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Abstract 

 The Early Salt Stress-Induced 2 protein, ESI2, was identified as an interacting 

protein with the GTP-binding protein RAN via a His6-tag pull-down assay and by 

bimolecular fluorescent complementation. Fluorescent protein fusions transiently 

expressed in Nicotiana benthamiana were observed using confocal fluorescent 

microscopy.  The proteins fused to independent fluorescent partners localized to separate 

cellular compartments, with RAN primarily localized to the nucleus and ESI2 localized 

primarily to the tonoplast and cytoplasm. This interaction suggests a potential mechanism 

for the role of ESI2 in the sequestration of RAN and possible regulation of cell division in 

response to stress.  To further explore the role of ESI2, the protein was overexpressed in 

Arabidopsis however plant phenotypes were not found to differ from wild type plants.   
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PART I. INTRODUCTION 

 
The driving force behind agriculture is an ever-increasing demand for food to 

sustain a rapidly growing global population.  This pressure to continually grow more 

crops in a wider variety of environments further drives the need for scientists to design 

and develop more stress-resistant crop plants.  Crops that can endure the effects of 

exposure to multiple abiotic or biotic stresses while maintaining fecundity will prove to be 

the most useful for farmers operating in the growing global agricultural market. 

 The effects of stress on the proper development and growth of plants currently 

poses a severe threat to agriculture.  Crop production worldwide is consistently faced with 

a wide range of inimical stresses that threaten global food production and decrease 

agricultural productivity.  Overall, it is estimated that abiotic stresses reduce the average 

yields for most major crop plants by up to 50% (Bray et al. 2000).  Water shortages due to 

drought are a major problem for 45% of the world’s lands, where 38% of the human 

population lives (Chinnusamy et al. 2008).  Salinization in the soil is predicted to cause 

up to a 50% reduction in arable land by the year 2050 (Pitman and Läuchli 2002).  

Additionally, stress on plants induced by high temperatures is said to affect about 40% of 

irrigated areas of wheat (Chinnusamy et al. 2008).  Global warming and climate change is 

predicted to only further exaggerate and intensify these already numerous and severe 

limitations to plant growth.  

However, despite the seemingly endless onslaught of harmful stresses, plants have 

evolved an intricate and complex stress response system to counter-act harmful 

environmental stresses.  Precise recognition of external stresses and subsequent 

orchestration and activation of genes involved in stress-related responses are crucial for 
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the sustained survival and proliferation of plants living in hostile environments.  Plants 

have developed a variety of stress response pathways, many of which can be overlapping 

if the stress is pleiotropic, or if multiple stresses are coupled together.  The most common 

responses take the form of cell-signalling cascades that result in a modification of the 

transcriptome.  This in turn can lead to decreased cell growth and cell division, reduced 

photosynthesis and increased stomatal closure, among other responses (Knight and 

Knight, 2001). 

Triticum aestivum, more commonly known as bread wheat or common wheat, is 

one of the major cereals used as a source of food for nearly one fifth of the world’s 

population (Food and Agriculture Organisation of the United Nations, 2012).  One way to 

ensure the continual productivity of this vital crop would be to fully elucidate the 

mechanisms and pathways that function to control the stress response in wheat.  This 

would enable scientists to engineer more resistant and viable agricultural crops, 

eventually securing the future production of this essential food.  In general, a deeper and 

more thorough understanding of the genes involved in the plant stress response will help 

further our understanding of how we can improve the productivity of crop plants growing 

in adverse environments. 

1. Gene Candidate Identification 

 In wheat, genes that differed in expression levels between cold-acclimated spring 

and winter cultivars were identified as potential regulatory or signalling proteins in the 

cold stress response (Gulick et al. 2005).  These genes were then used as bait in a Yeast 

Two-Hybrid screen to identify other genes involved in the stress response in wheat, and to 
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subsequently build a map of protein-protein interactions (Tardiff et al. 2007).  One of the 

genes used as bait, a cold-induced G-RAN-like protein, was shown to interact with the 

previously identified Early Salt Stress-Induced 2 (ESI2) protein (Tardiff et al. 2007, 

Galvez et al. 1993).  

 

2. The Wheat Esi2 Protein 

Esi2 is a unique gene in its response to stress. It is highly expressed in wheat 

cultivars that were the most freeze-tolerant, including Musketeer, which has an LT50 of     

-21ºC (LT50 is the temperature at which 50% of plants will survive) and Norstar, which 

has an LT50 of -19ºC.  It also showed reduced levels of expression in the more cold-

sensitive spring wheat varieties of Glenlea (LT50 -8ºC), and Concorde (LT50 -8ºC) 

(Unpublished, Gulick).  It was also shown to be up-regulated after the initiation of salt 

stress in L. elongatum (Gulick and Dvorak 1992).  Esi2 is characterized by a copper-

binding domain and a region consisting of repeating amino acid motifs that are high in 

methionine, proline, and serine, which as yet bears little resemblance to other stress-

response genes outside of the Triticale tribe.  

 

3. The Ran Protein  

Ran is a small GTPase and member of the Ras superfamily of proteins.  Like other 

G proteins, Ran switches from an “active” GTP-bound state and an “inactive” GDP-

bound one.  The Ran accessory proteins RanGAP1 and the GDP/GTP exchange factor, 

RCC1, aid in this GTP hydrolysis and activation, respectively. It has long been known 

that Ran is a vital and indispensable enzyme responsible for orchestrating numerous 
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critical aspects of cellular function such as mitotic progression, spindle assembly, and 

nucleo-cytoplasmic transport (Dasso 2002).  

Gene expression and regulation are controlled post-transcriptionally in higher 

organisms, a key feature distinguishing them from their prokaryotic counterparts.  A well-

defined barrier between the nucleus and the cytoplasm places enormous emphasis on gene 

regulation and control via nucleo-cytoplasmic trafficking, including pre-mRNA 

processing, mRNA stability, mi/siRNA export from the nucleus, and translation.  This 

trafficking therefore has great control over gene regulation in response to environmental 

stress.  Ran is one of the key genes involved in the shuttling of “cargo” (proteins, tRNA, 

miRNA/siRNA, etc) into and out of the nucleus, and interacts with nuclear transport 

receptors from the karyopherin/importin β family of proteins (Chinnusamy et al. 2008), as 

well as the importin α family, part of the ARM repeat protein family (Merkle 2011).   In 

contrast, the transport of mRNAs is mediated by the non-karyopherin family of NEFs.  

Karyopherin-mediated transport is tightly controlled by an asymmetric Ran gradient 

across the nuclear envelope, maintained by the RanGEF, RCC1, in the nucleus, and the 

RanGAP, RanGAP1, aided by RanBP1/2, in the cytoplasm.  For entry into the nucleus, 

cargo must contain a nuclear localization signal (NLS), which is recognized by a NLS-

binding domain on importin α.  Importin β binds the cargo/importin α pair and the 

completed complex shuttles across the perinuclear space through a nuclear pore complex 

(NPC).  Once inside the nucleus, RanGTP binds importin β and dissociates the complex, 

thereby releasing the cargo.  RanGTP-bound importin β is free to shuttle back to the 

cytosol where RanGTP is hydrolyzed back to RanGDP.  RanGTP also binds importin α as 

well as the exportins Exportin2 and CAS to facilitate nuclear exit (Dasso 2001, 
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Chinnusamy et al. 2008).  RanGDP is separately shuttled into the nucleus by NTF2 

(Nuclear Transport Factor 2), which binds to GDP-bound Ran in the cytoplasm and 

inhibits dissociation of GDP from Ran (Görlich and Kutay 1999).  Since the intrinsic rate 

of Ran’s nucleotide exchange and hydrolysis are slow (Görlich et al. 2003), nucleo-

cytoplasmic transport is thus hypothesized to be driven by an asymmetric distribution of 

the Ran effectors: RanGTP levels are kept high in the nucleus by abundant chromatin-

bound RCC1, and RanGAP1 promotes quick GTP hydrolysis in the cytoplasm, freeing 

RanGDP to associate with NTF2 and shuttle back to the nucleus to continue the cycle.  

 Ran has also been known to play a critical role during the cell cycle.  In mammals, 

following nuclear envelope breakdown, a gradient of RanGTP extends centrifugally from 

the centrosomes (Hasegawa et al. 2013).  This high concentration of RanGTP is again 

maintained by RCC1 and the counter-acting force of RanGAP1, allowing for Ran-GTP-

dependent factors such as Ran-BPM to stimulate microtubule assembly near the 

chromosomes (Kahana and Cleveland 1999).  The activated GTPase can also stimulate 

microtubule aster formation by binding importins and allowing the release of 

microtubule-nucleating factors such as NuMa and TPX2 (Gruss et al. 2001). Asters 

surround the centrioles, the sites from which microtubules emanate.  Microtubules then 

connect to the kinetochore of each chromosome and direct their movement to facilitate 

chromosome alignment along the metaphase plate.  

 Plant cell division differs from its mammalian counterpart in that it does not 

require the use of centrioles to direct spindle assembly. This “spindle self-assembly” was 

shown to also function independently of the preprophase band (PPB) (Zhang and Dawe 

2011), a critical cell marker during G2 phase which defines the future site of cortical 
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division (CDS) and which is thought to act as a guide for the growing phragmoplast (Xu 

et al. 2008).  Consequently, it has now been hypothesized that chromatin, in conjunction 

with a Ran-dependent pathway, are sufficient for spindle formation in plant cells, further 

emphasizing the importance of Ran in the plant cell cycle. 

3.1 Ran in Response to Stress  

 The role of Ran in response to stress is an area of research that is still in its early 

stages.  A study done by Wang et al. in 2006 showed that overexpression of the wheat 

Ran, Ta-Ran1, in Arabidopsis and rice exhibited an increase in the number of cells in the 

G2 phase of the cell cycle, which resulted in an elevated mitotic index and extended life 

cycle.  Overexpression of Ta-Ran1 also led to increased primordial tissue, reduced 

number of lateral roots, and stimulated hypersensitivity to exogenous auxin.  In 2010, 

Zang et al. did a similar study on OsRan2, a Ran gene from rice.  They revealed that 

expression of the Ran gene in rice was reduced under salt and osmotic stress, as well as 

exogenous treatment of ABA.  Additionally, overexpression of OsRan2 in transgenic 

Arabidopsis and rice showed hypersensitivity to osmotic stress, salinity, and ABA stress.  

A study done in 2001 by Kim et al. showed that antisense expression of RanBP1 in 

Arabidopsis resulted in  plants with prematurely terminated lateral roots, but enhanced 

primary root growth.  When treated with auxin, the transformed plants exhibited hindered 

mitotic progression in newly emerged lateral roots and the primary root tip.  Taken 

together, it is evident that another role for Ran has emerged, this time as a possible 

regulator of plant cell functioning and development in response to stress. 
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3.2 The Arabidopsis Ran 

 The Arabidopsis genome has four RAN homologs termed At-RAN1 (At5g20010), 

At-RAN2 (At5g20020), At-RAN3 (At5g55190) and At-RAN4 (At5g55080).  At-RAN1, 2 

and 3 were first characterized by Haizel et al. in 1997.  The authors revealed that At-

RAN1 and At-RAN2 contained five exons and four introns, while At-RAN3 contained 

eight exons and seven introns.  They also deduced that the amino acid sequences of the 

three genes were nearly identical, differing from each other only at the C-terminal 

regions, and that each protein consisted of 221 amino acid residues.  At-RAN4 was 

characterized by Vernoud et al. in 2003, and was shown to share only 65% of its identity 

with the other three Arabidopsis RANs.  It was also reported that there is a highly 

conserved sequence motif (KKYEPTIGVEV) shared between At-RAN1, 2 and 3, that acts 

as a site for GTP binding and hydrolysis, as well as an interaction domain for RanGAPs.  

At-Ran4 only has five of these eleven residues conserved (Vernoud et al. 2003).  

Additionally, Arabidopsis RAN1, 2 and 3 share 94% identity and 95% similarity  to the 

wheat Ran gene homolog (Benson et al. 2005). 

 

4. Arabidopsis thaliana and Triticum aestivum 

By the 1980’s a mini-revolution had begun in plant genetics.  Arabidopsis was 

chosen over petunia, tomato, and several other plants as the model organism for plant 

molecular biology.  It had many traits that appealed to plant geneticists, including a small 

genome (5 chromosomes) which facilitated gene cloning and gene identification, a short 

generation time (28 days from germination to flowering), high seed production (10,000 

plus seed per plant), and it was easy to create embryo lethal, morphological, life-cycle, 
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and hormone response mutations (Meyerowitz 2001).  With the addition of a fully 

sequenced genome (The Arabidopsis Genome Initiative 2000), as well as stocks of T-

DNA insertion mutants for every gene (Alonso et al. 2003), Arabidopsis thaliana has not 

only lived up to expectations as the model organism for plant biology, it has well 

surpassed them.  

 The bread wheat Triticum aestivum is an allohexaploid (an allopolyploid with six 

sets of chromosomes, two sets from each of three different diploid donor species), and is 

the result of two interspecific hybridization events that occurred in conjunction with 

polyploidization.  The first hybridization event occurred between 0.5 and 3 MYA, and 

combined the genomes of Triticum urartu (AA) and an unidentified species (BB) to 

produce the allotetraploid genome of Triticum turgidum (AABB) (Berkman et al. 2013, 

Chantret et al. 2005).  The second event combined the genomes of T. turgidum (AABB) 

and Aegilops tauschii (DD) to produce the allohexaploid genome of T. aestivum 

(AABBDD) (Berkman et al. 2013, McFadden and Sears, 1946).  Despite its usefulness as 

an edible crop, the bread wheat genome has proven difficult to sequence due to its large 

size, 80 – 90% of which is repetitive (Wanjugi et al. 2009).  However, T. aestivum has 

adapted to a wide range of environmental conditions and has evolved to be extremely 

cold-tolerant, with some cultivars able to survive temperatures as low as -22ºC after a 

period of cold acclimation.  
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5. Fluorescent Proteins 

5.1 GFP and Derivatives  

 The discovery of the green fluorescent protein (GFP) for use in scientific research 

has been heralded as one of the greatest discoveries in modern science.  Its limits as a 

scientific tool for cell visualization in real-time seem boundless, and its applications far-

reaching.  The discovery of GFP earned Osamu Shimomura, Martin Chalfie and Roger 

Tsien the Nobel Prize in Chemistry in 1998 (Zimmer 2009).  Purified GFP, or wild type 

GFP (wtGFP) is comprised of 238 amino acids consisting of an 11-stranded β-barrel 

encasing a central helix (Ormö et al. 1996).  Fluorescent blue light is produced when 

calcium binds the photoprotein aequorin.  This light undergoes radiationless energy 

transfer to GFP, which finally emits the now famous green light (Zimmer 2009).  

However, the version of GFP most commonly used in the laboratory today is not wtGFP, 

as it posed complications and the amino acid sequence has since been modified.  The 

more improved version and the one most commonly used today is enhanced GFP (eGFP).  

Unlike its predecessor, eGFP emits a single excitation peak at 488 nm, as opposed to the 

double peaks of wtGFP at 395 and 475 nm.  This was achieved by a single point mutation, 

S65T (Heim et al. 1995).  Additionally, wtGFP exhibits poor folding at 37ºC and is 

sensitive to chloride and pH, all drawbacks that have been improved upon in the eGFP 

version.  

 The discovery of GFP has set off a search for other fluorescent proteins of 

different colours, so that it is possible to view two or more proteins together in the same 

field of view.  One of the most common derivatives of wtGFP is the enhanced yellow 

fluorescent protein, (eYFP), previously known as YFP 10C (Shi et al. 2007).  The other 
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most common fluorescent proteins are DsRed and mCherry, although these are not 

derivatives of wtGFP; they were originally isolated from the mushroom coral Discosoma 

(Li et al. 2008).  Originally, DsRed posed problems for cell imaging as it formed a dimer 

in its natural state.  mCherry is an improved derivative of DsRed with five amino acid 

substitutions (Q66M, T147S, M163Q, M182K, T195Q) (Shaner et al. 2004).  

Additionally, since it has an excitation maximum at 587 nm, and an emission maximum at 

610 nm, in can be used concurrently with eGFP for the observation of two fluorescent 

proteins simultaneously.  

5.2 Cloning into pFAST Vectors 

 The pFAST vectors carry a selectable marker which produces GFP that can be 

seen exclusively in the seed of transgenic plants.  The marker was constructed as a fusion 

protein of OLE1 and eGFP, under the control of the OLE1 promoter, pOLE1 (Shimada et 

al. 2010).  OLE1 is the most common oleosin in Arabidopsis, a protein that surrounds 

seed oil bodies.  Oil bodies contain reserves for the germination and post-germination 

growth of seedlings.  Oleosins are essential for stabilization of oil bodies (Huang 1996), 

as well as protecting the seed against damage incurred by freezing and thawing of cells 

(Shimada et al. 2008).  In the pFAST vectors, the promoter of OLE1 controls the 

expression of a fusion protein of OLE1 oleosins expressing GFP, which functions as a 

selectable marker to identify transgenic seed via green fluorescence in the seed coat.  GFP 

expression is limited to only the oil bodies of dry seeds, and fades completely five days 

after the germination of the seed (Shimada et al. 2010).  The transgenic seed can be 

detected under a fluorescent microscope, and authors claim that homozygous seed may be 

detectable as the brightest seed within the T2 generation.  The quick detection of rare 
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transformants in T1 seed and easy determination of the number of independent gene 

insertions in each line, as well as the rapid identification of homozygotes in the T2 

generation without the need for selection of transgenic seedlings with antibiotics, has 

made the pFAST vector a useful tool in the creation and detection of transgenic plants.  

5.3 Bimolecular Fluorescent Complementation  

One of the easiest and most reliable methods for determining a protein-protein 

interaction in plants is Bimolecular Fluorescence Complementation (BiFC).  This method 

is based on the fact that certain fluorescent proteins remain stable if they are truncated at 

certain resides into two halves.  One example of these proteins is the yellow fluorescent 

protein, eYFP.  This protein has been modified and split into two “halves”, the N-terminal 

half, (YN154, amino acid residues 1-154) and the C-terminal half (YC155, amino acid 

resides 155-238) (Hu et al. 2002).  To test an interaction between two candidate proteins, 

each candidate is fused to one half of the YFP protein by subcloning the genes for these 

proteins as fusions in plant expression vectors for expression in tobacco cells.  If the two 

proteins do indeed interact, the two halves of the YFP will reconstitute a fluorescent 

product that can be visualized using fluorescence microscopy. Because the detection of 

the interaction is sensitive, the location and level of fluorescence within the cell is a 

reliable indication of protein-protein interactions within an organism.  In this thesis, BiFC 

was used to test the interaction of various proteins using Agrobacterium tumafaciens for 

transient transformation into Nicotiana benthamiana epidermal leaf cells (Sparkes et al. 

2006).  
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6. Summary 

 The purpose of this thesis is to explore the role of the ESI2 gene in the plant stress 

responses of Arabidopsis and Triticum aestivum.  The identification of the interaction of 

ESI2 with G-RAN suggests that it plays a role in regulation and signalling.  Expanding the 

study of ESI2 to Arabidopsis is an opportunity to use the extensive genetic resources that 

are available in the model system.  The RAN gene has been shown to be vital in several 

aspects of cell-cycle control, and more recent experiments have revealed its role as an 

important regulator of the plant stress response.  Genes that regulate or are regulated by 

RAN, such as ESI2, are excellent candidate genes for studying the stress response.  

Experimentation will reveal where these two genes localize and interact in cells, as well 

as the phenotypic outcome of the overexpression of the ESI2 gene.  

 

PART II. MATERIALS AND METHODS 

 1. Vector Constructs  

 The wheat Esi2 His6-tag fusion gene construct was made previously in our 

laboratory using primers N02attB1 and N02attB2 (shown in Table 1). The PCR product 

was then inserted into the pDONR201 Gateway vector (Life Technologies) and the 

resulting entry clone was then sub-cloned into the Gateway pDest17 (Life Technologies) 

expression vector to obtain an N-terminal His6 tagged protein for expression in E. coli. 

The wheat Ran GST-tag fusion gene construct was also made previously in our 

laboratory, and was cloned into the Gateway pDest15 expression vector (N-terminal GST-

tag E. coli expression vector, Life Technologies) using the primers RlGBattB1F and 
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RlGBattB1R (shown in Table 1) and the same cloning method described for the wheat 

Esi2 . 

At-ESI2 cDNA stock, (DKLAT4G27520), corresponding to an Arabidopsis gene 

(AT4G27520.1) with sequence similarity to the wheat gene, Ta-Esi2, was obtained as a 

bacterial stab from the Arabidopsis Biological Resource Center at Ohio State University.  

It was PCR amplified using the primers AtESI2FPGW and AtESI2RPGWstop or 

AtESI2RPGWnostop (shown in Table 1) and then incorporated into the pDONR201 

Gateway vector (Life Technologies) by the BP in vitro recombination reaction according 

to the manufacturer’s instructions.  The subsequent entry clone was then inserted into the 

eGFP vector with a full length C-terminal eGFP fusion (pK7FWG2.0, Karimi et al. 2002), 

for GFP visualization to determine localization of At-ESI2 in tobacco cells.  The eYFP-C 

vector (pBatTL-B-sYFP-C) was used to create a C-terminal fusion of the C-terminal 

fragment of YFP with the Ta-Esi2 and At-ESI2 genes, and the eYFP-N vector (pBatTL-

B-sYFP-N) was used to create a C-terminal fusion of the N-terminal fragment of YFP, 

with the Ta-Ran and At-RAN genes to study protein-protein interactions via BiFC in 

tobacco.  At-ESI2 was also inserted into the pFASTG02 vector (p*7FWG2, Plant Systems 

Biology), for overexpression of the At-ESI2 gene under the control of the cauliflower 

mosaic virus (CaMV) 35S promoter (Karimi et al. 2002).  This pFAST vector, as well as 

those mentioned below, all carry a screenable marker which produces a GFP signal 

visible in the mature seed coat of transformed plants.  The three pFAST vectors are 

Gateway compatible, and the cloning was done according to the manufacturer’s 

instructions by first inserting the DNA of interest into the entry vector pDNOR201, and 

subsequently transferring the clones into the specific pFAST vectors by in vitro 
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recombination.  At-ESI2 was also cloned into the pFASTG03 vector (p*7GWIWG2(I), 

Plant Systems Biology) which produces a double-stranded RNA (hairpin RNA), 

triggering post-transcriptional gene silencing under the control of the CaMV 35S 

promoter (Wesley et al. 2001, Karimi et al. 2002).  The pFASTG04 vector (p*GWFS7, 

Plant Systems Biology) is used to fuse an experimental plant gene promoter with EgfpER 

and β-glucuronidase (GUS) (Karimi et al. 2002), for expression of the GUS reporter gene.  

The primers used for PCR amplification of the At-ESI2 promoter were AtESI2GUSFP 

and AtESI2GUSRP2 (shown in Table 1).  

 

2. Protein Purification and Protein-Protein Interaction  

 For protein-protein interaction characterization, E. coli BL21 cells transformed 

with the recombinant plasmids were grown at 37ºC in 500 mL LB media with 50 μg/ml 

spectinomycin for 6 h and then induced with 1 mM IPTG and incubated for 12 h at room 

temperature.  Cultures expressing TaEsi2-GST (pDest15) were lysed in buffer: 50mM 

Tris-HCl, pH 8.8, 100mM NaCl, 2% Triton X-100, 5% Glycerol, and 1mM PMSF.  The 

recombinant Ta-Esi2-GST protein was purified with Glutathione Sepharose™ according 

to the manufacturer’s protocol (GE Healthcare Life Sciences).  Cultures expressing Ta-

Ran-His6 (pDest17) were lysed in the same buffer, centrifuged at 12,000g for 15 min, and 

protein was recovered from the pellet by solubilization in buffer: 50mM Tris-HCl, 0.5% 

SDS, 5% Glycerol, and 1mM PMSF.  Ta-Ran-His6 was purified using Ni-NTA Agarose 

(Qiagen) according to Todorova (2009) with some modifications: the Ni-NTA Agarose 

was equilibrated with wash buffer containing 50mM Tris-HCl, pH 8.8, 0.05% SDS, and 

1mM PMSF.  The protein was immobilized on the equilibrated beads, rinsed twice with 
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wash buffer, and then eluted with 2X-SDS-PAGE buffer (100 mM TrisHCl (pH 7.0), 200 

mM DTT, 4% (W/V) SDS, 0.2 % (W/V) Bromophenol Blue, 30% glycerol, and 100 mM 

Imidazole).   

The His6-tag pull-down assay (Todorova 2009) was used to study the pair-wise 

interaction between Ta-Esi2-GST and Ta-Ran-His6.    A mixture of 50 μl of crude extract 

of the Ta-Ran-His6 culture and 50 μl of Ni–NTA Agarose beads, previously equilibrated 

with the wash buffer (50mM Tris-HCL, 400mM NaCl, 5% glycerol, 1mM PMSF), were 

incubated for two hours at 4°C with gentle shaking.  The mixture was rinsed with the 

wash buffer, centrifuged at 2000g for 1 min, and the supernatant was discarded.  To assay 

the GTP/GDP bound forms of Ta-Ran, lysate was pre-treated with 5 mM EDTA and 5 

mM of either GDP or GTP for 10 min followed by the addition of 20 mM MgCl2.  The 

Ni–NTA Agarose beads bound with either GTP or GDP-bound forms of Ta-Ran-His6 

protein were incubated with 1 ml of Ta-Esi2-GST crude E. coli lysate in 50mM Tris-HCl, 

pH 8.8, 100mM NaCl, 2% Triton X-100, 5% Glycerol, 1mM PMSF overnight at 4°C with 

gentle shaking.  Samples were centrifuged at 2000g, washed twice with wash buffer, and 

then eluted in 50μl of 2X-SDS-PAGE buffer, boiled for 5 min at 100ºC, and analyzed by 

SDS-PAGE electrophoresis on 12% polyacrylamide gels subsequently stained with 

Coomassie Brilliant Blue R-250.  

 

3. Agrobacterium-mediated Transformation of Arabidopsis thaliana 

 Three Arabidopsis plants were used for transformation according to Bent (2006) 

with the pFASTG02 vector for overexpression of the At-ESI2 gene under control of a 35S 

promoter (35S:AtESI2).  35S::AtESI2 in the pFASTG02 vector was transformed into the 
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Agrobacterium tumafaciens strain AGL1 via electroporation and colonies were selected 

on LB media plates with 50μg/ml spectinomycin.  Single colonies were picked and 

cultured in LB media with 50μg/ml spectinomycin and grown to OD600 = 0.6.  The 

cultures were then centrifuged at 13,000g for 30 minutes and the pellets were re-

suspended in a 5% sucrose solution.  Plants were dipped according to Clough and Bent 

(1998) with the following modifications: Silwett L-77 was added to the sucrose solution 

to a concentration of 0.05% and Arabidopsis plants with emerging flower stems were 

dipped in the solution for five seconds.  The plants were then kept in the greenhouse 

under transparent covers with 16 hr light and 8 hr dark at 22
 º
C, for several days.  Covers 

were removed and plants were grown until seed was mature.  Sees were collected and 

screened for transgenic individuals by the expression of the green fluorescence protein in 

the seed coat by fluorescence microscopy under 100X magnification with the Zeiss 

Axioplan fluorescence microscope (Carl-Zeiss, Germany).  Transgenic seeds were sown 

in soil mixture containing equal parts of black earth, peat moss, and vermiculite that was 

pre-heat treated at 150°C for three hours.  Seeds were then stratified in the dark at 4°C for 

3-4 days.  Pots were then placed in growth chambers and seedlings were grown at 22
º
C, 

43.21 µmol·m
-2

·s
-1 

fluorescent light, with a light cycle of 16 hr light and 8 hr dark. 

 

4. Screening and Identification of Transgenic Arabidopsis seed  

A transgenic seed can be identified by green fluorescence, which is carried as a 

selectable marker in the pFAST vectors.  Of the three plants treated with Agrobacterium, 

only one produced transgenic seeds.  From this plant, twenty-three transgenic seeds 

exhibiting eGFP expression were collected and grown to produce T2 seeds.  T2 seeds 
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collected from these plants were observed for eGFP expression under the fluorescence 

microscope.  Lines with a single transgene insertion were identified by a 3:1 segregation 

ratio of GFP to no-GFP, respectively.  Lines with at least two insertions were identified 

by a segregation ratio of at least 15:1 of GFP to no-GFP, respectively.  Transgenic seed 

exhibiting eGFP expression from twenty of the twenty-three lines were again selected and 

grown to the next generation.  Lines 3-7, 12-2, and 3-12 were used for phenotypic 

analysis of transgenic plants grown in soil.  Ten plants from each of the homozygous 

transgenic lines, as well as ten wild type Columbia plants, were grown in soil conditions 

described above.  Time to germination, time to flowering, and leaf number at flowering 

were recorded for each plant.  

 

5. Agrobacterium-mediated Transient Transformation of Nicotiana benthamiana 

 Wild tobacco (Nicotiana benthamiana) were grown for four or five weeks in a soil 

mixture of 1:1:1 of black earth, vermiculite, and peat moss at 22ºC, 43.21 µmol·m
-2

·s
-1 

fluorescent light, with a light cycle of 16 hr light and 8 hr dark and covered with 

transparent plastic domes to increase humidity and ease of transformation.  

Ta-Esi2::C-YFP, Ta-Ran::N-YFP, At-ESI2::C-YFP, At-ESI2::eGFP, At-RAN:N-

YFP, At-RAN::eGFP, the tonoplast marker (gammaTIP::mCherry, Nelson et al. 2007), 

and p19 containing the vector for suppression of gene silencing (Voinnet et. al 2003) were 

transformed into the Agrobacterium tumafaciens strain AGL1 via electroporation and 

colonies were selected on LB media plates with the appropriate antibiotic.  Single 

colonies were picked and cultured in LB media with the appropriate antibiotic to an OD600 

of 0.6.  The cultures carrying appropriate clones for each desired protein-protein 
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interaction that were to be assayed were mixed, along with the p19 containing culture, and 

mixtures were then pelleted by centrifugation at 6,000 rpm for 20 minutes at room 

temperature.  The pellets were then re-suspended into an activating solution containing 

1.5 mM acetosyringone and 0.01M MgCl2 (English et al. 1996).  Each mixture of cultures 

was then taken up in a syringe, without a needle, and injected directly into the underside 

of a tobacco leaf (Sparkes et al. 2006).  Fluorescent interactions were visualized using the 

Leica TCS SP2 microscope system from the Center for Structural and Functional 

Genomics.  A 488 nm and 543 nm laser scanner was used to excite the eGFP/eYFP and 

mCherry proteins, respectively.  The mCherry cellular markers used were the tonoplast 

marker (vac-rk CD3-975), and plasma membrane marker (pm-rk CD3-1007) (Nelson et 

al. 2007). 

 

6. RT-PCR of pFASTG02 35S::AtESI2 overexpression lines 

 Arabidopsis plants were grown for three weeks in the soil conditions described 

above for tobacco.  Total RNA was extracted from Arabidopsis using the RNeasy Plant 

Mini RNA extraction kit (Qiagen) and a portion of the total RNA was reverse-transcribed 

using oligo(dT)-primed cDNA synthesis.  One µg of total RNA and 3µl of 50 mM 

oligo(dT) were combined and heated at 70°C for 5 min, and cooled on ice.  The RNA was 

then incubated with 0.9 mM dNTPs, 1X RT buffer and 20 units of M-MuLV reverse 

transcriptase in a 22 µl reaction volume using the temperature regime: annealing at 37°C 

for 5 min, cDNA synthesis for 60 min at 40°C and for 20 min at 55°C, and denaturation 

for 10 min at 70°C.  PCR amplification of an aliquot of the cDNA to determine levels of 

gene expression was done using primers AtESI2cDNAFP1 and AtESI2cDNARP1 and 
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reaction conditions with initial denaturation at 95°C for 5 min followed by 25 cycles of 

denaturation at 95°C for 60 s, annealing at 55 °C for 40 s and extension at 72°C for 60 s.  

The same PCR assay was also done with 27 and 30 cycles of amplification.  

Quantification to measure the difference in overexpression levels of the At-ESI2 gene was 

done using visual estimation of PCR products obtained by agarose gel electrophoresis 

stained with ethidium bromide (Figure 1).        

 

 

 

 

 

 

 

 

 

 

 

 

  

 

WT 27 

cy 

WT 30 

cy 
3-7 27 cy 3-7 30 cy 16-9 27 cy 

cy 

16-9 30 cy 

A 

750 

1000 

500 

250 

200 

500 

400 

300 

100 

B 

27 cycles 

WT 3-7 16-9 

30 cycles 

WT 3-7 16-9 



 20 

 

7. Arabidopsis thaliana T-DNA Insertion Mutant Plants 

A. thaliana T-DNA insertion mutant lines SALK 142954, SALK 142962, and 

SAIL_437_B03 were obtained from the ABRC Stock Centre, Ohio State University.  The 

plant DNA was extracted using the Extract-N-Amp Plant Kit (Sigma).  The DNA was 

then PCR amplified using primers recommended by the SALK Institute primer design 

tool, SIGnAL (http://signal.salk.edu/cgi-bin/tdnaexpress) to verify the presence of the T-

DNA and to identify homozygous lines.  The insertions were located in, or upstream of 

the At-ESI2 gene.  

 

PART III: RESULTS 

 
1. Identification of Potential Homologs of Triticum aestivum Genes ESI2 and Ran1 in 

Arabidopsis 

 The Ta-Esi2 gene from T. aestivum encodes a 321 amino acid protein with a 

97% identity to genes in Lophopyrum elongatum (GI:62861393), and 75% identity with 

the most similar gene in Brachypodium distachyon (GI:357123444), but showed little 

similarity to any genes in Arabidopsis.  However, the 125 aa copper-binding domain of 

the wheat Esi2 showed a 67% amino acid sequence similarity to one gene in Arabidopsis, 

At4g27520, referred to as At-ESI2.  The C-terminal half of the protein encoded by Ta-

Figure 1. A. Analysis by RT-PCR of At-ESI2 expression in Arabidopsis wild type Columbia-0 and 

transgenic lines overexpressing the gene under the regulation of the 35S promoter. Specific PCR 

fragments of about 490 bp were detected.  Lanes 1-6: At-ESI2 expression in WT-Col-0 Arabidopsis 

plants with 27 and 30 cycles of amplification, lanes1-3 and 4-6, respectively. Lanes 7-12: At-ESI2 

expression in OE transgenic Arabidopsis plant line 3-7 with 27 and 30 cycles of PCR amplification, 

lanes 7-9 and 10-12, respectively. Lanes 13-18: AtESI2 expression in transgenic OE line 16-9 with 27 

and 30 cycles of amplification, lanes 13-15 and 16-18, respectively.  

B. Actin control to show equal amounts of first strand cDNA in WT Columbia-0 lines, as well as 3-7 and 

16-9 transgenic Arabidopsis lines. Lanes 1-3: RT-PCR at 27 cycles. Lanes 4-6: RT-PCR at 30 cycles 
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Esi2 contains a region with approximately 140 amino acids made up of several tandem 

repeats of a motif rich in methionine, serine, and proline.  At-ESI2 also contains repeated 

motifs in the C-terminal region; these are rich in lysine, serine, proline, and glutamine 

though the sequence of the motif does not have significant similarity to that of Ta-Esi2.  

A BLAST search identified the wheat Ta-Ran homeolog in Arabidopsis 

(At4g27520), referred to as At-RAN.  The two proteins share 94% amino acid sequence 

identity.   

 

2. Protein-Protein Interaction of ESI2 and Ran 

2.1 His6-tag Pull-Down Assay 

 A His6-tag pull-down assay was done using Ta-Esi2 as bait to confirm the 

interaction with the Ta-Ran proteins and to compare the relative binding of the two 

proteins when Ta-Ran is in the active GTP-bound, and inactive GDP-bound state.  Ta-

Esi2-GST (59 kDa) was found to interact in vitro with Ta-Ran-His6 (26 kDa) in both the 

GDP- and GTP-bound states (Figure 2, lanes A and B).  Surprisingly, there seemed to be 

no preference for one state over the other, as equal amounts of Esi2 were found to interact 

with both the GDP- and GTP-bound forms of Ran.  The control, Ta-Ran-His6 incubated 

with GST beads, (Figure 2, lane C) did not show any interaction.  
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3. Sub-Cellular Protein Localizations of At-ESI2 and At-RAN 

At-ESI2 and At-RAN were expressed as green fluorescent fusion proteins, At-

ESI2::eGFP and At-RAN::eGFP, respectively, in Nicotiana benthamiana leaf epidermal 

cells and viewed under a confocal microscope with the tonoplast marker.  At-RAN::eGFP 

localized to the nucleus (Figure 3). The nucleus is distinguishable in tobacco leaves as a 

large, circular organelle between the plasma membrane and tonoplast.  To verify the area 

of localization, both At-Ran::eGFP and At-ESI2::eGFP were co-localized with the 

tonoplast marker (Figures 3 and 4, respectively).  At-ESI2::eGFP was seen to localize to 

the tonoplast (vacuolar membrane) (Figure 4).   

 

59 kDa 

TaESI2-GST 

TaRan-His6 

26 kDa 

C A B 

Figure 2. In vitro interaction of TaRan-His6 and TaESI2-GST via His6-tag pull-down 

assay and SDS-PAGE. A. TaRan-His6 immobilized on Ni-NTA Agarose beads and 

preloaded with GDP in lysate with 200 mM MgCl2 was incubated for 2 h at 4ºC with 1 

ml of TaESI2-GST. B. TaRan-His6 immobilized on Ni-NTA Agarose beads and 

preloaded with GTP in lysate with 200 mM MgCl2 was incubated for 2 h at 4ºC with 1 

ml of TaESI2-GST. C. Control. TaRan-His6 incubated with GST beads. 
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A. At-ESI2 GFP B. mCherry tonoplast 

marker 

C. At-ESI2 GFP and 

tonoplast marker  

Figure 4. Cross-section image of N. benthamiana leaves, showing localization of AtESI2::eGFP 

to the tonoplast, co-expressed with the tonoplast marker, gammaTIP::mCherry. 

A. At-Ran GFP B. mCherry tonoplast 

marker 

C. At-Ran GFP and 

tonoplast marker show At-

RAN localizing to nucleus  

Figure 3. Cross-section image of N. benthamiana leaves, transiently transformed with 

Agrobacterium tumefaciens showing localization of AtRan::eGFP to the nucleus, co-expressed 

with the tonoplast marker, gammaTIP::mCherry.  
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4. In vivo Protein-Protein Interactions of Ta-Esi2, Ta-Ran1, At-ESI2 and At-RAN  

 BiFC was used to test the interaction between the Arabidopsis ESI2 and 

Arabidopsis RAN.  At-ESI2 was fused to the carboxy portion of eYFP (At-ESI2::eYFP-

C), while At-RAN was fused to the amino portion of eYFP (At-RAN::eYFP-N).  

Constructs were then expressed together in the same cell with the gammaTIP::mCherry 

tonoplast marker.  The interaction between the Arabidopsis ESI2 and RAN showed 

localization to the cytoplasm and possibly the tonoplast (Figure 5). The localization was 

seen surrounding the nucleus and on the periphery of tobacco cells.  A comparison with 

the localization of the tonoplast marker, gammaTIP::mCherry (Figure 6), indicates that 

localization was also seen across what we have termed “cytoplasmic bridges”, shown in 

Figure 5 and 6 with arrows.  These bridges have been described as “occasional 

transvacuolar strands [that] seem to bisect the vacuole; these represent cytoplasmic 

tunnels that traverse the lumen of the continuous vacuole” (Nelson 2007).  The 

localization was specific to the cytoplasm and cytoplasmic bridges, and possibly the 

tonoplast, with no labelling appearing in the nucleus or other organelles.  Interaction 

between Ta-Ran::eYFP-N and Ta-Esi2::eYFP-C was also seen along the edges of tobacco 

cells (Figure 7A). Cell wall staining with propidium iodide (Figure 7B) revealed that the 

interaction did not occur within the cell wall, but was most likely along the edge of the 

tonoplast or plasma membrane.  The Arabidopsis RAN protein expressed as a fusion to 

the full length eGFP, At-RAN::eGFP,  was seen to localize to the nucleus in tobacco cells 

(Figure 3).  The nucleus was easily distinguishable as a large circular organelle pressed 

between the tonoplast and the plasma membrane.  At-ESI2::eGFP was shown to localize 

heavily around the nucleus and also along the periphery of the cell (Figure 4).  The eGFP 
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label overlapped with the tonoplast marker, gammaTIP::mCherry, but the distribution of 

the marker did not appear entirely tonoplastic, since the labelling around the nucleus 

appeared associated with a membrane, but appeared to be cytoplasmic.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Cross-section image of N. benthamiana leaves, showing localization of the 

AtRan::eYFP-N and AtESI2::eYFP-C BiFC interaction to the tonoplast, with little or no 

expression inside the nucleus. Cytoplasmic bridges are shown with an arrow. 

Figure 6. Cross-section image of N. benthamiana leaves, showing localization of the tonoplast 

marker, gammaTIP::mCherry.  Cytoplasmic bridges are shown with arrows. 
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5. Arabidopsis thaliana ESI2 mutant plants 

 Three seed lines with potential T-DNA insertional mutations of the Arabidopsis 

thaliana At-ESI2 gene, AT4G227520, were selected and screened.  Lines SALK_142954, 

SALK_142962, and SAIL_437_B03 had been identified at the SIGnAL T-DNA Express 

public database (http://signal.salk.edu/cgi-bin/tdnaexpress) as having T-DNA insertions 

within the coding portion of the At-ESI2 gene.  Line SALK_142962 has been identified in 

the T-DNA Express database as a line with a T-DNA insertion within the promoter of the 

At-ESI2 gene.  Four heterozygous plants with the T-DNA insertion were identified.  PCR 

amplification using primers LBb1.3 and RB yielded a 500 bp product in plants carrying 

the T-DNA insertion and amplification using gene specific LB-RB primers yielded a 968 

bp product in heterozygous plants and plants lacking the insertion.  For line 

SALK_142954, LBb1.3 and RB primers yielded a 600 bp product in plants carrying the 

A B 

Figure 7. A. Cross-section image of N. benthamiana leaves, showing localization of the 

TaRan::eYFP-N and TaESI2::eYFP-C BiFC interaction outside of the cell wall under 

Zeiss Axioplan fluorescence microscope (Carl-Zeiss, Germany). 

B. Cross-section image of N. benthamiana leaves, showing staining of cell wall with 

propidium iodide interaction under Zeiss Axioplan fluorescence microscope (Carl-Zeiss, 

Germany). 
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T-DNA insertion, and amplification using gene specific LB-RB primers yielded a 1194 bp 

product in heterozygous plants and plants lacking the insertion.  However, the absence of 

a PCR band, normally taken as evidence for the lack of a gene or insertion DNA, was 

considered unreliable since the verification of a heterozygous line that should yield both a 

1194 and a 600 bp band was not found in the segregating population.  Both the 1194 bp 

and the 600 bp bands were observed separately in different plants, but never together in 

the same plant.  This raised doubt about the reliability of the PCR assay.      

 

6. Overexpression of the ESI2 gene in Arabidopsis thaliana  

From the twenty-three T2 lines, lines 3 and 16 were observed to have multiple 

insertions (15:1 ratio of GFP to no-GFP, respectively, in the T2 generation).  From these 

lines, offspring T3 plants 3-7, 3-9, 3-10, 3-12, 16-5 and 16-9 were shown to be 

homozygous for at least one locus, since 100% of the seeds from these plants showed 

GFP fluorescence in the seed coat (Figure 8B), compared to wild type Columbia-0 seed 

(Figure 8A).  In a line with multiple insertions, it is not possible to identify individuals 

that are homozygous at all loci by observing GFP expression in the seed because the trait 

is dominant, and homozygosity at the one locus masks heterozygosity or a null state at the 

other locus. Line 6 was shown to have a single insertion, as it has a heterozygous 3:1 

segregation in the T2 seed (Figure 8C).  From the T2 plant, line 6-9 was shown to be 

homozygous since all of the T3 seed had uniform GFP fluorescence.  Lines 12 and 23 also 

appeared to have single insertions.  Line 12 had many heterozygous offspring and one 

line, 12-2, was homozygous.  Line 23 had two heterozygous T2 offspring. 
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RT-PCR was used to test the level of overexpression of the At-ESI2 gene in 

Arabidopsis.  Lines 3-7 and 16-9 were shown to have five times the level of expression of 

the At-ESI2 gene compared to the wild type (Figure 1).  However, there was no 

observable difference in time to germination, time to flowering, or leaf number in 

35S::AtESI2 Arabidopsis plants used for phenotypic analysis.  

 

PART IV. DISCUSSION 

 
 The aim of this thesis was an examination of the plant proteins involved in the 

stress response of Arabidopsis thaliana and Triticum aestivum.  An in-depth 

characterization of the protein-protein interactions between the RAN and ESI2 genes, as 

well as a phenotypic analysis of the overexpression of ESI2 in Arabidopsis, has laid a 

foundation for the characterization of the roles of these genes in a plant stress response.  

 

1. Interactions between ESI2 and RAN  

 The data from the His6-tag pull down assay revealed an equal affinity between 

wheat Esi2 and the wheat Ran in either the GDP- or GTP-bound form.  This provided 

A. B. C. 

Figure 8. GFP fluorescence from transgenic seed expressing 35S::AtESI2 with the OLE1-GFP 

marker. a. Wild type Columbia-0 seed. b. T3 seed from homozygous line 3-9. c. T3 seed from 

heterozygous line 6-8 showing a 3:1 ratio of, indicating a single insertion in the T2 parent. 



 29 

evidence to support the previously reported interaction between wheat Esi2 and Ran 

based on a yeast two-hybrid screen (Tardiff et al. 2007).  Further examination of the 

amino acid sequences of Ta-Esi2 and At-ESI2 revealed a similar copper-binding domain 

and repeated sequence motifs. Additionally, a hydropathy plot (Figure 9) comparing the 

sequences of Ta-Esi2 (Figure 9A) and At-ESI2 (Figure 9B) revealed similar patterns of 

hydrophobicity and hydrophilicity.   

 The interaction between ESI2 and RAN was further characterized via BiFC 

analysis in N. benthamiana cells.  BiFC results showed At-ESI2 interacting with At-RAN 

outside of the nucleus along the edge of the vacuole, in the tonoplast and cytoplasm.  

Additionally, Ta-Esi2 and Ta-Ran were shown to interact along the periphery of tobacco 

cells, also potentially within the tonoplast or cytoplasm.  However, in the absence of At-

ESI2, At-RAN was shown to localize almost exclusively to the nucleus.  It is clear that 

the interactions between ESI2 and RAN are outside the nucleus, and suggests that ESI2 

may sequester Ran outside the nucleus.  However, the assays used here do not determine 

the net effect on the distribution of RAN between the nucleus and the cytoplasm.  Further 

work is required to determine if high levels of ESI2 expression affect RAN levels inside 

the nucleus.  Some insight into this could be gained by simultaneous ectopic expression of 

the two proteins as fusions to full-length fluorescent proteins such as eGFP and mCherry.  
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2. Phenotype of At-ESI2 Overexpression in Arabidopsis thaliana 

 The preliminary data indicate that the overexpression of the At-ESI2 gene in 

transgenic Arabidopsis plants does not have a phenotypic effect on germination, time to 

flowering, or leaf number.  Preliminary data, not presented here, on root growth did not 

detect clear differences in root elongation or branching between At-ESI2 overexpressing 

plants and WT Columbia control.  However, more detailed studies of lateral root number 

and time to emergence, as well as the effect of different types of stress, have yet to be 

carried out.     

 It has previously been shown that levels of ESI2 increase rapidly during a plant 

stress response (Gulick et al. 2005).  Since RAN is a known regulator and has been shown 

to play a role in the plant stress response, it is possible that ESI2 regulates RAN by 

competing with importins to bind free Ran in the cytoplasm.  This would reduce levels of 

A. B. 

Figure 9. Kyte-Doolittle hydropathy plot. A. Kyte-Doolittle hydropathy plot of Ta-Esi2. B. 

Kyte-Doolittle hydropathy plot of At-ESI2. 
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transport of proteins out of the nucleus, and help regulate such factors as root length, cell 

growth and division, or stomate opening/closing during a stress response.  After binding 

to RAN, ESI2 may affect functions that RAN is known to control, such as nuclear transport 

and cell division.  A mutation locking RAN in its GDP-bound form (T24N mutant) in 

Xenopus extracts prevented plant cells from entering mitosis by directly blocking DNA 

replication (Kornbluth et al. 1994).  Furthermore, it is thought that changes in RAN 

expression may indirectly disrupt cell division by interfering with proteins required for 

the G2 to mitosis cell cycle transition (Wang et al. 2006).  For example, the cytosolic B1-

type cyclin must be carried into the nucleus by RAN-driven transport so the cyclin can 

bind to chromosomes and initiate the cell transition into mitosis (Inze 2005).  

Additionally, an increase in RanGDP has been shown to cause an activation of the cell 

spindle checkpoint (Musacchio and Hardwick 2002).  Thus, ESI2 may function in 

regulating RAN by a regulation of the guanosine phosphates that bind RAN or in the 

localization of RAN and play a direct role in cell growth and division.  

 There are three main pathways through which a plant can evoke a stress response: 

a) homeostasis, including osmotic homeostasis or osmotic adjustment, usually in response 

to salt stress, b) detoxification, including damage control and repair, and c) management 

of growth (Zhu 2002).  These result in a variety of phenotypic changes, including rapid 

reduction in the elongation of leaves (Fricke et al. 2006), changes in shoot growth, and 

increased stomatal closure (Knight and Knight 2001).  Root structure exhibits a slightly 

different response than the rest of the plant, and may continue to elongate under mild 

conditions of stress (Pardo 2010).  Such a diverse variety of responses to stress conditions 

indicates an intricate and complex network behind a plant stress response.  Any new 
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discoveries that reveal new levels of interactions would bring scientists one step closer to 

completing a full map of the stress response pathway in plants.  However, the 

overexpression of At-ESI2 did not cause altered growth or development over the period of 

observation, thus this work did not provide evidence that ESI2 overexpression affected 

these characteristics.  Yet it is possible that ESI2 may be part of a more complex 

interaction network that manages to circumvent the effects of overexpression.  As such, 

other means of study would be necessary to characterize the effects of ESI2 on RAN.  

 

3. Future Work 

 The role of ESI2 as a part of a RAN-mediated plant stress response is an area that 

requires further examination. Future research on the effect of ESI2 on the intracellular 

localization of RAN both inside and outside the nucleus would provide further insight into 

the potential role of ESI2 in sequestering RAN in the cytoplasm.  Additional observations 

of the effects of ESI2 overexpression on cell division, either by measuring growth rates in 

yeast, or in HeLa cells, could prove revealing.  If an effect were observed, microscopic 

analysis of aster formation or the G2/mitosis checkpoint could be carried out.  Finally, the 

additional phenotypic analysis of At-ESI2 overexpression plants under stress conditions to 

help reveal the pathways ESI2 might be operating in will help to further elucidate its 

function in the RAN-mediated plant stress response.  Down-regulation or knockout of At-

ESI2 via RNAi could provide further insight into the phenotypic effects and subsequent 

role of At-ESI2 in the plant stress response system.  

 Since ESI2 is known to be up-regulated during times of stress, additional 

phenotypic analysis in the leaves or roots under conditions of stress could prove 
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beneficial.  The Arabidopsis eFP Browser from the University of Toronto 

(http://bar.utoronto.ca/efp_arabidopsis/cgi-bin/efpWeb.cgi) which has extensive data on 

gene expression patterns, shows significant up-regulation of At-ESI2 (At4g27520) after 

one hour of osmotic stress, one hour of 200 mM NaCl stress, and after one hour of 100 

μm of ABA treatment.  A phenotypic analysis under these stress conditions may help to 

reveal the role of ESI2 in a stress response and subsequently help to uncover the nature 

and biological importance of its interactions with the RAN gene.  
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Appendix I 

Oligonucleotide PCR primers used in this study: 

Primer Description Sequence (5’  3’)
1
 

N02attB1 Esi2-2 Forward Gateway 

Primer 

GGGGACAAGTTTGTACAAAAAAGCAGGCTCC 

ATGGCGAGTCCTCGCGGTCTGG 

N02attB2 Esi2-2 Reverse Gateway 

Primer 

GGGGACCACTTTGTACAAGAAAGCTGGGTC 

GATAGCGAGCATGGCGTAGCC 

RlGBattB1F Ran1 Forward Gateway 

Primer 

GGGGACAAGTTTGTACAAAAAAGCAGGCTCC 

ATGGCGCTGCCGAACCAGAAC 

RlGBattB1R Ran1 Reverse Gateway 

Primer 

GGGGACCACTTTGTACAAGAAAGCTGGGTC 

CTCGATCAGATCGTCATCGTC 

AtRan2FPGW At-RAN2 Forward 

Primer Gateway 

GGGGACAAGTTTGTACAAAAAAGCAGGCTTC 

ATGGCTCTACCTAACCAACAAAC 

AtRan2RPGW At-RAN2 Reverse 

Primer Gateway 

GGGGACCACTTTGTACAAGAAAGCTGGGTC 
CTCAAATGCGTCATCATCATC 

 

AtESI2cDNAFP1 At-ESI2 cDNA Forward 

Primer for RTPCR 

GCACCACCTAAATCCACGTC 

AtESI2cDNARP1 At-ESI2 cDNA Reverse 

Primer for RTPCR 

TCAAACTGGGATCCAAAAACA 

AtESI2GUSFP Promoter of At-ESI2 

with GUS fusion 

Forward Primer 

GGGGACAAGTTTGTACAAAAAAGCAGGCTTC 

GGGAGAAGAACACGTGGCTAA 

 

AtESI2GUSRP2 Promoter of At-ESI2 

with GUS fusion 

Reverse Primer2 

GGGGACCACTTTGTACAAGAAAGCTGGGTC 
CACCTCTAGCACCGAGTCAGC 

 

AtESI2FPGW At-ESI2 Forward 

Gateway Primer 

GGGGACAAGTTTGTACAAAAAAGCAGGCTTC 

ATGACCTTTCTAAAAATGAAAAGC 

AtESI2RPGWstop At-ESI2 Reverse 

Gateway Primer with 

STOP codon 

GGGGACCACTTTGTACAAGAAAGCTGGGTC 
TTAAGCTGACAGAAAGATGGTCAA 

AtESI2RPGWnostop At-ESI2 Reverse 

Gateway Primer without 

STOP codon 

GGGGACCACTTTGTACAAGAAAGCTGGGTC 
AGCTGACAGAAAGATGGTCAA 

 

 

 

 

                                                 
1
 Underlined sequences are attB sites used for Gateway Cloning  

 


