

Source Code Similarity and Clone Search

Iman Keivanloo

A Thesis

In the Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Doctor of Philosophy (Computer Science)

Concordia University

Montreal, Quebec, Canada

June, 2013

© Iman Keivanloo 2013

CONCORDIA UNIVERSITY

SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By: Iman Keivanloo

Entitled: Source Code Similarity and Clone Search

and submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY (Computer Science)

complies with the regulations of the University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:

 Chair

 Dr. R. Glitho

 External Examiner

 Dr. G. Antoniol

 External to Program

 Dr. F. Khendek

 Examiner

 Dr. R. Witte

 Examiner

 Dr. N. Tsantalis

 Thesis Supervisor

 Dr. J. Rilling

Approved by

 Dr. H. Harutyunyan , Graduate Program Director

June 20, 2013

 Dr. Robin A.L. Drew, Dean

 Faculty of Engineering & Computer Science

iii

Abstract

Source Code Similarity and Clone Search

Iman Keivanloo, Ph.D.

Concordia University, 2013

Historically, clone detection as a research discipline has focused on devising source code

similarity measurement and search solutions to cancel out effects of code reuse in software

maintenance. However, it has also been observed that identifying duplications and similar

programming patterns can be exploited for pragmatic reuse. Identifying such patterns requires a

source code similarity model for detection of Type-1, 2, and 3 clones. Due to the lack of such a

model, ad-hoc pattern detection models have been devised as part of state of the art solutions that

support pragmatic reuse via code search.

In this dissertation, we propose a clone search model which is based on the clone detection

principles and satisfies the fundamental requirements for supporting pragmatic reuse. Our

research presents a clone search model that not only supports scalability, short response times,

and Type-1, 2 and 3 detection, but also emphasizes the need for supporting ranking as a key

functionality. Our model takes advantage of a multi-level (non-positional) indexing approach to

achieve a scalable and fast retrieval with high recall. Result sets are ranked using two ranking

approaches: Jaccard similarity coefficient and the cosine similarity (vector space model) which

exploits the code patterns’ local and global frequencies. We also extend the model by adapting a

form of semantic search to cover bytecode code. Finally, we demonstrate how the proposed clone

search model can be applied for spotting working code examples in the context of pragmatic

reuse. Further evidence of the applicability of the clone search model is provided through

performance evaluation.

iv

Acknowledgements

I would like to thank my supervisor Dr. Juergen Rilling for his continued support and

encouragement. Without his openness and encouragement, this journey could not have happened.

His unique personality as a supervisor and friend is the main reason behind the success of this

research. I also extend my thanks to Drs. Giuliano Antoniol (École Polytechnique de Montréal),

Ferhat Khendek, René Witte, and Nikolaos Tsantalis, who served on my committee and provided

me invaluable comments at different stages of my research.

I would like to thank Drs. Chancal K. Roy, Volker Haarslev, and Rainer Koschke. I would

like to thank Dr. Roy for sharing his knowledge in clone detection with me. His generous

presence and collaboration provided me with the spirit to explore diverse problems and solutions.

Similarly, I extend my thanks to Drs. Haarslev and Koschke whose early comments on my work

opened new directions to my research. I also like to thank my earlier teachers and supervisors,

especially Jamshid Rabiei.

I would like to thank all members of the Computer Science & Software Engineering

department. In particular, I would like to thank Halina Monkiewicz and Dr. Nematollaah Shiri.

They supported me from my first day at Concordia with their patience and kindness in every

aspect of student life. I would also extend my thanks to all of my friends and co-authors at

Concordia University and University of Saskatchewan: Philipp Schugerl, Aseel Hmood, Laleh

Roosta Pour, David Walsh, Ninus Khamis, Mostafa Erfani, Sultan Al Qahtani, Chris Forbes,

Chris Neil, George Peristerakis, Farouq Al-Omari, Jeff Svajlenko, and Masud Rahman.

Most of all, I want to thank my immediate family and family-in-law. The grandparents who

shaped this journey for us: Aziz, Shahrokh, Mohtaram, Hossein, Shahbanoo, Ali, Sedighe, and

v

Ebrahim; My parents who gave us the chance to enjoy the journey: Jina, Gholam Reza, Mahshid,

and Sirous; My brother, Omid, who has been my friend through the journey; Arash, Kiarash,

Nastaran, Maryam, and finally my wife, Mahsa: without her the journey would be meaningless.

vi

To Mahsa

vii

Table of Contents

List of Figures...……………………….……………………………………………………………………………………xii

List of Tables………………………………………………………………………………………...………………………xv

1. Introduction .. 1

1.1. Motivation .. 2

1.2. Potential solution – exploiting clone detection for reuse ... 3

1.3. Summary of contributions .. 6

1.3.1. Contribution 1 - the clone search model .. 6

1.3.2. Contribution 2 - clone search model for bytecode ... 7

1.3.3. Contribution 3 - adaptation of the clone search for spotting code examples 8

1.4. Organization ... 9

2. Related work .. 10

2.1. The application domain – code search for reuse .. 10

2.2. The solution domain – code similarity detection ... 15

2.2.1. Clone detection .. 16

2.2.2. Clone search ... 20

2.3. Summary .. 22

3. Clone search model .. 23

3.1. Overview .. 24

viii

3.2. Computational complexity ... 27

3.3. Summary .. 28

4. SeClone indexing model .. 29

4.1. Encoded code pattern generation ... 29

4.1.1. Hash function implementation ... 33

4.2. Non-positional and multi-level indexing and retrieval .. 34

4.3. Summary .. 35

5. Ranking model ... 36

5.1. Ranking approaches ... 36

5.1.1. Jaccard Coefficient ... 36

5.1.2. Vector space model .. 37

5.1.3. Weighting factors ... 37

5.2. SeClone’s search schema ... 38

5.3. Summary .. 40

6. Data characteristics study .. 41

6.1. Granularity effect on the clone search latency time ... 41

6.2. The outlier patterns .. 45

6.3. Index growth rate ... 46

6.4. Hash value strength .. 48

6.5. Summary .. 48

7. Performance evaluation measures .. 50

ix

7.1. Requirements ... 50

7.2. The measure suite .. 51

7.2.1. Traditional measures (unranked result) .. 52

7.2.2. Measures for ranked result sets .. 53

7.2.3. Measures for highly positive ranked results... 59

7.2.4. Non-functional performance measures .. 60

7.3. Summary .. 60

8. Performance evaluation ... 61

8.1. The candidate search schemas ... 63

8.2. The corpus and environment configurations .. 64

8.3. The benchmark ... 65

8.4. Assignment of relevance scores ... 66

8.5. Evaluation result .. 68

8.5.1. First False Positive ... 69

8.5.2. Precision at K ... 72

8.5.3. MAP ... 77

8.5.4. Normalized Discounted Cumulative Gain ... 78

8.5.5. Kendall tau ... 79

8.5.6. Response time .. 80

8.6. Summary .. 82

9. Bytecode clone search .. 84

x

9.1. Java bytecode overview ... 85

9.1.1. Instruction families .. 85

9.1.2. Motivation and challenges ... 87

9.2. SeByte data presentation and manipulation approach ... 88

9.3. SeByte search approach ... 91

9.3.1. Existing solutions ... 92

9.3.2. Our solution - semantic search ... 93

9.4. Bytecode ontology ... 95

9.5. SeByte – a Java bytecode clone search approach .. 98

9.6. SeByte performance evaluation ... 99

9.6.1. SeByte search schema .. 99

9.6.2. First False Positive measure ... 100

9.6.3. NDCG measure .. 104

9.7. Summary .. 105

10. Adaptation of the clone search model for pragmatic reuse .. 107

10.1. Characteristics of the working code examples ... 108

10.2. Schematic approach and its challenges .. 109

10.3. Adaptation of clone search for the code search problem 113

10.3.1. Populating the search space ... 113

10.3.2. Search process .. 116

10.4. Performance evaluation.. 118

xi

10.4.1. Performance result ... 119

10.4.2. Initial user study ... 122

10.5. Discussion and promoting Examples ... 124

10.5.1. Bubble sort example... 124

10.5.2. MD5 example ... 125

10.5.3. Save chart as JPEG example .. 126

10.6. Summary .. 127

11. Discussion .. 128

11.1. Threats to validity .. 128

11.1.1. Data characteristics study ... 128

11.1.2. Performance evaluation study .. 129

11.2. Limitations ... 130

11.2.1. The clone search model .. 130

11.2.2. Application for pragmatic reuse ... 130

11.3. Future work .. 130

12. Conclusion ... 132

12.1. Research approach and contributions... 133

13. References .. 134

14. Appendix .. 145

14.1. Transformation function design issues .. 145

xii

List of Figures

Figure 1. Traditional structural source code query approach .. 5

Figure 2. Extending source code search using clone search .. 5

Figure 3. SeClone – the proposed clone search approach ... 24

Figure 4. The SeClone search (configuration) schema parameters 25

Figure 5. Retrieval and ranking (i.e., search) steps ... 27

Figure 6. Examples of SeClone hash function outputs .. 34

Figure 7. SeClone search schema .. 39

Figure 8. Occurrence frequency distribution for the 3-line encoded code patterns 43

Figure 9. TLS and FLS outlier groups’ distribution comparison 44

Figure 10. Analysis of the increase rate of new hash values. .. 47

Figure 11. The performance evaluation approach ... 62

Figure 12. Summary of First False Positive measure result (average values) 69

Figure 13. Details of First False Positive measure result .. 70

Figure 14. First False Positive measure result (queries 1 to 25, without heuristics) 71

Figure 15. First False Positive measure result - only queries 26 to 50 72

Figure 16. Summary of Precision at 10 measure ... 73

Figure 17. Summary of Precision at 15 measure ... 74

Figure 18. Summary of Precision at 20 measure ... 74

Figure 19. Summary of Precision at 30 measure ... 75

Figure 20. Summary of Precision at 40 measure ... 75

Figure 21. Summary of Precision at 50 measure ... 76

Figure 22. Summary of Precision at 60 measure ... 76

Figure 23. Summary of MAP measure .. 77

Figure 24. MAP measure results for queries tagged with and without heuristics 78

xiii

Figure 25. Summary of NDCG values .. 78

Figure 26. Details of the NDCG studies .. 79

Figure 27. Kendall tau based comparison ... 80

Figure 28. SeClone response time ... 81

Figure 29. SeClone response time grouped by query number ... 82

Figure 30. Java bytecode example (presented as plain text) ... 87

Figure 31. An example with one line dissimilarity at source code level 88

Figure 32. Examples for Java bytecode fingerprinting.. 89

Figure 33. Effects of the relaxation on code fingerprint on data size reduction 90

Figure 34. Examples for differences between source code and bytecode clone detection .. 92

Figure 35. A slice of domain of discourse related to iadd instruction 94

Figure 36. A slice of domain of discourse related to java.io.PrintStream token 94

Figure 37. Partial preview of Bytecode Ontology ... 96

Figure 38. Bytecode Ontology overview highlighted with the most popular families 97

Figure 39. Clone search approach for Java bytecode (token-level)..................................... 98

Figure 40. Summary of the First False Positive measure study .. 101

Figure 41. Summary of the Precision at 5 measure study ... 102

Figure 42. Summary of the Precision at 10 measure study ... 103

Figure 43. Details of the Precision at 5 measure study ... 103

Figure 44. Details of the Precision at 10 measure study ... 104

Figure 45. Details of the NDCG measure study .. 105

Figure 46. The schematic approach towards spotting working code examples 109

Figure 47. The average size of our corpus abstract solutions with certain popularity 111

Figure 48. A high quality true positive for the MD5 example .. 112

Figure 49. A low quality true positive for the MD5 example ... 112

Figure 50. A sample encoded code pattern and its associated keywords 114

xiv

Figure 51. The search space population process ... 115

Figure 52. Our concrete solution - the three querying phases ... 116

Figure 53. The two-dimensional ranked result set .. 118

Figure 54. The bubble sort example .. 125

Figure 55. The MD5 example ... 125

Figure 56. The save chart as JPEG example (JFreeChart Library) 126

Figure 57. Two code cloned code fragments that are using different variable names 145

Figure 58. Importance of method names to the code search success rate. 146

xv

List of Tables

Table 1. Examples for source code similarity types... 16

Table 2. SeClone computational complexity ... 28

Table 3. SeClone source code transformation functions – the parameter 31

Table 4. Sample outputs of SeClone source code transformation functions 32

Table 5. SeClone pre-defined granularities for the hash function – parameter 32

Table 6. Weighting support for local frequency .. 38

Table 7. Weighting support for global frequency .. 38

Table 8. SeClone scoring schemas (parameter) .. 40

Table 9. SeClone size functions (parameter) .. 40

Table 10. TLS and FLS characteristics .. 43

Table 11. The outlier code patterns .. 46

Table 12. Selected SeClone search schemas for the evaluation phase 63

Table 13. Available clones for each query in the benchmark and their details 66

Table 14. Guidelines for assigning relevance scores ... 67

Table 15. The evaluation steps and hits manual investigation details................................ 68

Table 16. The Java bytecode instruction overview .. 86

Table 17. The symbol table assigned to known data types by Java bytecode 87

Table 18. Prelimaniry bytecode datasets .. 90

Table 19. The Eclipse dataset overview and processing time report 99

Table 20. Features and the related measures for working code examples 108

Table 21. The characteristics of our corpus (both raw and processed data) 110

Table 22. The dataset and evaluation summary for the spotting problem 121

Table 23. The details of the evaluation .. 122

Table 24. The controlled user study configuration .. 124

xvi

Table 25. The controlled user study configuration .. 124

1

1. Introduction

The term clone (Greek word klōn) was first used by Herbert J. Webber [WEH03] in 1903,

referring to the outcome of a derivation activity in the context of living species. In computer

science, such autonomous reproduction is limited, but derivation is unavoidable and it is known

as cloning. Derivation during software development usually occurs as the result of reuse

[PER88][DEE05]. Based on the problem and its granularity, various forms of reuse are

introduced [KRU92] [ROT03], including pragmatic reuse [HOI08] (i.e., copy and change). While

the concept of reuse is often promoted as a solution for cost reduction and quality improvement

[BBO99] [FRA05], there are some forms of reuse that are usually related to discouraged ethical

issues (e.g., copy without permission, plagiarism). Common to all of these forms is deriving and

introducing new instances (i.e., clones), which share similar concepts and origins with slight

modifications (e.g., tailoring).

The ease of reuse and the potential harms caused by cloning in software development became

a major motivation for computer scientists to explore the possibility of identifying code

duplications (i.e., source code clones). Consequently, a new research discipline - clone detection -

[ROS09][BAK92][BEL07] has emerged in computer science, which focuses on devising novel

algorithms and heuristics for finding, tracing, and managing [KOS08] clones.

Although the input data for this type of similarity search is source code, which is structured

and well organized, the clone detection problem remains non-trivial [ROS09], due to the different

types of similarities that can be distinguished. At source code level, clones share two types of

similarity: (1) pattern and (2) content similarity. The challenge lies often in determining if two

2

code fragments are actually cloned, as two cloned code fragments, e.g., “int temp=0;” and “float

f=2;”, can hold negligible content similarity (i.e., similarity in token names).

In 1976, Ottenstein [OTT76] explored the idea of using code metrics for plagiarism detection

in students’ programming assignments that is later extended to software maintenance applications

[MAY96] [BAX98] [BAK92], since duplicated code has been widely accepted as a threat to bug

fixing and software quality [KAP06]. Consequently, other research directions have emerged,

involving algorithms and heuristics for other types of input data such as compiled code (e.g.,

[BAK98]).

1.1. Motivation

Although pragmatic code reuse through cloning has often been criticized as being harmful, recent

studies show that cloning is actually both useful [KAP06] and often unavoidable [HOI08].

Pragmatic reuse occurs when developers are implementing their programming tasks by locating,

reusing, and often customizing code examples derived from available local or global code

repositories. In general, such source code examples play a major role in programming as both

intrinsic resources for learning [NYK02] and reuse [ROS96][JON92]. The lack of good source

code examples is one of the major complications in learning [ROB11] and eventually coding

during software development. Availability of code examples for reuse and learning can accelerate

the development process and improve programmer productivity [MAN05], as well as contribute

towards an improvement of product quality [MAR09]. Since it is not a common practice to

collect and document code examples [HOL05][SIN98][WAN13], previously written projects

[WAN13] and code repositories (e.g., sourceforge.net) have become invaluable resources for

code examples.

Due to the sheer size of the data in these repositories, locating code examples without

adequate search functionality is a major challenge. Therefore, the community established source

3

code search as common practice to locate code examples for software development [BRA10]

[BUS12] when attempting to find relevant code fragments. Specifically, when the search space is

extended to cover other resources hosted on the Internet. Such Internet-scale code search is

defined as the process of searching over source code available on the Internet to find pieces of

working code fragments [GAL09].

Support for developers in finding code examples for reuse has been widely explored with

diverse approaches such as structural code search (e.g., [HOL05]), synthesizing and mining (e.g.,

[MAN05]), or even Questioning & Answering [NAS12]. Unfortunately, the available search

approaches suffer from different challenges. Three major issues are discussed in the literature that

are hindering the success of code search for reuse. (1) Mishne et al. [MIS12] argue that one of the

challenges in the Internet-scale code search domain is the large number of matches (results

returned) for each query [MIS12]. Wang et al. [WAN13] also noted that redundancy in the result

set can become a major problem when searching for reusable code fragments. (2) As Holmes et

al. [HOL09] point out, relevancy is often not the sufficient condition for such source code search.

(3) Buse and Wiemer in [BUS12] discuss that spotted code fragments are usually too long and

complicated to be considered as working code examples even after applying program slicing, a

program reduction technique.

In summary, it is commonly agreed upon that the usability of the ranked result set provided

by current code search engines is limited for finding code examples to support pragmatic code

reuse. These result sets are often of poor quality due to the high number of matches returned that

contain repeated (exact or similar) hits or missing information.

1.2. Potential solution – exploiting clone detection for reuse

Recently, several similarity search approaches have been proposed to address these ongoing

challenges related to code search result sets. Wang et al. [WAN13] proposed an approach for

4

sequence mining to detect reoccurring sequences of code fingerprints (i.e., method call tokens).

Buse and Wiemer [BUS12] apply data mining to graph models that were created from data flow

and method call sequences to detect duplicates sub-graph occurrences. Mishne et al. [MIS12]

suggested using a search rather than a mining approach to detect similarities. Their approach is

based on a similarity search model to find repeated code patterns and exploit them to improve the

result set (e.g., popularity-based ranking). However, none of the existing code searches have used

a clone detection model for their search approach. This is in contrast with the fact that clone

detection research covers a vast body of similarity search models for formal source code

similarity types (i.e., Type-1, 2 and 3). Current source code search models have relied on ad-hoc

similarity search models since the available clone detection counterparts still lack support for

some of the emerging requirements of search engines such as ranking, scalability, and short

response times. In summary, although clone detection had originally been devised to cancel out

the negative effect of reuse via cloning, its core principals can also be applied for clone search

and further exploited to support reuse, e.g., online development session support [LEM11].

An example for immediate applications of clone search in this context is the result set

expanding [KLX12]. If a clone search model that addresses the core requirements can be derived,

it can be further exploited to improve the result of existing structural code searches (e.g.,

Sourcerer [BAJ12]). Figure 1 illustrates a traditional structural search-based approach to support

pragmatic reuse. However, given the size of the search space, the complexity of the queries, and

the challenges in presenting relevant result sets, existing structural code search engines are

limited in their applicability to support pragmatic reuse. For example, to formulate the query, the

user should know the participant elements (e.g., types and methods) in advance. To address this

deficiency and improve the usability of the search engine and its result set, it is possible to extend

the search strategy (Figure 2) by exploiting a similarity function close to what is available in

clone detection [KLX12]. Using such a clone detection based approach, the preliminary result of

5

the structural search, users can now expand the result set based on pattern and content similarities

(Figure 2 step 2). This approach allows a user to retrieve the expected answer faster by providing

them with an option to browse through the clones.

Figure 1. Traditional structural source code query approach

Suggested simplified query:
Select line which has

(1) a method call statement on the trigger method.

...
11: CSVReadFile csvData=new CSVReadFile(“input.csv”);
12: myWindow.trigger(csvData);
13: OutputStream o=new OutputStream();
…

...
59: Event e=new Event(50);
60: e.trigger();
61: e.update();
...

...
133: Listener res=new Listener();
134: res.trigger(“warm-up”);
135: res.close();
...

...
55: Window r=new Window();
56: long timestamp=System.Now();
57: System.out.println(“Start reasoning...”);
58: XMLStream xmldata=new XMLStream(io);
59: r.trigger(xmldata);
60: OutputStream o=new OutputStream();
61: r.flush(o);
…

…
89: Window var=new Window();
90: XMLReadFile r=new XMLReadFile (“k.xml”);
91: OutputStream o=new OutputStream();
92: var.trigger(r);
93: var.flush(o);
…

Gapped clone

Unordered core

The pattern is
similar but it uses

XMLStream instead
of XMLFile as the

input

This is the answer
although its order is
different comparing
to the ideal answer.

Internet-Scale Structural Code
Search Engine

This line seems relevant but it uses CSV
instead of XML so lets use the clone search
engine to find similar fragments to this one

Real-time Clone Search Engine
...
10: Window myWindow=new Window();
11: CSVReadFile csvData=new CSVReadFile(“...
12: myWindow.trigger(csvData);
13: OutputStream o=new OutputStream();
14: myWindow.flush(o);
15: myWindow.close();
...

Step 2: Input [the selected fragment

in the first step and its target line (red)]

Step 1: Input [the simplified structural query]

XMLReadFile inFile=new XMLReadFile(“kb.xml”);
Window myWindow=new Window();
myWindow.trigger(inFile);
OutputStream result=new OutputStream();
myWindow.flush(result);

The ideal expected answer

Figure 2. Extending source code search using clone search [KLX12]

6

1.3. Summary of contributions

Recently, clone search (e.g., [LER10]) has emerged as a new research direction that exploits the

fundamentals of clone detection research to provide search functionality for similar code

fragments (a.k.a. clones). In contrast with the traditional clone detection, clone search is only

concerned with detecting similar code fragments for a given input code fragment at run-time. A

code fragment constitutes the query input making clone search also different from regular source

code search where the input is defined by a set of keywords or concepts. Therefore, clone search

can be considered as a function that accepts a code fragment as its input parameter. The output of

a clone search includes all code fragments in the search space that are similar to the input

parameter. As a result, clone search forms the core of code similarity search. Furthermore, output

items can be sorted based on their similarity degree to the given input query.

In the literature, several terms have been used to highlight the importance of response time in

clone search such as just-in-time [BAR10], real-time [KAW09], and instant [LER10]. Several

similarity and search models (exploiting clone detection basics) have been proposed to address

the core requirements of clone search: scalability, short response time, and search for Type-1, 2

and 3 clones. However, these requirements ignore the importance of ranking and the quality of

ranked result set, which we consider both to be core requirements for clone search models to

support source code search and pragmatic reuse.

1.3.1. Contribution 1 - the clone search model

In this thesis we propose a clone search model that includes a similarity function for applications

such as pragmatic reuse (e.g., [LEM11]), where ranking, scalability, fast response time, and

Type-1, 2, and 3 detection are essential requirements. The model is based on our early research

attempts [KLX11] [KLZ11] proposing a clone search approach for emerging applications such as

pattern-based code search (e.g., [KLZ12]) and source code search result improvement (e.g.,

[KLX12]). Our studies in [KLX11] demonstrate how a multi-level indexing approach can achieve

7

scalability, short response time, and search capabilities for Type-1, 2 and 3 clones. We have

extended this multi-level indexing approach by adapting the Jaccard similarity coefficient

[JAC01] and cosine similarity [MAN08] to support another core requirement: the ranking of

result sets. Our clone search models’ ranking exploits code patterns’ (not token) local and global

frequencies for assigning different weights depending on the pattern popularity. For example, a

domain specific pattern (e.g.,“EclipseEditor foo=new EclipseEditor()”) can be assigned higher

weights compared to some general code patterns (e.g., “catch (Exception ex) {“). We have

studied the applicability of the proposed similarity search model using a representative dataset of

25,000 open source Java projects for line-level granularity. The study focuses on the performance

of our search model addressing the core requirements for a clone search approach: scalability, fast

response time, Type-1, 2, and 3 detection, and the ranking of the result sets.

1.3.2. Contribution 2 - adaptation of the proposed clone search

model for bytecode content

We also conducted studies to provide evidence that our search model is applicable for other types

of source code. For these studies we applied our search model on Java bytecode. We consider

being able to search bytecode content to be an essential part of Internet-scale code search

approach, since bytecode content constitutes a major part of the data (e.g., [BAJ12]). In order to

achieve high recall during the Java bytecode clone search, we introduce two detection heuristics

for Java bytecode. First, we use relaxation on code fingerprints, which only considers certain

types of tokens for clone detection. Second, we introduce a multi-dimensional matching heuristic.

This multi-dimension heuristic applies the clone detection algorithm independently for each type

of token (a.k.a., dimension). These heuristics follow and replicate our multi-level indexing idea

for bytecode content. Furthermore, we also extended our original clone search model to support

some form of the semantic search [GUH10]. This extension is motivated by the nature of

bytecode content, where each token (e.g., a summation token) includes additional embedded

8

information such as data types. Our evaluation with a dataset of 500,000 compiled Java classes

showed that our search model is not only scalable but also capable of providing a reliable ranking

of the result sets for Java bytecode content.

1.3.3. Contribution 3 - adaptation of the proposed clone search

mode for spotting code examples for reuse

As the third major contribution, we illustrate how a clone search model can actually support

pragmatic reuse. For pragmatic reuse in a software development context, a key challenge is that

any code fragment that meets the query criteria should not be considered as a correct code

example. In a pragmatic code reuse context, the answer must be concise, self contained, easy to

understand, and integrate [HOL09][MIS12][WAN13][BUS12]. A code fragment meeting these

requirements is considered a working code example. In our research we focus on the spotting

problem of concrete working code examples using our proposed clone search model. That is, we

study the possibility of applying clone search models instead of ad-hoc similarity search models

for spotting working code examples. Spotting these code examples is challenging since there

exists a tradeoff between various aspects such as popularity, conciseness, and completeness of the

results, which have to be considered when selecting the result. We show the applications of clone

search for different types of similarity search in state of the art approaches for spotting working

code examples. We show that clone search is able to successfully handle the tradeoff between

conciseness, completeness, and popularity. Our approach supports free form querying (i.e., bag of

words with no ordering constraint). A { } is composed of

different terms, where each term can be a data type, method name, or concept (e.g., download or

bubblesort). This is different from most of the earlier work, where search engines require either a

partial written code, or API names and the data flow information (e.g.,).

9

1.4. Organization

Chapter 2 outlines related work for clone detection, search, bytecode similarity search, and code

search for pragmatic reuse. Chapter 3 overviews our clone search model which is called SeClone.

Retrieval and indexing steps of our search model is discussed in Chapter 4. The details of ranking

schemas of our search model are covered in Chapter 5. Prior knowledge about the characteristics

of the input data is necessary for successful deployment of our search model. Chapter 6

summarizes our observation about the chosen data characteristics in the domain of discourse. For

proper performance evaluation we require some measures for the ranking aspect. Chapter 7

introduces the adapted measures from other domains (e.g., information retrieval) for proper clone

search evaluation. Chapters 8, 9, and 10 discuss the adaptation and performance evaluation of our

similarity search model for the source code clone search, bytecode similarity search, and working

code example search problems. Finally, Chapters 11 and 12 provide the ending discussion and

conclude the dissertation.

10

2. Related work

Source code repositories present invaluable sources of information for source code search

[WAN13] and pragmatic reuse [HOI08]. For example, reuse patterns can be exploited to infer

popular programming solutions for code recommendation [BUS12]. In the past decade, various

ad-hoc similarity search approaches (e.g., [MAN05]) have been introduced and applied to define

reuse patterns. Alternatively, existing and often well-defined and supported clone detection

models can be adapted in place of these ad-hoc similarity detection approaches. This chapter

provides an overview of related work covering both the application and solution domains.

2.1. The application domain – code search for reuse

In [GLP13], Gulwani introduces program synthesis (PS) as “the task of automatically discovering

an executable piece of code given user intent expressed using various forms of constraints such as

input-output examples, demonstrations, natural language …”. PS supports a variety of users such

as (1) general users of information systems with or without prior programming experience to

automate their repetitive daily tasks and (2) professional programmers to accelerate the

development process by avoiding coding from scratch. Other topics, such as source code search,

recommendation, and completion for pragmatic reuse, are related parts of the program synthesis

problem. In particular, their underlying approaches, techniques, algorithms, and heuristics all

developed with the common objective to accelerate development processes by helping

programmers through working code examples. The (similarity) search functionality is the shared

component among these approaches to satisfy the user expectations.

Source code search is not a new research topic in software engineering (e.g., [LIN84]) and

has been widely investigated, producing a vast body of research. The diversity in their search

models differentiates these solutions. In what follows, we review these search models by

11

highlighting the proposed similarity functions, which form the core of their models. Paul and

Prakash [PAU94] propose SCRUPLE that provides code search functionality via queries similar

to code templates. The authors focus on applications of code search related to software

maintenance, such as locating all matches of a specific buggy fragments. Their pattern language

approach addresses deficiencies of grep-like search functions for the code search problem.

Another early approach to finding reuse patterns and association through rule mining

suggestions, called CodeWeb, has been introduced by Michail [MIC00]. It applies association

rule mining by using generalized association rules for mining [MIC99] reuse patterns. In his

research, Michail investigates high-level reuse patterns for C++ covering only fingerprints of the

inheritance links, instantiation tokens, method calls, overrides, and receiving invocation

messages. This approach is different from traditional fine-grained pattern mining approaches such

as sequence of source code tokens. The interesting point about these generalized association rules

versus regular association rules is that they are able to employ taxonomies, such as the inheritance

trees. Following a similar approach for mining coarse-grained facts and goals, Bruch et al.

[BRU06] developed an Eclipse plug-in called FrUiT. However, the focus of their approach was

not only on mining of reuse patterns but also on providing a context-dependent presentation

within the Eclipse IDE. FrUiT provides reuse support for novice users by recommending the next

potential actions.

Hill and Rideout [HIL04] focus in their work on method body completion by using machine

learning and exploiting frequently occurred near-duplicate code (small sized clones). The

approach focuses on (1) completion of popular methods in Java, such event listeners etc., and (2)

extending (i.e., a type of completion) the current method body written from beginning until the

cursor. Method bodies are represented as vectors and compared them using Euclidean distance

and K nearest neighbor - kNN. The vectors are based on 154 metrics that are calculated for each

method body, of which 150 metrics are related to frequency occurrence of Java token types, with

12

the remaining 4 metrics being LOC, cyclomatic complexity of a method, return value, and its

number of arguments.

Li and Zhou investigate in [LIZ05] the application of mining code patterns for the detection

of buggy code fragments and introduce as part of their work the PR-Miner tool. In their approach,

they first use frequent itemset mining to find reputable patterns. Second, they locate code

fragments that are not adhering to the mined rules as potential violations/bugs. Specifically, PR-

Miner mines closed sub-itemsets using a FPclose algorithm and then creates the association rules

to detection violations. Based on their studies for Linux, Apache HTTP server, and PostgreSQL

written in C, their approach is capable of successfully detecting actual bugs. PR-Miner considers

in its analysis fine-grained fingerprints to generate transactions such as language keywords,

method calls, and variables. In order to avoid name collisions, they resolve token names by

attaching data types and other metadata since source code tokens constitute the items. Similarly,

Wahler et al. [WAH04] use frequent item mining for clone detection. The major differences

between Wahler’s approach and the other similar works mentioned are that (1) they forced the

mining algorithm to detect the consecutive items and (2) they used maximal sets.

Mandelin et al. [MAN05] introduced their PROSPECTOR and Jungloid mining approach to

help programmers in acquiring an object (instance) of a specific class (type). The approach

produces (synthesizes) Jungloid, a code snippet that performs type transformations, and combines

these transformed code snippets to answer queries using the source and destination types.

Possible types (templates) of Jungloids are provided for Java. For their approach, the API

signatures and examples constitute the input data. The links between both data sources are

presented as a single DAG which is used by the synthesize algorithm. The generated solutions are

ranked based on their size, with shorter answers being preferred due to their simplicity.

13

In [BRU09], Bruch et al. focus on re-using code examples for intelligent code completion.

Their goal is to improve the auto-completion of search results by removing items irrelevant to a

programmer’s current work context. Their approach is designed to recommend method names

that should be called for a selected variable. The input data are the current programming context

and previously mined examples. In their work they evaluated the performance of three

approaches to recommend the next method name being called. For their evaluation they used

precision, recall, and F-measure for (1) method call frequencies, (2) association rule mining for

method call patterns, and (3) code completion using a customized approach based on K nearest

neighbors (called best matching neighbors BMN). Their observation shows that for their specific

application context, the kNN solution achieves the best F-measure. In order to automate their

evaluation, they took advantage of an evaluation approach for API recommender systems

presented in [BUT00].

Robbes and Lanza [ROB08] focus on the code completion problem for MS Visual Studio via

IntelliSense by using change history. Their objective is specifically geared towards situations

with APIs with large number of methods and members, making the use of the completion result

list very challenging. Moreover, in their work they also define a benchmark for accuracy

measurement of such systems and introduce a new graphical interface. Their approach is mainly

based on recorded fine-grained actions and collected data during programming sessions, which

are modeled as sequences of changes. The authors argue that ranking can be improved by

combining change history information with other types of information such as code and query

context.

Hou and Pletcher [HOU10] address the ranking problem for the “auto-complete” box

available in IDEs. Their goal is to improve Eclipse’s current approach, which supports only

alphabetical ranking, by giving priority to answers sharing the same type as the context. They

14

studied the usability of usage frequency for sorting and customized pre-defined rules for the

filtering or grouping of the auto complete result sets.

Menon et al. [MEN13] explore the possibility of machine learning (ML) and its benefits for

ranking and searching. The objective of their work is to find and efficiently rank some

combinations of smaller pre-defined programs as the answer set. Specifically, ML is exploited to

learn the weights (i.e., importance) of the possible answers for the given examples. Perelman et

al. [PER12] proposed an API discovery approach based on the idea of programming by example

that suggests and ranks the APIs matching to the query. They conducted a study on the .NET

framework. Their approach supports a variety of code completions, which improve Visual Studio

Intellisense for auto completion in some cases. In particular, their approach shows improvements

when a method call statement completion is exploited for the completion of an argument list,

expression completion, or method name search via candidate types. Their research also proposes

a querying approach known as partial expressions, which uses library class/interface definition

information and the context data (e.g., local variables) to match candidates to a given query. This

solution can be considered as an automatic generation approach that relies heavily on search and

matching.

Recently, other mining and search approaches have been proposed towards working code

example recommendation for API usage scenarios. In [WAN13], Wang et al. present their UP-

Miner implementation as the successor of MAPO [ZHO09]. UP-Miner combines clustering and

sequence mining to find reoccurring sequences of API fingerprints (i.e., method call tokens). UP-

Miner’s probabilistic approach is able to recommend the next most probable step/s for the given

API name. Buse and Wiemer [BUS12] apply mining on graph models created from the data flow

and method call sequences. Using the mined sequences, their approach synthesizes code

fragments as the potential solutions for a given query. Mishne et al. [MIS12] applied another

approach, which exploits search instead of mining and synthesizing. Their approach, PRIME

15

[MIS12], extracts partial temporal specification from method call sequences to find possible

solutions, and returns the corresponding code fragments located in the available corpus.

Common to all of these proposed solutions is the fact that they are based on ad-hoc reuse

pattern detection techniques, which are used to mine either the library definitions or the given

examples to determine how a particular programming task can be implemented. Alternatively, we

explore in this thesis how these ad-hoc similarity mining approaches can be replaced by clone

detection and clone search models for program synthesis in the context of pragmatic reuse, which

not only support the detection of defined reuse patterns (i.e., clone types) but also result ranking.

2.2. The solution domain – code similarity detection

Given the need for finding code duplications in programming content [ROS09], clone detection

has emerged as a research discipline in computer science. The underlying algorithms and

heuristics target detection of four similarity types [BEL07][ROS09] found in source code. Table 1

provides an overview with examples of the three basic similarity types related to syntactical

clones. The types are defined based on their observable similarity in the source code. At source

code level, clones share two types of similarity: (1) pattern and (2) content. Clone detection is

challenging, as two cloned code fragments, e.g., “int temp=0;” and “float f=2;” can contain

negligible content similarity (i.e., token names). Type-1 clones are exact copies of each other,

except for possible differences in whitespaces and comments. Type-2 clones are parameterized

copies, where variable names and function calls have been renamed and/or types have been

changed. Changes (e.g., addition and deletion of statements) in a clone pair result in Type-3

clones. In cases where two fragments share similar functionality with different syntactical

presentations, they constitute a Type-4 clone pair.

16

Table 1. Examples for source code similarity types

The input code sample

HashMap var=new HashMap (10);

Similarity Type Example

Type-1

HashMap var = new HashMap (10);

Additional Whitespace

Type-2

HashMap list1=new HashMap ();

Different variable name

Type-3

HashMap list1=new HashMap (list2.size());

Additional Code

2.2.1. Clone detection

Source code clone detection has been a major focus of software research and has resulted in a

number of clone detection techniques. Common to all of these traditional detection applications is

the fact that they have a complete off-line search step to find all possible clone pairs within a

static source code repository. In this section, we present a review of early work on (1) source

code clone, (2) code clone detection, and (3) code similarity to discuss the origins of these

concepts and terms. Our review covers the period between 1930 and present, focusing mainly on

the initial use of the terms “cloning” and “clone detection” in the context of “source code” in the

literature.

2.2.1.1. Similarity detection in software

One of the first similarity detection approaches dates back to the work by Ottenstein [OTT76] in

1976. Ottenstein introduced a metric-based approach for the detection of plagiarism in student

programming assignments. His work also included a discussion on potential dissimilarity types

that were supported by a plagiarism detection algorithm, such as re-formatting, re-naming and re-

ordering of statements. Later on, Grier [GRI81] in 1981 extended Ottenstein’s work to Pascal

code.

17

2.2.1.2. Source code clone detection

The first actual reference to the clone concept in the source code and programming domain dates

back to the work by Abrams and Myrna [ABR79] in 1979. They used the term clone in a

Programming Language (APL) context describing it as “… creates an output file and starts a

"clone" of itself”. In later attempts, the concept of a “clone” in source code was used by Jacobsen

[JAC84] to describe a pre-defined command, and by Caudill and Wirfs-Brock [CAU86] as a

reproduction of executable files in Smalltalk. Tanenbaum [TAN87] used clone to describe the

variations of a software system. During the 1980s, the term clone was further popularized mostly

through its use as a reference to computer hardware, such as compatible computer (hardware), an

IBM compatible (or short IBMclone) computer [KEL83] or, in [LOM83], as “…can’t tell what is

on my disk without a clone of my computer”. Among the first researchers who actually used the

clone detection phrase at the source code level were Carter et al. in 1993 [CAR93]. They

described clone detection in their work as the process of finding similar telecommunications

systems using neural networks.

While the early work in clone and similarity research had focused mainly on detecting

plagiarism in source code, this focus started to shift in the 1990s with software maintenance

emerging as a new application for clone detection. In 1992, Baker [BAK92] proposed Dup, a tool

to support software maintenance and bug fixing by detecting duplicate code. The Dup tool also

implemented a clone detection solution, which exploited hash values and inverted-indexes to

facilitate the search process during clone detection. Later approaches, such as metric-based by

Merlo et al. in 1996 [MAY96] and AST-based Baxter et al. in 1998 [BAX98], allowed them to

use additional facts extracted from source to further improve scalability, performance, and

efficiency in their clone detection approaches.

Alternatively, information retrieval has been explored for the purpose of clone detection and

clustering, due to its well defined search models. Marcus and Maletic [MAR01] used Latent

18

Semantic Indexing (LSI) to extract hidden semantics from source code facts (e.g., identifier

names) in order to guide the process by detecting code fragments implementing similar features.

In [POS07], Poshyvanyk et al. propose an approach that combines Formal Concept Analysis and

LSI for the concept location problem. McMillan et al. [MCM12] use LSI to search for similar

software applications in terms of their functionality. LSI also has been exploited for clone result

set improvement (not the detection itself) and evaluation by Tairas Gray [TAI09]. Additionally,

some research exists on using the other IR techniques, such as that by Kontogiannis [KON97]

who uses basic retrieval infrastructure, or the work by Mishne et al. [MIS04], who introduced an

approach that exploits Conceptual Graphs and structural information (in addition to the other

code facts) to find similar code.

In general, the state of the art clone detection tools (e.g., NiCad [ROS08] and CCFinder

[KAM02]) are based on sequence comparison functions. Recently, novel search and retrieval

models have been explored for clone detection focusing on the scalability issue such as the

DECKARD [JIA07] model, or suffix trees by Koschke [KOS12]. Uddin et al. [UDD11][UDD13]

explored the application of simhash for near-miss clone detection. Lavoie and Merlo

[LAV11][LAV12] considered Levenshtein metric and Manhattan Distance in their approach to

detect near-miss clones. There is also some work on similarity measures and ranking for clone

detection by Smith and Horwitz [SMI09]. While all of these approaches were proposed for clone

detection, they simultaneously established the foundations of code similarity detection.

In summary, our research approach is similar to Carter et al. [CAR93], which also uses a

cosine similarity function. While we also use vectors similar to DECKARD [JIA07] and Carter et

al. [CAR93], we create our vectors using code patterns instead of metrics and predefined

fingerprints [JIA07][CAR93]. Furthermore, our approach emphasizes on non-positional similarity

search instead of sequence matching and comparison (e.g., as NiCad [ROS08] and CCFinder

[KAM02]). While, similar to earlier attempts such as Smith and Horwitz [SMI09], Baker et al.

19

[BAK98], and Uddin et al. [UDD11][UDD13], our multi-level indexing approach not only

detects the major clone types but also is capable of discriminating between Type-2 and 3 clones at

the same time.

2.2.1.3. Binary and bytecode clones

In contrast to the traditional source code clone detection, bytecode code clone detection has not

been a major research focus in the clone detection community. However, in some domains such

as code search [BAJ12] and security [BAK98], the ability to support clone detection at the

bytecode level as well becomes a key requirement. A major factor for the use and analysis of

binary and bytecode content is often the limited availability of source code. Baker and Manber

[BAK98] used a combination of three comparison-based approaches such as Diff for bytecode.

The JCD project, [DAV10] introduced by Davis and Godfrey, uses a combination of hill climbing

and greedy algorithms to detect the maximum coverage. In [SAN11] the use of process algebra

on bytecode was proposed. Selim et al. [SEL10] converted bytecode to the Jimple format

[SOO12] and used third-party tools for clone detection.

Recently, license violation and malware detection has become an emerging application area

that can greatly benefit from clone detection on binary or bytecode content

[CHA11][SAB09][HEM11]. In [HEM11], Hemel et al. explored some generic similarity

heuristics for license violation detection using their Binary Analysis Tool (BAT). In their

approach they use string literals extracted from the target binary in the central database of literals

as part of their first search heuristic. Note that the central literal database can be built using

literals extracted from both source code and binary. However, the assumption in their research is

that the source code of the target entity is not available. Compression ratio as a similarity metric

is their second heuristic, which has been investigated previously in other similarity search

domains such as malware detection. Computation of the delta between target and suspect binary

extracted from the central repository constitute their last heuristics. For binary content such as

20

native machine code, Sæbjørnsen et al. [SAB09] proposed a more restrictive solution compared

to the one by Hemel et al [HEM11]. Sæbjørnsen et al.’s approach is based on common source

code clone detection techniques, where the content is indexed based on pattern similarity. They

apply some form of normalization, similar to the one used by Baker et al. [BAK98], as part of

their token categorization. For bytecode content, they replace possible values of operands (e.g.,

register name, memory address, and constants) with their category name (i.e., memory, register,

value). Finally, to retrieve the similar fragments, they model the normalized data using feature

vectors. Chaki et al. [CHA11] explored the applicability of classification techniques on binaries

to detect similar binaries that are originating from (1) similar source code and (2) the same

compiler. Provenance-similarity is defined for two fragments when both conditions hold. Chaki et

al. have argued that holding these two conditions seems reasonable in the malware and virus

detection application context. A concrete problem in some environments such as .NET is

detecting clones across multi-languages. To avoid dealing with several high-level languages, the

intermediate language (i.e., form of compiled content) has been adapted as the sole source of

information in recent studies [KRA08][JUR11][ALO12]. Kraft et al. [KRA08] used graph

presentations from binaries to detect cloning between languages. In our earlier studies on .NET

[ALO12], we addressed the same problem by creating a set of filters for noise reduction to

improve the feasibility of such cross platform compiled code clone detection approaches.

2.2.2. Clone search

Although detecting code similarities and patterns is a well-established research area in computer

science (e.g., [OTT76][SAN94]), a new research area has recently emerged that is referred to as

“source code clone search”, but is also known as just-in-time [BAR10], real-time [KAW09], or

instant [LER10]) clone search. While clone search still shares its fundamentals with traditional

clone detection, both its objective and requirements differ significantly. Common to all traditional

detection applications (e.g., plagiarism detection) has been that they have a complete off-line

21

search step to find all possible clone pairs within a static source code repository. In contrast, code

clone search models can be considered to be specialized search engines that are designed to find

clones of a single fragment within the corpora. Clone search approaches index source code

repositories as part of their off-line processing. At run-time the input, in the form of a code

fragment (i.e., query criteria), is then used to trigger the search process.

Hummel et al. [HUM10] use an inverted index which groups similar lines of code using a

hash table with 128-bit hash values. Their approach locates similar fragments via the inverted

index to detect and search Type-1 and Type-2 clones. In [KLX11] and [KLZ11], as part of our

earlier work on clone search, we also introduced a hash-based inverted indexing approach.

However, our approach combined multi-level indexing in order to support also Type-3 clone

search.

SHINOBI [KAW09] builds a suffix array as their index based on transformed tokens using

CCFinder’s [KAM02] transformation rules. A multidimensional token-level indexing approach

has been introduced by Lee et al. [LER10][LEM11] using an on DECKARD’s [JIA07]

approximate vector matching. The language elements (e.g., assignment) constitute the dimensions

of the search space. Barbour et al. [BAR10] introduce a result sampling approach that uses results

obtained from other clone detection tools to find candidate clones to be indexed by their approach

and then apply the Knuth-Morris-Pratt string searching algorithm [KNU77] to find the closest

matches amongst indexed clones. Schwarz et al. propose in [SCH12] an approach to detect and

store code similarity links to facilitate code search at run-time. Similarly, De Wit et al. [DEW09]

developed a tool that monitors copy and paste commands during development for the

management of code clones at run-time. Zibran and Roy [ZIB12] introduced an IDE-support for

Type-3 clone search based on Rabin’s fingerprinting algorithm and suffix trees. Bazrafshan and

Koschke [BAZ11] exploit Chang and Lawler’s search algorithm, which was originally proposed

for the bioinformatics domain to find approximate code patterns.

22

2.3. Summary

In this chapter, we illustrated the need for source code similarity search models in the

programming synthesis problems, specifically, code search for pragmatic reuse. However, the

proposed solutions ignore the clone detection solutions, while clone community has established

the baselines for code similarity detection and measurement. This approach can be attributed to

the lack of a proper clone search that supports ranking, scalability, fast response time, and Type-

1, 2 and 3 detection. Such clone search model can be used as a standalone code similarity

function (including search) for the program synthesis and source code search research.

23

3. Clone search model

In this chapter, we provide an overview of our solution for the clone search problem when Type-3

detection, scalability, fast response time, and ranking are required. The clone search model is

based on the vector space model (VSM), cosine similarity, and Jaccard similarity coefficient

(JSC). The VSM and JCS are two of the major models that have been used for similarity search

specifically in information retrieval (IR) [MAN08]. Common to both of these models is their low

computational complexity and non-positional matching. It is the non-positional aspect in

particular that differentiates these algorithms from other algorithms, such as the longest common

subsequent model (LCS) [HUN77], which is commonly used in the clone search and detection

community. In this research we are interested in exploiting VSM and JSC, as both have been

widely used in other domains such as Web retrieval [BRI98][MAN08] due to their features such

as scalability.

Figure 3 illustrates our clone search solution, which is based on multi-level indexing and

information retrieval ranking models. This approach is able to find the closest matches to a given

query (e.g., Figure 3 query data), while returning hits from the search as a ranked result set based

on their similarity degree to the search query.

24

Online Processes Online Processes Offline Processes Offline Processes

Ranking

Retrieval

Normalization

Multi-level index
1st Non-positional

inverted index

Open Source Java Projects

Tr
an

sf
o

rm
at

io
n

 (
p

at
te

rn
 o

ri
en

te
d

)
Tr

an
sf

o
rm

at
io

n
 (

co
n

te
n

t
o

ri
en

te
d

)

2nd Non-positional
inverted index

Query Result

Styled Code
 Fragments

List<String> files;

files=db.loadFiles(“/the_other_user”);

for(String f : files))

{

String content=readFile(f);

System.our.println(content.size());

}

file=db.loadFile(“/usr/uid”);

String content=readFile(f);

System.our.println(content);

List<String> files;

files=db.loadFiles(“/usr”);

ArrayList<String> contents=new

ArrayList<String>();

for(String f : files))

{

String content=readFile(f);

contents.add(content);

}

Iterator<String> files;

files=db.loadFiles(“/usr”);

for(String f : files))

{

boolean status=deleteFile(f);

}

List<String> files;

files=db.loadFiles(“/usr”);

ArrayList<String> contents=new

ArrayList<String>();

for(String f : files))

{

try{

String content=readFile(f);

contents.add(content);

catch(Exception ex){

System.our.println(f);

}

}

Top K (Ranked ResultSet)

HIT# 1

HIT# 2

HIT# 3

HIT# 4

HIT# 5

Query Data
Code Fragment

List<String> files;

files=db.loadFiles(“/usr”);

for(String f : files))

{

String content=readFile(f); -> 12

System.our.println(content.size());

}

Optional: SearchSchema (preferences)

Search Schemas Jaccard Similarity Cosine Similarity
Weighting Function

Preparation Query Processing (Normalization->Trans.->HashValueGen.)

Content-oriented
Hash Values

Candidate Fragments
2nd set

Top K result set

Pattern-oriented
Hash Values

Candidate Fragments
1st set U

C
o

n
te

n
t-

o
ri

en
te

d
 H

as
h

 V
al

u
es

P
at

te
rn

-o
ri

en
te

d
 H

as
h

 V
al

u
es

Java Files

Crawler

In
d

e
xi

n
g

In
d

e
xi

n
g

Figure 3. SeClone – the proposed clone search approach

3.1. Overview

This section provides an overview of our SeClone clone search approach and its major processing

steps, which include: (1) preprocessing, (2) indexing, (3) retrieval and (4) ranking. The

performance of our search approach is configurable via its search schema, which consists of nine

parameters (Figure 4) that can be used to customize the off-line and online processing. These

configurations are not only used for performance evaluation and comparison studies, but also

allow for the configuration of our approach to match the requirements of a specific search and

application.

25

T
h

e
 s

e
c
o

n
d

 in
d

e
x

c
o

n
fig

.

T
h

e
 firs

t in
d

e
x

c
o

n
fig

.

S
c
o

rin
g

 s
c
h

e
m

a

S
iz

e
 fu

n
c
tio

n

L
o

c
a

l fre
q

u
e

n
c
y

G
lo

b
a

l fre
q

u
e

n
c
y

F
re

q
u

e
n

c
y

n
o

rm
a

liz
a

tio
n

Ranking Retrieval & Indexing

Figure 4. The SeClone search (configuration) schema parameters

Preprocessing. SeClone is a line based clone detection approach that uses Java Abstract

Syntax Trees (AST) as its input for the offline preprocessing step. SeClone parses the ASTs of

individual files to create a uniform representation, annotated by token types. The preprocessing

step also transforms AST tokens using transformation rules, which are specified through the

search schema parameters and . These transformation rules generate the corresponding

encoded code patterns () for each input code fragment. Encoded code patterns are defined to be

able to identify all code fragments with certain degree of similarity.

Indexing. For this processing step, the dataset generated by the transformation rules

and is used to create two
1
 hash table-based indices to represent all code fragments in a single

repository. The hash values can be generated for different granularities: and which are

specified as part of the search schema.

Retrieval. During the retrieval step, all indexed code fragments are compared at run-time

with the input code fragment (i.e., query). We generate two vectors (and) for

each query , based on the hash values of the encoded code patterns (i.e., , , and .

These vectors do not hold the ordering of the elements.

1
 As discussed later, our multi-level indexing idea proposes that the actual number of indices should be

at least two when both pattern and content similarity are important (e.g., Type-3 clone search).

26

 ((

A vector represents a code fragment which is used for the retrieval process from the

corresponding search space in our multi-level indexing and search approach. For each vector, a

look up action is performed to retrieve all code fragments indexed in the corpus, which share at

least one hash value

 with the query. The union of the two clone candidate sets derived from

the primary and secondary indices constitute the complete set of hits (clone candidates).

Ranking. Our ranking models are based on VSM and JSC, which can be configured as part

of the search schema (, with the ranking parameters being highlighted in

bold. The relevance score is calculated for each hit returned by the retrieval step and these hits

can be sorted by their relevance score. Figure 5 summarizes the SeClone search algorithm for

both retrieval and ranking steps.

27

Figure 5. Retrieval and ranking (i.e., search) steps

3.2. Computational complexity

Table 2 summarizes the computational complexity of our approach for both run-time complexity

and memory consumption. For the analysis, we excluded style unification, transformations, and

AST build times, since they are negligible and mostly linear to the size of the input data set. We

separate our analysis in three major processing steps: (1) off-line indexing for creating the hash

table indices, (2) the actual search, which includes retrieval and ranking, and (3) the corpus

update. represents the inverted index size, which is (with being the size of the corpus in

terms of lines of code (LOC). The size of the result set is represented by , and the total number

of updated lines of code by , with the expected lookup complexity for the inverted index as

 (, since the index is hash table-based.

Algorithm (

Input q : query’s code fragment, ixy: primary and secondary indices

Output ordered set of all candidate clone fragments based on their relevance to the query

1. (// the un-ordered set of hash values

2. (

3. for h in

4. (//find and add all fragments with at least one occurrence of h

5. for h in

6. (

7. //this is an un-ordered set of all candidate clones

8. for hit in

9. (

10. sort(

11. return hits

28

Table 2. SeClone computational complexity

 Processing step Time

complexity

Memory

complexity
Repository preparation

(Indexing)
 ((

Clone search ((

Repository update (content

addition/deletion)
 ((

The clone search time is (, since in order to create the ranked result set all hits

must be sorted based on their relevance scores. As a result, our model features a low time

complexity for both clone search (including Type-3 clones) and repository preparation using non-

positional indexing. Memory consumption for indices is also almost linear, since is (as

well. This cannot be further optimized without the use of compression and other abstraction

mechanisms. In theory, the time and memory complexity of our clone search approach supports

the core requirements (i.e., scalability and real-time response time) that we defined earlier in this

thesis.

3.3. Summary

In summary, our information retrieval-based approach towards clone search provides significant

improvements over our earlier SeClone solution [KLX11], as it includes the adaptation of non-

positional retrieval and ranking for clone search problem. The support for ranking is an important

step towards providing full-fledged similarity search for further value-added services (e.g., code

search for pragmatic reuse). Nevertheless, a potential threat for our approach is the use of non-

positional search models on source code content. Using non-positional models might lead to a

high number of false positives since the order of source code statements determines the soundness

and semantics of the program.

29

4. SeClone indexing model

Our clone search model uses encoded code patterns () to construct its search space. An

encoded code pattern is a template that defines a certain degree of similarity to match concrete

code fragments. Our solution is based on the idea of encoding of code patterns to support Type-2

and 3 clone detection. However, instead of using these encoded code patterns directly, they are

transformed to hash values. Hash values are useful in providing an efficient numeric

representation of textual content in terms of space consumption. Furthermore, hash value based

indexing and retrieval also provides fast lookup time, with a lookup complexity of (. Both of

these properties are important for our model to ensure that it is both scalable and efficient.

4.1. Encoded code pattern generation

In our approach, encoded code patterns represent a single line of code. Encoding the original code

content as it is constitutes the most restrictive , which will only be applicable for

detecting/matching exact (Type-1) clone search. Less restrictive encoded patterns will increase

the recall and support both Type-2 and 3 clone search while obtaining lower precision. In our

research, we defined a number of models for encoding code patterns in order to address the

tradeoff between recall and precision in different contexts.

In our approach, the model of encoded pattern is defined through a transformation function

and its encoding granularity. The granularity determines the number of neighboring lines of code

that will be considered for the encoding. The transformation function, on the other hand,

determines the template and parameterization rules. Table 3 reviews the transformations (t)

supported by our approach, including their semantics (type of transformation being performed).

Table 4 illustrates a concrete example for the supported transformations. A key difference is their

emphasis on either content or pattern resemblance. Content resemblance focuses on token name

30

similarities whereas the pattern resemblance enforces the order of tokens regardless of the token

names. For example, the transformation function w will ignore the token ordering completely,

while m attempts to keep the balance between patterns and content resemblance.

The hash function is responsible for generating hash values that represent the encoded code

pattern. The hash function uses four input parameters: the code fragment , its offset , clone

granularity , and the transformation function . Since our solution is based on a line-based clone

search problem, the hash function operates at line level granularity. Consequently, the input code

fragment has to be at least one syntactically complete line of code. The offset refers to the line of

code that is used as a target line for the hash value generation process. In order to generate all

corresponding hash values of a code fragment, the function must be called several times, iterating

over the target line parameter (i.e., the offset parameter).

 (

Granularity. The function is able to generate hash values not only based on the target line

content, but also on its neighboring content. While having a single line granularity can increase

recall, such fine-granularity level often also results in a decrease in precision, as the overall

similarity depends not only on the resemblance of the participating lines, but also on their order.

Therefore, in order to improve our search precision, code patterns could be encoded for higher

granularity levels as well. As such, we generate hash values of the target line at two granularity

levels in our search approach (Table 5).

31

Table 3. SeClone source code transformation functions – the parameter

T
ra

n
sfo

rm
a

tio
n

 fu
n

ctio
n

F
u

ll n
a

m
e

D
escrip

tio
n

S
ty

le u
n

ifica
tio

n

P
reserv

e co
d

e o
rd

erin
g

 w
ith

in
 lin

e

P
reserv

e m
eth

o
d

 ca
ll n

a
m

es e.g
.,

to
S

trin
g
()

P
reserv

e cla
ss n

a
m

es e.g
., S

trea
m

P
reserv

e sy
m

b
o

ls e.g
., []

P
reserv

e p
rim

itiv
e ty

p
es e.g

., in
t

P
reserv

e la
n

g
u

a
g

e k
ey

w
o

rd
s

P
reserv

e co
n

sta
n

ts a
n

d
 litera

ls

P
reserv

e v
a

ria
b

le n
a

m
es

x exact Same as input except for changes in

style

x x x x x x x x x

l loose Type-1 Same content for all code fragments

which can be considered as Type-1

clone

x x x x x x x - x

w word set An unordered set of the selected

tokens (i.e., only method and type

tokens)

x - x x - x - - -

m transformed

tokenized

method

fingerprints

Preserves only method names in

method call tokens and the overall

pattern, while the content (i.e.,

names) of the other tokens are

ignored via replacing them by a

single place holder (e.g., #).

x x x - x x x - -

c transformed

tokenized

method and

type

fingerprints

Similar behavior as m except it

preserves the content of both

method and type tokens.

x x x x x x x - -

32

Table 4. Sample outputs of SeClone source code transformation functions

The input code sample for SeClone transformation functions
…

5: String msg=”exit 0";

6: for(AttributeEntity var : t.getAttributes())

7: {

…

Transformation

function

Output Major changes

x …

String msg=”exit 0";

for(AttributeEntity var : t.getAttributes()){

…

Style unification

l …

String msg=#;

for(AttributeEntity var : t.getAttributes()){

…

Unifying the literals and

constants

w

{String, AttributeEntity, getAttributes}

An unordered set of selected

keywords (Table 3)

m …

#=#;

for(# # : #.getAttributes()){

…

Unifying almost all token types

except langue keywords and

method names

c …

#=#;

for(AttributeEntity # : #.getAttributes()){

…

…

#=#;

for(AttributeEntity # : #.getAttributes()){

…

Unifying almost all token types

except langue keywords, class,

and method names

Table 5. Pre-defined granularities for the hash function – parameter

 Granularity Description
FLS 1 Only the target line that is specified by the offset parameter must be

considered

TLS 3 The target line specified by the offset parameter including and

 lines must be considered - Three lines in total

33

4.1.1. Hash function implementation

For line-based detection approaches, code layout unification through formatting and

normalization is an essential processing step to increase recall of the retrieval algorithm

[KAM02]. The layout unification requires normalization for all source code extracted from the

code repository and also that of the search queries. During the layout normalization, information

from Abstract Syntax Trees for each source code file in the repository is used to extract both

tokens and their types. The extracted information is then used by the different transformation

functions (Table 3) to perform the selected normalizations.

A combination of transformation function and granularity parameters can be used to specify

the encoded pattern model. For example, refers to the TLS granularity using the transformed

lines of code with only method name preservation (m function described in Table 3). Figure 6

illustrates the complete process of how our hash function assigns an identical value to two

different code fragments by exploiting the encoded pattern model. In this case, the code

fragments identified by the target lines 53 (i.e., lines 52-54) and 84 (i.e., lines 83-85) share the

same pattern but their content resemblance is low due to dissimilarity in class and variable names.

Unlike, syntactic token matching that will fail to identify these fragments, our approach will

identify them as Type-2 clones. In this section we present, how the fundamental idea behind code

transformation (e.g., normalization) and hash value based matching originally proposed for

traditional clone detection approaches (e.g., [BAK92]) can be exploited for our clone search.

34

Transformed Lines
(using m function)

FLS Value
(m1 Hash Value)

TLS Value
(m3 Hash Value)

06: import java.io.File;

...

52: Set<AttributeEntity> remAttrributes; # #; -2342 -2342

53: Map<String, AttributeEntity> theAttributes; # #; -2342 -2342 370

54: for(AttributeEntity var : t.getAttributes()){ for(# #:#.getAttributes()){ 59378 59378

…

83: List<String> fieldNames; # #; -2342 -2342

84: for(JAttribute form : f.getAttributes()){ for(# #:#.getAttributes()){ 59378 -2342 370

85: List<String> formulaNames; # #; -2342 59378

Source Code
(c parameter) TLS Entity

TLS GroupsFormat unification
Transformation

So
rt

So
rt

1 Line Granularity 3 Lines Granularity

Sa
m

p
le

 T
ar

ge
t

Li
n

e
s

H(c,53,3,m)=

H(c,84,3,m)=

Figure 6. Examples of SeClone hash function outputs for a specific granularity and

transformation function

4.2. Non-positional and multi-level indexing and retrieval

The encoded code patterns represented by hash values are able to enforce two similarity forms

(i.e., pattern and content). Figure 6 provided an example of two cloned fragments which are

identified using the model. Therefore, any hash value-based indexing and retrieval approach

using the Figure 6 hash values (i.e., 370) is able to detect the two participant code fragments as

clones. However, if a third fragment identical to the first pair (line 52-54) exists in the corpus, a

single indexing model using a single encoded code pattern will not be capable of distinguishing

differences in the degree of similarity among all three fragments. In order to support the ability to

distinguish and rank the result set, we had to extend our encoded code pattern search approach.

We introduced a multi-level indexing and retrieval approach for the clone search problem that

deploys two (or more) indexes at one time, where each index is responsible for a specific type of

similarity (i.e., content or pattern).

Additionally, the multi-level approach addresses some deficiencies related to our non-

positional retrieval. The state of the art in clone detection is to consider the positional information

(i.e., line number and offset) as the key information source (e.g., [KOS12]). In our solution we

relax this requirement by using non-positional indices to (1) decrease the computational

complexity of the retrieval and ranking algorithms, (2) reduce the memory consumption of the

indexing and (3) improve the recall for the detection of Type-3 clones. However, omitting

35

positional information in the index can lead to low precision, since the order of statements

captures implementation logics and syntax. We address this concern in our multi-level indexing

model by using indices at different granularity levels and thus reducing the dependency on a

single information source.

Finally, to maximize both recall and precision, our indexing and retrieval solution is based on

indices, which are representing different granularities and transformation functions, e.g., and

 . In this example, the first index would be used for fine-grained precise content-based

similarity search. The second index () improves the recall by adapting a relaxed pattern-based

transformation function (i.e.,).

4.3. Summary

This chapter introduced our core approach of creating a search space that is based on encoded

code patterns rather than source code itself. The encoded code patterns support Type-1, 2, and 3

clone search. Since our encoded code patterns can be presented as hash values, it is possible to

satisfy the retrieval by a hash table-based indexing approach, which provides scalability and fast

response times. Given the tradeoff between recall and precision for any encoded pattern-based

retrieval model, we use a multi-level indexing approach. In this approach, each index is based on

a different encoded code pattern model. Furthermore, to decrease the computational complexity

of both retrieval and ranking algorithms, we adapted non-positional indexing for our clone search.

In the following sections, we show how, in connection with a good ranking model, our approach

can achieve reasonable precision even without access to the ordering information.

36

5. Ranking model

A main focus of our research is to addresses the need for ranking of the clone search result sets.

Support for ranking is a key requirement for clone search, which determines the position of

results (hits) within a result set. The position in the ranked result set depends on the degree of

similarity of the pair.

In our research context we are not interested in fine-grained textual similarity models (e.g.,

LCS [HUN77]) for relevance-based ranking. Although these are common models in the

traditional clone detection context, we need a different approach since (1) the required

information, such as the ordering of the fragments, is not supported by our retrieval model and (2)

there are other factors to be considered such as code fragment popularity. In this chapter we

describe in detail our clone search ranking model, which combines our multi-level indexing

approach with different information retrieval (IR) ranking models.

5.1. Ranking approaches

As discussed earlier, the generated hash values of the encoded code patterns constitute the basic

entities within our search space. Any code fragment (minimum one line of code) that shares at

least one hash value with the query will be considered for the ranking. The ranking model is

based on two models that have been used in IR [MAN08]: (1) Jaccard similarity coefficient and

(2) the vector space model with cosine similarity.

5.1.1. Jaccard Coefficient

Jaccard similarity coefficient is a widely used set theory function, which we adapt for content

matching to measure the semantic similarities. We calculate the semantic resemblance of two

blocks based on their shared content (e.g., lines), regardless of their order. Our ranking model

37

measures the content similarity of two code fragments using the numerical output of the Jaccard

coefficient. We denote and as the sets which contain entities (hash values) that belong to the

search query fragment () and the matched fragment (). Both sets neither contain duplicate

occurrences nor do they preserve the ordering among entities, since our indexing approach is non-

positional.

 (
| |

| |

5.1.2. Vector space model

In addition to the Jaccard coefficient, we also take advantage of the vector space model (VSM)

for the ranking of the result sets. VSM has been widely used in the information retrieval domain

(e.g., [BRI98]) and a key advantage of VSM is that it provides additional flexibility during

ranking compared to the Jaccard coefficient. It can exploit the entity frequency to discriminate

among entities by considering their local and global popularity (occurrences). Using VSM, code

fragments are represented as vectors of frequency values. In contrast to other vector based

approaches, in our case a vector captures encoded code patterns of code fragments rather than

terms. The similarity degree between two code fragments is calculated using the cosine similarity

function that measures the angle between participating vectors.

 (⃗ ⃗
 ⃗ ⃗

| ⃗ || ⃗ |

5.1.3. Weighting factors

In our approach, the | | space consists of code fragments presented as vectors,

e.g., ⃗⃗⃗ , with being the weight (frequency) of an encoded code

pattern . Similar to traditional information retrieval, we also determine the local and global

popularity of an entity using the occurrences from both the complete corpus and the target code

38

fragment. While the local frequency captures the number of occurrences of an encoded code

pattern within a particular code fragment, the global frequency represents the total number of

code fragments with at least one occurrence of the pattern. Several models exist to calculate these

local and global frequencies and weights of the entity within a code fragment .

The different types of weighting functions supported in our model are summarized in Table 6

and 7. For example, a combination of local frequency (Table 6) and global frequency (Table 7)

leads to the well-known IR tf-idf model [MAN08]. Having several ranking options available

provides us with the flexibility to configure the weights at run-time. In this research, we also use

these functions to study the effect of different weighting approaches on the clone search

performance.

Table 6. Weighting support for local frequency

Function Name parameter value Formula
Boolean

{

Natural | |

Logarithmic ()

Table 7. Weighting support for global frequency

Function Name parameter value Formula
No

Simple | |
IR idf

 (

)

5.2. SeClone’s search schema

The search schema (Figure 7) in SeClone is used to configure different properties of the search

model, including: (1) the preprocessing of the data and the creation of indices for the retrieval

phase, (2) the scoring schema, (3) local frequency function, (4) global frequency function, and (5)

additional information such as normalization and size comparison functions.

39

T
h

e
 s

e
c
o

n
d

 in
d

e
x

c
o

n
fig

.

T
h

e
 firs

t in
d

e
x

c
o

n
fig

.

S
c
o

rin
g

 s
c
h

e
m

a

S
iz

e
 fu

n
c
tio

n

L
o

c
a

l fre
q

u
e

n
c
y

G
lo

b
a

l fre
q

u
e

n
c
y

F
re

q
u

e
n

c
y

n
o

rm
a

liz
a

tio
n

Ranking Retrieval & Indexing

Figure 7. SeClone search schema

The first parameter of our schema template determines the high-level scoring model (Table

8), which can be a variation of cosine similarity, Jaccard similarity, or a combination of both.

Furthermore, and refer to the local and global frequency functions being used (see Tables 6

and 7). If the Jaccard coefficient is used, only the boolean local frequency is applicable for the

parameter; in this case , and will not affect the final result and must be set to (none) to

ensure conformance with our schema template. Additionally, we consider the size resemblance

between the query and the matched code fragment, which is denoted by . This option is only

applicable for the VSM scoring model. The size functions which are supported in SeClone are

summarized in Table 9. Our search schema also supports relevance score normalization, which is

denoted by . Available normalization functions are (none) and (cosine).

√∑

40

Table 8. SeClone scoring schemas (parameter)

Function Name a parameter value Formula
Jaccard coefficient (

Cosine similarity (⃗ ⃗

Cosine Similarity augmented

with Size similarity
 (⃗ ⃗ (⃗ ⃗

Table 9. SeClone size functions (parameter)

Function Name parameter values Formula
Jaccard coefficient (

Naïve

{

| |
 | |

 | |

5.3. Summary

In this chapter, we introduced the search schema of our clone search model. The search schema

configures both the retrieval and ranking parameters used to optimize the search for a specific

application context. We described in detail our ranking model, which takes advantage of IR

models applicable to our non-positional indexing and retrieval approach. Given the ability to

configure our search schema, an end-user can alter the search behavior at run-time based on the

search requirements. For example, the schema denotes that the search will use the

cosine similarity scoring schema which is augmented with the Jaccard-based size function to

create an IR like weighting by using a cosine normalization function. The indexing is

based on single line hash values of Type-1 clones and 3-line hash values of encoded code patterns

where only method names have been preserved.

41

6. Data characteristics study

Several issues related to our indexing heuristics can threaten the success of our research,

including: (1) the ability to perform clone search with near real-time (e.g., [KAW09][LER10])

response time (latency time 100 milliseconds that is expected for interactive querying e.g.,

[BAS13]) affected by the characteristics of the outliers, retrieval granularity, and index growth

rate, and (2) the ability to maintain the precision of the search result due to the potential collisions

in our hash function.

In order to evaluate how these threats might affect our approach, we first conducted a study to

observe the required characteristics of the data. A representative dataset was required as the

necessary condition for such data analysis task. For this reason, we adapted the UCI dataset

[UCI10], which covers over 18,000 Java open source projects from online repositories on the

Internet.

6.1. Granularity effect on the clone search latency time

In the first part of our studies, we analyzed the effect of different search granularity levels on

response time to (1) determine if fine-grained granularities (e.g., single line) are actually practical

for real-time clone search over large amounts of data, and (2) estimate the increase in the

response time by reducing the granularity. In order to answer these questions we first analyzed

the number of retrieved entities for each element of a query. Identifying the number of returned

matches for each query provides us with some insight about the boundaries of the response times.

For this part of our study, we observe and compare the worst-case scenarios with respect to the

number of matches at our two predefined levels of granularity (single and tree-line granularity).

42

In our empirical analysis, we first grouped source code fragments within the dataset in chunks

of three lines, with each Third Level Similarity (TLS) group denoting a set of potentially similar

three-line code fragments (i.e., code clone) where all fragments are satisfying an identical

encoded code pattern. We then repeated the same study for a single-line granularity level, for

which we used a First Level Similarity (FLS) based on pattern similarity at single-line

granularity.

 The total number of non-distinct source code lines extracted from the dataset is ~300 MLOC,

which provides us with a sufficiently large dataset to reduce the potential bias in the data. From

this dataset, we generated 30 million unique TLS groups, covering 71 million distinct lines of

source code within method blocks. In our index, each TLS group refers to all occurrences of the

same three-line code fragment in the whole repository. The objective is to study the number of

occurrences (including average, min and max) for each encoded code pattern captured in a TLS

group, since fewer occurrences result in a lower response time.

The first observation we made was that almost all TLS groups contain less than 2,000

occurrences (instances) and only a few outlier patterns, 1,220 out of the 30M (0.004%) patterns,

exist that actually have more than 2,000 occurrences. Figure 8 illustrates the distribution

(excluding the outliers) of TLS groups with fewer than 2,000 members across our complete

dataset. Based on these observations, it is apparent that the three-line granularity tends to produce

large numbers of small groups and very small numbers of large groups. On average, each TLS

group (code pattern) has 2.37 occurrences. However, if we exclude patterns with only one

occurrence (match) and outliers (with more than 2000 matches), the average would go up to 5.25

(Table 10).

43

Figure 8. Occurrence frequency distribution for the 3-line (TLS) encoded code patterns

Table 10. TLS and FLS characteristics

Property
Value

TLS FLS

Number of encoded

code patterns
30,232,018 7,606,433

Total number of

distinct lines
71,911,376 71,911,376

Number of single-

member encoded code

patterns (one

occurrence)

22,824,697 4,770,010

Largest group size (the

pattern with most

occurrences/members)

1,048,575 2,937,700

Average occurrence

frequency
2.37 9.45

Standard Deviation

occurrence frequency
293.23 1898.75

From our analysis, we were able to conclude that three-line granularity is practical for real-

time clone search, as long as outlier patterns are handled separately, since it is only for these few

outliers that the response time degrades considerably. Our analysis also shows that using TLS,

patterns typically occur in small-size groups (on average around 5 members). This is an important

observation for real-time search context since given the small group sizes and the hash-based

indexing approach, the query has to be compared against a small number of candidates at run-

time.

1.00E+00
1.00E+01
1.00E+02
1.00E+03
1.00E+04
1.00E+05
1.00E+06
1.00E+07
1.00E+08

1
4
8

9
5

1
4

2
1
8

9
2
3

6
2
8

3
3
3

0
3
7

7
4
2

4
4
7

1
5
1

8
5
6

5
6
1

2
6
5

9
7
0

6
7
5

3
8
0

0
8
4

7
8
9

4
9
4

1
9
8

8
1
0

3
5

1
0

8
2

1
1

2
9

1
1

7
6

1
2

2
3

1
2

7
0

1
3

1
7

1
3

6
4

1
4

1
1

1
4

5
8

1
5

0
5

1
5

5
2

1
5

9
9

1
6

4
6

1
6

9
3

1
7

4
0

1
7

8
7

1
8

3
4

1
8

8
1

1
9

2
8

1
9

7
5

N
u
m

b
e
r

o
f

T
L
S

Number of occurences

44

In addition, we studied the distribution of patterns using a single-line level granularity (FLS)

index, similar to our TLS study. While one would expect the performance of both granularities to

be quite similar, our experiment (Figure 9) actually showed some differences between the two

indices. For example, the distribution of the FLS (plus indicators) based patterns shows that the

number of FLS outliers (patterns with more 2,000 occurrences (matches)) is considerably larger

than the TLS’s.

Figure 9. TLS and FLS outlier groups’ distribution comparison

This observation is further supported by data in Table 10, which shows that TLS distributes

the candidates into 3.9 times more groups, while its group is ~5 times smaller than the FLS’s

group size. Moreover, the outliers in the FLS index tend to be much larger when compared to the

TLS index.

The group size directly affects the response time, since the ranking at the group level has a

computation complexity of (, where c corresponds to the group size (Table 2). Our

study shows that while both TLS and FLS are applicable for real-time search since c remains in a

certain boundary when outliers are excluded, TLS outperforms on average the FLS granularity by

a factor of ~5 (Table 10).

0

1

2

3

4

5

6

7

8

9

10

0 2000 4000 6000 8000 10000

N
u
m

b
e
r

o
f

e
n
c
o
d
e
d
 c

o
d
e
 p

a
tt
e
rn

s

Number of members satsifying same encoded code pattern

FLS

TLS

Log. (FLS)

Log. (TLS)

45

6.2. The outlier patterns

Outliers often introduce threats to the quality and non-functional performance of search

approaches. For example, in text retrieval research, outliers known as stop words are typically

eliminated as part of a pre-processing step. As our previous study showed, while we only have to

deal with a very small number of outlier patterns (patterns with more than 2000 occurrences) in

our dataset, these outliers might have a significant effect on the overall performance of our clone

search approach. In order to be able to mitigate this potential threat, it is necessary to identify and

study these outlier code clones in more detail. For example, our study showed that there exists a

three-line pattern with more than one million occurrences (Table 10). If such an outlier pattern

occurs in the search result set, the ranking algorithm will have to evaluate and rank all

occurrences, potentially slowing down the search by a factor of 1000 compared to non-outlier

searches. For this reason, we further analyzed the source code matching these outlier patterns to

observe what kind of programming tasks are associated to the outliers. When analyzing the TLS

patterns, we observed that only 1,220 of 30 million TLS groups (three-line code patterns) contain

more than 2,000 pattern occurrences. Source code examples for the top 10 outlier patterns are

summarized in Table 11.

Some of the detailed observations are: (1) members of outlier pattern #3 belong to one of the

largest open source projects in the dataset (gov.nih.ncgc), which is related to genomics and

contains very large files containing these pattern instances. (2) Code fragments in the outlier #6

pattern belong to classes related to the initialization of Graphical User Interfaces. (3) Outlier

pattern #8 occurrences can typically be found within extraordinarily large java classes (larger

than 10K LOC). In summary, the provided examples in Table 11 support the fact that, similar to

the other search domains, outliers in clone search can be discarded because they are not

associated with vital programming problems. It should be noted that while the (partial) exclusion

of these outlier patterns has no or very little effect on the recall of our search engine, we did not

46

exclude them in our further performance evaluation studies to ensure unbiased and repeatable

results.

Table 11. The outlier code patterns

Rank
Number of

Occurrence
Pattern Title Sample Code

1 1304840 Local getter
method() {

 return variable;}

2 636846 General Setter
method(type arg) {

 this.variable = arg;}

3 445552 Unknown s.addToWellOneBased(… new WellComponent(… l.getCompound(…), …));

4 246082 General getter
method() {

return variabale.property;}

5 239604 Local setter
method(type arg) {

variable = arg;}

6 124836
Consecutive

new

jEdtTest = new JEditorPane();

lblToken = new JLabel();

jCmbLangs = new JComboBox();

7 124693 Variable&null
type var1 = null;

type var2 = null;

type var3 = null;

8 115230
Consecutive

case

case 'value':

case 'value':

case 'value':

9 100900 Case&return
return "Mountain";

case TYPE_GAS:

return "Gas";

10 72842 Throw&new
method(…) {

throw (new type());

}

6.3. Index growth rate

Retrieval systems such as [BRI98] keep their indexes accessible/stored in the main memory,

rather than swapped to the disk, to reduce latency times when accessing their lookup indices. In

most text retrieval systems [BRI98], the approximate index size is known in advance, as it is

directly related to the data characteristics in the domain of discourse (e.g., natural languages).

However, data characteristics for code patterns used for the clone search problem have not yet

been well studied, and as a result there exists no insight on the index size growth rate as new

patterns and occurrences are being indexed. This issue can cause a threat to our approach

scalability, since we do not have any prior knowledge about growth rates of indices and,

consequently, the required memory resources.

47

For a hash table-based indexing system, total memory consumption can be estimated based

on: (1) the number of distinct hash values being indexed and (2) the total number of objects.

Given the fact that no prior information is available on potential growth rates, we studied the

effect of repository size on the index growth rate in our research context. To be more specific, we

observed how different pattern categories (and their indices) evolve as the repository size

increases. For this analysis, we incrementally increased our dataset by adding chunks of 50,000

source code files to the repository. We evaluated the index increase rate for each pattern group,

which is summarized in Figure 10. The analysis shows that for popular code patterns (with at

least 2 occurrences), the growth decreases over time. This was expected, since as more code

content is being indexed, the likelihood that newly added code fragments have already been

indexed increases. However, the observation also shows that the growth rate for uncommon code

patterns remains stable. That is, each chunk of 50K files will introduce an equal number of code

patterns that are not going to be cloned in the future as the index grows. Finally, using the

increase rate table in Figure 10, we can now estimate the index growth via the number of distinct

hash values and possible pointers (duplicated patterns), to optimize memory resources and

improve scalability of our search approach.

Figure 10. Analysis of the increase rate of new hash values (TLS hashes) per file. Patterns

are categorized based on their total # of occurrences per hash value.

48

6.4. Hash value strength

Hash table based indexing relies on its ability to maintain indices in the main memory to ensure

consistent and fast access times. One approach to reduce the memory footprint is by reducing the

length of hash codes, as this will directly affect the memory consumption. However, reducing the

length of hash codes can potentially introduce a new threat to the strength (uniqueness) of these

indices. In our approach, we opted to use only a 32-bit hash code, which is in contrast to other

existing work such as Hummel et al. [HUM10], who used a 128-bit code for their clone search

approach. The use of a smaller hash code (32 versus 128 bits) will not only provide (1) a 75%

lower memory requirements for the indices, but can also (2) reduce the latency times.

We conducted an experiment to evaluate whether the use of a 32-bit hash value might

potentially introduce a threat to the index quality in terms of collisions. For our evaluation we

created 32-bit hash keys for all single transformed source code lines, using our default

transformation function and the Java library hash function for strings. We extracted more than 4

million distinct transformed lines of code and analyzed the possibility of having an ambiguous

key that might be used for more than two distinct lines. The result of our analysis showed that for

our 32-bit hash function, the error (collision) rate is very small with 0.002%. Note this is the

minimum error rate. Using different transformation functions and granularities the error rate

might increases. Given this low error rate and the resulting tradeoff between precision and

memory consumption, we can conclude that the 32-bit hash keys can be considered strong

enough for indexing source code in our research context. This conclusion particularly holds for

our research context, since for clone search we are mainly concerned with scalability and

response times as key factors.

6.5. Summary

Gaining insights about data characteristics such as the index growth rate and outliers is an

essential requirement and step towards creating a scalable search engine. Contrary to the other

49

research domains [BRI98], these aspects had not yet been studied or investigated for the clone

search problem. This chapter presented the result from our analysis of various data characteristics

based on the code adapted from the UCI dataset [UCI10]. The insights from these studies are

essential to be able to predict the latency time, index sizes, and overall quality of clone search

approaches. Finally, the observations made in this chapter support the feasibility of our proposed

approach based on multi-level indexing and retrieval approach for real-time scalable clone search.

50

7. Performance evaluation measures

As discussed earlier, our research problem shares many features with information retrieval,

including ranking. Due to the fact that traditional clone detection evaluation is not yet concerned

with result ranking, current performance measures used by the clone detection community do not

include the evaluation of ranking feature. Therefore, to be able to evaluate the quality of our clone

search ranking approach, we use existing quality and performance criteria for ranked result sets

commonly used by the IR search community. The detailed definitions of the measures in this

chapter are adapted from Manning et al. [MAN08].

7.1. Requirements

A key quality criterion used in the information retrieval domain for evaluating the quality of

search engines is the relevancy to user expectation. That is, a search is considered to be successful

if it locates documents that are not only related to the query, but also meet the end-user

expectations [MAN08]. Therefore, a hit that only satisfies the relevance condition from an end-

user perspective is considered to be a true positive. For example, a result returned by the query

“Java”, can only be considered relevant when one considers the user’s expectation [MAN08],

which might be referring either to the coffee concept or the programming language concept. The

relevancy concept can be measured on a binary scale (relevant vs. non-relevant) or by using a

more refined scale, which might consider different degrees of relevancy (e.g., highly relevant,

relevant, marginal, and non-relevant).

Benchmarks are required to measure the quality of result sets reflecting the feedback of either

users or experts. They constitute the “gold standard” or “ground truth”. A benchmark or test suite

includes three major parts: (1) the input data, (2) some queries, and (3) the pre-tagged dataset of

relevant items. The dataset also typically includes relevance scores for each query and the input

51

data, with these scores being subjective to the human experts creating the benchmark. In cases

when no benchmarks are available, user studies might be performed.

7.2. The measure suite

For evaluation of ranked result sets in source code search applications (e.g., [LEM11], [KLZ12],

and [KLX12]), no single measure can be considered sufficient. For our study, we identified the

following categories of measures that we consider to be essential for evaluating the clone search

models. The detailed definitions of the measures in this chapter are adapted from Manning et al.

[MAN08].

 Traditional measures. Traditional measures, such as recall or precision are typically used

by the clone detection and search community to evaluate the quality of any unranked

result (sets). These basic measures are widely accepted since they are easy to calculate

and interpret. They are also frequently applied to search engines, even if they are not able

to deal with ranked result sets.

 IR measures for ranked results. Since most IR systems return result sets that contain

some true positives (TP) and false positives (FP) within an ordered list, these measures

evaluate the true positives and their rank (position) in the result set. Furthermore,

similarity degree is exploited by a subset of measures in this category when all true

positives are not equal in quality.

 Measures for highly positive ranked results. In some cases there are only a few FP in the

hit list, or even none at all. While all (most) hits are TP, some of the TP should be ranked

higher than others based on their relevance degree to the user expectation. In order to

evaluate the ranking among TPs, additional measures are required.

52

7.2.1. Traditional measures (unranked result)

Precision and recall, introduced by Kent et al. (1955), are some of the most well established

measures for evaluating unranked result sets. In IR they are typically based on the total number of

(1) relevant items in the result set , (2) total number of relevant items , and (3) total number of

items in the result set . However, their application is limited, since in most cases the total

number of relevant items is not known.

Accuracy is widely used to measure the quality of classifications created by machine learning

algorithms. However, it has been less commonly used for IR systems [MAN08], since the

datasets being search/analyzed in this domain typically contain significantly more non-relevant

(99%) items for a given query compared to relevant items (1% of all data). This problem, also

known as skewed data problem, will lead to situations where the size of true negatives () is

large enough to cancel out the effect of other relevant values such as true positives (). Since we

are dealing in our approach with an IR system and a large dataset that will lead to skewed data,

accuracy as a measure will not provide a meaningful quality measure for our search approach,

and therefore has been omitted from our evaluation.

(

(

F-measure (introduced by Rijsbergen 1979) is another well-known candidate measure in this

context. Typically, a tradeoff between recall and precision can be observed, and the importance of

each measure as quality attribute might differ between users and application contexts. In some

cases, e.g., regular Web search, higher precision is preferred, whereas in cases such as plagiarism

53

detection, high recall is expected. F-measure attempts to balance both by considering recall and

precision. It is also possible to discriminate between importance of the precision and recall via the

 value. F-measure is calculated using precision () and recall () using a weighted harmonic

mean.

 (

(

The default F-measure (Balanced F-measure or) assigns equivalent weight to recall and

precision (). Due to the significant differences between recall and precision values, F-

measure uses a harmonic mean (which is always closer to the minimum value) instead of

geometric or arithmetic mean.

7.2.2. Measures for ranked result sets

While many traditional measures like precision or recall are designed to evaluate unranked lists,

such as an unordered set, the IR community has emphasized special measures for assessing the

quality of ranked sets. In this section, we identify and introduce measures that are mostly adapted

from IR [MAN08] to evaluate the ranked result set return by clone search models.

7.2.2.1. First False Positive measure

The commonly used evaluation criteria for search engines in the IR domain are the top displayed

items (hits) in the result set. Studies in IR have shown that end-users tend to browse only the top

items in a displayed result set [MAN08]. Furthermore, since search engines typically do not

produce 100% precise results (some non-relevant hits might be displayed), search engines are

expected to place as many true positives as possible in the highest ranked position of their result

set (e.g., top-10). Therefore, the place of the first false positive in the displayed result list can be

54

used as a measure for evaluating the performance of search engines. For example, given two

order result sets R1 and R2, with both result sets containing 10 hits (R1 =

〈 〉 and R2 = 〈 〉), of which

nine results are correct hits and one is a false positive (). While the precision for both results

sets is 90% (9 out of 10 hits are correct), the user satisfaction for R2 would be considered higher,

since the first false positive (FFP) occurs later in the ranked result set R2 (position 9 versus 2 in

result set R1).

Discussion. In clone search, one typically deals with a corpus that contains a significant

amount of noise (irrelevant code fragments). Therefore, from a code/clone search perspective, our

search approach has to deal with two major challenges: (1) being able to detect the few relevant

fragments, and (2) assigning these true positive results a higher priority than the false positives in

the result sets. In such cases, First False Positive (FFP) provides a result that is easy to understand

and interpret.

Weakness. Given the fact that the measure is highly dependent on the data and query

characteristics, the applicability of the First False Positive measure to evaluate system

performance is often limited. For example, if a corpus contains a skewed dataset with only true

positives for a given query, the best achievable result using this measure is . This becomes

an issue particularly in cases where the number (true positives) varies considerably for different

queries. Specifically, the First False Positive measure cannot be generalized since results cannot

be averaged across different queries.

7.2.2.2. “Precision at k” measure

Precision at (P@K) is a measure that reports the number of true positives within the hit list (top

K), where can be any positive number to reflect the window size for the assessment. However,

window sizes of 10, 20, and 30 are typically used for . The value of is derived by the general

55

rule of thumb from the search engines Graphical User Interface design, where the first page

usually shows only the top 10 hits. The measure itself is closely related to end-users quality

perception, since users tend to consider only results on the first result page to be important and

consequently are less likely to browse subsequent result pages.

This measure is in particular applicable when (1) the total number of relevant results is

unknown and therefore no standard recall can be calculated, and (2) the number of returned items

is too large to be fully validated, making the calculation of standard precision measures

impossible.

Weakness. While this measure is a good candidate for evaluating search engines, especially

when no very detailed and strict evaluations (e.g., “first false negative” measure) are required, its

major drawback is its dependency on the query. For example, in order to provide a fair evaluation

using “Precision at 10” measure, at least 10 actual relevant items must exist in the corpus for all

executed queries. Furthermore, similar to the first false positive measure, the results from this

measure cannot be generalized (averaged) across queries.

7.2.2.3. Normalized Discounted Cumulative Gain measure

The Normalized Discounted Cumulative Gain (NDCG) measure assesses the quality of search

engines and their ranking algorithms in terms of their ability of assigning higher ranks to high

quality true positive answers. This measure takes into consideration not only the relevance of hits

with respect to a query but also the order of the results. Therefore, it is possible to compare the

search result set for each query with an oracle. These oracles are typically manually created result

sets (for each query) in the form of a list of all possible answers. Moreover, each answer in the

oracle must be assigned a relevance score that presents its similarity degree (to the query). This

56

oracle represents the best achievable result set and order, regardless of local search

configurations, search algorithm, and search schema. The measure result is a number that can be

used to compare different search and ranking schemata/configurations.

Details. DCG calculates the discounted cumulative gain achieved using a given search

schema for query when compared to the oracle with its manually assigned relevance scores for

the top hits. The output of DCG depends on the query and available data within the corpus

(), and therefore it is not possible to compare the DCG of different queries with

each other since the number of positive hits will depend on the data characteristics. To overcome

this issue and to be able to summarize our study result we use NDCG, which is a normalized

value of DCG. For the calculation of NDCG, we need to calculate the Ideal DCG (IDCG) first.

 returns the ideal (highest achievable) DCG using the given relevance score set (from the

oracle). Finally, using DCG and IDCG, we can calculate the final NDCG value.

Since the output of the NDCG function is normalized, it can be used for both (1) query

comparison and (2) as an averaged measure for the overall performance of a search engine. The

ability to average the measure results can also provide a concrete single output value for

performance comparison purposes. For example, in our studies we use this single output value to

compare the performance of different search configurations (schemata). The maximum value for

the NDCG function is 1.0 for a result set that exactly matches the one from the oracle, and the

minimum value is 0.0 for result sets with no true positive. The function (returns the

relevancy score for the given query and the corresponding hit from the oracle.

 ((∑
 (

 (

 (
 (

 (

57

 Weakness. The measure provides a fine-grained evaluation of the quality and ordering of

result sets, providing a single value assessment that can, for example, simplify the comparison

among different options or configurations of a system. However, the measure is only applicable

when fine-grained ordering is important, otherwise measures such as Precision at K are preferred.

Applying NDCG is expensive, for not only must all possible answers for each query be manually

evaluated, it also requires a similarity score (e.g., identical, highly similar, similar, and irrelevant)

for each answer. Nevertheless, NDCG is still considered as one of the state of the art search

engine measures in the IR domain.

7.2.2.4. Mean Average Precision measure

Mean Average Precision (MAP), a single value measure, has been commonly applied to compare

different ranking systems. For a single query experiment, the measure will simply compute the

average of all precision at , where refers to the position of all relevant retrieved items in the

result set. For experiments involving more than one query, the output is the average of all queries.

MAP has been used to identify systems that assign a higher rank to relevant items.

| |
∑

| |
∑

Weakness. MAP is an essential and low cost measure that does not require the creation of

relevance scores (unlike NDCG). Only the positions of the true positives are necessary. However,

since MAP does not include relevance scores, it lacks the ability to compare the relevancy-based

58

ranking of true positives. Moreover, it is generally only suitable for queries where a reasonable

number of relevant items are available; otherwise its output can be biased.

7.2.2.5. Mean Reciprocal Rank measure

Mean Reciprocal Rank (MRR) is applicable in cases where FPs (non-relevant hits) are returned at

the top of the result set, specifically before the first relevant hit. This measure takes into account

the fact that there is huge difference between 5 and 10 but little to no difference between 500 and

600, where the numbers are the rank of the first TP in the hit list.

| |
∑

Weakness. MRR focuses on the position of the first true positive in the result set, and works

best for cases with (1) very few , and (2) some occurring at the top of the result set.

Therefore, it can be considered a complementary measure to MAP that is best applied in cases

when only a few relevant hits are reported and MAP is not suited.

7.2.2.6. R-precision measure

R-precision is equal to the output of Precision at R measure within the result set, with being

equal to | |. is the set containing all relevant results for a given query

(which even could be incomplete sometimes). From a different point of view, it is equal to the

recall at R.

| |

 (| |

59

Weakness. While the measure is useful to average its results (which is in contrast to the

Precision at K measures), interpreting this measure is more difficult.

7.2.3. Measures for highly positive ranked results

In some cases, there is no (or only a few) in the hit list (e.g., top 10). While all hits might be

true positives, some true positives are typically ranked higher by end-users than others. Assessing

this type of ranking requires measures to take into consideration the order of in the ranked

result set based on user preferences. Several measures have been introduced to assess the ranking

performance of positive result sets [KZH10].

7.2.3.1. Normalized Kendall’s distance

Kendall’s measures the dissimilarity of the items’ order against the ideal order [LAP06].

Suppose and denote two orderings of same item set with size of . (is the minimum

number of switches between adjacent items to make the first ordered list identical to the second

ordered list.

 (

 (⁄

7.2.3.2. Spearman’s rank correlation coefficient

This measure compares the rank of each shared retrieved item in the two subject ranked lists

denoted by and where number of items is equal to .

 ∑ (((

 (

 ((

60

Discussion. As Lapata [LAP06] pointed out, the main difference between Spearman’s and

Kendall’s measures is that Spearman’s measure is more popular and focuses on the pure rank

values, whereas Kendall’s measure has more emphasis on the relative order of items.

7.2.4. Non-functional performance measures

In our research context, non-functional measures can also have an effect on user satisfaction,

mainly related to the ability to provide near real-time services for other applications. Among the

measures that evaluate non-functional performance of a clone search engine are: (1) indexing

time, (2) querying latency time, and (3) corpus size. These performance measures can be

calculated automated and are simple to derive.

7.3. Summary

Assessing the quality of clone search (models) differs from traditional clone detection. While

traditional clone detection approaches deal with unranked result sets where measures like recall

and precision matter, they do not consider the order of the results being displayed. This is in

contrast to clone search, where, as in other search approaches, the ranking of results (ranked hits)

becomes a key quality criterion. While evaluation measures designed for unranked result sets are

useful (e.g., precision and recall), other evaluation measures which are developed for ranked

result sets must be adapted to provide a more comprehensive evaluation of a clone search model.

As part of our research, we selected and summarized several ranked result set quality measures,

originally used by the IR community [MAN08], for our clone search context.

61

8. Performance evaluation

The preliminary insight regarding the feasibility of our solution and run-time behavior is provided

by the data characteristic study in Chapter 6. In order to conduct a detailed performance

evaluation study, we have used the gained insight to deploy a concrete instance of our clone

search approach with our source code corpus, which contains source code facts from over 25,000

open source Java projects [KLF12] that are crawled from the Internet. The key objectives of our

evaluation is (1) to confirm that our proposed model can meet the core requirements of a clone

search, such as scalability and fast response time and (2) to compare the different search schemas

(search configurations) supported by our model.

Benchmarks are a commonly used approach for evaluating the quality of search engines. In

order to be able to evaluate the different features of our model (SeClone), including both retrieval

and ranking, we require a benchmark that meets a set of minimum requirements: the corpus (1)

should be large to reduce the effect of individual outliers, (2) contains a set of representative

queries (code fragments) to be used as search criteria, (3) includes a sufficient number of relevant

Type-1, 2, and 3 clones, and (4) covers the clones’ fine-grained relevance scores. To the best of

our knowledge, there exists no clone search benchmark that satisfies all these requirements.

Therefore, prior to our evaluation, we had to create such a clone search benchmark based on the

mutation generation framework [RJC08][ROY09][SVJ13]. An overview of our benchmark

creation process and the evaluation process is shown in Figure 11. As part of the benchmark

creation, we take advantage of an existing mutation generation framework

[RJC08][ROY09][SVJ13], which we used to automatically generate Type-1, 2, and 3 clones from

50 randomly selected code fragments (query inputs). For these 50 code fragments, we generated a

62

total of 650 related Type-1, 2, and 3 clones. Note that 50 is the acceptable number of queries that

a benchmark must cover [MAN08].

For the benchmark preparation, we injected not only these 650 clones (code fragments)

generated by the mutation framework into our repository (which contains 356M LOC), but

also performed an extensive manual inspection of ~80K code fragments for relevance score

assignment. We then used this benchmark to assess SeClone’s search performance using the

six measures introduced in the previous chapter, while analyzing over 32 different SeClone

configurations (search schemata). This evaluation involved 1600 querying actions for which a

clone search was performed, resulting in 117,000 search results (hits)
2
. The following sections

describe in more detail our evaluation approach, its outcome, and the summary of our

findings.

IJaDataset
Java Files

Corpus

Randomly
Selected
Subject Files

Mutator (1)

Mutator (2)

Mutator (m)

.

.

.

.

.

.

Random Clone Injection

Query

The init. Benchmark

SeClone

Indexing

The Mutant

Relevance

Scoring

Guidelines

Querying

Ranked Result Sets

Tagging & Score assignment

Calculating Measures

The
Performance
Report

Fragments

Selection

(Randomly)

 Relevance Scores

 True Positives (from Mutants)

 True Positives (from IJaDatasets)

 False Positives

Figure 11. The performance evaluation approach

2
 Note, 117,000 hits belong to the complete benchmark that includes 2,000 querying actions, with 400

of these querying actions being used for our preliminary studies.

63

8.1. The candidate search schemas

SeClone supports different configurations through its search schemata, which allow different

search models, indexing granularities, and content transformation functions. From an end-user

perspective, the selection of a search schema (configuration) is often the key to meeting the

specific application needs. We conducted a detailed analysis based on 32 candidate

configurations to determine their effect on the quality of the result sets and to be able to provide

end-users with some guidance during the search schema selection.

In chapters 3, 4, and 5 we introduced in detail the SeClone search schema and the two

categories of options: (1) parameters related to the ranking approach (parameters:)

and (2) parameters on how the data is processed for indexing and clone analysis (parameters:

). We selected four ranking configurations and eight indexing (analysis) configurations,

which provided us with 32 combinations (details are shown in Table 12).

Table 12. Selected SeClone search schemas for the evaluation phase

The first parameter group (ranking)

The second

parameter group

(indexing)
 =

3
2

 search
 sch

em
as

j.bnn

(Jaccard coefficient similarity approach)

x1.m1

x1.m3

l1.m1

l1.m3

c1.m1

c1.m3

w1.m1

w1.m3

w.nscn

(Cosine similarity using natural frequency)

w.ltcn

(Cosine similarity using tf-idf like freq.)

c.ltcj

(Cosine similarity augmented with Jacacrd size similarity using tf-

idf like frequency)

Total 4 Total 8

64

8.2. The corpus and environment configurations

For the deployment of SeClone, we used a Linux-based system with a 3.07 GHz CPU (Intel I7)

and 24 GB of RAM. During our run-time evaluation, a single process/thread schema was used,

except for the Java virtual machine processes such as garbage collection.

In order to evaluate the scalability, response time, and ranking, and to observe the handling of

extreme noise, we require a reasonably large corpus. For the SeClone evaluation we originally

created IJaDataset, a large multipurpose source code data set. The dataset contains Java source

code data crawled and downloaded from major open source code repositories (e.g. Sourceforge)

[UCI10]. The compressed raw data size is approximately 390 GB and contains 3,431,111 Java

files from over 18,000 open source projects. After downloading the source code files [UCI10], we

performed several data cleaning steps, such as: (1) we removed all non-Java source code and

duplicate Java files, (2) using a Java parser, we detected and removed all unparsable files (a total

of 14,386 files), and (3) we identified and excluded 197,056 Java interfaces, as interface files do

not contain any significant amount of code. After these cleaning steps, our IJaDataset contains

1,500,000 unique Java classes, with a total of 266,635,570 raw lines of code.

The most recent version of the IJaDataset (Version 2.0) has been updated with data crawled

in 2012 as part of our SeCold project [KLF12]. This dataset covers approximately 25,000 projects

and includes Java classes without package specification (default package). The dataset is based on

source code files that were downloaded from SVN, Git, and CVS repositories from SourceForge

and Google Code. To remove high-level duplications in the dataset, only one Java File is selected

for each available class name identified by its fully qualified name (FQN). During the filtering of

such duplications, we were biased toward files that appeared in the "trunk" directory. The crawled

data (with duplicated files) initially included 12 million files, but were reduced (through filter) to

3 million files (2.7M regular Java class source code files and 140K files with default package).

65

We then successfully indexed all 356M LOC in the IJaDataset (Version 2.0) with SeClone to

create a single, searchable corpus.

8.3. The benchmark

A high-quality benchmark for clone search should not only include queries and their correct

answers, but should also contain a variety of clone types (specifically Type-3 clones) for these

queries. Having such a rich benchmark provides not only the basis for evaluating our core

SeClone search engine, but also for evaluating its capacity for ranking and Type-3 detection.

Using the mutation framework introduced in [ROY09], we created our initial benchmark using 50

code fragments (queries) and their mutants in the form of Type-1, 2, and 3 clones. We selected a

mutation framework configuration that automatically generates 13 clones (4 Type-1s, 3 Type-2s,

and 6 Type-3s) for each query. In case of code insertion when generating Type-3 clones, the

mutation framework uses random code snippets available in its corpus. An overview of the 13

automatically generated clone variations using the mutation framework is given in Table 13. The

generated clones were then included and indexed as part of our SeClone corpus. Using this

mutation approach provides us with known true positives in advance. Therefore, we are able to

(partially) measure the recall in addition to the other precision-like measures. It should be pointed

out that since the corpus contains millions of indexed lines of code, SeClone will not only detect

and retrieve the seeded clones, but will also most likely include other (correct) clones in the

search results.

66

Table 13. Available clones for each query in the benchmark and their details

ID Description

(changes comparing to the query)

Clone type Our relevance score

1 no change Typ-1 5

2 changes in whitespace Typ-1 5

3 changes in comments Typ-1 5

4 changes in formatting Typ-1 5

5 semantic renaming of identifiers Typ-2 4

6 arbitrary renaming of identifiers Typ-2 4

7 arbitrary change of an literal Typ-2 4

8 replacement of identifiers Typ-3 3

9 small insertion within a line Typ-3 3

10 small deletion within a line Typ-3 3

11 insertion of one or more line Typ-3 2

12 deletion of one or more line Typ-3 2

13 modification of entire line Typ-3 3

8.4. Assignment of relevance scores

As discussed earlier, when evaluating the performance of search engines, solely measuring true

positives is not sufficient, since one also should consider the relevance (score) of the return search

results (hits) with regard to a given search query. Therefore, for our evaluation, we assign scores

in the range between 0 to 5 to indicate the relevancy of a hit to the given input query, with a score

of 0 indicating that a particular result shows no relevancy (false positive in our research context),

and scores between 1 and 5 denoting that a hit has some degree of similarity (true positive

〈 〉 clone pair). Increasing scores indicate higher levels of similarity/relevance, with a

score of 5 being an exact (Type-1) match. As part of creating our benchmark we have initially

assigned relevance scores to the 650 cloned fragments that were generated by the mutation

framework, indicating their relevancy to the corresponding (clone fragment) query. Table 14

summarizes the basic guidelines we applied for assigning the relevance scores to clone fragments.

67

Table 14. Relevance scores guideline

The assigned score Scoring guideline
0 Non-relevant

1 Relevant (partial similar under Type-3)

2 Relevant (Type-3 with modification of few lines)

3 Relevant (Type-3 with one line different)

4 Highly Relevant (Type-2)

5 Highly Relevant (Type-1 / exact)

Given the size of our corpus (25,000 projects and 356 MLOC), there is a good chance that

other true positives might be reported during the evaluation process. The relevancy of detected

and reported clone pairs depends not only on the returned injected clones but also on the non-

seeded and reported clones, which must also be considered as part of an overall evaluation. We

therefore manually (1) evaluated all reported hits to determine if they are actual true or false

positives and (2) assigned the proper relevance scores.

Since it is both impossible and unnecessary to consider all potential hits retrieved for each

query in the benchmark (a query might return thousands of hits), we decided to consider only the

top K hits. While it is common best practice in the IR and search community to consider the top

10 hits, we decided to increase the evaluation scope by including the top 60 hits. This extended

evaluation is motivated by the characteristic of our corpus, considering the fact that we have

generated and included at least 13 controlled, true positives (clones generated by the mutation

framework) for each query.

As part of our evaluation, SeClone reported for the 2,000 executed queries
3
 a total of 117K

hits (clone results) using the top 60 criterion. We used some basic heuristics (based on hit size

and keywords) to automatically identify some of the false positives and eliminate them from the

manual analysis process. Using these heuristics, we were able to automatically eliminate 37K

false positives that no longer needed a manual inspection/scoring. We then manually assigned

3
 400 querying actions out of the total 2,000 executed queries belong to our preliminary studies and

testing

68

relevance scores to the remaining 80K results (32K distinct 〈 〉 pairs) following the

guidelines (Table 14). Table 15 summarizes the details of the manual assignment of relevance

scores. As part of the scoring process, we not only considered syntactical but also semantic

similarities. That is, hits that can be considered as Type-3 and relevant (True Positive) in other

application domains (e.g., clone detection) might be non-relevant in our context (due to the

semantic and syntactical differences), and therefore receive a relevancy score of “0”.

Table 15. The evaluation steps and hits manual investigation details

Property Value
Total search schemas 32

Total benchmark queries 50

Total querying experiments 2000

Result set limit Top 60

Total retrieved hits 117K

Total number of hits which are automatically ignored

using heuristics

7.7K (size heuristic)

28K (keyword heuristic)

Total number of hits which are tagged manually 81K (32K distinct 〈 〉 pairs)

Breakdown

Relevance Score #hits

0 34K

1 14.9K

2 3.6K

3 15K

4 4.9K

5 8.8K

8.5. Evaluation result

After our initial review of the reported hits and their characteristics (Table 15), we selected six

measures from our measure suite introduced in chapter 7. The evaluation showed that our clone

search model is not only scalable and provides fast response times (~100 ms), but is also capable

of successfully detecting Type-1, 2 and 3 clone types. Assessing the quality of our ranking

approach shows that the model is capable of placing the true positives at the top of the result set.

Certain search schemata were capable of achieving even a 100% recall and precision for top K

(e.g., top 15) result sets. Since SeClone search schemas rank result sets based on their content

similarity, in most cases, Type-1 and Type-2 clones (similarities) are consistently placed in the

69

correct relative order and position within the result sets. For Type-3 clones, the position in the

result set depends on the dissimilarity between the clone and the query fragment.

8.5.1. First False Positive

Figure 12 provides a summary of the result for the First False Positive (FFP) measure based on

the average values (for all queries) across all 32 search configurations (schemata). The results

show that the first false positive appears on average at the 25th position for most schemas.

Among the 32 schemata, four of them considerably outperform the others by achieving the first

false positive at position 30. Furthermore, using the results provided in Figure 13, it can be

observed how and schemata outperform the other schemata,

specifically and .

Figure 12. Summary of First False Positive measure result (average values)

70

Figure 13. Details of First False Positive measure result

As discussed previously, we use two heuristics to reduce the number of hits for the manual

relevance score assignment process. In order to evaluate the impact of these heuristics, we applied

them on only half of the queries in the benchmark (queries 26-50), while we manually evaluated

all hits of the other queries (#1 to 25). The results in Figures 14 and 15 show that our heuristics

have not affected the overall outcome of the study considerably.

71

Figure 14. First False Positive measure result (queries 1 to 25, without heuristics scoring)

72

Figure 15. First False Positive measure result - only queries 26 to 50

8.5.2. Precision at K

For our evaluation using Precision at K measure (P@K), we considered 7 different scenarios: K =

10, 15, 20, 30, 40, 50, and 60. The motivation for evaluating these different K values was to

provide us with a more comprehensive picture of SeClone performance as K increases. We

limited the K value to a maximum of 60, since we only tagged the top 60 hits during our

relevance score assignment step. Figures 16 and 17 show the precision at 10 and 15 results, with

SeClone achieving 100% precision for both ranges. As expected, the precision values drop as the

K values increase from 20 to 60 (Figures 18, 19, 20, 21, and 22). The major reason for this drop

in precision is mainly related to data scarcity, since as part of our benchmark we generated

(through the mutation framework) and injected only 13 confirmed clones for each query. That is,

precision at values higher than 13 depends on data available in the corpus, which is non-

73

deterministic given the size of the corpus and the differences among queries. An interesting

observation can be made for Precisions at K=20, 30 and 40 for schemata such as ,

when the second index uses the m transformation function at the single line granularity level. In

these cases, the search schemas actually achieved the highest median value. This observation can

be explained by the fact that for such a fine-grained (line-level) index, the search engine was able

to detect a large enough number of true positives in the corpus to achieve higher recall.

Figure 16. Summary of Precision at 10 measure

74

Figure 17. Summary of Precision at 15 measure

Figure 18. Summary of Precision at 20 measure

75

Figure 19. Summary of Precision at 30 measure

Figure 20. Summary of Precision at 40 measure

76

Figure 21. Summary of Precision at 50 measure

Figure 22. Summary of Precision at 60 measure

77

8.5.3. MAP

As part of our evaluation, we further assessed the SeClone ranking feature using the Mean

Average Precision (MAP), a single value measure typically used in the IR community to compare

different ranking systems. For a single query experiment, the measure will simply compute the

average of all Precision at where refers to the position of all retrieved relevant items in the

result set. MAP is useful when the degree of similarity (relevance score) of true positives is not of

importance. Figure 23 compares the 32 different schemata with respect to the MAPs. While most

of the schemata achieved a MAP of close to 1 (best), we could also observe that, similar to the

First False Positive study, and outperform the other schemata.

We also studied the effect of our automated heuristics for benchmark tagging on the MAP. In

Figure 24, one can observe that the results for queries 26-50 (after applying the heuristics)

decreased slightly, providing more evidence that the heuristics have no lasting effect on the

evaluation overall outcome.

Figure 23. Summary of MAP measure results

78

Figure 24. MAP measure results for queries tagged with (26-50) and without (1-25)

heuristics

8.5.4. Normalized Discounted Cumulative Gain

To evaluate SeClone ranking for applications where the relevance score of true positives are

emphasized, we used the Normalized Discounted Cumulative Gain (NDCG). The average values,

as well as details of our NDCG experiments, are shown in Figure 25 and 26. In general, the result

supports and confirms our earlier observations. Additionally, Figure 26 highlights that from

NDCG perspective, the x1.m3 index configuration outperforms the other configurations.

Figure 25. Summary of NDCG values

79

Figure 26. Details of the NDCG studies

8.5.5. Kendall tau

While the focus of the previous studies was mainly on evaluating the performance of the different

schemata, in this study we focus the ability of two candidate schemas to achieve a perfect detailed

ranking, where the ranking would report Type-1, Type-2, and Type-3 clones based on the scoring

guideline introduced in Table 13. Kendall tau is exploited as a measure for this study, as it is

capable of providing a fine-grained comparison of highly positive result sets.

The two candidate schemata are selected from amongst the schemas with promising results

for FFP, P@K, MAP, and NDCG, with each candidate using a different ranking model (VSM vs.

Jaccard). Figure 27 presents the Kendall tau results. All Kendall tau related calculations are made

using Wessa online services [WES12]. The result shows some difference among the two

 and schemata. Although the median values for both schemata are

80

close, the Jaccard coefficient search schema (outperformed the VSM-based

schema by providing consistent (better) ranking results.

Figure 27. Kendall tau based comparison of and schemas

8.5.6. Response time

A key requirement for SeClone, seeing as it is a specialized search engine, is that it can provide

search results in near real-time. In what follows, we discuss SeClone’s run-time performance

based on the execution of our benchmark queries. For the analysis, we consider clone lookup

times, ranking, and sorting as the total response time, which is reported in milliseconds. It should

be noted that to deploy the SeClone server application and its indices, SeClone requires ~10

minutes for the incremental indexing of the encoded code patterns for the 356M LOC (3M Java

files).

Figure 28 summarizes the observed response times for the 50 queries executed for each of the

32 schemata. The results show that some of the schemata (e.g., and)

are not only capable of returning high quality search results, but also provide these results in near

real-time, with response times around 100 . The analysis also shows that both index

81

granularity and transformation function can affect the response times considerably (e.g., all l1.m3

configurations vs. the remaining configurations). Moreover, our detailed analysis also indicates

that the search approach (e.g., Jaccard coefficient) does not affect response time. The response

times of each query across all schemata are summarized in Figure 29, highlighting that SeClone

performance (i.e., response time) is close to constant for most of the queries.

Figure 28. SeClone response time using a 356M LOC corpus

82

Figure 29. SeClone response time using a 356M LOC corpus grouped by query number

8.6. Summary

Our performance assessment of SeClone shows that the non-positional multi-level indexing

approach for clone search can, depending on the search configuration, achieve approximately

complete precision and recall for top K, with K being equal to the number of known positive

answers/mutants. Moreover, our studies also showed that SeClone detects and ranks Type-1, 2,

and 3 clone types as true positives correctly in most cases by exploiting the defined ranking

models which we adapted from the IR community.

As part of our studies, we also observed that the l1.m3 indexing configuration will

outperform the other configurations when both response time and quality are important. If there is

less an emphasis on response time, the best recall (based on the Precision at K observations) and

overall quality (NDCG observations) can be achieved using the configuration l1.m1 and x1.m3

schemas respectively. Amongst the ranking schemas, the cosine similarity, augmented with

logarithmic local and global frequency () and Jaccard similarity (, achieves the best

83

performance. Considering both indexing and ranking, we can recommend the and

 configurations as a default schema.

84

9. Bytecode clone search

While source code clone detection is a well-established research area, limited work exists in

finding similar bytecode and other intermediate code representations. We are particularly

interested in exploiting our clone search model for finding similarities in bytecode content, since

bytecode constitutes an essential part of the search space when one implements an Internet-scale

code search engine (e.g., [BAJ12]).

This chapter introduces SeByte, which is based on our clone search model (SeClone) and

supports Java bytecode clone search. For the bytecode clone search problem, we adapted the two

core ideas of our SeClone: multi-level indexing and information retrieval-based similarity search.

In order to achieve high recall, we include two heuristics for Java bytecode clone detection,

which can be considered as extensions of the SeClone’s multi-level indexing for bytecode

content. (1) We include relaxation on code fingerprint, which only considers certain types of

tokens for clone detection. (2) We include what we refer to as a multi-dimensional matching,

which applies the clone detection algorithm separately and therefore independently for each type

of token (dimension). Furthermore, the similarity search task for each dimension is delegated to

the SeClone search model. Finally, we extend our original clone search approach to support

semantic search [GUH10], which is motivated by the nature of bytecode content where each

instruction includes additional embedded information such as data type. As a result, SeByte

provides a scalable bytecode clone search model that also supports the ranking of result sets. For

our evaluation of SeByte, we conducted a performance evaluation study on a dataset of 500,000

compiled Java classes, which we extracted from the six most recent versions of the Eclipse IDE.

The objective of this study was to illustrate that the SeByte search model is not only scalable, but

is also capable of providing a reliable ranking of the result sets for bytecode content.

85

9.1. Java bytecode overview

9.1.1. Instruction families

Java bytecode is considered a stack-oriented language, with the stack being the major

computation entity in the Java runtime environment. The compiler translates source code

statements to their corresponding Java bytecode instructions, with source code usually being

mapped to several bytecode instructions. Bytecode provides instructions to manipulate the stack,

such as simple push and pops. A total of 256 instructions
4
 are defined in the Java bytecode

reference model. These instructions can be classified in 10 major families (summarized in Table

16) based on the Java 7 specification.

Table 16 further highlights an interesting aspect of Java bytecode, namely the fact that many

bytecode instructions include additional embedded information such as the data type for which a

specific instruction is applicable. For example, several variations of the symbolic load instruction

are available in Java bytecode (e.g., iload, iload_0, dload, lload, fload, and aaload), with the

prefix specifying the data type that is being manipulated. Table 17 highlights how some implicit

semantics are captured in these bytecode instructions and can be further interpreted for fact

extraction. There are other pre/postfixes that are less popular, such as postfixes belonging to the

“comparison instruction family” (e.g., “fcmpg” where “g” is referring to the presence of greater

condition in the comparison function).

As an example, Figure 30 shows a Java bytecode fragment as plain text, where the instruction

in line 127 pushes an Integer with value 0. Line 122 shows a method call statement, which calls

println from the java.io.PrintStream class. In this example, class and method names are

automatically resolved from pointers to the string table.

4
 http://docs.oracle.com/javase/specs/jvms/se7/html/index.html

86

Table 16. The Java bytecode instruction overview

Instruction Family Description Example

Data manipulation This meta-family covers several areas such as:

(1) load and store data onto/from the stack

from/to local variables etc. (2) primitive

arithmetic functions such as add, multiply etc. (3)

data type conversion

“dload” loads a Double

local variable onto the stack.

“dadd” sums up Double

values. i2d converts Integer-

typed value to Double

format.

Load and store The two instructions types are related to stack

operations involving loading onto and storing

from the stack.

“dstore” stores a Double

value from top of the stack

to a local variable

Arithmetic This family provides primitive instructions

required for arithmetic and logical computation.

The required data will be retrieved from the

stack and the result will be saved onto the stack.

The major families of functions are Add,

Subtract, Multiply, Divide, Remainder, Negate,

Shift, Bitwise OR, Bitwise AND, Bitwise

exclusive OR, Increment, and Comparison

“fadd”, “ishr” (Shift right

Integer value)

“ior”, “iinc” (such as

var++), fcmpg (compare –

the greater operand)

Type conversion The dedicated family for type conversion “i2d” and “i2f”

Object creation and

manipulation

Create, load, and store object or array instances.

Note that Java provides dedicated instructions for

array creation and manipulation.

“new”, “newarray”,

“getfield” (access Java

classes’ fields), “iaload”

(load an array of Integer

type to the stack),

“arraylength”, “instanceof”

Stack management Primitive operations required for stack

manipulation. These operations changes the state

of the stack directly

”pop”, “dup”, “swap”

Control transfer Program control flow instructions. Several types

of “if” are provided for simulation of all possible

conditional branches.

”ifeq”, “ifnull”, “goto”

Method invocation and

return

The major instructions for handling method call

statements are presented under this family.

Although there are two major types which are

invocation and return, specialized instructions for

Object-Oriented semantics are available

“invokevirtual” (the regular

method call in Object

Oriented where the receiver

of the message is known in

advance), “invokeinterface”,

“ireturn”

Throwing exception “athrow”

synchronization The primitive instructions for synchronization in

case of concurrency. Note that the specified

synchronization semantics at the source code will

be handled using monitor enter and monitor exit

“monitorenter” specifies

entering the secured code

block in terms of

concurrency.

87

…

122: invokevirtual java/io/PrintStream.println:(I)V

123: astore_1

124: aload_1

125: arraylength

126: istore_2

127: iconst_0

128: istore_3

129: iload_3

130: iload_2

…

Figure 30. Java bytecode example (presented as plain text)

Table 17. The symbol table assigned to known data types by Java bytecode

Symbol  The corresponding type

a  reference i  integer s  short l  long

c  character b  byte f  float d  double

9.1.2. Motivation and challenges

Similar to the other low level languages, Java bytecode uses machine instructions to represent

basic functionalities such as conditions and loops. Different types of tokens, such as Java virtual

machine instructions, strings, method names and Java type names, are available in the bytecode

representation. These tokens form the code fingerprint, which we use as input data for our

research. Throughout the chapter we use Java bytecode and bytecode keywords interchangeably

to refer to any content similar to the textual representation created after our first extraction step.

Motivation. Clone detection at bytecode level can detect clone pairs that might not be

syntactically similar at source code level but are in fact semantically similar. The compilation of

source code to a bytecode format generates a unified representation of source code, which is

based on the transformation of syntactic dissimilarities of various loops and conditional blocks in

88

the source code to the unified format. As a result, the bytecode representation can facilitate

“semantic” clone detection even if syntactical matching is considered.

Challenge. While compilation techniques such as method inlining are useful for run-time

performance optimization, they also introduce new challenges. For example, the two methods in

Figure 31 could be detected as clone pair with high confidence using the source code

representation. However, detecting them as clones at the bytecode level is inherently more

difficult since its success depends on the original size of the send() function in the first method

block. Due to the method inlining effect, these two method blocks might end up with completely

different sizes.

Void method_original(){

a.copy(a);

send(a);

a.flush();

a.close();

}

Void method_cloned(){

a.copy(b);

a.flush();

b.close();

}

Suppose, send() is a static method

which will be considered for inlining

during compilation.

Figure 31. An example with one line dissimilarity at source code level, at the bytecode level

due to method inlining effect, the actual bytecode dissimilarity depends on the size of method

send() implementation.

9.2. SeByte data presentation and manipulation approach

A major part of clone detection revolves around matching code content. The state of the art is to

consider a sequence of source code statements as a single fused information source to be

compared. In contrast to the current approaches, we include a heuristic called relaxation on code

fingerprint, which leads to a multi-dimensional comparison approach that is described in detail in

this section. Instead of comparing code content as lone fused fact sequences, we extract different

pieces of information based on their token types, each of which corresponds to a dimension in our

approach. This approach is motivated by the fact that each Java bytecode statement (Figure 32)

can contain several predefined types of information in a single line of bytecode, such as

instruction, class and method name.

89

Each of these dimensions presents a specific perspective of a method block and its

characteristics. In our multi-dimensional approach, we then compare these dimensions

independently using a clone detection algorithm to detect candidate clone-pairs. We then merge

the different result sets created from the analysis of the individual dimensions to create our final

clone pair set.

Figure 32 Step B shows an illustrative example of using two different dimensions as part of

the relaxation on code fingerprinting. In the bytecode column, Java type fingerprints are marked

as bold and method names are underlined. The first dimension contains the names of accessed

Java types. The second dimension only contains the names of the called methods. Based on their

actual appearances in the bytecode, all dimensions will be represented using ordered sequences.

Due to our relaxation heuristic, it is possible to ignore the other information resources.

A- Converting to text

 674: invokevirtual #50 // Method Player.getEurope()
 677: ifnull 852
 680: aload 12
 682: invokevirtual #51 // Method Player.initializeHighSeas()
 684: invokevirtual #50 // Method Player.getEurope()
 687: invokevirtual #50 // Method Player.getEurope()
 690: invokevirtual #52 // Method Europe.getUnitList()
 693: invokeinterface #70 // InterfaceMethod List.iterator()
 698: astore 13
 700: aload 13
 702: invokeinterface #71 // InterfaceMethod Iterator.hasNext()
 707: ifeq 52
 710: aload 13
 712: invokeinterface #72 // InterfaceMethod Iterator.next()
 717: checkcast #53 // class Unit

Java Bytecode in text format

Java Bytecode

Files

Input

B- Fingerprinting

{Player, Player, Player, Europe, List, Iterator,

Iterator, Unit}

{getEurope, initilizeHighSeas, getEurope,

getEurope, getUniList, …}

Java Typ
e

Fin

ge
rp

rin
ts

M
e

th
o

d
 C

all
Fin

ge
rp

rin
ts

Figure 32. Examples for Java bytecode fingerprinting

Motivation #1. The underlying rationale for the relaxation on code fingerprint is to develop a

robust clone detection approach that can survive extreme dissimilarities when they are limited to

a specific dimension. Using our multi-dimensional matching, we can increase the recall by

comparing each data family independently. Therefore, dissimilarity in each dimension is limited

only to its corresponding result set.

90

Motivation #2. Our multi-dimensional approach also reduces input data size (search space)

for the clone detection process, since each dimension only contains a subset of available data that

will be considered for comparison. In our example (using two dimensions), we use either Java

types or the names of called methods. Figure 33 illustrates this reduction in terms of number of

tokens to be analyzed. Using this fingerprinting approach for the bytecode datasets (Table 18), we

were able to achieve a reduction in data size of 50-80% approximately, where the number of

tokens in each dimension (e.g., method or type columns) is compared to the total number of lines

in the raw data (i.e., the regular bytecode column). Therefore, the multi-dimensional approach not

only supports the detection of clone-pairs with extreme pattern dissimilarity, but also improves its

scalability by several folds.

Table 18. Prelimaniry bytecode datasets

Dataset Size (#files) Application Context
Bytecode Source code

EIRC 83 64 Network-based comm. client

Freecol (server) 220 79 Server application

Freecol (full) 1120 570 A strategy-based game

HBase 1093 448 Database system

Figure 33. Effects of the relaxation on code fingerprint on data size reduction (with respect

to the raw data / number of lines)

0 50000 100000 150000 200000 250000 300000

ERIC

Freecol (srv)

Freecol

hbase

Number of elements

Method name fingerprint

Java type fingerprint

Regular ByteCode

91

9.3. SeByte search approach

As discussed, Java bytecode contains less ambiguity compared to the higher-level languages, due

to the availability of additional explicitly embedded information. For example, bytecode level

summation instructions explicitly include the data type they are capable of manipulating as part of

the instruction. As a result, for each primitive data type, there is a dedicated “add” instruction

(e.g., iadd and fadd). Similarly, object creation/access, method call, and field access instructions

embed the data types (or other metadata). For example, in line 122 Figure 30, the type of message

receiver (i.e., println) is already resolved not only for the receiver class name (PrintStream), but

also for the actual implementation captured by its fully qualified name (java.io.PrintStream) and

the file address. Although, from a clone detection/search perspective, input data with less

ambiguity is typically preferred (to improve precision), it reduces the recall of Type-2 clone

detection.

Figure 34, illustrates the challenges of detecting clones at Java bytecode level versus source

code level. While only one token (i.e., +) is used to present the add functionality at source code

level, the bytecode representation actually depends on the source code’s implicit semantics. As a

result, the x=x+y source code can have four possible corresponding bytecode level

representations (depending on the actual data types of variables x and y). This issue becomes

even more challenging with the inclusion of other statements (e.g., var.println()). There

exist different bytecode interpretations for the original source code fragment, where N

is the number possible instructions (available for method calls) and M is the number of possible

types. As a result, while blocks A and B might be considered identical clones (Type-1) at the

source code level, their bytecode representation could be different, and therefore their clone type

could be different as well.

92

var.println();

x=x+y;

var.println();

x=x+y;

var.println();

x=x+y;

var.println();

x=x+y;

var.println();

x=2+1;

var.println();

x=2+1;

var.println();

x=2.0+1.0;

var.println();

x=2.0+1.0;

…

invokevirtual java/io/PrintStream.println:(I)V

iadd

…

…

invokevirtual java/io/PrintStream.println:(I)V

iadd

…

A.A. B.B. C.C. D.D.

Interpretation of the block A at bytecode

One of the numerous possible interpretations of the block A

(4 x N x M possibilities)

x4

xN xM

…

invokevirtual java/io/PrintStream.println:(I)V

dadd

…

…

invokevirtual java/io/PrintStream.println:(I)V

dadd

…

Possible interpretations of the block D

(N x M possibilities)
xN xM

Interpretation of the block D at bytecode

invokevirtual
Invokeinterface
...

iadd
dadd
ladd
fadd

java.io.PrintStream
java.io.DataOutputSream
...

invokevirtual
Invokeinterface
...

java.io.PrintStream
java.io.DataOutputSream
...

Figure 34. A few examples showing the differences between source code and bytecode

clone detection

9.3.1. Existing solutions

In cases where the input data contains more information than the clone detection algorithm

requires or can process, filtering and normalization are applied. For source code content,

normalization is commonly used to remove unnecessary differences so that pattern-matching

algorithms can achieve higher recall. For example, many approaches [HUM10][KAM02] replace

token names (e.g., class names) with predefined symbols (e.g., $ or enumerated $ where the order

information must be preserved, such as $1, $2). By using such normalization approaches,

detection of Type-2 clones at source code level becomes feasible. Similarly, normalization for

intermediate language has been proposed in the literature, e.g., Baker et al.’s for Java bytecode

[BAK98] and our work on .NET intermediate language [ALO12].

93

9.3.2. Our solution - semantic search

Existing solutions for intermediate languages have focused in the past on the use of data filtering

and normalization, which often involves some form of data loss, to prepare the input data for

clone detection algorithms. While this approach works well for clone detection, the information

loss caused by the filtering will restrict its applicability for clone search specifically in the

bytecode context. A key aspect of any search approach is its ability to differentiate and rank hits

based on the closeness of hits to the query. However, the data loss (including semantics) through

the data filtering used by traditional clone detection approaches will affect their ability to provide

an accurate ranking.

For example, a user is looking for code fragments that implement the summation of two

numbers, in particular the summation of float type. In this example, search results containing a

float summation corresponding to a Type-1 clone, such as fragment D in Figure 34, should be

ranked higher than research results containing summation of other data types, e.g., summation of

integer numbers such as fragment C in Figure 34 - i.e., Type-2 clones. Likewise, semantic

information associated with other bytecode level instructions can be used to enhance the search

and ranking processes. This issue can be solved by adapting the semantic search concept

[GUH10]. In order to support semantic search in our approach, we require access to two types of

information: existence and degree of similarity (between two tokens). In what follows, we define

both the existence and degree of similarity in our research context, which will be used to

semantically rank the search results.

Existence of Similarity: Given the classification of bytecode level instructions, it is possible

to identify similar instruction types based on their relationship with each other. These similar

instructions can be identified by analyzing the associated tokens in the domain of discourse. For

example, in Figures 35 and 36, iadd and java.io.PrintStream can be associated with other tokens

either in the instructions or inheritance tree. The key idea is that these association links can be

94

used to help the interpretation of similarities between tokens, and therefore allow us to infer that,

for example, an iadd (add for integers) token is similar to dadd (add for doubles) and other

siblings in the same graph (e.g., the semantic network).

Degree of Similarity: While the existence of similarity only identifies whether two token are

related (e.g., iadd is related to dadd and XOR), their actual degree of similarity might differ. In

addition to the presence of links, the distance between tokens can be used to interpret their degree

of similarity. In our example (Figure 35), both iadd and dadd are closer to each other than XOR,

since they both belong to the Summation family (Figure 35). Including these additional semantics

in our search process allows us to assign different ranking to the dadd and XOR occurrences for

the given token iadd (part of the query), which we capture by our degree of similarity measure.

SummationSummation

Arithmetic ActivityArithmetic Activity

iaddiaddfaddfadd dadd dadd......

XORXOR......

A. Direct siblings

C. Associated instructions B. The Add family

D. The generalized notion

The node under

investigation

Figure 35. A slice of domain of discourse (i.e., Java bytecode specification) related to iadd

instruction

java.lang.Objectjava.lang.Object

java.io.FilterOutputStreamjava.io.FilterOutputStream

java.io.OutputStreamjava.io.OutputStream

java.io.PrintStreamjava.io.PrintStreamjava.io.BufferedOutputStreamjava.io.BufferedOutputStream java.io.DataOutputStream java.io.DataOutputStream......

java.io.PipedOutputStreamjava.io.PipedOutputStream......

A. Direct siblings of the PrintStream

C. Associated types to the PrintStream B. Direct Super type of the PrintStream

D. Indirect Super types of the PrintStream

The node under

investigation

Figure 36. A slice of domain of discourse (i.e., the program inheritance tree) related to

java.io.PrintStream token

95

9.4. Bytecode ontology

For the successful implementation of our bytecode level semantic search approach, we require a

type of semantic network (e.g., [QUI67]) that formalizes the concepts and their connections. We

created this semantic network as an ontology based on the Java specification (e.g., Figure 35 and

Table 16). The ontology called Bytecode Ontology (byteon) represents a hierarchical

conceptualization of bytecode instructions, and includes all 256 bytecode instructions. All

instructions are classified into families of related instructions. As discussed earlier, at bytecode

level, ten major families can be distinguished (see Table 16). We extend this initial classification

by including (1) additional classifications (horizontal extension), and (2) hierarchies between

families (vertical extension). For example, intermediate concepts, such as “IntegerAccess”, are

added to associate all functions defined over integer data types.

We manually created this ontology by reviewing the Java bytecode instruction specification

covering all 256 instructions. The resulting bytecode ontology and its documentation are

available online at http://secold.org/projects/sebyte. The ontology contains 296 concepts (40

family entities and 256 instructions). Figure 37 provides an overview of the high-level concepts.

A complete overview of the ontology is shown in Figure 38, with its major families being labeled

by circles. The complexity of the graph is high due to the large number of links (~650 links),

since most instruction types belong to several families.

96

Access Node Expanded (Limited to the very high-level nodes)

Figure 37. Partial preview of Bytecode Ontology
5

5
 Created by http://protege.stanford.edu/

97

Figure 38. Bytecode Ontology overview highlighted with the most popular families
6

6
 Created by http://gephi.org/

98

9.5. SeByte – a Java bytecode clone search approach

In what follows, we provide a more detailed implementation overview of SeByte and its

major processing steps (Figure 39). During the first processing step (converting to text), a

conversion of bytecode content to plain text takes place. The plain text constitutes the input data

for the later phases. The plain text content is used by the SeByte parser for dimension population,

using relaxation on code fingerprints. In our current implementation, SeByte maintains three

dimensions: type, method call, and instruction fingerprints. This three-dimensional model is then

used by SeClone multi-level indexing approach to create an index for each dimension. Finally, we

take advantage of the clone search functionality provided by our SeClone search model to search

for bytecode clones. In order to support the search requirements for bytecode content, we extended

the SeClone core algorithm with the semantic search capability. Our heuristic-based semantic

search implementation takes into consideration both existence and degree of similarity, which are

modeled by the ontology.

A- Converting to text

Java Type Repository

(Dimension #1)

Method Call

Repository

(Dimension #2)

 674: invokevirtual #50 // Method Player.getEurope()
 677: ifnull 852
 680: aload 12
 682: invokevirtual #51 // Method Player.initializeHighSeas()
 684: invokevirtual #50 // Method Player.getEurope()
 687: invokevirtual #50 // Method Player.getEurope()
 690: invokevirtual #52 // Method Europe.getUnitList()
 693: invokeinterface #70 // InterfaceMethod List.iterator()
 698: astore 13
 700: aload 13
 702: invokeinterface #71 // InterfaceMethod Iterator.hasNext()
 707: ifeq 52
 710: aload 13
 712: invokeinterface #72 // InterfaceMethod Iterator.next()
 717: checkcast #53 // class Unit

Java Bytecode in text format

Java Bytecode

Files

Input

B- Fingerprinting

{Player, Player, Player,

Europe, List, Iterator,

Iterator, Unit}

{getEurope,

initilizeHighSeas,

getEurope, getEurope,

getUniList, …}

Ja
v

a
 T

y
p

e

Fin
g

e
rp

rin
ts

M
e

th
o

d
 C

a
ll

Fin
g

e
rp

rin
ts

Knowledge Bases
 (n Dimensions)

Indexing
(Multi-level)

SeClone Search

Dimension #n

Extension Points
...

Index #1

Index #2

Similarity Search
(SeClone)

...

C- SeClone-based clone search

Instruction

Repository

(Dimension #3)

Index #3

{invokevirtual, ifnull, aload,

invokevirtual, invokevirtual,

invokevirtual, invokevirtual,

invokeinterface, astore,

aload, ... Checkcast}

In
stru

ctio
n

Fin
g

e
rp

rin
ts

Figure 39. Clone search approach for Java bytecode (token-level)

99

9.6. SeByte performance evaluation

As discussed in the previous chapter, performance evaluation of clone search engines differs from

clone detection evaluation. A key requirement for evaluation was not only to have a sufficient

large dataset, but that the dataset must also contain (1) a few highly similar clones, (2) several

relatively similar clones, and (3) a large number of irrelevant fragments. A dataset that meets

these requirements allows us to evaluate our search approach in situations where, for each query,

the number of irrelevant fragments (noise) will be considerably larger than the number of actual

clones, which makes the resulting ranking an even more challenging task. Therefore, for the case

study, we have created a dataset consisting of bytecode (including all bytecode dependencies)

from the latest six major versions of Eclipse IDE (2007 – 2012). Table 19 summarizes the dataset

details and the processing time.

Table 19. The Eclipse dataset overview and processing time report

Feature Value
Total #Jar (library) files 3,900
Total #file (Java class) 482,768
Total #LOC (bytecode level) 73 M
Total #method 3,898,475
Total #significant method (min 2 token) ~1,780,000
Total #significant method (min 5 token) ~780,000

Processing time (seconds)

Jar file bytecode extraction (unzipping +

disassembling)

3422

Crawling (local file system) 0.802738268

Fact processing 267
Index construction (+fact processing) 755

9.6.1. SeByte search schema

For our performance evaluation, we use three parameters (dimensions), which are represented in

our search schema by a triple (), where I indicates the weight of the instruction dimension,

M the weight of the method, and T the weight of the type dimensions, indicating whether a

dimension is considered to be “leveraged” or “regular”. In the case of leverage, its similarity

score is given a higher priority during the final ordering (when search result sets of all three

100

dimensions are being merged) compared to regular similarity scores. Furthermore, our search

schema does not restrict the number of dimensions that can belong to a particular group

(leveraged or regular), therefore allowing all dimensions to belong to the same group (and

therefore have an equal weight). We use to denote that a dimension is leveraged, and to

indicate that a dimension has a regular weight. For example, in the context of our case study, the

triple indicates that the instruction and type dimensions have a regular weight, while the

method dimension will be leveraged. Throughout our case study, we evaluated all seven possible

combinations and their effect on the performance of our clone search model.

9.6.2. First False Positive measure

From a clone search viewpoint, our search model deals with two major challenges: first, being

able to detect the few relevant fragments, and second, assigning a higher priority to these true

positive results than to the false positives in the result sets. On average in the corpus used for our

case study, only 6 out of ~1.7 million code fragments (for each search) were highly relevant code

fragments, whereas almost all of the remaining ones were non-relevant. We assessed the quality

of our search and ranking approach using the First False Positive measure, which returns the

position of the first false positive hit in the result set. For our evaluation, we randomly selected 20

queries that we tested across all 7 possible search combinations. We believe this measure is one

of the strictest measures when evaluating the performance of the clone search system, especially

in cases such as ours, where the corpus contains lots of noise (irrelevant code fragments). We

manually evaluated the top 30 hits of the 140 result sets (~4200 clones/hits) to determine the true

and false positives. Figure 40 summarizes the results from our manual evaluation in terms of the

position of the first false positive within the top 30 hits.

The analysis of SeByte’s performance results (Figure 40) shows that the schemata perform

quite differently when placing the first false positive in the ordered result set. In addition, we can

observe that a few schemata almost consistently outperform the other schemata. The overall best

101

performance was achieved with the search schema, which leverages the method dimension

over the other two dimensions. This schema places the first false positive at 6th position in the

worst case (excluding the single exception). This is in contrast to the search schema,

which placed the first false positive within its top 3 answers for 12 out of 20 queries, and

therefore can be considered as a poor configuration.

Figure 40. Summary of the First False Positive measure study

9.6.2.1. Precision at K measure

Precision at K can be considered as a complementary measure for the first false positive

evaluation. However, the major limitation of this measure is its query dependency. For example,

in order to provide a fair evaluation using “Precision at 10” measure, at least 10 cloned fragments

(true positives) must exist in the corpus for all executed queries. We therefore had to split our

candidate queries into two subsets: (1) queries with less than 10 actual cloned fragments in the

whole corpus, and (2) queries with more than 10 cloned fragments. We selected a “Precision at 5”

measure for the evaluation of our queries with less than 10 clone fragments. For the second query

subset, we used the standard “Precision at 10”. We manually evaluated the top K hits of 40

102

queries, which we executed across all seven schemata (2100 fragments in total) to calculate their

precision at K.

Figures 41 and 42 summarize the results from our manual evaluation, which showed that for

both sets, the schema provides the best overall results, achieving at least a 90% precision

(excluding certain outliers which are tagged in Figures 41 and 42). For the outlier cases, the

precision for the schema drops to 40%. Figures 43 and 44 provide a more detailed analysis

of the different schemata based on the individual queries. It should be noted that there is no pre-

defined order among the queries in Figures 43 and 44. We added the curves to improve the result

interpretation for each schema. From Figures 43 and 44, one can further observe that the

schema achieves the best overall performance. Some schemata, such as , show a significant

fluctuation in their performance, with their precision being between 100% and 0%.

Figure 41. Summary of the Precision at 5 measure study

103

Figure 42. Summary of the Precision at 10 measure study

Figure 43. Details of the Precision at 5 measure study

104

Figure 44. Details of the Precision at 10 measure study

9.6.3. NDCG measure

This measure has been used to provide a fine-grained evaluation of the quality and ordering of

result sets. However, the measure should only be applied when the average value or evaluation of

fine-grained ordering is required. Otherwise, measures such as Precision at K are preferred.

Nevertheless, NDCG is one of the state of the art search engine measures commonly used in the

IR domain. For our evaluation, we again selected 20 queries and their clone results, with each

query returning at least 30, but fewer than 100 matches. In order to create an oracle for each

query (required by NDCG), we manually evaluated a total of 1481 candidate clone pairs and

assigned them a similarity score between 0 and 3. We used a similarity score of 0 to indicate

totally irrelevant pairs (100% False Positive), whereas similarity scores of 1, 2, and 3 denote the

presence of a clone pair with some degree of similarity. The 20 queries and their manually tagged

set constitute the oracle that we used for our study. In total, we retrieved 10,367 hits after

executing the 20 queries across all seven search schemata. Figure 45 presents the NDCG value

for all query-search schema pairs. Again, there is no ordering among queries, and the lines in the

105

figure are only added to improve the readability. Figure 45 also includes the average NDCG for

each schema across all queries.

In summary, while some of the schemata achieve either close or slightly above average value

(e.g., with 0.87 NDCG), the search schema again outperforms the other schemata

by achieving, on average, a 0.88 NDCG (Figure 45). Overall, considering the result of all

measures altogether (i.e., First False Positive, Precision at K and NDCG), was the most

reliable search schema for the bytecode clone search problem.

Figure 45. Details of the NDCG measure study presenting the averaged behaviour of

schemata

9.7. Summary

In this chapter, we introduced SeByte a concrete solution for adaptation of our core clone search

model (SeClone) for Java bytecode. Our solution extends SeClone based on the observed

characteristics of the bytecode language. Using the provided performance evaluation, we can

106

conclude: (1) SyByte can be used for clone search applications on bytecode, as some of the

search schemata provide acceptable results, and (2) there is at least one schema (i.e.,)

which performs well considering all three measures.

107

10. Adaptation of the clone search model for pragmatic

reuse

Source code examples play a major role in programming, and provide an intrinsic resource for

learning [NYK02] and re-using [ROS96][JON92]. A lack of available source code examples has

been considered to be a major drawback of learning and improving coding [ROB11] during

software development, as code examples can accelerate the development process [MAN05], and

increase the product quality [MAR09]. Since it is not common in software development to

explicitly document code examples [HOL05][SIN98][WAN13], programmers have to rely on

manually searching through previously written projects (e.g., [WAN13]) and code repositories

(e.g., sourceforge.net) for code examples. However, not every code fragment that meets a query

criteria should be considered a good code example, as a good example should also be concise,

self contained, and easy to understand and integrate [HOL05][MIS12][WAN13]. Throughout this

chapter, we refer to such a code fragment as a working code example. Such working code

examples can spawn a wide range of application context, varying from API usage (e.g., how to

use JFreeChart library to save a chart) to basic algorithmic problems (e.g., bubble sort).

In this chapter, we discuss how clone search models can be adapted as an alternative solution

to the current approaches (Chapter 2) to the problem of detecting concrete working code

examples (i.e., spotting) for pragmatic reuse and program synthesis. Spotting these examples is

challenging, since tradeoffs among a variety of criteria, such as popularity, conciseness, and

completeness of a code example must be taken into consideration [HOL05][MIS12][WAN13].

The spotting process itself consists of two phases: (1) finding some abstract solutions that satisfy

a given query, and (2) locating the code fragments that satisfy the solutions. Both steps are

considered challenging, as it is often the case that hundreds of potential matches are found in a

108

large-scale corpus. In this chapter, we demonstrate how a clone search model can satisfy these

two search problems. Furthermore, the clone search-based approach supports (1) different types

of code examples that are not limited to API usage, and (2) free-form querying, where, for a

 { } , each term can be a data type, method name, or concept

(e.g., download or bubblesort). This is different from most of the earlier work (e.g., [BUS12]),

where it was necessary to write either a partial code fragment, or to provide the API names and

data flow information (e.g.,) when formulating a query.

10.1. Characteristics of the working code examples

Although there is no formal definition of what constitutes a good query result, several features of

a working code example are discussed in the literature. Table 20 provides a brief summary of the

features and measures that are commonly used for evaluation purposes. The support for these

features should lead to a search approach that can differentiate good matches from among the

millions of potential matches (i.e., code fragments) available in repositories.

Table 20. Features and the related measures for identifying the working code examples

 Feature Measures and additional comments
Conciseness [BUS12] [MAN05]

[THU07]

The fragment must focus on a given use case. It can be measured via:

 size (LOC)

 number of usage

 irrelevant code (#other unnecessary tasks) [KIM10]

Correctness [KIM10] -

Readability & self understanding e.g., well-chosen variable name [BUS12]

Completeness  Well-typed [KIM10] [BUS12] (including intermediate)

 Variable initialization

 Correct control flow [BUS12]

 Exception Handling [BUS12]

Successful integration [HOL09]

The end-user should be able to successfully apply the recommended

answer onto her code.

Result set qualtiy  Succinct [WAN13]

 High-coverage [WAN13]

 Representativeness [KIM10] [BUS12]

109

10.2. Schematic approach and its challenges

As discussed in the literature (e.g., [HOL05]), a plain matching or standard relevance-based IR

search system will fail to provide code examples that meet the features (requirements) described

in Table 20. In this chapter, we describe and discuss the schematic approach for spotting working

code examples (Figure 46). The key to this approach is the use of data mining approaches to

extract popular abstract solutions from a comprehensive code corpus. These abstract solutions

will then be used to recommend either the next potential steps (e.g., [WAN13]) or to complete

code examples (e.g., [MIS12]). Since several solutions can be matched to a given query, the

popularity of solutions has been exploited to reduce the risk of returning a poor quality result set

(e.g., [WAN13][MIS12][BUS12]). The intuition is that the higher the popularity of a potential

solution, the higher the chance of acceptance by the end-user. However, this approach is still

subject to some threats, which are discussed in this section, specifically concerning spotting of the

working code examples.

Code Corpus

(e.g., Sourceforge.net)
Solution Mining

Examples of the popular abstract solutions:
1-{File.openFile(),File.ReadLine(),File.close()}

2-{File.openFile(),File.ReadLine(),PrintToConsole(),File.close()}

Example of a matching working code examples:
File f=new File ();

String fileName=”readme.txt”;

File.openFile(fileName);

for(int i=0;i<totalLineNo;i++)

{

String lineContent=File.ReadLine(i);

PrintToConsole(“Line: “+i);

PrintToConsole(lineContent);

}

f.close();

Spotting Working Code Examples

generates

Solution Matching

Popular Abstract

Solutions

Query:
openFile and ReadLine

select the best matches (solutions)
select the best matches (code fragments)

O
ff
ili

n
e

O
n

lin
e

Figure 46. The schematic approach towards spotting working code examples

110

Popularity of a solution is a key criterion (Figure 46 – the solution matching process) that

cannot be ignored (e.g., [MIS12][WAN13]) to avoid poor quality result set. However, there are

other factors affecting the selection process. For example, relevance to the query cannot be

completely ignored [HOL09]. For a free-form query, relevance is continuous (not binary), so

solutions other than simple filtering and matching are required. In addition, conciseness and

completeness (Table 20) are two important but often contradictory aspects when optimizing the

result set. The tradeoff between these factors makes spotting the best matches a challenging task.

We provide a reasonably representative dataset including the source code of ~25,000 Java

open source projects (Table 21 summarizes our corpus characteristics) that is essential for mining

abstract programming solutions (e.g., Figure 46). The size and richness of our repository is the

key to the success of the approach. However, the size of the corpus also introduces new

challenges. Given the large number of potential matches (for search steps in Figure 46 - abstract

solution and code fragments search), the size of our corpus not only provides a richer knowledge

base, but also increases the noise level. From this point of view, the solutions (e.g., [WAN13]) for

the schematic in Figure 46 suffer from the same challenges as traditional Web search.

Table 21. The characteristics of our corpus (both raw and processed data)

Aspect
∆
 Value

Raw Data

Java projects 24,824

Total Java files 12,104,499

Unique
~
 Java files 2,882,458

LOC ~300 M

Selected fragments
+
 5,436,638

Selected lines
*
 65,478,267 (LLOC)

Processed Data

Unique encoded lines 13,945,442

Observed frequent abstract

solutions
■

#Solutions 15,856,377

Size (#encoded lines) 140,410,866 (encoded lines)

#Unique items 77,905

Min support 20

Max observed support 2,412
∆the table reports the number of encoded lines which is smaller than the actual #unique LLOC. For example int y=0; and int x=0; are counted only once since their encoded

patterns are identical. ~duplicated files are eliminated via their shared fully qualified name +fragments with at least 5 Logical Line of Code (LLOC)
*LLOC after removing duplicated encoded lines within each fragment ■maximal frequent itemsets [BOR12] (min:4, max:30, support:20)

111

In addition to these explicit challenges (conciseness vs. completeness) and noise in the search

space, there are further implicit issues reducing the success of popularity or relevance-oriented

approaches (e.g., [WAN13][BUS12]). The following example illustrates such an implicit threat,

based on hidden dependencies. In general, an ideal working code example should reflect a highly

popular and concise abstract solution. In this section, we discuss the fact that satisfying both

conditions is not trivial. As noted in Table 20, size is one of the measures used for evaluating the

conciseness of a recommendation. Figure 47 summarizes the average size of frequent (i.e.,

popular) abstract solutions that we observed in our studies. The abstract solutions are grouped by

their popularity degree, which is measured by the number of occurrences (Figure 47 - the support

value) of the solution within the corpus. The result shows that although the size decreases as the

popularity (i.e., the support value) increases, the changes are not considerable. If we ignore the

first three groups (i.e., { }), the size remains in the narrow range between 6

and 5. Since the size seems constant, one can argue that it can be ignored in favor of the

popularity aspect. However, this is not always the case, as illustrated in the following example.

Figure 47. The average size of our corpus abstract solutions with certain popularity

0

2

4

6

8

10

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

+S
o
lu

ti
o
n
s
 (

It
e
m

s
e
t)

 S
iz

e

Popularity (support)

Average

Median

112

In our corpus (Table 21), there are 6,836,738 relevant frequent abstract solutions
7
 for the

MD5 hash value generation problem
8
. The most popular solutions have 134(17), 175(10), and

195(10) occurrences, with the number in parenthesis indicating the size of the solution in LOC.

None of these solutions are close to the satisfying answers for MD5 hash value generation.

Although their popularity is highest, we observed that they spot false positive fragments. Among

the true positive answers, Figure 48 (popularity=24 and size=7) and Figure 49 (popularity=65 and

size=6) present two spotted answers. Even though Figure 49 is associated with a smaller and

more popular solution, it provides a lower quality solution as a working code example, as it is

neither self-contained nor complete. The lower quality is due to calling the convertToHex()

method in the last line, which makes the returned solution less concise (Table 20). These

examples highlight the presence of implicit challenges for the schematic approach (Figure 46),

such as the popularity-size tradeoff.

Figure 48. A high quality true positive for the MD5 example (size=7 support=24 rank=1)

Figure 49. A low quality true positive for the MD5 example (size=6 support=65 rank=8)

7
 These solutions are identified via their association to 82 unique ep of 7,251 relevant lines of code.

8
 Using MessageDigest API ({ })

113

10.3. Adaptation of clone search for the code search problem

The discussion and observations made in the previous section illustrate that all characteristics

(Table 20) of working code examples contribute to the filtering process of poor quality answers.

Since achieving an optimum result set can be impractical [MIS12], the alternative is to provide

retrieval and ranking models that are capable of producing high quality ranked result sets. A

clone search model using the vector space model can be applied on both search steps of the

schematic approach (Figure 46) to address the enumerated concerns and challenges in the

previous section. For example, a proper SeClone schema is able to address the complications

related to relevancy, completeness, and conciseness, with regard to the query as supported by our

performance evaluation study (Chapter 8). Contrary to the other approaches (Chapter 2), where

popularity is the main factor contributing to the ranking, this approach considers popularity as a

necessary condition during search space deployment. This section describes how clone search can

be adapted for the search problems available in the schematic approach (Figure 46) by providing

a concrete solution as the motivating example for the research community.

10.3.1. Populating the search space

The schematic approach (Figure 46) requires at least two data families: (1) the code fragments

and (2) the popular abstract programming solutions. While the code fragments can be extracted

from extensive web crawling and data gathering (Table 21), the abstract programming solutions

require different types of data abstraction and mining. The details of the abstraction and mining

methods are described in this section, where both search steps at Figure 46 are realized using

clone search models.

10.3.1.1. The initial search space - code abstraction

Creating abstract programming solutions requires modelling and transforming programming

content (code fragments) to higher levels of abstraction. Creating these abstract programming

solutions is essential for the performance, since it allows for the removal of unnecessary details

114

from code content. In our illustrative solution, we adapt and extend the SeClone search space and

the encoded code pattern () approach (Section 4) by including the keywords. The encoded code

patterns and their associated keywords (Figure 50) constitute the baseline search space.

MessageDigest md = new MessageDigest.getInstance(“MD5”);

Encoding Code Pattern

Encoded Code Pattern:

MessageDigest # = new MessageDigest.getInstance(#);

MessageDigest md5_hash = new MessageDigest.getInstance(“MD5”);

MessageDigest crypt = new MessageDigest.getInstance(“SHA-1”);

MessageDigest rfc1321 = new MessageDigest.getInstance(“MD5”);

Keyword Extractor

Associated Keywords
{md5,sha,rfc1321,crypt,md,digest,getinstance,messagedigest,…}

Encoded Code Pattern’s Hashvalue
8923902

...

Figure 50. A sample encoded code pattern and its associated keywords

10.3.1.2. Complete search space - encoded pattern mining

Including only the encoded code patterns and associated keywords as part of the search space is

not sufficient to support spotting working code example problems, as both of them (1) are too

fine-grained to be considered code examples, and (2) lack of support for code popularity. In order

to identify the popular abstract programming solutions (e.g., Figure 46), a maximal frequent

itemset mining such as the FPgrowth algorithm [BOR05] can be employed. Since the input for

the algorithm is made up of encoded code patterns (not the actual code), the output will be

popular abstract programming solutions (or). Figure 51 illustrates the details of populating

the search space and different processing steps involved, based on the following legend: Code

Fragment (CF), Keywords (CF_Term), Encode Patterns (EP), Popular Abstract Solution (PAS).

115

Figure 51. The search space population process

Frequent itemset mining algorithms [BOR12] are capable of extracting popular patterns

within a provided record set, with a record being one or more items. In its most simplistic form,

the algorithm requires a dataset and a support value that determine the minimum number of

occurrences of a pattern in the whole record set before it can be considered a frequent item.

Originally, the frequent itemset mining concept did not consider any ordering constraint between

items. For a clone search-based spotting approach, a variation of the itemset mining concept

referred to as maximal frequent itemset mining is required. This variation has two specific

properties: (1) it considers maximal itemsets and (2) it has no ordering constraint. The omission

of the ordering constraint provides us with a robust mining feature, where re-ordering of code

statements does not interfere with the pattern mining process. The maximal property overcomes

some of the challenges of the other itemset mining approaches, such as the possibility of

producing an exponential number of frequent sub-itemsets. The occurrence of sub-itemsets in the

search space is a threat when answer completeness is required. Therefore, we can define a

maximal itemset as: given possible elements (i.e., encoded code pattern) in the code base

 { } and code fragments { | { } }, is the set of all

116

possible reputable code patterns defined as
 { | | | ⋂ } where

|
 | . A frequent itemset

9

 is maximal if

.

10.3.2. Search process

Queries for a source code search engine are usually a set of terms, which are used for retrieving

and matching code fragments, as well as for ranking. To satisfy the schematic approach (Figure

46), the clone search-based solution requires, in total, three phases of querying to support the

spotting problem at run-time. Figure 52 provides an overview of this three-phase querying

process and the dataflow among these processes for a single search query.

<list,String,files>

<file,db,load,file,the,other,user>

<for,string,f,file>

<string,content,read,file,f>

<system,out,println,content,size>

345632

932034

-12564

495822

-58932

Query
<term_1,term_2,…,term_y>

List<String> files;

files=db.loadFiles(“/the_other_user”);

for(String f : files))

{

String content=readFile(f);

System.out.println(content.size());

}

932034

495822

-58932

1(Q) 2(R)

Top K - Candidate Encoded
Patterns <ep_1,ep_2,…,ep_x>

3(Q)

4(R)

Top K - Candidate Popular Abstract Solutions
<pas_1,pas_2,…,pas_i>

where
pas_i = {ep_1,ep_2,…,ep_q}

5(Q)6(R)

Top K - Suggested Code Fragments
<cf_1,cf_2,…,cf_k>

SeClone

CF CF_Term EP PAS
Search Spaces

Examples

Input

Output

Type-3 clone search

Type-3 clone search

Figure 52. Our concrete solution - the three querying phases

9
 is the minimum size and is the support (i.e., min popularity of the pattern)

117

Three-phase querying process. For a given free-form query

 , the approach returns the most relevant code fragments by

finding: (1) the most relevant encoded code patterns, (2) the most relevant popular abstract

solution for selected encoded patterns, and (3) the most relevant fragments for a given solution.

Phase 1. The first querying process, Figure 52 - 1(Q), selects the relevant encoded

patterns, comparing their associated keywords to the query terms. That is, the data used in this

search problem are query terms and keywords, while the output consists of encoded patterns.

It should be noted that an encoded code pattern that shares a keyword with is not

automatically included in the candidate list. Only hits are selected, in order to maintain the

relevancy between the query and the final spotted code fragments, as query terms are no longer

used explicitly in the search process after this phase.

Phase 2. In this phase, the popular abstract solutions are identified using clone search,

Figure 52 - 3(Q), where the query is made of the candidate encoded patterns from the last step

output. Due to the clone search-based approach, the popular abstract solutions are ranked

based on their relevancy, completeness, and conciseness.

 Phase 3. During the last querying phase, Figure 52 - 5(Q), the spotting of the best working

code examples for each of the chosen abstract solutions takes place. Additionally, this step

ensures that the output fragments are syntactically and semantically correct, which is crucial as

our mining and querying model ignores the ordering of the statements.

The result of this search approach is a two-dimensional hit list for each free-form query.

Figure 53 illustrates a graphical representation of such hit list. Each row contains the ranked code

fragments matching a corresponding abstract solution (i.e., in Figure 52). Therefore, while

the fragments in each row are highly similar, they look different from solutions in other rows, as

118

they are satisfying different abstract solutions. The default presentation approach is to select the

(final) hits from the items of column #1 in Figure 53 to maximize the number of covered

abstract solutions.

The Best Ranked Result Set

1
st
 Hit (Ranked Result Set)

2
nd

 Hit (Ranked Result Set)

3
rd

 Hit (Ranked Result Set)

D
is

s
im

ila
r A

n
s

w
e

rs

Similar Answers

Similar Answers

Similar Answers

Row #1

Row #2

Row #3

Column #1 Column #2 Column #3

Figure 53. The two-dimensional ranked result set

10.4. Performance evaluation

In this section, we provide a summary of our performance evaluation study (the feasibility study)

for the clone search-based approach. We evaluated the approach for its ability to spot working

code examples by reporting the top K hits, where K is a relative small number (3 or 5). The

summary of the corpus and output of the mining is presented earlier in Table 21. We determined

the rank of the first true positive answer based on the five requirements we identified in Table 20

(excluding the result set feature, which is not applicable here). We then applied the suggested

quantitative measures for these requirements, to evaluate the performance of the clone search-

based approach with regard to correctness, conciseness, completeness, and readability. Since

119

there is no explicit measure for ease of integration, we evaluated the spotted examples through an

initial user study.

10.4.1. Performance result

As part of our performance evaluation, we adapted Mishne et al.’s query set [MIS12]. The dataset

includes 7 queries from 6 Java libraries, with the first true positive rank as the performance

evaluation measure. However, we extended it by including additional measures and queries. The

additional queries are based on Java code search examples available in the literature (Chapter 2),

or frequent programming questions posted on StackOverflow. We also extended the measure set

by including normalized discounted cumulative gain (NDCG) in addition to the original measure

(rank of the first best hit). Moreover, measures for correctness, completeness, readability, and

conciseness features (Table 20) are exploited to identify the true positives amongst the hit list.

These features are calculated via their quantitative measures (Table 20). Since this approach

rarely reports false positives, we cannot consider precision, recall, or F-measures as

representative measures. Finally, for purpose of comparison, we report the results of Koders
10

.

10.4.1.1. Overall result

A summary is shown in Table 22, and is followed by a more detailed view on the measures in

Table 23. Our observation shows that the clone search-based approach can successfully spot the

working code example in the top 2 hits for free form querying. The order of query terms does not

affect the result. Moreover, the query can be a mixture of class names, method names and general

keywords (e.g., query# 9). While the corpus contains thousands of textual matches for each

query, the clone search-based approach is capable of reducing the search space to a limited

number (i.e., ~100) of s (Table 23 within parentheses in the column). One of the reasons

the approach returns fewer matches is that our search approach reduces the search space step by

step (Table 23 shows the number of matches per step).

10

 http://www.koders.com

120

When comparing our results with Koders, the illustrative solution using clone search always

returns fewer (but high quality) matches (i.e., first true positive rank between 1 or 2). In contrast,

for the Koders code search engines, the best rank results (first true positive) fluctuate between 1

and 40+, and the returned results were often actual working examples (Table 22, the values

within parentheses in the Koders column).

By comparing the quality of the spotted working code examples, the results in Table 22 show

that the best hits always meet readability and correctness requirements. In terms of completeness,

our approach spotted complete answers in all cases except query #8, where the exception

handling statement was omitted. In terms of conciseness, our best hit size is always smaller than

the average hit size (Table 23), however, conciseness (measured using irrelevant LOC) shows a

fluctuation across the experiments. Table 22 summarizes the conciseness of the first best hits by

High, Acceptable, or Low.

Our approach failed to spot any valid answer for query #6. Our further investigation revealed

that query #6’s expected solution is not a working code example. Table 23 also reports the NDCG

values for two groups of top 5 hit, using two different result preview approaches. The vertical

schema (the default presentation approach e.g., Figure 53) only shows the top-5 hits from the first

column, whereas the alternative view generates the preview by selecting two hits from each row.

In general, we observed that the vertical preview not only reports a higher number of true

positives, but also higher quality hits based on the observation made by NDCG.

121

Table 22. The dataset and evaluation summary for the spotting problem

Q
u

ery
 ID

Q
u

ery

Q
u

ery
 d

escrip
tio

n

Q
u

ery
 term

s

N
u

m
b

er
 o

f h
its

B
est h

it ra
n

k

C
o

rre
ctn

ess

C
o

m
p

leten
ess

C
o

n
cise

n
ess

R
ea

d
a

b
ility

 u
n

d
ersta

n
d

in
g

K
o

d
ers b

est a
n

sw
er’s ra

n
k

(w
o

rk
in

g
 co

d
e ex

a
m

p
le?

)

1 Apache

Commons

CLI

[MIS12]

Retrieve arguments

from command line

{getOptionValue,

CommandLine}

5+ 1 Y All Acc. yes 4 (no)

2 Eclipse UI

[MIS12]

Check user selection {ISelection, isEmpty} 5+ 1 Y All High yes 2 (no)

3 Eclipse
GEF

[MIS12]

Set up a
ScrollingGraphicalV

iewer

{ScrollingGraphicalView
er}

2 1 Y All High yes 32 (no)

4 Eclipse

JDT
[MIS12]

Create a project {IProject,monitor} 5+ 2 Y All High yes No (no)

5 Apache

Commons
Net

[MIS12]

Successfully login

and logout

{FTPClient} 5+ 1 Y All High yes 1 (no)

6 WebDriver

[MIS12]

Click an Element {WebElement} 0 - - - - - 8 (-)

7 JDBC

[MIS12]

Commit and rollback

a statement

{executeUpdate,rollback,

PreparedStatement}

4 1 Y All High yes No

8 StackOverfl

ow HTTP

send a HTTP request

via URLConnection
in Java

{response,URLConnectio

n}

5+ 2 Y No High yes 22 (yes)

9 StackOverfl

ow
Runtime

Redirect Runtime

exec() output with
System

{read,Runtime} 2 1 Y All Low yes 12 (yes)

10 StackOverfl

ow

Memory

Get OS Level

information such as

memory

{Memory} 5+ 2 Y All High yes 1(yes)

11 StackOverfl

ow SSH

SSH Connection {ssh} 5 1 Y All Low yes 3 (no)

12 StackOverfl
ow

Download

Download and save
a file

{download,URLConnecti
on}

5+ 1 Y All Acc. yes 5(no)

13 StackOverfl

ow MD5

Generate a string-

based MD5 hash
value

{md5} 5+ 1 Y All High yes 3(no)

14 HttpRespon

se

Read the content of a

HttpResponse
object line by line

{readLine,HttpResponse} 2 1 Y All Acc. yes 40+ (no)

15 Lucene Search via Lucene

and manipulate the

hits

{search,IndexSearcher} 5+ 2 Y All High yes 1(no)

122

Table 23. The details of the evaluation

Q
u

ery
 ID

B
est h

i L
O

C

A
v

g
. L

O
C

 to
p

 K

Ir
relev

a
n

t L
O

C

S
co

res fo
r N

D
C

G

2
D

 p
rev

iew

S
co

res fo
r N

D
C

G

v
ertica

l p
rev

iew

(d
efa

u
lt)

#
T

ex
tu

a
l m

a
tch

es

#
E

P
s

#
P

A
S

s

1 75 80 8 3-2-3-1-3 3-3-3-1-3 21718 2455 (129) 100+

2 13 25 0 3-1-3-1-1 3-3-1-2-2 43000+ 201 (20) 100+

3 19 29 0 - 3 80 20 (1) 1

4 28 57 0 0-0-3-2-1 0-3-1-1-1 11851 608 (56) 100+

5 29 32 0 3-3-3-3-3 3-3-3-3-3 2410 725 (84) 100+

6 - - - - - 662 - -

7 23 27 0 3-2-3-1 3-3 40000+ 99 (34) 100+

8 16 22 0 1-1-3-3-3 1-3-3-1-3 6987 732(118) 100+

9 44 44 25 2 2-2 17223 386(23) 100+

10 8 40 0 1-1-3-2-2 1-3-3-3-2 30000+ 6087(929) 100+

11 18 50 3 3-1-1 3-1-1-1-1 10045 858(201) 100+

12 36 47 2 3-2-3-1-1 3-3-1-1-2 6987 652(115) 100+

13 25 73 0 3-3-0-0-0 3-0-0-1-3 11358 2628(381) 100+

14 25 25 6 2 2-2 20000+ 10(8) 100+

15 18 20 0 1-3-3-3-3 1-3-3-3-3 20000+ 52(16) 100+

10.4.2. Initial user study

Since no specific measure for the ease of integration of working code examples was available

(Table 20), we conducted an initial user study to evaluate this aspect. For our controlled study, we

adapted a user study configuration (number of tasks, groups and people) for .NET framework that

is proposed by Wang et al. [WAN13]. Table 24 summarizes the user study settings. We chose

Koders and StackOverflow as alternative sources for spotting working code examples. The

provided hints in Table 24 can be used as query seeds by the programmers, which are selected

from three possible combinations: API names (e.g., class or method names), general keywords

(e.g., MD5 or download), or a combination of both. The general keywords are not (neither

completely nor partially) part of the participant class or the method names in the solution domain.

We replaced the C# tasks (derived from Wang’s study [WAN13] using six developers

identified by P1 to P6) by Java tasks using the queries listed in Table 24. The complete

123

programming assignment, to be completed by the programmer, was to develop a software

solution that retrieves a specific argument passed to the executed process via command line. The

retrieved argument must be used to generate a MD5 hash value. The MD5 hash value determines

the file UID on the web server. Finally, the target file on the Internet must be downloaded and

saved on the local disk.

Task 1: Retrieve the argument. The goal is to read a specific argument (i.e., “n”) via

Apache Commons CLI library. The name of the class from the library responsible for the given

task is provided as the seed (i.e., hint) for the search process. The challenge is to handle the

exceptional cases (e.g., null values) and errors carefully.

Task 2: Generate MD5 hash value. This task mandates the programmer to generate a string

representation of the MD5 hash value for the Task 1 retrieved argument. The extra challenge here

is the proper conversion of the value from binary format to string. The provided hint is “MD5”.

Task 3: Download and save file. The goal is to download and save a specific file from the

Internet. The file name is equal to the generated MD5 hash value. Proper connection

establishment, content encoding, and exception handling constitutes the major challenges of this

task.

Tables 24 and 25 summarize the study configuration and the observation, respectively. In

short, it shows the potential capabilities of a clone search-based approach in comparison to the

other resources, as it either achieves equal result or outperforms the others. However, we are

interested in the outcome of the study in terms of ease of integration. Table 25 provides initial

evidence that the ease of integration feature is met by the code examples that are provided by the

clone-search approach. Specifically, the tasks are completed successfully in less time using our

approach, compared to the StackOverflow-based development study.

124

Table 24. The controlled user study configuration

 Seed Query

(hint)

StackOverflow Koders Our approach

Task 1 CommandLine P1 P2 P3 P4 P5 P6

Task 2 MD5 P3 P4 P5 P6 P1 P2

Task 3 URLConnection

and download

P5 P6 P1 P2 P3 P4

Table 25. The controlled user study configuration

 StackOverflow Koders Our approach

#Successful integration 4/6 4/6 6/6

Time (avg. - minutes) 24 28 17

#Search activities per task 2 4 2

10.5. Discussion and promoting Examples

In this section, we describe three illustrative examples that highlight the capabilities and

interesting features of clone search-based approach for the given problem.

10.5.1. Bubble sort example

Bubble sort is one of the classical code search queries used by programmers. Figure 54 shows the

first hit that our spotting approach returns for the bubble sort query. The result is based on 5.5

million indexed code fragments that each has at least 5 lines of code. While the returned result is

one of the possible implementations of a bubble sort algorithm, it also highlights one of the most

interesting features of our clone search-based approach for code search. A matching answer might

not necessarily have to contain the query terms. In this example, there is no occurrence of bubble,

sort, or bubblesort keywords within the spotted fragment, while the code fragment is actually

implementing a bubble sort. It should be pointed out that our search approach only uses the

content of code fragment, and does not consider other sources of associated information such as

inline comments, Java docs, and the signature of the owner method.

125

Figure 54. The bubble sort example

10.5.2. MD5 example

Another example is related to the generation of MD5 hash values as string. This hash code

generation is not a trivial programming task using Java native libraries. First, there is no method

or class name existing within the Java libraries called MD5. The actual class and methods

responsible for the MD5 Binary value generation are MessageDigest, getInstance() and update().

Second, the conversion of the binary representation to string, has special cases to be handled,

which are highlighted by the programming community
11

. If the generated hash value starts with 0,

this leading 0 will be omitted during the conversion from the original format to String (Binary 

Numeric  String). This can be problematic, as all MD5 hash values must have an equal number

of characters. Figure 55 presents a top rank hit that our approach returns for the MD5 query and

addresses all of the discussed challenges.

Figure 55. The MD5 example

11

 http://stackoverflow.com/questions/415953/generate-md5-hash-in-java

126

10.5.3. Save chart as JPEG example

JFreeChart is a chart visualization library for Java. Saving a chart as a JPEG using JFreeChart

library requires a query belonging to the API usage example identification problem (e.g.,

[MIS12][WAN13][BUS12]), which is different from the bubble sort example (i.e., algorithmic

problems). Figure 56 illustrates the first hit returned by our approach. The fragment not only

shows how to save the chart, but also includes all required steps (e.g., variable initialization) as a

self-contained working code example. Note that holding the second property by the provided

answer is necessary [KIM10] [BUS12] in such code search models (Table 20).

Figure 56. The save chart as JPEG example (JFreeChart Library)

In summary, the given examples highlight three major features for a clone search-based

solution: (1) spotting working code example for API usage and algorithmic problems, (2) the

ability to provide some form of self-contained examples, and (3) less dependency on term

matching. Furthermore, our proposed illustrative solution requires only the code block content
12

.

These features illustrate the potential of clone search for code search applications in the context

of pragmatic reuse. These potentials can be exploited to either eliminate the limitations of earlier

approaches, or for further improvements.

12

 Comments, Javadoc and the method signatures are excluded

127

10.6. Summary

In this chapter we have described how clone search models can be applied to improve Internet-

scale code search for pragmatic reuse. The purpose of this chapter was not to provide a concrete

solution limited to a specific research problem. Rather, we tried to show how clone search models

can contribute to the actual code search problem at large by providing a sample solution. Such a

clone search-based approach is in contrast to the earlier solutions (Chapter 2), which were based

on ad-hoc code fingerprinting, pattern mining, and popularity-oriented solutions. Finally, our

approach differs from the existing solution, since it is capable of taking into consideration formal

code similarity definitions (e.g., Type1, 2, and 3) not only during the search space creation

(detection of popular abstract solutions), but also during the final search and ranking steps

(matching popular abstract solutions with working code examples).

128

11. Discussion

This dissertation has proposed a clone search model that can be adapted for applications that

require a source code similarity search. The proposed model supports scalability, fast response

time, ranking, and Type-1, 2, and 3 detection. This chapter provides a discussion on potential

threats that must be taken into consideration. The chapter concludes with a list of immediate

future work.

11.1. Threats to validity

11.1.1. Data characteristics study

Our data characteristics studies covered different aspects of the data in our research domain such

as corpus growth rate, data outliers, and the strength of the hash function. However, the

observations depend on three major factors: (1) the input, (2) the granularity of the study, (3) the

selected encoded code patterns, and (4) the underlying hash function. Although we tried to

consider a representative dataset for our studies, all conclusions drawn from our case studies

remain highly dependent on our input data (dataset). For example, using a dataset from industrial

or closed code systems, the conclusions will most likely differ, since the quality of the code might

differ. Furthermore, our studies are limited to Java source code and Java bytecode. Additionally,

the results are limited to line-level clone detection, and therefore our results and conclusions

cannot be generalized to other granularities such as token-level clone detection. Finally, we have

selected an encoded code pattern (Table 3 function m) that will result in high recall. Achieving

high recall helped us to study the worst-case scenarios for our retrieval and ranking steps, as it

resulted in a large number of candidates to be ranked when pattern similarity holds. Therefore,

results will differ if different encoded code patterns are selected.

129

11.1.2. Performance evaluation study

Considering our evaluation approach, the quality of our benchmark plays an important role, since

it has a direct impact on the outcome of the performance evaluation. Therefore, the following

issues must be taken into consideration: (1) since no other benchmark that is applicable for the

evaluation of clone search results and ranking performance exists, we created our own benchmark

using a mutation framework to generate an oracle of known clones. A key challenge, as with any

other benchmark, is how closely this benchmark reflects actual data. We address some of these

threats by creating a dataset that we believe is representative enough in size (containing 25,000

different open source projects and approximately 356 MLOC). Furthermore, the mutation

framework output (additional clones as our oracle) is injected to our corpus to ensure that a

minimum number of clone instances are available for each query, to facilitate recall calculation.

Moreover, for manually assigning the relevance scores, our tagging is biased towards Internet-

scale code search and pragmatic reuse. Some of the results (e.g., Type-3 clones), which we

considered as non-relevant for clone search, might be considered relevant in other application

contexts, such as clone detection for software maintenance. In an attempt to reduce the

subjectivity during the manual scoring process, we tried to keep the scoring process as transparent

and objective as possible, by following a concrete pre-defined scoring guideline (Table 14) for

the different clone types.

Implementation. We have implemented our clone search models and all of its processing

components in Java. While we performed testing of our implementation, we did not consider a

formal validation of our design nor of the implementation (including the programming

heuristics). Moreover, we used implementation level heuristics in some cases to achieve

scalability.

130

11.2. Limitations

11.2.1. The clone search model

Our study focuses on a clone search model for Java source code and bytecode. However, support

for other programming languages (in particular OO languages) requires a substitution of the

language parser in most cases. While our model can be applied to the other programming

languages such as C, its performance might become completely different and unpredictable, since

our encoded code pattern generation rules have been designed for Java after an experimental

analysis (Appendix 1) on code search query logs.

11.2.2. Application for pragmatic reuse

In principal, adapting our clone search model for the pragmatic reuse problem might result in two

major limitations. (1) In cases where there is a lack of reuse samples in the input corpus, the

approach will fail to find a working code example. This is a general issue related to such

approaches, and is discussed in more detail, with examples, in [MAN05]. Specifically, if one

attempts to apply pragmatic reuse to new programming libraries or new programming paradigms,

there is no guarantee that sufficient examples will be captured in the corpus. (2) Although the

performance of our clone search-based approach is promising in finding the working code

examples, by no means does it replace human judgment when it comes to the negative issues

associated with pragmatic reuse [HOI08].

11.3. Future work

We believe that the outcome of this dissertation provides the first step towards the adaptation of

the clone search models for source code similarity search problems. The following summarizes

some of the problems that should be addressed as part of future work:

131

 Studying the data characteristics (e.g., outliers) for the other dataset types (e.g., industrial

systems) and languages

 Studying the applicability of our clone search model as a core similarity function for

classification algorithms in data mining (e.g., for clone classification)

 Finding a solution for soft breakdown of the ranked result set, instead of top K approach

with fixed k values. This feature is interesting, as the number of actual relevant items

varies considerably for each query in the clone search versus in text retrieval.

 Applying our bytecode clone search models for concrete applications, such as finding

duplicated bytecode fragments within source code search engine indices (e.g., [BAJ12]).

 Applying our source code search models for specific search problems related to

pragmatic reuse. We provided hints to show the potentials of clone search models for

emerging code search problems by elaborating on the problem of spotting working code

examples. The proposed ideas can be adapted for specific code search problems such as

recommendation, completion, and synthesis.

132

12. Conclusion

Historically, clone detection as a research discipline has focused on devising source code

similarity functions that will cancel out negative code reuse effects in software maintenance.

However, it has been observed (Chapter 2) that identifying duplications and similar programming

patterns can be exploited for pragmatic reuse. Identifying such patterns requires a source code

similarity model for detection of Type-1, 2, and 3 clones. Due to the lack of such a model, ad-hoc

pattern detection models have been devised as part of the state of the art solutions in order to

support pragmatic reuse via code search.

In this dissertation, we presented a clone search model that satisfies the fundamental

enumerated requirements. First, we studied the performance of the proposed model for both

source code and bytecode content. Second, we demonstrated how such a clone search model

could replace the ad-hoc similarity models of the code search. Our research presents a clone

search model that not only supports scalability, short response times, and Type-1, 2 and 3

detection, but also emphasizes ranking as a key functionality. The ranking of result sets is used to

place highly similar fragments (hits) higher than other hits within the result set. It takes advantage

of a multi-level indexing (non-positional) approach to achieve a scalable and fast retrieval with

high recall. Result sets are ranked using two information retrieval ranking approaches: Jaccard

similarity coefficient and cosine similarity via the vector space model, which we combine with

code patterns’ (not token) local and global frequencies modeled by various combinations. Users

can customize the search schemata based on their specific application requirements.

For the evaluation, we created a large corpus (356M LOC) which, in combination with 50

sample queries and a total of 650 seeded Type-1, 2, and 3 clones, form our benchmark dataset for

the analysis of our approach. The creation of this benchmark includes an extensive manual

133

tagging of relevance scores covering more than 117,000 hits, which were used to evaluate the

clone search model retrieval and ranking quality. We selected 6 measures to study different

quality aspects and to evaluate and identify schemata (configurations) that are consistently

outperforming the other schemata. Overall, our studies showed not only that SeClone is scalable

to very large datasets, but also that certain schemata, such as and

can produce high quality results in near real-time.

12.1. Research approach and contributions

As part of our preliminary research [KLL10], we noticed that resolving ambiguity of the source

code is not sufficient for structural code search (in the pragmatic reuse context), since

duplications (i.e., clones) reduce the result set quality. Furthermore, using our shuffling

framework [KLT12][SAV13], we have observed that inter-project cloning is common in Java and

the open source community at large. Finally, in [KLX12] we discussed that while code

duplication often results in negative effects on the code search performance quality, the

duplications can also be controlled and exploited in other ways for result set improvement. This

background study provided major motivation to propose a clone search model with certain

features to be used for such applications where a function for source code similarity measurement

and detection is required. The major contributions of this dissertation
13

 are as follows:

 Proposing a novel clone search model [KLX11][KLZ11]

 Extending the clone search model for bytecode content [KLQ12][KLE13][KLP12]

 Providing a schematic approach to show how a clone search model can be employed

for supporting pragmatic reuse via code search

13

 The content of this thesis is based on our cited publications

134

13. References

[ABR79] P. S. Abrams and J. W. Myrna, “Automatic control of execution: An overview,”

International Conference on APL (APL '79), 9(4): 141-147, 1979.

[ALO12] F. Al-Omari, I. Keivanloo, C. K. Roy, and J. Rilling, “Detecting clones across Microsoft.

NET programming languages,” Working Conference on Reverse Engineering (WCRE), 405-414,

2012.

 [BAK92] B. S. Baker, “A program for identifying duplicated code,” Computing Science and

Statistics, 24:49-57, 1992.

[BAK98] B. S. Baker and U. Manber, “Deducing similarities in Java sources from bytecodes,”

USENIX Annual Technical Conference (ATEC '98), 1998.

[BAJ12] S. Bajracharya, J. Ossher, and C. Lopes, “Sourcerer: An infrastructure for the large-scale

collection and analysis of open-source code,” Science of Computer Programming, 2012.

[BAR10] L. Barbour, H. Yuan, and Y. Zou, “A technique for just-in-time clone detection in large

scale systems,” International Conference on Program Comprehension (ICPC), 76-79, 2010.

[BAX98] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier, “Clone detection using

abstract syntax trees,”, International Conference on Software Maintenance, 368-377, 1998.

[BEL07] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, “Comparison and

evaluation of clone detection tools,” IEEE Transactions on Software Engineering, 33(9): 577-591,

2007.

[BRU06] M. Bruch, T. Schäfer, and M. Mezini, “FrUiT: IDE support for framework

understanding,” OOPSLA Workshop on Eclipse Technology eXchange (Eclipse '06), 55-59, 2006.

[BAZ11] S. Bazrafshan, R. Koschke, and N. Gode, “Approximate code search in program

histories,” Working Conference on Reverse Engineering (WCRE), 109-118, 2011.

[BAS13] H. Bast and M. Celikik, “Efficient fuzzy search in large text collections,” ACM

Transactions on Information Systems, 31(2), 59 pages, 2013.

135

[BOR05] C. Borgelt, “An implementation of the FP-growth algorithm,” International Workshop on

Open Source Data Mining: Frequent Pattern Mining Implementations (OSDM '05), 1-5, 2005.

[BOR12] C. Borgelt, “Frequent item set mining,” Wiley Interdisciplinary Reviews: Data Mining

and Knowledge Discovery, 2(6):437-456, 2012.

[BRA10] J. Brandt, M. Dontcheva, M. Weskamp, S. R. Klemmer, “Example-centric programming:

integrating web search into the development environment,” SIGCHI Conference on Human Factors in

Computing Systems, 513-522, 2010.

[BRI98] S. Brin, L. Page, “The anatomy of a large-scale hypertextual Web search engine,”

Computer Networks and ISDN Systems, 30(1):107-117, 1998.

[BRU09] M. Bruch, M. Monperrus, and M. Mezini, “Learning from examples to improve code

completion systems,” Joint Meeting of the European Software Engineering Conference and the ACM

SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE '09), 213-222, 2009.

[BBO99] B. Boehm, “Managing software productivity and reuse,” Journal Computer, 32(9):111-

113, 1999.

[BUS12] R. P. Buse and W. Weimer, “Synthesizing API usage examples,” International

Conference on Software Engineering (ICSE), 782-792, 2012.

[BUT00] G. Butler, R. K. Keller, and H. Mili, “A framework for framework documentation,”

ACM Computing Surveys (CSUR), 32(1), 2000.

[CAR93] S. Carter, R. J. Frank, and D. S. W. Tansley, “Clone detection in telecommunications

software systems: A neural net approach,” International Workshop on Applications of Neural

Networks to Telecommunications, 273-287, 1993.

 [CAU86] P. J. Caudill and A. Wirfs-Brock, “A third generation Smalltalk-80 implementation,”

Conference on Object-oriented Programming Systems, Languages and Applications(OOPLSA '86),

21(11): 119-130, 1986.

[CHA11] S. Chaki, C. Cohen, and A. Gurfinkel, “Supervised learning for provenance-similarity of

binaries,” Proceedings of the 17th ACM SIGKDD, 15–23, 2011.

[DAV10] I. J. Davis and M. W. Godfrey, “From whence it came: Detecting source code clones by

analyzing assembler,” Working Conference on Reverse Engineering (WCRE), 242-246, 2010.

136

[DEW09] M. De Wit, A. Zaidman, and A. Van Deursen, “Managing code clones using dynamic

change tracking and resolution,” International Conference on Software Maintenance, 169-178, 2009.

[DEE05] S. Deelstra, M. Sinnema, and J. Bosch, “Product derivation in software product families:

a case study,” Journal of Systems and Software, 74(2):173-194, 2005.

 [FRA05] W. B. Frakes and K. Kang, “Software reuse research: status and future,” IEEE

Transactions on Software Engineering, 31(7): 529 -536, 2005.

 [GAL09] R. E. Gallardo-Valencia and S. Elliott Sim, “Internet-scale code search,” ICSE Workshop

on Search-Driven Development-Users, Infrastructure, Tools and Evaluation (SUITE '09), 49-52, 2009.

[GRI81] S. Grier, “A tool that detects plagiarism in Pascal programs,” SIGCSE Technical

Symposium on Computer Science Education (SIGCSE ‘81), 13(1):15-20, 1981.

[GLP13] S. Gulwani, Program Synthesis website, http://research.microsoft.com/en-

us/um/people/sumitg/pubs/synthesis.html, visited Jan. 2013.

[GUH10] R. Guha, R. McCool, and E. Miller, “Semantic search,” International Conference on

World Wide Web, 700-709, 2003.

[HEM11] A. Hemel, K. T. Kalleberg, R. Vermaas, and E. Dolstra, “Finding software license

violations through binary code clone detection,” Working Conference on Mining Software

Repositories, 63-72, 2011.

[HIL04] R. Hill and J. Rideout, “Automatic method completion,” International Conference on

Automated Software Engineering (ASE), 228-235, 2004.

[HOU10] D. Hou and D. M. Pletcher, “Towards a better code completion system by API grouping,

filtering, and popularity-based ranking,” International Workshop on Recommendation Systems for

Software Engineering (RSSE ‘10), 26-30, 2010.

[HOI08] R. Holmes, “Pragmatic software reuse,” Doctoral Dissertation, University of Calgary,

2008.

[HOL05] R. Holmes, R. J. Walker, and G. C. Murphy, “Strathcona example recommendation tool,”

European Software Engineering Conference held jointly with 13th ACM SIGSOFT International

Symposium on Foundations of Software Engineering (ESEC/FSE-13), 237-240, 2005.

137

[HOL09] R. Holmes, R. Cottrell, R. J. Walker, and J. Denzinger, “The end-to-end use of source

code examples: An exploratory study,” International Conference on Software Maintenance (ICSM),

555-558, 2009.

[HUM10] B. Hummel, E. Juergens, L. Heinemann, and M. Conradt, “Index-based code clone

detection: incremental, distributed, scalable,” International Conference on Software Maintenance

(ICSM), 1-9, 2010.

[HUN77] J. W. Hunt and T. G. Szymanski, “A fast algorithm for computing longest common

subsequences,” Communications of the ACM, 20(5), 350-353, 1977.

[JAC84] J. Jacobsen, “An automated management system for applications software,” ACM

SIGUCCS Conference on User services (SIGUCCS '84), 173-175, 1984.

[JAC01] P. Jaccard, “Étude comparative de la distribution florale dans une portion des Alpes et des

Jura,” Bulletin de la Societe Vaudoise des Sciences Naturelles, 37:547-579, 1901.

 [JIA07] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard: Scalable and accurate tree-based

detection of code clones,” International Conference on Software Engineering (ICSE '07), 96-105,

2007.

[JON92] R. E. Johnson, “Documenting frameworks using patterns,” Conference on Object-

oriented Programming Systems, Languages, and Applications (OOPSLA '92), 63-76, 1992.

[JUR11] V. Juričić, “Detecting source code similarity using low-level languages,” International

Conference on Information Technology Interfaces (ITI), 597-602, 2011.

[KAP06] C. Kapser and M. W. Godfrey, “”Cloning considered harmful” considered harmful,”

Working Conference on Reverse Engineering (WCRE), 19-28, 2006.

[KAM02] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: a multilinguistic token-based code

clone detection system for large scale source code,” IEEE Transactions on Software Engineering,

28(7): 654-670, 2002.

[KAW09] S. Kawaguchi, T. Yamashina, H. Uwano, K. Fushida, Y. Kamei, M. Nagura, and H. Iida,

“SHINOBI: A tool for automatic code clone detection in the IDE,” Working Conference on Reverse

Engineering (WCRE), 313-314, 2009.

138

[KEL83] M. I. Kellner, “Ten years of software maintenance: progress or promises?,” Conference

on Software Maintenance (ICSM), 406-408 ,1993.

[KIM10] J. Kim, S. Lee, S. W. Hwang, and S. Kim, “Towards an intelligent code search engine,”

AAAI Conference on Artificial Intelligence, 1358- 1363, 2010.

[KLX11] I. Keivanloo, J. Rilling, and P. Charland, “Internet-scale real-time code clone search via

multi-level indexing,” Working Conference on Reverse Engineering (WCRE), 23-27, 2011.

[KLZ11] I. Keivanloo, J. Rilling, and P. Charland, “SeClone-a hybrid approach to internet-scale

real-time code clone search,” International Conference on Program Comprehension (ICPC), 223-224,

2011.

[KLX12] I. Keivanloo, “Leveraging clone detection for Internet-scale source code search,”

International Conference on Program Comprehension (ICPC), 277-280, 2012.

[KLZ12] I. Keivanloo, C. Forbes, and J. Rilling, “Similarity search plug-in: Clone detection meets

internet-scale code search,” 4th ICSE Workshop on Search-Driven Development: Users, Infrastructure,

Tools and Evaluation (SUITE), 21-22, 2012.

[KLL10] I. Keivanloo, L. Roostapour, P. Schügerl, and J. Rilling, “SE-CodeSearch: A scalable

Semantic Web-based source code search infrastructure,” International Conference on Software

Maintenance (ICSM), 1-5, 2010.

[KLT12] I. Keivanloo, C. K. Roy, J. Rilling, and P. Charland, “Shuffling and randomization for

scalable source code clone detection,” International Workshop on Software Clones (IWSC), 82-83,

2012.

[KLQ12] I. Keivanloo, C. K. Roy, and J. Rilling, “Java bytecode clone detection via relaxation on

code fingerprint and Semantic Web reasoning,” International Workshop on Software Clones (IWSC),

36-42, 2012.

[KLF12] I. Keivanloo, C. Forbes, A. Hmood, M. Erfani, C. Neal, G. Peristerakis, and J. Rilling, “A

Linked Data platform for mining software repositories,” Working Conference of Mining Software

Repositories (MSR), 32-35, 2012.

[KLE13] I. Keivanloo, C. K. Roy, and J. Rilling, “SeByte: A scalable clone search model for

bytecode,” Journal Science of Computer Programming, submitted (second revision), 2013.

139

[KLP12] I. Keivanloo, C. K. Roy, and J. Rilling, “SeByte: A semantic clone detection tool for

intermediate languages,” International Conference on Program Comprehension (ICPC), 247-249, 2012.

[KON97] K. Kontogiannis, “Evaluation experiments on the detection of programming patterns

using software metrics,” Working Conference on Reverse Engineering, 44-54, 1997.

[KOS12] R. Koschke, “Large-scale inter-system clone detection using suffix trees,” European

Conference on Software Maintenance and Reengineering (CSMR), 309-318, 2012.

[KRA08] N. Kraft, B. Bonds, and R. Smith, “Cross-language clone detection,” International

Conference on Software Engineering and Knowledge Engineering (SEKE), 2008.

[KRU92] C. W. Krueger, “Software reuse,” ACM Journal Computing Surveys (CSUR) 24(2): 131-

183, 1992.

[KZH10] H. D. Kim, C. Zhai, and J. Han, “Aggregation of multiple judgments for evaluating

ordered lists,” European Conference on Advances in Information Retrieval (ECIR), 5993:166-178,

2010.

[KNU77] D. E. Knuth, J. H. Morris, and V. R. Pratt, “Fast pattern matching in strings,” SIAM

Journal on Computing, 6(2): 323-350, 1977.

[KOS08] R. Koschke, “Frontiers of software clone management,” Frontiers of Software

Maintenance (FoSM), 119-128, 2008.

[LAP06] M. Lapata “Automatic evaluation of information ordering: Kendall's tau,” Journal

Computational Linguistics, 32(4):471-484, 2006.

[LAV11] T. Lavoie and E. Merlo, “Automated type-3 clone oracle using Levenshtein metric,”

International Workshop on Software Clones (IWSC), 34-40, 2011.

[LAV12] T. Lavoie and E. Merlo, “An accurate estimation of the Levenshtein distance using metric

trees and Manhattan distance,” International Workshop on Software Clones (IWSC), 1-7, 2012.

 [LEM11] M. W. Lee, S. W., Hwang, and S. Kim, “Integrating code search into the development

session,” International Conference on Data Engineering (ICDE), 1336-1339, 2011.

[LER10] M. W. Lee, J. W. Roh, S. W. Hwang, and S. Kim, “Instant code clone search,” ACM

SIGSOFT International Symposium on Foundations of Software Engineering (FSE’10), 167-176,

2010.

140

[LOM83] J. V. Lombardi, “Computer literacy: The basic concepts and language,” Indiana

University Press, 1983.

[LIN84] M. A. Linton, ”Implementing relational views of programs,” ACM SIGSOFT/SIGPLAN

Software Engineering Symposium on Practical Software Development Environments (SDE),

19(5):132-140, 1984.

[LIZ05] Z. Li and Y. Zhou, “PR-Miner: automatically extracting implicit programming rules and

detecting violations in large software code,” European Software Engineering Conference held jointly

with ACM SIGSOFT International Symposium on Foundations of Software Engineering (ESEC/FSE),

30(5):306-315, 2005.

[MAN05] D. Mandelin, L. Xu, R. Bodík, and D. Kimelman, “Jungloid mining: helping to navigate

the API jungle,” ACM SIGPLAN Conference on Programming Language Design and Implementation

(PLDI ‘05), 40(6):48-61, 2005.

[MAN08] C. D. Manning, P. Raghavan, and H. Schütze, “Introduction to information retrieval,”

Cambridge University Press. 2008.

[MAR01] A. Marcus and J. I. Maletic, “Identification of high-level concept clones in source code,”

International Conference on Automated Software Engineering (ASE), 107-114, 2001.

[MAR09] M. R. Marri, S. Thummalapenta, and T. Xie, “Improving software quality via code

searching and mining,” ICSE Workshop on Search-Driven Development-Users, Infrastructure, Tools

and Evaluation (SUITE '09), 33-36, 2009.

[MAY96] J. Mayrand, C. Leblanc, and E. M. Merlo, “Experiment on the automatic detection of

function clones in a software system using metrics,” International Conference on Software

Maintenance, 244-253, 1996.

[MCM12] C. McMillan, M. Grechanik, and D. Poshyvanyk, “Detecting similar software

applications,” International Conference on Software Engineering (ICSE), 364-374, 2012.

[MEN13] A. Menon, O. Tamuz, S. Gulwani, B. Lampson, and A. Kalai, “A machine learning

framework for programming by example,” International Conference on Machine Learning (ICML),

2013.

141

[MIC99] A. Michail, “Data mining library reuse patterns in user-selected applications,”

International Conference on Automated Software Engineering, 24-33, 1999.

[MIC00] A. Michail, “Data mining library reuse patterns using generalized association rules,”

International Conference on Software Engineering (ICSE), 167-176, 2000.

[MIS04] G. Mishne and M. De Rijke, “Source code retrieval using conceptual similarity,”

Conference on Computer Assisted Information Retrieval (RIAO), 539-554, 2004.

[MIS12] A. Mishne, S. Shoham, and E. Yahav, “Typestate-based semantic code search over partial

programs,” International Conference on Object-oriented Programming Systems, Languages and

Applications (OOPSLA), 997-1016, 2012.

[NAS12] S. M. Nasehi, J. Sillito, F. Maurer, and C. Burns, “What makes a good code example?: A

study of programming Q&A in StackOverflow,” International Conference on Software Maintenance

(ICSM), 25-34, 2012.

[NYK02] J. Nykaza, R. Messinger, F. Boehme, C. L. Norman, M. Mace, and M. Gordon, “What

programmers really want: results of a needs assessment for SDK documentation,” International

Conference on Computer Documentation (SIGDOC), 133-141, 2002.

[OTT76] K. J. Ottenstein, “An algorithmic approach to the detection and prevention of

plagiarism,” ACM SIGCSE Bulletin, 8(4): 30-41, 1976.

[PAU94] S. Paul and A. Prakash, “A framework for source code search using program patterns,”

IEEE Transactions on Software Engineering, 20(6): 463-475, 1994.

[PER12] D. Perelman, S. Gulwani, T. Ball, and D. Grossman, “Type-directed completion of partial

expressions,” ACM SIGPLAN Conference on Programming Language Design and Implementation

(PLDI’12), 275-286, 2012.

[POS07] D. Poshyvanyk and A. Marcus, “Combining formal concept analysis with information

retrieval for concept location in source code,” International Conference on Program Comprehension

(ICPC’07), 37-48, 2007.

[PER88] J. M. Perry, “Perspective on Software Reuse,” Technical Report, No. CMU/SEI-88-TR-

22, Carnegie-Mellon Univ. Pittsburgh PA Software Engineering Inst., 1988.

142

[QUI67] M. R. Quillan, “Word concepts: A theory and simulation of some basic capabilities,”

Behavioral Science, 12(5): 410-430, 1967.

[ROB08] R. Robbes and M. Lanza, “How program history can improve code completion,”

International Conference on Automated Software Engineering (ASE), 317-326, 2008.

[ROB11] M. P. Robillard, “What makes APIs hard to learn? answers from developers,” IEEE

Software, 26(6): 27-34, 2009.

[ROY09] C. K. Roy and J. R. Cordy, “A mutation/injection-based automatic framework for

evaluating code clone detection tools,” International Conference on Software Testing, Verification and

Validation Workshops (ICSTW'09), 157-166, 2009.

[ROS09] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation of code clone

detection techniques and tools: A qualitative approach,” Science of Computer Programming, 74(7):

470-495, 2009.

[ROS08] C. K. Roy and J. R. Cordy, “NICAD: Accurate detection of near-miss intentional clones

using flexible pretty-printing and code normalization,” International Conference on Program

Comprehension, 172-181, 2008.

[ROS96] M. B. Rosson and J. M. Carroll, ”The reuse of uses in Smalltalk programming,” ACM

Transactions on Computer-Human Interaction (TOCHI), 3(3): 219-253, 1996.

[ROT03] M. A. Rothenberger, K. J. Dooley, U. R. Kulkarni, and N. Nada, “Strategies for software

reuse: A principal component,” IEEE Transactions on Software Engineering, 29(9):825-837, 2003.

[RJC08] C. K. Roy and J. R. Cordy, “Towards a mutation-based automatic framework for

evaluating code clone detection tools,” Canadian Conference on Computer Science and Software

Engineering (C3S2E), 137-140, 2008.

[SAB09] A. Sæbjørnsen, J. Willcock, T. Panas, D. Quinlan, and Z. Su, “Detecting code clones in

binary executables,” International Symposium on Software Testing and Analysis (ISSTA’09), 117-

127, 2009.

[SAN11] A. Santone, “Clone detection through process algebras and Java bytecode,” International

Workshop on Software Clones (IWSC), 73-74, 2011.

143

[SAN94] S. Paul, and A. Prakash, “A framework for source code search using program patterns,”

IEEE Transactions on Software Engineering, 20(6): 463-475, 1994.

[SEL10] G. M. Selim, K. C. Foo, and Y. Zou, “Enhancing source-based clone detection using

intermediate representation,” Working Conference on Reverse Engineering (WCRE), 227-236, 2010.

[SCH12] N. Schwarz, “Hot clones: a shotgun marriage of search-driven development and clone

management,” Conference on Software Maintenance and Reengineering (CSMR), 513-515, 2012.

[SIN98] J. Singer, “Practices of software maintenance,” International Conference on Software

Maintenance, 139-145, 1998.

[SMI09] R. Smith and S. Horwitz, “Detecting and measuring similarity in code clones,”

International Workshop on Software Clones (IWSC), 2009.

[SOO12] Soot Framework, http://www.sable.mcgill.ca/soot/, (Dec 2012).

[SVK13] J. Svajlenko, I. Keivanloo, and C. K. Roy, “Scaling classical clone detection tools for

ultra-large datasets: An exploratory study,” International Workshop on Software Clones (IWSC), 2013.

[SVJ13] J. Svajlenko, C. Roy, and J. Cordy, “A mutation analysis based benchmarking framework

for clone detectors,” International Workshop on Software Clones (IWSC), 8-9, 2013.

[TAI09] R. Tairas and J. Gray, “An information retrieval process to aid in the analysis of code

clones,” Empirical Software Engineering, 14(1):33-56, 2009.

[TAN87] A. S. Tanenbaum, “A UNIX clone with source code for operating systems courses,”

ACM SIGOPS Operating Systems Review, 21(1):20-29, 1987.

[THU07] S.Thummalapenta and T. Xie, “Parseweb: A programmer assistant for reusing open

source code on the web,” International Conference on Automated Software Engineering (ASE), 2007.

[UCI10] C. Lopes, S. Bajracharya, J. Ossher, and P. Baldi, “UCI source code data sets,”

http://www.ics.uci.edu/~lopes/datasets, 2010.

[UDD11] Md. S. Uddin, C. K. Roy, K. A. Schneider, and A. Hindle, “On the effectiveness of

simhash for detecting near-miss clones in large scale software systems,” Working Conference on

Reverse Engineering (WCRE), 13-22, 2011.

144

[UDD13] Md. S. Uddin, C. K. Roy, and K. Schneider, “SimCad : An extensible and faster clone

detection tool for large scale software systems,” International Conference on Program Comprehension

(ICPC), 236-238, 2013.

[WAH04] V. Wahler, D. Seipel, J. Wolff, and G. Fischer, “Clone detection in source code by

frequent itemset techniques,” International Workshop on Source Code Analysis and Manipulation

(SCAM), 128-135, 2014.

[WAN13] J. Wang, D. Yingnong, Z. Hongyu, C. Kai, X. Tao, and Z. Dongmei, “Mining succinct

and high-coverage API usage patterns from source code,” Working Conference on Mining Software

Repositories (MSR), 2013.

[WES12] Wessa, Kendall tau Rank Correlation (v1.0.11) in Free Statistics Software (v1.1.23-r7),

Office for Research Development and Education, URL http://www.wessa.net/rwasp_kendall.wasp/,

visited 2012.

[WEH03] H. J. Webber, “New horticultural and agricultural terms,” Science, 18(459): 501-503,

1903.

[ZIB12] M. F. Zibran and C. K. Roy, “IDE-based real-time focused search for near-miss clones,”

ACM Symposium on Applied Computing (SAC’12), 1235-1242, 2012.

[ZHO09] H. Zhong, T., Xie, L., Zhang, J., Pei, and H. Mei, “MAPO: Mining and recommending

API usage patterns,” European Conference on Object-Oriented Programming (ECOOP), 318-343,

2009.

145

14. Appendix

14.1. Transformation function design issues

Several token types exist in source code such as method names, class names, primitive types,

language keywords, variables, and constants. In general, apart from language keywords, which

are consistent through the code, the token names can refer to different concepts. Additionally,

despite having different names, the semantic of tokens can be similar (from algorithmic point of

view). We refer to this case as tokens’ semantic stability issue. Figure 57 provides an example

where two code fragments are clones with high confidence even though they use different

variable names (i.e., att and var).

…

5: String msg=”exit 0";

6: for(AttributeEntity att : t.getAttributes())

7: {

…

…

5: String msg=”exit 0";

6: for(AttributeEntity att : t.getAttributes())

7: {

…

…

5: String msg=”exit 0";

6: for(AttributeEntity var : t.getAttributes())

7: {

…

…

5: String msg=”exit 0";

6: for(AttributeEntity var : t.getAttributes())

7: {

…

Figure 57. Two code cloned code fragments that are using different variable names

It is a well-known practice (e.g., [KAM02]) in clone detection tools to replace such tokens

with placeholders to reduce such syntactic and semantic dissimilarities. This practice is useful

when the clone detection approach is not able to judge the semantics of the token based on its

name and other available information (e.g., AST).

In our research, we proposed various transformation functions in order to be able to address

different types of similarity. For example, the function (Table 3) only preserves method names

and class names. replaces almost all other tokens with # (the placeholder). We defined 5

transformation functions (Table 3) covering different scenarios and requirements. However, all of

them preserve the method name tokens.

146

For our approach, we decided to preserve method names, as we observed that method names

have stable semantics in our research context (i.e., code search). Our observation is based on an

analysis of a one-year query log of Koders [UCI10] (one of the state of the art code search

engines). When analyzing the query log, we focused on 18 programming languages with method

construct as part of their language. This log contains a total of approximately 10 million records

that we analyzed. As part of that analysis, we observed that for Internet-scale code search, method

names play an essential role. Our analysis showed that if a method name was present as part of the

query, code download occurred 98% of the time (Figure 58 – MCQ values), whereas the overall

download rate is 69% (Figure 58 – All values). Note that in Web search activity mining,

downloads/clicks on search results are interpreted as the result of a successful search. This

observation shows the importance of method names to the code search success rate, which can be

used as an indicator for method tokens’ semantics stability from end-users’ point of view. That is,

contrary to the other token types, the need for ignoring method names in order to achieve higher

recall is low. Therefore, all encoded code patterns generated by our transformation functions

preserve the method names, which also provides the added benefit of reducing the number of false

positive rates during the matching.

Figure 58. Importance of method names to the code search success rate – an indicator for

method tokens’ semantics stability from end-users’ point of view.

0

0.2

0.4

0.6

0.8

1
All

C#

*(NotSpecified)

java

actionscript

asp

assembler

c

cpp

delphi
javascript

jsp

matlab

perl

php

python

ruby

sql

vb

vb.net

All

MCQ

