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ABSTRACT 

Application Layer Architectures for Disaster Response Systems 

Mohammadmajid Hormati, Ph.D. 

Concordia University, 2013 

 

Traditional disaster response methods face several issues such as limited situational 

awareness, lack of interoperability and reliance on voice-oriented communications. 

Disaster response systems (DRSs) aim to address these issues and assist responders by 

providing a wide range of services. Since the network infrastructure in disaster area may 

become non-operational, mobile ad-hoc networks (MANETs) are the only alternative to 

provide connectivity and other network services. Because of the dynamic nature of 

MANETs the applications/services provided by DRSs should be based on distributed 

architectures. These distributed application/services form overlays on top of MANETs.  

This thesis aims to improve three main aspect of DRSs: interoperability, automation, and 

prioritization. Interoperability enables the communication and collaboration between 

different rescue teams which improve the efficiency of rescue operations and avoid 

potential interferences between teams. Automation allows responders to focus more on 

their tasks by minimizing the required human interventions in DRSs. Automation also 

allows machines to operate in areas where human cannot because of safety issues. 

Prioritization ensures that emergency services (e.g. firefighter communications) in DRSs 

have higher priority to receive resources (e.g. network services) than non-emergency 

services (e.g. new reporters’ communications). Prioritizing vital services in disaster area 

can save lives. 
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This thesis proposes application layer architectures that enable three important services in 

DRSs and contribute to the improvement of the three aforementioned aspects of DRSs: 

overlay interconnection, service discovery and differentiated quality of service (QoS). 

The overlay interconnection architecture provides a distributed and scalable mechanism 

to interconnect end-user application overlays and gateway overlays in MANETs. The 

service discovery architecture is a distributed directory-based service discovery 

mechanism based on the standard Domain Name System (DNS) protocol. Lastly, a 

differentiated QoS architecture is presented that provides admission control and policy 

enforcement functions based on a given prioritization scheme.  

For each of the provided services, a motivation scenario is presented, requirements are 

derived and related work is evaluated with respect to these requirements. Furthermore, 

performance evaluations are provided for each of the proposed architectures. For the 

overlay interconnection architecture, a prototype is presented along with performance 

measurements. The results show that our architecture achieves acceptable request-

response delays and network load overhead. For the service discovery architecture, 

extensive simulations have been run to evaluate the performance of our architecture and 

to compare it with the Internet Engineering Task Force (IETF) directory-less service 

discovery proposal based on Multicast DNS. The results show that our architecture 

generates less overall network load and ensures successful discovery with higher 

probability. Finally, for the differentiated QoS architecture, simulations results show that 

our architecture not only enables differentiated QoS, it also improves overall QoS in 

terms of the number of successful overlay flows. 
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Chapter 1:  Introduction 

This chapter starts by presenting the motivation of this thesis. It then states the problem, 

presents the thesis objectives, general requirements, and summarizes the contributions 

along with the related publications. Finally it describes the thesis organization. 

1.1 Motivations and Problem Statement 

When a large-scale natural or human made disaster such as an earthquake, hurricanes or a 

terrorist attack happens there is a need to respond quickly and in organized fashion. Disaster 

response includes the mobilization of emergency services and first responders to the disaster 

area. In the disaster area, the rescue teams are responsible to evacuate the victims, triage the 

patients and transfer them to hospitals. Several teams may be involved in this process such as 

firefighters, paramedics, police department and specialists. 

An effective disaster response operation should provide help and rescue to the victims at 

the right time. Traditional disaster response methods face several issues such as limited 

situational awareness, lack of interoperability and reliance on voice-oriented 

communications [1]. Low situational awareness (e.g. inability to track units and 

equipment or to receive notifications about the events in the disaster area) has negative 

impacts on rescue teams’ decisions and operations. Lack of interoperability between 

different rescue teams in the disaster area, e.g. firefighters and first responders, may 

result in coordination issues. Finally, sole reliance on voice communication limits the 

richness of information that can be communicated and unnecessary communication 

overhead. 
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Disaster response systems (DRSs) enhance the situational awareness of responders and 

assist them by providing a wide range of applications and services for communication 

and collaboration. For instance monitoring applications can be used to collect information 

about environmental situation in the disaster area using sensor networks [2]. Health 

monitoring and triage applications can be used to collect ambient information about 

victims’ vital signs [3]. Location tracking applications can be used to locate and track 

patients and rescue teams and resources in disaster area [4]. Human limitations such as 

rescue safety and effectiveness, long preparation time and limited number of trained 

individuals for various tasks also affect disaster response process. To overcome these 

limitations DRSs can use robots to operate on areas that humans cannot because of size, 

extreme heat, toxicity of environment, etc. [5]. Furthermore, DRSs enable and benefit 

from various services such as machine-to-machine (M2M) communication, automated 

discovery, interoperability, security and privacy to provide the aforementioned 

applications.  

Existing network infrastructure may become non-operational in the disaster area. In such 

cases, mobile ad-hoc networks (MANETs) may be the only alternative to provide 

connectivity. MANETs are transient networks, formed dynamically by a collection of 

arbitrarily-located wireless mobile nodes, with no reliance on any existing infrastructure 

or centralized administration [6]. Because of the ad hoc nature of MANETs, the 

applications provided by DRSs should follow distributed architectures. These distributed 

application/services form overlays on top of MANETs. Overlay networks are logical 

application layer networks that enables various services such as naming and addressing, 
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scalability and reliability [7]. A detailed background on MANETs and overlay networks 

is provided in Chapter 2. 

DRSs should provide various services to enable the correct operation of different 

applications. This thesis focuses on three major areas in DRS: interoperability, 

automation and prioritization. A wide range of other services may be required such as 

security, privacy, reliability, availability, etc. However for simplicity we assume that the 

underlying infrastructure already provides these services if needed. The following 

presents the motivations behind the focused areas of this thesis. 

 Interoperability: Interoperability between applications enables communication and 

collaboration between different rescue teams, e.g. firefighters and first responders. 

As we discussed earlier, this is critical to improve the efficiency of rescue 

operations and avoid potential interferences between teams.  

 Automation: Automation aims to minimize the required human intervention in 

applications. First, it allows responders to focus on more complex tasks, which is 

an advantage in disaster situation. Second, it allows for operation in special 

conditions where humans cannot intervene. For instance robots will be able to 

provide operations in areas with hazardous material or search places that human 

cannot reach. 

 Prioritization: It is vital to ensure that the communication in emergency 

applications has more reliability and quality than non-emergency applications. For 

instance the communication between firefighters is certainly more critical than the 

communication between news reporters in the disaster area. 
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There are three objectives in this thesis that are associated to the aforementioned focus 

areas, i.e. interoperability, automation, and prioritization. 

 Provide an overlay interconnection architecture to enable communication between 

various types of overlays. Interconnecting various types of overlays is an 

important step for enabling the interoperability. For instance, it enables the 

medical staff and firefighters to coordinate their organization according to the 

situation in the disaster area.   

 Provide a service discovery architecture that enables overlay nodes to discover 

existing services in the network. Service discovery ensures that no human 

intervention is required for configuring overlays nodes to know how to find 

existing application or services. Therefore it satisfies the goal of automation. 

Service discovery enables M2M communications which is critical for seamless 

interactions between devices such as sensors and robots in the disaster area.  

 Provide a differentiated quality of service (QoS) architecture that enables the 

enforcement of a prioritization scheme between overlays and users in the network.  

1.2 General Assumptions and Requirements 

Providing services in DRSs faces several challenges that raise from the dynamic nature of 

MANETs, the characteristics of disaster response operations and devices used during 

these operations. To define clearly the scope of the problem and the contributions 

reported in this thesis, we set the following assumptions regarding the network and 

devices in the DRSs. First, we assume that all the nodes in the MANETs are IP enabled. 

Second, we assume that MANETs support multicasting and a specific multicast address 
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is pre-known to all nodes. Third assumption is that each node stores its capability value, 

which is dynamically updated according to its available host device’s battery status and 

processing power. 

On the other hand, when devising architectures to enable services in DRSs, the following 

general requirements (also seen as constraints) should be taken to account:  

1. No permanent centralized entity: Since nodes in the MANETs may leave and 

join any time, the architectures should not include any permanent centralized 

entity. 

2. Lower layer independence: Several types of networks (e.g. wireless local area 

networks, body area networks) using different protocols may exist in disaster 

response scenarios. The architectures should be provided in the application layer 

to ensure that they are not limited to specific network types or devices. Therefore, 

the architectures should not use any parameter that is computed based on a 

specific lower layer protocol (e.g. connectivity degree, physical layer information, 

etc.). 

3. Scalability in terms of number of nodes: In a large-scale disaster the number of 

first responders and vehicles equipped with communication devices is on the 

order of hundreds of devices [8]. Therefore, MANETs of such scale should be 

supported. 

4. Support low to medium mobility: Node mobility in the disaster area, ranging 

from pedestrians with low mobility (1-2 m/s) to vehicles with medium mobility 

(10-12 m/s) should be supported [9]. 
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5. Support resource-constrained devices: Considering that resource-poor and 

battery powered devices such as sensors and actuators are commonly used in 

disaster response scenarios, the provided services should be able to function on 

constrained devices. 

Specific requirements are also derived for each of the services, which are discussed later 

in the corresponding chapters. 

1.3 Contributions of the Thesis 

This section summarizes the contributions of the thesis. Each of our contribution 

corresponds to an objective of the thesis. 

 Overlay Interconnection Architecture ([10]): We propose a scalable and 

lightweight architecture to enable the interconnection of wireless sensor network 

(WSN) gateways and applications. Based on our critical literature review with 

respect to our requirements, we show that existing approaches have mainly 

focused on interconnecting specific type of overlays or were not independent of 

lower layers. We also provide software architectures for the main components of 

our architecture, along with a prototype implementation as proof of concept. Our 

evaluation based on the implemented prototype shows that our architecture 

achieves an acceptable interconnection delay and network overhead. 

 Service Discovery Architecture ([11]): Our critical review of the MANETS’ 

service discovery architectures shows that the existing methods mainly lack the 

support of required level of scalability and mobility or ability to function on 

resource-constrained devices. To address these issues we propose a novel 

distributed directory-based service discovery architecture based on the DNS 
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protocol. In particular, we extend the semantics of DNS resource records to 

enable dynamic formation of a distributed service directory in MANETs. We have 

run extensive simulations to evaluate the performance of our architecture and 

compared it with the IETF directory-less service discovery proposal based on 

Multicast DNS [12]. The results show that our architecture generates less overall 

network load and ensures successful discovery with a higher probability. 

 Differentiated QoS Architecture: We propose a new differentiated QoS 

architecture for overlay-based DRSs to enforce a prioritization scheme between 

overlays as well as between users within overlays. We show that existing 

solutions mainly do not allow for the definition of arbitrary prioritization levels or 

they are not independent of lower layer protocols. Our architecture is based on a 

self-organizing overlay that provides admission control and policy enforcement 

functions. We have run extensive simulations to evaluate the performance of our 

architecture. The results show that our architecture not only enables differentiated 

QoS, it also improves overall QoS in terms of the number of successful overlay 

flows. 

1.4 Thesis Organization 

The rest of this thesis is organized as follows: Chapter 2 discusses the background 

information on MANETs, overlay networks, service discovery and quality of service. 

Chapter 3 presents our overlay interconnection architecture along with the provided 

prototype and evaluation results. Chapter 4 presents our service discovery architecture 

based on DNS protocol as well as the evaluation of the architecture. Chapter 5 presents 

our differentiated QoS architecture along with the simulation results that indicate the 
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efficiency of the proposed architecture. The work related to each of our contributions is 

discussed in the respective chapter. Chapter 6 concludes the dissertation and discusses 

potential future work.   
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Chapter 2:  Background 

2.1 Mobile Ad hoc Networks (MANETs) 

A MANET is a self-organized wireless network of mobile devices which is not based on 

any infrastructure or centralized control [6]. Devices in MANETs can be heterogeneous 

and use wireless technologies such as the Institute of Electrical and Electronics Engineers 

(IEEE) 802.11, 802.15, or Bluetooth to connect to the network. Each node in the 

MANET plays both router and host roles and participates in multi-hop routing. 

MANETs are used to provide communication when no infrastructure is available or to 

extend the network boundaries using multi-hop routing. MANETs are extensively used in 

military and emergency response situations to provide infrastructure-less communication 

between several agents involved. Vehicular Ad Hoc Networks (VANETs) [13] are also 

another type of MANETs which provide communication between vehicles and roadside 

equipment for safety and entertainment purposes. MANETs also have been applied on 

other application areas such as health, commercial, educational, entertainment and home 

scenarios. Several applications such as remote health monitoring, urban gaming, smart 

homes, robotics, traffic monitoring, etc. have applied MANETs. 

MANETs can mainly be classified in two different views. First view classifies MANETs 

based on the relation between MANETs and other networks. Second view classifies 

MANETs based on their coverage area. 

For relation of MANETs with other networks, two type of MANETs can exists, i.e. 

standalone and integrated networks. Standalone MANETs are ad hoc networks which are 
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isolated and each node can only communicate with other nodes in the same network. On 

the other hand integrated MANETs are capable to interconnect with other networks such 

as internet or third generation wireless networks (3G).  

For instance, Internet based Mobile Ad hoc Networks (iMANET) [14] are ad hoc 

networks that link MANET nodes to the internet using fixed internet-gateway nodes. 

Several proposals are also introduced for interconnecting MANETs and 3G networks. A 

general assumption is that nodes are equipped with both MANET and 3G network 

interfaces so they are able to communicate with other nodes in both networks. It is also 

possible that some of nodes act as gateway to provide interconnection with 3G networks 

for other nodes in MANET. Main objectives of this interconnection are to extend the 3G 

network coverage [15] or to balance the load between cells [16]. 

We also can classify MANETs to three groups based on their coverage area, namely: 

Body, Personal and Local Area networks [17]. Wireless Body Area Networks (WBANs) 

[18] are designed to work on wearable computers. WBANs provide wireless 

communication between small wearable components such as pulse oximeter, and blood 

pressure cuff, head-mounted displays, etc. The coverage range of WBANs is around one 

meter and they use standards such as ZigBee or Bluetooth. Wireless Personal Area 

Networks (WPANs) [19] provide wireless connectivity between personal computer 

devices usually in a range of few meters such as telephones, PDAs, etc. WPANs use 

standards such as IrDA, Bluetooth, ZigBee, etc. Wireless Local Area Networks 

(WLANs) [20] provide wireless connectivity between devices using an access point or in 

ad hoc manner. WLANs use IEEE 802.11 standards and provide coverage to areas such 
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as homes or offices. Figure 2.1 illustrates different mobile ad hoc networks and their 

coverage range. 

 

Figure 2.1: Ad Hoc Networks Classification 

MANET environment characteristics such as mobility, infrastructure-less, network churn, 

unreliable channels, and heterogeneous and resource-constrained network nodes 

introduce new research issues. Research objectives are mainly about increasing network 

lifetime, reliability, scalability, performance. In layered network architecture, specific 

research issues are proposed for each layer. For instance, the physical layer should tackle 

the spectrum allocation and usage issue. The data link layer should address the media 

access control, error a correction issues. The network layer should provide robust and 

efficient routing protocols, addressing scheme, multicasting. The transport layer should 

address issues such as TCP adaptation and backoff window. Finally application, 

presentation and session layers need to address various issues including network auto-

configuration, security (authentication, authorization), location services, QoS, etc. 

Recently cross-layer designs have been also proposed to overcome the MANET 

challenges mostly on the issues such as energy conservation, QoS, reliability, scalability, 

network simulation, and performance optimization [6].  

 

WBAN ~ 1m WPAN ~ 10m WLAN ~ 200m
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2.2 Overlay Networks 

Peer to peer (P2P) overlay networks (in short, overlay networks or overlays) are logical 

application layer networks which try to overcome existing network challenges such as 

scalability, multicasting, naming and addressing, reliability, QoS and anonymity [7]. As 

Figure 2.2 illustrates, peers in the overlay networks are connected with virtual links. 

These are logical links and may not correspond to the underlying network physical links. 

Overlay networks generally provide various features such as self-organization, peer 

naming and discovery independent of underlying networks and reliable, robust, fault 

tolerant and scalable routing.  

In contrast with client-server paradigm, peers in overlay networks act both as clients and 

servers to use and provide services or to share their computational and storage capacities 

with other peers in the network. These characteristics are used to create scalable and 

robust distributed applications such as file sharing, instant messaging, resilient networks, 

and content delivery networks. For instance several file sharing applications such as 

Napster [21], Gnutella [22], Bittorrent [23] and Kazaa [24] have used P2P overlays. 

Skype [25] as a well-known application in IP telephony domain uses a P2P overlay to 

deliver voice and video conferencing services.  

Overlay networks have been shown very effective in MANETs by tackling existing 

network challenges such as robust routing, topology maintenance, multicasting and 

security [26]. 
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Figure 2.2: A P2P Overlay Network 

Overlay networks are classified in two groups based on the organization mechanisms, 

namely structured and unstructured overlay networks. 

2.2.1 Unstructured Overlays 

Unstructured overlays such as Freenet [27], Gnutella [22] and Overnet [28] organize 

nodes in a random graph and use random search techniques to retrieve data from the 

overlay nodes. They do not impose any constraint on how to organize the network and 

how the data should be stored or retrieved. These characteristics lead to efficient self-

organization and recovery mechanisms. However data retrieval will not be efficient 

especially in the case of rare data items, which raises scalability issue. Several techniques 

are proposed to address this issue such as forwarding, caching and overlay topology 

optimization [29]. In the forwarding technique, each peer selects a group of its neighbors 

based on network statistical information such as latency, and transmits the messages to 

them. The caching technique assign a group of peers to each peer based on an overlay 

distance metric. Each peer is then responsible to store list of resources that other peers in 
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the assigned group have stored. The third approach tries to optimize the overlay topology 

based on the real network topology to optimize the overlay performance metrics such as 

latency.  

2.2.2 Structured Overlays 

Structured overlays provide mechanisms to manage overlay network topology and 

deterministically and efficiently locate a node’s real network address, e.g. IP address, 

from its logical overlay address. They also provide mechanisms to efficiently store and 

access data in/from the other nodes. So far structured overlays such as Chord [30], Pastry 

[31] and Tapestry [32] are implemented using distributed hash tables (DHTs). Like 

ordinary hash tables, DHTs provide store and retrieve functionalities but in the 

distributed manner which let them scale to extremely large number of nodes and handle 

nodes arrival, departure and failure. Each data item should have a unique key which is 

hashed by the DTH’s hash function to find where this data should be stored to or 

retrieved from.  

The following list includes some of main research challenges on overlay networks: 

 Self-organization and self-recovery: overlays should organize and adopt a 

network topology based on the physical network characteristics. These problems 

are challenging specially in mobile ad hoc networks [33]. 

 Efficient and scalable routing and look up and caching: Huge amount of works 

have been done to provide efficiency and scalability in overlay networks in 

different physical networks [22] [34]. Hierarchical routing methods and super 

peer architectures are also proposed to address these issues [35]. 
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 Location-aware overlays: Location-aware overlay networks are recently proposed 

to utilize physical network topology in overlay organization, recovery and routing 

[36] [37].  

 Security: Security is a main concern in un-trusted P2P networks especially in 

military applications. Encryption techniques, distributed trusts and reputation 

methods are used to address security issues [38]. 

 Implementation: Several proprietary and open source projects are developing P2P 

overlay networks which are not yet stable. For instance, JXTA [39] by Sun 

Microsysytems, is an open source project which include protocol specification 

and implementation for overlay networks which strongly resemble Tapestry [32]. 

HyperCast [26], Open Chord [40], and RON [41] are a few other open source 

projects under development.  

It worth noting that issues related to overlay networks depends on the applications and 

underlying network characteristics. For instance security may or may not be required by 

applications while hierarchical routing may depend on the mobility and resource 

limitation of underlying physical network.  

2.3 Service Discovery 

Service discovery is any mechanism that provides the capability to locate services in the 

network. A service is often described as a subset of resources in the network that could be 

used by other nodes, such as applications, network services, memory, computation 

capability, etc [42].  
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Two main services issues that should be addressed by a service discovery mechanism are 

naming and searching. Naming defines a mechanism to give and maintain names to 

services while searching is the mechanism to match a service discovery request with the 

service names that are available in the network.  

Different categorization of service discovery approaches could be defined based on their 

characteristics. An interesting categorization could be made based on their architectures 

that partitions them into three groups: client-server, peer-to-peer or hybrid approaches. A 

brief description and examples of each group is provided as follows. 

 Client-server: Service discovery mechanisms with client-server architecture 

clearly define a set of fixed servers or service directories that host the service 

information while other nodes in the network only act as clients. This architecture 

usually proposes mechanisms to collect the service information of the service 

providers as well as providing the address of service directories to the clients. 

Examples of such systems are Jini [43] and Service Location Protocol (SLP) [44]. 

Because of the structure of client-server service discovery approaches, they 

usually have best search performance but they could face single point of failure 

and suffer from Denial of Service (DoS) attacks. 

 Peer-to-peer (P2P): P2P service discovery architectures can be based on 

structured or unstructured P2P overlay networks. With structured overlays, the 

service information is uniformly distributed between the peers based on a 

predefined mechanism. For instance DHTs could be used to determine which peer 

is responsible to store specific service information using a hash function [45]. 

Structured P2P approaches address the single point of failure issue and are 
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resilient to DoS attacks. However, they lack the ability to perform partial 

matching in their queries. In addition, maintaining the overlay structure, in case of 

nodes joining or leaving, imposes additional overhead [46].  

In unstructured P2P approaches, service information could be hosted by service 

providers or it could be cached by other nodes in the network. Unstructured 

architectures, e.g. Gnutella [22], do not scale well in terms of number of nodes, 

because of the overhead imposed by their search mechanism. However they are 

able to provide complex and partial matching queries. 

 Hybrid: Hybrid architectures mix structured and unstructured P2P architectures 

to take the advantages of both approaches. Often clustering is employed to define 

a loose structure in unstructured P2P architecture. Clustering techniques can be 

categorized into super node clustering and similarity clustering. In super node 

clustering (e.g. Gnutella2 [47] or FastTrack [48]), typically a cluster head (super 

node or super peer) is elected based on predefined set of parameters such as 

processing power or number of neighbors.  

In similarity clustering there is no notion of super node, instead, clusters are 

formed based on the similarity of nodes interests. Each node can belong to several 

clusters based on its interests. For instance, in interest-based locality [49], each 

cluster defines a set of nodes that are interested in a specific service. Shortcuts are 

defined between the nodes of each cluster and these shortcuts are ranked based on 

how many queries get answered via them.  
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2.4 Quality of Service 

IETF has defined quality of service (QoS) as “A set of service requirements to be met by 

the network while transporting a flow” [50]. Network service requirements could be 

defined based on several QoS parameters such as: 

 Bit rate: Number of bits per second that should be achieved while transferring 

data in a flow. 

 Delay: Delay that packets in a flow experience while they are being transferred 

from one end-point to another. 

 Jitter: Variation of delays that are experienced by packets of a flow.  

 Packet loss rate: Number of packets that are not delivered over the total number of 

packets in a flow. 

An important attribute of a QoS mechanism is whether it provides end-to-end QoS (hard 

QoS) or it operates in particulate domain or domains of the network (soft QoS). IETF has 

proposed Integrated Service (IntServ) [51] and Differentiated Service (DiffServ) [52] 

models as examples of hard and soft QoS, respectively. IntServ uses signaling to create 

an end-to-end path per flow and to reserve the required network resources along the path. 

Since network resources are pre-allocated in the path, IntServ is able to guarantee end-to-

end QoS. However, IntServ model requires every router in the network to understand its 

signalling protocol and behave accordingly, which leads to several deployment issues. 

Furthermore, IntServ is not suitable for highly dynamic networks such as MANETs 

because of the unreliability of the network links and nodes and because of its signalling 

overhead. 
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DiffServ enables the classification of network flows and defines how individual routers 

should prioritize flows based on such classification. Therefore sensitive or important 

flows (e.g. voice, video, emergency communication) could be prioritized over non-

sensitive flows (e.g. HTTP, FTP or email). Although DiffServ does not enforce any 

prioritization scheme, it recommends a set of Per Hop Behaviours (PHBs) to unify the 

behaviour of network routers. A PHB is associated with a set of traffic classes and 

defines how each hop should behave upon receiving a flow that is marked as those traffic 

classes. Three commonly used PHBs are as follows. Default PHB or best-effort 

forwarding do not require any specific behaviour in the hops. Expedited Forwarding (EF) 

PHB [53] ensures that the traffics in the group receive higher priority than other traffic 

classes. Assured Forwarding (AF) PHB [54] ensures that packets in the traffic in this 

group are delivered as long as they do not exceed a subscribed rate. Because DiffServ 

allows best-effort forwarding, it could provide a level of prioritization even if some of the 

routers in the network do not support DiffServ. However even if all the routers support 

DiffServ, since the detail behaviour of each individual router is implementation specific, 

it is difficult to predict the end-to-end behaviour.  
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Chapter 3:  Overlays Interconnection 

Architecture 

WSNs are sets of distributed nodes that collaborate to monitor physical, environmental 

and physiological conditions [55]. WSNs are commonly used in situations such as 

emergency response or modern warfare to provide health monitoring, location tracking 

and environmental monitoring. Ambient information collected by WSNs is made 

available to end-user applications through gateways. Enabling communication between 

gateways and end-user applications faces several challenges, especially when 

infrastructure-based networks are not viable such as in disaster response situations. This 

makes the use of WSNs in MANET settings a very pertinent issue. 

P2P overlay-based systems have been proposed for WSN gateways for MANETs and in 

end-user applications in the same settings. For example, reference [56] presents an 

overlay-based gateway to enable integration of Internet Multimedia Subsystem (IMS) 

with mobile sink-based WSNs. Reference [57] proposes a resource monitoring scheme 

for group-based applications in MANETs, based on clusters of information that 

communicate with each other using a group-based overlay. 

We assume that both WSN gateways and end-user applications are based on P2P 

overlays. This raises the critical issue of how to interconnect these two overlays to allow 

the applications to access ambient information via the gateways. Accessing the 

information brings a host of technical challenges, such as gateway discovery and 



 

21 

 

subscribe/notify messaging. We propose a decentralized, self-organized and scalable 

architecture for interconnecting end-user applications and gateway overlays. 

The rest of this chapter is organized as follows: the next section presents a motivating 

scenario, derives specific requirements for overlay interconnection and examines related 

work. The second section is devoted to the proposed architecture. The implementation of 

our prototype is then described in the third section, and we conclude in the last section. 

3.1 A Motivating Scenario, Requirements and Related Work 

In this section, we first introduce a motivating scenario, and then use it to derive 

requirements. Related work is then discussed in light of these requirements.  

3.1.1 A Motivating Scenario 

Imagine that a large-scale disaster, such as an earthquake, has destroyed the existing 

network infrastructures in a city. Different emergency teams from different organizations 

such as first responders, paramedics and police departments are sent to respond to the 

situation.  

The members of each team are equipped with devices that form a MANET, and the 

MANET hosts the applications used by the team members. For instance, for first 

responders the MANET will host applications that help in finding and identifying the 

victims while in the case of paramedics the applications will be help in treating patients. 

When it comes to the police department, the applications will aim at security issues. 

Although the applications in different MANETs follow different goals, they mostly rely 

on the same ambient information collected from the disaster area. Therefore, it is 
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reasonable that an existing gateway will be used by applications in other MANETs to 

reduce the information collection effort and optimize the overall performance. For 

instance, the information collected by the first responders’ WSN gateway thanks to the 

vital sign-monitoring sensors installed on the victims should be provided to other 

applications such as the paramedics’ applications for triage and treatment when they 

arrive at the scene. These interactions can significantly increase the effectiveness of 

emergency response operations. This scenario is depicted in Figure 3.1. 

The fact is that each team has its own organizational protocols and the MANET of each 

organization has its own middleware. It is important to note that in such settings, entities 

such as applications and gateways are usually distributed and built as overlays. This 

means, for instance, that the paramedics’ health monitoring application overlay will need 

to interact with the overlay gateway where the first responders store the information 

collected by the vital sign monitoring sensors.  

 

Figure 3.1. Motivating Scenario 

 

First responders’ MANETParamedics’ MANET

WSN Gateway OverlayTriage Application Overlay
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3.1.2 Requirements 

In addition to our general requirements discussed in Chapter 1, we introduce the specific 

requirements for the overlay interconnection architecture. We also present the 

requirements of the application layer protocol on which the architecture relies. This 

protocol is used for the purpose of message exchanges between the two overlays. 

3.1.2.1 Interconnection architecture 

First, the architecture should be independent of any P2P overlay architecture and 

middleware. This requirement ensures there will be various types of applications and 

gateways that utilize different P2P architectures (i.e. structured vs. unstructured) and 

middleware.  

Second, the architecture should provide a publish/subscribe messaging service. The 

rationale behind this requirement is that it enables application overlays to receive 

notification about information changes in the WSN gateways. 

Third, the architecture should provide gateway node discovery. The motivation for this 

requirement is that application nodes need to find a gateway node that provides specific 

services (e.g., a healthcare application may look for a gateway node that provides health 

status for a specific patient). 

3.1.2.2 Interconnection protocol  

In this section we specify the requirements for the interconnection protocol by refining 

our general requirements and the requirements on interconnection architecture. 
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First, the protocol should be simple and lightweight to make efficient use of resource-

constrained mobile devices.  

Second, the interconnection protocol should be suitable for P2P and distributed 

architectures.  

Third, the protocol should be a standardized and commonly-used protocol so that it can 

be easily deployed.  

Fourth, the protocol should support publish/subscribe message exchange patterns.  

Fifth, the protocol should provide a mechanism for node discovery in a distributed 

manner, which is a required service enabling self-organization and self-discovery in 

MANET applications. 

3.1.3 Related work 

There are numerous middleware proposals that interconnect applications and gateways in 

WSNs and embedded systems. For instance, in [58] authors follow a disaster response 

scenario similar to our motivation scenario and present RUNES as a system middleware 

that allows interconnection of different application and gateway entities. RUNES and 

many other similar proposals provide great flexibility in terms of defining different types 

of applications, devices and communication patterns. But even with this flexibility it is 

not feasible to assume that in a practical scenario a single middleware can be adopted by 

all application and gateway entities. Our focus is on providing interconnection between 

applications and gateways that relay on different types of middleware and overlays.  
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To the best of our knowledge there has been no research specifically addressing the 

interconnection of application and WSN gateway overlays in MANETs. Therefore, we 

review proposals that address the interconnection of P2P overlays in general. These 

proposals mostly aim at extending the availability of overlays’ common services, such as 

content sharing and multicasting. Other objectives addressed by these architectures are 

robust and efficient routing and network partitioning recovery.  

In a broad view, we can classify these solutions into two categories. The first category 

introduces nodes that belong to two or to several overlays, which are used to translate and 

relay messages from one overlay to another. These nodes are often called co-located 

nodes or gateways. The second category is based on a hierarchy of overlays.  

Synapse [59] is an interconnection architecture for overlays on the internet that lies in the 

first category. It introduces co-located nodes serving as inter-overlay bridges to enhance 

the overlay network metrics, such as scalability, failure recovery and resource discovery. 

The architecture works for both structured and unstructured overlay networks. The 

synapse protocol uses overlay message routing to route the messages inside each overlay 

which links the interconnection architecture to the underlying overlay technologies. Also, 

since the protocol presents a general overlay interconnection mechanism it does not 

satisfy our specific requirements on event notification and gateway node discovery.  

Reference [60] presents a second example, which employs a gatewaying mechanism to 

bridge various distributed hash tables and to enable cross-DHT searching in wireless 

networks. This method provides the required routing and translation mechanisms, as well 
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as a performance evaluation, but since it was developed exclusively on DHT-based 

networks, it is not suitable for our general case. 

Regarding the second category of solutions, these approaches try to select a group of 

nodes in overlays, called super peers, and then build a new ove rlay based on these 

nodes to interconnect the existing overlays. In [61] the authors present a vehicular 

overlay network that provides various services through a multi-layer overlay network. 

The super peer communication is not based on underlying overlays. However, 

communication between each peer and a super peer node is done using an overlay 

protocol and needs to be translated to the upper overlay’s protocol in the hierarchy. This 

does not satisfy our requirement for the independence of interconnection architecture 

from the overlay architectures. Furthermore, it does not satisfy our requirements on 

gateway node discovery and event notification. Reference [62] proposes a hierarchical 

P2P system for DHT-based overlays. Super peers are selected in each overlay and then 

they form a top-level overlay which acts as an interconnection mechanism. As with [60], 

this work is also focused on DHT-based overlays and so does not satisfy our first specific 

requirement. 

In summary, to the best of our knowledge, none of the existing proposed 

middleware/architectures address our discussed requirements such as self-organization, 

self-recovery and scalability in MANET environment.  
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3.2 The Overall Interconnection Architecture 

In this section we first present our overall interconnection architecture and related 

assumptions. We then describe the operational procedures related to the interconnection 

architecture, and finally the interconnection protocol we have selected.  

3.2.1 Assumptions and overall architecture 

Figure 3.2 depicts our overall interconnection architecture. Several applications and 

gateways exist in separate MANETs. Each application is distributed through several 

Application Component (AppC) nodes forming an overlay. Similarly, each gateway is 

distributed through several Gateway Component (GWC) nodes forming an overlay. 

AppCs and GWCs are software nodes and can be hosted together on a single physical 

device. Some AppCs in an application need to interact with some GWCs in a gateway.  

To enable this interconnection we introduce a new node called an interconnector. An 

interconnector is responsible for interconnecting a cluster of AppCs and GWCs that have 

registered to it. We present how these clusters are dynamically formed and how they will 

be used to enable the interconnection. We follow the work presented in [63] for splitting 

and merging the clusters as well as for dealing with unexpected node leaving. 

Furthermore, to address the scalability requirement, the architecture tries to balance the 

load on the interconnectors; an aspect we will discuss in the operational procedure 

section.  

An interconnector node does not belong to any of the application or gateway overlays. It 

uses a third-party protocol (here is called interconnection protocol) to interact with the 

overlay nodes. The underlying MANETs provide the communication infrastructure 
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between the interconnectors and the overlay nodes. This will fulfill our requirement for 

the independence of the interconnection architecture from any overlay architectures and 

middleware. 

 

Figure 3.2. Overlay interconnection architecture 

All of the interconnector nodes are joined to a predefined IP multicast group, which 

enables the overlay nodes to discover them. We suppose that the multicast address is 

known to all the nodes in the application and in the gateway overlays. For simplicity we 

assume that the GWC, the AppC and the interconnector nodes have static roles, i.e. nodes 

that will act these roles in the MANET have been preconfigured. It is clear that none of 

the entities defined in our architecture is permanently centralized, which satisfies our first 

general requirement.  

In the following sections we describe the operational procedures as well as the 

interconnection protocol we use to realize the architecture. 

3.2.2 Operational procedures 

We divide the operational procedures into two groups, cluster management and 

intercommunication. Cluster management procedures describe how interconnectors are 

created and how AppCs and GWCs join interconnectors. Intercommunication procedures 

describe how AppCs and GWCs interact through interconnectors.  
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In the next section we use the term Overlay Component (OC) to refer to both AppC and 

GWC nodes. This shortens the description of procedures that are identical for AppCs and 

GWCs (e.g. joining and leaving).  

3.2.2.1 Cluster management  

a) Joining 

 Overlay Component 

When an OC joins the network it first discovers and registers to an existing 

interconnector. The discovery is done by sending a multicast request to the pre-

defined interconnectors’ multicast address. If the OC receives responses from 

multiple interconnectors it will register to the interconnector with the least number of 

registered nodes. If the OC does not receive any response after a time threshold, it 

will initialize an interconnector on the same device and register to it. 

 Interconnector 

When an interconnector node is initialized, it joins the interconnectors’ multicast 

group. It listens to discovery messages sent by the OC nodes and returns responses. 

These responses should include the information that the OC nodes need to select the 

appropriate interconnector to register to. 

b) Leaving 

 Overlay Component 

When an OC node wants to leave, it informs the interconnector node it is registered 

to. The interconnector node then removes this node from its list of registered nodes. 

 Interconnector 
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When an interconnector leaves the network, it should inform all of the OC nodes that 

have registered to it. These nodes then start the discovery procedure to find a new 

interconnector node and register to it. 

3.2.2.2 Intercommunication 

a) Information Exchange 

We employ a publish/subscribe messaging pattern for information exchange between 

application and gateway nodes to fulfill our second specific requirement. The requests are 

triggered by AppC nodes. A request should be a subscription to an event managed by a 

gateway entity. Several notifications may be sent asynchronously to the application 

nodes, based on event occurrence. For example, if AppC nodes need to receive the 

temperature sensed by all sensors every t seconds, the gateway should provide an event 

called “give all temperatures” with the “period” parameter equal to t seconds. 

b) GWC Node Discovery 

We provide a gateway node discovery mechanism for AppC nodes to address our third 

specific requirement. An AppC node can discover a gateway node by sending a discovery 

message to the interconnector to which it is connected. The discovery message contains 

the required services or capabilities that the GWC node should provide. The 

interconnector node then forwards the discovery request to all registered GWC nodes and 

returns the responses accordingly. To reach all of the registered GWCs, the 

interconnector node forwards the message to the GWC nodes that are subscribed to it and 

also to the interconnectors’ multicasting address. Each receiving interconnector node then 

forwards the message to its connected GWCs.  
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3.2.3 Interconnection protocol 

We have selected the Session Initiation Protocol (SIP) [64] as our interconnection 

protocol because it meets all our requirements. It is a light-weight, standard protocol that 

is easily extensible and widely deployed. It is interoperable with a variety of mobile 

devices. It is independent of P2P middleware and can carry the required information with 

an acceptable overhead.  

We use a SIP User Agent in OC nodes to send and receive SIP messages, and use basic 

functions of SIP Registrar and SIP Proxy entities in interconnector nodes to register 

overlay nodes and to forward the SIP messages between overlay nodes.  

For discovery purposes, we use the SIP multicasting method described in the SIP 

protocol. To discover an interconnector, the joining OC sends a SIP INFO message to the 

interconnectors’ multicasting address and waits to receive the responses from all the 

available interconnector nodes. The discovery response is in the form of a SIP INFO 

message that contains the information to guide the OC node to choose the appropriate 

interconnector node. 

An OC node then uses the SIP REGISTER method to register to an interconnector node 

and receive notifications related to node leaving. The SIP SUBSCRIBE/NOTIFY method 

is also used for subscribing to a gateway event and to receive response(s) as SIP NOTIFY 

messages. 

3.2.4 Illustrative Scenario 

Assume that in the emergency response scenario described in section 3.1.1, Alice, one of 

the medical staff, wants to receive periodic information about Bob’s (one of the patients) 



 

32 

 

body temperature. Alice’s end-user device runs an AppC node which should subscribe to 

an existing GWC node that provides notifications regarding Bob’s body temperature.  

 

Figure 3.3. A subscription-notification scenario 

Figure 3.3 depicts the message sequence required for this process. We assume that a 

gateway overlay already exists and that several interconnector nodes have already joined 

the network. When Alice switches her device on, the AppC joins the overlay and starts 

the discovery process (steps 1 to 4). It then registers to the selected interconnector, i.e. 

interconnector1 (steps 5 to 6).  

Next, the AppC node needs to discover the GWC node that provides Bob’s 

‘Temperature’ event in the gateway overlay. For this purpose, the AppC node sends a SIP 
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INFO message to interconnector1, indicating the discovery parameters. Interconnector1 

sends the discovery message to the GWC nodes registered to it (i.e. GWC1) and also to 

the interconnectors’ multicasting address. Once the corresponding GWC node (i.e. 

GWC2) receives this request it will send back a SIP 200 OK that will be forwarded to the 

AppC node (steps 7 to 8). The AppC node then subscribes to the required event (steps 7 

to 10). GWC2 will then be responsible for sending SIP notifications to the subscribed 

AppC node, which will be followed by a SIP 200OK message (steps 11 to 12). 

3.3 Implementation 

In this section, we present the software architecture of the interconnector node and a 

plug-in module which provides interconnection APIs that enable OC functionalities for 

the OC nodes. The plug-in module can be plugged into any node to make it run as an OC. 

We also present our prototype, including a performance evaluation. 

3.3.1 Software architecture 

3.3.1.1 Interconnector nodes 

The software architecture of an interconnector node consists of three software modules 

and a SIP protocol stack, as illustrated in Figure 3.4. The self-organization module is 

responsible for managing interconnector joining and leaving. The SIP Registrar module 

acts as a simple SIP registrar server to receive SIP REGISTER messages and store the 

nodes’ contact information. The SIP Proxy module, a simplified version of the SIP Proxy 

server, is used for forwarding request and response messages between overlays. Self-

organization and SIP Proxy modules use the SIP Registrar to retrieve users’ contact 

information. 
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Since the nodes in our architecture use SIP addresses, interconnector nodes need to map 

these addresses to actual network addresses. The SIP registrar module contains the 

mapping information for nodes that have already registered to it. When a unicast message 

is received by the SIP proxy, it asks the SIP registrar if it contains the mapping 

information for the receiver’s SIP address. If that mapping exists, the SIP proxy will 

forward the message to the receiver. If the mapping does not exist, the proxy sends a SIP 

INFO message to the interconnector nodes’ multicast address, asking for the mapping 

information. If any of the interconnector nodes has the mapping information, that node 

responds by sending a SIP INFO message containing the information. 

Furthermore, to enable AppC nodes to discover GWC nodes, an AppC node sends a SIP 

INFO message containing the discovery criteria to the interconnector node. The 

interconnector will forward this message to all the GWC nodes registered to it and also to 

the multicast address assigned to the interconnector nodes. Other interconnectors forward 

the discovery message to their own registered GWC nodes. The corresponding GWC 

nodes will send back a SIP 200OK to inform the initial AppC node. 

 

Figure 3.4. Software architecture of the interconnector node 
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3.3.1.2  Plug-in APIs and events 

The plug-in module provides all the APIs and software events required for the 

operational procedures presented in our interconnection architecture.  

It is worth to mention that certain software changes in the existing overlays are inevitable 

in order to enable the interconnection. However, the main issue is how to minimize these 

software changes. We believe that by providing the plug-in component, we achieve this 

goal for two reasons. First, there is no software changes required on the internal 

functionality of each overlay, i.e. the existing software works as it is for internal overlay 

operations. This is a huge advantage in contrast to porting the whole software to a new 

general overlay/middleware. Second, the plug-in hides the internal operations of our 

interconnection architecture (e.g. cluster management operations and 

subscriptions/notifications) from the existing software and provides simple APIs to be 

used by the software (join/leave, and send/receive). Therefore an existing overlay 

requires using these APIs only when it needs to interconnect with other overlays. 

The list of APIs and events provided by the plug-in are as follows: 

 Join: 

Called during node initialization, this API causes the plug-in module to start the 

interconnector node discovery procedure by sending a SIP INFO message to the 

interconnector nodes’ multicast address. 

 Leave: 
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This API is called upon to inform the plug-in about a voluntary node departure. The 

plug-in module sends a SIP REGISTER, with the “expire” value equal to 0, to the 

current interconnector node that this node is subscribed to. 

 Send_Message: 

This API sends a request or a response message to the interconnector node that this 

node is subscribed to. That interconnector node should then map the SIP address 

provided in the SIP message header to the destination node’s IP address and forward 

the message to the destination node. 

 Receive_Message: 

This is an event which provides a mechanism for the AppC or the GWC node to get 

the request or response messages that are received by the plug-in module. 

3.3.2 Prototype and experimental setup 

As a proof of concept we implemented a prototype based on a simple evaluation scenario. 

As indicated in our requirements, we validated that the network load and request-

response delay imposed by our architecture is acceptable in MANETs.  

The implemented prototype includes an application overlay based on JXTA [39] (an open 

source P2P protocol specification and implementation developed by Sun Microsystems) 

and a gateway overlay based on Open Chord [40] (an open source implementation of 

Chord protocol [30]). JXTA and Open Chord have already been successfully used on 

MANETs in various projects. We used JAIN SIP as the SIP stack in the plug-in module 

and in the interconnector nodes. The plug-in APIs presented above were implemented 

and provided to AppC and GWC nodes. To avoid the overhead implied by a complete 
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SIP registrar module, we implemented a simple SIP registrar that receives SIP 

REGISTER messages and stores nodes’ contact information. 

3.3.2.1 Evaluation Scenarios 

We implemented the scenario introduced in section 3.2.4. Each end-user device ran the 

same AppC node as Alice’s device. Each AppC was subscribed to one of the GWC nodes 

to receive periodical notifications about the patient’s body temperature every 5 seconds.  

To include the effect of mobility in our measurements we simulated network churn. 

Network churn is the volume and pattern of the nodes moving in and out the network 

over time. Network churn depends on the physical network condition and the devices that 

are used. To simulate network churn, we developed a probability-based churn generator 

with two configurable values, Pc (connecting probability) and Pd (disconnecting 

probability). Each node periodically calculates a probability P that indicates if the node 

should join or leave the network. If the node is connected to the network and P < Pd then 

the node leaves the network. If the node is not connected to the network and Pd < P < Pd + 

Pc, the node joins the network. If Pc < P, no action is taken. We used different values for 

Pc (0.25, 0.5 and 1) and Pd (0, 0.05 and 0.1) to evaluate our prototype on ad-hoc networks 

with high and low network churn. We ran the prototype for 20 minutes on each setup. 

3.3.2.2 Experimental setup 

A MANET environment was formed consisting of five devices: four laptops running 

Windows XP and a Samsung Galaxy S Captivate smartphone running Android OS 2.1. 

Two interconnector nodes were run on two separate devices. Each of the other devices 

ran an AppC node and a GWC node side by side. Since the AppC and the GWC 
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components have no direct communication, running both AppC and GWC nodes on the 

same device would not affect our performance evaluation. 

3.3.3 Performance Evaluation 

3.3.3.1 Metrics 

We defined two metrics to evaluate the performance of our prototype: network load and 

delay. Network load indicates the total number of bytes sent and received by a node for 

the purpose of interconnection, and the messages exchanged between overlays. The delay 

is measured as the time difference between sending a request message and receiving an 

immediate response. 

3.3.3.2 Performance Results 

We measured the performance metrics on our prototype based on the evaluation scenario. 

Figure 3.5 (a-e) shows the comparison of the network load on four nodes (i.e. 

interconnector1, interconnector2, AppC1 and GWC1) with five setups, so that Pc and Pd 

were configured with (0.5, 0.05), (0.25, 0.1), (0.25, 0.05), (0.5, 0.1), and (1, 0) 

accordingly.  

Figure 3.5 (f) shows the comparison of the network load on the interconnector node-1 

(IC1) in different configurations. When Pc = 1 and Pd = 0, no nodes will leave the 

network, so the network load increases in a straight linear fashion. The network load 

always converges to higher values in other configurations, due to the operational 

procedures such as joining, leaving and message transfer. Node joining and leaving 

procedures generate the highest network overhead compared to other operations. We can 

extract this overhead in the IC nodes by comparing the load metrics measured from the 
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configuration with no node leave policy (i.e. Pc = 1, Pd = 0) and from other 

configurations. Figure 3.5 (f) indicates that the total network load after 20 minutes of 

execution is around 800kB, which is acceptable in MANETs when considering the values 

selected for leaving and joining probabilities. 

 

Figure 3.5 (a-e). Comparison of the total network load of interconnector (IC1 and IC2); AppC1 and 

GWC1 nodes measured in different configurations for churn generation. Figure 3.5 (f). Comparison 

of total network load on IC1 node, measured in different co 
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Figure 3.6 illustrates the delay metric measured for the prototype with the same 

configurations. The average delay between sending a request and receiving a response 

between overlays is around 1500 milliseconds, which is an acceptable delay for 

applications over MANETs. 

  

Figure 3.6. Comparison of delay measured in different configurations for churn generation 

In summary, our results indicate that the network load is balanced among the 

interconnector nodes and it has linear growth over time. In addition, the network load and 

delay is acceptable for applications in MANET environment. 

3.4 Meeting the Requirements 

a) General Requirements 

As we mentioned earlier, none of the entities defined in our architecture is permanently 

centralized, which satisfies our first general requirement. Our second requirement is also met 

because our architecture uses an application layer protocol, i.e. SIP, for its operation and it does 

not rely on lower layer protocols. 

Our third requirement on scalability is also met because the introduced interconnector 

nodes are self-organized, i.e. they could be initiated or terminated by an OC. Therefore 

there is no single point of failure issue in the architecture.  
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Although we do not address mobility (the fourth requirement) directly in our architecture, 

our performance evaluation, shows that our architecture enables overlay interconnection 

in MANETs with high churn rate (i.e. nodes joining and leaving). High churn rate is a 

major issue caused by mobility.  

Finally, our fifth requirement on supporting resource-constrained devices is not addressed 

in our architecture. However, since interconnector nodes carry the main overhead of our 

architecture, a potential approach is to restrict the devices that are involved in our 

operational procedures based on their capability (e.g. computation power or battery 

level). This ensures that the interconnection operations are carried out by resourceful 

devices. 

b) Requirements on Overlay Interconnection Mechanism 

Since our proposed architecture is not based on a specific overlay or middleware, our first 

requirement on interconnection architecture is met. The proposed operational procedures 

for intercommunication are devised so that they address our second and third 

requirement.  

As we discussed earlier, SIP is a standard, lightweight protocol that is shown to be 

suitable for distributed architectures. Furthermore, SIP provides publish/subscribe 

message exchange and enables node discovery using SIP multicasting. Therefore it meets 

all our requirements on interconnection protocol.  

3.5 Conclusion 

In this chapter we proposed a decentralized architecture to interconnect P2P end-user 

application overlays and P2P gateway overlays running on top of MANETs. The 
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architecture provides a publish/subscribe information exchange model and gateway node 

discovery. We introduced interconnector nodes, which are responsible for message relay 

and address mapping between application and gateway overlay nodes. The proposed 

solution is independent of the overlay types, and it is scalable in terms of the number of 

overlays and the number of nodes in each overlay. We used SIP as a lightweight and 

standard protocol to provide interconnection mechanisms and as a 

subscription/notification service for event-based data delivery. 

We implemented all the features of our architecture in a prototype application that 

assesses the publish/subscribe messaging between gateway and application overlays. We 

implemented an end-user application based on JXTA, and our gateway based on Open 

Chord middleware. We also used JAIN SIP to provide SIP stack services. We introduced 

performance metrics to measure the network overhead of our proposed architecture. Our 

performance results show that the network load and delay imposed by the interconnection 

architecture is acceptable for applications in MANETs with different churn rates. 
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Chapter 4:  Service Discovery Architecture 

Let us imagine that a swarm of robots with different capabilities from different 

organizations are employed to search a large urban disaster zone caused by a natural 

disaster or terrorist attack. The robots are directed to locate victims and provide basic 

rescue services (e.g. monitoring patient’s health status, notifying medical staff or 

providing survival kits). These robots should be able to interact with each other, with 

humans and with sensors/actuators in the area through a MANET that is deployed over 

physical wireless networks (e.g. WLANs [20]).  

In this dynamic environment, robots need to discover the available services and 

communicate with them to both increase their own awareness and to coordinate search 

and rescue tasks. For instance, a robot may need to look for a nearby robot with specific 

abilities such as internet connection or picture-taking. Robots may need to discover the 

sensors and actuators of nearby buildings to accurately report the status of those buildings 

or to activate actuators, which may be required to prevent further disasters. A pervasive 

service discovery mechanism is necessary to realize these scenarios. 

Service discovery protocols (SDPs) make two major operations possible, service 

browsing and service name resolution. Service browsing lists all the service instances of a 

given service type, while service name resolution provides service contact information, 

such as a server’s name or address, transport protocol, port, etc. This chapter proposes 

service discovery architecture for DRSs. 
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In this chapter, next section presents an overview of the existing service discovery 

architectures for MANETs and discusses their shortcomings in terms of DRSs. This is 

followed by the proposed architecture. The third section is devoted to its evaluation and 

validation. We conclude in the last section. 

4.1 An Overview of Service Discovery Architectures for MANETs and 

their Shortcomings for DRSs 

 SDPs for MANETs should meet that general requirements discussed in Chapter 1, in 

order to be of practical use in DRSs. These SDPs can be categorized into two groups, 

directory-less approaches and distributed directory-based approaches. Directory-less 

approaches do not provide any directory structure to store service information, while 

distributed directory-based approaches provide a distributed directory structure that hosts 

the service information. 

We review the directory-less approaches and the distributed directory-based approaches 

based on the general requirements. In this section we use the term provider for a node 

that wants its service information to be discovered by other nodes. 

4.1.1 Directory-less SDPs for MANETs 

In directory-less approaches a node searches the whole network to discover a requested 

service. In the simplest case the node floods a request to the network and each provider 

with the requested service sends a response back. This approach severely limits the 

scalability of an SDP because of the high overhead and packet loss caused by flood-based 

communications [65]. Therefore, the directory-less SDPs based on this approach do not 

comply with our third requirement. 
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As an example of flood-based directory-less SDPs, IETF has proposed Multicast DNS 

(mDNS) [12] that enables DNS-like operations on a local link. A local link is any group 

of hosts that are directly reachable without using a router or a gateway. Queries in mDNS 

are sent to a specific multicast IP address. Every node with DNS records is expected to 

operate as an mDNS server and to respond to multicast queries. IETF recommends using 

mDNS with another IETF proposal, DNS-based Service Discovery (DNS-SD) [66], to 

enable service discovery in ad hoc networks such as MANETs. DNS-SD defines the 

naming rules and the structure of DNS records for the purpose of service discovery. 

In order to overcome the scalability issues, recent directory-less approaches have adopted 

two major ideas: proactiveness and scope limitation. In proactive SDPs [67], service 

providers advertise their service information and receivers cache that information for 

subsequent look ups. Scope limitation is a technique to optimize flooding with a 

forwarding scheme. The forwarding scheme can be as simple as limiting the number of 

hops in flooding to n, or it can be based on a selective approach [67]. We briefly discuss 

recent works and their shortcomings based on our general requirements. These 

approaches reduce the number of flooding requests in the network, especially when there 

are considerably more service requestors than service providers. 

Advertisement-based Search Algorithm for Unstructured Peer-to-Peer (P2P) Systems 

(ASAP) [67] is a proactive directory-less approach for searching unstructured P2P 

networks. In ASAP, nodes periodically exchange their indexes, which are stored as 

Bloom filters [68]. In case of service discovery these indexes should be obtained from the 

service descriptions. For service discovery, a node first checks its local registr, if any 

match is found, it will know with a certain probability (based on the type of Bloom filter) 
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where the service is located. The node will then ask the service provider node to confirm 

the service information. The confirmation is required because of the false positive 

probability of Bloom filters. If the required service is not found in the local registry, the 

node will forward the request to its neighbors. ASAP is shown to have a much lower 

bandwidth consumption compared to flooding [67], and therefore it has addressed the 

scalability issue. However, in ASAP every node is responsible for caching the service 

information of the other nodes and must always be prepared to response to search 

requests. This property makes ASAP unsuitable for functioning on resource-constrained 

devices, our fifth requirement. 

Mist-protocol [69] is a directory-less SDP designed for large, highly mobile networks. 

Mist has adopted proactive mechanisms similar to those of ASAP, but it has proposed a 

subscription-based forwarding scheme for propagating service information. Nodes in 

Mist subscribe to their neighbors to receive only service information that is in their 

interest. This forwarding scheme limits the propagation scope of service information, 

thus leading to lower bandwidth consumption. Furthermore, unlike ASAP, if a node does 

not find a requested service in its local registry, it will not forward the request to its 

neighbors (there is no fallback mechanism). The results provided in [69] show that Mist 

is scalable and it is suitable in highly mobile environment. However, similar to ASAP, 

every node in Mist is involved in the subscription and caching functions, which does not 

comply with our fifth requirement. It is worth mentioning that since Mist does not 

provide any fallback mechanism, and it is possible that an existing service could not be 

found during the service discovery process.  
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4.1.2 Distributed Directory-based SDPs for MANET 

In distributed directory-based approaches, a set of nodes form a distributed directory 

which stores the providers’ service information and responds to the discovery requests. 

Distributed directory-based approaches have been deemed suitable for medium and large-

scale MANETs (our third requirement) and capable of supporting medium mobility (our 

fourth requirement) [65]. This makes them ideal for disaster response scenarios. 

Unfortunately, none of the existing SDPs meets all the requirements we have presented. 

Some distributed directory-based SDPs enable global discovery while others do not. An 

SDP enables global discovery when it looks up requested service information in the 

whole network. SDPs that do not enable global discovery only search within a subset of 

the network. With the lack of global discovery, a node may never be able to discover a 

requested service. This limitation makes these SDPs unsuitable for emergency situations 

such as disaster response. 

Jini [43] is an example of an SDP that does not enable global discovery. In Jini, each 

provider is responsible for publishing its service information to the directory nodes and 

there is no interaction among directory nodes. When a directory node receives a service 

discovery request, it only queries its own local storage. 

We focus on SDPs that enable global discovery in the rest of this sub-section. Some of 

these SDPs rely on cross-layer approaches while others rely on application layer 

approaches. The former generally use the information provided by lower network layers 

(e.g. the routing layer) to optimize their service discovery or directory management 
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operations, while the latter rely solely on information and operations that are accessible in 

the application layer.  

None of the SDPs that rely on cross-layer approaches meets our second requirement (i.e. 

being independent of lower layers). An example proposed by [70] aims to address issues 

such as scalability and mobility in MANETs by using a restricted flooding approach and 

ensuring that any node in the network has a corresponding directory node in its H hops 

vicinity. It also enables global discovery by allowing a directory node to forward a 

service discovery request that cannot be satisfied locally to other directory nodes, one of 

which will most likely have cached the requested information. It uses the routing protocol 

functionalities to provide limited broadcasting. 

Another example is proposed in [71], in which the MANET nodes are grouped into 

different clusters. Each cluster has one cluster head (CH) and several backbone nodes 

(BBs) acting as service directory nodes. Global discovery is enabled by providing the 

communication between the CHs. To adapt to node mobility, a cluster weight metric is 

introduced based on the stability of the members of a cluster and the QoS parameters of 

the services in the cluster. The stability metric requires information from lower layer 

protocols (e.g. connectivity degrees and QoS parameters). 

There are a few distributed directory-based proposals that function solely in the 

application layer. One example is the ontology-based clustering approach adopted in 

[72]. At the bottom level, clusters of devices are formed based on the similarity of the 

service information they provide. The next layer of clustering consists of groups of 

respective lower layer clusters, based on a more general semantic in the ontology tree. 
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Since that paper provides no performance analysis it is not clear how well the proposed 

approach deals with issues such as scalability and mobility. In fact, due to the complexity 

of forming multi-layer semantic clusters we doubt that the approach meets our 

requirement of scalability and mobility support. 

SANDMAN [73] is another cluster-based SDP, and is focused on energy efficiency and 

discovery delay. Cluster nodes (CNs) register the service information in cluster head 

(CH) nodes and then go to sleep. They will wake up periodically to provide services, and 

if there is no request they will go into sleep mode again. Since SANDMAN does not 

provide any clustering algorithm it is not clear how it scales in terms of the number of 

nodes. It is also not clear how it deals with MANET node mobility. 

Finally, it is important to point out that P2P middleware could be used to enable service 

discovery through their resource advertisement and search mechanisms. However, it has 

been observed that since existing P2P middleware such as JXTA [39] are designed for 

infrastructure networks, they do not address the bandwidth consumption and mobility 

issues in MANETs [74]. Agile Computing Middleware [74] is a P2P middleware 

specifically developed to address the requirements of tactical edge networks. Many of 

these requirements are similar to the requirements of DRSs. However, there are two 

issues when using the middleware in DRSs. First, the viability of the middleware in 

resource-constrained device environments is not discussed. Second, unlike in tactical 

edge networks, it is not possible to “force” all the different response teams to use a single 

P2P middleware. Therefore, using ubiquitous DNS for service discovery has a 

compelling advantage.  
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4.2 A distributed directory-based SDP Architecture 

We propose a distributed directory-based SDP based on a clustering approach. Our 

contributions are twofold. The first contribution is an SDP that meets all the requirements 

of DRSs. To the best of our knowledge, none of the existing SDPs meets all of these 

requirements.  

The second contribution is the set of semantic extensions we have made to the standard 

DNS protocol [75]. They enable the formation of service directories and the dynamic 

adaptation of these directories depending on network conditions. Using the DNS protocol 

for service discovery has several advantages over other SDPs in DRSs. First of all, DNS 

is a simple, mature and standard technology which is required by most network-based 

solutions. Second, service resolution in most SDPs returns the service address back as a 

host name, which then should be resolved to an actual network address using a name 

system (e.g. DNS). DNS provides both of these services using the same underlying 

structure. 

There are existing proposals that have extended DNS to enable service discovery. 

However none of them can enable the formation and dynamic adaptation of service 

directories. For instance, in [76], DNS SVR is extended (as proposed in DNS-SD) to 

enable the discovery of multiple service directories organized by a company, but the issue 

of dynamic formation and adaptation of the directories is not discussed.  

4.2.1 Architectural Principles 
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The first principle in our architecture is that we have two types of nodes, peers and super-

peers. We group these nodes into clusters so that each cluster contains a super-peer and 

zero or more peers that are connected to the super-peer (Figure 4.1).  

The second principle is that peers and super-peers may act as service providers or service 

requestors, but only super-peers act as service directories for their own clusters. 

Therefore, each super-peer stores the service information of all the peers that have 

registered to it, and it is responsible for handling the service requests of those peers. 

Furthermore, all super-peers must join the pre-defined multicast group to be discoverable 

by peers.  

The third principle is that every node initially acts as a peer, and only peers with a 

capability higher than a pre-defined threshold (C) may change their type to super-peer. 

We call nodes with a capability higher than C capable peers and we call all the others 

incapable peers.  

  

Figure 4.1. Overall Architecture 

Capable peers and super-peers act as limited DNS servers. Each of these nodes hosts its 

capability as a DNS record named to the known multicast address. Furthermore, all the 

nodes, including the incapable peers, act as DNS clients to resolve DNS queries and 

register their service information when needed. We followed the IETF DNS-SD [66] 

recommendations for storing service information as DNS records.  

Super-peer

Peer
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DNS-SD uses three types of DNS resource records (RRs), SVR, PTR and TXT to store 

service information. An SVR record stores mapping information between a service 

instance name and the address where the service can be accessed. PTR records enable 

service browsing and TXT records store additional information that belongs to a service. 

4.2.2 Operational Procedures 

In this section we describe the service discovery and cluster management operations and 

how they are implemented based on DNS standard messages.  

We use two types of DNS messages, DNS query and DNS update. When the opcode field 

in a DNS message is assigned to 0, it represents a standard DNS query message, while 

when it is assigned to 5 it represent a DNS update message. DNS query is used to retrieve 

DNS records and DNS update is used to send a request for updating the DNS records of a 

node.  

To enable cluster management operations we extended the semantic of DNS TXT RR to 

store three new attributes: “node_type”, “capability”, and “number_of_registered_peers”. 

The “node_type” attribute can have a “peer” or “super-peer” value based on the type of 

node in the cluster. The value of the “capability” attribute indicates the current capability 

of the node that is dynamically updated. The “number_of_registered_peers” attribute is 

only hosted by super-peers and indicates the number of peers registered to a particular 

super-peer. Every capable peer and each super-peer should host the discussed TXT RR 

named to the pre-defined multicast address. We will discuss how this TXT RR is used in 

cluster management operations. 



 

53 

 

4.2.2.1 Service Discovery / Service Browsing 

Figure 4.2 depicts the service discovery procedure; including both the service browsing 

and service name resolution operations. To perform service discovery/service browsing, a 

peer sends a DNS Query request to its registered super-peer looking for SVR/PTR RRs, 

and waits for the response(s). When the super-peer receives the DNS Query request, it 

responds directly to the requesting peer if the request can be satisfied from its own 

directory. Otherwise it forwards the request to the super-peer multicast group, and then 

forwards the responses it receives back to the requestor peer.  

4.2.2.2 Cluster Management 

a) Peer/Super-peer joining and peer leaving 

Figure 4.3 depicts the operational procedure for peer/super-peer joining and peer leaving 

operations. A peer starts the joining process by multicasting a DNS Query request to the 

super-peer multicast group to discover the existing services and their capabilities 

(Capability Discovery request). A Capability Discovery request looks for TXT RRs that 

are named to the known multicast address. If no response is received after a time period 

Tt (round-trip in the network), the peer restarts the capability discovery procedure. If the 

peer is a capable peer and no response is received after repeating the capability discovery 

procedure three times, the peer joins the network as a super-peer by changing its node 

type, joining the super-peer multicast group and registering its service information in its 

own directory. If it is not a capable peer, it continues the capability discovery procedure 

until it receives a response. 
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Figure 4.2. Service Discovery 

  

Figure 4.3. Peer/Super-peer joining and peer leaving 

After the first super-peer has joined, other peers will be able to discover the existing 

super-peers, as illustrated in Figure 4.3. The joining peers will select the super-peer with 

Peer Super-peer2Super-peer1

Service Browsing/Resolution
[DNS Query]

[Query Response]

Service Browsing/Resolution
[DNS Query]

[Query Response]

Super-peer 
multicast group

[Query Response]

 Peer

Capability Discovery
[DNS Query (TXT RR)]

Su
p

er-p
eer 

m
u

lticast gro
u

p

Capability DiscoveryTt

- Change node type to Super-peer
- Join super peer multicast group 
- Register services to its own directory
- Add number_of_registered_peers attribute

Capability Discovery
[DNS Query (TXT RR)] Super-peer 

multicast group
[Query Response(TXT RR)]

Peer Registration / 
Service Publication

[DNS Update]

[Update Response]
- Increment number_of_registered_peers
- Add resource records

Peer

Peer Leave
[DNS Update]

[Update Response]

Capability DiscoveryTt

Tt

Super-peer

- Decrement number_of_registered_peers
- Remove resource records



 

55 

 

the highest value of capability attributes in the TXT records. To register its service 

information, the joining peer sends a DNS Update request including its DNS A and TXT 

records and all its service information records. When a peer wants to leave the network it 

sends a DNS Update request to delete all the registered records associated with that peer. 

The corresponding super-peer removes those records and decreases the number of its 

registered peers.  

b) Super-peer merge 

Figure 4.4 depicts the procedure for merging two super-peers. When the number of 

registered nodes of a super-peer becomes less than a pre-defined threshold (M), that 

super-peer multicasts a DNS Query request to the super-peer multicast group and collects 

responses from the available super-peers. It then selects the super-peer with the highest 

capability, with the optional constraint that the size of the merged cluster would not 

exceed the split threshold. Next, the super-peer sends a DNS Update message that 

includes all the records that belong to its registered peers and removes them from its own 

directory. Finally, it removes the “number_of_registered_peers” attribute from its TXT 

RR, leaves the super-peer multicast group and changes its node type to peer. 

c) Super-peer splitting and leaving 

Since super-peer splitting and leaving procedures are similar we present them in the same 

figure (Figure 4.5). When the number of registered peers of a super-peer exceeds a pre-

defined threshold (S), or when a super-peer decides to leave, the super-peer first unicasts 

a DNS Query request to its registered capable peers asking for their TXT records. Upon 

receiving the responses, the super-peer selects the peer with the highest capability and 

sends a DNS Update that includes a modified TXT RR with the “node_type” attribute set 
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to “super-peer”. Upon receiving this request the selected peer will perform the super-peer 

joining tasks described in a). Finally, the splitting/leaving super-peer will transfer a 

portion/all of its hosted RRs to the new super-peer using a DNS Update request and 

remove these RRs from its own directory. The leaving super-peer removes its 

“number_of_registered_peers” attribute, changes its node type to “peer” and leaves the 

super-peer multicast group. 

  

Figure 4.4. Super-peer merging 

When a super-peer merges, splits or leaves (voluntarily or involuntarily), its registered 

peers are not notified until they try to update their service information or start a service 

discovery operation. The peer’s service information may have been transferred to another 

super-peer through a merging, splitting or leaving procedure. Therefore, when a peer 

contacts its super-peer and does not receive any response, the peer first sends a DNS 

Query request to the super-peer multicast group looking for its own A RR. If it receives a 

response it will use the new super-peer address for further operations, otherwise it will 

restart the peer joining procedure. 
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Figure 4.5. Super-peer splitting and leaving 

In the worst-case scenario, the involuntary departure of super-peer nodes may cause the 

unavailability of some service information for a short time, or it may even cause multiple 

copies of a peer’s RRs to be (temporarily) stored in two super-peers. However, since all 

RRs have a TTL attribute, these issues will phase out after a certain time has elapsed. 

4.2.3 Adjustment of Thresholds 

There are three thresholds in our architecture. C defines the minimum capability required 

for a node to be a capable node. M defines the minimum size of a cluster, i.e. when the 

size of a cluster is less than M, the super-peer of that cluster should start the merging 
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operation. Finally, S defines the maximum size of a cluster, i.e. when the number of 

nodes in a cluster is more than S, the super-peer of that cluster initiates a split operation. 

Based on the devised operational procedures, in general we expect that increasing S or 

increasing M would lead to fewer clusters in our architecture. This is because that by 

increasing S there would be less splitting and by increasing M clusters have to merge 

more frequently. Therefore, S and M are expected to indicate the level of distribution in 

our architecture. Although dynamic methods could be used to adjust these thresholds, for 

simplicity we assume that these values are set based on offline simulations. 

4.3 Performance Evaluation 

4.3.1 Simulation 

To evaluate the performance of our architecture, we used simulation based on OPNET, a 

software tool for network modeling and simulation. The validation was done using 

OPNET V.12.0, a software tool for modeling and simulating communication networks 

and distributed systems [77]. OPNET provides a comprehensive and modular 

environment for user development, based on Finite State Machines (FSMs). The 

supported programming language is Proto-C, a combination of C, C++ and OPNET 

Event Simulation APIs. 

We implemented our proposed architecture (here called CDNS) as well as the IETF 

service discovery proposal based on mDNS (here called mDNS). We compared the 

performance of the two approaches. We extended a built-in OPNET model for MANET 

nodes, in which each node uses an 802.11b wireless LAN, IP for the network layer with 

AODV as the routing protocol, and UDP for the transport layer. We further used the 
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disaster area mobility model proposed in [78] to simulate the node mobility. More details 

about the network and node models we used for this simulation is presented as an 

appendix. 

4.3.1.1 Evaluation Scenario 

For simulating the disaster area and node mobility we used the evaluation scenario 

proposed in [78]. In this scenario 150 nodes are distributed in a disaster area of size 350m 

x 200m. The distribution of nodes is based on the sub areas defined in the disaster area, 

such as incident location, ambulance parking point, etc. In order to be able to evaluate our 

architecture with a different number of nodes in the same scenario, we uniformly 

increased/decreased the number of nodes in all sub areas. We used BonnMotion [79], a 

mobility scenario generation tool, to generate the location of each node in intervals of 1 

second. We implemented a mobility module in OPNET to set the location of nodes based 

on the generated mobility information. We evaluated our architecture with four different 

number of nodes: 50, 100, 150, and 200. It is worth noting that we evaluated our scenario 

with other values for the number of nodes but since the trend of the results remained the 

same, we only present our results for these four values.  

The nodes have sequential identifiers (ID) (i.e. 1, 2, … , N). Each node hosts five unique 

service information records based on its ID. For instance, a node with ID = 0 hosts 

services with IDs 0 to 4, and a node with ID = 1 hosts services with IDs 5 to 9, etc. Each 

node periodically performs a service discovery operation every 10 to 20 seconds and 

requests a particular service information record hosted by one of the nodes in the 

network. We simulated each scenario 10 times with different random seed values, for 30 

minutes each time. 
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For the CDNS, every node in the network picks a random value greater than 0 as its 

capability, and C is set to 0 in all the scenarios. The reason for setting C to 0 is to ensure 

a fair comparison between the CDNS and the mDNS. If C is set to a higher value, there 

would be a set of incapable peer nodes which only contribute to service discovery 

operations, and thus CDNS generates less overhead. Furthermore, M is set to 5 and S is 

set to 20 in all the scenarios. These two values are selected based on our knowledge about 

the number of nodes in different scenarios which covers a range of network sizes in our 

motivation scenario. 

4.3.1.2 Performance Metrics 

We defined three metrics to compare the performance of the two approaches: network 

load, delay and discovery success rate. We also defined three metrics to evaluate our 

proposal: cluster management load, peer load and super-peer load. 

Network load measures the average amount of received traffic in the wireless cards of all 

the nodes at each second. We selected the total received traffic to measure the network 

load, as both approaches use multicasting. If we calculated the traffic sent, we could not 

consider the multiple recipients of each multicast message and therefore that figure would 

not present an accurate evaluation of the network traffic.  

Delay measures the average end-to-end delay for all service discovery operations, 

calculated by the difference between the time a service discovery request is sent and 

when the first response is received. This metric compares the responsiveness of each 

simulated approach.  
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The discovery success rate measures the percentage of successful service discovery 

requests versus the total number of service discovery attempts. This metric indicates the 

average likelihood of success for each service discovery operation. 

The cluster management load ratio measures what percentage of the traffic received in 

the application layer per second belongs to our cluster management operations. Peer load 

measures the amount of traffic that is received by the wireless card of a node when it is 

acting as a peer, while super-peer load measures the amount of traffic received by the 

wireless card of a node while it is acting as a super-peer.  

4.3.1.3 Performance Results 

Figure 4.6 (a) shows the comparison of the network load metric measured for the mDNS 

and the CDNS approaches for networks with 50 nodes and 100 nodes, and Figure 4.6 (b) 

shows the same comparison for networks with 150 and 200 nodes. As expected, the 

network load measured for the mDNS approach is higher than for the CDNS approach in 

all cases. We believe this is because in the mDNS protocol all the requests are broadcast 

to the network, while in CDNS a portion of requests are being responded to directly by 

super-peers.  

Figure 4.6 (c) depicts the delay metric measured for networks with different sizes. It 

shows that the average end-to-end delay for service discovery operations in the mDNS 

approach is slightly less than with the CDNS approach. As mentioned above, when a 

request cannot be satisfied by a super-peer in CDNS, it will be multicast to the other 

super-peers. We believe that the higher delay in CDNS is due to these two-step 

operations, which do not occur in mDNS. However, the differences between the delays 
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provided by the two approaches are negligible (less than 30ms). Furthermore, it is 

compensated by a higher likelihood of successful service discovery, as presented below, 

which is the main objective of an SDP. 

Figure 4.6 (d) shows the average likelihood of a successful service discovery operation 

for each method. This metric helps to evaluate the scalability of each method in terms of 

the number of nodes in the network. The CDNS performs much better than the mDNS, 

especially in larger networks. We believe the main reason is that the higher network load 

generated by mDNS results in more interference in the network and therefore less 

likelihood of the successful delivery of service discovery requests or responses.  

Figure 4.6 (e) shows what percentage of the traffic received in the application layer is 

imposed by our cluster management operations. The figure indicates that the cluster 

management load forms a small portion of the total traffic in the application layer. We 

also notice that as the size of a network grows, the cluster management operations form a 

higher percentage of the total traffic, which we attribute to the higher density of nodes 

and more frequent changes in the clusters’ structure. 

Finally, Figure 4.6 (f) compares the peer load and super-peer load metrics. Since nodes in 

CDNS can change their type, we selected nodes that were peer/super-peer for most of the 

simulation time to measure peer load/super-peer load. We noticed that if we measure the 

same metrics in the application layer (instead of the wireless card), there would be a 

much greater difference between the traffic received by peers and super-peers. This 

difference is of course because super-peers, as directory nodes, are involved in service 
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discovery as well as cluster management operations. Therefore, Figure 4.6 (f) indicates 

that our requirement to function on resource-constrained devices is met by our approach. 

 

Figure 4.6. Measurements of our performance metrics (vertical axis) in networks with different 

numbers of nodes (horizontal axis). Labels are as follows: (a) and (b) Network load metric, (c) Delay 

metric, (d) Discovery success rate metric, (e) cluster management load ratio (f) Peer load vs. super-

peer load. 

To summarize, our performance results show that CDNS is more scalable in terms of the 

number of nodes in the network, because it generates less traffic and a higher service 

discovery success rate. Furthermore, the difference between the service discovery delays 

in the two approaches is around 30 milliseconds for the worst case, which is negligible. 

The evaluation of CDNS reveals two facts; first, our cluster management operations do 

not impose a huge overhead in the network. Second, the network load on a peer is about 

half of the network load on a super-peer, on average. Since we have used the capability of 

nodes for super-peer selection, this ensures that our architecture can enable the 

participation of less capable nodes (e.g. resource-constrained devices). 
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4.3.2 Prototype Implementation 

In addition to the presented simulations, we implemented a prototype of our proposed 

architecture to show its practicality in the real MANET environment. In this section we 

present the software architecture for the prototype and our performance evaluation based 

on that. 

4.3.2.1 Software Architecture 

The software architecture for all the nodes is shown in Figure 4.7. The Joining/Leaving 

Management, Service Discovery Client, and DNS Client modules are active in all the 

nodes, including incapable peers.  

The DNS Server module is an authoritative, DNS-only server that hosts peer/super-peer 

resource records and delivers query and update messages to the cluster management 

modules. The Capability Monitoring module frequently updates a node’s capability based 

on the characteristics of its hosting device. The Super-peer Role Management module 

handles the “super-peer selection” message and changes a peer node to super-peer (or 

vice-versa, as needed). These three modules are active on all capable peers and super-

peers.  

The Load Balancing module is responsible for splitting/merging operations, and the 

Service Discovery Request Handler provides global service discovery by gathering the 

responses of other super-peers for a request that cannot be satisfied from its local 

directory. These two modules are only active in super-peers.  
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Figure 4.7. Peer/Super-peer software architecture 

We implemented our architecture based on an open source implementation of DNS 

messages, dnsjava [80]. dnsjava has been used successfully in several projects that are 

listed on its website. We implemented a simple authoritative-only DNS server that 

supports DNS Query and DNS Update messages. The rest of our software architecture is 

implemented purely in java which enables the deployment of this prototype on any 

device with java runtime support.  

4.3.2.2 Performance Evaluation 

To evaluate the performance of our prototype, we defined a delay metric for each of the 

presented operational procedures. The delay metric measures the time difference between 

the start and end of each procedure. To have an accurate analysis of the delay we tested 

each operation 10 and calculated the average delay.  

Our experimental setup consists of four laptops forming a MANET, with each laptop 

hosting three nodes. Our prototype provides a user interface that allows us to initialize the 

capability of each node and define when a node joins, leaves or performs a service 
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discovery request. We defined the thresholds for splitting and merging as 3 and 1, 

respectively. Thus, when a super-peer has more than 3 registered peers, it starts a splitting 

procedure, and a super-peer with less than 1 peer starts a merging procedure.  

Our evaluation scenario was based on the random joining and leaving of different nodes 

to simulate high network churn in a typical MANET. Each peer also randomly performs 

service discovery operations while it is in the network. 

Figure 4.8 depicts the average delay measured for each of the operational procedures. 

Peer Joining indicates the delay of a peer to join if a super-peer already exists, and Super-

peer Joining indicates the joining delay for a capable peer that has not found any super-

peer and therefore becomes a super-peer. Obviously, since in the latter case the joining 

peer needs to connect to a multicast group, the delay is much higher than that of “Peer 

Join”. 

Peer Leaving and Super-peer Leaving indicate the delays for a peer/super-peer leaving 

voluntarily. Since the super-peer voluntary leave deals with finding a registered peer and 

transferring the service information, it has a delay higher than that of Peer Leaving.  

Local Service Resolution indicates the delay for performing a service resolution 

procedure when the responsible super-peer can satisfy the request. Global Service 

Resolution measures the delay of service resolution when the responsible super-peer has 

forwarded the request to the other super-peers and has gathered their responses. A similar 

scenario applies to Network Browsing since all the service instances in the network 

should be enumerated. It is clear the Local Service Resolution has less delay than the 

previous two cases because it does not include a multicast request.  
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Splitting indicates the delay for a splitting procedure, which is very similar to that of a 

Super-peer Leaving as described in the operational procedures. Finally, Merging 

indicates the delay for a super-peer to merge with another super-peer. Since the merge 

procedure requires a multicast request it has a higher average delay than the splitting 

procedure. 

  

Figure 4.8. Delay of operational procedures 

As depicted, the average delay for most of our proposed operational procedures is less 

than 100ms. The only exception is Super-peer Joining, which only happens when the first 

super-peer joins. In a large-scale MANET, by employing appropriate values for split and 

join thresholds, the frequency of this operation is much lower than for other procedures. 

4.4 Meeting the Requirements 

Our first general requirement on avoiding permanently centralized entity is satisfied 

because our proposed SDP uses on a dynamic clustering approach to form a distributed 
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service directory. Since our approach only uses an application layer protocol (DNS), our 

second requirement of being independent of the lower layers is also addressed. 

To address our third and fourth general requirements on scalability and supporting 

mobility we devised lightweight splitting and merging operations as part of our clustering 

approach. We have run extensive simulations that evaluate the efficiency of our 

architecture in the networks with the required scalability and mobility support. 

As we presented earlier, an incapable peer is never selected to be a super-peer. Incapable 

peers include the resource-constrained nodes in the network (e.g. sensors/actuators). 

Therefore, these nodes can go to sleep after registering their service information to their 

super-peers. This addresses our fifth general requirement on adequate functioning with 

resource-constrained devices. 

4.5 Conclusion  

Service discovery is a key element for the interoperability of heterogeneous applications 

and devices in DRSs. This chapter has derived a set of requirements based on disaster 

response scenarios and evaluated the state of the art based on the derived requirements.  

To address the limitations of the state of the art we have proposed a distributed directory-

based service discovery architecture. Our architecture works solely in the application 

layer (based on DNS protocol) and it employs a recent IETF proposal, DNS-SD, to store 

service information as DNS records.  

IETF has also proposed a directory-less service discovery architecture for ad-hoc 

networks based on Multicast DNS (mDNS) and DNS-SD. We simulated the functioning 

of our architecture and of the IETF proposal using the OPNET simulation tool and 
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compared the performance results. The results reveal that our approach is more scalable 

in terms of the number of nodes because it generates less network traffic and has a higher 

success rate for service discovery operations. Furthermore, the results indicate that our 

cluster management operations impose a low level of traffic overhead in the application 

layer. 
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Chapter 5:  Differentiated Quality of Service 

Architecture 

In the disaster area, various teams are involved for different purposes and use different 

applications. For instance, paramedics aim to provide vital health services, firefighters 

rescue and evacuate people from dangerous buildings, extinguish fires and ensure they 

stay extinguished, and journalists are eager to report the news. Because of potential 

congestion and shortages of bandwidth it is possible that certain services may not operate 

properly. It is therefore imperative that life-critical services have the highest priority. For 

example, when a firefighter on the scene wants to start a communication, he/she should 

have a higher priority over news reporters.  

When there are not enough resources available in the network, some of the existing 

communications that are of lower priority may be dropped to enable the requested 

communication. This will improve the reliability and the quality of the emergency 

services and potentially save lives. The same prioritization may apply between users of a 

given service according to their ranks in the hierarchy. For instance, in the case of a 

firefighter team, communications initiated by a captain would be considered as more 

important than other communications.  

 In order to establish such a prioritization scheme among overlays and users, a 

differentiated  QoS model should be applied. This model ensures that network resources 

are allocated to the services/users with higher priority. The dynamic nature of MANETs 

and the wide variety of devices and technologies used by many different users are the 
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main challenges for such a QoS model. We propose a QoS model to provide 

differentiated QoS for DRSs and address the discussed challenges. 

This chapter is organized as follows. Next section defines a set of requirements for 

potential solutions, taking into account the problem and its challenges. This is followed 

by an evaluation of the existing work with respect to these requirements. Second section 

is devoted to our proposed architecture which we discuss its performance evaluation and 

results in the third section before concluding in the last section. 

5.1 Requirements and Related Work 

5.1.1 Requirements 

In addition to our general requirements, we identified three specific requirements that a 

differentiated QoS model should meet to be practically useful in DRSs. The first 

requirement is that the QoS model should support a two-level prioritization scheme, 

overlay-based and user-based within each overlay. The rationale behind this requirement 

has been illustrated as a scenario in the introduction.  

Second, it should be possible to define an arbitrary number of prioritization levels, i.e., 

the QoS model should not assume a fixed set of prioritization levels/classes. This 

flexibility is needed because the configuration of overlays and user priorities is dependent 

upon the type of disaster and the disaster area.  

Our last requirement is that the QoS model should reuse existing standard mechanisms 

for providing differentiated QoS (e.g. DiffServ [52]) as much as possible. In other words, 

it will be able to simply build on existing solutions. 
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5.1.2 Related Work 

In this section we briefly review differentiated QoS models in MANETs and evaluate 

them in light of the proposed requirements.  

As described in [52], DiffServ divides network flows into a set of service classes, and 

treats all packets on a per-hop basis according to which class the packets’ flow belongs 

to. Intermediate nodes apply a per-hop behavior (PHB) to the packets of the same service 

class (DiffServ class). The differentiation among classes is enforced using variable buffer 

sizes, variable packet drop probability and packet scheduling. DiffServ has been proven 

to be suitable for MANET environments [81]. The number of service classes that can be 

meaningfully differentiated in MANETs ranges between two to four, depending on the 

type of network traffic [81]. However, DiffServ does not meet our first requirement, the 

ability to define an arbitrary number of prioritization levels. DiffServ makes this selective 

definition impossible because service classes should be statically assigned to each 

overlay/user prioritization level. Therefore, it is not possible to extend the prioritization 

scheme by adding overlay/user prioritization levels. 

INSIGNIA [82] is a QoS model based on IP that provides adaptive services in MANETs. 

This model is similar to RSVP [83] except that it is organized to reduce the signaling 

overhead by using an in-band signaling protocol. Since this model is based on per-flow 

guarantees, it faces scalability issues in networks with a high number of nodes, such as 

DRSs. Therefore it does not satisfy the third general requirement. 

The Flexible QoS Model (FQMM) [84] is another QoS model proposed for MANETs. 

This model provides service differentiation based on priority classes. It proposes that the 
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highest priority class should receive a per-flow provisioning similar to IntServ [51], while 

lower classes only receive per-class provisioning. In this model source nodes are 

responsible to mark the packets of the flows and condition the traffic. There are two 

issues with using FQMM in disaster response settings. First, the model combines two 

schemes in one, which makes it complex and raises the issue of scalability, just as with 

INSIGNIA. Second, since FQMM uses DiffServ classes, it faces the DiffServ limitation 

on defining an arbitrary number of prioritization levels. 

The Complete and Efficient QoS Model for MANETs (CEQMM) [85] is similar to 

FQMM in the sense that it too combines the IntServ and DiffServ models for 

provisioning of QoS in MANETs. While the FQMM does not require a specific routing 

protocol, CEQMM is specifically based on the QoS Optimized Link State Routing 

(QOLSR) protocol [86]. Therefore, in addition to the problematic issues presented above 

for the FQMM, the CEQMM does not comply with our second general requirement on 

being independent of lower layers. 

Service Differentiation in Stateless Wireless Ad Hoc Networks (SWAN) [87] is a 

stateless network model that aims to provide two prioritization levels for best effort 

traffic and real-time traffic. SWAN uses a local rate control mechanism for the best effort 

traffic. For real-time communications, a source-based admission control is used in which 

the source node probes the network toward the destination node and estimates the 

available bandwidth. SWAN also uses a dynamic regulation of real-time traffic based on 

explicit congestion notification (ECN) [88] in the face of network dynamics brought on 

by mobility or traffic overhead conditions. Although SWAN is well suited for the 

dynamic nature of MANETs, it has only focused on the prioritization of real-time traffic. 
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Therefore, it does not support the definition of an arbitrary number of prioritization levels 

(our first requirement). 

5.2 Differentiated QoS Architecture 

We propose a differentiated QoS architecture for DRSs that satisfies our proposed 

requirements. Our architecture provides three functionalities: admission control, mapping 

and enforcement. In the following sections we first discuss our architectural assumptions 

and principles, and then we describe each of the functionalities. 

5.2.1 Architectural Assumptions and Principles 

We assume that a set of priority levels are pre-assigned to overlays and users within the 

overlays. For instance, communications between firefighters are assigned higher priority 

than news agencies’ communications, and within each firefighter team, the captain is 

assigned a higher priority than the other firefighters.  

The first principle in our architecture is that we have two types of nodes, peers and super-

peers. Each overlay consists of several peers and one super-peer that is selected from 

among the peers (see Figure 5.1). The selection criterion for super-peers is the capability 

of each node in the networks (e.g. processing power or battery level).  

The second principle is that every overlay flow (i.e. communication between two peers in 

an overlay) must be first admitted by the super-peer of that overlay. In other words, the 

source node of a flow should first ask for admission for that flow from the super-peer of 

its overlay. 
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Figure 5.1. Overall Architecture 

The third principle is that super-peers collaborate to ensure that the current total number 

of overlay flows in the network (N) does not exceed a value (M). N changes dynamically 

whenever a new flow is admitted or an existing flow is finished. M is also dynamically 

adjusted based on the success or failure of the flows which reflect the network conditions. 

Differentiated QoS Overlay (DQO) is formed for this required collaboration between 

super-peers.  

The fourth principle is that when a super-peer admits a flow, it assigns a DiffServ class to 

that flow. The source peer must mark the packets of the flow based on the provided 

DiffServ class. The details of these functions will be discussed in the next sections.  

5.2.2 Super-peer Selection and DQO Formation 

We follow an approach similar to the one we proposed in [11] to select the most capable 

peer as the super-peer. In summary, when a peer joins an overlay it broadcasts a super-

peer discovery request to the overlay. If it receives a response from a super-peer, the peer 

uses that super-peer for further interactions. If it does not receive a response after a period 

of time, it broadcast a capability discovery request which includes its capability. Any 

peer that receives a capability discovery request and has a higher capability than the 
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joining peer sends its response to the initial peer. The initial peer selects the peer with the 

highest capability and asks that peer to become its super-peer.  

When a super-peer is selected it first broadcasts a super-peer discovery request in the 

network, which includes the priority that is pre-assigned to its overlay. Super-peers that 

receive this request will save this information and respond back with the current number 

of overlay flows in their corresponding overlays and their pre-assigned priority. This 

ensures that a recently selected super-peer is aware of the total number of overlay flows 

in the network (N). Furthermore, it ensures that all super-peers are aware of the existing 

overlays and their priorities in the network. 

5.2.3 Admission Control Function 

Admission control function is provided by the super-peers. When a peer wants to start an 

overlay flow it first sends an admission request (containing its priority) to its overlay’s 

super-peer. The super-peer assesses if accepting this flow would cause the number of 

flows (N) to exceed the maximum number of flows allowed (M) in the network. If M 

would not be exceeded, it accepts the flow; otherwise the super-peer considers stopping 

an existing flow in an overlay with the lowest priority. If the requested flow belongs to 

the overlay with the lowest priority, the super-peer considers stopping the lowest priority 

existing flow in its own overlay. Note that this process is done locally (i.e. no message 

exchange is required) because first, each super-peer is aware of the priorities of the 

existing overlays and second, as we will describe later there is a mechanism that lets all 

super-peers be aware of the current number of flows in other overlays. A message 

exchange for admission control is provided in the illustrative scenario section.  
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When a flow is accepted, the super-peer adds that flow to the list of current flows in the 

overlay and the source peer starts the flow. If the flow is successfully received, the 

destination peer informs the super-peer by sending a successful flow notification. If the 

flow is not successfully received, the destination peer sends a fail flow notification to the 

super-peer. Upon receiving either notification, the super-peer removes this flow from the 

list of current flows in the overlay.  

The collaboration between super-peers ensures that first, each super-peer is aware of the 

number flows in every other overlay, and second, each super-peer knows about the 

dynamic changes of M. Therefore, all changes to N (the summation of the number of 

flows in all of the overlays) and M are propagated throughout the network. To this end, 

each super-peer updates the other super-peers about changes in its current number of 

flows and changes to M by sending update flows notifications. In order to avoid issues 

with simultaneous changes of M, when a super-peer sends notification regarding M it will 

also indicate that M is increased or decreased, if applicable. Therefore when a super-peer 

receives the multiple notifications regarding changes of M, it can determine that those 

notifications are being sent simultaneously. Therefore, if k flow update notifications are 

received by a super-peer and those notifications have the same value for M and indicate 

that M is increased. In this case, the super-peer knows that these notifications are being 

sent simultaneously and will increase its value of M by k.  

The number of flows in an overlay increases by one when a flow is accepted and it 

decreases by one when a flow is finished, either successfully or unsuccessfully. M is 

increased by one when a flow is successfully received and it is decreased by one when a 

flow fails. The rationale behind the dynamic changes of M is that when a flow is 



 

78 

 

successfully received, we assume that the network is capable of handling more flows, and 

thus M is increased, while when a flow fails we assume that the network conditions do 

not allow as many as M flows to exist, and thus M is decreased. 

There is a race condition in our architecture between super-peers to admit new flows. The 

race condition raises from the fact that each super-peer uses its local values for N and M 

when admitting a flow. When two or more super-peers simultaneously admit flows, it is 

possible that total admitted flows in the network exceeds M. However, each super-peer 

will only become aware of this issue after it receives the flow update notifications of 

other super-peers.  

5.2.4 Mapping and Enforcement Functions 

When a super-peer admits a flow, it responds back to the source peer with a value 

indicating the DiffServ class assigned to the admitted flow. Therefore, the mapping from 

the priority of overlays and users in the network to DiffServ classes is done by the super-

peers. Since super-peers are aware of the existing overlays in the network as well as their 

priorities, the mapping function tries to assign the best possible DiffServ class to the 

requested flow. The detailed implementation of the mapping function is not discussed 

here for the sake of simplicity. 

Peers are responsible for marking the packets of accepted flows with the provided value 

associated to the DiffServ class. The enforcement function is thus carried out by the 

source peers, which eliminates the need for an intermediate node to mark the packets.  
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Peer(A) Super-peer(A) Super-peer(B) Peer(B)

(6) Admission Request 
[User Priority]

(7) Stop Flow Request

(8) Stop Flow Request
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(10) Update Flows 

[0, 1]
(11) Accept 
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(1) Discovery Request

(2) Discovery Response

(3) Admission Request 
[User Priority]

(4) Accept 
[Best Effort] (5) Update Flows 
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(13) Admission Request 
[User Priority]

(14) Reject

(12) Update Flows 
[1, 1]

(12) Update Flows 
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Figure 5.2. Illustrative Scenario  

5.2.5 Illustrative Scenario 

In this section we demonstrate a detailed message exchange in the admission control 

function using a sample scenario. Let us assume:  

- Two different overlays, overlays A and B, exist in the network;  

- Overlay B has a higher priority than overlay A; 

- Each overlay has its own super-peer, super-peer(A) and super-peer(B), 

respectively; 

- There is an existing peer in overlay B named peer(B);  

- A new peer is joining overlay A, peer(A); and 

- There is no existing flow in the network and the value of M is equal to 1. 
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Figure 5.2 illustrates the message exchanges between different nodes in our network. 

When peer(A) joins overlay A, it first sends a super-peer discovery message which is 

answered by super-peer(A) (messages 1-2). Now peer(A) wants to start a flow and sends 

an admission request to super-peer(A), which will be accepted because there are no 

existing flows in the network (messages 3-4) and M = 1. After admitting the flow, super-

peer(A) updates other super-peers about the total number of flows in overlay A (message 

5). While peer(A) is sending the admitted flow, peer(B) sends an admission request to 

start a flow. Since M = 1, and super-peer(B) knows that overlay A has a lower priority 

and an existing flow, it asks super-peer(A) to stop a flow (message 7). Accordingly 

super-peer(A) forwards this stop request to peer(A) and peer(A) immediately stops the 

flow and notifies super-peer(A) (messages 8-9). The notification is forwarded to super-

peer(B) which makes it possible to admit the initial request of peer(B), and finally super-

peer(B) informs the other super-peers about the newly admitted flow (messages 10-12).  

Now if at this stage peer(A) send an admission request for a new flow, it will be rejected 

by super-peer(A) because M is still equal to 1 and a higher priority flow exists in the 

network (messages 13-14). The received flow message sent by peer(B) will eventually 

inform super-peer(B) that the flow has been successful (message 15). 

5.3 Performance Evaluation 

To evaluate the performance of our architecture, we performed a set of simulations using 

OPNET. We simulated a simple DRS that does not provide any QoS mechanism. We call 

this system non-QoS DRS. We applied our architecture to this system which is then 

called DQO DRS. We first evaluated how well our architecture enables service 
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differentiation in DQO DRS and then we compared the overall performance of the two 

systems.  

For the implementation we reprogrammed the application layer of a built-in OPNET 

model for MANET nodes, in which each node uses an 802.11b wireless LAN, IP for the 

network layer with AODV as the routing protocol and UDP for the transport layer. We 

used a random waypoint model to simulate node mobility. More details about the 

network and node models we used for this simulation is presented as an appendix. 

5.3.1 Evaluation Scenario 

The simulation scenario for both systems is as follows: There are 30 nodes in the 

network, randomly distributed over an area of 1 kilometer square. Each node is assigned 

a random speed between 0 to 12 meters per second (to test low to medium mobility). 

There are three overlays in the scenario; overlay 1 is formed by nodes 1 to 10, overlay 2 

is formed by nodes 11 to 20 and overlay 3 is formed by nodes 21 to 30.  

For our architecture we assume that overlay 3 has a higher priority than overlay 2, which 

has a higher priority than overlay 1. We also assume that the fourth node of each overlay, 

i.e., nodes 4, 14 and 24 have a higher priority than other nodes within the same overlay. 

This scheme is used to validate the operation of our architecture in differentiating 

overlays and users within each overlay. 

The nodes have sequential identifiers (IDs) (i.e. 1, 2, … , N). Each node periodically tries 

to send a new overlay flow to a random destination every 5 seconds. The duration of each 

flow is 4.5 seconds to ensure that only one flow is being sent by a node at a time. Each 

flow contains 1000 similar packets marked by a sequential packet identification number. 
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These packets are sent at a fixed rate. We simulated this scenario 10 times with different 

random seed values, for 30 minutes each time. 

5.3.2 Performance Metric 

To evaluate how effective our architecture differentiates overlays/users with different 

priorities, we have to compare how successful those overlay/users are in transmission of 

their flows. Therefore we introduce flow success ratio as the performance metric to 

measure the percentage of successful flows over the total number of flows started. A flow 

is considered to be successful when all of its packets are correctly received by the 

destination. There are various reasons for a flow not to be successful. The main reasons 

are congestion in the network and node mobility.  

5.3.3 Performance Results 

5.3.3.1 Evaluation of Service Differentiation 

Figure 5.3 depicts a comparison between the flow success ratios measured for different 

overlays. As expected, overlay 3 with the highest priority achieves close to 15% more 

flow success ratio than overlay 1 which has the lowest priority. Even comparing overlay 

2 and 3 reveals that using our architecture, overlay 3 receives slightly better service than 

overlay 2. 
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Figure 5.3. Comparison of the flow success ratios between overlays in DQO DRS 

  

Figure 5.4. Comparison of the flow success ratios between different nodes in DQO DRS 

 

Figure 5.5. Comparison of the flow success ratios between the non-QoS and DQO DRSs 
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Figure 5.6. Comparison of the flow success ratios between the same set of nodes in non-QoS and 

DQO DRSs 

Figure 5.4 shows the impact of our architecture on the level of service received by peers 

in the different overlays. We selected three nodes in each overlay including the nodes 

with the higher priority (i.e. nodes 4, 14, and 24) to compare the flow success ratio 

between peers in different overlays and between peers within the same overlay. The 

results in Figure 5.4 show that first, the flow success ratio for the peers in overlays with 

higher priority is higher than the peers in overlays with lower priority. Figure 5.4 also 

reveals that the peer with the highest priority within each overlay has a higher success 

ratio than its overlay peers. 

5.3.3.2 Comparison with non-QoS DRS 

Figure 5.5 shows the comparison of the flow success ratio metric in the non-QoS DRS 

and in the DQO DRS. For each system the total number of flows started in the network is 

shown versus the number of successful flows. As indicated, the success ratio for non-QoS 

DRS is only 14% while for DQO DRS it is about 57%. To ensure a fair comparison 

between the two methods we normalized the success ratio in DQO DRS based on the 

number of flows sent in the non-QoS DRS. After this normalization, the ratio of 
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successful flows in the DQO DRS over the total number of flows started in the non-QoS 

DRS is 39%, which is still a significant improvement.  

We believe the main reason for this improvement is that our architecture functions in a 

way that addresses the two aforementioned issues that cause unsuccessful flows. Our 

architecture avoids congestion by limiting the maximum number of flows (M) in the 

network and it copes with network dynamics by adjusting M based on the feedback 

provided by the source nodes. 

Finally, Figure 5.6 depicts a comparison of flow success ratios between three nodes in 

both architectures. Both were tested with the same scenarios (i.e. node location, speed, 

number of sent packets, etc.), which makes this comparison especially worthwhile. As in 

Figure 5.5, we normalized the percentage of the success rate, based on the number of 

flows started in the non-QoS DRS to have a fair comparison. 

First, Figure 5.6 shows that when no QoS mechanism is in place, the quality of service 

received by different peers is very unpredictable. However, when our architecture is 

applied, each peer receives about the same level of quality of service. Second, although 

all three of these nodes are in overlay 1, which has the lowest priority among the three 

overlays, node 4 has a higher flow success ratio as expected, because it has a higher 

priority among the peers in overlay 1. 

5.4 Meeting the Requirements 

a) General Requirements 

Since our proposed architecture is based on a self-organizing overlay, no permanently 

centralized entity is specified which satisfies our first requirement. Furthermore, as the 
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proposed overlay is formed on top of MANETs, our architecture is independent of lower 

layer protocols (our second requirement).  

By distributing the admission control and mapping functions we aimed to address the 

third and fourth requirements on scalability and supporting mobility. Extensive 

simulations have been run to validate this claim as presented in the performance 

evaluation section. 

To address our fifth requirement on supporting resource-constrained devices, in each 

overlay the most capable peer is selected as super-peer. Although this does not fully solve 

the issue, in practice, because of the heterogeneity of devices carried by responders, there 

is lower probability for a resource-constrained devices to be selected as super-peer.  

b) Requirements on Differentiated QoS Model 

The proposed architecture enables arbitrary prioritization scheme between overlays and 

between users within each overlay. This satisfies our first and second requirements. 

Furthermore, we have used DiffServ as a standard and commonly used mechanism to 

provide prioritization on overlay flows which addresses our third requirement. 

5.5 Conclusion 

Successful and well-organized communications in DRSs could save lives. This can be 

achieved through prioritization and admission control.  

This chapter derives a set of requirements that potential solutions have to meet. We 

assessed the state of the art with respect to these requirements. None of the existing 

solutions meets the derived requirements and we therefore propose a novel architecture 

that provides three functions, admission control, mapping, and enforcement, using a 
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distributed self-organized overlay, DQO. Our architecture avoids network congestion by 

limiting the number of flows in the network and by dynamically adapting the admission 

process based on the feedback received from the existing network flows.  

To evaluate our architecture, we ran extensive simulations. We simulated a simple DRS 

that does not provide any QoS mechanism (called non-QoS DRS) and then we applied 

our architecture on that system (called DQO DRS). We first evaluated the performance of 

our architecture at providing differentiated service to overlays and users. Then we 

compared the overall performance of the non-QoS DRS with that of the DQO DRS. Our 

results show that the proposed architecture at effectively enables service differentiation 

and improves communication between the network nodes. 
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Chapter 6:  Conclusion and Future Work 

6.1 Conclusion 

DRSs improve the situational awareness of responders and assist them by providing a 

wide range of applications for communication and collaboration. In this thesis we aimed 

to enhance three aspects of DRSs: interoperability, automation and prioritization. 

Interoperability enables the communication between different rescue teams which 

increases the efficiency of rescue operations. Automating rescue tasks allows responders 

to be dedicate to complex operations and it allows machines to operate without human 

intervention. Finally, prioritizing the access to resources in disaster area (e.g. network 

services) is critical to ensure that those resources are allocated to emergency services 

versus non-emergency services. 

We have proposed application layer architectures for three services (with respect to our 

focus areas) in DRSs: overlay interconnection, service discovery and differentiated 

quality of services. Each of the proposed architectures conforms to a set of requirements 

that are derived from challenges raised from MANET environment and disaster response 

operations. We have reviewed the related work related to each service in light of the 

requirements. The following is a brief summary of each of our contributions. 

 Overlay Interconnection Architecture ([10]): We proposed a distributed 

architecture that enables the interconnection between end-user application 

overlays and gateway overlays in a MANET environment. In this architecture, 
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interconnector nodes are responsible of address mapping and message relay 

between different overlays. We have selected SIP as a standard and lightweight 

protocol to enable the interconnection operational procedures and to provide a 

subscription/notification service for information exchange.  

 For proof of concept and to evaluate the performance of our architecture, we fully 

implemented the architecture as a prototype. In this prototype an end-user 

application overlay and a gateway overlay are developed based on JXTA and 

Open Chord middleware accordingly. Our performance results derived from the 

prototype indicate an acceptable network load overhead and interconnection delay 

in MANET environment. 

 Service Discovery Architecture ([11]): We proposed a distributed directory-

based service discovery architecture to enable service discovery in DRSs. Our 

architecture defines how service directories are formed and self-organized based 

on standard DNS protocol. In our architecture network nodes are categorized to 

different clusters. In each cluster there is a super-peer nodes which is responsible 

to store the service information of the peers in that cluster.  

We have simulated our architecture along with IETF directory-less service 

discovery proposal based on Multicast DNS (mDNS) and DNS-SD in OPNET. 

The performance result shows that our architecture is more scalable in terms of 

the number of nodes and the cluster management operations in our architecture 

impose a low level of traffic overhead in the application layer. 

 Differentiated QoS Architecture: 
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We proposed a differentiated QoS architecture for DRSs that provides three 

functions, admission control, mapping, and enforcement. Admission control limits 

the number of flows in the network to avoid congestion. Mapping function is 

responsible to map the priority of overlay flows to DiffServ classes. Lastly, 

enforcement function marks the admitted overlay flow packets based on the 

DiffServ class provided by mapping function.  

We simulated our architecture (called DQO DRS) and compared it with a simple 

DRS that does not provide any QoS mechanism. Our results show that our 

architecture effectively enables service differentiation and improves 

communication between the network nodes. 

6.2 Future Work 

Providing DRSs is a new and challenging research field which aims at addressing a wide 

range of problems. Recent research focuses include, providing end-user applications for 

specific rescue teams, providing general services to enable different applications or 

implementing realistic test beds to evaluate proposed solutions. The potential future 

research follow-ups for this thesis are twofold.  

First, although we have provided performance evaluation for the proposed architectures, 

further performance comparison with the related works and in more realistic environment 

can be done. Such evaluation could guide us to enhance some of the design decisions in 

the architectures. For instance, by simulating our overlay interconnection architecture we 

can further validate our requirements on scalability and mobility support. For our service 

discovery architecture, we can extend our architecture to enable self-adaptation of the 
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threshold values (C, N, and M) using a learning process. In addition, we can further 

compare the performance of other existing approaches with our architecture.  

Second, an integrated DRS architecture that includes our proposed architectures can be 

devised. Such architecture can even go beyond the areas targeted in this thesis by 

providing solutions for other DRSs issues such as security and reliability.   
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Appendix: Simulation Models 

This section presents more details about the provided OPNET-based simulations for 

evaluation of our proposed service discovery and differentiated quality of service 

architectures. We introduce the network and node models as well as other modules that 

have been used in the simulations.  

1. Simulation of Service Discovery Architecture 

Figure 1 depicts the network model we used for simulating our proposed service 

discovery architecture (CDNS) and IETF service discovery based on Multicast DNS 

(mDNS). In this model a MANET is formed by N nodes (here N=150) that are randomly 

distributed in an area of size 350m x 200m. An Rx Group Config component is used to 

indicate the distance threshold for radio communication of MANET nodes. Figure 2 

depicts the assigned attributes of this node. As it is shown the distance threshold is set to 

100 meters for all the nodes. 

We modified a sample MANET node model provided by OPNET. In the node model, 

wireless LAN is used for MAC layer, IP for network layer and UDP for transport layer. 

We replaced the existing application layer process model with our own implementation 

of CDNS/mDNS process models (Figure 3). CDNSSDProc module is the process model 

we implemented based on our proposed architecture. For simulating mDNS approach we 

replaced CDNS process model with our implementation of mDNS, here is called 

mdnProc. Furthermore, mdnRequestGen process is used to generate periodic service 

discovery requests that should be sent by each node. 
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Figure 1. Network model for service discovery architecture 

 

Figure 2. Rx Group Config module’s attributes 
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Figure 3. CDNS Node Model 

 

Figure 4. CDNS Process Model 
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Figure 5. mDNS Process Model 

Figures 4 and 5 present the process models for CDNS and mDNS architectures in the 

form of FSMs. In both models the process is started from init state and it needs to wait 

for five simulation cycles (wait_0 to wait_4) to make sure that lower layer process 

models (e.g. UDP, IP) are ready to be used. The main part of our implementation is done 

in the idle state. As it is shown this state handles different simulated events such as 

receiving a new packer (Packet_Recieved event), or starting a service discovery upon the 

generation of a request (Request_Generted event). In addition, CDNS process deals with 

more events that enable clustering operations in our architecture.  

Lastly, as we presented in Chapter 4, we used BonnMotion tool to generate the location 

of each node in intervals of 1 second based on the disaster area mobility model. 

Modification of location of nodes based on the generated values is implemented in idle 

state of CDNS/mDNS process model. Figure 6 presents the parameters we used to 

generate the mobility scenario. In this figure, $x and $y presents the size of the simulation 
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area, $node indicates the number of nodes and $duration indicates the duration for 

generated mobility scenario. The AREAS section, defines different type of sub-areas and 

obstacles in the simulated area.  

 

Figure 6. Parameters for Mobility Generation using BonnMotion 

2 Simulation of Differentiated QoS Architecture 

Figure 7 presents the network model we used to simulate our differentiated QoS 

architecture (DQO) based on the simulation scenario that is discussed in Chapter 5. We 

also simulated the same scenario without applying any QoS mechanism (non-QoS) to 

my $bm = "../../bin/bm"; 

my $scenario    = "DA"; 

my $nodes       = "150"; 

my $x           = "350"; 

my $y           = "200"; 

my $groupchange = "0"; 

my $groupsize   = "1"; 

my $dist        = "3"; 

my $mindist     = "3"; 

my $circlevertices = "140"; 

my $factor      = "1"; 

my $duration    = "3000"; 

my $skip        = "5000"; 

my $seed        = "23"; 

my $maxpause    = "20"; 

 

################ AREAS ################# 

 

my $maxareas= "8"; 

my $IL1     = "25,5,125,5,125,100,25,100,25,50,125,50,0,15,15"; 

my $PWFTA1  = "133,25,180,25,180,75,133,75,133,50,180,50,1,39,37"; 

my $CCS1 = "220,5,300,5,300,40,220,40,220,20,310,20,2,15,0"; 

my $CCS2 = "220,46,300,46,300,80,220,80,220,60,310,60,2,15,0"; 

my $CCS3 = "220,86,300,86,300,120,220,120,220,100,310,100,2,15,0"; 

my $CCS4 = "220,126,300,126,300,160,220,160,220,140,310,140,2,15,0"; 

my $TEL  = "320,75,345,75,345,100,320,100,330,75,330,76,3,6,0"; 

my $APP1 = "320,5,345,5,345,50,320,50,5,0,345,0,325,5,325,50,4,30,28"; 

my $OBST1   = "25,150,100,150,100,200,25,200"; 

 

########################################## 

 

my $params = "-f $scenario DisasterArea -n $nodes -x $x -y $y -p $maxpause -

a $groupsize -g $circlevertices -r $dist -q $mindist -d $duration -e 

$maxareas -i $skip -j $factor -b $TEL -b $CCS1 -b $CCS2 -b $CCS3 -b $CCS4 -b 

$PWFTA1 -b $IL1 -b $APP1 -o $OBST1 -K -R$seed"; 

 

system "$bm $params"; 
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evaluate the efficiency of our approach. In this model N nodes (here N=30) are grouped 

as different overlays (here three overlays with 10 nodes in each overlay) and they are 

randomly scattered in an area of size 1 kilometer square. An Rx Group Config 

component is used which is the same as we previously discussed.  

We have used OPNET Mobility Config module to enable random waypoint mobility 

model for all the MANET nodes. Figure 8 presents the attributes of this module as it is 

used in our simulations. Based on these properties, each node in the simulation starts to 

move after 10th second (start time attribute). In each step, a node moves through a 

randomly generated trajectory to a destination location. When the node reaches the 

destination it pauses for 10 seconds (pause time attribute) and then starts to move to a 

new location. The speed of each node is also selected randomly between 0 to 12 

meter/second (speed attribute) as it was described is in the scenario. 

Figure 9 presents the node model we used for the simulations. We modified a sample 

MANET node provided by OPNET by replacing the application layer process model with 

our own implementation of DQO and non-QoS process models. These process models 

provide algorithms that simulate sending and receiving of overlay flows. In case of DQO 

the process model also provides the functions of our differentiated QoS architecture. 

Figures 10 and 11 show the FSMs provided for DQO and non-QoS process models 

respectively. The non-QoS process model is only responsible to periodically start a new 

overlay flow and to check if it is successfully received by the destination while DQO 

process model is also responsible to provide admission control, mapping and enforcement 
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functions. This difference is the reason for additional event handlings in the FSM of the 

DQO process model.  

 

Figure 7. Network model for DQO 
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Figure 8. Mobility model module’s attributes 

 

Figure 9. DQO Node Model 
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Figure 10. DQO Process Model 

 

Figure 11. non-QoS Process Model 

 

 


