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ABSTRACT  

EARLY AND ACCURATE MODELING OF STREAMING EMBEDDED APPLICATIONS 

Richard Lee 

This thesis presents automatic generation of fast and accurate timed models of streaming 

embedded applications, before the complete software-hardware platform is available. We 

focus on streaming applications, because they tend to be the most compute-intensive 

applications on mobile devices. Therefore, it is critical to optimize the hardware-software 

platform for streaming applications, as early as possible in the design process. As such, fast, 

accurate and early models are essential for hardware-software optimization.  

Our design methodology is as follows. First, a measurement model is generated and 

executed, on the target processor, to predict the computation delays in an application. Next, 

the delays are annotated in the application code to generate a host-compiled model of the 

application. Our experiments show that such models can be generated and simulated at very 

high speed and accurately predict the computation load offered by the application. Our 

results with large streaming media applications, such as music and voice codecs, show that 

the estimation errors are less than 3.3%, while providing very high simulation speed. 

Therefore, using our models, embedded system designers can perform early optimizations to 

the system architecture with high confidence. 
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CHAPTER 1 

1 Introduction 

One of the primary goals of embedded system design is to co-optimize the software-

hardware architecture for a given application. Designers typically tune various system 

parameters such as task priorities, scheduling policies, interrupt rates, types and numbers of 

hardware accelerators in order to optimize system performance for a given application. 

Model-based design advocates early system models that are executable and semantically 

represent the software-hardware architecture. The architectural parameters of the hardware-

software design are modified, and a new model is created to measure the impact of various 

design changes. A major challenge in modeling is the need for early and accurate 

performance estimation for a given software-hardware architecture. Designers are particularly 

concerned with determining the computation load offered by an application which is executed 

on the target processor. In this work, we have focused on streaming applications, since they 

tend to be the most compute intensive and power hungry applications on mobile platforms. 

Some examples of these applications are audio, video, and voice encoding/decoding. 

1.1 Model Types 

Various modeling methods have been proposed in the past to estimate software 

performance on a given hardware platform. Most common approaches include processor 

instruction set simulation, source-level analysis and worst-case execution time (WCET) 

analysis. Instruction-set simulation are extremely slow and, therefore, not well suited for 

extensive design space exploration. On the other hand, source-level analysis can be fast and 
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accurate, but relies on the availability of the entire application’s source code, which includes 

libraries. Moreover, details of the processor architecture must be available for timing analysis, 

which is not always practical for intellectual property (IP) confidentiality reasons. Lastly 

WCET analysis is excellent for hard real time systems, but provides pessimistic timing 

estimates, which may not be relevant for most embedded applications. Relying on WCET 

analysis can lead to overdesign. 

In order to address the speed and accuracy issues of above techniques, we have proposed a 

measurement-based technique for modeling streaming applications on embedded platforms. 

Our models can be simulated to determine the load offered by the application to the target 

processor. Our technique capitalizes on the following two observations: 

(1) Typically, the processor core is available on an evaluation board or as a virtual prototype. 

The design challenge is to create an optimal platform by integrating on-chip buffers, 

hardware accelerators, and various interfaces with the processor together, and then porting 

the system software to the platform. 

(2) Most streaming embedded applications are designed as process networks, with little 

control flow inside the processes themselves. Consequently, the amount of computation 

inside a process depends largely on the amount of data being processed, as opposed to the 

data values themselves. 

We present a motivating example of streaming application optimization. Figure 1.1(a) 

shows the message sequence chart of a typical multi-tasking streaming application executing 

on an embedded platform. The application is mapped to a target embedded processor, running 

a Real-Time Operating System (RTOS). The application is designed as a set of user tasks (T1, 

T2, …, Tn) that communicate amongst themselves using local buffers (buffer1, 
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buffer2,…buffern). The input data stream is received from a file, network or other I/O, such as 

a microphone or camera, and stored in an on-chip hardware buffer (IN buffer). The output 

decoded/encoded data is stored in another on-chip hardware buffer (OUT buffer). The OUT 

buffer data is consumed by the network interface or other I/O, such as speakers or a display. 

An underflow interrupt from the OUT buffer is used to wake up the application tasks. The 

tasks then execute their respective encoding/decoding functions, write into their respective 

output buffers, and seek more data in their input buffers if needed. 

 
(a) 

 

 
(b) 

Figure 1.1 Impact of buffer sizing on computation load 
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An execution instance of the application in Figure 1.1(a) would proceed as follows. The 

underflow interrupt from the OUT buffer triggers the interrupt service routine (ISR), which 

copies any existing processed data from buffer1 into OUT buffer. If there is insufficient data in 

buffer1 to fill OUT buffer, the ISR sends a message to T1 to write more data into buffer1. Task 

T1 is therefore activated and reads from its input buffer (buffer2), processes it, and writes the 

output into buffer1. If there is insufficient data in buffer2, T1 sends a message to activate T2 to 

signal it to write more data into buffer2 and so on. Finally, Tn is activated to read and process 

more raw data from IN buffer. 

The sizing of the hardware buffers can have significant consequences on the performance 

of the system. For instance, if the OUT buffer is very small, it will take a short time to fill it, 

assuming a constant stream of incoming raw data in the IN buffer. As a result, the 

decoding/encoding delays will be small, leading to good quality of service. However, the 

OUT buffer data will also be consumed in a short time, leading to frequent underflow 

interrupts. Every underflow interrupt causes a context switch by the RTOS, and the cache 

needs time to be warmed up with tasks T1 to Tn. Once the OUT buffer is filled, the RTOS may 

switch to other user applications or kernel tasks, thereby potentially evicting T1 to Tn from the 

cache. When the next underflow interrupt arrives, the cache must again be warmed up with 

tasks T1 to Tn.  

If we consider the reverse scenario where the OUT buffer is very large, it will take longer 

time to fill it, assuming a constant stream of raw data in the IN buffer. The decoding/encoding 

delays will be therefore larger, leading to a poorer quality of service. However, there will be 

less frequent underflow interrupts, more data processing done by the user tasks per underflow 

interrupt, and, fewer context switches. The cache will still need to be warmed up with tasks T1 
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to Tn after every underflow interrupt, but since the processor will be executing more iterations 

of the tasks per interrupt, the average cache behavior of the application will improve. 

The consequences of buffer sizing are illustrated in Figure 1.1(b). The output buffer size is 

defined in terms of the time it takes to consume the data in the buffer. For instance, a buffer 

size of 20 ms corresponds to the amount of decoded data needed to playback 20 ms of music 

or voice. In the first trace, the OUT buffer size is set to 20 ms, leading to an average of t ms of 

task execution per underflow interrupt. Therefore, the computation load offered by the 

application is t/20. If the OUT buffer size is increased to 40 ms, the computation time per 

interrupt will increase to t' ms, since the amount of total computation per underflow interrupt 

will double. However, the improved overall cache performance, would imply that t' <2t. 

Therefore, the overall computation load offered by the application will be less than t/20, 

resulting in lower power consumption. 

The computation delay of the tasks, per underflow interrupt, may vary greatly with the 

state of the cache. As such, it is impractical to statically determine the computation delays. 

Therefore an executable simulation model is needed to predict these computation delays and 

to ascertain the average loads offered by the application. The system designer can use the 

predicted load to optimize the buffer size and other parameters for desired performance and 

quality of service. 

This thesis presents a model methodology and its corresponding generation tools that are 

specifically designed for streaming applications. This model is aimed at facilitating early 

design decisions. 
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1.2 Methodology 

Figure 1.2 illustrates our modeling methodology. Our methodology requires two models, 

namely the measurement model and the simulation model. As shown above, these two 

models are generated by two independent model generators. The common inputs to both 

generators are: (i) the system configuration, which is an abstract representation of the target 

hardware platform in xml, (ii) the application source code, and (iii) a SystemC model of the 

target RTOS.  

1.2.1 Model Inputs 

The System Configuration input provides the information on how to model the targeted 

hardware platform. It also provides the necessary tasks, source files, and RTOS library that 

are needed by the Application Software and RTOS Model inputs. The application software is 

directed to the target RTOS and uses the RTOS API to manage the tasks and their 

communication. Furthermore, the RTOS model implements the scheduling policy of the 

target RTOS and the inter-task communication primitives in SystemC. Details on the RTOS 

model are further discussed in Chapter 2.  

 

Figure 1.2 Modeling Methodology 
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Consider the illustration of the application code in Figure 1.2. The application consists of 

tasks, each containing source code blocks that represent the task computation. During 

execution, the application task may execute from a block of code (b1) to one of many source 

paths (P12, P13, P14) depending on the state of the application. The different paths may lead to 

different blocks of code (b2, b3, b4), which may take different amount of time to execute. 

Therefore, the application code needs to be annotated to identify which blocks are executed in 

order to accurately model the execution timing. 

The model generators perform the annotation of the application code. Depending on the 

granularity of the annotation, the generators may produce different models of the annotated 

code. There are two types of annotation: fine-grained and coarse-grained. A fine-grained 

annotation would result in several invocations of the simulation kernel, leading to a slower 

simulation. A coarse-grained annotation will result in a faster simulation, but may lead to 

poorer accuracy. We consider fine-grained annotations at the basic-block level, and coarse-

grained annotations at computation blocks between RTOS kernel calls. 

A basic-block is, by definition, a sequence of instructions such that if the first instruction is 

executed, then all the instructions in the basic block are executed. They have a single point of 

entry and a single point of exit during execution. The basic-blocks are not visible at the 

source level of the applications and can only be observed at the assembly level. An inter-

kernel-block is defined as a sequence of application code between two RTOS kernel calls. 

During an execution of an inter-kernel block, no RTOS kernel call is made. So, we consider 

the inter-kernel-blocks to be atomic for annotation purposes. An inter-kernel-block typically 

consists of multiple basic-blocks. Hence, inter-kernel-blocks are coarser in granularity. 

Annotating at the inter-kernel-block level is acceptable for our methodology because (i) 
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streaming applications have limited control flow and (ii) RTOS calls are easy to identify 

while parsing the source code. The method for annotation at the basic-block and inter-kernel-

block levels is further discussed in Chapter 4 and 5 respectively. 

1.2.2 Measurement Model Generator 

The Measurement Model Generator produces a SystemC model of the application, with 

annotated hooks to measure and log the execution times of each block. The application model 

is linked with the RTOS model to produce a binary that can be executed on a base operating 

system (OS), such as Linux, running on the target processor. After execution, a log of block 

delays, over several iterations, is obtained. 

1.2.3 Logs Processing 

The computation delay for a single block may vary across iterations due to a variety of 

environmental factors, such as processor state, cache state, or scheduling in the base OS. 

Hence, the delays for each block are processed to account for such variations. Each block’s 

logged data is filtered to take the above variations into account. The logged delays for each 

block are extracted as a single average or median delay, or as sets of stochastic delays. The 

processing of the logs is discussed in Chapter 3, Section 3.3. 

1.2.4 Simulation Model Generator 

The block delays from the processed logs are annotated to the application code. The 

annotated application is linked with the SystemC model of the RTOS and hardware platform 

to generate the simulation model. The simulation model is then executed on a host machine to 

obtain estimated CPU load offered by the application. The CPU load estimation is performed 
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on the host machine to accelerate the simulation speed, since it is faster than the target 

machine. 

1.3 Related Work 

There are three fundamental modeling technologies that can be used to estimate resource 

consumption by embedded software before hardware availability: (i) traffic generators, (ii) 

instruction-level simulation models, and (iii) host-compiled timed transaction-level models 

(TLMs). 

1.3.1 Traffic Generators 

Traffic generators are used very early in the design flow, even before the application 

source code is available. The goal is to exercise the underlying hardware, or its model, with 

stochastic execution scenarios that can be expected from the application. Traffic generators 

typically inject data packets or messages into the hardware model to replicate the data 

communication traffic generated by the software application. The generated traffic is based 

on estimation of the application’s workload. Naturally, traffic generators are not an accurate 

representation of embedded software execution and are of limited use. However, they can be 

useful. 

The methodology in [1] proposes to three approaches to study the system performance 

before the hardware design is complete. The first approach models the software behavior with 

some level of the hardware descriptions. The second uses a trace to measure and replicate the 

transactions between the processor and the external memory. The third approach blends the 

first two methods as a stochastic traffic generator to estimate the pre-silicon system 
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performance. The three approaches generate more accurate results only as the description of 

the software and hardware architectural designs become more available. 

1.3.2 Instruction-Set Simulator 

Instruction-level simulation models are often used as virtual hardware platforms for 

software development, before the hardware is available. The instruction-set simulator is 

usually programmed in a high-level language to model the processor. The processor model 

typically emulates instruction fetch, decode, execution, and memory operations. The 

execution of the instructions transforms the modeled processor’s registers, thereby providing 

visibility into the processor state.  The accuracy of an instruction set simulator depends on the 

abstraction level at which the processor has been modeled. The instruction set-simulator is 

typically slow as it has to interpret every instruction in the application binary at the cycle 

accurate level [2-3]. 

The research presented in [2, 14, 28] uses analytical and simulation-based approaches to 

obtain accurate and fast performance estimations. The analytical approach considers the worst 

case/best case execution time of basic-blocks. The simulation-based approach executes the 

input application code on the target architecture, modeled in SystemC, and back-annotates the 

basic-block delays from the analysis. The back-annotation also considers the timing delays 

for branch prediction and cache hits and misses. These approaches’ case studies show a 

speedup of up to 91% from the ISS approach and an error rate of 4%-7% which is in the same 

range of an ISS. 

The work in [3, 29] uses a High-level Virtual Platform (HVP) to provide early software 

development. HVP models execution of applications on multiprocessor System-on-Chips. 

Moreover, HVP mainly focuses on supporting software development, meaning the 
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application code can be modified in early design stages. The HVP framework models the 

application code as tasks and the processors as virtual processing elements. Similar to our 

methodology, an abstract OS model must be provided to schedule the tasks to execute on the 

virtual processing elements. The tasks can be provided as native C code or ISS tasks. The 

latter requires an ISS to be available. It is assumed that an ISS can be used when a processor 

has already been determined in early design stages. The experimental results were able to 

predict the application execution speed up by using multiple virtual platform elements to 

determine the trade-off between the execution speed and the number of processors. The 

experimental results also showed that using the native C code provided a much faster 

simulation than the instruction-set simulators. 

While both techniques in above provide accurate and fast performance estimations, they 

need the virtual platforms to develop the system software, such as RTOS and drivers. In order 

to use the instruction-level virtual platform for estimating embedded software performance, 

the RTOS must already be available on the virtual platform. In contrast, our modeling 

methodology assumes that the target processor is already available, and that a new hardware 

platform is to be designed around the processor. This is a more realistic assumption, since 

generations of products do not typically change processor types. The hardware platform 

transitions in most industrial design methodologies are more gradual and incremental. 

Furthermore, our modeling methodology is several orders of magnitude faster than ISS-based 

models.  

1.3.3 Transaction-Level Modeling 

Transaction-level modeling is high-level approach where the communication and the 

implementation of platform architecture are separated. TLMs are typically developed in 
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system-level design languages, such as SystemC, and can be executed on a host machine [4]. 

There have been several approaches to automatically generate TLMs from a high level 

description of the target hardware, but a timed RTOS model is needed to accurately estimate 

the application execution time on a given platform [5–7]. 

The work in [5] presents the automation of TLMs for multicore platforms. Their approach 

generates two TMLs: a functional model and a timed model. The functional model ensures 

the application semantics are still preserved after distributing the workload onto multiple 

cores. The timed model provides the performance of the application platform design. They 

have used the low-level virtual machine (LLVM) to compile the basic blocks, annotate the 

timing delays code, and disassemble the annotated blocks. The disassembled annotated block 

can be recompiled on the host machine to speed up the simulation time. The processing 

elements uses cycle delays to consider the execution of the pipelined instructions, ALU 

computation, cache hit/misses, and branches. Their experimental results proved that using the 

TML simulations were much faster than register-transfer level (RTL) and instruction-set 

simulations and that the number of executed cycles were accurate (error of 4.5%-7%). 

However, the number of executed cycles is not enough to predict the application performance 

due to the multicore parallelism. Hence, a timed RTOS model was incorporated into the 

timed model to prove that scheduling the tasks on multiple cores was needed to provide 

accurate timing. 

The approach presented in [6] integrates the Quick EMUlator (QEMU) [23] and SystemC 

[24] to create a TLM for multiprocessor system on chip. The QEMU component is used to 

simulate the processor’s behavior (fetch, decode, execute, branch, and cache-hit/miss) for 

both the native C code and the low-level instructions. The native C code can be first cross-
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compiled for target, then annotated, and finally dissembled back for the host like [5]. 

SystemC is used to model the other platform components such as hardware accelerators and 

to manage the QEMU component as a module. The management allows execution 

concurrency with respect to the SystemC hardware models. The approach has deducted that 

combining QEMU and SystemC can provide an application’s performance with accuracy 

similar to that of an ISS, with the exception that the simulation will be faster. However, the 

timing model of native C tasks which are mapped to the same processing element is not 

accurate because their execution is not interleaved on the processing element. 

The methodology in [7] proposes to use an actor-oriented model to describe the functional 

behavior of an application. This approach uses SysteMoC (a SystemC based library for actor-

oriented models), which allows the actors to communicate through channels. The actors are 

mapped into processing elements which uses ISSs in order to simulate the computation. 

Although no RTOS was cited, it was mentioned that a scheduler implementation is required 

when a processing element has multiple actors. 

The above mentioned papers provide an excellent base for embedded application 

performance estimation. The common complication for the above approaches is the modeling 

of concurrency of multiple tasks/actors on a single processing element. Since their 

methodologies use SystemC, a model of the RTOS scheduler can also be developed similarly 

to [8–11] to manage task concurrency. However, the above methods require the availability of 

a detailed processor data model for timing accuracy. Such data may not be readily available 

due to intellectual property protection of the processor. 

The RTOS models presented in [8-11] had the common goal to model the dynamic 

scheduling of the application tasks. Task preemption, synchronization, interruption, and 
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execution were implemented using system-level design languages such as SystemC [24],  

SpecC [25], and Metropolis [26]. We are particularly interested in the task modeling to see 

how a processing element can be scheduled to model the execution of a single task at a time. 

Moreover, we want to determine the execution time each task takes on the target processor.  

RTOS models can also incorporate timing delays of kernel calls as presented in [12–13]. 

The incorporated timings delays are dependent of the design of the processing element, which 

may not be available in early stages. The number of cycles required by the processing element 

can be computed based on the data flow execution of the instructions. It may be possible to 

manually insert the delay annotations in the source, but such approach is not practical for 

large applications. Hence, an automated solution is desirable to quickly obtain the accurate 

timing delays. In host-compiled TLMs, timing is added to the application source code, and 

the annotated application is linked to an RTOS model for simulation [14–17]. Typically, the 

timing is annotated at the function or basic-block level [18]. Source-level simulation 

techniques can be used for accurate instruction and data cache simulation [19–20]. However 

timing annotation in TLMs requires a data model of the processor, which is not always 

available due to intellectual property concerns. Moreover, the entire source of the application, 

including libraries, must be available. As such, source-level timing annotation, based on static 

code analysis, is not always practical. The contribution presented in this thesis builds upon 

previous work on RTOS modeling in SystemC. We use an executable measurement model to 

determine timing of application code. Therefore, our model can use the RTOS targeted 

application code as is without requiring the library sources. We do not model the timing of 

the RTOS primitives themselves, since the RTOS overhead is observed to be in the range of 

2-5% for streaming applications [27]. 
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1.4 Thesis Contribution 

This thesis presents a novel methodology and supporting tools which provides early and 

accurate modeling of streaming embedded applications. The main contributions this paper 

presents are: 

 A novel modeling methodology for embedded systems, based on measurement on the 

target platform and simulation on a host system. The methodology enables early and 

reliable design space exploration. 

 Design and implementation of tools for automatic generation of embedded system 

models from abstract hardware and system software specification. The model 

automation replaces the time-consuming and error-prone process of manual modeling 

of streaming applications on embedded platforms. 

 Implementation of automatic timing annotation in embedded system models at 

different levels of granularity, and evaluation of trade-offs between model execution 

speed and accuracy for different annotation granularities. The strengths and 

weaknesses of fine-grained versus coarse-grained annotations are analyzed. 

 Demonstration of early, fast, and reliable design space exploration with automatically 

generated models of industrial size streaming applications, such as image 

compression, MP3 playback, and voice codecs.  
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CHAPTER 2 

2 Real-Time Operating System Model 

This chapter describes the implementation of the RTOS model needed for early 

performance estimation. The chapter consists of four sections. The first section describes the 

modeling of the system components of the target platform in SystemC. The second section 

describes the modeling of applications tasks from perspective of the RTOS scheduler and the 

time consumption on target CPU. The third section describes the modeling of communication 

primitives provided by the RTOS. The last section explains the modeling of software timers 

in the RTOS model. Timers are a common feature of real-time embedded software, so their 

modeling is highly pertinent to our work. 
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2.1 Modeling the Components 

Figure 2.1 illustrates the modeling of the target RTOS in SystemC. We start with the 

application software code and platform specification, shown on the LHS, and derive a 

functionally equivalent SystemC model, as shown on the RHS. The application software is 

targeted to an RTOS, running on a target embedded processor. Concurrent application tasks 

A, B, and C, are captured as threads in the user code. Inter-task communication is 

implemented using the message passing API of the RTOS. The target processor is typically 

part of a larger hardware platform consisting of other system components such as processors, 

DSPs, custom hardware accelerators, memories and I/O. It is assumed that executable 

C/SystemC models of other system components are available.  

On the RHS, we have a derived model of the system, which can be compiled and executed 

on the host (typically a PC running Linux) before the hardware is available. The target 

processor is abstracted as a SystemC module (shown as a rounded box) that encloses the 

application model and the RTOS model. Here, A', B', and C' are functionally equivalent 

abstractions of A, B, and C, and are implemented as SystemC tasks. Since SystemC does not 

natively support any RTOS primitives for scheduling and communication, a RTOS Emulation 

on SystemC (RESC) layer is modeled on top of the SystemC kernel. RESC supports priority-

based scheduling and inter-task communication, similar to a typical RTOS.  

We chose SystemC as the modeling language since it provides the necessary constructs, 

namely concurrency, event-based synchronization, timing and object-orientation, needed to 

create an executable system level model [4]. For example, a SystemC module 

(SC_MOUDULE) can model a hardware component, which can have its internal logic and 

external ports to connect to other modules. A SC_MODULE can also create the 
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representation of threads (SC_THREAD). Each thread is executed one at a time until it has to 

wait on for a specific amount of SystemC time (sc_time) or event (sc_event). Once the thread 

has finished waiting, it continues to execute until another wait has been called or until it 

terminates. SystemC simulates the execution of the threads to run concurrently, but the 

threads are seen to execute in parallel with respect to SystemC’s time. 

SystemC natively supports timing and events, therefore timers and pulses in the 

application can be abstracted using native SystemC constructs. This part of the model has a 

direct dependency on the SystemC libraries. Finally, we do not explicitly model the memory 

management of the target platform or the I/O needed for debugging. These services are used 

from the run-time system available on the host. 

2.2 Task Modeling 

The application tasks are dynamically created in the RTOS-targeted software using 

pthread_create. In SystemC, we model all tasks as SC_THREADs, which can be dynamically 

created using sc_spawn method of the SystemC kernel. SystemC, however, does not have any 

provisions for priority based scheduling, since it is simply a discrete event simulation engine. 

Therefore, we define a new class RESC_task, which stores the task ID, priority, state, an 

activation event, and a handle to the corresponding SystemC thread for each task. Since the 

RESC_task structure contains a SystemC event, it cannot be instantiated dynamically to 

reflect dynamic task creation in a RTOS. We bypass this problem by creating a static pool of 

tasks. RESC implements functions for dynamically allocating tasks from this pool and 

managing them, similar to creation and management of the corresponding RTOS tasks. As 

opposed to user tasks that are spawned by the application, the system also consists of interrupt 

service routines (ISRs) that are triggered by hardware interrupts. The interrupts themselves 
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are modeled as SystemC signals, generated by the SystemC hardware modules. The ISRs are 

modeled in SystemC as SC_METHODs that are sensitive to the respective hardware interrupt 

signal.  

2.2.1 Scheduler Modeling 

 

The RESC scheduler manages the states of the application tasks as shown in Figure 2.2. 

We define four states that a task may be in during execution: RUNNING, READY, 

SUSPENDED, and TERMINATED. Upon creation, a task is in READY state. Whenever the 

scheduler is executed, the highest priority ready task is moved to the RUNNING state. 

Conversely, a running task may be pre-empted by a higher priority task that becomes ready 

due to a scheduling event such as an interrupt, timer pulse or resource availability. Running 

tasks may become suspended waiting for resource or a timer pulse. Finally, a running task 

may be terminated upon exit. RESC defines private methods for the transitions shown in 

Figure 2.2. These methods are used by the user-level API of RESC to manage task states.  

 

Figure 2.2 Task States in the SystemC RTOS Model 
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Listing 2.1 shows the pseudo-code for transition from running to ready state. The currently 

running task (pointed to by ACTIVE) that calls this method is stored in task pointer t, and its 

state is changed to READY. The ACTIVE task pointer is updated to point to the highest 

priority ready task. The method GetHighestPriorityReady sets the state of the new active task 

to RUNNING. 

If the new active task is different from the caller, its execution in SystemC is enabled by 

notifying its Activation event. The caller task is blocked on its activation event, indicating it 

is ready to run as soon as it becomes the highest priority task. If the caller remains the highest 

priority ready task, it does not need to wait on its activation event and may proceed in the 

RUNNING state. 

 

void RESC::Running2Ready () 

1: RESC_task *t = ACTIVE; 

2: tState = READY; 

3: ACTIVE = GetHighestPriorityReady(); 

4: if (ACTIVE != t) { 

5:  ACTIVEActivation.notify(); 

6:  wait (tActivation); 

7: } // end if 

Listing 2.1 Transition from Running to Ready 

 

void RESC::Running2Suspended () 

1: ACTIVEState = SUSPENDED; 

2: ACTIVE = GetHighestPriorityReady(); 

3: if (ACTIVE != NULL) { 

4:  ACTIVEActivation.notify(); 

5: } // end if 

Listing 2.2 Transition from Running to Suspended 
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Listing 2.2 shows the pseudo-code for the transition from running to suspended state. The 

state of the caller task, which is pointed to by ACTIVE, is set to SUSPENDED. The state of 

the highest priority ready task, if one exists, is set to RUNNING and its Activation event is 

notified. Note that the caller task is not blocked in SystemC by this method, because it will be 

blocked on a resource or timer pulse once it returns from this method. This scenario will be 

seen in Sections 2.3 and 2.4. 

 

When a suspended task resumes execution in SystemC, it calls RESC’s Suspended2Ready 

method, shown in Listing 2.3, to restore its state back to READY.  The pointer to the caller’s 

RESC_task object is obtained using the current SystemC process handle as an index. The 

state of the caller task is set to READY. If all the tasks were suspended before this task was 

woken up, the ACTIVE pointer would be NULL, indicating that the CPU is idle. If so, the 

state of the caller task is set to RUNNING and it continues execution in SystemC. Otherwise, 

the task waits for its Activation event like any other ready task. 

2.2.2 CPU Time Consumption 

The system level model must contain delay annotations in the tasks to model their CPU 

time consumption. Modeling the time consumption of a given code segment on a hardware 

void RESC:: Suspended2Ready () 

1: RESC_task *t = GetTask (sc_process_handle()); 

2: tState = READY; 

3: if (ACTIVE == NULL) 

4:  ACTIVE = GetHighestPriorityReady(); // run caller 

5: else 

6:  wait (tActivation); 

Listing 2.3: Transition from Suspended to Ready 
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platform is an inherently difficult problem. The problem has been actively researched and 

there are some well-known methods for predicting software execution time based on a model 

of the hardware. Typically, a prototype board with the processor core is available. Therefore, 

in order to obtain accurate delays, we measure the execution time of the computation blocks 

between the kernel calls on the processor. The delays are then back annotated to the model. 

SystemC supports incorporating delays into the model by using wait statements. However, 

this construct is insufficient for modeling the CPU time consumption of concurrent tasks 

executing on an RTOS. The wait statements in concurrent tasks consume the delays 

concurrently, as opposed to interleaving of concurrent tasks on a processor. We solve this 

problem by defining a Consume function in RESC. The Consume function is used by the 

application tasks to consume time on the CPU. 

 

void RESC::Consume (sc_time t) 

1: sc_time TimeRemaining = t; 

2: sc_time Start, Delta; 

3: while (true){ 

4:  Start = sc_time_stamp(); 

5:  wait (TimeRemaining, ScheduleEvent); 

6:  Delta = sc_time_stamp() - Start; 

7:  TotalBusyTime += Delta; 

8:  if (Delta == TimeRemaining) break; 

9:  TimeRemaining -= Delta; 

10:  Running2Ready(); 

11: } // end while 

12: Running2Ready(); 

Listing 2.4 Pseudo-Code for CPU Time Consumption 
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Listing 2.4 presents the pseudo-code of the implementation of the Consume function. The 

variable TimeRemaining keeps track of the amount of time that remains to be consumed if the 

caller task is pre-empted during the consume call. Another RESC variable, TotalBusyTime, 

keeps track of the total time consumed on the CPU during system execution. This metric is 

useful for estimating system-level power and for performing optimizations. A SystemC event, 

named ScheduleEvent, is defined in RESC to notify rescheduling of tasks due to interrupts or 

timer pulses.  

Variable TimeRemaining is initialized to t, the amount requested by the caller task (line 1). 

The current timestamp is stored and the SystemC wait on TimeRemaining and ScheduleEvent 

is called (lines 6-7). If the SystemC logical time has advanced by TimeRemaining, or 

ScheduleEvent is notified before that, the wait call returns. The new SystemC timestamp is 

used to determine the amount of time consumed (Delta). The consumed time is added to the 

TotalBusyTime. If the ScheduleEvent is notified before the remaining time is consumed, the 

variable TimeRemaining is decremented by the consumed time and the task state is updated to 

READY. The concurrent wait on time and event avoids any timing errors due to the 

granularity of time delays annotated in the task. We iterate until all requested time has been 

consumed.  

It is possible that ScheduleEvent is notified at the same logical time as the end of time 

consumption. To take care of this scenario, we call Running2Ready before exiting the 

consume method. This will ensure that if ScheduleEvent was indeed notified, the new highest 

priority task will be executed. Otherwise, no other task would have become ready during 

execution of the wait, and the current task will remain in the RUNNING state. 
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Figure 2.3 illustrates how the RESC Consume function handles a task pre-emption 

scenario. We consider an application with two tasks T1 and T2, with T1 having a higher 

priority than T2. Further, we assume that, initially, task T1 is suspended, waiting for a 

resource to become available, while T2 is running. T2 makes a consume call for 20 time units 

to model its CPU time consumption. After 10 time units, an external interrupt signal triggers 

the execution of an ISR. The ISR notifies ScheduleEvent, which pre-empts T2 by interrupting 

the wait statement in T2’s consume call (Listing 2.4, line 5). The remaining time for T2’s 

consume call is calculated (TimeRemaining = 10 units) and T2 is moved to the READY state 

(Listing 2.4, lines 9-10). 

The ISR executes with the highest priority and wakes up T1, thereby moving T1 to the 

READY state. Once the ISR exits, the scheduler is run to determine the highest priority 

READY task. Since T1 is the highest priority READY task at this time, its Activation event is 

notified by the ISR’s exit method. T1 runs and consumes 5 units and is suspended on another 

 

Figure 2.3 Pre-Emption Modeling in Consume 
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resource by calling Running2Suspended. That leaves T2 as the only READY task. T2’s 

Activation event is notified by T1’s Running2Suspended call (Listing 2.2, line 4). Therefore 

T2 resumes its consume call and enters the second iteration (Listing 2.4, Line 3), where it 

consumes time for the remaining 10 units (Listing 2.4, Line 3) and exits. Task interleaving 

and pre-emption is therefore modeled quite simply and accurately. 

2.3 Communication Modeling 

User tasks may communicate with each other using several communication semantics. The 

basic communication mechanism that is used to support these semantics is message passing. 

The message passing between tasks is supported by channels that buffer the communicated 

data. In this section, we describe implementation of message passing channels in RESC.  

 

Figure 2.4 illustrates the double-handshake semantics of channel communication in a 

RTOS. As seen in the figure, the receiver creates the channel and opens it to receive data. 

Concurrently, the sender also opens the channel, and calls the MsgSend method to copy the 

sender’s data into the send buffer. After writing, the sender waits for a reply notification from 

 

Figure 2.4 Channel-Based Communication in RTOS 
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the receiver. At the other end, the receiver calls MsgReceive, which blocks until the sender 

has written to the send buffer. After returning from MsgReceive, the receiver calls MsgRead 

to copy data from the send buffer into its own memory. The read may be done from any offset 

and can be of any size. Finally, the receiver calls MsgReply that writes into the reply buffer of 

the channel and notifies the sender. The sender task is unblocked, reads the reply buffer and 

returns from MsgSend.  

RESC implements the message passing communication of an RTOS using a 

RESC_channel class defined on top of SystemC. The double handshake synchronization is 

implemented using a boolean flag (SendFlag) and events, (SendEvent and ReplyEvent) in 

RESC_channel. Similar to RESC_task, we cannot dynamically instantiate objects of type 

RESC_channel due to restrictions on dynamic creation of SystemC events. We bypass this 

problem by creating a static pool of channels. The channels are allocated from this pool 

whenever a channel is created in the user code. 

 

Listing 2.5 illustrates the MsgSend implementation in RESC. The array CHANNELS 

refers to the pool of channels, indexed by variable channel_id. MsgSend copies the data 

pointed to by the sender into the send buffer. It then synchronizes with the receiver by setting 

void RESC:: MsgSend (int channel_id, …) 

1: Copy data into send buffer 

2: CHANNELS[channel_id].SendFlag = true;  

3: CHANNELS[channel_id].SendEvent.notify(); 

4: Running2Suspended(); 

5: wait CHANNELS[channel_id]ReplyEvent; 

6: Suspended2Ready(); 

7: Copy data from reply buffer; 

Listing 2.5 Pseudo-Code for Sending Message on Channel 

 



27 
  

SendFlag to true and notifying SendEvent to indicate that the receiver can now read from the 

send buffer. The sender waits for the reply by moving itself to the suspended state and 

waiting on ReplyEvent. Once the receiver has written to the reply buffer and notified 

ReplyEvent, the sender returns to the ready state and eventually copies over data from the 

reply buffer. 

 

Listing 2.6 illustrates the MsgReceive implementation in RESC. If SendFlag is true, the 

receiver knows that the send buffer has already been written. Therefore, it simply resets 

SendFlag and proceeds to read the data. Otherwise, the receiver waits on SendEvent until the 

send buffer is written. The receiver puts itself in the suspended state before the wait and 

returns to the ready state after the wait. 

Channel based communication is reliable and encouraged for real-time applications. A 

common design issue is the sizing of buffers in the channels. Very large buffers may cause 

memory bottlenecks, while very small buffers may require several transactions, thereby 

increasing the time overhead caused by handshake synchronization. System-level models, 

such as the one described here, provide performance feedback that can help make design 

decisions on buffer sizing. 

void RESC:: MsgReceive (int channel_id, …) 

1: if (!CHANNELS[channel_id].SendFlag) { 

2:  Running2Suspended(); 

3:  wait (CHANNELS[channel_id].SendEvent); 

4:  Suspended2Ready(); 

5: } 

6: CHANNELS[channel_id].SendFlag = false; 

Listing 2.6 Pseudo-Code for Receiving Message on Channel 
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2.4 Timer and Pulse Modeling 

 

In an RTOS, a timer can be set up to periodically send pulses to a user task at given time 

intervals. Listing 2.7 illustrates the key aspects of timer creation and setup in an RTOS. 

Timers use system events (sigevent) as pulses that are sent over a channel (lines 1-4). A timer 

specification (itimerspec) consists of an initial wait time (it_value) for the first pulse and an 

interval wait time (it_interval) for subsequent periodic pulses (lines 5-9). The timer initialized 

in Listing 2.7 sends pulses over channel at times 10ms, 30ms, 50ms, 70ms and so on, after 

timer_settime is called.  

In order to emulate a timer in the SystemC model, we define a RESC_timer class and a 

corresponding SystemC thread (distinct from application tasks), whose functionality is shown 

in the timer method in Listing 2.8. Similar to tasks and channels, we define a pool of 

RESC_timer objects. A timer pulse is modeled as an event in the RESC_timer class. 

Corresponding to a timer creation in the RTOS, the SystemC model allocates a timer object 

from the timer pool. The timer_settime method corresponds to dynamic creation of the timer 

thread using sc_spawn. 

1: sigevent pulse; 

2: timer_t timer; 

3: itimerspec tspec; 

4: SIGEV_PULSE_INIT (&pulse, channel,…); 

5: tspec.it_value.tv_sec = 0; 

6: tspec.it_value.tv_nsec = 10 * 1e6; //10 ms 

7: tspec.it_interval.tv_sec = 0; 

8: tspec.it_interval.tv_nsec = 20 * 1e6; //20 ms 

9: timer_settime(timerid, 0, &tspec, NULL); 

Listing 2.7 RTOS Timers and Pulses 
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The timer thread operation is fairly straightforward as seen in Listing 2.8. The timer waits 

for the initial wait time as defined in the timer specification (it_value), followed by an infinite 

while loop (lines 2-3). Inside the loop, the pulse event for the specific timer is notified to 

wake up the task sensitive to the timer pulse. This is followed by a delta cycle delayed 

notification of the scheduling event. The timer thread then waits for the interval period 

(it_interval) until the next periodic pulse. The task sensitive to the timer calls the 

Wait4TimerPulse method defined in RESC, as shown in Listing 2.8 (lines 9-13). The waiting 

task is suspended while waiting for the timer pulse event. The ScheduleEvent notification 

(line 5) in the timer thread is delta cycle delayed to allow the waiting task to update its state to 

READY before the active task is moved to the ready state (Listing 2.4, line 10) and forces a 

rescheduling of tasks.  

1: void timer(timer_id, it_value, it_interval){ 

2:  wait(it_value);//initial wait values 

3:  while(true){ 

4:   Timers[timer_id]pulse.notify(); 

5:   ScheduleEvent.notify(0); 

6:   wait(it_interval);//periodic wait values 

7:  }// end while 

8: }  

9: void RESC::Wait4TimerPulse (int timer_id){ 

10:  Running2Suspended(); 

11:  wait(Timers[timer_id]pulse); 

12:  Suspended2Ready(); 

13: } 

Listing 2.8 Timer Emulation in SystemC 
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CHAPTER 3 

3 Modeling Methodology 

In this chapter, we discuss the details of our modeling methodology, including the model 

generation tools, log processing, and CPU load estimation. First, we present the steps of 

model generation from the input specification of the embedded hardware and software, as 

well as the application code and RTOS model. Next, the semantics of the generated models 

are explained in further detail. The measurement model’s execution produces a log of 

measured block delays. The generated logs are then processed, and input to the simulation 

model generator. Finally, the simulation model uses the processed log to annotate timing into 

the application code and generate a SystemC model for simulation on host. 

3.1 Measurement Model Structure 

 

The Measurement Model Generator, shown in Figure 3.1, takes three inputs, the System 

Configuration, the Application Software, and the RTOS Model, to produce the executable 

measurement model. The System Configuration file specifies the application software source 

files, the RTOS model, and the target hardware platform. The configuration schema, using 

 

Figure 3.1 Measurement Model Generator 
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W3’s XML Schema format, is defined in Appendix A. The generator performs the following 

steps: 

(1) Parse the System Configuration file and create an internal data structure to store the 

information needed to generate the Measurement Model. 

(2) Generate the SystemC models of the hardware platform, including the processor and 

peripherals. 

(3) Instantiate the RTOS model in the processor. 

(4) Instantiate the tasks of the applications in SystemC modules corresponding to the 

processor. The body of each task is filled with calls to the corresponding task entry 

functions in the application code. 

(5) Modify each file of the application source. 

a. Parse and identify target OS function calls which have a different implementation 

than the base OS. The identified target RTOS function calls are replaced by the 

functions in the RTOS model to disambiguate the functions of the base OS and the 

modeled target OS. 

b. Do a second parse to annotate measurement code at the specified granularity: 

i. Identify blocks (basic-block or inter-kernel level). 

ii. Insert a START subroutine/function at the beginning of a block and a STOP 

subroutine/function at the end of the block. The START begins measuring and 

identifying a block. The STOP stops and records the measurement for the 

identified block. 

(6) Generate the Makefile for the compilation and execution of the output model. 

Figure 3.2 shows how measurement model can be generated.  This measurement model is 

executed on the target machine to obtain accurate measurements. The annotated application 

tasks, A, B, and C, modeled as SystemC threads, are executed using the RTOS model. The 

function f1(), in application task A, is shown with a disambiguation box to illustrate whether 
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or not an implementation of f1 exists in the RTOS model. Step (5)a above would have 

modified the function name if it is one of the modeled RTOS functions. The measurement 

annotation uses the hardware timer to obtain the timing delays of the executed code. The 

RTOS model and the Models of Other Processors/Peripherals are then executed on top of the 

SystemC kernel which is run by using the base OS.  

3.1.1 Configuration File 

The model generators require the hardware-software specification, as defined in the system 

configuration file. The configuration file defines the application source code, the simulation 

environment and the hardware platform set up. It begins by defining the SystemC path 

(systemcPath), the compiler (compiler), the system layout (system), and the executable name 

(executable). With the exception of system, the defined elements are simple string formats 

which are used when generating the Makefile. The system element contains the main 

  

 

Figure 3.2 Execution of Measurement Model on Target Processor 
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components at the system layout level which will be explained shortly. The following listing 

illustrates an example on the use of the other three elements: 

 

In Listing 3.1, the element systemcPath defines the directory path of SystemC to be in 

/usr/systemc. Since the configuration is for SystemC, the compiler has to be specified to g++ 

in order to compile the source files with generated SystemC system files. The executable 

element specifies the executable filename of the measurement model, while the sub-elements 

of system are not listed because they are too complex to illustrate as a single listing. These 

sub-elements are broken down to simplify the generation of the model. 

 

<configuration> 

 <systemcPath>/usr/systemc</systemcPath> 
 <compiler>g++</compiler> 

 <system> 
  <processor> 
   … 

  </processor> 
  <hardware> 

   … 
  </hardware> 
  <signal> 

   … 
  </signal> 

  <connection> 
   … 
  </connection> 

  <runtime> 
   … 

  </runtime> 
  <timeConsumption> 
   … 

  </timeConsumption> 
 </system> 

 <executable>application.exe</executable> 
</configuration> 

Listing 3.1: Configuration of Main Elements 
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3.1.1.1 Processor 

The first sub-element processor specifies the RTOS model and the software application’s 

process. The user should provide the processor type and name, which will be assigned to the 

variable type and the variable name, respectively, for the component in the system 

specification. The type will also be used to create a header file which defines a SystemC 

module. The processor can also specify various parameters such as the interrupt handler, 

controller, ports, and hardware interfaces. The following listing shows an example with the 

sub-elements of processor.  

 

<processor> 

 <type>processor</type> 
 <name>p</name> 

 <frequency>500e6</frequency> 
 <RTOS> 
  <type>QNX</type> 

  <model>QESC</model> 
  <name>qesc</name> 

  <library>../../../QESC/qesc.o</library> 
  <libHome>../../../QESC</libHome> 
  <policy>SCHED_FIFO</policy> 

 </RTOS> 
 <process> 

  <name>startingThread</name> 
  <header>aHeaderFile.h</header> 
  <cfile>aCFile.c</cfile> 

  <mainFunction>renamed_main</mainFunction> 
  <task> 

   <taskEntry>t1</taskEntry> 
   <priority>10</priority> 
  </task> 

  <task> 
   <taskEntry>t2</taskEntry> 

   <priority>20</priority> 
  </task> 
 </process> 

 <port> 
  <name>portA</name> 

  <type>int</type> 
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  <direction>out</direction> 
 </port> 
 <port> 

  <name>interfaceIF</name> 
  <type>Interface_IF</type> 

  <direction>port</direction> 
 </port> 
 <interface> 

  <header>Interface_IF.h</header> 
  <function> 

   <fname>F1</fname> 
   <return>void</return> 
   <IF_portName>interfaceIF</IF_portName> 

   <parameterType>void</parameterType> 
  </function> 

 </interface> 
 <interruptHandler> 
  <name>IH</name> 

  <header>isr.h</header> 
  <case> 

   <sourcePort>interrupt1</sourcePort> 
   <subroutine>isr</subroutine> 
  </case> 

 </interruptHandler> 
 <interruptController> 

  <type>IC</type> 
  <name>ic</name> 
  <interruptPort> 

   <name>interrupt1</name> 
   <type>bool</type> 

   <direction>in</direction> 
  </interruptPort> 
 </interruptController> 

</processor> 

Listing 3.2: Example of Processor's Elements 
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3.1.1.2 RTOS 

As Listing 3.2 shows, the RTOS element the RTOS type (type), its model (model), 

including its library name (library) and path (libHome), its variable name (name), and its 

scheduling policy (policy). The library name and path of the RTOS model needs to be defined 

with respect to the directory in which the codes are being generated. Figure 3.3 shows how 

the RTOS model is linked with the processor. 

3.1.1.2.1 Process 

The next element of the processor is the process. A processor needs at least one process to 

perform some computation. The process  name, corresponds to the SC_THREAD that will be 

created for the process inside the processor SystemC module. The SC_THREAD initializes a 

task which is specified by the element mainFunction, through the RTOS model. The 

mainFunction element specifies C filename, renamed_main.c, which is used to create the 

tasks of the application. It is important to note that the mainFunction element should not be 

named ‘main’ in order avoid a compilation conflict with SystemC’s internal main function. 

The generated C file creates the tasks from the task elements as pthreads. Each task is created 

 

Figure 3.3: Processor with process and RTOS 
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as a pthread with the start-routine function and priority as specified by taskEntry and priority 

respectively. The process element also lists the header and C files which the process and tasks 

of the main function will use. An example the process listed in Listing 3.2 is shown in Figure 

3.3. 

3.1.1.2.2 Ports 

The processor can also have ports which are connected to other components via signals or 

interfaces. A port element includes the name, type and direction of the port. The name is used 

as the variable name for the processor module. The type is the variable type used to read or 

write on the port. The direction can be “in” or “out” to distinguish whether the data is being 

read or written. If a processor has an interrupt controller, its ports are defined in the 

interruptController sub-element. If the processor uses the components via interfaces, there 

should also be ports with the interface and “port” labeled as the type and the direction 

respectively.  

3.1.1.2.3 Interfaces 

Interfaces are the API functions to access hardware components. The ports with the type 

set as the user-provided interface class can call these API functions. Implementations of API 

functions are defined in the hardware components, which the ports are bound to. The interface 

element needs to define the interface’s header file and the interface’s functions, return type, 

and parameters. The functions’ name, return type, and parameters are redefined in the global 

scope to allow the application code to have access to those functions. The redefinition calls 

the same function though port’s interface which links the implementation of the bounded 

hardware component.  
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Figure 3.4 shows how the interface function is linked from the application code to the 

hardware component. The global definition of F1 is used as a wrapper function to call its 

implementation through the port’s variable name, IF_portName as shown Listing 3.2.  

3.1.1.2.4 Interrupt Handler 

Another element of the processor is the interrupt handler interruptHandler. The interrupt 

handler manages the interrupt controller’s chosen interrupts and calls the appropriate interrupt 

service routine (ISR). The name element is used to create the SystemC thread to represent the 

interrupt handler. The header specifies the header file which declares the ISR functions. A list 

of cases also needs to be provided to determine which ISR function to call based on an 

interrupt signal source. ISR functions are assumed to have a void return and no parameters, 

thus providing the function name is adequate. 

3.1.1.2.5 Interrupt Controller 

The last element of the processor is the interrupt controller interruptController. The 

interrupt controller needs a type, name, and list of interrupt ports. The type is used as the 

name of the SystemC module, while the name is used as the variable name of the instance at 

 
Figure 3.4: Interface Example 
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the system level. The list of interrupt ports, interruptPort, initializes all the ports for incoming 

interrupts with a port name, port type, and port direction. The port type should be Boolean 

(“bool”) because it should only represent an interrupt flag. The port direction is ‘in’ because 

the interrupt controller receives the interrupts. The port mapping of the interrupt controller to 

the processor is not needed because the automation tool implicitly binds them in the generated 

model. 

3.1.1.3 Hardware Components 

 
The second set of elements of the system is hardware components. The configuration file 

may have zero, one, or multiple hardware components, but the definition of the hardware 

components have to be provided in a header file as SystemC module. Unlike other elements, 

the hardware element only needs to have a type and a name. Like the processor, the type is the 

module type and the name is the variable name. It is also assumed that the file for the 

hardware is the type followed by an “.h” extension. This header file is used by the system file 

and the Makefile generation. Listing 3.3 shows an example of hardware components in the 

configuration file. There are two hardware components of HW1 and HW2 with variable 

names hw1 and hw2 respectively. The user-provided SystemC modules HW1 and HW2 

should be available in header files HW1.h and HW2.h. 

<hardware> 
 <type>HW1</type> 

 <name>hw1</name> 
</hardware> 
<hardware> 

 <type>HW2</type> 
 <name>hw2</name> 

</hardware> 

Listing 3.3: Hardware Components Example 
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3.1.1.4 Signals 

 

The next subset of elements of the system is the collection of signals. Like the hardware 

components, there can be zero, one or multiple signals declared. A signal needs a type for the 

signal type and a name for the variable name. Listing 3.4 shows a simple example of two 

signals; a Boolean type and an integer type with variable names interruptSignal and 

numberSignal respectively. The type provided should be a defined type in SystemC, C++, or 

user-defined type. The binding of signals to modules is discussed in the next section.  

3.1.1.5 Connections 

 

To connect the signals with processors and hardware components, the elements connection 

of the system are used to bind signals and modules. There can be zero, one, or multiple 

connections. A connection needs the variable names of a module's instance (moduleName), its 

<signal> 
 <type>bool</type> 

 <name>interruptSignal</name> 
</signal> 

<signal> 
 <type>int</type> 
 <name>numberSignal</name> 

</signal> 

Listing 3.4: Signal Elements Example 

 

<connection> 

 <moduleName>p</moduleName> 
 <modulePort>interruptPort</modulePort> 
 <signalBinding>interruptSignal</signalBinding> 

</connection> 
<connection> 

 <moduleName>hw1</moduleName> 
 <modulePort>interruptOutput</modulePort> 
 <signalBinding>interruptSignal</signalBinding> 

</connection> 

Listing 3.5: Connection Elements Example 
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port (modulePort), and the signal (signalBinding). Listing 3.5 shows an example which binds 

the port interruptPort from module p to signal interruptSignal, and interruptOutput from hw1 

to interruptSignal. The system layout view of this example is illustrated below in Figure 3.5. 

3.1.1.6 Run Time 

 

The configuration file also defines the logical time until which the SystemC simulation 

should be run. The runtime element is used to set the duration of the run. The elements which 

define runtime are value and scTimeUnit. The runtime is specified by a number value in a 

time unit scTimeUnit. The time unit has to be in SystemC time units which are SC_SEC, 

SC_MS, SC_US, SC_NS, SC_PS, and SC_FS. They represent seconds, milliseconds, 

microseconds, nanoseconds, picoseconds, and femtoseconds respectively. Listing 3.6 shows 

an example that sets up a SystemC simulation to run for 1200 milliseconds. 

 

 

<runtime> 
 <value>1200</value> 

 <scTimeUnit>SC_MS</scTimeUnit> 
</runtime> 

Listing 3.6: runtime Element Example 

 

Figure 3.5: System View of Listing 3.5 
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3.1.1.7 Time Consumption 

 

The last element of the system is timeConsumption. The timeConsumption element is used 

to obtain the busy time of the application running on the processor module’s RTOS model. 

The elements needed for timeConsumption are rtosModel, processorName, and scTimeUnit. 

The rtosModel specifies which RTOS model was used and if it is a pre-defined model, the 

processor’s the total consumption time can be easily obtained. processorName is the variable 

name of a defined processor module in the processor element. scTimeUnit specifies in which 

time unit the output should be displayed in for the busy and idle time. The time units are 

SC_SEC, SC_MS, SC_US, SC_NS, SC_PS, and SC_FS like the scTimeUnit in runtime. 

Listing 3.7 shows an example of obtaining the busy and idle time of process p with QESC as 

the RTOS model in milliseconds.  

3.2 Measurement Model Execution Semantics 

The cumulative computation of the tasks forms the bulk of the overall computation load 

offered by the application, since the RTOS overhead is typically very low in streaming 

applications. For the measurement model, we are only interested in determining the total 

block delays without any interruptions. The determined delays will be used to model CPU 

resource consumption of the blocks in the simulation model. SystemC uses a non-preemptive 

simulation kernel for scheduling its tasks. As such, the application tasks, modeled as SystemC 

<timeConsumption> 
 <rtosModel>QESC</rtosModel> 
 <processorName>p</processorName> 

 <scTimeUnit>SC_MS</scTimeUnit> 
</timeConsumption> 

Listing 3.7: timeConsumption Element Example 
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threads will execute without preemption until they explicitly call a SystemC wait statement. 

We use the wait property of SystemC to determine the block delays. 

Figure 3.6 shows an example of the execution of a measurement model. The application 

consists of two tasks, t1 and t2, implemented as SystemC threads. We assume that t2 has a 

higher priority than t1. The application is mapped to a processor (CPU), which is 

implemented as a SystemC module containing the threads. A Buffer module models an on-

chip hardware buffer that generates underflow interrupts to the processor. A SystemC 

method, which is sensitive to the interrupt signal (int), is used to model the interrupt service 

routine (ISR). The tasks communicate amongst themselves, and with the ISR, by using the 

communication primitives of the RTOS model. 

There are two notions of time in the measurement model: the real time, represented by the 

wall clock time which is maintained by a free running hardware counter on the target 

processor; and the logical time of the SystemC kernel. The SystemC time is advanced only by 

 

Figure 3.6 Measurement of Application Execution Time on a Processor 
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wait statements in the SystemC model of the hardware, which explicitly shows the delays 

between hardware interrupts. Figure 3.6 illustrates the progress of both real and SystemC time 

during the execution of the measurement model. 

Notable assumptions of this model are as follows. (i) Both real and SystemC times are 

assumed to be 0 at the reference starting point; and (ii) we assume that a task blocks on 

receiving a pulse or message. Given these assumptions, the order of execution is as follows: 

(1) t2 calls RecvPulse(), which consumes Δ0 units of real time and is suspended, waiting for 

pulse from the ISR. 

(2) t1 executes block A, which consumes 10 units of real time, and calls Recv(t2), thereby 

suspending on message from t2. 

(3) Concurrently, the Buffer describes the consumption of buffer data by calling wait for 5 

time units. Therefore, the SystemC time is advanced by 5 units.  

(4) The subsequent underflow interrupt is modeled by setting the interrupt signal, activating 

the ISR task. 

(5) The SystemC kernel switches context to the ISR method. 

(6) ISR sends a pulse to t2. 

(7) t2 is unblocked, and executes block B, which consumes 5 units of real time. 

(8) t2 sends a message to t1 and exits. 

(9) t1 resumes execution. 

The correct simulation of the above scenario would result in a consumption of 10 units of 

SystemC time by t1 for block A and 5 units of SystemC time by t2 for block B as shown in 

Figure 3.10. In order to compute the above delays, we must annotate code around blocks A 

and B to check the timer and log the delays. To measure block delays, we have automated 

the annotation to the application code to identify the blocks. We have automated the 
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annotation to the application code in different granularities and they will be presented in 

Chapter 4 and 5. 

3.3 Logs Processing 

 

After the measurement model has been executed, the logged data for each block is 

processed. Execution of a block over several iterations may produce very large logs of block 

delays, but not all logged delays represent only the block code computation. The execution of 

a block may be influenced by the target processor state, cache state, control flow, DRAM 

refresh rates, and the scheduling in the base OS. These factors cause the measured delays to 

vary greatly. Figure 3.7 shows an example of the logged delays for a block over multiple 

iterations. The smallest delay value (min) is the block executed with the best case scenario 

(high cache hit rates, no context-switching in the base OS, etc.). The max delay value shows 

the biggest recorded delay the block took to execute, which is the worst case scenario. Recall 

 
Figure 3.7 Logged Data for a Block 

 

actual 
max

max

min

Delay 
(cycles)

Block Execution Instance

Outliers due base OS interference



46 
  

that the measurement model is executing on a base OS which may preempt a task in the 

measurement model to perform its own kernel tasks or run other applications outside the 

model’s context. While these scenarios are relatively rare, they produce extremely large block 

delays, since they include the time for the base OS to complete the preempting task and 

resume the task being measured. The resulting large delays can skew the processing of these 

delays and should be treated as outliers. Note that the delays are independent observation of 

the executed block and that the outliers may occur at any instance. If the outliers are ignored, 

the remaining delay values between min and actual max delay value in Figure 3.7 represent 

the correct number of cycles the block would take to compute, without accounting for the 

base OS’s interference. 

3.3.1 Heuristics for Outliers 

Since it is impractical to determine exactly which delays resulted from an interruption by 

the base OS, we use a simple heuristic to filter the delays. We determine the minimum and 

median delay and consider only those delays that are separated at most (median – minimum) 

from the median. In other words, we consider only the delays that are less than ((2 * median) 

– minimum) because the performance of the application is only of interest at a steady state 

with a stable cache. The rationale behind the heuristic is that the best case and worst case 

cache behaviors for a given block execution are likely to be equidistant from the median. It is 

expected that the minimum value corresponds to the best case cache behavior, while the 

median value corresponds to the average cache behavior. 
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3.3.2 Determining an Appropriate Block Delay 

In order to meaningfully use the delay information after filtering out the outliers, the 

remaining logged delays need to be processed. We propose three methods in determining a 

suitable delay value for each block: 

(1) Compute a single average of the remaining delay values: 

Add all the delays and divide by the number of delays added. 

(2) Compute a single median of the remaining delay values: 

Sort the delays from the smallest to the largest value and take the value which lies 

in the middle. If there is an even number of delays, take the average of the two 

middlemost values in the sorted delays. 

(3) Compute the probability mass function (PMF) of the remaining delay values over a 

number of bins: 

Define equal-sized bins between the minimum and the maximum delay values. 

We define the probability of the bin for a block is the number of delay values, 

within the bin, divided by total number of delay values. Then the median of the 

delay values within a bin is chosen as the representative delay of the bin. 

Once a suitable delay (or delay PMF) for each block has been determined, a processed log, 

which keeps only the determined delays (or delay PMF) for each block, will be generated. If 

PMF was used to process the delay logs, then the processed log has the probabilities linked 

with the assigned delays for each bin corresponding to the block. 
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3.4 Simulation Model Structure 

 

The Simulation Model Generator, as shown in Figure 3.8, takes the processed log, system 

configuration, application code, and RTOS model as inputs. It uses these inputs to generate 

the simulation model which is executed on a host machine to estimate the CPU load offered 

by the application. Like the Measurement Model Structure, the simulation model generator 

performs the following steps: 

(1) Parse the System Configuration file and create an internal data structure to store the 

information needed to generate a Simulation Model. 

(2) Generate the SystemC models of the hardware platform, including the processor and 

peripherals. 

(3) Instantiate the RTOS model in the processor. 

(4) Instantiate the tasks of the applications in SystemC modules corresponding to the 

processor. The body of each task is filled with calls to the corresponding task entry 

functions in the application code. 

(5) Modify each file of the application source. 

 

Figure 3.8 Simulation Model Generator 
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a. Parse and identify function calls which have a different implementation than the 

base OS. The identified function calls are replaced by the functions in the RTOS 

model to disambiguate the functions of the base OS and the modeled target OS. 

b. Do a second parse to annotate measurement code at the specified granularity: 

i. Identify blocks (basic-block or inter-kernel level). 

ii. Insert a START subroutine/function at the beginning of a block and a STOP 

subroutine/function at the end of the block. The START call assigns the starting 

point to an identifier. The STOP call determines the block ID based on the start 

identifier, and obtains the delay value for the identified block from the 

processed log. The stop call also annotates the block delay using the RTOS 

model’s time consume function. 

(6) Generate the Makefile for the compilation and execution of the output model. 

The steps above are almost identical to the measurement model generator. Instead of 

measuring the time delays, the generated model simulates the time consumption on the RTOS 

 

Figure 3.9 Simulation Model on Host Processor 
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model. The simulation model is illustrated in Figure 3.9.  The processor module and the 

models of other processors and peripherals are generated in the same manner as the 

measurement model. Furthermore, the same modifications for ambiguous functions are 

applied. The annotations in step (5)b remains the same with the exception of the 

implementations of START and STOP. The STOP subroutine/function uses the consume 

function of the RTOS, thus advancing the simulation time (timed), to model the delays 

obtained in the measurement model. The simulation model is executed on the host processor 

to speed up the time required to estimate the CPU load. The RTOS model now models the 

delays of the application, and thus advances the SystemC simulation time. 

3.5 Simulation Model Semantics 

 

Recall the example in Figure 3.6 in Section 3.2, Blocks A and B were measured to take 10 

and 5 units of physical time respectively. The blocks in the generated simulation model will 

consume the measured time, and hence advance the logical time by calling SystemC wait 

 

Figure 3.10 Block Delay Consumption in Simulation Model 
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statements. The execution of the simulated model is demonstrated in Figure 3.10. At SystemC 

time 0, task t2 is suspended on waiting for a pulse from the ISR. Therefore, the RTOS model 

schedules t1, which starts executing block A. However, at time 5, the interrupt signal is set by 

the buffer module, thereby triggering the ISR, which calls SendPulse method, of the RTOS 

model to activate t2. As a result, the RTOS model changes the state of t2 to ready, and 

reschedules the tasks. Since t2 has a higher priority than t1, t1 is preempted after executing 

only 5 units of time of A (represented by sub-block α0). Task t2 executes block B, consumes 5 

units of time to model its delay, and terminates after sending a message to t1. At time 10, t1 

resumes and consumes the remaining 5 units of time of A (represented by sub-block α1). 

The simulation model uses the TotalBusyTime variable in the RTOS model to estimate the 

total time during which the CPU is busy. The counter simply tabulates all the consumed times 

for all the tasks during simulation. The busy time excludes any time during which all the tasks 

are suspended, waiting for external hardware interrupts. The total simulated (SystemC) time 

at the end of simulation model execution is the sum of the estimated total busy time and total 

idle time. Hence, the overall computation load offered by the application to the CPU is simply 

the total busy time divided by the total simulated time.  
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CHAPTER 4 

4 Basic-Block Level Annotation 

In this chapter, we describe how the application source code is annotated at the fine-

grained basic-block level. To access the basic-block structure, the source code is annotated in 

assembly, and subsequently used to build the measurement model, to obtain the delay logs. 

We will also discuss how the basic-block annotated logs can be processed. Finally, we 

describe the simulation model generator that annotates the assembly code for simulation of 

the application on target platform. 

4.1 Application Timing at Basic-Block Level 

 

Figure 4.1 shows how a simple if-else condition is transformed to equivalent assembly 

code. In this example, the if-condition leads to two possible execution paths, A-B-D or A-C-

 
Figure 4.1 Conditional Branching to Pseudo-Assembly Code 
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D. In either case, the assembly code for block A is exectuted first. Then, the if-condition is 

checked using a comparison instruction, cmp, and a conditional jump on zero, je. If the 

condition is satisfied, the assembly code should jump to the yes label and execute the code for 

block C, then fall through to execute the code block D. However, if the condition is not 

satisfied, the jump to the yes label does not occur, and the code for block B is executed. After 

executing block B, the unconditional jump, jmp, goes to the done label and executes the code 

for block D. 

Using the dotted lines, it can be seen that path A-B-D takes 200 cycles ([A:100] + [B: 50] 

+ [D: 50]) and path A-C-D takes 250 cycles ([A:100] + [C: 100] + [D: 50]) to execute. In 

order to identify and measure which path was taken, the compiled assembly-level code needs 

to be annotated. 
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4.2 Annotation of Application Code 

Figure 4.2 illustrates the transformation applied to the sample pseudo-assembly code to 

identify and measure its blocks. For the full assembly annotation, refer to Appendix B. Calls 

to the subroutines STOP and START are added immediately after a label in this order. They 

are used to identify and measure the basic-blocks. The numerical values in the subroutines’ 

parameters are used for identification. Every time a subroutine is called, the numerical value 

is incremented, thus making each subroutine call unique. Note that the annotated code 

 
Figure 4.2 Annotated Pseudo-Assembly Code 
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introduces additional cycles (Δtx and Δty) that should not be measured as they are not part of 

the application nor they are relevant. These additional blocks are shown as hashed bars in the 

execution path, while the blocks of interest have a solid execution path. Listing 4.1 shows the 

pseudo-code representation for the START and STOP subroutines. 

The START subroutine is used to indicate the starting ID specified by the incremented 

numerical value, which is saved in begin, and to begin measurement. Similarly, the STOP 

subroutine is used to indicate the stopping ID, which is saved in end, and to end 

measurement. The begin and end variables are used to identify which basic-blocks were 

executed. Whenever the STOP subroutine is called, it associates the begin identifier with a 

corresponding end identifier as a block. After identifying a block, the STOP subroutine 

records the number of cycles executed. The following table shows which basic-blocks were 

computed for the example of Figure 4.2. 

 

  

Table 4.1 Blocks Identified for Figure 4.2 

begin end Basic-Blocks Cycles 
1 2 A  100 = 100 

1 4 A – B 100 + 50 = 150 
3 4 C 100 = 100 

5 6 D 50 = 50 

 

START(ID) STOP(ID) 

begin = ID 

timer_start() 

return 

timer_stop() 

end = ID 

delay = timer_val() 

log(begin, end, delay) 

return 

Listing 4.1 START and STOP pseudo-code 
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The execution paths of the logged blocks for the two scenarios would be as follows: 

no: [1–4] + [5–6] = 150 + 50 = 200 cycles 

yes: [1–2] + [3–4] + [5–6] = 100 + 100 + 50 = 250 cycles 

Recall that the measurement generator uses the RTOS model and the application software 

uses its API functions. The measurement should not include the execution time of the RTOS 

model’s implemented API functions as they may switch SystemC thread context. The new 

context may be one of the modeled peripherals, but their time delays should not be included 

in the predicted CPU load. To omit measurement of the API functions, a new subroutine 

STOP_RTOS_FUNC, is used as shown in Listing 4.2. The subroutine’s implementation is the 

same as the STOP subroutine in the measurement model. 

 

Although the STOP_RTOS_FUNC executes the same logic as STOP, the measurement 

model uses the STOP_RTOS_FUNC subroutine to be consistent with the simulation model 

for block identification. The STOP_RTOS_FUNC subroutine is called before the API 

function and the START subroutine is called after the API function as shown in Figure 4.3. 

Using the START, STOP, and STOP_RTOS_FUNC annotation technique for Figure 4.2’s 

example, the execution will measure CODE_A as block [1–2] and CODE_B with block [3–4] 

while disregarding the timing delays of the RTOS model’s API function. 

STOP_RTOS_FUNC(ID) 

timer_stop() 

end = ID 

delay = timer_val() 

log(begin, end, delay) 

return 

Listing 4.2 START_RTOS_FUNC Pseudo-code 
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4.3 Measurement Model Generation 

Once the hardware platform model has been generated from the configuration file as 

described in section 3.1, the generator begins modifying the application source code. The 

source files are first compiled to obtain the basic-block assembly code. Then the compiled 

assembly files are passed to an annotation tool to parse and annotate the code as described in 

the previous section. Once the source code has been annotated, the annotated source files are 

compiled along with the generated hardware components specified by the configuration to 

build the executable measurement model. The model then runs on the target machine to 

obtain a log of all the identified and executed blocks which are specified in the annotation 

method. 

  
Figure 4.3 Annotation to Omit Measurement of RTOS Model Functions 
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4.4 Logs Processing 

The block delay logs, generated from the measurement model execution, are processed as 

described in section 3.3. Since the annotation was performed at the basic-block granularity, 

the measured delays for each block are very small (in the order of few hundred hardware 

cycles). As such, there is a strong likelihood that the measured delay could have been 

dominated by the measurement overhead (recall the Δt delays from Figure 4.2). The 

execution times to complete the START and STOP subroutines are measured as shown in 

Figure 4.4. The above figure shows only the measurement overhead for the pseudo-code, the 

full assembly code annotation, shown in Appendix B, has more overhead instructions. 

Specifically, the {addl $4, %esp} and {popa} of the START subroutine call and the {pusha} 

and {push $#} of the STOP subroutine are measured. Therefore, the logged data should 

subtract measurement overhead value when filtering out the measured cycles. However, the 

overhead value is difficult to obtain because the instructions could be pipelined with other 

instructions. Proper measurements of the overhead will be presented in the Experimental 

Results chapter section 6.4.1. 

 

Figure 4.4 Overhead Cycles from Measurement 
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The block delays are processed after removing the measurement overheads from the 

logged delays. Figure 4.5 shows the distribution of delays for a block in one of our example 

applications. As discussed in section 3.3.1, the outliers need be removed because the very 

large delays may be caused by the base OS when it switches context during measurement. 

Once the data has been filtered (delays smaller than 2 * median – min), the appropriate delay 

value can be determined for the block. The basic-block annotated model uses the average or 

median method to obtain a suitable delay value.  The PMF method is not needed for basic-

block granularity because the range of the delay values do not vary substantially for the basic-

block annotated block. 

4.5 Simulation Model Generation 

The simulation model is generated the same way as the measurement model, with the 

exception of the implementations of START, STOP, and STOP_RTOS_FUNC subroutines. 

The annotated application code remains the same because the time delays are simulated for 

the same identified block as the measurement model’s source code. 

 
Figure 4.5 Distribution of Raw Measured Data of a Block using Basic-Block Annotation 
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Listing 4.3 shows the pseudo-code of the START, STOP, and STOP_RTOS_FUNC 

subroutine for the simulation model. Like the measurement model, the ID parameters of 

subroutines serve to identify which basic-blocks were executed. The subroutines keep track of 

the accumulated delays and only exhibit the delay behavior at the STOP_RTOS_FUNC 

subroutine. The START subroutine checks if it was the first time START was called, and if so 

the accumulated delay is reset to 0. STOP obtains a delay for the identified block and 

accumulates the delay in Accumulated_delay. STOP_RTOS_FUNC obtains the delay for the 

latest identified block, accumulates it, and consumes the accumulated delays 

(Accumulated_delay). The Accumulated_delay is stored temporarily in temp so that 

Accumulated_delay can be reset for the other blocks to execute. The Accumulated_delay is 

reset before the consume call because the consumption may be pre-empted. The accumulated 

delays are only consumed at the STOP_RTOS_FUNC to imitate the execution order of the 

measurement model, which does not call the SystemC wait. The wait is only called by the 

RTOS model functions, which occurs immediately after STOP_RTOS_FUNC (not counting 

the {pusha} and {push $#} instructions).  

  

START(ID) STOP(ID) STOP_RTOS_FUNC(ID) 

begin = ID 

Boolean static firstime = true 

if(firsttime) 

{ 

Accumulated_delay = 0 

firsttime = false 

} 

return 

end = ID 

delay = getDelay(begin, end) 

Accumulated_delay += delay 

return 

end = ID 

delay = getDelay(begin, end) 

Accumulated_delay += delay 

temp = Accumulated_delay 

Accumulated_delay = 0 

consume(temp) 

return 

Listing 4.3 Simulation Model Subroutines Pseudo-code 
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CHAPTER 5 

5 Inter-Kernel Level Annotation 

In this chapter, we describe fast and accurate performance modeling using timing delay 

annotation at the coarse-grained inter-kernel-block level. We will discuss the extraction of 

inter-kernel delay logs from the automatically generated measurement model, and the 

processing of the logs. Finally, we describe the simulation model generation and execution to 

determine application performance on given hardware-software platforms.  

5.1 Annotation and Generation of Measurement Model 

 

In most streaming applications, the delays of primitive computations are dependent, to a 

much larger degree, on the data size rather than on the data value. Moreover, the primitives 

usually operate on data frames of fixed sizes. Since the computation along a source path 

 
Figure 5.1 Annotation of Measurement Code 

 

 

…

K1()

A

if (…)

B

K2()

…

C

K3()

…

then else

…

K1()

begin = “K1”

timer_start()

A

if (…)

then else

B

timer_stop()

delay = timer_val()

log(begin, K2, delay)

K2()

…

C

timer_stop()

delay = timer_val()

log(begin, K3, delay)

K3()

…

Measurement

Model Generation

(a) (b)



62 
  

consists of such primitives, the path delay is data independent. Therefore, we treat the 

segment source path as an atomic computation block for timing annotation. 

Figure 5.1 illustrates the transformation applied to a sample source code to identify and 

measure its blocks. The if condition in Figure 5.1(a) may result in the execution of block (A, 

B) between kernel calls K1 and K2, or block (A, C) between kernel calls K1 and K3. The 

annotated code in Figure 5.1(b) is used determine the executed block as well as the delay 

associated with the block.  

The measurement model generator parses the application code and assigns a unique 

identifier to RTOS kernel calls. As shown in Figure 5.1(b), the generator introduces a variable 

begin, and assigns the kernel call identifier to it, after the call. In this example, the kernel call 

identifier would be K1. It is important to note that K1, K2, and K3 are unique kernel-call 

identifiers; they may or may not be the same kernel function. The model generator adds code 

to start the time measurement of the block by starting the timer. 

The generator also adds code before each kernel call to stop the timer and log the 

measured time corresponding the executed block. The block is easily identified, since the 

begin variable holds the starting kernel call identifier of each block. The block delay is 

returned by the function timer_val(). The logged delays for each block are used to compute 

the probability mass functions to be used by the Simulation Model Generator.  

5.2 Log Processing 

Once the measurements of the blocks are logged, the data are filtered and sorted. The 

execution times of the logged data for each block can vary due to environmental factors 

described in section 3.3. The measurement overheads are ignored in the inter-kernel annotated 
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model because the inter-kernel delays tend to be substantially larger than basic-block delays. 

As such, the measurement overhead is negligible compared to the block delay. The small 

measurement overheads also occur less frequently because the application is annotated on a 

much coarser granularity. Therefore, the measurement overheads do not significantly impact 

the CPU load estimation in the simulation model. 

For inter-kernel granularity of annotation, the average, median, and PMF methods can be 

used to produce the processed log. Figure 5.2 shows the distribution of delays for an inter-

kernel block for one of our example applications. Using the delay distributions, we 

demonstrate how the PMF of the delays can be generated. 

 

Recall from the basic-block annotation in the previous chapter, not all logged delays are of 

interest. The outliers (delays larger than 2 * median – minimum) are filtered out from the data 

because we want to ignore the large delays incurred by potential interrupts from the base OS. 

 

Figure 5.2 Distribution of Raw Measured Data of a Block  

using Inter-Kernel-Block Annotation 
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Since the application code was annotated at inter-kernel level, the filtered data may lie in a 

larger range of values. Furthermore, there is a greater likelihood of a base OS interruption 

occurring when measuring the application execution at the coarse grained level. 

After filtering, the next step is to sort the filtered data into different bins. The bins are split 

evenly among the range of filtered block delays. The number of measured data points within 

the range of each bin is divided by the total number of filtered data points to determine the 

probability of the bin. The representative value of each bin is determined by obtaining the 

bin’s median delay value. Figure 5.2  shows how the measured data is filtered and split 

among 10 bins. The probability of each bin corresponds to a relative median value within its 

set (m0, m1, m2, …), as shown in Figure 5.3. Processing the logs calculates the PMF of every 

block in the application. 

 

5.3 Simulation Model Generator 

The Simulation Model Generator takes the processed logs, the system configuration, 

application code and the RTOS model as inputs. It generates a SystemC model which is 

 

Figure 5.3 Probability Mass Function 
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executed on a host machine to estimate the CPU load offered by the application. The 

application software is re-annotated for inter-kernel identification and for applying a SystemC 

time consumption function, provided by the RTOS model, to the identified blocks. The 

blocks’ delays are used by the consume function to model the CPU time consumption.  

 

Figure 5.4 illustrates the annotation of the application code during simulation model 

generation. The simulation model generator parses the application code to identify kernel 

calls. It introduces a variable begin and assigns the identifier of the kernel call to it. The 

simulation model generator also adds code before each kernel call to consume the time for the 

source path leading to that kernel call. For instance, if the then path is taken, the delay for 

block (A, B) must be consumed. Conversely, if the else path is taken, the delay for block (A, 

C) must be consumed. Furthermore, the delays are consumed stochastically, based on the 

PMF of the respective block.  

 

Figure 5.4 Block Delay Annotation in Simulation Model 

…

K1()

begin = “K1”

A

if (…)

then else

B

p = rand()

delay = getDelay(p,

pmf(begin, K2))

consume(delay)

K2()

…

C

p = rand()

delay = getDelay(p,

pmf(begin, K3))

consume(delay)

K3()

…

Simulation
Model

Generation

…

K1()

A

if (…)

B

K2()

…

C

K3()

…

then else



66 
  

In order to model the appropriate delay consumption, the simulation model generator 

introduces a probability variable p, as shown in Figure 5.4. Before, each kernel call, p is 

assigned a random real value between 0 and 1, by using the rand function. Now, p represents 

the probability with which we will consume a given delay from the block’s PMF. To obtain 

the actual delay, the range [0, 1] is divided into multiple bins. The number of bins is the same 

as the number of sets into which the raw measured delays for the block are divided (see 

Figure 5.2). The size of a bin corresponds to the probability of the delay in the PMF. For 

instance, for the given PMF in Figure 5.3, we have a total of 10 bins. The size of the bin for 

m3 is 0.262, while that for m5 is 0.1. Over multiple iterations of the block, the value p is 

expected to be uniformly distributed across the range [0, 1]. As such, over multiple iterations, 

the delay m3 will be returned by the getDelay function with a probability of 0.262. (see Figure 

5.3). Finally, the simulation generator adds code to apply the obtained time delay calling the 

RTOS model’s consume function. 
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CHAPTER 6 

6 Experimental Results 

In this chapter, we present experimental results for our model generation tools for both the 

basic-block and inter-kernel granularities. We use three streaming applications: MP3 

playback, JPEG encoder, and Voice encoder/decoder. The chosen applications are some of 

the most commonly used streaming applications on mobile embedded devices. The target 

platform is QNX RTOS [21], running on a 500 MHz Geode LX embedded processor [22]. 

The application software, the RTOS model, and the system configuration file are used to 

generate the measurement and simulation models. We implement a SystemC model of the 

QNX RTOS scheduler as described in chapter 2. In order to evaluate the quality of our 

methodology, we measured the three important metrics: the model generation times, the 

model simulation time, and the timing accuracy of our generated models. 

6.1 Use Cases 

In order to evaluate our modeling methodology, we focus on four use cases: 

(1) For the first experiment, referred to as MP3, we simulate only MP3 playback on the 

phone. The MP3 data is fetched from a file, and the decoded data is written on an on-

chip serial buffer. The serial buffer size is set to 32480 bytes, which corresponds to 

184.127 milliseconds of decoded stereo audio data at 44.1 KHz. The buffered data is 

played on the handset speaker. 
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(2) The second experiment, referred to as JPEG, encodes images taken by phone camera at 

regular intervals of 250 milliseconds.  

(3) The third experiment, MP3 + JPEG, combines the first two experiments to encode 

pictures concurrently with MP3 playback.  This design uses the same serial buffer size 

of 184.127 milliseconds and the same image processing interval of 250 milliseconds. 

(4) The fourth experiment, MP3 + Vocoder, performs concurrent MP3 playback and voice 

encoding /decoding. The encoded voice data of the caller is fetched from the network 

buffers and decoded. The decoded voice is mixed with the decoded MP3 and written 

onto the on-chip serial buffer. The serial buffer size is set differently depending on the 

type of platform design. The different designs have the serial buffer size set to 20, 40, 

60, 80, and 100 milliseconds 

The first three use cases are evaluated with a fixed platform. The MP3 + Vocoder use case 

is targeted for platform optimization because it is the most compute-intensive of the four 

experiments. As we will see in section 6.4, the performance of the MP3 + Vocoder use case 

can be optimized by modifying the platform. 

Figure 6.1 shows the application tasks and the inter-task communication for the MP3 + 

Vocoder application. In the given scenario, the caller wants to play an MP3 clip for the callee, 

while hearing it on his/her own handset.  The audio from the MP3 file must be decoded and 

mixed with the audio from the phone call at both ends, so that they can speak to each other 

while the music is playing. Hence, we have four audio streams on the caller’s phone: 
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 Uplink audio: audio being transmitted to the network (including caller’s speech 

mixed with MP3 audio) 

 Downlink audio: audio received from the network (the callee’s speech) 

 Speaker audio: audio being sent to the phone's speaker (includes callee’s speech 

mixed with MP3 audio) 

 Microphone audio: audio coming from the phone's microphone (the caller’s speech) 

 

 

Figure 6.1 Tasks Sequence and Communication for MP3 + Vocoder 
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For each stream there is a message: 

 CLK_TX: Interrupt to transmit uplink audio to the network 

 CLK_RX: Interrupt to tell the system that downlink audio has just been 

received from the network 

 I_AUDIO_TX_READY: Interrupt indicating that the D/A converter needs more data to 

transmit to the speaker 

 I_AUDIO_RX_READY: Interrupt indicating that the A/D converter received new data 

from the microphone. 

The embedded software consists of seven tasks: l1, uas, vocoder, dspaudio, isr, mixerctrl, 

and audiosal. Task l1 implements the uplink and downlink events (CLK_TX and CLK_RX). 

Task isr is the interrupt handler that notifies the decoding task if more data is needed by the 

serial buffer for the speakers (I_AUDIO_TX_READY) or if new data is available from the 

microphone buffer (I_AUDIO_RX_READY). Since the network traffic rates are fixed (as 

per GSM standards), the only design flexibility is in the size of the speaker’s serial buffer. 

The larger the buffer size, the longer the lag experienced by the listener, from the time that 

the input audio/voice data arrives. 

6.2 Model Generation 

 

Table 6.1 Model Generation Time at the Basic-Block Level 

Application # of tasks 
Blocks 
ID’ed 

Generated 
Lines of Code 

Generated 
Time (s) 

MP3 4 433 32765 1.166 

JPEG 1 390 13260 2.061 

MP3 + JPEG 5 814 40845 2.308 

MP3 + Vocoder 7 674 46907 1.225 
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Table 6.1 and Table 6.2 show the generation time for the annotation of the models for 

basic-block and inter-kernel annotation, respectively. The number of tasks blocks identified 

indicates the complexity of the generated model applications. The generated lines of code 

include the annotated code, for both measurement and simulation, as well as the SystemC 

model of the platform. MP3 + Vocoder’s model generation takes approximately the same 

amount of time for different platform designs (20, 40, 60, 80, 100 milliseconds of buffer size) 

because the application code is independent of the hardware parameters. The models for both 

annotation levels were generated in just a few seconds on an Intel i3 host machine running at 

3.20GHz. As we can see, automatic generation of models is much faster and more convenient 

than the time-consuming, manual annotation at the basic-block level. Therefore, our model 

generation tools can improve productivity in the design process by drastically diminishing 

modeling time, and thereby improve efficiency. 

6.3 Model Simulation 

Another important quality metric for our methodology is the execution speed of the 

generated models. Clearly, the model execution speed depends on the complexity of the 

application, the target and host platforms, and the amount of time reserved for measurement 

or simulation. The complexity of the models depends on the application functionality as well 

Table 6.2 Model Generation Time at Inter-Kernel-Block Level 

Application # of tasks 
Blocks 
ID’ed 

Generated 
Lines of Code 

Generated 
Time (s) 

MP3 4 18 836 1.108 

JPEG 1 1 55 2.026 

MP3 + JPEG 5 19 277 2.226 

MP3 + Vocoder 7 42 338 1.071 
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as the annotations. The generated measurement models are executed on the target Geode LX 

processor using Linux as the base OS. The generated simulation models are executed on the 

host Intel i3 machine with Linux as the host OS. 

Table 6.3 and Table 6.4 show the measured execution times for the use cases’ 

measurement model, log processing, and simulation model. The total time is considered as 

the overall time needed to evaluate the design. Note that the processing time of the logs for 

the inter-kernel annotated models has very little effect (much less than a second) on the 

overall time and are thus omitted. 

 

Table 6.3 Execution Speed of Application Models at the Basic-Block Level 

Application 
Simulated 
Time (s) 

Measurement 
Time (s) 

[on target] 

Logs 
Processing 
Time (s) 
[on host] 

Simulation 
Time (s) 
[on host] 

Total 
Time (s) 

Total Time 
/ Simulated 
Time Ratio 

MP3 8.0 398.08 356.09 253.46 1007.63 ~125 X 

JPEG 8.0 431.34 350.91 340.79 1123.04 ~140 X 

MP3 + JPEG 8.0 819.40 1364.76 774.66 2958.82 ~370 X 

MP3 + 
VOCODER 

(20ms) 
0.5 600.33 847.89 476.74 1924.96 ~4K X 

MP3 + 
VOCODER 

(40ms) 
0.5 440.12 611.05 352.16 1403.33 ~3K X 

MP3 + 
VOCODER 

(60ms) 
0.5 394.76 539.49 311.62 1245.87 ~2.5K X 

MP3 + 
VOCODER 

(80ms) 
0.5 367.03 511.67 273.40 1152.11 ~2.3K X 

MP3 + 
VOCODER 

(100ms) 
0.5 300.70 406.70 237.77 945.17 ~1.9K X 
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We notice the following trends: 

(1) The measurement model runs slower than the simulation model since the target 

platform has a less powerful processor than the host machine. 

(2) Evaluating the inter-kernel annotated models is over three magnitudes (103X) 

faster than the basic-block annotated models.  

(3) Increase in buffer size leads to reduction in execution time due to improved cache 

performance (see Figure 1.1). 

(4) Processing logs is faster with larger buffer sizes. Even though the number of basic-

blocks in the code is the same, the number times they are executed depends on the 

buffer size. For example, a smaller buffer size leads to a higher interrupt rate.  

Hence, the the buffers for inter-task communication will be accessed more often 

for the same simulated time and the block(s) responsible for buffer access will be 

executed more often. Consequently, the delay logs for small buffer size will be 

Table 6.4 Execution Speed of Application Models at the Inter-Kernel-Block Level 

Application 
Simulated 
Time (s) 

Measurement 
Time (s) 

[on target] 

Simulation 
Time (s) 
[on host] 

Total 
Time (s) 

Total Time 
/ Simulated 
Time Ratio 

MP3 300 24.31 5.13 29.44 0.10X 

JPEG 300 6.84 0.77 7.61 0.03X 

MP3 + JPEG 300 32.66 5.68 38.34 0.13X 

MP3 + VOCODER (20ms) 300 222.19 35.15 257.34 0.86X 

MP3 + VOCODER (40ms) 300 172.37 27.31 199.68 0.67X 

MP3 + VOCODER (60ms) 300 155.48 24.64 180.12 0.60X 

MP3 + VOCODER (80ms) 300 146.93 23.76 170.69 0.57X 

MP3 + VOCODER (100ms) 300 141.83 22.85 164.68 0.55X 
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longer than the delay logs for large buffer size and the time taken to process the 

logs is larger for small buffer size. 

The basic-block level annotations make the code very complex (see generated lines of 

code in Table 6.1), and thus the execution time of the measurement model is much higher 

compared to the simulation times. We use small simulated times for basic-block level 

measurement in order to reduce the execution times of the models. We record the execution 

of the generated measurement model on the target processor. This measurement model 

execution produces the log of basic block delays. The measurement model creates very large 

delay logs (100–200 MBs for MP3-Vocoder) because the basic-block level annotation 

identifies blocks, which are executed and measured, at a very fine granularity. The large delay 

logs are processed on the faster host system. Nevertheless, the processing time is still quite 

high (as shown on the Logs Processing Time column). Finally, we measure the execution 

time of the simulation model. The execution times from the measurement model, the logs 

processing, and the simulation model are added and shown in the Total Time column.  

The final column shows the ratio of total time to the simulated time. The ratios are 

indicative of the overall simulation performance of our methodology, when using the basic 

block level annotations. The smaller the ratio, the better is the simulation performance. For 

instance, a ratio of 125X in the first row implies that it takes 125 seconds to simulate 1 second 

of software activity on the target hardware. As we can see, this ratio depends on the 

complexity of the application. However, it is convenient yardstick to measure simulation 

performance. It can be observed that the overall analysis time (including measurement, log 

processing, and simulation) is two to three orders of magnitude slower than the simulated 

time.  
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The inter-kernel models are much less complex and require much less time to execute on 

the target and host machine than the basic-block models, because the inter-kernel models are 

annotated at a coarser granularity. The time taken to process the inter-kernel annotated logs is 

omitted in Table 6.4 because they are negligible compared to the simulated times. The log 

files are significantly smaller (19KB–7MB for 300 seconds of simulation for MP3-Vocoder) 

as opposed to the basic-block level logs (100–200MBs for 0.5 seconds of simulation). 

As shown in the last column in Table 6.3 and Table 6.4, the ratio of the total analysis time 

to the simulated time is much higher for the models annotated at the basic-block-level than 

for the models annotated at the inter-kernel level. For example, if MP3 were to simulated 100 

seconds of computations, the basic-block annotated model would take about 12500 seconds 

(125X), or about 3.47 hours,  to execute and estimate the CPU load. On the other hand, the 

inter-kernel annotated model would take about 10 seconds (0.1X). Therefore the simulation at 

the inter-kernel annotation granularity provides several orders of magnitude speed-up over 

models with basic-block level annotation. However, the accuracy of timing prediction must 

also be taken into consideration when evaluating a modeling methodology. In the next 

section, we will discuss the timing accuracy results of our models for the given use cases. 

6.4 Accuracy 

The most important quality metric for our methodology is the accuracy of the predicted 

CPU load. In order to make such predictions, measurement overheads need to be considered 

for the basic-block annotation. In the first section, we perform a short experiment to 

determine the measurement overhead for the basic-block models. Then, the CPU load is 

estimated for both the basic-block and inter-kernel annotated models. The different 

approaches are then compared to determine the most accurate approach. 
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6.4.1 Measurement Overhead for Basic-Block Annotation 

 

Recall that the subroutines START and STOP from Chapter 4 cause overhead cycles which 

may introduce significant errors in the measured delays. Supplemental experiments were 

conducted on the Geode LX embedded processor to determine the measurement overheads. 

The START and STOP subroutines were manually inserted to determine the number of 

introduced cycles when no relevant code was measured. Figure 6.2 depicts how the overhead 

cycles were measured. This small experiment always executes and measure block [0–1]. 

Initially, the experiment measures nothing in between the subroutines. Then the “nop” 

instructions are incrementally introduced in order to compensate for the effects of pipelining 

of instructions in the START and STOP routines. The “nop” instruction takes only one cycle 

to fetch, but does not execute as it is a “no operation”. The measurements with the added 

NOPs are a more accurate representation of the overhead. We performed several experiments 

by varying the number of NOPs and found that the measurement overhead converged to 100 

cycles on the target Geode LX processor.  

 

 

Figure 6.2 Manual Measurement of Overhead 
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6.4.2 CPU Load Estimation 

 

 

Table 6.5 Estimation Accuracy of Simulation Models Using Average Including Outliers 

Application 
Actual 

CPU 
Load 

Basic-Block 
Annotation 

Inter-Kernel 
Annotation 

Most 
Accurate 

Annotation 
Predicted 

Absolute 
Error Predicted 

Absolute 
Error 

MP3 1.75% 2.81% 1.06% 7.14% 5.39% Basic-Block 

JPEG 2.40% 5.21% 2.81% 2.35% 0.05% Inter-Kernel 

MP3+JPEG 4.15% 11.12% 6.97% 8.22% 4.07% Inter-Kernel 

MP3+Vocoder(20ms) 50.78% 67.75% 16.97% 49.70% 1.08% Inter-Kernel 

MP3+Vocoder(40ms) 38.43% 48.20% 9.77% 37.26% 1.17% Inter-Kernel 

MP3+Vocoder(60ms) 32.81% 43.57% 10.76% 33.19% 0.38% Inter-Kernel 

MP3+Vocoder(80ms) 29.91% 42.09% 12.18% 33.99% 4.08% Inter-Kernel 

MP3+Vocoder(100ms) 28.79% 37.90% 9.11% 33.00% 4.21% Inter-Kernel 

 

Table 6.6 Estimation Accuracy of Simulation Models Using Average Without Outliers 

Application 
Actual 

CPU 
Load 

Basic-Block 
Annotation 

Inter-Kernel 
Annotation 

Most 
Accurate 

Annotation 
Predicted 

Absolute 
Error Predicted 

Absolute 
Error 

MP3 1.75% 2.11% 0.36% 2.97% 1.22% Basic-Block 

JPEG 2.40% 2.89% 0.49% 2.21% 0.19% Inter-Kernel 

MP3+JPEG 4.15% 4.20% 0.05% 4.31% 0.16% Basic-Block 

MP3+Vocoder(20ms) 50.78% 51.67% 0.89% 47.52% 3.26% Basic-Block 

MP3+Vocoder(40ms) 38.43% 36.38% 2.05% 35.10% 3.33% Basic-Block 

MP3+Vocoder(60ms) 32.81% 31.94% 0.87% 31.05% 1.76% Basic-Block 

MP3+Vocoder(80ms) 29.91% 30.10% 0.19% 29.65% 0.26% Basic-Block 

MP3+Vocoder(100ms) 28.79% 27.40% 1.39% 28.18% 0.61% Inter-Kernel 
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Table 6.5, 6.6, 6.7, and 6.8 show a comparison of the predicted and actual CPU loads for 

the applications with both the basic-block and inter-kernel annotations. The estimated CPU 

load is obtained from the simulation model by dividing the RTOS model’s total busy time by 

Table 6.7 Estimation Accuracy of Simulation Models Using Median Including Outliers 

Application 
Actual 

CPU 
Load 

Basic-Block 
Annotation 

Inter-Kernel 
Annotation 

Most 
Accurate 

Annotation 
Predicted 

Absolute 
Error Predicted 

Absolute 
Error 

MP3 1.75% 2.19% 0.44% 2.93% 1.18% Basic-Block 

JPEG 2.40% 2.94% 0.54% 2.19% 0.21% Inter-Kernel 

MP3+JPEG 4.15% 4.24% 0.09% 4.25% 0.10% Basic-Block 

MP3+Vocoder(20ms) 50.78% 52.23% 1.45% 53.27% 2.49% Basic-Block 

MP3+Vocoder(40ms) 38.43% 36.67% 1.76% 34.78% 3.65% Basic-Block 

MP3+Vocoder(60ms) 32.81% 32.04% 0.77% 30.74% 2.07% Basic-Block 

MP3+Vocoder(80ms) 29.91% 30.37% 0.46% 29.05% 0.86% Basic-Block 

MP3+Vocoder(100ms) 28.79% 26.60% 2.19% 27.60% 1.19% Inter-Kernel 

 

Table 6.8 Estimation Accuracy of Simulation Models Using Median Without Outliers 

Application 
Actual 

CPU 
Load 

Basic-Block 
Annotation 

Inter-Kernel 
Annotation 

Most 
Accurate 

Annotation 
Predicted 

Absolute 
Error Predicted 

Absolute 
Error 

MP3 1.75% 2.12% 0.37% 2.93% 1.18% Basic-Block 

JPEG 2.40% 2.90% 0.50% 2.19% 0.21% Inter-Kernel 

MP3+JPEG 4.15% 4.15% 0.00% 4.25% 0.10% Basic-Block 

MP3+Vocoder(20ms) 50.78% 51.72% 0.94% 47.07% 3.72% Basic-Block 

MP3+Vocoder(40ms) 38.43% 36.24% 2.19% 34.78% 3.65% Basic-Block 

MP3+Vocoder(60ms) 32.81% 31.57% 1.24% 30.74% 2.07% Basic-Block 

MP3+Vocoder(80ms) 29.91% 30.21% 0.30% 29.05% 0.86% Basic-Block 

MP3+Vocoder(100ms) 28.79% 26.41% 2.38% 27.60% 1.19% Inter-Kernel 
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the simulated time. The actual CPU loads for the reference applications are obtained using the 

time kernel call in QNX, which gives the busy times for the applications during execution on 

target. Each table processes the delay logs differently. Our goal is to determine whether 

processing logs as an average or as a median would yield better estimation results. We also 

want to validate our heuristic of omitting the outliers from the logs. 

Table 6.5 predicts the CPU load using all data in the delay logs, without excluding the 

outliers, and computes an average of all the timing delays for each block. The CPU load 

estimations obtained in Table 6.6 exclude all the outliers and then calculate an average timing 

delay for each block. Likewise, Table 6.7 and Table 6.8 process the logs with and without the 

outliers, respectively, but compute the median delay value, instead of the average, for each 

block. 

As shown in the tables above, most of the simulation models of the applications give a 

more accurate CPU load prediction for the basic-block annotation without outliers. In general, 

the computed median delay only considers the data values which are repeated or are in close 

proximity to one another. Thus, the outlier values have a lesser effect on the median. The 

average delay is calculated by dividing the total delay by the number of delays. The basic-

block annotation poorly predicts the CPU load when average delays with outliers are included 

because the granularity of the annotation is very sensitive to outliers and measurement 

overheads. Although we eliminate, the measurement overhead of 100 cycles, this overhead is 

not a constant and our approximation may lead to errors. However, the other cases estimated 

the CPU load more accurately than the inter-kernel annotation models, except for JPEG and 

MP3+Vocoder(100ms) applications. 
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The measurement models which are annotated at inter-kernel level provide a wider range 

of data for the timing delays of each block. The model’s run time consists of several other 

overheads, such as the kernel activities of the base OS. The actual block delays are recorded 

in the logs and are processed with the corresponding PMFs.  

 

Table 6.9 shows a comparison of the predicted and actual CPU load. Every block’s logged 

measurements are split into 10 bins to obtain their PMFs. The predicted CPU loads, in the 

above tables, generate a probability between 0 and 1 for every block to obtain a stochastic 

delay value from the PMF.  

  

Table 6.9 CPU Load Estimation Using Median delays and 10 bins in the PMF 

 

Sim. 
Time (s) 

Predicted 
Time (s) 

Predicted 
CPU Load 

Actual CPU 
Load 

Absolute 
Error 

MP3 300 8.88 2.96% 1.75% 1.21% 

JPEG 300 6.64 2.21% 2.40% 0.19% 

MP3+JPEG 300 12.94 4.31% 4.15% 0.16% 

MP3+Vocoder(20ms) 300 142.33 47.44% 50.78% 3.34% 

MP3+Vocoder(40ms) 300 105.51 35.17% 38.43% 3.26% 

MP3+Vocoder(60ms) 300 93.44 31.15% 32.81% 1.66% 

MP3+Vocoder(80ms) 300 89.07 29.69% 29.91% 0.22% 

MP3+Vocoder(100ms) 300 84.65 28.22% 28.79% 0.57% 
 

Table 6.10 Average Absolute Errors for Observed Applications Tables 6.5 – 6.8 

Logs Processing Type 

Average of 
Absolute errors 

Basic-
block 

Inter-
kernel 

Average with Outliers 8.70% 2.55% 

Average without Outliers 0.79% 1.35% 

Median with Outliers 0.96% 1.47% 

Median without Outliers 0.99% 1.62% 

PMF N/A 1.33% 
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Table 6.10 shows the average absolute errors of the tables above. The table summarizes 

the five methods of processing the logs into a single table. From this table, we can confirm 

that the basic-block models, with averaging the delay logs without outliers, would give the 

most accurate CPU load estimation. However, predicting the CPU load with the basic-block 

models requires much more time. On the other hand, if a fast and reasonably accurate 

estimation is needed, the inter-kernel annotated model using PMFs would be the most 

appropriate method. 

Despite the relatively high accuracy of our models, our measurements are prone to a few 

errors. For instance, the cache behavior for the measurement model and the reference design 

may have some inconsistencies, since the measurement model runs in the context of the 

SystemC kernel and the base OS. The reference design runs the application on the target OS. 

Moreover, the state of the processor may be different while executing the same block in the 

measurement model and in the reference design. The block delay modeling itself may 

introduce errors, due to its stochastic nature. However, these errors do not have a significant 

impact as demonstrated in the above tables. Based on this data, we can conclude that our 

model generators can be used for accurate performance predictions. 

6.5 Design Space Exploration 

Since the MP3 + Vocoder offers a very high CPU load (up to 50%), it is a critical 

application to be optimized. Figure 6.3 shows that increasing the buffer size reduces the CPU 

load, but only up to a certain point, beyond which there are diminishing returns on efficiency. 

Increasing the buffer size for the MP3 + Vocoder case study also increases the delay in the 

callee’s speech being decoded and played back on the caller’s speaker. Therefore, the larger 

the buffer size, the poorer is the quality of service.  
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The following tables show the predicted performance improvement for the different serial 

buffer sizes of MP3+Vocoder. The improvements are obtained from the predicted CPU load 

from Tables 6.6 to 6.9. For example, Table 6.11 takes the difference between the actual and 

predicted CPU loads from a buffer size of 20ms to 40ms to observe the performance 

improvements. So the actual CPU improvement is therefore 12.35% (50.78% – 38.43%). The 

predicted CPU improvements are the difference between the predicted CPU loads using the 

same log processing technique. 

 

  

Figure 6.3 Buffersize and CPU Load Trade-off 
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Table 6.11 Performance Increase from 20ms to 40ms Buffer Size 

Log 
Processing 

Type 
Outliers 

Actual CPU 
Improvement 

Basic-Block 
Annotation 

Inter-Kernel 
Annotation 

Most 
Accurate 

Improvement 
Predicted CPU 
Improvement 

Average Include 

12.35% 

19.55% 12.44% Inter-Kernel 

Average Exclude 15.29% 12.42% Inter-Kernel 

Median Include 15.56% 18.49% Basic-Block 

Median Exclude 15.48% 12.29% Inter-Kernel 
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Based on the high accuracy of our simulation models, embedded system designers can 

investigate trade-offs between quality of service and CPU load for different buffer sizes. For 

instance, a buffer size of 60ms provides an acceptable quality of service for a tolerable CPU 

load in the actual design, as shown. If however, quality of service is of primary concern, a 

buffer size of 20ms can be chosen. In that case, it may be advisable to move some of the 

Table 6.12 Performance Increase from 40ms to 60ms Buffer Size 

Log 
Processing 

Type 
Outliers 

Actual  CPU 
Improvement 

Basic-Block 
Annotation 

Inter-Kernel 
Annotation 

Most 
Accurate 

Improvement 
Predicted CPU 
Improvement 

Average Include 

5.62% 

4.63% 4.07% Basic-Block 

Average Exclude 4.43% 4.05% Basic-Block 

Median Include 4.63% 4.03% Basic-Block 

Median Exclude 4.67% 4.03% Basic-Block 

 

Table 6.13 Performance Increase from 60ms to 80ms Buffer Size 

Log 
Processing 

Type 
Outliers 

Actual CPU 
Improvement 

Basic-Block 
Annotation 

Inter-Kernel 
Annotation 

Most 
Accurate 

Improvement 
Predicted CPU 
Improvement 

Average Include 

2.90% 

1.48% -0.80% Basic-Block 

Average Exclude 1.85% 1.40% Basic-Block 

Median Include 1.67% 1.70% Inter-Kernel 

Median Exclude 1.36% 1.70% Inter-Kernel 

 

Table 6.14 Performance Increase from 80ms to 100ms Buffer Size 

Log 
Processing 

Type 
Outliers 

Actual CPU 
Improvement 

Basic-Block 
Annotation 

Inter-Kernel 
Annotation 

Most 
Accurate 

Improvement 
Predicted CPU 
Improvement 

Average Include 

1.12% 

4.18% 0.99% Inter-Kernel 

Average Exclude 2.70% 1.47% Inter-Kernel 

Median Include 3.77% 1.44% Inter-Kernel 

Median Exclude 3.80% 1.44% Inter-Kernel 
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compute-intensive functions of the Vocoder to dedicated hardware accelerators instead. The 

50.78% CPU load predicted by the model can be used to guide the exploration of hardware 

accelerated platforms. As seen from the above tables, our modeling methodology supports 

high speed and reliable design space exploration before a complete software-hardware 

platform is available. 
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CHAPTER 7 

7 Conclusion and Future work 

In this thesis, we described a methodology and tools to generate accurate and efficient 

simulation models for streaming applications before the hardware-software architecture is 

finalized. We implemented measurement at both the inter-kernel and basic-block granularities 

to provide a detailed analysis of the trade-offs between model execution speed and accuracy. 

Our results show that the model generation is very fast and the estimated performances are 

accurate as compared to the target platform. The basic-block level annotation approach 

provides very accurate performance estimation, but at the cost of slow simulation. On the 

other hand, the inter-kernel annotation approach provides a very fast and reasonably accurate 

estimation. The accuracy of our models enables embedded system designer to perform early 

hardware-software analysis and optimization, before the target hardware and the system 

software is available. We conclude that a fast and accurate estimation can be obtained using 

the inter-kernel annotation scheme. However, if estimation time is not a factor, the basic-

block level annotation scheme provides more accurate estimation.  

Future direction to improve on the modeling techniques presented will focus on multi-core 

target platforms, improvements to delay processing, and trace analysis. Our models currently 

support a single-core design. We can extend our modeling technique to multi-core platforms. 

The major challenge in this respect is the design of a multicore RTOS scheduler. We are 

likely to see greater variation in execution times of different blocks due to task migration and 

core-affinity (core preference or assignment of task).  
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In our current methodology, the block delays are treated independently of one another. The 

block delay analysis can be improved by finding correlations between block-delays in 

neighboring blocks. As such, we will need to add a correlation factor to pairs of delays during 

log processing. Finally, it would be useful for the model to generate a trace of the processor 

load over time as opposed to a fixed average load. Tracing would allow improved 

observability of the processor’s load, and hence its power consumption, which it is executing 

different parts of the application. As such, the designer will have better insight into 

optimization opportunities in the application. In order to model the execution trace of the 

application on the target platform, we will need to add new features in the consume function 

of the RTOS model, as well as new functions to display the trace. 
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Appendix 

A. Configuration File Schema 

<?xml version="1.0" encoding="ISO-8859-1"?> 
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"> 
 
<!-- main elements --> 
<xs:element name="configuration"> 
 <xs:complexType> 
  <xs:sequence> 
   <xs:element name="systemcPath" type="xs:string"/> 
   <xs:element name="compiler" type="xs:string"/> 
   <xs:element name="MESH_PATH" type="xs:string"/> 
   <xs:element ref="system"/> 
   <xs:element name="executable" type="xs:string"/> 
  </xs:sequence> 
 </xs:complexType> 
</xs:element> 
 
<xs:element name="system"> 
 <xs:complexType> 
  <xs:sequence> 
   <xs:element ref="processor"/> 
   <xs:element ref="hardware" minOccurs="0" maxOccurs="unbounded"/> 
   <xs:element ref="signal" minOccurs="0" maxOccurs="unbounded"/> 
   <!-- module port binding --> 
   <xs:element ref="connection" minOccurs="0" maxOccurs="unbounded"/> 
   <xs:element ref="runtime"/> 
   <xs:element ref="timeConsumption" minOccurs="0" 
maxOccurs="unbounded"/> 
  </xs:sequence> 
 </xs:complexType> 
</xs:element> 
 
<!-- processor --> 
<xs:element name="processor"> 
 <xs:complexType> 
  <xs:sequence> 
   <xs:element name="type" type="xs:string"/> 
   <xs:element name="name" type="xs:string"/> 
   <xs:element name="frequency" type="xs:string"/> 
   <xs:element ref="RTOS"/> 
   <xs:element ref="process" minOccurs="1" maxOccurs="unbounded"/> 
   <xs:element ref="port" type="xs:string" minOccurs="0" 
maxOccurs="unbounded"/> 
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   <xs:element ref="interface" minOccurs="0" maxOccurs="unbounded"/> 
   <xs:element ref="interruptHandler" minOccurs="0" maxOccurs="1"/> 
   <xs:element ref="interruptController" minOccurs="0" maxOccurs="1"/> 
  </xs:sequence> 
 </xs:complexType> 
</xs:element> 
 
<!-- interface --> 
<xs:element name="interface"> 
 <xs:complexType> 
  <xs:sequence> 
   <xs:element name="header" type="xs:string" minOccurs="0" 
maxOccurs="unbounded"/> 
   <xs:element ref="function" minOccurs="0" maxOccurs="unbounded"/> 
  </xs:sequence> 
 </xs:complexType> 
</xs:element> 
 
<!-- interface functions --> 
<xs:element name="function"> 
 <xs:complexType> 
  <xs:sequence> 
   <xs:element name="fname" type="xs:string"/> 
   <xs:element name="return" type="xs:string"/> 
   <xs:element name="IF_portName" type="xs:string"/> 
   <xs:element name="parameterType" type="xs:string" minOccurs="0" 
maxOccurs="unbounded"/> 
  </xs:sequence> 
 </xs:complexType> 
</xs:element> 
 
<!-- RTOS --> 
<xs:element name="RTOS"> 
 <xs:complexType> 
  <xs:sequence> 
   <xs:element name="type" type="xs:string"/> 
   <xs:element name="model" type="xs:string"/> 
   <xs:element name="name" type="xs:string"/> 
   <xs:element name="library" type="xs:string"/> 
   <xs:element name="libHome" type="xs:string"/> 
   <xs:element name="policy" type="xs:string"/> 
  </xs:sequence> 
 </xs:complexType> 
</xs:element> 
 
<!-- process --> 
<xs:element name="process"> 
 <xs:complexType> 
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  <xs:sequence> 
   <xs:element name="name" type="xs:string"/> 
   <xs:element name="header" type="xs:string" minOccurs="0" 
maxOccurs="unbounded"/> 
   <xs:element name="cfile" type="xs:string" minOccurs="0" 
maxOccurs="unbounded"/> 
   <xs:element name="asIsCfile" type="xs:string" minOccurs="0" 
maxOccurs="unbounded"/> 
   <xs:element name="mainFunction" type="xs:string"/> 
   <xs:element ref="task" minOccurs="1" maxOccurs="unbounded"/> 
  </xs:sequence> 
 </xs:complexType> 
</xs:element> 
 
<!-- task --> 
<xs:element name="task"> 
 <xs:complexType> 
  <xs:sequence> 
   <xs:element name="taskEntry" type="xs:string"/> 
   <xs:element name="priority" type="xs:string"/> 
  </xs:sequence> 
 </xs:complexType> 
</xs:element> 
 
<!-- port --> 
<xs:element name="port"> 
 <xs:complexType> 
  <xs:sequence> 
   <xs:element name="name" type="xs:string"/> 
   <xs:element name="type" type="xs:string"/> 
   <xs:element name="direction" type="xs:string"/> 
  </xs:sequence> 
 </xs:complexType> 
</xs:element> 
 
<!-- interruptHandler --> 
<xs:element name="interruptHandler"> 
 <xs:complexType> 
  <xs:sequence> 
   <xs:element name="name" type="xs:string"/> 
   <xs:element name="header" type="xs:string" minOccurs="0" 
maxOccurs="unbounded"/> 
   <xs:element name="cfile" type="xs:string" minOccurs="0" 
maxOccurs="unbounded"/> 
   <xs:element ref="case" minOccurs="0" maxOccurs="unbounded"/> 
  </xs:sequence> 
 </xs:complexType> 
</xs:element> 
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<!-- case --> 
<xs:element name="case"> 
 <xs:complexType> 
  <xs:sequence> 
   <xs:element name="sourcePort" type="xs:string"/> 
   <xs:element name="subroutine" type="xs:string"/> 
  </xs:sequence> 
 </xs:complexType> 
</xs:element> 
 
<!-- interruptController --> 
<xs:element name="interruptController"> 
 <xs:complexType> 
  <xs:sequence> 
   <xs:element name="type" type="xs:string"/> 
   <xs:element name="name" type="xs:string"/> 
   <xs:element name="interruptPort" type="port" minOccurs="0" 
maxOccurs="unbounded"/> 
  </xs:sequence> 
 </xs:complexType> 
</xs:element> 
 
<!-- hardware --> 
<xs:element name="hardware"> 
 <xs:complexType> 
  <xs:sequence> 
   <xs:element name="type" type="xs:string"/> 
   <xs:element name="name" type="xs:string"/> 
  </xs:sequence> 
 </xs:complexType> 
</xs:element> 
   
<!-- signal --> 
<xs:element name="signal"> 
 <xs:complexType> 
  <xs:sequence> 
   <xs:element name="type" type="xs:string"/> 
   <xs:element name="name" type="xs:string"/> 
  </xs:sequence> 
 </xs:complexType> 
</xs:element> 
 
<xs:element name="connection"> 
 <xs:complexType> 
  <xs:sequence> 
   <xs:element name="moduleName" type="xs:string"/> 
   <xs:element name="modulePort" type="xs:string"/> 
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   <xs:element name="signalBinding" type="xs:string"/> 
  </xs:sequence> 
 </xs:complexType> 
</xs:element> 
 
<xs:element name="runtime"> 
 <xs:complexType> 
  <xs:sequence> 
   <xs:element name="value" type="xs:string"/> 
   <xs:element ref="scTimeUnit"/> 
  </xs:sequence> 
 </xs:complexType> 
</xs:element> 
 
<xs:element name="timeConsumption"> 
 <xs:complexType> 
  <xs:sequence> 
   <xs:element name="rtosModel" type="xs:string"/> 
   <xs:element name="processorName" type="xs:string"/> 
   <xs:element ref="scTimeUnit"/> 
  </xs:sequence> 
 </xs:complexType> 
</xs:element> 
 
<xs:element name="scTimeUnit"> 
 <xs:simpleType> 
  <xs:restriction base="xs:string"> 
   <xs:pattern value="SC_(SEC|MS|US|NS|PS|FS)" default="SC_SEC"/> 
  </xs:restriction> 
 </xs:simpleType> 
</xs:element> 
 
</xs:schema> 
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B. Full Assembly Annotation of Figure 4.2 

label1: 

 pusha  ; save all registers into the stack 

 push $0  ; push ID 0 into the stack as a parameter for STOP 

 call _Z4STOP ; correct calling convention to STOP for Intel assembly 

 addl $4, %esp ; move the stack pointer to skip the pushed 0 

 popa  ; pop back all registers from the stack 

 pusha  ; save all registers into the stack 

 push $1  ; push ID 1 into the stack as a parameter for START 

 call _Z5START ; correct calling convention to START for Intel assembly 

 addl $4, %esp ; move the stack pointer to skip the pushed 1 

 popa  ; pop back all registers from the stack 

 ; code for block A 

 cmp … 

 je yes 

 ; code for block B 

 jmp done 

yes:  

 pusha  ; save all registers into the stack 

 push $2  ; push ID 2 into the stack as a parameter for STOP 

 call _Z4STOP ; correct calling convention to STOP for Intel assembly 

 addl $4, %esp ; move the stack pointer to skip the pushed 2 

 popa  ; pop back all registers from the stack 

 pusha  ; save all registers into the stack 

 push $3  ; push ID 3 into the stack as a parameter for START 

 call _Z5START ; correct calling convention to START for Intel assembly 

 addl $4, %esp ; move the stack pointer to skip the pushed 3 

 popa  ; pop back all registers from the stack 

 ; code for block C 

done: 

pusha  ; save all registers into the stack 

 push $4  ; push ID 4 into the stack as a parameter for STOP 

 call _Z4STOP ; correct calling convention to STOP for Intel assembly 

 addl $4, %esp ; move the stack pointer to skip the pushed 2 
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 popa  ; pop back all registers from the stack 

 pusha  ; save all registers into the stack 

 push $5  ; push ID 5 into the stack as a parameter for START 

 call _Z5START ; correct calling convention to START for Intel assembly 

 addl $4, %esp ; move the stack pointer to skip the pushed 5 

 popa  ; pop back all registers from the stack 

 ; code for block D 

label2: 

 pusha  ; save all registers into the stack 

 push $6  ; push ID 6 into the stack as a parameter for STOP 

 call _Z4STOP ; correct calling convention to STOP for Intel assembly 

 addl $4, %esp ; move the stack pointer to skip the pushed 6 

 popa  ; pop back all registers from the stack 

 pusha  ; save all registers into the stack 

 push $7  ; push ID 7 into the stack as a parameter for START 

 call _Z5START ; correct calling convention to START for Intel assembly 

 addl $4, %esp ; move the stack pointer to skip the pushed 7 

 popa  ; pop back all registers from the stack 

 … 
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