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ABSTRACT 

Neighborhood Localization Method for Locating Construction 

Resources Based on RFID and BIM 

Mohammad Mostafa Soltani 

Construction sites are changing every day, which brings some difficulties for different 

contractors to do their tasks properly. One of the key points for all entities who work on 

the same site is the location of resources including materials, tools, and equipment. 

Therefore, the lack of an integrated localization system leads to increase the time wasted 

on searching for resources. In this research, a localization method which does not need 

infrastructure is proposed to overcome this problem. Radio Frequency Identification 

(RFID) as a localization technology is integrated with Building Information Modeling 

(BIM) as a method of creating, sharing, exchanging and managing the building 

information throughout the lifecycle among all stakeholders. In the first stage, a 

requirements’ gathering and conceptual design are performed to add new entities, data 

types, and properties to the BIM, and relationships between RFID tags and building 

assets are identified. Secondly, it is proposed to distribute fixed tags with known 

positions as reference tags for the RFID localization approach. Then, a clustering method 

chooses the appropriate reference tags to provide them to an Artificial Neural Network 

(ANN) for further computations. Additionally, Virtual Reference Tags (VRTs) are added 

to the system to increase the resolution of localization while limiting the cost of the 

system deployment. Finally, different case studies and simulations are implemented and 

tested to explore the technical feasibility of the proposed approach. 
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 INTRODUCTION CHAPTER 1

1.1 General background 

The need for coordination in construction industry is a critical key point to bring multi-

disciplines and different contractors and agents in a project together in such highly 

fragmented environment. The great amount of information and the needs for coordination 

and decision-making should encourage this sector to use new technologies in order to 

manage and organize the information sharing and exchanging. Having a smooth 

procedure for exchanging the different information within the construction phase helps 

all project entities to save their time and money. Furthermore, working in a site which is 

changing every days and it can be new and unknown for different contractors brings 

some difficulties for them to do their tasks properly. For instance, searching for the 

required resources such as equipment, tools, and materials in a large construction site can 

consume a long time for the people on the site to find and use the right resources. For 

instance, a worker can use an electronic screwdriver; after he finishes his job he may 

leave the tool somewhere near his working area. After some time another workers needs 

the same tool but he cannot find it. Therefore, he/she has to search all possible places to 

find that tool which means wasting some time. This small example shows the importance 

of managing the location for people working in a construction site. 

One of the popular technologies which have been used for organizing the information in 

the construction sector is Radio Frequency Identification (RFID) technology. By using 

this technology, the data for automatic identification of persons and objects are 

transmitted by radio waves without physical contact or line of sight between the 
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transmitter and the receiver. The following areas have a great potential for applying RFID 

in the construction industry: (1) supply chain management and logistics; (2) material, 

equipment, and tools tracking; (3) project progress management; (4) localization; (5) 

quality control; (6) lifecycle management; and (7) safety. 

Another outstanding tool for managing and exchanging building and project information 

during the lifecycle of the building is Building Information Modeling (BIM) which can 

provide a wide range of information. This digital model starts to gather the necessary 

information from the early design stage, is shared between different contractors and 

participant agents in the project, and is transferred to the owner for the operation and 

maintenance phases. 

1.2 Research objectives and contribution 

This research aims to achieve the following objectives: (1) to investigate the extensibility 

of BIM for adding RFID components as standard elements of Industrial Foundation 

Classes (IFC); (2) to investigate a method for the localization of moveable objects 

equipped with RFID tags using a hand-held reader; (3) to demonstrate the feasibility of 

proposed methods through the simulation environment and real world case studies. 
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1.3 Thesis organization  

This research will be organized as follows: 

Chapter 2 Literature Review: In this chapter different localization and RTLS 

technologies will be investigated. A summary of current indoor location-based systems 

will be presented. Then, RFID as key technology in this research, its application in 

construction industry, and RFID-based localization solutions will be studied. 

Chapter 3 BIM Extension for incorporating RFID: This chapter will cover the proposed 

procedure for adding definitions of the RFID components (i.e. tag, reader and antennas) 

to the IFC and the respective relationships with the existing definitions of IFC. 

Furthermore, a case study is developed to validate the feasibility of the proposed idea. 

Chapter 4 RFID-based localization system using VRT and ANN: The main proposed 

method of this research will be explained in this chapter. It will be shown how a user can 

find the location of moveable resources with the help of a mobile RFID reader. The 

approach has the benefit of multi-criteria clustering to choose best reference tags’ 

candidate for localization, uses VRTs instead of adding more reference tags which will be 

costly, and finds the location of the target by applying ANN. The chapter shows the 

results of our simulation and real world case studies. 

Chapter 5 Summary, Conclusions, and Future Work: In this chapter, a summary of this 

research will be presented and its contributions will be highlighted. Moreover, the 

limitations of the current work will be investigated and finally the recommendations for 

the future research will be suggested.  
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 LITERATURE REVIEW CHAPTER 2

2.1 Introduction 

This Chapter will review the literature conducted on RFID, RTLS, BIM, and 

complimentary mathematical techniques. The mentioned technologies are the foundations 

of the ideas which will be later discussed in the following chapters. The elements, 

features, and limits related to RFID technology are clarified. The literature focusing on 

different localization methods and RTLS technologies is reviewed. The potential and 

weakness of these methods are critically discussed. BIM technology is explained in this 

chapter as a digital representation of information of a building, mainly about data storage, 

data exchange, and IFC. Finally, some mathematical approaches are reviewed to support 

our proposed method in the next chapters, including clustering, VRT, and ANN. 

2.2 Localization and RTLS technologies 

2.2.1 Importance of location data 

The localization problem has received considerable attention in the area of pervasive 

computing as many applications need to know where objects are located. Location 

information is central to personalized applications in areas such as transportation, 

manufacturing, logistics, and healthcare, and it is the basis for the delivery of 

personalized and Location-Based Services (LBS) (Papapostolou and Chaouchi, 2011; Li 

and Becerik-Gerber, 2011). Furthermore, the precise objects location information can be 

used for several applications (Zhou and Shi, 2009) such as finding missing items in a 

storehouse (Hariharan, 2006), locating equipment in construction areas (Song, 2006), 
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mobile users localization inside the building (Ji et al., 2006), collision prevention 

between vehicles (Tong and Zekavat, 2007), and rescuing persons in underground mines 

(Zhang and Yuan, 2006). Monitoring of personnel movements, material locations, and 

construction equipment effectively can make the management of projects more 

productive (Khoo, 2010; Ibn-Homaid, 2002; Fan et al., 2008; Yagi et al., 2005; Grau et 

al., 2009). 

Location information is especially valuable as it has the potential to improve the 

utilization and maintenance of facilities by: (1) Helping unfamiliar users of a building by 

providing them with information to navigate around and find their destinations; (2) 

Facility Management (FM) personnel can be provided with the locations of building 

components or equipment they need to maintain or repair; (3) Locations of tools and on-

site FM personnel and the length of time they spend at each location can be analyzed to 

monitor the work procedures and improve productivity; and (4) Changes in building 

occupancy can be detected in real time through location sensing, and energy conservation 

measures, such as adjustment of lighting and air conditioning, can be automated (Li and 

Becerik-Gerber, 2011). 

2.2.2 Localization levels 

The term of localization is defined by Papapostolou and Chaouchi (2011) as the 

procedure of estimating the current position of a user or an object within a specific 

region, indoor or outdoor. The determined position can be represented in various ways 

(e.g., coordinate, region, cell, hierarchical) based on the desired application or the 

positioning system specifications. 
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Razavi and Haas (2011) discussed two methods of localization: fine-grained localization 

using detailed information and coarse-grained localization using minimal information. 

Minimal techniques are easier to perform, need fewer resources and have lower 

equipment costs; however their accuracy is lower than detailed information techniques. 

Fine-grained node localization using measurement techniques can be classified into broad 

types based on Time of Flight Techniques, Received Signal Strength (RSS) techniques, 

Lateration and Angulation Techniques, Distance-Estimation using Time Difference of 

Arrival (TDoA), Pattern Matching (radar), and Radio Frequency (RF) Sequence 

Decoding Techniques (Razavi and Haas, 2011). Coarse-grained node localization uses 

range-free or connectivity-based localization algorithms with no needs for any 

measurement techniques. In this class, some anchor sensors have stored information 

about their own location. Therefore, the locations of other sensors can be calculated 

based on connectivity information, such as which sensor is within the broadcasting range 

of which other sensors. The researches built on this method (Bulusu et al., 2000; Simic 

and Sastry, 2002; Song et al., 2006) to determine the closest known locations to the 

object instead of measuring the distance between an object and reference points. Tracking 

physical phenomena that have limited range (e.g., physical contact with a magnetic 

scanner or communication connectivity to Access Points (APs) in a wireless cellular 

network) helps to determine the presence of an object within a specific range (Razavi and 

Haas, 2011). 

2.2.3 Context-aware information delivery 

Manual processes decision-making tasks in the field can be improved by involving 

location-aware computing (Khoury and Kamat, 2009a). The context-aware information 
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delivery (Aziz et al., 2005) is able to create a user-centered mobile dynamic indoor and 

outdoor work environment. It has the potential to deliver proper information to on-site 

mobile users in order to help them take more informed decisions (Schilit et al., 1994). 

Examples of the broad range of applications, that form the basis of context awareness in 

construction and FM, include the improvement of project safety, schedule, cost (Caldas et 

al., 2006) and decision-making (Li and Becerik-Gerber, 2011). Contextual project 

information can be automatically retrieved and visualized by continuously and accurately 

tracking mobile users’ three-dimensional spatial context (i.e. position and orientation) 

(Khoury and Kamat, 2009b). Navigation information, studied by Rueppel and Stuebbe’s 

(2008), is an example of information deliverable to mobile users (Li and Becerik-Gerber, 

2011). 

Li and Becerik-Gerber (2011) identified the need to investigate the application of an 

information delivery mechanism to the following areas: (1) execution and management of 

construction activities, e.g. assembly guidance documents, are delivered to the onsite 

crew; (2) safety and security, e.g. real time monitoring the locations of onsite workers to 

prevent collisions, or to give a warning when assets are removed without authorization; 

(3) FM personnel, e.g. an onsite worker is located and his/her context analyzed, so that 

information such as maintenance history, work orders, or inspection records, is delivered 

to him/her to facilitate the maintenance work; and (4) emergency reaction, e.g. rescuers 

are guided to the shortest route inside a building. 
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2.2.4 Localization technologies 

Basically, localization systems rely on ultrasound, magnetic, infrared, vision, and RF 

technology (Pradhan et al., 2009a; Hightower and Borriello, 2001). Ultrasound-based 

systems include a transmitter to emit ultrasound pulse and a receiver to collect the 

emitted pulses to estimate the distance between the receiver and the transmitter (Pradhan 

et al., 2009a; Want et al., 1992). Although ultrasound-based systems have high accuracy, 

they need a large number of sensors which are costly compared to RF systems (Pradhan 

et al., 2009a; Hightower and Borriello, 2001). 

Magnetic-based approaches are based on the measurement of the motion with the help of 

accelerometers, gyroscopes, and magnetometer. The rate of the motion (i.e., acceleration) 

comes from an accelerometer and the type and direction of the motion are provided by 

gyroscopes (Fraden, 2011). Additionally, a magnetometer helps the system to find the 

direction of motion with respect to the earth’s magnetic field. Performing Dead 

Reckoning (DR) technique (Gelb, 1974) with a known rate, type and direction of motion 

leads to estimating the location of an object based on Inertial Measurement Unit (IMU). 

In recent years, Pradhan et al. (2009b) and Jimenez Ruiz et al. (2012) proposed 

combinatorial methods using RFID to improve the accuracy of IMU-based localization 

methods. 

Similar to ultrasound, infrared-based systems include a transmitter and a receiver but they 

utilize electromagnetic radiation of wavelength greater than visible light instead of sound 

wave to determine the distance (Pradhan et al., 2009a). Furthermore, image-based 
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localization technologies are relying on the basis of edge detection, feature recognition, 

and landmark detection using visual tags or image matching (Sim and Dudek, 2003). 

The need for the line of sight and the poor performance are two main limitations of these 

systems. The systems that use radio frequency in different ways to localize the position of 

a target are called RF-based solutions. Global Positioning System (GPS), RFID, Wireless 

Local Area Network (WLAN), Bluetooth, and ZigBee are some of the popular RF-based 

technologies used for localization. Due to their flexibility of deployment, communication 

range and possibility to work without any line of sight (except GPS), there is a strong 

trend to use this method for localization. 

 

Figure 2-1 Outline of current wireless-based positioning systems (Liu et al., 2007b) 

Unlike outdoor environment, GPS cannot meet the need for indoor positioning due to 

limitation of receiving signals from satellites. Different methods have been proposed for 

indoor localization. The following systems are addressed by Li and Becerik-Gerber 

(2011) and Liu et al. (2007b). Additionally, Figure 2-1 depicts a general overview of 
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indoor positioning systems (Liu et al., 2007b; Vossiek et al., 2003). Additionally, Taneja 

et al. (2010a) evaluated the capability of RFID, WLAN, and IMU as indoor localization 

technologies in their research for facility management field activities. 

 GPS-Based: Considering the use of high-sensitivity GPS which is suitable for weak-

signal conditions (Schon and Bielenberg, 2008) and Assisted GPS (A-GPS) with 

ability to send assisting information, such as satellite orbit information, to the receiver 

(van Diggelen, 2002), the weakness of GPS for indoor environment could be 

improved. This system is used by SnapTrack (Moeglein and Krasner, 1998), Amtel 

(Atmel, 2013), U-blox (Thiel et al., 2007), Locata (Barnes et al., 2003). 

 Inertial Navigation Systems (INS): Jiménez Ruiz et al. (2012) coupled Foot-Mounted 

IMU and RFID to achieve more accurate pedestrian indoor navigation. 

 Infrared-based solutions, Want et al. (1992) used a portable Infrared-based 

transmitter called Active Badge and fixed infrared sensors to provide zone-level 

localization. PILAS is another similar methods based on infrared sensors (Lee et al., 

2006a). 

 Vision-based solutions: Microsoft research vision group utilized multiple stereo 

cameras inside a room to determine the location of a person. The method which is 

called EasyLiving, provides the location and identity of people using the registered 

depth and images coming from the cameras (Krumm et al., 2000). Another research 

done by Kunkel et al. (2009) demonstrates using a monochrome Infrared (IR) camera 

in collaboration with RFID technology to find the exact location of the target. In 

addition to the Two Dimensional (2D) image, the Three Dimensional (3D) imaging 
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technology such as laser scanning and Flash LIDAR (LIght Detection And Ranging) 

enables determining the location of target object (Taneja et al., 2010b). 

 Ultrasound: The Cricket (Priyantha et al., 2000) and the Active Bat (Harter et al., 

2002) location systems are based on ultrasound sensors. By comparing the time of 

arrival of ultrasonic signals, they could estimate the distance between the signal 

transmitter and the receiver. Another research, named AMTRACK, used ultrasound 

sensors combined with RF sensors to improve its performance (Skibniewski and Jang, 

2007). 

 RF-based techniques: There are many technologies based on radio frequency, such as 

Bluetooth, Cellular, Ultra Wide Band (UWB), ZigBee, WLAN, and RFID, which are 

further discussed in detail in Section 2.2.5. 

2.2.5 RF-based localization 

In this section, localization techniques based on radio frequency are specifically 

reviewed. The well-known approaches, built on the basis of Bluetooth, Global System for 

Mobile communications-band (GSM-band), UWB, ZigBee, WLAN, and RFID 

(regarding the potential and advantages of RFID technology for this research, its related 

literatures are reviewed separately in the next section) are explained in the following. 

 Cellular-Based: This method refers to indoor positioning systems using global system 

of mobile/code division multiple access (such as GSM) mobile cellular network to 

find the position of the mobile user. Although this approach has a low accuracy in 

densely covered areas the accuracy can go higher (Liu et al., 2007b). Recently, 
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Oussar et al. (2011) introduced their method based on cellular telephony RSSI 

fingerprints.  

 UWB-based solutions: The radios with the absolute bandwidths of more than 500 

MHz (Megahertz), named as UWB, are based on sending ultra-short pulses (typically 

less than 1 ns) for communication between tags and receivers. Unlike conventional 

RF tags, UWB tags consume less power and provide higher accuracy but using this 

technology needs large amount of infrastructure (Gezici, et al., 2005; Liu et al., 

2007b; Becker et al., 2008; Cho et al., 2010). UbiSense (Ubisense, 2013) and Zebra 

(Gresham, et al., 2004) are two examples of RTLS based on UWB. 

 Bluetooth (IEEE 802.15): This technology has a lower bit rate (1 Mbps) and shorter 

range (approximately 10-15m) compared to WLAN (Liu et al., 2007b). 9Solution 

(9Solutions, 2013) and ZONITH (ZONITH, 2013) are providing indoor locating 

systems based on Bluetooth standard (Cruz et al., 2011). 

 ZigBee (802.15.4): ZigBee as a low-power is another technology with mesh grid 

networking ability which provides a wider range because its nodes can communicate 

with each other in addition to communication with the reader/receiver sensors. 

Currently, awarepoint (Awarepoint, 2013), Cubic (CUBIC, 2013), Tag Sense 

(TagSense, 2013), ZigBEACON (Huang and Chan, 2011), and n-Core Polaris (n-

core, 2013) are providing indoor location system based on ZigBee. 

 WLAN-based: High deployment of WLAN infrastructures inside the buildings makes 

this technology one of the popular candidates for the indoor localization systems 

(Mazuelas et al., 2009). In this area, RADAR used an Empirical method and Wall 

Attenuation Factor (WAF) model for its localization engine (Bahl and Padmanabhan, 
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2000) and Floor Attenuation Factor (FAF) was investigated by Barsocchi et al. 

(2009). Another research done by Nobles et al. (2011) investigated the effect of the 

presence of walls on signal propagation depending on the construction material of the 

wall. ARIADNE is a localization system proposed by Ji et al. (2006) and Ji and Chen 

(2010). Mengual et al. (2010) followed a similar way as previous research but they 

applied ANN for their clustering phase. Interlink Networks (Interlink Networks, 

2002) provided a single path-loss model and Lau and Chung (2007) provided a two 

phases’ path-loss model for localization proposes. Following researches (Kontkanen 

et al., 2004; Castro et al., 2001; Ladd et al., 2005; Roos et al., 2002; Schwaighofer et 

al., 2003; Youssef et al., 2002; Youssef et al., 2003; Zhao et al., 2011; Mengual et al., 

2010; Chang et al., n.d.) used the benefit of probabilistic location estimation, data 

filtering methods, clustering techniques, and Support Vector Machine (SVM) method 

based on WLAN. Finally, Vahidnia et al. (2013) used signal-space partitioning seems 

to reduce the average error. 

 RFID-Based: As this technology is selected in our proposed method, it will be 

discussed in Section 2.3 in detail. 

2.2.6 Localization methods 

The following literatures proposed different categorizations of existing localization 

methods (Pradhan et al., 2009a, Liu et al., 2007b; Torres-Solis et al., 2010, Fuchs et al., 

2011; Razavi et al., 2012; Cisco, 2006; Chan and Baciu, (n.d.); Ni et al., 2011; Mao and 

Fidan, 2009). Due to the harsh and noisy environment of construction sites, RF-based 

methods are considered the most reliable approach in this area. Therefore, the main focus 

in this research is on these methods. 
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Reviewing different survey studies in this area shows that there is a discordance in the 

definition of terms by different researches. To overcome this problem the author tried to 

expand the following sections by merging different opinions to make a clear and 

harmonized view of RF-based method categorization. 

Generally, all RF-based localization approaches can be considered as Geometric-based or 

Similarity-based (relative localization named by Biaz et al., 2005). The first one uses the 

geometric features like distance or angle (converting from Received Signal Strength 

Indicator (RSSI) value) to estimate the position of the target, which is more suitable for 

obstacle-free environment. The second group finds the location of the target based on the 

degree of signal similarity of target to each known reference point (Sanpechuda and 

Kovavisaruch, 2008). Figure 2-2 illustrates an overview of subsequent categories of the 

RF-based methods. The detail of each category will be discussed in detail in the 

following sections. 
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Figure 2-2 RF-based Localization methods 

2.2.6.1 Lateration  

The Lateration method estimates the position of a target point by measuring the distances 

of the target to at least three points with known positions. The distance between the target 

and reference points can be calculated using the following techniques: 

Time of Arrival (ToA): The distance between the sender and the receiver can be 

calculated with respect to the signal travel time between the sender and receiver and the 

signal propagation speed in the air. This method requires the synchronization of the 

sender and receiver and is considered as a basic requirement for getting precise distance 

estimation (Ciurana et al., 2007). 

Localization Methods 

Geometric-based  

Lateration 

ToA TDoA 

RToF PoA 

RSS Hop-Based 

Angulation 

AoA 

Proximity 

MinMax 

ROCRSSI 

Similarity-based 

Scene Analysis  

SMP k-NN 

ANN SVM 

Probabilistic 



 

16 

Roundtrip Time of Flight (RToF): This method is based on the measurement of the 

time-of-flight of the signal from the sender to the receiver. GPS is one of popular 

technologies using this method (Liu et al., 2007b).  

Time Difference of Arrival (TDoA): The idea behind TDoA is to calculate the relative 

position of the target transmitter by determining the difference in time at which the 

signals arrive to multiple measuring sensors based on the difference in the signal's 

propagation delay (Liu et al., 2007b; Vossiek et al., 2003). One of the constrains of this 

technique is that it is more useful for short distances where there is a line of sight 

between the receiver and the sender (Fuchs et al., 2011). 

Phase of Arrival (PoA): This method is also called Interferometry of Received Signal 

Phase. It deploys the emission of sine waves with multiple frequencies and the 

superposition of the different signals is collected at the receiving unit by means of an 

array of multiple antennas. Using the measured phase shifts and the known wavelengths, 

the distance between the sender and the receiver can be estimated (Patwari and Hero, 

2006).  

Received Signal Strength (RSS): It is also known as “Signal attenuation method” in 

which the strength of a radio signal decreases with increasing travelled distance. 

Consequently, the distance travelled from the sender can be calculated by measuring the 

received signal strength (Reichenbach and Timmermann, 2006). The advantage of using 

this technique is the simplicity of deployment. The weakness of this method is that 

obstacles or reflections can cause signal attenuation that makes the estimations extremely 

imprecise. Luo et al. (2011) explained three algorithms which are Trilateration, MinMax, 
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and Maximum Likelihood. More details can be found in the researches of Langendoen 

and Reijers (2003) and Sugano et al. (2006). 

Hop-based: To estimate the distance, this technique is based on the number of hops on 

the communication path from a sender to a receiver considering an equidistant 

distribution of the stations between the sender and the receiver deduced from the hop 

count (Niculescu and Nath, 2003). 

2.2.6.2 Angulation 

In the Angle of Arrival (AoA) based localization approaches, the incidence angles of the 

received transmitter signal with respect to the known positions of the receiver sensors are 

calculated. The transmitter can be localized based on these angles by applying a 

triangulation method (Azzouzi et al., 2011). 

2.2.6.3 Scene Analysis  

Scene Analysis, also called fingerprinting in some literature (e.g., Li and Becerik-Gerber, 

2011; Pradhan et al., 2009a), refers to the algorithms using collected properties of the 

signal (such as signal power) in the environment and searching for the observed signals 

(scenes) in a predefined data set that maps them to locations. Using this method can be 

under two approaches, offline-based or online-based. There are two main stages in each 

method; first, a training set of signal strength values and their respective location 

coordinates (i.e., fingerprints) are collected throughout a facility which can be named 

offline-learning. The trained reference map can be put in operation by two scenarios for 

localization: (1) a mobile target receives and collects a set of signal strengths from base 



 

18 

stations/transmitters scattered in a facility (Bahl and Padmanabhan, 2000); (2) Fixed 

stations/transceivers collect a set of signal strength from the mobile target (Hightower 

and Borriello, 2001). The location of the target is estimated by comparing the real-time 

received signal strength from the target and the recorded signal strength in the training 

data set (Pradhan et al., 2009a). For instant, the RSS of a WLAN is measured and 

recorded at known locations a signal map. An unknown location sensor measures its 

current signal strength pattern and compares it to the previously surveyed signal map to 

locate itself. The most similar pattern in the signal map is then assumed as the position of 

the sensor (Elnahrawy et al., 2004). In the online based method, there is no offline-

learning, and the system has to collect RSSI coming from all reference nodes with known 

locations (as a signal map) and estimate the target’s location after each data collection 

point.aaaa 

Liu et al. (2007a), Liu et al. (2007b), and Zhou and Shi (2009) explained following 

algorithms using Pattern Matching techniques for fingerprinting-based positioning: 

k-Nearest Neighbor (k-NN): The main concept behind the Nearest-Neighbor is that 

closer the two points, the more similarity of RSSI values of the two points. This closeness 

can be based on geometric distance or signal similarity. Figure 2-3 illustrates a schematic 

view of k Nearest-Neighbor which k in this example is four. 
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Figure 2-3 Basic of k-NN Method 

This method uses weighted averaging in order to estimate coordinates of the target tag (x, 

y) using the Equation 2-1. Wi is calculated by Equation 2-2 where Ei is the Euclidean 

distance in signal strengths (Ni et al., 2003). 

(   ) = ∑   (     )
 
    Equation 2-1 
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Since the weights’ function is dependent to distance and characteristics of sensors node’s 

receivers, Blumenthal et al. (2007) compared the impact of different power (g) of 

Euclidean distance in Zigbee-based localization networks (Equation 2-3). Furthermore, 

ZigBEACON system proposed by Huang and Chan (2011) used the basic of k-NN 

algorithm for its indoor location system. 

     
 

  
  

Equation 2-3 

Kernel-based Learning (KL): Similar to k-NN method, according to KL’s basis, the 

smaller the distance between the two RSSI is, the smaller physical distance they have 
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from each other (Sanpechuda and Kovavisaruch, 2008). Using KL can be based on 

classification (Li et al., 2002; Nguyen et al., 2005; Brunato and Battiti, 2005; Zhou and 

Shi , 2009) or regression category (Pan et al., 2005; Pan and Yang, 2007; Brunato and 

Battiti, 2005; Ferris et al., 2006; Ferris et al., 2007, Zhou and Shi , 2009).  

Probabilistic method: The main concept is based on the conditional probability of being 

the target node in location Li where there are n possible candidates L1, L2, L3... Ln and S is 

a series of RSSI from reference nodes. The chosen candidate meets the following 

condition (Liu et al., 2007b): 

Li has more chance if P(Li | s) > P(Lj | s) and i≠j 

Artificial Neural Network: ANN can be considered as an extremely simplified model of 

the brain. From mathematical point of view, it is a function estimator which transfers 

inputs into outputs with the minimum error. Basically, ANN consists of many neurons 

that co-operate to perform the appropriate function and it is mostly applicable for 

classification (i.e. pattern matching, feature extraction) and prediction based on existing 

data. Since this method is going to be used in CHAPTER 4 as a part of proposed method, 

it is explained more in detail compared to the other approach under the scene analysis 

category. As an advantage of ANN, a neural network can be trained to perform a 

particular function by adjusting the values of the connections (weights) between 

elements. On the other hand, network model can automatically learn the features of 

inputs and create appropriate outputs that users don’t need to know the hidden processes 

between them. As Figure 2-4(a) illustrates, an ANN contains three main layer, inputs, 

hidden, and outputs. Each layer involves numbers of neurons connected to the 
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preceding/succeeding layers through some weights (synapses). Figure 2-4 (b) shows that 

the output of a neuron is a function of the weighted sum of the inputs plus a bias. The 

function of the entire neural network is equal to the computation of the outputs of all the 

neurons. To produce the output, an activation function is applied to the weighted sum of 

the inputs of a neuron. Identity function, binary step function, sigmoid function, and 

bipolar sigmoid function are the examples of commonly used activation functions 

(Fausett, 1994 ). There are three possibilities for training the ANN which can be used 

regarding the provided data in a problem: 

1- Supervised learning (i.e. learning by evaluating the estimated outputs with existing 

outputs) 

2- Unsupervised learning (i.e. learning with no help) 

3- Reinforcement learning (i.e. learning with limited feedback) 

Unlike probabilistic method, ANN is using to find the nonlinear mapping between RSSI 

and coordinates of the nodes. After training the network model for the reference nodes 

with known position, the model is used to estimate the location of target node by 

knowing its RSSI (Hwang et al., 2011). 
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Figure 2-4 Overview of ANN (adapted from Russell and Norvig, 2003) 

Regarding the literature focusing ANN-based localization systems, one hidden layer is 

optimum value but for choosing the number of hidden neurons, there is no theory to 

guide it (Marsland, 2011). Martínez Sala et al. (2010a) empirically used 4 neurons in the 

hidden layer but Battiti et al. 2002 tested 4, 8, and 16 neurons and they achieved the best 

results by using 16 neurons. Wu et al. (2009) defined this number by using Equation 2-4 

and Equation 2-5. 

         
              

 
 

Equation 2-4 

         √                Equation 2-5 
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In some literature, Neural Networks were used to map the RSSI values coming from 

reference nodes to their known coordinates (x and y). As a result, a trained network can 

predict the location of an unknown node based on its RSSI value (Mehmood et al., 2010; 

Mehmood and Tripathi, 2013; Hwang et al., 2011). Wu et al. (2007) took the benefit of 

Neural Networks to find the distance between target nodes and the APs for their 

localization algorithm. However, the research of Battiti et al. (2002) showed the results 

coming from ANN and k-NN method were very similar at that period of time. Another 

research done by Tapia et al. (2011) focused on the mitigation of the ground reflection 

effect and calibration of the final position using ANN. By the time, Soleimanifar et al. 

(2011) proposed a real-time error correction approach by using Radial Basis function 

Neural Network (RBFNN). Finally, Fang and Lin (2008) Compared Weighted k-Nearest 

Neighbor (WKNN), Maximum Likehood (ML), and Multilayer Perceptron (MLP) with 

their proposed Discriminant-Adaptive Neural Network (DANN) and showed how DANN 

can improve greatly the accuracy compared to other traditional approaches.  

Smallest M-Vertex Polygon (SMP): Close to the idea behind k-NN, online RSS values 

are used to search for candidate locations in signal space based on signal distance 

between the measured fingerprint and fingerprint entries in the database (Liu et al., 

2007b; Prasithsangaree et al., 2002; Pandya et al., 2003; Gwon et al., 2004). MultiLoc 

took the advantages of SMP in their research (Prasithsangaree et al., 2002). The 

generalized weighted Lp distance between a measured RSS vector [x1, x2 ... xN] and a 

database entry [x1’, x2’ ... xN’] is given by Equation 2-6: 
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One of the main weaknesses of fingerprinting methods is that they are sensitive to 

uncontrollable and frequent environmental changes that make the trained signal map 

unreliable during the localization phase (Papapostolou and Chaouchi, 2011). 

Additionally, preparing signal map for an environment requires high initial efforts (Fuchs 

et al., 2011). Examples: RADAR (Bahl and Padmanabhan, 2000), HORUS (Youssef and 

Agrawala, 2008), COMPASS (King et al., 2006) and WIFE (Papapostolou and Chaouchi, 

2009) follow this approach. 

2.2.6.4 Proximity 

The idea behind this method is to find the location of an object by determining a set of 

spatially distributed reference points signal coverage areas of which overlap in an 

adequate way. Accordingly, the object can estimate its location as the intersection of all 

its neighbors' coverage areas. Basically, the main key in these approaches are based on 

the detection of reference points with well-known location. The two main factor effects 

on the precision of this technique are the number and distribution of the reference points 

and their signal range (Cabero et al., 2007). Other factors which can result in decrement 

of the accuracy are attenuation and reflection of the signal (Fuchs et al., 2011). The two 

popular algorithms under this category are Ring Overlapping Circle RSSI (ROCRSSI) 

and MinMax (Luo et al., 2011; Liu et al., 2004; Liu et al., 2007a; Langendoen and 

Reijers, 2003). 
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Hightower and Borriello (2001) compared some systems taking advantage of proximity 

method are Active Badges (Want et al., 1992; Kampel, 2001; Orr and Abowd, 2000; 

Doherty and El Ghaoui, 2001). Torrent and Caldas (2007) assessed the validity of 

proximity algorithm (MinMax) for the localization of materials on large industrial 

projects 

2.3 RFID-based localization systems 

2.3.1 Fundamentals of Radio Frequency Identification (RFID) 

Nowadays, there is a need for the automated identification of objects and the collection 

and storage of their data in different areas. The technology that is used for automatic 

identification is called Auto-ID. The goal of most Auto-ID systems is performance 

improvement, minimizing errors in data entry and saving time. Various systems for Auto-

ID, such as bar codes, smart cards, fingerprint and RFID technology have been used. 

Figure 2-5 shows an overview of the classification of techniques for automatic 

identification and data collection (Kern, 2006).
 
 

 
Figure 2-5 Different Identification and Data Collection Methods (Identifikation, 2010) 
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RFID is a technology in which the data for automatic identification of persons and 

objects are transmitted by radio waves without physical contact and line of sight between 

the transmitter and the receiver. In this method, the serial number of a person or an object 

is stored into a small chip connected to an antenna called RFID-Tag. The RFID 

technology has three major components as shown in Figure 2-6: The RFID transponder 

or Tag, the Reader (readers and writers) and the Information Technology (IT) system 

(RFID-blocker, 2010). 

The task of the transponders is storing the data and providing readability on demand. 

There are three main types of transponders: (1) Passive transponders: This model has no 

internal power supply and receives its required energy from an electromagnetic field 

generated by the reader antennas, (2) Active transponders: The transponder has its own 

power supply and can send its information in any set intervals to a receiver, (3) Semi-

Active-Passive transponders: The RFID transponder receives the energy required for 

transmitting and receiving information from an electromagnetic field generated by the 

reader antennas. Additionally, there is a battery in the tag that is used for the activation of 

an additional sensor and also for transmitting the data from the sensor to the memory of 

the tag (Kelm et al., 2009). 

Regarding various aspects of RFID, there are some standards related to the Air Interface 

Communications protocol (talking method between tags and readers), Data content 

(formatting data for storage), Device Communication (the way of data communication 

from reader to computer), conformance (ways to evaluate that products meet the 
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standard) and Applications (how standards are used in shipping labels, for example where 

do I place labels)
 
(Scansource, 2013). 

 

Figure 2-6 RFID transmission system (adapted from Kelm et al., 2009) 

The International Organization for Standardization (ISO) and the Electronic Product 

Code (EPC) Global have been both considered as leaders in the standardization of RFID 

technology. ISO has provided the 18000 standard and the EPC Global Center has 

introduced the EPC standard (Violino, 2005). 

2.3.2 Application of RFID technology in construction industry 

During the last two decades, different industries tried to take the advantage of RFID 

technology to improve their productivity. Meanwhile, the researchers aware of the 

benefits of RFID started to propose different application of RFID in construction 

environment. Jaselskis et al. (1995) in one of the earliest researches in this area discussed 

the potential applications of RFID technology for concrete processing and handling, cost 

coding for labor and equipment, and materials controlling. In another research Jaselskis 
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and El-Misalami (2003) provided the general potential application of RFID for metrial 

management, maintenance, and field operations like personnel management, fleet 

management, and job status. 

Few years later, a European research introduced a wider range of positions for using 

RFID on construction sites. The potential topics were Quality control, Operation control, 

Access control, Facilities Management/Maintenance, Tracking resources, Safety/security 

control, Asset management, Inventory Management Control, Supply Chain 

Management/Logistics, Planning Logistics as Just-in-time, On-site Inspections, and De-

construction and disposals of building materials (National Agency for Enterprise and 

Construction, 2006). 

Torrent and Caldas (2007) focused on automated materials identification and localization 

model to assess the deviations from materials’ actual position to their estimated locations. 

Moreover, Wang (2008) demonstrated the effectiveness of an RFID-based Quality 

Inspection and Management (RFID-QIM) for concrete specimen inspection and 

management. Similar to the previous research, Reisbacka et al. (2008) proposed 

embedding RFID-tags in the concrete elements enabling them to be identified wirelessly 

and associated with information in a data system for managing the quality assurance 

process. 

Motamedi and Hammad (2009a) proposed adding structured information to tags attached 

to the building’s components by using RFID technology that to make data related data to 

the components available during their whole lifecycle from manufacturing stage to 

disposal phase. Going to the detail, they assumed that a selection of building components 
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such as Heating, Ventilation and Air Conditioning (HVAC) control units, boilers, etc. are 

equipped by long range RFID tags with enough data storage capacity to carry the data 

derived from BIM database (Motamedi and Hammad, 2009a, 2009b, 2009c). 

In an innovative approach, Soltani (2010) used RFID not only for improving the 

construction site safety but also for managing the data related to any work-related 

accident. He assumed that each worker uses his or her Personal Protective Equipment 

(PPE) equipped by RFID tags, and wearing PPE is checked on the entrance gate of the 

site by RFID readers. Regarding to the Figure 2-7, in case of any accident, the site 

supervisor can gather some of required data for filling the report by using data stored on 

RFID tags attached to different objects or persons. 

 

Figure 2-7 Semi-automated accident report system using RFID (Soltani, 2010) 

Localization of users carrying on RFID mobile reader or RFID equipped objects is 

among the most attractive topics in using RFID on construction sites. Taneja et al. 
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(2010b), Razavi et al. (2012), Montaser and Moselhi (2012a), Motamedi et al. (2012), 

and Xiong et al. (2013) proposed different approach for utilizing RFID-based localization 

system on construction. Since the main contribution of this research is to propose a 

hybrid indoor localization system, reviewing researches related to this topic has the main 

priority. Therefore, the Section 2.3.3 is allocated specifically to RFID-based localization 

solutions. 

Though there are many researches about utilizing RFID in construction industry, it is not 

possible to discuss each and every research. Therefore, the author provided a table of 

information related to different researches using RFID in the construction. The presented 

information is taken from the research of Erabuild (2006), Helmus et al. (2009), El 

Ghazali et al. (2012), Guven et al. (2013), and the personal reviewing of the author. The 

table categorized all the researches in construction into seven groups: supply chain 

management and logistics, object tracking, project progress management, localization, 

quality control, lifecycle management, and safety. RFID-based localization algorithms 

Notwithstanding promising accuracy and ability to fast tracking of RFID, there still is a 

great potential to remedy the challenges like the interference problem among its 

components or between its signals and the environment materials for its localization 

purpose (Papapostolou and Chaouchi, 2011; Joshi and Kim, 2008). More in details, the 

significant reduction in read range and the data transfer rate by presence of metals or 

liquid cannot be neglected (Li and Becerik-Gerber, 2011). As a result, there is an 

essential potential to be invested for solving the RFID interference problem before the 

utilizing of RFID-based location systems (Papapostolou and Chaouchi, 2011). 
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RFID localization targets  

RFID-based localization can be categorized into two groups: in the first group, Reader 

considers as target but second group considers Tag as its target (Sanpechuda and 

Kovavisaruch, 2008). In the first scenario, RFID tags play the role of reference point for 

estimating the position of user equipped by the reader. However, second scenario aims to 

find the location of RFID tag attached to the target object with help of deployed either 

readers or reference tags (Papapostolou and Chaouchi, 2011).  

 
 

(a) Tag localization (b) Reader localization 

Figure 2-8 RFID-based target localization (Sanpechuda and Kovavisaruch, 2008) 

Reader localization: 

Determining the location of a mobile robot carrying RFID reader is one the popular 

contexts in reader localization area. Hahnel et al. (2004) presented a probabilistic 

measurement model for localization of a mobile robot. Due to technological limitation at 

that time they forced to use the laser range scanner to prepare RFID map based on the 

deployed tags in that environment. Lim and Zhang (2006) and Zhang et al. (2009a) 

developed an approach named mobile reader dispersed tag. They formulate the reader 

localization problem as a pattern matching problem and examined two algorithms (i.e. 
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Intersection over Union and Tag-to-Location Mapping Count) under their proposed 

method. Ahmad and Mohan (2009) proposed localization process finding Euclidean 

distance estimated using a propagation model for the relation between RSSI and 

geometric distance. Using passive reference tags on the floor in grid form can make it 

possible for the reader to collect the data of those reference tags inside its read range. The 

next step is to estimate the reader location by calculating the centroid weighted averaging 

method and Hough transform of the readable reference tags position (Lee and Lee, 2006). 

To have better accuracy, it needs to increase the density of the reference tags which is 

costly. To overcome this issue, Han et al. (2007) suggested placing the reference tags in 

triangular pattern instead of square pattern which can decrease the error to about 18%. 

Using a machine learning technique, Yamano et al. (2004) proposed a SVM method. On 

the first stage which is training phase, the reader acquires the RSS from every tag in 

various locations. Subsequently, RSS for each location is taught to SVM. Additionally, to 

reduce the error, ineffective tags for the SVM are removed (Sanpechuda and 

Kovavisaruch, 2008). Based on random sampling algorithm, Xu and Gang (2006) 

proposed a Bayesian approach to figure out the position of a moving object knowing the 

posterior movement probability and the locations of detected tags. The reader position is 

estimated by maximizing posterior probability based on detected tags’ location in the 

reading range (Sanpechuda and Kovavisaruch, 2008). Eventually, Wang et al. (2007a) 

research aimed to find the position of a reader by employing the simplex optimization 

method. Another research done by Soonjun et al. (2009) compared three different 

methods for position estimation based on fingerprinting approach which are Maximum 
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Number of Intersect Tags, Maximum and 2
nd

 Maximum Numbers of Intersect Tags, and 

Center of Gravity of Detected-Tags’ Locations (Jingwangsa et al., 2010). 

Tag localization:  

Hightower and Borriello (2001) applied trilateration on the estimated distance between a 

target tag and at least three readers (Presented as SpotON project). Changing different 

power levels at the readers in collaboration with reference tags with known location as 

landmarks was the base of Ni et al. (2004) research under the name of LANDMARC. To 

acquire RSSI for all reference nodes and target node, readers vary their read range, and 

based on collected data, the k-Nearest reference tags are chosen. Then, the position of the 

target is calculated by using the weight averaging for k selected reference tags 

coordinates. A regional localization system developed by Zhen et al. (2008) used SVM to 

localize the occupants for lighting control. They deployed many readers in the building to 

observe the signal strength of the target tag and analyzed the received signal for the 

localization problem. 

For 3D positioning, Wang et al. (2007a) proposed two methods of localization of tags and 

reader by deploying of tags and/or readers with different power levels, on the floor and 

the ceiling of an indoor space and using the simplex optimization algorithm for 

estimating the location of multiple tags (Papapostolou and Chaouchi, 2011). In the 

research by Stelzer et al. (2004), named LPM, TDoA and ToA measurements related to 

the reference tags and the target tag are used to estimate the location of the target tag. 
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Bekkali et al. (2007) purposed an analytical method to find the location of the unknown 

tag by using the multilateration with the help of reference nodes and a probabilistic RFID 

map-based technique with Kalman Filtering. In this area, Nick et al. (2011) proposed a 

localization method using Unscented Kalman Filtering (UKF) and reference tags to 

estimate the location of unknown target tag. 

RFInD was a localization system based on a single RFID reader proposed by Saxena et 

al. (2007). They showed how to localize an object by its proximity to another object. 

Hekimian-Williams et al. (2010) proposed exploiting phase difference between two 

receiving antennas for localization to achieve millimeter accuracy. While they focused on 

precise phase difference measurement and not on the localization algorithm, Than et al. 

(2012), and Wille et al. (2011) went more to the details of localization issues and stated 

achieving accuracy of 2 millimeters, although this technique is very sensitive to the 

situation of the test environment and any changes have great effect on the results. 

In a research done by NEC lablatories (Saxena et al., 2007), a target tag can be localized 

by using only one RFID reader and changing the antenna gain. The main tasks in their 

work are namely Proximity Detection and Tag Association (kind of clustering technique 

is applied). Joho et al. (2009) used probabilistic approach to approximate the location of 

target tag or mobile agent equipped by RFID reader. Recently, Wang and Cheng (2011) 

integrated RFID with vision technique to enhance the accuracy of RFID-based tag 

localization systems.  
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2.3.3 RFID localization Solutions 

2.3.3.1 Lateration-based RFID localization 

Based on the explanation of lateration in Section 2.2.6.1, the key point for this method is 

the distance measurements between reference positions. To obtain the distance, 

theoretical or empirical model are proposed to relate the received signal strength, ToA, or 

TDoA to numerical distance between the reader and tag. The following, major lateration-

based projects are reviewed based on the research of Li and Becerik-Gerber (2011): (1) 

Hightower et al. (2000) proposed attaching the tags to mobile nodes as target for 

localization and deployed three or more readers in the environment to detect the target 

tag. An empirical function is used to estimate the distance of the target to each reader 

based on received signal strength data; (2) Yu et al. (2009) used the triangulation method 

in a clean environment with few partition walls and sponges laid out on the walls to 

absorb magnetic wave reflection. This clean area dramatically improves accuracy. To 

map the signal strength and distance, they applied and analyzed offline instead of 

utilizing an empirical function; (3) Another approach is to apply multilateration method 

to minimize the sum of error distance between the target tag and all readers based on a 

signal propagation model to convert the RSSI to distance (Zhou and Shi, 2011). 

2.3.3.2 Neighborhood-based RFID localization  

Referring to Section 2.2.6.4, the localization approaches using closest neighboring points 

(with known locations) to the target tag are named Neighborhood method, and the 

measurement for the nearness of a set of fixed points around the target plays the main 

role in these approaches. The measured nearness, along with the corresponding known 
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locations, is used to estimate the location of a target. Compared to lateration methods, 

neighborhood methods have better adaptability in complex and dynamic environment (Li 

and Becerik-Gerber, 2011).  

In addition, Pradhan et al. (2009a), Taneja et al. (2010a), and Li and Becerik-Gerber 

(2011) used k-NN approach separately in their method for their proposed localization 

systems. However, LANDMARC (Ni et al., 2004) has been one of the favorable methods 

in this area since 2003, and during the last decade different researches have been done to 

improve its accuracy and reliability. Two types of tags are utilized in this method, 

tracking tags attached to the targets and reference tags deployed in the sensing area at 

known locations. Active RFID tags are preferred to passive tags due to their wide read 

range and better signal stability. 

The readers measure and store RSSI values coming from both target tag and reference 

tags. The nearness degrees are calculated based on cumulative signal difference between 

target tags and each reference tag. By using the k-NN algorithm the target’s location is 

computed regarding the neighbors’ locations and nearness to the target. 

Ni et al. (2004) performed a case study to validate their proposed method within an area 

of 4m × 10m and provided an accuracy of within 1 m with 50% probability and within 2 

m with 90% probability. The result of the sensitivity analysis showed that the optimal 

number of k neighbors is four. Furthermore, deploying more readers or reference tags has 

a positive effect on the accuracy results. According to the researchers, the low accuracy 

in the signal strength report, high latency or time delay, and variation in tags’ behavior 

are counted as the limitations of the method (Li and Becerik-Gerber, 2011). 
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2.3.3.3 LANDMARC enhancements 

Several research teams have been trying to improve LANMARC approach as the basis 

for the localization. A comprehensive review was done by Li and Becerik-Gerber (2011) 

and they compared the proposed enhancements in their research. The following is an 

updated review on LANDMARC improvements’ methods with the addition of some new 

researches in this area. 

 (1) Improvement of the localization accuracy:  

The VIRE method introduced by Zhao et al. (2007) to achieve higher accuracy used 

imaginary reference tags called virtual tags which are virtually distributed between real 

reference tags to increase the density of the reference tag grids without imposing more 

cost. A linear interpolation is applied on the RSSI of real reference tags for generating 

RSSI of the virtual tags. The conditions of their field test with four readers and 16 

reference tags are: (1) a semi-closed area without existing of concrete walls and furniture; 

(2) a spacious closed area with few numbers of metallic objects; and (3) a typical 

university office with many desks and chairs. An average estimation error of less than 

1.5m for locations at the boundary of the sensing area was presented. Additionally, a 

0.29m error for other locations with reduction of error ranging from 17% to 73% over 

LANDMARC was provided in their research. 

Zhang et al. (2009b) introduced an algorithm named RFIDiffFreeLoc to improve the 

accuracy by eliminating the impact of the diversity of reference tags resulting from 

different tag types or used-time of built-in batteries. They analyzed the impact of noise by 
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performing simulation tests and compared their proposed algorithm with LANDMARC 

algorithm. Although the result of the tests using four readers at the corners of a noise-free 

area and a grid of reference tags showed error distance reduction from 0.45 to 0.1m with 

50% probability, the reported improvement in the simulated environment with noise, or 

in practical experiments was less significant. 

Adding a signal strength preprocessing phase to improve the accuracy of current 

techniques was proposed by Hsu et al. (2009). They reduced the received signal 

fluctuation by using a moving average filter and smoothed the RSSI values for each tag 

and used the latest RSSI values for calculating a dynamic average. The dynamic average 

helps the system to minimize the impact of the environmental changes in the sensing area 

because of significant variance of a single RSSI value. They indicated a 0.1m reduction 

on the largest error of estimated locations of all targets in the field test over 

LANDMARC. 

 (2) Algorithm improvement 

A Bayesian-based algorithm was proposed by Yihua et al. (2008) to achieve more 

accurate location of the target. They took the advantages of LANDMARC to limit the 

error into a certain scope and applied Bayesian-based localization algorithm that can 

reach high accuracy level compared to weighted-averaging. However, they stated that the 

accuracy could be drastically decreased by the increase of measurement error results. 

Their simulation results showed an error decrement from 1 m to 0.5m. 
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As a limitation, LANDMARC cannot suggest second possible locations of the target tag 

in case its first was wrong. To overcome “blind search” situation, de Amorim Silva and 

da S Gonçalves (2009) proposed LANDMARC+ solution to suggest a possible location 

of the target tag. By assuming the availability of the same number of readers in each 

room, the mean Euclidean distance of all tags in each room can be calculated. The room 

with the smallest distance is chosen as the secondary possible room. Furthermore, Khaan 

and Antiwal (2009) extended LANDMARC+ to estimate 3D locations of the target tag. 

Xiao et al. (2010) and Tang et al. (2011) developed an environmental-adaptive approach 

to update the signal propagation model in a closed-loop feedback correction manner. 

They used LANDMARC to predict the region of the target tag. 

Yinggang et al. (2011) proposed using pseudo-absolute positioning algorithm in 

combination of LANDMARC method. To eliminate lots of unnecessary calculations, 

they selected k-Nearest reference tags by LANDMARC and applied their proposed 

algorithm to estimate the location of the target tag. However, they selected a group of 

four tags from only 6 reference tags to apply their algorithm in the test.  

(3) Error value calibration  

A calibration solution was introduced by Jin et al. (2006) on the estimated coordinates of 

the target node. This approach collects the reference tags that are detected at the same 

time as the target tag and selects k nearest neighbor candidate’ reference tags and 

estimates their location based on RSSI values by applying triangulation method. Then the 

average error is obtained from the difference between estimated coordinates and actual 
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positions of k-Neighbors. Finally, the calculated error is added to the estimated 

coordinates of the target tag by LANDMARC solution to provide a more accurate 

location of the target. Unfortunately, the authors did not elaborate on the used 

triangulation mechanism in their research. 

From another point of view, Jiang et al. (2009) suggested to calculate the location of each 

of the k-Nearest reference tags separately and compared them with their actual location. 

In the last stage, the averaged-error of all selected reference tags is added to the estimated 

location of target tag from the LANDMARC method. 

Jiang et al (2009) suggested a different solution compared to Jin et al. (2006) approach. 

In their approach, the location of each nearest reference tags to the target was calculated 

using the actual location of other reference tags and the estimated location of the target. 

This calculation was performed for all nearest reference tags and the error was averaged 

to be used for correcting the estimated coordinates of the target tag. 

(4) Reference tags’ improvement 

Since the LANDMARC-based solution is structured based on the existence of reference 

tags, deploying a large number of reference tags has direct effect on the accuracy 

improvement. Adding more reference tags imposes a heavy computation load, increment 

of latency, and the more investment in the hardware. The following researches proposed 

alternative methods of tags’ deployment to decrease the density of reference tags with no 

negative affect on the accuracy (Li and Becerik-Gerber, 2011). 
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A more flexible localization solution with lower computation load was developed by Sue 

et al. (2006) under the name of FLEXOR. They proposed to cover the sensing area with 

boundary reference tags arranged in hexagons and a cell reference tag located at the 

center of each hexagons. Two localization modes provided are region mode (lower 

accuracy) and coordinate mode (higher accuracy) for different applications. In the case of 

the region mode, the system finds the right hexagon based on the RSSI values of the 

target tag and the cell tag. If the goal is to estimate the exact location of the target, then 

the RSSI values and coordinates of the two closest boundary tags to the target and the cell 

tag within the hexagon will be used to estimate the coordinates of the target tag 

(coordinate mode). 

However, this method achieved best accuracy with shorter reader power level intervals, 

large number of readers, and deployment of each of readers on each side of the sensing 

area. However, the deployment of the reference tags in a hexagons pattern may not be 

applicable in many real cases. 

Close to idea of FLEXOR, Yihua et al. (2009) proposed a triangle pattern for deployment 

formation of reference tags. The result of their simulations demonstrated that a forth 

nearest neighbor is the source of error. Therefore, the reference tags were placed in a 

triangular mesh, and the algorithm has chosen only three nearest neighbors’ localization. 

Li et al. (2009) introduced the “key reference tag” approach to reduce the number of 

reference tags while retaining accuracy. They applied Machine Learning to find and 

eliminate redundant reference tags. 
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2.3.3.4 Artificial Neural Network-based RFID localization  

Indoor RFID localization systems face usually multipath phenomenon and layout 

changing. The problem will be more complicated when the systems are based on 

empirical or theoretical formulas which cannot be adapted to the geographic features of 

the sensing area. ANN overcomes this limitation by learning the relationship between the 

signal power and the location of transmitters for each sensing environment (Wu et al., 

2009). The following literatures investigate the different applications of ANN for RFID-

based indoor location systems. 

Wu et al. (2009) applied the Backpropagation (BP) network to find the best location of 

the target node. They used reference tags as landmark and the RSSI values recorded from 

each of references are the input for training the network. On the other hand, they allocate 

one zone to each reference tag presented by a number. During the offline phase, the ANN 

learns the relation between RSSI values and the zone numbers. After training the model, 

the network receives RSSI value of the target tag and predicts the zone that the target 

belongs to. 

Martínez Sala et al. (2010a) proposed ANN similar to Wu et al. (2009) research but 

entered the exact coordinates of the reference tags to the network for training phase 

instead of using zone’s numbers. As result, the ANN could provide the position of the 

target in the localization phase. In another research, Martínez-Sala et al. (2010b) 

improved their previous method by adding a clustering phase before training the network. 

For this phase, they defined each cluster as a set of readers which are associated with a 
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specific area of the sensing environment. Therefore, the network also learns which cluster 

is more suitable for its corresponding area. 

Kehua et al. (2011) suggested using Genetic Algorithm (GA) in addition to BP network 

to optimize the initial value of ANN weights and thresholds. Lin et al. (2011) defined five 

ANNs in parallel and used the GA to set the optimized weight values of each neural 

network based on the performance of each network. Kuo et al. (2012) changed the 

previous ANN to an Artificial Immune System-based Fuzzy Neural Network (AIS-FNN) 

because they believed that AIS-FNN has more accurate results and it is much easier to 

interpret the training results than ANN. Moreover, Huang et al. (2010) developed Fuzzy 

Neural Network (FNN) architecture to adaptively tune the environmental parameter. In 

spite of other researches in this area, they used FNN to train the relationship between 

environmental errors of each reference node with its corresponding coordinates in their 

network. However, they did not provide any details regarding the results of their 

localization case study. 

Using VRTs in combination with ANN is another method proposed by Ng et al. (2011). 

Although the concept of adding VRTs between real tags was proposed under the name of 

VIRE but Ng et al. (2011) used a nonlinear interpolation instead of linear interpolation 

for preparing the required received signal map. They also suggested applying RBFNN 

since they believed this network includes simple structure, fast learning and good 

approximation ability (Ng et al., 2011; Tao and Hongfei, 2007). 

Recently, Jiang et al. (2012) proposed an improved LANDMARC algorithm using ANN 

to achieve better accuracy and precision and also to shield the interference of obstacles by 
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using their method. In this research, a BP neural network contains eight nodes for the 

input layer, two nodes for the output layer, and 10 nodes in the hidden layer. The input 

values will be the signal similarity between target and all reference tags. The output node 

allocated to the target tag coordinates represented. Although the results of their 

experiment shows an acceptable improvement but it seems they tested in a small sensing 

area less than 10 m
2
. Increasing the scale of the area using only four nearest nodes for 

training the network can result in large distance error. Therefore it is necessary to add 

more real or virtual reference tags to overcome the density problem.  
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2.4 Building Information Modeling (BIM) 

The highly fragmented nature of construction industry causes a tremendous amount of 

coordination to bring multi-disciplines and different contractors and agents in a project 

together. The complexity of communication between the various stakeholders with the 

significant effect on the efficiency and performance of the industry is a serious barrier 

(Isikdag et al., 2008). The high annual lost in this industry due to lack of interoperability 

and absence of a standard information transfer model between different software 

applications used in the construction industry showed a major need for developing BIM 

in order to overcome problems related to interoperability and information integration by 

providing effective management, sharing and exchange of a building information through 

its entire lifecycle (Gallaher et al., 2004; Isikdag et al., 2008). 

As illustrated in Figure 2-9, the major issues with the documents centric approach versus 

centralized information centric situation are: (1) significant communication errors and 

loss of project information; (2) increasing 25-30% of the construction cost by splitting up 

of processes and lousy communication; and (3) repetition in creation of the same 

information in different software and entering the same information on average seven 

times in different systems before a facility is handed over to the owner (Sjogren and 

Kvarsvik, 2007). 
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Figure 2-9 Document centric vs. information centric situation (Sjogren and Kvarsvik, 2007) 

Since the construction projects are not limited to the construction of building, there are 

other available data models including Bridge Information Modeling (BrIM), Road 

Information Modeling (RIM), Municipal Information Modeling (MIM), and 

Infrastructure Data Modeling (IDM). The central idea behind all aforementioned models 

is to use the combination of the 3D model and its related database. Therefore, a new 

definition in each of these models can be extended within the scope of the other models 

(Hammad et al., 2013). 

2.4.1 Definition and scope 

Associated General Contractors Guide defines BIM as a data-rich, object-oriented, 

intelligent and parametric digital representation of facilities. Views and data can be 

extracted and analyzed based on various users’ needs to generate information that can be 

used to make decisions and improve the process of delivering the facility (AGC, 2005). 
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National Building Information Modeling Standard (NBIMS) knew BIM as: (1) a product 

or intelligent digital representation of data about a capital facility, (2) a collaborative 

process which covers business drivers, automated process capabilities, and open 

information standards use for information sustainability and fidelity, and (3) as a facility 

lifecycle management tool of well understood information exchanges, workflows, and 

procedures which stakeholders use throughout the building lifecycle as a repeatable, 

verifiable, transparent, and sustainable information based environment (NBIMS, 2007). 

Strafaci (2008) stated that BIM is not a product or proprietary software program, but it is 

an integrated process built on coordinated, reliable information about a project from the 

design phase through construction and into operation phase. While it has its roots in 

architecture, the principles of BIM apply to everything that is built, including roads and 

highways, and civil engineers are experiencing the benefits of BIM in the same way they 

are enjoyed by architects. 

The information storage capability of BIM makes it more than a 3D model. It enables 

engineers to more easily predict the performance of projects before they are built; 

respond to design changes faster; optimize designs with analysis, simulation, and 

visualization; and deliver higher quality construction documentation (Strafaci, 2008). 

Moreover, it allows the extended teams to exploit useful data from the model to facilitate 

earlier decision making and more economic project delivery. 
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2.4.2 BIM data storage, exchange and sharing models 

BIM data has the capability to be stored as a digital file or in a database. Additionally, the 

potency of sharing and exchanging between several applications is another BIM benefit 

(Isikdag et al., 2008). Going to the detail, ownership and centrality of data differentiate 

data sharing from data exchange. A one-to-many relationship can be assigned to the data 

exchange model, which means that the master copy of data is maintained by one software 

system with ownership authority, the snapshots of data are exported to other users. But in 

the data sharing model, a many-to-one relationship shows a centralized control of 

ownership on a master copy of data. The data sharing model simplifies the revision 

control issue associated with the data exchange model (Isikdag et al., 2007; Vanlande et 

al., 2008). 

Isikdag et al. (2007) and Vanlande et al. (2008) introduced five different methods for 

storage and exchange of BIMs: (1) Data exchange by using physical mediums (e.g. 

CD/DVD) or computer networks (e.g. Internet) for transferring physical files; (2) Data 

sharing through Application Programming Interfaces (APIs) where the BIM physical file 

can be accessed through proprietary API or a Standard Data Access Interface (SDAI, 

2008). For instance, if the physical file is an Extensible Markup Language (XML) file, 

then the model needs appropriate XML interfaces for data sharing (i.e. APIs supporting 

Document Object Model (DOM)); (3) Data sharing based on a central database makes 

accessing the data and using database features such as query processing and business 

object creation possible for multiple applications and users; (4) Data sharing to access 

through single unified view, from multiple distributed but synchronized databases; and 
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(5) Data sharing based on a Web service interface which can provide access either to the 

BIM stored in central project database, or to an API with the ability to access to a 

physical BIM file or to the domain specific views of the model. 

2.4.3 IFC model 

International Alliance of Interoperability (IAI) developed the IFC standard as a standard 

BIM in supporting and facilitating interoperability across the various phases of the 

construction lifecycle (Isikdag et al., 2008). 

Developing IFC as an object-based, non-proprietary building data model aims to support 

interoperability across the individual, discipline-specific applications that are used to 

design, construct, and operate buildings by capturing information about all aspects of a 

building throughout its lifecycle. Most of the major Computer-Aided Design (CAD) 

vendors as well as many downstream analysis applications are supporting IFC as a tool to 

exchange model-based data between model-based applications in the construction 

industry (buildingSMART, 2013; Khemlani, 2004).  

As IFC needed a uniform computer-interpretable representation, STandard for the 

Exchange of Product model data (STEP) was proposed as the language of its information 

exchange model. The first attempt for developing STEP happened in 1984, when ISO 

focused on defining standards for the representation and exchange of product information 

in general, and continues to be used in various design disciplines, such as mechanical 

design, product design, and so on. 
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As an open data exchange format, IFC is publicly accessible to everyone and can be used 

by commercial applications to exchange data (Khemlani, 2004). 

2.4.3.1 The overall architecture of the IFC model 

Basically, the IFC model covers not only tangible building components (e.g. walls, doors, 

beams) but also more abstract concepts such as schedules, activities, spaces, organization, 

construction costs, etc. in the form of entities which comprise name, geometry, materials 

and relationships. Figure 2-10 illustrates the overall architecture diagram of the IFC4 

model is divided into four layers (i.e. resource layer, core layer, interoperability layer and 

domain layer). Each layer contains several modules that include various entities, types, 

enumerations, property and quantity sets. The main characteristic of this modular 

layering system is that an entity at a given level can only be related to, or reference, an 

entity at the same or lower level, but not an entity at a higher level.  

The modular design of IFC is intended to make the model easier to maintain and grow, to 

allow lower-level entities to be reused in higher-level definitions, and to make a clearer 

distinction between the different entities so that the model can be more easily 

implemented in individual discipline-specific applications (Khemlani, 2004). 
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Figure 2-10 Data schema architecture with conceptual layers (BuildingSmart-Tech, 2013) 

2.4.3.2 Extending IFC 

The IFC standard is an object-oriented approach by corresponding entities to objects 

together with the inheritance. Applying the inheritance reduces the effort to redefine 

content as it can be inherited from the super entity. Hence, the description of both the 

entities and their inheritance relationship is required in the information model to give a 

full picture of the use of related entities.  
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The IFC specification is written using the EXPRESS data definition language which has 

the advantage of being compact and well suited to include data validation rules within the 

data specification. Additionally an ifcXML specification is provided as an XML schema 

1.0, as defined by W3C (buildingSMART, 2013). 

There are three mechanisms to extend the IFC standard; (1) new entities or types 

definitions, (2) using proxy elements, and (3) using the property sets or types (Weise et 

al., 2008). Zhiliang et al. (2011) noted that defining new entities or types is the best way 

to extend the IFC standard among the three alternatives since the newly defined entities 

and types can then be used in the same way as the existing ones.  However, it normally 

takes at least two years to define new entities by IAI (Weise et al., 2008). For the other 

two alternatives, additional implementation agreements about the definition of the 

property sets and proxy elements are required, if they are used to share data with other 

application software. Hence, the other two alternatives are more practical to meet specific 

local requirements. 

2.4.3.3 Related research 

Froese et al. (1999a, 1999b) analyzed the IFC classes related to project management 

including project planning and cost estimation. Their implementation and testing 

confirmed the applicability of overall approach of the model and provided 

recommendation for potential improvements. Weise et al. (2000) proposed an extension 

for the structural engineering domain which was not supported in the IFC standard at the 

time. The same group further suggested an IFC extension for structural analysis (Weise et 

al., 2003) that contained the conceptual modeling and the envisaged actors and usage 
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scenarios leading to data exchange views. Fu et al. (2006) presented a holistic 

architecture of nD modeling tools based on the IFC. They have also developed an IFC-

viewer as central interface of nD modeling tool. Ma and Lu (2010) discussed an approach 

for representing information resources by analyzing available IFC entities and 

relationships. Ma et al. (2013) presented an IFC-based information model for the 

construction cost estimating for tendering in China. Their research included information 

requirement model for construction cost estimating for tendering in China, and an IFC 

extension for representing the model. 

Sørensen et al. (2008 and 2010) mentioned that the product and process model ontology 

IFC supports the RFID by the use of the IfcClassificationReference class, a subtype of 

IfcExternalReference. By adding the Globally Unique Identifier (GUID) from the RFID 

tag to the IFC model as an ItemReference it can be associated with any building element 

in the virtual model. There is also an inverse relationship between an 

IfcClassificationReference and IfcRelAssociates which would give the possibility to 

navigate back from an External reference to an IfcBuildingElement (subtype of IfcObject) 

(BuildingSmart-Tech, 2013). They recommended to model RFID tags not only as an ID 

attribute but as an object or property set in the IFC model with properties such as GUID, 

current location, planned location, time and date for tag reading, user name, and 

active/deactivated tag. However, there is no effort to propose an specific extension for 

RFID systems to the IFC. 
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2.5 Summary and conclusions 

This chapter reviewed the concepts, techniques, main technologies and standards that are 

used in the current research. The literature review included the information about RTLS 

technologies and context aware information delivery and RFID based localization 

techniques. Furthermore, the basics of RFID technology, including components and 

details about different tag types, operating frequencies and standards, were discussed. 

Active RFID technology is selected in this research as a localization tool due to its 

emerging popularity in the construction industry, ease of use, robust radio propagation, 

and wide read range. 

Moreover, ANN is considered for the calculation of the location of the target tag in the 

proposed method due to its capability to estimate the location more accurately. In 

addition to ANN, VRT is used to increase the density of the reference tags in the 

construction site without imposing additional costs for the deployment of more real 

reference tags. BIM was also covered in this chapter, including data storage/exchange 

/sharing models and IFC. 
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 BIM EXTENSION FOR INCORPORATING RFID CHAPTER 3

3.1 The need for including RFID definitions in a BIM 

RFID system, as the technology used in this research for the localization of moveable 

target using moveable RFID reader on construction sites requires an appropriate 

interaction between data available in BIM and RFID system components. Motamedi and 

Hammad (2009a) introduced the concept of distributed BIM on RFID tags’ memories but 

this idea has remained conceptual. Therefore, there is a need for further research and 

standardization efforts in adding definitions of RFID system components (i.e., tags, 

readers and antennas) to the IFC model as a standard BIM format. In this chapter, a 

detailed requirements gathering and modeling are performed (Motamedi et al. 2013a). 

These include the following steps: (1) Identifying RFID technology components 

(explained in Section 0); (2) Identifying properties for each RFID component type 

including Physical properties and specifications such as electrical, radio, enclosure rating 

and shape; Operation properties such as installation date and the write cycle count; and 

Data management properties such the markup language; and (3) Identifying the 

relationships with other elements (explained in Section 3.2.4). 

As explained in Section 2.4, the proposed method can be applied to other types of 

information modeling (e.g. BrIM, RIM, MIM, and IDM) used in the construction 

industry. The main reason for choosing BIM instead in this research is because of its 

popularity, well development, and the existing of more tools to test the proposed method. 
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As explained in Section 2.3, various research and industrial projects suggested attaching 

RFID to objects for the localization of the target objects during the construction phase of 

the project. It is also proposed to include the tags in the design of the objects as an 

integrated component. Consequently in some cases, the tag can accompany the object 

throughout the lifecycle to host related information. Assuming that RFID tags and readers 

will be extensively available in the construction site, they can be considered as 

components of the facility and localization system. Thus, there will be a need for a 

standard and formal definition of RFID systems in BIM. 

Available RFID tags in the construction site can store data related to resources, elements, 

components, equipment and even for temporary placement, e.g., reference markers. 

These data are dynamic and taken from a standard BIM database. Figure 3-1 shows how 

data chunks from the BIM database are copied into the memories of different RFID tags. 

For example, the tag can contain the location coordinates of the object it belongs to or a 

place which is known as a reference marker for the localization system. In order to 

interrelate the objects’ information in a BIM and their associated tags’ memory, the 

relationship between the objects and their associated tags should be identified and 

modeled. Having these relationship defined in a BIM, the process of selecting data to be 

stored on tags’ memory can be facilitated. For example, in order to copy an object’s last 

position on the tag’s memory, the related object to the chosen tag is identified through the 

existing relationships and its new position are queried within the model without further 

need for measurement. The selected data is then copied to the tag’s memory. 
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Figure 3-1 Conceptual BIM-Tag Data Relationship (adapted from Motamedi and Hammad, 

2009a) 

3.2 Proposed extension for IFC 

Definitions and data structure of the recently released IFC4 standard are considered as the 

basis for the proposed extension module. To avoid the unnecessary expansion of the 

model, it is investigated to add the minimum number of new definitions of objects and 

relationships on this version of IFC while reusing the available relationships and property 

sets. 

3.2.1 Requirements gathering for RFID system definitions 

Various resources are used for the design phase including the RFID manufacturer’s data 

sheets and specifications, scenario/case studies in which RFID technology is utilized for 

lifecycle management of facilities (e.g., Motamedi and Hammad, 2009; Ergen and 

Guven, 2009). In order to identify the relationships between RFID components and 

objects or building components, our proposed framework in which RFID tags are 

assigned or attached to objects or building components is used. 
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3.2.2 Sample scenario: updating the location coordinates of an object as a reference point 

An RFID reference tag is a tag the memory of which contains the coordinates of the 

object it is attached to (Motamedi et al. 2012). Having the information available on the 

reference tags will provide users with the ability to estimate the position of the objects 

with unknown locations and equipped with RFID tags. In order to update these location 

data on the reference tag, the BIM database is used. 

Read the tags ID 
Query ID in the BIM 

file

Query associated 

objects

Query coordinates of 

the associated objects 

in the BIM file 

Build Object’s 

Coordinate data file

Is it a Reference 

tag?

Read the properties of 

the tag

Y

Save on the tag End

N

1 2 3

456

7 8

9

 

Figure 3-2 Process flowchart to update assets' coordinates on a reference tag (adopted from 

Motamedi et al. 2013a) 

Figure 3-2 shows the process flowchart to update the objects’ coordinates on the 

reference tag’s memory: (1) The tag is scanned and the ID is read by the software; (2) the 

software queries the ID in the BIM database; (3,4) software reads the properties of the 

scanned tag on the IFC file and verifies if the detected tag is a reference tag; (5) using 

available relationships in the IFC file, the software identifies the related object; (6) the 

software reads the location coordinates of the object from the IFC file; (7) it builds the 
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data file containing the queried data; and (8) the data file is merged into the data on the 

tag. 

3.2.3 RFID system elements 

RFID hardware can be grouped in three major categories: (1) RFID tag (transponder), (2) 

RFID reader (Transceiver), and (3) antenna. Each of these entities and their associated 

attributes should be defined. An antenna is defined in IFC as an enumeration of 

IfcCommunicationsApplianceType. Hence, this definition can be used to model the 

antenna attached to readers and tags (Motamedi et al., 2013a).  

The RFID components are defined under the IFC Electrical Domain schema which forms 

a part of the Domain Layer of the IFC model (BuildingSmart-Tech, 2013). A new type 

(i.e. RFIDSystemType) is proposed to be defined in IFC with four enumerations: (1) 

passive tag, (2) active tag, (3) passive reader, and (4) active reader. Figure 3-3 shows the 

hierarchy of entities for the new defined object. Other possible types, such as Semi-Active 

RFID that inherits properties of both active and passive tags, can be identified using a 

combination of properties related to each of the above major types. 
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Figure 3-3 IFC hierarchy for RFID system  

3.2.3.1 RFID system properties definition 

As explained in Section 3.2.1, various resources are used to identify the required property 

sets of RFID system’s components. For example, data sheets provided by RFID tags 

manufacturers were used to identify the required set of electrical and radio property types 

to be included. A survey of available RFID systems is conducted to identify various 

shapes and casing materials for RFID tags. Moreover, properties related to the operation 

of RFID components during the lifecycle are added such as installation date, current 

battery level and the incremental write cycle count. These data are used to identify the 

state of RFID usage at any given time. These data can be used to plan for replacement or 

maintenance of the tags that are reaching their end of lifecycle. Due to the fact that RFID 

tags’ memory is used to store data, some properties related to the data should be captured. 

For example, various standard IDentifiers that are assigned, the type of cipher that is used 
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to encrypt the data (Motamedi et al., 2011), and the markup language are required to be 

defined. It is also suggested to add a local copy of the memory content of the tags in the 

BIM database. Having a local copy of the last updated content of the memory can be used 

to check data integrity and synchronization. 

The properties of RFID systems are defined according to property set assignment concept 

of the IFC. Available property sets are reused, such as Pset of Electrical Device Common, 

Condition, Environmental Impact Indicators, Manufacturer (Type and Occurrence), 

Service Life, and Warranty. IFC standard (BuildingSmart-Tech, 2013) can be referred to 

the details of the above-mentioned sets.  

Table 3-1 Proposed property sets (Motamedi et al., 2013a) 

Property set Description Example 
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Standard compliance 
Communication, memory, ID type, and data type 

standards 
ISO18000 ✓ ✓ ✓ 

Range Operating readability range of tag or reader 300 m ✓ ✓ ✓ 

Frequency Communication frequency range for the tag 915 MHz ✓ ✓ ✓ 

EPC number 
Universal identifier as defined in the EPCglobal 

tag data standard 

urn:epc:id:sgtin:0134

000.213254.343 
✓ ✓   

TID  32-bit transponder identification number 2E8E0D4C ✓ ✓   

Total memory size Total size of tags memory 32 KB ✓ ✓   

Shape type 
(1) Label, (2) Ticket, (3) Card, (4) Glass bead, 

(5) Integrated, (6) Wristband, (7) Button  
Label ✓ ✓   

Battery type Battery type standard LR AA ✓     

Battery level Percentage of available battery 40% ✓     

Reader type Mobile, Fixed Mobile     ✓ 

Number  of antennas Total number of supported or attached antennas 4 ✓ ✓ ✓ 

Reader buffer  Number of tags that can be read 400      ✓ 
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Separate property sets are defined to include RFID type-specific information. For 

example, the battery life can be only a property of active tags. Table 3-1 shows some of 

the recommended property items for all RFID system entities. More details can be found 

in (Motamedi et al. 2013a). These property items are placed in five property sets (PSet) 

that are: RFID Common PSet (for properties that are shared between all types), Active 

tag Pset, Passive Tag Pset, Active reader Pset, and Passive reader Pset (Motamedi et al., 

2013a). 

3.2.4 Relationships with other objects  

The RFID tag/reader is either attached to an object/building element or is part of it (as a 

subcomponent). These relationships are physical attachment or decomposition type. 

Although each tag/reader is attached to only one element, an element can be physically 

attached to several RFID tags/readers.  

The decomposition relationship between an RFID tag and the associated element can be 

defined using existing IFC relationship definitions. Entities such as IfcRelDecomposes 

and its subtype IfcRelAggregates are used to realize this relationship between tags and 

their associated elements.  

In order to describe the physical connectivity between an RFID tag/reader and an object 

or building component, IfcRelConnectsElements together with IfcConnectionGeometry 

are used. IfcConnectionGeometry is added to describe the geometric constraints of the 

physical connection of two objects. The physical connection information is given by 

specifying exactly where at the relating and related element the connection occurs. 
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Additionally, IFC provides the eccentricity subtypes, to describe the connection when 

there is a distance between the tag and the element. IFC provides the following 

connection geometry/topology types: (1) point/vertex point, (2) curve/edge curve, and (3) 

surface/face surface (Motamedi et al., 2013a).  

Furthermore, one or many elements or spaces can be logically assigned to a tag in order 

to keep data related to them on its memory. The following are different alternatives for 

object-to-tag assignments: (1) A single object is assigned to a tag (object tag): The tag 

contains data about one asset. In this scenario, the tag is attached to the asset; (2) A group 

of objects is assigned to a tag (group object tag): More than one object is assigned to the 

tag (for example, reference tags placed in an specific zone); (3) Several spaces and/or 

objects are assigned to a tag (reference tag): The tag contains data about the space (e.g. 

coordinates, room number and occupants) and data about selected objects in that space; 

(4) A space is assigned to a tag (area tag): The tag contains data about the space (e.g. 

floor plan, occupants); and (5) A group of spaces is assigned to a tag (zone tag): The tag 

contains data about a group of spaces (e.g. contains department name). Figure 3-4 

conceptually shows the relationship of an RFID tag and associated and attached assets 

and spaces. All of the above-mentioned logical relationships between tags and elements 

can be described in IFC using IfcRelAssignsToProduct entity (Motamedi et al., 2013a). 

RFID Tag

Object

Object
1

Space

0 .. * 0 .. *

(IfcRelConnectsElements)

Assigned to

Assigned to

(IfcRelAssignsToProduct)
0 .. *

Attached to

0 .. * 0 .. *  
Figure 3-4 RFID tag attachment and assignment relationships (Motamedi et al., 2013a) 
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3.3 Case study 

3.3.1 Modeling RFID tags in BIM application 

A sample construction site has been modeled in Autodesk Revit Architecture 2012 

(Autodesk, 2012) to show the feasibility of the proposed method. RFID active tags are 

modeled in Revit environment under the electrical equipment category. The model is then 

exported to IFC and extra code is added to the EXPRESS file in order to define new 

properties and relationship for tags and assets based on IFC4 standards. The modified 

IFC model is then viewed by standard IFC viewer called Nemetschek IfcViewer 

(Nemetschek Allplan GmbH, 2009) to verify the consistency of the model. 

In the case study (Figure 3-5), active long range tags are attached to the building 

structural elements (e.g., columns) since they are permanent objects during the 

construction phase. The coordinates of the columns are stored in the tags attached to 

them. Additionally, information of all other related tags to each tag in each zone is added 

to the memory of that tag. 

Figure 3-5 illustrates an overview of the site. Six zones are defined and shown will 

transparent colors. A selected number of columns are equipped by RFID tags as reference 

tags for the localization system. Markers shown in orange are used where there is no 

permanent object for attaching RFID reference tags (e.g. corners and around each storage 

area). 
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Zone 2

Zone 3
Zone 4

Zone 5

Zone 6

Zone 1

 
Figure 3-5 Detailed 3D view of a sample construction site 

In our case study, active tags are assigned to several RFID tags and one specific zone 

(reference tag). In order to facilitate the data access, it is attached to columns or markers 

in side of each defined virtual zone (Figure 3-6 and Figure 3-7). 

Zone 1

Zone 2

  

Figure 3-6 Modeled active tag attached to 

the structural columns 

Figure 3-7 Modeled active tag attached to the 

markers 

Three main relationship types are defined for the active reference tags: (1) physical 

relationship (attachment): which is the relationship between the tag and the object it is 

attached to (i.e. column or marker); (2) Spatial containment:  the relationship between the 
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tag and the space containing the tag (i.e. zone). Figure 3-6 shows the area of zone one 

(transparent yellow) which is assigned to the active tags within this area; (3) Assignment 

to objects: it is a logical relationship between specific objects or tags and a specific tag. It 

is neither physical, nor spatial. 

3.3.2 Adding relationships using STEP language 

After creating the model objects in the Revit application, various relationships should be 

defined. The current version of the tool supports only the spatial containment relationship 

(i.e. IfcRelContainedInSpatialStructure). Hence, the model is exported to IFC format and 

other relationships are manually added using the EXPRESS format (BuildingSmart-Tech, 

2013). Figure 3-8 shows the relationship between various elements including the building 

structural elements (i.e. columns) and their attached RFID tags. The numbers of 

relationships shown in Figure 3-8 correspond to the noted numbers in the comment 

column of Table 3-2.  

As shown in the Figure 3-8, the reference tag (i.e. ActiveTag_RT1) is assigned to three 

other RFID tags and one zone and it is attached to a column (i.e. Column_1). The figure 

also identifies the used type of IFC’s objectified relationships to be added to the IFC file 

in order to realize the required relationship for the case study. Nemetschek IfcViewer is 

used to validate the procedure of adding new lines to the IFC file of the model 

(Nemetschek Allplan GmbH, 2009).  
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Figure 3-8 Case study entities and relationships 

Table 3-2 shows parts of the modified IFC file that describes the following: (1) the 

definitions of some elements (i.e. the active reference tag (RT1), column (Column_1), the 

zone (Zone_1); (2) the coordinates of RT1, RT2 and Column_1; (3) various relationships 

including: physical relationship between reference tag and column, logical relationships 

between reference tags and columns, logical relationships between reference tags and all 

assigned objects, tags, and spaces, spatial relationship between Zone_1 and all the 

reference tags within that zone; and (4) sample property set definitions and their values 

for sample reference tags (RT1 and RT2) and column (Column_1).  

Furthermore Table 3-2 includes the sample data to realize the scenario to update the 

coordinates of an object as a reference point. It includes the definitions of the active 

reference tag (RT1) (#31635), the definitions of Column_1 (#14928) and Zone_1 (#74), 
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the coordinates of the column (#14925), the physical relationship between the RT1 and 

the Column_1 (#38597), the spatial relationship between Zone_1 and all objects within 

this zone including RT1, RT2, Column_1, and Column_2 (#38444), and the property set 

for RT1 (#38607). 

The application that is used to update the tags should have a procedure to lookup the 

needed entries in the IFC database and create a new file to be merged into the memory of 

scanned RFID tag. 
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Table 3-2 Part of EXPRESS code for the model 

EXPRESS Code Comment 

/* Definitions */ 
 

#14928=IFCCOLUMN('GUID',#33,'M_Concrete-Round-
Column:300mm:300mm:116507' ,$ ,'300mm',#4936,#4933,'116507'); 

Definition of "Column_1" 

#14845=IFCCOLUMN('GUID',#33,'M_Concrete-Round-
Column:300mm:300mm:116483' ,$,'300mm',#4895,#4892,'116483'); 

Definition of "Column_2"  

#31635=IFCBUILDINGELEMENTPROXY('GUID’,#33,'RFID Active Tag3:RFID Active 
Tag:RFID Active Tag:154693',$,'RFID Active 
Tag',#31634,#31628,'154693',.ELEMENT.); 

Definition of "Active 

Tag_RT1" 

#34846=IFCBUILDINGELEMENTPROXY('GUID',#33,'RFID Active Tag4:RFID Active 
Tag:RFID Active Tag:170619',$,'RFID Active 
Tag',#34845,#34839,'170619',.ELEMENT.); 

Definition of "Active 

Tag_RT2" 

#74=IFCSPACE('GUID',#33,'1','',$,#61,#73,'Zone',.ELEMENT.,.INTERNAL.,$); Definition of "Zone_1" 

/* Coordinates */ 
 

#34843=IFCCARTESIANPOINT((-5659.35|,2299.71|7,431.87|)); Coordinates of ActiveTag_RT1 

#31632=IFCCARTESIANPOINT((-667.21|,1239.61|,1408.45|)); Coordinates of ActiveTag_RT2 

#14925=IFCCARTESIANPOINT((-6193.54|,1111.19|,11.15|)); Coordinates of Column_1 

/* Physical Relationships */ 
 

#38597=IFCRELCONNECTSELEMENTS('2OgF5E9XmOp0Kb4HQka4kC',#33,$,$,$,#1
4928,#31635); 

Relationship (1): Attachment of 

ActiveTag_RT1to the 

Column_1 

#38748=IFCRELCONNECTSELEMENTS('2OgF5E9XmOp0Kb4HQka4kC',#33,$,$,$,#1
4845,#34846); 

Relationship (2): Attachment of 

ActiveTag_RT2to the 

Column_2 

/* Logical Relationships */ 
 

#38598=IFCRELASSIGNSTOPRODUCT('GUID',#33,$,$,#14928,$,# 31635) Relationship (3): Assigning 

Column_1 to the 

ActiveTag_RT1 

#38599=IFCRELASSIGNSTOPRODUCT(' GUID ',#33,$,$,(#14928 
,#34846,#74),$,#31635); 

Relationships(4), (5): 

Assigning ActiveTag_RT2 and 

Zone_1to the ActiveTag_RT1 

/* Spatial Relationships */ 
 

#38444=IFCRELCONTAINEDINSPATIALSTRUCTURE('3ttcsXY_L8NeEnekK02B0i',#33,
$,$,(#14928,#14845,#34846,#31635),#74); 

Relationships (6), (7): Spatial 

relationship for objects inside 

"Zone_1" 

/* Property Sets Definitions */ 
 

#38606=IFCPROPERTYSET('GUID',#33,'Pset_Condition',$,(#31635,#34846)); Condition property set 

#38607=IFCPROPERTYSET('GUID',#33,'Pset_RFIDSystemActiveTag',$,(#31635,#34
846)); 

Relationship (8): Active RFID 

property set relationship 

/* Relating Property sets to elements */ 
Relating “condition property 

set to Column_1 and RFID 

property sets to 

ActiveTag_RT1 
#38608=IFCRELDEFINESBYPROPERTIES('GUID',#33,$,$,( #14928),#31635); 
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3.4 Summary and conclusions 

The needs, motivations and benefits of extending BIM to cover standard definitions of 

RFID systems were investigated in this chapter. One of the main targets for proposing 

this model was to support the methodology of an RFID-based localization approach 

which will be introduced in the next chapter 

The conclusions of this chapter are as follows: (1) The requirements’ gathering was 

performed in order to identify the related attributes and relationships for RFID system 

components using the scenario for updating the location coordinates of an object as a 

reference point was investigated; (2) The properties of RFID systems were defined by 

reusing the available property sets or by adding separate property sets to include RFID 

type-specific information; (3) Different relationships including physical attachment, 

decomposition type, and logical assignment were investigated and standardized to cover 

all possible relationships between RFID tags and different entities of BIM; and (4) a 

sample model of a construction site was developed using the existing and newly added 

definitions and relationships in IFC to validate the applicability of the proposed model. 

Moreover, to realize the proposed extension of IFC, various IFC-compatible tools were 

utilized and tested. However, several limitations for extending the definitions and some 

compatibility issues for browsing an IFC file using different BIM tools were found which 

need to be further investigated in the future. 



 

71 

 RFID-BASED LOCALIZATION USING VIRTUAL CHAPTER 4

REFERENCE TAG AND ARTIFICIAL NEURAL NETWORK  

4.1 Introduction 

Construction projects have a highly fragmented nature with different entities, contractors, 

and involved agents. Opposite to the other industries, construction projects aim to provide 

a unique product at the end of the project. This product is a result of a process which is 

different from one project to another but is similar in nature. Bringing different 

contractors together in one job site requires a great amount of coordination to work 

efficiently. Managing materials, equipment, and tools is a time consuming and needs a 

great amount of efforts. On one side, they should be protected against the theft and on the 

other side they should be placed at known places and by reachable by the workers. In the 

previous chapter, a new model for using RFID within IFC was proposed. This model 

helps tracking moveable objects to be more efficient, practical, affordable, and reliable. 

This chapter proposes a new method for tracking prefabricated elements, equipment, and 

tools to overcome the aforementioned problems. 

In this method, some RFID tags are placed on the construction site as reference points for 

the localization system. The tags can be attached permanently or temporarily to any 

physical object which is defined in the BIM model. The corresponding object coordinates 

can be extracted from BIM and stored in the memory of the tag as the location of the tag. 

In case there is no suitable object in the area on the site to attach the tag to, a marker can 

play the role of a reference point but its position has to be defined in BIM and then stored 

in memory of the tag attached to it. This process avoids further measurements for finding 
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the positions of the tags on the construction site since their data can be extracted from the 

BIM data base. Having the information coming from the BIM on one hand, and using 

RFID technology on the other hand, prepare the foundation of the proposed localization 

method using a movable device. In the next section, the proposed concept for 

indoor/outdoor moveable target localization based on the BIM information is introduced.  

4.2 Cluster-based Movable Tag Localization (CMTL) 

In the method, it is assumed that reference tags are attached to the building structural 

elements since they are fixed and permanent. In case those permanent elements for 

placing the reference tags are not available, marker stands can be placed temporarily to 

hold the reference tags. Target objects (i.e. prefabricated building elements, electrical 

components, mechanical components, tools, instruments, and etc.) are equipped with long 

range, omnidirectional and identical tags. The coordinates of RFID tags that are attached 

to fixed objects (reference tags) are derived from BIM. Moreover, it is assumed that the 

target tags are stationary for the period of localization and the user equipped with a 

handheld reader is moving within the facility to collect RSSI values and locate assets. 

CMTL can be categorized under neighborhood-based localization techniques where fixed 

objects are used as reference points to help locating moveable targets. The similarity of 

RSSI between target tags and reference tags is used for localization. The RSSI received 

from reference tags and target tags are logged by a handheld RFID reader at several 

locations and processed to determine the similarity between signal strength patterns. Tags 

that show similar signal patterns are considered to be spatially adjacent. This similarity of 

patterns stems from the fact that the radio signals of the neighboring tags are affected by 
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the same environmental effects. This method does not use RSSI values to estimate the 

distance between the reader and tags due to the unreliability of this conversion in 

construction noisy environments (Motamedi et al., 2013b). 

4.2.1 Process of movable tags localization 

As shown in Figure 4-1, a user equipped with a handheld RFID reader moves in the site 

and collects the RSSI values from all surrounding tags at different locations (e.g. L1, L2, 

and L3 in Figure 4-1). Recorded RSSI values are those received from reference tags (Ri) 

attached to fixed objects that have their locations and from a tag attached to a movable 

object with no location information (T).  
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Figure 4-1 Sample scenario of localization process 

In this method, the received RSSI values from the target tag are compared to those 

received from the reference tags at different data collection steps. By using a pattern 

matching algorithm, the reference tags that exhibit similar signal patterns to those of the 
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target tag are identified. Finally, a group of reference tags is selected and their 

coordinates are used for localizing the target tag as explained in the following sections 

(Motamedi et al., 2013b). 

Figure 4-2 shows the process flowchart to locate a specific movable object: (1) The user 

scans the area to detect the tag that is attached to the target object; (2) If the target tag is 

not in the range of the RFID reader, the user needs to change his/her location to be able to 

detect the tag; (3) As soon as the target tag is detected by the reader, the user starts 

logging the RSSI received from surrounding tags. The user remains stationary during the 

data collection for a short time period of ∆t; (4) The logged data are processed by the data 

processing module which includes: filtering logged RSSI values to eliminate the values 

that are out of range as the result of sudden noises, errors in recording data, hardware 

errors, etc.; data averaging and pattern matching to compare the pattern of the RSSI of 

the target tag with all reference tags using a pattern matching algorithm; and clustering to 

group reference tags considering the result of pattern matching and their spatial 

distribution; (5) The location of the target object is estimated based on the result of the 

pattern matching, clustering and other information such as spatial constraints. The 

localization module uses Virtual Reference Tags (VRTs) in case of low reference tags’ 

density and applies ANN to estimate the location of the target tag; (6, 7) If the logged 

data are not adequate for accurately estimating the location, the user is prompted to move 

to a new location and to continue logging data; and (8) After estimating the location of 

the target tag, it is shown on the site plan (Motamedi et al., 2013b). 
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Figure 4-2 Process flowchart of localizing a specific movable target object 

The details of filtering, averaging, pattern matching, clustering and ANN-based 

localization method are given in the following sections. 

4.2.2 Filtering and averaging 

At each data collection step, several RSSI values from various tags are sensed and logged 

by the reader. The data collection takes place when the user is stationary for a short 

duration of ∆t. As the tags and the reader are not moving for the period of data collection, 

the received RSSI value from each tag is expected to be constant. However, variations in 

the received values result from small changes in distance, ambient noise, multi-path 

effects and several other changing environment factors. On the other hand, some received 
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values can be outside the expected range and show systematic errors such as recording 

errors and sudden signal blockage. These values should be filtered out from the logged 

data and then the average RSSI value for each data collection step should be calculated to 

be used for the pattern matching. Outliers and multi-path and signal blockage effects are 

two major sources of errors that should be filtered (Motamedi et al., 2013b). 

During the data collection, it is assumed that there are n reference tags, p target tags, and 

m different data collection steps in the construction site.      
  denotes the averaged RSSI 

value for the i
th

 tag (reference or target) at the s
th 

data collection step calculated using 

Equation 4-1.       
  denotes a single logged RSS value recorded from the i

th
 tag at the s

th 

data collection step; where   
  is the total number of recorded RSSI values for the i

th
 tag at 

the s
th 

data collection step after filtering (Motamedi et al., 2013b).  

    
  [∑      

 

  
 

   

]    
  Equation 4-1 

4.2.3 Pattern matching algorithm 

The goal of pattern matching is to determine which reference tags (Ri) show similar 

signal patterns to the signal pattern received from the target tag (Tj). The least square 

difference method is employed to calculate the similarity of reference tags to the target 

tag. i

j

T

R is the distance indicator (pattern dissimilarity) value between the i
th

 reference tag 

and the j
th

 target tag after m data collection steps (Equation 4-2). The matrix of β 

(Equation 4-3) is constructed using the calculated values from Equation 4-2 (Motamedi et 

al., 2013b). 
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 Equation 4-2 

   [   

  ]
               

 Equation 4-3 

The β values in the j
th

 column of the matrix indicate the distance indicators for each 

reference tag to the j
th

 target tag. The least β value in each column shows the reference 

tag that is assumably closer to the associated target tag (Motamedi et al., 2013b). 

4.2.4 Identifying the target area by clustering reference tags  

In some cases, the reference tags which are not spatially close to the target tag show 

similar signal patterns to that target tag. This can happen randomly or can be caused by 

the movement pattern of the user while collecting data and the layout of the site due to 

the symmetry of the distribution of reference tags with respect to the data collection path. 

For example if the user walks in a corridor where two rooms are located on two sides, 

there might be cases that reference tags located in different rooms across the corridor 

show similar signal patterns due to symmetry. Figure 4-3(a) shows an example layout of 

several reference tags and a target tag. Figure 4-3(b) shows the similarity of each 

reference tag represented by a circle where the diameter of the circles is inversely 

proportional to the β value. LANDMARC method selects the best k reference tags based 

on the β values sorting and uses weighted averaging to locate the target tag. However, 

this technique may select reference tags that are far from the target. Therefore, the 

localization based on LANDMARC method suffers from a large error as shown in Figure 

4-3(c) (Motamedi et al., 2013b). 
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(a) Location of reference and target tags
 

(b) Similarity of reference tags
 

(c) Best three reference tags based on 

similarity value 

 
(d) Best three reference tags based on 

grouping 

 

(a) Location of 

reference and target 

tags 

(b) Similarity of 

reference tags 

(c) Best three reference 

tags based on similarity 

value 

(d) Best three reference 

tags based on grouping 

 Target tag  Reference tag  Signal similarity 

 Estimated location of target tag  Data collection point and path 

Figure 4-3 Reference tags clustering (Motamedi et al., 2013b) 

The solution to this problem is to form clusters of reference tags that are spatially close. 

The target localization can be performed within the selected cluster, as shown in Figure 

4-3(d). However, clustering of reference tags based only on spatial closeness of the tags 

does not necessarily lead to best results. For example, Figure 4-4(a) shows a case where 

spatial clustering will not lead to the optimum selection of reference tags for localization 

(Motamedi et al., 2013b). 

  

(a) Grouping of reference tags based on 

closeness 

(b) Grouping of reference tags based on 

closeness and similarity values 

 Target tag  Reference tag  
Estimated location 

of target tag  

Signal 

similarity  
Cluster 

boundary 

Figure 4-4 Multi criteria clustering vs. single criterion (Motamedi et al., 2013b) 
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There are several methods to form clusters. Clustering of tags can be static using a 

predefined fixed number of tags or can be dynamic. Moreover, the clustering can be uni-

dimentional (e.g. closeness) or multi-dimensional (e.g. closeness and similarity) (Chen et 

al., 2012). The proposed method for clustering uses combination of two criteria for 

selecting members of each cluster: (1) closeness of reference tags: by selecting the 

reference tags that are spatially close to each other using algorithms such as k-means 

(Kanungo et al., 2002), and (2) similarity of reference tags to the target: by selecting tags 

that have similar signal pattern to that of the target tag using β values. Consequently, by 

using CMTL, target tags that show similar signal pattern to the one of the target and at 

the same time are in close proximity of each other are chosen as the target cluster. 

However, additional criteria such as zone number, floor number, or types of material 

surrounding the tags can be added to the clustering algorithms. Figure 4-4(b) shows how 

this clustering method chooses a group of tags that is spatially close and at the same time 

shows high signal pattern similarity. Motamedi et al. (2013b) introduced the following 

steps to form clusters and chose the target cluster: 

4.2.4.1 Calculating spatial closeness of clusters’ members 

It was assumed that there are z clusters (number of combinations containing k distinct 

elements out of a set with n elements) available in the environment (Equation 4-4). Gr 

[r∈  (1, z)] denotes the r
th

 cluster and    
 denotes the total number of reference tags in the 

cluster. First, the x and y coordinates of the centroid point for each group are calculated. 

   

  and    

  denote the coordinates for the centroid point of r
th 

group.  
  
   and  

  
   

denote the coordinates of the e
th 

member of the group. The total of the distances of each 
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group member to the centroid of the group is calculated using Equation 4-5 and 

normalized using Equation 4-6. 

   
  

   (   ) 
 Equation 4-4 

   
  ∑√( 

  
      

 )
 

 ( 
  
      

 )
 

   

   

 
Equation 4-5 

   
́      

 𝑎      
  ⁄  

Equation 4-6 

4.2.4.2 Calculating the signal pattern dissimilarity of clusters’ members and 

selecting the target cluster 

In this stage the average signal pattern dissimilarity (β) of each member of the group 

(  
  ) to the target tag (  ) is calculated using Equation 4-7 and the value is normalized 

using Equation 4-8. 

   

   (∑ 
  
  

  

   

   

)    
⁄  Equation 4-7 

   

  ́     

   𝑎      

   ⁄  
Equation 4-8 

The target cluster is selected based on two values calculated using Equation 4-6 and 

Equation 4-8.    
 denotes the score of each multi-dimensional cluster based on two 

criteria (i.e. spatial closeness of members and the signal pattern similarity of members to 

the target) as shown in Equation 4-9. The weights,    and    , can be adjusted based on 

the layout of the building, density of tags and their spatial distribution. The best cluster 

with the smallest score is chosen as the target cluster using Equation 4-10. 
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Equation 4-9 

   

     = Min     
  Equation 4-10 

4.2.5 Localization based on clustering results using ANN and VRTs 

Applying CMTL for localization in a large area (e.g. construction sites) brings the 

problem of maintaining the required accuracy without adding more real reference tags. 

Empirical weighted averaging equation presented in Ni et al. (2004) adopted for a 

specific environment in which their test was performed. Additionally, applying weighted 

averaging in large areas with high level of noise, and scattered reference tags (not in 

rectangular mesh) causes large errors (Jiang et al., 2012). To overcome these limitations, 

adding VRTs to increase the density and applying ANN to create a flexible positioning 

method are proposed in this research. Zhao et al. (2007) used VRT, and Jiang et al. 

(2012) applied ANN separately to improve the mentioned limitations of LANDMARC. 

Zhao et al. (2007) and Ng et al. (2011) used interpolation for rectangular mesh form of 

reference tags’ placement. The main idea of the method proposed in this paper which is 

named CMTL+, is to use a combination of VRT and ANN considering the clustering 

algorithm introduced in Section 4.2.4. 

4.2.5.1 Virtual Reference Tags 

Figure 4-5 illustrates schematically, when there are five reference tags in an area of 4m × 

5m and the approximate error is e. However, using the same number of tags in an area of 

12m × 15m will result in an error of e’ which is a function of the area’s size scale change. 
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To reduce the value of e’, more reference tags are required to be deployed that results in a 

higher implementation cost. 

1
2
 m

15 m
4
 m

5 m

e’

e

 

 Target tag  Reference tag  Estimated location of target tag  Signal similarity 

Figure 4-5 Scale change limitation of methods based on weighted averaging 

As explained in Section 2.3.3.3, adding virtual nodes can avoid the density problem. 

Figure 4-6 shows how adding a grid of VRTs surrounded by the four chosen real 

reference tags in a cluster can provide more input data to the system to be trained more 

precisely.  

The coordinates of the newly added VRTs are known. Yet, the RSSI values should be 

calculated. An irregular bilinear interpolation is used in this paper to estimate the RSSI of 

each VRT based on the RSSI values of the surrounding real reference tags. In our 

method, the reference tags are placed randomly (not in a triangular or rectangular mesh). 
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 Reference tag  Virtual reference tag  Cluster boundary  Signal similarity 

Figure 4-6 Fixed density limitation in LANDMARC method 
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Figure 4-7 Calculation the RSSI of VRTs using irregular bilinear interpolation 
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As shown Figure 4-7, for the case that the winner cluster includes four real reference 

tags, a linear interpolation in the x-direction is performed in the first step. Applying 

Equation 4-11 between RSSI1 and RSSI2 results in RSSI1-2 and applying Equation 4-12 

between RSSI3 and RSSI4 results in RSSI3-4. Next, the RSSI of the VRT can be obtained by 

using Equation 4-13 which interpolates in the y-direction between  

        
       

     
      

       

     
      Equation 4-11 

        
       

     
      

       

     
      Equation 4-12 

        
         

         
        

         

         
        Equation 4-13 

4.2.5.2 Artificial Neural Network for positioning 

As mentioned in Sections 2.3.3.2 and 4.2.4, LANDMARC and CMTL use weighted 

averaging of the selected reference tags coordinates to calculate the location of the target 

tag. The weights are calculated based on an empirical function using the distance 

indicators. Weighted averaging presented by Ni et al. (2004) is adopted to the size, the 

environment, and the topology of the reference tags in their tests. Consequently, it does 

not provide the best positioning for all settings.  

To overcome this limitation, ANN is applied as an alternative method for positioning in 

the literature as explained in Section2.3.3.4. However in most of the research, ANN was 

used to map the RSSI to the coordinates. In this research, RSSIs are processed and then 

summarized into dissimilarity indicators (β values). Furthermore, the benefit of VRTs is 

added to the input of ANN during the data processing phase. The proposed network has 
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to learn the relationship between the dissimilarity of each reference tags (with respect to 

the other reference tags) and its known coordinates, when considered as an imaginary 

target tag. In other words, if there are n reference tags with known coordinates, in each 

learning loop, each reference tag becomes a candidate as a target at an unknown position 

and the dissimilarities of its signal pattern to the other reference tags are calculated and 

provided as inputs to the network. The known coordinates of the reference tag are 

provided as output of the network. The network learns the relationship of the dissimilarity 

patterns and the coordinates in each loop. Then the network can estimate the coordinates 

of an unknown target based on its signal dissimilarity pattern with all leant reference tags. 

A supervised, feed-forward ANN is used for mapping the inputs to outputs with a BP 

algorithm. The algorithm has the task of minimizing the errors of the network weights. 

The “tan-sigmoid” function is used as the transfer function of the model (Hudson et al., 

2012). The size of the network depends on four main parameters including the number of 

input nodes, output nodes, hidden layers, and neurons in each hidden layer. The number 

of the network’s input nodes is equal to the number of participant reference tags during 

localization (i.e. n, where n is the total number of reference tags) and the number of 

output nodes is equal to the coordinates of a reference tag.  

The architecture of the proposed network is illustrated in Figure 4-8. If the input of the 

network is considered as a n by n matrix, then the values in each row show the signal 

dissimilarity between i
th

 reference tag and each other reference tags. Similar to Equation 

4-2, Ri

Rj is the distance indicator (pattern dissimilarity) value between the i
th

 reference tag 

and the j
th

 reference tag (temporary target for training) after m data collection steps. The 
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matrix of γR (Equation 4-14) is constructed using the calculated values from Equation 

4-15. Obviously, the signal dissimilarity of each reference tag with itself is equal to zero; 

therefore, the main diagonal entries are zeros. 
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Equation 4-14 

    [   

  ]
               

 Equation 4-15 

The number of hidden layers is set to one. Since there is no specific guideline for 

choosing the number of hidden neurons (Nhidden), an empirical equation (Equation 4-16) is 

proposed which can provide the optimum number of hidden layer neurons considering 

the number of input layer and output layer nodes.  

         ((             )    
 

 
)    

Equation 4-16 

For instance, in the network shown in Figure 4-8, if NInput is 19 (including four real and 

15 virtual reference tags) and NOutput is two, the number of hidden neurons is equal to 16. 
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Figure 4-8 Proposed network architecture overview 

4.3 Case study 

4.3.1 Development of a simulation environment 

A simulation environment is developed in Matlab (MathWorks, 2012) in order to 

evaluate the proposed method for various distributions of reference and target tags, data 

collection points, RSSI behaviors, and the number of readings at each data collection 

point. The simulation platform provides a flexible environment to define and place 

multiple reference and target tags. The simulation can help evaluating the impact of a 

large number of parameters, such as the number, distribution and RF behavior of tags. It 

also provides the convenience of performing a large number of tests with less time and 

cost compared to field tests because it does not require the set up and data collection time 

needed in the field tests. 

The simulator comprises different modules, such as: (1) parameters definition; (2) RSSI 

generator; (3) pattern similarity assessment; (4) clustering; (5) localization using neural 

network and Irregular bilinear interpolation; (6) data comparison and sensitivity analysis; 

and (7) field test data processing.  
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Generating random coordinates for the reference and target tags may result in 

inhomogeneous area from the layout point of view. Therefore, the Hammersley algorithm 

(Hammersley, 1960; Dai and Wang, 2009) is used to distribute the tags homogeneously 

in the layout. 

 
Equation 4-17 Layout comparison of the scenarios using random numbers and hammersley 

sequence (Dai and Wang, 2009) 

The generation of RSSI values in the simulation uses Monte Carlo approach based on our 

field test results explained in Section 4.3.2. The signal similarity between target and 

reference tags are calculated for a set of data collection points that are specified in the 

simulation input. The clustering module finds the best group of reference tags based on 

signal pattern similarity score and geometric proximity of reference tags in each selected 

cluster as explained in Section 4.2.4 However, the simulation environment does not 

consider the effect of obstacles on the propagated radio signals. Hence, the current 

version of the simulator simulates an obstacle-free environment where the behavior of the 

RFID signals follow the results of our field test in a similar environment. Consequently, 

the simulator does not provide the validation for the proposed method of localizing 
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moveable tags in cluttered indoor environments. In order to validate the method in such 

environments, field tests are performed (Section 5.4). Additionally, an irregular bilinear 

interpolation is performed between all the members of the winner cluster. The result 

feeds the network defined in Matlab Neural Networks Toolbox
TM

. 

 

 Reference Tag 

 Target Tag 

 Data Collection Point 

 Path 
 

 

 
Reference Tag 

 Target Tag 

 CMTL Result 

 
LANDMARC Result 

 Data Collection Point 

 Path 
 

Target Tag

 

(a) Defining reference and target tags and data 

collection points 

(b) Simulation results for sample target tag 

(T13) 
 

Figure 4-9 Sample simulation input data and results 

Figure 4-9(a) shows a snapshot of a sample simulation input data with 75 randomly 

distributed reference and 25 target tags. The small and large stars show the location of 

reference tags and target tags, respectively. The path that the user with a handheld reader 

took to localize the target tags is shown by a line. Stars on the path show the data 

collection points. As shown in the figure, there are eight data collection steps. Figure 4-9 

(b) shows the results of one case where target tag 13 is localized with four data collection 

points. The dark large star is the estimated location of the target based on the clustering 

method and the white star represents the position of the target calculated by the 

LANDMARC method. The diameters of the circles around reference tags are inversely 

proportional to the β values. Hence, the bigger the diameter of the circle, the closer the 
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associated reference tags to the target tag. As shown in the figure, the simulation tool is 

able to identify the closest reference tags to the target and to estimate its location. Table 

4-1 summarizes the setup of network defined in Matlab 2012b (MathWorks, 2012). 

Table 4-1 ANN setup in Matlab 

Functions Description Matlab Command 

Processing Functions 

Mapping row minimum and 

maximum values to [-1,.1] 
'mapminmax' 

Removing rows with constant values 'removeconstantrows' 

Data division 

functions 

Divide data randomly 'dividerand' 

Divide up every sample 'sample' 

Train function Bayesian regulation backpropagation 'trainbr' 

Performance function Mean squared error 'mse' 

Transfer functions 
Hidden layer Tan-Sigmoid 'tansig' 

Output layer Linear 'purelin' 

4.3.2 Testing RFID characteristics 

In order to realize the proposed method for locating moveable objects (i.e., CMTL), the 

characteristics of an available RFID system are analyzed. Active RFID tags from Identec 

Solutions (Identec Solutions, 2012) with relatively long nominal range (100 m), operating 

frequency of 915 MHz, and 32 KB of storage are used together with a handheld reader. 

Available tag’s antenna are omnidirectional (1/4-wave monopole with 2/3 vertical 

element and 1/3 horizontal element). 



 

91 

  

(a) Average values (b) Standard deviations 

Figure 4-10 RSSI vs. distance relationship 

In order to perform the tests, a .Net application is developed to log received signals by the 

RFID reader and to store them in data tables. The frequency of reading and the power of 

the antenna are customizable. Several tests were conducted to test the readability range 

and the effect of various environment factors on the RFID tags. The first test was 

performed at Concordia Stinger Dome (120m × 70m) to examine the readability range 

and signal attenuation of tags in an obstacle-free environment. An RFID tag was placed 

on a tripod and RSSI values were collected at various distances from the tag. Figure 

4-10(a) shows the decrease of RSSI values by increasing the distance. It is also observed 

that the gain is higher in front on the same long axis of the tag. Figure 4-10(b) shows that 

the standard deviations of RSSI values slightly increase as the distance between the tag 

and the reader (l) increases. Equation 4-18 shows the relationship between the distance 

and RSSI value based on our field test. Equation 4-19 formulates the relationship 

between the standard deviation of the RSSI values and the distance where RSSI measured 

in decibels milliwatt (dBm) and l in meters. 
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RSSI = -9.387 ln(l) - 34.125 Equation 4-18 

      = 0.0876 ln(l) + 0.1709 Equation 4-19 

4.3.3 Localization accuracy comparison using simulation 

In order to compare the applicability of the proposed method, a comparative study has 

been performed using the simulation environment. The accuracies of localization using 

CMTL+, CMTL and LANDMARC methods are compared by developing all approaches 

in the simulation environment. For static clustering (with fixed number of tags), a list of 

all combinations of groups with k members can be formed. Equal weights of one 

(Equation 4-4) are used in the simulation environment. The following variables are 

changed in the simulation to find the sensitivity of the results to each or combination of 

the variables: density of total reference tags (real and virtual), number of cluster’s 

member, number of data collection points, test bed size, number of real reference tags, 

and path of data collection points. It can be noticed that there can be two meanings of 

density in the simulation. The first one is the density of the total reference tags (including 

virtual and real tags) and the second one is the density of real reference tags placed in the 

simulation. To distinguish these two meanings, the word of density in the simulation is 

used for the total number of reference tags.  

4.3.3.1 Effect of the number of reference tags in the selected cluster and the shape 

of data collection paths 

Concerning the effect of the number of reference tags in the selected cluster and the 

shape of data collection paths on the accuracy of localization, the simulation is run for 49 

real reference tags in an area of 30m × 30m, and is repeated 20 times for 20 target tags. 
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The number of data collection points is set to 4 with paths of I shape, L shape, and U 

shape. A minimum reference tag density of 0.2 per square meter is considered as the 

threshold for adding VRTs inside the winner cluster. In case that the actual density of real 

reference tags is below this threshold, the algorithm adds some virtual tags to reach that 

density. The set number of target tags and the value of density are fixed for all the 

following simulation results in this chapter. Finally, the results of the proposed method 

using CMTL+ are compared by LANDMARC and CMTL methods. 

Figures 4-11 (a), (b), and (c) show the localization average error using cluster sizes of 

three, four, five, and six tags. From Figure 4-11 (a) it can be shown that the cluster size of 

five tags provides mostly better accuracy when the path of data collection is I-shape. 

Increasing the size of the cluster helps decreasing the average error for L and U shape 

paths (Figures 4-11 (b) and (c)). Based on these results, the number of reference tags in 

the selected cluster is set to four in the following section since LANDMARC performs 

best when using four reference tags for positioning. 
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(a) I shape path 

 

(b) L shape path 

 

(c) U shape path 

Figure 4-11 Accuracy comparison for different number of reference tags in selected cluster 

and different shape of data collection paths 
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4.3.3.2 Effect of number of reference tag densities and data collection paths on the 

accuracy 

Another parameter which can have effect on the both average error and computational 

load is the density of total number of reference tags including real and virtual reference 

tags. As it was mentioned in Section 4.2.5.1 after selecting the winner cluster based on 

the defined criteria it may be needed to add VRTs within the area surrounded by the 

selected cluster’s members. The simulation checks the minimum required density within 

the area surrounded by the tags selected in the winner cluster to find how many virtual 

tags must be added. The density can improve the accuracy of the localization but at the 

same time it imposes a great computation load on the simulation. Therefore, considering 

the required accuracy and computational capacity of the machine used for computing, the 

minimum density should be defined properly. 

The results shown in the Figure 4-12 come from five rounds of simulation for the density 

of 0.2, 0.6, 1.0, 1.4, and 1.8 per square meter. The simulation is performed for 49 real 

reference tags in an area of 30m × 30m. Furthermore, the simulations are done for I, L, 

and U-shape and the random data collection paths. Analyzing the results shows that, for 

I-shape path, increasing the density not only cannot improve the accuracy but also 

degrades it which can be because of the mentioned symmetric problem in Section 4.3.3.6. 

In the all next scenarios, increasing the density above 0.2 leads to an improvement 

between 38% to 46% and the average error is less than one meter which is acceptable. 
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Figure 4-12 Accuracy comparison of CMTL + ANN localization for different reference tag 

densities (real and virtual) 

 

4.3.3.3 Effect of the number of data collection points on the localization accuracy  

In order to identify the effect of increasing the data collection steps on the accuracy of 

localization, an area of 75m × 75m with 81 reference tags is used. The data collection 

points follow a random pattern. Test cases with 2, 4, 8, and 16 collection points are 

performed. Figure 4-13 shows that increasing the number of data collection points 

improves the accuracy of localization, especially from two points to four points with 87% 

improvement. However, the results do not show major improvement after four data 

collection steps. 
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Figure 4-13 Accuracy comparison for different number of data collection steps 

4.3.3.4 Effect of the shape of data collection paths using 49 reference tags 

In order to identify the effect of the shape of the data collection path on the accuracy of 

localization, the simulation setup for 49 real reference tags in an area of 75m × 75m is 

used. The data collection follows the I-shape, L-shape, and U-shape with four data 

collection points. The results of localization using CMTL, CMTL+, and LANDMARC 

are compared in Figure 4-14. As shown in Figure 4-14, a major improvement in accuracy 

happens when the shape of data collection path diverges from the straight line. This is 

due to the fact, that the chance of selecting a better cluster, in case of symmetric 

distribution of the reference tags with respect to the path, is increased when the data are 

collected on any paths other than I-shape. Moreover, using CMTL+ leads to increasing 

the accuracy between 3% and 46% compared to LANDMARC and CMTL. 
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Figure 4-14 Accuracy comparison for different shape of data collection paths using 49 

reference tags 

4.3.3.5 Effect of the shape of data collection path and test bed size on the accuracy 

Concerning the effect of the shape of data collection path and the size of the test bed on 

the accuracy of localization, the simulation is run for 49 real reference tags in areas of 

75m × 75m, 60m × 60m, 45m × 45m , 30m × 30m  and 15m × 15m , using I shape, L 

shape, U shape, and eight random data collection points. 

As shown in Figure 4-15(a), the proposed method improves the accuracy compared to 

LANDMARC and CMTL in the area of 75m × 7m5 by 15% and 3%, respectively. 

Moreover, an improvement of 6% and 15% is achieved over the LANDMARC method 

for the areas of 60m × 60m and 45m × 45m, respectively. However, the results for area of 

30m × 30m and 15m × 15 m show an increment of the average errors for such small areas 

which will be discussed later about the source of error and possible recommendations. 

The range of errors is from 1.93 meters to 14.75 meters by increasing the size of test bed 

CMTL+). The same scenarios are repeated for L and U shape data collection paths. 
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Figures 4-15 (b) and (c) show considerable improvements for the L-shape and U-shape 

paths (even 30m × 30m for L shape path). 

Compared to I-shape path, the errors range for L-shape is from 0.85 to 1.83 meters and 

for U shape is from 0.48 to 1.41 meters. It is obvious that we can achieve better results in 

L and U-shape paths because of lower chance of symmetric data collection cases 

compared to L-shape path. Additionally, random data collection points are used to find 

the accuracy regardless of the data collection’s path.  There are significant improvements 

for larger test areas than area of 30m × 30m and 15m × 15 m (Figure 4-15(d)). 
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(a) I shape path (b) L shape path 

  
(c) U shape path (d) Random points 

Figure 4-15 Accuracy comparison of CMTL+ localization for different data collection paths using 49 reference tags
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4.3.3.6 Effect of number of real reference tags, data collection paths, and test-bed 

sizes on the accuracy 

In order to identify the effect of the number of real reference tags, data collection path, 

and test bed size using the proposed method, a sensitivity analysis was done based on the 

aforementioned parameters and the results are shown in Figure 4-16. Logically, it was 

expected that less error can be achieved by increasing the number of real reference tags. 

Focusing on Figures 4-16 (a), (b), (c), and (d), it is found out that expectation works for 

the 49 and 64 real reference tags and usually in scenario of 64 tags there is less error 

compared to 49 tags. However, the average errors dramatically increase by using 81 tags 

and I shape path which means that placing more tags can increase the chance of selecting 

wrong tags in the winner cluster when there is a symmetric tags’ placement. Therefore, it 

is understood that placing more real reference tags without eliminating symmetric 

placement of the reference tags may result in larger errors.  

The exceptions for achieving better accuracy when adding more reference tags mostly 

happened when using the U-shape path and random data collection points. For instant, 

the average error for the area of 30m × 30m with 64 tags and a U-shape path are greater 

than the same area size and path but with 49 tags. It can be noticed from Figures 4-16 that 

if the density of the real reference tags is more than 0.02 per square meter, the error is 

less than one meter and there is no benefit of increasing the density. 
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(a) I shape path (b) L shape path 

  
(c) U shape path (d)  Random points 

Figure 4-16 Accuracy comparison for different number of reference tags, data collection paths, and test-bed sizes 
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From another point of view, the sensitivity of the average error to the number of the real 

reference tags is analyzed. I shape data collection path was selected as the most critical 

path and the different test bed sizes were considered in this simulation and the data of this 

simulation are generated for four data collection points. Figure 4-17 illustrates that 

increasing the number of reference tags from 49 to 64 improved the accuracy in general 

but from 64 to 81 reduced it. The reason could be because of the higher chance for 

choosing a wrong symmetric cluster when there are a larger number of reference tags 

placed in an area. 

 

Figure 4-17 Accuracy comparison of CMTL+ localization for different number of real 

reference tags and test-bed size  
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4.3.4 Field test 

In the next sections, two field tests were performed to validate the results of simulator, 

and applicability of the CMTL and CMTL+ algorithms. The first test was done in an 

obstacle-free environment where the reader had line-of-sight to the all reference tags 

during the data collection period. The second test, which is more complicated, was done 

in an noisy environment with lots of obstacles. 

4.3.4.1 Obstacle-free environment (with line-of-sight) 

This case study is performed to test the applicability of the CMTL+ algorithm explained 

in Section 4.2.4 for selecting the closest reference tags to track the objects in an 

indoor/outdoor environment. The test was conducted in an obstacle-free environment 

where all tags were placed inside one room. The tags were placed on the ground in a grid 

of 5 m 7.5 m. A target tag was placed randomly in the room with the distance of 70 cm 

from the closest reference tags (R9 and R12) and data were collected using a handheld 

reader at the six data collection steps forming a U-shaped path for 30 seconds at each data 

collection step. The setting of this test is illustrated in Figure 4-18 (a) and the calculated β 

values for all reference tags are presented in Table 4-2. Figure 4-18 (b) shows the same 

setup in the simulation environment. The reason of doing the simulation with the same 

setting is to compare the real results in an indoor environment with the result of 

simulation based on clean environment with the minimum noise. The RSSI values were 

generated using our signal propagation model (Equation 4-18 and Equation 4-19) and 

they were compared with the real measured data. 
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Table 4-2 β value for field test and one instance of the simulation (obstacle-free 

environment) 

 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 

Field Test 13.5 13.2 33.1 15.4 13.7 12.2 8.7 6.2 4.3 8.1 8.3 4.1 

Simulation 11.1 11.3 10.5 10.2 10.3 8.6 8.2 6.1 4.1 7.6 4.4 3.8 

In Figures 4-18, the diameters of circles around reference tags are inversely proportional 

to their β values. The results show that R12 has the least β value in both field test and 

simulation environment. As can be seen in Table 4-2, the simulated β values are 

systematically less than those of the test values. This can be explained by the fact that the 

space used in the test is much smaller than the one used in the test explained in Section 

4.3.2. Moreover, CMTL was applied to find the four nearest reference tags. The result 

illustrated in Figures 4-18 shows that CMTL chose the closest four reference tags while 

LANDMARC chose one of the reference tags incorrectly. 
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LANDMARC

CMTL

 

CMTL

LANDMARC

 
(a) Test results (b) Simulated results 

Figure 4-18 Obstacle-free test  

4.3.4.2 Environment with obstacles (without line-of-sight) 

The case study test is performed using 20 long range active RFID tags placed inside four 

different rooms on the 9
th

 floor of the EV Building of Concordia University. The area for 

the test is approximately 35m × 25m. The test is done in a cluttered and noisy 

environment where tags were attached to various assets in the rooms. The placement 

layout of the tags is shown in Figure 4-19 where four rooms were selected with five tags 

in each room. The density factor of total reference tags was set to 0.5 tags per square 

meter. The number of tags selected for clustering is set to four. 
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The active tags used in this case study have long nominal read range (250m) and stable 

RSSI values (Identec Solutions, 2013). The data were collected at six different data 

collection points in the corridors using a handheld device. About 100 readings for each 

tag were collected at each data collection point and the data were then filtered and 

processed for localization. 

CMTL/CMTL+ 

Selected Tags

LANDMARC 

Selected Tags

 Reference Tag 

 Target Tag 

 CMTL Result 

 LANDMARC Result 

 Data Collection Point 

 

 

Figure 4-19 Field test in cluttered and noisy environment 

The analysis for the accuracy of localization is performed for the two scenarios. In the 

first one, the accuracy of localization is performed for centered tags inside each room 

surrounded by four tags. In this test, each centered tag is selected as a target tag and it is 

localized using data collected from the other tags. The comparative analysis is performed 

to evaluate the results of localization using the LANDMARC method, CMTL, and 

CMTL+. As shown Figure 4-19, using CMTL leads to choosing better group of reference 
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tags. The improvement in the results compared to LANDMARC is related to the fact that 

in most of cases, CMTL choses spatially close tags for localization. However, 

LANDMARC may select tags from other rooms due to their signal pattern similarity with 

the target tag because of the random noise or symmetry. 

Figure 4-20 shows the results for the target tag localization using CMTL+, CMTL, and 

LANDMARC. This figure illustrates that the CMTL method chose tags inside the same 

room as the target tags for localization. Additionally, ANN and VRT help CMTL method 

to localize the target better than weighted averaging method used by LANDMARC. The 

average errors are 1.55 m, 0.77 m, and 0.38 m for LANDMARC, CMTL, and CMTL+, 

respectively. 

 

Figure 4-20 Accuracy comparison of LANDMARC, CMTL, and CMTL+ANN methods 

(considering centered tags) 
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In the second scenario, the results for 20 target tags show an improvement of 40% by 

using CMTL+ compared to CMTL and LANDMARC (Figure 4-21). However, the 

improvement of CMTL+ compared to CMTL is about 5%. One of the reasons for this 

low improvement could be the limited number of the tags per room. In other words, when 

any tag other than the centered tag is considered as target tag, there is not enough tags 

around the target tag. Another possible reason can be the small size of test area. As 

mentioned in Section 4.2.5, CMTL+ is more effective in large areas. 

Another analysis is performed to find the effects of the number data collection points and 

their paths. Four scenarios introduced in Table 4-3 show data collection with 3, 4, 5, and 

6 points with different paths. 

Table 4-3 Order of selected data collection points 

Order of data collection 

points 

    

Number of data collection 

points 
3 4 5 6 
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Figure 4-21 Accuracy comparison of LANDMARC, CMTL, and CMTL+ methods (considering all tags) 
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The effect of increasing the number of data collection points on the accuracy of 

localization is presented in Figure 4-22. In each column, the error is calculated based on 

the data gathered in the set of data collection points shown in the first row. The number 

of data collection points is increased from three. The results in the figure show that by 

increasing the number of data collection points, the accuracy of CMTL-based methods 

always improves but LANDMARC started to increase the accuracy after five data 

collation points. However, the improvement rate for CMTL-based methods decreases by 

adding data more collection points. Unfortunately, because of space limitation it was not 

possible to investigate increasing the reference tags density factor as area of each room 

was not large enough to analysis the sensitivity of this factor on the results. 

 

Figure 4-22 Effect of increasing the number of data collection points 
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4.4 Summary and conclusions 

This chapter investigated several methods to localize RFID-equipped objects in a 

construction site using handheld RFID readers. It discussed a sample scenario to assist 

users (e.g. site supervisor or workers) estimate the location of movable objects they are 

looking for. The main advantages of the CMTL+ is that it can adapt itself to the changes 

in the environment; it utilizes RFID tags in the construction site or in the building, and 

does not require a fixed RTLS infrastructure for localization. The conclusions of this 

chapter are as follows: (1) The proposed method for locating movable objects (i.e., 

CMTL and CMTL+) is based on the neighborhood methods. However, CMTL/CMTL+ 

use a handheld reader instead of a fixed number of fixed readers in similar 

LANDMARC-based methods. Using a handheld reader provides the flexibility to choose 

the number of data collection points and paths; (2) VRTs are added to the CMTL in the 

case of low reference tags density to keep the density at the desired level without using 

more real reference tags; (3) ANN was applied on the CMTL method and more reliable 

results are achieved compared to weighted averaging method used by LANDMARC; and 

(4) The results of simulations and case studies showed that CMTL+ is able to estimate 

the location of the target object with higher accuracy compared to LANDMARC and 

CMTL methods. Moreover, the results showed that in order to have a better accuracy, the 

density of total reference tags should be set above 0.2 per square meter; however 

increasing the density imposes higher computational load to the system. Additionally, 

considering five tags within the winner cluster causes lower error for CMTL+. Using any 

data collection paths other than the straight path (I-shape) has a significant effect on the 

accuracy while the major improvement happens when the shape of the data collection 
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path diverges from the straight line. Regarding the number of data collection point, the 

results shows that having minimum four data collection points is necessary to achieve 

better results. 
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 CONCLUSIONS AND FUTURE WORK CHAPTER 5

5.1 Summary of research 

The research proposed a comprehensive approach for applying RFID in the construction 

site for the localization of available resources. It elaborated on the needs, motivations and 

benefits of including standard definitions of RFID systems in the BIM as a stable 

foundation to reach to a reliable localization system. A conceptual model together with a 

requirements’ gathering are performed in order to identify the related attributes and 

relationships for RFID system components. The modularity and extensibility of the 

design are taken into account to accommodate the possible future types and properties of 

RFID systems. Furthermore, new IFC entities, property sets and ports are defined for the 

RFID system. Moreover, this research investigated several methods to localize various 

types of RFID-equipped objects in a construction site using handheld RFID readers. It 

discussed possible scenarios to assist site supervisor or workers estimate the location of 

movable objects they are looking for. The main advantages of the proposed system are 

that it can adapt to the changes in the environment, it utilizes available RFID tags on the 

construction site, and does not require a fixed RTLS infrastructure for localization.  

5.2 Research contributions and conclusions 

The conclusions of this research are as follows: (1) The properties of RFID systems were 

defined by reusing the available property sets or by adding separate property sets to 

include RFID type-specific information and the different relationships including physical 

attachment, decomposition type, and logical assignment were investigated and 
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standardized to cover all possible relationships between RFID tags and different entities 

of BIM; (2) A sample model of a construction site was developed using the existing and 

newly added definitions and relationships in IFC to validate the applicability of the 

proposed model. Moreover, to realize the proposed extension of IFC, various IFC-

compatible tools were utilized and tested; (3) The proposed method for locating movable 

objects (i.e., CMTL and CMTL+) is based on the neighborhood methods. However, 

CMTL/CMTL+ use a handheld reader instead of a fixed number of fixed readers in 

similar LANDMARC-based methods. Using a handheld reader provides the flexibility to 

choose the number of data collection points and paths; (4) VRTs are added to the CMTL 

in the case of low reference tags density to keep the density at the desired level without 

using more real reference tags and ANN was applied on the CMTL method and more 

reliable results are achieved compared to weighted averaging method used by 

LANDMARC; and (5) The results of simulations and case studies showed that CMTL+ is 

able to estimate the location of the target object with higher accuracy compared to 

LANDMARC and CMTL methods. 

5.3 Limitations and future work 

For the case study regarding BIM extension, various IFC-compatible tools were utilized 

and tested to realize the proposed extension of IFC. The results showed that the current 

tools have several limitations for extending the definitions. Moreover, the exported IFC 

file of a model that is created in a certain tool lacks several details of the same model 

when opened in standard IFC viewers. Additionally, the exported IFC file has 

compatibility issues when opened by other BIM tools. Although the tested tools claim to 
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be fully compatible with certain versions of IFC implementation, they were unable to 

utilize existing properties and relationship types available in that IFC version. This shows 

that the current state of practice has major limitations for adding new objects, 

relationships and properties as well as utilizing existing classes of IFC. In our case study 

we used the combined approach of utilizing IFC tools as well as manually adding 

EXPRESS code and finally visualizing the model using standard viewers. 

The future research includes proposing the newly defined objects to the building SMART 

to be added in upcoming versions of the IFC standard. Moreover, the same methodology 

can be used to add the definitions of other types of sensors to BIM. The compatibility of 

the proposed extension can be investigated for other construction industry sectors (BrIM, 

RIM, MIM, and IDM). 

The proposed localization method can be further improved by applying dynamic 

segmentation techniques and more advanced signal processing methods for removing 

noise from logged data. Moreover, other pattern matching techniques can be employed 

and compared. In order to form the clusters, dynamic clustering methods can be 

employed. Extracting more information from BIM can also be used to enhance the 

selection of the target cluster by considering spatial constraints, building materials and 

hierarchical location information (e.g., room number). Additionally, methods to identify 

the convergence of the localization should be investigated in order to find the optimum 

number and location of data collection steps. Finally, the simulation environment can be 

further enhanced to include the effect of building materials on radio signals. 
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Appendix A – List of RFID-related researches in construction 

Research Area Authors 

Supply chain management 

and logistics 

Chin et al. (2008); El Ghazali et al. (2011), (2012); 

Guven et al. (2013); Helmus et al. (2009); Radosavljevi 

(2007); Sarac et al. (2010); Majrouhi Sardroud and 

Limbachiya (2010); Shin et al. (2011); van Gassel and 

Glenco (2008); Yin et al. (2009); Wang et al. (2007b); 

Object 

tracking 

Material 

Cheng et al. (2008); Ergen et al. (2007a); Furlani and 

Pfeffer (2000); Jaselskis et al. (1995); Jaselskis and El-

Misalami (2003); Kim et al. (2010), Ren et al. (2007); 

(2011); Tzeng et al. (2008); Song et al. (2007); Swedberg 

(2009); Yin et al. (2009) 

Equipment and 

tools 

de la Garza et al. (2009), Goodrum et al. (2005), 

Swedberg (2005), (2007) 

Project and Progress 

management 

Chin et al. (2008), GoStructural (2008), Lee et al. 

(2006b), Lu et al. (2011), Hammad and Motamedi 

(2007), Montaser and Moselhi (2012b), Atkin et al. 

(2006), Yagi et al. (2005), Yoon et al. (2005) 

Localization 

Bosche et al. (2006), Dziadak et al. (2009), Jang and 

Skibniewski (2009), Jiang et al. (2009), Luo et al. (2011), 

Montaser and Moselhi (2012a), Motamedi et al. (2012), 

Pradhan et al. (2009), Razavi et al. (2012), Razavi and 

Haas (2010), Rüppel and Stübbe (2008), Rüppel et al. 

(2010), Song et al. (2004), (2006); Taneja et al. (2010a), 

Torrent and Caldas (2007), (2009); Vossiek et al. (2010), 

Wireless Vision (2006), Xiong et al. (2013), Yabuki and 

Oyama (2007) 

Quality Control 

Akinci et al. (2006); Jaselskis et al. (2003); Jehle et al. 

(2009); Kang and Gandhi (2010); O’Connor (2006); 

Philips (2004); Reisbacka et al. (2008); Wang (2008); 

Yabuki et al. (2002) 

Lifecycle management 

Ergen et al. (2007a), (2007b); Helmus et al. (2011a), 

(2012); Hentula et al. (2005); Jehle et al. (2008); Ko 

(2009); Kiritsis et al. (2008); Lee et al. (2012); Motamedi 

and Hammad (2009a), (2009b), (2009c); Motamedi et al. 

(2011), (2013); Peyret and Tasky (2002) 

Safety 

Chae and Yoshida (2010); Friedlos (2008); Helmus 

(2007); Helmus et al. (2011b); Kelm and Laussat (2010 ); 

Swedberg (2008); Soltani (2010) 
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Appendix B - Technical specifications for RFID tags, readers, and handheld 

device used in the Research 

Table B-2 Technical Specifications for RFID Tag: i-Q32 (Identec Solutions, 2007) 

Identec Solutions: i-Q32 

 

Performance Read rate p to 100 tags/s (Identification Code only)  

Up to 35 tags/s @ 128 bit data reading  

Max. response time < 150 ms (single tag) 

Multiple tag handling Up to 2,000 tags in the read zone 

Communication Read/Write range to i-PORT 

3 

Up to 100 m (300 feet) @ free air 

Operating frequency 868 MHz (EC) or 915 MHz (NA) ISM Band 

Data rate (download to tag) 115.2 kbits/s 

Data rate (upload to reader) 115.2 kbits/s 

Maximum transmission 

power 

0.75 mW ERP 

Standards / Certification EN 300 220 (EC); FCC Part 15 (US);  

Industry Canada  

Electrical Power source Lithium battery (not replaceable) 

Expected battery life 6 Years @ 600 times 128 bit readings/day 

Battery monitoring Yes 

Data Data retention 10 years without power 

Write cycles 100,000 writes to a tag 

Memory size  32,431 bytes user definable (i-Q32)  

Identification code 48 bit fixed ID  

Environmental Operating temperature –40°C to +85°C (–40ºF to +185ºF) 

Shock 50 G, 3 times DIN IEC 68-2-27  

Multiple drops to concrete from 1 m (3 ft)  

Vibration 3 G, 20 sine wave cycles, 5 Hz to 150 Hz,  

DIN IEC 68-2-6  

5 G, noise 5 Hz to 1000 Hz, 30 minutes  

DIN IEC 68-2-64  

Physical 

 

Dimensions 131 mm × 28 mm × 21 mm  

(5.2 in. × 1.1 in. × 0.85 in.)  

Enclosure Plastic (ASA / Luran®S)  

Weight 50 g 

Enclosure rating IP 65  
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Table B-1 Technical Specifications for RFID Tag: i-Q350L (Identec Solutions, 2013) 

Identec Solutions: i-Q350L RTLS 

 

Category Type Specification 

Communication 

Broadcast 350 
Operation Mode 

Transmits Sensor ID and user data in pre-defined 

interval 

Read Range up to 500m 

Compatibility i-PORT M350, i-CARD CF 350 and i-PORT 4-350 

Operating Frequency 868 MHz (EU) or 920 MHz (NA) 

Transmit Power <1mW 

Communication 

Response 350 

Operation Mode Bi-directional communication (reading log, blink LED, 

write/read data) 

Read Range up to 250m 

Compatibility i-PORT M350 and i-CARD CF 350 

Operating Frequency 868 MHz (EU) or 920 MHz (NA) 

Transmit Power <1mW 

Communication Marker 

Operation Mode 
Receives Marker ID and transmits marker information 

several times via Broadcast 350 telegrams 

Read Range up to 5m 

Compatibility i-MARK 

Operating Frequency 125 kHz 

Data Data Retention > 10 years without power 

Write Cycles 100,000 writes 

Memory Size 10,000 Bytes user definable 

Identification Code 48 bit fixed ID 

Configuration  Device i-PORT M350 or i-CARD CF350 

Ping Rate 
Configurable from 0.5 to 300 seconds insteps of 0.5 

seconds 

Number of Bursts Configurable from 0 to 15 

Broadcast User Data Up to 50 Bytes 

Electrical  Power Source Lithium Battery (replaceable) 

Battery Monitoring Yes 

Environmental 

Conditions  

Operating 

Temperature 

–40 °C to +85 °C (–40 °F to +185 °F) 

Humidity 10% to 95% relative humidity @ 30°C 

Shock 
Multiple drops to concrete from 1m (3ft), 3 times DIN 

IEC 68-2-27 

Vibrations 
3G, 20 sine wave cycles, 5 to 150 Hz, DIN IEC 68-2-6 

5G, noise 5 to 1.000 Hz, 30 minutes, DIN IEC 68-2-64 

Standard/Certification  Europe CE (EN 300 220-1, -3; EN 301 489-1,-3; EN 60950) 

North America FCC Part 15 (US); Industry Canada 

Physical Dimensions 137 x 37.5 x 26.5 mm (5.4 x 1.48 x 1.04 in.) 

Enclosure  Plastic 

Weight 50g 

Enclosure Rating IP65 
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Table B-3 Technical Specifications for RFID Reader: i-CARD CF 350 (Identec 

Solutions, 2012) 

Identec Solutions: i-CARD CF 350 

 

Communication 

Broadcast 

Operation mode Receiving sensors ID’s and data 

Read range  Up to 500m (1600ft)* 

Compatibility  i-B350 and Q350 series of sensors 

Operating frequency  868 MHz (EU) or 920 MHz (NA) 

Communication 

Response 

Response mode  
Bi-directional communication (reading log, blink 

LED, write/read data) 

Communication range  up to 250m (800ft)* 

Compatibility  i-Q350 series of sensors 

Operating frequency  868 MHz (EU) or 920 MHz (NA) 

Transmit power  < 1mW 

Antennas Broadcast/Response (350)  
1 MMCX connector for external antenna at 868 

(EU) or 920 MHz (NA) 

Performance 
Multiple sensor 

handling(Response) 
Up to 500 sensors per read zone 

Interfaces Data interface master/host  CF Type 1 

Electrical 
Power source  Dual 3.3 V and 5 V 

Power consumption  < 250 mW (50mA) 

Environmental 

Conditions 

Operating temperature  -20°C to +60°C (-4°F to +140°F) 

Storage temperature  -40°C to +80°C (-40°F to +176°F) 

Standard/Certification 
Europe  

CE (EN 300 220-1, -3; EN 300 328, EN 301 489-

1, -3; EN 60950) 

North America  FCC Part 15 (US); Industry Canada 

Physical 

Dimensions  55 × 43 × 3.3/6 mm (2.2 × 1.7 × 0.13/0.24 in.) 

Enclosure material  ABS / Metal 

Weight  15 grams (0.52 ounces) 
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Table B-4 Technical Specifications for RFID Reader: i-CARD 3 (Identec Solutions, 

2005) 

Identec Solutions: i-CARD 3 

 

Compatibility  
ILR i-Q tags and ILR i-D 

tags.  
ILR i-Q tags and ILR i-D tags.  

Performance  

Read/write range (adjustable)  Up to 100 m (300 ft) with i-Q tag*  

Read/write range (adjustable)  Up to 6 m (20 ft) with i-D tag*  

Read rate – ID only  100 tags/s  

Read rate – 128 bit data  35 tags/s  

Multiple tag handling  Up to 2,000 tags in the read zone  

Communication  

Frequency  868 MHz (EU) or 915 MHz (NA)  

Certification  EN 300 220 (EU); FCC part 15 (US); Industry Canada  

Data rate (up-/download)  115.2 kbits/s (i-Q Tag)  

Data rate (upload to tag)  38.4 kbits/s (i-D Tag)  

Data rate (download from 

tag)  
115.2 kbits/s (i-D Tag)  

Number of antennas  1  

Output power  ≤ 27 dBm, digitally adjustable  

Sensitivity  
-85 dBm/high sens., -55 dBm/low sens., digitally 

adjustable  

User Interfaces  

Parallel interface  PCMCIA  

Option serial interface  RS-232, JTAG via PGM 15 connector  

Number of status indications  3 LEDs (Host TxRx, RF Tx, RF Rx)  

Electrical  

Input power  5 VDC ±5 %  

Power consumption  ≤ 500 mW (100 mA @ 5V)  

Standards / Safety  CE and EN 300 220  

Environmental  

Operating temperature  -20 °C to +60 °C (-4 ºF to +140 ºF)  

Storage temperature  -40 °C to +80 °C (-40 ºF to +176 ºF)  

Humidity  90 % non-condensing  

Physical  

Dimensions  
Standard Type II PC Card (86 × 54 × 5 mm) (3.38 in. × 

2.12 in. × 0.19 in.)  

Enclosure Metal  

Weight 32 grams (1.13 oz) 

* The communication range depends on the antenna type, the antenna cable runs and the environmental conditions. 
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Table B-5 Technical Specifications for Handheld Device: WORKABOUT Pro S 

(Psion, 2011) 

Psion Teklogix: 

WORKABOUT Pro 3 C 

 

Platform 
PXA270 624 MHz Processor 

1 GB Flash ROM, 256 MB RAM 

Expansion Slots 

One SD/MMC memory card slot 

End-cap USB interface supports GPS expansion module 

100-PIN expansion interface: supports PCMCIA (type II), GPRS/ EDGE 

and other third-party expansion modules developed using Psion Hardware 

Development Kit 

Flex cable interface supports scanner (serial) and imager (USB) modules 

One Type II CF card slot 

Operating System Microsoft Windows Mobile® 6.1 Classic, Professional 

Physical Dimensions 8.78" × 2.95"/3.94" × 1.22"/1.65" (223 mm × 75/100 mm × 31/42 mm) 

Approvals 

Safety: CSA/UL60950-1, IEC 60950-1, EN60950-1; EMC: FCC Part 15 

Class B, EN 55022, EN 55024, EN301 489 

Laser: IEC 60825-1, Class 2, FDA 21 CFR 1040.10., 1040.11 Class II 

Bluetooth: 1.2 

In-vehicle cradle: e Mark 

Environmental 

Withstands multiple drops from 6 ft (1.8 m) to concrete 

Rain/dust: IP65, IEC 60529 

Operating temperature: -4°F to 122°F (-20°C to +50°C) 

5%-95% RH non-condensing 

Storage temperature: -40°F to 140°F (-40°C to +60°C) 

ESD: +/- 8kVdc air discharge, +/-4kVdc contacts 
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Table B-5 Technical Specifications for Handheld Device: WORKABOUT Pro 3 C 

(Psion, 2011) 

Psion Teklogix: 

WORKABOUT Pro S 

 

Platform 
PXA270 520MHz Processor 

256 MB Flash ROM, 128 MB RAM 

Expansion Slots 

One SD/MMC memory card slot 

End-cap USB interface supports GPS expansion module 

100-PIN expansion interface: supports PCMCIA (type II), GPRS/ EDGE 

and other third-party expansion modules developed using Psion Hardware 

Development Kit 

Flex cable interface supports scanner (serial) and imager (USB) modules 

One Type II CF card slot 

Operating System Microsoft Windows Mobile® 6.1 Classic, Professional 

Physical Dimensions 7. 7” × 2.95”/3.94” × 1.22”/1.65”(200 mm × 75/100 mm × 31/42 mm) 

Approvals 

Safety: CSA/UL60950-1, IEC 60950-1, EN60950-1; EMC: FCC Part 15 

Class B, EN 55022, EN 55024, EN301 489 

Laser: IEC 60825-1, Class 2, FDA 21 CFR 1040.10., 1040.11 Class II 

Bluetooth: 1.2 

In-vehicle cradle: e Mark 

Environmental 

Withstands multiple drops from 6 ft (1.8 m) to concrete 

Rain/dust: IP65, IEC 60529 

Operating temperature: -4°F to 122°F (-20°C to +50°C) 

5%-95% RH non-condensing 

Storage temperature: -40°F to 140°F (-40°C to +60°C) 

ESD: +/- 8kVdc air discharge, +/-4kVdc contacts 
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Appendix C – Matlab code of the simulation 

function [LMErr,KBestGRErr,GRErrAnn,LMErrMean,KBestGRErrMean,... 
    GRErrAnnMean,LMRECORD,CLRECORD,LMErrStd,KBestGRErrStd... 
    ,GRErrAnnStd]= CMTLVIRE() 
%%  Initial Setting 

  
%   k = Number selected reference tags 
%   sn = Number of inputs' reference tags for training the ANN 
%   dens = Number of Tags per Square Meter 
%   sm = Default number of hidden neurons 
%   r = Number of Reference Tags 
%   t = Number of Target Tags 
k=4; 
sn=4; 
dens=0.2 
sm=20 
r=49 
t=20; 
LMRECORD=0; 
CLRECORD=0; 
Xmin=0; 
Xmax=30 
Ymin=0; 
Ymax=30 
%   Reset Seed Number 
se = RandStream('mt19937ar','Seed',1); 
RandStream.setGlobalStream(se); 
 %   Reading the Building Map 
Rx=[(Xmin-1), (Xmax)+1]; 
Ry=[(Ymin-1), (Ymax)+1]; 
plot(Rx,Ry,'.','markersize',1); 
hold on 
RefXY=HSS(r,2)'; 
RefXY(:,1)=(Xmax-Xmin)*RefXY(:,1); 
RefXY(:,2)=(Ymax-Ymin)*RefXY(:,2); 
Refxyb(:,1)=linspace(1,r,r); 
Refx=RefXY(:,1); 
Refy=RefXY(:,2); 
Refxyb(:,2)=RefXY(:,1); 
Refxyb(:,3)=RefXY(:,2); 
n=size(Refxyb(:,1),1); 
plot(Refxyb(:,2),Refxyb(:,3),'p','markersize',8,'markerfacecolor','b'); 
%   Generating Target Points 
pita=0;  
XYminmax(1,1)=min(Refxyb(:,2))+4; 
XYminmax(1,2)=max(Refxyb(:,2))-1; 
XYminmax(2,1)=min(Refxyb(:,3))+3; 
XYminmax(2,2)=max(Refxyb(:,3))-3;   
XY=[]; 
XY=HSS(t+1,2)'; 
XY(:,1)=(XYminmax(1,2)-XYminmax(1,1))*XY(:,1)+XYminmax(1,1); 
XY(:,2)=(XYminmax(2,2)-XYminmax(2,1))*XY(:,2)+XYminmax(2,1); 
XY(t,:)=[]; 
t=length(XY'); 
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plot(XY(:,1),XY(:,2),'h','markersize',10,'markerfacecolor','g'); 
for j=1:t 
    text(XY(j,1)-0.5,XY(j,2)+0.5,sprintf('%g', j), 'fontsize',7,... 
        'color','K','Rotation',-45,'FontWeight','Bold','Fontsize',10); 
end 
XYminmax(1,1)=Xmin+((Xmax-Xmin)./4); 
XYminmax(1,2)=Xmax-((Xmax-Xmin)./4); 
XYminmax(2,1)=Ymin+((Ymax-Ymin)./4); 
XYminmax(2,2)=Ymax-((Ymax-Ymin)./4); 
LMRC=1; 
CLRC=1; 
%   Running for t number of Target Points 
for l=1:t 
%   Running 4 loops for I, L, U shape data collection path and Random 

points  
%   m = Number of Data Collections 
%   p = Number of Target Points 
%   n = Number of Reference Points 
    for iluz=1:4 
        if iluz == 2 
            minie=3; 
        elseif iluz == 3 
            minie=3; 
        else 
            minie=1; 
        end 
        for ie=minie:5   
            %   m = Muximum Number of Data Collection Points 
            m=2^(ie-1); 
            LXY=[]; 
            switch iluz 

                 
                %   I Shape 
                case 1     
                    LXY(:,1)=linspace(XYminmax(1,2),XYminmax(1,1),m)'; 
                    LXY(:,2)=((2.*(XYminmax(2,2)-XYminmax(2,1)))./4)... 
                        +XYminmax(2,1); 

                     
                %   L Shape     
                case 2            
                    LXY(:,1)=linspace((XYminmax(1,1)-((XYminmax(2,2)... 
                        -XYminmax(2,1))./2))+1,XYminmax(1,2),m)'; 
                    LXY(:,1)=flipud(LXY); 
                    for q=1:m  
                        if(LXY(q,1)<XYminmax(1,1)) 
                            LXY(q,2)=(LXY(q-1,2)+(LXY(1,1)-LXY(2,1))); 
                            LXY(q,1)=LXY(q-1,1); 
                        else 
                            LXY(q,2)=((2.*(XYminmax(2,2)-XYminmax... 
                                (2,1)))./4)+XYminmax(2,1); 
                        end 
                    end  

                     
                %   U Shape      
                case 3       
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                    LXY(:,1)=linspace(XYminmax(1,2),XYminmax(1,1)... 
                        -((((XYminmax(2,2)-XYminmax(2,1))./2))... 
                        +(XYminmax(1,2)-XYminmax(1,1))),m+1)'; 
                    LXY(m+1,:)=[]; 
                    for q=1:m  
                        if(LXY(q,1)<XYminmax(1,1) && LXY(q,1)>... 
                                (XYminmax(1,1)-(((XYminmax(2,2)... 
                                -XYminmax(2,1))/2)))) 
                            LXY(q,2)=(LXY(q-1,2)+(LXY(1,1)-LXY(2,1))); 
                            LXY(q,1)=LXY(q-1,1); 
                        elseif(LXY(q,1)<(XYminmax(1,1)-

((XYminmax(2,2)... 
                                -XYminmax(2,1))./2))) 
                            LXY(q,1)=LXY(q-1,1)+(LXY(1,1)-LXY(2,1)); 
                            LXY(q,2)=LXY(q-1,2); 
                        else 
                            LXY(q,2)=((2.*(XYminmax(2,2)-

XYminmax(2,1)))... 
                                ./4)+XYminmax(2,1); 
                        end 
                    end 

                     
                %   Randomly     
                case 4           
                    LXY(:,1)=((XYminmax(1,2)-

XYminmax(1,1))*rand(1,m))... 
                        +XYminmax(1,1); 
                    LXY(:,2)=((XYminmax(2,2)-

XYminmax(2,1))*rand(1,m))... 
                        +XYminmax(2,1); 
            end 
            plot(LXY(:,1),LXY(:,2),'*','markersize',10,... 
                'markeredgecolor','K');  
            if iluz ~=4 
                plot(LXY(:,1),LXY(:,2),'K','LineWidth',2); 
            end 

             
            lx=LXY(:,1); 
            ly=LXY(:,2); 
            dt=[]; 
            d=0; 
            RSSt=[];  
            RSSr=[]; 
            rita=[]; 
            spot=[]; 
            RSSI=[]; 
            %% RSSI Generator Core 
             %   Number of Random Noise for RSSI 
            z=100; 
             %   Reset Seed Number 
            se = RandStream('mt19937ar','Seed',1); 
            RandStream.setGlobalStream(se); 
             %   Generating RSSI for Target Tags on different Colletion 

Points 
            for i=1:m 
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                dt(i)=sqrt(((lx(i)-XY(l,1)).^2)+((ly(i)-XY(l,2)).^2)); 
                d=dt(i); 
                RSSt(i) = -9.387.*log10(d) - 34.125; 
                e = 0.0876.*log(dt(i)) + 0.1709; 
                RndRSSt=e.*randn(1,z)+RSSt(i); 
                RSSt(i)=mean(RndRSSt); 
            end 
             %   Generating RSSI for Reference Tags on different 

Colletion Points 
            for i=1:m 
                for j=1:n 
                dr(i,j)=sqrt(((lx(i)-Refx(j)).^2)+((ly(i)-

Refy(j)).^2)); 
                d=dr(i,j); 
                RSSr(i,j) = -9.387.*log10(dr(i,j)) - 34.125; 
                e = 0.0876.*log(d) + 0.1709; 
                RndRSSr=e.*randn(1,z)+RSSr(i,j); 
                RSSr(i,j)=mean(RndRSSr); 
                end 
            end 

 
            %% LANDMARC Method 

 
            %   Calculating Beta Value 
            %   Using all RSSIs on one Matrics 
            RSSI=RSSt; 
            for s=2:n+1 
                RSSI(s,:)=RSSr(:,s-1); 
            end 
            %   Euclidean-Based Beta Value 
            minkowski2=squareform(pdist(RSSI,'minkowski',2)); 
            minkowski2=minkowski2(1,:); 
            minkowski2(1)=[]; 
            EU=minkowski2; 
            Refxyb(:,4)=0; 
            Refxyb(:,4)=EU'; 
            %   Selecting k best references based on Beta value sorting  
            SRefxyb1=[]; 
            KBest1=[]; 
            SRefxyb1=sortrows(Refxyb,4); 
            KBest1=SRefxyb1(1:k,:); 
            %   Calculating the position of the target using LANDMARC    
            %   weighted averaging using KBest Matrix 
            E=[]; W=[]; LMX=[]; LMY=[]; 
            E=1./(KBest1(:,4).^2); 
            W=E./sum(E); 
            LMX=sum(KBest1(:,2).*W); 
            LMY=sum(KBest1(:,3).*W); 
            LMErr(l,iluz,ie)=sqrt((((LMX-XY(l,1)).^2)+((LMY-

XY(l,2)).^2))); 
            LM=  LMErr(l,iluz,ie); 

  
            %% CMTL 

 
            %   Calculation of Beta Value for Selected Reference Tags 
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            %   Selecting Group of Reference Tags for Training 
            %   Selecting k reference tags based on Exhaustive Grouping 

  
            KBest3=[]; 
            SelectedGroup=[]; 
            KBest3=[]; 
            Selectedxyb1=[]; 
            KBest3=Refxyb(1:(ceil(r)),:); 
            SelectedGroup=Grouping(KBest3,sn,1,1); 
            for i=1:sn 
                Selectedxyb(i,:)=Refxyb(SelectedGroup(i),:); 
            end 
            pita=0; 
            SBeta=0; 
            KBest3=Selectedxyb; 
            %   Calculating the position of the target using GROUPING  
            %   weighted averaging uses GrRef Matrix 
            E=[]; W=[]; KBestGRX=[]; KBestGRY=[]; 
            E=1./(Selectedxyb(:,4).^2); 
            W=E./sum(E); 
            KBestGRX=sum(Selectedxyb(:,2).*W); 
            KBestGRY=sum(Selectedxyb(:,3).*W); 
            %   Calculating the error for the GROUPING weighted 

averaging 
            KBestGRErr(l,iluz,ie)=sqrt((((KBestGRX-XY(l,1)).^2)+... 
                ((KBestGRY-XY(l,2)).^2))); 
            RES4=KBestGRErr(l,iluz,ie); 

             
            %% VIRE + CMTL Neural Network 

             
            num(k)=sn; 
            ANNTBeta=[]; 
            pita=0; 
            xq=[]; 
            yq=[]; 
            xq=[]; 
            nxq=[]; 
            nyq=[]; 
            nzq=[]; 
            Annq=[]; 
            nAnnq=[]; 
            minkowski2=[]; 
            ej=0; 
            IntRSSr=[]; 
            A=(max(KBest3(:,2))-min(KBest3(:,2)))*(max(KBest3(:,3))... 
                -min(KBest3(:,3))); 
            if A<dens 
                sm=2; 
            else 
                sm=ceil(sqrt(A*dens)); 
                if sm >10 
                    sm=10; 
                    CLRECORD=[l,iluz,ie]; 
                    CLRC=CLRC+1; 
                end 
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            end 
            a=linspace(min(KBest3(:,2)),max(KBest3(:,2)),sm); 
            b=linspace(min(KBest3(:,3)),max(KBest3(:,3)),sm); 
            [xq,yq]=meshgrid(a,b); 
            nxq=xq(:)'; 
            nyq=yq(:)'; 
            nxq=[nxq';KBest3(:,2)]'; 
            nyq=[nyq';KBest3(:,3)]'; 
            for i=1:m 
                IntRSSr(i,:)=RSSr(i,KBest3(:,1));  
                zq = 

griddata(KBest3(:,2),KBest3(:,3),IntRSSr(i,:),xq,yq); 
                if isnan(zq) 
                    break; 
                end 
                plot3(KBest3(:,2),KBest3(:,3),1./KBest3(:,4),'o')   
                nzq(i,:)=zq(:)'; 
            end 
            if isnan(zq) 
                nxq=[]; 
                nyq=[]; 
                nzq=[]; 
                nxq=[KBest3(:,2)]'; 
                nyq=[KBest3(:,3)]'; 
                for i=1:m 
                    IntRSSr(i,:)=RSSr(i,KBest3(:,1));  
                end 
                nzq=IntRSSr;             
            else 
                nzq=[nzq,IntRSSr]; 
            end 
            i=length(nxq); 
            while i>0 
                if isnan(nzq(1,i)) 
                    nzq(:,i)=[]; 
                    nxq(:,i)=[]; 
                    nyq(:,i)=[]; 
                end  
                i=i-1; 
            end 
            ANNTBeta=KBest3(:,4); 
            Annq = griddata(KBest3(:,2),KBest3(:,3),ANNTBeta,xq,yq); 
            nAnnq=Annq(:)'; 
            minkowski2=squareform(pdist(nzq','minkowski',2));   
            nRSSI=[RSSt;nzq']; 
            EU=squareform(pdist(nRSSI,'minkowski',2)); 
            EU=EU(1,:); 
            EU(1)=[];           
            inputs=[]; 
            targets=[]; 
            net=[]; 
            outputs=[]; 
            errors=[]; 
            inputs = minkowski2; 
            targets(1,:) = nxq'; 
            targets(2,:) = nyq'; 
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             %   Create a Fitting Network 
            hiddenLayerSize = ceil((sm+2).*(2/3)+2); 
            net = fitnet(hiddenLayerSize); 
            %   Choose Input and Output Pre/Post-Processing Functions 
            %   for a list of all processing functions type: help 

nnprocess 
            net.inputs{1}.processFcns = {'removeconstantrows',... 
                'mapminmax'}; 
            net.outputs{2}.processFcns = {'removeconstantrows',... 
                'mapminmax'}; 
            net.numLayers=2; 
            %   Setup Division of Data for Training, Validation, 

Testing 
            %   For a list of all data division functions type: help 

nndivide 
            net.divideFcn = 'dividerand';  % Divide data randomly 
            net.divideMode = 'sample';  % Divide up every sample 
            net.divideParam.trainRatio = 70/100; 
            net.divideParam.valRatio = 15/100; 
            net.divideParam.testRatio = 15/100; 
            % For help on training function 'trainlm' type: help 

trainlm 
            % For a list of all training functions type: help nntrain 
            net.trainFcn = 'trainbr';  % Bayesian regulation 

backpropagation 
            net.trainParam.epochs=500; 
            % Choose a Performance Function for a list of all 
            %   performance functions type: help nnperformance 
            net.performFcn = 'mse';  % Mean squared error 
            net.layers{1}.transferFcn = 'tansig'; 
            net.layers{2}.transferFcn = 'purelin'; 
            %   Choose Plot Functions 
            %   for a list of all plot functions type: help nnplot 
            net.plotFcns = {'plotperform','plottrainstate',... 
                'ploterrhist','plotregression', 'plotfit'}; 
            net.trainParam.showWindow=1; 
            %   Train the Network 
            [net,tr] = train(net,inputs,targets,'useParallel','yes'); 
            %   Test the Network 
            outputs = net(inputs); 
            errors = gsubtract(targets,outputs); 
            GRANNResult(:,ie) = net(EU'); 
            GRErrAnn(l,iluz,ie)=sqrt((((GRANNResult(1,ie)-

XY(l,1)).^2)... 
                +((GRANNResult(2,ie)-XY(l,2)).^2))); 
            RES5=GRErrAnn(l,iluz,ie); 
            %   Recalculate Training, Validation and Test Performance 
            trainTargets = targets .* tr.trainMask{1}; 
            valTargets = targets  .* tr.valMask{1}; 
            testTargets = targets  .* tr.testMask{1}; 
        end 
    end 
end  
for i=1:5    
    LMErrMean(i,:)=mean(LMErr(:,:,i)); 
    KBestGRErrMean(i,:)=mean(KBestGRErr(:,:,i)); 
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    GRErrAnnMean(i,:)=mean(GRErrAnn(:,:,i)); 
    LMErrStd(i,:)=std(LMErr(:,:,i)); 
    KBestGRErrStd(i,:)=std(KBestGRErr(:,:,i)); 
    GRErrAnnStd(i,:)=std(GRErrAnn(:,:,i)); 
end 
hold off 
end 

 

%   Hammersley Sequence Sampling 
function m=HSS(n,k) 
%   n=Number of samples   

%   k=Dimension of sample space 

%   radix-R 
R=primes(2^k);        
mi=[]; 
for i=1:n 
    mij=i/n; 
    for j=1:k-1 
        mij=[mij,RX(i,R(j))];         
    end 
    mi=[mi;mij]; 
end 
m=ones(k,n)-mi'; 

end 

 

function Radix=RX(n,R); 
nn=dec2base(n,R); 
v=floor(log(n)/log(R)); 
phiR=0; 
for i=v:-1:0 
    x=nn(v-i+1); 
    if x=='A' 
        x='10'; 
    elseif x=='B' 
        x='11'; 
    elseif x=='C' 
        x='12'; 
    elseif x=='D' 
        x='13'; 
    elseif x=='E' 
        x='14'; 
    elseif x=='F' 
        x='15'; 
    elseif x=='G' 
        x='16'; 
    elseif x=='H' 
        x='17'; 
    elseif x=='I' 
        x='18'; 
    end 
    ph=str2num(x)/(R^(i+1)); 
    phiR=phiR+ph; 
end 
Radix=phiR; 

end 
function [Result] = Grouping(Ref,k,wd,wb) 
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Ref(:,4)=Ref(:,4)./max(Ref(:,4)); 
SR=0; 
%   Co=Combination of References in group of k 
%   SR=Selected Reference 
Co=combnk(Ref(:,1),k); 
[m,n]=size(Co); 
parfor i=1:m 
    SR=[]; 
    SR(:,1)=Co(i,:); 
    for j=1:k 
        R=SR(j,1); 
        SR(j,2:4)=Ref(Ref(:,1)==R,2:4); 
    end 
    cx=mean(SR(:,2)); 
    cy=mean(SR(:,3)); 
    c=SR; 
    SR=[0 cx cy 0]; 
    SR=[SR;c]; 
    %   CD=Centroid  
    CD=squareform(pdist(SR(:,2:3),'euclidean')); 
    %   MCD=Mean of CD  
    MCD(i)=mean(CD(2:k+1,1)); 
    %   MB=Mean of Beta  
    MB(i)=mean(SR(2:k+1,4)); 
End 

 
MCD=MCD./max(MCD); 

%   TCo=Total of each combination 
TCo=(wd.*MCD)+(wb.*MB); 
%   BG=Best Group 
BG=find(TCo==min(TCo)); 

  
while BG ~= 0 
  Result=Co(BG(1),:); 
  BG(1)=[]; 
end 

     
end 
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Appendix D – Matlab code of test analysis 

function 

[LMErrStd,KBestGRErrStd,GRErrAnnStd,LMErrMean,KBestGRErrMean,... 
    GRErrAnnMean]= CaseStudy() 
%%  Initial Setting 

  
%   k = Number selected reference tags 
%   sn = Number of inputs' reference tags for training the ANN 
%   dens = Number of Tags per Square Meter 
%   sn = Default number of hidden neurons 
%   r = Number of Reference Tags 
%   t = Number of Target Tags 
%   ML = Type of RSSI (1 or 2) 
%   TT = List of Target Tags 
k=4; 
sn=4; 
dens=0.2; 
sm=20; 
TT=[1 10 20 28]; 
ML=2; 
FIXDATA=xlsread('TEST1-TEST2', 'Ref'); 
DC1=xlsread('TEST1-TEST2', '1'); 
DC2=xlsread('TEST1-TEST2', '2'); 
DC3=xlsread('TEST1-TEST2', '3'); 
DC4=xlsread('TEST1-TEST2', '4'); 
DC5=xlsread('TEST1-TEST2', '5'); 
DC6=xlsread('TEST1-TEST2', '6'); 
Target=1; 
n=size(FIXDATA(:,1),1); 
Refxyb=FIXDATA; 
DC1(:,all(isnan(DC1),1))=[];   
DC2(:,all(isnan(DC2),1))=[];   
DC3(:,all(isnan(DC3),1))=[];   
DC4(:,all(isnan(DC4),1))=[];   
DC5(:,all(isnan(DC5),1))=[];   
DC6(:,all(isnan(DC6),1))=[];   
FIXDATA(all(isnan(FIXDATA),2),:)=[]; 
Refxyb=FIXDATA; 
[r sm]=size(FIXDATA); 
hold on 
XYminmax(1,1)=min(Refxyb(:,2)); 
XYminmax(1,2)=max(Refxyb(:,2)); 
XYminmax(2,1)=min(Refxyb(:,3)); 
XYminmax(2,2)=max(Refxyb(:,3));   
%   Reset Seed Number 
se = RandStream('mt19937ar','Seed',1); 
RandStream.setGlobalStream(se); 
%   Reading the Building Map 
Rx=[(XYminmax(1,1)-1), (XYminmax(1,2))+1]; 
Ry=[(XYminmax(2,1)-1), (XYminmax(2,2))+1]; 
plot([33.134,0],[21.493,0 ],'.','markersize',1); 
img = imread('EVR.png');             
image([0,33.134],[21.493,0 ],img); 
n=size(Refxyb(:,1),1); 
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plot(Refxyb(:,2),Refxyb(:,3),'p','markersize',8,'markerfacecolor','b'); 
LXY=xlsread('EV-9.xls', 'DC'); 
[m sm]=size(LXY); 
plot(LXY(:,2),LXY(:,3),'*','markersize',10,'markeredgecolor','K');  
lx=LXY(:,2); 
ly=LXY(:,3); 
%   Running for t number of Target Points    
Refxyb=[]; 
Refxyb=FIXDATA; 
%   Reading Target Points 
for t=1:4 
    Refxyb=[]; 
    Refxyb=FIXDATA; 
    Target=TT(t); 
    XY=Refxyb(Refxyb(:,1)==Target,2:3); 
    RSSt=[];  
    RSSr=[]; 
    rita=[]; 
    spot=[]; 
    RSSI=[]; 
    %   Running 3 loops for I, L and U shape Route 
    %   m = Number of Data Collections 
    %   p = Number of Target Points 
    %   n = Number of Reference Points 
    for i=1:m 
        switch i 
            case 1 
                for j=1:n 
                    %   Reading RSSI for Target Tags on different 
                    %   Colletion Points 
                    if DC1(1,(3*(j-1)+1))==Target 
                        RndRSSt=DC1(:,(3*(j-1)+ML)); 
                        RndRSSt=RndRSSt(isfinite(RndRSSt(:, 1)), :); 
                        RSSt(i)=mean(RndRSSt); 
                    %   Generating RSSI for Reference Tags on different 
                    %   Colletion Points 
                    else 
                        RndRSSr=DC1(:,(3*(j-1)+ML)); 
                        RndRSSr=RndRSSr(isfinite(RndRSSr(:, 1)), :); 
                        RSSr(i,j)=mean(RndRSSr); 
                    end 
                end 
            case 2 
                for j=1:n 
                    %   Reading RSSI for Target Tags on different 
                    %   Colletion Points 
                    if DC2(1,(3*(j-1)+1))==Target 
                        RndRSSt=DC2(:,(3*(j-1)+ML)); 
                        RndRSSt=RndRSSt(isfinite(RndRSSt(:, 1)), :); 
                        RSSt(i)=mean(RndRSSt); 
                    %   Generating RSSI for Reference Tags on different 
                    %   Colletion Points 
                    else 
                        RndRSSr=DC2(:,(3*(j-1)+ML)); 
                        RndRSSr=RndRSSr(isfinite(RndRSSr(:, 1)), :); 
                        RSSr(i,j)=mean(RndRSSr); 
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                    end 
                end 
            case 3 
                for j=1:n 
                    %   Reading RSSI for Target Tags on different 
                    %   Colletion Points 
                    if DC3(1,(3*(j-1)+1))==Target 
                        RndRSSt=DC3(:,(3*(j-1)+ML)); 
                        RndRSSt=RndRSSt(isfinite(RndRSSt(:, 1)), :); 
                        RSSt(i)=mean(RndRSSt); 
                    %   Generating RSSI for Reference Tags on different 
                    %   Colletion Points 
                    else 
                        RndRSSr=DC3(:,(3*(j-1)+ML)); 
                        RndRSSr=RndRSSr(isfinite(RndRSSr(:, 1)), :); 
                        RSSr(i,j)=mean(RndRSSr); 
                    end 
                end 
            case 4 
                for j=1:n 
                    %   Reading RSSI for Target Tags on different 
                    %   Colletion Points 
                    if DC4(1,(3*(j-1)+1))==Target 
                        RndRSSt=DC4(:,(3*(j-1)+ML)); 
                        RndRSSt=RndRSSt(isfinite(RndRSSt(:, 1)), :); 
                        RSSt(i)=mean(RndRSSt); 
                    %   Generating RSSI for Reference Tags on different 
                    %   Colletion Points 
                    else 
                        RndRSSr=DC4(:,(3*(j-1)+ML)); 
                        RndRSSr=RndRSSr(isfinite(RndRSSr(:, 1)), :); 
                        RSSr(i,j)=mean(RndRSSr); 
                    end 
                end  
            case 5 
                for j=1:n 
                    %   Reading RSSI for Target Tags on different 
                    %   Colletion Points 
                    if DC5(1,(3*(j-1)+1))==Target 
                        RndRSSt=DC5(:,(3*(j-1)+ML)); 
                        RndRSSt=RndRSSt(isfinite(RndRSSt(:, 1)), :); 
                        RSSt(i)=mean(RndRSSt); 
                    %   Generating RSSI for Reference Tags on different 
                    %   Colletion Points 
                    else 
                        RndRSSr=DC5(:,(3*(j-1)+ML)); 
                        RndRSSr=RndRSSr(isfinite(RndRSSr(:, 1)), :); 
                        RSSr(i,j)=mean(RndRSSr); 
                    end 
                end 
            case 6 
                for j=1:n 
                    %   Reading RSSI for Target Tags on different 
                    %   Colletion Points 
                    if DC6(1,(3*(j-1)+1))==Target 
                        RndRSSt=DC6(:,(3*(j-1)+ML)); 
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                        RndRSSt=RndRSSt(isfinite(RndRSSt(:, 1)), :); 
                        RSSt(i)=mean(RndRSSt); 
                    %   Generating RSSI for Reference Tags on different 
                    %   Colletion Points 
                    else 
                        RndRSSr=DC6(:,(3*(j-1)+ML)); 
                        RndRSSr=RndRSSr(isfinite(RndRSSr(:, 1)), :); 
                        RSSr(i,j)=mean(RndRSSr); 
                    end 
                end 
        end 
    end 
    RSSr(:, ~any(RSSr,1) ) = [];    

     
    %% LANDMARC Method 

     
    % Calculating Beta Value 
    % Using all RSSIs on one Matrics 
    RSSI=RSSt; 
    for s=2:n 
        RSSI(s,:)=RSSr(:,s-1); 
    end 
    % Euclidean-Based Beta Value 
    minkowski2=squareform(pdist(RSSI,'minkowski',2)); 
    minkowski2=minkowski2(1,:); 
    minkowski2(1)=[]; 
    EU=minkowski2; 
    Refxyb(Refxyb(:,1)==Target,:)=[]; 
    Refxyb(:,4)=0; 
    Refxyb(:,4)=EU'; 
    TBeta=[]; 
    TBeta=EU'; 
    for j=1:r-1 
        text(Refxyb(j,2)-0.5,Refxyb(j,3)+0.5,sprintf('%g', 

Refxyb(j,1)),... 
        'fontsize',7,'color','K','Rotation',-45,'FontWeight',... 
        'Bold','Fontsize',10); 
    end 
    E=1./(EU.^2); 
    for u=1:r-1 
    plot(Refxyb(u,2),Refxyb(u,3),'r:o','markersize',3000*E(u)); 
    end             
    % Selecting k best references based on Beta value sorting  
    SRefxyb=[]; 
    KBest1=[]; 
    SRefxyb=sortrows(Refxyb,4); 
    KBest1=SRefxyb(1:k,:); 
    % Calculating the position of the target using LANDMARC weighted   
    % averaging using KBest Matrix 
    E=[]; W=[]; LMX=[]; LMY=[]; 
    E=1./(KBest1(:,4).^2); 
    W=E./sum(E); 
    LMX=sum(KBest1(:,2).*W); 
    LMY=sum(KBest1(:,3).*W); 
    LMErr(t)=sqrt((((LMX-XY(1)).^2)+((LMY-XY(2)).^2)));     
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    %% CMTL Method 

     
    SRefxyb=[]; 
    Selectedxyb=[]; 
    SRefxyb=sortrows(Refxyb,4); 
    Selectedxyb=SRefxyb(1:k,:); 
    [sn sm]=size(Selectedxyb); 
    %   Calculation of Beta Value for Selected Reference Tags 
    %   Selecting Group of Reference Tags for Training 
    %   Selecting k reference tags based on Exhaustive Grouping 
    KBest=[]; 
    SelectedGroup=[]; 
    KBest=[]; 
    Selectedxyb=[]; 
    KBest=SRefxyb(1:(ceil(r-1)),:); 
    SelectedGroup=Grouping(Refxyb,k,0.5,0.5); 
    for i=1:k 
    R=SelectedGroup(i); 
    Selectedxyb(i,:)=Refxyb(Refxyb(:,1)==R,:); 
    end 
    pita=0; 
    SBeta=0; 
    %   Calculating the position of the target using GROUPING weighted 
    %   averaging uses GrRef Matrix 
    E=[]; W=[]; KBestGRX=[]; KBestGRY=[]; 
    E=1./(Selectedxyb(:,4).^2); 
    W=E./sum(E); 
    KBestGRX=sum(Selectedxyb(:,2).*W); 
    KBestGRY=sum(Selectedxyb(:,3).*W); 
    %   Calculating the error for the GROUPING weighted averaging 
    KBestGRErr(t)=sqrt((((KBestGRX-XY(1)).^2)+((KBestGRY-XY(2)).^2))); 

  
    %%  VIRE + CMTL Neural Network 

  
    KBest3=Selectedxyb; 
    num(k)=sn; 
    ANNTBeta=[]; 
    pita=0; 
    xq=[]; 
    yq=[]; 
    xq=[]; 
    nxq=[]; 
    nyq=[]; 
    nzq=[]; 
    Annq=[]; 
    nAnnq=[]; 
    minkowski2=[]; 
    ej=0; 
    IntRSSr=[]; 
    A=(max(KBest3(:,2))-min(KBest3(:,2)))*(max(KBest3(:,3))... 
        -min(KBest3(:,3))); 
    if A<dens 
        sm=2; 
    else 
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        sm=ceil(sqrt(A*dens)); 
        if sm >10 
            sm=10; 
        end 
    end 
    a=linspace(min(KBest3(:,2)),max(KBest3(:,2)),sm); 
    b=linspace(min(KBest3(:,3)),max(KBest3(:,3)),sm); 
    [xq,yq]=meshgrid(a,b); 
    nxq=xq(:)'; 
    nyq=yq(:)'; 
    nxq=[nxq';KBest3(:,2)]'; 
    nyq=[nyq';KBest3(:,3)]'; 
    for i=1:sn 
    TEMP(i)=find(Refxyb(:,1)==KBest3(i,1)); 
    end 
    for i=1:m 
        IntRSSr(i,:)=RSSr(i,TEMP);  
        zq = griddata(KBest3(:,2),KBest3(:,3),IntRSSr(i,:),xq,yq); 
        if isnan(zq) 
            break; 
        end 
        plot3(KBest3(:,2),KBest3(:,3),1./KBest3(:,4),'o')   
        nzq(i,:)=zq(:)'; 
    end 
    if isnan(zq) 
        nxq=[]; 
        nyq=[]; 
        nzq=[]; 
        nxq=[KBest3(:,2)]'; 
        nyq=[KBest3(:,3)]'; 
        for i=1:m 
            IntRSSr(i,:)=RSSr(i,KBest3(:,1));  
        end 
        nzq=IntRSSr;             
    else 
        nzq=[nzq,IntRSSr]; 
    end 
    i=length(nxq); 
    while i>0 
        if isnan(nzq(1,i)) 
            nzq(:,i)=[]; 
            nxq(:,i)=[]; 
            nyq(:,i)=[]; 
        end  
        i=i-1; 
    end 
    ANNTBeta=KBest3(:,4); 
    Annq = griddata(KBest3(:,2),KBest3(:,3),ANNTBeta,xq,yq); 
    nAnnq=Annq(:)'; 
    minkowski2=squareform(pdist(nzq','minkowski',2));   
    nRSSI=[RSSt;nzq']; 
    EU=squareform(pdist(nRSSI,'minkowski',2)); 
    EU=EU(1,:); 
    EU(1)=[];           
    inputs=[]; 
    targets=[]; 
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    net=[]; 
    outputs=[]; 
    errors=[]; 
    inputs = minkowski2; 
    targets(1,:) = nxq'; 
    targets(2,:) = nyq'; 
    %   Create a Fitting Network 
    hiddenLayerSize = ceil((sm+2).*(2/3)+2)+1; 
    net = fitnet(hiddenLayerSize); 
    %   Choose Input and Output Pre/Post-Processing Functions 
    %   for a list of all processing functions type: help nnprocess 
    net.inputs{1}.processFcns = {'removeconstantrows',... 
        'mapminmax'}; 
    net.outputs{2}.processFcns = {'removeconstantrows',... 
        'mapminmax'}; 
    net.numLayers=2; 
    %   Setup Division of Data for Training, Validation, Testing 
    %   For a list of all data division functions type: help nndivide 
    net.divideFcn = 'dividerand';  % Divide data randomly 
    net.divideMode = 'sample';  % Divide up every sample 
    net.divideParam.trainRatio = 70/100; 
    net.divideParam.valRatio = 15/100; 
    net.divideParam.testRatio = 15/100; 
    %   For help on training function 'trainlm' type: help trainlm 
    %   For a list of all training functions type: help nntrain 
    net.trainFcn = 'trainbr';  % Bayesian regulation backpropagation 
    net.trainParam.epochs=1000; 
    %   Choose a Performance Function for a list of all 
    %   performance functions type: help nnperformance 
    net.performFcn = 'mse';  % Mean squared error 
    net.layers{1}.transferFcn = 'tansig'; 
    net.layers{2}.transferFcn = 'purelin'; 
    %   Choose Plot Functions 
    %   for a list of all plot functions type: help nnplot 
    net.plotFcns = {'plotperform','plottrainstate',... 
        'ploterrhist','plotregression', 'plotfit'}; 
    net.trainParam.showWindow=1; 
    %   Train the Network 
    [net,tr] = train(net,inputs,targets,'useParallel','yes'); 
    %   Test the Network 
    outputs = net(inputs); 
    errors = gsubtract(targets,outputs); 
    GRANNResult(:,t) = net(EU'); 
    GRErrAnn(t)=sqrt((((GRANNResult(1,t)-XY(l,1)).^2)... 
        +((GRANNResult(2,t)-XY(l,2)).^2))); 
    RES5=GRErrAnn(t); 
    %   Recalculate Training, Validation and Test Performance 
    trainTargets = targets .* tr.trainMask{1}; 
    valTargets = targets  .* tr.valMask{1}; 
    testTargets = targets  .* tr.testMask{1}; 
end 
LMErrStd=Std(LMErr); 
KBestGRErrStd=Std(KBestGRErr); 
GRErrAnnStd=Std(GRErrAnn); 
LMErrMean=mean(LMErr); 
KBestGRErrMean=mean(KBestGRErr); 
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GRErrAnnMean=mean(GRErrAnn); 
hold off 
end 
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Appendix E – C# code of the active RFID tags data collection for handheld 

device and captured ccreen of the software 

 

using System; 

using System.Linq; 

using System.Collections.Generic; 

using System.Collections; 

using System.ComponentModel; 

using System.Data; 

using System.Drawing; 

using System.IO; 

using System.Text; 

using System.Windows.Forms; 

using IDENTEC; 

using IDENTEC.ILR350.Readers; 

using IDENTEC.ILR350.Tags; 

using IDENTEC.Readers; 

using System.Threading; 

 

namespace NewRSSILogger 

{ 

    public partial class Form1 : Form 

    { 

        private IDENTEC.ILR350.Readers.iCardCF350 m_reader; 

        DateTime startTime; 

        DateTime endTime; 

        ArrayList IQTags = new ArrayList(); 

        ArrayList IQBeacon = new ArrayList(); 

        ArrayList NewList = new ArrayList(); 
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        ArrayList OldList = new ArrayList(); 

        ArrayList MissedList = new ArrayList(); 

        IDENTEC.ILR350.RFBaudRate Baud = new 

IDENTEC.ILR350.RFBaudRate(); 

       

        public Form1() 

        { 

            InitializeComponent(); 

            trackBar1.Maximum = 10; 

            trackBar1.Minimum = -30; 

            trackBar1.Value = trackBar1.Maximum; 

            lblPower.Text = trackBar1.Value + "dBm"; 

            comboBox1.Items.Add("RF_19200"); 

            comboBox1.Items.Add("RF_38400"); 

            comboBox1.Items.Add("RF_57600"); 

            comboBox1.Items.Add("RF_115200"); 

            comboBox1.SelectedIndex = 3; 

             

        } 

        private void Call() 

        { 

            listBoxTags.DataSource = null; 

            Cursor.Current = Cursors.WaitCursor; 

            labelTags.Text = ""; 

            try 

            { 

                listBoxTags.DataSource = null; 

                if (null == m_reader) 

                    Connect(); 

                if (null != m_reader) 

                { 

                    iCardCF350 iqReader = m_reader as iCardCF350; 

                    iqReader.SetRFBeaconBaudrate(Baud); 

                    int tx; 

                    tx=iqReader.GetAntennaTXPower(1); 

                    iqReader.SetAntennaTXPower(1, trackBar1.Value); 

                    tx = iqReader.GetAntennaTXPower(1); 

                    iQ350TagCollection tags = 

iqReader.ScanForTags(Int32.Parse(txtNTags.Text), true); 

                    tags.Sort(); 

                    foreach (iQ350RTLS t in tags) 

                    { 

                        if 

(!OldList.Contains(t.SerialNumber.ToString())) 

                        { 

                            OldList.Add(t.SerialNumber.ToString()); 

                            t.BlinkLED(m_reader, 

IDENTEC.ILR350.Tags.LEDColor.ALL_LED, new TimeSpan(0, 0, 0, 1), 1); 

                            t.WriteBeaconInterval(m_reader, new 

TimeSpan(0, 0, 0, 0, 500)); 

                            t.WriteBeaconActivationState(m_reader, 

true); 

                            bool rt = 

t.ReadBeaconActivationState(m_reader); 

                            TimeSpan ff = 

t.ReadBeaconInterval(m_reader); 
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                        } 

                    } 

                    listBoxTags.DataSource = OldList; 

                    labelTags.Text = OldList.Count + " tags"; 

                } 

            } 

            catch (iCardCommunicationsException) 

            { 

                try 

                { 

                    Connect(); 

                    Call(); 

                } 

                catch (Exception) 

                { 

                    MessageBox.Show("Could not connect to the selected 

card"); 

                    return; 

                } 

            } 

            catch (CommPortException) 

            { 

                try 

                { 

                    Connect(); 

                    Call(); 

                } 

                catch (Exception) 

                { 

                    MessageBox.Show("Could not connect to the selected 

card"); 

                    return; 

                } 

            } 

            catch (Exception ex) 

            { 

                MessageBox.Show(ex.Message); 

            } 

            finally 

            { 

                Cursor.Current = Cursors.Default; 

            } 

        } 

        private void Read() 

        { 

            listBoxTags.DataSource = null; 

            Cursor.Current = Cursors.WaitCursor; 

            labelTags.Text = ""; 

            lblTime.Text = "00:00:00"; 

            IQTags = null; 

            try 

            { 

                if (null == m_reader) 

                    Connect(); 

                if (null != m_reader) 

                { 
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                    iCardCF350 iqReader = m_reader as iCardCF350; 

                    iqReader.SetRFBeaconBaudrate(Baud); 

                    iqReader.SetAntennaTXPower(1, trackBar1.Value); 

                    ILR350TagCollection tags = 

iqReader.GetBeaconTags(); 

                    tags.Sort(); 

                    listBoxTags.DataSource = tags; 

                    labelTags.Text = tags.Count + " tags"; 

                    foreach (iQ350RTLS t in tags) 

                    { 

                            OldList.Add(t.SerialNumber.ToString()); 

                            IQBeacon.Add(t.SerialNumber.ToString() + "  

" + DateTime.Now.ToString("hh:mm:ss.f") + "  " + t.MaxSignal.ToString() 

                                   + "  " + t.LastSignal.ToString()); 

                            if (IQBeacon != null) 

                            { 

                                lblNRead.Text = "Read: " + 

IQBeacon.Count.ToString(); 

                            } 

                    }                  

                } 

            } 

            //Note that you may a have longer lasting battery if you 

close the connection to the card when not in use 

            catch (iCardCommunicationsException) 

            { 

                try 

                { 

                    Connect(); 

                    Read(); 

                } 

                catch (Exception) 

                { 

                    MessageBox.Show("Could not connect to the selected 

card"); 

                    return; 

                } 

            } 

            catch (CommPortException) 

            { 

                try 

                { 

                    Connect(); 

                    Read(); 

                } 

                catch (Exception) 

                { 

                    MessageBox.Show("Could not connect to the selected 

card"); 

                    return; 

                } 

            } 

            catch (Exception ex) 

            { 

                MessageBox.Show(ex.Message); 

            } 
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            finally 

            { 

                Cursor.Current = Cursors.Default; 

            } 

        } 

        private void Off() 

        { 

            listBoxTags.DataSource = null; 

            Cursor.Current = Cursors.WaitCursor; 

            labelTags.Text = ""; 

            IQTags = null; 

            try 

            { 

                if (null == m_reader) 

                    Connect(); 

                if (null != m_reader) 

                { 

                    iCardCF350 iqReader = m_reader as iCardCF350; 

                    iqReader.SetRFBeaconBaudrate(Baud); 

                    iqReader.SetAntennaTXPower(1, trackBar1.Value); 

                    iQ350TagCollection tags = 

iqReader.ScanForTags(Int32.Parse(txtNTags.Text), true); 

                    tags.Sort(); 

                    foreach (iQ350RTLS t in tags) 

                    { 

                        if 

(!NewList.Contains(t.SerialNumber.ToString())) 

                        { 

                            NewList.Add(t.SerialNumber.ToString()); 

                            t.WriteBeaconActivationState(m_reader, 

false); 

                            bool rt = 

t.ReadBeaconActivationState(m_reader); 

                            if (rt == false) 

                            { 

                                t.BlinkLED(m_reader, 

IDENTEC.ILR350.Tags.LEDColor.ALL_LED, new TimeSpan(0, 0, 0, 1), 2); 

                            } 

                        } 

                    } 

                    listBoxTags.DataSource = NewList; 

                    labelTags.Text = NewList.Count + " tags"; 

                } 

            } 

            //Note that you may a have longer lasting battery if you 

close the connection to the card when not in use 

            catch (iCardCommunicationsException) 

            { 

                try 

                { 

                    Connect(); 

                    Read(); 

                } 

                catch (Exception) 

                { 



 

166 

                    MessageBox.Show("Could not connect to the selected 

card"); 

                    return; 

                } 

            } 

            catch (CommPortException) 

            { 

                try 

                { 

                    Connect(); 

                    Read(); 

                } 

                catch (Exception) 

                { 

                    MessageBox.Show("Could not connect to the selected 

card"); 

                    return; 

                } 

            } 

            catch (Exception ex) 

            { 

                MessageBox.Show(ex.Message); 

            } 

            finally 

            { 

                Cursor.Current = Cursors.Default; 

            } 

        } 

        private void Scan() 

        { 

            listBoxTags.DataSource = null; 

            Cursor.Current = Cursors.WaitCursor; 

            labelTags.Text = ""; 

            try 

            { 

                if (null == m_reader) 

                    Connect(); 

                if (null != m_reader) 

                { 

                    iCardCF350 iqReader = m_reader as iCardCF350; 

                    iqReader.SetRFBeaconBaudrate(Baud); 

                    int tx; 

                    tx=iqReader.GetAntennaTXPower(1); 

                    iqReader.SetAntennaTXPower(1, trackBar1.Value); 

                    tx = iqReader.GetAntennaTXPower(1); 

                    iQ350TagCollection tags = 

iqReader.ScanForTags(Int32.Parse(txtNTags.Text), true); 

                    tags.Sort(); 

                    listBoxTags.DataSource = tags; 

                    labelTags.Text = tags.Count + " tags"; 

                    foreach (iQ350RTLS t in tags) 

                    { 

                       // t.BlinkLED(m_reader, 

IDENTEC.ILR350.Tags.LEDColor.ALL_LED, new TimeSpan(0,0,0,1), 3); 

                        t.WriteBeaconInterval(m_reader, new TimeSpan(0, 

0, 0, 0, 500)); 
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                        t.WriteBeaconConfiguration(m_reader, 

IDENTEC.ILR350.Tags.BeaconInformation.None); 

                        t.WriteBeaconActivationState(m_reader, true); 

                        bool rt=t.ReadBeaconActivationState(m_reader); 

                        IQTags.Add(t.SerialNumber.ToString() + "  " + 

DateTime.Now.ToString("hh:mm:ss.f")  +"  " + t.MaxSignal.ToString());                     

                        if (IQTags != null) 

                        { 

                            lblNRead.Text = "Read: " + 

IQTags.Count.ToString(); 

                        } 

                     

                    } 

                    ILR350TagCollection btags = 

m_reader.GetBeaconTags();  

                     

                } 

            } 

            //Note that you may a have longer lasting battery if you 

close the connection to the card when not in use 

            catch (iCardCommunicationsException) 

            { 

                try 

                { 

                    Connect(); 

                    Scan(); 

                } 

                catch (Exception) 

                { 

                    MessageBox.Show("Could not connect to the selected 

card"); 

                    return; 

                } 

            } 

            catch (CommPortException) 

            { 

                try 

                { 

                    Connect(); 

                    Scan(); 

                } 

                catch (Exception) 

                { 

                    MessageBox.Show("Could not connect to the selected 

card"); 

                    return; 

                } 

            } 

            catch (Exception ex) 

            { 

                MessageBox.Show(ex.Message); 

            } 

            finally 

            { 

                Cursor.Current = Cursors.Default; 

            } 



 

168 

        } 

        private void Connect() 

        { 

            if (m_reader != null) 

                ((IDisposable)(m_reader)).Dispose(); 

            m_reader = null; 

            ConnectCF(); 

        } 

        private void ConnectCF() 

        { 

            try 

            { 

                if (m_reader == null) 

                { 

                    int i = CFReaderSearch.FindReaderComPort(); 

                    m_reader = new iCardCF350(new SerialPortStream(i)); 

                     

                } 

                if (m_reader != null && !m_reader.DataStream.IsOpen) 

                    m_reader.DataStream.Open(); 

            } 

            catch (Exception ex) 

            { 

                MessageBox.Show(ex.Message); 

            } 

        } 

        private bool validateInput(string input) 

        { 

            bool isValid = true; 

            if (String.IsNullOrEmpty(input)) 

            { isValid = false; return isValid; } 

            char[] inputText = input.ToCharArray(); 

            foreach (char c in inputText) 

            { 

                if (!char.IsDigit(c)) 

                { isValid = false; return isValid; } 

            } 

            return isValid; 

        } 

        private void buttonScan_Click(object sender, EventArgs e) 

        { 

             

            if (!validateInput(txtNTags.Text.Trim())) 

            { MessageBox.Show("Please, enter a decimal value for tags 

in field"); return; } 

            if (!validateInput(txtScanInterval.Text.Trim())) 

            { MessageBox.Show("Please, enter a decimal value for scan 

interval"); return; } 

            lblNRead.Text = ""; 

            lblTime.Text = "00:00:00"; 

            buttonScan.Enabled = false; 

            timer1.Interval = Int32.Parse(txtScanInterval.Text); 

            timer1.Enabled = true; 

            timer2.Interval = 1000; 

            timer2.Enabled = true; 

            startTime = DateTime.Now; 



 

169 

        } 

        private void buttonRead_Click(object sender, EventArgs e) 

        { 

            if (!validateInput(txtNTags.Text.Trim())) 

            { MessageBox.Show("Please, enter a decimal value for tags 

in field"); return; } 

            if (!validateInput(txtScanInterval.Text.Trim())) 

            { MessageBox.Show("Please, enter a decimal value for scan 

interval"); return; } 

            lblNRead.Text = ""; 

            lblTime.Text = "00:00:00"; 

            buttonRead.Enabled = false; 

            timer3.Interval = Int32.Parse(txtScanInterval.Text); 

            timer3.Enabled = true; 

            timer2.Interval = 1000; 

            timer2.Enabled = true; 

            startTime = DateTime.Now; 

        } 

        private void buttonStop_Click(object sender, EventArgs e) 

        { 

            timer1.Enabled = false; 

            timer2.Enabled = false; 

            timer3.Enabled = false; 

            buttonScan.Enabled = true; 

            buttonRead.Enabled = true; 

            DialogResult save = MessageBox.Show("Do you want to save", 

"Save", MessageBoxButtons.YesNo, MessageBoxIcon.Question, 

MessageBoxDefaultButton.Button1); 

            if (save.Equals(DialogResult.No)) return; 

            string details = "Tags in Field: " + txtNTags.Text + 

"\nInterval: " + txtScanInterval.Text + "ms\nGain: " + 

trackBar1.Value.ToString() + "dBm\n\nID                Elapsed     

RSSI"; 

            try 

            { 

                if (IQTags != null) 

                { 

                    Save(IQTags, details,false); 

                    MessageBox.Show("Data saved"); 

                } 

                else 

                { 

                    Save(IQBeacon, details, true); 

                    MessageBox.Show("Data saved"); 

                } 

            } 

            catch (Exception ex) 

            { 

                MessageBox.Show(ex.Message); 

            } 

        } 

        public void Save(ArrayList list, string details, bool B) 

        { 

            string path; 

            DateTime.Now.ToString(); 

            if (B == false) 
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            { 

                path = @"\Program Files\newrssilogger\RSSI 

Logs.txt";//file Loc: *start->file explorer->Program Files-

>mobilereportingsystem->RFID.txt* 

            } 

            else 

            { 

                path = @"\Program Files\newrssilogger\Beacon RSSI 

Logs.txt"; 

            } 

            string text = details + "\n"; 

            foreach (string s in list) 

            { 

                text = text + s + "\n"; 

            } 

            if (!File.Exists(path)) 

            { 

                using (StreamWriter sw = File.CreateText(path)) 

                { 

                    sw.WriteLine(text); 

                    sw.Flush(); 

                    sw.Close(); 

                } 

            } 

            else 

            { 

                using (StreamWriter sw = File.AppendText(path)) 

                { 

                    try 

                    { 

                        sw.WriteLine(""); 

                        sw.WriteLine(text); 

                        sw.Flush(); 

                        sw.Close(); 

                    } 

                    catch (Exception ex) 

                    { 

                        throw ex; 

                    } 

                } 

            } 

        } 

        private void timer1_Tick(object sender, EventArgs e) 

        { 

            Scan(); 

        } 

        private void timer2_Tick(object sender, EventArgs e) 

        { 

            endTime = DateTime.Now; 

            TimeSpan elapsed = endTime - startTime; 

            lblTime.Text = string.Format("{0:00}:{1:00}:{2:00}", 

(int)elapsed.TotalHours, elapsed.Minutes, elapsed.Seconds); 

        } 

        private void timer3_Tick_1(object sender, EventArgs e) 

        { 

            Read(); 
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        } 

        private void trackBar1_ValueChanged(object sender, EventArgs e) 

        { 

            lblPower.Text = trackBar1.Value + "dBm"; 

        } 

        private void menuItem1_Click(object sender, EventArgs e) 

        { 

            Close(); 

        } 

        private void buttonBSet_Click(object sender, EventArgs e) 

        { 

            lblTime.Text = "00:00:00"; 

            Call(); 

        } 

        private void buttonBUnSet_Click(object sender, EventArgs e) 

        { 

            lblTime.Text = "00:00:00"; 

            Off(); 

        } 

        private void comboBox1_SelectedIndexChanged(object sender, 

EventArgs e) 

        { 

            switch (comboBox1.SelectedIndex) 

            { 

                case 0: 

                    Baud = IDENTEC.ILR350.RFBaudRate.RF_19200; 

                    break; 

                case 1: 

                    Baud = IDENTEC.ILR350.RFBaudRate.RF_38400; 

                    break; 

                case 2: 

                    Baud = IDENTEC.ILR350.RFBaudRate.RF_57600; 

                    break; 

                case 3: 

                    Baud = IDENTEC.ILR350.RFBaudRate.RF_115200; 

                    break; 

            } 

        } 

    } 

} 
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Appendix F – HP parallel-computing cluster (Cirrus) job submission code 

#!/encs/bin/tcsh 

# 

# We use a locally installed version of TCSH because it has been 

# tuned to our environment. 

# 

# Note that lines below, beginning with "#BSUB" are NOT comments, 

# and must be included for this to work correctly.  These lines 

# indicate directives to the job-submission agent.  Details of what 

# other options are available can be found in the bsub manual page. 

 

# load required modules: 

module load matlab/2012b 

 

# to help find our user's directory space: 

set u = `echo mo_solta |cut -c1` 

 

# Replace the path here with the correct path to the directory 

# from which your job should be run: 

cd /sfs/nobackup/m/mo_solta/MATLAB/HP 

 

# give the job a reasonably meaningful name: 

#BSUB -J "ClustANNSimBRHP.m" 

 

#BSUB -o "ClustANNSimBR-Out.txt" 

#BSUB -e "ClustANNSimBR-Err.txt" 

 

# Send the job report by mail when the job finishes. 

#BSUB –N 

 

# Specify the number of processors required to run the job (note 

# that you can have no more than 64 processors allocated to any of 

# your jobs (combined) at any one time: 

#BSUB -n 60 

 

# Specify the queue to which the job will be submitted: 

#BSUB -q long 

 

# run the job, with appropriate options (be sure to replace 

# $MatlabInputFile.m with the proper filename for your job input): 

 

matlab  < ClustComp.m  
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Appendix G – Summary of computer hardware used for the tests 

Name of hardware Specifications 

HP Z210 Workstation 
Processor: Intel® Core™ i7-2600 CPU @ 4.30GHz; 

Memory(RAM): 8.00 GB 

DELL PRECISION T7400 
Processor: Intel® Xeon® CPU E5430 @ 2.66GHz; 

Memory(RAM): 8.00 GB 

DELL PowerEdge T610 
Processor: Intel® Xeon® CPU E5540 @ 2.53GHz (2 

processors); Memory(RAM): 48.00 GB 

HP Proliant DL145G2 
Processor: AMD Opteron™ 200 (32 x 4 Cores); 

Memory(RAM): 8.00 GB 

HP Proliant DL145G2 
Processor: AMD Opteron™ 200 (32 x 4 Cores); 

Memory(RAM): 16.00 GB 

HP Proliant DL585 
Processor: AMD Opteron™ 6000 (17 x   Cores); 

Memory(RAM): 64.00 GB 

HP Proliant DL585 
Processor: AMD Opteron™ 6000 (1 x   Cores); 

Memory(RAM): 128.00 GB 

HP Proliant DL585G2 
Processor: AMD Opteron™  000 (  x   Cores); 

Memory(RAM): 128.00 GB 
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