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ABSTRACT 

Single-Microphone Speech Dereverberation based on Multiple-Step 

Linear Predictive Inverse Filtering and Spectral Subtraction 

Ali Baghaki 

Single-channel speech dereverberation is a challenging problem of deconvolution of 

reverberation, produced by the room impulse response, from the speech signal, when 

only one observation of the reverberant signal (one microphone) is available. Although 

reverberation in mild levels is helpful in perceiving the speech (or any audio) signal, 

the adverse effect of reverberation, particularly at high levels, could both deteriorate 

the performance of automatic recognition systems and make it less intelligible by 

humans. Single-microphone speech dereverberation is more challenging than multi-

microphone speech dereverberation, since it does not allow for spatial processing of 

different observations of the signal. 

A review of the recent single-channel dereverberation techniques reveals that, those 

based on LP-residual enhancement are the most promising ones. On the other hand, 

spectral subtraction has also been effectively used for dereverberation particularly 

when long reflections are involved. By using LP-residuals and spectral subtraction as 

two promising tools for dereverberation, a new dereverberation technique is proposed. 

The first stage of the proposed technique consists of pre-whitening followed by a 

delayed long-term LP filtering whose kurtosis or skewness of LP-residuals is 

maximized to control the weight updates of the inverse filter. The second stage 

consists of nonlinear spectral subtraction. The proposed two-stage dereverberation 

scheme leads to two separate algorithms depending on whether kurtosis or skewness 
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maximization is used to establish a feedback function for the weight updates of the 

adaptive inverse filter. 

It is shown that the proposed algorithms have several advantages over the existing 

major single-microphone methods, including a reduction in both early and late 

reverberations, speech enhancement even in the case of very high reverberation time, 

robustness to additive background noise, and introducing only a few minor artifacts. 

Equalized room impulse responses by the proposed algorithms have less reverberation 

times. This means the inverse-filtering by the proposed algorithms is more successful 

in dereverberating the speech signal. For short, medium and high reverberation times, 

the signal-to-reverberation ratio of the proposed technique is significantly higher than 

that of the existing major algorithms. The waveforms and spectrograms of the inverse-

filtered and fully-processed signals indicate the superiority of the proposed algorithms. 

Assessment of the overall quality of the processed speech signals by automatic speech 

recognition and perceptual evaluation of speech quality test also confirms that in most 

cases the proposed technique yields higher scores and in the cases that it does not do 

so, the difference is not as significant as the other aspects of the performance 

evaluation. Finally, the robustness of the proposed algorithms against the background 

noise is investigated and compared to that of the benchmark algorithms, which shows 

that the proposed algorithms are capable of maintaining a rather stable performance 

for contaminated speech signals with SNR levels as low as 0 dB. 
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Chapter 1 

Introduction 

1.1. Background 

The phenomenon of reverberation has been known to humankind since prehistoric era 

when people were residing in caves. According to sources, the footprint of some 

understanding of the reverberation phenomenon can be found in prehistoric cave art 

[1]. In Plato’s Republic, there is reference to the reflected speech from the walls, 

implying a comprehension of reverberation. Initial scientific study of reverberation 

dates back to the mid-to-late 20
th

 century by pioneers such as Bolt [2] and Haas [3].  

There is no doubt in the fact that reverberation is a useful phenomenon in everyday 

life. For example, by taking advantage of the two ears, speech intelligibility is 

enhanced by spatial processing in the human hearing system. This gives the humans 

the capability to some degree of source separation in perceiving mixed sounds [1]. As 

another example, in music audio processing, stereo or surround sound reproduction 

enhances the realism and joy of the recorded music. Therefore, the question that 

comes to the mind is: “As reverberation is present in everyday life experience as a 

useful phenomenon, why should one be interested in removing reverberation from 

speech using dereverberation processing?”. The short answer to this question is that 

usefulness or harmfulness of reverberation is application-dependant [1]. The demand 

for high-quality hands-free speech input is constantly increasing. This is due to the 
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growing use of portable devices such as mobile telephones, personal digital assistant 

(PDA) devices and laptop computers equipped with voice over internet protocol 

(VoIP). In addition, the broadband internet access is constantly growing worldwide. 

As a result, several advanced speech applications such as wideband teleconferencing 

with automatic camera steering, automatic speech-to-text conversion, speaker 

identification, voice-controlled device operation and car interior communication 

systems, have appeared. Hearing aids is another application in which the quality of 

the speech by a distant talker is important [1]. In all these examples, the desired 

acoustical source might be located at a distance from the microphone.  

As depicted in Fig. 1.1, the desired source produces sound waves. In addition to the 

direct sound wave travelling the direct path between the source and the microphone, 

parts of the energy of the source signal reaches the microphone only after being 

scattered and reflected from walls, floor, ceiling and other surfaces. This phenomenon 

is called reverberation. As a result, in general, the resulting direct signal might be 

degraded by reverberation, background noise, and other interferences [4].  

One of the degradations in the desired signal occurs when a signal is recorded in an 

Fig. 1.1. Illustration of a desired source, a microphone, and interfering sources [4]. 



3 

 

enclosed space, e.g., an office room or a living room and thus is affected by the 

acoustic channel. The received microphone signals are typically degraded by two 

factors: (i) reflections by the multi-path propagation of the sound to the microphone(s) 

and (ii) noise produced by interfering sources. This happens more severely when the 

microphone(s) are not located near the desired source [1], [4].  

It should be noted that many, if not all, existing acoustic signal processing techniques, 

e.g. existing source localization and source separation techniques, end up in a 

complete failure or a drastically reduced performance in the presence of reverberation. 

Nowadays, while state-of-the-art acoustic signal processing algorithms are available 

for noise suppression, the development of efficient and practical algorithms that can 

reduce the reverberation is still a major challenge.  

The key difference between noise and reverberation is that the degradation produced 

by reverberation is dependent on the desired signal, whereas that of noise can be 

assumed to be independent of the desired signal [1], [4].  

The harmful perceptual effects of reverberation generally increase with increasing 

distance between the source and the microphone. Besides, since reflections arrive at 

the microphone at different times, reverberation causes blurring of speech phonemes. 

These damaging effects can severely deteriorate the intelligibility, the performance of 

voice-controlled systems, and the performance of speech coding algorithms used in 

telephone systems. Hence, reducing these harmful effects is evidently of substantial 

practical importance. The algorithms that suppress these harmful effects are called 

speech dereverberation algorithms [1], [4].  
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1.2. Direct Sound and Reverberation Components 

Fig. 1.2 illustrates the reverberation produced by reflections of the wavefronts, which 

propagate outward from the source. The wavefronts reflect off the walls and 

superimpose at the microphone. In Fig. 1.2, this is illustrated by an example of a 

direct path and three reflections. Each of these wavefronts arrives at the microphone 

with different amplitude and phase. This is due to the fact that the length of the 

propagation paths to the microphone and the amount of energy absorbed by the walls 

are different. Therefore, as the term reverberation implies, in addition to the direct-

path signal, the received signal contains delayed and attenuated copies of the source 

signal. More specifically, the received signal generally is described to be consisting of 

a direct sound, reflections that arrive shortly after the direct sound (commonly called 

early reverberation/reflections), and reflections that arrive after the early 

reverberation (commonly called late reverberation/reflections). The different sound 

components will now be discussed in more detail. 

 Direct Sound is the first sound that is received at the microphone by passing the 

Talker 

Reflection 

 

Reflection 

 
Direct path 

Reflection 

 

Microphone 

 

Fig. 1.2. Room reverberation illustration, including direct path and reflections [1]. 
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direct path between the source and the microphone without reflection. The delay 

between the initial excitation of the source and its observation as the direct 

sound depends on the distance and the velocity of the sound.  

 Early Reverberations are part of the reflections that are received during a short 

time after the direct sound. These components arrive at the microphone at 

different times and in different directions as compared to the direct sound and 

are also weaker in amplitude. So long as the delay of the reflections does not 

exceed a limit of approximately 80-100 ms with respect to the arrival time of 

the direct sound, early reverberation is not perceived as a separate sound from 

the direct sound [4]. Early reverberation is actually perceived to reinforce the 

direct sound and is therefore considered useful with regard to speech 

intelligibility [4]. This reinforcement is what makes it easier to hold 

conversations in closed rooms compared with outdoors. Early reverberation is 

mainly important in so-called small-room acoustics, since the walls, the ceiling 

and the floor are really close. On the other hand, early reflections cause a 

spectral distortion in the received signal, which is referred to as coloration. This 

effect is due to the short-term correlations introduced to the signal by early 

reflections. As a result, most of the dereverberation algorithms consider 

suppressing both the early and late reverberations. Furthermore, it should be 

noted that dereverberation algorithms have been proposed considering different 

applications including automatic speech recognition, where early reflections are 

not considered useful [1], [4].  

 Late Reverberations are reverberation components that result from reflections 
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which arrive with larger delays after the arrival of the direct sound. They are 

perceived by humans either as separate echoes, or as reverberation, and they 

degrade speech intelligibility [1], [4].  

It should be noted that there is no clear boundary to distinguish between early and late 

reverberations and the definitions given above are highly comparative and relative. A 

typical notion is to consider this boundary at 50 ms after the direct path component.  

The acoustic channel affecting the transition of the sound wave between a source and 

a microphone can be described by an impulse response known as the acoustic impulse 

response (AIR) or room impulse response (RIR). This impulse response represents the 

signal that is measured at the microphone in response to a source that produces a 

‘sound impulse’. 

Fig. 1.3 shows the simulated RIR for a room. As shown in the figure, the RIR is 

commonly split into three parts, the direct path, early reflections, and late reflections. 

The direct sound, early reverberations and late reverberations are, respectively, the 

product of the convolution of the three segments of the RIR with the clean signal. As 

can be seen from the figure, the energy of the reflections is reduced at an exponential 

rate. The notion of reverberation time has been developed based on this characteristic 

of the RIR. The reverberation time quantifies the severity of reverberation within a 

room, and is denoted by T60 or alternatively called RT60. Reverberation time is the 

time it takes for a 60 dB decay of the sound energy after switching off a sound source. 

The reverberation time is discussed in more detail in Chapter 2, Section 2.4. 

When the distance between the source and the microphone varies, the proportion of 
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the energy of the direct sound to that of the reflections varies accordingly. In other 

words, the energy of the direct sound changes with the distance between the 

microphone and the source, whereas the combined energy of the early and late 

reflections is approximately constant. The distance at which the direct path energy is 

equal to the ensemble energy of the early and late reflections is called the critical 

distance [4]. This means when the distance between a source and a microphone is 

greater than the critical distance, the overall energy of reflections is greater than the 

direct path energy. For further discussion and formulation of critical distance, the 

reader may refer to [4]. 

For development of effective dereverberation algorithms, it is of great importance to 

have a good understanding of the effects of reverberation on speech perception. This 

is discussed in the following section. 

1.3.  Effects of Reverberation on Speech Perception 

The effects of reverberation on speech are illustrated in Fig. 1.4 through a clean 

Fig. 1.3. Room impulse response for a room with reverberation time of 0.9 s. Red impulses are 

early reflections and blue impulses late reflection part. The strongest impulse is the direct path 

component [4]. 
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speech utterance and the associated reverberant signal along with their spectrograms. 

The speech utterance is taken from the TIMIT speech database [5]. The speech 

formants, which are defined as the resonance frequencies associated with the vocal 

tract [6], are clearly detectable in the spectrogram of the clean signal. It is also visible 

that, in the anechoic signal, the speech phonemes are well distinguishable in time. To 

obtain the reverberant signal in Fig. 1.4 (b), the anechoic signal of Fig. 1.4 (a) was 

convoluted with a simulated room with reverberation time of 0.9 s. In the spectrogram 

of the reverberant signal, it can be clearly seen that the speech formants are blurred 

compared to that of anechoic signal. As well, both the spectrogram and the waveform 

show the smearing of the phonemes in time. Smearing of the phonemes causes the 

empty spaces between words and syllabi to be filled by reverberation which results in 

the overlap of subsequent phonemes. These distortions result in a degradation of 

speech intelligibility that is clearly audible. For a more detailed discussion on how 

dereverberation reduces the speech intelligibility, the reader is referred to [4]. 

1.4. Effects of Reverberation on Automatic Speech 

Recognition 

One of the determining factors in the performance of automatic speech recognition 

(ASR) systems is the quality of the input speech signal. The performance of ASR 

systems tends to decrease rapidly when the distance between the source and the 

microphone increases. Consequently, when this distance increases, the signal to 

reverberation ratio (SRR) and the direct to reverberation ratio (DRR) decrease. The 

author in [4], by conducting an experiment on a simulated ASR system, has 

demonstrated that the word error rate (WER) of an ASR system increases rapidly for 
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reverberation times larger than 0.2 s, and that the effects of reverberation on an ASR 

system are rather severe. 
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(a) Waveform (top) and spectrogram of a clean speech signal. 

(b) Waveform (top) and spectrogram of the same speech signal when reverberated. 

Fig. 1.4. A clean speech utterance from the TIMIT database and the associated 

reverberant speech signal along with their level-normalized spectrograms. The 

reverberant speech is produced by RIR with reverberation time of 0.9 s. 
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A block diagram describing an application of acoustic signal processing for cancelling 

the degradation effects on the speech signal is illustrated in Fig. 1.5. The source signal 

is the sound produced by the source, which is also the desired signal or the anechoic 

or clean signal. In addition to being ‘transmitted’ and affected by the acoustic 

channel(s), the source signal is combined with the interfering signal(s) to be received 

as the microphone signal(s). The thick lines in Fig. 1.5 represent one or more signals, 

whereas the thin lines signify one signal. The interfering signals can either be 

interfering sounds or electrical interferences, such as sensor noise. The goal of the 

acoustic signal processor is to recover the desired signal by using the observed 

microphone signal. In this figure, reverberation is included as the effect of the 

channels on the source signal. In other words, in the specific case that noise and other 

interferences and various types of channel distortion are absent, the acoustic signal 

processor will be responsible only for the dereverberation task. As a result, this 

diagram can be considered as a general diagram for dereverberation as well.  

Desired 

signal 

Interfering  

signal(s) 

+ 
Acoustic  

Channel(s) 

 

Received 

microphone 

signal(s) Acoustic 

Signal 

Processor 

Estimate of  

desired 

signal 

 

 

 

   

Unknown Environment 

Fig. 1.5. Application of acoustic signal processing for estimating a desired signal [4]. 
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1.5. Motivation 

One-microphone speech dereverberation, which is alternatively referred to as single-

channel speech dereverberation, is the task of recovering the original anechoic signal 

(equivalent to the desired signal in Fig. 1.5) when only one observation of the 

reverberant speech signal (one microphone) is available. Clearly, in the 

dereverberation problem, as depicted in Fig. 1.5, the acoustic channel is unknown. 

Nevertheless, some methods take advantage of very limited knowledge about the 

channel. In the methods proposed in this work, however, no knowledge of the 

acoustic channel is used.  

It is notable that single-channel speech dereverberation, in general, is considered a 

more difficult problem than multi-channel case since it does not allow for spatial 

processing across different observations of the signal [1], [4]. One should also note 

that, due to the same reason, multi-microphone algorithms are not usually applicable 

to single-microphone scenario; hence, the single-microphone case has to be separately 

addressed. 

A number of important methods on single-channel speech dereverberation have been 

developed since about two decades ago. As one of the earliest major works on single-

channel reverberant speech enhancement, in 1991, Bees et al. [7] proposed an 

algorithm which first estimated the cepstrum of the acoustic channel and then used a 

least squares technique for inversion. Although their results of channel-estimation are 

satisfactory, they are derived for minimum-phase responses or for mixed-phase 

responses having a few zeros outside the unit circle, which are not realistic. Authors 

in [4], [8], and [9] have developed dereverberation algorithms based on the effects of 
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reverberation on modulation transfer function (MTF). However, this method has 

limited applicability since it is based upon the assumptions that do not necessarily 

match the features of real speech and reverberation. Firstly, real speech signals were 

not considered. Secondly, a simple exponential model was employed for modeling the 

RIR. In [10] and [11], the authors employ the harmonic structure of speech for 

dereverberation. By using this method, good results are achieved, but the algorithm 

involves producing a large amount of reverberated speech using a fixed RIR.  

By assuming that late reverberation components are independent of early 

reverberation components, some researchers have focused only on the removal of late 

reverberations by using the so called spectral enhancement methods. This is done by 

using short-time Fourier transform (STFT) by estimating the short-term power 

spectral density (STPSD) of the late reverberation components so as to perform 

magnitude subtraction without any phase correction. The main challenge in such 

methods is the estimation of the STPSD of the late reverberant speech components 

from the observed reverberant signal. In this category of methods, several techniques 

have been proposed for the estimation of the STPSD of the late reverberations [4], 

[12], [13]–[17]. Spectral subtraction is a commonly used technique for 

dereverberation. In terms of computational complexity, it is relatively less complex; it 

can be used in real time applications, and results in the suppression of both the 

background noise and late reverberation. Nevertheless, the first drawback of this 

category of methods is that it simply does not consider the early reverberations while 

they are especially important for automatic speech recognition applications, which are 

sensitive to short reverberations. In addition, due to nonlinear filtering in these 
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methods, artifacts such as musical noise
1
 are introduced and these are typically 

annoying. Moreover, in these methods, a priori knowledge of the RIR (i.e., the 

reverberation time) is usually required, in which case these techniques resort to blind 

reverberation time estimation techniques to achieve a complete blind dereverberation.  

Yegnanarayana and Murthy [18], [19] observed that the LP residual of reverberated 

speech is smeared and resembles Gaussian noise, while that of clean voiced-speech 

shows patterns of damped sinusoids within each glottal cycle. Based on this result, 

they estimate the LP- residual of clean speech and then synthesize an enhanced 

speech. Their method identifies and manipulates the LP-residual based upon the 

regions of reverberant speech with different SRR, namely, high SRR, low SRR and 

pure reverberation. As a result, this is a temporal domain method which mainly 

enhances the speech in the high SRR regions. Authors in [20], combined a similar LP-

residual based approach to enhance reverberant speech in the high SRR regions, with 

spectral subtraction to reduce late reverberation. 

Gillespie et al. [21] made an important observation that the kurtosis of LP residuals 

could be a reasonable measure of reverberation. They used kurtosis maximization of 

LP residual of the reverberant signal as a criterion for adjusting the weights in their 

inverse filter. This observation has been used in a number of algorithms proposed 

later (e.g. [22] and [23]). This inverse-filtering method, however, is merely effective 

for suppressing the short reverberation component.  

                                                 
1
 In the spectral subtraction methods, musical noise is caused by spurious peaks introduced to the 

spectrum of the speech signal due to errors in noise or SNR estimation. When the enhanced signal is 

reconstructed in time domain, these peaks result in short sinusoidals whose frequencies vary from 

frame to frame. This produces a noise which is audible particularly in low SNR regions and silent gaps 

where it is not masked by the speech signal [1]. 
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Most single-microphone dereverberation methods developed so far have aimed at 

reducing effects due mostly to late reverberations. This is while the frequency 

response of early reverberations is rarely flat, meaning that it distorts the speech 

spectrum and reduces speech quality, particularly for ASR applications [24].  

As joint dereverberation of both early and late components is quite challenging, very 

few single-microphone two-stage algorithms have appeared in the literature to this 

goal. Wu and Wang [22] used the method by Gillespie et al. [21] as the first stage of 

their algorithm, and followed it by spectral subtraction to reduce late reverberation. 

However, their method yields satisfactory results only when the reverberation time is 

short (i.e. less than 0.4 s). Also, noisy environment has not been considered in their 

work. In a similar approach in [25], temporal averaging to suppress early reflections 

was combined with spectral subtraction.   

In a very recent paper [26], the authors have employed skewness maximization of the 

LP-residuals of the reverberant signal, rather than the kurtosis maximization, as a 

criterion for adjusting the weights in the inverse filter. They pointed out the reason for 

such a preference as follows: in high reverberation times, the kurtosis-based objective 

function for adaptive inverse filtering has many saddle points (along with the 

maximum points), and convergence is usually to one of them, leading to an inaccurate 

filter estimate. However, for speech dereverberation applications, their algorithm is 

not very effective, especially for long reverberations, as it is based on a single-step 

LP-residual inverse filtering, which cannot suppress both long and short 

reverberations at the same time. Kinoshita et al. [27], on the other hand, proposed an 

algorithm consisting of LP-based spectral subtraction followed by a cepstral mean 
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subtraction (CMS). Their algorithm is fast, but fails to sufficiently estimate the late 

reverberation spectra in single-channel implementation. As a result, it is not 

sufficiently effective in the single microphone case.  

1.6. Objective of the Thesis 

The objective of this thesis is to develop new algorithms to improve the efficiency of 

single-channel dereverberation. The algorithms proposed in this thesis are based on a 

two-stage development of inverse-filtering by using LP-residuals followed by spectral 

enhancement. The proposed algorithms are designed so that the long reflections are 

also suppressed in the first stage, i.e., inverse-filtering. This is done by using a linear 

prediction scheme which includes prewhitening followed by a delayed long-term 

linear prediction. The difference in the two proposed algorithms is that one uses 

kurtosis maximization, whereas the other utilizes skewness maximization in order to 

control the weight updates of the inverse filter. Clearly, because of the difference in 

the behaviour of the kurtosis and skewness of the LP-residuals of reverberant signals, 

some parameters are also different in implementing the two algorithms. The second-

stage of the proposed algorithms is identical to that of Wu and Wang [22]. However, 

the resulting two-stage algorithms are more effective in suppressing the long 

reflections, which are the main source of degradation of speech signal, while keeping 

the efficiency for short reflections.  

1.7. Thesis Organization 

This thesis is organized as follows. In Chapter 2, theoretical background about speech 

dereverberation is first given. This begins with the description of a system 
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representation for the general problem of reverberation. Then the concept of AIR or 

RIR and its different parts are introduced and explained. Reverberation time, as a 

measure for the severity of reverberation in an RIR is then described. Next, statistical 

modelling of reverberation is introduced in order for the reader to have more insight 

to reverberation. The next section of this chapter is devoted to dereverberation 

evaluation. Some of the qualitative, subjective and objective measures of 

reverberation are explained in this section. These measures are the ones that have 

been used in, or are related to, the evaluation of the proposed algorithms in Chapter 4.  

They have been chosen based upon the nature of the proposed algorithms to be 

comparable to similar works in the literature. In the next section, an overall 

classification of the dereverberation algorithms is given; this classification is based on 

the level of the channel and source knowledge and the difference in the signal 

processing techniques utilized. Finally, a review of the most relevant dereverberation 

methods is given.  

Chapter 3 describes the two new algorithms developed in this work. This chapter 

starts with the introduction which is a review to the previous works related to the 

algorithms proposed in this thesis. Then the formulation of the single-channel 

dereverberation in the proposed algorithms is described. The next subsections are 

devoted to describing the different parts of the algorithms which are the multiple-step 

linear prediction, the inverse-filtering by maximization of kurtosis and skewness and 

the spectral subtraction.    

Chapter 4 is concerned with the performance evaluation of the proposed algorithms 

and comparison with the existing works. In this chapter, the experimental setup and 
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the parameters used in implementing all the algorithms are explained first. The results 

of the algorithms to different quantitative and qualitative measures are then one by 

one described and compared to two existing major single-channel dereverberation 

algorithms, which are among the most successful and most cited ones for single-

channel speech dereverberation. The algorithms are compared in terms of their 

equalized impulse responses and their energy decay curves, normalized segmental 

SRRs, ASR test, perceptual evaluation of speech quality (PESQ) and spectrograms. 

The robustness of the proposed algorithms against background noise is also compared 

to the reference algorithms.  

In Chapter 5, the thesis is concluded by summarizing the results obtained and 

discussing the possibilities for further future work.  
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Chapter 2 

Theoretical Background and Literature 

Review 
 

2.1. Introduction 

This chapter aims to briefly introduce some of the main aspects of the reverberation 

and dereverberation that are directly linked to the study of the algorithms proposed in 

this thesis in Chapter 3. Towards this goal, the general problem formulation of 

reverberation is first introduced. Then, the concept of AIR and its pertaining 

characteristics are explained. Next, the concept of reverberation time, and the relevant 

theory and measurement are briefly explained. Afterwards, in order to grasp more 

insight into the reverberation phenomenon, in contrast to the typical time domain 

modeling, a statistical modeling of reverberation is also briefly presented. Following 

this theoretical background, some of the various ways of evaluating dereverberation 

are briefly explained. This includes only those measures that are used in, or directly 

connected to, the evaluation of the algorithms in this thesis in Chapter 4. The most 

relevant measures have been chosen based upon the nature of the proposed algorithms 

and similar works in the literature. Finally, a broad classification of dereverberation 

algorithms is given followed by a brief introduction and explanation of some of the 

major dereverberation algorithms that are most relevant to the methods proposed in 

this thesis.  
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2.2. System Description 

Figure 2.1 illustrates a generic system diagram for multichannel dereverberation. The 

single-channel scenario would be when there is only one acoustic channel and one 

microphone. The speech signal,     , propagates through acoustic channels,       

for m = 1 to M, and is collected at the output by using M microphones to result in 

signals      . The noise in the system is assumed additive and is represented by 

     . 

The observed signal,      , at microphone m is the superposition of  

(i) The direct-path signal, which travels the direct path from the talker to the 

microphone arriving with attenuation and propagation delay   

(ii) A theoretically infinite set of reflections of the original signal arriving at 

the microphones at later time instances whose attenuation is dependent on 

Speaker 

 ̂    

      

      

Dereverberation System 

      

      
      

      

      

  

  

  

      

      

     

Acoustic  

channels 
Additive 

noise 
Microphones 

Dereverberated  

speech 

Fig. 2.1. General multi-channel reverberation-dereverberation system model [1]. 
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the properties of the reflecting surfaces. This can be expressed as  

                                    ∑             

 

   

                                                                    

where       is the impulse response of the acoustic channel from the talker to the m-

th microphone. In other words,         represents the attenuation and the propagation 

delay corresponding to the direct signal and all the reflected components for the signal 

observed at the m-th microphone [1], [28]. 

The aim of speech dereverberation is to find a system that by observing         

      as the input, obtains the output  ̂    which is a ‘good’ estimate of     . How 

and when  ̂    is considered a ‘good’ estimate of     , depends on the application. 

For instance, it may be desired to estimate s(n) by using minimum mean square error 

(MMSE) criterion. However, for speech dereverberation, other criteria may be more 

relevant, such as those related to perceptual quality [1], [29]. Speech dereverberation 

is a blind problem since the goal is to recover the original signal      when the 

acoustic channels,      ’s, are unknown. 

Recently, efforts in acoustic signal processing have led to several algorithms for 

speech dereverberation and reverberant speech enhancement. Consistent with [1], in a 

broad sense, all speech dereverberation methods fit into one of the three main 

categories described below: 

1. Beamforming – In this approach, an array of microphones is used and the observed 

reverberant signals arrive at the different microphones with different delays and 

attenuations. The array of microphones might have different shapes such as a line 

array or a circular or a 3-D shaped array. The received signals are filtered and 
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weighted so as to form a beam of enhanced sensitivity in the direction of the desired 

source (so called direction of arrival, DOA) and to attenuate sounds from the other 

directions. Clearly, beamforming is dependent on the availability of multi-microphone 

inputs. Beamforming is a multiple-input single-output process. 

2. Speech enhancement – In these methods, according to an a priori defined model of 

the speech signal or spectrum and using some features of the clean speech signal as 

compared to the reverberant signal, the speech signals are enhanced. Although many 

speech enhancement techniques benefit from the use of multiple inputs, speech 

enhancement is often a single-input single-output approach [1].  

3. Blind deconvolution – An inverse filter is estimated blindly to compensate for the 

effect of the acoustic impulse response on the speech signal and recover the original 

signal. In some cases the acoustic impulse responses are identified blindly and then 

the inverse filter is built, whereas in other cases the inverse filter is not shaped by 

estimating the acoustic impulse responses, but by using some other features such as 

those of the LP-residual signals. 

2.3. Acoustic Impulse Response 

The acoustic impulse response (AIR) is the impulse response that describes the 

acoustics of a given enclosed space which in case of a room is called room impulse 

response (RIR).  Consequently, a natural approach to dereverberation is to estimate 

the AIR (RIR) that has affected the signal. For that purpose, and also to have a good 

viewpoint of reverberation and dereverberation, it is necessary to study some 

characteristics of the AIR. Herein, the focus is on the RIRs, where reverberation has a 

substantial effect on telecommunication applications.  
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The room impulse response has been modelled in several different ways including 

both finite impulse response (FIR) and infinite impulse response (IIR) structures. The 

choice of the RIR model will generally influence the algorithmic development. One 

way of describing RIR is to use the definition of reverberation time, which was 

originally introduced by Sabine [30]. The reverberation time,     , is defined as the 

time taken for the reverberant energy to decay by 60 dB once the sound source has 

been abruptly shut off [1]. The geometry of the room and the reflectivity of the 

reflecting surfaces are the factors that determine the reverberation time of a room. 

When measured at a fixed location in a room, the reverberation time and the RIR are 

approximately constant. However, they vary as the talker, the microphones or other 

objects in the room change location [31]. In particular, as the talker-microphone 

distance increases, the proportion of the energy of the direct-path component to that of 

reflection components of RIR varies. The distance at which these two energies 

become equal is called the critical distance [1].  

Figure 2.2 shows an example of the room impulse response extracted from MARDY 

database [32]. First, there is an initial dead time related to the time it takes for the 

sound to travel the direct path between the source and the microphone. This short 

period of near-zero amplitude, which is sometimes referred to as the direct-path 

propagation delay, is followed by a peak. Depending on the source-microphone 

distance and the reflectivity of the surfaces in the room, the amplitude of this peak due 

to direct-path propagation may be greater or less than the amplitude of the later 

reflections. The example of Fig. 2.2 shows a RIR with a strong direct-path 

component. This indicates that the source-microphone distance is relatively short.  
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The early and the late reflections are separated in the figure with two different colors. 

The early reflections are often taken as the first 50 ms of the impulse response [31], 

and consist of impulses of relatively large magnitude compared to the late reflections. 

The propagation of the wave from the speaker’s lips to the microphone can be 

represented by the convolution of the speech signal with the RIR. The RIR early 

reflections cause spectral changes in the sound resulting to a perceptual effect that is 

called coloration [1], [31]. In general, it has been shown that early reflections can 

have a positive impact on the intelligibility of the speech in a way similar to 

reinforcing the direct-path component [1], [31], [33]. This is due to the characteristics 

of the human hearing system in which the closely spaced echoes are not distinguished 

due to the masking properties of the ear. However, coloration can degrade the quality 

of recorded speech [31]. Hence, the dereverberation algorithms have to take care of 

both short and long reflections, especially when non-human hearing is of importance 

such as in automatic speech recognition systems.  

The late reflections, which are also referred to as the tail of the impulse response, are 

the closely spaced, decaying impulses that follow the early reflections. The late 

Fig. 2.2. An example room impulse response for a room extracted from MARDY database [32]. 



25 

 

reflections produce effects of a ‘distant’ and ‘echo-ey’ sound and provide the major 

contribution to what is generally understood as reverberation in everyday experience. 

They are the main source of degradation in the quality of speech sound although, 

depending on the application, the early reflections are also, at least partially, 

considered harmful [1], [4], [31]. 

In terms of spectral characteristics, the effect of the room can be represented as the 

room transfer function. The properties of the room transfer function have been studied 

extensively in the room acoustics literature. As an important property, Neely and 

Allen [34] concluded that the RIRs in most real rooms possess non-minimum phase 

characteristics.  

Room transfer functions are generally stable with the impulse response coefficients 

        tending to zero with increasing index  . Therefore, it is sufficient to consider 

only the first    coefficients in (2.1) [1]. The choice of    is often related to the 

reverberation time of the room. Taking into account any additive noise sources, the 

observed signal at the m-th microphone can be written in a vector form as 

                                                        
                                                               

where                                      is the   -tap impulse response of 

the acoustic channel from the source to microphone  ,                

                    is the speech signal vector and      is the observation noise. 

Equation (2.2) also corresponds to Fig. 2.1, where, interference is also taken into 

account in the reverberation scheme.  
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2.4. Reverberation Time 

As mentioned earlier, the reverberation time is a parameter defined for describing the 

reflectivity of an acoustic enclosed space. To measure the reverberation time of a 

room, first the room is excited by a broadband signal until a steady-state uniform 

sound energy distribution is achieved. Then, the sound source is abruptly switched off 

and the resulting decay of squared sound pressure is recorded. By plotting this energy 

decay versus time, a curve is obtained which is known as the energy decay curve 

(EDC). The reverberation time,     , is defined as the time in seconds required for 

the EDC to decay by 60 dB [1].  

The definition of reverberation time originates from the early work of Sabine [35] 

who concluded that the reverberation time was proportional to the volume of the 

room, and inversely proportional to the amount of absorption in the room [1]. Based 

on his method, by neglecting the effect of attenuation due to propagation through the 

air, the reverberation time is estimated as 

                       
         

 
 

  

        
                                                                                 

where         represents the total absorption in the room calculated by summing the 

products of Sabine’s absorption coefficients and their corresponding areas (for more 

information see [1], [35]).  

The reverberation time is alternatively given by Eyring’s reverberation formula [35] 

as 

                        
        

 
 

  

  (         ) 
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where         is the Eyring sound absorption coefficient similar to that in the 

Sabine’s method. 

Both the Sabine and the Eyring reverberation times may also be calculated using an 

average absorption coefficient and a total corresponding reflecting surface area. 

Furthermore, the Eyring absorption coefficients can be derived from the Sabine 

coefficients [1].  

When the average absorption coefficient,  ̅, is small, by using the expansion 

                                     ̅   ̅  
 ̅ 

 
 

 ̅ 

 
                                                                 

it can be shown that Eyring’s and Sabine’s reverberation times become approximately 

equal. In addition, these expressions indicate that the reverberation time of the room is 

independent of the locations of the source and the microphones [1].  

If the RIR is known, by definition, the EDC can be obtained from the Schroeder 

integral [35] 

                                      ∫          
 

 

                                                                           

where      is the impulse response of the room. The integral in (2.6), calculates the 

sum of the energies of the impulses after time t.  

An example is given in Fig. 2.3, which shows the EDC for a measured impulse 

response. The reverberation time      can be obtained by using an EDC plot only if 

the impulse response is measured at a distance greater than the critical distance. This 

is because      is independent of any effects of the direct path component such as 

the geometry of the source and the microphones which are present at shorter 
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distanc1es. In addition, for the estimation of     , measurements should be 

performed at levels greater than the ambient noise level in order to avoid the effects of 

such noise. Considering these factors, useful estimates of      can be obtained from 

EDC plots such as Fig. 2.3 by measuring the slope of only the free decay section, this 

being the part that has a near constant gradient. In Fig. 2.3, the estimated 

reverberation time by this method, so called the Schroeder method, is 0.52 s.  

2.5. Statistical Modeling of Reverberation 

Time domain modelling of reverberation described by (2.1) or (2.2) is the first type of 

description that intuitively strikes one’s mind. However, in addition to this 

fundamental description, reverberation has been also modelled by using some 

statistical approaches that have proved to be useful.   

First, Moorer [36] suggested that the reverberation effect can be produced by the 

convolution of a clean speech with a Gaussian noise modulated by exponentially 
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decaying envelope. Polack [37] then proposed modeling the RIR as the product of a 

stationary Gaussian noise process and an exponentially decaying envelope: 

                                                                                                                                

where      is a zero-mean Gaussian stationary noise, and   is the exponentially 

decaying parameter which is related to the reverberation time,     , by  

                                    
        

    
                                                                                               

Since reverberation time is frequency dependent, the model described by (2.7) can 

also be implemented in separate acoustic frequency bins as 

                                        
                                                                     

 

This model works well when the distance between the source and the microphone is 

larger than the critical distance. For shorter source-microphone distances, Habets [12] 

proposed a more accurate model as: 

      {

            

      
          

                           

 

where       and       are two zero-mean mutually independent and identically 

distributed (i.i.d.) Gaussian random variables, and    is the time (with respect to the 

arrival time of the direct sound) at which it is assumed that the late reverberation 

starts.   

2.6. Evaluation of Dereverberation 

Speech dereverberation is only one of the domains where signal processing helps 
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enhance the quality of speech signals. Speech quality measurement, in general, is 

performed either by subjective or objective evaluation. However, evaluation of speech 

dereverberation is a more specific case. Subjective and objective measures of speech 

quality and speech dereverberation will be briefly discussed in this chapter. 

Objective quality measures are typically classified into intrusive and non-intrusive 

measures. In intrusive measurement, the processed (or distorted) signal is compared to 

an undistorted (reference) signal. In speech dereverberation, this means comparing the 

processed signal by the algorithm with the clean signal which has no reverberation. In 

contrast, in non-intrusive measurement, the evaluation is performed by using merely 

the distorted (processed) speech. Typically, non-intrusive quality measures are only 

used when access to the reference signal is impossible. This is because not having 

access to the reference signal makes the evaluation more complex. Thus, in this 

section and throughout this work, the assumption is that the reference signal is 

available meaning that the measures are intrusive. 

Speech quality measurement, on the other hand, can be classified into qualitative and 

quantitative evaluation. Qualitative evaluations include quality measures that use 

visualization of the resulting signals or impulse responses such as spectrograms, and 

equalized room impulse responses, while quantitative measures are those that perform 

the assessment by assigning a score to the signal under evaluation.  

Owing to the fact that the degree of correlation of different general speech quality 

measures with speech reverberation, as a specific case, is different, reliable 

quantitative measurement of reverberation level of speech signal is still difficult, and 

a solid universally-accepted methodology has not yet emerged. In other words, an 
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objective measure is considered highly reliable for dereverberation only if it shows 

high correlation with subjective tests. Developing quality measures for 

dereverberation, which are more and more correlated with subjective assessment is a 

subject of research (see [38] for example). Nonetheless, existing objective measures 

are usually combined together to evaluate the performance of speech dereverberation 

algorithms.  

2.6.1. Qualitative Evaluation by Visual Representation 

Speech Waveform and Spectrogram 

The speech waveform and the spectrogram are often used for representing the speech 

signals visually and comparing them with each other. Spectrogram is the time-

frequency visualization of the power spectral density (PSD) of the signal in which one 

axis (usually horizontal) is assigned to time and the other axis represents the 

frequency. In other words, it illustrates the alterations of the power of the speech 

signal in different frequencies through time by using a color-map scheme in which 

different colors indicate different energy levels.  

The smearing effect of reverberation is clear in the waveform and in the spectrogram 

of speech. However, it is usually difficult to detect how severely the signal is 

degraded in a relative sense, especially when the reverberation levels of the two 

signals are not so apart. 

Equalized RIRs 

For the inverse-filtering algorithms, one of the other visual evaluations of the results 

is using the equalized RIRs. The equalized RIRs are obtained by convolving the 



32 

 

derived inverse-filter into the original RIR. Plotting and comparing the shape of the 

equalized RIRs and considering how the impulses are suppressed in different parts is 

a qualitative evaluation for inverse-filtering. This will be used in Chapter 3 of this 

work.  

2.6.2. Subjective Measures 

Subjective speech quality measurement is performed by using human participants to 

rate the quality of speech signals by assigning scores to them in an opinion scale. The 

most commonly used subjective quality measures for speech transmission over voice 

communication systems have been standardized by the International 

Telecommunications Union (ITU-T). Subjective speech quality measures are twofold; 

conversational and listening-only tests. For both types, a 5-point opinion scale, from 

bad to excellent, is recommended to use, known as listening quality scale [39]. 

Another speech quality scale, used for listening-only tests, is the listening-effort scale. 

As a third measure, a binary opinion scale is usually employed for conversational 

tests. These scales are listed in Table 2.1 [4]. 

In a listening test, subjects listen to the recordings degraded by an acoustic channel, 

channel, and enhanced by the algorithm under test. Then, depending on the type of the 

test, the subjects grade the quality of each signal or the effort required to understand 

it. In conversational tests, subjects are asked to use a voice communication system 

through a conversation and provide their opinion on its quality. The average opinion 

score across all the subjects is then calculated which is known as mean opinion score 

(MOS). This score represents the subjective quality of the algorithm under evaluation. 

The more the number of subjects used for testing, the more realistic the opinion score 
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becomes. This makes it cumbersome and time-consuming to perform such an 

evaluation. Furthermore, even by using a large number of subjects, the MOS variance 

can still be high, which is another disadvantage of this type of assessment. In addition, 

the expected quality of the speech signals can be different depending on the 

application. For instance, the expected speech quality for a cheap ordinary mobile 

telephone device would be much lower than that of a modern expensive conference 

system. Due to the constraints mentioned above, it would be more practical if an 

automatic speech evaluation system would exist by which the quality measures could 

be obtained [4]. 

2.6.3. Objective Measures 

Based upon the preceding subsection and with the ever-evolving voice 

Table 2.1. Subjective speech quality measurement scales recommended by ITU-T [39]. 

Listening-Quality Scale:  

Quality of the speech/connection Score 

Excellent 5 

Good 4 

Fair 3 

Poor 2 

Bad 1 

  

Listening-Effort Scale:  

Effort required to understand the meaning of sentences Score 

Complete relaxation possible; no effort required 5 

Attention necessary; no appreciable effort required 4 

Moderate effort required 3 

Considerable effort required 2 

No meaning understood with any feasible effort 1 

  

Conversation Difficulty Scale:  

Did you and your partner have any difficulty in hearing over the 

connection? 

Yes 1 / No 0 
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communication systems nowadays, an increasing demand for robust objective speech 

quality measures that correlate well with subjective tests is felt. Objective quality 

measures are helpful evaluation tools during the design and validation of algorithms, 

codecs and communication systems. Based on different speech analysis models, 

various objective measures have been developed by researchers over the last two 

decades [4]. 

During the design and validation stages of algorithms, codecs, and communication 

systems, objective quality measures are valuable assessment tools. Over the last two 

decades, researchers have developed different measures based on various speech 

analysis models [40], [41]. 

Objective speech quality measures, in general, are typically classified into three 

domains: time domain, spectral domain or perceptual domain. The time domain 

measures are generally applicable to analogue or waveform coding systems, where the 

receiver reproduces the waveform. Nevertheless, they can also be used to determine 

the improvement in the speech quality. Signal to noise ratio (SNR) and segmental 

SNR are typical time domain measures [4], [42]. Since the spectral domain measures 

are less influenced by the possible misalignments between the original and the 

processed signal, they are usually preferred to time-domain measures. Perceptual 

domain measures, which are developed based on models of the human auditory 

system, are known to have a higher chance of predicting the subjective quality of 

speech compared to time and spectral domain measures. Theoretically, perceptually 

relevant information is both sufficient and necessary for a precise evaluation of 

perceived speech quality [4], [40]. 



35 

 

Considering the facts mentioned above, it is not surprising that most of the objective 

measures are intrusive and perceptually based. These measures usually follow 

psychoacoustic considerations and are trained on subjective databases to become as 

close as possible to human perception. One of the perceptual measures of speech 

quality is the one that ITU-T has standardized as perceptual evaluation of speech 

quality (PESQ) in 2001 as ITU-T Recommendation P.862 [4], [43]. PESQ was 

originally developed to evaluate the listening quality of a speech signal degraded by 

codecs, background noise and packet loss.  

As mentioned earlier, among the objective measures, intrusive measures are those that 

use the comparison of the processed signal to a reference signal. Intrusive measures 

can be classified into three categories. The three categories include perceptually-based 

measures, channel-based measures, and measures that are based on neither of the two. 

a) Intrusive Waveform-based Measures 

One of the most important and most relevant speech quality measures for 

dereverberation evaluation is segmental signal to reverberation ratio [4]. This quality 

measure is used in this work and is introduced below. 

Segmental Signal-to-Reverberation Ratio 

Similar to segmental SNR [42], the instantaneous segmental signal to reverberation 

ratio (SRR) [44] of the m
th

 frame is defined as 

                      (
∑   

          
    

∑ (       ̂    )
       

    

)                                         

where N is the frame length, normally such that     is equal to 32 ms (this is the time 
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interval in which the speech signal can be assumed to be wide sense stationary), R is 

the frame rate, m is the frame number,       is the delayed version of the anechoic 

(clean) signal, which is noted as the direct signal, and  ̂     is the enhanced 

(processed) signal. The frame rate depends on the overlap between adjacent frames, 

which is usually chosen between 50 to 75 %. After calculating the SRR of frames, the 

final score, the mean segmental SRR, is then obtained by averaging the SRR scores 

over all the frames. 

b) Intrusive Perceptually-based Measures 

Bark Spectral Distortion 

The Bark spectral distortion (BSD) is one of the extensively used speech quality 

measures that are based on the models of the human hearing system [45]. According 

to the studies, this measure has a very high correlation with MOS scores (subjective 

assessment) [45], [46]. The BSD is based on using the Bark spectra of the direct 

signal,  , and the enhanced signal,  ̂ . These spectra are respectively denoted as 

   
and   ̂ 

. The BSD score is calculated using [4] 
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where m and    denote the frame number and the Bark frequency bin, respectively.  

The modified Bark spectral distortion (MBSD) further adds another step in 

calculating the Bark spectra by considering a noise-masking threshold [47]. The aim 

of this threshold is to differentiate between the audible and inaudible distortions. In 

this measure, it is assumed that the parts of the speech whose loudness falls below the 

noise masking threshold are inaudible and are thus neglected in the calculation of the 
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perceptual distortion. As well, the MBSD makes use of a simple cognition model to 

calculate the distortion value [47].  

In a more recent improvement to MBSD, the enhanced modified Bark spectral 

distortion (EMBSD) measure has been introduced [48]. This new measure develops a 

more complex cognition model for calculating the distortion value, which is based on 

removal of a couple of assumptions in MBSD that seem not to be met in some 

conditions. These conditions include a speech utterance containing background noise 

or a speech utterance with distortions such as bit errors or frame erasures encountered 

in real network environments. In EMBSD, for a better cognition model, a couple of 

psychoacoustic results have been extracted from the literature and incorporated into 

the cognition model (for further study see [48]). 

Perceptual Evaluation of Speech Quality 

As mentioned earlier, perceptual evaluation of speech quality (PESQ) is the objective 

measure recommended by ITU-T in P.862 (February 2001) [49]. The PESQ is a rather 

complex measure which is the result of several years of development and is applicable 

to speech codecs as well as intrusive measurements. The PESQ can be applied to real 

systems that include filtering and variable delay, as well as distortions due to channel 

errors and low bit-rate codecs. It is notable that, prior to the PESQ, the PSQM 

measure, which was recommended by ITU-T P.861 (February 1998), was only 

applicable to speech codecs without being able to take care of filtering, variable delay 

and short localized distortions into account. The PESQ, in contrast, accounts for these 

effects with transfer function equalization, time alignment, and a new algorithm for 

averaging distortions over time. In P.862, the PESQ score is recommended to be used 
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for speech quality assessment of 3.1 kHz (narrow-band) handset telephony and 

narrow-band speech codecs.  

PESQ compares an original signal      with a degraded signal     , obtained by 

passing      through a communication system, or with the enhanced signal  ̂    

produced by the enhancement system. PESQ gives a prediction of the perceived 

quality that would be given to the signal by subjects in a subjective test.  

PESQ first computes a series of delays between the original signal and the signal 

under test. These delays are calculated for each time interval whose delay is 

significantly different from the previous time interval. A start and stop point is 

assigned to each of these time intervals. This alignment algorithm works based on the 

principle of comparing the confidence of having two delays for a certain time interval 

with the confidence of having a single delay for that interval [4]. The algorithm 

follows delay changes both during the silent frames and during active speech frames. 

By using a perceptual model, based on the set of delays that are found, PESQ 

compares the original signal with the aligned signal under test. This process is based 

upon transformation of both the original and the test signal to a representation that is 

similar to the psychophysical representation of audio signals by humans. This is 

achieved by taking perceptual frequency (Bark) and loudness (Sone) into account. To 

this end, several stages are included in the algorithm, namely, time alignment, level 

alignment, time-frequency mapping, frequency warping and compressive loudness 

scaling [4]. As well, the PESQ algorithm aims to take the severity of effects such as 

linear filtering and local gain variations into account. This is because these effects, if 

they are not too severe, may have little perceptual significance. Hence, while minor 
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steady state discrepancies between the original and the test signal are compensated, 

more sever effects or rapid variations are only partially compensated and will remain 

to affect the overall perceptual quality. In PESQ, two error parameters are computed 

in the cognitive model; these are combined to give an objective listening quality score 

[4].  

Wideband PESQ 

The wideband extension to PESQ was introduced by ITU-T as P.862.2 standard in 

2005 and was amended in 2007. It allows ITU-T Recommendation P.862 to be 

applied to the evaluation of conditions, such as speech codecs, where the listener uses 

wideband headphones (In contrast, ITU-T Recommendation P.862 assumes a standard 

IRS-type narrow-band telephone handset which attenuates strongly below 300 Hz and 

above 3100 Hz.). The main intention of wideband PESQ is to be used with wideband 

audio systems (50-7000 Hz), although it can also be applied to narrowband signals 

[50].  

Correlation of PESQ with Reverberation 

Very little study has been performed on the correlation of PESQ with reverberation 

(or lack of reverberation), even though PESQ has been frequently used for evaluation 

of reverberation. Among the few works which have been carried out on the 

correlation of PESQ to reverberation, Sharma et al. [51] report a very low correlation 

rate between PESQ prediction and subjective MOS for non-linear distortions such as 

reverberation. On the other hand, Kokkinakis et al. [52] have proposed a modification 

in the regression model of PESQ score to be adapted to reverberation. In the default 

scheme, by using three coefficients, the PESQ is calculated as a linear combination of 
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two disturbance indicators as follows 

                                                                                                                   

such that 

                                      

where       is the average disturbance value and      is the average asymmetrical 

disturbance value. The three parameters are empirically calculated and optimized for 

speech processed through networks and not for assessing the effects of reverberation 

(or lack of reverberation) on speech signals [52]. Hence, they propose another 

combination of the three parameters empirically calculated to better adapt to the task 

of reverberation calculation. This way, they aim to change the PESQ score calculation 

to cope with predicting effects of speech coloration, reverberation tail effect, and the 

overall speech quality in such a manner that is appropriate for reverberation 

evaluation (for more details and the resulting scheme see [52]). 

Nonetheless, this new PESQ scheme has not been standardized or widely accepted 

and implemented. Due to this fact, and in order to be able to compare the performance 

of our proposed algorithms with that of similar works, normal PESQ (narrowband and 

wideband) has been used in this work along with other measures while it has been 

noted and reminded that PESQ is used for assessing the overall quality of speech 

signals in a comparative sense.  

Perceptual Objective Listening Quality Assessment 

Perceptual objective listening quality assessment (POLQA), recommended by ITU-T 

P.863 standard in 2011, is the successor to PESQ. The main intention of POLQA is 
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for its use with super-wideband systems of today’s telecommunication standards [53]. 

However, researchers are still using the PESQ standard in the very recent works (see 

for example [24]). In this project, since the signals under test do not exceed the limits 

of PESQ standard in terms of frequency band, and since the POLQA standard still 

does not have a guide for implementation, the usage of POLQA has not been 

followed. 

c) Intrusive Channel-based Measures 

Direct to Reverberation Ratio 

The SRR method introduced earlier in this section was extracted based upon the idea 

of another measure called direct to reverberation ratio (DRR). The difference between 

the two measures is that SRR applies to the processed signals while DRR applies to 

the equalized impulse responses [54].  

The DRR is defined as  

                              (
∑      

  
   

∑       
      

)                                                              

where    accounts for the delay of the arrival of the direct component.  

2.7. Review of Dereverberation Methods 

Dereverberation techniques introduced so far can be classified in different ways. In 

general, there are only a few recent publications in which a rather broad look into the 

literature of dereverberation techniques has been given. Dereverberation methods can 

be split into single-microphone and multi-microphone techniques. Since this work is 

on single-channel dereverberation, the main focus is on the methods that either have 
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been developed for single-channel dereverberation or have single-channel application 

addressed in their development specifically. Most of the multi-microphone algorithms 

cannot be applied to single-channel scenario because they use spatial processing. 

From another point of view, however, dereverberation methods can be categorized 

into those primarily focused on coloration and those focused on late reverberation.  

Habets [4] classifies dereverberation methods based on whether or not AIR or RIR 

needs to be estimated. This criterion results in two main categories which he names 

dereverberation suppression and dereverberation cancellation. Methods in the first 

category do not estimate the RIR while those in the second category do need to 

estimate the RIR in order to dereverberate the signal. Habets [4] then splits 

dereverberation techniques within each category into smaller sub-categories 

depending on the amount of knowledge about the source or about the acoustic channel 

that is presumed and used in the method. Fig. 2.4 depicts the two main categories and 

the sub-categories according to Habets [4]. In the next subsection, the most important 

and relevant dereverberation techniques classified in the first category are discussed. 

2.7.1. Reverberation Suppression 

As mentioned before, dereverberation techniques that do not use estimation of the 

RIR are classified as reverberation suppression techniques. These techniques are in 

turn classified into sub-categories by considering the amount of knowledge about 

either the source or the channel, and by the difference in the signal processing 

techniques that are involved [4]. 
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Explicit Speech Modeling 

Some dereverberation methods are based on modeling the speech signal by using the 

underlying structure of the anechoic speech signal. A dual excitation speech model 

was proposed by Hardwick in 1992. This model was utilized for speech enhancement 

purpose in [55]. By adding the effect of pitch variations into the model, it was then 

complemented to a generalized dual excitation speech model by Yoo [56]. It is 

remarkable that both of the models mentioned above are based upon the voiced 

speech segments only.  

Brandstein then used the dual excitation model combined with spatial filtering for 

enhancing reverberant speech in [57]. Later he exploited the generalized dual 
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44 

 

excitation model in [58].  

Attias and Deng utilized probabilistic modeling. In [59], they suggested a unified 

probabilistic framework for denoising and dereverberation of speech signals. Their 

proposed framework translates denoising and dereverberation problem to Bayes-

optimal signal estimation. The main idea in this method is to pre-train a speech model 

on a large data set of anechoic speech. This framework is applicable for single- and 

multi-microphone dereverberation equally well. While their experiments show that 

optimal Bayesian estimation can outperform standard techniques such as spectral 

subtraction in terms of noise suppression, unfortunately the dereverberation 

performance was not evaluated separately. As well, a drawback of this method is that 

it is strongly dependent on the training of the model [4]. 

In a more recent work, Nakatani [60] utilized probabilistic features of source signals 

and room acoustics for single-channel speech dereverberation. The channel was 

represented by probabilistic density functions (pdf) and the source signals were 

estimated by maximizing a likelihood function defined based on two types of pdfs. 

These pdfs were based upon two essential speech signal features, harmonicity and 

sparseness, while the pdf for the room acoustics is defined based on an inverse 

filtering operation.  

LP-residual Enhancement 

Modeling speech as an excitation sequence shaped by a time-varying all-pole filter is 

a common way to describe the speech signal [46]. The excitation sequence models the 

unvoiced speech by a random noise sequence and the voiced speech by quasi-periodic 
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pulses. The filter that is used afterwards to shape the speech signal represents the 

human vocal tract. Figure 2.5 depicts this speech production model. The vocal tract is 

modelled by an all-pole filter whose coefficients are estimated through linear 

prediction (LP) analysis of the recorded speech and are called linear prediction 

coefficients (LPC). In this model, the LP-residual, which represents the excitation 

sequence, can be obtained by inverse-filtering of the speech signal     . The 

justification of using this inverse-filtering technique is based upon the observation 

that, in reverberant environment, the LP-residual of voiced speech segments contains 

the original impulses in addition to several other peaks produced by multi-path 

reflections. An important assumption made in this technique is that the LPCs are not 

affected by reverberation. Thus, in general, in this class of techniques, dereverberation 

is realized by suppressing those peaks in the excitation sequence (LP-residual) which 

are due to multi-path reflections, and synthesizing the enhanced speech by using the 

modified LP-residual and the time-varying all-pole filter (the LP-filter) with 
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Fig. 2.5. Speech production model [46]. 
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coefficients (LPCs) calculated from the reverberant speech [4]. 

The general structure of dereverberation by LP-residual enhancement techniques is 

illustrated in Fig. 2.6. Herein,      represents the samples of the reverberant signal 

recorded by   microphones at discrete time  . The LPC analysis block stands for the 

part of the method that estimates the poles of the time-varying all-pole filter shown as  

 ̂    (where   represents the frame index) and outputs the error signal, known as the 

LP-residual signal  ̃   . Next, based upon some criteria and features depending on 

the algorithm, the LP residuals are manipulated and the clean LP-residual  ̂    is 

estimated. In the next stage, the enhanced speech signal is synthesized by using the 

estimated poles and the estimated clean LP-residual [4]. 

Most probably J. B. Allen and F. Haven from Bell Telephone Laboratories Inc. were 

the first to propose a speech dereverberation algorithm that used the LP-residual 

enhancement technique in a patent filed in 1974 [61]. This patent addresses both 

single microphone and multi-microphone scenarios. A detector for separating voiced 

and unvoiced speech frames, a pitch estimator and a gain estimator are used to 

synthesize a clean LP residual. Next, they have estimated the vocal tract and used it 

along with the estimated clean LP-residual to reproduce an estimate of the anechoic 

 ̂     ̂     ̃         
LPC 

analysis 

LP-residual 

processing 
LPC 

synthesis 

 

 ̂    

Fig. 2.6. General structure of dereverberation methods that are based on LP-residual enhancement 

[4]. 
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speech. 

In 1999 LP residuals were used by Griebel and Brandstein who proposed a method for 

multi-channel speech dereverberation by event-based processing of wavelet transform 

coefficients [62]. The same authors later proposed another multi-channel 

dereverberation technique in [63] which uses a coarse channel modelling to modify 

the LP residuals of the channel data.  

Yegnanarayana and Murthy developed a single-channel dereverberation technique 

and comprehensively studied the effects of reverberation on the LP-residual [18, 19]. 

In their proposed method speech signal is analyzed in short segments (2 ms) to 

enhance the regions with low SRR. This is based on the observation that in different 

segments of speech the SRR is different. In their technique, the speech signal is split 

into three types of regions: low SRR region, high SRR region and regions containing 

only reverberation components. The LP-residual is modified using a weighting 

function that assigns different weights to different regions. The time-varying all-pole 

LP filter then uses the altered LP-residual to form the enhanced speech.  

As pointed out earlier, Gillespie et al. [21] were the first to perform experiments 

showing that the kurtosis of the LP residual can be a measure of reverberation. They 

observed that due to the smearing effect of reverberation on the LP-residual signal, 

the LP-residual signal becomes less sharp and more Gaussian; hence having lower 

kurtosis. This technique uses a sub-band adaptive filtering in frequency domain by 

using a modulated complex lapped transform (MCLT). The subband filters’ weights 

update is performed by maximizing the kurtosis of the LP-residual. As experiments 

have shown, this method achieves a promising solution to the problem of blind speech 
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dereverberation.  

Nonetheless, the calculations of kurtosis and its derivative more or less suffer from 

instability [64], [65]. To alleviate the instability problem, Tonelli et al. [64] proposed 

a single-microphone dereverberation algorithm based on using a maximum likelihood 

approach to estimate the inverse-filter. This algorithm was then extended to a multi-

microphone dereverberation algorithm in [66].  

Yegnanarayana et al. [67] exploited the features of the excitation source in speech 

production model to develop a multi-channel speech enhancement technique. The 

most important property of the excitation signal is that, in voiced sounds, the strength 

of excitation is largest around the instant of glottal closure. The strength of excitation 

was extracted by using the Hilbert envelope of the LP-residual. Then, the Hilbert 

envelopes of the LP-residual signals from different microphones, after delay 

compensation, were combined to form a weighting function. The final modified LP-

residual was obtained by using this weighting function. By exciting the time-varying 

all-pole filter with the modified LP-residual the enhanced speech was obtained. 

Although this method reduces the reverberation effects significantly, it distorts the 

speech signal to a substantial extent. 

Another dereverberation technique based on LP-residual processing was proposed by 

Gaubitch and Naylor [68]. They enhanced the LP-residual signal from the output of a 

delay-and-sum beamformer.  In contrast to previous algorithms, their method was 

based on the intention to consider the original structure of the excitation signal. Their 

method is based on the observation that the LP-residual waveform between adjacent 
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larynx-cycles varies slowly
2
. Therefore, in this method each larynx-cycle is replaced 

by an average of itself and its’ nearest neighbouring cycles. The averaging aims to 

suppress the additional peaks in the LP-residual introduced by reflections so that the 

remaining peaks are real peaks produced by the excitation signal. This is based on the 

observation that in reverberation conditions, in addition to the original excitation 

impulses, the LP-residual includes several peaks owing to reverberation. In addition, 

this technique is also based upon the assumption that the calculated LP coefficients of 

the all-pole filter are unaffected by reverberation. This is while in [69], published one 

year earlier, they showed that this assumption holds only in a spatially averaged sense 

and it cannot be guaranteed at a single-point in space for a given room. 

In a more recent publication, Gaubitch et al. [70] investigated the auto-regressive 

(AR) (all-pole) modelling of reverberant speech in three different scenarios by using 

the statistical room acoustic theory. They indicated that, in terms of spatial 

expectation, the AR parameters calculated from the reverberant speech are 

approximately equivalent to those of anechoic speech [4]. They showed that this holds 

for both the single-channel case and the case where the coefficients are jointly 

computed by a multiple-channel observation. In addition, they showed that the AR 

coefficients computed at the output of a delay-and-sum beamformer are different from 

those calculated by using the anechoic speech owing to the spatial correlation between 

signals from different channels, which depends on the room characteristics and the 

arrangement of microphones. In general, they indicated that the M-channel joint 

calculation of the AR coefficients is the preferred option specifically when 

                                                 
2
 The larynx-cycle is the interval of the time from when the glottis opens to when the glottis closes. The 

length of a larynx-cycle is approximately 20 ms [4]. 
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microphones are closely spaced with a distance of less than 0.3 meter [4]. However, it 

is notable that all the analyses in these works ([68], [69] and [70]) have been done on 

a single vowel, i.e., the effects of windowing, self-masking and overlap-masking, 

have not been taken into the account [1] , [4].  

Wu and Wang [22] proposed a two-stage single-channel dereverberation algorithm 

whose first stage is using the adaptive inverse filtering scheme by kurtosis 

maximization as proposed by Gillespie et al. [21]. In their implementation, however, 

they utilize the STFT instead of MCLT for transforming to and from the frequency 

domain. To further improve the dereverberation performance, particularly for long 

reflections, in the second stage of their proposed algorithm, they have introduced a 

new and rather complex spectral subtraction scheme to estimate and subtract the 

reverberation components from the reverberant signal. The resulting two-stage 

method has been one of the most promising techniques for single-channel speech 

dereverberation introduced so far and one of the major techniques to compare with in 

all the works in this area ever since. The same spectral subtraction technique of this 

algorithm has been used as the second stage of the proposed algorithms of this thesis. 

Details of this spectral subtraction scheme are explained in Chapter 3, Section 3.2.2.  

Nonetheless, this algorithm has two drawbacks. Firstly, it does not obtain good results 

for rooms with reverberation times of more than 0.5 s. Secondly, background noise 

conditions have not been considered in their work. These drawbacks have been 

addressed in the development of our proposed algorithms in Chapter 3. 

Later, Kinoshita et al. [27] also utilized LP-analysis in their proposed algorithm. This 

algorithm, in single-channel scenario, consists of pre-whitening and delayed long-
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term linear prediction on the reverberant speech whose filter coefficients are then used 

to filter the reverberant speech to obtain an estimation of the reverberation component 

of the speech. The estimated reverberation component is then subtracted from the 

reverberant speech in the spectral domain. The output of this analysis is then further 

enhanced by cepstral mean subtraction, which is not further explained in their work. 

Although this algorithm might not be considered as one of the major proposed 

dereverberation algorithms, particularly when it comes to the single-channel case, 

their scheme of linear prediction has been utilized in the proposed algorithms of this 

thesis. However, in our work, instead of using the filter coefficients, the LP-residual is 

utilized to shape an inverse filter based on kurtosis or skewness maximization. Further 

explanation can be found in Section 3.2 of this thesis. 

In a very recent paper, Mosayyebpour et al. [26] have proposed another method for 

inverse-filtering of reverberated speech signal. Their method is also based upon the 

inverse-filtering scheme proposed by Gillespie et al. [21]. However, their algorithm is 

different in that they utilize the skewness maximization of LP-residual signal rather 

than kurtosis maximization. They showed that skewness maximization of LP-residual 

signal, as another measure of non-gaussianity, is superior to kurtosis maximization for 

the task of dereverberation. Hence, kurtosis as well as skewness will be used in the 

second phase of the first stage of the proposed algorithms in our work (see Section 

3.2.1). 

2.8. Summary 

This chapter was concerned with providing the theoretical background needed for the 

study of the dereverberation algorithms proposed in this work. This included the 
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general problem formulation, the concept of AIR and reverberation time and a review 

of the most relevant reverberation (or dereverberation) measures that have been used 

in the evaluation of the proposed algorithms in Chapter 4. The last section of the 

chapter was devoted to a broad classification of dereverberation algorithms and a brief 

literature review of the most relevant and successful algorithms proposed so far. 

Explicit speech modelling and LP-residual enhancement as two of the main categories 

of algorithms classified in reverberation suppression have been reviewed. In 

particular, as one of the most successful and most relevant category of 

dereverberation algorithms, LP-residual enhancement based algorithms were 

reviewed in more detail. It has been shown that although this category of algorithms 

includes some of the most promising dereverberation methods, there are still some 

drawbacks which are the focus of the proposed algorithms to be studied in the next 

chapter. 
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Chapter 3 

Proposed Dereverberation Algorithms 

3.1. Introduction 

As discussed in detail in Chapters 1 and 2, dereverberation has received a lot of attention in 

the literature.  Most of the focus, however, has been on multi-microphone 

dereverberation, which is a less challenging problem in general. This is because multi-

channel methods allow for both temporal and spatial processing, while single-channel 

methods are restricted to only temporal processing. The incentive for one-microphone 

speech enhancement is twofold. First, it is applicable to real world problems such as 

the processing of telephone speech and audio information retrieval (information 

extraction from audio signals). Second, one-microphone speech, when moderately 

reverberated, has the advantage over the multi-microphone case in that it is highly 

intelligible in monaural listening [22].  

Although one-microphone speech dereverberation is more challenging than the 

multiple-microphones case, a number of algorithms have been proposed in the 

literature for the former [4], [7], [8], [19], [21]–[23], [26], [27]. Among the single-

microphone dereverberation algorithms introduced so far, the one proposed by Wu 

and Wang [22] is one of the most efficient and most cited algorithms. Although their 

two-stage algorithm is designed to cancel the short-term and long-term reverberations 

in the first and second stages, respectively, it is observed that, in the first stage, the 
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inverse filtering based on LP-residuals can be reformed to suppress both the short 

reflections and long reflections. Also, their method yields satisfactory results only 

when the reverberation time is short (i.e. less than 0.5 s). Further improvement can be 

made by using the spectral subtraction in the second stage which in turn suppresses 

the late reflections in the spectral domain.  In a very recent paper [26], the authors 

have employed skewness maximization of the LP-residuals of the reverberant signal, 

rather than the kurtosis maximization as was done in [22] as a criterion for adjusting 

the weights in the inverse filter. However, for speech dereverberation applications, 

their algorithm is not very effective, especially for long reverberations, as it is based 

on a single-step LP-residual inverse filtering, which cannot suppress both long and 

short reverberations at the same time. 

Based upon the above observations, in this chapter two new two-stage algorithms are 

proposed by employing LP-based inverse filtering and spectral subtraction. The first 

algorithm utilizes the kurtosis maximization for updating the inverse-filter weights, 

while the second algorithm maximizes the skewness of the LP-residual signal. Except 

for this difference, and some subsequent minor changes in the parameters, both these 

algorithms use the same architecture. The algorithms are similar to that by Wu and 

Wang [22] in that they use normalized higher order moments of LP-residuals for 

updating the inverse filter weights. However, the proposed algorithms consist of two 

phases of linear prediction before inverse filtering. In the first phase, the observed 

signal is whitened by using short-term linear prediction. The second linear prediction 

phase is a delayed long-term linear prediction as suggested in [27]. These two phases 

make up the first stage of the proposed algorithms. This is different from the 

algorithm in [27] in that after applying the delayed long-term linear prediction, the 
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proposed algorithms maximize either the kurtosis or the skewness of the LP-residual 

for constructing an inverse filter, rather than using the LP-coefficients for estimating 

late reflections. The second stage of the proposed algorithm is a nonlinear spectral 

subtraction as proposed by Wu and Wang [22].  

3.2. Problem Formulation and Proposed Algorithms 

The process of producing a speech sound and the consequent reverberation in a room 

before the signal is recorded by a microphone is represented by the acoustic system 

shown in Fig. 3.1. Consistent with the typical speech production modeling, the speech 

signal is assumed to be produced by a white noise source signal, shown as     , 

shaped by a  -th order FIR filter having a transfer function     . The speech signal 

recorded by the microphone and shown as      is affected by the room impulse 

response,     , which is considered to be invariant in this study. This can be 

mathematically described as 

 

                                           ∑           
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where 

s(n) u(n) A(z) B(z) x(n) 

Human speech production system Room transfer function from 

speaker to microphone 

Fig. 3.1. Block diagram of the acoustic system. 
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is the impulse response of the filter obtained by combining the effects of RIR and the 

human speech production system. Such a filter would produce the recorded speech 

signal from the white noise sequence     . In vector form, this can be formulated as 

                                                                                                                 

where  

                                                                    

                                                             

                                                 

  [

                  

                 

      
                  

] 

Assuming   and      to be of length T and N respectively,   will be a full row rank 

matrix of size             [27].  

The goal of dereverberation in this work is to estimate the clean speech signal,     , 

by observing only the reverberant signal,     , without a prior knowledge of     .  

As mentioned earlier, although the algorithm proposed by Wu and Wang [22] 

includes spectral subtraction for suppressing the long reflections, it is still not 

effective enough for suppressing late reverberations and it yields satisfactory results 

only for RIRs with      of less than 0.5 s. This is because in the first stage of their 

algorithm, the inverse filtering is done on short-LP residuals. The same drawback is 

found on the inverse-filtering method by Mosayyebpour et al. [26]. This inverse 
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filtering method is mostly effective for suppressing colorations (short reverberations) 

while the main degradation of the quality of the speech signal for both human 

perception and speech recognition applications is caused by long reverberations. 

Although the second stage of their algorithm deals with long reflections in the spectral 

domain, the final results show that further suppression in the time domain is 

necessary. In other words, the inverse filtering part of their algorithm should be 

reformed to deal with inverse filtering of both short and long reflections. In order to 

achieve this goal, in this work, a two-phase linear prediction is introduced before 

maximizing either the kurtosis or the skewness of the LP-residual signal. The first 

phase of linear prediction, pre-whitening, accounts for reducing the short-term 

correlation of a speech signal produced through      and the second phase, delayed 

long-term linear prediction (DLLP), is to identify the late reverberations.  

Although it is out of the scope of this thesis, since there is no constraint regarding the 

existence of only one observation from the reverberant speech signal, with proper 

modifications the algorithms should be applicable in the multi-microphone case as 

well. Clearly, further experiments are needed to prove this claim. 

Fig. 3.2. depicts a schematic of the proposed algorithms. The core of the first stage is 

inverse filtering by maximizing the kurtosis or skewness of LP-residual signal. The 

signal is passed through two phases of linear prediction before inverse-filtering. In the 

subsection below, the idea of DLLP and the logic to use it is explained.  
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 Delayed Long-Term Linear Prediction and Pre-Whitening 

a) Delayed long-term linear prediction (DLLP) 

Delayed long-term linear prediction (DLLP) under the name of multi-step linear 

predictor was used by Gesbert et al. [71] for the estimation of a  

whole impulse response. It was then used by Kinoshita et al. [27] for estimating only 

the late reverberation components to be further used in spectral subtraction. In this 

work, the same technique is employed to derive LP-residuals rather than LP-filter 

coefficients. LP-residuals are then used for inverse-filtering by maximization of 

kurtosis or skewness.  

If      is the observed reverberant signal,   is the number of filter coefficients, and 

  is the step size (the delay) of filtering, the delayed long-term linear prediction is 

described by 

Inverse filter h 

 
Inverse filter h 

Kurtosis/Skewness 

Maximization 

Copy coefficients  

Reverberant 

speech      

      
 ̃    

Multiple-step 

linear prediction 
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Linear 

Prediction 

 

Spectral 

Subtraction 

Processed 
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Inverse-filtered 
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Fig. 3.2. Schematic of the proposed algorithms. Note that multiple-step linear prediction consists of 

pre-whitening and delayed long-term linear prediction. 
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where     ’s are the filter coefficients and      is the error signal or, alternatively, 

the LP-residual signal. The conventional linear prediction is a specific case when   is 

unity. Similar to a normal LP analysis, using the Levinson-Durbin algorithm the mean 

square energy of the prediction error signal,     , is minimized. Using vector 

notation, when minimizing      one will encounter the following equation, which is 

the result of Wiener-Hopf equation specialized for delayed linear prediction [27] 

                                                                                               

where 

                                                    . 

Therefore,        

                                                                                             

It is worth emphasizing that (3.7) is the Wiener-Hopf equation specialized for this 

case and can be efficiently solved by algorithms such as Levinson-Durbin ([27], [72]), 

as has been done in the present work. 

The first term in (3.7) can be written as 

                                             
     

where                 , the autocorrelation of white noise, is   
  ,   

  being 

the variance of white noise. As well, the second term in (3.7) can be written as 
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where  

                                                                                

meaning that the first   elements of   are skipped due to the fact that only the rest of 

them correspond to the part of reverberation that degrades the speech quality [27].  

Therefore, we will have 

                                                                                                                            

By using such a predictor, the estimated power of late reverberations will be  

                                                                             

                               ‖                   ‖                                                             

                               ‖  
       ‖                                                                                      

                                   ‖  
       

               ‖                                                                               

                                   ‖  
      

 ‖ ‖          ‖ ‖     ‖                                            

                               ‖       ‖
                                                                                             

Equation (3.10) is obtained by using the fact that                
  , where   

  

represents the variance of     . Then, (3.11) is derived by using the Cauchy-

Schwartz inequality.  

Noting the fact that             is the norm of a projection matrix and hence, is 

equal to 1, will result in (3.12) [73]. In addition, (3.12) implies that late reverberations 

cannot be overestimated [27].  

The LP filter order,  , is a large number in the range of several thousands. Therefore, 

the residual signal each time is computed based on     samples [27]. As a result, 
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the LP-residual signal will be able to represent the long-term correlations of the 

signal. This is in contrast to conventional short-term LP analysis which has been used 

for short-term dereverberation.  

b) Pre-whitening 

If the z-domain representation of      and      are      and      respectively, as 

mentioned before, the long-term delayed LP skips the first   terms of      trying to 

estimate long reverberations which are harmful to the perceived quality of speech. It 

should be noted that, as shown in (3.3),      

is the product of humans speech production system,     , and the room impulse 

response,     . Hence, a bias caused by      exists in estimated late components of 

    . In order to compensate for this bias, pre-whitening by small-order linear 

prediction is implemented in this work as has been suggested in [27]. However, in this 

work, the order of pre-whitening was not fixed to 20 taps as suggested in [27], but is 

adjusted according to the length of the room impulse response. This is due to the fact 

that the longer the RIR, the longer will be the coloration effect of it on the speech 

signal. In other words, in this work, pre-whitening compensates for the bias caused by 

     taking into account its convolution by the room impulse response.  Hence, by 

this modification, the resulting pre-whitening will be more adjusted to the reverberant 

speech signal under enhancement. Consistent with this theoretical fact, for RIRs with 

reverberation time equal to 0.9, 0.7 and 0.5, the best pre-whitening short-LP order was 

empirically chosen equal to 20, 14 and 6 taps, respectively. The final dereverberation 

result of such an adjustable pre-whitening order scheme proved to be better both by 

objective and subjective assessments.  
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Considering the two phases of linear prediction, the term ‘multiple-step linear 

prediction’ in this work signifies a preprocessing short-order LP followed by the 

delayed long-order LP. 

3.2.1. Inverse Filtering  

a) Inverse Filtering by Kurtosis Maximization 

As discussed earlier, LP-based inverse filtering has been one of the most powerful 

dereverberation methods proposed so far. However, LP-based inverse filtering has 

been mostly used for short-term dereverberation. For suppressing the late 

reverberations, in some research works, spectral-subtraction-based methods have been 

used as a second stage after inverse filtering (see for example [22]). The first proposed 

algorithm in this work consists of two-stages, where the first stage is devoted to 

inverse filtering of the LP-residual signal by kurtosis maximization and the second 

stage is assigned to spectral subtraction, see Fig. 3.3. The first stage consists of two 

phases of linear prediction, namely, pre-whitening and delayed long-term linear 

prediction (DLLP). The pre-whitening phase is used to suppress the short-term 

correlation effects; the LP-residual after the DLLP phase represents the long-term 
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Fig. 3.3. Details of Multiple-step linear prediction. 
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correlations of the reverberant signal. Maximizing the kurtosis of these residuals will 

be more helpful in suppressing the long reverberations where the actual degrading 

effect occurs and is the more challenging part of dereverberation. 

The LP-based inverse filtering algorithm suggested in [21] estimates the inverse filter 

of the room impulse response by maximizing the kurtosis of LP-residual signal (i.e. 

linear prediction error signal). By using the fact that LP-residual of clean signal has a 

higher kurtosis than that of the reverberant signal, an inverse filter can be estimated 

using kurtosis maximization of the LP-residual signal. The resulting method is similar 

to LMS adaptive filtering with the difference that the feedback signal employs kurtosis 

maximization criterion rather than mean-square error criterion and comparing it to a 

desired signal. As shown in Fig. 3.2, in this study, the LP-residual is estimated by 

multiple-step linear prediction of the reverberant speech which includes long-term 

reverberation effects. 

To demonstrate the inverse-filtering we can write 

                                             ̃        ̂                                                                                  

where  ̂                                
  and       is the multiple-step 

LP-residual of the reverberant speech,   is the inverse filter and  ̃    is the inverse-

filtered signal. In the feedback path, the kurtosis of  ̃   , is maximized and the inverse 

filter is modified accordingly. The kurtosis of the residual signal is given by 

       
   ̃     

    ̃     
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As proved in [21], by taking the gradient of the kurtosis with respect to the inverse 

filter we obtain 

   
      

     
 

     ̃        ̃     ̂         ̃        ̃    ̂      

    ̃     
                

Similar to [74] the gradient could be approximated by 

      

     
 (

 (    ̃      ̃        ̃       ̃   )

    ̃     
)  ̂           ̂     

where      is referred to as the feedback function controlling the coefficient updates 

of the inverse filter. In order to do the inverse filtering adaptively,    ̃      and 

   ̃      are calculated recursively by 

                             ̃           ̃              ̃             

   ̃           ̃              ̃                 

where the parameter   controls the smoothness of the moment estimates. 

Consequently, the adaptive inverse filter that maximizes the kurtosis of the input 

signal can be described by the following weight update equation which represents a 

time-domain adaptive filter implementation of the method [21].  

                                                      ̂                                                              
 

where                    

                                        
 (    ̃      ̃        ̃       ̃   )

    ̃     
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and   adjusts the learning rate for the weight update of the inverse filter. However, 

according to Haykin [75] and as reflected also in [21] and [22], the time domain 

implementation of such an adaptive filter is not recommended because of the large 

variations in the eigenvectors of the autocorrelation matrices of the input signal which 

can result in very slow or no convergence. As a result, a block-frequency domain 

implementation is adopted in this work consistent with [21] and [22]. Herein, a frame-

by-frame processing of the signal is performed in the frequency domain by using the 

STFT and its inverse for transforming to and from the frequency domain. This is in 

contrast to the original implementation of the technique in [21], which utilizes the 

modulated complex lapped transform (MCLT) and its inverse for this task. The block 

length for FFT is chosen to be the same as the filter length. In the frequency domain, 

the inverse filtering equations will be 

                         ́           
 

 
∑       

    

 

   

                                                   

                                
 ́     

| ́     |
                                                                                 

where      and       are the FFT of      and  ̂     for the m-th block 

respectively, the superscript   denotes complex conjugate,      is the FFT of    at 

nth iteration, and   is the total number of blocks (i.e. frames here because each frame 

is transferred to one block in frequency domain). The second equation above, (3.17), 

is to normalize the inverse-filter weights so as to prevent the blowing up of the speech 

volume in the output. The inverse-filtered speech is obtained by convolving the 

reverberant speech with the adjusted inverse filter in the time domain.  

Henceforth, this inverse-filtering method, along with the spectral subtraction as the 
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second stage, is referred to as Algorithm 1. 

Next, inverse filtering by skewness maximization is described.  

b) Inverse Filtering by Skewness Maximization 

As implied earlier, Mosayyebpour et al. [26] observed that maximizing the skewness 

of sufficiently long LP-residuals can be a more efficient method for dereverberation 

with some advantages both in effectiveness and robustness. In this work, as a second 

technique, the skewness of the LP-residuals is maximized to update the weights of the 

inverse filter. 

The skewness is defined as  

      
   ̃     

 
 
   ̃     

 

Hence, by taking the gradient of skewness with respect to the inverse filter we will 

have 

 
      

     
 

     ̃        ̃     ̂         ̃        ̃    ̂      

 
 
   ̃     

                                     

which with the same approximation as for the kurtosis case, we obtain 

  
      

     
 (

 (    ̃      ̃        ̃       ̃   )

 
 
   ̃     

)  ̂           ̂                          

where with the same weight update equation, (3.14), we will have  

       
 (    ̃      ̃        ̃       ̃   )

 
 
   ̃     
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Here again the inverse-filtering and skewness maximization are performed in the 

frequency domain; therefore, (3.16) and (3.17) hold. The only difference is that in 

skewness maximization the length of the inverse filter and the parameter   (delay of 

the DLLP) are different.  

Unlike kurtosis maximization, skewness maximization is sensitive to the inverse-filter 

length. In other words, for longer reverberations, longer inverse-filter length should be 

adopted. By investigating this effect, Mosayyebpour et al. [26] have found the 

optimum inverse-filter length for different RIR lengths for satisfactory performance 

with the lowest computation. The same general rule is applied in this work. This 

means for longer RIR a longer inverse-filter length is chosen. However, based on our 

experiments, the optimal number of taps in this work range from 1024 taps for RIR 

with            and            to 2048 taps for           . One source of 

discrepancy of the inverse-filter lengths in our work with those of Mosayyebpour et 

al. [26], could be due to the differences in the implementation of simulated RIRs. 

Hereafter, this inverse-filtering method, along with spectral subtraction as the second 

stage, is referred to as Algorithm 2. 

It may be mentioned that the delayed long-term LP increases the execution time of the 

algorithms due to the delay   and due to the fact that calculations of the long-term 

correlations are performed on large frames of length  . In addition, prewhitening, as 

another phase of linear prediction, is expected to add to the execution time of the 

algorithms as compared to the method of Wu and Wang [22] and that of 

Mosayyebpour et al. [26].  
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In the next section, the second stage of the algorithm, spectral subtraction, is 

described  

3.2.2. Spectral Subtraction 

As the second part of the algorithms, a nonlinear spectral subtraction stage, similar to 

that in [22], is implemented. This is to further suppress the long reverberations in the 

observed signal.  

As mentioned before, an impulse response, like the one shown in Fig. 3.4, consists of 

two parts: early and late impulses. The late impulses, which represent the effects of 

late reverberations in a room impulse response, have damaging effect on the quality of 

inverse-filtered speech. Thus, it is helpful to spectrally estimate the late reflections 

and subtract them from the reverberant speech in the spectral domain. It is notable 

that although in these algorithms the inverse-filtered speech has been derived using 

the long-term linear prediction, which in turn alleviates the problem of late reflections 

more than in conventional linear prediction, spectral subtraction can still enhance the 

Fig. 3.4. RIR with RT60=0.5 s simulated by image method. 
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quality of speech signal further, since it does the dereverberation in spectral domain 

rather than in time domain [22].  

In order to suppress late reverberations a number of methods have been introduced. 

Amongst these, several algorithms have tried to spectrally subtract the estimated 

spectrum of late reflections from that of the reverberant signal. However, in general, 

the differences in proposed algorithms have been twofold: 

1. The way the spectra of long reverberations are estimated. 

2. The way the spectral subtraction is performed on the spectra including linear 

or nonlinear subtraction, thresholds and constraints.   

As an example, Kinoshita et al. [27] developed a dereverberation method based on 

spectrally subtracting the late reverberations from the reverberant signal. They used 

normal spectral subtraction, but employed a different technique to estimate the long 

reverberations. By using multiple-step linear prediction, including pre-whitening and 

delayed long-term linear prediction, they obtained a set of appropriate filter 

coefficients to be applied to the reverberant signal and estimated the late 

reverberations. Afterwards, they employed a simple spectral subtraction to subtract 

the long reverberation components from the reverberant signal.  

Wu and Wang [22], on the other hand, use a spectral subtraction that estimates the 

late-impulse components by a Rayleigh function and subtracts them in the spectral 

domain considering a specific time lag and also different thresholds. This is a rather 

complex, yet promising spectral subtraction method. The method is used in spectral 

subtraction phase of our algorithm.   



70 

 

The method is based on the fact that effects of late impulse components result in the 

smoothing of the signal spectrum in time. Therefore, it is assumed that the power 

spectra of late impulses can be modeled as smoothed form of the power spectrum of 

the inverse-filtered speech which is shifted by a specific time lag [22]. This can be 

shown as 

                                                                                                                   

where            and          , respectively, represent the short term power-spectra 

of the late impulse components and that of the inverse-filtered speech, index   stands 

for the frequency bin and index   refers to the time frame. The right side is 

convolution of the smoothing function,     , with the spectrum of the inverse-filtered 

speech at the time frame  . The spectrum is magnitude squared of the STFT of the 

signals. Hamming windows of length 16 ms with 8-ms overlap are used for STFT. 

The shift of   in the smoothing function indicates the delay of the late impulse 

components. Disregarding the reverberation characteristics, and considering only the 

speech characteristics in general, the border of distinction between early and late 

reverberations in speech is commonly set at 50 ms. This time interval translates to 7 

frames for the windowing in our work. Consequently,     is used here. In addition, 

  is a scaling factor controlling the relative strength of late impulses and empirically 

is set to 0.32. A detailed analysis of the effect of changing the scaling factor,  , and its 

relation to reverberation time is given in [22], although it has been concluded that its 

detailed values do not matter. 

Due to the shape of the impulse response, an asymmetrical smoothing function, 
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namely, Rayleigh distribution, is chosen for estimating late impulses as follows 

    {
     

   

  
   (

       

   
)                    

                                                      

                                                       

The smoothing function is illustrated in Fig. 3.5. The overall spread of the function is 

controlled by parameter  , which is supposed to be smaller than   and in this 

implementation is set to 4 empirically.  

Owing to the long-term uncorrelation of speech signal, early and long reflections can 

be assumed to be almost uncorrelated. Hence, the power spectrum of the early-

impulse components can be estimated by subtracting the power spectrum of the late-

impulse components from that of the inverse-filtered speech [22]. Moreover, this 

power spectrum can be used as an approximation of the power spectrum of the 

original clean speech. 

In this algorithm, spectral subtraction is performed according to the following 

equation 
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Fig. 3.5. The smoothing function corresponding to equation (3.21) for  a = 5 [22]. 
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|       |
 

              [
                              

          
  ]                      

where         is the threshold of the attenuation of the late components 

corresponding to a maximum of 30 dB, and |       |
 
and            represent the 

short-term spectra of processed speech and inverse-filtered speech, respectively. 

Another important part of the employed spectral subtraction method, is the detection 

of silent gaps in the speech signal and further suppression of reverberations in such 

frames. Therefore, the inverse-filtered signal is first normalized so that the maximum 

energy of frames is unity. Then, if a frame’s energy level is lower than a predefined 

threshold,   , the frame is considered to be a candidate for a silent frame. Next, for 

such frames a second condition is checked. If the proportion of the energy value of the 

inverse-filtered speech to the energy value of processed speech,            , is 

greater than a second threshold,   , the frame is identified as a silent frame for which 

all the frequency bins are attenuated by 30 dB. The silent frame detection rules are as 

follows 

                     {

                             

  
     

     
                           

 

In our implementation of spectral subtraction, except for     , which is in 

accordance with the MATLAB source code of the algorithm, the value of all other 

parameters, including           are identical to the original values suggested in 
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[22]
3
.  

3.3. Summary 

In this chapter two new algorithms have been proposed for single-channel speech 

dereverberation. The proposed algorithms consist of two stages. The first stage of the 

algorithms has two phases, pre-whitening followed by delayed long-term linear 

prediction.  In Algorithm 1, the kurtosis of the resulting LP-residual signal was 

maximized to form the inverse filter; whereas in Algorithm 2, the skewness of the 

signal was employed rather than the kurtosis. The second stage of the algorithms is a 

nonlinear spectral subtraction, as proposed by Wu and Wang [22]. Based upon the 

theoretical analysis given, the resulting algorithms should be capable of removing 

both the short and long reflections more effectively for RIRs with short and long 

reverberation times. Also, it is expected that, due to the prewhitening and the spectral 

subtraction utilized in the proposed algorithms, they would be relatively more robust 

to the background noise. 

In the next chapter, details of the experiments conducted to assess the performance of 

the proposed algorithms are given. Also, the results are compared to those of Wu and 

Wang [22] and Mosayyebpour et al. [26], which are among the most relevant and 

most promising single-channel dereverberation algorithms at present. 

 

                                                 
3
 The implementation of spectral subtraction has been according to the available MATLAB code associated with 

[22] available at http://www.cse.ohio-state.edu/~dwang/pnl/shareware/wu-taslp06/. 
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Chapter 4 

Performance of Proposed Algorithms 

4.1. Introduction 

This chapter is concerned with the performance evaluation of the two dereverberation 

algorithms proposed in Chapter 3 and comparison of their performance with that of 

two of the most successful existing single-channel dereverberation algorithms. First, 

the experimental setup and the parameters used in the implementation of the proposed 

and the existing algorithms are described. Then, the results of the algorithms obtained 

using qualitative and quantitative measures are discussed. The measures chosen are 

based on the type of the algorithms and are consistent with similar works in the 

literature.  

4.2. Experimental Setup and Simulation Parameters 

In this study, the sampling frequency for both the speech signals and the room 

impulse responses is chosen to be            . Delayed long-term LP filter uses a 

filter of length          taps. The delay factor for the first proposed algorithm 

(Algorithm 1) is         samples. However, for the second proposed algorithm 

(Algorithm 2), it was observed that a reduced delay of       is more effective. In 

contrast to the typically-fixed short-order LP in previous works, the short-order LP in 

the pre-whitening phase of this work has a varying filter order of 20, 14, and 6 taps 
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for RIRs with reverberation times of 0.9, 0.7, and 0.5 s, respectively. The reason for 

choosing such a variable pre-whitening order has been explained in part   of Section 

3.2.1. Simulations are performed on the TIMIT speech database including 32 speakers 

from 8 different dialects of English language
4
. The length of each utterance is about 

two seconds. For the inverse filtering part, we choose         ,         and 

the number of iterations to be 1000. These are identical to the parameters used in the 

implementation of Wu and Wang [22] and Mosayyebpour et al. [26]. The room 

impulse responses are generated based on the image method introduced by Allen and 

Barkley [76]. In our study, the MATLAB implementation of this method by Lehmann 

is used
5
. An example of the RIR of the simulated rooms with reverberation time of 

           was depicted in Fig. 3.4. The simulated room is of dimensions (6×4×3) 

meters, with the microphone positioned at (4, 1, 2) and the source positioned at (2, 3, 

1.5). The reflection coefficients of the walls are [0.95, 0.95, 0.85, 0.85, 0.80, 0.80]. 

Two more rooms with            and            are simulated. By using the 

Schroeder method
6
, the      values are validated after simulation and some 

necessary minor modifications are performed.  

The proposed algorithms are compared with those of Wu and Wang [22] and 

Mosayyebpour et al. [26], which are the two important existing algorithms for single-

channel dereverberation and inverse-filtering of speech, respectively. As the code
7
 of 

the algorithm of [22] is available, this algorithm is implemented in a way identical to 

                                                 
4 The TIMIT database is a licensed database available for purchase at 

http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC93S1.  
5 http://www.mathworks.com/matlabcentral/fileexchange/20962-image-source-method-for-room-impulse-

response-simulation-room-acoustics. 

 
6 http://www.mathworks.com/matlabcentral/fileexchange/35740-blind-reverberation-time-

estimation/content/utilities/RT_schroeder.m. 
7
 The source code is available at http://www.cse.ohio-state.edu/~dwang/pnl/shareware/wu-taslp06/ 

http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC93S1
http://www.mathworks.com/matlabcentral/fileexchange/20962-image-source-method-for-room-impulse-response-simulation-room-acoustics
http://www.mathworks.com/matlabcentral/fileexchange/20962-image-source-method-for-room-impulse-response-simulation-room-acoustics
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the source code available. The algorithm of [26] is implemented according to the 

information, the parameters and all the considerations regarding the implementation 

issues as reported in [26]. These considerations include, for example, the inverse filter 

length and the data size.  

4.3. Equalized Impulse Responses and Energy Decay Curves 

Fig. 4.1 shows the original RIR with            along with its equalized versions 

by the proposed Algorithms 1, and 2, and those of Wu and Wang [22] and 

Mosayyebpour et al. [26]. The equalized RIRs are the results of the convolution of the 

impulse response of the derived inverse filter with the original RIR. This is to 

evaluate the performance of the inverse-filtering stage of the algorithms. As can be 

seen from the figure, associated with a long RIR of           , the inverse 

filtering of the proposed Algorithms 1 and 2 demonstrate a superior capability in 

suppressing the late impulse components as compared to the algorithm of Wu and 

Wang [22]. It should be pointed out that the late impulse components are more 

deleterious to the quality of speech signal both for perception and for automatic 

speech recognition systems. On  the other hand, at first glance, the equalized RIR by 

the method of Mosayyebpour et al. [26] seems to be more succesful in suppressing 

the short and long impulse components. However; it has two drawbacks. First, the 

equalized RIR by the method of Mosayyebpour et al. [26] has two rather distant peak 

impulses. This, as will be examined later by using a reverberation time estimation 

method, increases the reverberation time of the RIR. Second, this equalized RIR does 

not preserve the overall shape of the original RIR. This results in a speech signal that 

does not sound natural.  
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(c) 

 (b) (e) 

(d) 
(a) 

Fig. 4.1. (a). Room Impulse response with RT60=0.9 s, (b) the same RIR equalized by Algorithm 

1, (c) the same RIR equalized by Algorithm 2, (d) the same RIR equalized by the algorithm of Wu 

and Wang [22], and (e) the same RIR equalized by the algorithm of Mosayyebpour et al. [26]. 
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Fig. 4.2 depicts the original RIR with            along with its equalized versions 

by Algorithm 1, Algorithm 2, the method of Wu and Wang [22] and that of 

Mosayyebpour et al. [26]. In this figure, the difference between the algorithms is 

more clear. Here, the methods of Wu andWang [22] and Mosayyebpour et al. [26] 

suppress almost all the impulses except for one impulse related to the direct path. In 

contrast, in Algorithm 1, although equalization has removed some mid to late 

impulses, the overal pattern of the RIR is not changed. This is helpful for maintaining 

the overal perceived sound quality and naturalness of the speech. As will be examined 

shortly, as compared to the the existing algorithms under experimentation here, the 

equqlized RIRs by the proposed algorithms have less or equal reverberation times 

while preserving the overal pattern of the RIR. 

In order to compute the reverberation times of the equalized RIRs, the Schroeder 

method is used in our work. This mehod, whose reference of the MATLAB code was 

given before in Section 4.2, uses the energy curve of the RIRs in order to calculate the 

reverberation time. Fig. 4.3 illustrates the energy curve of the original RIR with 

           along with its equalized versions by different algorithms. A close look 

at Fig. 4.3, and considering the fact that the x axis is not of the exact same length in 

time in different graphs, indicates that all the equalized RIRs experience more energy 

decay than the original RIR. The shape of the energy curves follows and confirms the 

shape of the impulse responses. For instance, in Fig 4.3 (e), the energy curve includes 

two drastic drops which correspond to the two peak impulses in the impulse response 

shown in Fig 4.1 (e). As well, it can be detected that the equalized RIRs by the 

proposed algorithms experience a little bit of more decay  at the end as compared to 
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the other two algorithms. Also, Fig. 4.4 depicts the energy decay curves of the 

original RIR with              along with its equalized versions by different 

algorithms. The comments made for Fig. 4.3 hold true for Fig. 4.4 also. By applying 

the Schroeder method to these energy decay curves, the reverberation time values of 

the equalized RIRs are calculated. For the purpose of simplicity and clarity of the 

figure, the details related to the calculation of      valuses by using the Schroeder 

method are not shown in the figure. The difference in the reverberation times between 

the equalized RIRs is only clear when looking at Table 4.1, which includes the 

estimated      values for the same impulse responses. Comparing the estimated 

     values of the table confirms the superior capability of Algorithms 1 and 2 to 

that of Wu and Wang [22] and Mosayyebpour et al. [26] in equalizing the RIR. For 

both RIR with              and RIR with              the two proposed 

algorithms result in equalized RIRs with      values less than that of the original 

RIR and those of the two benchmark algorithms. This, in turn, means the inverse 

filters of our algorithms are more successful in cancelling the reverberations in the 

speech signal.  
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(c) 

(a) (d) 

(b) 
(e) 

Fig. 4.2. (a). Room Impulse response with RT60=0.5 s, (b) the same RIR equalized by 

Algorithm 1, (c) the same RIR equalized by Algorithm 2, (d) the same RIR equalized by the 

algorithm of Wu and Wang [22], and (e) the same RIR equalized by the algorithm of 

Mosayyebpour et al. [26]. 
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(c) 

(e) (b) 

(d) (a) 

Fig. 4.3‎. Energy decay curves for (a) the original RIR with RT60 = 0.9 s, (b) the same RIR 

equalized by Algorithm 1, (c) the same RIR equalized by Algorithm 2, (d) the same RIR equalized 

by the algorithm of Wu and Wang [22], and (e) the same RIR equalized by the algorithm of 

Mosayyebpour et al. [26]. 
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(a) (d) 

(e) 
(b) 

(c) 

Fig. 4.4. Energy decay curves for (a) the original RIR with RT60 = 0.5 s, (b) the same RIR 

equalized by Algorithm 1, and (c) the same RIR equalized by Algorithm 2, (d) the same RIR 

equalized by the algorithm of Wu and Wang [22], and (e) the same RIR equalized by the 

algorithm of Mosayyebpour et al. [26]. 
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Table 4.1. Estimated RT60 values for the original RIR and equalized RIRs by different methods for 

RT60 = 0.5 s and 0.9 s. 

 

 

4.4. Normalized Segmental Signal to Reverberation Ratio 

Fig. 4.5 shows the normalized segmental SRR values of the inverse-filtered speech 

signals by different algorithms for RIRs with three different reverberation times. The 

figure also depicts the scores of the reverberant speech for the purpose of comparison. 

By comparing the inverse-filtered signal by the proposed algorithms to that of Wu and 

Wang [22] and Mosayyebpour et al. [26] for three different reverberation times of 

                 and      , we see that in all the three cases, the inverse-filtering 

part of the proposed algorithms demonstrate a greater SRR score compared to their 

corresponding algorithms. In other words, Algorithm 1 shows a better dereverberation 

performance compared to that of Wu and Wang [22], both of which use kurtosis 

maxmization, and Algorithm 2 that uses skewness maximization outprforms the 

RT60 = 0.5 s 

Algorithm Original 

RIR 

Algorithm 

1 

Algorithm 

2 

Wu & 

Wang [22] 

M. et 

al.[26] 

Estimated 

RT60 (s) 
0.52154 0.4582 0.50059 0.51151 0.5089 

RT60 = 0.9 s 

Algorithm Original 

RIR 

Algorithm 

1 

Algorithm 

2 

Wu & 

Wang [22] 

M. et 

al.[26] 

Estimated 

RT60 (s) 
0.91513 0.88444 0.8612 0.91617 0.96075 
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Fig. 4.5. Normalized segmental SRR values for reverberant speech and inverse-filtered speech 

signals by various algorithms in different reverberation times. 

method of Mosayyebpour et al. [26], both of which use skewness maximization. The 

SRR level of the reverberant speech is found in the middle of the graph being much 

higher than the method of Wu and Wang [22] and, for the first two reverberation 

times, significantly higher than that of Algorithm 1. It is, in turn, lower than that of 

Mosayyebpour et al. [26] for the first two reverberation times and much lower than 

that of Algorithm 2 for all the three reverberation times. It is specifically interesting to 

note that the method of Mosayyebpour et al. [26] fails to maintain its performance for 

RIR with             . Likewise, Algorithm 2, which similarly uses skewness 

maximization, experiences a significant drop in its SRR score for RIR with      

     . This is while Algorithm 1, which is based on kurtosis maximization, does not 

experience such an incline. However, the SRR score of the inverse-filtering stage of 

Algorithm 2 is still significantly higher than that of the other algorithms even for 
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            . Thus, it can be concluded that the inverse-filtering part of Algorithm 

2 demonstrates the best performance among all the inverse-filtering methods 

compared here.  

Fig. 4.6 depicts the normalized segmental SRR scores for the fully-processed speech 

signals by the two-stage algorithms, namely the algorithm of Wu and Wang depicts 

the SRR score of the reverberant speech signal. It can be easlisy seen that both 

Algorithms 1 and 2 outperform the method of Wu and Wang [22]. Algorithm 2, 

whose SRR score is well above that of the other algorithms, demonstrates the best 

performance with a substantial margin. Again, the reverberant speech, with a SRR 

score well below Algorithm 2, shows a higher SRR than that of Wu and Wang [22] 

but less than that of Algorithm 1 for the last two reverberation times. It should be 

noted that had we added the same second stage to the inverse-filtering algorithm of 

Mosayyebpour et al. [26], our Algorithm 2 would outperform the results of that 

Fig. 4.6. Normalized segmental SRR values for reverberant speech and fully processed speech 

signals by various algorithms in different reverberation times. 
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algorithm as well, since it did so for the first stage (inverse-filtering). 

4.5. Automatic Speech Recognition (ASR) and Perceptual 

Evaluation of Speech Quality (PESQ) Tests 

While a review of the literature on the dereverberation evaluation casts doubt on the 

correlation of the results of ASR and PESQ measures with dereverberation as they are 

not directly developed for dereverberation assessment, they offer strong measures of 

the overall quality of the speech signal. Therefore, they can be employed along with 

other measures, which are known to have more correlation with dereverberation 

evaluation such as the normalized segmental signal to reverberation ratio.  

The PESQ implementation is performed with the help of the MATLAB 

implementation associated with [77].
8
 Both the narrowband and wideband 

implementation results are included.  

The ASR measure
9
, on the other hand, is a simulated automatic speech recognition 

test, which gives a confidence measure to assess the closeness of the text to the speech 

utterance associated with it. In other words, it is a test to simulate a subjective test 

performed on human listeners for which the result is shown as word error rates. The 

ASR simulation test is a solution to the subjective evaluation of word error rates that 

can be cumbersome and time-consuming.   

The PESQ and ASR test results along with normalized SRR values of speech signals 

are given in Tables 4.2, 4.3 and 4.4. In addition, wideband PESQ scores for the same 

                                                 
8 http://www.utdallas.edu/~loizou/speech/software.htm 
9 The ASR evaluation has been carried out based on the toolbox available at 

http://mirlab.org/jang/matlab/toolbox/asr/. 
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signals in three reverberation times are given in Table 4.5. These tables give the 

results for the first stage (inverse filtering) as well as for the complete algorithms in 

the case of the proposed algorithms and that of Wu and Wang [22] and Mosayyebpour 

et al. [26]. The reverberant, the inverse-filtered, and the fully-processed speech 

signals are indicated as ‘rev’, ‘inv’, and ‘proc’, respectively. As the method of 

Mosayyebpour et al. [26] is only an inverse-filtering algorithm and it does not include 

a second stage, and since they have addressed dereverberation as one of the 

applications of their inverse-filtering algorithm, the results of their algorithm are 

repeated in the column for the fully-processed signal. For each column, the best value 

is highlighted in bold.  
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Algorithm 

Normalized segmental 

SRR (dB) 

ASR (confidence 

measure) PESQ score (NB) 

 rev inv proc rev inv proc rev inv proc 

Algorithm 1 -26.6 -28.13 -26.1 75.02 72.53 68.56 2.06 1.95 1.77 

Algorithm 2 -26.6 -21.1 -17.6 75.02 71.95 65.26 2.06 2.06 1.83 

W. & W. [22] -26.6 -32.1 -30.0 75.02 68.03 66.51 2.06 1.55 1.24 

M. et al. [26] -26.6 -22.2 -22.2 75.02 72.42 72.42 2.06 1.59 1.59 

 

 

Algorithm 
Normalized segmental 

SRR (dB) 

ASR (confidence 

measure) 
PESQ score (NB) 

 rev inv proc rev inv proc rev inv proc 

Algorithm 1 -25.5 -28.7 -26.9 78.94 75.70 71.50 2.20 2.04 1.81 

Algorithm 2 -25.5 -22.3 -19.5 78.94 75.5 68.6 2.20 2.14 1.85 

W. & W. [22] -25.5 -31.2 -29.6 78.94 72.99 69.46 2.20 1.60 1.29 

M. et al. [26] -25.5 -21.5 -21.5 78.94 75.70 75.70 2.20 1.64 1.64 

 

 

Table 4.2. Summary results for the reverberant, the inverse-filtered, and the fully-processed speech 

for RIR with reverberation time of 0.7 s. 

Table 4.3. Summary results for the reverberant, the inverse-filtered and the fully-processed speech 

for RIR with reverberation time of 0.5 s. 
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Algorithm 
Normalized segmental 

SRR (dB) 

ASR (confidence 

measure) 
PESQ score (NB) 

 rev inv proc rev inv proc rev inv proc 

Algorithm 1 -27.23 -27.53 -24.58 68.48 64.36 56.87 1.97 1.92 1.69 

Algorithm 2 -27.23 -25 -22.3 68.48 62.63 54.57 1.97 1.87 1.62 

W. & W. [22] -27.23 -34.21 -31.62 68.48 58.48 53.35 1.97 1.69 1.35 

M. et al. [26] -27.23 -30.1 -30.1 68.48 63.33 63.33 1.97 1.70 1.70 

 

 

Algorithm RT60=0.5 s RT60=0.7 s RT60=0.9 s 

 rev inv proc rev inv proc rev inv proc 

Algorithm 1 1.44 1.33 1.26 1.34 1.28 1.23 1.28 1.26 1.22 

Algorithm 2 1.44 1.39 1.27 1.34 1.36 1.27 1.28 1.26 1.21 

W. & W. [22] 1.44 1.15 1.11 1.34 1.14 1.10 1.28 1.19 1.14 

M. et al. [26] 1.44 1.16 1.16 1.34 1.15 1.15 1.28 1.19 1.19 

 

Table 4.5. Wideband PESQ scores for the reverberant, the inverse-filtered, and the fully-processed speech 

signals for RIRs with reverberation time values of 0.5, 0.7 and 0.9 s. 

Table 4.4. Summary results for the reverberant, the inverse-filtered, and the fully-processed speech for RIR 

with reverberation time of 0.9 s. 
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As seen from Tables 4.2–4.4, the reverberant speech, in general, obtains greater score in 

PESQ and ASR tests compared to all the processed signals by all the algorithms in all the 

three reverberation times. This confirms the previously mentioned fact that these two 

measures are not correlated with dereverberation. However, it can be concluded that the 

proposed algorithms produce more intelligible speech compared to that produced by the 

existing algorithms, since both in the inverse-filtering and in spectral subtraction stages 

the PESQ values are higher than that for the two other algorithms.  

On the other hand, as for the ASR test results, in the inverse-filtering stage, Algorithm 1 

demonstrates superior results compared to all the other algorithms. Herein, it should be 

noted that, the results show that the spectral subtraction stage results in a reduced ASR 

score for the speech signal. Therefore, while repeating the same ASR score of the 

inverse-filtering algorithm of Mosayyebpour et al. [26] in the column for fully-processed 

speech signals, it is not surprising that this algorithm obtains the highest value. However, 

had we added the same second stage to this algorithm, the best ASR score would belong 

to Algorithm 1 in all the cases. In addition, in most cases, in terms of the ASR score, 

Algorithm 2 takes the third place after the method of Mosayyebpour et al. [26]. 

Considering the relatively high SRR score of this algorithm, one can conclude that there 

is a trade-off between suppressing reverberations and keeping the ASR score high. 

However, it should be noted that Algorithm 2 still outperforms the method of Wu and 

Wang in most cases [22].  

Table 4.5 gives wideband PESQ scores for the same speech signals of the TIMIT 
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database. It is noted that the wideband PESQ scores in general are more suitable for 

dereverberation, since they are not based on the assumption that the speech signal is 

restricted to the telephone band frequency spectrum. However, the table suggests that the 

wideband PESQ scores follow almost the same trend as the narrowband values do for 

different signals. 

4.6. Spectrogram Improvement 

Fig. 4.7 shows waveforms of a clean speech utterance and its reverberated version along 

with their corresponding spectrograms for RIR with a reverberation time of 0.9 s. In all 

the spectrograms presented in this work, since the voice activity level of the signal is 

important as it clearly affects the color map of the spectrograms, in order to have a proper 

comparison, all the signals are level-adjusted to zero activity level according to the ITU-T 

recommendation P.56
10

. The smearing effect of reverberation can be clearly seen both in 

the speech waveform and in the spectrogram, where the frequency pattern of the signal 

with respect to time is highly smeared.  

Fig. 4.8 illustrates the waveforms and spectrograms of inverse-filtered speech signals by 

Algorithms 1 and 2 for the same speech utterance as in Fig. 4.7. Comparing the inverse-

filtered signals from Fig. 4.8 to the clean and the reverberated signals in Fig. 4.7, it is 

noted that some reverberation effects have been removed. However, the spectrograms do 

not show a significant change at this stage.  

                                                 
10 The MATLAB code for voice activity level adjustment was extracted from the toolbox VOICEBOX available at: 

http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/doc/voicebox/activlev.html 



92 

 

Fig. 4.9 depicts the waveforms and spectrograms of inverse-filtered speech signals using 

the methods of Wu and Wang [22] and Mosayyebpour et al. [26] for the same speech 

utterance as in Fig. 4.7. Both from the spectrograms and the waveforms, it is seen that the 

inverse-filtered speech signals by these two methods are more smeared than the inverse-

filtered speech signals by our proposed algorithms shown in Fig. 4.8. Between the two 

algorithms, however, Fig. 4.9 suggests that the one by the method of Mosayyebpour et al. 

[26] contains more smearing than the one by Wu and Wang [22] does. Moreover, by 

looking at Fig. 4.8 and Fig. 4.9, it can be concluded that, among the four, the inverse-

filtered signal by the method of Mosayyebpour et al. [26] includes the largest amount of 

smearing by reverberation. 

Fig. 4.10 depicts the waveforms and the spectrograms of the fully-processed speech 

signals by Algorithms 1 and 2 for the same speech utterance. By comparing these signals 

to the reverberant speech in Fig. 4.7, it can be clearly seen that the smearing effect is 

removed to a significant extent. Also, referring and comparing to the clean signal, 

between the two proposed algorithms, one may conclude that Algorithm 2 is more 

successful in dereverberation. However, although the difference between the processed 

signals by the two algorithms is clear, it is hard to pick one as a more successful 

algorithm only by looking at the waveforms and spectrograms.  

The waveform and spectrogram of the fully-processed speech signal by the method of 

Wu and Wang [22] for the same speech utterance is depicted is Fig. 4. 11. Again, as 

compared to the reverberant speech in Fig. 4.7, the dereverberation effect is clear. On the 
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other hand, by comparing this signal to those processed by our proposed algorithms, 

shown in Fig. 4. 10, one can conclude that the proposed algorithms leave less smearing. 

This smearing is detectable both in the waveform and in the spectrogram, where, in some 

regions with a high fluctuation of energy, which translates to sharp color changes in the 

spectrogram, the color contrast is recovered by the proposed algorithms, but it is lost in 

the processed signal by the method of Wu and Wang [22]. As a result, the overall pattern 

of the spectrogram is more preserved in the case of the proposed algorithms.  

It is worth reminding that, since the method of Mosayyebpour et al. [26] shows inferior 

results in inverse filtering of the speech as compared to the proposed algorithms, although 

adding the same second stage to it would result in a better performance, the performance 

would be still inferior to that of the proposed algorithms.  
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(a) 

(b) 

(c) 

(d) 

Fig. 4.7. A clean speech utterance from the TIMIT database and the associated reverberant speech signal 

along with the corresponding level-normalized spectrograms. The reverberant speech is produced by RIR 

with reverberation time of 0.9 s. 
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(b) 

(a) 

(c) 

(d) 

Fig. 4.8. The inverse-filtered speech signals by Algorithms 1 and 2 for the same speech utterance as in 

Fig. 4.7. along with the corresponding level-normalized spectrograms  
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(b) 

(a) 

(d) 

(c) 

Fig. 4.9. The inverse-filtered speech signals by the algorithm of Wu and Wang [22] and the algorithm of 

Mosayyebpour et al. [26] for the same speech utterance as in Fig. 4.7. along with the corresponding level-

normalized spectrograms. 
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(a) 

(b) 

(c) 

(d) 

Fig. 4.10. The fully-processed speech signals by Algorithms 1 and 2 for the same speech utterance as in 

Fig. 4.7. along with the corresponding level-normalized spectrograms.  



98 

 

4.7. Robustness against Noise 

In this section, the robustness of the proposed algorithms is investigated and compared to 

that of the other two algorithms in the presence of background noise. The noisy speech 

data are 30 speech utterances by a male speaker in the presence of a train noise in the 

background. The speech is mixed with the background noise at 4 different levels to 

provide SNR values from 0 dB (the noisiest) to 15 dB
11

. The normalized SRR results for 

the inverse-filtered speech signals and the fully-processed signals are obtained and 

                                                 
11

 The noisy speech data was extracted from NOIZEUS corpus available at 

http://www.utdallas.edu/~loizou/speech/noizeus/ 

(b) 

(a) 

Fig. 4.11. The fully-processed speech signal by the algorithm of Wu and Wang [22] for the same 

speech utterance as in Fig. 4.7. along with the corresponding level-normalized spectrogram. 
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compared for the four SNR levels. In this experiment, both the speech signals and the 

RIRs are sampled at         . 

Fig. 4.12 contains the normalized SRR results of the inverse-filtered speech signals for all 

the four inverse-filtering algorithms for four input SNR levels for three different 

reverberation times. For comparison, the normalized SRR level of the reverberant signal 

is also depicted. As can be seen, for almost all the four SNR levels and for all RIRs, the 

inverse-filtering of the proposed algorithms offers better SRR results as compared to the 

other two algorithms. Among the two proposed algorithms, inverse-filtering by 

Algorithm 2 shows a significantly better performance. As compared to the reverberant 

signal, only for RIR with      of 0.9 s the inverse-filtered speech by Algorithm 2 

improves the SRR in noisy background situation in three out of the four SNR levels. In 

all other cases the reverberant signal has the best SRR score. 

In Fig. 4.13, the normalized SRR results of the fully-processed speech signals by the 

three two-stage algorithms for four input SNR levels for three reverberation times are 

depicted. Again, the normalized SRR level of the reverberant speech signal is also shown. 

It can be seen that the best SRR score in all cases belongs to Algorithm 2. The 

reverberant signal, Algorithm 1, and the method of Wu and Wang [22] take up the next 

positions, respectively. 

The modified Bark spectral distortion (MBSD) scores for the inverse-filtering stage of the 

algorithms for the four SNR levels for three reverberation times are shown in Fig. 4.14. 

The figure indicates that in almost all the cases, among the four inverse-filtering 
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algorithms, Algorithm 2 suffers from the least distortion. In general, Algorithm 1, the 

methods of Mosayyebpour et al. [26] and Wu and Wang [22] occupy the next positions, 

respectively. In addition, especially for the two higher SNR levels, the reverberant signal 

shows the least amount of distortion as compared to the inverse-filtered signals using the 

various algorithms. 

Fig. 4.15 depicts the MBSD score results for the fully-processed speech signals using the 

different algorithms in the four input SNR levels for three reverberation times. The 

normalized SRR level of the reverberant speech is also included in the graphs. The figure 

indicates that for input SNR levels of 10 dB and less, in most cases, Algorithm 2, 

Algorithm 1, the method of Wu and Wang [22] and the reverberant signal in that order 

suffer from least distortion. However, for input SNR value of 15 dB, and especially for 

RIR with reverberation time of 0.9 s, Algorithm 2 loses the first place while Algorithm 1 

shows the best performance among the three algorithms.  

Finally, it is to be noted that many of the algorithms proposed in the literature for speech 

dereverberation provide stable performance only for input speech signals with higher 

SNR levels. For instance, Kinoshita et al. [27] have reported a stable performance of their 

algorithms for SNR levels higher than 20 dB, while the algorithms proposed in this thesis 

show stable results for SNR levels as low as 0 dB. 
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Fig. 4.12. Normalized segmental 

SRR with respect to SNR value 

of the input signal (clean signal 

mixed with different levels of 

background noise) for the 

inverse-filtering stage of the 

various algorithms and for the 

reverberant signal. The graphs 

show results for three different 

RIRs having reverberation times 

of (a) 0.5 s, (b) 0.7 s, and (c) 0.9 

s. 
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Fig. 4.13. Normalized segmental 

SRR with respect to SNR value 

of the input signal (clean signal 

mixed with different levels of 

background noise) for the fully-

processed speech signals by the 

different two-stage algorithms 

and for the reverberant signal. 

The graphs show results for three 

different RIRs having 

reverberation times of (a) 0.5 s, 

(b) 0.7 s, and (c) 0.9 s. 
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Fig. 4.14. MBSD score with respect to 

SNR value of the input signal (clean 

signal mixed with different levels of 

background noise) for the inverse-

filtering stage of the different 

algorithms and for the reverberant 

signal. The graphs show results for three 

different RIRs having reverberation 

times of (a) 0.5 s, (b) 0.7 s, and (c) 0.9 s. 
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Fig. 4.15. MBSD score with respect 

to SNR value of the input signal 

(clean signal mixed with different 

levels of background noise) for the 

the fully-processed speech signals by 

the different two-stage algorithms and 

for the reverberant signal. The graphs 

show results for three different RIRs 

having reverberation times of (a) 0.5 

s, (b) 0.7 s, and (c) 0.9 s 
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4.8. Summary 

In this chapter, the experimental setup and the parameter settings of the implementation 

of the algorithms were first described. Then results concerning the performance of the 

proposed algorithms were obtained using some of the most relevant and frequently used 

qualitative and quantitative measures and compared to that of two of the most well-

known algorithms. It has been shown that the equalized RIRs by the inverse-filtering 

stage of the proposed algorithms result in an overall less reverberation time. In particular, 

some of the mid to late impulses have been more successfully removed; at the same time, 

the overall structure of the RIR remained more intact which results in a more natural 

sounding speech. Also, the normalized segmental SRR of the proposed algorithms in 

general is higher compared to that of the existing algorithms. This is true both when only 

the inverse-filtering is considered and when the full algorithms are examined. In order to 

compare the overall perception quality and the overall automatic speech recognition 

performance of the algorithms, PESQ (narrowband and wideband) and ASR simulation 

results have also been obtained. In most cases, the scores were in favor of one or the 

other of the two proposed algorithms. The waveforms and the spectrograms of the clean, 

the reverberant, the inverse-filtered and the fully-processed signals by various algorithms 

have also been obtained. A close examination of some of the important regions of these 

waveforms and the spectrograms (mainly the regions with a higher energy contrast), has 

shown the superiority of the proposed algorithms in suppressing the reverberant 

components and recovering the clean signal. Finally, the relative robustness of the 

proposed algorithms against background noise was investigated by measuring the 
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normalized segmental SRR and the modified Bark spectral distortion scores in four 

different input SNR levels; the results have confirmed that the proposed algorithms are 

able to maintain the dereverberation efficiency even for highly contaminated speech 

signals of SNRs close to zero.  

Finally, it should be emphasized that, since the method of Mosayyebpour et al. [26] 

consists of the inverse-filtering only, it has not been included when comparing the fully-

processed speech signals by the two-stage algorithms. However, since the results indicate 

that the inverse-filtering stage of our proposed algorithms outperforms that of 

Mosayyebpour et al. [26], after adding the same second stage to that algorithm, the 

proposed algorithms still would outperform the resulting two-stage method.   
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Chapter 5 

Conclusion and Future Work 

5.1. Concluding Remarks 

This thesis has been concerned with the problem of single-microphone dereverberation. 

The main objective of this work has been to propose new algorithms that are more 

efficient than the existing ones in suppressing both short and long reverberation 

components for short and long room impulse responses (RIRs). Based on a critical 

examination of the performance of some of the major previous works, two new two-stage 

algorithms have been proposed in this thesis. The proposed algorithms have been shown 

to meet the above-mentioned goal and to be more robust against background noise.  

The first stage of the proposed algorithms, inverse filtering, consists of pre-whitening 

followed by a delayed long-term LP filtering, whose kurtosis or skewness of the LP-

residuals is maximized to control the weight updates of the inverse filter. Due to the 

convergence problem in a time domain implementation, the kurtosis or skewness 

maximization and the inverse-filtering have been carried out in the frequency domain. 

The short-term LP for pre-whitening and the delayed long-term LP together make up the 

first stage of the proposed algorithms. In the second stage, to further improve the 

dereverberation performance, a nonlinear spectral subtraction scheme has been employed. 
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The two proposed algorithms have been referred to as Algorithm 1 or Algorithm 2 

depending on whether kurtosis or skewness of the LP-residual is maximized to control the 

weight updates of the inverse filter in the first stage.  

Algorithm 2 utilizes less delay than Algorithm 1 does and it is more sensitive to the 

adaptation of the inverse-filter length to the reverberation time. In view of this, the 

optimal inverse-filter length for each reverberation time has been obtained empirically for 

Algorithm 2.  

It has been shown that the proposed algorithms outperform some of the existing major 

dereverberation algorithms in terms of a number of qualitative and quantitative measures, 

such as equalized impulse responses and their energy decay curves and normalized 

segmental signal-to-reverberation ratio. Perceptual evaluation of speech quality and 

automatic speech recognition simulation results have also been included to compare the 

overall quality of the processed signals. Finally, an investigation has been carried out to 

demonstrate the robustness of the proposed algorithms against background noise.  

It is concluded that the proposed algorithms are more efficient in dereverberation of short 

and long reflections for RIRs with different reverberation times. In addition, they are 

more robust against the background noise. Moreover, among the two proposed 

algorithms, Algorithm 2, the one using skewness maximization, is more successful in 

dereverberating the speech signal. This has been particularly inferred from the 

comparison of the signal-to-reverberation ratio results of the proposed algorithms, in 

which there is a significant difference between the two algorithms. In most of the other 
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aspects of the comparison, the difference between the two proposed algorithms is not as 

significant.  

5.2. Scope for Future Work 

The complexity of the proposed algorithms is relatively high. The software 

implementation of the proposed algorithms results in a processing time that is 2 to 3 times 

higher than that using the method of Wu and Wang [22]. In MATLAB this means a 45- 

second processing time for a 3 to 4 second speech segment. As pointed out at the end of 

Section 3.2.1, the higher execution time of the proposed technique is firstly due to the 

long-term linear prediction in DLLP and secondly due to having prewhitening as another 

phase of linear prediction. Clearly, implementing the algorithms in a high-level 

programing language, such as C/C++, would drastically reduce the processing time of the 

algorithms possibly to an extent that might make them suitable even for real-time 

applications. This claim, of course, needs to be confirmed only after implementing the 

proposed algorithms in a high-level language. Even though the processing time of the 

proposed algorithms in MATLAB is acceptable for non-real time applications, a hardware 

implementation of the algorithms could be another task that could be undertaken in future 

after assessing the algorithms by implementing them in a high-level language such as 

C/C++. Only then, the final performance of the algorithms can be truly assessed. The 

possible hardware implementation can then be used, for example, as an integrated 

component of a device, which works with speech commands or other devices used in 

speech communication where the quality of the speech signal for recognition is important. 
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