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Abstract 

Evidence for a sensitive period for musical training 

Jennifer Anne Bailey, Ph.D. Candidate 

Concordia University, 2013. 

 

The aim of the current dissertation was to investigate evidence for a sensitive period for 

musical training. The first study examined behavioural performance on an auditory-motor 

synchronization task and cognitive abilities in three groups: early-trained musicians, late-

trained musicians, and non-musicians. The early-trained musicians were better able to 

reproduce the auditory rhythms, even after controlling for differences in musical 

experience using a matching paradigm. Both musician groups outperformed the non-

musician group. The second study used these same groups of participants and their 

performance data to investigate differences in grey matter structure associated with early 

musical training. Several different structural Magnetic Resonance Imaging analysis 

techniques were used to examine differences in grey matter between groups and results 

suggest greater grey matter volume and cortical surface area in the right ventral pre-

motor cortex among early-trained musicians. Extracted values from this region of 

difference correlated with auditory-motor synchronization performance and age of onset 

in the musician groups. Previous literature supports the role of the pre-motor cortex in the 

auditory rhythm task, as well as timed motor movements (Chen, Penhune, & Zatorre, 

2008). The third study used a larger, un-matched sample of musicians to examine the 

relationship between age of onset of musical training as a continuous variable and 
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performance on the auditory-motor synchronization task. In addition, individual working 

memory scores and years of formal training were considered as task correlates. These 

findings suggest the presence of a non-linear relationship between age of onset of musical 

training and auditory-motor synchronization performance. Working memory scores 

seemed to predict task performance, regardless of when musical training began; however, 

years of formal training was a significant predictor of task performance only among those 

who began at an earlier age. Taken together, these findings support the hypothesis of a 

sensitive period for musical training and shed light on the complexity of the relationship 

between brain maturation processes and training-induced plasticity. 
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Chapter 1: General Introduction 

 Psychologists have long subscribed to the belief that early experiences shape us. 

Whether it is an individual who experiences trauma or a gymnast who spends hours 

training, there is no doubt that our early experiences leave a lasting imprint on our 

behaviours and our brains. Cutting edge research about brain maturation and experience-

dependent plasticity offers the tools to investigate the evidence supporting this belief. 

These two processes – brain maturation and experience-dependent plasticity – may 

interact to set the stage for sensitive periods in development when the influence of 

specific experience on the brain and behaviour is strongest and results in long-lasting 

effects. Sensitive periods have been proposed for the visual and auditory systems, as well 

as for more complex cognitive skills such as language (Hooks & Chen, 2007; Kral, 

Hartmann, Tillein, Heid, & Klinke, 2001; Kuhl, 2010; Tomblin, Barker, & Hubbs, 2007; 

de Villers-Sidani & Merzenich, 2011).  The developmental trajectories of the visual, 

auditory, and language systems are reflected in early childhood behavioural milestones, 

as well as supported by non-invasive neuroimaging techniques examining changes in 

brain structure across development (Gogtay et al., 2004; Lebel, Walker, Leemans, 

Phillips, & Beaulieu, 2008). Musicians are an excellent population to investigate the 

sensitive period hypothesis because playing a musical instrument is a complex skill, 

relying largely on the auditory and motor systems (Zatorre, Chen, & Penhune, 2007). It 

can begin at different ages during development, can be quantified and there is a large 

amount of evidence that musical training influences brain structure and function at both 

cortical and subcortical levels (for review see Jäncke, 2009; Strait, Parbery-Clark, Hittner 

& Kraus, 2012).  
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 The current thesis examines evidence for a sensitive period for musical training 

by investigating differences between early-trained and late-trained musicians in terms of 

auditory-motor rhythm synchronization performance, cognitive abilities, and brain 

structure. The first study examines behavioural differences on an auditory-motor 

synchronization task between early-trained musicians, late-trained musicians and non-

musicians, as well as cognitive differences (Chapter 2; Bailey & Penhune, 2012). In an 

effort to isolate age of onset of musical training, the two musician groups were matched 

for years of formal training, years of playing experience and hours of current practice 

using a matching paradigm (Watanabe, Savion-Lemieux & Penhune, 2007; Bailey & 

Penhune, 2010). The second study used magnetic resonance imaging (MRI) techniques to 

examine differences in grey matter features between these groups and relate these 

differences in brain structure to performance on the auditory-motor synchronization task 

(Chapter 3; Bailey, Zatorre, & Penhune, in submission). The third study took a different 

approach to investigating the relationship between age of onset of musical training and 

auditory-motor synchronization task performance. We examined task correlates in a 

single, large, unmatched sample of musicians to determine if correlates vary as a function 

of age of onset of musical training (Chapter 4; Bailey & Penhune, in submission).  

1.1 Definition of a sensitive period 

 A sensitive period is a window of time during development when the influence of 

experience or training on behaviour and the brain is stronger than at other points in 

development. Initial evidence for sensitive periods came from a set of classic studies by 

Hubel and Wiesel examining visual system development in kittens (1963; 1970). These 

studies were the first to report that deprivation during certain times in development 
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results in long-lasting effects on system structure and function and initially referred to a 

critical period. Since then, researchers have learned a significant amount about the visual 

system, exploring the mechanisms underlying the plasticity of this modality at a systemic, 

cellular and molecular level (Hensch, 2005; Hooks & Chen, 2007). Along similar lines, a 

significant amount of work examining the rodent auditory system has revealed periods 

early in development when sound exposure determines cortical representation of sound 

frequency and the underlying mechanisms contributing to these developmental periods of 

sensitivity are also being studied at multiple levels (e.g., Barkat, Polley, & Hensch, 2011; 

de Villers-Sidani, Simpson, Lu, Lin, & Merzenich, 2008).  In humans, the most 

compelling evidence for sensitive periods comes from research investigating the age at 

which deaf children receive cochlear implants and recovery of the visual system 

following removal of cataracts in infants (Harrison, Gordon, & Mount, 2005; Kral, 

Hartmann, Tillein, Heid, & Klinke, 2001; Lewis & Maurer, 2009; Lewis & Maurer, 

2005; Sharma, Gilley, Dorman, & Baldwin, 2007; Svirsky, Teoh, & Neuburger, 2004). 

Both of these domains of research have identified sensitive periods for the auditory and 

visual systems in humans. The brain mechanisms underlying language development are 

still being unraveled; however, researchers have suggested that the capacity for acquiring 

a second language diminishes over the lifespan and shifts around puberty (Johnson & 

Newport, 1989; Kuhl, 2011). While learning to play a musical instrument is a complex 

cognitive skill, similar to language, quantifying musical training in terms of age of onset 

and experience or practice lends itself more easily to the study of sensitive periods. 

Moving towards sensitive periods for cross-modal plasticity, evidence has shown that 

blind individuals recruit occipital cortex for sound localization, pitch and melody 
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discrimination tasks; however, this observed cross-modal recruitment appears to be a 

function of age of blindness onset (Voss, Gougoux, Zatorre, Lassonde, & Lepore, 2008; 

Voss & Zatorre, 2011). Taken together, it appears that sensitive periods are common 

across sensory systems and the degree or type of experience-dependent plasticity may 

depend on an interaction between the timeline of maturation of the specific system and 

the time at which the experience takes place.   

1.2 Development of the auditory-motor system 

 Playing a musical instrument requires the integration of auditory and motor 

systems and, therefore, the neurodevelopmental trajectories of these systems are 

important to consider when investigating the sensitive period hypothesis for musical 

training. Grey matter development appears to follow an inverted u-shaped pattern with 

peaks in volume occurring first, followed by a loss of volume (Gogtay et al., 2004; 

Gogtay & Thompson, 2010; Sowell, Thompson, Tessner & Toga, 2001). When 

examining grey matter maturation rates more locally, it seems that higher-order 

association areas reach maturity only after the lower-order sensorimotor areas. The 

primary sensory and motor cortices mature first, while the rest of the cortex matures more 

or less in a parietal to frontal fashion, with the exception of the superior temporal cortex, 

which matures last (Gogtay et al., 2004). In fact, the auditory cortex is thought to have a 

prolonged development, as compared to the other senses, lasting approximately a decade 

(Moore & Linthicum, 2007). In comparison with grey matter development, white matter 

fibre tracts continue to fine-tune themselves well into adulthood. Some studies report a 

linear growth trajectory of white matter volume across the entire brain and others report 

quadratic trends in most white matter fibre tracts and linear growth only in the corpus 
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callosum (Giedd, 2004; Lenroot et al., 2007; Paus, 2010). Measures of white matter 

microstructure suggest that different white matter tracts have distinct maturational 

timelines (Lebel, Walker, Leemans, Phillips, & Beaulieu, 2008; Paus, 2010). Some 

connections such as the fornix appear to reach maturity early in childhood (around age 5), 

but the majority of pathways demonstrate ongoing changes in microstructure until at least 

pre-adolescence. Of particular importance from these findings is that most fibre tract 

maturational trajectories are non-linear, with the greatest amount of change occurring in 

the early childhood years (between ages 5 and 10). Overall, it seems the maturational 

trajectories of cortical regions and connecting fibre tracts suggest that the sensorimotor 

network comes online during early childhood. As a result, musical training during these 

years may fine-tune this network via experience-driven plasticity processes more 

effectively than musical training later in development. 

1.3 Musical Training and the brain 

 There is ample evidence revealing differences in brain structure in the auditory-

motor network between musicians and non-musicians (for review see Wan and Schlaug, 

2010 or Jäncke, 2009). The accumulating evidence for experience-based plasticity 

suggests that these differences are likely a result of the interaction between the effects of 

musical training and pre-determined factors such as genetics, both contributing to 

development of brain structure (Chiang et al., 2009; Thompson & Gogtay, 2010; 

Thompson et al., 2001). Some studies have revealed correlations between measures of 

brain structure and the amount of musical experience (either training or practice), 

supporting the idea that reported differences between musicians and non-musicians are 
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partly attributable to experience-dependent plasticity (Foster & Zatorre, 2010; Gaser & 

Schlaug, 2003; Strait, Parbery-Clark, Hittner, & Kraus, 2012). 

 Of particular relevance to the sensitive period hypothesis for musical training are 

the studies that have reported differences between early- and late-trained musicians or 

neuroanatomical correlates of the age of start of musical training  (Amunts, et al., 1997; 

Bengtsson, et al., 2005; Foster & Zatorre, 2010; Imfeld, Oechslin, Meyer, Loenneker, & 

Jäncke, 2009; Schlaug, Jäncke, Huang, Staiger, & Steinmetz, 1995). Schlaug and 

colleagues observed a larger anterior surface of the corpus callosum, the bundle of white 

matter fibre tracts connecting the two hemispheres, among musicians compared to non-

musicians, and these differences were due to those who began training prior to age seven 

(1995). Hours of musical practice during childhood and adolescence were reported to 

predict white matter integrity in the internal capsule, the corpus callosum and the arcuate 

fasciculus; however, the greatest number of white matter regions correlated with practice 

hours prior to the age of eleven (Bengtsson, et al., 2005). More recently, Imfeld and 

colleagues reported differences in white matter measures in the corticospinal tract 

between those musicians who began prior to age seven and those who began thereafter 

(2009).  These studies have examined white matter fibre tracts of the brain; however, 

correlates of age of onset of musical training have also been reported in grey matter areas 

relevant for musical performance. Amunts and colleagues reported that the intrasulcal 

length of the precentral gyrus in both hemispheres correlated with age of onset of musical 

training among their musicians (1997). Foster and Zatorre reported a relationship 

between age of onset of musical training and cortical thickness in the right auditory 

cortex as well as grey matter concentration in the right intraparietal sulcus (2010). The 
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most methodologically relevant for the second study in the current dissertation (Chapter 

3; Bailey, Zatorre, & Penhune, in submission), was a longitudinal study examining 

changes in both grey and white matter regions in six year-old children after 15 months of 

music lessons and reported increases within the auditory-motor network and the corpus 

callosum above and beyond the maturational changes observed in the control group 

(Hyde, et al., 2009).  

 Overall, this cluster of studies strongly suggests that musical training influences 

brain structure via experience-dependent plasticity mechanisms and these observed 

changes may be a function of when musical training began. However, these researchers 

were not primarily addressing the question of a sensitive period for musical training and 

therefore, the differences between early- and late-trained musicians have been 

confounded by differences in years of experience between these groups. It is very likely 

that musicians who begin training earlier will have accrued more years of training than 

their late-trained counterparts. Therefore, the reported differences could be the result of 

experience-dependent plasticity in the adult brain. A series of studies from our laboratory 

were designed to directly address this issue. 

1.4 The sensitive period hypothesis for musical training 

 In the series of studies described in the current thesis, we wanted to isolate the 

effects of age of onset of musical training on behavior and the brain. To do this, we tested 

groups of early- and late-trained adult musicians who were matched in terms of years of 

playing experience, years of formal training and hours of current practice (Watanabe, 

Savion-Lemieux, & Penhune, 2007; Bailey & Penhune, 2010). By using this matching 
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paradigm it is possible to control for the potential confound identified in previous studies 

showing differences between early- and late-trained musicians and directly addresses the 

sensitive period hypothesis for musical training. In the first experiment from our 

laboratory, Watanabe and colleagues observed differences between early- and late-trained 

musicians using a visual-motor synchronization task and found that the early-trained 

group outperformed the late-trained group, even after several days of training (2007). In a 

study conducted for my MA thesis, I used the same matching paradigm in a separate 

sample of early- and late-trained musicians tested on an auditory-rhythm synchronization 

task and found a similar advantage for ET musicians (Bailey & Penhune, 2010; See 

Appendix A). There was no evidence to suggest that this performance advantage was 

associated with enhanced cognitive abilities in the early-trained musicians, as there were 

no differences on Vocabulary, Digit Span, Letter-Number Sequencing, or Matrix 

Reasoning scores (Wechsler, 1997; Wechsler, 1999).    

 The three studies in this dissertation were designed to further investigate the 

sensitive period hypothesis for musical training.  All studies used the same auditory-

motor synchronization task developed in Bailey and Penhune (2010; Figure 1.1). In this 

task participants first listen to and then reproduce a series rhythms that vary in metrical 

structure (Essens, 1995; Essens & Povel, 1985). Performance on the task is assessed by 

percent correct, asynchrony (ms) and inter-tap interval deviation.  Importantly, a variant 

of this task has previously been used in functional magnetic resonance imaging (fMRI) 

studies that identified the underlying functional neural correlates within the auditory-

motor network (Chen, Penhune, & Zatorre, 2005; 2008; 2008; 2009). 
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 The first study in the current thesis (Chapter 2) aimed to replicate and extend the 

behavioural findings from my MA thesis by using the matching paradigm with the 

addition of a non-musician control group (Bailey & Penhune, 2010). The second study 

(Chapter 3) used multiple structural MRI analysis techniques to examine differences in 

grey matter in the same matched samples of early- and late-trained musicians, as well as 

the control group of non-musicians. In parallel, a second study not reported in this thesis 

examined white matter differences between early- and late-trained musicians in a 

subsample of the same groups (Steele, Bailey, Zatorre, & Penhune, 2013; Appendix B). 

The third study in this thesis (Chapter 4) used a different approach to the sensitive period 

hypothesis for musical training by investigating the relationship between age of onset, 

years of formal training, working memory scores and task performance in a single large 

group of musicians. The purpose of this approach was to investigate whether the 

predictive value of age of onset of musical training, years of formal training and working 

memory scores changed across development.  
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Figure 1.1.  Illustration of the auditory-motor synchronization task. Participants were 

exposed to six rhythms presented in counterbalanced order for approximately two 12-

minute blocks. Two different rhythms of each level of rhythmic complexity were used 

(i.e., 2 MS rhythms, 2 MC rhythms, and 2 NM rhythms). Each trial consisted of a 

listening component followed by a listening and tapping component. 

Metric Simple (MS)�

�

Metric Complex (MC)�

Non Metric (NM)�
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Chapter 2: A sensitive period for musical training: Contributions of age of onset and 

cognitive abilities 

 

Bailey, J.A., and Penhune, V.B. (2012). A sensitive period for musical training: 

Contributions of age of onset and cognitive abilities. Annals of the New York Academy of 

Sciences, 1252 (1), 163-70. 

2.1 Abstract 

The experiences we engage in during childhood can stay with us well into our adult 

years. The idea of a sensitive period – a window during maturation when our brains are 

most influenced by behaviour – has been proposed. Work from our laboratory has shown 

that early-trained musicians (ET) performed better on visual-motor and auditory-motor 

synchronization tasks than late-trained musicians (LT), even when matched for total 

musical experience. Although the groups of musicians showed no cognitive differences, 

working memory scores correlated with task performance. In the current study, we have 

replicated these findings in a larger sample of musicians and included a group of highly 

educated non-musicians (NM). Participants performed six woodblock rhythms of varying 

levels of metrical complexity and completed cognitive subtests measuring verbal 

abilities, working memory, and pattern recognition. Working memory scores correlated 

with task performance across all three groups. Interestingly, verbal abilities were stronger 

among the NM, while non-verbal abilities were stronger among musicians. These 

findings are discussed in context of the sensitive period hypothesis as well as the debate 

surrounding cognitive differences between musicians and non-musicians.  
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2.2 Introduction 

 The plastic changes that occur in each of our brains as we mature are the result of 

an interaction between maturational changes and experience.  A fascinating example of 

this interaction is a  “sensitive period” – a window of time during development when 

brain systems are more susceptible to the influence of experience or stimulation. In our 

lab, we have used trained musicians to study possible sensitive period effects. In these 

studies, musicians who began training before age seven demonstrated enhanced rhythm 

synchronization performance compared to musicians who began their training later in 

development, when matched for total musical experience (Bailey & Penhune, 2010; 

Watanabe, Savion-Lemieux, & Penhune, 2007). In addition, although these two groups of 

highly trained musicians did not differ on global cognitive variables, individual working 

memory scores predicted synchronization performance. In the current study, the sample 

size has been increased and a non-musician group has been added to further elucidate the 

association between working memory, musical training and task performance. Including 

a group of highly educated non-musicians also provides insight into possible cognitive 

differences between musicians and non-musicians. 

 As our knowledge about brain plasticity evolves, evidence for sensitive periods 

related to the acquisition of a variety of skills increases. The idea of a sensitive period 

may have gained most widespread attention through the results of a number of studies 

showing that second-language proficiency is greater in individuals who were exposed to 

the second language before age 11-13 (Johnson & Newport, 1989; Weber-Fox & Neville, 

2001). Recent evidence using neuroimaging techniques also supports the idea that the 
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sensory systems have developmental windows of time during which they are most 

sensitive to stimulation. Differences in occipital recruitment for non-visual functions 

between early blind individuals and those who acquired blindness later in development 

suggest that the visual system also has a developmental window during which it is most 

responsive to stimulation (Voss, Gougoux, Zatorre, Lassonde, & Lepore, 2008). Cochlear 

implantation studies suggest that the auditory system is more responsive the earlier these 

devices are implanted (Kral, Hartmann, Tillein, Heid, & Klinke, 2001; Sharma, Gilley, 

Dorman, & Baldwin, 2007). Studies have reported differences in brain structure between 

early- and late-trained musicians and have associated these differences with the extent of 

musical experience (Schlaug, Jäncke, Huang, Staiger, & Steinmetz, 1995; Bengtsson et 

al., 2005; Imfeld, Oechslin, Meyer, Loenneker, & Jäncke, 2009). However, an important 

addition to the investigation of a sensitive period is the matching paradigm developed in 

our laboratory (Watanabe, Savion-Lemieux, & Penhune, 2007). When early- and late-

trained musicians are matched for musical experience (years of formal instruction, years 

of playing, current hours of practice, etc.), the general effects associated with musical 

experience are controlled for and the age at which they began their musical training is 

isolated as the variable of interest. 

 Evidence from previous studies in our lab supports the idea of a sensitive period 

among musicians, even when cognitive abilities are considered. Early-trained musicians 

(those who began before age 7) outperformed late-trained musicians (those who began 

after age 7) on an auditory-motor synchronization task as well as a visual-motor 

synchronization task, when matched for total musical experience (Bailey & Penhune, 

2010; Watanabe, Savion-Lemieux, & Penhune, 2007). The two groups did not differ on 
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cognitive measures such as Vocabulary, Matrix Reasoning, Digit-Span, and Letter-

Number Sequencing (Bailey & Penhune, 2010; Wechsler, 1997; Wechsler, 1999). 

However, working memory scores predicted performance on the rhythm synchronization 

task across both groups of musicians. A regression analysis revealed that after controlling 

for working memory, group membership still accounted for variance in task performance. 

These results suggest that a musician’s working memory and age of start of musical 

training were both contributors to their ability to perform the rhythm synchronization 

task. 

 The current study aims to replicate our previous findings in a larger sample of 

musicians, and shed light on the debate surrounding cognitive differences between 

musicians and non-musicians. Although cognitive differences between musicians and 

non-musicians have been reported, there is controversy in the literature over how or why 

these differences emerge (Schellenberg & Peretz, 2008; Schellenberg, 2011). Studies 

have used child samples to examine the interaction between music lessons and cognitive 

and brain development (Hyde et al., 2009; Schellenberg, 2006). Using adults 

complements studies with children by allowing us to test whether differences associated 

with musical training persist into adulthood, especially because we are comparing 

musicians to a group of highly educated non-musicians. In addition, using a group of 

adult musicians with extensive but variable lengths of musical training allows us to 

investigate the nature of the association between music lessons and cognitive abilities. 
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2.3 Method 

2.3.1 Participants 

 Fifty neurologically healthy individuals between the ages of 18 and 36 (M = 25.5 

years old, SD = 4.6) participated in this study. Participants were screened for significant 

head injuries, history of neurological disease or medication that could affect task 

performance. Of the 50 participants, 30 were highly trained and currently practicing 

musicians and 20 were non-musicians (< 3 years of musical experience). The musical 

training and experience of each participant was determined through a Musical Experience 

Questionnaire (MEQ) that was developed within our laboratory (Bailey & Penhune, 

2010). The MEQ quantifies the amount of instrumental, vocal and dance training an 

individual has received, at what age this training occurred and the amount of time 

currently dedicated to practicing on a weekly basis. All musicians had extensive musical 

experience (M = 16.4 yrs; SD = 4.4). Musicians were classified as Early-Trained (ET; n 

= 15) or Late-Trained (LT; n = 15) musicians, based on their MEQ data. Those who 

began their musical experience prior to or at the age of 7 were placed in the ET group and 

those who began after the age of 7 were classified as LT. The age of seven was chosen 

based on previous studies (Bailey & Penhune, 2010; Sharma, Gilley, Dorman, & 

Baldwin, 2007; Watanabe, Savion-Lemieux, & Penhune, 2007). The two groups were 

matched on years of musical experience, years of formal training and hours of current 

practice. All participants gave informed consent and the Concordia University Research 

Ethics Committee had approved the protocol. 
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2.3.2 Stimuli 

 The rhythm task used in this study consisted of 6 woodblock rhythms of varying 

difficulty based on their metrical structure (Essens, 1995; Essens & Povel, 1995). Each 

test rhythm consisted of 11 woodblock notes and had a total duration of 6 seconds.  These 

rhythms differed in their temporal structure, such that the inter-onset intervals between 

musical notes varied, but not the duration of the notes themselves. More specifically, 

each rhythm was made up of five eighth notes (each 250 ms), three quarter notes (each 

500 ms), one dotted quarter note (750 ms), one half note (1000 ms) and one dotted half 

note (1500 ms). Manipulation of the temporal structure of the notes resulted in 

progressively more complex and less metrically structured rhythms. For a more detailed 

description of this task and the metrical complexity manipulation, please see Bailey and 

Penhune (2010). 

 Participants completed the Digit-Span (DS) and Letter-Number Sequencing (LN) 

subtests from the Wechsler Adult Intelligence Scale – III (WAIS) and the Vocabulary 

(VC) and Matrix Reasoning (MR) subtests from the Wechsler Abbreviated Scale of 

Intelligence (WASI; Wechsler, 1997; Wechsler, 1999). The DS requires individuals to 

recall strings of numbers and the LN requires individuals to recall and mentally 

manipulate strings of letters and numbers. Both of these subtests tap into working 

memory abilities; however, LN imposes a heavier load on working memory, while DS 

consists of a rote auditory memory recall section in addition to a mental manipulation 

section. The VC assesses an individual’s ability to orally define words and the MR 

assesses non-verbal reasoning and visual pattern recognition abilities. Both VC and MR 
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are strongly correlated with global IQ, although they assess different types of 

intelligence. 

 

2.3.3 Procedure 

 During the rhythm task, participants alternated between listening and tapping 

along while each rhythm played twice (Fig. 2.1). Participants were instructed to tap as 

accurately as possible with the rhythm as it played during the tapping repetition. Two 

very basic practice rhythms were administered to familiarize participants with the task. 

Each rhythm presented in a counterbalanced fashion 6 times over approximately 12 

minutes in each block and participants performed two blocks. Once participants had 

completed the first block of the task, they were asked to perform the DS. Participants 

then performed the second block of the rhythm synchronization task, followed by VC, 

LN and finally, MR.  

 

2.3.4 Measures 

 Musical information was quantified for each participant in terms of years of 

experience, years of formal training and hours of current weekly practice using the MEQ 

(Bailey & Penhune, 2010). Individual cognitive abilities were measured using the four 

chosen cognitive subtests (DS, LN, VC, and MR). Results were scored according to 

standard procedure. Performance on the rhythm synchronization task was measured using 

three dependent variables: percent correct (PC), asynchrony (ASYN) and inter-tap-

interval (ITI) deviation. A tap was considered correct if it was made within half of the 

onset-to-onset interval before or after a woodblock note (Fig. 2.2). The ASYN measure 
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was defined as the absolute value of temporal difference between the onset of each 

woodblock note and the associated mouse key press. The ITI deviation measure indicated 

the extent of deviation of the participant’s tap interval from the actual interval between 

each pair of woodblock notes. It was calculated by dividing the interval between each 

pair of the participant’s taps by the interval between each corresponding pair of 

woodblock notes in the rhythms and subtracting this ratio from a value of one. This 

measure is indicative of how well participants reproduced the temporal structure of the 

rhythms. 

 

Figure 2.1. Illustration of the auditory-motor synchronization task. Participants were 

exposed to six rhythms presented in random order for approximately two 12-minute 

blocks. Two different rhythms of each rhythmic complexity were used. Each trial 

consisted of a listening component followed by a listening and tapping component. 
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Figure 2.2. Illustration of the scoring method used to evaluate task performance. A 

response was scored correctly if the mouse tap was made within half of the onset-to-onset 

interval before and after a woodblock note. Asynchrony was measured as the difference 

between each woodblock note and the participant’s response. ITI deviation was 

calculated as a ratio of the ITI and the ISI subtracted from 1. 

 

2.3.5 Data Analysis 

To compare rhythm synchronization across the three groups, a repeated-measures 

analysis of variance (ANOVA) for each of the dependent variables was conducted, with 

group as the between-subjects factor and rhythm type as a within-subjects factor. Pair-
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wise comparisons for between group differences were analyzed using least significant 

differences (LSD) correction for multiple comparisons. The result of our matching 

procedure was evaluated using t-test analyses for years of musical experience, years of 

formal training, hours of current practice among the musicians. Group differences on the 

cognitive subtests were assessed using a one-way ANOVA for each cognitive variable 

with group as the between-subjects factor. Pair-wise comparisons were conducted using 

an LSD correction for multiple comparisons. The relationships among cognitive 

measures, musical experience variables and task performance were examined using one-

tailed Pearson correlation analyses. Raw scores on the cognitive subtests were used to 

correlate with performance measures and scaled scores were used when comparing the 

three groups on the cognitive measures. However, results were consistent whether raw or 

scaled scores were used in the analyses.  

Based on a previously observed relationship between individual working memory 

abilities and task performance among musicians, a hierarchical regression analysis was 

conducted with all three groups in order to assess whether the observed group difference 

persists after individual working memory scores are considered (Bailey & Penhune, 

2010). A model was created with total inter-tap interval (ITI) deviation as the dependent 

measure and both group and working memory as predictors. A composite score for each 

participant’s working memory abilities was created by summing their LN and DS scores 

and used in the regression analysis. 
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2.4 Results 

2.4.1 Group Comparisons of Musical and Cognitive Measures 

 Comparison of the ET and LT musicians confirmed that the two groups were well 

matched in terms of years of musical experience, years of formal training and hours of 

current practice (Table 2.1). The One-way ANOVA revealed no significant differences in 

DS or LN scores between groups, although statistical trends towards a main effect of 

group on MR and VC were observed (Fig. 2.3). Pair-wise comparisons revealed that the 

non-musician (NM) VC scores were higher than the ET (p = 0.026) and the MR scores of 

the LT were higher than those of the NM (p = 0.017). Scaled scores were used for these 

analyses. 

 

Table 2.1. Group demographics of musical experience variables 

 
Note: Standard deviation values are in brackets 
** p-value < 0.001 

Group Age 
(Yrs) 

Age of 
Onset 
(Yrs) 

Formal 
Training 

(Yrs) 

Musical 
Experience 

(Yrs) 

Current 
Practice 

(Hrs) 
Early-

Trained (ET) 
 

23.47  
(± 3.85) 

5.87  
(± 1.19) 

11.73  
(± 3.97) 

16.87  
(± 4.10) 

15.23  
(± 9.97) 

Late-Trained 
(LT) 

 

26.60  
(± 5.22) 

10.47  
(± 2.03) 

10.03  
(± 4.39) 

15.90  
(± 4.74) 

14.43  
(± 7.80) 

t-values -1.87 -7.57** 1.11 0.60 0.25 
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Figure 2.3. Group mean cognitive scaled scores. DS = Digit-Span, LN = Letter-Number 

Sequencing, VC = Vocabulary, and MR = Matrix Reasoning. No group differences were 

observed on the two measures of working memory (DS & LN); however statistical trends 

towards group differences were observed on VC (p = 0.078) and MR (p = 0.055). Pair-

wise comparisons revealed specific group differences (* p < 0.05). 

 

2.4.2 Behavioural Measures 

 The ANOVA comparing accuracy (PC) of the rhythm reproduction task across 

the three groups showed a significant main effect of group (F (2, 47) = 3.99, p < 0.05; 

Fig. 2.4a). Pair-wise comparisons using a LSD correction revealed differences between 

the ET and NM (p < 0.01). These results confirm that all three groups were performing 
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the task correctly overall and the mean performance values were in the expected order 

(i.e., ET > LT > NM). 

 The ANOVA comparing performance on the synchronization measure (ASYN) 

across the three groups revealed a similar pattern of results, such that there was a main 

effect of group (F (2, 47) = 16.76, p < 0.001; Fig. 2.4b). Pair-wise comparisons using a 

LSD correction revealed lower ASYN scores for the ET and LT when compared to the 

NM (p < 0.001 for both comparisons). In addition, the ET was better able to synchronize 

their responses than the LT musician group as revealed by lower ASYN scores (p = 

0.05). These results suggest that the group differences were heightened on this more 

sensitive performance measure compared to our more global measure of accuracy (PC). 

 Consistent with the other performance measures, the ANOVA comparing 

reproduction of the temporal structure of the rhythms using our Inter-tap Interval measure 

of deviation (ITI) across the three groups showed a significant main effect of group (F (2, 

47) = 20.30, p < 0.001; Fig. 2.4c). Pair-wise comparisons using a LSD correction 

revealed a similar pattern of results as on the ASYN measure such that, the ET had lower 

deviation scores than the LT (p < 0.05) and both musician groups had lower deviation 

scores than the NM (p < 0.001 for both comparisons). These results further illustrate that 

as the measure of performance increased in sensitivity to temporal aspects of the rhythms, 

the observed group differences were heightened. 
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Figure 2.4. Task performance results for all three groups. (a) Percent Correct (PC) (b) 

Asynchrony (ASYN) (c) Inter-tap Interval Deviation (ITI). Repeated measures ANOVA 

for each performance measure revealed a significant main effect of group and pair-wise 

comparisons revealed specific group differences (* p < 0.05, † = 0.05). Standard error 

bars have been used. 

 

 2.4.3 Correlations 

 In order to examine the relationship between task performance and cognitive 

variables across the three groups, raw scores for PC, ASYN and ITI were correlated with 

raw scores for VC, MR, DS and LN (Table 2.2). Both working memory measures (DS 

and LN) correlated significantly with the three performance measures (PC, ASYN, ITI) 
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in the expected directions, confirming that the rhythm reproduction task implicates the 

use of working memory. Surprisingly, VC negatively correlated with the synchronization 

measure such that higher VC scores were associated with poorer performance of the 

rhythm task. In addition, MR positively correlated with both synchronization and ITI 

measures of task performance. These results were likely driven by the group differences 

observed on these cognitive scores and this will be addressed in the discussion section. 

 Results from the correlation analyses between the behavioural measures and 

musical variables in the musicians (Table 2.3) revealed a significant association between 

years of formal training and ITI deviation (r = -0.367, p < 0.05). In addition, age of onset 

showed a significant relationship with ASYN and ITI, as well as a relationship trending 

towards significance with PC. In order to examine the association between years of 

formal training, cognitive scores and task performance, correlations were performed 

between years of formal training and each cognitive measure. This set of analyses 

revealed an association trending towards significance between years of formal training 

and DS (r = 0.342, p = 0.06); however, no significant associations with LN, VC or MR.  
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Table 2.2. Correlation results between cognitive scores and task performance measures 
 

Performance Measure Digit-Span 
(DS) 

Letter-Number 
Sequencing 

(LN) 

Matrix 
Reasoning 

(MR) 

Vocabulary 
(VC) 

Percent Correct (PC) 
 

0.275† 0.360* 0.147 -0.072 

Asynchrony (ASYN) 
 

-0.258† -0.307* -0.262† 0.269† 

Inter-tap Interval 
Deviation (ITI) 

 

-0.378** -0.340* -0.339* 0.187 

 
Note: Raw scores were used for the cognitive measures 
† p-values < 0.08 but greater than 0.05 
* p-values < 0.05 
** p-values < 0.01 
 

Table 2.3. Correlation results between musical experience and task performance 
measures 
 

Performance Measure Age of Onset 
(Yrs) 

Formal 
Training 

(Yrs) 

Musical 
Experience 

(Yrs) 

Current 
Practice 

(Hrs) 
Percent Correct (PC) 

 
-0.352† 0.010 0.141 -0.052 

Asynchrony (ASYN) 
 

0.459* -0.214 -0.139 -0.079 

Inter-tap Interval 
Deviation (ITI) 

 

0.509** -0.367* -0.095 0.046 

 
Note: Raw scores were used for the cognitive measures 
† p-values < 0.08 but greater than 0.05 
* p-values < 0.05 
** p-values < 0.01 

 

2.4.4 Regression Analysis 

 In order to determine if the amount of variance in ITI deviation during task 

performance accounted for by group was above and beyond what was explained by 
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individual working memory abilities, a hierarchical regression analysis was conducted 

using the three groups (Table 2.4). These results confirmed that, while individual 

working memory abilities were predictive of task performance, group membership 

accounted for additional portions of the variance in ITI deviation scores. 

Table 2.4. Regression analysis results examining the predictive value of group 
membership above and beyond working memory to task performance 
 

 R2 � R2 Change F 
Step 1 
    Working Memory 

0.165  
-0.406** 

0.165 9.45 

Step 2 
    Working Memory 
    Group 
 

0.538  
-0.293** 
0.621** 

 
 

0.373 

27.336 

 
Note: A working memory composite score was used for this analysis comprising of 
individual raw DS and LN scores 
**p-values < 0.01 
 

2.5 Discussion 

 These findings replicate our previous findings but in a larger sample, and provide 

further evidence for a sensitive period for musical training that may have a specific 

impact on sensorimotor synchronization abilities. In this study, the ET musicians were 

better able to reproduce the rhythms than the LT musicians, even after controlling for 

years of formal training, playing experience and current hours of practice. In addition, the 

two musician groups did not differ on the four cognitive measures. In other words, this 

observed group difference on task performance could not be attributed to differences in 

musical experience or cognitive ability, but to the developmental window during which 

musical training began. As expected, non-musician rhythm synchronization abilities were 

inferior to both musician groups. Although there were no differences in working memory 
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performance across the three groups, individual working memory scores correlated with 

task performance, suggesting similar reliance on working memory resources for all 

groups. In further support of the sensitive period hypothesis, the regression results 

suggest that even after controlling for individual working memory scores, group 

membership still predicted a significant amount of variance in task performance. This 

reinforces the idea that musical training, especially early musical training, improves task 

performance above and beyond the contribution of working memory abilities. 

 In addition to the differences between ET and LT musicians on the rhythm task, 

we observed differences in performance on global cognitive variables between musicians 

and non-musicians.  Specifically, the non-musicians obtained higher VC scores, while the 

musician groups had higher MR scores. These findings are interesting and can shed light 

on the types of cognitive effects associated with musical training. One hypothesis is that 

music lessons benefit the underlying cognitive abilities that are measured by MR, and, in 

contrast, non-musicians are exercising their verbal intelligence via other avenues. If this 

were the case, one would expect the length of musical training (i.e., years of formal 

training) to be correlated with MR scores among the musician group, but it is not. 

Alternatively, one could hypothesize that individuals with strong visual-spatial 

organization skills are inclined to take up music lessons, and those with strong verbal 

abilities are likely to take up other non-musical activities. If this were true, then no 

relationship between length of musical training and MR would be present, yet group 

differences would persist between musicians and non-musicians. The current data 

supports this assumption. The more general question of what is driving cognitive 

differences between musicians and non-musicians is an area of controversy. Recently, 
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Schellenberg and Peretz proposed that the observed association between music lessons 

and cognition might be mediated by executive function, although a more recent 

publication by Schellenberg failed to observe convincing evidence that this was the case 

(Schellenberg & Peretz, 2008; Schellenberg, 2011). In our sample, a weak association 

between working memory, a component of executive function, and years of formal 

training was observed among the musicians; however, their scores were not higher than 

the non-musicians, suggesting that if years of formal training impacts working memory, it 

does not do so above and beyond other non-musical activities that the non-musicians 

engaged in. Other factors such as socio-economic status or the family environment may 

contribute to the differences between the two groups. Both our musicians and non-

musicians were either in the process of completing an undergraduate degree or had 

obtained one, and some were pursuing higher-level education. Thus, in these highly 

educated samples, any enhanced cognitive abilities observed in musicians over non-

musicians are likely to be a combination of innate predisposition and effects associated 

with exercising the abilities implicated in music lessons during development. Similarly, 

non-musicians are likely predisposed to engage in other non-musical activities and 

exercise other abilities during their development. 

 In summary, this study adds to the building literature in support of a sensitive 

period for sensorimotor integration abilities among musicians and considers non-

musicians as a comparison sample. Any differences in brain structure between early and 

late-trained musicians associated with these enhanced synchronization abilities have yet 

to be explored. The results from this study also add to the evidence that musicians and 

non-musicians possess different cognitive strengths, even in a sample of highly educated 
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adults. However, the exact contributions of innate predisposition and the influence of 

training remain unknown.  
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Chapter 3: Early musical training: Effects on auditory-motor rhythm performance and 

grey matter structure in the ventral pre-motor cortex 

Bailey, J.A., Zatorre, R. J., and Penhune, V.B. (in submission). Early musical training: 

Effects on auditory-motor rhythm performance and grey matter structure in the ventral 

pre-motor cortex. NeuroImage. 

3.1 Abstract 

The idea of a sensitive period, a time during maturation when experience or stimulation 

has a greater influence on brain development, has been proposed for musical training 

(Steele, Bailey, Zatorre, & Penhune, 2013). Early-trained musicians (ET) have 

demonstrated enhanced sensorimotor synchronization abilities compared to late-trained 

musicians (LT), even when matched for years of musical experience (Watanabe, Savion-

Lemieux, & Penhune, 2007; Bailey & Penhune, 2010; 2012). However, the underlying 

differences in grey matter structure have yet to be explored. The current study 

investigated performance differences on an auditory-motor synchronization task and 

differences in grey matter structure between Early-Trained (ET) and Late-Trained (LT) 

musicians, matched for years of musical experience. Non-Musicians (NM) were included 

as a control group. Differences in grey matter were analyzed using optimized voxel-based 

morphometry (VBM), traditional VBM and deformation-based morphometry (DBM). 

The groups were also compared in terms of surface-based features (cortical thickness, 

surface area and mean curvature). Group differences between musician groups were 

identified using DBM and located in the right ventral pre-motor cortex. Surface-based 

analyses in this region revealed greater cortical surface area among the ET musicians. 

Extracted values correlated with performance on the Rhythm Synchronization Task 
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(RST) and age of onset of musical training. Across all participants, extracted traditional 

VBM values correlated with cortical thickness, while DBM values correlated with 

cortical surface area, curvature, and grey matter volume. These results highlight the 

importance of characterizing differences in grey matter observed using VBM-style 

techniques with additional surface-based measures. In addition, these results add to 

mounting evidence that early musical training influences brain structure differently than 

musical training received later in development, supporting the idea of a sensitive period 

during development for musical training.  

 

3.2 Introduction 

 Evidence that early experience differentially influences skill acquisition and brain 

structure has been observed in several domains. For example, second language 

proficiency is enhanced when exposure begins earlier in development (Weber-Fox & 

Neville, 2001) and speech perception is better for those who receive cochlear implants at 

an earlier age (Geers, 2006; Harrison, Gordon, & Mount, 2005). Previous work in our 

laboratory has investigated the effect of early training among musicians, showing that 

those who begin before age seven perform more accurately on an auditory rhythm 

synchronization task that has been shown to engage the auditory and pre-motor cortices 

(Bailey & Penhune, 2010; 2012; Chen, Zatorre, & Penhune, 2008; Watanabe, Savion-

Lemieux, & Penhune, 2007). In addition, we have found that early trained musicians 

have enhanced white-matter integrity in a region of the corpus callosum which connects 

the motor cortices of the two hemispheres (Steele, Bailey, Zatorre, & Penhune, 2013). 

Taken together, these results indicate that early musical training has long-lasting effects 
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on behavior and the brain (Penhune, 2011). Two neuroanatomical processes may interact 

to set the stage for such a sensitive period: brain maturation and experience-driven 

plasticity. Given that different brain areas have distinct maturational timelines (Gogtay, et 

al., 2004; Lebel, Walker, Leemans, Phillips, & Beaulieu, 2008), sensitive periods may 

emerge when maturational plasticity in a brain region  associated with a specific skill is 

paired with intensive experience or practice of that skill. Musicians are a good population 

in which to study sensitive periods because training begins at different ages, can be 

quantified and is known to influence brain structure (for recent review see Jäncke, 2009 

or Wan and Schlaug, 2010). Furthermore, several components of the anatomical network 

implicated in musical training undergo their greatest structural change in early childhood 

(Gogtay, et al., 2004; Lebel, et al., 2008). Because our previous work has shown that 

early musical training is associated with enhanced white matter connectivity, the purpose 

of the current study is to examine effects of early training on grey matter structure within 

the auditory-motor network. To do this we compared grey matter structure and 

performance on an auditory rhythm synchronization task in adult musicians who began 

training before and after age seven and who were matched for years of experience. 

Importantly, we used a series of complementary voxel-wise and surface-based structural 

MRI data analysis techniques to assess the effect of early training on grey matter 

structure. We hypothesized that early musical training would be associated with better 

performance on the rhythm synchronization task and differences in grey matter structure 

in auditory and motor regions.  

 Previous work from our laboratory has shown that adult musicians who began 

training before age seven  have enhanced sensorimotor synchronization performance in 
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both the auditory and visual domains, even after controlling for potential differences in 

musical experience using a matching paradigm (Bailey & Penhune, 2010; Watanabe, 

Savion-Lemieux, & Penhune, 2007). We also showed that these differences were not 

related to global cognitive abilities and were present even when controlling for the effect 

of working memory.  These findings suggest that early musical training may have 

specific impacts on auditory-motor integration networks in the brain. This is consistent 

with the results of previous fMRI studies showing that performance of the auditory 

rhythm synchronization task recruits auditory association areas and the pre-motor cortex 

(Chen, Penhune, & Zatorre, 2008). It is also consistent with recent diffusion tensor 

imaging (DTI) findings in a subgroup of the sample presented here showing differences 

in the corpus callosum in a region connecting the motor regions of the two hemispheres 

(Steele, Bailey, Zatorre, & Penhune, 2013). Changes in white matter often coincide with 

changes in grey matter, although much remains unknown about the exact relationship 

(Scholz, Klein, Behrens, & Johansen-Berg, 2009). Based on these results, the current 

study will investigate differences in measures of grey matter between ET and LT 

musicians matched for total musical experience within the auditory-motor network 

associated with performance on the auditory rhythm synchronization task. 

 Grey and white matter maturational trajectories are important to consider when 

investigating the sensitive period hypothesis for musical training. Grey matter 

development appears to follow an inverted u-shaped maturation pattern with growth in 

volume occurring first, followed by a gradual loss of volume (Giedd, et al., 1999; 

Gogtay, et al., 2004; Gogtay & Thompson, 2010; Sowell, Thompson, Tessner & Toga, 

2001). When examining grey matter maturation rates more locally, it seems that higher-
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order association areas reach maturity only after the lower-order sensorimotor areas. The 

primary sensory and motor cortices and the frontal and occipital poles mature first, while 

the rest of the cortex matures more or less in a parietal to frontal fashion, with the 

exception of the superior temporal cortex, which matures last (Gogtay, et al. 2004). 

White matter fibre tracts continue to “fine-tune” themselves well into adulthood. Of 

particular importance from these findings is that most fibre tract maturational trajectories 

are non-linear, with the greatest amount of change occurring in the early childhood years 

(Lebel, Walker, Leemans, Phillips, & Beaulieu, 2008; Paus, 2010). Overall, it seems the 

maturational trajectories of cortical regions and connecting fibre tracts suggest that the 

sensorimotor network comes online during early childhood. As a result, musical training 

during these years may fine-tune this network via experience-driven plasticity processes 

more effectively than musical training later in development. 

 Experience-driven plasticity effects among musicians are equally important to 

consider when investigating the sensitive period hypothesis for musical training. Studies 

comparing musicians and non-musicians have shown differences in measures of brain 

structure and functional activation within sensorimotor and prefrontal areas, suggesting 

training-induced plasticity effects (e.g., Bermudez, Lerch, Evans, & Zatorre, 2009; Chen, 

Penhune, & Zatorre, 2008; Gaab & Schlaug, 2003; Sluming et al., 2002). Furthermore, 

several studies have reported correlations between the amount of musical training and 

measures of brain structure within the sensorimotor network (e.g., Abdul-Kareem, 

Stancak, Parkes, & Sluming, 2010; Foster & Zatorre, 2010; Gaser & Schlaug, 2003; 

Halwani, Loui, Rüber, & Schlaug, 2011). While other factors such as genetic 

predisposition may contribute to these findings, a recent study used a pre-post training 
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design in children looking at the effects of music lessons and found increased volume in 

the corpus callosum, right primary motor cortex, right primary auditory cortex and other 

prefrontal areas in the music lesson group after two years of lessons, as compared to the 

control groups (Hyde, et al., 2009). Overall, the emerging evidence suggests that musical 

training influences brain structure within the sensorimotor network through the 

mechanisms of experience-driven plasticity. 

 The interaction between maturational growth and experience-driven plasticity 

within the sensorimotor network may result in sensitive periods throughout development. 

Early sensitive periods in the visual system have been identified when stimulation is 

required for normal functioning and recent evidence suggests that experience-dependent 

plasticity is reduced in adulthood but not absent (for review see Hooks and Chen, 2007). 

Similar to the visual system, studies examining the development of the auditory system 

have revealed sensitive periods for frequency tuning (for review see de Villers-Sidani and 

Merzenich, 2011).  In humans, studies of hearing and speech proficiency in children who 

received cochlear implants reveal a clear advantage for children who received their 

implants in early childhood or infancy (Harrison, Gordon, & Mount, 2005; Geers, 2006; 

Nicholas & Geers, 2007). Suggestive evidence of a sensitive period among musicians 

initially came from a study reporting a greater difference in corpus callosum surface area 

between musicians and non-musicians that was driven by those who began their training 

prior to age seven (Schlaug, Jäncke, Huang, Staiger, & Steinmetz, 1995). These findings 

were corroborated by evidence of greater white matter integrity in the corticospinal tract 

for early trained musicians (Imfeld, Oechslin, Meyer, Loenneker, & Jäncke, 2009) and a 

relationship between hours of practice before age 11 and white matter integrity in the 
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corpus callosum and corticospinal tract (Bengstson, et al., 2005). The only previous study 

examining grey matter differences associated with the age of start of musical training 

found that the size of the primary motor cortex in musicians was related to the age of start 

of training (Amunts, et al., 1997). However, none of these studies were designed to 

address the sensitive period question and therefore, did not control for amount of musical 

training. An adult musician who began training at age four will likely have more years of 

practice than an adult musician who began at age 11. As a result, these differences may 

partly be due to differences in the amount of training between groups and not the age at 

which training began. Furthermore, previous studies have not directly associated 

differences in brain structure with auditory-motor task performance, which is important 

in establishing their relevance. Our recent DTI study showing greater white matter 

integrity in the corpus callosum for early trained musicians was the first neuroimaging 

study to control for the length of training between early-trained and late-trained 

musicians. The current study will use the same approach to examine possible differences 

in grey matter structure and their relationship to auditory-motor synchronization 

performance.  

 Neuroimaging studies examining grey matter are moving beyond using single 

analysis techniques and multimodal approaches are becoming more common. Combining 

multiple analysis techniques can provide more information about the structural 

characteristics contributing to observed differences. Several voxel-wise analyses are 

available to examine grey matter including traditional voxel-based morphometry (VBM), 

optimized VBM, and deformation-based morphometry (DBM) (see Good, et al., 2001 for 

a detailed explanation of VBM methodologies). Traditional VBM analysis removes local 
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differences in volume or shape in order to fit subjects to a common template followed by 

a voxel-wise comparison of grey matter values.  Results of traditional VBM analyses are 

typically interpreted as revealing differences in grey matter “concentration” and may be 

influenced by regional differences in both volume and shape. DBM analysis measures the 

degree of deformation required to fit each subject to a common template (i.e., the 

Jacobian determinants) on a voxel-wise basis. Results of DBM analyses are typically 

interpreted as revealing differences in shape or volume. Optimized VBM can be 

perceived as a combination of these two techniques. Optimized VBM removes local 

differences in volume to fit each subject to a common template similar to traditional 

VBM analysis, and then modulates the grey matter value in each voxel by the degree of 

deformation that was required to fit that subject to the template. Results obtained with 

optimized VBM analyses are due to a combination of grey matter concentration effects 

and morphological effects. In addition to these voxel-wise analysis techniques, cortical 

thickness and surfaced-based measures such as cortical surface area, curvature and grey 

matter volume are available to identify differences in cortical surface features.  

These measures of grey matter structure are differentially correlated with each 

other, suggesting that they may be associated with unique cortical features. Traditional 

VBM has been associated with cortical thickness (Bermudez, Lerch, Evans, & Zatorre, 

2009; Foster & Zatorre, 2010). Differences observed using optimized VBM have been 

linked to DBM values, not to traditional VBM values (Eckert, et al., 2006). Furthermore, 

previous findings suggest that optimized VBM values relate to measures of cortical 

surface area in some regions and cortical thickness in other regions (Voets, et al., 2008).  
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Therefore, we can also explore the relationship between these different cortical measures 

to better understand any observed differences between early- and late-trained musicians.  

 

3.3 Method 

3.3.1 Participants 

 Two groups of highly trained and currently practicing musicians participated in 

this study. These groups were selected based on the age at which they started musical 

training: those who began at or prior to the age of 7 were classified as Early-Trained (ET; 

n = 15) and those who began after the age of 7 were classified as Late-Trained (LT; n = 

15).  The age cut-off of 7 was based on previous findings (Bailey & Penhune, 2010; 

Schlaug, Jäncke, Huang, Staiger, & Steinmetz, 1995; Watanabe, Savion-Lemieux, & 

Penhune, 2007). To ensure that any observed differences in task performance or brain 

structure were not confounded by differences in experience, the two groups were 

matched for years of musical experience, years of formal training and hours of current 

practice. In addition, a control group of Non-Musicians (NM; n  = 20) also participated in 

this study. NM had less than three years of musical training and were not currently 

practicing. To assess musical experience, all participants completed the Musical 

Experience Questionnaire (MEQ) that was developed in our laboratory (Bailey & 

Penhune, 2010). The MEQ quantifies the amount of instrumental, vocal and dance 

training an individual has received, at what age this training occurred and the amount of 

time currently dedicated to practice on a weekly basis. All participants were right-handed, 

completed a Magnetic Resonance safety screening form, and provided written informed 
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consent. The experimental protocol was approved by the McGill University MNH/I 

Research Ethics Board and the Concordia University Human Research Ethics Committee.  

 

3.3.2 Behavioural Tasks 

 The Rhythm Synchronization Task (RST) requires participants to listen and then 

tap in synchrony with a series of auditory rhythms varying in metrical complexity. 

Performance differences on the RST between ET and LT musicians have been previously 

observed (Bailey & Penhune, 2010; 2012). It is a modified version of a task used to 

examine functional correlates of auditory rhythm synchronization among musicians and 

non-musicians (Chen, Penhune, & Zatorre, 2008). Briefly, it consists of six woodblock 

rhythms of varying difficulties based on their metrical structure (Essens, 1995; Essens & 

Povel, 1985). Each rhythm comprises 11 woodblock notes and has a total duration of six 

seconds.  These rhythms differ in their temporal structure, such that the temporal 

intervals between notes are manipulated, but not the duration of the notes themselves. 

More specifically, each rhythm is made up of five eighth notes (each 250 ms), three 

quarter notes (each 500 ms), one dotted quarter note (750 ms), one half note (1000 ms) 

and one dotted half note (1500 ms). Manipulation of the temporal structure of the notes 

results in three levels of progressively more complex and less metrically structured 

rhythm types. On each trial, one rhythm is presented twice.  On the first presentation, 

participants are instructed to listen carefully and on the second presentation they are 

asked to tap in synchrony with the rhythm using the computer mouse. Each rhythm is 

presented in a counterbalanced fashion six times in each block and participants perform 

two blocks. For a more detailed description of the RST, see Bailey and Penhune (2010). 
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 Performance on the RST is measured using two dependent variables: percent 

correct (PC) and inter-tap-interval (ITI) deviation. A tap is considered correct if it is 

made within half of the onset-to-onset interval before or after each woodblock note. ITI 

deviation measures the extent of deviation of the participant’s tap intervals from the 

actual intervals between each pair of woodblock notes. It is calculated by dividing the 

interval between each pair of the participant’s taps by the interval between each 

corresponding pair of woodblock notes in the rhythms and subtracting this ratio from a 

value of one. This measure is indicative of how well participants reproduce the overall 

temporal structure of the rhythms. 

 To examine any potential differences between groups in cognitive abilities, 

participants completed the Digit-Span (DS) and Letter-Number Sequencing (LN) subtests 

from the Wechsler Adult Intelligence Scale – III (WAIS; Wechsler, 1997) and the 

Vocabulary (VC) and Matrix Reasoning (MR) subtests from the Wechsler Abbreviated 

Scale of Intelligence (WASI; Wechsler, 1999). DS requires individuals to recall strings of 

numbers and LN requires individuals to recall and mentally manipulate strings of letters 

and numbers. Both of these tasks are measures of auditory working memory. VC assesses 

an individual’s ability to orally define words and MR assesses non-verbal reasoning and 

visual pattern recognition abilities. Both VC and MR are strongly correlated with global 

IQ scores. Standard procedure was followed for administering and scoring each subtest. 

 

3.3.3 Procedure 

 During an initial behavioural testing session, participants completed the MEQ, the 

RST and the four cognitive tests. Structural MRI scans were acquired on a second day 
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using a Siemens Trio 3T MRI scanner with a 32-channel head coil (TR = 2300ms, TE = 

2.98ms, 1x1x1mm3).  

 

3.3.4 Behavioural Data Analyses 

To compare performance on the RST between the three groups, a repeated-

measures analysis of variance (ANOVA) for both PC and ITI deviation was conducted, 

with group as the between-subjects factor. Pair-wise comparisons for between group 

differences were analyzed using a least significant differences (LSD) correction for 

multiple comparisons. The result of our matching procedure was evaluated using t-test 

comparing years of musical experience, years of formal training, and hours of current 

practice between the ET and LT groups. Group differences on the cognitive subtests were 

assessed using a one-way ANOVA for each cognitive variable with group as the 

between-subjects factor. Scaled scores were used for the cognitive subtest comparisons 

and pair-wise comparisons were conducted using a LSD correction for multiple 

comparisons.   

 

3.3.5 MRI Data Analyses 

 Four types of analyses were conducted to examine group differences in grey 

matter: optimized VBM, traditional VBM, DBM, and surface-based analyses. In all three 

VBM-style analyses, there is a processing step that deforms each subject’s T1 image in 

order to register the image to a common template, thus removing significant differences 

in shape or volume in all subjects. Optimized VBM re-introduces this deformation 

information by modulating each voxel’s grey matter value by the degree of deformation 
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obtained during the image registration process. Traditional VBM compares grey matter 

values after the subject images have been registered to the template, thus removing any 

deformation information from the data. Because optimized VBM modulates voxel-wise 

grey matter values with the deformation value, it is impossible to attribute observed 

differences to local volume/shape or more fine-grained differences in grey matter such as 

concentration or density. DBM analysis compares the degree of deformation (expansion 

or contraction) required to register each individual to the template in a voxel-wise 

fashion, measuring local differences in volume or shape between groups. In addition to 

the VBM-style analyses, T1 images were processed using the surface-based stream of 

FreeSurfer to assess group differences in cortical thickness, surface area, curvature and 

volume. Using these techniques on the same data set allows for a more comprehensive 

investigation of grey matter and which cortical surface features are associated with 

observed differences using the VBM-style techniques. 

 

3.3.5.1 VBM and DBM Analyses 

 All VBM and DBM analyses were conducted using FSL tools (Smith et al., 

2004). T1 images were brain-extracted using BET (Smith, 2002) and tissue-type 

segmentation was carried out using FAST4 (Zhang, Brady, & Smith, 2001). The resulting 

grey matter partial volume images were aligned to the MNI152 standard template using 

the affine registration tool FLIRT (Jenkinson & Smith, 2001), followed by a non-linear 

registration using FNIRT (Andersson, Jenkinson, & Smith, 2007). The resulting images 

were averaged to create a study-specific template, to which the native grey matter images 

were then non-linearly registered. In the optimized VBM protocol (Good, et al., 2001), 
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the registered partial volume images are modulated by the Jacobian determinants of the 

warp field. In addition, we examined the natural logarithm values of the Jacobian 

determinants themselves as measures of local expansion or contraction (DBM) as well as 

grey matter concentration values (traditional VBM; Ashburner & Friston, 2000). In all 

three analyses, final images were smoothed using an isotropic Gaussian kernel with a 

sigma of 4mm and voxel-wise GLM was applied using permutation-based non-

parametric testing with a cluster-based thresholding approach (t = 3.66, voxel-wise 

uncorrected p < 0.001), correcting for multiple comparisons. To assess differences 

between ET and LT musicians whole-brain group comparisons were conducted using 

optimized VBM, DBM and traditional VBM. For the region of significant difference 

identified in the ventral pre-motor cortex (vPMC), mean values for all three groups (ET, 

LT and NM) were extracted and compared. In addition, these values were correlated with 

ITI deviation scores on the RST as well as age of onset of musical training. Additional 

whole-brain analyses were carried out to investigate regions related to musical training 

across all musicians. 

 

3.3.5.2 Cortical Thickness and Surface-Based Analyses 

 Cortical reconstruction was performed with the Freesurfer image analysis suite, 

which is documented and freely available for download online 

(http://surfer.nmr.mgh.harvard.edu/). The technical details of these procedures have been 

described in prior publications (Dale, Fischl, & Sereno, 1999; Dale & Sereno, 1993; 

Fischl & Dale, 2000; Fischl, Liu, & Dale, 2001; Fischl, et al., 2002; Fischl, et al., 2004; 

Fischl, Sereno, & Dale, 1999a; Fischl, Sereno, Tootell, & Dale, 1999b; Han, et al., 2006; 
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Jovicich, et al., 2006; Ségonne, et al., 2004). In summary, the processing stream includes 

removal of non-brain tissue using a hybrid watershed/surface deformation procedure 

(Ségonne, et al., 2004), automated Talairach transformation, segmentation of the 

subcortical white matter (Fischl, et al., 2002; Fischl, et al., 2004), intensity normalization 

(Sled, Zijdenbos, & Evans, 1998), tessellation of the gray matter white matter boundary, 

automated topology correction (Fischl, et al., 2001; Ségonne, Pacheco, & Fischl, 2007), 

and surface deformation following intensity gradients to optimally place the gray/white 

and gray/cerebrospinal fluid borders at the location where the greatest shift in intensity 

defines the transition to the other tissue class (Dale, et al., 1999; Dale & Sereno, 1993; 

Fischl & Dale, 2000). Each volume and surface was visually inspected for errors or 

inaccuracies. Once the cortical models were complete, the creation of surface based data 

including maps of cortical thickness, curvature and surface area was carried out. This 

method uses both intensity and continuity information from the entire three dimensional 

MR volume in segmentation and deformation procedures to produce representations of 

cortical thickness, calculated as the closest distance from the gray/white boundary to the 

gray/CSF boundary at each vertex on the tessellated surface (Fischl & Dale, 2000). The 

maps are created using spatial intensity gradients across tissue classes and are therefore 

not simply reliant on absolute signal intensity. The maps produced are not restricted to 

the voxel resolution of the original data thus are capable of detecting submillimeter 

differences between groups. All data maps were smoothed with a 20-mm full-width/half-

maximum Gaussian kernel. A whole-brain group comparison of cortical thickness 

between the ET and LT musicians was conducted. Additionally, the region of interest 

(ROI) in the vPMC identified in the DBM analysis was imported into Freesurfer, 
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registered to the average volume, mapped onto the average surface and finally mapped 

onto each individual’s surface. Group comparisons for mean values of cortical thickness, 

surface area, mean curvature and grey matter volume for this ROI were carried out, as 

well as correlations with ITI deviation on the RST as well as age of onset of musical 

training. In addition, a whole-brain search for areas where cortical thickness correlated 

with musical experience demographics was carried out. 

 

3.3.5.3 Correlation Analyses Between Traditional VBM, DBM, Cortical Thickness and 

Surface-Based Measures 

 Finally, correlation analyses were conducted among the extracted structural 

measures from the ROI in vPMC in order to relate the different VBM-style analyses to 

cortical surface attributes. More specifically, extracted mean values of deformation, 

traditional VBM, cortical thickness, curvature, surface area, and total grey matter volume 

were correlated with each other across all participants. These additional analyses provide 

a more comprehensive understanding of how these different measures relate to each 

other. 

 

3.4 Results 

3.4.1 Behavioural Results 

 Statistical comparison of the ET and LT musicians confirmed that there were no 

significant differences between the two groups in terms of age, years of musical 

experience, years of formal training and hours of current practice (Table 3.1). The NM 
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group had fewer than three years of musical training and did not differ in age from either 

musician group. 

 Comparisons of cognitive subtest scores revealed no significant between-group 

differences on Digit Span or Letter-Number Sequencing.  A marginally significant effect 

of group was observed for Matrix Reasoning and Vocabulary (Table 3.2). Post-hoc 

comparisons revealed that Vocabulary scores were higher for NM than ET (p = 0.03) and 

that Matrix Reasoning scores were higher for LT than NM (p = 0.02). 

 Comparison of performance on the Rhythm Synchronization task between the 

three groups revealed a significant main effect of group for the ITI deviation measure (F 

(2, 47) = 20.30, p < 0.001; Fig. 3.1). Post-hoc analyses revealed that task performance of 

the ET was superior to that of the LT (p < 0.05). Both musician groups showed an 

advantage in task performance compared to the NM group (both p < 0.0001).  

Table 3.1. Group demographics of musical experience variables 

 
Group Age 

(Yrs) 
Age of Onset 

(Yrs) 
Formal Training 

(Yrs) 
Musical 

Experience 
(Yrs) 

Current 
Practice 

(Hrs) 
Early-Trained 

(ET) 
23.47  

(± 3.85) 
5.87  

(± 1.19) 
11.73  

(± 3.97) 
16.87  

(± 4.10) 
15.23 

 (± 9.97) 
Late-Trained 

(LT) 
26.60  

(± 5.22) 
10.47  

(± 2.03) 
10.03 

 (± 4.39) 
15.90  

(± 4.74) 
14.43  

(± 7.80) 
t-values -1.87 -7.57** 1.11 0.60 0.25 

Non-
Musicians 

(NM) 

26.20  
(± 4.35) 

- 0.69  
(± 0.79) 

0.91  
(± 0.75) 

- 

Note: Standard deviation values are in brackets 
** p-value < 0.001 
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Table 3.2. Group cognitive subtest scores 

 
Note: Standard deviation values are in brackets 
* p-value < 0.05 
 

 
 
Figure 3.1. Group mean performance scores for the Rhythm Synchronization Task. (a) 

Percent Correct and (b) Inter-Tap Interval Deviation of all three groups on the Rhythm 

Synchronization Task. ANOVA results indicated a main effect of group on each 

performance measure, and post-hoc analyses for Inter-tap Interval Deviation revealed 

superior task performance among the Early-Trained musicians compared to the Late-

Trained musicians. Both musician groups showed an advantage in task performance 

compared to the Non-Musicians on both performance measures. Error bars represent 

standard error of the mean. 

Group Digit-Span 
(DS) 

Letter-Number 
Sequencing 

(LN) 

Vocabulary 
(VC) 

Matrix Reasoning 
(MR) 

Early-Trained (ET) 12.13 (± 2.88) 12.33 (± 2.94) 12.33 (± 3.33) 12.20 (± 3.34) 
Late-Trained (LT) 12.27 (± 1.98) 11.80 (± 2.78) 13.33 (± 2.82) 13.60 (± 2.32) 

Non-Musicians 
(NM) 

11.05 (± 3.43) 11.45 (± 2.11) 14.45 (± 1.96) 11.15 (± 2.91) 

F-values 0.96 0.61 2.69 3.08 
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3.4.2 VBM and DBM Results 

 When images were analyzed using optimized VBM, where spatially registered 

voxel-wise grey matter values are modulated by the Jacobian determinants (Good, et al., 

2001), the initial whole-brain analysis revealed differences between musician groups in 

three main areas (ET-LT; t-values > 3, uncorrected for multiple comparisons): bilateral 

ventral pre-motor cortex (right peak voxel: 50, 8, 24, t = 4.31; left peak voxel: -46, 2 26, t 

= 4.18), left dorsal pre-motor cortex (peak voxel: -24, 0, 56, t = 4.35), and left primary 

somatosensory cortex (peak voxel: -24, -34, 54, t =3.19). These areas did not surpass the 

permutation-based non-parametric correction for multiple comparisons. The strongest 

effect was located in the right ventral pre-motor cortex and reached a p-value of 0.10. 

 In order to understand the contribution of traditional VBM grey matter values and 

local differences in volume or shape contributing to this effect, traditional VBM and 

DBM analyses were conducted independently. The traditional VBM analysis revealed no 

significant group differences; however, the DBM analysis revealed a group difference 

(ET>LT) in the right ventral pre-motor cortex at the same location identified in the 

optimized VBM analysis (peak voxel: 50, 4, 20, t = 5.32; cluster p < 0.05, corrected for 

multiple comparisons; Fig. 3.2a). The ET group required greater contraction in this area 

than the LT in order to register their volumes to the study-specific template, suggesting 

that differences in local volume or shape were driving the observed difference in this 

region in the optimized VBM analysis 

 Confirming relevance of these findings to auditory-motor synchronization 

performance, extracted mean deformation values from this ROI were negatively 
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correlated with ITI deviation scores such that better performance was related to higher 

deformation values (r = -0.354, p < 0.05; Fig. 3.2b). Interestingly, the extracted mean 

grey matter values obtained from the traditional VBM analysis from this ROI showed no 

effect of group or relation to task performance (t = -0.74 and r = 0.022, p > 0.05; Fig. 

3.2b). The extracted mean values from the NM group were included for the sake of 

comparison, as no significant differences were observed using a whole-brain approach in 

any of the VBM-style analyses. The extracted mean deformation values for the NM in 

this area of the pre-motor cortex significantly differed from both groups of musicians 

(ET-NM: t = 2.22, p < 0.05; LT<NM: t = -2.79, p < 0.05; Fig. 3.2b), although their 

extracted mean deformation values did not relate to their ITI deviation scores on the 

rhythm task (r = 0.213, p = 0.19). Furthermore, the mean grey matter extractions from 

the traditional VBM analysis for the NM did not differ when compared to either musician 

group (ET-NM: t = 0.17, p = 0.87; LT-NM: t = 1.06, p = 0.30; Fig. 3.2b), nor did they 

relate to their ITI deviation scores on the rhythm task (r = 0.182, p = 0.23; Fig. 3.2b). 
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Figure 3.2. Results from the Deformation-Based Morphometry (DBM) analysis between 

Early-Trained and Late-Trained musicians. (a) Visual representation of the area of 

difference observed in the right ventral pre-motor cortex (vPMC), where Early-Trained 

musicians required significantly greater contraction during the template-fitting process 

than the Late-Trained musicians (b) Extracted Deformation Values and Traditional VBM 

Values from the region of interest in the vPMC correlated with task performance and age 

of onset. 

 

3.4.3 Cortical Thickness and Surface-Based Results 

 Whole-brain cortical thickness group comparisons revealed no areas of significant 

difference.  However, when an ROI-based approach was carried out using the area of 

difference in vPMC identified in the DBM analysis, surface-based measures revealed a 

significant ET>LT group difference for surface area (ET: M = 216.53, SD = 23.23; LT: M 

= 197.00, SD = 24.55; t = 2.24, p < 0.05; Fig. 3.3b). These findings suggest that 

differences in surface area are contributing to the observed difference in deformation 

values in this part of the pre-motor cortex. Interestingly, there were no ET-LT differences 

in cortical thickness (ET: M = 2.50, SD = 0.23; LT: M = 2.50, SD = 0.14; t = 0.03, p = 

0.98), mean curvature (ET: M = 0.12, SD = 0.02; LT: M = 0.11, SD = 0.02; t = 0.50, p = 

0.62), or total grey matter volume (ET: M = 493.73, SD = 93.57; LT: M = 437.93, SD = 

112.35; t = 1.48, p = 0.15) for this region. The extracted mean values from the NM group 

were included for the sake of comparison and did not reveal a significant differences in 

surface area (ET-NM: t = 1.21, p = 0.24; LT-NM: t = -0.68, p = 0.50) cortical thickness 
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(ET-NM: t = 0.22, p = 0.82; LT-NM: t = 0.26, p = 0.80), mean curvature (ET-NM: t = -

0.18, p = 0.86; LT-NM: t = -0.74, p = 0.46), or total grey matter volume (ET-NM: t = 

0.67, p = 0.51; LT-NM: t = -0.92, p = 0.36) compared to either musician group. 
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Figure 3.3. Extracted mean surface-based measures from the right vPMC. (a) Visual 

representation of the region of interest from the DBM analysis mapped onto the average 

surface (b) Extracted mean Surface Area and Cortical Thickness values from the right 

vPMC correlated with task performance and age of onset. 

 

3.4.4 Correlations Between Structural Measures 

 When correlations between all structural measures extracted from the vPMC ROI 

were examined across participants, it was observed that cortical thickness correlated with 

tradition VBM values (r = 0.284, p < 0.05; Fig. 4) and deformation values correlated with 

surface area (r = 0.487, p < 0.001; Fig. 3.4) and curvature (r = 0.322, p < 0.05). In 

addition, grey matter volume correlated significantly with all measures of grey matter in 

this ROI (surface area: r = 0.732, p < 0.001; cortical thickness: r = 0.364, p <0.01; 

curvature: r = 0.555, p < 0.001; DBM: r = 0.519, p < 0.001), with the exception of grey 

matter concentration values (r = -0.099, p = 0.49). This pattern of results corroborates 

previous findings in the literature, suggesting that grey matter concentration values using 

traditional VBM are associated with cortical thickness and DBM measures may be 

related to other larger, perhaps more variable, cortical features such as surface area, 

curvature, and grey matter volume (Bermudez, Lerch, Evans, & Zatorre, 2009; Eckert et 

al., 2006; Foster & Zatorre, 2010; Voets et al., 2008). 
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Figure 3.4. Extracted mean structural measures from the right ventral pre-motor cortex. 

Traditional VBM values correlated with cortical thickness and deformation values 

correlated with cortical surface area. Early-Trained musicians are presented in red, Late-

Trained musicians are in blue and Non-Musicians are in black.  

 

3.4.5 Grey Matter Correlates of Musical Experience 

 Extracted structural measures from the vPMC ROI data were also correlated with 

measures of musical experience. As can be seen in Table 3.3, there was a significant 

negative correlation between years of musical experience and cortical thickness (r = -

0.433, p < 0.05) and a trend-level negative correlation between musical experience and 

mean curvature (r = -0.307, p = 0.098). However, none of the whole-brain VBM-style or 

cortical thickness analyses yielded any significant correlates of age of onset, musical 

experience or years of formal training.  
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Table 3.3. Grey Matter Extractions from the right vPMC ROI and Musical Variables 
 

Variable Age of Onset Years of Experience Formal Training 
Deformation Value -0.623**   0.175  0.309 

Traditional VBM Value  0.071 -0.330  0.121  
Surface Area -0.306 0.190 -0.097 

Cortical Thickness -0.137 -0.433* 0.027 
Mean Curvature 0.054 -0.307 -0.241 

Grey Matter Volume -0.294 -0.132 -0.094 
* = p-value < 0.05 
** = p-value < 0.01 
 

3.5 Discussion 

 We investigated the interaction between brain maturation and experience in early- 

and late-trained musicians by comparing MRI measures of grey matter structure and 

performance on an auditory rhythm synchronization task.  Behavioural analyses revealed 

enhanced rhythm synchronization performance in the ET musicians, consistent with 

previous findings (Bailey & Penhune, 2010). Grey matter analyses revealed differences 

in deformation values in the right vPMC, indicating that ET musicians have greater 

volume in this region. Very importantly, extracted deformation values from the right 

vPMC correlated with the age of onset of musical training and with performance on the 

RST for the musician groups. This finding supports the interpretation that the effect of 

early training on auditory rhythm synchronization is mediated through plastic changes in 

the pre-motor cortex. Interestingly, ET musicians also had greater surface area in this 

region and deformation values were correlated with measures of surface area and 

curvature. These results further support the interpretation that deformation values may be 

related to measures of cortical volume or shape. These differences in brain structure and 
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rhythm synchronization performance are unlikely to be accounted for by differences in 

length of training since the two groups of musicians were matched for musical 

experience. In addition, correlations of extracted measures of grey matter from this ROI 

across all three groups revealed that deformation values correlated with measures of 

surface area and curvature, while traditional VBM grey matter values correlated with 

cortical thickness. These analyses are in line with previous findings (Bermudez, Lerch, 

Evans, & Zatorre, 2009; Eckert, et al., 2006; Foster & Zatorre, 2010; Voets, et al., 2008), 

supporting the idea that traditional VBM and DBM analyses relate to unique aspects of 

cortical attributes and that optimized VBM may confound these two pieces of 

information.   

 The fact that ET musicians have greater grey matter volume in the vPMC is 

compatible with its role in sensorimotor integration (see Zatorre, Chen and Penhune, 

2007 for review) and with the maturational trajectories of grey and white matter in this 

region. In a previous fMRI using a similar auditory rhythm synchronization task, we 

found that performance was related to activity in an almost identical location in the right 

vPMC (peak voxel: 48, 4, 24; Chen, Penhune, & Zatorre, 2008). In that experiment, 

performance was also related to activity in auditory association areas of the superior 

temporal gyrus and we hypothesized that this network was important for integrating 

auditory perception with a motor response. The greatest between-group performance 

difference in the present study was observed for ITI deviation, indicating that the ET 

musicians were better at reproducing the overall temporal structure of the rhythms, 

consistent with greater accuracy in auditory motor integration. This performance 

difference is not likely to be related to cognitive abilities, given that no significant 
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differences on the cognitive measures between ET and LT musicians persisted. A 

previous behavioural study using the matching paradigm and the RST on an independent 

subject sample revealed the same pattern of results (Bailey & Penhune, 2010). The 

maturational trajectories of grey matter in the vPMC also make it a likely candidate to be 

differentially impacted by musical training during the early childhood years (Gogtay, et 

al., 2004). Furthermore, DTI findings in a subsample of the present sample showed that 

white matter integrity in the region of the corpus callosum connecting motor and pre-

motor cortices was correlated with age of onset of musical training (Steele, Bailey, 

Zatorre, & Penhune, 2013). Overall, the evidence supports the hypothesis that the vPMC 

is differentially influenced by early musical training, resulting in changes in grey matter 

volume and enhanced sensorimotor synchronization performance.   

The observed group difference in grey matter volume between the ET and LT 

musicians in the vPMC adds further evidence to support the sensitive period hypothesis 

for musical training. These results suggest a relationship between the size or shape of the 

right vPMC and early musical training. Several different processes at the cellular level 

may be underlying the observed macroscopic changes in the adult brain associated with 

experience or training (for review see May, 2011 or Zatorre, Fields, and Johansen-Berg, 

2012). For example, it has been proposed that changes in white matter structure may be 

due to axonal remodeling via fibre organization, changes related to myelin, or changes 

related to astrocytes. Grey matter changes have been attributed to dendritic branching or 

synaptogenesis, neurogenesis or changes related to glial cells. Axonal sprouting and 

angiogenesis may underlie both grey and white matter changes. However, during 

development, cellular competition for resources may be reflected in activity-dependent 
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processes such as synaptic pruning or neuron death in addition to the previously 

mentioned processes (Stoneham, Sanders, Sanyal, & Dumas, 2010). It has been proposed 

that the initial surplus of synapses early in postnatal development takes place independent 

of experience; however, experience-based neural activity is an important factor in 

determining which synapses are retained and which ones are eliminated, in an effort to 

develop an efficient and specialized system (Stoneham, et al., 2010). Exciting evidence 

identifies glial cells and astrocytes as key players in this pruning process (Stephan, 

Barres, & Stevens, 2012).  With respect to the topic of the current dissertation, it might be 

that the repeated activation of the auditory-motor network, specifically the pre-motor 

cortex, through daily practice of a musical instrument may alter pruning processes in 

these regions and result in cortical changes at a macroscopic level if this training begins 

at a specific time in development.  

 DBM has been previously used to evaluate differences or changes in grey matter 

volume and, more specifically, yields voxel-wise estimates of contraction or expansion of 

grey matter (e.g., Chung, et al., 2001; Hyde, et al., 2009; Leporé, et al., 2010). In the 

current study, results from the optimized VBM analysis revealed sub-threshold 

differences between ET and LT in the right vPMC. When separate analyses were 

performed using traditional VBM and DBM, DBM values showed a significant 

difference in this region, traditional VBM did not. These results suggest that the group 

difference observed using optimized VBM was driven by deformation values. These 

findings are not the first to highlight the importance of considering differences between 

optimized VBM, traditional VBM and DBM. Eckert and colleagues carried out a similar 

set of analyses to examine neuroanatomical features associated with Williams Syndrome 
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and reported that DBM data contributed significantly to the optimized VBM results. 

Taken together, these findings suggest that combining DBM and traditional VBM 

measures can allow us to identify the contribution of differences in local volume or shape 

as well as measures of grey matter structure such as concentration or density.  

Correlations conducted using the extracted values from the right vPMC ROI 

across all participants raise the possibility that observed differences using DBM are being 

driven by differences in surface area, curvature or differences in grey matter volume, 

whereas observed differences using traditional VBM may be more likely driven by 

differences in cortical thickness. Previous findings have revealed an association between 

traditional VBM measures of grey matter and cortical thickness among musicians in the 

auditory and motor areas (Bermudez, Lerch, Evans, & Zatorre, 2008; Foster & Zatorre, 

2010). Similarly, in a study of schizophrenia, decreased grey matter values using 

optimized VBM were related to cortical thinning in some regions and decreased surface 

area in others (Voets, et al., 2008) In sum, it is informative to include surface-based 

measures of morphometry such as cortical thickness, surface area, curvature and local 

grey matter volume to disambiguate observed differences in DBM or traditional VBM 

data. 

 Overall, these findings add support to the proposed sensitive period associated 

with musical training. Early training was associated with increased deformation values 

and cortical surface area in the right ventral pre-motor cortex, suggesting a relationship 

between early musical training and shape or size of musically relevant cortical regions. 

While much remains unknown about the underlying cellular mechanisms driving these 

differences; however, the present findings suggest an interaction between experience or 
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training and predetermined developmental processes that influence shape and size of 

cortical features. 
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Chapter 4: Investigating a sensitive period for musical training: Is earlier always better? 

Bailey, J.A., and Penhune, V.B. (in submission). Investigating a sensitive period for 

musical training: Is earlier always better? Frontiers in Psychology (Auditory Cognitive 

Neuroscience). 

4.1 Abstract 

A sensitive period associated with musical training has been proposed, such that the 

influence of musical training on the brain and behaviour is stronger during the early years 

of childhood.  Experiments from our laboratory have directly tested the sensitive period 

hypothesis for musical training by comparing musicians who began their training prior to 

age seven with those who began their training after age seven, while matching the two 

groups in terms of musical experience (Bailey & Penhune, 2010; 2012; Watanabe, 

Savion-Lemieux, & Penhune, 2007). Using this matching paradigm, the early-trained 

groups have demonstrated enhanced sensorimotor synchronization skills and associated 

differences in brain structure (Bailey, Zatorre, & Penhune, in submission; Steele, Bailey, 

Zatorre, & Penhune, 2013). The current study is taking a different approach to 

investigating the sensitive period hypothesis for musical training by examining a single 

large group of unmatched musicians (N=77) and exploring the relationship between age 

of onset of musical training as a continuous variable and performance on an auditory-

motor rhythm synchronization task (RST).  Replicating previous findings, performance 

on the RST correlated with individual working memory scores and years of formal 

training. Age of onset was correlated with task performance for those who began training 

earlier; however, no such relationship was observed among those who began training in 

their later childhood years. Interestingly, years of formal training showed a similar 
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pattern. However, working memory scores were predictive of task performance, 

regardless of age of onset of musical training. Overall, these results replicate previous 

findings, support the sensitive period hypothesis for musical training and provide insight 

into the nature of the relationships between age of onset of musical training, formal 

training and auditory-motor rhythm synchronization. 

 

4.2 Introduction 

 A sensitive period suggests an interaction between brain maturation processes and 

training or experience, such that the effects of that training or experience differ across 

development (Knudsen, 2004; de Villers-Sidani & Merzenich, 2011). A sensitive period 

for musical training has been proposed based on evidence that those who begin musical 

training earlier demonstrate differences in brain structure and enhanced synchronization 

performance than those who began their training later, even after matching for total 

amount of training (Bailey & Penhune, 2010; 2012; Steele, Bailey, Zatorre, & Penhune, 

2013; Watanabe, Savion-Lemieux, & Penhune, 2008). Specifically, performance on an 

auditory-motor synchronization task used with early- and late-trained musicians was 

found to correlate with age of onset of musical training, amount of training, measures of 

grey matter in the pre-motor cortex, and individual working memory scores (Bailey & 

Penhune, 2010; 2012; Bailey, Zatorre, & Penhune, in submission). These results were 

observed using a group difference approach comparing early- and late-trained musicians, 

matched for total amount of musical experience and isolating age of onset of musical 

training. What remains to be investigated is whether the predictive value of these 

cognitive and musical training variables for auditory-motor synchronization performance 
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differs for those who begin training earlier. The current study takes a novel approach to 

investigating the sensitive period for musical training by examining whether the influence 

of musical training and cognitive abilities on synchronization skills is consistent across 

development in a single group of adult musicians.   

 A sensitive period arises when the effects from an experience at a certain time 

during development are different than the effects of that same experience later on 

(Knudsen, 2004). Sensitive periods have been proposed for the visual and auditory 

systems, as well as for language learning (for reviews see Hensch, 2005, Hooks and 

Chen, 2007, Penhune, 2011, or de Villers-Sidani and Merzenich, 2011). Simplistically, 

two key variables involved in the sensitive period theory are pre-determined brain 

maturation trajectories and experience. It is the interaction between these processes that 

may result in sensitive periods, when the effects associated with a given experience are 

strongest and exert the greatest influence on brain development. The sensitive period 

theory has been applied to musical training, predicting that early training has a stronger 

influence on the brain and behaviour than training later on in development (Schlaug, 

Jäncke, Huang, Staiger, & Steinmetz, 1995; Watanabe, Savion-Lemieux, & Penhune, 

2007). The anatomical maturational trajectories of grey matter volume and white matter 

integrity of the auditory-motor system follow non-linear growth curves, with peaks 

between ages 5 and 10 years old with continued, but more subtle change thereafter 

(Gogtay, et al., 2004; Lebel, Walker, Leemans, Phillips, & Beaulieu, 2008). Given the 

accumulating evidence regarding the effects that musical training exerts on brain 

structure (for review see Jäncke, 2009 or Wan and Schlaug, 2010), it is reasonable to 
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suggest that training of the auditory-motor system via music lessons in childhood may 

exert a stronger influence on brain structure and, as a result, musical skills.  

 Previous studies support the sensitive period hypothesis for musical training by 

finding differences in brain structure or task performance between groups of early-trained 

and late-trained musicians. One of the first studies to suggest stronger effects associated 

with early musical training reported enlarged corpus callosum volumes among musicians 

compared to non-musicians and these differences were greater for those who began their 

training early (Schlaug, Jäncke, Huang, Staiger, & Steinmetz, 1995). Imfeld and 

colleagues reported differences in the corticospinal tract between their early- and late-

trained musicians (2009). Bengtsson and colleagues examined the relationship between 

hours of piano practice during different stages of development and white matter fibre 

tract organization and reported that fractional anisotropy values correlated with practice 

hours during development; however, this was seen in a greater number of brain regions 

correlated with practice hours accrued in early childhood (2005).  While these results 

suggest an association with early training, these studies did not control for the 

confounding fact that those who began earlier likely had more musical experience at the 

time of testing. Studies from our laboratory have used a matching paradigm to control for 

this possibility. This approach involves matching the two groups of musicians in terms of 

years of total playing experience, years of formal training and hours of weekly practice to 

isolate the variable of interest – age of onset of musical training. Evidence using this 

approach has directly supported the sensitive period hypothesis for musical training, such 

that the early-trained groups of musicians have consistently outperformed the late-trained 

musicians on a visual-motor synchronization task (Watanabe, Savion-Lemieux, & 



� ��

Penhune, 2007; Steele, Bailey, Zatorre, & Penhune, 2013), as well as an auditory-motor 

synchronization task (Bailey & Penhune, 2010; 2012). Interestingly, the matching 

approach limits the range in years of formal training of musicians because early-trained 

musicians are adults when tested and, therefore, matched with late-trained musicians with 

at least 11 years of formal training, if not more. As a result, this matched group approach 

has shown support for the sensitive period hypothesis in samples of highly trained 

musicians. What remains to be investigated is the predictive value of musical training 

variables such as age of onset and amount of formal training on task performance in an 

unmatched sample of musicians considering age of onset as a continuous variable, as 

opposed to a grouping variable.     

 The task we have frequently used to examine differences between early- and late-

trained musicians is the Rhythm Synchronization Task (RST; Bailey & Penhune, 2010; 

2012; Bailey, Zatorre, & Penhune, in submission). This task requires participants to tap in 

synchrony with a series of auditory rhythms of varying metrical complexity (Chen, 

Penhune, & Zatorre, 2008). Performance is assessed in terms of inter-tap interval (ITI) 

deviation, which measures the ability to accurately reproduce the temporal intervals of 

each rhythm.  Previous brain imaging studies have shown that task performance is related 

to activity in networks important for auditory-motor integration.  Previous studies in early 

and late-trained musicians have revealed that performance on the RST is related to brain 

structure, musical training and cognitive abilities. In the first study early-trained 

musicians were better able to reproduce the temporal structure of the rhythms. Although 

there were no group differences on standard measures of global cognitive function 

(Vocabulary and Matrix Reasoning), individual working memory scores (Digit Span and 
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Letter-Number Sequencing) correlated with RST performance (Bailey & Penhune, 2010). 

A regression analysis confirmed that, even after considering individual working memory 

scores, early training accounted for additional variance in RST performance. These 

findings were replicated in a follow-up study (Bailey & Penhune, 2012).  Similar to 

working memory, formal musical training was also related to RST performance, even 

though the groups did not differ on this variable (Bailey & Penhune, 2010; 2012). Taken 

together, these results indicate that RST performance is predicted by when musical 

training begins, the number of years of formal training and individual working memory 

abilities in highly trained musicians. 

 According to the sensitive period hypothesis, the effects associated with musical 

training should differ across development. Using a single, large sample of musicians with 

a wider distribution of age of onset and years of formal training provides a 

complementary approach to examining evidence for the sensitive period hypothesis for 

musical training. Musical training can be quantified in many different ways and this 

endeavor warrants further attention; however, in the current sample, there are two 

measures of musical training that have shown a relationship to performance on the RST: 

age of onset and years of formal lessons. A similar question has been investigated in the 

domains of second-language acquisition and cochlear implant research. Of these studies, 

the most relevant to the current data set and question is the work of Johnson and Newport 

(1989), who investigated the relationship between age of arrival in the United States and 

English proficiency among second-language learners. They reported that prior to puberty 

(< age 15), a significant correlation between age of arrival and proficiency measures was 

observed, but no such relationship was observed for individuals arriving after age 15. 
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Similarly, Flege and colleagues reported breakpoints in their relationship between age of 

arrival and language proficiency measures among second-language learners, suggesting 

that the relationship was not consistent across development (1999). Harrison and 

colleagues used a binary partitioning method to determine the optimal age to divide their 

groups of cochlear implant receivers into early and late when examining the relationship 

between measures of speech proficiency and time passed since the devices had been 

implanted (2005). Interestingly, the age that best divided their groups varied depending 

on the performance measure being considered. These studies highlight the complexities 

involved in investigating evidence for a sensitive period. The current study will evaluate 

the nature of the relationship between age of onset of musical training and performance 

on the RST by first considering a linear correlation model, followed by breakpoint 

analyses comparing correlation values to determine if the relationship between age of 

onset and task performance changes across development, similar to Johnson and 

Newport’s approach (1989).  

 While age of onset of musical training is one aspect of training, years of formal 

training is a second measure that has also shown a relationship with RST performance 

(Bailey & Penhune, 2010; 2012). These variables are typically strongly correlated with 

each other in a distribution of unmatched musicians. According to the sensitive period 

theory, the effect of training or experience should differ across development. Based on 

this idea, one would expect that years of formal training would predict task performance 

differently in those who received years of training in their early childhood than those who 

received their training in later years. In an unmatched sample, we have the opportunity to 
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use a wider distribution of years of formal training and investigate whether its predictive 

value for performance on the RST changes as a function of age. 

 Interestingly, one of the strongest predictors of performance on the RST has been 

individual working memory scores (Bailey & Penhune, 2010; 2012). It has been proposed 

that musical training is correlated with enhanced IQ scores; however, to date no 

differences in cognitive abilities between those who begin training early and those who 

begin training later have been reported (Bailey & Penhune, 2010; 2012; Schellenberg, 

2006). There have been arguments made to suggest that executive function is mediating 

the observed relationship between music lessons and IQ; however, evidence for this is 

inconsistent (Schellenberg & Peretz, 2008; Schellenberg, 2011). Other studies have 

suggested that working memory, in particular can be affected by training (Takeuchi et al., 

2010), raising the possibility that music lessons improve working memory abilities. If this 

is true, we would expect to see a correlation between working memory and years of 

formal training. In a previous study from our lab examining the relationship between 

working memory and years of formal training among matched early-trained and late-

trained musicians, a statistical trend towards significance was observed; however, it 

remains to be investigated in an unmatched sample of musicians. Furthermore, based on 

the sensitive period theory, the predictive value of working memory scores for 

performance on the RST may also change as a function of when this training occurred 

during development.  
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4.3 Method 

 

4.3.1 Participants 

 The current study uses a sample of 77 musicians between the ages of 18 and 37 

(M = 24.91, SD = 4.97). This sample includes musicians previously tested in studies 

comparing early- and late-trained musicians using a matched samples design (Bailey & 

Penhune, 2010; 2012). For this study we tested additional musicians to cover a broader 

range of ages of start (3-17).  The musical training and experience of each participant was 

determined through a Musical Experience Questionnaire (MEQ) that was developed 

within our laboratory (Bailey & Penhune, 2010; 2012). The MEQ quantifies the amount 

of instrumental and vocal training a musician has received, age of onset of this training, 

number of years of formal lessons and the amount of time dedicated to practicing on a 

weekly basis at the time of testing. Musicians had a range of musical experience (Table 

4.1).  All participants were neurologically healthy and were screened for significant head 

injuries, history of neurological disease or medication that could affect task performance. 

All participants gave informed consent and the Concordia University Research Ethics 

Committee had approved the protocol. 
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Table 4.1. Musical demographics 
 

 Age of Onset 
(Years) 

Formal 
Training 
(Years) 

Playing 
experience 

(Years) 

Current 
Practice 
(Hours) 

Mean 8.43 (±3.57) 10.09 (±4.79) 15.99 (±4.32) 17.28 (±11.12) 

Range 3-17 0-20 7-25 0-56 
Note: Standard Deviations are in brackets. 
 

 

4.3.2 Tasks 

 Participants performed the Rhythm Synchronization Task (RST; Fig. 4.1), which 

was previously used in Bailey and Penhune (2010; 2012) and which is a variant of the 

task used in Chen, Penhune and Zatorre (2008). In this task participants are required to 

listen to and then tap in synchrony with a series of auditory rhythms of varying metrical 

complexity.  The stimuli consists of 6 woodblock rhythms varying in metrical structure 

and difficulty. Each rhythm lasts 6 seconds and is made up of 11 woodblock notes. Each 

rhythm contains five eighth notes (250 ms), three quarter notes (500 ms), one dotted 

quarter note (750 ms), one half note (1000 ms) and one dotted half note (1500 ms). Each 

trial has two parts:  in the first part participants listen to the rhythm without responding, 

on the second part they listen and tap in synchrony using the computer mouse. Key press 

responses are recorded by the computer and used to score the data as described below. 

For a more detailed description of the RST, see Bailey and Penhune (2010; 2012).  

 Participants completed the Digit Span and Letter-Number Sequencing subtests 

from the Wechsler Adult Intelligence Scale – III (WAIS) and the Vocabulary and Matrix 

Reasoning subtests from the Wechsler Abbreviated Scale of Intelligence (WASI; 

Wechlser, 1997; 1999). Digit Span requires individuals to recall strings of numbers and 
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Letter-Number Sequencing requires individuals to recall and mentally manipulate strings 

of letters and numbers. Both of these subtests tap into working memory abilities; 

however, Letter-Number Sequencing imposes a heavier load on working memory, while 

Digit Span consists of a rote auditory memory recall section in addition to a mental 

manipulation section. Vocabulary assesses an individual’s ability to orally define words 

and Matrix Reasoning assesses non-verbal reasoning and visual pattern recognition 

abilities.  Both of these subtests are highly correlated with global IQ, but represent 

different types of intelligence. 

 

Figure 4.1. Illustration of the Rhythm Synchronization Task (RST). Participants were 

exposed to six rhythms presented in random order for approximately two 12-minute 

blocks. Two different rhythms of each rhythmic complexity were used. Each trial 

consisted of a listening component followed by a listening and tapping component. 
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4.3.3 Procedure 

 All participants followed the same procedure for data collection. Participants first 

completed one block of the RST followed by the Digit Span test. They then performed 

the second block of the RST, followed by Vocabulary, Letter-Number Sequencing and 

finally, Matrix Reasoning.  

 

4.3.4 Measures 

 Information about musical training and experience from the MEQ was quantified 

for each participant to produce measures of years of experience, years of formal training 

and hours of weekly. Cognitive subtest results were scored according to standard 

procedure. A composite score for each participant’s working memory abilities was 

created using their Letter-Number Sequencing and Digit Span scores and was used as the 

Working Memory variable. Performance on the RST was measured using three 

dependent variables: percent correct (PC), asynchrony (ASYN) and inter-tap-interval 

(ITI) deviation. A tap was considered correct if it was made within half of the onset-to-

onset interval before or after a woodblock note (Fig. 4.2). ASYN was defined as the 

absolute value of temporal difference between the onset of each woodblock note and the 

associated mouse key press. ITI deviation was calculated by dividing the interval 

between each pair of the participant’s taps by the interval between each corresponding 

pair of woodblock notes in the rhythms and subtracting this ratio from a value of one. 

This measure evaluates the extent of deviation of the participant’s tap interval from the 

actual interval between each pair of woodblock notes and is indicative of how well 

participants reproduce the temporal structure of the rhythms. 
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Figure 4.2. Illustration of the scoring method used to evaluate task performance. A 

response was scored correctly if the mouse tap was made within half of the onset-to-onset 

interval before and after a woodblock note. Asynchrony was measured as the difference 

between each woodblock note and the participant’s response. ITI deviation was 

calculated as a ratio of the ITI and the ISI subtracted from 1. This figure was taken from 

Bailey and Penhune (2012). 

 

4.3.5 Data Analysis 

 In order to replicate findings from Bailey and Penhune (2010; 2012) that age of 

onset of musical training, individual working memory scores and amount of formal 
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training contribute to RST performance in this larger and unmatched sample, one-tailed 

Pearson correlation analyses were conducted between the variables:  ASYN, ITI 

Deviation, Age of Onset, Working Memory and Formal Training.  

 To test for evidence of an age break point in the data the musicians were split 

using four different age of onset cut-off values.  Early- and late-trained groups were 

defined as before or after ages 6, 7, 8 and 9 (ET � 6, n = 30, LT > 6, n = 47; ET � 7, n = 

38, LT > 7, n = 39; ET � 8, n = 45, LT > 8, n = 32; ET � 9, n = 50, LT > 9, n = 27). 

Correlation analyses were conducted between Age of Onset and RST performance for 

each of the ET and LT groups. Correlation coefficients were compared in each condition 

by calculating a z-test statistic according to the method designed by Fisher and slopes 

were calculated using regression models and compared using t-test analyses. 

Subsequently, the Formal Training and Working Memory measures were correlated with 

task performance in the ET and LT group providing the strongest evidence for a sensitive 

period (before and after age 9). These analyses were conducted to investigate differences 

in task correlates as a function of age of onset of musical training.  

 

4.4 Results 

 Correlation analyses revealed a significant relationship between ITI Deviation and 

both Working Memory and Formal Training (Table 4.2). Performance measures on the 

RST did not demonstrate a significant linear correlation with Age of Onset across all 

musicians (Table 4.2); however, Age of Onset and Formal Training were significantly 

correlated with each other (r = -0.534, p < 0.001).  
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 Using four different break points in Age of Onset to split the musicians into ET 

and LT groups yielded results suggesting the presence of a non-linear relationship 

between Age of Onset of musical training and RST performance. All four break point 

conditions resulted in differential correlations between groups, with the ET group 

showing a positive correlation between age of onset and task performance (ASYN and 

ITI Deviation) and the LT group showing no correlation between Age of Onset and task 

performance. Of the four different conditions, when age 9 was used to divide the groups, 

the correlations between Age of Onset and task performance reached trend-level in the 

ET group (Fig. 4.3d) and provide the strongest evidence for a non-linear relationship 

between Age of Onset and task performance. However, the results from the Fisher 

transformation tests and slope comparison analyses suggest that the relationship between 

Age of Onset and task performance is most different when age 7 was used to divide the 

groups. The correlation results in each of the break point conditions are illustrated in 

Figure 4.3 and the results from the Fisher transformation tests and slope comparisons can 

be found in Tables 4.3 and 4.4.  

 To further investigate evidence for non-linear relationships in the data, task 

correlates were examined in each musician group, using age 9 (ET � 9, LT > 9) as the 

break point in the age of onset variable. A significant correlation between Formal 

Training and task performance (ITI Deviation) was observed for musicians who began 

training at age 9 or younger (Fig. 4.4 – r = -0.345, p < 0.01); however, this relationship 

was not significant among musicians who began training later (Fig. 4.4 – r = -0.161, p > 

0.05). Working Memory correlated with task performance in both groups (Fig. 4.5). This 

change in task correlates between groups provides additional support for the presence of 
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a sensitive period during development associated with musical training. Finally, Figure 

4.6 illustrates the relationship between Formal Training and Working Memory as a 

function of age of onset of musical training. 

 

Table 4.2. Pearson correlation analyses of musical demographics, working memory 
scores and RST Performance 
 

RST Performance 
Measures 

Age of Onset 
(Years) 

Formal Training 
(Years) 

Working Memory 

Asynchrony 
(ASYN) 

-0.001 -0.118 -0.396** 

Inter-Tap Interval 
(ITI) Deviation 

0.032 -0.224* -0.464** 

Note: A composite score for Working Memory was created from raw scores on the Digit 
Span and Letter-Number Sequencing cognitive subtests. 
* p-values < 0.05 
** p-values < 0.001 
 
 
Table 4.3. Comparison of Pearson correlation coefficients of task performance and age 
of onset between Early- and Late-Trained musicians in each age of onset break point 
condition 
 
Age of Onset Cut-

off (Years) 
Early-Trained (ET) 

Correlation 
Coefficient (ASYN 

/ ITI) 

Late-Trained (LT) 
Correlation 
Coefficient 

(ASYN / ITI) 

Fisher’s 
transformation z-

value 
(ASYN / ITI) 

ET � 6 > LT 0.185 / 0.210 -0.106 / -0.060 1.2 / 1.12 
ET � 7 > LT 0.230 / 0.191 -0.063 / -0.060 1.25† / 1.07 
ET � 8 > LT 0.182 / 0.143 -0.052 / 0.091 0.98 / 0.22 
ET � 9 > LT 0.220 / 0.204 0.052 / -0.012 0.68 / 0.87 

† p-values = 0.1 
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Table 4.4. Comparison of slope values between Early- and Late-Trained musicians in 
each age of onset break point condition 
 
Age of Onset Cut-

off (Years) 
Early-Trained (ET) 

Slope 
(ASYN / ITI) 

Late-Trained (LT) 
Slope 

(ASYN / ITI) 

t-value 
(ASYN / ITI) 

ET � 6 > LT 2.653 (2.659) /  
0.01 (0.009) 

-0.659 (0.918) /  
-0.001 (0.003) 

1.177 / 1.159 

ET � 7 > LT 2.893 (2.040) / 
0.008 (0.006) 

-0.432 (1.125) /  
-0.001 (0.003) 

1.427* / 1.342*  

ET � 8 > LT 1.869 (1.537) / 
0.005 (0.005) 

-0.418 (1.454) /  
-0.002 (0.004) 

1.089 / 1.093  

ET � 9 > LT 1.984 (1.269) / 
0.006 (0.004) 

0.455 (1.755) /  
0.000 (0.005) 

0.706 / 0.937 

Note: Standard error values of unstandardized b coefficients (i.e., slope values) are in 
brackets 
* p-values < 0.1 
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Figure 4.3. Results from break point analyses using ages 6, 7, 8, and 9 as cut-off values. 

Within each group, correlations were calculated between age of onset and RST 

performance variables Asynchrony (ms) and Inter-tap Interval Deviation (ITI). 

 

 

 

Figure 4.4. Correlations between RST performance (Inter-tap Interval Deviation) and 

Working Memory in Early-Trained (ET) and Late-Trained (LT) musicians using 9 years 

old as the age of onset cut-off value. 
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Figure 4.5. Correlations between RST performance (Inter-tap Interval Deviation) and 

Formal Training in Early-Trained (ET) and Late-Trained (LT) musicians using 9 years 

old as the age of onset cut-off value. 
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Figure 4.6. Correlations between Working Memory and Formal Training in Early-

Trained (ET) and Late-Trained (LT) musicians using 9 years old as the age of onset cut-

off value. 

 

4.5 Discussion 

 The results from this study add to the growing body of evidence supporting a 

sensitive period for musical training. However, these findings highlight the complexity of 

the interactions between age of onset of musical training and other factors, such as type 

of training and individual differences in working memory. The simple correlation 

breakpoint analyses suggest that age of onset predicts rhythm synchronization 

performance if musicians begin training at or prior to age 9, but not afterward. In 

addition, examining task correlates using this age to split musicians into Early-Trained 
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and Late-Trained groups revealed that performance on the RST, as assessed by ITI 

Deviation, correlated with years of formal training only in the Early-Trained group. 

Working memory scores correlated with ITI Deviation in both groups; however, this 

correlation was stronger among those who began their training prior to or at age 9. 

Overall, these results suggest that effects associated with age of onset or amount of 

formal training may vary across development and may plateau after a certain age. While 

these results are consistent with previous literature, they also introduce a new level of 

complexity into our understanding of sensitive period effects for musical training. 

 Previous studies from our laboratory have investigated a sensitive period for 

musical training by comparing groups of early and late-trained musicians (before and 

after age seven) who were matched for years of experience in an effort to isolate the 

effects of age of onset (Bailey & Penhune 2010; 2012; Steele, Bailey, Zatorre, & 

Penhune, 2013; Watanabe, Savion-Lemieux, & Penhune, 2007). In contrast, the current 

study was designed to determine the nature of the relationship between age of onset of 

training and auditory-motor rhythm synchronization abilities in large sample of musicians 

who began their training at a broad range of ages. The results from the simple 

correlations analyses support the hypothesis that the relationship between age of onset 

and task performance is not linear across development. These results are supported by 

previous research examining sensitive periods in the language and auditory domains 

(Flege, Yeni-Konshian, & Liu, 1999; Johnson & Newport, 1989; Harrison, Gordon, & 

Mount, 2005; Svirsky, Teoh, & Neuburger, 2004). Furthermore, a non-linear relationship 

between age of onset and auditory-motor synchronization mirrors the maturational 

trajectories of the brain regions that comprise the auditory-motor neural network (Gogtay, 



� 



et al., 2004; Lebel, Walker, Leemans, Phillips, & Beaulieu, 2008). These results are not 

contradictory to previous findings observed using the matching paradigm, but shed light 

on the nature of the relationship between age of onset of musical training and auditory-

motor synchronization abilities across a group of musicians with a wider range of musical 

experience and training. The present findings suggest that age of onset of musical training 

affects auditory-motor synchronization abilities, if that training happens prior to a certain 

age but this effect stabilizes later in development.  

 The age at which this effect changes likely varies, depending on the task being 

considered. For example, a study examining performance on several speech perception 

measures among children who had received cochlear implants used binary partitioning 

analyses to examine the age of implantation that best divided performance on several 

tasks (Harrison, Gordon, & Mount, 2005). Importantly, the optimal age to split their 

groups varied between 4.4 and 8.4 years old, depending on the different measures of 

speech perception. The current study suggests that age 9 best splits musicians into early 

and late groups when considering performance on the RST; however, it would be likely 

that this age would vary depending on the task used and abilities under consideration. 

The optimal split age likely depends on environmental influences and maturational 

growth trajectories of the neural networks implicated in performing the chosen task.  

 A secondary, but related, finding from the current study is that Formal Training 

relates to RST performance only in early starters. This observation is compatible with 

previous findings using the matching paradigm. Although groups were matched in terms 

of the number of years of formal training, it may be that music lessons during the earlier 

years have a stronger influence on training auditory-motor synchronization skills 
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implicated in the RST than music lessons during the later years. Given the strong 

correlation with age of onset of musical training (r = -0.534), it is not surprising that the 

Formal Training variable in the current sample is showing similar evidence for a non-

linear effect on RST performance. Alternately, there are potential differences in the type 

of formal instruction received in early childhood compared to during the later years and 

this question warrants further exploration. Musical training programs beginning before 

children are able to read focus on learning by listening and reproducing music from a 

model.  These skills may be particularly relevant for the auditory-motor synchronization 

task used here. Superior performance on the RST requires an ability to apply a metrical 

structure onto an auditory rhythm and then reproduce this rhythm. The question remains 

as to whether the observed difference in correlation between Formal Training and RST 

performance is due to differences in type of training paradigms, the cognitive ability to 

apply a metrical structure to a rhythm, the motor ability to reproduce it or a combination 

of these and other possibilities. Future studies are required to determine if this effect is 

due to the type of training received or the age at which this training was received.  

 Unlike the Formal Training variable in the current sample, working memory 

abilities are related to RST performance consistently across all musicians. This result has 

been previously observed (Bailey & Penhune, 2010; 2012) and is not significantly related 

to age of onset of musical training overall (r = -0.116, p > 0.1). It is clear that individual 

working memory abilities are implicated in task performance; however, the correlation 

between Working Memory and RST performance appears consistent across development, 

as evidenced by similar correlation values, regardless of when training began.    
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 Overall, the current study provides additional evidence for the sensitive period 

hypothesis for musical training and offers a more complex view of the relationship 

between age of onset of musical training and auditory-motor synchronization abilities. 

These results suggest the presence of a non-linear relationship between age of onset of 

musical training and auditory-motor synchronization, such that age at which training 

begins is related to auditory-motor synchronization abilities in adults, if that training 

began prior to a certain age. This idea of a non-linear relationship is mirrored by growth 

trajectories of brains regions in the auditory-motor neural network and suggests that brain 

plasticity may plateau across development.   
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Chapter 5: General Discussion 

 The primary aim of the current thesis was to investigate evidence for a possible 

sensitive period for musical training. The first study compared early-trained and late-

trained musicians in terms of their auditory-motor synchronization skills, as well as a 

group of non-musician controls. The two musician groups were matched in terms of years 

of formal training, years of playing experience and hours of current practice. The second 

study compared the same groups in terms of brain structure using structural neuroimaging 

grey matter analysis techniques to investigate regions of particular sensitivity to training 

during early childhood. The third study took a different approach to investigating 

evidence for a sensitive period by examining the predictive value of working memory 

and formal training for auditory-motor synchronization performance as a function of age 

of onset of musical training. 

 

5.1 Review of Main Findings 

 The first study in this dissertation aimed to replicate previous behavioural and 

cognitive findings among early-trained and late-trained musicians from my MA thesis 

(Bailey & Penhune, 2010). Consistent with these previous findings, early-trained 

musicians were better able to reproduce the temporal structure of rhythms compared to 

the late-trained musicians, despite being matched for total years of musical experience. 

Both musician groups outperformed the non-musician control group. While no significant 

differences in cognitive measures between the early- and late-trained musicians were 

observed, there were differences observed between the late-trained musician and non-
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musician groups. The non-musician group demonstrated superior vocabulary skills, while 

the late-trained musicians demonstrated superior non-verbal reasoning skills although 

neither of these cognitive measures related to performance. In addition to age of onset of 

musical training, individual working memory scores and years of formal training were 

found to be significant predictors of performance on the auditory rhythm synchronization 

task. These findings support the hypothesis of a sensitive period for musical training and 

the role of working memory and formal training in task performance. 

 The second study compared the groups in terms of grey matter features by using 

three different VBM-style whole-brain analysis techniques as well as cortical surface-

based morphometry measures. These analyses revealed a difference in local volume or 

shape in the early-trained musician group compared to the late-trained musician group in 

the right ventral pre-motor cortex, supported by greater cortical surface area among the 

early-trained musicians.  Musicians performance on the rhythm synchronization task was 

correlated with extracted grey matter deformation values from pre-motor cortex, a region 

that has been previously been shown to be correlated with performance in fMRI studies 

using the same task (Chen, Penhune, & Zatorre, 2008). These findings suggest that 

musical training during early childhood may influence grey matter structure in the pre-

motor cortex more so than training during later childhood and these changes are related to 

auditory-motor synchronization, adding additional support to the hypothesis of a sensitive 

period for musical training. 

 In previous studies we used a matching paradigm has been used to isolate age of 

onset of musical training as a variable of interest.  In contrast, the third study examined a 

single large sample of musicians with a wider distribution of training. In this sample of 
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musicians, age of onset appears to be a stronger predictor of auditory-motor 

synchronization skills the earlier musical training begins. In other words, age of onset 

may have a non-linear relationship with auditory-motor synchronization skills, such that 

after a certain age, the effect diminishes. Interestingly, individual working memory scores 

were equally predictive of task performance, regardless of when musical training began. 

However, formal training was only predictive of performance for those who began their 

lessons early in childhood. Overall, these results also support a sensitive period for 

musical training, such that the predictors of auditory-motor synchronization skills vary as 

a function of when musical training began. This final set of analyses suggests that the 

relationship between age of onset of musical training and adult auditory-motor 

synchronization skills may be more complex than previously thought. 

 

5.2 Potential Mechanisms Underlying a Sensitive Period for Musical Training 

 Several different processes at the cellular level may be underlying the observed 

macroscopic changes in the adult brain associated with experience or training (for review 

see May, 2011 or Zatorre, Fields, & Johansen-Berg, 2012). For example, it has been 

proposed that changes in white matter structure may be due to axonal remodeling via 

fibre organization, changes related to myelin, or changes related to astrocytes. Grey 

matter changes have been attributed to dendritic branching or synaptogenesis, 

neurogenesis or changes related to glial cells. Axonal sprouting and angiogenesis may 

underlie both grey and white matter changes. In addition, activity-dependent processes 

such as synaptic pruning or neuron death may contribute to structural changes, reflecting 
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cellular competition for resources (Stoneham, Sanders, Sanyal, & Dumas, 2010). It has 

been proposed that the initial proliferation of synapses early in postnatal development 

takes place independent of experience, but that experience-dependent neural activity is an 

important factor in determining which synapses are retained and which ones are 

eliminated in the development of an efficient and specialized system (Stoneham, et al., 

2010). Exciting new evidence identifies glial cells and astrocytes as key players in this 

pruning process (Stephan, Barres, & Stevens, 2012).  In the context of musical training, it 

might be that the repeated activation of the auditory-motor network, specifically the pre-

motor cortex, through daily practice of a musical instrument may alter pruning processes 

in this region and result in cortical changes at a macroscopic level if this training begins 

at a specific time in development.  

 

5.3 Integrating evidence from white matter and grey matter 

 In a companion experiment to the second study of this dissertation, we observed 

differences between early-trained and late-trained musicians in the posterior mid-body of 

the corpus callosum (Steele, Bailey, Zatorre & Penhune, 2013). Further analyses using 

tractography revealed that these voxels of difference contained fibres connecting the 

motor cortices of the two hemispheres. These results were interpreted to be related to 

bimanual coordination and the impact that early musical training may have on 

development of this ability. Based on these, one might expect to observe differences in 

grey matter in the primary motor cortex, yet results from the second study in the current 

thesis (Chapter 3) revealed differences located in the pre-motor cortex. The primary 
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motor cortices are among the first cortical regions to mature (peak at or prior to age 5) 

and therefore may be less likely to be directly influenced by musical training (Gogtay et 

al., 2004), given that most early-trained musicians used in these studies began at age five 

or six. The present findings indicate that early musical training beginning at age five or 

six has more of an impact on pre-motor cortex than on primary motor cortex, likely due 

to its more protracted development (peak at approximately age 8.5; Gogtay, et al., 2004). 

The corpus callosum and the fibres connecting the primary motor cortices, on the other 

hand, are undergoing a significant amount of maturational change around age five or six, 

making it a strong candidate to demonstrate training-induced effects associated with 

playing a musical instrument (Thompson, et al., 2000; Westerhausen, et al., 2011). 

Furthermore, the group difference was observed using DBM, which is sensitive to 

changes in shape or volume. Given the maturational timeline of the primary motor 

cortical areas, it seems unlikely that musical training at age five or six alters any of the 

maturational processes that determine shape or volume; however, this may be more likely 

for pre-motor cortical areas. The observed finding that early musical training impacts 

structural development in the pre-motor cortex may be related to the integral role of this 

region in auditory-motor integration and execution of timed motor movements. Perhaps, 

to invoke maximum training-induced effects in grey matter structure, training must begin 

prior to or in conjunction with pruning processes in any cortical area. If this is the case, 

then observing training-induced changes in shape or volume associated with training that 

began at ages five or six in the pre-motor cortex and not the primary motor cortex makes 

sense. 
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5.4 Additional Contributing Factors  

 It is important to consider potential pre-existing differences between early- and 

late-trained musicians that may be contribute to the observed findings in addition to the 

age at which they began their musical training. For example, genetic factors are important 

determinants of cortical development (Chiang, et al., 2009; Gogtay & Thompson, 2010; 

Thompson, et al., 2001) and these may influence when a child has the requisite skills to 

start musical lessons such as fine-motor coordination, attention span, visual tracking 

abilities, auditory perception as well as other executive functions or cognitive abilities. 

The observed findings are likely driven by an interaction between pre-determined 

differences (e.g., genetics) and environmental influences (e.g., age of start of musical 

training). Interestingly, the domain of epigenetics is a growing area of research 

investigating environmental influences on gene regulation or expression, reiterating the 

idea that the debate of nature versus nurture has shifted to investigating the mechanisms 

underlying their interaction (Meaney, 2010; Szyf, 2009).  

   

5.5 Future Directions 

 The findings from the current dissertation support the idea of a sensitive period 

for musical training; however, there are several outstanding questions that could be 

addressed with a longitudinal study in children, including a former early-trained adult 

musician group that are no longer practicing musicians and more stringent quantification 

of musical experience within the field of music research. A longitudinal study comparing 

groups of age-matched controls and children beginning music lessons at age six and older 
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would provide the opportunity to monitor any training effects on brain structure during 

that potential sensitive period. Using adults provides essential information about long-

lasting changes in brain structure associated with musical training and using children 

would provide the opportunity to observe training-induced changes as the groundwork 

for these changes is laid out. Hyde and colleagues observed training-induced differences 

in the auditory-motor network among children taking music lessons after 15 months 

(2009). A longitudinal study designed to compare training-induced changes in children 

who begin earlier with those who begin later is an important next step. The combination 

of DBM, traditional VBM, surface-based measures and FA is a comprehensive package 

of analyses likely to capture and characterize longitudinal changes in brain structure. 

Having age-matched control groups (i.e., non-musicians) for each age group would 

provide group differences in brain structure volume or shape at different ages associated 

with musical training. To examine the sensitive period directly, one could compare 

changes in DBM measures associated with musical training between those who begin 

earlier with those who begin later. For example, perhaps a larger increase in the right 

ventral pre-motor cortex volume will be observed in the group who begins at age five 

compared to the increase observed in the group that begins training at age ten. Based on 

the theory of a sensitive period, one would expect greater deviations from the age-

matched controls during a certain window of development and this would illustrate a 

sensitive period for musical training. In addition, the finding from study three that formal 

training predicted auditory-motor synchronization skills more so for those who began 

training at a young age warrants further investigation. Is this additional evidence that 

formal lessons leave a stronger imprint during early years and therefore applying rules of 



� �


metrical structure becomes more efficiently executed? Or is it due to differences in the 

quality of formal training that these two age groups received? This could be controlled 

for by testing groups of children of different ages following the same musical training 

program such as the Suziki program or the Royal Conservatory program. Lastly, 

cognitive scores could be monitored to determine whether music lessons have training 

effects on working memory, given our findings from the third study (Chapter 4) that 

music lessons in early childhood correlate with individual adult working memory scores 

and that previous studies have suggested training-induced effects on working memory 

abilities and associated brain structure (Takeuchi, et al., 2010).  Previous studies have 

also observed a correlational relationship between amount of musical training and 

working memory (Schellenberg, 2006). In addition, adult and child musicians have 

shown enhanced working memory scores compared to their non-musician counterparts 

(Schellenberg, 2011; Parbery-Clark, Skoe, Lam, & Kraus, 2009). Whether music lessons 

train working memory and, if so, whether the sensitive period hypothesis is relevant to 

the development of working memory are important questions to address in future studies. 

 A simple study with adults could assess the contributions of continued practice to 

the observed differences between early-trained and late-trained musicians by including a 

group of adult musicians who began their training at an early age, continued through their 

childhood years but then stopped and are no longer practicing at the time of testing. 

Comparing them to our currently practicing musician groups would provide valuable 

information about the permanency of the influence training during a putative sensitive 

period has on behaviour and the brain. If the current findings are due to the timing of the 

experience, then perhaps one may expect to find that the former early-trained musicians 
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fall between the practicing early-trained and late-trained musicians. However, if 

continued practice is required for these differences to manifest or be maintained, then 

perhaps one may expect the former early-trained musicians to fall between the late-

trained musicians and the non-musicians. 

 Finally, like any area of research, the tools used to measure musical experience 

are evolving and warrant more standardization within the literature. Even over the course 

of my graduate work, the Musical Experience Questionnaire (MEQ), originally designed 

by Watanabe and colleagues, has been modified, is being used by other laboratories 

working with musicians in Montreal and is now available online. Certain details such as 

measuring musical experience in years or practice hours warrant standardization within 

the literature, as they have both been used to quantify musical experience or training. An 

individual who accrues most of their practice hours in their adulthood is different from an 

individual who accrued most of their practice time during early childhood, yet their hours 

of practice could be similar. Using years to quantify experience is not particularly 

accurate either, given that children will often take some summer months off from music 

lessons or may take lessons for only one part of the school year. Ideally, a combination of 

practice hours and years is recommended or practice hours on a weekly or monthly basis. 

Furthermore, differentiating between musical experience and training is also an important 

area within the field of music research as musicians who are self-taught may have a 

significant amount of playing experience but little formal training. This is especially 

important when comparing early-trained and late-trained musicians, as those that are 

early-trained likely all began with lessons and formal training; however, those who began 

in their adolescent years may have initially taught themselves and then began formal 
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musical training. These two types of music profiles not only differ in type of musical 

background but also likely differ in terms of their motivation when they first began their 

training. Motivation is an area that remains largely unexplored within the music 

neuroscience literature, yet likely also has a significant role in training-induced brain 

plasticity for musicians, as it is a driving force for behaviour change and related brain 

plasticity. One could imagine that motivational sources for early-trained musicians are 

factors such as parental approval or teacher praise, whereas late-trained musicians may be 

motivated by factors such as peer approval or increased self-esteem. Whether a child is 

practicing on a daily basis because they are told to or because it is their choice likely 

alters any training-induced effects on behaviours, cognitive abilities, or brain structure 

that music lessons offer. Recent research has demonstrated that music can be rewarding 

on a neurological level (Salimpoor, Benovoy, Larcher, Dagher, & Zatorre, 2011); 

however, it has yet to be tested whether children and adults alike find this to be true. 

More research on motivating factors for children pursuing music lessons is required to 

understand how that may impact the sensitive period hypothesis. 

 

5.6 Conclusion 

 The current dissertation investigated evidence for a sensitive period for musical 

training using early-trained and late-trained adult musicians. This hypothesis was 

supported by enhanced performance on an auditory-motor synchronization task among 

early-trained musicians, even after controlling for years of musical experience, years of 

formal training, and hours of practice. Importantly, there were no group differences in 
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cognitive abilities. Neuroimaging analyses revealed differences in grey matter 

morphometry in the right ventral pre-motor cortex between early- and late-trained adult 

musicians, in a region that has been associated with auditory-motor synchronization task 

performance. Lastly, correlates of auditory-motor synchronization task performance vary 

as a function of age of onset of musical training in a sample of unmatched musicians, 

adding further support to the idea of a sensitive period for musical training. These 

findings likely emerge due to the interactive nature of brain maturation processes and 

experience-dependent plasticity. This series of studies adds complexity to the idea of a 

sensitive period for musical training by taking into consideration individual working 

memory abilities and years of formal training. In addition, the final study in the current 

dissertation presents the idea that the relationship between age of onset and auditory-

motor synchronization abilities may mimic the non-linear curve of brain maturation 

trajectories across development (Gogtay et al., 2004; Lebel, Walker, Leemans, Phillips, 

& Beaulieu, 2008).   
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Abstract Behavioural and neuroimaging studies provide

evidence for a possible ‘‘sensitive’’ period in childhood

development during which musical training results in long-

lasting changes in brain structure and auditory and motor

performance. Previous work from our laboratory has shown

that adult musicians who begin training before the age of 7

(early-trained; ET) perform better on a visuomotor task

than those who begin after the age of 7 (late-trained; LT),

even when matched on total years of musical training and

experience. Two questions were raised regarding the find-

ings from this experiment. First, would this group perfor-

mance difference be observed using a more familiar,

musically relevant task such as auditory rhythms? Second,

would cognitive abilities mediate this difference in task

performance? To address these questions, ET and LT

musicians, matched on years of musical training, hours of

current practice and experience, were tested on an auditory

rhythm synchronization task. The task consisted of six

woodblock rhythms of varying levels of metrical com-

plexity. In addition, participants were tested on cognitive

subtests measuring vocabulary, working memory and pat-

tern recognition. The two groups of musicians differed in

their performance of the rhythm task, such that the ET

musicians were better at reproducing the temporal structure

of the rhythms. There were no group differences on the

cognitive measures. Interestingly, across both groups,

individual task performance correlated with auditory

working memory abilities and years of formal training.

These results support the idea of a sensitive period during

the early years of childhood for developing sensorimotor

synchronization abilities via musical training.

Keywords Sensitive period � Early-trained �
Late-trained � Sensorimotor � Musicians �
Rhythm synchronization � Working memory �
Cognitive abilities

Introduction

Many professional musicians have been training since a

very young age. As a result, there is a common assumption

that superior musical performance is associated with early

training. However, is this because starting at a young age

allows for more years of training? Or, is there something

specific about being exposed to this type of experience

during an early, sensitive period of development? Behav-

ioural evidence in support of a sensitive period for musical

training comes from a phenomenon known as ‘‘absolute’’ or

‘‘perfect pitch’’. Individuals with ‘‘perfect pitch’’ are able to

identify a note in the absence of a standard, and the

development of this ability is strongly associated with

experience during early childhood (Takeuchi and Hulse

1993; Trainor 2005; Zatorre 2003). Neuroanatomical dif-

ferences between early- and late-trained musicians have

also been observed, supporting the idea of a sensitive period

(Amunts et al. 1997; Pantev et al. 1998; Schlaug et al.

1995). However, these studies did not control for differ-

ences between early- and late-trained groups in terms of

years of musical experience, which may have contributed

to the observed differences in neuroanatomical structure.

In a recent study from our laboratory, Watanabe et al.

(2007) observed increased sensorimotor synchronization

abilities in early-trained musicians compared to late-trained
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musicians, even after matching the two groups on years of

musical experience. The present study further investigates

the idea of a sensitive period for sensorimotor abilities.

The concept of a sensitive period must be defined in

relation to the narrower concept of a ‘‘critical’’ period. A

critical period differs from a sensitive period in that

during this restricted window of time, sensory input is

required for normal functioning to develop. The effects

that follow deprivation of sensory input during a critical

period cannot be reversed by sensory exposure at a later

time (Innocenti 2007). For example, there are critical

periods very early during development of the visual sys-

tem when stimulation or experience is necessary to

develop normal binocular vision (Hooks and Chen 2007;

Wiesel and Hubel 1965). What is being proposed in this

paper in terms of the development of musical abilities is

not a critical period, but a sensitive period. A sensitive

period is a window of time during which experience is

particularly influential on development of functioning

(Knudsen 2004). Evidence suggests that the mechanisms

involved in sensitive periods are highly influenced by

experience in addition to biological determinants (Hooks

and Chen 2007; Tomblin et al. 2007).

A large portion of the evidence for sensitive periods in

human development comes from the study of speech and

language development, as well as second-language acqui-

sition. The idea of a sensitive period for language devel-

opment was initially inspired by two main observations.

Case studies showed that children who had been deprived

of exposure to language in early childhood failed to fully

develop language abilities even after being exposed later in

life (Curtiss 1977) and evidence showed that children who

underwent surgical removal of the left hemisphere were

able to develop normal language abilities as long as surgery

occurred early in childhood. Lenneberg (1967) suggested

that the effects associated with deprivation of speech can

be overcome if stimulation is restored early enough during

development. As a result, he proposed the idea of a ‘‘sen-

sitive’’ period for language development. This idea has

been applied to second-language acquisition, and evidence

suggests that exposure to a second language in early

childhood is associated with greater levels of adult profi-

ciency than exposure later in life (Weber-Fox and Neville

2001). Further support for the existence of sensitive periods

in development has come from work with congenitally deaf

children who receive cochlear implants. Several large-scale

studies have shown that children who receive implants

before the age of 3–4 show better auditory and speech

perception than later recipients (Kral et al. 2001; Sharma

et al. 2007; Svirsky et al. 2004). This is consistent with the

developmental changes in the anatomy of the auditory

system that have been linked to different stages of speech

and language development (Moore and Linthicum 2007).

Additional support for the existence of sensitive periods

in development comes from studies of trained musicians.

While studies have examined the influence of musical

training on brain development during childhood (Hyde et al.

2009; Shahin et al. 2004), some of the strongest evidence

for a sensitive period comes from the study of ‘‘absolute’’ or

‘‘perfect’’ pitch in adults. This ability has been strongly

associated with musical training during the early years of

childhood (Takeuchi and Hulse 1993; Trainor 2005; Zatorre

2003). Further evidence comes from studies showing a

relationship between musical training and changes in brain

structure (e.g. Bangert and Schlaug 2006; Bermudez and

Zatorre 2005; Gaab and Schlaug 2003; Gaser and Schlaug

2003; Hutchinson et al. 2003; Schlaug et al. 1995, 2005).

Among the literature demonstrating this relationship, three

studies in particular support the idea of a sensitive period.

Schlaug et al. (1995) observed volumetric differences in the

anterior corpus callosum between early- and late-trained

musicians. Pantev et al. (1998) observed increased auditory

and motor cortical representations among musicians com-

pared to non-musicians and reported that these increases

were correlated with age at which musical training began.

Finally, Amunts et al. (1997) reported changes in the

morphology of the motor cortex in musicians related to

training of the non-dominant hand. More importantly, they

showed that these changes were related to the age of com-

mencement of training. Overall, the evidence suggesting

that musical experience influences structural development

of the auditory and motor systems is convincing. Given that

there is a maturational timeline for neuroanatomical

development of both auditory and motor systems and that

musical experience is associated with structural differences,

there may be a window of time in early childhood devel-

opment during which the influence of musical training on

aspects of structural development of sensorimotor networks

is strongest.

Taken together, these findings suggest that there may be

a sensitive period for musical training, similar to that

observed for language acquisition. However, none of these

studies were designed to directly address the impact of early

versus late training, and thus did not control for differences

between early- and late-trained musicians in the total

number of years of musical training and experience. By

definition, a musician who begins training early has more

years of experience than one who begins later when both are

the same age. Therefore, it is possible that the observed

differences in performance and brain structure could simply

be accounted for by the group difference in duration of

musical training. A previous experiment in our laboratory

examined possible behavioural differences in early- and

late-trained musicians who were matched for years of

musical training and experience. Watanabe et al. (2007)

observed sensorimotor performance differences between
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the two groups of adult musicians using a visually presented

sequence. Participants were asked to synchronize their

mouse button presses with a temporally complex sequence

presented on a computer monitor. The early-trained group

performed significantly better than the late-trained group in

terms of response synchronization, supporting the idea that

musical training during a sensitive period in early childhood

results in superior sensorimotor synchronization abilities.

The observed group difference persisted across 5 days,

suggesting that this superior synchronization ability

remains even after individual performances plateau. While

this experiment provides evidence that early training can

affect adult motor performance, the visuomotor sequencing

task used is unlike the integration abilities required in a

typical musical performance. Therefore, it is possible that

early-trained musicians might only outperform late-trained

musicians on this relatively unusual and difficult task. To

address this question, the present experiment aimed to

replicate these findings using a more musically relevant

auditory rhythm synchronization task.

A second question that could be raised about our previ-

ous findings (Watanabe et al. 2007) is whether the perfor-

mance difference observed between groups was mediated

by enhanced overall cognitive functioning in the early-

trained group. Correlational studies have demonstrated

positive associations between music lessons in school-aged

children and cognitive abilities such as verbal memory,

non-verbal reasoning, spatial–temporal reasoning, reading,

spelling, speech recognition and mathematics (e.g. Anvari

et al. 2002; Forgeard et al. 2008; Jentschke and Koelsch

2009; Moreno et al. 2009; Saffran 2003; Schellenberg 2001,

2004, 2006; Schlaug et al. 2005). More specifically,

Schellenberg (2004, 2006) showed a positive association

between duration of music lessons in school-aged children

and Intelligence Quotient (IQ) scores, while controlling for

socio-economic status and effects associated with partici-

pation in a non-musical activity. Although the musicians in

our previous study had been matched for years of musical

training and other practice variables, it is possible that they

also differed in cognitive function. Therefore, a secondary

goal of the present study was to investigate whether early-

and late-trained musicians differ in terms of specific cog-

nitive abilities. Within a group of undergraduate students,

above and beyond the relationship with overall IQ scores,

the specific cognitive measures that were most commonly

associated with musical training were working memory and

non-verbal reasoning (Schellenberg 2006). Based on these

findings, musicians in the current study were asked to

complete a non-verbal reasoning task and two auditory

working memory tasks. In addition, a vocabulary test was

included as a measure of crystallized knowledge.

The main goal of this experiment was to replicate and

extend the findings observed by Watanabe et al. (2007) that

support the idea of a sensitive period for sensorimotor

integration abilities to the more familiar and more musi-

cally relevant auditory domain. A secondary goal was to

investigate whether these two groups of equally trained

musicians would differ in terms of their overall cognitive

abilities, given that their musical training took place during

different developmental windows.

Method

Participants

Twenty-four currently practicing, neurologically healthy

musicians between the ages of 18 and 34 (M = 26.4 years

old, SD = 4.4) participated in this study. Participants were

screened for significant head injuries, history of neurolog-

ical disease or medication that could affect task perfor-

mance by completing a Medical Screening Information

form. The musical training and experience of each partic-

ipant was determined through a Musical Experience

Questionnaire (MEQ) that was developed within our lab-

oratory. The MEQ quantifies the amount of instrumental,

vocal or dance training an individual has received in their

lifetime, at what age this training occurred and the amount

of time currently dedicated to practicing music on a weekly

basis. All musicians had extensive musical experience

(M = 17.5 years; SD = 4.4), as evaluated by the MEQ.

The sample was selected to form two groups of musicians:

early-trained (ET; n = 12) and late-trained (LT; n = 12).

Those who began their musical experience prior to or at the

age of 7 were placed in the ET group, and those who began

after the age of 7 were considered LT. The age of seven

was chosen based on the previous study conducted by

Schlaug et al. (1995). The two groups were individually

matched on years of musical experience, years of formal

training and hours of current practice, as determined by the

MEQ. All participants gave informed consent, and the

Concordia University Research Ethics Committee had

approved the protocol.

Stimuli

Due to the high degree of musical training obtained by our

participants, the 6 woodblock test rhythms were selected to

cover a range of complexity. Essens and Povel (1985) and

Essens (1995) developed a model by which musical

rhythms can be classified into levels of difficulty based on

their metrical structure. Each test rhythm consisted of 11

woodblock notes and had a total duration of 6 s. These

rhythms differed in their temporal structure, such that the

intervals between musical notes varied, but not the length

of notes themselves. In musical terminology, each rhythm
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consisted of five-eighth notes (each 250 ms), three quarter

notes (each 500 ms), one dotted quarter note (750 ms), one

half note (1,000 ms) and one dotted half note (1,500 ms).

Manipulation of the temporal structure of the notes resulted

in progressively more complex and less metrically struc-

tured rhythms. Three levels of metrical complexity were

chosen, and participants were exposed to two rhythms at

each level: metrically simple (MS), metrically complex

(MC) and non-metrical (NM). An auditory stimulus

delivery program was used to counterbalance the rhythms.

These rhythms were played through a pair of earphones,

and participants used a computer mouse to tap out the

rhythms. A similar auditory rhythm paradigm was previ-

ously used for an fMRI study conducted by Chen et al.

(2008) examining the network of activation during audi-

tory–motor synchronization.

In addition to the rhythmic stimuli, the experimental

protocol included two subtests from the Wechsler Adult

Intelligence Scale—III (WAIS; Wechsler 1997), Digit-

Span (DS) and Letter-Number Sequencing (LN), as well as

two subtests from the Wechsler Abbreviated Scale of

Intelligence (WASI; Wechsler 1999), Vocabulary (VC)

and Matrix Reasoning (MR). The DS requires individuals

to recall strings of numbers, and the LN requires individ-

uals to recall and mentally manipulate strings of letters and

numbers. Both of these subtests tap into working memory

abilities. The VC assesses an individual’s ability to orally

define words, and the MR assesses non-verbal reasoning

and visual pattern recognition abilities. Both VC and MR

are strongly correlated with global IQ and can also be

considered as measures of crystallized and fluid intelli-

gence, respectively.

Procedure

Participants alternated between listening and tapping along

while each rhythm played twice in row (Fig. 1). Partici-

pants were instructed to use their right index finger and the

Fig. 1 Illustration of the rhythm task. Participants were exposed to

six rhythms presented in random order for approximately two 12-min

blocks. Two different rhythms of each rhythmic complexity were

used (i.e., 2 MS rhythms, 2 MC rhythms, and 2 NM rhythms). Each

trial consisted of a listening component followed by a listening and

tapping component
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left button of the computer mouse to tap along with the

rhythm as it played during the tapping repetition. Two very

basic practice rhythms were administered to familiarize

participants with the task. A block consisted of the six

rhythms repeatedly presented in a counterbalanced fashion

for 12 min. Each rhythm was performed 6 times in each

block. Once participants had completed the first block of

the task, they were asked to perform the DS. Participants

then performed a second block of the rhythm synchroni-

zation task, followed by the VC, the LN and finally, the

MR.

Measures

Musical information was quantified for each participant in

terms of years of experience, years of formal training and

hours of current weekly practice. Individual cognitive

abilities were measured using the four chosen cognitive

subtests (DS, LN, VC and MR). Results were scored

according to standard procedure; however, raw scores were

used for each cognitive measure in order to provide a

measure of ability regardless of participant age and because

of increased variance. Performance on the rhythm syn-

chronization task was measured using three dependent

variables: percent correct (PC), asynchrony (ASYN) and

inter-tap interval (ITI) deviation. A tap was considered

correct if it was made within half of the onset-to-onset

interval before or after a woodblock note (Fig. 2). The

ASYN measure was defined as the absolute value of tem-

poral difference between the onset of each woodblock note

and the associated mouse key press. The ITI deviation

measure indicated the extent of deviation from the actual

interval between each pair of woodblock notes. It was

calculated by dividing the interval between each pair of the

participant’s taps by the interval between each corre-

sponding pair of woodblock notes in the rhythms. This

measure is indicative of how well participants are repro-

ducing the temporal structure of the rhythms.

Data analysis

To compare rhythm synchronization across groups, a

repeated-measures analysis of variance (ANOVA) for each

of the dependent variables was conducted, with group as

the between-subjects factor and rhythm type as the within-

subjects factor. Significant differences across rhythm types

for the two groups were analysed using simple Bonferroni

correction for multiple comparisons. Group differences in

musical experience, years of formal training, hours of

current practice and cognitive measures were assessed

using t-test analyses. The relationships among musical

demographics, cognitive measures, age and task perfor-

mance were examined using Pearson and partial correlation

analyses. Raw scores on the cognitive subtests were used in

order to examine cognitive abilities, regardless of age.

Follow-up analysis

A hierarchical regression analysis was conducted in order

to assess whether group explains a significant amount of

variance in task performance, above and beyond that

explained by working memory abilities. A model was

created with total inter-tap interval (ITI) deviation across

rhythms as the dependent measure and both group and

working memory as predictors. A composite score for each

participant’s working memory abilities was created using

their Letter-Number Sequencing (LN) and Digit-Span (DS)

scores and was used as the working memory predictor

variable in the regression model. In step 1 of the model, the

working memory composite score was entered as the sole

predictor of task performance. In step 2, group was added

as a second predictor to determine whether any additional

variance was explained by the age of training onset, above

and beyond the variance accounted for by working memory

abilities.

Fig. 2 Illustration of the scoring method used to evaluate rhythm task

performance. A response was scored correctly if the mouse tap was

made within half of the onset-to-onset interval before and after a

woodblock note. Asynchrony was measured as the difference between

each woodblock note and the participant’s response. ITI deviation

was calculated as a ratio of the ITI and the ISI
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Results

Group comparisons of matching variables

Comparison of the ET and LT musicians confirmed that the

two groups were well matched in terms of years of musical

experience, formal training and hours of current practice

(Table 1). Another set of analyses comparing the two

groups on their cognitive subtest performance scores

demonstrated that the two groups did not differ in their

cognitive abilities, as assessed by the VC, MR, DS and LN

(Table 2). Raw scores are reported; however, it should be

made explicit that no group differences were found when

using scaled scores either (VC: t = 0.377, P = 0.710; MR:

t = -0.643, P = 0.527; DS: t = 0.725, P = 0.476; LN:

t = 1.522, P = 0.142). As expected, the two groups dif-

fered in terms of age of onset (P\ 0.01).

Behavioural measures

Analysis comparing accuracy (PC) of the rhythm repro-

duction between the two groups showed a significant main

effect of rhythm type (F (2, 21) = 19.5, P\ 0.001), with

no main effect of group (Fig. 3). Pair-wise comparisons

revealed that performance decreased as metrical com-

plexity increased (simple[ complex[ non-metrical),

such that accuracy on the MS rhythms was higher than the

MC and NM rhythms (P = 0.026 and P\ 0.01, respec-

tively), and accuracy on the MC rhythms was higher than

the NM rhythms (P\ 0.01). These results confirm our

manipulation of metricality, such that regardless of group,

accuracy decreased as the metrical complexity of the

rhythms increased.

Analysis comparing the reproduction of the temporal

structure of the rhythms measured by inter-tap interval

(ITI) deviation between the two groups showed a signifi-

cant main effect of group (F (1, 22) = 6.0, P\ 0.05) such

that the ET group was better able to reproduce the temporal

intervals of the rhythms than the LT group (Fig. 3). A main

effect of rhythm type was observed as well (F (2, 21) =

43.6, P\ 0.001), indicating that, regardless of group, the

ITI deviation on the MS rhythms was lower than the MC

and NM rhythms (P\ 0.01 for both), and ITI deviation

on the MC rhythms was lower than the NM rhythms

(P\ 0.01).

A similar pattern of results was revealed on the syn-

chronization measure (ASYN). There was no main effect

of group, but a significant main effect of rhythm type (F (2,

21) = 71.6, P\ 0.001). Pair-wise comparisons revealed

that ASYN on the MS rhythms was lower than ASYN on

the MC and NM rhythms (both comparisons P\ 0.01),

and ASYN on the MC rhythms was lower than on the NM

rhythms (P\ 0.01) (Fig. 3).

Correlations

In order to examine the relationship between task perfor-

mance and cognitive variables, raw scores for PC,ASYNand

ITI were correlated with raw scores for VC, MR, DS and LN

(Table 3). No significant correlations were found between

the behavioural measures and VC or MR scores. However,

LN scores were found to be significantly correlated with PC,

Table 1 Group demographics of musical variables

Group Age Age of onset Years of musical

experience

Years of formal

training

Hours of current

weekly practice

Early-trained 25.0 (±3.8) 5.92 (±1.0) 18.67 (±4.5) 10.00 (±4.2) 19.50 (±10.9)

Late-trained 27.8 (±4.7) 10.67 (±3.0) 16.42 (±4.3) 7.33 (±4.2) 23.75 (±16.3)

t-values -1.62 -5.17** 1.26 1.54 -0.75

Standard deviation values are in brackets

** P\ 0.01

Table 2 Group cognitive subtest raw scores

Group Vocabulary

(VC)

Matrix reasoning

(MR)

Digit span

(DS)

Letter-number

sequencing (LN)

Early-trained 63.6 (±5.7) 29.8 (±4.3) 22.3 (±4.8) 13.3 (±2.4)

Late-trained 63.3 (±7.0) 29.8 (±2.6) 19.8 (±4.2) 11.6 (±2.7)

t-values 0.128 -0.057 1.36 1.61

Standard deviation values are in brackets
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ASYN and ITI deviation, and DS scores were significantly

correlated with ASYN and ITI deviation.

Results of the correlational analyses between the

behavioural measures and musical variables (Table 4), as

well as behavioural measures and age variables indicated

a significant correlation between formal training and PC,

ASYN and ITI deviation (r = 0.49, P\ 0.05; r = -0.49,

P\ 0.05; r = 0.63, P\ 0.01). Neither age variable (age

of onset and age) showed a significant relationship with

task performance. In order to examine the association

between years of formal training, cognitive scores and task

performance, correlations were performed between years

of formal training and each cognitive measure (Table 5).

This set of analyses revealed a significant correlation

between years of formal training and both DS and LN,

but no significant correlation with VC or MR. In addi-

tion, partial correlation analyses between ITI deviation,

years of formal training and LN raw scores were con-

ducted in order to examine the partial contributions of

formal training and working memory to task perfor-

mance (Table 6). These results indicated that working

memory abilities and years of formal training each

accounted for unique portions of the variance in task

performance.

Fig. 3 Performance results of

the rhythm task as measured

by a percent correct (PC),

b asynchrony (ASYN) and

c inter-tap interval deviation

(ITI). Repeated-measures

ANOVA analyses on each

performance measure revealed

a significant main effect of

rhythm type and a significant

main effect of group for ITI

deviation

Table 3 Pearson correlations

of cognitive subtest raw scores

and behavioural measures

* P\ 0.05, ** P\ 0.01

Behavioural measure Vocabulary

(VC)

Matrix reasoning

(MR)

Digit span

(DS)

Letter-number

sequencing (LN)

Percent correct (PC) -0.218 0.173 0.256 0.423*

Asynchrony (ASYN) 0.088 -0.297 -0.499* -0.557**

Inter-tap interval (ITI) deviation -0.022 -0.348 -0.549** -0.563**

Table 4 Pearson correlations

of musical demographics and

behavioural measures

** P\ 0.01

Behavioural measure Age Age of

onset

Years of musical

experience

Years of formal

training

Hours of current

weekly practice

Percent correct (PC) -0.130 -0.204 0.114 0.490** -0.074

Asynchrony (ASYN) 0.147 0.060 0.003 -0.486** 0.025

Inter-tap interval (ITI)

deviation

0.190 0.190 -0.035 -0.627** 0.134
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Regression analysis

In order to determine whether the amount of variance in ITI

deviation during task performance accounted for by group

was above and beyond what was explained by working

memory abilities, a hierarchical regression analysis was

conducted. As the values indicate in Table 7, group

accounted for a significant amount of variance unexplained

by the individual working memory composite scores.

These results confirm that, while individual working

memory abilities were associated with ITI deviation scores,

the grouping variable determined by age at which training

onset began accounted for additional portions of the vari-

ance in ITI deviation scores.

Discussion

The results from this study show that ET musicians have

enhanced auditory rhythm synchronization abilities

compared to LT musicians, even when matched for years

of experience, formal training and hours of current prac-

tice. The greatest difference between the two groups was

seen on the measure of ITI deviation, indicating that the ET

musicians were better able to reproduce the temporal

structure of the rhythms. These group differences cannot be

attributed to differences in verbal abilities, non-verbal

reasoning or working memory, as there were no differences

on these measures. These results support the existence of a

possible sensitive period during development associated

with long-lasting enhancement of sensorimotor integration

and timing. While differences in task performance between

the two groups were not mediated by cognitive ability,

across all musicians, both working memory and years of

formal training were associated with task performance.

Given that the two groups of musicians were matched in

terms of musical experience, the enhanced performance on

the rhythm synchronization task observed in the ET group

cannot be attributed to greater years of training, but instead

to the developmental window during which training began.

The performance difference between the ET and LT groups

observed in the present study, taken together with previous

results from our laboratory (Watanabe et al. 2007), sup-

ports the presence of a sensitive period in development

during which musical training results in long-lasting

improvements in sensorimotor integration and movement

timing. This is consistent with the idea that experience

during a sensitive period contributes differentially to later

learning and performance (Knudsen 2004; Trainor 2005).

This could be related to the interaction between develop-

mental changes occurring in the brain during the sensitive

period and specific training that stimulates this develop-

ment, resulting in greater potential for future maturation or

more efficient integration. This is consistent with devel-

opmental changes in motor performance, and structural

maturation of fibre pathways supporting sensorimotor

functions (Barnea-Goraly et al. 2005; Garvey et al. 2003;

Savion-Lemieux et al. 2009; Thomas and Nelson 2001;

Paus et al. 1999). For example, the anterior portion of the

corpus callosum was reported to be larger in musicians

who began training before age 7 compared to those who

began later in childhood (Schlaug et al. 1995). A model

predicting the growth trajectory of the corpus callosum

from structural MRI scans demonstrated that development

of the anterior portion of the corpus callosum precedes the

posterior portion and that growth in the anterior region

continues until approximately age 7 (Thompson et al.

2000). A study examining white matter differences among

adult piano players showed that a larger number of brain

regions correlated with practice in the group that began

training earlier (B11 years old) compared to those who

began later (Bengtsson et al. 2005). Among the brain

regions demonstrating this correlation in those who began

Table 5 Pearson correlations of cognitive subtest raw scores and

years of formal training

Vocabulary

(raw)

Matrix

reasoning

(raw)

Digit

span

(raw)

Letter-number

sequencing

(raw)

Years of formal

training

0.152 0.375 0.510* 0.429*

* P\ 0.05

Table 6 Partial correlation analyses between task performance, years

of formal training and working memory

Control variable Correlation

Letter-number

sequencing (raw)

Total ITI deviation (%) -0.516*

Years of formal training

Years of formal

training

Total ITI deviation (%) -0.419*

Letter-number

sequencing (raw)

* P\ 0.05

Table 7 Hierarchical regression analysis predicting ITI deviation

scores from working memory composite scores and group

R2 b R2 change F

Step 1 0.352 0.352 11.927

Working memory

composite score

-0.593**

Step 2 0.436 8.124

Working memory

composite score

-0.496**

Group 0.307* 0.085

* P\ 0.05, ** P\ 0.01
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training earlier were the isthmus and the body of the corpus

callosum. The isthmus contains fibres connecting auditory

regions, and the body of the corpus callosum connects

frontal and premotor regions important for movement

sequences and bimanual coordination. Support for the fact

that musical training can result in rapid changes in the

brain during childhood comes from a recent study showing

that structural changes were observed in children after

15 months of music lessons and that these changes were

associated with increases in performance on auditory and

motor tasks (Hyde et al. 2009). All of these findings

illustrate the potential for a sensitive period in childhood,

when motor and sensory regions are still undergoing mat-

uration during which musical training has an optimal effect

on structural development.

The results of the current experiment are an extension of

the findings from a previous study showing that ET

musicians performed better than LT musicians on a visu-

omotor synchronization task (Watanabe et al. 2007). As

described in the Introduction, one goal of the present

experiment was to assess whether this difference would be

observed using a more musically relevant task. These

results clearly show that ET musicians have enhanced

performance on the more familiar auditory rhythm repro-

duction task, indicating that training during the putative

sensitive period is associated with improved sensorimotor

integration in both the auditory and visual modalities. It

should be noted that group differences on a measure of

asynchrony were observed on the second day in our pre-

vious study (Watanabe et al. 2007). Group differences were

observed on the ITI deviation measure of synchronization

in the current study, which only examined task perfor-

mance on a single day. One could predict that, given a

second day of the auditory–motor task, the two groups

would deviate in performance on the ASYN variable as

well based on our previous findings.

Given that the two groups did not differ in their per-

formance on measures of verbal ability, non-verbal rea-

soning and working memory, the enhanced performance of

the ET group cannot be attributed to differences in the

abilities measured. However, correlational analyses

showed that across both groups of musicians, working

memory abilities were a significant contributor to task

performance. To assess whether group accounted for var-

iance in task performance (ITI deviation) above and

beyond individual working memory abilities, a hierarchical

regression analysis was performed. These results showed

that group was a significant predictor of task performance

(ITI deviation), even when individual working memory

abilities were considered. Previous findings have demon-

strated an association between basic timing tasks and

intelligence (Helmbold et al. 2007; Rammsayer and

Brandler 2007). These studies have concluded that the

relationship is not due to top-down processes such as

working memory, but rather is associated with basic neural

efficiency (Madison et al. 2009; Ullén et al. 2008). How-

ever, these studies do not consider musical training, and the

tasks used are very basic and purposefully designed to

require little involvement of working memory abilities

(Helmbold et al. 2007; Rammsayer and Brandler 2007).

Previous findings indicated that musical training during

childhood is associated with verbal abilities and non-verbal

reasoning (e.g. MR) (Forgeard et al. 2008; Jentschke and

Koelsch 2009; Schellenberg 2004, 2006). The current study

does not support an association between musical training

and verbal or non-verbal reasoning abilities within a group

of highly trained adult musicians. It is important to dis-

tinguish between effects of musical training that may have

short-term impact in childhood and those that last well into

adulthood. It may be that music lessons trigger premature

development of cognitive abilities, but some of these dif-

ferences wash out as other children’s cognitive abilities

develop through other avenues of experience.

While the cognitive abilities of the two groups did not

differ at the time of testing, an important question is

whether this was true at the time of start of musical

training. The cognitive tasks used in this study are subtests

from the WAIS-III or the WASI. Overall, IQ scores are

thought to be more or less stable across development and,

in the absence of significant neurological disruption,

demonstrate limited change from childhood to adulthood.

If, however, the ET group had higher IQ scores as children,

the LT group would have had to demonstrate a differential

increase in IQ scores during their development, as the two

groups do not differ currently. In light of the stability

associated with IQ levels across the age span, the differ-

ence in task performance observed in these adult musicians

is unlikely to be associated with potential group differences

in IQ scores at an earlier time during childhood.

Although years of formal training and working memory

scores were correlated with each other, they also

accounted for unique portions of the variance in task

performance. In other words, it was not the case that all

individuals who performed well on the task had high

working memory scores and many years of formal train-

ing. There were individuals with high working memory

scores and few years of formal training that performed

well and vice versa. This pattern of results suggests that

components of formal music lessons, not general musical

experience, are associated with better rhythm performance

and enhanced auditory working memory abilities. Formal

training may contribute to task performance in several

ways. First, formal lessons emphasize explicit learning of

a wide variety of complex rhythmic structures; potentially

giving musicians with more formal training a better ability

to parse the rhythms they were required to imitate (Chen
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et al. 2008). Second, formal lessons emphasize intensive

and precise practice of rhythms, facilitating the develop-

ment of motor skills required for precise timing and

execution. Finally, formal lessons may emphasize tasks

requiring, and thus enhancing working memory. An

important distinction should be made in the literature

between effects of formal music lessons and effects of

playing music, as suggested by Schellenberg and Peretz

(2008). Many aspects of music lessons are similar to

scholastic requirements (e.g. attention, practice, self-dis-

cipline, memorization, reading, counting). Perhaps, formal

lessons provide a scaffolding instructional approach for all

skills involved in playing a musical instrument, including

executive functions such as working memory (Schellenberg

and Peretz 2008).

The present study shows convincing evidence for a

possible sensitive period for musical training. However, it

is possible that the musicians who began training at an

early age differed in terms of pre-existing abilities, moti-

vation and environment. Individual differences with

respect to motor development, cognitive development or

other genetic factors may play an important role in the

group difference observed in this study. More specifically,

children with innate enhanced sensorimotor skills might be

those who begin earlier, and because of their better skills,

get more out of their training. In addition, perhaps those

who begin training at a younger age are inclined do so

because of family influences, higher motivation levels, or

other factors that were not evaluated in this study. Future

studies should aim to evaluate these important areas to

determine exactly which factors are underlying this

observed performance difference.

In conclusion, these results provide evidence for a

possible sensitive period for musical training before the

age of seven as demonstrated by performance differences

between ET and LT musicians on a rhythm synchroni-

zation task. These findings are consistent with neuroim-

aging findings that show differential effects of early

training on brain structure. Group performance differences

observed within this sample cannot be attributed to cog-

nitive ability, as the two groups did not differ on measures

of verbal and non-verbal reasoning or working memory

abilities. Very interestingly, across both groups, working

memory scores were associated with task performance, as

were years of formal training. This suggests that formal

training may be an important mediator of the effects of

musical experience.
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Behavioral/Cognitive

Early Musical Training and White-Matter Plasticity in the
Corpus Callosum: Evidence for a Sensitive Period

Christopher J. Steele,1,2 Jennifer A. Bailey,1 Robert J. Zatorre,3 and Virginia B. Penhune1

1Department of Psychology, Concordia University, Montréal, Québec, Canada H4B 1R6, 2Department of Neurology, Max Planck Institute for Human
Cognitive and Brain Sciences, 04103 Leipzig, Germany, and 3Montreal Neurological Hospital and Institute, McGill University, Montreal, Quebec, Canada
H3A 2B4

Training during a sensitive period in development may have greater effects on brain structure and behavior than training later in life.
Musicians are an excellent model for investigating sensitive periods because training starts early and can be quantified. Previous studies
suggested that early training might be related to greater amounts of white matter in the corpus callosum, but did not control for length of
training or identify behavioral correlates of structural change. The current study compared white-matter organization using diffusion
tensor imaging in early- and late-trained musicians matched for years of training and experience. We found that early-trained musicians
had greater connectivity in the posterior midbody/isthmus of the corpus callosum and that fractional anisotropy in this region was
related to age of onset of training and sensorimotor synchronization performance. We propose that training before the age of 7 years
results in changes in white-matter connectivity that may serve as a scaffold upon which ongoing experience can build.

Introduction
Highly skilled musicians such as Yo-Yo Ma, Oscar Peterson, and
Pablo Casals began training in early childhood, all before the age
of 7 years. Such observations suggest that there may be a sensitive
period when early musical training has greater effects on the
brain and behavior than training later in life. Such periods of
heightened sensitivity would likely interact with preexisting indi-
vidual differences in ability, along with environmental factors, to
result in the expertise observed in such outstanding musicians.

A sensitive period is defined as a developmental window
where experience has long-lasting effects on the brain and behav-
ior (Knudsen, 2004). Neurophysiological studies in animals show
that exposure or training during specific periods in development
can produce enhanced structural and functional plasticity in vi-
sual, auditory, and somatosensory regions of the brain (Hensch,
2005). Evidence for sensitive periods in humans comes from
studies of second language learning showing that early exposure
results in greater proficiency (Johnson and Newport, 1989; Kuhl,
2010), studies of deaf children showing that receiving cochlear
implants earlier results in better language development (Sharma
et al., 2007), and studies of blind persons showing greater neuro-

nal reorganization following early blindness (Sadato et al., 2002;
Frasnelli et al., 2011).

Musicians are an excellent model for investigating possible
sensitive period effects on brain and behavior, as training often
begins early and is quantifiable (Bengtsson et al., 2005; Wan and
Schlaug, 2010; Penhune, 2011). Evidence for a possible sensitive
period for musical training came from a study showing that the
anterior corpus callosum (CC) was larger in musicians than non-
musicians, and that the difference was greater for those who be-
gan training before the age of 7 years (Schlaug et al., 1995).
Further, the extent of the representation of the left hand (Elbert et
al., 1995) and motor cortex size (Amunts et al., 1997) have also
been shown to be related to early onset of training.

However, none of these studies controlled for the fact that
musicians who begin earlier typically have more training than
those who begin later. Music and other forms of training induce
gray and white matter changes (Hyde et al., 2009; Imfeld et al.,
2009; Scholz et al., 2009), and brain structural measures have
been shown to be related to the amount of training (Gaser and
Schlaug, 2003; Bengtsson et al., 2005; Imfeld et al., 2009; Foster
and Zatorre, 2010). Therefore, previously observed differences
thought to be related to age of onset may be influenced by, or even
artifacts of, differences in the duration of training. Further, pre-
vious studies did not demonstrate any relationship between dif-
ferences in brain structure and performance, which is critical in
establishing their relevance. Work from our laboratory has
shown that early-trained musicians (ET; training begun before
the age of 7 years) outperform late-trained musicians (LT; train-
ing begun after the age of 7 years) on auditory and visual senso-
rimotor synchronization tasks— even when matched for years of
training and experience (Watanabe et al., 2007; Bailey and Pen-
hune, 2012). Based on these studies, we hypothesized that early
musical training might have a differential impact on plasticity in
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white-matter fibers connecting sensory and motor regions, re-
sulting in better sensorimotor integration. To test this hypothe-
sis, the current study used diffusion tensor imaging (DTI) to
compare white-matter structure in ET and LT musicians
matched for years of training and experience. We also specifically
examined the relationship between brain structure and sensori-
motor synchronization performance to test the hypothesis that
structural changes induced by early learning would be directly
related to behavioral enhancements.

Materials and Methods
Participants
We tested 36 highly trained musicians who were divided into two groups:
ET, who began their training before age 7 (n � 18, 8 females); and LT,
who began their training after age 7 (n � 18, 4 females). Groups were
matched for years of musical experience (total years of training and
practicing music), years of formal training (total years enrolled in music
lessons), and hours of current practice as assessed by the Musical Expe-
rience Questionnaire developed in our laboratory (Bailey and Penhune,
2012) (Table 1). The age cutoff for ET and LT was based on previous
studies (Schlaug et al., 1995; Watanabe et al., 2007). All musicians had at
least 7 years of musical experience, were currently practicing, and were
enrolled in a university music program or performing professionally. We
also tested a group of nonmusician controls (NM; n � 17, 7 females) who
had less than 3 years of musical experience and were not currently prac-
ticing an instrument or undergoing musical training. All participants
were right-handed, neurologically normal, and were not taking any med-
ication that could affect task performance. All participants completed an
MR safety screening form and provided written informed consent. The
experimental protocol was approved by the McGill University Montreal
Neurological Hospital and Institute Research Ethics Board and the Con-
cordia University Human Research Ethics Committee.

Behavioral task
The temporal motor sequencing task (TMST) was used to assess motor
timing and synchronization (Steele and Penhune, 2010; Penhune and
Steele, 2012). The TMST (Fig. 1A) requires participants to tap in syn-
chrony with a 10-element sequence of short and long visual cues that
form a temporal sequence or rhythm. Previous work in our lab has
shown that ET show better synchronization performance than LT on this
task, even after 5 d of practice (Watanabe et al., 2006). In the present
study, TMST performance was assessed on 2 consecutive days consisting
of three blocks of 16 trials. Before testing, participants completed a block
of training sequences to establish the mean and standard deviation of
their short and long responses for scoring (described below) and prac-

ticed the sequence until they were able to reach 80% accuracy across three
consecutive trials.

Scoring. Learning was assessed with two measures of performance:
percentage correct (PCOR) and percentage synchronization (PSYN).
PCOR is the percentage of long and short key-presses that fell within a
300 ms window around the visual stimulus and had a duration within 2
SD of each participant’s mean for the short or long elements in the
sequence (for additional scoring details, see Steele and Penhune, 2010). A
score of 100% on PCOR represents perfect knowledge of the ordering of
long/short elements within the sequence. PSYN is a measure of the syn-
chronization of key-press response with visual stimuli, and represents a
measure of sensorimotor integration. PSYN was calculated based only on
correct responses and is the absolute lag between the onset and offset of
the stimulus and the onset and offset of the response, divided by the
stimulus duration. PSYN scores were subtracted from 100 to obtain a
score that increased with performance. A score of 100% on PSYN indi-
cates that the key press and release response exactly matched the onset
and offset of the visual stimuli.

Analyses. Omnibus F tests were used to assess learning on PCOR and
PSYN and planned comparisons were conducted for all blocks (one-
tailed t tests, � � 0.05, ET � LT and LT � NM compared separately for
all blocks). Measures of final performance for PSYN, operationalized as
performance on the last block of the second day of training, were calcu-
lated for use in behavioral and brain-behavior correlations (PSYN Final).

MRI data acquisition and analysis
We collected both standard high-resolution T1 (MPRAGE T1: TR �
2300 ms, TE � 2.98 ms, 1 � 1 � 1 mm) and diffusion-weighted images
(99 directions, TR � 9340 ms, TE � 88 ms, b � 1000 s/mm 2, 2 � 2 � 2
mm) on a Siemens Trio 3T MRI using a 32-channel head coil.

Diffusion imaging. All imaging data were analyzed using the FMRIB
Software Library (FSL 4.1.7) (Smith et al., 2004). Diffusion images were
corrected for eddy current distortions before creating voxelwise maps
of diffusion parameters. Images were then prepared using FSL’s tract-
based spatial statistics, which first nonlinearly aligns images to the
FMIRB58_FA standard space template, calculates a mean fractional an-
isotropy (FA) image, and then thins it to produce the study-specific FA
skeleton representing the centers of the tracts common to all participants
(Smith et al., 2006). The aligned FA data were then projected onto indi-
vidual FA skeletons that were subsequently used in permutation-based
nonparametric statistical analyses. Skeletonized FA values were thresh-
olded at FA � 0.20 before analyses. Volumetric (non-skeletonized) FA
images were minimally smoothed (� � 1 mm) before analyses. The same
nonlinear warp and skeletonization parameters were used with the Tract-
Based Spatial Statistics non-FA pipeline to create skeletonised and volu-
metric images of axial diffusivity (AD) and radial diffusivity (RD).
Nonparametric permutation-based analyses were conducted with 5000
permutations for all analyses, with age and sex entered as covariates of no
interest. Results were assessed for significance after multiple compari-
sons (� � 0.05) using threshold-free cluster enhancement (Smith and
Nichols, 2009). Additional post hoc analyses were conducted at p � 0.10
to investigate the degree of overlap with previous findings. Presented p
values are fully corrected for multiple comparisons.

Group differences and correlations. We addressed the question of
whether age of onset of training is related to white-matter organization in
two complementary ways. First, we performed a whole-brain skeleton-
ized between-group subtraction analysis to identify white-matter regions
that may differ between musician groups matched on years of formal
training and experience. This categorical contrast picks up group differ-
ences. We also performed a correlational analysis to examine white-
matter differences that may be a function of age of onset of training. To
this end, the age at which musicians began training was correlated with
whole-brain skeletonized FA. Finally, to determine the global relation-
ship between white-matter structure and performance on the TMST
regardless of training-related variables, PSYN Final across all participants
(ET, LT, NM) was correlated with skeletonized FA. Regions identified in
these analyses were subsequently used as masks to extract FA, AD, and
RD values for plotting, partial correlations, or one-tailed t tests to specify
findings as required.

Table 1. Group demographic variables

ET LT NM

n 18 18 17
Male/female 10/8 14/4 10/7
Age of onset of musical training (years)

Mean (SD) 5.72 (�1.13) 10.78 (�2.46) —
Range 3–7 8 –18 —

Age (years)*
Mean (SD) 22.72 (�4.14) 27.61 (�5.34) 26.41 (�4.71)
Range 18 –32 19 –35 21–36

Years of formal training
Mean (SD) 11.5 (�3.22) 9.42 (�5.13) 0.35 (�0.53)
Range 3–16 1–20 0 –1.58

Years of experience
Mean (SD) 16.72 (�3.89) 16.58 (�4.88) 0.68 (�0.61)
Range 12–25 9.5–24 0 –2

Hours of current practice (hours per week)
Mean (SD) 15 (�10.20) 13.25 (�7.52) —
Range 3–35.5 4 –34 —

*Significant difference in age between ET and LT; t(34) � 3.07, p � 0.05.
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Probabilistic tractography. Probabilistic trac-
tography was used to better characterize the
location and connectivity of findings. Signifi-
cant voxels were first converted to binary
masks in each individual’s 1-mm-isotropic-
transformed diffusion space and then used to
seed a two-fiber model of probabilistic tractog-
raphy (Behrens et al., 2007). Both fiber direc-
tions were randomly sampled 10,000 times for
each voxel in the seed mask, averaged across
groups, and thresholded for display. Thresh-
olded tracts were converted into binary masks
that were used to extract diffusion measures
from each individual’s nonlinearly registered
voxelwise maps.

Results
Behavioral
Musician groups were well matched for
musical training variables, with no signif-
icant differences in years of formal train-
ing, years of experience, or current hours
of practice (Table 1). All musicians were
currently playing one or more instru-
ments that required the coordinated use
of both hands and were highly trained,
with a mean of 16.65 and range of 9.5–25
total years of experience. Nonmusicians
had very little experience (mean, 0.68
years; range, 0 –2 years). As expected, ET
and LT differed on current age (ET: mean, 22.72 years; LT: mean,
27.61 years). There was no difference in age between musicians
and nonmusicians (musicians: mean, 25.17 years; NM: mean,
26.41 years). The significant age difference and unequal number
of males and females between groups led us to include both age
and sex as covariates of no interest in the subsequent structural
analyses. In addition, the relationship between our grouping vari-
able, age of onset, and the other demographic measures was also
assessed. Age of onset was significantly correlated with years of
formal training (r � �0.41, p � 0.05) but not years of experience
(p � 0.99) or hours of current practice (p � 0.83). Thus, to more
precisely isolate the effects of age of onset across musician groups,
we also used years of formal training as a covariate of no interest
in correlational analyses described below.

Performance on the TMST across groups and blocks of train-
ing were assessed with 3 � 6 (group � block) repeated-measures
ANOVA F tests and planned t tests. Accuracy, as measured by the
percentage of correct responses on the learned sequence (PCOR),
differed by group and block (group: F(2,50) � 6.18, p � 0.05, � 2 �
0.20; block: F(5,250) � 8.89, p � 0.001, � 2 � 0.15), with no inter-
action (group � block: F(10,250) � 0.85, p � 0.59). All groups
improved across blocks, with musicians exhibiting better perfor-
mance than non-musicians (Fig. 1B, left). Planned directional t
tests revealed that ET had better performance than LT on block 2
(ET � LT: p � 0.05) and LT showed better performance than NM
on blocks 3– 6 (LT � NM: blocks 3– 6, p � 0.05). Performance on
the measure of sensorimotor synchronization (PSYN) also
showed significant differences between groups (group: F(2,50) �
21.26, p � 0.001, � 2 � 0.46; block: F(5,250) � 25.87, p � 0.001, � 2

� 0.34), with no interaction (group � block: F(10,250) � 0.28, p �
0.99). Overall, synchronization performance differed between
groups, was sustained across 2 d of training, and improved across
blocks (Fig. 1B, right). Planned directional t tests revealed that
ET had better synchronization performance than LT across all

blocks (ET � LT: blocks 1– 6, p � 0.05) and LT had better
performance than NM (LT � NM: blocks 1–2, p � 0.05; blocks
3– 6, p � 0.001). These results show that musicians have an
initial advantage in sensorimotor synchronization that is sus-
tained even after 2 consecutive days of training, and is in
agreement with findings of a previous experiment using the
same task (Watanabe et al., 2007). Because PSYN was more
sensitive to between-group differences, PSYN Final was used
as a regressor for investigating subsequent brain– behavior
correlations.

Diffusion imaging
Group differences
To determine the white matter structural differences related to early
training, skeletonized FA values were compared between musician
groups. ET had significantly greater FA than LT in a region of the
corpus callosum including the posterior midbody and anterior por-
tion of the isthmus (peak voxel:�14, �11, 32, t � 4.55; Fig. 2A). To
confirm that voxels making up the skeleton were retrieved from the
location identified in the group analysis, the significant region was
deprojected onto each musician’s normalized scan and reviewed.
This review confirmed that the region of interest was in the same
location in all individuals. To investigate whether we might also find
group differences in a more anterior region of the CC as reported by
others (Schlaug et al., 1995), the threshold for the skeletonized FA
contrast was reduced to p � 0.10 (fully corrected). Consistent with
previous studies, this analysis showed that ET had greater FA in a
large portion of bilateral rostral body and midbody of the CC.

To compare FA in the anterior midbody/isthmus between
groups, we extracted FA, RD, and AD from the peak voxel identified
in the skeletonized contrast. To visualize the group difference results,
Figure 2B includes a plot of the extracted FA values by group (top
left). There was a significant group difference in RD such that ET had
lower values than LT and NM (ET � LT: t(34) � 3.59, p � 0.001;
ET�NM: p�0.06; LT�NM: p�0.92;Fig. 2B, left). There were no

Figure 1. Behavioral task and group performance data. A, Temporal motor sequence task. The learned sequence, visually
presented stimuli, and response method are shown. B, Performance data from the TMST. PCOR and PSYN are shown across blocks.
Group means for each measure are plotted for each day (d) and block (b): ET are shown in red, LT in blue, and NM in black. Error bars
depict �SEM. The vertical dotted line between d1b3 and d2b1 denotes the boundary between days of training.
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significant group differences in AD (ET� LT: p � 0.07; ET � NM:
p � 0.13; LT � NM: p � 0.60).

As an additional confirmation that the skeletonized group
contrast accurately represented the location of group difference,
we performed a smoothed whole-brain FA comparison between
ET and LT. The results showed that the only location where ET
had greater FA than LT was in a very similar region of the poste-
rior midbody/isthmus of the CC (peak voxel: �12, �22, 32, t �
5.42, p � 0.05 fully corrected). This region overlaps with the
skeletonized group difference.

Correlations with region of
interest extractions
To further assess the relationship between
age of onset of musical training and white
matter in the CC, we correlated age of onset
with extracted diffusion measures with age
and sex, and years of formal training as co-
variates of no interest. Age of onset of musi-
cal training was significantly correlated with
both FA and RD (FA: r � �0.40, p � 0.05;
RD: r � 0.36, p � 0.05; Fig. 2B, middle).
Together, these results demonstrate that
white matter plasticity in the posterior mid-
body of the CC is differentially affected by
the age at which musical training begins.

We also explored the possibility that
the synchronization performance advan-
tage of ET may be linked to enhanced FA
in the midbody/isthmus of the CC. FA ex-
tracted from the peak voxel identified in
the skeletonized group contrast was cor-
related with PSYN Final (Fig. 2B, right).
There was a significant positive correla-
tion across all participants (All: r � 0.30,
p � 0.05); however, this effect was pre-
dominantly driven by the correlation
within NM (ET: p � 0.67; LT: p � 0.80;
NM: r � 0.57, p � 0.05). Consistent with a
link between RD, greater myelination,
and greater performance, the significant
correlation between PSYN Final and FA in
NM was driven by a significant correla-
tion with RD (NM: r � �0.59, p � 0.05)
while there was no relationship with AD
(NM: p � 0.46). These findings indicate
that while there is an overall relationship
between variability in white matter integ-
rity in the CC and synchronization per-
formance, this effect is not significant for
musicians who may be at ceiling for both
diffusion measures and performance.

Correlations with age of onset
As an independent analysis to further es-
tablish the relationship between age of on-
set of musical training and FA, age of
onset was regressed against whole-brain
skeletonized FA. Age of onset was signifi-
cantly correlated with FA in bilateral ros-
tral body and midbody of the corpus
callosum (Fig. 3), overlapping with the re-
gions identified in the group-difference
contrast. When years of formal training
was included as an additional covariate of

no interest, nearly identical results were obtained slightly below
threshold (p � 0.08, fully corrected).

Probabilistic tractography
In a next step, fiber tractography was used to assess the structural
connectivity of the posterior midbody/isthmus region. A seed
mask was created from the significant CC cluster from the skele-
tonized ET–LT contrast, and the results were thresholded for
display. The mean tract passed through the posterior midbody/
isthmus of the CC to connect the right and left sensorimotor

Figure 2. ET versus LT group FA differences and extractions. A, ET � LT group difference in skeletonized FA (blue) in posterior
midbody of the corpus callosum. The tract based on this seed connects the right and left sensorimotor cortices and is represented
as the red-yellow underlay (where red represents a threshold of 1–10% of maximum particle count and bright yellow depicts 10%
and greater). B, FA (top) and RD (bottom) values from the peak CC voxel plotted against group, age of onset, and PSYN Final. Values
for ET are depicted in red, LT in blue, and NM in black. Group means are depicted with filled circles. Raw values were used for all plots
while statistics were based on the corrected values as stated in the text. **p � 0.001.
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cortices (Fig. 2A). The tract identified here
is consistent with CC connectivity re-
ported in recent DTI-based human trac-
tography studies (Hofer and Frahm, 2006;
Chao et al., 2009). Mean diffusion param-
eters extracted from the tract-defined vol-
ume showed strikingly similar results to
those found in the prior skeleton-based
extractions (Fig. 2A). FA was greater in ET
than LT (ET � LT: t(34) � 2.11, p � 0.05;
ET � NM: p � 0.07; LT � NM: p � 0.72);
there were no differences between groups
on RD (ET � LT: p � 0.09; ET � NM: p �
0.16; LT � NM: p � 0.36) or AD (ET �
LT: p � 0.21; ET � NM: p � 0.38; LT �
NM: p � 0.71). There was no evidence for
correlation between diffusion measures
and age of onset (FA: p � 0.37; RD: p �
0.31). These results indicate that the
group difference identified within the CC
is also true for the tract that connects right
and left sensorimotor cortex through this
region.

Correlations with sensorimotor
synchronization performance
To directly test the global relationship be-
tween FA and performance on the TMST,
PSYN Final was regressed against whole-
brain skeletonized FA. Across all groups, PSYN Final was cor-
related with FA in an extensive region of the left temporal lobe
(Fig. 4A), extending into the posterior limbs of the internal and
external capsules. This same region was not present, even below
threshold, in the right hemisphere. Mean diffusion values from
the entire significant ROI were extracted to better represent the
extensive area of interest. Mean FA did not differ between musi-
cian subgroups but differed between musicians and nonmusi-
cians (ET � LT: p � 0.10; ET � NM: t(33) � 3.98, p � 0.001; LT �
NM: t(33) � 2.56, p � 0.05; Fig. 4B, left). Again, differences in RD
appear to be driving the FA differences (RD: ET � LT: p � 0.18;
ET � NM: t(33) � 2.98, p � 0.05; LT � NM: t(33) � 2.07, p �
0.05). There were no AD differences between groups (AD: ET �
LT: p � 0.24; ET � NM: p � 27; LT � NM: p � 52).

We next correlated age of onset with extracted FA and RD
values in this region to determine whether they showed a similar
relationship to that found in the CC. Our results showed a signif-
icant negative correlation between age of onset and FA and a
significant positive correlation between age of onset and RD
when controlling for age, sex, and years of formal training (FA:
r � �0.41, p � 0.05; RD: r � 0.38, p � 0.05; Fig. 4B, middle).
In addition, the groupwise correlations with PSYN Final revealed
that the overall significant correlation with FA was driven by corre-
lations within LT and NM (ET:p � 0.74; LT: r � 0.59, p � 0.05; NM:
r � 0.63, p � 0.05). Again, this finding appears to have been primar-
ily driven by RD (ET: p � 0.77; LT: r � �0.62, p � 0.05; NM: r �
�0.61, p � 0.05) and not AD (ET: p � 0.99; LT: p � 0.67; NM: p �
0.13).

Discussion
Our results show that early musical training has a differential
impact on white matter structure and sensorimotor synchroni-
zation performance, providing evidence for a sensitive period
where experience produces long-lasting changes in the brain and

behavior. Consistent with previous findings, ET outperformed
LT on a sensorimotor synchronization task across 2 d of practice
(Watanabe et al., 2007). Group comparisons of diffusion imaging
data showed that ET had greater FA and lower radial diffusivity in
the posterior midbody/isthmus of the CC even when matched for
years of formal training, years of experience, and hours of current
practice. Fiber tractography showed that this region includes
tracts that connect to the sensorimotor cortices in the two hemi-
spheres. Extracted FA and radial diffusivity values in the CC cor-
related with age of onset of musical training. These correlations
were confirmed by a whole-brain regression analysis showing
that age of onset was negatively correlated with FA in the same
region. Behavioral regression analysis showed that across all
groups, synchronization performance was significantly corre-
lated with FA in temporal lobe pathways. Crucially, FA in both
the CC and temporal lobe was significantly correlated with the
age of onset of musical training despite controlling for years of
formal training.

Corpus callosum and bimanual coordination
DTI analyses showed that ET had greater FA and reduced radial
diffusivity in the posterior midbody/isthmus of the CC and that
those who began earlier had higher FA. The posterior midbody
contains the fibers that connect the sensorimotor cortices of the
two hemispheres (Hofer and Frahm, 2006; Chao et al., 2009).
This region undergoes significant developmental changes be-
tween the ages of 6 and 8 years (Westerhausen et al., 2011), when
our ET would have begun their training. Individual differences in
FA in this subregion of the CC have been shown to be less strongly
influenced by genetics (Chiang et al., 2009), and are thus more
likely to be influenced by environmental factors such as musical
training. Consistent with this, 6-year-olds who received 15
months of musical training showed increased volume in a similar
region of the CC (Hyde et al., 2009), and FA in this region in adult
musicians has been linked to hours of practice before the age of 11

Figure 3. Correlation between FA and age of onset of musical training. FA was significantly correlated with age of onset of
musical training across musicians in bilateral rostral body and midbody of the corpus callosum (red). This region overlaps with the
more posterior midbody location identified in the group contrast between ET and LT (overlayed in semitransparent blue visible in
the top left and bottom right slices).
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years (Bengtsson et al., 2005). Playing a musical instrument re-
quires the coordinated action of the two hands and interhemi-
spheric interactions mediated by the CC have been shown to play
a prominent role in bimanual coordination (Swinnen, 2002). The
size of the CC and FA have been shown to be related to bimanual task
performance in children (Kurth et al., 2012) and adults (Johansen-
Berg et al., 2007; Muetzel et al., 2008; Gooijers et al., 2013). Further,
the size of the primary motor cortex connected through this region
has been shown to be related to the age of onset of musical training
(Amunts et al., 1997). Early musical training, by requiring practice of
bimanual skills, may place greater demands on interhemi-
spheric interactions between sensorimotor regions, thus pro-
moting the development of enhanced connections that are
indexed by increased FA. Contrary to expectations, we found
no evidence that LT differed from non-musicians, even
though ET and LT had the same amount of musical training
while non-musicians had almost none. This lends further
strength to the argument that the onset of training, rather than
the amount of experience or practice, is the driving factor
behind the observed FA differences. Finally, whereas musi-

cians were specifically selected for ex-
tensive musical training, the control
group was merely selected to have little
or no experience; hence, the wide range
of FA values in this group could reflect a
diversity of adaptations that obscure
possible differences with the LT group.

In addition to differences in the CC,
we found that FA in the left temporal
lobe was significantly correlated with
synchronization performance and with
age of onset across musician groups.
This region includes fibers from audi-
tory cortex that connect to the motor
and parietal cortices through the arcu-
ate fasciculus (Petrides and Pandya,
1988; Glasser and Rilling, 2008). Impor-
tantly, synchronization performance on
our task has previously been shown to
recruit both auditory and motor regions
in non-musicians (Steele and Penhune,
2010) and structural differences in the
arcuate fasciculus have been hypothe-
sized to support the stronger auditory–
motor associations found in musicians
(Wan and Schlaug, 2010; Halwani et al.,
2011). Finally, white matter in the tem-
poral lobes and arcuate fasciculus con-
tinues to develop into adulthood
(Lenroot and Giedd, 2006; Hasan et al.,
2010), making it susceptible to the ef-
fects of childhood training.

Together, our findings indicate that
early musical training enhances the devel-
opment of white matter pathways in the
CC and temporal lobe that support inter-
hemispheric interaction and sensorimo-
tor integration. Enhanced white matter
plasticity in ET in these regions may be the
result of an interaction between training
during an early sensitive period and on-
going practice. Thus, early training may
induce initial changes in white-matter

connectivity that serve as a scaffold on which later training con-
tinues to build.

Evidence for sensitive periods
Evidence for the effects of experience on brain structure and
function during specific periods of early development has
been found in the auditory (Chang and Merzenich, 2003; de
Villers-Sidani et al., 2007), somatosensory (Fox, 1992), and
visual (Wiesel and Hubel, 1963; Hubel and Wiesel, 1970) do-
mains (Knudsen, 2004; for review, see Hensch, 2004). Rat
pups exposed to specific frequencies between days 9 –13 of life
show expanded functional representation for these frequen-
cies as adults (de Villers-Sidani et al., 2007). Studies with con-
genitally deaf cats have shown microstructural changes in the
dendrites of auditory cortex (Wurth et al., 2001) and changes
in cortical excitability that can be ameliorated by early co-
chlear implantation (Klinke et al., 1999; Kral et al., 2000).
Human studies show that deaf children who receive implants
before 3– 4 years of age show better auditory/speech percep-
tion than those who receive implants later (Svirsky et al., 2004;

Figure 4. Whole-brain FA correlations with PSYN Final. A, Skeleton voxels significantly correlated with PSYN Final in left
temporal lobe and posterior limb of the internal and external capsules (blue). B, Mean values extracted from the region of
significant correlation plotted against group, age of onset, and PSYN Final. ET are shown in red, LT in blue, and NM in black. Group
means are depicted with filled circles. Note that raw values were used for all plots while statistics were based on the corrected
values as stated in the text. *p � 0.05.
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Sharma et al., 2007). Kral and Eggermont (2007) have hypoth-
esized that such plasticity is a result of the interaction between
bottom-up sensory information and top-down feedback from
higher-order areas involved in functions such as language,
attention, and motivation or reward. It has also been proposed
that there may be a sequence of overlapping sensitive periods
that occur as progressively more complex functions come on-
line (de Villers-Sidani and Merzenich, 2011). Thus, early ex-
perience may produce changes in lower-level processes on
which later experience can build.

White matter plasticity as measured by FA is hypothesized
to be based on experience-dependent neuronal firing (Fields,
2005; Zatorre et al., 2012); thus, interaction between different
functional regions may be particularly important for neuronal
change. Musical training is a rich source of bottom-up stimu-
lation to the sensory and motor systems, and places demands
on cognitive systems involved in auditory–motor integration,
attention, and memory (Zatorre et al., 2007; Wan and Schlaug,
2010). Further, cortical plasticity has also been shown to be
influenced by the reward value of stimuli (Beitel et al., 2003;
Fritz et al., 2007) and music has been shown to engage the
reward system (Blood and Zatorre, 2001; Salimpoor et al.,
2011). Thus, musical training may be particularly effective in
driving structural changes.

Mechanisms of experience-dependent plasticity
Differences in FA may reflect variation in white matter fea-
tures, such as axon myelination, diameter, packing density,
and geometry (Beaulieu, 2002; Alexander et al., 2007). When
we decomposed FA into axial and radial diffusivity, our find-
ings were shown to be primarily driven by lower radial diffu-
sivity in ET. Increases in radial diffusivity have been linked to
decreased myelin protein content (Song et al., 2002), dysmy-
elination (Sun et al., 2008; Klawiter et al., 2011), and axon
degeneration (Pierpaoli et al., 2001). By inference, lower radial
diffusivity values have thus been interpreted as indexing
greater myelin integrity. In keeping with this interpretation,
greater radial diffusivity in the CC of ET is a possible indicator
of greater myelination. Increased FA in the CC of mice follow-
ing training has also been related to increased expression of a
myelin marker (Blumenfeld-Katzir et al., 2011). As described
above, changes in white matter may arise from experience-
dependent, temporally synchronized neuronal firing in connected
regions (Fields, 2005; Zatorre et al., 2012). Neuroimaging
studies have shown greater functional connectivity in musi-
cians between auditory and motor regions (Zatorre et al.,
2007; Chen et al., 2008), as well as between premotor cortex
and thalamus (Krause et al., 2010). By stimulating interactions
between sensory and motor regions—and between these re-
gions and systems important for attention, learning, and
memory—musical training may drive synchronized firing and
thus neural change.

Effects of training or preexisting differences?
Preexisting factors, whether genetic or environmental, may
also influence both the propensity to begin training early and
the observed differences in brain structure and behavior. Ge-
netic factors have been linked to the ability to acquire absolute
pitch (Zatorre, 2003) and to measures of musical aptitude
(Ukkola et al., 2009). However, other evidence strongly sug-
gests that preexisting differences are not the only cause of the
observed enhanced callosal connectivity in ET. As described
above, white matter in this region of the CC may be under less

strong genetic control than other regions (Chiang et al., 2009),
undergoes normative developmental plasticity between the
ages of 6 and 8 years (Westerhausen et al., 2011), and changes
as a result of training (Hyde et al., 2009). Nevertheless, the
only possible direct tests for a sensitive period would come
from studies using randomized designs (musical vs nonmusi-
cal training, with age as a parameter) or from longitudinal
studies assessing changes in brain structure and performance
across development. The present findings can serve to moti-
vate such studies, providing specific hypotheses concerning
neural and behavioral correlates of early training.

In conclusion, our findings provide compelling evidence
that early musical training can produce long-lasting changes
in behavior and the brain. We propose that early training
interacts with preexisiting individual differences in brain or-
ganization and ongoing maturational processes to produce
differential changes in white matter structure. Early musical
experience may promote plasticity in motor and auditory con-
nectivity that serves as a scaffold upon which ongoing training
can build.
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