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Abstract 

Source Code Similarity and Clone Search 

Iman Keivanloo, Ph.D. 

Concordia University, 2013 

Historically, clone detection as a research discipline has focused on devising source code 

similarity measurement and search solutions to cancel out effects of code reuse in software 

maintenance. However, it has also been observed that identifying duplications and similar 

programming patterns can be exploited for pragmatic reuse. Identifying such patterns requires a 

source code similarity model for detection of Type-1, 2, and 3 clones. Due to the lack of such a 

model, ad-hoc pattern detection models have been devised as part of state of the art solutions that 

support pragmatic reuse via code search.  

In this dissertation, we propose a clone search model which is based on the clone detection 

principles and satisfies the fundamental requirements for supporting pragmatic reuse. Our 

research presents a clone search model that not only supports scalability, short response times, 

and Type-1, 2 and 3 detection, but also emphasizes the need for supporting ranking as a key 

functionality. Our model takes advantage of a multi-level (non-positional) indexing approach to 

achieve a scalable and fast retrieval with high recall. Result sets are ranked using two ranking 

approaches: Jaccard similarity coefficient and the cosine similarity (vector space model) which 

exploits the code patterns’ local and global frequencies. We also extend the model by adapting a 

form of semantic search to cover bytecode code. Finally, we demonstrate how the proposed clone 

search model can be applied for spotting working code examples in the context of pragmatic 

reuse. Further evidence of the applicability of the clone search model is provided through 

performance evaluation. 
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1. Introduction 

The term clone (Greek word klōn) was first used by Herbert J. Webber [WEH03] in 1903, 

referring to the outcome of a derivation activity in the context of living species. In computer 

science, such autonomous reproduction is limited, but derivation is unavoidable and it is known 

as cloning. Derivation during software development usually occurs as the result of reuse 

[PER88][DEE05]. Based on the problem and its granularity, various forms of reuse are 

introduced [KRU92] [ROT03], including pragmatic reuse [HOI08] (i.e., copy and change). While 

the concept of reuse is often promoted as a solution for cost reduction and quality improvement 

[BBO99] [FRA05], there are some forms of reuse that are usually related to discouraged ethical 

issues (e.g., copy without permission, plagiarism). Common to all of these forms is deriving and 

introducing new instances (i.e., clones), which share similar concepts and origins with slight 

modifications (e.g., tailoring). 

The ease of reuse and the potential harms caused by cloning in software development became 

a major motivation for computer scientists to explore the possibility of identifying code 

duplications (i.e., source code clones). Consequently, a new research discipline - clone detection - 

[ROS09][BAK92][BEL07] has emerged in computer science, which focuses on devising novel 

algorithms and heuristics for finding, tracing, and managing [KOS08] clones. 

Although the input data for this type of similarity search is source code, which is structured 

and well organized, the clone detection problem remains non-trivial [ROS09], due to the different 

types of similarities that can be distinguished. At source code level, clones share two types of 

similarity: (1) pattern and (2) content similarity. The challenge lies often in determining if two 
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code fragments are actually cloned, as two cloned code fragments, e.g., “int temp=0;” and “float 

f=2;”, can hold negligible content similarity (i.e., similarity in token names). 

In 1976, Ottenstein [OTT76] explored the idea of using code metrics for plagiarism detection 

in students’ programming assignments that is later extended to software maintenance applications 

[MAY96] [BAX98] [BAK92], since duplicated code has been widely accepted as a threat to bug 

fixing and software quality [KAP06]. Consequently, other research directions have emerged, 

involving algorithms and heuristics for other types of input data such as compiled code (e.g., 

[BAK98]).  

1.1. Motivation 

Although pragmatic code reuse through cloning has often been criticized as being harmful, recent 

studies show that cloning is actually both useful [KAP06] and often unavoidable [HOI08]. 

Pragmatic reuse occurs when developers are implementing their programming tasks by locating, 

reusing, and often customizing code examples derived from available local or global code 

repositories. In general, such source code examples play a major role in programming as both 

intrinsic resources for learning [NYK02] and reuse [ROS96][JON92]. The lack of good source 

code examples is one of the major complications in learning [ROB11] and eventually coding 

during software development. Availability of code examples for reuse and learning can accelerate 

the development process and improve programmer productivity [MAN05], as well as contribute 

towards an improvement of product quality [MAR09]. Since it is not a common practice to 

collect and document code examples [HOL05][SIN98][WAN13], previously written projects 

[WAN13] and code repositories (e.g., sourceforge.net) have become invaluable resources for 

code examples. 

Due to the sheer size of the data in these repositories, locating code examples without 

adequate search functionality is a major challenge. Therefore, the community established source 
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code search as common practice to locate code examples for software development [BRA10] 

[BUS12] when attempting to find relevant code fragments. Specifically, when the search space is 

extended to cover other resources hosted on the Internet. Such Internet-scale code search is 

defined as the process of searching over source code available on the Internet to find pieces of 

working code fragments [GAL09]. 

Support for developers in finding code examples for reuse has been widely explored with 

diverse approaches such as structural code search (e.g., [HOL05]), synthesizing and mining (e.g., 

[MAN05]), or even Questioning & Answering [NAS12]. Unfortunately, the available search 

approaches suffer from different challenges. Three major issues are discussed in the literature that 

are hindering the success of code search for reuse. (1) Mishne et al. [MIS12] argue that one of the 

challenges in the Internet-scale code search domain is the large number of matches (results 

returned) for each query [MIS12]. Wang et al. [WAN13] also noted that redundancy in the result 

set can become a major problem when searching for reusable code fragments. (2) As Holmes et 

al. [HOL09] point out, relevancy is often not the sufficient condition for such source code search. 

(3) Buse and Wiemer in [BUS12] discuss that spotted code fragments are usually too long and 

complicated to be considered as working code examples even after applying program slicing, a 

program reduction technique.  

In summary, it is commonly agreed upon that the usability of the ranked result set provided 

by current code search engines is limited for finding code examples to support pragmatic code 

reuse. These result sets are often of poor quality due to the high number of matches returned that 

contain repeated (exact or similar) hits or missing information.  

1.2. Potential solution – exploiting clone detection for reuse 

Recently, several similarity search approaches have been proposed to address these ongoing 

challenges related to code search result sets. Wang et al. [WAN13] proposed an approach for 
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sequence mining to detect reoccurring sequences of code fingerprints (i.e., method call tokens). 

Buse and Wiemer [BUS12] apply data mining to graph models that were created from data flow 

and method call sequences to detect duplicates sub-graph occurrences. Mishne et al. [MIS12] 

suggested using a search rather than a mining approach to detect similarities. Their approach is 

based on a similarity search model to find repeated code patterns and exploit them to improve the 

result set (e.g., popularity-based ranking). However, none of the existing code searches have used 

a clone detection model for their search approach. This is in contrast with the fact that clone 

detection research covers a vast body of similarity search models for formal source code 

similarity types (i.e., Type-1, 2 and 3). Current source code search models have relied on ad-hoc 

similarity search models since the available clone detection counterparts still lack support for 

some of the emerging requirements of search engines such as ranking, scalability, and short 

response times. In summary, although clone detection had originally been devised to cancel out 

the negative effect of reuse via cloning, its core principals can also be applied for clone search 

and further exploited to support reuse, e.g., online development session support [LEM11]. 

An example for immediate applications of clone search in this context is the result set 

expanding [KLX12]. If a clone search model that addresses the core requirements can be derived, 

it can be further exploited to improve the result of existing structural code searches (e.g., 

Sourcerer [BAJ12]). Figure 1 illustrates a traditional structural search-based approach to support 

pragmatic reuse. However, given the size of the search space, the complexity of the queries, and 

the challenges in presenting relevant result sets, existing structural code search engines are 

limited in their applicability to support pragmatic reuse. For example, to formulate the query, the 

user should know the participant elements (e.g., types and methods) in advance. To address this 

deficiency and improve the usability of the search engine and its result set, it is possible to extend 

the search strategy (Figure 2) by exploiting a similarity function close to what is available in 

clone detection [KLX12]. Using such a clone detection based approach, the preliminary result of 
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the structural search, users can now expand the result set based on pattern and content similarities 

(Figure 2 step 2). This approach allows a user to retrieve the expected answer faster by providing 

them with an option to browse through the clones. 

 

Figure 1.  Traditional structural source code query approach 

 

 

 

Suggested simplified query:
Select line which has 

(1)  a method call statement on the trigger method.  

...
11: CSVReadFile csvData=new CSVReadFile(“input.csv”);
12: myWindow.trigger(csvData);
13: OutputStream o=new OutputStream();
…

...
59: Event e=new Event(50);
60: e.trigger();
61: e.update();
...

...
133: Listener res=new Listener();
134: res.trigger(“warm-up”);
135: res.close();
...

...
55: Window r=new Window();
56: long timestamp=System.Now();
57: System.out.println(“Start reasoning...”);
58: XMLStream xmldata=new XMLStream(io);
59: r.trigger(xmldata);
60: OutputStream o=new OutputStream();
61: r.flush(o);
…

…
89: Window var=new Window();
90: XMLReadFile r=new XMLReadFile (“k.xml”);
91: OutputStream o=new OutputStream();
92: var.trigger(r);
93: var.flush(o);
…

Gapped clone

Unordered core

The pattern is 
similar but it uses 

XMLStream instead 
of XMLFile as the 

input

This is the answer 
although its order is 
different comparing 
to the ideal answer.

Internet-Scale Structural Code 
Search Engine

This line seems relevant but it uses CSV 
instead of XML so lets use the clone search 
engine to find similar fragments to this one

Real-time Clone Search Engine
...
10: Window myWindow=new Window();
11: CSVReadFile csvData=new CSVReadFile(“...
12: myWindow.trigger(csvData);
13: OutputStream o=new OutputStream();
14: myWindow.flush(o);
15: myWindow.close();
...

Step 2: Input [the selected fragment 

in the first step and its target line (red)]

Step 1: Input [the simplified structural query]

XMLReadFile inFile=new XMLReadFile(“kb.xml”);
Window myWindow=new Window();
myWindow.trigger(inFile);
OutputStream result=new OutputStream();
myWindow.flush(result);

The ideal expected answer

 

Figure 2.  Extending source code search using clone search [KLX12]  
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1.3. Summary of contributions 

Recently, clone search (e.g., [LER10]) has emerged as a new research direction that exploits the 

fundamentals of clone detection research to provide search functionality for similar code 

fragments (a.k.a. clones). In contrast with the traditional clone detection, clone search is only 

concerned with detecting similar code fragments for a given input code fragment at run-time. A 

code fragment constitutes the query input making clone search also different from regular source 

code search where the input is defined by a set of keywords or concepts. Therefore, clone search 

can be considered as a function that accepts a code fragment as its input parameter. The output of 

a clone search includes all code fragments in the search space that are similar to the input 

parameter. As a result, clone search forms the core of code similarity search. Furthermore, output 

items can be  sorted based on their similarity degree to the given input query.  

In the literature, several terms have been used to highlight the importance of response time in 

clone search such as just-in-time [BAR10], real-time [KAW09], and instant [LER10]. Several 

similarity and search models (exploiting clone detection basics) have been proposed to address 

the core requirements of clone search: scalability, short response time, and search for Type-1, 2 

and 3 clones. However, these requirements ignore the importance of ranking and the quality of 

ranked result set, which we consider both to be core requirements for clone search models to 

support source code search and pragmatic reuse. 

1.3.1. Contribution 1 - the clone search model 

In this thesis we propose a clone search model that includes a similarity function for applications 

such as pragmatic reuse (e.g., [LEM11]), where ranking, scalability, fast response time, and 

Type-1, 2, and 3 detection are essential requirements. The model is based on our early research 

attempts  [KLX11] [KLZ11] proposing a clone search approach for emerging applications such as 

pattern-based code search (e.g., [KLZ12]) and source code search result improvement (e.g., 

[KLX12]). Our studies in [KLX11] demonstrate how a multi-level indexing approach can achieve 
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scalability, short response time, and search capabilities for Type-1, 2 and 3 clones. We have 

extended this multi-level indexing approach by adapting the Jaccard similarity coefficient 

[JAC01] and cosine similarity [MAN08] to support another core requirement: the ranking of 

result sets. Our clone search models’ ranking exploits code patterns’ (not token) local and global 

frequencies for assigning different weights depending on the pattern popularity. For example, a 

domain specific pattern (e.g.,“EclipseEditor foo=new EclipseEditor()”) can be assigned higher 

weights compared to some general code patterns (e.g., “catch (Exception ex) {“). We have 

studied the applicability of the proposed similarity search model using a representative dataset of 

25,000 open source Java projects for line-level granularity. The study focuses on the performance 

of our search model addressing the core requirements for a clone search approach: scalability, fast 

response time, Type-1, 2, and 3 detection, and the ranking of the result sets. 

1.3.2. Contribution 2 - adaptation of the proposed clone search 

model for bytecode content 

We also conducted studies to provide evidence that our search model is applicable for other types 

of source code. For these studies we applied our search model on Java bytecode. We consider 

being able to search bytecode content to be an essential part of Internet-scale code search 

approach, since bytecode content constitutes a major part of the data (e.g., [BAJ12]). In order to 

achieve high recall during the Java bytecode clone search, we introduce two detection heuristics 

for Java bytecode. First, we use relaxation on code fingerprints, which only considers certain 

types of tokens for clone detection. Second, we introduce a multi-dimensional matching heuristic. 

This multi-dimension heuristic applies the clone detection algorithm independently for each type 

of token (a.k.a., dimension). These heuristics follow and replicate our multi-level indexing idea 

for bytecode content. Furthermore, we also extended our original clone search model to support 

some form of the semantic search [GUH10]. This extension is motivated by the nature of 

bytecode content, where each token (e.g., a summation token) includes additional embedded 
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information such as data types. Our evaluation with a dataset of 500,000 compiled Java classes 

showed that our search model is not only scalable but also capable of providing a reliable ranking 

of the result sets for Java bytecode content. 

1.3.3. Contribution 3 - adaptation of the proposed clone search 

mode for spotting code examples for reuse 

As the third major contribution, we illustrate how a clone search model can actually support 

pragmatic reuse. For pragmatic reuse in a software development context, a key challenge is that 

any code fragment that meets the query criteria should not be considered as a correct code 

example. In a pragmatic code reuse context, the answer must be concise, self contained, easy to 

understand, and integrate [HOL09][MIS12][WAN13][BUS12]. A code fragment meeting these 

requirements is considered a working code example. In our research we focus on the spotting 

problem of concrete working code examples using our proposed clone search model. That is, we 

study the possibility of applying clone search models instead of ad-hoc similarity search models 

for spotting working code examples. Spotting these code examples is challenging since there 

exists a tradeoff between various aspects such as popularity, conciseness, and completeness of the 

results, which have to be considered when selecting the result. We show the applications of clone 

search for different types of similarity search in state of the art approaches for spotting working 

code examples. We show that clone search is able to successfully handle the tradeoff between 

conciseness, completeness, and popularity. Our approach supports free form querying (i.e., bag of 

words with no ordering constraint). A       {                   }  is composed of 

different terms, where each term can be a data type, method name, or concept (e.g., download or 

bubblesort). This is different from most of the earlier work, where search engines require either a 

partial written code, or API names and the data flow information (e.g.,              ). 
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1.4. Organization 

Chapter 2 outlines related work for clone detection, search, bytecode similarity search, and code 

search for pragmatic reuse. Chapter 3 overviews our clone search model which is called SeClone. 

Retrieval and indexing steps of our search model is discussed in Chapter 4. The details of ranking 

schemas of our search model are covered in Chapter 5. Prior knowledge about the characteristics 

of the input data is necessary for successful deployment of our search model. Chapter 6 

summarizes our observation about the chosen data characteristics in the domain of discourse.  For 

proper performance evaluation we require some measures for the ranking aspect. Chapter 7 

introduces the adapted measures from other domains (e.g., information retrieval) for proper clone 

search evaluation. Chapters 8, 9, and 10 discuss the adaptation and performance evaluation of our 

similarity search model for the source code clone search, bytecode similarity search, and working 

code example search problems. Finally, Chapters 11 and 12 provide the ending discussion and 

conclude the dissertation.  
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2. Related work 

Source code repositories present invaluable sources of information for source code search 

[WAN13] and pragmatic reuse [HOI08]. For example, reuse patterns can be exploited to infer 

popular programming solutions for code recommendation [BUS12]. In the past decade, various 

ad-hoc similarity search approaches (e.g., [MAN05]) have been introduced and applied to define 

reuse patterns. Alternatively, existing and often well-defined and supported clone detection 

models can be adapted in place of these ad-hoc similarity detection approaches. This chapter 

provides an overview of related work covering both the application and solution domains.  

2.1. The application domain – code search for reuse 

In [GLP13], Gulwani introduces program synthesis (PS) as “the task of automatically discovering 

an executable piece of code given user intent expressed using various forms of constraints such as 

input-output examples, demonstrations, natural language …”. PS supports a variety of users such 

as (1) general users of information systems with or without prior programming experience to 

automate their repetitive daily tasks and (2) professional programmers to accelerate the 

development process by avoiding coding from scratch. Other topics, such as source code search, 

recommendation, and completion for pragmatic reuse, are related parts of the program synthesis 

problem. In particular, their underlying approaches, techniques, algorithms, and heuristics all 

developed with the common objective to accelerate development processes by helping 

programmers through working code examples. The (similarity) search functionality is the shared 

component among these approaches to satisfy the user expectations. 

Source code search is not a new research topic in software engineering (e.g., [LIN84]) and 

has been widely investigated, producing a vast body of research. The diversity in their search 

models differentiates these solutions. In what follows, we review these search models by 
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highlighting the proposed similarity functions, which form the core of their models. Paul and 

Prakash [PAU94] propose SCRUPLE that provides code search functionality via queries similar 

to code templates. The authors focus on applications of code search related to software 

maintenance, such as locating all matches of a specific buggy fragments. Their pattern language 

approach addresses deficiencies of grep-like search functions for the code search problem. 

Another early approach to finding reuse patterns and association through rule mining 

suggestions, called CodeWeb, has been introduced by Michail [MIC00]. It applies association 

rule mining by using generalized association rules for mining [MIC99] reuse patterns. In his 

research, Michail investigates high-level reuse patterns for C++ covering only fingerprints of the 

inheritance links, instantiation tokens, method calls, overrides, and receiving invocation 

messages. This approach is different from traditional fine-grained pattern mining approaches such 

as sequence of source code tokens. The interesting point about these generalized association rules 

versus regular association rules is that they are able to employ taxonomies, such as the inheritance 

trees. Following a similar approach for mining coarse-grained facts and goals, Bruch et al. 

[BRU06] developed an Eclipse plug-in called FrUiT. However, the focus of their approach was 

not only on mining of reuse patterns but also on providing a context-dependent presentation 

within the Eclipse IDE. FrUiT provides reuse support for novice users by recommending the next 

potential actions. 

Hill and Rideout [HIL04] focus in their work on method body completion by using machine 

learning and exploiting frequently occurred near-duplicate code (small sized clones). The 

approach focuses on (1) completion of popular methods in Java, such event listeners etc., and (2) 

extending (i.e., a type of completion) the current method body written from beginning until the 

cursor. Method bodies are represented as vectors and compared them using Euclidean distance 

and K nearest neighbor - kNN. The vectors are based on 154 metrics that are calculated for each 

method body, of which 150 metrics are related to frequency occurrence of Java token types, with 
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the remaining 4 metrics being LOC, cyclomatic complexity of a method, return value, and its 

number of arguments.  

Li and Zhou investigate in [LIZ05] the application of mining code patterns for the detection 

of buggy code fragments and introduce as part of their work the PR-Miner tool. In their approach, 

they first use frequent itemset mining to find reputable patterns. Second, they locate code 

fragments that are not adhering to the mined rules as potential violations/bugs. Specifically, PR-

Miner mines closed sub-itemsets using a FPclose algorithm and then creates the association rules 

to detection violations. Based on their studies for Linux, Apache HTTP server, and PostgreSQL 

written in C, their approach is capable of successfully detecting actual bugs. PR-Miner considers 

in its analysis fine-grained fingerprints to generate transactions such as language keywords, 

method calls, and variables. In order to avoid name collisions, they resolve token names by 

attaching data types and other metadata since source code tokens constitute the items. Similarly, 

Wahler et al. [WAH04] use frequent item mining for clone detection. The major differences 

between Wahler’s approach and the other similar works mentioned are that (1) they forced the 

mining algorithm to detect the consecutive items and (2) they used maximal sets. 

Mandelin et al. [MAN05] introduced their PROSPECTOR and Jungloid mining approach to 

help programmers in acquiring an object (instance) of a specific class (type). The approach 

produces (synthesizes) Jungloid, a code snippet that performs type transformations, and combines 

these transformed code snippets to answer queries using the source and destination types. 

Possible types (templates) of Jungloids are provided for Java. For their approach, the API 

signatures and examples constitute the input data. The links between both data sources are 

presented as a single DAG which is used by the synthesize algorithm. The generated solutions are 

ranked based on their size, with shorter answers being preferred due to their simplicity. 
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In [BRU09], Bruch et al. focus on re-using code examples for intelligent code completion. 

Their goal is to improve the auto-completion of search results by removing items irrelevant to a 

programmer’s current work context. Their approach is designed to recommend method names 

that should be called for a selected variable. The input data are the current programming context 

and previously mined examples. In their work they evaluated the performance of three 

approaches to recommend the next method name being called. For their evaluation they used 

precision, recall, and F-measure for (1) method call frequencies, (2) association rule mining for 

method call patterns, and (3) code completion using a customized approach based on K nearest 

neighbors (called best matching neighbors BMN). Their observation shows that for their specific 

application context, the kNN solution achieves the best F-measure. In order to automate their 

evaluation, they took advantage of an evaluation approach for API recommender systems 

presented in [BUT00]. 

Robbes and Lanza [ROB08] focus on the code completion problem for MS Visual Studio via 

IntelliSense by using change history. Their objective is specifically geared towards situations 

with APIs with large number of methods and members, making the use of the completion result 

list very challenging. Moreover, in their work they also define a benchmark for accuracy 

measurement of such systems and introduce a new graphical interface. Their approach is mainly 

based on recorded fine-grained actions and collected data during programming sessions, which 

are modeled as sequences of changes. The authors argue that ranking can be improved by 

combining change history information with other types of information such as code and query 

context.  

Hou and Pletcher [HOU10] address the ranking problem for the “auto-complete” box 

available in IDEs. Their goal is to improve Eclipse’s current approach, which supports only 

alphabetical ranking, by giving priority to answers sharing the same type as the context. They 
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studied the usability of usage frequency for sorting and customized pre-defined rules for the 

filtering or grouping of the auto complete result sets.  

Menon et al. [MEN13] explore the possibility of machine learning (ML) and its benefits for 

ranking and searching. The objective of their work is to find and efficiently rank some 

combinations of smaller pre-defined programs as the answer set. Specifically, ML is exploited to 

learn the weights (i.e., importance) of the possible answers for the given examples. Perelman et 

al. [PER12] proposed an API discovery approach based on the idea of programming by example 

that suggests and ranks the APIs matching to the query. They conducted a study on the .NET 

framework. Their approach supports a variety of code completions, which improve Visual Studio 

Intellisense for auto completion in some cases. In particular, their approach shows improvements 

when a method call statement completion is exploited for the completion of an argument list, 

expression completion, or method name search via candidate types. Their research also proposes 

a querying approach known as partial expressions, which uses library class/interface definition 

information and the context data (e.g., local variables) to match candidates to a given query. This 

solution can be considered as an automatic generation approach that relies heavily on search and 

matching. 

Recently, other mining and search approaches have been proposed towards working code 

example recommendation for API usage scenarios. In [WAN13], Wang et al. present their UP-

Miner implementation as the successor of MAPO [ZHO09]. UP-Miner combines clustering and 

sequence mining to find reoccurring sequences of API fingerprints (i.e., method call tokens). UP-

Miner’s probabilistic approach is able to recommend the next most probable step/s for the given 

API name. Buse and Wiemer [BUS12] apply mining on graph models created from the data flow 

and method call sequences. Using the mined sequences, their approach synthesizes code 

fragments as the potential solutions for a given query. Mishne et al. [MIS12] applied another 

approach, which exploits search instead of mining and synthesizing. Their approach, PRIME 
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[MIS12], extracts partial temporal specification from method call sequences to find possible 

solutions, and returns the corresponding code fragments located in the available corpus. 

Common to all of these proposed solutions is the fact that they are based on ad-hoc reuse 

pattern detection techniques, which are used to mine either the library definitions or the given 

examples to determine how a particular programming task can be implemented. Alternatively, we 

explore in this thesis how these ad-hoc similarity mining approaches can be replaced by clone 

detection and clone search models for program synthesis in the context of pragmatic reuse, which 

not only support the detection of defined reuse patterns (i.e., clone types) but also result ranking.  

2.2. The solution domain – code similarity detection 

Given the need for finding code duplications in programming content [ROS09], clone detection 

has emerged as a research discipline in computer science. The underlying algorithms and 

heuristics target detection of four similarity types [BEL07][ROS09] found in source code. Table 1 

provides an overview with examples of the three basic similarity types related to syntactical 

clones. The types are defined based on their observable similarity in the source code. At source 

code level, clones share two types of similarity: (1) pattern and (2) content. Clone detection is 

challenging, as two cloned code fragments, e.g., “int temp=0;” and “float f=2;” can contain 

negligible content similarity (i.e., token names). Type-1 clones are exact copies of each other, 

except for possible differences in whitespaces and comments. Type-2 clones are parameterized 

copies, where variable names and function calls have been renamed and/or types have been 

changed. Changes (e.g., addition and deletion of statements) in a clone pair result in Type-3 

clones. In cases where two fragments share similar functionality with different syntactical 

presentations, they constitute a Type-4 clone pair.  
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Table 1.  Examples for source code similarity types 

The input code sample 

HashMap var=new HashMap (10); 

 
Similarity Type Example 

Type-1 

HashMap var    =    new HashMap (10); 

Additional Whitespace

 
Type-2 

HashMap list1=new HashMap (); 

Different variable name

 
Type-3 

HashMap list1=new HashMap (list2.size()); 

Additional Code

 

2.2.1. Clone detection 

Source code clone detection has been a major focus of software research and has resulted in a 

number of clone detection techniques. Common to all of these traditional detection applications is 

the fact that they have a complete off-line search step to find all possible clone pairs within a 

static source code repository. In this section, we present a review of early work on (1) source 

code clone, (2) code clone detection, and (3) code similarity to discuss the origins of these 

concepts and terms. Our review covers the period between 1930 and present, focusing mainly on 

the initial use of the terms “cloning” and “clone detection” in the context of “source code” in the 

literature.  

2.2.1.1. Similarity detection in software 

One of the first similarity detection approaches dates back to the work by Ottenstein [OTT76] in 

1976. Ottenstein introduced a metric-based approach for the detection of plagiarism in student 

programming assignments. His work also included a discussion on potential dissimilarity types 

that were supported by a plagiarism detection algorithm, such as re-formatting, re-naming and re-

ordering of statements. Later on, Grier [GRI81] in 1981 extended Ottenstein’s work to Pascal 

code. 
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2.2.1.2. Source code clone detection 

The first actual reference to the clone concept in the source code and programming domain dates 

back to the work by Abrams and Myrna [ABR79] in 1979. They used the term clone in a 

Programming Language (APL) context describing it as “… creates an output file and starts a 

"clone" of itself”.  In later attempts, the concept of a “clone” in source code was used by Jacobsen 

[JAC84] to describe a pre-defined command, and by Caudill and Wirfs-Brock [CAU86] as a 

reproduction of executable files in Smalltalk. Tanenbaum [TAN87] used clone to describe the 

variations of a software system. During the 1980s, the term clone was further popularized mostly 

through its use as a reference to computer hardware, such as compatible computer (hardware), an 

IBM compatible (or short IBMclone) computer [KEL83] or, in [LOM83], as “…can’t tell what is 

on my disk without a clone of my computer”. Among the first researchers who actually used the 

clone detection phrase at the source code level were Carter et al. in 1993 [CAR93]. They 

described clone detection in their work as the process of finding similar telecommunications 

systems using neural networks. 

While the early work in clone and similarity research had focused mainly on detecting 

plagiarism in source code, this focus started to shift in the 1990s with software maintenance 

emerging as a new application for clone detection. In 1992, Baker [BAK92] proposed Dup, a tool 

to support software maintenance and bug fixing by detecting duplicate code. The Dup tool also 

implemented a clone detection solution, which exploited hash values and inverted-indexes to 

facilitate the search process during clone detection. Later approaches, such as metric-based by 

Merlo et al. in 1996 [MAY96] and AST-based Baxter et al. in 1998 [BAX98], allowed them to 

use additional facts extracted from source to further improve scalability, performance, and 

efficiency in their clone detection approaches. 

Alternatively, information retrieval has been explored for the purpose of clone detection and 

clustering, due to its well defined search models. Marcus and Maletic [MAR01] used Latent 
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Semantic Indexing (LSI) to extract hidden semantics from source code facts (e.g., identifier 

names) in order to guide the process by detecting code fragments implementing similar features. 

In [POS07], Poshyvanyk et al. propose an approach that combines Formal Concept Analysis and 

LSI for the concept location problem. McMillan et al. [MCM12] use LSI to search for similar 

software applications in terms of their functionality. LSI also has been exploited for clone result 

set improvement (not the detection itself) and evaluation by Tairas Gray [TAI09]. Additionally, 

some research exists on using the other IR techniques, such as that by Kontogiannis [KON97] 

who uses basic retrieval infrastructure, or the work by Mishne et al. [MIS04], who introduced an 

approach that exploits Conceptual Graphs and structural information (in addition to the other 

code facts) to find similar code. 

In general, the state of the art clone detection tools (e.g., NiCad [ROS08] and CCFinder 

[KAM02]) are based on sequence comparison functions. Recently, novel search and retrieval 

models have been explored for clone detection focusing on the scalability issue such as the 

DECKARD [JIA07] model, or suffix trees by Koschke [KOS12]. Uddin et al. [UDD11][UDD13] 

explored the application of simhash for near-miss clone detection. Lavoie and Merlo 

[LAV11][LAV12] considered Levenshtein metric and Manhattan Distance in their approach to 

detect near-miss clones. There is also some work on similarity measures and ranking for clone 

detection by Smith and Horwitz [SMI09]. While all of these approaches were proposed for clone 

detection, they simultaneously established the foundations of code similarity detection. 

In summary, our research approach is similar to Carter et al. [CAR93], which also uses a 

cosine similarity function. While we also use vectors similar to DECKARD [JIA07] and Carter et 

al. [CAR93], we create our vectors using code patterns instead of metrics and predefined 

fingerprints [JIA07][CAR93]. Furthermore, our approach emphasizes on non-positional similarity 

search instead of sequence matching and comparison (e.g., as NiCad [ROS08] and CCFinder 

[KAM02]). While, similar to earlier attempts such as Smith and Horwitz [SMI09], Baker et al. 
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[BAK98], and Uddin et al. [UDD11][UDD13], our multi-level indexing approach not only 

detects the major clone types but also is capable of discriminating between Type-2 and 3 clones at 

the same time. 

2.2.1.3. Binary and bytecode clones 

In contrast to the traditional source code clone detection, bytecode code clone detection has not 

been a major research focus in the clone detection community. However, in some domains such 

as code search [BAJ12] and security [BAK98], the ability to support clone detection at the 

bytecode level as well becomes a key requirement. A major factor for the use and analysis of 

binary and bytecode content is often the limited availability of source code. Baker and Manber 

[BAK98] used a combination of three comparison-based approaches such as Diff for bytecode. 

The JCD project, [DAV10] introduced by Davis and Godfrey, uses a combination of hill climbing 

and greedy algorithms to detect the maximum coverage. In [SAN11] the use of process algebra 

on bytecode was proposed. Selim et al. [SEL10] converted bytecode to the Jimple format 

[SOO12] and used third-party tools for clone detection. 

Recently, license violation and malware detection has become an emerging application area 

that can greatly benefit from clone detection on binary or bytecode content 

[CHA11][SAB09][HEM11]. In [HEM11], Hemel et al. explored some generic similarity 

heuristics for license violation detection using their Binary Analysis Tool (BAT). In their 

approach they use string literals extracted from the target binary in the central database of literals 

as part of their first search heuristic. Note that the central literal database can be built using 

literals extracted from both source code and binary. However, the assumption in their research is 

that the source code of the target entity is not available. Compression ratio as a similarity metric 

is their second heuristic, which has been investigated previously in other similarity search 

domains such as malware detection. Computation of the delta between target and suspect binary 

extracted from the central repository constitute their last heuristics. For binary content such as 
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native machine code, Sæbjørnsen et al. [SAB09] proposed a more restrictive solution compared 

to the one by Hemel et al [HEM11]. Sæbjørnsen et al.’s approach is based on common source 

code clone detection techniques, where the content is indexed based on pattern similarity. They 

apply some form of normalization, similar to the one used by Baker et al. [BAK98], as part of 

their token categorization. For bytecode content, they replace possible values of operands (e.g., 

register name, memory address, and constants) with their category name (i.e., memory, register, 

value). Finally, to retrieve the similar fragments, they model the normalized data using feature 

vectors. Chaki et al. [CHA11] explored the applicability of classification techniques on binaries 

to detect similar binaries that are originating from (1) similar source code and (2) the same 

compiler. Provenance-similarity is defined for two fragments when both conditions hold. Chaki et 

al. have argued that holding these two conditions seems reasonable in the malware and virus 

detection application context. A concrete problem in some environments such as .NET is 

detecting clones across multi-languages. To avoid dealing with several high-level languages, the 

intermediate language (i.e., form of compiled content) has been adapted as the sole source of 

information in recent studies [KRA08][JUR11][ALO12]. Kraft et al. [KRA08] used graph 

presentations from binaries to detect cloning between languages. In our earlier studies on .NET 

[ALO12], we addressed the same problem by creating a set of filters for noise reduction to 

improve the feasibility of such cross platform compiled code clone detection approaches. 

2.2.2. Clone search 

Although detecting code similarities and patterns is a well-established research area in computer 

science (e.g., [OTT76][SAN94]), a new research area has recently emerged that is referred to as 

“source code clone search”, but is also known as just-in-time [BAR10], real-time [KAW09], or 

instant [LER10]) clone search. While clone search still shares its fundamentals with traditional 

clone detection, both its objective and requirements differ significantly. Common to all traditional 

detection applications (e.g., plagiarism detection) has been that they have a complete off-line 
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search step to find all possible clone pairs within a static source code repository. In contrast, code 

clone search models can be considered to be specialized search engines that are designed to find 

clones of a single fragment within the corpora. Clone search approaches index source code 

repositories as part of their off-line processing. At run-time the input, in the form of a code 

fragment (i.e., query criteria), is then used to trigger the search process.  

Hummel et al. [HUM10] use an inverted index which groups similar lines of code using a 

hash table with 128-bit hash values. Their approach locates similar fragments via the inverted 

index to detect and search Type-1 and Type-2 clones. In [KLX11] and [KLZ11], as part of our 

earlier work on clone search, we also introduced a hash-based inverted indexing approach. 

However, our approach combined multi-level indexing in order to support also Type-3 clone 

search.  

SHINOBI [KAW09] builds a suffix array as their index based on transformed tokens using 

CCFinder’s [KAM02] transformation rules. A multidimensional token-level indexing approach 

has been introduced by Lee et al. [LER10][LEM11] using an         on DECKARD’s [JIA07] 

approximate vector matching. The language elements (e.g., assignment) constitute the dimensions 

of the search space. Barbour et al. [BAR10] introduce a result sampling approach that uses results 

obtained from other clone detection tools to find candidate clones to be indexed by their approach 

and then apply the Knuth-Morris-Pratt string searching algorithm [KNU77] to find the closest 

matches amongst indexed clones. Schwarz et al. propose in [SCH12] an approach to detect and 

store code similarity links to facilitate code search at run-time. Similarly, De Wit et al. [DEW09] 

developed a tool that monitors copy and paste commands during development for the 

management of code clones at run-time. Zibran and Roy [ZIB12] introduced an IDE-support for 

Type-3 clone search based on Rabin’s fingerprinting algorithm and suffix trees. Bazrafshan and 

Koschke [BAZ11] exploit Chang and Lawler’s search algorithm, which was originally proposed 

for the bioinformatics domain to find approximate code patterns.  
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2.3. Summary 

In this chapter, we illustrated the need for source code similarity search models in the 

programming synthesis problems, specifically, code search for pragmatic reuse. However, the 

proposed solutions ignore the clone detection solutions, while clone community has established 

the baselines for code similarity detection and measurement. This approach can be attributed to 

the lack of a proper clone search that supports ranking, scalability, fast response time, and Type-

1, 2 and 3 detection. Such clone search model can be used as a standalone code similarity 

function (including search) for the program synthesis and source code search research. 
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3. Clone search model 

In this chapter, we provide an overview of our solution for the clone search problem when Type-3 

detection, scalability, fast response time, and ranking are required. The clone search model is 

based on the vector space model (VSM), cosine similarity, and Jaccard similarity coefficient 

(JSC). The VSM and JCS are two of the major models that have been used for similarity search 

specifically in information retrieval (IR) [MAN08]. Common to both of these models is their low 

computational complexity and non-positional matching. It is the non-positional aspect in 

particular that differentiates these algorithms from other algorithms, such as the longest common 

subsequent model (LCS) [HUN77], which is commonly used in the clone search and detection 

community. In this research we are interested in exploiting VSM and JSC, as both have been 

widely used in other domains such as Web retrieval [BRI98][MAN08] due to their features such 

as scalability. 

Figure 3 illustrates our clone search solution, which is based on multi-level indexing and 

information retrieval ranking models. This approach is able to find the closest matches to a given 

query (e.g., Figure 3 query data), while returning hits from the search as a ranked result set based 

on their similarity degree to the search query. 
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Query Result

Styled Code
 Fragments

List<String> files; 

files=db.loadFiles(“/the_other_user”);   

for(String f : files))

{  

String content=readFile(f);

System.our.println(content.size());

}                     

file=db.loadFile(“/usr/uid”);   

String content=readFile(f);

System.our.println(content);

                     

List<String> files; 

files=db.loadFiles(“/usr”);   

ArrayList<String> contents=new 

ArrayList<String>();

for(String f : files))

{  

String content=readFile(f);

contents.add(content);

}                     

Iterator<String> files; 

files=db.loadFiles(“/usr”);   

for(String f : files))

{  

boolean status=deleteFile(f);

}                     

List<String> files; 

files=db.loadFiles(“/usr”);   

ArrayList<String> contents=new 

ArrayList<String>();

for(String f : files))

{  

try{

String content=readFile(f);

contents.add(content);

catch(Exception ex){

System.our.println(f);

}

}                     

Top K (Ranked ResultSet)

HIT# 1

HIT# 2

HIT# 3

HIT# 4

HIT# 5

Query Data
Code Fragment

List<String> files; 

files=db.loadFiles(“/usr”);   

for(String f : files))

{  

String content=readFile(f); -> 12

System.our.println(content.size());

}                     

Optional: SearchSchema (preferences)

Search Schemas Jaccard Similarity Cosine Similarity
Weighting Function

Preparation Query Processing (Normalization->Trans.->HashValueGen.)

Content-oriented
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Candidate Fragments
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Figure 3.  SeClone – the proposed clone search approach  

 

3.1. Overview 

This section provides an overview of our SeClone clone search approach and its major processing 

steps, which include: (1) preprocessing, (2) indexing, (3) retrieval and (4) ranking. The 

performance of our search approach is configurable via its search schema, which consists of nine 

parameters (Figure 4) that can be used to customize the off-line and online processing. These 

configurations are not only used for performance evaluation and comparison studies, but also 

allow for the configuration of our approach to match the requirements of a specific search and 

application. 
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Figure 4.  The SeClone search (configuration) schema parameters 

 

Preprocessing. SeClone is a line based clone detection approach that uses Java Abstract 

Syntax Trees (AST) as its input for the offline preprocessing step. SeClone parses the ASTs of 

individual files to create a uniform representation, annotated by token types. The preprocessing 

step also transforms AST tokens using transformation rules, which are specified through the 

search schema parameters    and   . These transformation rules generate the corresponding 

encoded code patterns (  ) for each input code fragment. Encoded code patterns are defined to be 

able to identify all code fragments with certain degree of similarity.  

Indexing. For this processing step, the    dataset generated by the transformation rules    

and    is used to create two
1
 hash table-based indices to represent all code fragments in a single 

repository. The hash values can be generated for different granularities:    and    which are 

specified as part of the search schema.  

Retrieval. During the retrieval step, all indexed code fragments are compared at run-time 

with the input code fragment (i.e., query). We generate two vectors (         and           ) for 

each query  , based on the hash values of the encoded code patterns (i.e.,   ,   ,    and    . 

These vectors do not hold the ordering of the elements. 

                                                      
1
 As discussed later, our multi-level indexing idea proposes that the actual number of indices should be 

at least two when both pattern and content similarity are important (e.g., Type-3 clone search).  
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A vector represents a code fragment which is used for the retrieval process from the 

corresponding search space in our multi-level indexing and search approach. For each vector, a 

look up action is performed to retrieve all code fragments indexed in the corpus, which share at 

least one hash value    
 

 with the query. The union of the two clone candidate sets derived from 

the primary and secondary indices constitute the complete set of hits (clone candidates). 

Ranking. Our ranking models are based on VSM and JSC, which can be configured as part 

of the search schema (                     , with the ranking parameters being highlighted in 

bold. The relevance score is calculated for each hit returned by the retrieval step and these hits 

can be sorted by their relevance score. Figure 5 summarizes the SeClone search algorithm for 

both retrieval and ranking steps. 
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Figure 5.  Retrieval and ranking (i.e., search) steps 

3.2. Computational complexity 

Table 2 summarizes the computational complexity of our approach for both run-time complexity 

and memory consumption. For the analysis, we excluded style unification, transformations, and 

AST build times, since they are negligible and mostly linear to the size of the input data set. We 

separate our analysis in three major processing steps: (1) off-line indexing for creating the hash 

table indices, (2) the actual search, which includes retrieval and ranking, and (3) the corpus 

update.   represents the inverted index size, which is  (   with   being the size of the corpus in 

terms of lines of code (LOC). The size of the result set is represented by  , and the total number 

of updated lines of code by  , with the expected lookup complexity for the inverted index as 

 (  , since the index is hash table-based.  

Algorithm                      (                                

Input          q : query’s code fragment, ixy: primary and secondary indices                

Output            ordered set of all candidate clone fragments based on their relevance to the query 

 

1.                                           (             //               the un-ordered set of hash values 

2.                                          (          

3. for h in          

4.                                          (                           //find and add all fragments with at least one occurrence of h  

5. for h in            

6.                                            (    

7.                                                                   //this is an un-ordered set of all candidate clones 

8. for hit in      

9.                                                        (                     

10. sort(                         

11. return hits 
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Table 2.  SeClone computational complexity 

 Processing step Time 

complexity 

Memory 

complexity 
Repository preparation 

(Indexing) 
 (    (   

Clone search  (         (   

Repository update (content 

addition/deletion) 
 (    (      

 

The clone search time is  (       , since in order to create the ranked result set all hits 

must be sorted based on their relevance scores. As a result, our model features a low time 

complexity for both clone search (including Type-3 clones) and repository preparation using non-

positional indexing. Memory consumption for indices is also almost linear, since   is  (   as 

well. This cannot be further optimized without the use of compression and other abstraction 

mechanisms. In theory, the time and memory complexity of our clone search approach supports 

the core requirements (i.e., scalability and real-time response time) that we defined earlier in this 

thesis. 

3.3. Summary 

In summary, our information retrieval-based approach towards clone search provides significant 

improvements over our earlier SeClone solution [KLX11], as it includes the adaptation of non-

positional retrieval and ranking for clone search problem. The support for ranking is an important 

step towards providing full-fledged similarity search for further value-added services (e.g., code 

search for pragmatic reuse). Nevertheless, a potential threat for our approach is the use of non-

positional search models on source code content. Using non-positional models might lead to a 

high number of false positives since the order of source code statements determines the soundness 

and semantics of the program.   
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4. SeClone indexing model  

Our clone search model uses encoded code patterns (  ) to construct its search space. An 

encoded code pattern is a template that defines a certain degree of similarity to match concrete 

code fragments. Our solution is based on the idea of encoding of code patterns to support Type-2 

and 3 clone detection. However, instead of using these encoded code patterns directly, they are 

transformed to hash values. Hash values are useful in providing an efficient numeric 

representation of textual content in terms of space consumption. Furthermore, hash value based 

indexing and retrieval also provides fast lookup time, with a lookup complexity of  (  . Both of 

these properties are important for our model to ensure that it is both scalable and efficient.  

4.1. Encoded code pattern generation 

In our approach, encoded code patterns represent a single line of code. Encoding the original code 

content as it is constitutes the most restrictive   , which will only be applicable for 

detecting/matching exact (Type-1) clone search. Less restrictive encoded patterns will increase 

the recall and support both Type-2 and 3 clone search while obtaining lower precision. In our 

research, we defined a number of models for encoding code patterns in order to address the 

tradeoff between recall and precision in different contexts. 

In our approach, the model of encoded pattern is defined through a transformation function 

and its encoding granularity. The granularity determines the number of neighboring lines of code 

that will be considered for the encoding. The transformation function, on the other hand, 

determines the template and parameterization rules. Table 3 reviews the transformations (t) 

supported by our approach, including their semantics (type of transformation being performed). 

Table 4 illustrates a concrete example for the supported transformations. A key difference is their 

emphasis on either content or pattern resemblance. Content resemblance focuses on token name 
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similarities whereas the pattern resemblance enforces the order of tokens regardless of the token 

names. For example, the transformation function w will ignore the token ordering completely, 

while m attempts to keep the balance between patterns and content resemblance. 

The hash function   is responsible for generating hash values that represent the encoded code 

pattern. The hash function uses four input parameters: the code fragment  , its offset  , clone 

granularity  , and the transformation function  . Since our solution is based on a line-based clone 

search problem, the hash function operates at line level granularity. Consequently, the input code 

fragment has to be at least one syntactically complete line of code. The offset refers to the line of 

code that is used as a target line for the hash value generation process. In order to generate all 

corresponding hash values of a code fragment, the function must be called several times, iterating 

over the target line parameter (i.e., the offset parameter).  

 (                                     

Granularity. The   function is able to generate hash values not only based on the target line 

content, but also on its neighboring content. While having a single line granularity can increase 

recall, such fine-granularity level often also results in a decrease in precision, as the overall 

similarity depends not only on the resemblance of the participating lines, but also on their order. 

Therefore, in order to improve our search precision, code patterns could be encoded for higher 

granularity levels as well. As such, we generate hash values of the target line at two granularity 

levels in our search approach (Table 5). 
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Table 3.  SeClone source code transformation functions – the   parameter 
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x exact Same as input except for changes in 

style 

x x x x x x x x x 

l loose Type-1 Same content for all code fragments 

which  can be considered as Type-1 

clone 

x x x x x x x - x 

w word set An unordered set of the selected 

tokens (i.e., only method and type 

tokens) 

x - x x - x - - - 

m transformed 

tokenized 

method 

fingerprints 

Preserves only method names in 

method call tokens and the overall 

pattern, while the content (i.e., 

names) of the other tokens  are 

ignored via replacing them by a 

single place holder  (e.g., #). 

x x x - x x x - - 

c transformed 

tokenized 

method and 

type 

fingerprints 

Similar behavior as m except it 

preserves the content of both 

method and type tokens.  

x x x x x x x - - 
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Table 4.  Sample outputs of SeClone source code transformation functions 

The input code sample for SeClone transformation functions 
… 

5: String msg=”exit 0";   

6: for(AttributeEntity var : t.getAttributes())

7: {   

… 
 

Transformation 

function  

Output Major changes 

x … 

String msg=”exit 0";   

for(AttributeEntity var : t.getAttributes()){   

… 
 

Style unification 

l … 

String msg=#;   

for(AttributeEntity var : t.getAttributes()){   

… 

 

Unifying the literals and 

constants 

w 

{String, AttributeEntity, getAttributes}

 

An unordered set of selected 

keywords (Table 3) 

m … 

# #=#;   

for(# # : #.getAttributes()){   

… 
 

Unifying almost all token types 

except langue keywords and 

method names 

c … 

# #=#;   

for(AttributeEntity # : #.getAttributes()){   

… 

… 

# #=#;   

for(AttributeEntity # : #.getAttributes()){   

… 
 

Unifying almost all token types 

except langue keywords, class, 

and method names 

 

 

Table 5.  Pre-defined granularities for the hash function –   parameter 

 Granularity Description 
FLS 1 Only the target line that is specified by the offset parameter must be 

considered 

TLS 3 The target line specified by the offset parameter   including     and 

    lines must be considered - Three lines in total 
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4.1.1. Hash function implementation 

For line-based detection approaches, code layout unification through formatting and 

normalization is an essential processing step to increase recall of the retrieval algorithm 

[KAM02]. The layout unification requires normalization for all source code extracted from the 

code repository and also that of the search queries. During the layout normalization, information 

from Abstract Syntax Trees for each source code file in the repository is used to extract both 

tokens and their types. The extracted information is then used by the different transformation 

functions (Table 3) to perform the selected normalizations. 

A combination of transformation function and granularity parameters can be used to specify 

the encoded pattern model. For example,    refers to the TLS granularity using the transformed 

lines of code with only method name preservation (m function described in Table 3). Figure 6 

illustrates the complete process of how our hash function assigns an identical value to two 

different code fragments by exploiting the    encoded pattern model. In this case, the code 

fragments identified by the target lines 53 (i.e., lines 52-54) and 84 (i.e., lines 83-85) share the 

same pattern but their content resemblance is low due to dissimilarity in class and variable names. 

Unlike, syntactic token matching that will fail to identify these fragments, our approach will 

identify them as Type-2 clones. In this section we present, how the fundamental idea behind code 

transformation (e.g., normalization) and hash value based matching originally proposed for 

traditional clone detection approaches (e.g., [BAK92]) can be exploited for our clone search. 
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Transformed Lines
(using m function)

FLS Value
(m1 Hash Value)

TLS Value
(m3 Hash Value)

06: import java.io.File;

...

52: Set<AttributeEntity> remAttrributes;      # #; -2342    -2342       

53: Map<String, AttributeEntity> theAttributes;     # #; -2342    -2342                   370

54: for(AttributeEntity var : t.getAttributes()){   for(# #:#.getAttributes()){ 59378    59378

… 

83: List<String> fieldNames;                        # #;       -2342    -2342

84: for(JAttribute form : f.getAttributes()){       for(# #:#.getAttributes()){     59378    -2342              370

85: List<String> formulaNames;                      # #; -2342    59378

Source Code
(c parameter) TLS Entity

TLS GroupsFormat unification
Transformation

So
rt

So
rt

1 Line Granularity 3 Lines Granularity

Sa
m

p
le

 T
ar

ge
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H(c,53,3,m)=

H(c,84,3,m)=

 

Figure 6.  Examples of SeClone hash function outputs for a specific granularity and 

transformation function 

 

4.2. Non-positional and multi-level indexing and retrieval 

The encoded code patterns represented by hash values are able to enforce two similarity forms 

(i.e., pattern and content). Figure 6 provided an example of two cloned fragments which are 

identified using the    model. Therefore, any hash value-based indexing and retrieval approach 

using the Figure 6 hash values (i.e., 370) is able to detect the two participant code fragments as 

clones. However, if a third fragment identical to the first pair (line 52-54) exists in the corpus, a 

single indexing model using a single encoded code pattern will not be capable of distinguishing 

differences in the degree of similarity among all three fragments. In order to support the ability to 

distinguish and rank the result set, we had to extend our encoded code pattern search approach. 

We introduced a multi-level indexing and retrieval approach for the clone search problem that 

deploys two (or more) indexes at one time, where each index is responsible for a specific type of 

similarity (i.e., content or pattern).  

Additionally, the multi-level approach addresses some deficiencies related to our non-

positional retrieval. The state of the art in clone detection is to consider the positional information 

(i.e., line number and offset) as the key information source (e.g., [KOS12]). In our solution we 

relax this requirement by using non-positional indices to (1) decrease the computational 

complexity of the retrieval and ranking algorithms, (2) reduce the memory consumption of the 

indexing and (3) improve the recall for the detection of Type-3 clones. However, omitting 



35 

 

positional information in the index can lead to low precision, since the order of statements 

captures implementation logics and syntax. We address this concern in our multi-level indexing 

model by using indices at different granularity levels and thus reducing the dependency on a 

single information source.  

Finally, to maximize both recall and precision, our indexing and retrieval solution is based on 

indices, which are representing different granularities and transformation functions, e.g.,    and 

  . In this example, the first index    would be used for fine-grained precise content-based 

similarity search. The second index (  ) improves the recall by adapting a relaxed pattern-based 

transformation function (i.e.,  ). 

4.3. Summary 

This chapter introduced our core approach of creating a search space that is based on encoded 

code patterns rather than source code itself. The encoded code patterns support Type-1, 2, and 3 

clone search. Since our encoded code patterns can be presented as hash values, it is possible to 

satisfy the retrieval by a hash table-based indexing approach, which provides scalability and fast 

response times. Given the tradeoff between recall and precision for any encoded pattern-based 

retrieval model, we use a multi-level indexing approach. In this approach, each index is based on 

a different encoded code pattern model. Furthermore, to decrease the computational complexity 

of both retrieval and ranking algorithms, we adapted non-positional indexing for our clone search. 

In the following sections, we show how, in connection with a good ranking model, our approach 

can achieve reasonable precision even without access to the ordering information. 
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5. Ranking model  

A main focus of our research is to addresses the need for ranking of the clone search result sets. 

Support for ranking is a key requirement for clone search, which determines the position of 

results (hits) within a result set. The position in the ranked result set depends on the degree of 

similarity of the              pair. 

In our research context we are not interested in fine-grained textual similarity models (e.g., 

LCS [HUN77]) for relevance-based ranking. Although these are common models in the 

traditional clone detection context, we need a different approach since (1) the required 

information, such as the ordering of the fragments, is not supported by our retrieval model and (2) 

there are other factors to be considered such as code fragment popularity. In this chapter we 

describe in detail our clone search ranking model, which combines our multi-level indexing 

approach with different information retrieval (IR) ranking models. 

5.1. Ranking approaches 

As discussed earlier, the generated hash values of the encoded code patterns constitute the basic 

entities within our search space. Any code fragment (minimum one line of code) that shares at 

least one hash value with the query will be considered for the ranking. The ranking model is 

based on two models that have been used in IR [MAN08]: (1) Jaccard similarity coefficient and 

(2) the vector space model with cosine similarity.  

5.1.1. Jaccard Coefficient  

Jaccard similarity coefficient is a widely used set theory function, which we adapt for content 

matching to measure the semantic similarities. We calculate the semantic resemblance of two 

blocks based on their shared content (e.g., lines), regardless of their order. Our ranking model 
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measures the content similarity of two code fragments using the numerical output of the Jaccard 

coefficient. We denote   and    as the sets which contain entities (hash values) that belong to the 

search query fragment (  ) and the matched fragment (  ). Both sets neither contain duplicate 

occurrences nor do they preserve the ordering among entities, since our indexing approach is non-

positional.  

 (        
|     |

|     |
 

5.1.2. Vector space model  

In addition to the Jaccard coefficient, we also take advantage of the vector space model (VSM) 

for the ranking of the result sets. VSM has been widely used in the information retrieval domain 

(e.g., [BRI98]) and a key advantage of VSM is that it provides additional flexibility during 

ranking compared to the Jaccard coefficient. It can exploit the entity frequency to discriminate 

among entities by considering their local and global popularity (occurrences). Using VSM, code 

fragments are represented as vectors of frequency values. In contrast to other vector based 

approaches, in our case a vector captures encoded code patterns of code fragments rather than 

terms. The similarity degree between two code fragments is calculated using the cosine similarity 

function that measures the angle between participating vectors.  

                 ( ⃗   ⃗   
 ⃗   ⃗ 

| ⃗ || ⃗ |
 

5.1.3. Weighting factors 

In our approach, the | |              space consists of code fragments presented as vectors, 

e.g.,   ⃗⃗⃗                     , with    being the weight (frequency) of an encoded code 

pattern  . Similar to traditional information retrieval, we also determine the local and global 

popularity of an entity using the occurrences from both the complete corpus and the target code 



38 

 

fragment. While the local frequency captures the number of occurrences of an encoded code 

pattern within a particular code fragment, the global frequency represents the total number of 

code fragments with at least one occurrence of the pattern. Several models exist to calculate these 

local and global frequencies and weights of the entity   within a code fragment  .  

The different types of weighting functions supported in our model are summarized in Table 6 

and 7. For example, a combination of   local frequency (Table 6) and   global frequency (Table 7) 

leads to the well-known IR tf-idf model [MAN08]. Having several ranking options available 

provides us with the flexibility to configure the weights at run-time. In this research, we also use 

these functions to study the effect of different weighting approaches on the clone search 

performance.  

Table 6.  Weighting support for local frequency 

Function Name    parameter value Formula 
Boolean   

{
                                         

 
                                         

 

Natural         |                  | 

Logarithmic        (     ) 

 

Table 7.  Weighting support for global frequency 

Function Name    parameter value Formula 
No     

Simple       |                 | 
IR idf   

   (
 

   
) 

 

5.2. SeClone’s search schema 

The search schema (Figure 7) in SeClone is used to configure different properties of the search 

model, including: (1) the preprocessing of the data and the creation of indices for the retrieval 

phase, (2) the scoring schema, (3) local frequency function, (4) global frequency function, and (5) 

additional information such as normalization and size comparison functions.   
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Figure 7.  SeClone search schema 

The first parameter of our schema template determines the high-level scoring model (Table 

8), which can be a variation of cosine similarity, Jaccard similarity, or a combination of both. 

Furthermore,    and    refer to the local and global frequency functions being used (see Tables 6 

and 7). If the Jaccard coefficient is used, only the boolean local frequency is applicable for the    

parameter; in this case   ,    and    will not affect the final result and must be set to   (none) to 

ensure conformance with our schema template. Additionally, we consider the size resemblance 

between the query and the matched code fragment, which is denoted by   . This option is only 

applicable for the VSM scoring model. The size functions which are supported in SeClone are 

summarized in Table 9.  Our search schema also supports relevance score normalization, which is 

denoted by   . Available normalization functions are   (none) and   (cosine). 

                             
 

√∑   
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Table 8.  SeClone scoring schemas (  parameter) 

Function Name a parameter value  Formula 
Jaccard coefficient    (       

Cosine similarity                    ( ⃗   ⃗   

Cosine Similarity augmented 

with Size similarity 
                   ( ⃗   ⃗      ( ⃗   ⃗   

 

Table 9.  SeClone size functions (   parameter) 

Function Name     parameter values Formula 
Jaccard coefficient    (       

Naïve   

{

 

|    |
                                |    |    

 
                                          |    |   

 

 

5.3. Summary 

In this chapter, we introduced the search schema of our clone search model. The search schema 

configures both the retrieval and ranking parameters used to optimize the search for a specific 

application context. We described in detail our ranking model, which takes advantage of IR 

models applicable to our non-positional indexing and retrieval approach. Given the ability to 

configure our search schema, an end-user can alter the search behavior at run-time based on the 

search requirements. For example, the               schema denotes that the search will use the 

cosine similarity scoring schema which is augmented with the Jaccard-based size function to 

create an IR like        weighting by using a cosine normalization function. The indexing is 

based on single line hash values of Type-1 clones and 3-line hash values of encoded code patterns 

where only method names have been preserved. 
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6. Data characteristics study 

Several issues related to our indexing heuristics can threaten the success of our research, 

including: (1) the ability to perform clone search with near real-time (e.g., [KAW09][LER10]) 

response time (latency time  100 milliseconds that is expected for interactive querying e.g., 

[BAS13]) affected by the characteristics of the outliers, retrieval granularity, and index growth 

rate, and (2) the ability to maintain the precision of the search result due to the potential collisions 

in our hash function.  

In order to evaluate how these threats might affect our approach, we first conducted a study to 

observe the required characteristics of the data. A representative dataset was required as the 

necessary condition for such data analysis task. For this reason, we adapted the UCI dataset 

[UCI10], which covers over 18,000 Java open source projects from online repositories on the 

Internet. 

6.1. Granularity effect on the clone search latency time 

In the first part of our studies, we analyzed the effect of different search granularity levels on 

response time to (1) determine if fine-grained granularities (e.g., single line) are actually practical 

for real-time clone search over large amounts of data, and (2) estimate the increase in the 

response time by reducing the granularity. In order to answer these questions we first analyzed 

the number of retrieved entities for each element of a query. Identifying the number of returned 

matches for each query provides us with some insight about the boundaries of the response times. 

For this part of our study, we observe and compare the worst-case scenarios with respect to the 

number of matches at our two predefined levels of granularity (single and tree-line granularity). 



42 

 

In our empirical analysis, we first grouped source code fragments within the dataset in chunks 

of three lines, with each Third Level Similarity (TLS) group denoting a set of potentially similar 

three-line code fragments (i.e., code clone) where all fragments are satisfying an identical 

encoded code pattern. We then repeated the same study for a single-line granularity level, for 

which we used a First Level Similarity (FLS) based on pattern similarity at single-line 

granularity.  

 The total number of non-distinct source code lines extracted from the dataset is ~300 MLOC, 

which provides us with a sufficiently large dataset to reduce the potential bias in the data. From 

this dataset, we generated 30 million unique TLS groups, covering 71 million distinct lines of 

source code within method blocks. In our index, each TLS group refers to all occurrences of the 

same three-line code fragment in the whole repository. The objective is to study the number of 

occurrences (including average, min and max) for each encoded code pattern captured in a TLS 

group, since fewer occurrences result in a lower response time.  

The first observation we made was that almost all TLS groups contain less than 2,000 

occurrences (instances) and only a few outlier patterns, 1,220 out of the 30M (0.004%) patterns, 

exist that actually have more than 2,000 occurrences. Figure 8 illustrates the distribution 

(excluding the outliers) of TLS groups with fewer than 2,000 members across our complete 

dataset. Based on these observations, it is apparent that the three-line granularity tends to produce 

large numbers of small groups and very small numbers of large groups. On average, each TLS 

group (code pattern) has 2.37 occurrences. However, if we exclude patterns with only one 

occurrence (match) and outliers (with more than 2000 matches), the average would go up to 5.25 

(Table 10). 
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Figure 8.  Occurrence frequency distribution for the 3-line (TLS) encoded code patterns 

 

Table 10.  TLS and FLS characteristics 

Property 
Value 

TLS FLS 

Number of encoded 

code patterns 
30,232,018 7,606,433 

Total number of 

distinct lines 
71,911,376 71,911,376 

Number of single-

member encoded code 

patterns (one 

occurrence) 

22,824,697 4,770,010 

Largest group size (the 

pattern with most 

occurrences/members) 

1,048,575 2,937,700 

Average occurrence 

frequency 
2.37 9.45 

Standard Deviation 

occurrence frequency 
293.23 1898.75 

 

From our analysis, we were able to conclude that three-line granularity is practical for real-

time clone search, as long as outlier patterns are handled separately, since it is only for these few 

outliers that the response time degrades considerably. Our analysis also shows that using TLS, 

patterns typically occur in small-size groups (on average around 5 members). This is an important 

observation for real-time search context since given the small group sizes and the hash-based 

indexing approach, the query has to be compared against a small number of candidates at run-

time. 
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In addition, we studied the distribution of patterns using a single-line level granularity (FLS) 

index, similar to our TLS study. While one would expect the performance of both granularities to 

be quite similar, our experiment (Figure 9) actually showed some differences between the two 

indices. For example, the distribution of the FLS (plus indicators) based patterns shows that the 

number of FLS outliers (patterns with more 2,000 occurrences (matches)) is considerably larger 

than the TLS’s.  

 

Figure 9.  TLS and FLS outlier groups’ distribution comparison 

 

This observation is further supported by data in Table 10, which shows that TLS distributes 

the candidates into 3.9 times more groups, while its group is ~5 times smaller than the FLS’s 

group size. Moreover, the outliers in the FLS index tend to be much larger when compared to the 

TLS index. 

The group size directly affects the response time, since the ranking at the group level has a 

computation complexity of  (       , where c corresponds to the group size (Table 2). Our 

study shows that while both TLS and FLS are applicable for real-time search since c remains in a 

certain boundary when outliers are excluded, TLS outperforms on average the FLS granularity by 

a factor of ~5 (Table 10).  
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6.2. The outlier patterns 

Outliers often introduce threats to the quality and non-functional performance of search 

approaches. For example, in text retrieval research, outliers known as stop words are typically 

eliminated as part of a pre-processing step. As our previous study showed, while we only have to 

deal with a very small number of outlier patterns (patterns with more than 2000 occurrences) in 

our dataset, these outliers might have a significant effect on the overall performance of our clone 

search approach. In order to be able to mitigate this potential threat, it is necessary to identify and 

study these outlier code clones in more detail. For example, our study showed that there exists a 

three-line pattern with more than one million occurrences (Table 10). If such an outlier pattern 

occurs in the search result set, the ranking algorithm will have to evaluate and rank all 

occurrences, potentially slowing down the search by a factor of 1000 compared to non-outlier 

searches. For this reason, we further analyzed the source code matching these outlier patterns to 

observe what kind of programming tasks are associated to the outliers. When analyzing the TLS 

patterns, we observed that only 1,220 of 30 million TLS groups (three-line code patterns) contain 

more than 2,000 pattern occurrences. Source code examples for the top 10 outlier patterns are 

summarized in Table 11. 

Some of the detailed observations are: (1) members of outlier pattern #3 belong to one of the 

largest open source projects in the dataset (gov.nih.ncgc), which is related to genomics and 

contains very large files containing these pattern instances. (2) Code fragments in the outlier #6 

pattern belong to classes related to the initialization of Graphical User Interfaces. (3) Outlier 

pattern #8 occurrences can typically be found within extraordinarily large java classes (larger 

than 10K LOC). In summary, the provided examples in Table 11 support the fact that, similar to 

the other search domains, outliers in clone search can be discarded because they are not 

associated with vital programming problems. It should be noted that while the (partial) exclusion 

of these outlier patterns has no or very little effect on the recall of our search engine, we did not 
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exclude them in our further performance evaluation studies to ensure unbiased and repeatable 

results.  

Table 11.  The outlier code patterns 

Rank 
Number of 

Occurrence 
Pattern Title Sample Code 

1 1304840 Local getter 
method() { 

        return variable;} 

2 636846 General Setter 
method(type arg) { 

        this.variable = arg;} 

3 445552 Unknown s.addToWellOneBased(… new WellComponent(… l.getCompound(…), …)); 

4 246082 General getter 
method() { 

return variabale.property;} 

5 239604 Local setter 
method(type arg) { 

variable = arg;} 

6 124836 
Consecutive 

new 

jEdtTest = new JEditorPane(); 

lblToken = new JLabel(); 

jCmbLangs = new JComboBox(); 

7 124693 Variable&null 
type var1 = null; 

type var2 = null; 

type var3 = null; 

8 115230 
Consecutive 

case 

case 'value': 

case 'value': 

case 'value': 

9 100900 Case&return 
return "Mountain"; 

case TYPE_GAS: 

return "Gas"; 

10 72842 Throw&new 
method(…) { 

throw (new type()); 

} 

 

6.3. Index growth rate 

Retrieval systems such as [BRI98] keep their indexes accessible/stored in the main memory, 

rather than swapped to the disk, to reduce latency times when accessing their lookup indices. In 

most text retrieval systems [BRI98], the approximate index size is known in advance, as it is 

directly related to the data characteristics in the domain of discourse (e.g., natural languages). 

However, data characteristics for code patterns used for the clone search problem have not yet 

been well studied, and as a result there exists no insight on the index size growth rate as new 

patterns and occurrences are being indexed. This issue can cause a threat to our approach 

scalability, since we do not have any prior knowledge about growth rates of indices and, 

consequently, the required memory resources. 
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For a hash table-based indexing system, total memory consumption can be estimated based 

on: (1) the number of distinct hash values being indexed and (2) the total number of objects. 

Given the fact that no prior information is available on potential growth rates, we studied the 

effect of repository size on the index growth rate in our research context. To be more specific, we 

observed how different pattern categories (and their indices) evolve as the repository size 

increases. For this analysis, we incrementally increased our dataset by adding chunks of 50,000 

source code files to the repository. We evaluated the index increase rate for each pattern group, 

which is summarized in Figure 10. The analysis shows that for popular code patterns (with at 

least 2 occurrences), the growth decreases over time. This was expected, since as more code 

content is being indexed, the likelihood that newly added code fragments have already been 

indexed increases. However, the observation also shows that the growth rate for uncommon code 

patterns remains stable. That is, each chunk of 50K files will introduce an equal number of code 

patterns that are not going to be cloned in the future as the index grows. Finally, using the 

increase rate table in Figure 10, we can now estimate the index growth via the number of distinct 

hash values and possible pointers (duplicated patterns), to optimize memory resources and 

improve scalability of our search approach. 

 

Figure 10.  Analysis of the increase rate of new hash values (TLS hashes) per file. Patterns 

are categorized based on their total # of occurrences per hash value. 
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6.4. Hash value strength 

Hash table based indexing relies on its ability to maintain indices in the main memory to ensure 

consistent and fast access times. One approach to reduce the memory footprint is by reducing the 

length of hash codes, as this will directly affect the memory consumption. However, reducing the 

length of hash codes can potentially introduce a new threat to the strength (uniqueness) of these 

indices. In our approach, we opted to use only a 32-bit hash code, which is in contrast to other 

existing work such as Hummel et al. [HUM10], who used a 128-bit code for their clone search 

approach. The use of a smaller hash code (32 versus 128 bits) will not only provide (1) a 75% 

lower memory requirements for the indices, but can also (2) reduce the latency times. 

We conducted an experiment to evaluate whether the use of a 32-bit hash value might 

potentially introduce a threat to the index quality in terms of collisions. For our evaluation we 

created 32-bit hash keys for all single transformed source code lines, using our default 

transformation function and the Java library hash function for strings. We extracted more than 4 

million distinct transformed lines of code and analyzed the possibility of having an ambiguous 

key that might be used for more than two distinct lines. The result of our analysis showed that for 

our 32-bit hash function, the error (collision) rate is very small with 0.002%. Note this is the 

minimum error rate. Using different transformation functions and granularities the error rate 

might increases. Given this low error rate and the resulting tradeoff between precision and 

memory consumption, we can conclude that the 32-bit hash keys can be considered strong 

enough for indexing source code in our research context. This conclusion particularly holds for 

our research context, since for clone search we are mainly concerned with scalability and 

response times as key factors.  

6.5. Summary 

Gaining insights about data characteristics such as the index growth rate and outliers is an 

essential requirement and step towards creating a scalable search engine. Contrary to the other 
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research domains [BRI98], these aspects had not yet been studied or investigated for the clone 

search problem. This chapter presented the result from our analysis of various data characteristics 

based on the code adapted from the UCI dataset [UCI10]. The insights from these studies are 

essential to be able to predict the latency time, index sizes, and overall quality of clone search 

approaches. Finally, the observations made in this chapter support the feasibility of our proposed 

approach based on multi-level indexing and retrieval approach for real-time scalable clone search. 
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7. Performance evaluation measures 

As discussed earlier, our research problem shares many features with information retrieval, 

including ranking. Due to the fact that traditional clone detection evaluation is not yet concerned 

with result ranking, current performance measures used by the clone detection community do not 

include the evaluation of ranking feature. Therefore, to be able to evaluate the quality of our clone 

search ranking approach, we use existing quality and performance criteria for ranked result sets 

commonly used by the IR search community. The detailed definitions of the measures in this 

chapter are adapted from Manning et al. [MAN08]. 

7.1. Requirements 

A key quality criterion used in the information retrieval domain for evaluating the quality of 

search engines is the relevancy to user expectation. That is, a search is considered to be successful 

if it locates documents that are not only related to the query, but also meet the end-user 

expectations [MAN08]. Therefore, a hit that only satisfies the relevance condition from an end-

user perspective is considered to be a true positive. For example, a result returned by the query 

“Java”, can only be considered relevant when one considers the user’s expectation [MAN08], 

which might be referring either to the coffee concept or the programming language concept. The 

relevancy concept can be measured on a binary scale (relevant vs. non-relevant) or by using a 

more refined scale, which might consider different degrees of relevancy (e.g., highly relevant, 

relevant, marginal, and non-relevant).  

Benchmarks are required to measure the quality of result sets reflecting the feedback of either 

users or experts. They constitute the “gold standard” or “ground truth”. A benchmark or test suite 

includes three major parts: (1) the input data, (2) some queries, and (3) the pre-tagged dataset of 

relevant items. The dataset also typically includes relevance scores for each query and the input 
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data, with these scores being subjective to the human experts creating the benchmark. In cases 

when no benchmarks are available, user studies might be performed.  

7.2. The measure suite 

For evaluation of ranked result sets in source code search applications (e.g., [LEM11], [KLZ12], 

and [KLX12]), no single measure can be considered sufficient. For our study, we identified the 

following categories of measures that we consider to be essential for evaluating the clone search 

models. The detailed definitions of the measures in this chapter are adapted from Manning et al. 

[MAN08]. 

 Traditional measures. Traditional measures, such as recall or precision are typically used 

by the clone detection and search community to evaluate the quality of any unranked 

result (sets). These basic measures are widely accepted since they are easy to calculate 

and interpret. They are also frequently applied to search engines, even if they are not able 

to deal with ranked result sets. 

 IR measures for ranked results. Since most IR systems return result sets that contain 

some true positives (TP) and false positives (FP) within an ordered list, these measures 

evaluate the true positives and their rank (position) in the result set. Furthermore, 

similarity degree is exploited by a subset of measures in this category when all true 

positives are not equal in quality. 

 Measures for highly positive ranked results. In some cases there are only a few FP in the 

hit list, or even none at all. While all (most) hits are TP, some of the TP should be ranked 

higher than others based on their relevance degree to the user expectation. In order to 

evaluate the ranking among TPs, additional measures are required. 
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7.2.1. Traditional measures (unranked result) 

Precision and recall, introduced by Kent et al. (1955), are some of the most well established 

measures for evaluating unranked result sets. In IR they are typically based on the total number of 

(1) relevant items in the result set  , (2) total number of relevant items  , and (3) total number of 

items in the result set  . However, their application is limited, since in most cases the total 

number of relevant items is not known. 

           
 

 
 

        
 

 
 

Accuracy is widely used to measure the quality of classifications created by machine learning 

algorithms. However, it has been less commonly used for IR systems [MAN08], since the 

datasets being search/analyzed in this domain typically contain significantly more non-relevant 

(99%) items for a given query compared to relevant items (1% of all data). This problem, also 

known as skewed data problem, will lead to situations where the size of true negatives (  ) is 

large enough to cancel out the effect of other relevant values such as true positives (  ). Since we 

are dealing in our approach with an IR system and a large dataset that will lead to skewed data, 

accuracy as a measure will not provide a meaningful quality measure for our search approach, 

and therefore has been omitted from our evaluation.  

          
(      

(            
 

F-measure (introduced by Rijsbergen 1979) is another well-known candidate measure in this 

context. Typically, a tradeoff between recall and precision can be observed, and the importance of 

each measure as quality attribute might differ between users and application contexts. In some 

cases, e.g., regular Web search, higher precision is preferred, whereas in cases such as plagiarism 
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detection, high recall is expected. F-measure attempts to balance both by considering recall and 

precision. It is also possible to discriminate between importance of the precision and recall via the 

  value. F-measure is calculated using precision ( ) and recall ( ) using a weighted harmonic 

mean. 

          (      
   

(       
                        

The default F-measure (Balanced F-measure or   ) assigns equivalent weight to recall and 

precision (   ).  Due to the significant differences between recall and precision values, F-

measure uses a harmonic mean (which is always closer to the minimum value) instead of 

geometric or arithmetic mean. 

   
     

   
 

7.2.2. Measures for ranked result sets 

While many traditional measures like precision or recall are designed to evaluate unranked lists, 

such as an unordered set, the IR community has emphasized special measures for assessing the 

quality of ranked sets. In this section, we identify and introduce measures that are mostly adapted 

from IR [MAN08] to evaluate the ranked result set return by clone search models.  

7.2.2.1. First False Positive measure 

The commonly used evaluation criteria for search engines in the IR domain are the top displayed 

items (hits) in the result set. Studies in IR have shown that end-users tend to browse only the top 

items in a displayed result set [MAN08]. Furthermore, since search engines typically do not 

produce 100% precise results (some non-relevant hits might be displayed), search engines are 

expected to place as many true positives as possible in the highest ranked position of their result 

set (e.g., top-10). Therefore, the place of the first false positive in the displayed result list can be 
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used as a measure for evaluating the performance of search engines. For example, given two 

order result sets R1 and R2, with both result sets containing 10 hits (R1 = 

〈                             〉  and R2 = 〈                              〉 ), of which 

nine results are correct hits and one is a false positive (  ). While the precision for both results 

sets is 90% (9 out of 10 hits are correct), the user satisfaction for R2 would be considered higher, 

since the first false positive (FFP) occurs later in the ranked result set R2 (position 9 versus 2 in 

result set R1).  

Discussion. In clone search, one typically deals with a corpus that contains a significant 

amount of noise (irrelevant code fragments). Therefore, from a code/clone search perspective, our 

search approach has to deal with two major challenges: (1) being able to detect the few relevant 

fragments, and (2) assigning these true positive results a higher priority than the false positives in 

the result sets. In such cases, First False Positive (FFP) provides a result that is easy to understand 

and interpret.  

Weakness. Given the fact that the measure is highly dependent on the data and query 

characteristics, the applicability of the First False Positive measure to evaluate system 

performance is often limited. For example, if a corpus contains a skewed dataset with only   true 

positives for a given query, the best achievable result using this measure is    . This becomes 

an issue particularly in cases where the number   (true positives) varies considerably for different 

queries. Specifically, the First False Positive measure cannot be generalized since results cannot 

be averaged across different queries. 

7.2.2.2. “Precision at k” measure 

Precision at   (P@K) is a measure that reports the number of true positives within the hit list (top 

K), where   can be any positive number to reflect the window size for the assessment. However, 

window sizes of 10, 20, and 30 are typically used for   . The value of   is derived by the general 
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rule of thumb from the search engines Graphical User Interface design, where the first page 

usually shows only the top 10 hits. The measure itself is closely related to end-users quality 

perception, since users tend to consider only results on the first result page to be important and 

consequently are less likely to browse subsequent result pages. 

           
   

       
                                                         

This measure is in particular applicable when (1) the total number of relevant results is 

unknown and therefore no standard recall can be calculated, and (2) the number of returned items 

is too large to be fully validated, making the calculation of standard precision measures 

impossible. 

Weakness. While this measure is a good candidate for evaluating search engines, especially 

when no very detailed and strict evaluations (e.g., “first false negative” measure) are required, its 

major drawback is its dependency on the query. For example, in order to provide a fair evaluation 

using “Precision at 10” measure, at least 10 actual relevant items must exist in the corpus for all 

executed queries. Furthermore, similar to the first false positive measure, the results from this 

measure cannot be generalized (averaged) across queries. 

7.2.2.3. Normalized Discounted Cumulative Gain measure 

The Normalized Discounted Cumulative Gain (NDCG) measure assesses the quality of search 

engines and their ranking algorithms in terms of their ability of assigning higher ranks to high 

quality true positive answers. This measure takes into consideration not only the relevance of hits 

with respect to a query but also the order of the results. Therefore, it is possible to compare the 

search result set for each query with an oracle. These oracles are typically manually created result 

sets (for each query) in the form of a list of all possible answers. Moreover, each answer in the 

oracle must be assigned a relevance score that presents its similarity degree (to the query). This 
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oracle represents the best achievable result set and order, regardless of local search 

configurations, search algorithm, and search schema. The measure result is a number that can be 

used to compare different search and ranking schemata/configurations.  

Details.  DCG calculates the discounted cumulative gain achieved using a given search 

schema for query   when compared to the oracle with its manually assigned relevance scores for 

the top   hits. The output of DCG depends on the query and available data within the corpus 

(         ), and therefore it is not possible to compare the DCG of different queries with 

each other since the number of positive hits will depend on the data characteristics. To overcome 

this issue and to be able to summarize our study result we use NDCG, which is a normalized 

value of DCG. For the calculation of NDCG, we need to calculate the Ideal DCG (IDCG) first. 

     returns the ideal (highest achievable) DCG using the given relevance score set (from the 

oracle). Finally, using DCG and IDCG, we can calculate the final NDCG value. 

Since the output of the NDCG function is normalized, it can be used for both (1) query 

comparison and (2) as an averaged measure for the overall performance of a search engine. The 

ability to average the measure results can also provide a concrete single output value for 

performance comparison purposes. For example, in our studies we use this single output value to 

compare the performance of different search configurations (schemata). The maximum value for 

the NDCG function is 1.0 for a result set that exactly matches the one from the oracle, and the 

minimum value is 0.0 for result sets with no true positive. The function  (     returns the 

relevancy score for the given query and the corresponding hit from the oracle. 

    (      (      ∑
 (    

    (  

 

   

 

    (     
   (    

    (    
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 Weakness. The measure provides a fine-grained evaluation of the quality and ordering of 

result sets, providing a single value assessment that can, for example, simplify the comparison 

among different options or configurations of a system. However, the measure is only applicable 

when fine-grained ordering is important, otherwise measures such as Precision at K are preferred. 

Applying NDCG is expensive, for not only must all possible answers for each query be manually 

evaluated, it also requires a similarity score (e.g., identical, highly similar, similar, and irrelevant) 

for each answer. Nevertheless, NDCG is still considered as one of the state of the art search 

engine measures in the IR domain. 

7.2.2.4. Mean Average Precision measure 

Mean Average Precision (MAP), a single value measure, has been commonly applied to compare 

different ranking systems. For a single query experiment, the measure will simply compute the 

average of all precision at   , where    refers to the position of all relevant retrieved items in the 

result set. For experiments involving more than one query, the output is the average of all queries. 

MAP has been used to identify systems that assign a higher rank to relevant items.  

                     
 

| |
∑               

     

 

                                                    

    
 

| |
∑    

     

 

                                  

Weakness. MAP is an essential and low cost measure that does not require the creation of 

relevance scores (unlike NDCG). Only the positions of the true positives are necessary. However, 

since MAP does not include relevance scores, it lacks the ability to compare the relevancy-based 
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ranking of true positives. Moreover, it is generally only suitable for queries where a reasonable 

number of relevant items are available; otherwise its output can be biased. 

7.2.2.5. Mean Reciprocal Rank measure 

Mean Reciprocal Rank (MRR) is applicable in cases where FPs (non-relevant hits) are returned at 

the top of the result set, specifically before the first relevant hit. This measure takes into account 

the fact that there is huge difference between 5 and 10 but little to no difference between 500 and 

600, where the numbers are the rank of the first TP in the hit list. 

    
 

| |
∑

 

                          
     

 

                                  

Weakness. MRR focuses on the position of the first true positive in the result set, and works 

best for cases with (1) very few    , and (2) some     occurring at the top of the result set. 

Therefore, it can be considered a complementary measure to MAP that is best applied in cases 

when only a few relevant hits are reported and MAP is not suited.  

7.2.2.6. R-precision measure 

R-precision is equal to the output of Precision at R measure within the result set, with   being 

equal to |            |.              is the set containing all relevant results for a given query 

(which even could be incomplete sometimes). From a different point of view, it is equal to the 

recall at R. 

              
 

|            |
  

                                                                   (  |            |  
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Weakness. While the measure is useful to average its results (which is in contrast to the 

Precision at K measures), interpreting this measure is more difficult.  

7.2.3. Measures for highly positive ranked results 

In some cases, there is no (or only a few)    in the hit list (e.g., top 10). While all hits might be 

true positives, some true positives are typically ranked higher by end-users than others. Assessing 

this type of ranking requires measures to take into consideration the order of     in the ranked 

result set based on user preferences. Several measures have been introduced to assess the ranking 

performance of positive result sets [KZH10].  

7.2.3.1. Normalized Kendall’s   distance  

Kendall’s   measures the dissimilarity of the items’ order against the ideal order [LAP06]. 

Suppose   and   denote two orderings of same item set with size of  .  (     is the minimum 

number of switches between adjacent items to make the first ordered list identical to the second 

ordered list.  

     
   (    

 (     ⁄
 

7.2.3.2. Spearman’s rank correlation coefficient 

This measure compares the rank of each shared retrieved item in the two subject ranked lists 

denoted by   and   where number of items is equal to  .  

           
 ∑ ( (    (     

   

 (     
 

 (        (                                                                     
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Discussion. As Lapata [LAP06] pointed out, the main difference between Spearman’s and 

Kendall’s measures is that Spearman’s measure is more popular and focuses on the pure rank 

values, whereas Kendall’s measure has more emphasis on the relative order of items. 

7.2.4. Non-functional performance measures 

In our research context, non-functional measures can also have an effect on user satisfaction, 

mainly related to the ability to provide near real-time services for other applications. Among the 

measures that evaluate non-functional performance of a clone search engine are: (1) indexing 

time, (2) querying latency time, and (3) corpus size. These performance measures can be 

calculated automated and are simple to derive.   

7.3. Summary 

Assessing the quality of clone search (models) differs from traditional clone detection. While 

traditional clone detection approaches deal with unranked result sets where measures like recall 

and precision matter, they do not consider the order of the results being displayed. This is in 

contrast to clone search, where, as in other search approaches, the ranking of results (ranked hits) 

becomes a key quality criterion. While evaluation measures designed for unranked result sets are 

useful (e.g., precision and recall), other evaluation measures which are developed for ranked 

result sets must be adapted to provide a more comprehensive evaluation of a clone search model. 

As part of our research, we selected and summarized several ranked result set quality measures, 

originally used by the IR community [MAN08], for our clone search context. 
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8. Performance evaluation 

The preliminary insight regarding the feasibility of our solution and run-time behavior is provided 

by the data characteristic study in Chapter 6. In order to conduct a detailed performance 

evaluation study, we have used the gained insight to deploy a concrete instance of our clone 

search approach with our source code corpus, which contains source code facts from over 25,000 

open source Java projects [KLF12] that are crawled from the Internet. The key objectives of our 

evaluation is (1) to confirm that our proposed model can meet the core requirements of a clone 

search, such as scalability and fast response time and  (2) to compare the different search schemas 

(search configurations) supported by our model. 

Benchmarks are a commonly used approach for evaluating the quality of search engines. In 

order to be able to evaluate the different features of our model (SeClone), including both retrieval 

and ranking, we require a benchmark that meets a set of minimum requirements: the corpus (1) 

should be large to reduce the effect of individual outliers, (2) contains a set of representative 

queries (code fragments) to be used as search criteria, (3) includes a sufficient number of relevant 

Type-1, 2, and 3 clones, and  (4) covers the clones’ fine-grained relevance scores. To the best of 

our knowledge, there exists no clone search benchmark that satisfies all these requirements. 

Therefore, prior to our evaluation, we had to create such a clone search benchmark based on the 

mutation generation framework [RJC08][ROY09][SVJ13]. An overview of our benchmark 

creation process and the evaluation process is shown in Figure 11. As part of the benchmark 

creation, we take advantage of an existing mutation generation framework 

[RJC08][ROY09][SVJ13], which we used to automatically generate Type-1, 2, and 3 clones from 

50 randomly selected code fragments (query inputs). For these 50 code fragments, we generated a 
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total of 650 related Type-1, 2, and 3 clones. Note that 50 is the acceptable number of queries that 

a benchmark must cover [MAN08]. 

For the benchmark preparation, we injected not only these 650 clones (code fragments) 

generated by the mutation framework into our repository (which contains 356M LOC), but 

also performed an extensive manual inspection of ~80K code fragments for relevance score 

assignment. We then used this benchmark to assess SeClone’s search performance using the 

six measures introduced in the previous chapter, while analyzing over 32 different SeClone 

configurations (search schemata). This evaluation involved 1600 querying actions for which a 

clone search was performed, resulting in 117,000 search results (hits)
2
. The following sections 

describe in more detail our evaluation approach, its outcome, and the summary of our 

findings. 
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Figure 11.  The performance evaluation approach 

                                                      
2
 Note, 117,000 hits belong to the complete benchmark that includes 2,000 querying actions, with 400 

of these querying actions being used for our preliminary studies.  
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8.1. The candidate search schemas 

SeClone supports different configurations through its search schemata, which allow different 

search models, indexing granularities, and content transformation functions. From an end-user 

perspective, the selection of a search schema (configuration) is often the key to meeting the 

specific application needs. We conducted a detailed analysis based on 32 candidate 

configurations to determine their effect on the quality of the result sets and to be able to provide 

end-users with some guidance during the search schema selection. 

In chapters 3, 4, and 5 we introduced in detail the SeClone search schema and the two 

categories of options: (1) parameters related to the ranking approach (parameters:           ) 

and (2) parameters on how the data is processed for indexing and clone analysis (parameters: 

         ). We selected four ranking configurations and eight indexing (analysis) configurations, 

which provided us with 32 combinations (details are shown in Table 12).  

                                                                    

 

Table 12.  Selected SeClone search schemas for the evaluation phase 

The first parameter group (ranking) 
           

  

The second 

parameter group 

(indexing) 
          =

3
2

 search
 sch

em
as 

j.bnn 

(Jaccard coefficient similarity approach) 

 

x1.m1 

x1.m3 

l1.m1 

l1.m3 

c1.m1 

c1.m3 

w1.m1 

w1.m3 

w.nscn 

(Cosine similarity using natural frequency) 

w.ltcn 

(Cosine similarity using tf-idf like freq.) 

c.ltcj 

(Cosine similarity augmented with Jacacrd size similarity using tf-

idf like frequency) 

Total 4 Total 8 
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8.2. The corpus and environment configurations 

For the deployment of SeClone, we used a Linux-based system with a 3.07 GHz CPU (Intel I7) 

and 24 GB of RAM. During our run-time evaluation, a single process/thread schema was used, 

except for the Java virtual machine processes such as garbage collection. 

In order to evaluate the scalability, response time, and ranking, and to observe the handling of 

extreme noise, we require a reasonably large corpus. For the SeClone evaluation we originally 

created IJaDataset, a large multipurpose source code data set. The dataset contains Java source 

code data crawled and downloaded from major open source code repositories (e.g. Sourceforge) 

[UCI10]. The compressed raw data size is approximately 390 GB and contains 3,431,111 Java 

files from over 18,000 open source projects. After downloading the source code files [UCI10], we 

performed several data cleaning steps, such as: (1) we removed all non-Java source code and 

duplicate Java files, (2) using a Java parser, we detected and removed all unparsable files (a total 

of 14,386 files), and (3) we identified and excluded 197,056 Java interfaces, as interface files do 

not contain any significant amount of code. After these cleaning steps, our IJaDataset contains 

1,500,000 unique Java classes, with a total of 266,635,570 raw lines of code.  

The most recent version of the IJaDataset (Version 2.0) has been updated with data crawled 

in 2012 as part of our SeCold project [KLF12]. This dataset covers approximately 25,000 projects 

and includes Java classes without package specification (default package). The dataset is based on 

source code files that were downloaded from SVN, Git, and CVS repositories from SourceForge 

and Google Code. To remove high-level duplications in the dataset, only one Java File is selected 

for each available class name identified by its fully qualified name (FQN). During the filtering of 

such duplications, we were biased toward files that appeared in the "trunk" directory. The crawled 

data (with duplicated files) initially included 12 million files, but were reduced (through filter) to 

3 million files (2.7M regular Java class source code files and 140K files with default package). 
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We then successfully indexed all 356M LOC in the IJaDataset (Version 2.0) with SeClone to 

create a single, searchable corpus. 

8.3.  The benchmark 

A high-quality benchmark for clone search should not only include queries and their correct 

answers, but should also contain a variety of clone types (specifically Type-3 clones) for these 

queries. Having such a rich benchmark provides not only the basis for evaluating our core 

SeClone search engine, but also for evaluating its capacity for ranking and Type-3 detection. 

Using the mutation framework introduced in [ROY09], we created our initial benchmark using 50 

code fragments (queries) and their mutants in the form of Type-1, 2, and 3 clones. We selected a 

mutation framework configuration that automatically generates 13 clones (4 Type-1s, 3 Type-2s, 

and 6 Type-3s) for each query. In case of code insertion when generating Type-3 clones, the 

mutation framework uses random code snippets available in its corpus. An overview of the 13 

automatically generated clone variations using the mutation framework is given in Table 13. The 

generated clones were then included and indexed as part of our SeClone corpus. Using this 

mutation approach provides us with known true positives in advance. Therefore, we are able to 

(partially) measure the recall in addition to the other precision-like measures. It should be pointed 

out that since the corpus contains millions of indexed lines of code, SeClone will not only detect 

and retrieve the seeded clones, but will also most likely include other (correct) clones in the 

search results.   
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Table 13.  Available clones for each query in the benchmark and their details 

ID Description 

(changes comparing to the query) 

Clone type Our relevance score 

1 no change Typ-1 5 

2 changes in whitespace Typ-1 5 

3 changes in comments Typ-1 5 

4 changes in formatting Typ-1 5 

5 semantic renaming of identifiers Typ-2 4 

6 arbitrary renaming of identifiers Typ-2 4 

7 arbitrary change of an literal Typ-2 4 

8 replacement of identifiers Typ-3 3 

9 small insertion within a line Typ-3 3 

10 small deletion within a line Typ-3 3 

11 insertion of one or more line Typ-3 2 

12 deletion of one or more line Typ-3 2 

13 modification of entire line Typ-3 3 

 

8.4. Assignment of relevance scores  

As discussed earlier, when evaluating the performance of search engines, solely measuring true 

positives is not sufficient, since one also should consider the relevance (score) of the return search 

results (hits) with regard to a given search query. Therefore, for our evaluation, we assign scores 

in the range between 0 to 5 to indicate the relevancy of a hit to the given input query, with a score 

of 0 indicating that a particular result shows no relevancy (false positive in our research context), 

and scores between 1 and 5 denoting that a hit has some degree of similarity (true positive 

〈         〉 clone pair). Increasing scores indicate higher levels of similarity/relevance, with a 

score of 5 being an exact (Type-1) match. As part of creating our benchmark we have initially 

assigned relevance scores to the 650 cloned fragments that were generated by the mutation 

framework, indicating their relevancy to the corresponding (clone fragment) query. Table 14 

summarizes the basic guidelines we applied for assigning the relevance scores to clone fragments. 
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Table 14.  Relevance scores guideline 

The assigned score Scoring guideline 
0 Non-relevant 

1 Relevant (partial similar under Type-3) 

2 Relevant (Type-3 with modification of few lines) 

3 Relevant (Type-3 with one line different) 

4 Highly Relevant (Type-2) 

5 Highly Relevant (Type-1 / exact) 

 

Given the size of our corpus (25,000 projects and 356 MLOC), there is a good chance that 

other true positives might be reported during the evaluation process. The relevancy of detected 

and reported clone pairs depends not only on the returned injected clones but also on the non-

seeded and reported clones, which must also be considered as part of an overall evaluation. We 

therefore manually (1) evaluated all reported hits to determine if they are actual true or false 

positives and (2) assigned the proper relevance scores. 

Since it is both impossible and unnecessary to consider all potential hits retrieved for each 

query in the benchmark (a query might return thousands of hits), we decided to consider only the 

top K hits. While it is common best practice in the IR and search community to consider the top 

10 hits, we decided to increase the evaluation scope by including the top 60 hits. This extended 

evaluation is motivated by the characteristic of our corpus, considering the fact that we have 

generated and included at least 13 controlled, true positives (clones generated by the mutation 

framework) for each query. 

As part of our evaluation, SeClone reported for the 2,000 executed queries
3
 a total of 117K 

hits (clone results) using the top 60 criterion. We used some basic heuristics (based on hit size 

and keywords) to automatically identify some of the false positives and eliminate them from the 

manual analysis process. Using these heuristics, we were able to automatically eliminate 37K 

false positives that no longer needed a manual inspection/scoring. We then manually assigned 

                                                      
3
 400 querying actions out of the total 2,000 executed queries belong to our preliminary studies and 

testing 
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relevance scores to the remaining 80K results (32K distinct 〈         〉 pairs) following the 

guidelines (Table 14). Table 15 summarizes the details of the manual assignment of relevance 

scores. As part of the scoring process, we not only considered syntactical but also semantic 

similarities. That is, hits that can be considered as Type-3 and relevant (True Positive) in other 

application domains (e.g., clone detection) might be non-relevant in our context (due to the 

semantic and syntactical differences), and therefore receive a relevancy score of “0”. 

Table 15.  The evaluation steps and hits manual investigation details 

Property Value 
Total search schemas 32 

Total benchmark queries 50 

Total querying experiments 2000 

Result set limit Top 60 

Total retrieved hits 117K 

Total number of hits which are automatically ignored 

using heuristics 

7.7K   (size heuristic) 

28K   (keyword heuristic) 

Total number of hits which are tagged manually 81K   (32K distinct 〈         〉 pairs) 

Breakdown 

Relevance Score #hits 

0 34K 

1 14.9K 

2 3.6K 

3 15K 

4 4.9K 

5 8.8K 

8.5. Evaluation result 

After our initial review of the reported hits and their characteristics (Table 15), we selected six 

measures from our measure suite introduced in chapter 7. The evaluation showed that our clone 

search model is not only scalable and provides fast response times (~100 ms), but is also capable 

of successfully detecting Type-1, 2 and 3 clone types. Assessing the quality of our ranking 

approach shows that the model is capable of placing the true positives at the top of the result set. 

Certain search schemata were capable of achieving even a 100% recall and precision for top K 

(e.g., top 15) result sets. Since SeClone search schemas rank result sets based on their content 

similarity, in most cases, Type-1 and Type-2 clones (similarities) are consistently placed in the 
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correct relative order and position within the result sets. For Type-3 clones, the position in the 

result set depends on the dissimilarity between the clone and the query fragment.  

8.5.1. First False Positive 

Figure 12 provides a summary of the result for the First False Positive (FFP) measure based on 

the average values (for all queries) across all 32 search configurations (schemata). The results 

show that the first false positive appears on average at the 25th position for most schemas. 

Among the 32 schemata, four of them considerably outperform the others by achieving the first 

false positive at position 30. Furthermore, using the results provided in Figure 13, it can be 

observed how              and              schemata outperform the other schemata, 

specifically              and             .  

 

Figure 12.  Summary of First False Positive measure result (average values) 
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Figure 13.  Details of First False Positive measure result 

 

As discussed previously, we use two heuristics to reduce the number of hits for the manual 

relevance score assignment process. In order to evaluate the impact of these heuristics, we applied 

them on only half of the queries in the benchmark (queries 26-50), while we manually evaluated 

all hits of the other queries (#1 to 25). The results in Figures 14 and 15 show that our heuristics 

have not affected the overall outcome of the study considerably.  
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Figure 14.  First False Positive measure result (queries 1 to 25, without heuristics scoring) 
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Figure 15.  First False Positive measure result - only queries 26 to 50 

 

8.5.2.  Precision at K 

For our evaluation using Precision at K measure (P@K), we considered 7 different scenarios: K = 

10, 15, 20, 30, 40, 50, and 60. The motivation for evaluating these different K values was to 

provide us with a more comprehensive picture of SeClone performance as K increases. We 

limited the K value to a maximum of 60, since we only tagged the top 60 hits during our 

relevance score assignment step. Figures 16 and 17 show the precision at 10 and 15 results, with 

SeClone achieving 100% precision for both ranges. As expected, the precision values drop as the 

K values increase from 20 to 60 (Figures 18, 19, 20, 21, and 22). The major reason for this drop 

in precision is mainly related to data scarcity, since as part of our benchmark we generated 

(through the mutation framework) and injected only 13 confirmed clones for each query. That is, 

precision at values higher than 13 depends on data available in the corpus, which is non-
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deterministic given the size of the corpus and the differences among queries. An interesting 

observation can be made for Precisions at K=20, 30 and 40 for schemata such as             , 

when the second index uses the m transformation function at the single line granularity level. In 

these cases, the search schemas actually achieved the highest median value. This observation can 

be explained by the fact that for such a fine-grained (line-level) index, the search engine was able 

to detect a large enough number of true positives in the corpus to achieve higher recall. 

 

Figure 16.  Summary of Precision at 10 measure 
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Figure 17.  Summary of Precision at 15 measure 

 

Figure 18.  Summary of Precision at 20 measure 
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Figure 19.  Summary of Precision at 30 measure 

 

Figure 20.  Summary of Precision at 40 measure 
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Figure 21.  Summary of Precision at 50 measure 

 

Figure 22.  Summary of Precision at 60 measure 
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8.5.3. MAP 

As part of our evaluation, we further assessed the SeClone ranking feature using the Mean 

Average Precision (MAP), a single value measure typically used in the IR community to compare 

different ranking systems. For a single query experiment, the measure will simply compute the 

average of all Precision at    where    refers to the position of all retrieved relevant items in the 

result set. MAP is useful when the degree of similarity (relevance score) of true positives is not of 

importance. Figure 23 compares the 32 different schemata with respect to the MAPs. While most 

of the schemata achieved a MAP of close to 1 (best), we could also observe that, similar to the 

First False Positive study,              and              outperform the other schemata.  

We also studied the effect of our automated heuristics for benchmark tagging on the MAP. In 

Figure 24, one can observe that the results for queries 26-50 (after applying the heuristics) 

decreased slightly, providing more evidence that the heuristics have no lasting effect on the 

evaluation overall outcome. 

 

 

Figure 23.  Summary of MAP measure results 
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Figure 24.  MAP measure results for queries tagged with (26-50)  and without (1-25) 

heuristics 

 

8.5.4. Normalized Discounted Cumulative Gain 

To evaluate SeClone ranking for applications where the relevance score of true positives are 

emphasized, we used the Normalized Discounted Cumulative Gain (NDCG). The average values, 

as well as details of our NDCG experiments, are shown in Figure 25 and 26. In general, the result 

supports and confirms our earlier observations. Additionally, Figure 26 highlights that from 

NDCG perspective, the x1.m3 index configuration outperforms the other configurations. 

 

Figure 25.  Summary of NDCG values 
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Figure 26.  Details of the NDCG studies 

 

8.5.5. Kendall tau 

While the focus of the previous studies was mainly on evaluating the performance of the different 

schemata, in this study we focus the ability of two candidate schemas to achieve a perfect detailed 

ranking, where the ranking would report Type-1, Type-2, and Type-3 clones based on the scoring 

guideline introduced in Table 13. Kendall tau is exploited as a measure for this study, as it is 

capable of providing a fine-grained comparison of highly positive result sets. 

The two candidate schemata are selected from amongst the schemas with promising results 

for FFP, P@K, MAP, and NDCG, with each candidate using a different ranking model (VSM vs. 

Jaccard). Figure 27 presents the Kendall tau results. All Kendall tau related calculations are made 

using Wessa online services [WES12]. The result shows some difference among the two 

             and              schemata. Although the median values for both schemata are 
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close, the Jaccard coefficient search schema (               outperformed the VSM-based 

schema by providing consistent (better) ranking results. 

 

Figure 27.  Kendall tau based comparison of              and              schemas 

8.5.6. Response time 

A key requirement for SeClone, seeing as it is a specialized search engine, is that it can provide 

search results in near real-time. In what follows, we discuss SeClone’s run-time performance 

based on the execution of our benchmark queries. For the analysis, we consider clone lookup 

times, ranking, and sorting as the total response time, which is reported in milliseconds. It should 

be noted that to deploy the SeClone server application and its indices, SeClone requires ~10 

minutes for the incremental indexing of the encoded code patterns for the 356M LOC (3M Java 

files). 

Figure 28 summarizes the observed response times for the 50 queries executed for each of the 

32 schemata. The results show that some of the schemata (e.g.,              and            ) 

are not only capable of returning high quality search results, but also provide these results in near 

real-time, with response times around 100   . The analysis also shows that both index 
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granularity and transformation function can affect the response times considerably (e.g., all l1.m3 

configurations vs. the remaining configurations). Moreover, our detailed analysis also indicates 

that the search approach (e.g., Jaccard coefficient) does not affect response time. The response 

times of each query across all schemata are summarized in Figure 29, highlighting that SeClone 

performance (i.e., response time) is close to constant for most of the queries.  

 

 

Figure 28.  SeClone response time using a 356M LOC corpus 
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Figure 29.  SeClone response time using a 356M LOC corpus grouped by query number 

 

8.6. Summary 

Our performance assessment of SeClone shows that the non-positional multi-level indexing 

approach for clone search can, depending on the search configuration, achieve approximately 

complete precision and recall for top K, with K being equal to the number of known positive 

answers/mutants. Moreover, our studies also showed that SeClone detects and ranks Type-1, 2, 

and 3 clone types as true positives correctly in most cases by exploiting the defined ranking 

models which we adapted from the IR community.  

As part of our studies, we also observed that the l1.m3 indexing configuration will 

outperform the other configurations when both response time and quality are important. If there is 

less an emphasis on response time, the best recall (based on the Precision at K observations) and 

overall quality (NDCG observations) can be achieved using the configuration l1.m1 and x1.m3 

schemas respectively. Amongst the ranking schemas, the cosine similarity, augmented with 

logarithmic local and global frequency (      ) and Jaccard similarity (       , achieves the best 
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performance. Considering both indexing and ranking, we can recommend the              and 

             configurations as a default schema.  
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9. Bytecode clone search 

While source code clone detection is a well-established research area, limited work exists in 

finding similar bytecode and other intermediate code representations. We are particularly 

interested in exploiting our clone search model for finding similarities in bytecode content, since 

bytecode constitutes an essential part of the search space when one implements an Internet-scale 

code search engine (e.g., [BAJ12]).  

This chapter introduces SeByte, which is based on our clone search model (SeClone) and 

supports Java bytecode clone search. For the bytecode clone search problem, we adapted the two 

core ideas of our SeClone: multi-level indexing and information retrieval-based similarity search. 

In order to achieve high recall, we include two heuristics for Java bytecode clone detection, 

which can be considered as extensions of the SeClone’s multi-level indexing for bytecode 

content. (1) We include relaxation on code fingerprint, which only considers certain types of 

tokens for clone detection. (2) We include what we refer to as a multi-dimensional matching, 

which applies the clone detection algorithm separately and therefore independently for each type 

of token (dimension). Furthermore, the similarity search task for each dimension is delegated to 

the SeClone search model. Finally, we extend our original clone search approach to support 

semantic search [GUH10], which is motivated by the nature of bytecode content where each 

instruction includes additional embedded information such as data type. As a result, SeByte 

provides a scalable bytecode clone search model that also supports the ranking of result sets. For 

our evaluation of SeByte, we conducted a performance evaluation study on a dataset of 500,000 

compiled Java classes, which we extracted from the six most recent versions of the Eclipse IDE. 

The objective of this study was to illustrate that the SeByte search model is not only scalable, but 

is also capable of providing a reliable ranking of the result sets for bytecode content.  
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9.1. Java bytecode overview 

9.1.1. Instruction families 

Java bytecode is considered a stack-oriented language, with the stack being the major 

computation entity in the Java runtime environment. The compiler translates source code 

statements to their corresponding Java bytecode instructions, with source code usually being 

mapped to several bytecode instructions. Bytecode provides instructions to manipulate the stack, 

such as simple push and pops. A total of 256 instructions
4
 are defined in the Java bytecode 

reference model. These instructions can be classified in 10 major families (summarized in Table 

16) based on the Java 7 specification.  

Table 16 further highlights an interesting aspect of Java bytecode, namely the fact that many 

bytecode instructions include additional embedded information such as the data type for which a 

specific instruction is applicable. For example, several variations of the symbolic load instruction 

are available in Java bytecode (e.g., iload, iload_0, dload, lload, fload, and aaload), with the 

prefix specifying the data type that is being manipulated. Table 17 highlights how some implicit 

semantics are captured in these bytecode instructions and can be further interpreted for fact 

extraction. There are other pre/postfixes that are less popular, such as postfixes belonging to the 

“comparison instruction family” (e.g., “fcmpg” where “g” is referring to the presence of greater 

condition in the comparison function). 

As an example, Figure 30 shows a Java bytecode fragment as plain text, where the instruction 

in line 127 pushes an Integer with value 0. Line 122 shows a method call statement, which calls 

println from the java.io.PrintStream class. In this example, class and method names are 

automatically resolved from pointers to the string table.  

 

                                                      
4
 http://docs.oracle.com/javase/specs/jvms/se7/html/index.html 
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Table 16.   The Java bytecode instruction overview 

Instruction Family Description Example 

Data manipulation  This meta-family covers several areas such as: 

(1) load and store data onto/from the stack 

from/to local variables etc. (2) primitive 

arithmetic functions such as add, multiply etc. (3) 

data type conversion 

“dload” loads a Double 

local variable onto the stack. 

“dadd” sums up Double 

values. i2d converts Integer-

typed value to Double 

format. 

Load and store  The two instructions types are related to stack 

operations involving loading onto and storing 

from the stack. 

“dstore” stores a Double 

value from top of the stack 

to a local variable 

Arithmetic  This family provides primitive instructions 

required for arithmetic and logical computation. 

The required data  will be retrieved from the 

stack and the result will be saved onto the stack. 

The major families of functions are Add, 

Subtract, Multiply, Divide, Remainder, Negate, 

Shift, Bitwise OR, Bitwise AND, Bitwise 

exclusive OR, Increment, and Comparison 

“fadd”, “ishr” (Shift right 

Integer value) 

“ior”, “iinc” (such as 

var++), fcmpg (compare – 

the greater operand) 

Type conversion  The dedicated family for type conversion  “i2d” and “i2f” 

Object creation and 

manipulation 

Create, load, and store object or array instances. 

Note that Java provides dedicated instructions for 

array creation and manipulation. 

“new”, “newarray”, 

“getfield” (access Java 

classes’ fields), “iaload” 

(load an array of Integer 

type to the stack), 

“arraylength”, “instanceof” 

Stack management  Primitive operations required for stack 

manipulation. These operations changes the state 

of the stack directly 

”pop”, “dup”, “swap” 

Control transfer  Program control flow instructions. Several types 

of “if” are provided for simulation of all possible 

conditional branches. 

”ifeq”, “ifnull”, “goto” 

Method invocation and 

return 

The major instructions for handling method call 

statements are presented under this family. 

Although there are two major types which are 

invocation and return, specialized instructions for 

Object-Oriented semantics are available 

“invokevirtual” (the regular 

method call in Object 

Oriented where the receiver 

of the message is known in 

advance), “invokeinterface”, 

“ireturn” 

Throwing exception  “athrow” 

synchronization The primitive instructions for synchronization in 

case of concurrency. Note that the specified 

synchronization semantics at the source code will 

be handled using monitor enter and monitor exit 

“monitorenter” specifies 

entering the secured code 

block in terms of 

concurrency. 
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… 

122: invokevirtual   java/io/PrintStream.println:(I)V       

123: astore_1      

124: aload_1       

125: arraylength   

126: istore_2      

127: iconst_0      

128: istore_3      

129: iload_3

130: iload_2

… 
 

Figure 30.  Java bytecode example (presented as plain text) 

 

 

Table 17.  The symbol table assigned to known data types by Java bytecode 

Symbol   The corresponding type 

a  reference i   integer s   short l   long 

c   character b   byte f   float d   double 

 

9.1.2. Motivation and challenges  

Similar to the other low level languages, Java bytecode uses machine instructions to represent 

basic functionalities such as conditions and loops. Different types of tokens, such as Java virtual 

machine instructions, strings, method names and Java type names, are available in the bytecode 

representation. These tokens form the code fingerprint, which we use as input data for our 

research. Throughout the chapter we use Java bytecode and bytecode keywords interchangeably 

to refer to any content similar to the textual representation created after our first extraction step. 

Motivation. Clone detection at bytecode level can detect clone pairs that might not be 

syntactically similar at source code level but are in fact semantically similar. The compilation of 

source code to a bytecode format generates a unified representation of source code, which is 

based on the transformation of syntactic dissimilarities of various loops and conditional blocks in 
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the source code to the unified format. As a result, the bytecode representation can facilitate 

“semantic” clone detection even if syntactical matching is considered. 

Challenge. While compilation techniques such as method inlining are useful for run-time 

performance optimization, they also introduce new challenges. For example, the two methods in 

Figure 31 could be detected as clone pair with high confidence using the source code 

representation. However, detecting them as clones at the bytecode level is inherently more 

difficult since its success depends on the original size of the send() function in the first method 

block. Due to the method inlining effect, these two method blocks might end up with completely 

different sizes.  

Void method_original(){

a.copy(a);

send(a);

a.flush();

a.close();

}

Void method_cloned(){

a.copy(b);

a.flush();

b.close();

}

Suppose, send() is a static method 

which will be considered for inlining 

during compilation.

 

Figure 31.  An example with one line dissimilarity at source code level, at the bytecode level 

due to method inlining effect, the actual bytecode dissimilarity depends on the size of method 

send() implementation. 

9.2. SeByte data presentation and manipulation approach 

A major part of clone detection revolves around matching code content. The state of the art is to 

consider a sequence of source code statements as a single fused information source to be 

compared. In contrast to the current approaches, we include a heuristic called relaxation on code 

fingerprint, which leads to a multi-dimensional comparison approach that is described in detail in 

this section. Instead of comparing code content as lone fused fact sequences, we extract different 

pieces of information based on their token types, each of which corresponds to a dimension in our 

approach. This approach is motivated by the fact that each Java bytecode statement (Figure 32) 

can contain several predefined types of information in a single line of bytecode, such as 

instruction, class and method name. 
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Each of these dimensions presents a specific perspective of a method block and its 

characteristics. In our multi-dimensional approach, we then compare these dimensions 

independently using a clone detection algorithm to detect candidate clone-pairs. We then merge 

the different result sets created from the analysis of the individual dimensions to create our final 

clone pair set. 

Figure 32 Step B shows an illustrative example of using two different dimensions as part of 

the relaxation on code fingerprinting. In the bytecode column, Java type fingerprints are marked 

as bold and method names are underlined. The first dimension contains the names of accessed 

Java types. The second dimension only contains the names of the called methods. Based on their 

actual appearances in the bytecode, all dimensions will be represented using ordered sequences. 

Due to our relaxation heuristic, it is possible to ignore the other information resources.  

A- Converting to text

     674: invokevirtual #50     // Method Player.getEurope()
     677: ifnull        852
     680: aload         12
     682: invokevirtual #51      // Method Player.initializeHighSeas()
     684: invokevirtual #50      // Method Player.getEurope()
     687: invokevirtual #50      // Method Player.getEurope()
     690: invokevirtual #52      // Method Europe.getUnitList()
     693: invokeinterface #70   // InterfaceMethod List.iterator()
     698: astore        13
     700: aload         13
     702: invokeinterface #71   // InterfaceMethod Iterator.hasNext()
     707: ifeq          52
     710: aload       13
     712: invokeinterface #72   // InterfaceMethod Iterator.next()
     717: checkcast     #53         // class Unit

Java Bytecode in text format

Java Bytecode 

Files

Input

B- Fingerprinting

{Player, Player, Player, Europe, List, Iterator, 

Iterator, Unit}

{getEurope, initilizeHighSeas, getEurope, 

getEurope, getUniList, …}

Java Typ
e
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Figure 32.  Examples for Java bytecode fingerprinting 

Motivation #1. The underlying rationale for the relaxation on code fingerprint is to develop a 

robust clone detection approach that can survive extreme dissimilarities when they are limited to 

a specific dimension. Using our multi-dimensional matching, we can increase the recall by 

comparing each data family independently. Therefore, dissimilarity in each dimension is limited 

only to its corresponding result set.    
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Motivation #2. Our multi-dimensional approach also reduces input data size (search space) 

for the clone detection process, since each dimension only contains a subset of available data that 

will be considered for comparison. In our example (using two dimensions), we use either Java 

types or the names of called methods. Figure 33 illustrates this reduction in terms of number of 

tokens to be analyzed. Using this fingerprinting approach for the bytecode datasets (Table 18), we 

were able to achieve a reduction in data size of 50-80% approximately, where the number of 

tokens in each dimension (e.g., method or type columns) is compared to the total number of lines 

in the raw data (i.e., the regular bytecode column). Therefore, the multi-dimensional approach not 

only supports the detection of clone-pairs with extreme pattern dissimilarity, but also improves its 

scalability by several folds.  

  

Table 18.  Prelimaniry bytecode datasets 

Dataset Size (#files) Application Context 
Bytecode Source code 

EIRC 83 64 Network-based comm. client 

Freecol (server) 220 79 Server application 

Freecol (full) 1120 570 A strategy-based game 

HBase 1093 448 Database system 
 

 

Figure 33.  Effects of the relaxation on code fingerprint on data size reduction (with respect 

to the raw data / number of lines) 
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9.3. SeByte search approach 

As discussed, Java bytecode contains less ambiguity compared to the higher-level languages, due 

to the availability of additional explicitly embedded information. For example, bytecode level 

summation instructions explicitly include the data type they are capable of manipulating as part of 

the instruction. As a result, for each primitive data type, there is a dedicated “add” instruction 

(e.g., iadd and fadd). Similarly, object creation/access, method call, and field access instructions 

embed the data types (or other metadata). For example, in line 122 Figure 30, the type of message 

receiver (i.e., println) is already resolved not only for the receiver class name (PrintStream), but 

also for the actual implementation captured by its fully qualified name (java.io.PrintStream) and 

the file address. Although, from a clone detection/search perspective, input data with less 

ambiguity is typically preferred (to improve precision), it reduces the recall of Type-2 clone 

detection. 

Figure 34, illustrates the challenges of detecting clones at Java bytecode level versus source 

code level. While only one token (i.e., +) is used to present the add functionality at source code 

level, the bytecode representation actually depends on the source code’s implicit semantics. As a 

result, the x=x+y source code can have four possible corresponding bytecode level 

representations (depending on the actual data types of variables x and y). This issue becomes 

even more challenging with the inclusion of other statements (e.g., var.println()). There 

exist       different bytecode interpretations for the original source code fragment, where N 

is the number possible instructions (available for method calls) and M is the number of possible 

types. As a result, while blocks A and B might be considered identical clones (Type-1) at the 

source code level, their bytecode representation could be different, and therefore their clone type 

could be different as well.  
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var.println();

x=x+y;

var.println();

x=x+y;

var.println();

x=x+y;

var.println();

x=x+y;

var.println();

x=2+1;

var.println();

x=2+1;

var.println();

x=2.0+1.0;

var.println();

x=2.0+1.0;

… 

invokevirtual   java/io/PrintStream.println:(I)V

iadd

… 

… 

invokevirtual   java/io/PrintStream.println:(I)V

iadd

… 

A.A. B.B. C.C. D.D.

Interpretation of the block A at bytecode

One of the numerous possible interpretations of the block A

(4 x N x M possibilities)

x4

xN xM

… 

invokevirtual   java/io/PrintStream.println:(I)V

dadd

… 

… 

invokevirtual   java/io/PrintStream.println:(I)V

dadd

… 

Possible interpretations of the block D

(N x M possibilities)
xN xM

Interpretation of the block D at bytecode

invokevirtual
Invokeinterface
...

iadd
dadd
ladd
fadd

java.io.PrintStream
java.io.DataOutputSream
...

invokevirtual
Invokeinterface
...

java.io.PrintStream
java.io.DataOutputSream
...

 

Figure 34.  A few examples showing the differences between source code and bytecode 

clone detection 

9.3.1. Existing solutions 

In cases where the input data contains more information than the clone detection algorithm 

requires or can process, filtering and normalization are applied. For source code content, 

normalization is commonly used to remove unnecessary differences so that pattern-matching 

algorithms can achieve higher recall. For example, many approaches [HUM10][KAM02] replace 

token names (e.g., class names) with predefined symbols (e.g., $ or enumerated $ where the order 

information must be preserved, such as $1, $2). By using such normalization approaches, 

detection of Type-2 clones at source code level becomes feasible. Similarly, normalization for 

intermediate language has been proposed in the literature, e.g., Baker et al.’s for Java bytecode 

[BAK98] and our work on .NET intermediate language [ALO12]. 
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9.3.2. Our solution - semantic search 

Existing solutions for intermediate languages have focused in the past on the use of data filtering 

and normalization, which often involves some form of data loss, to prepare the input data for 

clone detection algorithms. While this approach works well for clone detection, the information 

loss caused by the filtering will restrict its applicability for clone search specifically in the 

bytecode context. A key aspect of any search approach is its ability to differentiate and rank hits 

based on the closeness of hits to the query. However, the data loss (including semantics) through 

the data filtering used by traditional clone detection approaches will affect their ability to provide 

an accurate ranking. 

For example, a user is looking for code fragments that implement the summation of two 

numbers, in particular the summation of float type. In this example, search results containing a 

float summation corresponding to a Type-1 clone, such as fragment D in Figure 34, should be 

ranked higher than research results containing summation of other data types, e.g., summation of 

integer numbers such as fragment C in Figure 34 - i.e., Type-2 clones. Likewise, semantic 

information associated with other bytecode level instructions can be used to enhance the search 

and ranking processes. This issue can be solved by adapting the semantic search concept 

[GUH10]. In order to support semantic search in our approach, we require access to two types of 

information: existence and degree of similarity (between two tokens). In what follows, we define 

both the existence and degree of similarity in our research context, which will be used to 

semantically rank the search results.  

Existence of Similarity: Given the classification of bytecode level instructions, it is possible 

to identify similar instruction types based on their relationship with each other. These similar 

instructions can be identified by analyzing the associated tokens in the domain of discourse. For 

example, in Figures 35 and 36, iadd and java.io.PrintStream can be associated with other tokens 

either in the instructions or inheritance tree. The key idea is that these association links can be 
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used to help the interpretation of similarities between tokens, and therefore allow us to infer that, 

for example, an iadd (add for integers) token is similar to dadd (add for doubles) and other 

siblings in the same graph (e.g., the semantic network).  

Degree of Similarity: While the existence of similarity only identifies whether two token are 

related (e.g., iadd is related to dadd and XOR), their actual degree of similarity might differ. In 

addition to the presence of links, the distance between tokens can be used to interpret their degree 

of similarity. In our example (Figure 35), both iadd and dadd are closer to each other than XOR, 

since they both belong to the Summation family (Figure 35). Including these additional semantics 

in our search process allows us to assign different ranking to the dadd and XOR occurrences for 

the given token iadd (part of the query), which we capture by our degree of similarity measure.  

SummationSummation

Arithmetic ActivityArithmetic Activity

iaddiaddfaddfadd dadd dadd......

XORXOR......

A. Direct siblings

C. Associated instructions B. The Add family

D. The generalized notion

The node under 

investigation

 

Figure 35.  A slice of domain of discourse (i.e., Java bytecode specification) related to iadd 

instruction 

java.lang.Objectjava.lang.Object

java.io.FilterOutputStreamjava.io.FilterOutputStream

java.io.OutputStreamjava.io.OutputStream

java.io.PrintStreamjava.io.PrintStreamjava.io.BufferedOutputStreamjava.io.BufferedOutputStream java.io.DataOutputStream java.io.DataOutputStream......

java.io.PipedOutputStreamjava.io.PipedOutputStream......

A. Direct siblings of the PrintStream

C. Associated types to the PrintStream B. Direct Super type of the PrintStream

D. Indirect Super types of the PrintStream

The node under 

investigation

 

Figure 36.  A slice of domain of discourse (i.e., the program inheritance tree) related to 

java.io.PrintStream token 
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9.4. Bytecode ontology 

For the successful implementation of our bytecode level semantic search approach, we require a 

type of semantic network (e.g., [QUI67]) that formalizes the concepts and their connections. We 

created this semantic network as an ontology based on the Java specification (e.g., Figure 35 and 

Table 16). The ontology called Bytecode Ontology (byteon) represents a hierarchical 

conceptualization of bytecode instructions, and includes all 256 bytecode instructions. All 

instructions are classified into families of related instructions. As discussed earlier, at bytecode 

level, ten major families can be distinguished (see Table 16). We extend this initial classification 

by including (1) additional classifications (horizontal extension), and (2) hierarchies between 

families (vertical extension). For example, intermediate concepts, such as “IntegerAccess”, are 

added to associate all functions defined over integer data types.  

We manually created this ontology by reviewing the Java bytecode instruction specification 

covering all 256 instructions. The resulting bytecode ontology and its documentation are 

available online at http://secold.org/projects/sebyte. The ontology contains 296 concepts (40 

family entities and 256 instructions). Figure 37 provides an overview of the high-level concepts. 

A complete overview of the ontology is shown in Figure 38, with its major families being labeled 

by circles. The complexity of the graph is high due to the large number of links (~650 links), 

since most instruction types belong to several families. 
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Access Node Expanded (Limited to the very high-level nodes)

 

Figure 37.  Partial preview of Bytecode Ontology
5
 

 

                                                      
5
 Created by http://protege.stanford.edu/ 
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Figure 38.  Bytecode Ontology overview highlighted with the most popular families
6
 

 

  

                                                      
6
 Created by http://gephi.org/ 
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9.5. SeByte – a Java bytecode clone search approach 

In what follows, we provide a more detailed implementation overview of SeByte and its 

major processing steps (Figure 39). During the first processing step (converting to text), a 

conversion of bytecode content to plain text takes place. The plain text constitutes the input data 

for the later phases. The plain text content is used by the SeByte parser for dimension population, 

using relaxation on code fingerprints. In our current implementation, SeByte maintains three 

dimensions: type, method call, and instruction fingerprints. This three-dimensional model is then 

used by SeClone multi-level indexing approach to create an index for each dimension. Finally, we 

take advantage of the clone search functionality provided by our SeClone search model to search 

for bytecode clones. In order to support the search requirements for bytecode content, we extended 

the SeClone core algorithm with the semantic search capability. Our heuristic-based semantic 

search implementation takes into consideration both existence and degree of similarity, which are 

modeled by the ontology.  

A- Converting to text

Java Type Repository 

(Dimension #1)

Method Call 

Repository 

(Dimension #2)

     674: invokevirtual #50     // Method Player.getEurope()
     677: ifnull        852
     680: aload         12
     682: invokevirtual #51      // Method Player.initializeHighSeas()
     684: invokevirtual #50      // Method Player.getEurope()
     687: invokevirtual #50      // Method Player.getEurope()
     690: invokevirtual #52      // Method Europe.getUnitList()
     693: invokeinterface #70   // InterfaceMethod List.iterator()
     698: astore        13
     700: aload         13
     702: invokeinterface #71   // InterfaceMethod Iterator.hasNext()
     707: ifeq          52
     710: aload       13
     712: invokeinterface #72   // InterfaceMethod Iterator.next()
     717: checkcast     #53         // class Unit

Java Bytecode in text format

Java Bytecode 

Files

Input

B- Fingerprinting
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Figure 39.  Clone search approach for Java bytecode (token-level)  
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9.6. SeByte performance evaluation  

As discussed in the previous chapter, performance evaluation of clone search engines differs from 

clone detection evaluation. A key requirement for evaluation was not only to have a sufficient 

large dataset, but that the dataset must also contain (1) a few highly similar clones, (2) several 

relatively similar clones, and (3) a large number of irrelevant fragments. A dataset that meets 

these requirements allows us to evaluate our search approach in situations where, for each query, 

the number of irrelevant fragments (noise) will be considerably larger than the number of actual 

clones, which makes the resulting ranking an even more challenging task. Therefore, for the case 

study, we have created a dataset consisting of bytecode (including all bytecode dependencies) 

from the latest six major versions of Eclipse IDE (2007 – 2012). Table 19 summarizes the dataset 

details and the processing time. 

Table 19.  The Eclipse dataset overview and processing time report 

Feature Value 
Total #Jar (library) files 3,900 
Total #file (Java class) 482,768 
Total #LOC (bytecode level) 73 M 
Total #method 3,898,475 
Total #significant method (min 2 token) ~1,780,000 
Total #significant method (min 5 token) ~780,000 

Processing time (seconds) 

Jar file bytecode extraction (unzipping + 

disassembling) 

3422  

Crawling (local file system) 0.802738268 

Fact processing 267 
Index construction (+fact processing) 755 

 

9.6.1. SeByte search schema 

For our performance evaluation, we use three parameters (dimensions), which are represented in 

our search schema by a triple (     ), where I indicates the weight of the instruction dimension, 

M the weight of the method, and T the weight of the type dimensions, indicating whether a 

dimension is considered to be “leveraged” or “regular”. In the case of leverage, its similarity 

score is given a higher priority during the final ordering (when search result sets of all three 
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dimensions are being merged) compared to regular similarity scores. Furthermore, our search 

schema does not restrict the number of dimensions that can belong to a particular group 

(leveraged or regular), therefore allowing all dimensions to belong to the same group (and 

therefore have an equal weight). We use   to denote that a dimension is leveraged, and   to 

indicate that a dimension has a regular weight. For example, in the context of our case study, the 

triple     indicates that the instruction and type dimensions have a regular weight, while the 

method dimension will be leveraged. Throughout our case study, we evaluated all seven possible 

combinations and their effect on the performance of our clone search model. 

9.6.2. First False Positive measure 

From a clone search viewpoint, our search model deals with two major challenges: first, being 

able to detect the few relevant fragments, and second, assigning a higher priority to these true 

positive results than to the false positives in the result sets. On average in the corpus used for our 

case study, only 6 out of ~1.7 million code fragments (for each search) were highly relevant code 

fragments, whereas almost all of the remaining ones were non-relevant. We assessed the quality 

of our search and ranking approach using the First False Positive measure, which returns the 

position of the first false positive hit in the result set. For our evaluation, we randomly selected 20 

queries that we tested across all 7 possible search combinations. We believe this measure is one 

of the strictest measures when evaluating the performance of the clone search system, especially 

in cases such as ours, where the corpus contains lots of noise (irrelevant code fragments). We 

manually evaluated the top 30 hits of the 140 result sets (~4200 clones/hits) to determine the true 

and false positives. Figure 40 summarizes the results from our manual evaluation in terms of the 

position of the first false positive within the top 30 hits.  

The analysis of SeByte’s performance results (Figure 40) shows that the schemata perform 

quite differently when placing the first false positive in the ordered result set. In addition, we can 

observe that a few schemata almost consistently outperform the other schemata. The overall best 
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performance was achieved with the     search schema, which leverages the method dimension 

over the other two dimensions. This schema places the first false positive at 6th position in the 

worst case (excluding the single exception).  This is in contrast to the     search schema, 

which placed the first false positive within its top 3 answers for 12 out of 20 queries, and 

therefore can be considered as a poor configuration.  

 

Figure 40.  Summary of the First False Positive measure study 

 

9.6.2.1. Precision at K measure 

Precision at K can be considered as a complementary measure for the first false positive 

evaluation. However, the major limitation of this measure is its query dependency. For example, 

in order to provide a fair evaluation using “Precision at 10” measure, at least 10 cloned fragments 

(true positives) must exist in the corpus for all executed queries. We therefore had to split our 

candidate queries into two subsets: (1) queries with less than 10 actual cloned fragments in the 

whole corpus, and (2) queries with more than 10 cloned fragments. We selected a “Precision at 5” 

measure for the evaluation of our queries with less than 10 clone fragments. For the second query 

subset, we used the standard “Precision at 10”. We manually evaluated the top K hits of 40 
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queries, which we executed across all seven schemata (2100 fragments in total) to calculate their 

precision at K.  

Figures 41 and 42 summarize the results from our manual evaluation, which showed that for 

both sets, the     schema provides the best overall results, achieving at least a 90% precision 

(excluding certain outliers which are tagged in Figures 41 and 42). For the outlier cases, the 

precision for the     schema drops to 40%. Figures 43 and 44 provide a more detailed analysis 

of the different schemata based on the individual queries. It should be noted that there is no pre-

defined order among the queries in Figures 43 and 44. We added the curves to improve the result 

interpretation for each schema. From Figures 43 and 44, one can further observe that the     

schema achieves the best overall performance. Some schemata, such as    , show a significant 

fluctuation in their performance, with their precision being between 100% and 0%. 

 

Figure 41.  Summary of the Precision at 5 measure study 
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Figure 42.  Summary of the Precision at 10 measure study 

 

 

Figure 43.  Details of the Precision at 5 measure study 
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Figure 44.  Details of the Precision at 10 measure study 

 

 

9.6.3. NDCG measure 

This measure has been used to provide a fine-grained evaluation of the quality and ordering of 

result sets. However, the measure should only be applied when the average value or evaluation of 

fine-grained ordering is required. Otherwise, measures such as Precision at K are preferred. 

Nevertheless, NDCG is one of the state of the art search engine measures commonly used in the 

IR domain. For our evaluation, we again selected 20 queries and their clone results, with each 

query returning at least 30, but fewer than 100 matches. In order to create an oracle for each 

query (required by NDCG), we manually evaluated a total of 1481 candidate clone pairs and 

assigned them a similarity score between 0 and 3. We used a similarity score of 0 to indicate 

totally irrelevant pairs (100% False Positive), whereas similarity scores of 1, 2, and 3 denote the 

presence of a clone pair with some degree of similarity. The 20 queries and their manually tagged 

set constitute the oracle that we used for our study. In total, we retrieved 10,367 hits after 

executing the 20 queries across all seven search schemata. Figure 45 presents the NDCG value 

for all query-search schema pairs. Again, there is no ordering among queries, and the lines in the 
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figure are only added to improve the readability. Figure 45 also includes the average NDCG for 

each schema across all queries.  

In summary, while some of the schemata achieve either close or slightly above average value 

(e.g.,     with 0.87 NDCG), the     search schema again outperforms the other schemata 

by achieving, on average, a 0.88 NDCG (Figure 45). Overall, considering the result of all 

measures altogether (i.e., First False Positive, Precision at K and NDCG),     was the most 

reliable search schema for the bytecode clone search problem. 

 

 

Figure 45.  Details of the NDCG measure study presenting the averaged behaviour of 

schemata 

 

9.7. Summary 

In this chapter, we introduced SeByte a concrete solution for adaptation of our core clone search 

model (SeClone) for Java bytecode. Our solution extends SeClone based on the observed 

characteristics of the bytecode language. Using the provided performance evaluation, we can 
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conclude: (1) SyByte can be used for clone search applications on bytecode, as some of the 

search schemata provide acceptable results, and (2) there is at least one schema (i.e.,    ) 

which performs well considering all three measures.  
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10. Adaptation of the clone search model for pragmatic    

reuse 

Source code examples play a major role in programming, and provide an intrinsic resource for 

learning [NYK02] and re-using [ROS96][JON92]. A lack of available source code examples has 

been considered to be a major drawback of learning and improving coding [ROB11] during 

software development, as code examples can accelerate the development process [MAN05], and 

increase the product quality [MAR09]. Since it is not common in software development to 

explicitly document code examples [HOL05][SIN98][WAN13], programmers have to rely on 

manually searching through previously written projects (e.g., [WAN13]) and code repositories 

(e.g., sourceforge.net) for code examples. However, not every code fragment that meets a query 

criteria should be considered a good code example, as a good example should also be concise, 

self contained, and easy to understand and integrate [HOL05][MIS12][WAN13]. Throughout this 

chapter, we refer to such a code fragment as a working code example. Such working code 

examples can spawn a wide range of application context, varying from API usage (e.g., how to 

use JFreeChart library to save a chart) to basic algorithmic problems (e.g., bubble sort). 

In this chapter, we discuss how clone search models can be adapted as an alternative solution 

to the current approaches (Chapter 2) to the problem of detecting concrete working code 

examples (i.e., spotting) for pragmatic reuse and program synthesis. Spotting these examples is 

challenging, since tradeoffs among a variety of criteria, such as popularity, conciseness, and 

completeness of a code example must be taken into consideration [HOL05][MIS12][WAN13]. 

The spotting process itself consists of two phases: (1) finding some abstract solutions that satisfy 

a given query, and (2) locating the code fragments that satisfy the solutions. Both steps are 

considered challenging, as it is often the case that hundreds of potential matches are found in a 
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large-scale corpus. In this chapter, we demonstrate how a clone search model can satisfy these 

two search problems. Furthermore, the clone search-based approach supports (1) different types 

of code examples that are not limited to API usage, and (2) free-form querying, where, for a 

      {                   } , each term can be a data type, method name, or concept 

(e.g., download or bubblesort). This is different from most of the earlier work (e.g., [BUS12]), 

where it was necessary to write either a partial code fragment, or to provide the API names and 

data flow information (e.g.,              ) when formulating a query.  

10.1. Characteristics of the working code examples 

Although there is no formal definition of what constitutes a good query result, several features of 

a working code example are discussed in the literature. Table 20 provides a brief summary of the 

features and measures that are commonly used for evaluation purposes. The support for these 

features should lead to a search approach that can differentiate good matches from among the 

millions of potential matches (i.e., code fragments) available in repositories. 

Table 20.  Features and the related measures for identifying the working code examples 

 Feature Measures and additional comments 
Conciseness [BUS12] [MAN05] 

[THU07] 

 

The fragment must focus on a given use case. It can be measured via: 

 size (LOC) 

 number of usage 

 irrelevant code (#other unnecessary tasks) [KIM10] 

Correctness [KIM10] - 

Readability & self understanding e.g., well-chosen variable name [BUS12] 

Completeness  Well-typed [KIM10] [BUS12] (including intermediate) 

 Variable initialization 

 Correct control flow [BUS12] 

 Exception Handling [BUS12] 

Successful integration [HOL09] 

 

The end-user should be able to successfully apply the recommended 

answer onto her code. 

Result set qualtiy  Succinct [WAN13] 

 High-coverage [WAN13] 

 Representativeness [KIM10] [BUS12] 
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10.2. Schematic approach and its challenges  

As discussed in the literature (e.g., [HOL05]), a plain matching or standard relevance-based IR 

search system will fail to provide code examples that meet the features (requirements) described 

in Table 20. In this chapter, we describe and discuss the schematic approach for spotting working 

code examples (Figure 46). The key to this approach is the use of data mining approaches to 

extract popular abstract solutions from a comprehensive code corpus. These abstract solutions 

will then be used to recommend either the next potential steps (e.g., [WAN13]) or to complete 

code examples (e.g., [MIS12]). Since several solutions can be matched to a given query, the 

popularity of solutions has been exploited to reduce the risk of returning a poor quality result set 

(e.g., [WAN13][MIS12][BUS12]). The intuition is that the higher the popularity of a potential 

solution, the higher the chance of acceptance by the end-user. However, this approach is still 

subject to some threats, which are discussed in this section, specifically concerning spotting of the 

working code examples. 

 

Code Corpus

(e.g., Sourceforge.net)
Solution Mining

Examples of the popular abstract solutions:
1-{File.openFile(),File.ReadLine(),File.close()}

2-{File.openFile(),File.ReadLine(),PrintToConsole(),File.close()}

Example of a matching working code examples:
File f=new File ();

String fileName=”readme.txt”;

File.openFile(fileName);

for(int i=0;i<totalLineNo;i++)

{

String lineContent=File.ReadLine(i);

PrintToConsole(“Line: “+i);

PrintToConsole(lineContent);

}

f.close();

Spotting Working Code Examples

generates

Solution Matching

Popular Abstract 

Solutions

Query:
openFile and ReadLine

select the best matches (solutions)
select the best matches (code fragments)

O
ff
ili

n
e

O
n

lin
e

 

Figure 46.  The schematic approach towards spotting working code examples 
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Popularity of a solution is a key criterion (Figure 46 – the solution matching process) that 

cannot be ignored (e.g., [MIS12][WAN13]) to avoid poor quality result set. However, there are 

other factors affecting the selection process. For example, relevance to the query cannot be 

completely ignored [HOL09]. For a free-form query, relevance is continuous (not binary), so 

solutions other than simple filtering and matching are required. In addition, conciseness and 

completeness (Table 20) are two important but often contradictory aspects when optimizing the 

result set. The tradeoff between these factors makes spotting the best matches a challenging task.  

We provide a reasonably representative dataset including the source code of ~25,000 Java 

open source projects (Table 21 summarizes our corpus characteristics) that is essential for mining 

abstract programming solutions (e.g., Figure 46). The size and richness of our repository is the 

key to the success of the approach. However, the size of the corpus also introduces new 

challenges. Given the large number of potential matches (for search steps in Figure 46 - abstract 

solution and code fragments search), the size of our corpus not only provides a richer knowledge 

base, but also increases the noise level. From this point of view, the solutions (e.g., [WAN13]) for 

the schematic in Figure 46 suffer from the same challenges as traditional Web search. 

Table 21.  The characteristics of our corpus (both raw and processed data) 

Aspect
∆
 Value 

Raw Data 

Java projects 24,824 

Total Java files 12,104,499 

Unique
~
 Java files 2,882,458 

LOC ~300 M 

Selected fragments
+
 5,436,638  

Selected lines
*
 65,478,267 (LLOC) 

Processed Data 

Unique encoded lines 13,945,442 

Observed frequent abstract 

solutions
■
 

#Solutions 15,856,377 

Size (#encoded lines) 140,410,866 (encoded lines) 

#Unique items 77,905 

Min support 20 

Max observed support 2,412 
∆the table reports the number of encoded lines which is smaller than the actual #unique LLOC. For example int y=0; and int x=0; are counted only once since their encoded 

patterns are identical.                      ~duplicated files are eliminated via their shared fully qualified name                  +fragments with at least 5 Logical Line of Code (LLOC)                           
*LLOC after removing duplicated encoded lines within each fragment                  ■maximal frequent itemsets [BOR12] (min:4, max:30, support:20) 
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In addition to these explicit challenges (conciseness vs. completeness) and noise in the search 

space, there are further implicit issues reducing the success of popularity or relevance-oriented 

approaches (e.g., [WAN13][BUS12]). The following example illustrates such an implicit threat, 

based on hidden dependencies. In general, an ideal working code example should reflect a highly 

popular and concise abstract solution. In this section, we discuss the fact that satisfying both 

conditions is not trivial. As noted in Table 20, size is one of the measures used for evaluating the 

conciseness of a recommendation. Figure 47 summarizes the average size of frequent (i.e., 

popular) abstract solutions that we observed in our studies. The abstract solutions are grouped by 

their popularity degree, which is measured by the number of occurrences (Figure 47 - the support 

value) of the solution within the corpus. The result shows that although the size decreases as the 

popularity (i.e., the support value) increases, the changes are not considerable. If we ignore the 

first three groups (i.e.,         {        }), the size remains in the narrow range between 6 

and 5. Since the size seems constant, one can argue that it can be ignored in favor of the 

popularity aspect. However, this is not always the case, as illustrated in the following example. 

 

Figure 47.  The average size of our corpus abstract solutions with certain popularity 
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In our corpus (Table 21), there are 6,836,738 relevant frequent abstract solutions
7
 for the 

MD5 hash value generation problem
8
. The most popular solutions have 134(17), 175(10), and 

195(10) occurrences, with the number in parenthesis indicating the size of the solution in LOC. 

None of these solutions are close to the satisfying answers for MD5 hash value generation. 

Although their popularity is highest, we observed that they spot false positive fragments. Among 

the true positive answers, Figure 48 (popularity=24 and size=7) and Figure 49 (popularity=65 and 

size=6) present two spotted answers. Even though Figure 49 is associated with a smaller and 

more popular solution, it provides a lower quality solution as a working code example, as it is 

neither self-contained nor complete. The lower quality is due to calling the convertToHex() 

method in the last line, which makes the returned solution less concise (Table 20). These 

examples highlight the presence of implicit challenges for the schematic approach (Figure 46), 

such as the popularity-size tradeoff.  

 

 

Figure 48.  A high quality true positive for the MD5 example (size=7 support=24 rank=1) 

 
 

 

Figure 49.  A low quality true positive for the MD5 example (size=6 support=65 rank=8) 

 

 

 

 

                                                      
7
 These solutions are identified via their association to 82 unique ep of 7,251 relevant lines of code. 

8
 Using MessageDigest API (      {                 }) 
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10.3. Adaptation of clone search for the code search problem   

The discussion and observations made in the previous section illustrate that all characteristics 

(Table 20) of working code examples contribute to the filtering process of poor quality answers. 

Since achieving an optimum result set can be impractical [MIS12], the alternative is to provide 

retrieval and ranking models that are capable of producing high quality ranked result sets. A 

clone search model using the vector space model can be applied on both search steps of the 

schematic approach (Figure 46) to address the enumerated concerns and challenges in the 

previous section. For example, a proper SeClone schema is able to address the complications 

related to relevancy, completeness, and conciseness, with regard to the query as supported by our 

performance evaluation study (Chapter 8). Contrary to the other approaches (Chapter 2), where 

popularity is the main factor contributing to the ranking, this approach considers popularity as a 

necessary condition during search space deployment. This section describes how clone search can 

be adapted for the search problems available in the schematic approach (Figure 46) by providing 

a concrete solution as the motivating example for the research community.  

10.3.1. Populating the search space 

The schematic approach (Figure 46) requires at least two data families: (1) the code fragments 

and (2) the popular abstract programming solutions. While the code fragments can be extracted 

from extensive web crawling and data gathering (Table 21), the abstract programming solutions 

require different types of data abstraction and mining. The details of the abstraction and mining 

methods are described in this section, where both search steps at Figure 46 are realized using 

clone search models. 

10.3.1.1. The initial search space - code abstraction 

Creating abstract programming solutions requires modelling and transforming programming 

content (code fragments) to higher levels of abstraction. Creating these abstract programming 

solutions is essential for the performance, since it allows for the removal of unnecessary details 
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from code content. In our illustrative solution, we adapt and extend the SeClone search space and 

the encoded code pattern (  ) approach (Section 4) by including the keywords. The encoded code 

patterns and their associated keywords (Figure 50) constitute the baseline search space.  

MessageDigest md = new MessageDigest.getInstance(“MD5”);

Encoding Code Pattern

Encoded Code Pattern:

MessageDigest # = new MessageDigest.getInstance(#);

MessageDigest md5_hash = new MessageDigest.getInstance(“MD5”);

MessageDigest crypt = new MessageDigest.getInstance(“SHA-1”);

MessageDigest rfc1321 = new MessageDigest.getInstance(“MD5”);

Keyword Extractor

Associated Keywords
{md5,sha,rfc1321,crypt,md,digest,getinstance,messagedigest,…}

Encoded Code Pattern’s Hashvalue
8923902

...

 

Figure 50.  A sample encoded code pattern and its associated keywords 

 

10.3.1.2. Complete search space - encoded pattern mining 

Including only the encoded code patterns and associated keywords as part of the search space is 

not sufficient to support spotting working code example problems, as both of them (1) are too 

fine-grained to be considered code examples, and (2) lack of support for code popularity. In order 

to identify the popular abstract programming solutions (e.g., Figure 46), a maximal frequent 

itemset mining such as the FPgrowth algorithm [BOR05] can be employed. Since the input for 

the algorithm is made up of encoded code patterns (not the actual code), the output will be 

popular abstract programming solutions (or    ). Figure 51 illustrates the details of populating 

the search space and different processing steps involved, based on the following legend: Code 

Fragment (CF), Keywords (CF_Term), Encode Patterns (EP), Popular Abstract Solution (PAS). 
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Figure 51.  The search space population process 

 

Frequent itemset mining algorithms [BOR12] are capable of extracting popular patterns 

within a provided record set, with a record being one or more items. In its most simplistic form, 

the algorithm requires a dataset and a support value that determine the minimum number of 

occurrences of a pattern in the whole record set before it can be considered a frequent item. 

Originally, the frequent itemset mining concept did not consider any ordering constraint between 

items. For a clone search-based spotting approach, a variation of the itemset mining concept 

referred to as maximal frequent itemset mining is required. This variation has two specific 

properties: (1) it considers maximal itemsets and (2) it has no ordering constraint. The omission 

of the ordering constraint provides us with a robust mining feature, where re-ordering of code 

statements does not interfere with the pattern mining process. The maximal property overcomes 

some of the challenges of the other itemset mining approaches, such as the possibility of 

producing an exponential number of frequent sub-itemsets. The occurrence of sub-itemsets in the 

search space is a threat when answer completeness is required. Therefore, we can define a 

maximal itemset as: given   possible elements (i.e., encoded code pattern) in the code base 

  {          } and   code fragments   {   |       {     } },        is the set of all 
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possible reputable code patterns defined as   
    {   |     | |       ⋂        } where 

|  
   |   . A frequent itemset

9
   

    is maximal if    
 

   
          

   
    

 
   

. 

10.3.2. Search process 

Queries for a source code search engine are usually a set of terms, which are used for retrieving 

and matching code fragments, as well as for ranking. To satisfy the schematic approach (Figure 

46), the clone search-based solution requires, in total, three phases of querying to support the 

spotting problem at run-time. Figure 52 provides an overview of this three-phase querying 

process and the dataflow among these processes for a single search query. 

 

<list,String,files> 

<file,db,load,file,the,other,user>   

<for,string,f,file>

  

<string,content,read,file,f>

<system,out,println,content,size>

345632

932034

-12564

495822

-58932

                     

Query 
<term_1,term_2,…,term_y>

List<String> files; 

files=db.loadFiles(“/the_other_user”);   

for(String f : files))

{  

String content=readFile(f);

System.out.println(content.size());

}                     

932034

495822

-58932

                     

1(Q) 2(R)

Top K - Candidate Encoded 
Patterns <ep_1,ep_2,…,ep_x>

3(Q)

4(R)

Top K - Candidate Popular Abstract Solutions 
<pas_1,pas_2,…,pas_i>

where 
pas_i = {ep_1,ep_2,…,ep_q}

5(Q)6(R)

Top K - Suggested Code Fragments
<cf_1,cf_2,…,cf_k>

SeClone

CF CF_Term EP PAS
Search Spaces

Examples

Input

Output

Type-3 clone search

Type-3 clone search

 
 

Figure 52.  Our concrete solution - the three querying phases 

 

 

                                                      
9
   is the minimum size and   is the support (i.e., min popularity of the pattern) 
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Three-phase querying process. For a given free-form query 

                       , the approach returns the most relevant code fragments by 

finding: (1) the most relevant encoded code patterns, (2) the most relevant popular abstract 

solution for selected encoded patterns, and (3) the most relevant fragments for a given solution. 

Phase 1. The first querying process, Figure 52 - 1(Q), selects the       relevant encoded 

patterns, comparing their associated keywords to the query terms. That is, the data used in this 

search problem are query terms and    keywords, while the output consists of encoded patterns. 

It should be noted that an encoded code pattern    that shares a keyword with   is not 

automatically included in the candidate list. Only       hits are selected, in order to maintain the 

relevancy between the query and the final spotted code fragments, as query terms are no longer 

used explicitly in the search process after this phase. 

Phase 2. In this phase, the       popular abstract solutions are identified using clone search, 

Figure 52 - 3(Q), where the query is made of the candidate encoded patterns from the last step 

output. Due to the clone search-based approach, the       popular abstract solutions are ranked 

based on their relevancy, completeness, and conciseness. 

 Phase 3. During the last querying phase, Figure 52 - 5(Q), the spotting of the best working 

code examples for each of the chosen abstract solutions takes place. Additionally, this step 

ensures that the output fragments are syntactically and semantically correct, which is crucial as 

our     mining and querying model ignores the ordering of the statements. 

The result of this search approach is a two-dimensional hit list for each free-form query. 

Figure 53 illustrates a graphical representation of such hit list. Each row contains the ranked code 

fragments matching a corresponding abstract solution (i.e.,       in Figure 52). Therefore, while 

the fragments in each row are highly similar, they look different from solutions in other rows, as 



118 

 

they are satisfying different abstract solutions. The default presentation approach is to select the 

(final)       hits from the items of column #1 in Figure 53 to maximize the number of covered 

abstract solutions. 

 
 
 

The Best Ranked Result Set
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Figure 53.  The two-dimensional ranked result set 

 

10.4. Performance evaluation 

In this section, we provide a summary of our performance evaluation study (the feasibility study) 

for the clone search-based approach. We evaluated the approach for its ability to spot working 

code examples by reporting the top K hits, where K is a relative small number (3 or 5). The 

summary of the corpus and output of the mining is presented earlier in Table 21. We determined 

the rank of the first true positive answer based on the five requirements we identified in Table 20 

(excluding the result set feature, which is not applicable here). We then applied the suggested 

quantitative measures for these requirements, to evaluate the performance of the clone search-

based approach with regard to correctness, conciseness, completeness, and readability. Since 
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there is no explicit measure for ease of integration, we evaluated the spotted examples through an 

initial user study.  

10.4.1. Performance result 

As part of our performance evaluation, we adapted Mishne et al.’s query set [MIS12]. The dataset 

includes 7 queries from 6 Java libraries, with the first true positive rank as the performance 

evaluation measure. However, we extended it by including additional measures and queries.  The 

additional queries are based on Java code search examples available in the literature (Chapter 2), 

or frequent programming questions posted on StackOverflow. We also extended the measure set 

by including normalized discounted cumulative gain (NDCG) in addition to the original measure 

(rank of the first best hit). Moreover, measures for correctness, completeness, readability, and 

conciseness features (Table 20) are exploited to identify the true positives amongst the hit list. 

These features are calculated via their quantitative measures (Table 20). Since this approach 

rarely reports false positives, we cannot consider precision, recall, or F-measures as 

representative measures. Finally, for purpose of comparison, we report the results of Koders
10

. 

10.4.1.1. Overall result 

A summary is shown in Table 22, and is followed by a more detailed view on the measures in 

Table 23. Our observation shows that the clone search-based approach can successfully spot the 

working code example in the top 2 hits for free form querying. The order of query terms does not 

affect the result. Moreover, the query can be a mixture of class names, method names and general 

keywords (e.g., query# 9). While the corpus contains thousands of textual matches for each 

query, the clone search-based approach is capable of reducing the search space to a limited 

number (i.e., ~100) of   s (Table 23 within parentheses in the    column).  One of the reasons 

the approach returns fewer matches is that our search approach reduces the search space step by 

step (Table 23 shows the number of matches per step).  

                                                      
10

 http://www.koders.com 
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When comparing our results with Koders, the illustrative solution using clone search always 

returns fewer (but high quality) matches (i.e., first true positive rank between 1 or 2). In contrast, 

for the Koders code search engines, the best rank results (first true positive) fluctuate between 1 

and 40+, and the returned results were often actual working examples (Table 22, the values 

within parentheses in the Koders column).  

By comparing the quality of the spotted working code examples, the results in Table 22 show 

that the best hits always meet readability and correctness requirements. In terms of completeness, 

our approach spotted complete answers in all cases except query #8, where the exception 

handling statement was omitted. In terms of conciseness, our best hit size is always smaller than 

the average hit size (Table 23), however, conciseness (measured using irrelevant LOC) shows a 

fluctuation across the experiments. Table 22 summarizes the conciseness of the first best hits by 

High, Acceptable, or Low.   

Our approach failed to spot any valid answer for query #6. Our further investigation revealed 

that query #6’s expected solution is not a working code example. Table 23 also reports the NDCG 

values for two groups of top 5 hit, using two different result preview approaches. The vertical 

schema (the default presentation approach e.g., Figure 53) only shows the top-5 hits from the first 

column, whereas the alternative view generates the preview by selecting two hits from each row. 

In general, we observed that the vertical preview not only reports a higher number of true 

positives, but also higher quality hits based on the observation made by NDCG. 
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Table 22.  The dataset and evaluation summary for the spotting problem 
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1 Apache 

Commons 

CLI 

[MIS12] 

Retrieve arguments 

from command line 

{getOptionValue, 

CommandLine} 

5+ 1 Y All Acc. yes 4 (no) 

2 Eclipse UI 

[MIS12] 

Check user selection {ISelection, isEmpty} 5+ 1 Y All High yes 2 (no) 

3 Eclipse 
GEF 

[MIS12] 

Set up a 
ScrollingGraphicalV

iewer 

{ScrollingGraphicalView
er} 

2 1 Y All High yes 32 (no) 

4 Eclipse 

JDT 
[MIS12] 

Create a project {IProject,monitor} 5+ 2 Y All High yes No (no) 

5 Apache 

Commons 
Net 

[MIS12] 

Successfully login 

and logout 

{FTPClient} 5+ 1 Y All High yes 1 (no) 

6 WebDriver 

[MIS12] 

Click an Element {WebElement} 0 - - - - - 8 (-) 

7 JDBC 

[MIS12] 

Commit and rollback 

a statement 

{executeUpdate,rollback,

PreparedStatement} 

4 1 Y All High yes No 

8 StackOverfl

ow HTTP 

send a HTTP request 

via URLConnection 
in Java 

{response,URLConnectio

n} 

5+ 2 Y No High yes 22 (yes) 

9 StackOverfl

ow 
Runtime 

Redirect Runtime 

exec() output with 
System 

{read,Runtime} 2 1 Y All Low yes 12 (yes) 

10 StackOverfl

ow 

Memory 

Get OS Level 

information such as 

memory 

{Memory} 5+ 2 Y All High yes 1(yes) 

11 StackOverfl

ow SSH 

SSH Connection {ssh} 5 1 Y All Low yes 3 (no) 

12 StackOverfl
ow 

Download 

Download and save 
a file 

{download,URLConnecti
on} 

5+ 1 Y All Acc. yes 5(no) 

13 StackOverfl

ow MD5 

Generate a string-

based MD5 hash 
value 

{md5} 5+ 1 Y All High yes 3(no) 

14 HttpRespon

se 

Read the content of a 

HttpResponse  
object line by line 

{readLine,HttpResponse} 2 1 Y All Acc. yes 40+ (no) 

15 Lucene Search via Lucene 

and manipulate the 

hits 

{search,IndexSearcher} 5+ 2 Y All High yes 1(no) 
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Table 23.  The details of the evaluation 
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1 75 80 8 3-2-3-1-3 3-3-3-1-3 21718 2455 (129) 100+ 

2 13 25 0 3-1-3-1-1 3-3-1-2-2 43000+ 201 (20) 100+ 

3 19 29 0 - 3 80 20 (1) 1 

4 28 57 0 0-0-3-2-1 0-3-1-1-1 11851 608 (56) 100+ 

5 29 32 0 3-3-3-3-3 3-3-3-3-3 2410 725 (84) 100+ 

6 - - - - - 662 - - 

7 23 27 0 3-2-3-1 3-3 40000+ 99 (34) 100+ 

8 16 22 0 1-1-3-3-3 1-3-3-1-3 6987 732(118) 100+ 

9 44 44 25  2 2-2 17223 386(23) 100+ 

10 8 40 0 1-1-3-2-2 1-3-3-3-2 30000+ 6087(929) 100+ 

11 18 50 3  3-1-1 3-1-1-1-1 10045 858(201) 100+ 

12 36 47 2  3-2-3-1-1 3-3-1-1-2 6987 652(115) 100+ 

13 25 73 0 3-3-0-0-0 3-0-0-1-3 11358 2628(381) 100+ 

14 25 25 6  2 2-2 20000+ 10(8) 100+ 

15 18 20 0 1-3-3-3-3 1-3-3-3-3 20000+ 52(16) 100+ 

 
 

10.4.2. Initial user study  

Since no specific measure for the ease of integration of working code examples was available 

(Table 20), we conducted an initial user study to evaluate this aspect. For our controlled study, we 

adapted a user study configuration (number of tasks, groups and people) for .NET framework that 

is proposed by Wang et al. [WAN13]. Table 24 summarizes the user study settings. We chose 

Koders and StackOverflow as alternative sources for spotting working code examples. The 

provided hints in Table 24 can be used as query seeds by the programmers, which are selected 

from three possible combinations: API names (e.g., class or method names), general keywords 

(e.g., MD5 or download), or a combination of both. The general keywords are not (neither 

completely nor partially) part of the participant class or the method names in the solution domain. 

We replaced the C# tasks (derived from Wang’s study [WAN13] using six developers 

identified by P1 to P6) by Java tasks using the queries listed in Table 24. The complete 
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programming assignment, to be completed by the programmer, was to develop a software 

solution that retrieves a specific argument passed to the executed process via command line. The 

retrieved argument must be used to generate a MD5 hash value. The MD5 hash value determines 

the file UID on the web server. Finally, the target file on the Internet must be downloaded and 

saved on the local disk.  

Task 1: Retrieve the argument. The goal is to read a specific argument (i.e., “n”) via 

Apache Commons CLI library. The name of the class from the library responsible for the given 

task is provided as the seed (i.e., hint) for the search process. The challenge is to handle the 

exceptional cases (e.g., null values) and errors carefully. 

Task 2: Generate MD5 hash value. This task mandates the programmer to generate a string 

representation of the MD5 hash value for the Task 1 retrieved argument. The extra challenge here 

is the proper conversion of the value from binary format to string. The provided hint is “MD5”. 

Task 3: Download and save file. The goal is to download and save a specific file from the 

Internet. The file name is equal to the generated MD5 hash value. Proper connection 

establishment, content encoding, and exception handling constitutes the major challenges of this 

task.  

Tables 24 and 25 summarize the study configuration and the observation, respectively. In 

short, it shows the potential capabilities of a clone search-based approach in comparison to the 

other resources, as it either achieves equal result or outperforms the others. However, we are 

interested in the outcome of the study in terms of ease of integration. Table 25 provides initial 

evidence that the ease of integration feature is met by the code examples that are provided by the 

clone-search approach. Specifically, the tasks are completed successfully in less time using our 

approach, compared to the StackOverflow-based development study. 
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Table 24.  The controlled user study configuration 

 Seed Query 

(hint) 

StackOverflow Koders Our approach 

Task 1 CommandLine P1 P2 P3 P4 P5 P6 

Task 2 MD5 P3 P4 P5 P6 P1 P2 

Task 3 URLConnection 

and download 

P5 P6 P1 P2 P3 P4 

 

Table 25.  The controlled user study configuration 

 StackOverflow Koders Our approach 

#Successful integration  4/6  4/6  6/6 

Time (avg. - minutes)  24  28  17 

#Search activities per task  2  4  2 

 
 
 
 

10.5. Discussion and promoting Examples 

In this section, we describe three illustrative examples that highlight the capabilities and 

interesting features of clone search-based approach for the given problem. 

10.5.1. Bubble sort example 

Bubble sort is one of the classical code search queries used by programmers. Figure 54 shows the 

first hit that our spotting approach returns for the bubble sort query. The result is based on 5.5 

million indexed code fragments that each has at least 5 lines of code. While the returned result is 

one of the possible implementations of a bubble sort algorithm, it also highlights one of the most 

interesting features of our clone search-based approach for code search. A matching answer might 

not necessarily have to contain the query terms. In this example, there is no occurrence of bubble, 

sort, or bubblesort keywords within the spotted fragment, while the code fragment is actually 

implementing a bubble sort. It should be pointed out that our search approach only uses the 

content of code fragment, and does not consider other sources of associated information such as 

inline comments, Java docs, and the signature of the owner method. 
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Figure 54.  The bubble sort example 

10.5.2. MD5 example 

Another example is related to the generation of MD5 hash values as string. This hash code 

generation is not a trivial programming task using Java native libraries. First, there is no method 

or class name existing within the Java libraries called MD5. The actual class and methods 

responsible for the MD5 Binary value generation are MessageDigest, getInstance() and update(). 

Second, the conversion of the binary representation to string, has special cases to be handled, 

which are highlighted by the programming community
11

. If the generated hash value starts with 0, 

this leading 0 will be omitted during the conversion from the original format to String (Binary  

Numeric  String). This can be problematic, as all MD5 hash values must have an equal number 

of characters. Figure 55 presents a top rank hit that our approach returns for the MD5 query and 

addresses all of the discussed challenges. 

 

 

Figure 55.  The MD5 example 

                                                      
11

 http://stackoverflow.com/questions/415953/generate-md5-hash-in-java 
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10.5.3. Save chart as JPEG example 

JFreeChart is a chart visualization library for Java. Saving a chart as a JPEG using JFreeChart 

library requires a query belonging to the API usage example identification problem (e.g., 

[MIS12][WAN13][BUS12]), which is different from the bubble sort example (i.e., algorithmic 

problems). Figure 56 illustrates the first hit returned by our approach. The fragment not only 

shows how to save the chart, but also includes all required steps (e.g., variable initialization) as a 

self-contained working code example. Note that holding the second property by the provided 

answer is necessary [KIM10] [BUS12] in such code search models (Table 20). 

 

Figure 56.  The save chart as JPEG example (JFreeChart Library) 

 

In summary, the given examples highlight three major features for a clone search-based 

solution: (1) spotting working code example for API usage and algorithmic problems, (2) the 

ability to provide some form of self-contained examples, and (3) less dependency on term 

matching. Furthermore, our proposed illustrative solution requires only the code block content
12

. 

These features illustrate the potential of clone search for code search applications in the context 

of pragmatic reuse. These potentials can be exploited to either eliminate the limitations of earlier 

approaches, or for further improvements.  

 

 

                                                      
12

 Comments, Javadoc and the method signatures are excluded 
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10.6. Summary 

In this chapter we have described how clone search models can be applied to improve Internet-

scale code search for pragmatic reuse. The purpose of this chapter was not to provide a concrete 

solution limited to a specific research problem. Rather, we tried to show how clone search models 

can contribute to the actual code search problem at large by providing a sample solution. Such a 

clone search-based approach is in contrast to the earlier solutions (Chapter 2), which were based 

on ad-hoc code fingerprinting, pattern mining, and popularity-oriented solutions. Finally, our 

approach differs from the existing solution, since it is capable of taking into consideration formal 

code similarity definitions (e.g., Type1, 2, and 3) not only during the search space creation 

(detection of popular abstract solutions), but also during the final search and ranking steps 

(matching popular abstract solutions with working code examples). 
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11.  Discussion 

This dissertation has proposed a clone search model that can be adapted for applications that 

require a source code similarity search. The proposed model supports scalability, fast response 

time, ranking, and Type-1, 2, and 3 detection. This chapter provides a discussion on potential 

threats that must be taken into consideration. The chapter concludes with a list of immediate 

future work. 

11.1. Threats to validity 

11.1.1. Data characteristics study 

Our data characteristics studies covered different aspects of the data in our research domain such 

as corpus growth rate, data outliers, and the strength of the hash function. However, the 

observations depend on three major factors: (1) the input, (2) the granularity of the study, (3) the 

selected encoded code patterns, and (4) the underlying hash function. Although we tried to 

consider a representative dataset for our studies, all conclusions drawn from our case studies 

remain highly dependent on our input data (dataset). For example, using a dataset from industrial 

or closed code systems, the conclusions will most likely differ, since the quality of the code might 

differ. Furthermore, our studies are limited to Java source code and Java bytecode. Additionally, 

the results are limited to line-level clone detection, and therefore our results and conclusions 

cannot be generalized to other granularities such as token-level clone detection. Finally, we have 

selected an encoded code pattern (Table 3 function m) that will result in high recall. Achieving 

high recall helped us to study the worst-case scenarios for our retrieval and ranking steps, as it 

resulted in a large number of candidates to be ranked when pattern similarity holds. Therefore, 

results will differ if different encoded code patterns are selected.  
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11.1.2. Performance evaluation study 

Considering our evaluation approach, the quality of our benchmark plays an important role, since 

it has a direct impact on the outcome of the performance evaluation. Therefore, the following 

issues must be taken into consideration: (1) since no other benchmark that is applicable for the 

evaluation of clone search results and ranking performance exists, we created our own benchmark 

using a mutation framework to generate an oracle of known clones. A key challenge, as with any 

other benchmark, is how closely this benchmark reflects actual data. We address some of these 

threats by creating a dataset that we believe is representative enough in size (containing 25,000 

different open source projects and approximately 356 MLOC). Furthermore, the mutation 

framework output (additional clones as our oracle) is injected to our corpus to ensure that a 

minimum number of clone instances are available for each query, to facilitate recall calculation. 

Moreover, for manually assigning the relevance scores, our tagging is biased towards Internet-

scale code search and pragmatic reuse. Some of the results (e.g., Type-3 clones), which we 

considered as non-relevant for clone search, might be considered relevant in other application 

contexts, such as clone detection for software maintenance. In an attempt to reduce the 

subjectivity during the manual scoring process, we tried to keep the scoring process as transparent 

and objective as possible, by following a concrete pre-defined scoring guideline (Table 14) for 

the different clone types.  

Implementation. We have implemented our clone search models and all of its processing 

components in Java. While we performed testing of our implementation, we did not consider a 

formal validation of our design nor of the implementation (including the programming 

heuristics). Moreover, we used implementation level heuristics in some cases to achieve 

scalability. 
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11.2. Limitations 

11.2.1. The clone search model 

Our study focuses on a clone search model for Java source code and bytecode. However, support 

for other programming languages (in particular OO languages) requires a substitution of the 

language parser in most cases. While our model can be applied to the other programming 

languages such as C, its performance might become completely different and unpredictable, since 

our encoded code pattern generation rules have been designed for Java after an experimental 

analysis (Appendix 1) on code search query logs.  

11.2.2. Application for pragmatic reuse 

In principal, adapting our clone search model for the pragmatic reuse problem might result in two 

major limitations. (1) In cases where there is a lack of reuse samples in the input corpus, the 

approach will fail to find a working code example. This is a general issue related to such 

approaches, and is discussed in more detail, with examples, in [MAN05]. Specifically, if one 

attempts to apply pragmatic reuse to new programming libraries or new programming paradigms, 

there is no guarantee that sufficient examples will be captured in the corpus.  (2) Although the 

performance of our clone search-based approach is promising in finding the working code 

examples, by no means does it replace human judgment when it comes to the negative issues 

associated with pragmatic reuse [HOI08]. 

11.3. Future work 

We believe that the outcome of this dissertation provides the first step towards the adaptation of 

the clone search models for source code similarity search problems. The following summarizes 

some of the problems that should be addressed as part of future work: 
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 Studying the data characteristics (e.g., outliers) for the other dataset types (e.g., industrial 

systems) and languages 

 Studying the applicability of our clone search model as a core similarity function for 

classification algorithms in data mining (e.g., for clone classification) 

 Finding a solution for soft breakdown of the ranked result set, instead of top K approach 

with fixed k values. This feature is interesting, as the number of actual relevant items 

varies considerably for each query in the clone search versus in text retrieval.  

 Applying our bytecode clone search models for concrete applications, such as finding 

duplicated bytecode fragments within source code search engine indices (e.g., [BAJ12]). 

 Applying our source code search models for specific search problems related to 

pragmatic reuse. We provided hints to show the potentials of clone search models for 

emerging code search problems by elaborating on the problem of spotting working code 

examples. The proposed ideas can be adapted for specific code search problems such as 

recommendation, completion, and synthesis.  
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12. Conclusion 

Historically, clone detection as a research discipline has focused on devising source code 

similarity functions that will cancel out negative code reuse effects in software maintenance. 

However, it has been observed (Chapter 2) that identifying duplications and similar programming 

patterns can be exploited for pragmatic reuse. Identifying such patterns requires a source code 

similarity model for detection of Type-1, 2, and 3 clones. Due to the lack of such a model, ad-hoc 

pattern detection models have been devised as part of the state of the art solutions in order to 

support pragmatic reuse via code search.  

In this dissertation, we presented a clone search model that satisfies the fundamental 

enumerated requirements. First, we studied the performance of the proposed model for both 

source code and bytecode content. Second, we demonstrated how such a clone search model 

could replace the ad-hoc similarity models of the code search. Our research presents a clone 

search model that not only supports scalability, short response times, and Type-1, 2 and 3 

detection, but also emphasizes ranking as a key functionality. The ranking of result sets is used to 

place highly similar fragments (hits) higher than other hits within the result set. It takes advantage 

of a multi-level indexing (non-positional) approach to achieve a scalable and fast retrieval with 

high recall. Result sets are ranked using two information retrieval ranking approaches: Jaccard 

similarity coefficient and cosine similarity via the vector space model, which we combine with 

code patterns’ (not token) local and global frequencies modeled by various combinations. Users 

can customize the search schemata based on their specific application requirements.  

For the evaluation, we created a large corpus (356M LOC) which, in combination with 50 

sample queries and a total of 650 seeded Type-1, 2, and 3 clones, form our benchmark dataset for 

the analysis of our approach. The creation of this benchmark includes an extensive manual 
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tagging of relevance scores covering more than 117,000 hits, which were used to evaluate the 

clone search model retrieval and ranking quality. We selected 6 measures to study different 

quality aspects and to evaluate and identify schemata (configurations) that are consistently 

outperforming the other schemata. Overall, our studies showed not only that SeClone is scalable 

to very large datasets, but also that certain schemata, such as              and              

can produce high quality results in near real-time. 

12.1. Research approach and contributions 

As part of our preliminary research [KLL10], we noticed that resolving ambiguity of the source 

code is not sufficient for structural code search (in the pragmatic reuse context), since 

duplications (i.e., clones) reduce the result set quality. Furthermore, using our shuffling 

framework [KLT12][SAV13], we have observed that inter-project cloning is common in Java and 

the open source community at large. Finally, in [KLX12] we discussed that while code 

duplication often results in negative effects on the code search performance quality, the 

duplications can also be controlled and exploited in other ways for result set improvement. This 

background study provided major motivation to propose a clone search model with certain 

features to be used for such applications where a function for source code similarity measurement 

and detection is required. The major contributions of this dissertation
13

 are as follows: 

 Proposing a novel clone search model [KLX11][KLZ11] 

 Extending the clone search model for bytecode content [KLQ12][KLE13][KLP12] 

 Providing a schematic approach to show how a clone search model can be employed 

for supporting pragmatic reuse via code search 

                                                      
13

 The content of this thesis is based on our cited publications 
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14. Appendix 

14.1. Transformation function design issues 

Several token types exist in source code such as method names, class names, primitive types, 

language keywords, variables, and constants. In general, apart from language keywords, which 

are consistent through the code, the token names can refer to different concepts. Additionally, 

despite having different names, the semantic of tokens can be similar (from algorithmic point of 

view). We refer to this case as tokens’ semantic stability issue. Figure 57 provides an example 

where two code fragments are clones with high confidence even though they use different 

variable names (i.e., att and var). 

… 

5: String msg=”exit 0";   

6: for(AttributeEntity att : t.getAttributes())

7: {   

… 

… 

5: String msg=”exit 0";   

6: for(AttributeEntity att : t.getAttributes())

7: {   

… 

… 

5: String msg=”exit 0";   

6: for(AttributeEntity var : t.getAttributes())

7: {   

… 

… 

5: String msg=”exit 0";   

6: for(AttributeEntity var : t.getAttributes())

7: {   

… 
  

Figure 57.  Two code cloned code fragments that are using different variable names 

It is a well-known practice (e.g., [KAM02]) in clone detection tools to replace such tokens 

with placeholders to reduce such syntactic and semantic dissimilarities. This practice is useful 

when the clone detection approach is not able to judge the semantics of the token based on its 

name and other available information (e.g., AST). 

In our research, we proposed various transformation functions in order to be able to address 

different types of similarity. For example, the   function (Table 3) only preserves method names 

and class names.    replaces almost all other tokens with # (the placeholder). We defined 5 

transformation functions (Table 3) covering different scenarios and requirements. However, all of 

them preserve the method name tokens. 
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For our approach, we decided to preserve method names, as we observed that method names 

have stable semantics in our research context (i.e., code search). Our observation is based on an 

analysis of a one-year query log of Koders [UCI10] (one of the state of the art code search 

engines). When analyzing the query log, we focused on 18 programming languages with method 

construct as part of their language. This log contains a total of approximately 10 million records 

that we analyzed. As part of that analysis, we observed that for Internet-scale code search, method 

names play an essential role. Our analysis showed that if a method name was present as part of the 

query, code download occurred 98% of the time (Figure 58 – MCQ values), whereas the overall 

download rate is 69% (Figure 58 – All values). Note that in Web search activity mining, 

downloads/clicks on search results are interpreted as the result of a successful search. This 

observation shows the importance of method names to the code search success rate, which can be 

used as an indicator for method tokens’ semantics stability from end-users’ point of view. That is, 

contrary to the other token types, the need for ignoring method names in order to achieve higher 

recall is low. Therefore, all encoded code patterns generated by our transformation functions 

preserve the method names, which also provides the added benefit of reducing the number of false 

positive rates during the matching. 

 

Figure 58.  Importance of method names to the code search success rate – an indicator for 

method tokens’ semantics stability from end-users’ point of view. 
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