Global Warming 

Climate change is induced by anthropogenic heat and greenhouse gases and results 

in global warming. Both climate change and global warming derange the local or regional 

climate by way of heat trapping. They not only result in extreme weather formation, but 

also increase the intensity of extreme weather events. Moreover, the effect of urbanization 

and industrialization on the quality of the environment is multiplied. The problems of high 

summer temperatures in urban areas are likely to become worse in the future because of 

climate change (Oikonomou et al., 2012).The climate change induced by the emissions of 

greenhouse gases is considered as one of the main challenges facing human kind in the 21st 

century with serious global consequences for the environment and human health. Climate 

change is felt to be more important in countries that might experience a shift from 

predominantly heating to predominantly cooling of their buildings (Guan, 2012; Wilde & 

Coley, 2012). 
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Global warming is the rise in the average temperature of the Earth’s surface, 

atmosphere, and oceans and its projected continuation. It is primarily caused by increasing 

concentrations of greenhouse gases (Choices Committee on America's Climate; Council 

National Research. 2011). It is certain that global warming can increase the frequency and 

intensity of heat waves which can cause discomfort to the human body and, in the worst 

case scenario, can lead to more heat illness casualties (Lun et al., 2012). Lun et al, (2012) 

stated that there is an interrelationship between extreme weather, climate change, and 

global warming.  

The frequency and severity of extreme weather events, such as heat waves, are 

projected to increase as a result of climate change. Global warming trends are projected to 

double the likelihood of such events (Mavrogianni et al., 2012). Current projections suggest 

a heat wave of similar magnitude of summer 2003 may occur as frequently as every three 

years by the 2050s (Hajat et al., 2007; UKCIP 2010; Pachauri and Reisinger 2007). 

It is also expected that climate change increases the risk of overheating in buildings. 

Buildings provide an interface between the outdoor environment, which is subjected to 

climate change, and the indoor environment, which needs to remain within a specific range 

to keep the building occupants comfortable and healthy. 

Buildings, as one of the most significant factors, contribute to the global warming 

process by consuming a considerable amount of energy and materials (Guan 2011). 

Buildings are responsible for 40% of the world’s total energy use, 30% of raw materials 

consumption, 55% of timber harvests, 16% of fresh water withdrawal, 35% of global 

carbon dioxide (CO2) emissions and 40% of municipal solid waste sent to landfills (Fenner 
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& Ryce, 2008). Also, Buildings are considered to be the main contributor to the UHI effect. 

Building masses increase the thermal capacity, decrease water evaporation by reducing 

green areas, and lessen wind velocity at ground level by increasing ground surface 

roughness. Therefore buildings have a direct bearing on city ventilation and temperature 

and are intensive energy consumers and a major cause of greenhouse gas emissions (Lun 

et al., 2012). Several modeling case studies also showed that there is high risk of thermal 

discomfort and heat stress due to climate change in many existing buildings (CIBSE 2005). 

However, the impact of climate change is largely dependent on several building 

characteristics and environmental factors such as the height of the buildings and vegetation 

ratio that will be discussed further. 

Wilde and Coley (2012) extensively discussed the climate change impact on the 

urban area. The overall conclusion of their study articulated that the impact of climate 

change results in an increase in indoor air temperature, especially in buildings in temperate 

climates. Gupta and Gregg (2012) assessed the effect of future temperature change in 

existing English homes. They found out that, ultimately among the passive options tested, 

none could completely eliminate the risk of overheating in the homes, particularly by the 

2080s.  

As mentioned before, high indoor temperatures in dwellings can have adverse 

effects on energy use, comfort and health. The dynamic interaction between building 

systems and external climate is extremely complex, including a large number of 

complicated variables and phenomena. It is important to develop a simple approach to 

determine indoor temperatures using forecasted weather data which will be discussed 

further in this thesis. 
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1.3 Heat Watch/Warning Systems 

Heat is rated as the greatest weather killer factor in many areas of the world. 

Considering the growing numbers of vulnerable people (elderly and children) and 

increasing social isolation, significant number of people will be susceptible to heat waves. 

Moreover, in a potentially warmer world, heat susceptibility could increase further 

(Kalkstein and Greene 1997). Thus, in order to protect the public and especially vulnerable 

persons from heat, establishing heat watch-warning systems and mitigation plans is 

necessary.  

In many cities, the primary heat alert systems were based on the computation of the 

heat index, which combines the impact of temperature and relative humidity. In 

Philadelphia, a heat warning was issued when daytime heat index values were expected to 

reach 40.5 °C or above for more than 3 hours a day for 2 consecutive days, or when the 

daytime heat index is expected to exceed 46 °C for any length of day (Kalkstein et al., 

1996; NOAA 1994). For years, the US National Weather Service issued warnings when a 

daytime heat index reached 41°C or above with nighttime lows at or above 27 °C for two 

consecutive days (NWS 1992). In Shanghai excessive heat warnings were issued by the 

Meteorological Bureau on days in which the maximum temperature exceeded 35 °C (Tan 

et al., 2004). 

The systems designed based on heat index contain some disadvantages. First, these 

systems consider the effect of only two meteorological variables on people (temperature 

and humidity). It is quite clear from other studies that a number of other meteorological 

variables play a significant role on human comfort, like wind and radiation (Kalkstein and 
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Davis 2005; Steadman 1979). Second, it does not take into account the fact that earlier 

summer heat waves of similar character often create more of a health danger than those 

late in the season (Kalkstein 1993; Kalkstein and Greene 1997). Third, they are not able to 

estimate mortality or morbidity that are a consequence of heat waves. Finally, these 

systems were used in many locations without considering human adaption and 

acclimatization (Kalkstein and Valimont 1986). 

The fact that the human body responds to the total effect of all-weather variables 

interacting simultaneously on it rather than to individual meteorological elements, 

encourages researchers to design more effective heat watch/warning systems. In 

Philadelphia a heat alarm system based on a climatological index was developed to 

categorize each day based on its meteorological character. Air temperature, dew point 

temperature, total cloud cover, sea level pressure, wind speed, and wind direction were six 

meteorological elements which were used for developing the system and classifying days 

into some meteorologically homogeneous (air mass) categories. The system forecasts air 

mass types of the current day and coming 2 days. The air mass types are mostly as follows 

(Sheridan and Kalkstein 2008; Tan et al., 2004): 

- Dry polar: very cold, very dry 

- Dry moderate: mild, dry 

- Dry tropical: very hot, very dry 

- Moist polar: cold, cloudy, rainy 

- Moist moderate: overrunning, cool, drizzle, fogy 

- Moist tropical: hot, very humid 

- Transition: a change from one air mass type to the next 
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A standard stepwise multiple regression analysis was then used to determine which 

factors within the oppressive air mass contribute to elevated mortality. In Philadelphia and 

many other cities these factors were recognized as the number of consecutive days the 

oppressive air mass had been present, and the time of season that the heat wave occurred. 

Among those, the air masses that contain both highest average temperature and humidity, 

and dew point in some cases like dry tropical and moist tropical, were considered as the 

most oppressive air mass types (Kalkstein et al., 1996; Sheridan and Kalkstein, 2004). The 

new warning systems alert the public more effectively to offensive days when dangerous 

weather is predicted, thus saving more lives (Tan et al., 2004). 

Ebi et al. (2004) concluded that issuing a warning lowered daily mortality by about 

2.6 lives on average. It implies that the gross benefits of the Philadelphia Hot Weather-

Health Watch/Warning System which was developed in 1995 could be on the order of 468 

million dollars (117 live saved) over the 3 year period (1995 - 1998). The low estimated 

cost of heat warning systems argues for being more tolerant about issuing warnings. The 

total cost of the Philadelphia heat warning system was in the order of 210 thousand dollars 

over the same period. Obviously, if such heat warning system saved any lives, it would 

have large estimated dollar benefits. This is because the value of a statistical life (VSL), 

for even one life, is bigger than the cost of the system. It is also noteworthy that morbidity 

reduction is an additional benefit which was not included in their analyses. Tan et al. (2004) 

analyzed a warning system for Shanghai throughout the summer of 1999. The algorithm 

predicted 331 excess deaths due to the heat wave, only slightly more than 294 recorded. 

The heat warning system of Philadelphia has been the basis for many other heat 

warning systems (Kalkstein 2002; Sheridan and Kalkstein 1998). Over the past several 
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years, many more synoptic based systems were developed and improved in other United 

States cities including Phoenix, Arizona; Washington, D.C.; Chicago, Illinois; St. Louis, 

Missouri; Cincinnati and Dayton, Ohio, and a network of cities across Tennessee, 

Louisiana, Arkansas, and Mississippi. Also, systems were developed for cities in other 

countries including four Italian cities; Toronto, Ontario; (Canada) and Shanghai, (China) 

(Sheridan and Kalkstein 2004). 

1.4 Heat/Health Warning System Development in Toronto and Montreal 

It was about the beginning of the 21st century that Canadian cities began to develop 

programs to protect the public from heat waves. Toronto and Montreal are the largest urban 

centers in Canada. Various climatological, demographic, environmental, and socio-

economic factors threaten the population of the two cities by imposing the risk of mortality 

and morbidity during summertime (Smoyer-Tomic and Rainham 2001). 

In 1999, Toronto Public Health (TPH) set a warning system that issued an alert 

when humidex (which is an index calculated from dry-bulb temperature and humidity) 

reached 40°. The emergency services implemented through hospitals and other institutions 

when humidex reached 45°. During the period 1998-2003, Montreal Public Health 

Authority had become active in order to respond and appropriately deal with summer heat 

waves. As a part of Montreal’s heat response plan, public warnings were issued whenever 

a temperature of 30° C or more and an apparent temperature of 40° humidex or more were 

forecasted (Kosatsky et al., 2005). 
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In 2000, based on the requirements of TPH and Toronto Atmospheric Fund, the 

University of Delaware and Dr. Lawrence Kalkstein developed a more predictive 

heat/health warning system for Toronto. The new system is based on the retrospective 

analysis of 17 years of daily mortality in relation to weather factors. In 2003, a research 

was conducted in Montreal to identify the weather parameters associated with excess 

mortality using both time series and synoptic approaches. Based on that research, the action 

level for issuing alert systems for the following summers were modified (Kosatsky et al., 

2005). 

1.5 Objective and scope of work 

Extreme heat is a natural hazard that could rapidly increase in frequency, duration, 

and magnitude in the 21st century. This would lead to increase discomfort, with 

implications for health, and mortality. The combination of increasing urbanization, 

growing numbers of vulnerable people, such as the elderly and children, and the evidence 

of global warming and climate change indicate an urgent need for improved simplified heat 

wave response systems. Sheridan and Kalkstein (2009) mentioned that even with outdoor 

temperatures remaining similar from day to day during a heat wave, indoor temperature 

may continue to escalate, creating an excessive health hazard. As mentioned before, using 

the indoor temperature in heat watch/warning systems may lead to improving the system 

prediction and decreasing the rate of heat mortality/morbidity. 

To date, there are two types of models for predicting room air temperature: 

analytical (simulation) and numerical (statistical) models.  Limited research has been 

carried out that explores the use of different statistical methods in predicting indoor air 
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temperature during heat wave in the UHI. On the other hand, so many different building 

simulation programs exist but most of them are complex and require detailed information 

about physical building characteristics (Lankester and Brimblecombe, 2011). The 

statistical methods are much simpler and quicker in prediction.  

The objective of this thesis is to develop a warning system using two different types 

of statistical methods: regression and ANN. This system is expected to predict the indoor 

air thermal condition in buildings occupied by most vulnerable people (low income, hot 

spot, highly populated) during heat waves. The existing field measurement data that was 

carried in Montreal in 2010 was used. These two methods (regression and ANN) are 

proposed and tested for indoor air temperature forecasting application with respect to 

ambient weather conditions and UHI effects. 
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Chapter 2 

Literature Review 

2.1 Introduction 

Wu and Su (2012) stated, in general, there are two types of models for predicting 

room air temperature: analytical and numerical models. The analytical models are widely 

implemented in popular simulation tools such as EnergyPlus (Pedrini 2002), DOE-2, 

TRANSYS, Modeliaca (Wetter 2009), eQUEST, etc. These models are complex, because 

they use detailed architectural and building materials properties parameters to describe the 

thermal phenomena processes. This is very important since architectural and material 

parameters of a building greatly influence its thermal performance. These models can be 

used to predict indoor thermal environment at early stage of design, even before the 

building is constructed. However, Lowry and Lee (2009) presented that there are many 

simplifying assumptions that make it quite a challenge to obtain reliable analytical models. 

These assumptions are made to deal with complexity of thermal interactions, unmeasured 

disturbances, uncertainty in thermal properties of structure elements and other parameters. 

This is also a time consuming process since requires extensive input data.  

In addition, numerical data-driven modeling approaches establish models by only 

using input and output measurements (Wu and Su, 2012). Thus, they are time-efficient 

methods due to their simple structure. They also have low computation cost compared to 

analytical models. But, these models are highly dependent on the measurements. Artificial 

Neural Networks (ANN), and regression methods are two numerical approaches. Many 
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researchers have developed numerical models for the indoor air temperature prediction. 

For this purpose, they used observations. Field measurements and thermal remote sensing 

are two different observation methods (Mirzaei and Haghighat, 2010). 

2.2 Methods for Air Temperature Prediction 

With recent progress in computational tools, simulation methods and computational 

techniques have been used extensively to solve large scale problems. However, the 

complexities of air temperature prediction, the increased cost and required computational 

time of the analytical modeling approaches have led to the exploration of other accurate 

prediction methods. All these approaches have their own limitations and drawbacks. They 

are not able to take into consideration all the phenomena and parameters that 

simultaneously affect the indoor air temperature (Mirzaei and Haghighat, 2010; Gobaksi et 

al., 2011). 

2.2.1 Application of Regression Models for Indoor Air Temperature Prediction 

The linear regression model has been widely used for predicting and forecasting 

(ASHRAE Fundamentals, 2009). Linear regression assumes there is a direct linear 

correlation between variables. This assumption is sometimes incorrect. Outliers, the 

observations that are distant from the rest of data, can have huge effects on the linear 

regression by decreasing the accuracy of the prediction since extreme values cannot be 

always captured in the predictions.  
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 Lankester and Brimblecombe (2011) used this model to predict indoor air 

temperature and relative humidity in unheated historic rooms across Europe. The historic 

room in this study is a place where antiques are kept. In their study, the daily outdoor 

temperature is the input and the daily indoor temperature is the output of the model. 

Different coefficients were determined for each month to consider the seasonal variation 

in building ventilation. These coefficients were derived from 9 years of observations of 

room thermal condition and outdoor weather conditions. Although the value of R2 (the 

coefficient of determination) was 0.93, the model failed to capture the extreme values. The 

main drawback of the regression technique is that it is case specific. That means the model 

is only good for the room that the data was used to develop and cannot be used for other 

rooms. 

Wright et al., (2005) indicated that, clearly there is a relationship between indoor 

and outdoor air temperature. This correlation can be shown by plotting daily average indoor 

air temperature against daily average outdoor air temperature with different relationships 

for different rooms. They conducted a study in UK to predict indoor temperature in a 

sample of residential dwellings during august 2003. They found the R2 values of 0.78 and 

0.73 for bedroom and lounge, respectively. The above studies did not consider the effect 

of other meteorological parameters as well as local environmental factors and building 

characteristics. 

Wright et al. (2005) also stated since buildings have thermal mass, in order to 

analyze the indoor air temperature the history of outdoor air temperature over a few days, 

should be taken into consideration. As a matter of fact, there is a better correlation between 
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indoor air temperature and outdoor air temperature of preceding days. To capture the 

historic influence of outside air temperature, they used the following equation: 

ℎܶ = ܶߙ  + ሺͳ − ሻߙ ℎܶ−ଵ    (1) 

where, ℎܶ is the historic indoor air temperature, ܶ is the average outdoor air temperature 

on day n, and α is a constant between zero and one (0 < α ≤ 1). α represents the thermal 

mass of buildings. A linear relationship between ℎܶ and the daily average indoor 

temperature was established for each room. α was optimized to maximize the R2 values for 

each  studied room. The linear relationship can later be used for further prediction. The R2 

values were 0.96 and 0.93 for bedroom and lounge, respectively. Moreover, the method 

was applied to 3 other rooms and similar results were obtained. R2 values were consistently 

high, all just over 0.9 showing this was a trustable model. Greater value of α means 

lightweight materials were used in the building. In their study, values of α range from 0.3 

to 0.8, but most values were in the range 0.3 to 0.5. 

2.2.2 Application of Artificial Neural Networks (ANN) for Indoor Air Temperature 

Prediction 

Thomas and Mohseni (2007) discussed on how to identify black-box indoor air 

temperature prediction models in buildings. They carried out the study in two different 

buildings located in the southern part of Sweden. They used measured data such as internal 

heat power, indoor air temperature, outdoor air temperature, solar radiation, and time of 

the day for six days every 10 minutes. Different linear and nonlinear prediction models 

were identified and compared. They concluded that for the studied buildings, the ANN 
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models trained by the Levenberg-Marquardt algorithm gave more accurate temperature 

predictions than linear regression models using the least squares method (MATLAB, 

2012). They reported that ANN models are better than linear regression models since they 

provide more accurate responses when applied to nonlinear systems. 

Lu and Viljanen (2009) used ANN to predict the indoor air temperature and relative 

humidity in a house. Indoor and outdoor temperature and relative humidity were measured 

every 15 minutes for 30 days. No additional information was considered for the input of 

the model. In their study, indoor air temperature predictions performed better than those of 

indoor relative humidity. R2 values between predicted and measured air temperatures were 

0.998 and 0.997 for the air temperature and humidity models, respectively. 

Mirzaei et al. (2012) discussed developing reliable tools to predict indoor air 

temperature using available building characteristics, climate data and socio-economic 

factors. In their study, two models (simplified and advanced) were developed to predict 

hourly indoor dry-bulb temperatures in 55 residential buildings. Both models used ANN 

technique. The simplified model generated a correlation between airport weather 

observations (outdoor dry-bulb temperature, relative humidity, wind speed, and solar 

radiation) and monitored indoor dry-bulb temperatures. The advanced model included ten 

influential parameters, which represented the effect of neighboring environment and 

building characteristics. These ten input data were: outdoor dry-bulb temperature, relative 

humidity, neighboring wind speed, solar radiation, building volume, building occupancy, 

aspect ratio, vegetation ratio, location of indoor temperature measurement, and hour of the 

day. The output of the model was measured indoor dry-bulb temperature. The advanced 

model showed better accuracy in predicting the indoor thermal conditions. The MSEs were 
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2.51 for the advanced model and 2.74 for the simplified model in the last level of validation. 

It is justifying the use of neighborhood specific parameters to forecast indoor environment 

condition in an urban heat island area. 

Many other researchers have used ANN models to predict indoor air temperature. 

Pollard and Stoecklein (1998) used ANN models to predict the indoor air temperature of a 

residential building and compared the results to linear regression methods. They concluded 

that the results are comparable. Mechaqran and Zouk (2004) compared prediction results 

of indoor air temperature of a building using ANN and linear regression models. In this 

case ANN model provided clearly more accurate results. Moreover, prediction of indoor 

air temperature using ANN models has been discussed by Gouda et al. (2002) and 

Kalogirou (2000). Mechaqran and Zouk (2003) studied the optimum size of a neural 

network to predict the indoor air temperature in order to decrease the error. Ferreira et al. 

(2002) used radial basis function (RBF) ANN models to predict indoor temperature of a 

greenhouse. Ruano et al. (2006) also used RBF ANN to predict indoor air temperature of 

a school. Similar work was done by Zhang et al. (2005). These examples provide an insight 

into the depth of ANN studies in predicting the indoor temperature. 

2.2.3 Application of Regression Models for Outdoor Air Temperature Prediction 

Priyadarsini et al. (2008) used multiple linear regression (MLR) technique to 

predict the air temperature inside an urban canyon. The independent variables were: wind 

speed, aspect ratio (H/W), and surface temperature of the façade materials. Two different 

scenarios were considered. In the first scenario, the MLR model was used to relate the 

outdoor air temperature to mentioned independent parameters at very low wind speeds. 
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The R2 value was 0.87 that showed a good fit. In the second scenario, different wind speeds 

were considered and the R2 value in this case was 0.54 which is a poor fit. It was found 

that at very low wind speeds, the effect of façade material and their colours was very 

significant on the air temperature at the middle of a narrow canyon.  

Giridharan et al. (2008) employed MLR technique to study the impact of on-site 

variables on the influence of vegetation in lowering outdoor air temperature. In this study 

the selected independent variables were: surface albedo, sky view factor, altitude, shrub 

cover, tree cover, and average height to floor area ratio. The dependent variable for the 

analysis was the UHI intensity, which is defined as temperature difference between a 

measurement point in the residential estate and the observatory station at a particular time. 

For five different scenarios of vegetation level and sky clearness, the R2 values of daytime 

model were 0.44, 0.44, 0.57, 0.36 and 0.75. R2 values of night time model for the same 

scenarios were 0.58, 0.37, 0.88, 0.24, and 0.74. The regression models used in this study 

were able to explain the influence of on-site variables on vegetation in lowering the outdoor 

temperature within the respective urban settings. 

2.2.4 Application of Artificial Neural Networks for Predicting Outdoor Air 

Temperature 

Shao et al. (2011) applied artificial neural network to predict heat island effect. The 

input nodes consisted of solar radiation, precipitation, sunshine duration, the average wind 

speed, and underlying surface. Among those, underlying surface had four parameters: 

evaporation rate, thermal conductivity, reflectivity, and heat capacity of the buildings and 

road materials. The forecast temperature was set as the output node. A feed forward 
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network with 10 hidden nodes was employed. For this study, meteorological data of a total 

of 36 months from 1995 to 1997 was used. Finally, in order to verify the effectiveness of 

this model, Pearson correlation coefficient was used to make correlation analysis between 

forecast and actual outdoor air temperature. The R2 value was 0.953 which shows the high 

capability of the model for air temperature prediction. 

Gobakis et al. (2011) developed an ANN model to predict UHI intensity in order to 

demonstrate the applicability of neural network for UHI intensity prediction. In this study, 

hourly data collected from April 2009 to September 2009 was used for training and 

verification of the neural network. In addition to 6 different training functions, the proposed 

model was tested using Elma, Feed-Forward, and Cascade neural network architecture. 

The input data (nodes) were: day of the year (1 to 365), time which was converted into 

minutes of the day (0 to 1380), ambient air temperature measured at different stations (°C), 

and global solar radiation (W/m2). The output was UHI intensity (°C). The results showed 

that the most suitable ANN architecture for the UHI intensity prediction was the Elman 

type using Levenberg-Marquardt as transfer function (MATLAB, 2012). The mean square 

errors (MSE) of the three neural networks were 0.35, 0.65, and 1.12 for Elman, Cascade, 

and Feed-Forward architectures, respectively. 

Kolokotroni et al. (2006) used ANN method to study the effect of synoptic climatic 

conditions on UHI intensity in London. The inputs were selected as: cloud cover, humidity, 

wind speed, diffuse radiation, global radiation, ambient air temperature, and radial distance 

of the ten investigated locations from Central London. The output was selected as the 

hourly ambient air temperature at specific locations (investigated locations). In this case, a 

back-propagation Feet-Forward neural network with ‘trainscg’ training function was 
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developed. 19 hidden neurons were chosen by trial and error based on their performance 

for 24 sets of data sets (MATLAB, 2012). The MSE for training set of data was about 0.2 

and for testing set of data (untrained) was about 0.35. 

Mihalakakou et al. (2002) employed ANN method to study and simulate UHI over 

Athens in a considerable number of locations (23 stations for a period of 2 years). The 

network was trained using hourly measured ambient air temperature at reference and 

another station (2 inputs), synoptic scale atmospheric circulation, maximum daily values 

of total solar radiation, and mean daily values of wind speed as input neurons. In this study, 

a multilayered neural network based on back-propagation algorithm was implemented for 

each of the 23 locations to predict UHI intensity. Every network consisted of one hidden 

layer of 20 to 25 neurons. Untrained data of 230 days in 1998 was used to test the results. 

The results for the measured data were in strong correlation with the estimated data for the 

whole set of testing data. The root mean square errors ranged from 0.1°C to 0.3 °C. 

Kim and Baik (2002) tried to find the relationship between UHI intensity and 

meteorological elements in Seoul using a MLR model. They developed a three layer feed 

forward back-propagation neural network and multiple non-linear regression (MNLR) 

models (power and quadratic) for forecasting UHI intensity. They demonstrated the 

potential of the ANN model in predicting UHI intensity by comparing its performance with 

the non-linear regression models. The independent variables (input nodes for ANN model) 

were: maximum UHI intensity for the previous day, wind speed, cloudiness, and relative 

humidity which were measured at two meteorological stations at six hours intervals. The 

dependent variable or output node for the ANN model was the UHI intensity. UHI intensity 

was defined as the maximum temperature difference between Seoul and Yangpyong. The 
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R2 values for MLR, power MNLR, and quadratic MNLR models were 0.461, 0.381, and 

0.463, respectively. However, for the test dataset, the average prediction errors for the 

ANN, MLR, power MNLR and  quadratic MNLR are 1.18 °C, 1.26 °C, 1.34 °C, and 1.23 

°C, respectively. It was concluded that the reason for the superiority of the ANN model 

over the other applied models in forecasting the maximum UHI intensity was its ability to 

take complex non-linear interactions into accounts. Also, according to MLR model, the 

most important input variable was the maximum UHI intensity for the previous day. 

The previous publications are different with respect to the types and sizes of the 

buildings investigated, as well as the types of analyses performed. For ANN models, 

different structures and learning algorithms were implemented. The choices of influential 

parameters are mostly limited to two or three. The actual input parameters, for indoor air 

temperature predictions, were mostly related to weather.  

When the regression approach was applied, solar radiation was often excluded. The 

reasoning for the choice of implemented regression models was not provided, even in 

model comparison cases. Alternative methods were not studied extensively. The scale of 

the studies varied between a single rooms in a building to several buildings. Impact factors 

are easily identifiable by their correlation to semantically related factors in the same context 

and unknown factors have little effect on predictions. For example, when the study is 

limited to one house or unit, unknown parameters such as wall insulation, internal heat 

generation, and neighborhood parameters have a negligible effect on the results. Most 

researchers who have studied indoor temperature predictions paid extra attention to the 

training stage and less attention to the validation stage. They did not show the applicability 

of the model to a larger group of buildings within the scale of study. Despite the efforts of 
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these studies, there are still modelling issues that have not been analyzed. Consequently, 

in this thesis, all the discussed statistical models will be used to relate the measured outdoor 

meteorological variables to indoor dry-bulb temperature. The results are interpreted to find 

the most applicable models for further predictions that can be extended to the whole city.  

2.3 Influential Parameters on Indoor Temperature 

There are some parameters that have significant role in UHI formation and 

intensification; and as a result affect the indoor air temperature. These parameters are 

extensively discussed in literatures associated with formation of heat island or trapping and 

storing heat inside the urban canopy. The parameters that are mostly considered are shape 

and height of the building, view factor, city size, population density, meteorological 

conditions (wind speed, ambient temperature, cloud cover, relative humidity, and 

atmospheric pressure), and anthropogenic heat released (Landsberg, 1981; Oke, 1988). 

In addition, trees, vegetation and ponds within urban areas, solar radiation and 

aspect ratio (Mirzaei and Haghighat, 2010), surface albedo, altitude (Giridharan et al., 

2007); building occupancy (Porrit et al., 2010); building volume (Priyadarsini et al., 2008); 

location of indoor temperature measurement (Vandentorren et al., 2006); thermal 

properties of urban materials, and urban geometry (Gobakis et al., 2011) are identified as 

the most influential parameters that affect the indoor air temperature. Mirzaei et al. (2010) 

also considered buildings as the main cause of UHI formation. In the following section 

some of these parameters are discussed in more details. 
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2.3.1 Outdoor Dry-bulb Temperature 

It is well established that outdoor temperature has significant influence on the 

indoor environment condition. Oikonomou et al. (2012) suggested that, this should be taken 

as an important parameter. Also, dry bulb temperature has been measured and considered 

in many models (Gobakis et al., 2011; Arnfield, 2003). 

2.3.2 Solar Radiation 

Due to the ability of urban surfaces in trapping radiation and storing heat, solar 

radiation   contributes in formation of diurnal UHI, in equatorial climate, especially when 

the sky is clear (Bonacquisti et al., 2006; Mirzaei and Haghighat, 2012). 

Many urban surfaces such as roadways and buildings’ envelopes have low albedo 

(reflectivity) that absorb a significant amount of incident radiation. Since these low albedo 

surfaces absorb the heat and release it over the time rather than reflecting it immediately 

(Giridharam et al., 2007), the absorbed solar energy causes a temperature difference 

between ambient air and the surfaces, sometimes as high as 50° C (Bardel & Bretz, 1997; 

Sailor & Dietsch, 2007). 

Urban parameters such as sky view factor and built-up or paved area ratio affect 

the UHI intensity (Park, 1986; Bottyan & Unger, 2003). However, calculating the sky view 

factor for each surface in addition to the view factor between a surface and other surfaces 

is one of the problems in radiation modeling (Mirzaei and Haghighat, 2010). 
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In addition to short wave radiation, surfaces also gain and lose heat through long 

wave radiation exchange with the environment (Sailor & Dietsch, 2007). The long-wave 

radiation mostly contributes in formation of nocturnal UHI (Mirzaei and Haghighat, 2010). 

Therefore, developing a model to calculate the long-wave radiation exchange from each 

surface to the sky and other surfaces will be important (Chen et al., 2004). 

2.3.3 Local Wind Velocity 

Velocity field information is necessary to study the effect of flow pattern and 

formation of atmospheric phenomena, and to calculate the sensible and latent heat fluxes. 

Lam et al. (2010) stated that buildings increase the roughness of the surface underlying the 

atmosphere therefore wind speed decreases near the ground. Mirzaei and Haghighat, 

(2010) suggested to use power law to calculate the local wind speed. 

Air movement over the building surface affects the convective heat transfer at the 

building surface which is an important factor in heat transmission through the building 

enclosure, surface temperature, and cooling rates. Natural ventilation by means of wind is 

of considerable importance for cooling during summer when air conditioning is not used 

(Hutcheon & Handegord, 1983). Wind speed influences the development and intensity of 

the UHI, suggesting that UHI decreases with increasing wind velocity (Mirzaei and 

Haghighat, 2010; Kolokotroni et al., 2006). 



25 

 

2.3.4 Relative Humidity 

In addition to dry bulb temperature, relative humidity also is considered in many 

models as one of the influential parameters in formation of UHI (Sailor & Dietsch, 2007; 

Bonacquisti et al., 2006). Giridharan (2007) mentioned that lack of moisture tends to 

increase nocturnal UHI. 

2.3.5 Location of indoor temperature measurement 

Urban settings often include high-rise buildings. Residence of the top floors of such 

buildings are at a greater risk of overheating, heat related illnesses, and deaths (Barrow and 

Clark 1998). Mavrogianni et al. (2012) observed a relationship between different floors of 

the building and their indoor temperature. According to their results, top floor in high-rise 

structures is in higher risk of overheating compare to the lower floors. Vandentorren et al., 

(2006) showed that living in the top floor of poorly conditioned dwellings increases the 

risk of heat illnesses. 

2.3.6 Vegetation Ratio 

It is obvious that in metropolitan cities, parks have lower temperature compared to 

high-density areas. In other words, replacing vegetation with built-up areas leads to having 

warmer temperature in these areas than suburbs (Givoni, 1998; Emmanuel, 1997; Shashua 

et al., 2006). Schuman (1972) discovered that areas of cities with more concrete and less 

vegetation exhibited higher mortality rate due to heat-related illnesses. 
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In principle, increasing vegetation cover decreases the peak summertime urban air 

temperature (Oke, 1988). Vegetation covers (trees) affect the environment energy balance 

by transpiration from leaves, reducing the penetration of solar radiation, and blocking the 

wind (Mochida et al., 2008; Giridharan et al., 2007). 

2.3.7 Aspect Ratio (Urban and Building Geometry) 

Ambient air temperature within a street canyon depends on the wind speed and 

velocity profile inside the canyon. Aspect ratio, the ratio of building height to the distance 

between adjacent buildings, affects the wind velocity profile within a street canyon 

(Mirzaei and Haghighat, 2010). It has also been shown that the aspect ratio has a negative 

impact on the cooling rate of the passive and night ventilation (Gobakis et al., 2011). 

Bottyan & Unger (2003) considered the height of the building as an effective 

parameter on UHI. UHI intensity increases with increasing the size of the city and its 

population (Arnfield, 2003). The areas with compact high rises are warmer compared to 

parks and low density areas (Bonacquisti et al., 2006).  

2.3.8 Occupancy 

Another parameter that increases the indoor dry bulb temperature, is the heat 

generated within the building due to occupancy. Mavrogianni et al. (2012) mentioned the 

occupation pattern as a key determinant factor of indoor air temperature magnitude. Also, 

energy consumption by occupants is considered as an influential in many models (Sailor 

& Dietsch, 2007; Porritt et al., 2010; Bonacquisti et al., 2006).  
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2.3.9 Time of the day 

Gobakis et al. (2011) and Mirzaei et al. (2012) used this parameter in their models. 

Mirzaei et al. (2012) claimed that integrating the time of the day would improve the 

performance of the ANN model since some parameters are time dependent (i.e. wind and 

relative humidity). In fact, it helps the ANN model to distinguish between peak hours and 

off-peak hours (morning hours) in terms of thermal analysis. 

2.3.10 Building Volume 

The total building volume is proportional to the building thermal mass. The higher 

the thermal mass in a building the more energy the building is able to store. Thermal storage 

of building materials is an important factor in the urban energy balance. It causes reduction 

in temperature swings (Mirzaei et al., 2012). If misplaced or misused, thermal mass has the 

potential to increase duration of indoor overheating (Gupta and Gregg, 2012). 

The effect of buildings on formation of UHI is not negligible, since buildings 

change the energy balance in urban areas. Building masses increase the thermal capacity 

which directly affects the city temperature (Priyadarsini et al., 2008). The heat that is stored 

during the day in a building creates a temperature difference between urban and rural areas 

and causes a time delay between the peak temperature of indoor and outdoor (Mirzaei and 

Haghighat, 2010; Priyadarsini et al., 2008). 
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2.3.11 Other Factors 

From the simulation results, Oikonomou et al. (2012) concluded that shading can 

affect the indoor temperature. In their study, shading caused a decrease in indoor 

temperature while in some other cases it had no effect on it. Lack of cross ventilation for 

single facing buildings is mentioned as a factor that increases the indoor temperature more 

compared to double facing buildings (cross ventilation). 

Building age, type, and insulation level were considered important determinant 

factors on indoor thermal conditions (Mavrogianni et al., 2012). In addition, anthropogenic 

heat release is considered as another main cause in formation of UHI especially in high rise 

and dense metropolitan areas (Mirzaei and Haghighat, 2010). 

The above literature review indicates that data analyses for indoor air temperature 

prediction were focused on the relationship between the indoor and outdoor conditions, 

relying mainly on outdoor air temperature. Hence there is a need to provide a method for 

indoor temperature prediction by studying outdoor thermal conditions, building 

characteristics, and building environmental surrounding factors. In the methodology 

section, the implementation of the parameters affecting the indoor temperature is discussed. 
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Chapter 3 

Measurements 

3.1 Measurements and Localization 

In general, UHI effects can be measured directly and/or indirectly. For the direct 

measurement method, sensors are used at fix or mobile observation stations to measure the 

surface or air temperature. For the indirect method, satellite and/or airborne images are 

used. Based on the method and scale of measurements, different approaches can be used 

to study the UHI phenomena (Health Canada, 2011). A comprehensive field measurement 

activity was conducted in the Montreal Island (Park et al., 2010). The result of the field 

measurement study in Montreal is used in this study for the development of the models. A 

brief description of the study area, measurement techniques, etc. is given in this chapter.  

3.2 Study Area 

The field measurement study was carried out in the city of Montreal, Canada, with 

a population listed as slightly fewer than 4 million (Canada Census, 2011). Winters in 

Montreal are often cold, snowy and windy. Most days stay near or below freezing (+2° to 

-8°C), with well below freezing at night (-10 to -15°C). Wind chill during the winter in 

Montreal is an important factor to be considered. The average annual snowfall in Montreal 

is approximately 2.1 meters. Summers in Montreal are warm, hot and humid. Average 

daytime temperature stays between 24°C to 28°C and overnight temperature is around 

16°C. However, on many days temperature reaches and even exceeds 30°C, which 

combined with high level humidity it is felt much hotter. July and August are the warmest 
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months in Montreal and throughout Canada (National Climate Data and Information 

Archive, 2012; World Guides, 2013). The housing insulation mostly designed for cold 

weather than summertime heat. It is noteworthy to mention that cities which experience 

large seasonal temperature range are more vulnerable to heat related mortality (Tan et al., 

2004). 

3.3 Data 

Meteorological data were obtained from the weather station (Pierre-Elliot Trudeau 

airport). Four variables were measured hourly including outdoor dry-bulb temperature, 

wind speed, solar radiation, and relative humidity. In order to identify the vulnerable 

regions, first, satellite thermal images were utilized to characterize Montreal urban areas 

and zones with high surface temperature in summer. Then, ‘Urban Heat Island Mapping 

Tool’ was used to evaluate and choose potential zones for recruiting potential buildings. 

This tool made it possible to locate the most exposed areas to UHI in Montreal Island by 

considering four additional influential factors:  

a. areas determined to have the highest surface temperatures with a minimum density 

of 400 inhabitants per km2 (Figure 3.1 (a)),  

b. areas with population density more than 5001 people per km2 (Figure 3.1 (b)),  

c. areas included deprived occupants who cannot afford air conditioning (Figure 3.1 

(c)), and  

d. Areas located far from vegetation or with low vegetation ratio (Figure 3.1 (d)) (Park 

et al., 2010). 
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 Finally, 55 residential buildings in ten zones were identified on the Island of 

Montreal shown in figure 3.2. Building locations are listed in Table 3.1. A measurement 

campaign was conducted to monitor the indoor thermal characteristics of these 55 

residential buildings in most vulnerable regions in the Montreal Island (Park et al., 2010). 

About sixty five percent of recruited building types were duplex and triplex; most typical 

of residential buildings on the Island of Montreal. 
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Figure 3.1 (a) High surface temperatures, (b) high population density, (c) socio-economically deprived areas, and 

(d) minimal vegetation. 
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Figure 3.2 Location of buildings under study 

Table 3.1 Regions under study on the Island of Montreal 

Zone Name Number of 

Buildings 

A Montréal-Nord 6 

B Saint-Léonard 2 

C Mercier Hochelaga-Maisonneuve 5 

D Le Plateau-Mont-Royal 7 

E Outremont 2 

F Ville-Marie 7 

G Le Sud-Ouest 5 

H Côte-des-Neiges Notre-Dame-de-Grace 1 

I Verdun 16 

J Lachine 4 

 

Further details about the measurement campaign and instrumentation can be found 

in the report (Park et al., 2010). 
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According to the measurement campaign, the location for installing an indoor 

sensor was selected using a variety of criteria. These locations were selected to be close to 

the thermostat and away from windows or other ventilation sources. They should not be 

influenced by solar radiation or temperature fluctuations caused by air movement. Indoor 

air temperature and relative humidity were recorded at a ten minutes interval. The collected 

10-minutes intervals raw data were averaged into hourly data for analyses. 

Figures 3.3 shows hourly maximum and minimum indoor air temperatures 

measured in the 55 dwellings along with the corresponding outdoor air hourly temperature 

for the period of heat wave occurred during July 5th to July 8th, 2010. Figure 3.4 represents 

the same information for the second heat wave occurred during August 30th to September 

3rd, 2010. It is clear that maximum and minimum indoor air temperatures are greater than 

their corresponding outdoor air temperatures during the periods of occurrence of heat 

waves. 

 

Figure 3.3 Hourly maximum and minimum indoor thermal conditions during first heat wave (July 5th to July 

8th, 2010) 
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Figure 3.4 Hourly maximum and minimum indoor thermal conditions during second heat wave (August 30th to 

September 3rd, 2010) 

 

Figure 3.5 shows hourly indoor dry-bulb temperature measured in two different 

units along with the corresponding hourly outdoor dry-bulb temperature for the first twenty 

days of July 2010. Both units (BLDG9 & BLDG10) are located in the same building: 

BLDG9 is located on the top floor of the building. It is clear that the top floor unit is always 

warmer around 5 ºC than the other unit. In addition to corresponding indoor air temperature 

of BLDG9 and BLDG10, measured data related to outdoor weather conditions for the first 

day of June 2010 are presented in Table 3.2 as a sample of whole dataset that was used in 

this study. 
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Figure 3.5 Hourly indoor dry-bulb temperatures of BLDG9 & BLDG10 during July 1st to July 20th 
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Table 3.2 Sample measured data 

Date-Time 
Temperature (°C) Wind Speed 

(km/h) 

Solar radiation 

(W/m2) 

Relative 

Humidity (%) Outside BLDG9 BLDG10 

6/1/10 0:00 14.2 25.1 20.5 4 0 56.0 

6/1/10 1:00 14.2 25.1 20.4 4 0 51.0 

6/1/10 2:00 14 24.9 20.4 17 0 53 

6/1/10 3:00 14.1 24.7 20.3 17 0 55 

6/1/10 4:00 13.5 24.5 20.3 13 0 61 

6/1/10 5:00 13.6 24.3 20.2 17 0 61 

6/1/10 6:00 13 24.1 20.5 9 5 61 

6/1/10 7:00 13.2 24.0 20.3 9 21 67 

6/1/10 8:00 14.1 23.9 20.1 4 91 88 

6/1/10 9:00 15.5 23.9 20.1 11 73 91 

6/1/10 10:00 16.1 23.8 20.0 11 262 93 

6/1/10 11:00 15.9 23.9 19.9 17 54 94 

6/1/10 12:00 17.6 23.9 19.9 6 153 95 

6/1/10 13:00 17.3 24.1 19.9 11 184 92 

6/1/10 14:00 18 23.9 19.9 6 419 90 

6/1/10 15:00 18.9 23.8 20.0 6 606 85 

6/1/10 16:00 19.9 24.0 20.0 4 601 77 

6/1/10 17:00 18.5 24.8 20.0 15 434 81 

6/1/10 18:00 19.8 24.8 20.0 13 251 77 

6/1/10 19:00 19.9 24.8 20.0 17 98 76 

6/1/10 20:00 19.3 24.7 20.0 17 2 80 

6/1/10 21:00 17 24.6 19.9 15 0 81 

6/1/10 22:00 15.6 24.5 20.0 15 0 82 

6/1/10 23:00 16.3 24.4 19.9 13 0 85 
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Chapter 4 

Methodology 

4.1 Model Validation Criteria  

As it is mentioned in the introduction, the indoor thermal environment and in 

particular overheating effects are complex phenomena with multiple correlated factors. 

However, limited research has been conducted to date to predict indoor air temperature 

with regards to the weather factors and neighborhood parameters. To achieve this in the 

present study, statistical models were adopted as they require lower computational time 

compared to analytical models.  

In this study, root mean square error (RMSE) is used as the goodness of fit to 

evaluate the prediction accuracy of the proposed model. It is defined as: 

ܧܵ�ܴ = [ ଵ ∑ ሺ �ܻ̂ − ܻሻଶ=ଵ ]ଵ ଶ⁄    (2) 

where Ŷ is the predicted output and Y is the measured one and m is the number of 

observations. 

4.2 Input Data and Variables 

Hourly measured meteorological parameters (outdoor dry-bulb temperature, 

relative humidity, direct normal solar radiation, and wind velocity) are used as input 

variables for statistical models. Measured indoor dry-bulb temperature is the output of the 
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models. The goal is to develop models to predict the indoor temperature during heat waves 

in Montreal. 

In order to take into consideration the effect of building envelope characteristics 

(Albedo and thermal capacity), the location of living area, and the outdoor environmental 

conditions around the buildings (neighborhood), the studied buildings are divided into four 

groups:  

a. Top floor dwellings located in downtown Montreal. 

b. Other dwellings located in downtown Montreal. 

c. Top floor dwellings located in other sample areas. 

d. Other dwellings located in other sample areas. 

For this purpose, downtown Montreal was approximately assumed bounded by 

Sherbrooke Street to the north, Papineau Avenue to the east, Atwater Avenue to the west, 

and the Ville-Marie Expressway to the south. By considering this segmentation, 12 

buildings out of 55 are located in the downtown area. 

4.2.1 Building Height 

The heights of most buildings located in the downtown are around 20 m to 30 m. 

Only three of the buildings in the downtown do not have the same height (around 10 m). 

These three buildings can represent other residential buildings in downtown at a height of 

around 10 meters. The remaining buildings are below the height of ten meters except two 

of them that are located on Jarry Street with heights of around 17 meters. 
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4.2.2 Wind Effect 

Generally, wind speed measurements are taken at the meteorological stations. In 

this study, it is important to consider the impact of urban canyon on the wind speed. 

Therefore the weather data collected at the meteorological station must be modified in 

order to reflect the canyon boundary layer effect. This was done using the power law to 

take into account the effects of surface roughness and height above ground (Hutcheon & 

Handegord, 1983): 

�� = [ ���]�
     (3) 

where Z is the height of the buildings under study. The mean speed exponent (α) 

corresponds to the terrain category over which the under studied buildings and the airport 

are located. Vz is the mean speed at specified height. Vg and the Zg are the gradient speed 

and gradient height, respectively. 

Two different wind speed profiles were considered for Montreal Island. One of 

them represents the wind speed in downtown, and the other one represents the wind speed 

for other sample areas under study. It was assumed that Pierre-Elliot Trudeau International 

Airport is located in terrain category number 3 in Montreal Island. The average height of 

the studied buildings in the downtown Montreal was 25 m. For the rest of Montreal, the 

average height of these buildings was 8 m. In order to calculate the wind speed in 

downtown Montreal both terrain and height changes were considered. But, for other sample 

areas only height difference was taken into consideration since it is assumed these areas 

have a similar terrain category as the airport. 
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4.2.3 Aspect Ratio 

Aspect ratio, as explained in section 2.3.7, is the ratio of the building height to the 

distance between adjacent buildings. Aspect ratios of buildings in downtown vary from 

0.95 to 1.6, and it is around 0.5 for the three buildings in downtown with lower heights of 

around 10 m. The buildings located outside the downtown have lower aspect ratio values, 

which vary from 0.18 to 0.39. For those two exceptions with higher heights (around 17 

meters) outside the downtown, it is around 0.54.  

4.2.4 Building Volume and Occupancy 

Buildings which are located in downtown Montreal have greater volumes compared 

to the rest of the studied buildings. It is roughly estimated that building volumes vary from 

12000 m3 to 29000 m3 in downtown. This value is just under 5000 m3 for the rest of the 

buildings. It is obvious that buildings with greater volume have greater exposed surface 

areas and greater internal heat generation (Mirzaei et al., 2012). 

It is important to note that the number of occupants in all dwellings is almost 

constant since most of the studied buildings contain small units. Based on the measurement 

campaign, the number of occupants in 80% of dwellings was less than three people. 

Therefore, greater internal heat generation in downtown buildings relates to the greater 

number of units in those buildings. 
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4.2.5 Vegetation and Albedo 

By studying images acquired from Google Maps, Satellite view mode, it can be 

concluded that downtown Montreal has the lowest vegetation ratio among sample areas. 

Roof albedo and envelope albedo of all studied buildings were considered to be 0.15 and 

0.25, respectively.  

4.2.6 Sensor Location 

The sensor location refers to the ratio of a building floor in which the temperature 

sensor was located to measure the indoor temperature to the total number of floors in the 

building. By this definition sensor location varies between zero and one. It is an important 

parameter for indoor temperature prediction. As discussed before, the top unit (dwelling) 

of any building has the worst indoor thermal conditions. In order to highlight the effect of 

sensor location, the buildings in which measurements took place in their top floor are 

studied separately. This segmentation helps to study the effect of solar heat gain in top 

floor units and other floors of the buildings separately.  

4.2.7 Solar Heat Gain 

The purpose of the solar radiation model is to estimate the hourly heat gain by 

building enclosure due to direct normal radiation as well as total diffuse radiation. It is 

assumed that the heat gain is isotropic. The model uses a series of measured data gathered 

by measurement campaign and some calculations in order to obtain the heat gain. First, 

direct normal solar radiation data was collected on an hourly basis throughout the months 
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of June, July, and August 2010 at Pierre-Elliot Trudeau International Airport. Then, the 

total diffuse radiation on vertical surfaces, Id, was calculated (Hutcheon & Handegord, 

1983): 

ௗܫ = ��ܫ × [� × ௦௦ܨ + Ͳ.ͷ�gሺ� +  ሻ]   (4)ߚ݊�ݏ

 ,ௗ is a function of the direct normal solar radiation, IDN, the diffuse radiation factorܫ

C, the angle factor between vertical surface and the sky, Fss, the ground reflectance, ρg, and 

the solar altitude angle, β. The diffuse radiation factor of 0.134, 0.136 and 0.122 are used 

for the months of June, July and August, respectively. Also, an estimated value of 0.2 for 

ground reflectance was used. In addition, hourly solar altitude angles were calculated for 

the mentioned months, taking into account the transformation of local standard times to the 

apparent solar. 

Lastly, in this model, all building surfaces including the roof, the exterior walls, 

and the windows were taken into account to estimate the building heat gain. The 

construction materials for the latter were also considered in order to determine their albedo 

and transmittance. Building dimensions are required to calculate the appropriate surface 

areas. The number of windows and their surface areas are also needed. The total hourly 

heat gain due to solar radiation is then proportional to: 

݊�ܽܩ ݐܽ݁ܪ =  �ௐௗ × ௗܫ × �௪ௗ + � × ��ܫ × ሺͳ − ሻܾ݀݁�� + �௩ × ௗܫ ×ሺͳ −  ௩ሻ    (5)ܾ݀݁��

where AWind., Aroof, and Aenv represents surface area (m2) for windows, roof and walls, 

respectively, and τ is the window transmittance that was assumed 0.85. The above formula 



44 

 

generates the actual heat gain value for any building. But it cannot be used directly in this 

thesis since a group of buildings should be modeled. Further assumptions and calculations 

has been made as follow.  

The solar heat gain per area of each building assembly (roof, wall, and window) 

was calculated. It is a function of the solar time, material properties for different 

assemblies, as well as inclination angle of that surface with respect to horizontal plane and 

facing orientation of that assembly. Based on the total heat gain per area of assemblies, the 

percentage gains of direct normal solar radiation on the building by every assembly were 

calculated. These values are almost constant for each assembly regardless of the location 

of the building. In case of top floor units, by considering both horizontal and vertical 

surfaces, it was calculated that about 65% of direct normal solar radiation is absorbed by 

assemblies. For the rest floors of the sample study, this value was calculated about 14%. 

4.2.8 Sol-air Temperature 

The sol-air temperature is defined as the outside air temperature which, in the 

absence of solar radiation, would give the same temperature distribution and rate of heat 

transfer through the walls and roof due to the combined effects of the actual outdoor 

temperature distribution and the incident solar radiation (Tham & Muneer, 2011). In this 

study, the sol-air temperature is used to take the combined effect of solar radiation and 

outdoor ambient temperatures into consideration at the same time. The regression methods 

that were used in this study were not able to accurately combine the effect of solar radiation 

and outdoor dry-bulb temperature. In other words, the frequencies of appearance of zero 

values for solar radiation and their differences with other non-zero values make the 
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regression models unable to accurately predict the temperature. The sol-air temperature 

concept employed to avoid this problem. Moreover, using sol-air temperature reduces the 

number of input variables for each method which simplifies the analysis. The following 

formula represents the sol-air temperature: 

ܶ =  ܶ +  ���ℎ� −  ���ℎ�     (6) 

where Te is the sol-air temperature and ho is the assigned surface conductance. The 

combined coefficient ho is equal to the sum of the convection and radiation coefficients. 

The value of ho is subjected to substantial variation with both temperature and wind speed 

over the surface, but a value of 23 W/ (m2. ºC) is commonly used. The value of the 

emittance, �, is commonly taken as 1. An approximate value of �R for horizontal surfaces 

is about 60 W/m2. For vertical surfaces it is commonly assumed that �R = 0 (Hutcheon & 

Handegord, 1983). The values of absorptance, α, for solar radiation were discussed above 

for different types of building under studied.  

4.3 Input Data Processing 

In previous section (section 4.2), four different unit groups were defined: a) top 

floor units of the dwellings located in downtown of Montreal, b) other floors’ units of the 

dwellings located in downtown of Montreal, c) top floor units of the dwellings located in 

other zones; and d) other floors’ units of the dwellings located in other zones. In order to 

find the worst case scenario which is the target of this study, the above information and 

assumptions are summarized in the table 4.1 to make these comparisons easier. 

 



46 

 

Table 4.1 Characteristics of under studied buildings 

 

All the variables mentioned in Table 4.1 for categories (a) and (b) in downtown 

Montreal have the same value except for the location of sensor. This number (sensor 

location) is one for the top units.  The exposed surface area of the façade is larger in those 

units. Therefore, the amount of solar radiation that a top unit gains is larger.  As discussed 

in section 4.2.7, top floor units absorb around 65% of incident solar radiation. This value 

reduces to 14% for other floors. Therefore, by assuming that other influential parameters 

for dwellings located in downtown Montreal are constant, it is reasonable to consider the 

top floor units as the target study in this area. Following the same reasoning for the 

dwellings located in other sample areas (categories (c) and (d)), it can be concluded that in 

those areas again the top floor units have the worst thermal condition. So they can be 

considered as the target study in those areas as well. 

To find the worst case scenario for heat waves between categories (a) and (c), their 

related influential parameters were compared together. Both categories have the same 

values for occupancy, roof and envelop albedo, and sensor location. By assuming that 

overshadowing does not happen in top floors, it can be concluded that all top floors receive 

the same amount of solar radiation per unit area. Aspect ratio affects shading by buildings 

as well as wind speed in the street canyons. 
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The building volume, which represents the building thermal mass, is greater for 

buildings that are located in downtown Montreal. The building volume can trap the heat. 

The vegetation ratio is lower in downtown area compared to other studied areas. Height 

and the location of the buildings affect the wind speed and as a result indoor air temperature 

in top floors. The wind speed calculated in downtown (category (a)) is lower than those in 

category(c). Figure 4.1 illustrates a sample of wind speed measured at the airport along 

with the corresponding wind speed values for downtown (categories (a)) and other sample 

areas (categories (c)). It can be seen that buildings that belong to category (a) are exposed 

to the lowest wind speed. 

 

Figure 4.1 Wind speed at airport, downtown, and other sample areas of study 

It can be concluded that the top floor units in the dwellings that are located in 

downtown Montreal have the worst indoor thermal condition during the heat waves and 

should be chosen as the target of this study. 

This conclusion is supported by results of the indoor dry-bulb temperatures 

accumulated by the measurement campaign. Measured indoor dry-bulb temperatures 
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related to top floor dwellings in categories (a) and (c) shows that top floor dwellings that 

are located in downtown have the worst indoor thermal condition during the heat waves. 

Figures 4.2 and 4.3 show measured indoor dry-bulb temperature of one building in 

downtown (category (a)) and two midrise buildings in category (c) for the period July 3rd 

to July 10th, 2010. Note that a heat wave occurred during July 5th to July 8th, 2010. 

Any increase in the height of the building will result in an increment in total heat 

capacity of the building. To compare the effects of height and location on the indoor air 

temperature two different cases were proposed. 

In Figure 4.2, dwelling no. 28 (BLDG28) is located on the top floor of a high rise 

building in downtown Montreal. As it is shown, during the heat wave, indoor dry-bulb 

temperatures of those buildings are very close and follow the same trend. They even have 

the same peak values in some instances. BLDG 28 has greater volume and thermal mass 

in comparison with the other two sample buildings. Therefore it takes more time for BLDG 

28 to reach its peak value. Higher thermal mass due to higher height of the building results 

in more heat absorption. By the end of the heat wave, the temperature drop in BLDG28 is 

more gradual compared to the other two buildings. In addition, its indoor thermal 

fluctuations are less than other sample buildings. 

In Figure 4.3, the height and volume of selected buildings are almost identical. The 

height and volume of these three buildings are around 8 m and 1000 m3, respectively. 

Building no. 25 (BLDG25) is located in downtown Montreal. Figure 4.3 shows that during, 

before, and after the heat wave, its hourly measured dry-bulb temperature is significantly 

greater than those of other two sample buildings. Also, their temperatures fluctuations are 
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similar to each other. Moreover, they follow the same trend during the temperature increase 

and decrease, and reach their peak values at almost the same time.  
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Figure 4.2 Measured indoor dry-bulb temperature for buildings no. 28, 19, 37 (BLDG28, BLDG19, BLDG37) 

 

Figure 4.3 Measured indoor dry-bulb temperature for buildings no. 25, 19, 37 (BLDG25, BLDG19, BLDG37) 
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4.3.1 Linear Regression 

The objective of the linear regression (LR) analysis is to study the relationship 

between one independent variable and one dependent variable. The assumption of the 

model is that the relationship between the dependent variable Y and the independent 

variable X is linear. In other words, this method fits a straight line through the set of points 

of observation in such a way that makes the sum of square residuals of the model minimum. 

The following represents a LR model: 

ܻ = ܽܺ + ܾ     (7) 

a and b are fitting coefficients. 

4.3.2 Multiple Linear Regressions (MLR) 

In many problems, two or more independent variables are related to one dependent 

variable. The objective of MLR method is to explore the relationship between 

independents, predictors, or repressor variables and a dependent or criterion variable while 

it is assumed that the relationship between dependent variables and independent variable 

is linear. The following is called a MLR equation (ASHRAE Fundamentals, 2009). 

ܻ = ߚ + ଵߚ ଵܺ + ଶܺଶߚ + ⋯ +  ܺ   (8)ߚ

where βs are the coefficients, and k is the number of observations. The method of least 

squares is typically used to estimate the regression coefficients in a MLR model so that the 

sum of the squares of the errors, is minimized. Once one set of observed data points was 

used to find the coefficients, the model can be used to predict dependent variable based on 



52 

 

new set of independent variables. This model describes a hyper plane in the k-dimensional 

space of the independent variables. 

4.3.3 Time Series 

In statistics, time series analysis is the study of data collected in a certain period of 

time to determine an outcome in relation to its history. All these data are taken at different 

times, but spaced in the same time interval. Time series analysis comprises methods for 

analyzing time series data in order to extract meaningful statistics. In fact, time series 

forecasting is the use of a model to predict future values based on previously observed 

values. To achieve these results, it is important to make an analysis of the phenomenon by 

evaluating the data collected. Finally, an assumption about the final outcome of the 

experiment should be taken into consideration.  

This method was popularized by its usefulness as a tool of choice for evaluating the 

prediction of future results (Gardner 2006; Muth 1960). There are several types of data 

analysis available for time series which are appropriate for different purposes. The results 

of empirical research by Makridakis et al. (1983) have proven that simple exponential 

smoothing is the best choice for time series forecasting, from among 24 other time series 

methods that often produce quite accurate forecasts. The autoregressive model is one of a 

group of linear prediction formulas that attempt to predict an output of a system based on 

the previous inputs. The following represents a simple exponential smoothing time series 

equation which is well known as autoregressive model (AR) and was used in this study: 
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ܶሺݐሻ =  Ƚ + Ƚଵ ܶሺݐሻ + Ƚଶ ܶሺݐ − ͳሻ + ⋯ + Ƚ ܶሺݐ − ሻ + ሻݐሺܹߚ +  ሻݐሺܪܴ ߛ

     (9) 

where αi and β are the coefficients. Ti(t) is the indoor dry-bulb temperature measured at 

time t. Te(t) represents the sol-air temperature calculated at time t, based on the outdoor 

dry-bulb temperature and direct normal solar radiation. RH(t) is the relative humidity. W(t) 

represents the wind speed. 

4.3.4 Multiple Non-Linear Regression (MNLR) 

It is assumed that the relationship between dependent variable and independent 

variables is non-linear in multiple non-linear regression models. The following is called a 

MNLR equation (Adamowski et al., 2012). 

ܻ = ߚ ଵܺߚ + + ଶߚ ܺ + ଷܺߚ + ସܺଶߚ + ହߚ ܺଶ + ܺଶߚ + ⋯ + ߚ ܺ ܺܺ  

     (10) 

where β0 is the intercept, β is the coefficient, and p is the number of observations. The 

method of least squares is typically used to estimate the regression coefficients in a MNLR 

model so that the sum of the squares of the errors is minimized. Once one set of observed 

data points was used to find the coefficients, the model can be used to predict dependent 

variable based on new set of independent variables. 

The MNLR model may often still be analyzed by MLR techniques (Montgomery 

2008). For example consider the following second-order MNLR model in two variables: 

ܻ = ߚ + ଵߚ ଵܺ + ଶܺଶߚ + ଷߚ ଵܺଶ + ସܺଶଶߚ + ହߚ ଵܺܺଶ  (11) 
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If letܺଷ = ܺଵଶ,ܺସ = ܺଶଶ, ܺହ = ܺଵܺଶ, then this becomes 

 Y = Ⱦ + ȾଵXଵ + ȾଶXଶ + ȾଷXଷ + ȾସXସ + ȾହXହ  (12) 

which is a MLR method. 

4.3.5 Artificial Neural Network (ANN) 

Artificial Neural Network (ANN) is a data-driven process since the analysis and 

the results depend on the available data. It has the ability of approximation arbitrary and 

complex non-linear relationship between the large input and output datasets whose 

analytical forms are difficult or impossible to be obtained. This technique has been used in 

many research areas such as spectroscopic signal measurement, forecasting future values 

of possibly noisy multivariate time series based on past histories, and parallel distributed 

processing (Adamowski et al., 2012; Liu et al., 2006; Kolokotroni et al., 2006). 

In this study, the three-layer feed-forward neural network approach was chosen. 

The selection of layer number of a neural network is the first and crucial step that affects 

training, validation as well as testing and statistical analysis of the model. It was proved 

that a three-layer feed-forward neural network can approximate any function when a 

sufficient number of hidden neurons are provided (Irie and Miyaki., 1998). Also the results 

performed in the study which was done by Mirzaei et al. 2012, indicate that a three-layer 

food-forward neural network can adequately model the system. 

The second step is to identify the variables. The input layer of the network consists 

of four neurons. These neurons correspond to sol-air temperature, relative humidity, time 
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of the day, and neighboring wind speed at Pierre-Elliot Trudeau airport. The output layer 

which consists of one neuron is the desired target that network should predict (indoor dry-

bulb temperature). The goal of neural network is to minimize error functions between 

prediction and target datasets by adjusting weights and biases. 

After the identification of input and output variables, the selection of the size of 

hidden units becomes crucial for the performance of a neural network. There is no exact 

rule about how to define the size of hidden units, but still some articles suggest the 

maximum number of elements in the hidden layer to be twice the input layer dimension 

plus one (Lu and Viljanen, 2009). In this study, all the possible numbers of hidden neurons 

were examined to find the most accurate networks. The artificial neural network models 

are generated using the MATLAB Neural Network Fitting Tool (NNFT) (MATLAB, 

2012). Figure 4.4 shows the structure of the feed-forward neural networks used in this 

study. 

To obtain the most practical model for indoor dwelling temperatures prediction that 

can be attributed to the whole city, all of the above discussed methods were used. But these 

methods were implemented by a new rearrangement.  In fact, linear regression, multiple 

linear regression, and time series methods are quite similar regression methods. So instead 

of applying these three methods in this study, time series method was used which represents 

the other two methods and also takes the effect of thermal mass of buildings into account. 

Therefore, in this study, Artificial Neural Networks, and Time Series were implemented to 

predict indoor dry-bulb temperatures of dwelling in Montreal Island. 
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Chapter 5 

Analysis, Results, and Discussion 

5.1 Time Series 

5.1.1 Apply the method 

The time series model was developed using Analysis ToolPak of Microsoft Excel 

(2013). The datasets of three units (Building 25, Building 28, and Building 29) which are 

located in zone (a) corresponding to months June, July, and August 2010 were used to 

develop the model. The total number of the input and output layer datasets is 6,552. 

At the beginning, the input of the model was selected as sol-air temperature (ºC), 

wind speed (Km/h), and outdoor relative humidity (%). The indoor dry-bulb temperatures 

of the selected units were considered as the output. The input variables were then increased 

gradually by adding sol-air temperature of previous hours (up to16 hours) to find the best 

model. The results were getting better by adding more sol-air temperature related to 

previous hours. After a specific number of input variables no further improvement was 

observed. To evaluate the model performance, the root mean square error (RMSE) between 

predicted and actual indoor dry-bulb temperatures was used. 

Finally, the best results were obtained by implementing the past 8 hours observed 

value of sol-air temperatures (totally 11 inputs). The RMSE of the best model is 2.10 ºC. 

Also, 77 % and 86 % of the predicted indoor dry-bulb temperatures by this model have an 

error less than ± 2 ºC and ± 3 ºC, respectively. The RMSE for models including sol-air 

temperature of zero, four, seven, nine, and ten hours of past time are 2.5 ºC, 2.29 ºC, 2.14 
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ºC, 2.12 ºC, and 2.16 ºC,  respectively. The following is the obtained equation for this 

model: 

ܶሺݐሻ =  ͳ.ͻ + Ͳ.ͲͷͶ ܶሺݐሻ + Ͳ.Ͳͳͺ ܶሺݐ − ͳሻ + Ͳ.Ͳͳͺ ܶሺݐ − ʹሻ + Ͳ.ͲͲͻ ܶሺݐ − ͵ሻ +Ͳ.ͲͲ ܶሺݐ − Ͷሻ + Ͳ.ͲͲ ܶሺݐ − ͷሻ + Ͳ.ͲͲͷ ܶሺݐ − ሻ − Ͳ.Ͳͳͷ ܶሺݐ − ሻ + Ͳ.ͻ ܶሺݐ −ͺሻ − Ͳ.Ͳ͵ ܹሺݐሻ + Ͳ.Ͳ͵ ܴܪሺݐሻ   (13) 

where Ti(t) is the indoor dry-bulb temperature measured at time t. Te(t) represents the sol-

air temperature calculated at time t, based on the outdoor dry-bulb temperature and direct 

normal solar radiation,  RH(t) is the relative humidity, and W(t) is the wind speed. 

5.1.2 Level 1 Simulation 

Once all models were developed and their best fit line was found, they were used 

to simulate hourly indoor dry-bulb temperatures of units in zone (a). The goal is to 

determine if the model can accurately predict hourly indoor dry-bulb temperatures. Two 

samples of datasets were used here. Input datasets covering a typical summer week (15th 

to 22nd of June 2010) and the heat wave in July 2010 (5th to 8th of July 2010) were used for 

level 1 simulation. The input datasets which were used in this level of simulation had been 

included for developing the models and finding the best fit line. 

As explained above, the models were obtained from the datasets of the units which 

are located in zone (a). However, the simulated results are supposed to be extended to the 

whole city (not only one specific building). Therefore, for a better evaluation, in addition 

to the simulated results, the corresponding minimum and maximum indoor dry-bulb 

temperatures are also presented in the following figures. In other words, the simulated 
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indoor dry-bulb temperatures are not supposed to be compared with hourly indoor dry-bulb 

temperatures of one specific unit in zone (a). Therefore, for the better evaluation of 

prediction ability of each model, their output results would be compared to corresponding 

maximum and minimum indoor dry-bulb temperature of datasets related to zone (a). Also, 

the variations of the results about maximum and minimum indoor dry-bulb temperatures 

of zone (a) units were calculated to make the evaluation easier. 

Figure 5.1 shows simulated indoor dry-bulb temperatures by the time series model 

for the period June 15th to June 22nd 2010 with its corresponding maximum and minimum 

indoor dry-bulb temperatures. The variation of simulated results about maximum and 

minimum indoor dry-bulb temperatures are 2.27 ºC and 2.31 ºC, respectively for the whole 

datasets of months June, July, and August 2010. This implies how far the simulated results 

lie from the maximum and minimum indoor dry-bulb temperatures on average. It is clear 

that the model can accurately predict the indoor dry-bulb temperatures of a typical summer 

day. 

Figure 5.2 represents simulated indoor dry-bulb temperatures by the time series 

model during the heat wave of July 5th to 8th 2010 and its corresponding maximum and 

minimum indoor dry-bulb temperatures. On the contrary of a typical summer day, the 

model was not able to predict the heat wave. As it is shown, the majority of predicted 

indoor dry-bulb temperatures are less than the minimum indoor dry-bulb temperatures in 

that period of the time. 
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Figure 5.1 Simulated hourly indoor dry-bulb temperatures of units in zone (a) 

 

 

Figure 5.2 Simulated hourly indoor dry-bulb temperatures of units in zone (a) 
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5.1.3 Level 2 Simulation 

In this level of simulation, the models were used to simulate hourly indoor dry-bulb 

temperatures of first eight days of August 2010: A heat wave occurred on the first three 

days. This dataset had not been used in the development and finding the best fit line of the 

models. This simulation level is the final stage for model validation, since it generates 

results based on totally unknown information. 

Prediction results of the time series model are illustrated in Figure 5.3. Again, the 

model was not able to predict the indoor air temperature well during heat wave. However, 

it predicted relatively well the indoor dry-bulb temperatures during other periods. The 

variation of predicted results about maximum and minimum indoor dry-bulb temperatures 

are 3.39 ºC and 2.23 ºC, respectively. 

 

Figure 5.3 Simulated hourly indoor dry-bulb temperatures of units in zone (a) 
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5.2 Artificial Neural Networks 

5.2.1 Apply the method 

The artificial neural network model was developed using Neural Network Toolbox 

of MATLAB (MATLAB, 2012). The datasets of three units (Building 25, Building 28, and 

Building 29) which are located in zone (a) corresponding to months June, July, and August 

2010 were used for training the model. The total number of the input and output layer 

datasets is 6,624. 

In pattern recognition problems, a neural network maps between a data set of 

numeric inputs and a set of numeric targets. The neural network fitting tool, which was 

used in this study, helped to select data, create and train a network, and evaluate its 

performance using mean square error. A three-layer feed-forward neural network was used 

to solve the fitting problem between input and output datasets. The network was trained 

with Levenberg-Marquardt backpropagation algorithm. 

At the beginning, the input of the network was selected as sol-air temperature (ºC), 

wind speed (km/h), and outdoor relative humidity (%) and time of the day which varied 

from 0 to 23. Indoor dry-bulb temperatures of selected units were considered as the desired 

target of the network. Then, the input datasets randomly were divided up for training, 

validation and testing. Seventy percent of the input datasets (4636 samples) was presented 

to the network during training, and the network was adjusted according to its error. Fifteen 

percent of the input datasets (994 samples) was used to measure network generalization, 

and to halt training when generalization stopped improving. The rest of input datasets (994 

samples) was used for testing. Testing has no effect on training and so provides an 
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independent measure of network performance during and after training. The number of 

hidden neurons was changed from 1 to 100 to get the best network, RMSE between 

predicted and actual indoor dry-bulb temperatures was used to evaluate the networks with 

different number of neurons. 

Finally, the best results were obtained by implementing 10 hidden neurons. The 

RMSE of the best model is 1.76 ºC. 75 % of the predicted indoor dry-bulb temperatures by 

this model had an error less than± 2 ºC while 92 % had an error less than  ± 3 ºC.  

5.2.2 Level 1 Simulation 

Figure 5.4 shows simulated indoor dry-bulb temperatures by the ANN model for 

the period of June 15th to June 22nd 2010 with its corresponding maximum and minimum 

indoor dry-bulb temperatures. The variation of simulated results about maximum and 

minimum indoor dry-bulb temperatures are 1.93 ºC and 2.03 ºC, respectively for the whole 

datasets of months June, July, and August 2010. This implies how far simulated results lie 

from the maximum and minimum indoor dry-bulb temperatures on average. It can be seen 

that the ANN model can accurately predict the indoor dry-bulb temperatures of a typical 

summer day. 

Figure 5.5 illustrates the simulated indoor dry-bulb temperatures by the ANN 

model during the heat wave occurred in July 5th to 8th 2010 and its corresponding maximum 

and minimum indoor dry-bulb temperatures. In addition to a typical summer day, the model 

also was able to simulate the heat wave. As it is shown, the majority of predicted indoor 
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dry-bulb temperatures are more than the minimum indoor dry-bulb temperatures and are 

very close to maximum indoor dry-bulb temperatures in that period of the time. 

 

Figure 5.4 Simulated hourly indoor dry-bulb temperatures of units in zone (a) by artificial neural network 

model 

 

Figure 5.5 Simulated hourly indoor dry-bulb temperatures of units in zone (a) by artificial neural network 

model  
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5.2.3 Level 2 Simulation 

Prediction results of the ANN model are illustrated in Figure 5.6. Again, the model 

was able to predict the indoor dry-bulb temperature relatively well during the heat wave 

and in the other time periods. The variation of predicted results about maximum and 

minimum indoor dry-bulb temperatures are 2.64 ºC and 1.99 ºC, respectively for this 

month. 

 

Figure 5.6 Simulated hourly indoor dry-bulb temperatures of units in zone (a) by artificial neural network 

model 

20.0

22.0

24.0

26.0

28.0

30.0

32.0

34.0

In
d

o
o

r 
D

ry
-B

u
lb

 T
e

m
p

e
ra

tu
re

 °
C

Date

Predicted Ti(t) Maximum Ti(t) Minimum Ti(t)



66 

 

5.3 Model Comparison 

From level 1 simulation, (Figures 5.1, 5.2 (correspond to time series model) and 

Figures 5.4, 5.5 (correspond to ANN model)), it can be observed that both models 

simulated the indoor dry-bulb temperatures relatively well, with the ANN model 

demonstrating better accuracy. It was presented in sections 5.1.1 and 5.2.1 that the RMSE 

of the time series, and ANN models are 2.1 ºC, and 1.76 ºC, respectively. The time series 

model predicted indoor dry-bulb temperatures roughly 1.19 times worse than the ANN 

model. It is noteworthy to mention again that thirty percent of input dataset was not used 

during training the ANN model. 

Apart from the fact that the ANN model generates less error, it should also be noted 

that most of the dry-bulb temperatures simulated by this model are closer or greater than 

the maximum indoor dry-bulb temperatures, which is an advantageous for a prediction 

model used as a warning system. As mentioned before, the variation of simulated results 

about maximum indoor dry-bulb temperatures are 2.27 ºC, and 1.93 ºC for the time series, 

and ANN models, respectively. 

It was mentioned earlier that the level 2 simulation is the final stage for the warning 

system validation, since it predicts results based on unknown information. Figures 5.3 

(corresponds to time series model), and 5.6 (Correspond to ANN model) show the results 

of this simulation level for all the developed models. For a better visual comparison, 

predicted results of both developed models correspond to level 2 simulation as well as their 

corresponding maximum and minimum indoor dry-bulb temperatures are shown in Figure 

5.7. The ANN model generates closer prediction values with respect to the maximum and 
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minimum indoor dry-bulb temperatures than the time series model. The variation of 

simulated results about maximum indoor dry-bulb temperatures are 3.39 ºC, and 2.64 ºC 

for the time series, and ANN models, respectively. 

An important observation from Figures 5.7 (and also by considering the discussed 

results above) is that the predictions made by the ANN model are still closer to the 

maximum indoor dry-bulb temperatures, reinforcing the use of this model to assess the 

worst case scenarios of indoor dry-bulb temperatures prediction. 

 

 

Figure 5.7 Predicated results of ANN and Time Series models correspond to simulation level 2
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Chapter 6 

Conclusions and Recommendations 

6.1 Concluding Remarks 

UHI, climate change, and global warming result in extreme heat events. They 

caused extensive health and economic related issues to many city residents. Elderly people 

living in buildings without air conditioners or mechanical ventilation systems are the most 

vulnerable citizens. An extensive literature review was carried out to identify the 

influencing parameters on indoor temperature, methods to predict indoor temperature, and 

existing heat warning systems. A field measurement campaign of indoor thermal condition 

was carried out across Montreal Island during the summer months of 2010. Fifty five 

dwellings were selected in different areas and various building types (Park et al., 2010). In 

this study, the existing measured data were used to develop predictive tools to characterize 

relationship between indoor dry-bulb temperatures and outdoor thermal conditions of the 

worst case scenario. 

In order to find the worst case scenario of indoor dry-bulb temperatures during the 

heat waves, different building characteristic and environmental parameters were analyzed. 

These parameters are: building height and volume, aspect ratio, surface albedo, occupancy, 

sensor location, and vegetation ratio. To calculate the local wind speed and solar heat gain 

two models were developed. It was concluded that the top floor units in the dwellings that 

are located in downtown Montreal have the worst indoor thermal condition during the heat 

waves and were chosen as the target of this study. Measured indoor dry-bulb temperatures 
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related to top floor dwellings in downtown Montreal supported the conclusion about choice 

of worst case scenario. 

The time series model consists of eleven input parameters, representing outdoor 

weather conditions. These parameters are current and past 8 hours observed value of sol-

air temperatures (9 inputs), wind speed, and outdoor relative humidity. The ANN model 

consists of four inputs. They include sol-air temperature, wind speed, outdoor relative 

humidity, and time of the day. The output parameter of both models is the hourly indoor 

dry-bulb temperature. The simulation results of these two models showed that the ANN 

model makes a more accurate prediction of indoor dry-bulb temperatures, compared to the 

other model. The errors (RMSE) from the ANN model for all the levels of simulation were 

all smaller than those of the time series model. 

Although the goal was to predict indoor dry-bulb temperature during the heat 

waves, in this period the developed models did not perform as well as the other periods. 

As it was shown before, the difference between predicted results by any of two models and 

the corresponding maximum indoor dry-bulb temperature was increased during the heat 

waves. The reason can be the limited number of days in heat waves that was used to develop 

models (July 5th to July 8th, 2010). Also, all the generalizations that were discussed in 

section 4.2 can play a role in decreasing the accuracy of the predicted results especially 

during the heat waves. 

For developing a heat warning system, all the discussed models could be used if 

the benefits and limitations of each are considered. For the time series model, although it 

requires more input, the simulations give larger error compare to the ANN model. The 
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ANN model needs more expertise compare to the time series model. Moreover, developing 

and finding the best fit line for the ANN model is more time consuming. However, the 

advantages of this model greatly outweigh its drawbacks. Prediction results accuracy are 

noticeably increased by using this model. The good agreement between the prediction 

made by the ANN model and the measured data clearly demonstrated its capability of 

approximating any nonlinear relations even in a complex situation where some important 

influential parameters are unclear. 

6.2 Recommendations for Future Work 

The work presented in this study established a long term project in developing a 

heat wave alert system in the UHI. It is anticipated that more development will be 

performed in the future. 

Apart from temperature, the thermal comfort of humans is the combined effect of 

other climate components such as humidity and wind speed (Leung et al., 2008). One 

possible way to improve the system is to predict other thermal indices which were 

constructed from various combination of climate components. Humidex, and Heat index 

are two examples of commonly used indices. It is clear that predicting indoor Humidex 

provides more information about indoor thermal conditions than indoor dry-bulb 

temperature. Conducting a more comprehensive measurement also can improve the final 

results. For example, knowing the internal heat generation based on the consumed 

electricity and gas by the occupants and aiming the top floor units in most dense area of 

the city for collecting data will be useful. 
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The neural network that was trained and used in this study is not necessarily the 

best possible network. Trying other learning tools, like Time Series Tool (MATLAB, 

2012), may provide more accurate results. 
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