

A RESTful Architecture for the Development and Deployment of

Companion Robots Applications

By

 Razieh Safaripour

A Thesis

In

The Department of Electrical and Computer Engineering

Presented in Partial Fulfilment of the Requirements

For the Degree of Master of Applied Science at

Concordia University

Montreal, Quebec, Canada

August, 2013

© Razieh Safaripour, 2013

ii

CONCORDIA UNIVERSITY

SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By: Razieh Safaripour

Entitled: “A RESTful Architecture for the Development and Deployment of

 Companion Robots Applications”

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science

Complies with the regulations of this University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:

 __ Chair

 Dr. M. Z. Kabir

 __ Examiner, External

Dr. D. Goswami (CSE) To the Program

 __ Examiner

 Dr. D. Qiu

 __ Supervisor

 Dr. F. Khendek

 __ Supervisor

 Dr. R. Glitho

Approved by: ___

 Dr. W. E. Lynch, Chair

 Department of Electrical and Computer Engineering

____________20_____ ___________________________________

 Dr. C. W. Trueman

 Interim Dean, Faculty of Engineering and Computer Science

iii

ABSTRACT

A RESTful Architecture for the Development and Deployment of

Companion Robots Applications

Razieh Safaripour

Improving the quality of life particularly for the elderly and disabled persons is essential

for society today. Despite their existing disabilities and limitations the elderly and the

disabled still need and desire to be an integral part of society.

 Statistics shows that the number of persons requiring home health care in the year 2040

will make up nearly 3.5 % of the population. The need for companion robots is growing

with factors such as an aging population, limited infrastructure and social support. Robots

capable of assisting people in daily tasks and providing various services represent part of

the future solution.

The lack of a reusable platform is a significant obstacle to such a solution. In this thesis,

we are proposing an architecture that will enable the development and deployment of

companion robots applications. The architecture consists of a set of components at

different layers, ranging from low-level robotics services to end user application

components. The multiple layers interact through RESTful web services. This

architecture enables the development of a range of applications, and can deal with robots

that have varying capabilities and hardware.

iv

Acknowledgments

It would not have been possible to write this master thesis without the help and support of

the kind people around me, to only some of whom it is possible to give particular

mention here.

Foremost, I would like to express my appreciation to my supervisor Dr. Ferhat Khendek.

This thesis would not have been possible without his help, support and patience. His

useful comments and remarks especially during the writing process is something for that

I will always be truly grateful to him. I also would like to give my sincere gratitude to my

co-supervisor and professor, Dr.Roch Glitho, whose constructive comments, patience,

insightful guidance and immense knowledge lightened my way through the learning

process of this master thesis.

I am most grateful to Dr.Fatna Belqasmi for her continuing support and help,

understanding and patience, great advices and guidance on the way, which without her

help, fulfilling this thesis would have been almost impossible. I truly appreciate her

valuable suggestions and ideas which made it an absolute pleasure working with her.

My sincere thanks go to my team fellow and friend, Majid Hormati, for being such a

wonderful person, whose help, suggestions and ideas were so important to accomplish

this thesis. His friendship during the hard times is what I am most delighted with.

My thanks and appreciations go to my supervisory committee members Dr. M.Zahangir

Kabir, Dr. Dhrubajyoti Goswami and Dr. Dongyu Qiu for taking time to assess my thesis

and for their helpful suggestions.

v

I would also like to thank all my friends in Florida and Montreal for their friendship

which supported me through these years. My special thanks to Karen Assyag for her

praiseworthy help in editing this thesis.

At last but not at least, I wish to thank my family specially my parents for their pure

everlasting love and support which encouraged me to keep my hope and strengthened me

to fulfill this thesis.

Thanks Mom, Thanks Dad for being such amazing and lovely parents! Thanks for being

there!

vi

Table of Contents

List of Figures .. viii

List of Tables .. x

List of Abbreviations ... xi

Chapter 1: Introduction ... 1

1.1 Research Domain ... 1

1.2 Problem Statement and Contributions.. 2

1.3 Thesis Organization.. 7

Chapter 2: Background on Robots, Robot’s Applications and RESTful Web Services 9

2.1 Robots... 9

2.1.1 Introduction ... 9

2.1.2 Applications .. 11

2.2 REpresentational State Transfer (REST) ... 16

2.2.1 Introduction ... 16

2.2.2 RESTful Web Service ... 18

2.2.3 Procedure of Creating a RESTful Web Service .. 24

Chapter 3: Companion Robots Applications Development and Deployment:

Requirements and State of The Art Evaluation .. 26

3.1 Requirements .. 26

3.1.1 General Requirements ... 27

3.1.2 Interface Requirements ... 28

3.2 State of The Art .. 30

3.2.1 Non-Standard Based Solutions ... 33

3.2.2 Standard (CORBA and SOAP) Based Solutions .. 40

3.2.3 REST-based Solutions .. 44

3.3 Evaluation Summary .. 49

3.4 Chapter Summary ... 50

Chapter 4: A RESTful Architecture for Development and Deployment of Companion

Robots Applications .. 52

vii

4.1 The Overall Architecture .. 52

4.2 REST Interfaces ... 55

4.2.1 Resource modeling.. 56

4.2.2 Resources and associated HTTP methods .. 61

4.2.3 Illustrative scenario ... 77

4.3 Chapter Summary ... 79

Chapter 5: Prototype Application and Performance Evaluation 80

5.1 Application variety ... 80

5.2 Prototype implementation .. 82

5.2.1 Experiment Setup .. 84

5.2.2 Software tools: Microsoft Robotics Studio Developer 85

5.3 Performance evaluation .. 88

5.3.1 Performance metrics ... 88

5.3.2 Performance analysis .. 90

5.4 Chapter Summary ... 92

Chapter 6: Conclusions and Future Work .. 94

6.1 Summary of Contributions ... 94

6.2 Future Work ... 96

Bibliography ... 98

viii

List of Figures

Figure 1-1 : Human-Robot Interaction ... 1

Figure 1-2: Motivating Scenario: Sam (taken from [64]) .. 3

Figure 1-3: Motivating Scenario: Lisa .. 4

Figure 2-1: Tokyo Fire Department’s Robocue. ... 11

Figure 2-2: Military robot: ACER (taken from [28]).. 12

Figure 2-3: MIME: rehabilitation therapy robot ... 12

Figure 2-4: Robot English Teacher (taken from [31]) .. 13

Figure 2-5: Tokyo University’s IRT: assistant robot (taken from [33]) 14

Figure 3-1: Companion Robot application development: state of the art 32

Figure 3-2: Network distributed tele-homecare robot system .. 34

Figure 3-3: Autominder Architecture ... 36

Figure 3-4: Care-O-bot’s decentralised control system architecture 39

Figure 3-5: Main packages of the proposed platform ... 44

Figure 3-6: Components of the REALabs platform .. 45

Figure 3-7: Robopedia Architecture ... 46

Figure 3-8: Typical service configuration for a mobile robot ... 48

Figure 4-1: Overall Architecture ... 54

Figure 4-2: Resource model for high-level services: Interface R1 59

Figure 4-3: Resource model for low-level services: Interface R2 60

Figure 4-4: Illustrative Scenario Application ... 78

Figure 5-1: (above): Prototype scenario ;(below): LEGO following the red object 83

file:///C:/Users/Razieh/Documents/Razi's%20Stuff/razieh/M.A.ScThesis/Thesis/Thesis-Compelet-Final-4.docx%23_Toc361062050
file:///C:/Users/Razieh/Documents/Razi's%20Stuff/razieh/M.A.ScThesis/Thesis/Thesis-Compelet-Final-4.docx%23_Toc361062051
file:///C:/Users/Razieh/Documents/Razi's%20Stuff/razieh/M.A.ScThesis/Thesis/Thesis-Compelet-Final-4.docx%23_Toc361062052
file:///C:/Users/Razieh/Documents/Razi's%20Stuff/razieh/M.A.ScThesis/Thesis/Thesis-Compelet-Final-4.docx%23_Toc361062053
file:///C:/Users/Razieh/Documents/Razi's%20Stuff/razieh/M.A.ScThesis/Thesis/Thesis-Compelet-Final-4.docx%23_Toc361062054
file:///C:/Users/Razieh/Documents/Razi's%20Stuff/razieh/M.A.ScThesis/Thesis/Thesis-Compelet-Final-4.docx%23_Toc361062055
file:///C:/Users/Razieh/Documents/Razi's%20Stuff/razieh/M.A.ScThesis/Thesis/Thesis-Compelet-Final-4.docx%23_Toc361062056
file:///C:/Users/Razieh/Documents/Razi's%20Stuff/razieh/M.A.ScThesis/Thesis/Thesis-Compelet-Final-4.docx%23_Toc361062057
file:///C:/Users/Razieh/Documents/Razi's%20Stuff/razieh/M.A.ScThesis/Thesis/Thesis-Compelet-Final-4.docx%23_Toc361062059
file:///C:/Users/Razieh/Documents/Razi's%20Stuff/razieh/M.A.ScThesis/Thesis/Thesis-Compelet-Final-4.docx%23_Toc361062060
file:///C:/Users/Razieh/Documents/Razi's%20Stuff/razieh/M.A.ScThesis/Thesis/Thesis-Compelet-Final-4.docx%23_Toc361062061
file:///C:/Users/Razieh/Documents/Razi's%20Stuff/razieh/M.A.ScThesis/Thesis/Thesis-Compelet-Final-4.docx%23_Toc361062062
file:///C:/Users/Razieh/Documents/Razi's%20Stuff/razieh/M.A.ScThesis/Thesis/Thesis-Compelet-Final-4.docx%23_Toc361062063
file:///C:/Users/Razieh/Documents/Razi's%20Stuff/razieh/M.A.ScThesis/Thesis/Thesis-Compelet-Final-4.docx%23_Toc361062064
file:///C:/Users/Razieh/Documents/Razi's%20Stuff/razieh/M.A.ScThesis/Thesis/Thesis-Compelet-Final-4.docx%23_Toc361062065
file:///C:/Users/Razieh/Documents/Razi's%20Stuff/razieh/M.A.ScThesis/Thesis/Thesis-Compelet-Final-4.docx%23_Toc361062066
file:///C:/Users/Razieh/Documents/Razi's%20Stuff/razieh/M.A.ScThesis/Thesis/Thesis-Compelet-Final-4.docx%23_Toc361062067
file:///C:/Users/Razieh/Documents/Razi's%20Stuff/razieh/M.A.ScThesis/Thesis/Thesis-Compelet-Final-4.docx%23_Toc361062068
file:///C:/Users/Razieh/Documents/Razi's%20Stuff/razieh/M.A.ScThesis/Thesis/Thesis-Compelet-Final-4.docx%23_Toc361062069
file:///C:/Users/Razieh/Documents/Razi's%20Stuff/razieh/M.A.ScThesis/Thesis/Thesis-Compelet-Final-4.docx%23_Toc361062070

ix

Figure 5-2: Prototype Setup .. 84

Figure 5-3: Example of service orchestration ... 86

Figure 5-4: A DSS service components .. 87

Figure 5-5: System performance in term of response delay ... 90

Figure 5-6: System performance in term of network load .. 91

file:///C:/Users/Razieh/Documents/Razi's%20Stuff/razieh/M.A.ScThesis/Thesis/Thesis-Compelet-Final-4.docx%23_Toc361062071
file:///C:/Users/Razieh/Documents/Razi's%20Stuff/razieh/M.A.ScThesis/Thesis/Thesis-Compelet-Final-4.docx%23_Toc361062072
file:///C:/Users/Razieh/Documents/Razi's%20Stuff/razieh/M.A.ScThesis/Thesis/Thesis-Compelet-Final-4.docx%23_Toc361062073
file:///C:/Users/Razieh/Documents/Razi's%20Stuff/razieh/M.A.ScThesis/Thesis/Thesis-Compelet-Final-4.docx%23_Toc361062074
file:///C:/Users/Razieh/Documents/Razi's%20Stuff/razieh/M.A.ScThesis/Thesis/Thesis-Compelet-Final-4.docx%23_Toc361062075

x

List of Tables

Table 2-1: HTTP methods description .. 24

Table 3-1: Derived requirements for development and deployment of robots applications

... 30

Table 3-2: REST vs. SOAP .. 43

Table 3-3: Summary of the evaluation of the related work for robot application

development .. 49

Table 4-1: REST resources and the associated HTTP methods: High-level services 62

Table 4-2: REST resources and the associated HTTP methods: Low-level services 65

Table 5-1: Specification of the test environment .. 85

xi

List of Abbreviations

REST Representational State Transfer

SOAP Simple Object Access Protocol

CORBA Common Object Request Broker Architecture

XML eXtensible Markup Language

XHTML eXtensible HyperText Markup Language

HTML HyperText Markup Language

JSON JavaScript Object Notation

HTTP HyperText Transfer Protocol

WSDL Web Services Description Language

WADL Web Application Description Language

URI Uniform Resource Identifier

FTP File Transfer Protocol

WAIS Wide Area Information Servers

API Application Programming Interface

ROA Resource Oriented Architecture

PDA Personal Digital Assistant

IFR International Federation of Robotics

MRDS Microsoft Robotics Developer Studio

UGV Unmanned Ground Vehicle

UAV Unmanned Aerial Vehicle

USV Unmanned Surface Vehicle

UUV Unmanned Undersea Vehicle

xii

SOA Service Oriented Architecture

XDR eXternal Data Representation

TCP Transmission Control Protocol

IIOP Internet Inter-ORB Protocol

IETF Internet Engineering Task Force

UML Unified Modeling Language

RPC Remote Procedure Call

DSS Decentralized Software Service

CCR Concurrency and Coordination Runtime

DLL Dynamic Link Library

ER End user – Robot

AC Application – Camera

AD Application – Drive

AS Application – Sensor

ACD Application – ColorDetection

CDC ColorDetection – Camera

1

Chapter 1:
Introduction

Chapter one contains an introduction of the research domain, and proceeds to discuss

motivation scenarios and the problem statement. The chapter concludes with the thesis

contribution and the organization of the thesis.

1.1 Research Domain

Today, the need for companion robots is prevalent more than any time before. According

to a study conducted in the USA, the American government can save three billion dollars

a year if American senior citizens continue living in their own home only an

additional three more months prior to moving into a senior residence [1]. The cost and

the growing elderly and disabled population make it a necessity to come up with a

technological solution to encourage, enable, and extend independent living.

Companion Robots, are targeted technology that aid people live self-sufficiently and

longer in their own homes.

Figure 1-1 : Human-Robot Interaction

2

Due to the different needs, various companion robot applications are being developed.

Some robots are used as guides and walking assistant to people in different places in their

home, whereas other robots are programmed to do household chores such as vacuuming,

getting things, etc.[1]. Robots can be manipulated locally or remotely through devices

such as Personal Digital Assistant (PDA), smart phones, etc. (see Figure 1-1).

 There are different works on designing robotics framework in industrial domain (e.g.

[2]) as well as mobile robots (e.g. [3] and [4]). A majority of the existing works are

proprietary solutions or require a deep knowledge of robot hardware from the application

developers (e.g. [5] and [1]), however, there has been some efforts for robot applications

using standards such as [6], [7] and [8] which employed Common Object Request Broker

Architecture (CORBA) [9], Simple Object Access Protocol (SOAP) [10] and

Representational State Transfer (REST) [11], respectively.

1.2 Problem Statement and Contributions

The wide variety of companion robots applications and robots technologies has raised the

issue of reusing and extending existing systems effective for individual projects. Future

elderly and disabled persons will require new and more complicated applications. It is

very important that companion robots applications developers be able to integrate various

software and robot systems to realize more sophisticated applications.

Below are two examples of people with different needs:

 Sam is an elderly gentleman that needs to be reminded of his daily tasks such as taking

medications, going to an event, etc. He also uses a walker so he needs his robot to carry

things for him. For example, Sam puts his food dish on his robot’s tray and the robot

3

follows him from the kitchen to the living room where he eats. The robot also has a

storage compartment to store Sam’s medications; this allows Sam’s medications to be

easily accessible to him. When it is time for Sam to take his medication, the robot

reminds Sam to do so. The computer screen not only tells Sam what medication he is

required to take but also shows him the dosage and instruction for said medication

(Figure 1-2).

Figure 1-2: Motivating Scenario: Sam

(taken from [63])

4

The second example is that of Lisa, Lisa is disabled and needs 24/7 help at home. Her

robot has special capabilities (and unlike Sam’s robot is equipped with human-like arms)

to do her housework and help her complete her personal tasks. While she is out, using

her smart phone, Lisa, can order her robot to clean the house and vacuum the floor

(Figure 1-3). The robot also has the ability to hand her different objects, like the TV

remote or books. Lisa has a respiratory problem, in an emergency situation, her robot can

dial emergency personnel, and can alert them that Lisa is in danger and needs help.

Sam and Lisa both have different situations with different needs; both require the use of

different robots with different capabilities. Taking into account the differences in both

situations, and knowing there are various ailments, conditions and demands in this

population, it is necessary to have different robots built for different purposes which

poses a number of challenges.

 The first challenge is to be responsive to different needs, so different applications are

needed. The second challenge, is the robots heterogeneity, robots are manufactured from

different companies (and therefore may have different firmware and protocols of

communications).

Figure 1-3: Motivating Scenario: Lisa

(taken from [64])

5

The third challenge is resource-constrained devices which are devices with limited power

and computation resource such as PDAs and Smart phones. These devices are used to

complete daily tasks, manoeuvring the robots is one of the tasks needed to be completed

by such devices.

 There are several works in robotics that attempt to provide aid for the elderly and the

disabled, however, many of these works propose proprietary methods that are not

adaptable to different situations and are applicable only to specific robot or application.

Standards solutions are being considered to develop companion robots applications.

CORBA is a middleware that provides a platform- and language- independent

environment which is suitable for distributed systems development; albeit, it has

considerable limitations such as complexity, especially its Application Programming

Interface (API)s (e.g. large and heavy-weight APIs), poorly designed APIs for naming,

trading, and notification services, and compatibility [12]. SOAP is another standard that

may be used to design development environment for companion robots applications.

Despite its features such as platform- and language independency, it is not the best choice

when light-weight and easy-to-use characteristics matter. Verbose eXtensible Markup

Language (XML) [13] format and large-sized envelops are a few drawbacks that

discourage using SOAP, these drawbacks will be discussed in details in Chapter 3.

REST, nevertheless, due to its uniform, stateless and light-weight features is an

appropriate solution to address different needs and will be looked at it in more detail in

Chapter 2.

Besides addressing the demands of different applications using different robots, it is

essential to consider future demands and easy modification to applications and robot

6

hardware. It is also necessary to provide companion robots applications developers with a

flexible and maintainable platform that will facilitates the modification or extension of

part of the system, without affecting the other parts.

Enabling rapid development and deployment of companion robots applications is still an

open challenge and this thesis offers new contributions to deal with these challenges.

The emphasis of this thesis is not only on designing a novel architecture that will provide

a platform for the developers to enable and support different robots and applications but

to facilitate development and deployment, hence, proposing a layered architecture. The

proposed architecture enables developing applications through easy-to-use and unified

interfaces. These interfaces are designed as RESTful Web services. Using RESTful Web

services, the developers are further provided with light-weight interfaces that allows

applications development for resource-constrained devices.

The main contributions of this thesis are as follow:

 A set of requirements for an architecture for the development and deployment of

companion robots applications, categorized as General and Interface specific

requirements.

 A novel architecture to enable development and deployment of companion robots

applications: We propose a RESTful architecture that consists of a set of

components at different layers. Layers ranging from low-level services to

communicate with hardware devices, to application components for interacting

with end user.

7

 Implementation of a prototype for a specific application: As a proof of concept we

implement an application for which we use a LEGO robot and a webcam.

Microsoft Robotics Studio Developer (MRDS) [14] is the tool we use for the

development of our application. Performance evaluation is provided using

CommView [15] network tool.

1.3 Thesis Organization

The thesis is organized as following: Chapter 2 presents the background information on

robots and their applications particularly companion robots applications. In this chapter

we also provide a background on REST and RESTful Web services which is crucial to

understanding the rest of the thesis.

Chapter 3 discusses the derived requirements to design an architecture for the

development and deployment of companion robots applications. It also provides a

detailed review of the state of the art on companion robots applications and the solutions.

Chapter 4 proposes a RESTful architecture to enable companion robots applications

developers to develop and deploy different application for various kinds of robots. The

REST interfaces including resources modeling and HyperText Transfer Protocol (HTTP)

actions on each resource, is also presented.

Chapter 5 is devoted to the implementation of our prototype for a specific application.

We explain the environment of the application. We describe MRDS which we used for

the implementation of the prototype. In Conclusion, this chapter presents and analyses

our performance results.

8

Chapter 6 concludes the thesis with open issues that can be investigated in the future.

9

Chapter 2:
Background on Robots, Robot’s Applications

and RESTful Web Services

In this chapter we have an introduction to robots and robot’s applications. We further

discuss some applications necessary in the elderly and disabled population. We introduce

REST architectural style and review REST definition, main characteristics, principles and

advantages over SOAP-based Web services.

2.1 Robots

2.1.1 Introduction

According to [16] “a robot is a system that contains sensors, control systems,

manipulators, power supplies and software all working together to perform a task or a

set of tasks”. They range from humanoids such as Advanced Step in Innovative MObility

ASIMO [17] to nano robots [18] and industrial robots [19]. By imitating a life-like

appearance or automating movements a robot may express a sense of intelligence of its

own.

Robots are categorized in two main groups: Industrial Robots and Mobile robots. An

industrial robot is defined by International Organization for Standardization (ISO) [20] as

an “automatically controlled, reprogrammable, multipurpose manipulator that is

programmable in three or more axes” [20]. In contrary to industrial robots there is no

standard definition for mobile robots, however a well adopted definition is that a mobile

http://en.wikipedia.org/wiki/ASIMO
http://en.wikipedia.org/wiki/Nanorobotics
http://en.wikipedia.org/wiki/Industrial_robot

10

robot is a platform with a large mobility within its environment [21] [22]. It is a system

with three functional characteristics: mobility, a certain level of autonomy and perception

ability i.e. sensing and reacting in the environment [21].

Mobile robots can be categorized based on the environment they move [23] [23]:

 Unmanned Ground Vehicles (UGVs)

 Unmanned Aerial Vehicles (UAVs)

 Unmanned Undersea Vehicles (UUVs)

 Unmanned Surface Vehicles (USVs)

Ground robots are further classified based on their locomotion system [24]:

 Wheeled robots

 Tracked robots

 Legged robots

Robots come in all shapes and sizes. The purpose of each robot type is engineered to

perform and carry out its given task/tasks. There are industrial robots which are robots

with fixed arms with various axes of freedom and service robots. According to the

International Federation of Robotics (IFR) [25] “A service robot is a robot which

operates semi- or fully autonomously to perform services useful to the well-being of

humans and equipment, excluding manufacturing operations”. A companion robot is a

unique type of service robot that is specifically designed for personal use at home [26].

In the next section we briefly describe common applications for service robots in other

sectors and examine in details common applications necessary for elderly and disabled

population.

http://en.wikipedia.org/wiki/Autonomous_Underwater_Vehicle
http://en.wikipedia.org/wiki/Wheel
http://en.wikipedia.org/wiki/Caterpillar_track

11

2.1.2 Applications

Robots have become more prevalent in our day to day lives. Different types of robots

designs are used to enhance security, facilitate daily chores, aid in recalling medicine

consumption and more.

Following is a list of common applications that are used in aiding people to complete

different tasks:

 Rescue applications:

There are situations where rescue personnel can use robot in aiding rescue staff in

completing different missions in situations such as hostage taking , tunnel

explosion, urban disasters, etc. (Figure 2-1).

Figure 2-1: Tokyo Fire Department’s Robocue.

(taken from [65])

12

 Military Applications:

There are dangerous military missions that soldiers need to complete such as

walking through minefield, deactivating bombs, detecting and defusing

landmines, etc. Figure 2-2 shows a robot called ACER that can handle tasks like

clearing explosives and hauling cargo [27].

 Medical Applications:

Robotics technology has produced valuable tools and devices for rehabilitation,

Figure 2-2: Military robot: ACER

(taken from [27])

Figure 2-3: MIME: rehabilitation therapy robot

(taken from [28])

http://science.howstuffworks.com/military-robot.htm
http://www.allonrobots.com/medical-robots.html

13

surgery and medical training as well as new and improved prosthetics and

assistive devices for people with disabilities, which are used to replace missing

limbs, perform delicate surgical procedures, etc. Figure 2-3 shows an example of

a medical robot used for delivering rehabilitation therapy to a patient with an arm

impairment. Details on medical robotics applications specifically surgery

applications can be found in [28].

 Educational applications:

South Korea is the first country which is currently using robots as English

teachers in schools to address the shortage of English teachers in rural areas or

remote islands. Figure 2-4 shows one of these robots. Till 2011 , Robotics

teachers have been deployed in 500 preschools [29] [30].

Figure 2-4: Robot English Teacher

(taken from [30])

14

 Assisting Applications:

There are robots which perform household tasks such as vacuuming [31], cleaning

the table [32], etc. Companion robots are a type of robot that assists elderly and

disabled persons to improve their quality of life. They help the disabled and the

elderly to complete their daily tasks and routines. Figure 2-5shows a robot

designed by the Robotics Research Institute at the University of Tokyo (Tokyo

University’s IRT) [32].

As stated in [31], our society, especially elderly and disabled population, faces a critical

challenge: how to increase and maintain their quality of life. Companion Robots will

offer variety of ways in assisting this population to maintain and enhance their quality of

life.

Companion robots can be viewed as a technology that integrates awareness, emotion, and

action with a contextual knowledge of self, others, and the environment to provide a

satisfactory welfare. They can get along with the smart homes to fulfil more complex

Figure 2-5: Tokyo University’s IRT: assistant robot

(taken from [32])

http://store.irobot.com/family/index.jsp?ab=CMS_IRBT_100909&categoryId=2501652&s=A-UnitRank-IRBT&camp=Google+-+K70&gclid=CLzEs5vLpawCFQLj7QodqUvrBw&008=&004=1003649737&005=64224850&006=4095105277&007=Search&002=1442293

15

applications. Integrating robots with such technology provides a higher level of welfare

specifically needed for people with restriction and disabilities.

There are some efforts by robotics researchers to aid elderly and disabled people to live

their lives in a more comfortable and helpful environment. These efforts lead to design

robots with different capabilities and hardware technologies. Some robots are simply

surveillance robots that provide information about the environment they monitor. Other

robots carry out more complex tasks like sensing abnormal changes in the environment

such as gas licking or changes in the body conditions such as blood pressure, heart beats,

etc. and execute appropriate tasks [33].

Decreased memory is common to age-related cognitive decline, which often leads to

forgetfulness of daily routine activities (e.g. taking medications, attending appointments,

eating, etc.). The need for a robot that can offer cognitive reminders is quite prevalent for

the elderly. In addition, nursing staff in assisted living facilities frequently need to escort

elderly people on walks to their exercise, to attend meals, appointments or social events.

The fact that many elderly people move at extremely slow speeds (e.g. 5 cm/s) makes this

one of the most labour-intensive tasks in assisted living facilities [34]. A robot can play

an important role in completing this task while still providing verbal interaction with the

patient once it is equipped with speech recognition technology.

Another application for which robots are significantly useful is household tasks. Some

robots are able to move objects, for example carrying a food tray from the living room to

the kitchen, or delivering the TV remote, the phonebook or the medication bag to the

individual in need. Some robots take out the garbage or replace the dishes [35]. These

robots are equipped with a camera to recognize the goal object. Robots with these kinds

16

of facilities play the role of a full-time house keeper; without the cost of having a full-

time house keeper.

Robot design is crucial, it is an important issue that the robot be designed in a manner

that is acceptable for the population it serves most importantly the elderly and the

disabled. People using these robots need to feel comfortable to interact with robots. These

needs have led to the design of humanoid robots [36]. The appearance of these robots is

more human-like and they are even able to carry out conversation with people.

There are many more applications from robotics science that have helped people

especially those with restricted capabilities. Robots with various capabilities are getting

more and more involved in elderly and disabled people’s daily lives not only by assisting

them but also by providing companionship. This encourages researchers in different

fields from sociology to robotics and computer science to further perfect their research to

help the needs of these people.

2.2 REpresentational State Transfer (REST)

In this section we provide some background information on REST and RESTful Web

services.

2.2.1 Introduction

 REST is an architecture style for designing distributed applications [37]. The idea, was

first, presented by Roy Fielding in his PhD dissertation [11]. REST is a lightweight

alternative to mechanisms such as CORBA and Remote Procedure Call (RPC) [38] or

complex Web services such as SOAP, Web Services Description Language (WSDL)

[39], etc. Despite its simplicity, much like Web services, a RSET service offers the

following features [40]:

17

 It is platform-independent: It does not matter if the Operating System (OS) of the

server is UNIX, Windows, etc. or the OS of the client is Mac, Windows or

anything else.

 It is language-independent: Client and server programmed in different

programming languages can connect to each other using REST as the interface.

 It is standards-based: It runs on top of HTTP.

 Like other Web services, it goes through firewalls.

According to [11], REST is not limited to a specific protocol. Although the Web’s

primary transfer protocol is HTTP, it also includes seamless access to resources that

originate on pre-existing network servers including File Transfer Protocol (FTP) [41],

Gopher [42] and Wide Area Information Servers (WAIS) [43].

RESTful Web services are different from traditional ones (also known as Big Web

services [44]) in various aspects:

 It is lighter weight than Big Web services. It does not require either XML parsing

or message header to and from service provider [37].

 It is easy to build: unlike SOAP, no toolkit is required.

 Due to its light-weight characteristic wider range of devices from Personal

Computers (PCs) to constrained devices are supported [37].

 REST is more scalable since operations are self-contained and each request

transfers all the information (state) that the server needs in order to respond to it

[11].

 REST results are intended to be human readable (e.g. HyperText Markup

Language (HTML)).

18

A RESTful web service is a web service implemented using the principles of REST.

RESTful web services can be described using the Web Application Description Language

(WADL) [45]. A WADL file describes the requests that can be addressed to a service,

including the Uniform Resource Identifier (URI) of the service and the data that the

service consumes [46].

To design a RESTful architecture we need to realize resources and representation of

resources. Then we need to follow the design principles required for having a RESTful

architecture.

2.2.2 RESTful Web Service

In this section we describe Resource Oriented Architecture (ROA) and the design

principles for a RESTful architecture.

2.2.2.1 Resource Oriented Architecture (ROA)

As mentioned above, REST is not an architecture but a set of design principles.

Therefore, [44] define a new architecture known as ROA to develop RESTful Web

services. As understood from this term, the architecture is based on resources.

As the first phase of a Resource-Oriented Architecture design we need to grasp four

concepts: Resources, their names (URI), their representations and the link between them.

A resource is anything that is important enough to be referenced [44]. A resource may be

something that can be stored on a computer and represented as a document, a row in a

database, the result of running an algorithm or a physical object like a robot [44].

 Looking at this concept from the user point of view, If the user of the RESTful

architecture wants to create a hypertext link to something, make an addition or deletion

19

about it, retrieve, delete , change or cache a representation of it then it should be

considered a resource.

Each resource has a name, a representation and a link to be accessible [44] .

A representation of a resource is typically a document that captures the current or

intended state of a resource [11]. In other words, representation is any useful information

about the state of a resource either it is a data list or a physical object [44]. Data

representation can be in any format or any media type such as XML, JavaScript Object

Notation (JSON) [47], eXtensible Hyper Text Markup Language (XHTML) [48] or plain

text representation.

Each resource must have a URI. The URI is the name and address of a resource. URIs

should be descriptive: a resource and its URI must have a direct accordance. For instance:

http://www.example.com/EV/staff/123 which gives the information about an employee

of EV building with the id number 123 [44].

In the relationship between the resources and URIs, no two resources can be accessible

through the same URIs. A resource can be reached by one or more URIs. Resources are

linked to each other via hyperlinks. Connection between the resources is an important

concept in designing a good RESTful architecture. We can access the resource and

manipulate it through a uniform interface which is described in the next section.

2.2.2.2 Design Principles

As the second phase of a ROA design we take four design principles into account:

Addressability, Statelessness, Connectedness and a Uniform interface.

http://www.example.com/EV/staff/123

20

2.2.2.2.1 Addressability

We mentioned that every interesting piece of information the server can provide should

be exposed as a resource and given its own URI. This is called Addressability. URIs are

standardized and well-known. From a URI we know the object's protocol. In other words,

we know how to communicate with the object: we know where in the network it is placed

i.e. we know the host and the port number. We know the resource's path on its host,

which is its identity on the server it resides on. From the end-user perspective,

addressability is the most important aspect of any website or application [44].

2.2.2.2.2 Statelessness

The definition of the statelessness by the REST author [11] is: “each request from client

to server must contain all of the information necessary to understand the request, and

cannot take advantage of any stored context on the server. Session state is therefore kept

entirely on the client.” From a RESTful perspective when the client sends an HTTP

request, it includes all information necessary for the server to respond to that request. The

server never relies on information from a previous request. If the information from a

previous request was important, the client should resend it in the new request [44].

Statelessness means that the possible states of the server are also resources, and should be

given their own URIs.

In a stateless application every time the client makes a request, it ends up back where it

started. Each request is totally disconnected from the other [44].The client can make

requests for resources any number of times, in any order. It can request page 2 before

requesting page 1 (or not request page 1 at all), and the server will not care [44].

21

This constraint (statelessness) improves reliability and scalability: Reliability because it is

easier to recover from partial failures; Scalability because the server does not have to

store state between requests which allows the server component to quickly free resources.

Statelessness also simplifies implementation because the server does not have to manage

resource usage across requests. Detailed information can be found in [11] and [44].

2.2.2.2.3 Connectedness

RESTful service representations are hypermedia documents. These documents not only

contain data but also carry links to other resources. The server guides the client's path by

serving links and forms inside hypertext representations (“hypermedia”). The quality of

having links is called “connectedness”. Resources should link to each other in their

representations. In a well-connected service, the client can make a path through the

application by following links. Right now the Web is very well-connected, because most

pages on a web site can be reached by following links from the main page [44].

2.2.2.2.4 Uniform Interface

Another fundamental feature of REST architectural style is its emphasis on a uniform

interface between components [11]. The main goal of uniform interface is simplification.

When clients are interacting with web resources they expect simplified interfaces. This

can be achieved by using the uniform methods of HTTP protocol and combining the

same with the resource operation.

By combining the standard HTTP methods and the resource names we can have uniform

interfaces thus leading to simplified communication.

22

In the following we provide detailed information of each method in addition to a brief

explanation of two other HTTP methods: HEAD and OPTIONS which can be used for

retrieving meta-information.

 HTTP GET:

The GET method retrieves information (in the form of an entity) identified by the

Request-URI. A conditional GET method requests that the identified resource be

transferred only if it has been modified since the date given by the header. The

conditional GET method is intended to reduce network usage by allowing cached

entities to be refreshed without requiring multiple requests or transferring

unnecessary data. The GET method can also be used to submit forms. The form data

is URL-encoded and appended to the request URI. As shown in Table 2-1 GET

HTTP method is safe and idempotent which respectively means that it does not

change the state of the server and multiple identical requests can be applied, having

the same effect as a single request. The response code for a successful request is 200

(i.e. OK). When a resource does not exist the response is 400 (i.e. not found).

 HTTP PUT:

To create or modify a resource, the client sends a PUT request that usually includes

an entity-body. The entity-body contains the new representation of the resource that

client intends. The data context and the format of it depend on the service. It is the

point at which application state moves onto the server and becomes resource state. If

a new resource is created, the response code is 201 (i.e. Created). If an existing

resource is modified, a 200 (i.e. OK) response code should be sent to indicate

23

successful completion of the request. If the resource is not created or modified, an

appropriate error response should be given; the error response reflects the nature of

the problem.

PUT may be used to modify an existing resource identified by the URI that already

exists. Furthermore, PUT method is idempotent like GET method.

 HTTP DELETE:

The HTTP DELETE method is used to delete the existing resources identified by the

requesting URI. If the action is performed successfully, a successful response status

code 200 (i.e. OK) is returned. Otherwise, an appropriate error response code will be

returned indicating the nature of the problem. The HTTP DELETE method is also an

idempotent like GET and PUT methods.

 HTTP POST:

 POST is commonly used to create subordinate resources: resources that exist in

relation to some other “parent” resource [11].The POST method is a way of creating a

new resource without the client having to know its exact URI. The response to this

request usually has an HTTP status code of 201 (i.e. Created). Its Location header

contains the URI of the newly created subordinate resource. Now that the resource

actually exists and the client knows its URI, future requests can use the PUT method

to modify that resource, GET to fetch a representation of it, and DELETE to delete it

[44].

 Table 2-1 summarizes the list of the HTTP methods.

24

Table 2-1: HTTP methods description

Methods Description

GET Get the representation of a resource (safe and idempotent)

PUT Create a resource to a new URI or Update an existing resource

(idempotent)

DELETE Deletes a resource (idempotent)

POST Create a new resource to an existing URI

Besides the four main HTTP methods, there are two other HTTP methods; HTTP HEAD

and HTTP OPTIONS are also considered uniform methods of HTTP protocol. HTTP

HEAD method is used to fetch meta-data about a resource but not the resource itself.

HTTP OPTIONS method is used to discover HTTP methods which are allowed for

specific resources.

2.2.3 Procedure of Creating a RESTful Web Service

According to [44] the design procedure is as follows:

First the data set must be determined: What is our data? What information is important

enough to be exchanged between different entities of the system? Then the information is

classified into resources, thus making them accessible to the entities. We then name our

resources with URIs, we will then have accessible uniform and linkable resources that are

following three basic rules [44]:

1) Use path variables to encode hierarchy: /parent/child

2) Put punctuation characters in path variables to avoid implying hierarchy where

none exist: /parent/child1;child2

25

3) Use query variables to imply inputs into an algorithm, for example:

/search?q=student&start=m

The next step is to expose a subset of the uniform interfaces. As explained in the previous

subsection, HTTP is widely used and is considered a simple yet efficient uniform

interface.

Afterwards, we design the representation(s) data and format, a decision needs to be made

as to what data must be sent when a client requests a resource and what data format must

be used.

Besides conveying the state of a resource, the representation should provide links to other

resources such as new application states. So the next step is to integrate a resource into

existing resources using hypermedia links. The goal is connectedness which is the ability

to get from one resource to another, following links.

After this, we need to consider the sequence of events that usually occur: The possible

response codes or the HTTP headers that is sent. For example most read-only resources

have a simple sequence of event: the client sends a GET request to a URI and the server

responds with a response code like 200 (OK). From the header side, the main

consideration is which HTTP headers the client should send in the request and which

ones the server should send in response.

Finally, in the last step, the possible error conditions need to be considered. In some cases

the response may be an error instead of conveying a representation.

The last two steps, although are conceptually simple take much of implementation time.

26

Chapter 3:
Companion Robots Applications

Development and Deployment: Requirements

and State of The Art Evaluation

Our goal is to provide an architecture that facilitates development and deployment of

companion robot applications. This architecture must take into account the numerous

applications, robots technologies, and the challenges of manoeuvring companion robots.

We have derived requirements necessary for development and deployment of companion

robots. In this chapter we discuss these requirements and categorize them into two

groups: general and interface specific requirements.

We organize the related work for companion robots applications development into three

groups: non-standard based, other standards such as SOAP and CORBA based, and

REST based works. We then proceed to review some of the major works in each category

and conduct an evaluation of the works with regards to our derived requirements. We

conclude the chapter with a summary.

3.1 Requirements

In this section we discuss the two sets of requirements for the development and

deployment of companion robots applications. The first set includes general requirements

for the overall system; the second set is about specific requirements for the interface

between the system components. The summary table of the requirements is presented at

the end of this section.

27

3.1.1 General Requirements

As discussed in Chapter 2, robots are a part of daily life particularly for the elderly and

the disabled. These two sectors of the population greatly benefit from companion robots,

however, each group’s needs are different and to further complicate matters each

individual’s needs are different. These differences require different applications.

Therefore, our first requirement is that the architecture should be application

independent, so it will support developing various application based on the target

assistance.

As different applications are required so do different robots; various applications lead to

robots with different technologies and capabilities. For example, a robot which is

designed as a surveillance robot to provide monitoring services is different in hardware

and capabilities from the one which is designed to clean up the house and water flowers.

Therefore, our second requirement is that the architecture should be robot independent.

So, developing various applications for different robots will be possible.

Robot technologies are changing rapidly. Every now and then, a new robot with new

capabilities emerges. They either enhance applications that have formerly fulfilled some

needs or they execute new applications that meet needs that were not previously

considered. Communication approaches are evolving; this will eventually create new

demands. This point leads us to our third and the last requirement, high level of flexibility

and maintainability which can be achieved by the separation of concerns/decoupling

among components, hence, companion robot applications developer will cope with the

fast growth of technology without being concerned about developing applications from

the scratch.

28

3.1.2 Interface Requirements

Based on the scenarios described in Chapter 1, the end-user may use his/her smart phone

to control his/her robot remotely. Devices such as smart phones and PDAs have limited

resources such as battery and processing power. Some robots are |IP based and can be

connected directly to the internet. They have processing power to process a service on

their own ,however, their power is limited in comparison to laptops and PCs, therefore,

when designing interfaces resource-constrained devices need to be considered and an

important requirement is that the interfaces need to be as light-weight as possible.

One significant concern for the developers is the design of the interfaces. If the interface

is difficult to understand or requires a deep knowledge of robots’ system, it will be

difficult for developers to use it to develop different applications. If the interface is

complex it will be difficult to modify if required. As the second requirement, Interfaces

need to be easy to use, in order to facilitate the development of various applications,

without burdening the developers.

Beside robots, there are other devices that need to work in tandem to execute an

application, devices such as cameras, house sensors, body sensors, etc. Considering that

there are numerous of these devices, developing interface for each device individually is

a tiresome and complicated process, therefore, our third requirement is that the interface

should be device independent so integrating new devices to the system will be easily

fulfilled.

If an interface is designed based on one application it will not only be impossible to

develop a new application using that interface, but also to modify it, therefore, our fourth

29

requirement is that the interface should be application independent so the developers are

able to use the same interface for different applications.

Robotics application developers have different experiences and knowledge of

programming. They might use Windows, Mac or LINUX operation systems. They might

program their applications in C#, Java, python, etc. The system should not enforce using

specific language and/or particular operating system to develop the application.

Therefore, our fifth requirement is that the system should be OS and language

independent so it will offer the developers the freedom of using any language and any OS

they desire.

Earlier we mentioned that the evolving needs of the elderly and disabled create a demand

for new robots and applications, therefore, we need to cater for changes, modifications

and extensions. Our last requirement is that the interfaces should be extensible so it gives

the ability to meet future requirement whom the developers might need to address.

Table 3-1 summarizes the general and specific requirements for development and

deployment of companion robots applications.

30

Table 3-1: Derived requirements for development and deployment of robots applications

General requirements

1.Robotics platform (Robots) independent

2.Application independent

3.Separation of concerns among components to increase flexibility

and maintainability

Interface specific

requirements

1.Lightweight

2.Easy to use

3.Device Independent

4.Application independent

5.OS/language Independent

6.Extensible

3.2 State of The Art

Companion robots applications are a growing research field that include different aspects

of robotics in human life. Since companion robots are designed for the people with

special needs, new challenges will arise. These challenges range from the sociological

point of view to the robots design aspects. Developing and deploying applications for

companion robots is an area that has many challenges that stem from the numerous

applications and robots in elderly and disabled population. There has been some research

conducted on this field, however, they are mostly proprietary designs. In spite of the

importance of this field, a few works on standard based approaches have been suggested;

therefore, a standard-based solution that addresses requirements of this field is a

necessity.

31

In this section the related works are categorized in three sets: First we present non-

standard based research works; in the second group, we discuss standard based solutions

such as CORBA and SOAP based; in the third set, we discuss the REST-based research

works. We evaluate all the related works based on our concluded requirements. To

conclude this section, we present a summary of this evaluation in the Table 3-3. We

summarize the chapter at the end.

32

Figure 3-1: Companion Robot application development: state of the art

C
o

m
p

an
io

n
 R

o
b

o
t

ap
p

lic
at

io
n

 d
ev

el
o

p
m

en
t

RESTful Solution

REALab

Robopedia

MRDS

other Standard
solution

CORBA

Miro

OROCOS

RSCA

SOAP

MoCoLab

Bong Keun Kim et al.

Proprietary
Solution

Player

ORCA

WURDE

HSR-I

OpenRDK

Pearl

Care-O-Bot

ASIMO

33

3.2.1 Non-Standard Based Solutions

This section provides detailed information on four non-standard based solutions and

refers to four more works in this category.

3.2.1.1 A Framework for Robotics Application Development

The work presented in [49] is an open source Robotic Development Environment

(RDE) developed at the University of Southern California. It is a robot programming

framework that provides a set of tools for the robotics research community to simplify the

development of robotics application. The Player server includes a collection of device

drivers for many popular robot hardware devices. Client programs use proxy objects

defined in a Player client library to write and read data to and from the desired device

[49]. Using player programmers are able to support new hardware devices. Player is

developed primarily under Linux; however, it also runs on other UNIX variants such as

Solaris and FreeBSD that support TCP socket mechanisms and under Windows with

Cygwin. In order to provide uniform abstraction Player follows the UNIX model of

treating devices as files. In Player 2.0 the core system is a queue-based message passing

system. Each driver has a single incoming message queue and can publish messages to

the incoming queue of other drivers and to specific clients in response to requests. [49]

uses an open standard called eXternal Data Representation, or XDR [50]. The XDR

specifies a platform-independent encoding for commonly-used data types, including

integers and floating point values. They developed a C library, libplayerxdr, which

performs the XDR data marshaling. It provides a single function for each Player message

type that packs and unpacks message payloads, converting between native and XDR

formats.

34

 Despite the flexibility and platform/language independency characteristics of [49] the

developer is required to have a thorough knowledge of robot system and programming as

well as an extensive understanding of the tools. Simplicity of the interface, however, is

quite relevant and needs to be made a requirement. This work is not factoring in the light-

weight characteristic, which imposes a limitation on using resource-constrained devices

such as smart phone.

3.2.1.2 Tele-robotics System for Healthcare Management

Another work in this category is [51]. The objective of this work is to develop a tele-

robotic system to support the elderly and disable in long-term health care

management. The Internet based robot system is designed to function autonomously

or semi-autonomously with tele-operation capability to help the elderly or the

disabled in a hospital or at home setting [51]. The focus of the work is in three areas:

Security: The interaction between robots and humans in the home or hospital makes

security a primary consideration; reusability: In order to adapt to different scenarios the

Figure 3-2: Network distributed tele-homecare robot system

35

existing modules should be easily reused or extended to new applications; Friendly

human-robot interface: A healthcare robot should be practical for inexperienced users.

People desire to communicate with the robot using human language and to receive

friendly feedback. Thus, an optimal robotic tele-operation user interface must supply

related information regarding the robot’s state and environmental conditions (objects,

persons, free space, etc.) along with an efficient command system to the operator. The

block diagram of the Internet based Healthcare Robots (HRS-I) is presented in

Figure 3-2. The HSR-I is connected to the Internet through a wireless adaptors. During

normal operation (no emergency, no obstacles) the Supervisor will execute

random patrol command to all platforms, display high-level graphical status and

location information. Once the robot detects any exceptional action, the nurse

can get the alarm information from the console and give a corresponding command

to that robot. The HSR-I hardware platform is an autonomous indoor robot

containing basic components for manipulating, motor control, sensing and navigation,

including battery power, drive motors and wheels. The system software uses web based

Client/Server architecture for the robot control and feedback information display. The

client side (web browser) shows the robot information such as robot position, speed and

security on the console so the nurse can observe the situation of the patients’ rooms.

Server side is responsible for motor control, sonar ranger, camera motion control and

measurement of the patient’s physiological parameters.

This work presents a mobile robot system in the healthcare domain and it has been

developed based on the custom designed robot platform, however, the authors do not

provide any information about the interfaces. Since the system proposed in [51] is based

36

on their own unique design we surmise that interfaces are not OS/language independent.

The simplicity and light-weight of the interfaces are not features considered in this

research.

3.2.1.3 Assistant Robot for Elderly People

[4] is another research effort in the elderly domain. Pearl is a mobile robot system

designed to assist the elderly in performing their daily activities and manoeuvring their

surroundings. The project was envisioned in 1998 by a multi-disciplinary team of

investigators consisting of researchers in health care and computer science.

The research focus is on two tasks: reminding people about routine activities such as

taking their medication and guiding them through their environment. They have

developed two autonomous mobile robots along with software systems to enable these

robots to assist the elderly.

The primary function of the system is to serve as a cognitive orthotic, providing the

Figure 3-3: Autominder Architecture

37

elderly with reminders of their daily activities. The software component that has been

developed for Pearl to provide the cognitive orthotic functions is called Autominder, and

is depicted in Figure 3-3. As illustrated in this figure, Autominder has three main

components: a Plan Manager (PM), which stores the user’s daily tasks. It is also

responsible to update the tasks and determining if there is any conflicts in the schedule; a

Client Modeler (CM), which uses information about the visible user activities to track if

the task is being performed according to the plan; and a Personal Cognitive Orthotic

(PCO), which analyzes the difference between what the user is supposed to do and what

he/she is doing. It also decides when to send out reminders.

Despite all the advantages that [4] has, it is limited to the proprietary robot platform. It is

designed to develop specific applications in the elderly domain. Like [51], [4] does not

provide any information on the interfaces. Pearl is not designed to be manoeuvred via the

Web and important requirements not considered when designing Pearl are the simplicity

and the light-weight characteristic of the interfaces.

3.2.1.4 Home-Care Robot for Elderly and Disabled People

The final reviewed related work in the non-standard based category is [52]. The work

presented in [52] proposes a platform for a mobile home care system – called Care-O-

Bot. The Care-O-Bot is a mobile service robot, which has the ability to operate different

tasks in home environments. Main emphasis is on combining communicational and social

features, like video telephone or automatic emergency calls. This work focuses on the

mechanical design and realisation of the vehicle. It further provides the development of

the control system architecture and the implementation and testing of navigation

and motion algorithms.

38

The authors first list the necessary functions that an optimal home care robot should

perform such as: Household tasks like delivery of food and drinks; Communication like

automatic emergency calls; Technical House Management like control of home devices

such air conditioning and lights; Mobility support like guidance assistance; Personal

Management and Social activities like organization of daily tasks such as daily task

organization medications, reminder to events, etc. ; and Personal Security like checking

for personal safety.

The work further provides technological concepts that were developed by the research

group. We summarize each concept with an example as following:

 Mechanical Concept: e.g. Mobile platform suited for home environments

 Electrical Concept: e.g. Independent battery based energy management and

supply

 Control System Hardware: e.g. Modular and extendable control system hardware

 Control System Software: e.g. Map building and dynamic path planning

 Operator’s Interface: e.g. Instruction of Care-O-Bot with natural speech

39

To fulfil and perform all required functions of Care-O-bot a sophisticated control

system is necessary. The designed control system architecture is shown in Figure 3-4. A

master PC is employed to control the vehicle and command all devices and drive control

modules. Different types of operation modes are used to drive the Care-O-bot according

to the needs of the user (e.g. automatic, manual and reactive mode). There is another PC,

connected via Ethernet running under Windows NT/95, which is responsible

for the control of all communicational tasks like speech control, multimedia touch

screen and linking via wireless Ethernet connection.

Explained above, [52] is a custom design for the specified robot platform. It suggests

different applications to aid the elderly and disabled, however, the interfaces are

proprietary i.e. they are not applicable to other robots. This work does not look at remote

Figure 3-4: Care-O-Bot’s decentralised control system architecture

40

manipulation of the robot while smart phones are an integral part of our lives and being

able to manipulate a home care robot remotely is a necessity.

There are other works on the mobile robots that are shown in the related work hierarchy

(Figure 3-1) such as [53] ,[54], [3] and [2]. For instance, [53] is robot/device dependent

which has proprietary interfaces that do not meet any of our specific requirements.

Another example, [3], proposes a hardware-independent architecture however it supports

few applications. The interface proposed by this paper (RIDE) is a proprietary interface

that does not meet the simplicity and light-weight requirements that were mentioned in

the previous section. Flexibility and extensibility of the architecture has not been the

consideration of the majority of non-standard research works.

3.2.2 Standard (CORBA and SOAP) Based Solutions

In this section, we begin by introducing a CORBA based related work. Then we criticize

the work by discussing the drawbacks inherent to CORBA. Afterwards, we present

SOAP based related works and criticize them by describing the disadvantages of SOAP

compared to REST.

3.2.2.1 CORBA Based Solutions

 A CORBA based solution has been proposed by [55]. It presents a middleware for

mobile robot applications. It favours the use of object-oriented robot middleware to make

the development of mobile robot applications. Miro also provides generic abstract

services like localization, which can be applied on different robot platforms. Despite its

advantages, it imposes some limitations inherent to CORBA. Below we explain some

41

major drawbacks of CORBA middleware that discourage using it for developing

companion robot applications:

Lack of Distributed Transparency: The purpose of middleware is to hide

implementation details and complexities from the applications. Using CORBA, each time

a new component is added and the overall architecture is extended, several components

that have previously been used will have to be reconfigured to adapt to the changes, and

this causes overall configuration confusion. It also requires updating if the application

needs to be migrated [56].

Implementation Complexity and Maintenance difficulty: reusing functionalities of

existing applications is very complex when CORBA is employed. For example, CORBA

to C++ mapping is extremely complicated and requires significant understanding and

experience. Application maintenance in CORBA also requires a huge effort. If the

properties of an object is changed or an object is later extended the IDL file has to be

modified. As a result all the proxy components will have to be replaced by the newer

ones [57].

Increase in dependency: Using object oriented propriety middle ware increases

dependency on additional software components. Two distributed CORBA based

applications can communicate with each other using IIOP; however these applications

would not be able to apply security and transactions features supplied by CORBA. Such

applications require thorough configuration and are highly dependent on other

components [57].

42

Limited Interoperability: CORBA is language and platform independent, however, the

interoperability level between different CORBA products is limited [12].

As a result, Web services have a great superiority over CORBA. If choosing between WS

and CORBA, Web service will be the choice. The next section, however, will

demonstrate that not all Web services are suitable for developing companion robots

applications.

3.2.2.2 SOAP Based Solutions

[58] and [7] propose SOAP-based Web services approach for mobile robot applications.

[58] presents a robot control platform for ubiquitous functions that is based on Web

services. [7] proposes a service oriented architecture that provides a flexible distributed

application model for the motion control of mobile robots.

Following description, however, clarifies that the above-mentioned related works, due to

the drawbacks inherent to SOAP, are left aside.

Three major criteria that SOAP is assessed are as following:

 Light-weight and Simple

 Flexible in terms of data representation

 Easy to use for developing applications

Light-weight and Simple: SOAP based web services are sophisticated because of the

verbose XML files and complex SOAP messages envelope. Using SOAP based web

services, it is necessary that SOAP and RPC be supported on both client and server

applications [59]. RESTful web services are very lightweight and simple compared to

43

SOAP -based web services. REST leverages W3C/IETF standards, i.e. HTTP, XML,

URI, and MIME.

Flexible in terms of data representation: SOAP based web services force XML format

for data representation. This limitation causes problem when devices with very limited

resource are the target. RESTful web services, however, provide a greater flexibility

when using different data representation formats such as XML, JSON and plain text.

Easy to use for developing applications: SOAP based services require greater effort to

implement applications either on client or server side, due to the specific toolkits that are

required on both client and server sides when developing SOAP based applications.

Understanding these toolkits demands for a significant endeavour, whereas REST based

web services require more effort just on the server side. Using familiar HTTP methods

makes the developing applications much easier and simpler, thus there is no need for

prior knowledge of a toolkit.

Table 3-2 clearly demonstrate here that REST has superiority over SOAP.

Table 3-2: REST vs. SOAP

 Criteria

Solutions

Light-weight and

Simple

Flexible in terms of

data representation

Easy to use for

developing

applications

SOAP NO NO NO

REST YES YES YES

As a result of this section, none of the above-mentioned works will be taken into

consideration since REST is superior to others.

44

3.2.3 REST-based Solutions

This section gives a detailed review on three REST-based research works on companion

robots applications development.

3.2.3.1 A Platform for Network Robotics

[60] presents a distributed software platform that supports inter-domain interaction with

mobile robots. Figure 3.5 shows the core packages of the platform presented by the

authors in UML (Uniform Modeling Language) notation. The Embedded package

includes the micro-server components that are able to run on embedded processors with

limited processing power (e.g. mobile robot). The Protocol Handler package liberates the

resources from performing tasks that require massive computation such as data

encryption/decryption, protocol translation, and security checking. The Front-end

package includes components that support interactions over the network between the

application and the mobile robots. These components offer a high level interface for robot

manipulation in different programming languages and platforms. The Management

package performs management actions at the level of federations, domains, and

Figure 3-5: Main packages of the proposed platform

45

resources.

REALab is a proposed platform of the presented designed packages. It has two HTTP

servers interacting with the ARIA and Player robotic frameworks. HTTP GET message is

used for operations that do not change the state of the robot (e.g. sensor readings) and

those that cause changes (e.g. movement) are performed through HTTP POST. All HTTP

operations return a XML document. The Front-end package offers a set of functionalities

such as rangefinder sensor, locomotion, and image acquisition. The REALab platform

offers APIs in the following programming languages: C++, Java, Python, and Matlab.

Figure 3-5 shows the components of the platform

The emphasis of the work is mostly on the components of the platform rather than

interfaces. The authors claim that RESTful interfaces have been developed for this

platform but it employs a RPC-like function call, where the procedure and parameters are

Figure 3-6: Components of the REALab platform

46

communicated in the HTTP Uniform Resource Locater (URL) , they also do not provide

any resource modeling which is a key aspect of REST style architecture.

3.2.3.2 A Web-Enabled Framework for Robotics Application Development

[8] proposes a framework to integrate robotics application with Internet-scale sensor

networks. It receives a sensor observation of a surveillance robot and commands the

actuator of the robot over the Web. The framework allows the development of general

web-based robotics application by hiding the most prerequisite of robotics knowledge

behind the scene. According to authors quote “a general web-based robotics application

includes status monitoring, specifying goals for the robot, and tele-operating actuators or

sensors, such as a pan-tilt-zoom camera”. Robopedia architecture is shown in Figure 3-7.

The first part is the robot communication server which employs Player to receive robot

sensor observations and to issue robot commands. The second part is a web-server which

provides RESTful web-services to interface with the system. Robopedia’s web-interface

provides general reusable interfaces for controlling a robot via the web.

Figure 3-7: Robopedia Architecture

47

The work does not define a candidate data representation for every sensor type. It has

limited the support to the Pioneer 3DX equipped with a camera, SICK laser range finder,

odometer, encoders, and sonar.

The command interface issues commands in the proprietary Player server data format to

the robot communication server.

One drawback of the system is that the command interface can only handle the Pioneer’s

Canon PTZ camera and motion commands such as velocity and specify goal points for

the robot. Moreover, although the authors claim to use RESTful interfaces, they do not

provide any information on REST resources. As mentioned in chapter 2, resource is the

main concept that should be realized when providing REST style architecture.

3.2.3.3 Microsoft Robotics Developer Studio

Microsoft Robotics Developer Studio [61] is a Windows-based environment for robot

control and simulation which allows development and execution of both RESTful and

SOAP-based applications.

The architectural design of MRDS follows REST pattern that consists of two

components: Concurrency and Coordination Runtime (CCR) and Decentralized Software

Services (DSS). The CCR makes asynchronous programming simple. It handles

asynchronous input from multiple sensors and output to actuators. The DSS Service

Oriented Architecture (SOA) offers a simple access to a state of a robot using a Web

browser or Windows-based application.

48

Third parties can extend the functionality of MRDS by providing additional libraries and

services.

Interaction with a robot is implemented through the use of multiple software services

which are highly decoupled, providing the ability for modular reuse of the code. Services

are not just limited to drive and sensor interaction but can also include implementations

for industry floor camera observation, wireless communication, etc. One example of the

service to hardware mapping is illustrated against the hypothetical robot in Figure

3-8[62]. The interaction of services in a certain control system is defined through the use

of an XML configuration manifest file. MRDS provide developers with XML format as

well as an interface for each service to interact with HTTP calls into the service.

MRDS is implemented using .NET; it is therefore required to program services in .NET

language. Preferred implementation language of MRDS services is C#, though other

languages such as Visual Basic are an alternative. MRDS is platform-dependent since

Figure 3-8: Typical service configuration for a mobile robot

49

Windows and .NET are necessary to develop application. This is a limitation when

resource-constrained devices are the targets.

3.3 Evaluation Summary

Table 3-3 summarizes our evaluation of the related works with respect to the

requirements in Table 3-1. The discussed works clearly do not meet all of our

requirements.

Table 3-3: Summary of the evaluation of the related work for robot application development

 Related

Works

Requirements

P
la

y
er

H
S

R
-I

P
ea

rl

C
ar

e-
O

-B
o
t

M
ir

o

S
O

A
P

-b
as

ed

ro
b
o
t

co
n
tr

o
l

R
E

A
L

ab

R
o
b
o
p
ed

ia

M
R

D
S

Robotics

platform (Robots)

independent

S
at

is
fi

ed

N
o
t

S
at

is
fi

ed

N
o
t

S
at

is
fi

ed

N
o
t

S
at

is
fi

ed

S
at

is
fi

ed

S
at

is
fi

ed

S
at

is
fi

ed

S
at

is
fi

ed

S
at

is
fi

ed

Application

independent

sa
ti

sf
ie

d

N
o
t

S
at

is
fi

ed

S
at

is
fi

ed

S
at

is
fi

ed

N
o
t

d
is

cu
ss

ed

N
o
t

d
is

cu
ss

ed

N
o
t

d
is

cu
ss

ed

N
o
t

S
at

is
fi

ed

N
o
t

d
is

cu
ss

ed

Separation of

concerns among

components to

increase

flexibility and

maintainability N
o

t
d

is
cu

ss
ed

N
o

t
d

is
cu

ss
ed

N
o

t
d

is
cu

ss
ed

N
o

t
d

is
cu

ss
ed

S
at

is
fi

ed

S
at

is
fi

ed

S
at

is
fi

ed

S
at

is
fi

ed

S
at

is
fi

ed

Lightweight

N
o
t

S
at

is
fi

ed

N
o
t

S
at

is
fi

ed

N
o
t

S
at

is
fi

ed

N
o
t

S
at

is
fi

ed

N
o
t

S
at

is
fi

ed

N
o
t

S
at

is
fi

ed

N
o
t

d
is

cu
ss

ed

S
at

is
fi

ed

N
o
t

S
at

is
fi

ed

50

Easy to use

N
o

t
S

at
is

fi
ed

N
o

t
S

at
is

fi
ed

N
o

t
S

at
is

fi
ed

N
o

t
S

at
is

fi
ed

N
o

t
S

at
is

fi
ed

N
o

t
S

at
is

fi
ed

N
o

t
d

is
cu

ss
ed

S
at

is
fi

ed

N
o

t
S

at
is

fi
ed

Device

Independent

S
at

is
fi

ed

N
o

t
S

at
is

fi
ed

N
o

t
S

at
is

fi
ed

N
o

t
S

at
is

fi
ed

S
at

is
fi

ed

S
at

is
fi

ed

S
at

is
fi

ed

S
at

is
fi

ed

S
at

is
fi

ed

Application

independent

S
at

is
fi

ed

N
o
t

S
at

is
fi

ed

N
o
t

S
at

is
fi

ed

N
o
t

S
at

is
fi

ed

S
at

is
fi

ed

S
at

is
fi

ed

S
at

is
fi

ed

N
o
t

S
at

is
fi

ed

S
at

is
fi

ed

OS/language

Independent

S
at

is
fi

ed

N
o
t

d
is

cu
ss

ed

N
o
t

d
is

cu
ss

ed

N
o
t

d
is

cu
ss

ed

S
at

is
fi

ed

S
at

is
fi

ed

S
at

is
fi

ed

S
at

is
fi

ed

N
o
t

S
at

is
fi

ed

Extensible

S
at

is
fi

ed

N
o
t

d
is

cu
ss

ed

N
o
t

S
at

is
fi

ed

N
o
t

S
at

is
fi

ed

S
at

is
fi

ed

S
at

is
fi

ed

N
o
t

d
is

cu
ss

ed

S
at

is
fi

ed

S
at

is
fi

ed

3.4 Chapter Summary

In this chapter, we stated the general and interface specific requirements for companion

robots applications development and deployment. We introduced related works,

categorized them into three categories: Proprietary solutions; standard based solutions,

CORBA and SOAP; REST based solutions. We then evaluated these works with respect

to our requirements, however, none of these works is meeting all our requirements,

therefore, based on this evaluation and the appropriateness of REST we propose a

51

RESTful architecture for development and deployment of companion robots applications.

This architecture is presented in the next chapter.

52

Chapter 4:
A RESTful Architecture for Development

and Deployment of Companion Robots

Applications

In the previous chapter, we stated the requirements for companion robots applications.

With respect to these requirements, RESTful Web services are the most appropriate

solution to be used for developing companion robots applications.

This chapter is organized into four sections. In the first section, we introduce our overall

architecture for developing and deploying companion robots applications. This

architecture is based on the separation of concerns into different layers. In the second

section, we introduce our REST interfaces. We present our proposed resources modeling.

We then provide an extensive table for the resources along with the HTTP methods that

each resource support. In the third section, an operational scenario is presented to

illustrate how the architecture works.

We conclude this chapter with an evaluation of our architecture with respect to the

requirements.

4.1 The Overall Architecture

As described in Chapter 2, we have three general requirements: Separation of concerns,

robot independency and application independency. Taking these requirements into

account for our overall architecture, we have separated the concerns into two layers:

an Application layer and a Service layer. The service layer is further organised into

53

high level and low level service layers. The abstraction of high-level services from low-

level ones increases the flexibility and maintainability of the system.

The application layer includes the core logic, which interacts and coordinates

different services to fulfil a desired task. This allows applications developers to

reuse services and compose them to achieve their goals.

Figure 4.1 shows our overall architecture.

 High-level services range from robotic utilities such as MapBuilding and Navigation, to

generic database-like services such as ObjectRepository and LineRepository.

The ObjectRepository maintains a list of the available objects to be handled by the robot.

Some examples of such objects include a TV remote control and a phonebook that the

end-user can ask the robot to bring. The LineRepository lists the existing lines that a

robot can follow to reach specific locations, such as a blue line that leads from the

kitchen to the table in the living room. A high-level service may reuse and compose

other high-level and/or low-level services to provide a more complex

functionality. In Figure 4-1, for instance, the ObstacleAvoidance and localization

services are composed to build the navigation service, which is used by a more advanced

service called MapBuilding.

 Low-level services allow communication with the actual hardware devices and are

categorized according to the type of these devices (e.g. robots, sensors, cameras and

actuators).

54

The interactions between the different layers are carried out through REST interfaces.

We chose REST because it is lightweight and platform/language independent. In

addition, it provides developers with an easy and unified access to information. We

propose two REST interfaces. The first one is used to access the high-level services (R1)

and the second to communicate with the low-level services (R2). Separating the

interfaces into two levels of granularity increases the simplicity and extensibility

of the architecture, and broadens the number of application that can be developed. The

interface between the client and the application is also REST-based. The low-level

Figure 4-1: Overall Architecture

55

services communicate with the hardware devices via the proprietary interfaces

supported by these devices. Low-level services receive requests from an

application or a high-level service through R2 and forward the appropriate commands to

the hardware devices through their proprietary interfaces.

Our architecture is a distributed architecture. We have different entities with different

roles, application provider, high level service provider, and low level service provider

that may reside anywhere in the network. ‘

4.2 REST Interfaces

We provided detailed information on REST, its characteristics and principles. Before

going to our resources and our proposed model for them we briefly review REST to have

a better realization of the prospective sections.

As mentioned in Chapter 2, REST is an architectural style for distributed systems, whose

main concept is the resource. Every piece of information that is important

enough for a server to provide is exposed as a resource. Each resource has a unique

identifier (i.e. URI). In order to manipulate these resources, the client and the

server communicate through a standardized interface such as HTTP and exchange

representations of these resources. HTTP is not the only protocol REST is based on,

however, it is the one most widely used for RESTful Web services. A resource

representation is typically a document that captures the current or intended state of a

resource. Data representation can be in any format such as HTML, XML or plain text.

56

4.2.1 Resource modeling

For a better illustration we separate the resource models that we propose for both the

high-level and low-level interfaces into two figures.

Figure 4-2 shows our high-level modeling. As shown in the figure, the first resource in

the high-level hierarchy is services. It offers a subordinate resource for each service

category, for instance, separate resources for camera-related (i.e. camerics) and

robot-related (i.e. robotics) high level services. Generic services, such as

objeRepos, LineRepos and AlarmFuncs are proposed under the generics resource. For

example ObjeRepos service is a data-base like service that offers the list of available

objects and the properties of each object such as location, the color, the last place the

object has been, etc. The description of all services is available in Table 4-1.

Each specific service is given a unique identifier and is represented as a separate

resource. The unique ID of the service is used to create the URI of its representing

resource. Each of these resources may further offer one or more subordinate resources,

depending on the specific functionalities they provide. A given camera service might

expose a ColorDetection and a faceDetection sub-resource. This design approach not

only simplifies access to the required services of each category, but also increases the

system extensibility; i.e. new needs can be addressed by adding new service

categories.

 The resources for low-level services are shown in Figure 4-3. They are organized

following the service categories and classified according to the type of devices that offer

them. For example the services offer by a robot is under the robot resource. The services

57

offered by a sensor and an actuator are classified under the Sensors and Actuators

resources, respectively. Finally the services offered by a camera device are placed under

the Cameras resource.

Under each category, we either have a list of the specific devices available (e.g. the robot

with ID 123), or a list of the available sub-categories. The sensors, for instance, may be

of different types such as location and temperature sensors. The existing sensor nodes

will then be presented under the related sub-categories (e.g.

/sensors/location/sensor023). A robot may have a sensor or a camera that is

attached to it. These are represented as subordinate resources of the specific robot they

belong to, at the same level as the other components of the robot such as

the wheels (e.g. robots/robot123/sensors/sensor093). While the robot enables the

execution of basic functionalities such as turning the left wheel 25 degrees or

moving 20m ahead, it should also allow for atomic execution of somewhat advanced

operations. It should be possible, for instance, to ask a robot to move from location ‘a’ to

location ‘b’ using a single request. This simplicity facilitates fulfilling the

statelessness of RESTful services and avoiding conflicts among different services

that may arise due to concurrent access to the same resource. We therefore modeled

each of these operations as a separate resource. For example the robots that use wheels to

move will be operated by Drive service to get from one location to another while moving

function of the ones which are equipped with legs will be handled by the Walk service.

Furthermore, robots that have the capability of grabbing objects (i.e. they are equipped

with arm and gripper) will get their arms and grippers manipulated by the Grab service.

58

An interesting point in the services offered by a robot (i.e. drive, walk, switch, grab) is

the actuators that operate those services. Each actuator resource (i.e. wheels, legs, switch,

and arms) holds other resources under its branch. For example, wheels resource is

divided to the left and right resources, each have their own sub-resource. Wheels of a

robot can be manipulated separately for a specific purpose depending on the robot

hardware design.

Another interesting low-level resource is Sites, the end-user homes can be of various

sizes, with different plans. In addition, smart homes are more prevalent than ever. They

are equipped with different sensors and actuators. To facilitate the management of the

available devices including robots, cameras, sensors and actuators and their current

locations, and to access to the set of devices currently available at a specific

location, we introduced the Sites resource.

59

/R
o

o
t

/services

/camerics /{id} /description

/generics

/objeRepos /{id} /properties

/lineRepos /{id} /properties

/AlarmFuncs /{id} /properteis

/…

/robotics /{id}

/partners /{id} /description

/description
/…

Figure 4-2: Resource model for high-level services: Interface R1

60

/R
o

o
t

/robots /{id}

/actuators

/sensors

/Positions /{id} /subscriptions /{id}

/Distances /{id} /subscriptions /{id}

/Headings /{id} /subscriptions /{id}

/webcams {id}

/subscriptions /{id}

/image

/drive /wheels

/lefts /{id} /power

/rights /{id} /power

/switch /switches /{id}

/grab /arms

/lefts /{id} /grippers /{id} /propreties

/rights /{id} /grippers /{id} /propreties

/walk /legs

/lefts /{id} /propreties

/rights /{id} /propreties

/sensors

/locations /{id} /subscriptions /{id}

/temperatures /{id} subscriptions /{id}

/motions /{id} subscriptions /{id}

/bodys

/tempers. /{id} /subscriptions /{id}

/bpressures /{id} /subscriptions /{id}

/bsugars /{id} /subscriptions /{id}

/...

/Actuators

/switches /{id}

/valves /{id}

/...

/cameras /{id}

/properties

/image

/view

/sites /{id}

Figure 4-3: Resource model for low-level services: Interface R2

61

The proposed design for the resources along with the layering architecture described,

simplify developing new applications or extending the existing one. This occurs by

enabling new resources to simply be added to the system. These resources can be

physical resources, high-level services or low level services.

4.2.2 Resources and associated HTTP methods

As described in Chapter 2, in order to use the resources, the client and the server

communicate through standardized HTTP interfaces. The four HTTP methods, GET,

POST, PUT, and DELETE are used to retrieve, create, update and delete a resource

respectively.

Table 4-1 and Table 4-2 describe the defined resources, along with the HTTP

methods they support. The services resource, for instance, only supports the GET

operation; it returns the list of service categories that exist. The resource

/sensors/temperature/id refers to a particular temperature sensor and supports four

operations. With GET, we retrieve the sensor readings (i.e. the temperature information).

POST creates a new subscription to the sensor reading, to be notified under certain

criteria (e.g. periodically). PUT updates the existing sensor subscription criteria. The

DELETE operation removes the sensor from the list of available temperature devices.

The resource robots/id/actuators provide a list of the actuators that are available on the

specific robot such as wheels, arms, etc. The properties of each actuator will then be

presented as the parameters.

Another example for the resources is /robots/id/drive/wheels/left/power. This resource

refers to the power of the left wheel of a specific robot. The speed and rotation degree of

62

the wheel depend on the value of this resource. With GET we retrieve the current value

of the power of the left wheel and PUT updates the existing value.

Table 4-1: REST resources and the associated HTTP methods: High-level services

Resource Interface Description HTTP action

/services High level-

R1

The list of all

service categories

provided by the

service provider

GET: retrieve the list of

categories

/services/camerics High level-

R1

The list of all

existing high-level

camera services

GET: retrieve the list of

camera services

/services/camerics/id High level-

R1

A specific camera-

related service

GET: retrieve the parameters

the camera-related service

POST: create new parameter

for the camera-related service

PUT: update/change the

parameters of the camera-

related service

/services/camerics/id/description High level-

R1

Necessary

information about a

specific camera-

related services

GET: retrieve the description

of the camera-related service

/services/generics/ High level-

R1

The list of all

existing high-level

generic services

GET: retrieve the list of

generic services

/services/generics/objeRepos High level-

R1

The list of all the

available objects to

be handled by the

robot

GET: retrieve the list of all

objects

POST: add a new object to

the list

/services/generics/objeRepos/id High level-

R1

A specific object

with all necessary

parameters

GET: retrieve the

information about the object

POST: add new parameters

to the object

PUT: update/change the

parameters of the object

63

DELETE: delete the object

form the list

/services/generics/objeRepos/id/properties High level-

R1

The properties of a

specific object such

as last location it

has placed

GET: retrieve the properties

of the object

POST: create a new property

for the object

PUT: update the properties of

the object

/services/generics/lineRepos High level-

R1

The list of all the

available lines to be

followed by the

robot to reach to a

specific location

GET: retrieve the list of all

lines

POST: add a new line to the

list

/services/generics/lineRepos/id High level-

R1

A specific lien with

all necessary

parameters

GET: retrieve the

information about the line

POST: add new parameters

to the line

PUT: update/change the

parameters of the line

DELETE: delete the object

form the list

/services/generics/lineRepos/id/properties High level-

R1

The properties of a

specific line such the

start point and the

end point

GET: retrieve the properties

of the object

POST: create a new property

for the line

PUT: update/change the

properties of the line

/services/generics/alarmFuncs High level-

R1

The list of all the

available alarm

services such as

emergency calls or

turning of the lights

GET: retrieve the list of all

the alarm services

/services/generics/alarmFuncs/id High level-

R1

A specific alarm

service with all

necessary

information

GET: retrieve a specific

alarm service

POST: add a new parameter

to the alarm service

PUT: update parameters of

the alarm service

/services/generics/alarmFuncs/id/properties High level-

R1

The properties of a

specific alarm

service such as

emergency numbers

for emergency call

service

GET: retrieve the properties

of the alarm service

PUT: update the properties of

the alarm service

/services/robotics High level-

R1

The list of all

existing high-level

robotics services

GET: retrieve the list of

robotics services

64

/services/robotics/id High level-

R1

A specific robotics

service

GET: retrieve the parameters

the robotics service

POST: create new parameter

for the robotics service

PUT: update/change the

parameters of the robotics

service

/services/robotics/id/description High level-

R1

Necessary

information about a

specific robotics

service

GET: retrieve the description

of the robotics service

/services/robotics/id/partners High level-

R1

The list of all

existing partners of a

specific robotics

service

GET: retrieve the list of the

partners of the robotics

service

POST: add a new partner to

the list

/services/robotics/id/partners/id High level-

R1

a specific partner of

a specific robotics

service

GET: retrieve the partner of

the robotics service

PUT: update/change

parameters of the partner of

the robotics service

DELETE: delete the partner

from the list

/services/robotics/id/partners/id/description High level-

R1

Necessary

information of a

specific partner of a

specific robotics

service

GET: retrieve the description

of the partner of the robotics

service

65

Table 4-2: REST resources and the associated HTTP methods: Low-level services

Resource Interface Description HTTP action

/robots Low

level-R2

The list of all

available robots

GET: retrieve the list of

available robots

/robots/id Low

level-R2

A specific

robot

GET: retrieve the list of

all the devices available on

the robot

POST: create a new

parameter to the list

DELETE: delete the robot

from the list

/robots/id/actuators Low

level-R2

The list of all

available

actuators on a

specific robot

GET: retrieve the list of

all the actuators available

on the robot

POST: add a new actuator

to the list

/robots/id/sensors Low

level-R2

The list of all

available

sensor on a

specific robot

GET: retrieve the list of

all the sensor types

available on the robot

POST: add a new sensor

type to the list

/robots/id/sensors/positions Low

level-R2

The list of all

existing

position

sensors on a

specific robot

GET: retrieve the list of

all the position sensor

available on the robot

POST: add a new position

sensor to the list

/robots/id/sensors/positions/id Low

level-R2

A specific

position sensor

on a specific

robot

GET: retrieve the readings

of the position sensor

POST: create a new

subscription to the position

sensor

PUT: Update/change

subscription criteria of the

position sensor

DELETE: delete the

sensor from the list

/robots/id/sensors/positions/id/subscriptions Low

level-R2

The list of all

active

subscriptions to

a specific

position sensor

GET: retrieve the list of

all active subscription to

the sensor

/robots/id/sensors/positions/id/subscriptions/id Low

level-R2

A specific

subscription of

a specific

position sensor

GET: retrieve the

subscription information

of the sensor

DELETE: delete the

subscription to the sensor

/robots/id/sensors/distances Low

level-R2

The list of all

existing

GET: retrieve the list of

all the distance sensor

66

distance

sensors on a

specific robot

available on the robot

POST: add a new distance

sensor to the list

/robots/id/sensors/distances/id Low

level-R2

A specific

distance sensor

on a specific

robot

GET: retrieve the readings

of the distance sensor

POST: create a new

subscription to the

distance sensor

PUT: Update/change

subscription criteria of the

distance sensor

DELETE: delete the

sensor from the list

/robots/id/sensors/distances/id/subscriptions Low

level-R2

The list of all

active

subscriptions to

a specific

distance sensor

GET: retrieve the list of

all active subscription to

the sensor

/robots/id/sensors/distances/id/subscriptions/id Low

level-R2

A specific

subscription of

a specific

distance sensor

GET: retrieve the

subscription information

of the sensor

DELETE: delete the

subscription to the sensor

/robots/id/sensors/headings Low

level-R2

The list of all

existing

heading sensors

on a specific

robot

GET: retrieve the list of

all the heading sensors

available on the robot

POST: add a new heading

sensor to the list

/robots/id/sensors/headings/id Low

level-R2

A specific

heading sensor

on a specific

robot

GET: retrieve the readings

of the heading sensor

POST: create a new

subscription to the heading

sensor

PUT: Update/change

subscription criteria of the

heading sensor

DELETE: delete the

sensor from the list

/robots/id/sensors/headings/id/subscriptions Low

level-R2

The list of all

active

subscriptions to

a specific

heading sensor

GET: retrieve the list of

all active subscription of

the sensor

/robots/id/sensors/headings/id/subscriptions/id Low

level-R2

A specific

subscription of

a specific

heading sensor

GET: retrieve the

subscription information

of the sensor

DELETE: delete the

subscription to the sensor

/robots/id/sensors/webcams Low

level-R2

The list of all

existing

GET: retrieve the list of

all the webcam sensor

67

webcam sensor

on a specific

robot

available on the robot

POST: add a new webcam

sensor to the list

/robots/id/sensors/webcams/id Low

level-R2

A specific

webcam sensor

on a specific

robot

GET: retrieve the readings

of the webcam sensor

POST: create a new

subscription to the

webcam sensor

PUT: Update/change

subscription criteria of the

webcam sensor

DELETE: delete the

webcam sensor from the

list

/robots/id/sensors/webcams/id/subscriptions Low

level-R2

The list of all

active

subscriptions to

a specific

webcam sensor

GET: retrieve the list of

all active subscription of

the sensor

/robots/id/sensors/webcams/id/subscriptions/id Low

level-R2

A specific

subscription of

a specific

webcam sensor

GET: retrieve the

subscription information

of the sensor

DELETE: delete the

subscription to the sensor

/robots/id/sensors/webcams/id/image Low

level-R2

Image

properties of a

specific

webcam sensor

GET: retrieve the

properties of the image

captured by the webcam

PUT: update/change the

properties of the image

/robots/id/drive Low

level-R2

Necessary

information

about the drive

status and

parameters of a

specific robot

GET: retrieve the drive

parameters and status

(stage)

/robots/id/drive/wheels Low

level-R2

The list of all

existing wheels

of a specific

robot

GET: retrieve the list of

all available wheels of the

robot

POST: add a new wheel

to the list

/robots/id/drive/wheels/lefts Low

level-R2

The list of all

available left

wheels of a

specific robot

GET: retrieve the list of

all the left wheels

POST: add a new left

wheel to the list

/robots/id/drive/wheels/lefts/id Low

level-R2

A specific left

wheel of a

specific robot

GET: retrieve the

properties of the left wheel

PUT: update/change the

properties of the left wheel

DELETE: delete the left

wheel from the list

68

/robots/id/drive/wheels/lefts/id/power Low

level-R2

Related to the

actual

command to a

making a

specific left

wheel of a

specific robot

moves, stops or

rotate

GET: retrieve the current

power value of the left

wheel

PUT: Update/change the

current value of the left

wheel

/robots/id/drive/wheels/rights Low

level-R2

The list of all

available right

wheels of a

specific robot

GET: retrieve the list of

all the right wheels

POST: add a new right

wheel to the list

/robots/id/drive/wheels/rights/id Low

level-R2

A specific right

wheel of a

specific robot

GET: retrieve the

properties of the right

wheel

PUT: update/change the

properties of the right

wheel

DELETE: delete the right

wheel from the list

/robots/id/drive/wheels/rights/id/power Low

level-R2

Related to the

actual

command to a

making a

specific right

wheel of a

specific robot

moves, stops or

rotate

GET: retrieve the current

power value of the right

wheel

PUT: Update/change the

current value of the right

wheel

/robots/id/switches Low

level-R2

The list of all

existing

switches on a

specific robot

GET: retrieve the list of

all switches on the robot

POST: add a new switch

to the list

/robots/id/switches/id Low

level-R2

A specific

switch on a

specific robot

GET: retrieve the status

and properties of the

switch

PUT: update/change the

status and properties of the

switch

DELETE: delete the

switch from the list

/robots/id/grab Low

level-R2

Necessary

information

about the grab

status and

parameters of a

specific robot

GET: retrieve the grab

parameters and status

(stage)

/robots/id/grab/arms Low

level-R2

The list of all

existing arms

GET: retrieve the list of

all available arms of the

69

of a specific

robot

robot

POST: add a new arm to

the list

/robots/id/grab/arms/lefts Low

level-R2

The list of all

available left

arms of a

specific robot

GET: retrieve the list of

all the left arms

POST: add a new left arm

to the list

/robots/id/grab/arms/lefts/id Low

level-R2

A specific left

arm of a

specific robot

GET: retrieve the status

and properties of the left

arm

PUT: update/change the

status and properties of the

left arm

DELETE: delete the left

arm from the list

/robots/id/grab/arms/lefts/id/grippers Low

level-R2

The list of all

existing

grippers of a

specific left

arm of a

specific robot

GET: retrieve the list of

all the grippers of the arm

POST: add a new gripper

to the list

/robots/id/grab/arms/lefts/id/grippers/id Low

level-R2

A specific

gripper of a

specific left

arm of a

specific robot

GET: retrieve the status of

the gripper

PUT: update/change the

status of the gripper

DELETE: delete the

gripper from the list

/robots/id/grab/arms/lefts/id/grippers/properties Low

level-R2

The necessary

properties to

handle a

specific gripper

of a specific

left arm of a

specific robot

GET: retrieve the

properties of the gripper

PUT: update/change the

properties of the gripper

/robots/id/grab/arms/rights Low

level-R2

The list of all

available right

arms of a

specific robot

GET: retrieve the list of

all the right arms

POST: add a new right

arm to the list

/robots/id/grab/arms/rights/id Low

level-R2

A specific right

arm of a

specific robot

GET: retrieve the status

and properties of the right

arm

PUT: update/change the

status and properties of the

right arm

DELETE: delete the right

arm from the list

/robots/id/grab/arms/rights/id/grippers Low

level-R2

The list of all

existing

grippers of a

specific right

GET: retrieve the list of

all the grippers of the right

arm

POST: add a new gripper

70

arm of a

specific robot

to the list

/robots/id/grab/arms/rights/id/grippers/id Low

level-R2

A specific

gripper of a

specific right

arm of a

specific robot

GET: retrieve the status of

the gripper

PUT: update/change the

status of the gripper

DELETE: delete the

gripper from the list

/robots/id/grab/arms/rights/id/grippers/id/properties Low

level-R2

The necessary

properties to

handle a

specific gripper

of a specific

left arm of a

specific robot

GET: retrieve the

properties of the gripper

PUT: update/change the

properties of the gripper

/robots/id/walk Low

level-R2

Necessary

information

about the walk

status and

parameters of a

specific robot

GET: retrieve the walk

parameters and status

(stage)

/robots/id/walk/legs Low

level-R2

The list of all

existing legs of

a specific robot

GET: retrieve the list of

all available legs of the

robot

POST: add a new leg to

the list

/robots/id/walk/legs/lefts Low

level-R2

The list of all

available left

legs of a

specific robot

GET: retrieve the list of

all the left legs

POST: add a new left leg

to the list

/robots/id/walk/legs/lefts/id Low

level-R2

A specific left

leg of a specific

robot

GET: retrieve the status of

the left leg

PUT: update/change the

status of the left leg

DELETE: delete the left

leg from the list

/robots/id/walk/legs/lefts/id/properties Low

level-R2

The necessary

properties to

control a

specific left leg

of a specific

robot

GET: retrieve the

properties of the left leg

PUT: update/change the

properties of the left leg

/robots/id/walk/legs/rights Low

level-R2

The list of all

available right

legs of a

specific robot

GET: retrieve the list of

all the right legs

POST: add a new right leg

to the list

/robots/id/walk/legs/rights/id Low

level-R2

A specific right

leg of a specific

robot

GET: retrieve the status of

the right leg

PUT: update/change the

status of the right leg

71

DELETE: delete the right

leg from the list

/robots/id/walk/legs/rights/properties Low

level-R2

The necessary

properties to

control a

specific right

leg of a specific

robot

GET: retrieve the

properties of the right leg

PUT: update/change the

properties of the right leg

/sensors Low

level-R2

The list of all

existing sensors

in the

environment in

which robot is

used or on the

end-user

GET: retrieve the list of

all the sensor types in the

environment and on the

body of the end-user

POST: add a new sensor

type to the list

/sensors/locations Low

level-R2

The list of all

existing

location

sensors for the

end-user

GET: retrieve the list of

all location sensor for the

end-user

POST: add a new location

sensor to the list

/sensors/locations/id Low

level-R2

A specific

location sensor

on the end-user

GET: retrieve the readings

of the location sensor

POST: create a new

subscription to the location

sensor

PUT: Update/change

subscription criteria of the

location sensor

DELETE: delete the

sensor from the list

/sensors/locations/id/subscriptions Low

level-R2

The list of all

active

subscriptions to

a specific

location sensor

on the end-user

GET: retrieve the list of

all active subscription of

the sensor

/sensors/locations/id/subscriptions/id Low

level-R2

A specific

subscription of

a specific

location sensor

GET: retrieve the

subscription information

of the sensor

DELETE: delete the

subscription to the sensor

/sensors/temperatures Low

level-R2

The list of all

existing

temperature

sensors of the

environment in

which the robot

is used

GET: retrieve the list of

all temperature sensors in

the environment

POST: add a new

temperature sensor to the

list

/sensors/temperatures/id Low

level-R2

A specific

temperature

GET: retrieve the readings

of the temperature sensor

72

sensor of the

environment in

which the robot

is used

POST: create a new

subscription to the

temperature sensor

PUT: Update/change

subscription criteria of the

temperature sensor

DELETE: delete the

sensor from the list

/sensors/temperatures/id/subscriptions Low

level-R2

The list of all

active

subscriptions to

a specific

temperature

sensor of the

environment in

which the robot

is used

GET: retrieve the list of

all active subscription to

the sensor

/sensors/temperatures/id/subscriptions/id Low

level-R2

A specific

subscription of

a specific

temperature

sensor

GET: retrieve the

subscription information

of the sensor

DELETE: delete the

subscription to the sensor

/sensors/motions Low

level-R2

The list of all

existing

motions

sensors of the

environment in

which the robot

is used

GET: retrieve the list of

all motions sensors in the

environment

POST: add a new motions

sensor to the list

/sensors/ motions /id Low

level-R2

A specific

motions sensor

of the

environment in

which the robot

is used

GET: retrieve the readings

of the motions sensor

POST: create a new

subscription to the motions

sensor

PUT: Update/change

subscription criteria of the

motions sensor

DELETE: delete the

sensor from the list

/sensors/ motions /id/subscriptions Low

level-R2

The list of all

active

subscriptions to

a specific

motions sensor

of the

environment in

which the robot

is used

GET: retrieve the list of

all active subscription to

the sensor

/sensors/ motions /id/subscriptions/id Low

level-R2

A specific

subscription of

GET: retrieve the

subscription information

73

a specific

motions sensor

of the sensor

DELETE: delete the

subscription to the sensor

/sensors/bodys Low

level-R2

The list of all

existing sensor

of the end-user

body

GET: retrieve the list of

all the en-user body sensor

types

POST: add a new sensor

type to the list

/sensors/bodys/tempers Low

level-R2

The list of all

available

temperature

sensor of the

end-user body

GET: the list of all the

body temperature sensors

POST: add a new sensor

to the list

/sensors/bodys/tempers/id Low

level-R2

A specific

temperature

sensor of the

end-user body

GET: retrieve the readings

of the body temperature

sensor

POST: create a new

subscription to the body

temperature sensor

PUT: Update/change

subscription criteria of the

body temperature sensor

DELETE: delete the

sensor from the list

/sensors/bodys/tempers/id/subscriptions Low

level-R2

The list of all

active

subscriptions to

a specific

temperature

sensor of the

end-user body

GET: retrieve the list of

all active subscription to

the sensor

/sensors/bodys/tempers/id/subscriptions/id Low

level-R2

A specific

subscription of

a specific

temperature

sensor

GET: retrieve the

subscription information

of the sensor

DELETE: delete the

subscription to the sensor

/sensors/bodys/ bpressures/ Low

level-R2

The list of all

available blood

pressure sensor

of the end-user

body

GET: the list of all the

blood pressure sensors

POST: add a new sensor

to the list

/sensors/bodys/bpressures/id Low

level-R2

A specific

blood pressure

sensor of the

end-user body

GET: retrieve the readings

of the blood pressure

sensor

POST: create a new

subscription to the blood

pressure sensor

PUT: Update/change

subscription criteria of the

blood pressure sensor

74

DELETE: delete the

sensor from the list

/sensors/bodys/bpressures/id/subscriptions Low

level-R2

The list of all

active

subscriptions to

a specific blood

pressure

sensor of the

end-user body

GET: retrieve the list of

all active subscription to

the sensor

/sensors/bodys/bpressures/id/subscriptions/id Low

level-R2

A specific

subscriptions to

a specific blood

pressure

sensor

GET: retrieve the

subscription information

of the sensor

DELETE: delete the

subscription to the sensor

/sensors/bodys/bsugars Low

level-R2

The list of all

available blood

sugar sensor of

the end-user

body

GET: the list of all the

blood sugar sensors

POST: add a new sensor to

the list

/sensors/bodys/ bsugars /id Low

level-R2

A specific

blood sugar

sensor of the

end-user body

GET: retrieve the readings

of the blood sugar sensor

POST: create a new

subscription to the blood

sugar sensor

PUT: update/change

subscription criteria of the

blood sugar sensor

DELETE: delete the

sensor from the list

/sensors/bodys/ bsugars /id/subscriptions Low

level-R2

The list of all

active

subscriptions to

a specific blood

sugar sensor of

the end-user

body

GET: retrieve the list of all

active subscription to the

sensor

/sensors/bodys/ bsugars /id/subscriptions/id Low

level-R2

A specific

subscriptions to

a specific blood

sugar sensor

GET: retrieve the

subscription information

of the sensor

DELETE: delete the

subscription to the sensor

/actuators Low

level-R2

The list of all

existing

actuators in the

environment in

which robot is

used

GET: retrieve the list of

all the actuator types in the

environment

POST: add a new actuator

type to the list

/actuators/switches Low

level-R2

The list of

available

switches in the

GET: retrieve the list of

all the switches in the

environment

75

environment in

which robot is

used

POST: add a new switch

to the list

/actuators/switches/id Low

level-R2

A specific

switch in the

environment in

which robot is

used

GET: retrieve the status

and properties of the

switch

PUT: update/change the

status and properties of the

switch

DELETE: delete the

switch from the list

/actuators/valves Low

level-R2

The list of

available

valves in the

environment in

which robot is

used

GET: retrieve the list of

all the valves in the

environment

POST: add a new valve to

the list

/actuators/valves/id Low

level-R2

A specific

valve in the

environment in

which robot is

used

GET: retrieve the status

and properties of the valve

PUT: update/change the

status and properties of the

valve

DELETE: delete the

valve from the list

/cameras Low

level-R2

The list of all

existing

cameras in the

environment in

which robot is

used

GET: retrieve the list of

all the cameras in the

environment

POST: add a new camera

to the list

/cameras/id Low

level-R2

A specific

camera in the

environment in

which robot is

used

GET: retrieve the status

and location of the camera

PUT: update/change the

status and location of the

camera

DELETE: delete the

camera from the list

/cameras/id/properties Low

level-R2

The necessary

properties of a

specific camera

in the

environment in

which robot is

used

GET: retrieve the

properties of the camera

PUT: update/change the

properties of the camera

/cameras/id/image Low

level-R2

The image

properties of a

specific camera

in the

environment in

which robot is

GET: retrieve the image

properties of the camera

PUT: update/change the

image properties of the

camera

76

used

/cameras/id/view Low

level-R2

The view angle

a and zoom of

the camera in

the

environment in

which robot is

used from

which images

are captured

GET: retrieve the current

value of the view angle

PUT: update/change the

current view angle

/sites Low

level-R2

The list of all

defined sites

(places) with

the available

devices of each

site

GET: retrieve the list of

all the sits and devices

available in each site

POST: add a new site to

the list

/sites/id Low

level-R2

The list of all

available

devices of a

specific site

(place)

GET: retrieve the list of

all the devices of the site

POST: add a new device

to the list

As described in the Table 4-2 we have defined different types of sensors for the robot, for

the environment (e.g. home) and for the end-user body. Different types of robot’s sensors

include position sensors, distance sensors, heading sensors and webcam sensors. Position

sensors supply information about the robot relative coordinates. Once the robot knows its

relative coordinates within a given area and together with the knowledge of the

surrounding environment, a path of movement from point A to point B can be planned.

Distance sensors provide information about the distance between the robot and the

objects around it. Heading sensors provide detailed information about the robot position

in the term of the direction to which the robot is headed. Webcam sensors are the vision

sensors of the robot which allows the robot see the environment around it.

77

Various types of sensors in the environment include temperature and motion sensors.

Integrating the sensors and actuators installed at a home with the robot offer more

complex applications that provide better welfare facilities for the targeted population.

Among people are those who need special cares such as continues health monitoring.

Essential sensors that detect blood pressure, blood sugar and temperature may be

implanted in the body. Integrating these sensors with other resources offers at-home-

healthcare applications that increase safety and security.

4.2.3 Illustrative scenario

Figure 4-4 presents an illustrative scenario application called FollowMe. An end-user,

Sam, asks his robot to help him carry his food tray and then follow him to the living

room where he is going to have his food. The robot follows him while remaining at a safe

distance.

In this scenario application, Sam is wearing a red shirt and gave the key word ‘red’

as input to the application. The robot uses its embedded camera to detect the red

object and keeps following that object, always using the camera. We assume that

the space the scenario is taking place in is obstacle free. It is because that in the case of

having obstacles another high-level service, ObstacleAvoidance, would have been

required which would add extra complexity to the scenario. We also assume that there is

no other object with the same color in the location where Sam will be moving. It avoids

confusing the robot as to which object to follow.

 The scenario goes as following: First, Sam sends a POST request to the FollowMe

application with the appropriate color (steps 1). The application acknowledges

78

the request receipt (step 2) and sends a GET request to the ColorDetection service

to ask for detection of the color red (step 3). ColorDetection is one of the camera-

related high-level services. In this example, we assume that its ID is 1. In step 4, the

ColorDetection service requests images from the Camera low-level service, which

communicates with the camera device. When the ColorDetection service receives the

images (step 5), it analyzes them and gives the red object position back to the

application (step 6). The application then sends a POST request to the Drive service,

which instructs the robot to move toward Sam with a specific speed (steps 7-11). The

speed information is given in the POST request. If Sam is not found (i.e. no red object is

detected in step 6), the application asks the robot to turn around to find him (step 7’).

Figure 4-4: Illustrative Scenario Application

79

While the robot keeps moving, the application retrieves the distance -- between

Sam and the robot -- from the Ultrasonic Sensor service, which gets the

information via the robot’s ultrasonic sensor readings (Step 12-15). If the distance falls

below 50cm, the application asks the robot to stop moving (steps 16-20).

4.3 Chapter Summary

In this chapter, we proposed a RESTful architecture for the development and deployment

of companion robots applications. The main three layers of the architecture were

Application layer, High-level service layer and Low-level service layer. To facilitate

interaction between these layers we employed two REST interfaces REST: R1 and

REST: R2. Using REST as the communication approach requires to define resources.

We proposed resource modeling for each interface separately and provided two extensive

tables to describe each resource along with HTTP actions that each supports. At the

conclusion of this chapter, we described an illustrative scenario application that included

all the steps needed to be completed.

In the previous chapter we designed certain requirements and our proposed architecture,

RESTful architecture, satisfies all these requirements. Our proposed architecture is robot

independent and application independent. Abstracting the concerns in different layers

hides all the lower layer details from the end-users and application developers. Moreover,

abstracting high-level services from low-level ones increase the flexibility and

maintainability of the system which was our third general requirement. Our interface

specific requirements were met by choosing RESTful web services as our communication

interface due to the advantages that it offers and we explained in the Chapter 2.

80

Chapter 5:
Prototype Application and Performance

Evaluation

In the previous chapter we presented our proposed architecture for a rapid development

and deployment of companion robots applications. We introduced application layer and

service layer. We then further abstracted high-level services from low-level ones; this

facilitates rapid development of new applications with minimal cost of change in the

system which led to a more flexible and maintainable system. As the communication

approach, REST was employed. Combining RESTful Web services with our design

approach provided a platform that hides the lower layer heterogeneity and details from

developers allowing them to create new applications quickly and simply. In this chapter

we describe the variety of applications that can be developed by the system. We later

discuss a prototype application we implemented along with its performance evaluation.

5.1 Application variety

Following is four examples of application areas and the services used:

 Fetch and Carry Tasks

– Task : Lift and carry stuff (e.g. Garbage bag)

– Services used:

 High-level: ObjeRepos, ImageProcessing, Navigation,

ObstacleAvoidance

81

 Low-level: Drive, Grab, Camera, Distance Sensor, Heading

Sensor (optional),Position Sensor (optional)

 Mobility and memory Support

– Task : Walking aid and reminding of the task (e.g. Turn off the oven)

– Services used:

 High-level: ImageProcessing, Navigation,

ObstacleAvoidance, MapBuilding (optional),

AlarmFuncs(reminder),

 Low-level: Drive, Distance Sensor, Camera, Heading sensor

 Household Tasks

– Task : Cleaning the house (e.g. replace the dishes)

– Services used:

 High-level: ImageProcessing, Navigation,

ObstacleAvoidance

 Low-level: Drive, Grab, Distance Sensor, Position sensor

 Personal Security

– Task : Health monitoring and reporting (e.g. Sending a message to the

emergency center in case of falling)

– Services used :

82

 High-level: Image Processing, Navigation, AlarmFuncs

(emergency call)

 Low-level: Health monitoring sensors (e.g. Falling

detection, Blood pressure, etc.) , Drive, Switch (optional)

5.2 Prototype implementation

As a prototype, we implemented the scenario application presented in Chapter 4, in

Section 4.2.3. The prototype includes the FollowMe application along with the

associated high-level and low-level services as shown in Figure 5-1. A LEGO

MINDSTORMS NXT robot and a Logitech QuickCam Communicate STX webcam is

used. The ultrasonic sensor is embedded in the LEGO robot. However, the robot does not

come with an embedded camera. To avoid complex computations to infer the

robot position in relation to the red object from the position of both objects with

respect to the camera, we placed the camera on top of the robot. In this case, the

position of the robot in relation to the red object is the same as the position of

the camera in relation to the object.

The prototype was run in an obstacle-free area, where the robot and the red object

were placed in area covered by a webcam.

Figure 5-1 shows a picture taken while the robot is following a red object:

83

Figure 5-1: (above): Prototype scenario ;(below): LEGO following the red object

84

As we mentioned earlier, we have two assumptions for this scenario: First, that there is

no obstacle in the way so we do not introduce the challenge of obstacle avoidance

algorithm on the prototype; Second, the end-user and the robot are in the same area under

camera surveillance so there is no need hand over algorithms to guide the robot from one

site with camera 1 to the other site with camera 2.

5.2.1 Experiment Setup

We distributed the system using four computers. They are all connected to the same local

area network. Figure 5-2 shows the prototype setup. We ran the client, the FollowMe

application, and the high-level service on separate machines. The low-level services were

all run on a single machine. The LEGO is connected to the low-level services` machine

Figure 5-2: Prototype Setup

85

through Bluetooth interface. The Webcam is connected to the same machine through

USB interface.

 The operating systems installed on all machines were Windows 7. The hardware

characteristics and the specification of our test environment are described in the Table 5-

1 shown below.

Table 5-1: Specification of the test environment

Computers

Software Module

Hardware Configuration

CPU

Model

CPU

Speed

RAM

PC-1 End-user (client)

 Windows 7

Intel®

Core ™

Duo E6550

2.33 GHz

2 GB

PC-2 FollowMe (application)

 Windows 7

Intel®

Core ™

Duo E6550

2.33 GHz

2 GB

PC-3 ImageProcessing (H.L. service)

 Windows 7

Intel®

Core ™

Duo E6550

2.33 GHz

2 GB

PC-4 Drive , UltraSonicSensor (L.L.

services)

 Windows 7

2 Intel®

Xeon®

CPU

X3450

2.67 GHz

4GB

5.2.2 Software tools: Microsoft Robotics Studio Developer

MRDS introduces a new way to program robots in the Windows environment. MRDS

offers a set of tools and APIs that simplify the development and execution of robotics-

based applications. These applications may be communicating with real or

simulated robots. The MRDS`s Visual Simulation Environment is a 3D simulator with

full physics simulation that can be used to prototype new algorithms or robots. MRDS

provides support for a wide variety of robot hardware, including LEGO MINDSTORMS.

86

Key portions of the code for MRDS are available in source form. This offers many

opportunities for programmers to write new services that integrate directly into the

system.

The Microsoft Robotics Developer Studio Software Development Kit (SDK) consists of

two main components. The CCR and DSS comprise the run - time environment. The

tools come with programming examples and building blocks for user applications to help

programmers understanding the concepts introduced in the tools [14].

5.2.2.1 Concurrency and Coordination Runtime (CCR)

The CCR is a lightweight library that is supplied as a .NET DLL. It is designed to handle

asynchronous communication between loosely coupled services that are running

concurrently.

It provides classes and methods to help with concurrency, coordination, and failure

handling. CCR offers the ability of writing pieces of code that operate independently.

When a message is received, it is placed in a queue, called a port, until it can be

Figure 5-4: Example of service orchestration

(taken from [14])

87

processed by the receiver. The CCR library provides the necessary constructs when it is

necessary to wait until two or more operations have completed [14].

Figure 5-3 shows an example of how the services might be orchestrated to control a

robot. Every MRDS application will contain one or more services. Combining these

services and transmitting messages between them, whether they are located on the same

or different computers, is one of the tasks of DSS.

5.2.2.2 The Decentralized Software Services (DSS)

DSS is another library of Microsoft robotics tools. An application built with DSS consists

of multiple independent services running in parallel. Each service has a state associated

with it and particular types of messages that it receives called ‘Operations’ [14]. When a

service receives a message, it may change its state and then send notifications to other

services. The state of a service can be gained programmatically by sending a GET

message to the service or it can be retrieved and displayed using a web browser. Services

Figure 5-5: A DSS service components

 (taken from [14])

88

may subscribe to get notification when the state of a service changes or when other

events occur.

Services may also partner with other services so that they can send messages to those

services and receive responses [14]. Figure 5-4 shows a DSS service components and the

interaction between those components.

MRDS has the role of service provider in our application. It provides us with the services

that we need to develop the ‘FollowMe’ application. Instead of writing each service from

scratch, we use them as provided by the tool to achieve our goal. The high-level service ,

ImageProcessing, and low-level services, Drive, webcam and Ultrasonic Sensor, in the

prototype were implemented and run using MRDS. The tool also provides the

proprietary interfaces of the LEGO robot and the Webcam. The low-level services

communicate with the camera and with the robot using RoboticsCommon

Dynamic Link Library (DLL), which contains most of the important robotics

services in MRDS.

5.3 Performance evaluation

In this section the performance evaluation of our system will be discussed in the context

of a set of performance metrics.

5.3.1 Performance metrics

The performance of the prototype is assessed in terms of time delay and network

load. We measured the end-to-end time delay from the end-user point of view, as well

as the execution time delays for each of the services involved in the application

provisioning.

89

The end-to- end time delay is the time difference between when an end- user sends

a follow-me request to the application, and the time the robot starts moving, called End

user-Robot (ER). The delays for the other parts of the scenario (e.g. the robots following

the end-user) are not included in the end-to-end delay because they are human-

reaction dependent (e.g. how fast the end-user is moving). A service execution time

delay is the time difference between when a request is sent to the service and when a

response is received. For instance, the execution time delay for the ColorDetection

service is the time difference between when the application sends a request to the

service (for an object position) and when it gets the object position, called Application-

Camera (AC). The delays are measured in seconds.

The network load indicates the total number of bytes sent and received for the execution

of a given request. The network load to receive an object position, for instance, is the

number of bytes sent and received by the application to execute the

ColorDetection service. The end-to-end network load for the execution of a follow-me

request includes the loads for getting an object position and for asking the robot to

move. The message payloads related to image exchange (e.g. step 5 in Figure 5.1) are

not counted because they depend on the image type (e.g. JPEG, GIF) and size.

90

5.3.2 Performance analysis

The measurements were taken using CommView, a network monitor and analyze

tools for local area networks, and they are calculated as an average of 10

experiments. Figure 5-5 shows the performance result for the average time delay. As

shown in this figure, the time delay for ColorDetection-Camera (CDC) has the lowest

amount. The reason is that the interaction between the webcam service, which

ACD: Application GET object position from ColorDetection
AD: Application POST robot commands to the Drive
AS:Application GET distance from the Ultrasonic
CDC: ColorDetection GET image from Camera
AC: Application - webcam end to end
ER: End-user - Robot end to end

Figure 5-6: System performance in term of response delay

91

communicates with the actual webcam device, and the ColorDetection service does not

need any processing since it is just the image captured by the webcam. Application-

ColorDetection (ACD) spends more time for its execution. It is expected because image

processing, carried out by ColorDetection, requires the biggest amount of time among the

other processes. The second highest response time belongs to the Application-Sensor

(AS). This interaction needs the UltraSonicSensor service processes the sensor reading

received by the distance sensor (ultrasonic sensor) and checks for threshold (50cm for

our scenario) to notify the application.

The more complex the request, the more entities involved, the longer the delay, however,

all delays are reasonable. This concept is applicable to ER as well. The total delay for a

“follow me” request is in the range of 3.5 seconds, which remains acceptable from the

end-user point of view.

Figure 5-6 shows the network load for different requests. For a better illustration of the

advantage of REST compared to SOAP, we implemented the same application and

services using MRDS basic building blocks where a SOAP-based protocol is used

for the communication between the services over a distributed environment.

Figure 5-7: System performance in term of network load

92

As this figure shows, RESTful interfaces have an average of 2 to 3 times less overhead

compared to SOAP-based interfaces. This improvement is considerable when resource-

constrained devices are the targets. The request which induced the most network load

was the request to communicate with the Drive service (Application-Drive (AD)). This

is because the request sent by the application needs to include different types of

parameters to guide the service to correctly operate the robot, such as the speed

information. The response payload also contributes to the total load by including the

drive stage as well as robot’s speed and the covered distance. From the other side, the

least network load belongs to the end-user request. It is reasonable because the end-user

request is a simple REST request issued through a web browser with the input `red`

which determines the color that the robot should follow. The response to this request is

simply a successful response code `200`. Then the actual response to the end-user is the

robot moving.

5.4 Chapter Summary

In this chapter, we addressed the implementation of our prototype for our architecture

proposed in the previous chapter. The implemented protocol and mechanisms are based

on HTTP protocol that let us provide RESTful Web services as the communication

interface. We ran the prototype in a local area network environment. We used four

computers of the network, an actual LEGO robot and a webcam to develop and test the

application. Microsoft Robotics Studio Developer (MRDS) was used as the development

and deployment tools.

We evaluated the performance of our system with a small version of the corresponding

architecture and obtained our results from 10 experiments. We have defined performance

93

metrics to evaluate the feasibility and efficiency or our architecture and collected the

corresponding results from network monitoring tools.

Through the experiments we learnt that our proposed architecture is a promising

approach for the rapid development and deployment of companion robots applications.

The developers can develop their applications using our solution. It provides them with a

platform that enables them to develop their applications by simply reusing and

composing different services, and using the designed interfaces for the interaction

between the required services, to achieve the goal. We also found that RESTful web

services are the best existing solution for a simple and unified development while being

suitable for resource-constrained devices.

94

Chapter 6:
Conclusions and Future Work

In this chapter, we summarize the contributions of this thesis and discuss the remaining

issues which can be considered as potential future work.

6.1 Summary of Contributions

Improving the quality of life for the elderly and disabled persons is essential for the

society. Statistics reveal that the number of persons requiring home health care in the

year 2040 will make up nearly 3.5 % of the population [52]. Companion Robot is

targeted technology that enables this population to live independently with a good quality

of life and longer in their own homes.

The numerous applications and robots technologies in the home-care domain, reusing and

extending existing system effectively for individual projects are all important issues and

challenges in this filed.

Future population of the elderly and disabled people will require the development of new

and more sophisticated applications. It is important that the developers be able to reuse

the existing applications and create new ones that realize more complex services.

In this thesis, we examined three main challenges in this domain: applications variety,

robots heterogeneity and resource-constrained devices.

Application variety relates to the different demands of the individuals. Robot

heterogeneity relates to the different needs, for which robots are designed, this suggest

95

that robots have different capabilities. The third challenge stems from the rapid progress

in robot technology, which may lead to robots with higher processing capabilities, these

robots are manoeuvred through devices such as Smartphone, PDAs, etc. Such devices are

classified as resource-constrained devices with limited power and computation resource.

This raises concerns when designing architecture that enables the development and

deployment of companion robots applications.

Our thesis went further on to general and interface specific requirements for rapid

development and deployment of companion robots applications. An extensive survey was

conducted on existing solutions in the research domain. These solutions were then

divided into non-standards based, standards based (CORBA and SOAP) and REST based

categories. These categories were evaluated with respect to our requirements. We

concluded that none of the solutions that currently exist meet all our derived requirements

necessary for companion robots applications development and deployment.

As a core contribution of the thesis, we proposed an architecture that enables the rapid

development and deployment of companion robots applications. Our

architecture is REST-based and consists of different layers, ranging from low-

level services to communicate with hardware devices to high-level application

components for interacting with end users. The architecture enables different types

of companion robots applications and can operate on heterogonous robots.

Furthermore, REST resources were modeled and a detailed table providing the

descriptions of the resources and the HTTP action that each resource support was

presented.

96

To demonstrate our architecture, we implemented a prototype for an application called

‘FollowMe’. We evaluated the performance of the system based on two metrics: time

delay and network load. We measured the time delay from the end-user point of view as

well as the time of execution of each request. We concluded that the delay was

reasonable for all requests. The network load results also showed that REST has

superiority over SOAP due to its light-weight characteristics. Based on the overall results

we concluded that our architecture is a promising approach for developing and deploying

companion robots applications.

6.2 Future Work

The presented work is primarily focused on companion robots applications. In our

implementation we assumed that the robot and the individual are in area surveyed by one

camera. It is probable that more than one cameras are needed to guide the robot through

different sites in the home, therefore a protocol is needed to hand over the robot from site

A covered by one camera (e.g. camera 1) to the site B covered by another camera (e.g.

Camera 2) without losing visual of the robot.

In this field security and safety is a significant consideration, a potential future extension

may be to adjust the architecture to support Quality of Services (QoS). The need to adjust

the architecture to include QoS is evident when the people in question require health

monitoring or are prone to confusion due to memory loss. Prioritization is one of the

QoS that may be added to the architecture, to aid in emergency situations that require

indicating trouble, as well as sensing a changed condition in the home and with the

97

individual. The robot needs to perform different tasks in an order to insure the safety of

the individual first and foremost.

98

Bibliography

[1] R. D. Schraft, C. Schaeffer, and T. May, “Care-O-bot/sup TM/: the concept of a

system for assisting elderly or disabled persons in home environments,” in 24th

Annual Conference of the IEEE Industrial Electronics Society, IECON ’98, 1998,

vol. 4, pp. 2476–2481.

[2] A. Makarenko, A. Brooks, and T. Kaupp, “Orca : Components for Robotics,” in

International Conference on Intelligent Robots and Systems (IROS’06), Workshop

on Robotic Standardization, 2006.

[3] F. Heckel, T. Blakely, M. Dixon, C. Wilson, and W. D. Smart, “The WURDE

Robotics Middleware and RIDE Multi-Robot Tele-Operation Interface,” in AAAI

Mobile Robot Competition 2006: Papers from the AAAI Workshop, 2007.

[4] M. E. Pollack, S. Engberg, J. T. Matthews, J. Dunbar-jacob, C. E. Mccarthy, and

S. Thrun, “Pearl : A Mobile Robotic Assistant for the Elderly,” in Workshop on

Automation as Caregiver: the Role of Intelligent Technology in Elder Care

(AAAI), 2002.

[5] B. P. Gerkey and R. T. Vaughan, “The Player / Stage Project : Tools for Multi-

Robot and Distributed Sensor Systems,” in International Conference on Advanced

Robotics (ICAR), 2003, no. Icar, pp. 317–323.

[6] H. Bruyninckx*, “Open robot control software: the OROCOS project,”

Proceedings 2001 ICRA. IEEE International Conference on Robotics and

Automation (Cat. No.01CH37164), vol. 3, pp. 2523–2528, 2001.

[7] C. Buiu and N. Moanta, “Using Web services for Designing a Remote Laboratory

for Motion Control of Mobile Robots,” in World Conference on Educational

Multimedia, Hypermedia and Telecommunications ((EDMEDIA)), 2008, pp.

1706–1715.

[8] R. Edwards, L. E. Parker, and D. R. Resseguie, “Robopedia : Leveraging

Sensorpedia for Web-Enabled Robot Control,” in International Conference on

Pervasive Computing and Communications Workshops (PERCOM Workshops),

2010, no. March, pp. 193–188.

[9] “Common Object Request Broker Architecture (CORBA),” Object Management

Group (OMG®), 2011. [Online]. Available: http://www.omg.org/spec/index.htm.

[Accessed: 11-Jun-2013].

[10] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F. Nielsen,

S. Thatte, and D. Winer, “Simple Object Access Protocol (SOAP) 1.1,” W3C

99

Recommendation. [Online]. Available: http://www.w3.org/TR/2000/NOTE-

SOAP-20000508/. [Accessed: 05-Jun-2013].

[11] R. T. Fielding, “Architectural Styles and the Design of Network-based Software

Architectures,” University of California ,Irvine, 2000.

[12] M. Henning, “The rise and fall of CORBA,” Commun. ACM, vol. 51, no. 8, pp.

52–57, Jun. 2008.

[13] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau, “Extensible

Markup Language (XML) 1.0 (Fifth Edition),” W3C Recommendation, 2008.

[Online]. Available: http://www.w3.org/TR/REC-xml/. [Accessed: 11-Jun-2013].

[14] K. Johns and T. Taylor, Professional Microsoft Robotics Developer Studio, 1st ed.

Indianapolis, Indiana: Wiley Publishing, Inc., 2008.

[15] “CommeView Network Analyzer,” TAMOSoft. [Online]. Available:

https://www.tamos.com/products/commview/. [Accessed: 11-Jun-2013].

[16] “Robotics,” Galileo Educational Network, 2003. [Online]. Available:

http://www.galileo.org/robotics/intro.html. [Accessed: 10-Jun-2013].

[17] Honda Motor Co. Ltd, “ASIMO Technical Information,” Public Relations

Division, 2007.

[18] N. A. Weir, D. P. Sierra, and J. F. Jones, “Printed October 2005 A Review of

Research in the Field of Nanorobotics,” Oak Ridge, TN, 2005.

[19] I. I. F. of Robotics, “History of Industrial Robots From the first installation until

today Milestones of Technology and Commercialization,” Frankfurt ,Germany,

2012.

[20] “International Organization of Standardization,” 1947. [Online]. Available:

http://www.iso.org/iso/home.html. [Accessed: 11-Jun-2013].

[21] P. McKerrow, Introduction to Robotics. Addison-Wesley, 1998, p. 260.

[22] P. Lima and M. I. Ribeiro, “MOBILE ROBOTICS,” Instituto Superior

Técnico/Instituto de Sistemas e Robótica, 2002. [Online]. Available:

http://users.isr.ist.utl.pt/~mir/cadeiras/robmovel/Introduction.pdf.

[23] N. S. Board, AUTONOMOUS VEHICLES IN SUPPORT OF NAVAL

OPERATIONS. Washington, D.C.: THE NATIONAL ACADEMIES PRESS,

2005, p. 256.

100

[24] S. Hirose, “Three Basic Types of Locomotion in Mobile Robots,” in 5th

International Conference on Advanced Robotics, “Robots in Unstructured

Environments” (ICAR), 1991, pp. 12 – 17 vol.1.

[25] “International Federation of Robotics,” 1987. [Online]. Available:

http://www.ifr.org/home/. [Accessed: 11-Jun-2013].

[26] A. Haasch, S. Hohenner, M. Kleinehagenbrock, S. Lang, I. Toptsis, G. A. Fink, J.

Fritsch, B. Wrede, and G. Sagerer, “BIRON – The Bielefeld Robot Companion,”

in International Workshop on Advances in Service Robots, 2004, no. May.

[27] “A Multi-Purpose Robotic Platform,” Mesa Robotics, Inc. [Online]. Available:

http://www.mesa-robotics.com/acer.html. [Accessed: 10-Jun-2013].

[28] J. E. Speich and J. Rosen, “Medical Robotics,” Biomaterials and Biomedical

Engineering. Marcel Dekker, Inc., 2004.

[29] K. Tae-gyu, “Robots to Replace Native English Teachers,” The Korea Times,

Seodaemun-gu, Seoul, 27-Jan-2010.

[30] J. Hsu, “South Korean Robot English Teachers Are Go,” POPSCI, 2010.

[31] J. Forlizzi and C. Disalvo, “Service Robots in the Domestic Environment : A

Study of the Roomba Vacuum in the Home,” in HRI’06, 2006, pp. 258–265.

[32] Information and Robot Technology Research Initiative, “Cleaning and Tidying

Technology for Home-Assistant Robots,” The University of Tokyo, Tokyo, 2008.

[33] S. Inc, “A Healthcare/Eldercare Robot based on Skilligent Technology,” Revision

7, 2008.

[34] J. Pineau, M. Montemerlo, M. Pollack, N. Roy, and S. Thrun, “Towards robotic

assistants in nursing homes: Challenges and results,” Socially Interactive Robots,

Robotics and Autonomous Systems, vol. 42, no. 3–4, pp. 271–281, Mar. 2003.

[35] a. Saxena, J. Driemeyer, and a. Y. Ng, “Robotic Grasping of Novel Objects using

Vision,” The International Journal of Robotics Research, vol. 27, no. 2, pp. 157–

173, Feb. 2008.

[36] D. Gouaillier, V. Hugel, P. Blazevic, C. Kilner, J. Monceaux, P. Lafourcade, B.

Marnier, J. Serre, and B. Maisonnier, “Mechatronic design of NAO humanoid,” in

2009 IEEE International Conference on Robotics and Automation, 2009, pp. 769–

774.

101

[37] C. Fu, F. Belqasmi, and E. Canada, “RESTful Web Services for Bridging Presence

Service across Technologies and Domains : An Early Feasibility Prototype,” IEEE

Communication Magazine, no. December, pp. 92–100, Dec-2010.

[38] A. D. Birrell and B. J. Nelson, “Implementing remote procedure calls,” ACM

Transactions on Computer Systems, vol. 2, no. 1, pp. 39–59, Feb. 1984.

[39] R. Chinnici, J.-J. Moreau, A. Ryman, and S. Weerawarana, “Web Services

Description Language (WSDL) Version 2.0 Part 1: Core Language,” W3C

Recommendation, 2007. [Online]. Available: http://www.w3.org/TR/wsdl20/.

[Accessed: 09-Jun-2013].

[40] M. ELKSTEIN, “Learn REST: A Tutorial.” [Online]. Available:

http://rest.elkstein.org/. [Accessed: 11-Jun-2013].

[41] J. Reynolds and J. Postel, FILE TRANSFER PROTOCOL (FTP), RFC 959. 1985.

[42] F. A. et Al., The Internet Gopher Protocol (a distributed document search and

retrieval protocol), RFC 1436. 1993.

[43] F. Davis, B. Kahle, H. Morris, J. Salem, and T. Shen, “WAIS Interface Protocol

Prototype Functional Specification.” Thinking Machines Corporation, 1990.

[44] L. Richardson and S. Ruby, RESTful Web Services Web services for the real

world, 1st ed. O’Reilly and Associates, 2007, p. 454.

[45] M. Hadley, “Web Application Description Language,” W3C Recommendation,

2009. [Online]. Available: http://www.w3.org/Submission/wadl/. [Accessed: 11-

Jun-2013].

[46] F. Belqasmi and R. Glitho, “RESTful Web Services for Service Provisioning in

Next-Generation Networks : A Survey,” no. December, pp. 66–73, 2011.

[47] D. Crockford, The application/json Media Type for JavaScript Object Notation

(JSON), RFC 4627. 2006.

[48] Members of the W3C HTML Working Group, “XHTMLTM 1.0 The Extensible

HyperText Markup Language (Second Edition),” W3C Recommendation, 2000.

[Online]. Available: http://www.w3.org/TR/xhtml1/#xhtml. [Accessed: 11-Jun-

2013].

[49] T. H. J. Collett and B. A. Macdonald, “Player 2 . 0 : Toward a Practical Robot

Programming Framework,” in Australasian Conference on Robotics and

Automation (ACRA), 2005.

102

[50] Sun Microsystems, XDR: External Data Representation standard, RFC 1014.

1987.

[51] Z. Dehuai, X. Gang, and W. Hai, “Study on Teleoperated Home Care Mobile

Robot,” in Robotics and Biomimetics (ROBIO), 2007, pp. 43–46.

[52] D. C. Schaeffer, “Care-O-bot TM : A System for Assisting Elderly or Disabled

Persons in Home Environments,” in AAATE 99, 5th European Conference for the

Advancement of Assistive Technology, 1999, pp. 1–6.

[53] Y. Sakagami, R. Watanabe, and C. Aoyama, “The intelligent ASIMO: System

overview and integration,” in International Conference on Intelligent Robots and

Systems, 2002, 2002, no. October, pp. 2478 – 2483 vol.3.

[54] D. Calisi, A. Censi, L. Iocchi, and D. Nardi, “OpenRDK : a modular framework

for robotic software development,” in IEEE/RSJ International Conference on

Intelligent Robots and Systems, 2008, pp. 1872 – 1877.

[55] A. Hans Utz, Stefan Sablatnög, Stefan Enderle and G. Kraetzschmar, “Miro —

Middleware for Mobile Robot Applications,” IEEE Transactions on Robotics, vol.

18, no. 4, pp. 493–497, 2002.

[56] A. Gokhale, B. Kumar, and A. Sahuguet, “Reinventing the Wheel? CORBA vs.

Web Services,” in International World Wide Web Conference, 2002.

[57] H. R. Sheikh, “Comparing CORBA and Web-Services in view of a Service

Oriented Architecture,” International Journal of Computer Applications, vol. 39,

no. 6, pp. 47–55, 2012.

[58] B. K. Kim, M. Miyazaki, K. Ohba, S. Hirai, and K. Tanie, “Web Services Based

Robot Control Platform for Ubiquitous Functions,” in International Conference on

Robotics and Automation, ICRA 2005, 2005, no. April, pp. 691–696.

[59] C. Pautasso and F. Leymann, “RESTful Web Services vs . ‘ Big ’ Web Services :

Making the Right Architectural Decision,” in 17th International World Wide Web

Conference (WWW2008), 2008, pp. 805–814.

[60] F. P. and F. P. Eleri Cardozo, Eliane Guimar˜aes, Lucio Rocha, Ricardo Souza, “A

Platform for Networked Robotics,” in International Conference on Intelligent

Robots and Systems (IROS), 2010, pp. 1000–1005.

[61] J. S. Cepeda, L. Chaimowicz, and R. Soto, “Exploring Microsoft Robotics Studio

as a Mechanism for Service-Oriented Robotics,” in Latin American Robotics

Symposium and Intelligent Robotics Meeting (LARS), 2010, pp. 7–12.

103

[62] B. Y. J. Jackson, “Microsoft Robotics Studio: A Technical Introduction,” IEEE

Robotics and Automation Magazine, vol. 14, no. 4, pp. 82–87, 2007.

[63] B. T. Horowitz, “Cyber Care: Will Robots Help the Elderly Live at Home

Longer?,” Scientific American, Division of Nature America, Inc., 2013. [Online].

Available: http://www.scientificamerican.com/article.cfm?id=robot-elder-care.

[Accessed: 11-Jun-2013].

[64] R. Andriany, “Robot Housekeeper!,” 2010. [Online]. Available:

http://rajandriany.blogspot.ca/2010_11_01_archive.html. [Accessed: 11-Jun-

2013].

[65] “RESCUE ROBOTS,” Web Japan , Trends in Japan , Sci-tech, 2010. [Online].

Available: http://web-japan.org/trends/09_sci-tech/sci100909.html. [Accessed: 11-

Jun-2013].

