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Abstract

Calculation of the Shielding Effectiveness of Carbon-Fiber Composite

Structures

Mohammadali Ansarizadeh

Carbon-fiber composite (CFC) materials are replacing metals in the construction of

modern aircraft because of their outstanding strength/weight ratio. The purpose of

this thesis is to identify the capabilities and limitations of the commercially available

software in calculating the shielding effectiveness (SE) of CFC structures. This work

is started by a literature survey focused on the characterization and modeling of CFC

panels.

The homogenized model of CFC panels is analyzed using the skin-effect approxi-

mation in a method of moments (MoM) solution. It is found that the stack-to-sheet

conversion is a limiting factor in the skin effect approximation and not the homoge-

nization scheme.

Experimental results are presented which indicate that performance of monopole

antennas up to a frequency of 12.5 GHz is not altered by replacing a metallic ground

plane with a CFC one. Also, a monopole antenna is mounted on hollow CFC and

aluminum cubes with the same physical dimensions and the radiated electromagnetic

interference (EMI) inside the cube are theoretically compared.

Although wire meshes with unbonded junctions are better shields it is shown

that this is less important for meshes is epoxy as compared to free space. For CFC

materials reinforced with woven carbon-fiber fabrics the effects of physical contact

between orthogonally oriented fiber bundles are examined. It is found that bonding

CFC fiber bundles at the junctions actually improves the shielding performance.

The simulation results for the electric and magnetic SE inside a hollow spherical

CFC shell are compared with the benchmark analytic solutions. It is shown that the

analytic solutions could not be numerically evaluated unless the wave functions are
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expressed in terms of the thickness of CFC materials.
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Chapter 1

Literature Survey

1.1 Introduction

There is a growing trend in the aerospace industries to replace metals with carbon-

fiber composite (CFC) materials because they offer superior mechanical performances

at a lower cost [6]. In fact, the Bombardier aerospace company is using CFC ma-

terials in the construction of its modern aircraft. CFC panels are synthesized as a

sandwich of multiple laminates. A laminate is often composed of a planar array of

long continuous carbon-fibers embedded in an epoxy host medium. A single lami-

nate is strongly anisotropic. However, by progressively changing the orientation of

the reinforcing carbon-fibers in a CFC panel, bulk isotropic mechanical and electri-

cal material properties may be obtained. The anisotropic conductivity of a single

CFC laminate is not of interest in this thesis because CFC panels with industrial

applications are usually quasi-isotropic which are modeled as isotropic conducting

materials with a conductivity in the order of 104 S/m [7]. In fact, the conductivity

of CFC materials is almost 1000 times lower than the conductivity of most metals.

Since conductivity plays an important role in SE, the EMC may be compromised by

replacing metals with CFC materials. Therefore, it is necessary to understand the

capabilities and limitations of the commercially available software while calculating

1
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the SE of CFC structures so that the design engineer can assure if a CFC substitute

will meet the required standards. FEKO offers a MoM solver for SE problems in-

volving CFC materials. The purpose of this thesis is to understand the capabilities

and limitations of an MoM SIE formulation in calculating the SE of CFC structures.

This formulation is conveniently available in the commercial EM solver code FEKO

[8].

To understand the research history on the EM properties of CFC materials, a brief

literature survey on characterization and modeling of CFC materials is presented in

the following section.

1.2 Overview of the Pioneering Research

To our knowledge, the earliest EM study of CFC materials dates back to 1971 which

was focused on the homogenized conductivity of a single laminate [9]. Later in

1972, a series of destructive and nondestructive experiments focused on the effects of

lightning-produced currents on CFC panels were reported [10]. Knibbs and Morris

modeled a CFC laminate from the knowledge of its mechanical, thermal, and elec-

trical properties [11]. Their model was based on fibers embedded in a dielectric host

medium. It was concluded that fibers in a CFC laminate do not have exactly the

same orientation and there is misalignment from the nominal orientation. Moreover,

there are fiber-to-fiber electrical contacts in a laminate which are only 25% effective

[11]. In 1975, Keen tested a CFC reflector antenna and reported that at X-band

frequencies if the surface of a CFC reflector is not covered with a metallic coating

then a gain loss of 0.5 dB is incurred [12]. Later, Keen pointed out that the surface

roughness is the main cause of the gain loss and not the relatively lower conductiv-

ity of CFC materials [13]. According to Blake, the difference between the gain and

radiation pattern of UHF antennas mounted on metallic and CFC ground planes is

“little”. However, the magnetic SE of CFC materials is reported as “minimal” [14].
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Casey in 1977, calculated the SE of CFC panels by using boundary conditions that

relate the tangential electric and magnetic fields on both sides of a laminate [15].

Casey noted that quasi-isotropic CFC panels can be modeled as isotropic conducting

materials with a conductivity in the order of 104 S/m. Weinstock studied the impact

of replacing metals with CFC panels in the construction of aircraft [16]. One of his

conclusions was that the main reasons for the reduction of SE in CFC enclosures are

the discontinuity of the surface currents at seams and joints.

Hill and Wait calculated the reflection and transmission coefficients of wire meshes

in free space and reported that unbonded wire meshes are superior EM shields com-

pared to the bonded case [17]. Holloway et al. proposed equivalent-layer models to

simplify analysis of CFC panels [1]. In their model, the electrical contact between

fibers in the same laminate or in adjacent laminates were ignored. Kazerani used

FEKO to obtain the radiation pattern of antennas that are mounted on a CFC air-

craft fuselage [18]. Mehdipour used the equivalent-layer models of Holloway et al. to

calculate the SE of CFC materials [19]. Furthermore, Mehdipour et al. showed that

carbon-fiber nanotubes may be used to increase the conductivity of CFC materials

[20].

Due to a limited current handling capability, CFC materials are damaged by

high electric currents associated with lightning strikes. Therefore, a series of lighting

protection schemes for CFC materials have been developed [21].

1.3 Basic Assumptions

This work is focused on calculating the SE of CFC structures using the commercially

available software FEKO [8]. We will focus on the surface integral equations (SIE)

and method of moments (MoM) solver in FEKO. Throughout this thesis, the term

“CFC laminate” is referred to a dielectric slab reinforced with long continuous parallel

carbon-fiber reinforcements. If there is only one laminate then the reinforcing fibers
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are equally spaced and non-touching but in practice not all fibers are parallel and there

is misalignment between the fibers. Moreover, there is electrical contact between the

reinforcing fibers in a CFC panel. The term “panel” refers to a material whose

width and length are much larger than its thickness. The term “CFC panel” refers

to the sandwich structure of woven fibers forming multiple CFC laminates. In this

thesis, CFC panels with quasi-isotropic material properties are modeled as isotropic

conducting materials with σ = 104 S/m unless otherwise stated [22]. Furthermore,

simulation or analytic results that differ by less than 3 dB are considered to be in

good agreement with one another.

1.4 Thesis Outline

The thesis is organized as follows. In Chapter 2, the skin-effect approximation is

used in a MoM solver to calculate the reflection and transmission coefficients of CFC

panels and the results are compared with Holloway et al. [1]. Application of the skin-

effect model is motivated by a FEKO application note in which CFC panels were

modeled using the skin-effect approximation [23]. In Chapter 3, effects of replacing

metallic structures with CFC ones on the reflection coefficient, radiation pattern,

or radiated electromagnetic interference (EMI) of monopole antennas are examined.

Experimental and simulation results will be reported. This chapter is motivated

by the fact that in modern aircraft, monopole antennas are being mounted on a

CFC rather than a metallic fuselage. Chapter 4 is focused on the effects of bonding

between orthogonally oriented reinforcements in adjacent laminates. The reinforcing

fibers in the CFC panels that were analyzed by Holloway et al. were unbonded while

some CFC panels have a woven structure with physical contact between orthogonally

oriented reinforcements. The bonding between orthogonally oriented wires can affect

the reflection and transmission coefficient of wire meshes [17, 24, 25, 26]. That is

why in Chapter 4, effects of interlaminar bondings on the reflection and transmission
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coefficients of CFC panels are investigated. Chapter 5 is focused on the electric

and magnetic SE of CFC enclosures. Certain benchmark solutions are developed to

validate the FEKO simulation results. Numerical difficulties were encountered while

evaluating the benchmark SE quantities. In Appendix A, an approach is presented

to resolve such numerical problems. Finally, conclusions and suggestions for future

work are presented in Chapter 6.



Chapter 2

The Skin-Effect Approximation

2.1 Introduction

An ideal model of a CFC laminate is a dielectric slab reinforced by an array of

long continuous carbon-fibers. In each laminate, carbon-fibers are assumed to be

parallel, equally spaced, and not in contact with one another. CFC panels are usually

composed of a stack of multiple laminates where in each laminate carbon-fibers have

a specific orientation. By changing the orientation of the reinforcing fibers through

the panel, quasi-isotropic mechanical and electrical properties are obtained. The

diameter of individual carbon-fibers and the spacing between the fibers are in the

order of micrometers. However, frequency bands that are used in navigation and

communication systems correspond to wavelengths that are much larger than the

geometrical periodicity of CFC materials. As a result, CFC panels can be replaced

with equivalent homogeneous models because it is not necessary to calculate surface

or volume currents for individual carbon-fibers. Consequently, the EM analyses of

CFC materials is greatly simplified.

In order to analyze CFC materials in FEKO it is recommended that the skin-effect

model (“SK-card”) be used [23]. This approach is motivated by a FEKO application

note in which the skin-effect model is used to calculate the RCS of aircraft with a

6
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CFC skin [23, 27]. The FEKO skin-effect model is based on approximate boundary

conditions and calculates the electric surface currents on CFC materials. The FEKO

skin-effect model can be used to analyze CFC panels composed of a single or multiple

laminates. The main purpose of this chapter is to examine FEKO’s ability to calculate

the EM SE of CFC panels. The geometrical and constitutive parameters of the

panels under consideration are the same as those used by Holloway et al. so that a

comparison can be made between published results and FEKO simulations.

This chapter is organized as follows. In the next section, a CFC laminate is

modeled with an equivalent-layer model composed of three homogeneous layers. Cal-

culation of the homogenized complex tensor permittivity of fibers embedded in a

dielectric slab is discussed in Section 2.3. In Section 2.4, the skin-effect approxima-

tion in FEKO is briefly explained. Then in Section 2.5, the multilayer structure CFC

panels is shrunk to a sheet with zero thickness. Next in Section 2.6, the simulation

results for the reflection and transmission coefficients of CFC panels composed of

one, two, and four laminates are presented and compared with published literature

[1]. Moreover, the magnetic SE at the center of a hollow cubic shell with a CFC face

is calculated using the skin-effect model and results are compared with published

literature [2]. Finally, conclusions are made in Section 2.7.

2.2 Homogenization of a CFC Laminate

Figs. 2.1a and 2.1b show the idealized model of a CFC laminate and its equivalent

layer model, respectively. With reference to Fig. 2.1a, D is the fiber diameter, P

is periodicity of the reinforcing fiber array, and L is the laminate thickness. The

model shown in Fig. 2.1a can be analyzed using one unit cell and application of the

periodic boundary conditions. But since the physical spacing between the reinforcing

carbon-fibers is usually much smaller than the wavelength of the excitation signals

it is possible to replace all the fibers embedded in the binding dielectric material



CHAPTER 2. THE SKIN-EFFECT APPROXIMATION 8

Figure 2.1: (a) and (b) are, respectively, the idealized geometry of a CFC laminate
and its equivalent layer model [1].

with a homogeneous slab. The equivalent-layer model which is shown in Fig. 2.1b is

comprised of three homogeneous layers [1]. The left and right layers are slabs of the

binding dielectric material with a thickness of (L − D)/2. The fibers embedded in

the binding material are replaced by an anisotropic layer of thickness D. When the

equivalent-layer model is applied to a CFC panel comprised of n-laminates then the

final model will be composed of 2n+1 layers. Each layer is homogeneous but can be

anisotropic. The equivalent-layer model is well suited to the skin-effect model.

2.3 Tensor Permittivity of Embedded Fibers

In order to apply the skin-effect approximation to a CFC laminate the equivalent

tensor permittivity and conductivity of the middle layer shown in Fig. 2.1b must first

be calculated. The equivalent tensor permittivity and conductivity of embedded fibers

are obtained from the geometrical and electrical properties of the binding dielectric

material and reinforcing fibers. Let (ε||, ε⊥) and (σ||, σ⊥) denote the homogenized

equivalent permittivity and conductivity parallel and orthogonal to the fibers in the

plane of the laminate. To calculate ε||, ε⊥, σ||, and σ⊥, Holloway et al. used

ε|| − j
σ||

ω
= (1 − g)εm + g(εf − j

σf

ω
) (2.1)
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and [
ε⊥ − j

σ⊥

ω

]−1

= (1 − g)εm
−1 + g(εf − j

σf

ω
)
−1

(2.2)

where εm and εf are, respectively, the permittivity of the binding material and carbon-

fibers. σf is the conductivity of the fibers and the conductivity of the binding dielectric

material is assumed to be zero. Moreover, g is called the “volume fraction” of carbon-

fibers and is given by [1]

g =
πD

4P
. (2.3)

Material properties in the direction normal to the CFC laminate are not required

when using the skin-effect approximation because the laminate will be shrunk to a

sheet with zero thickness. In fact, the VEP currents normal to the plane of a CFC

laminate are ignored in the skin-effect approximation.

Now two dielectric materials should be created in FEKO with (ε||, σ||) and (ε⊥,

σ⊥) corresponding to the material properties along and orthogonal to the fibers orien-

tation. In the next section application of the skin effect approximation to a dielectric

slab is explained.

2.4 The Skin-Effect Approximation

Although the homogenization technique discussed in Section 2.2 greatly facilitates

simulation of the CFC laminate shown in Fig. 2.1a it is possible to further simplify

the equivalent-layer model shown in Fig. 2.1b. The typical thickness of a CFC

laminate is in the order of L=0.13 mm [28, 29]. If the tangential electric field is

approximately the same through the laminate then it is not necessary to calculate

electric and magnetic surface currents on the four boundaries in Fig. 2.1b. Since

CFC materials are not magnetic it is possible to replace the equivalent-layer model

shown in Fig. 2.1b with electric surface currents on a sheet. In fact, in the skin-effect

approximation the VEP currents are converted to surface currents provided that the

panel thickness is thin with respect to the material wavelength i.e., |γL| < 0.2 where
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γ is the propagation constant in the laminate and L is the panel thickness [30].

A surface which supports an electric surface current such that Etan = ZsJs is

called an “impedance sheet” and Zs is referred to as the “sheet impedance”. For a

thin dielectric slab with a thickness of L, conductivity of σ and permittivity of ε the

equivalent sheet impedance is given by [31, 32]

Zs =
β

2(σ + jωε − jωεe) sin(βL

2
)

(2.4)

where β = ω
√

μ0(ε + σ/jω) is the propagation constant in the dielectric material and

εe is the permittivity of the background medium. For lossless media σ = 0, ε and εe

are real and Zs will also be real. However, for lossy media σ �= 0 and β and Zs are

complex quantities. For an array of carbon-fibers embedded in a binding dielectric

material, Eqs. 2.1 and 2.2 are used to calculate the equivalent sheet impedance along

the laminate’s principal directions.

For the equivalent-layer model shown in Fig. 2.1b, FEKO recognizes three sheet

impedances corresponding to the three dielectric layers. In the next section, the three

impedance sheets will be merged into one sheet.

2.5 Stack-to-Sheet Conversion

There is usually more than one laminate in a CFC panel and the orientation of

the reinforcing fibers varies through the panel. Let ¯̄ZL
si represent the tensor sheet

impedance of the i-th laminate of a CFC panel with N laminates. Furthermore,

let Zsdi represent the sheet impedance of the left and right dielectric layers in the

equivalent-layer model of the i-th laminate. Finally, let Zs||i and Zs⊥i denote the

sheet impedance of the middle layer in the equivalent-layer model of the i-th laminate.



CHAPTER 2. THE SKIN-EFFECT APPROXIMATION 11

Then, ¯̄ZL
si is written as:

¯̄Z
L

si =

⎧⎪⎨
⎪⎩

⎡
⎣ Zsdi 0

0 Zsdi

⎤
⎦

−1

+

⎡
⎣ Zs||i 0

0 Zs⊥i

⎤
⎦
−1

+

⎡
⎣ Zsdi 0

0 Zsdi

⎤
⎦
−1

⎫⎪⎬
⎪⎭

−1

. (2.5)

¯̄ZL
si is defined in a local coordinate system associated with the i-th laminate. In order

to describe the tensor sheet impedance of the i-th laminate in the panel’s coordinate

system the following transformation is used

¯̄Z
P

si = ¯̄Ti
¯̄Z

L

si
¯̄Ti

−1
(2.6)

where

¯̄T i =

⎡
⎣ cos αi − sin αi

sin αi cos αi

⎤
⎦ (2.7)

and αi is the angle that the fibers in the i-th laminate make with the panel’s reference

direction [32]. Finally, the tensor sheet impedance of a CFC panel with N laminates

in the panel’s coordinate system can be written as [31]:

¯̄Zs =

[
N∑

i=1

¯̄ZP
si

−1

]−1

. (2.8)

The expression of ¯̄Zs is very similar to the overall impedance of multiple shunt loads

because it is assumed that the electric field is almost the same through the panel’s

thickness. In the skin-effect approximation, ¯̄Zs is used to calculate the surface currents

that penetrate CFC panels. The surface currents on a CFC panel are found such that

they reproduce the scattered fields of the original CFC panel. Using the skin-effect

approximation the fields everywhere in space are the summation of the incident and

scattered fields.

In the following section, the skin-effect model is used to calculate the reflection and

transmission coefficients of infinite CFC panels. Moreover, the magnetic SE inside a

hollow cubic shell with a CFC face is also obtained.
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Figure 2.2: The geometry of the ideal model of a CFC laminate. D, P, and L are,
respectively, the fiber diameter, periodicity of the fiber array, and laminate thickness.
εm = 2ε0 is the permittivity of the binding dielectric material. εf = 2ε0 and σf =
104 S/m are the permittivity and conductivity of the fibers, respectively.

2.6 Numerical Results

2.6.1 A Single CFC Laminate

Fig. 2.2 shows the geometry of a CFC panel with one laminate. With reference to

Fig. 2.2, the geometrical and electrical parameters of the laminate are D = 0.05 mm,

P = 0.1 mm, L = 0.75 mm, εm = εf = 2ε0, and σf = 104 S/m [1]. The laminate is

normally illuminated by a plane wave which may be polarized parallel or orthogonal

to the reinforcing fibers. Eqs. (2.1) and (2.2) are used to calculate the homogenized

constitutive parameters of the middle layer in the equivalent-layer model. As a result,

ε|| = 2ε0 and σ|| = 3927 S/m in the direction parallel to fibers. The constitutive

parameters in the direction orthogonal to the fibers are ε⊥ = 3.3ε0 and σ⊥ ≈ 0 S/m.

Fig. 2.3 shows a good agreement between the skin-effect model (FEKO-SK), FEM

solution of Holloway et al., and FEM solutions of HFSS for |Γ||| and |Γ⊥| [1, 33]. The

subscripts || and ⊥ indicate that the incident plane is polarized parallel or orthogonal

to the fibers. The FEM results correspond to the full wave simulations of the exact

geometry of the laminate. Holloway et al. did not report |T||| or |T⊥| in [1]. Therefore,

HFSS simulation results are provided. Fig. 2.3 confirms that the homogenization

method discussed in Section 2.2 along with the skin-effect approximation in FEKO

can be used to obtain the reflection and transmission coefficients of a CFC laminate.

Fig. 2.3 shows that when the incident electric field is polarized parallel to the fibers

then the laminate acts as a metallic slab because |Γ||| ≈ 0 dB and |T||| ≈ −31.5 dB.
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Figure 2.3: The reflection and transmission coefficients of the CFC laminate shown
in Fig. 2.2. A comparison is made between the skin-effect model and FEM solutions
reported by Holloway or obtained using HFSS. The subscripts || and ⊥ indicate that
the incident plane wave is polarized parallel or orthogonal to the fibers.

However, if the incident electric field is polarized orthogonal to the fibers then the

laminate acts as a thin dielectric slab because |T⊥| ≈ 0 dB. In the following section,

the skin-effect model is applied to a CFC panel with two laminates.

2.6.2 CFC Panel with Two Laminates

Fig. 2.4 shows the geometry of an infinite CFC panel comprised of two laminates.

The geometrical structure and electrical properties of each laminate are the same as

those given in Section 2.6.1. The reinforcing fibers in the two laminates are oriented

orthogonal to one another. The panel is illuminated by Ei
|| = ŷejk0z or Ei

⊥ = x̂ejk0z

where k0 is the wavenumber of the incident plane wave in free space. The subscripts

|| and ⊥ indicate that the incident plane wave is polarized parallel or orthogonal to
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Figure 2.4: The geometry of a CFC panel with two laminates. The reinforcing fibers
are oriented along the y- and x-axis. The geometrical and electrical parameters of
each laminate are given in Section 2.6.1.
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Figure 2.5: The reflection and transmission coefficients of a CFC panel with two
laminates for a normally incident plane wave. The panel is illuminated by a normally
incident plane wave polarized along the x- and y-axis.

the fibers oriented along the y-axis. Using the homogenization method discussed in

Section 2.2, the equivalent-layer model of each laminate is obtained and fed to the

skin-effect model in FEKO. Then, the reflection and transmission coefficients of the

panel are obtained using double periodic boundary conditions and simulation results

are shown in Fig. 2.5. The MoM solutions of the skin-effect model (FEKO-SK) are

compared with FEM solutions reported by Holloway et al. or obtained using HFSS

simulations [1]. The FEM solutions correspond to the full wave analysis of the unit cell

of the panel shown in Fig. 2.4. Holloway’s solutions were available only for |T⊥| [1].
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Hence, HFSS simulation results are also presented. Fig. 2.5 shows that having fibers

oriented in two orthogonal orientations eliminated the strong anisotropic behavior of

a single CFC laminate. The magnitude of the reflection coefficients |Γ||| or |Γ⊥| is

almost 0 dB indicating that the incident plane wave is reflected and not absorbed

by the panel. Moreover, for f ≤ 10 GHz the tangential electric field is almost the

same through the panel’s thickness and |T||| ≈ |T⊥| ≈ −31.5 dB. In Section 2.6.1,

|T||| ≈ −31.5 dB for a single laminate. It is evident that the laminate in which

fibers are oriented orthogonal to the polarization of the incident plane wave does

not contribute in the SE. It is worth noting that since |Γ||| and |Γ⊥| are almost 0

dB they are not sensitive to the approximations that are made in the skin effect

model. However, Fig. 2.5 reveals that the skin-effect model has limitations in SE

calculations because the FEKO-SK solution for |T||| and |T⊥| start to deviate from

the exact solutions for f > 10 GHz.

For a homogeneous conducting panel the SE is due to reflection and absorption

[4]. The FEKO skin-effect model is capable of modeling only the reflection portion of

the shielding mechanism because the skin-effect approximation neglects the variations

of the electric field as the wave travels through the lossy material. Absorption loss

is about 1 dB when the material is one skin-depth thick. This is also the point at

which the skin-effect approximation begins to deteriorate. Therefore, as the panel’s

physical thickness increases the highest frequency at which the skin-effect model can

be used in SE calculations decreases. FEKO does not yet have the capability of using

the ABCD parameters of each laminate of a CFC panel to eliminate such limitations

on the panel’s thickness. To further elaborate this point, a CFC panel with four

laminates is simulated in the next section.

2.6.3 CFC Panel with Four Laminates

Fig. 2.6 shows the geometry of a CFC panel composed of four laminates. The reinforc-

ing fibers are oriented as 0/90/0/90 degrees with respect to the y-axis. The laminates
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Figure 2.6: The geometry of a CFC panel comprised of four laminates. The laminates
have the same geometrical and electrical properties as the one discussed in Section
2.6.1.

have the same geometrical and electrical properties as the laminate discussed in Sec-

tion 2.6.1. Moreover, the panel is illuminated by a normally incident plane wave

which may be polarized along ŷ (||) or x̂ (⊥). The equivalent-layer model of the

panel is composed of nine homogeneous layers where five layers are isotropic and four

anisotropic. The isotropic layers are made of the binding dielectric material and the

anisotropic layers are specified in Section 2.6.1. Fig. 2.7 shows the simulation results

for the reflection and transmission coefficients of the panel. A comparison is made be-

tween the MoM solution to the panel’s skin-effect model (FEKO-SK), FEM solution

for the panel’s exact geometry, and the FEM solution for the panel’s equivalent-layer

model (FEM-ELM) without using the skin-effect approximation [1]. FEM solutions

reported by Holloway et al. are, also, presented.

Fig. 2.7 shows a good agreement between the FEKO skin-effect and exact models

for f ≤ 0.4 GHz. It is observed that for f ≤ 0.4 GHz, we have |T||| ≈ |T⊥| ≈ −37 dB or

SE=37 dB which shows 5.5 dB increase over the panel with two laminates as discussed

in the previous section. Fig. 2.7, also, shows that the skin-effect model should not

be used to calculate |T||| or |T⊥| for f > 1 GHz. However, since |Γ||| ≈ |Γ⊥| ≈
0 dB the magnitude of the reflection coefficient is not sensitive to the approximations

that are made in the skin-effect model. Thus, when the skin-effect approximation is

employed the dB-quantity of error in SE calculations can be much larger compared

to those in the reflection coefficient calculations. In fact, application of the FEKO

skin-effect model to SE problems is limited by the stack-to-sheet conversion and not
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Figure 2.7: The reflection and transmission coefficients of a CFC panel with four
laminates. The fibers in the panel are oriented as 0/90/0/90 degrees with respect to
the y-axis, as shown in Fig. 2.6. The panel is illuminated by a normally incident
plane wave which may be polarized along the y- (||) or x-axis (⊥).

the homogenization method discussed in Section 2.2. To prove this point, the FEM

solutions for the panel’s equivalent-layer model (FEM-ELM) are shown in Fig. 2.7.

The good agreement between the reflection and transmission coefficient of the exact

geometry and its equivalent-layer model proves that the stack-to-sheet conversion

limits application of the FEKO skin-effect model in SE calculations.

In the next section, the skin-effect model is applied to a finite structure.

2.6.4 Hollow Cubic Shell with a CFC Face

Fig. 2.8a shows a hollow cubic shell with a side length of W = 0.5 m. The front face

of the shell has a conductivity of σ = 4× 104 S/m and thickness of d = 2 mm. Other

faces of the shell are copper with a conductivity of σCu = 5.7×107 S/m and thickness
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Figure 2.8: The magnetic SE at the center of a hollow cubic shell with a side length of
0.5 m. All faces of the cube are copper with a thickness of 0.1 mm except for the front
face which is CFC with a thickness of 2 mm and conductivity of σ = 4 × 104 S/m.
A comparison is made between the skin-effect model, inside-outside formulation, and
results reported by Kimmel and Singer [2].

of 0.1 mm. The CFC face is illuminated by the plane wave Ei = 120πẑejk0x V/m

where k0 = 2π/λ0 and λ0 is the wavelength of the incident plane wave in free space.

The electric and magnetic symmetries of the problem with respect to the z = 0 and

y = 0 planes are applied in order to accelerate the simulations. In this section, the

magnetic SE at the center of the cube is obtained using two different formulations, the

skin-effect model and inside-outside formulation. The inside-outside formulation is

the standard approach in FEKO for SE calculations as will be described in Chapter 5.

In the skin-effect approximation the simulation results for the SE are sensitive to the

discretization errors in the surface currents because inside conducting enclosures the

fields produced by the surface currents should almost perfectly cancel the incident

fields. In this section, the mesh size is progressively reduced until the simulation

results approached a final solution. The inside-outside formulation did not show such

dependence on the mesh size. The simulations results for the magnetic SE at the

center of the cube i.e., SE = |H(0, 0, 0)|no cube/|H(0, 0, 0)|cube are shown in Fig. 2.8b.

The FEKO simulations are performed for a mesh size of W/10. The shell is meshed

into 946 triangle surface elements. Furthermore, the total number of unknowns are,
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respectively, 709 and 1418 in the skin-effect model and inside-outside formulation.

Fig. 2.8b shows very good agreement between the simulation results for the skin-

effect approximation and inside-outside formulation for f ≤ 1 MHz. Because σCu �
σCFC the leakage through the copper faces can be ignored compared to the leakage

through the CFC face. At f = 1 MHz, the thickness of the CFC face is d = 0.8δs

and that is where the results of the skin-effect approximation start to deviate from

the other solutions as the frequency increases. An excellent agreement is observed

between the inside-outside formulation and published results [2]. The thickness of

the front face is d = 8δs at f = 100 MHz. If the dB-quantity of the SE is small and

is basically determined by the presence of apertures, cracks, or seams on the CFC

structure and not the leakage through a CFC skin then the skin-effect model might

be an efficient tool.

2.7 Conclusions

Using homogenization techniques and the FEKO skin effect model (“SK-card”) the

reflection and transmission coefficients of CFC panels were obtained and validated.

In the skin-effect model, an equivalent tensor sheet impedance was found such that

the total electric VEP currents that penetrate a CFC panel are reproduced on an

impedance sheet. The skin-effect model used stack-to-sheet conversion approach to

shrink CFC panels to an impedance sheet with zero thickness. As a result, the

scattered fields produced by CFC panels composed of a single or multiple laminates

could be calculated with no more simulation resources than what would be required

if the panel was PEC. This is the greatest merit of the skin-effect model especially

useful for electrically large structures, such as CFC aircraft. The tensor complex

permittivity of each laminate was calculated with homogenization techniques and

then used in the skin-effect model. For CFC panels with one, two, and four laminates

the FEKO MoM simulation results were compared and validated with published FEM
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solutions or those of the HFSS. It was observed that the reflection coefficient of CFC

panels was not prone to errors associated with the skin-effect approximation because

often |Γ| ≈ 0 dB for CFC panels. The limitation of the skin-effect model in calculating

the SE of CFC panels with multiple laminates was shown to be caused by the stack-

to-sheet conversion and not homogenization techniques. Moreover, it was observed

that the fibers that were oriented orthogonal to the polarization of the incident plane

wave did not contribute in the shielding mechanism.

The plane wave magnetic SE at the center of a hollow cubic shell with a CFC

face was also calculated using the skin-effect model and the results were compared

with published literature and agreement was obtained for d ≤ 0.8δs. Although the

skin-effect model could be used in SE calculations a very fine mesh might have to

be used to eliminate discretization errors associated with the representation of the

surface currents in terms of the basis functions. This limitation can be overcome with

the inside-outside formulation. The skin-effect model is best used for calculating the

scattered fields of CFC structures. Moreover, if the SE is determined by apertures,

crack, and seams on a CFC structure and not leakage through a CFC material then

the skin-effect model might also be useful.



Chapter 3

Monopole Antennas on CFC

Structures

3.1 Introduction

A typical aircraft can use as many as 20 antennas for communication, navigation,

instrument landing systems, radar altimeter, and other purposes [34]. Therefore, in

this chapter, the reflection coefficient and radiation pattern of monopole antennas

mounted on metallic and CFC ground planes are experimentally examined [35].

The impact of replacing metals with CFC materials on the EMI inside CFC en-

closures is examined in this chapter. The electrical conductivity of a barrier plays a

key role in reducing the level of fields that leak into an enclosure and meeting EMC

requirements. The conductivity of CFC materials is 1000 times lower than that of

most metals [1]. Moreover, the permeability of CFC materials is basically that of the

free space. Therefore, the attenuation of EM waves propagating in CFC materials is

much lower compared to metals.

The term SE usually refers to the SE to electric fields [4]. The SE to magnetic

fields is more dependent on the barrier’s conductivity compared to the SE to electric

fields. Therefore in this chapter, the leakage of magnetic fields as well as electric fields

21
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Figure 3.1: Monopole antennas mounted on metallic (top view) and CFC (top and
bottom views) ground planes.

into enclosures are examined [4].

The skin depth is 1/
√

πfμ0σ and approximately 32 times larger in CFC materials

compared to metals. Therefore, the difference between metallic and CFC shields

manifest at frequencies for which the metallic barrier is much thicker than the skin

depth in the barrier while a CFC replacement with the same physical thickness is not.

The CFC materials that are considered in this chapter have a thickness in the order

of 1 mm. For frequencies in the VHF and HF frequency bands the material thickness

is in the order of the skin depth. That is why in this chapter, the CFC shells are

simulated in the VHF and HF frequency bands.

This chapter is organized as follows. Section 3.2 presents the measurement results

for the reflection coefficient and radiation pattern of monopole antennas mounted on

metallic and CFC ground planes. Moreover, different methods of attaching an SMA

connector feed to a CFC ground plane are tested. In Sections 3.3 and 3.4, monopole

antennas are mounted on hollow aluminum or CFC cubic shells and operated at

the frequencies of 100 MHz and 3 MHz, respectively. FEKO simulation results for

the leaked electric and magnetic fields inside the shells are presented and discussed.

Finally, conclusions are made in Section 3.5.

3.2 Monopole Antennas on CFC Ground Planes

Two monopole antennas using CFC and metallic ground planes were built as shown

in Fig. 3.1. The ground planes are square with a side length of 15.24 cm. The
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Figure 3.2: A comparison between the measured reflection coefficient of monopole
antennas with CFC and steel ground planes operated at the frequencies of 3 GHz, 6
GHz, 9 GHz, and 12.5 GHz.

material of the metallic ground plane is steel with a conductivity of 5.76 × 106 S/m

[4, 36]. The CFC panel is reinforced with two layers of carbon-fiber fabrics. The fiber

bundles in the panel are oriented as 0/90/0/90 degrees [37]. The thickness of the CFC

ground plane is 0.635 mm. The diameter of the monopole wire is 0.61 mm. During

the measurement of the reflection coefficient, the lengths of the monopole antennas

were adjusted for the best return loss at the frequencies of 3 GHz, 6 GHz, 9 GHz,

and 12.5 GHz. The experiments are performed in order to examine effects of the

metallic feed-CFC panel connection on the antenna performance. Figs. 3.2 and 3.3

compare the measured reflection coefficient and radiation pattern of the monopole

antennas with CFC and steel ground planes. If we assume that the monopole wire

is on the z-axis and the ground plane is on the x-y plane then the radiation pattern

measurements are conducted such that the radiated Eθ in the plane of φ = 90◦ is
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Figure 3.3: (a)-(d) are a comparison between the normalized measured radiation
pattern (|Gθ|) of monopole antennas with CFC and steel ground planes operated at
the frequencies of 3 GHz, 6 GHz, 9 GHz, and 12.5 GHz, respectively.

measured. The radiation pattern measurements were performed at the frequencies of

3 GHz, 6 GHz, 9 GHz, and 12.5 GHz and all patterns are normalized using the same

factor. It is observed that by replacing a metallic ground plane with a CFC panel the

return loss and radiation pattern of the antennas are practically unchanged even at

12.5 GHz.

The establishment of the electrical contact between the SMA connector and the

CFC panel is made by the two different methods which are shown in Figs. 3.4a and

3.4b. In the first method, the CFC sheet is sandpapered around the feed area so that

the carbon-fibers in the panel are exposed. Then, the area is cleaned and a conduc-

tive tape is attached to the feed area. Next, the SMA connector is soldered to the

conductive tape. In the second method, another copy of the same CFC panel is used.
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(a) (b)

Figure 3.4: Two methods of attaching an SMA connector to a CFC panel, (a) with
and (b) without a patch of conducting tape.

However, no conductive tapes are employed and the feed area is not sandpapered.

The SMA connector is simply attached to the CFC panel using two bolts and nuts

as shown in Fig. 3.4b. The monopole antennas were operated at 3 GHz, 6 GHz,

9 GHz, and 12.5 GHz. The measured reflection coefficient of the antennas did not

show dependence on the feed attachment method. In other words, both techniques

provided enough coupling between the panel and SMA connector. It is believed that

current flow from the SMA connector to the CFC panel can be established either

through the conduction currents between the conductive tape and the carbon-fibers

in the panel or through displacement currents through the capacitance that is formed

by mounting the SMA feed on the CFC panel.

3.3 Interference Due to VHF Antennas

Fig. 3.5 shows a monopole antenna mounted on a hollow cubic shell. The cubic

shell has a side length of W = 3 m and thickness of t = 1 mm representing part

of an aircraft fuselage. Two materials for the shell are considered aluminum σAl =

3.96×107 S/m [36] and CFC σ = 104 S/m. The monopole wire is PEC with a diameter

of D = 6 mm and length of l = 75 cm. The monopole antenna is fed at the intersection

of the monopole wire and top face of the shell using a “vertex port” in FEKO. In this

section, the monopole antenna is operated at the VHF frequency of f = 100 MHz and

delivered an active power of 1 W. At f = 100 MHz, the shell thickness equals to 2δs

and 125δs in CFC and aluminum, respectively. The MoM solver is used to calculate
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Figure 3.5: A monopole antenna mounted on a hollow cubic shell with a side length
of W = 3 m and thickness of t = 1 mm. The monopole wire is PEC with a length of
l = 75 cm and diameter of D = 6 mm. The material of the shell can be aluminum or
CFC.

surface currents inside and outside of the shell and line currents on the wire. The

magnetic symmetries with respect to the x-z, and y-z planes are imposed in order

to accelerate the simulations. The monopole wire is modeled using the thin wire

assumption because D = 0.002λ0 
 λ0. Since fields inside the hollow shell are much

weaker compared to fields outside the shell the surface currents inside and outside the

shell are designated as unknowns by filling the shell with a dielectric material with

a relative permittivity of unity [5]. The wire and the shell are meshed into 7 wire

segments and 4912 triangle surface elements using the fine mesh settings in FEKO.

The total number of unknowns is 3617. The electric and magnetic fields on the y-z

plane inside the hollow shell are obtained and shown in Fig. 3.6. Figs. 3.6a and 3.6b

reveal that there is practically no leakage of EM fields from outside into inside the

aluminum shell. At the frequency of 100 MHz the thickness of the aluminum slab is

t = 1 mm= 125δs where δs is the skin depth in aluminum. In fact, the magnitude of

the leaked electric and magnetic fields are in the order of 10−57 V/m and 10−60 A/m.

Furthermore, Figs. 3.6a and 3.6b could be made only on a linear scale because the

fields were so weak.
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(a) Aluminum (b) Aluminum

(c) CFC (d) CFC

Figure 3.6: (a)-(d) are the electric and magnetic fields on the y-z plane inside the
hollow cubic shell shown in Fig. 3.5. The average power delivered to the monopole
antenna is 1 W of at the frequency of 100 MHz.

When the shell is built using CFC materials then the leakage of EM fields into

the shell is shown in Figs. 3.6c and 3.6d. With reference to Figs. 3.6c and 3.6d, it

is observed that electric fields are strongest (-24 dB V/m) near to the antenna feed

point but decay rapidly to approximately -50 dB V/m and roughly stay the same on

the y-z plane. The leaked magnetic fields are strongest (-75 dB A/m) close to the feed

point but rapidly decay to approximately -110 dB A/m throughout the rest of the

y-z plane. It is also observed that the magnetic fields demonstrate a local minimum

on the z-axis. Therefore, field levels at one point should not be interpreted as the
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field level everywhere inside the shell.

3.4 Interference Due to HF Antennas

In this section, the monopole antenna shown in Fig. 3.5 is operated at the frequency

of 3 MHz. At f = 3 MHz, the shell thickness equals to 0.34δs and 22δs in CFC

and aluminum, respectively. 22δs is very thick, but 0.34δs of the CFC shell shows

potential for leakage. The geometry of the antenna is not modified and the mismatch

between the monopole antenna and a 50 Ω transmission line is not of concern because

FEKO is set up to automatically multiply all surface currents with an appropriate

factor such that an active power of 1 W is delivered to the antenna. As a result,

a comparison can be made between the leaked electric and magnetic fields into the

shell at HF and VHF frequencies. At f = 3 MHz, we have λ0 = 100 m. The side

length of the shell is W = 3 m= 0.03λ0 which is considered to be electrically small.

Therefore, the mesh size is chosen based on the variations of the surface currents

from one edge to other edges and not based on the wavelength. The simulations are

repeated with progressively smaller mesh sizes until variations of the simulated leaked

fields to the mesh size are negligible. A mesh size of W/18 = λ0/600 is found to be

small enough to represent surface currents on the shell because by choosing smaller

mesh sizes the magnitude of the leaked electric and magnetic fields close to the feed

point vary by a value smaller than 3 dB. The monopole wire and shell are meshed into

5 wire segments and 6232 triangle surface elements. The total number of unknowns

is 4597. Figs. 3.7a and 3.7b show the magnitude of the leaked electric and magnetic

fields on the y-z plane inside the aluminum shell. It is observed that the strongest

electric and magnetic fields inside the shell are in the order of -210 dB V/m and -225

dB A/m near to the feed point. Figs. 3.7c and 3.7d show the magnitude of the leaked

electric and magnetic fields on the y-z plane if aluminum is replaced with CFC in

constructing the shell. It is observed that the strongest leaked electric and magnetic
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(a) Aluminum (b) Aluminum

(c) CFC (d) CFC

Figure 3.7: The electric and magnetic fields on the y-z plane inside the hollow cubic
shell shown in Fig. 3.5. The average power delivered to the monopole is delivered 1
W of at the frequency of 3 MHz.

fields inside the CFC shell are in the order of 7.5 dB V/m and -7.5 dB A/m near to

the feed point. Furthermore, electric and magnetic fields decay rapidly away from the

feed point. Fig. 3.7 shows that by replacing metals with CFC materials variations of

the electric and magnetic fields are approximately preserved but the fields strength

are increased.
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3.5 Conclusions

This chapter showed that by replacing a metallic ground plane with a CFC one the

measured radiation pattern and feed point reflection coefficient of monopole anten-

nas remained practically unchanged for frequencies up to 12.5 GHz. Moreover, no

conductive tapes or sandpapering the feed area was found to be necessary to operate

the monopole antennas on CFC ground planes. Although the antenna performance

did not change by replacing a metallic ground plane with a CFC one the EMI inside

CFC enclosures was much larger compared to an equivalent metallic enclosure.

Monopole antennas were mounted on hollow aluminum and CFC cubic shells and

operated in the VHF and HF frequency bands. FEKO simulation results showed

that by changing the enclosure’s material from aluminum to CFC the field patterns

inside the shell did not change but the magnitude of the leaked electric and magnetic

fields were increased. In fact, the contrast between CFC and metallic shields of the

same physical thickness was a source of concern at frequencies for which the barriers

thickness is much larger compared to the skin depth in the metallic material but not

in the CFC. It was observed that the maximum leakage of EM fields inside the shell

occurred in the vicinity of the antenna feed point and could be 70 dB larger compared

to other locations away from the feed area. The leakage into the shell was increased

as the frequency decreased. Moreover, the quantity of the fields at one point should

not be interpreted as the quantity of the fields everywhere in the shell because of the

possibility of the occurrence of local nulls in the field’s pattern inside the shell. When

the side length of the cubic shell was much smaller than the free space wavelength

the mesh size was chosen based on the variations of the surface currents on the shell

and not merely based on the wavelength.



Chapter 4

Effects of Interlaminar Bondings

4.1 Introduction

The model of CFC materials which is used by Holloway et al. does not take into ac-

count the bonding between the reinforcing fibers in adjacent laminates [1]. However,

other authors have shown that bonding between orthogonally oriented wires changes

the reflection and transmission coefficients of wire meshes in free space. According to

Hill and Wait, unbonded wire meshes have “superior reflecting properties” compared

to the bonded wire meshes [17, 24, 25, 26]. Therefore, in this chapter the effects of

bonding between the reinforcing fibers on the transmission and reflection coefficient

of CFC materials are investigated. The CFC panel used in Chapter 3 was reinforced

with woven fabrics. In other words, the reinforcing carbon-fibers were packed in

ribbon-shaped bundles and then woven before the final CFC panel is produced. In

this thesis, such a woven bundle of carbon-fibers is called a carbon-fiber fabric. The

effects of bonding between orthogonally oriented carbon-fiber bundles on the reflec-

tion and transmission coefficient of CFC panels are also investigated. The electrical

contact at the junction of bonded reinforcements is assumed to be ideal i.e., zero con-

tact resistance. In this chapter, effects of embedding wire meshes with bonded and

unbonded junctions in a dielectric slab on the reflection and transmission coefficients

31
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Figure 4.1: The geometry of the unit cells of bonded and unbonded PEC wire meshes
in free space. D, P , and S are, respectively, the wire diameter, periodicity of the
mesh, and vertical spacing between wire arrays.

are also examined.

This chapter starts with reproducing published results for the transmission co-

efficients of bonded and unbonded wire meshes [25]. Next in Section 4.3, effects of

embedding wire meshes in a dielectric slab on the reflection and transmission co-

efficients are examined. In Section 4.4, the geometrical structure of CFC panels

reinforced with carbon-fiber fabrics is reviewed and simplified. Then in Section 4.5, a

CFC panel which is reinforced with a 1D-array of fiber bundles is simulated. Next in

Section 4.6, the reflection and transmission coefficients of CFC panels reinforced by a

2D array of bonded fiber bundles are compared with those corresponding to the un-

bonded configuration. In this chapter, the reflection and transmission coefficients are

obtained for two orthogonal polarizations. Finally, conclusions are made in Section

4.7.

4.2 Wire Meshes in Free Space

In this section, the periodic MoM solver in FEKO is used to obtain the co- and cross-

polarization reflection and transmission coefficients of bonded and unbonded infinite

PEC wire meshes in free space. The unit cells of the wire meshes are shown in Fig.

4.1. With reference to Fig. 4.1, D, P , and S are, respectively, the wire diameter,

periodicity of the wire mesh, and spacing between the wire arrays along the z-axis.
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Figure 4.2: A comparison between FEKO simulation and results of Hill and Wait [3]
for the co-polarization and cross-polarization transmission coefficients of bonded and
unbonded PEC thin wire meshes in free space versus the azimuth angle φ.

The wire meshes have square unit cells because the periodicity is the same along

the x- and y-axis. The wire meshes are illuminated by an incident plane wave at an

oblique incident angle of θ = 70◦. The elevation angle θ is measured with respect

to the z-axis and θ = 0 denotes normal incidence. This incidence angle was chosen

by Hill and Wait and the behavior of the wire meshes at other incidence angles of

θ are not examined here [3]. The incident plane wave may be polarized along φ̂

or θ̂ in the spherical coordinate system. The θ̂-polarization (φ̂-polarization) is such

that the incident plane wave is parallel (perpendicular) to the plane of incidence. The

frequency of the incident plane wave is such that P = λ0/4 where λ0 is the wavelength

of the incident plane wave in free space. By optionally choosing f = 1 GHz as the

simulation frequency, the parameters in Fig. 4.1 become D = 3 mm, P = 75 mm,

and S = 4.5 mm. The wires are analyzed using the thin wire assumption because
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Figure 4.3: The co- and cross-polarization reflection and transmission coefficients of
bonded and unbonded wire meshes in free space (Fig. 4.1) versus the azimuth angle
φ for an oblique incident plane wave with θ = 70◦ at a frequency where P = λ0/100.

D 
 λ0. The geometries shown in Fig. 4.1 are simulated and results are presented

in Fig. 4.2. With reference to Fig. 4.2, |Γφθ| denotes the magnitude of the reflection

coefficient for the φ̂ polarized reflected plane wave due to a θ̂-polarized incident plane

wave.

Hill and Wait employed a MoM solution using the Fourier expansion of the induced

currents on the wires to calculate the reflection and transmission coefficients of the

wire meshes. In the case of the bonded wire mesh, a discontinuity in the wire currents

at the junction was also applied [17, 24, 25, 26]. Fig. 4.2 shows a good agreement

between the results reported by Hill and Wait [25] and those produced by FEKO. The

following conclusions are made from Fig. 4.2: 1) Bonded wire meshes may be assumed

isotropic even when P = λ0/4 because the transmission and reflection transmission

coefficients are, almost, independent of the azimuth angle φ and the cross-polarization
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components are negligible compared to the co-polarization components [25]. 2) The

co-polarization transmission coefficient of an unbonded wire mesh is generally smaller

than that of the bonded [17].

The reflection and transmission coefficients of bonded and unbonded wire meshes

shown in Fig. 4.1 are simulated again when the frequency of the incident plane wave

is reduced to f = 40 MHz (P = λ0/100) while the wire mesh is not changed. The

results are shown in Fig. 4.3. It is observed that the co- and cross-polarization trans-

mission and reflection coefficients of the unbonded wire mesh for θ̂- or φ̂-polarized

incident plane waves still show azimuth dependence despite P 
 λ0. Moreover, for the

unbonded mesh, the cross-polarization components in the transmitted and reflected

waves are not negligible compared to the respective co-polarization components.

In summary, unbonded wire meshes in free space generally have a lower trans-

mission coefficient compared to the bonded. However, unbonded wire meshes have

an azimuth-dependent transmission coefficient and produce cross-polarization com-

ponents.

4.3 Wire Meshes Embedded in Epoxy

The wire meshes that were discussed in the previous section are embedded in an

infinite dielectric slab as shown in Fig. 4.4. The slab has a thickness of L = 4D =

12 mm where D is the wire diameter. The material of the dielectric slab is “epoxy

resin” or simply epoxy which is widely used in manufacturing CFC materials for the

aerospace industry [7]. The permittivity of epoxy resin is εm = 3.6ε0 [4]. The purpose

of this section is to examine effects of embedding bonded and unbonded wire meshes

in an epoxy slab. With reference to Fig. 4.4, the co- and cross-polarization reflection

and transmission coefficients of the embedded wire meshes are obtained for an oblique

incident plane wave. The incident plane wave propagates inward and makes an angle

of θ = 70◦ with the z-axis. The incident plane wave can be polarized along θ̂ or φ̂ in
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Figure 4.4: The geometry of the bonded and unbonded wire meshes embedded in
an infinite dielectric epoxy slab. The thickness of the dielectric slab is L = 4D. D,
P , and S are, respectively, the wire diameter, periodicity of the mesh, and vertical
spacing between wire arrays. The wires are assumed to be PEC and the permittivity
of the dielectric slab is epoxy with εm = 3.6ε0 [4].

the spherical coordinate system. If the incident plane wave is polarized along φ̂ then

the incident electric field is parallel to the slab. The simulations are performed at

f = 40 MHz and f = 1 GHz which correspond to P = 0.01λ0 and P = 0.25λ0 and λ0

is the wavelength of the incident plane wave in vacuum. Therefore, the reflection and

transmission properties may be identified in a wide frequency range. The embedded

wire meshes shown in Fig. 4.4 are simulated using FEKO and the results are given

in Fig. 4.5. With reference to Figs. 4.5(a)-4.5(d), the following conclusions at P =

0.01λ0 are made: 1) The co-polarization reflection and transmission coefficients have

variations of less than 1 dB when the azimuth angle of the incident plane wave varies

from 0◦ to 90◦. Moreover, the cross polarization components in the transmitted waves

are more than 10 dB lower compared to the co-polarization components. Therefore,

the embedded bonded and unbonded wire meshes may be considered isotropic. 2)

For the embedded bonded and unbonded wire meshes, the transmission coefficient is

approximately 17 dB larger for a θ̂-polarized incident plane wave compared to a φ̂-

polarized one. 3) Embedding wire meshes in epoxy reduces effects of bonding between

orthogonally oriented wires because the co-polarization transmission coefficients of

the embedded unbonded wire mesh is less than 1 dB smaller than that of the bonded
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Figure 4.5: (a)-(h) are the co- and cross-polarization reflection and transmission
coefficients of bonded and unbonded wire meshes embedded in an infinite epoxy slab
versus the azimuth angle φ at an oblique incidence angle of θ = 70◦. Two frequencies
are chosen such that P = 0.01λ0 and P = 0.25λ0.
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Figure 4.6: The surface of a CFC panel reinforced with two sets of carbon-fiber fabrics
oriented as (0/90)/(0/90) degrees. The fabrics have a plain weave structure.

configuration.

Next, the frequency of the incident plane wave is increased to f = 1 GHz where

P = 0.25λ0; the simulation results are shown in Figs. 4.5(e)-4.5(h). The level of

cross-polarization components and azimuth-angle dependence of the reflection and

transmission coefficients are slightly increased. Moreover, it is observed that em-

bedding bonded and unbonded wire meshes in an epoxy slab reduces the difference

between the two structures. The transmission coefficient of the embedded unbonded

structure is approximately 1 dB lower than that of the bonded.

In summary, embedding wire meshes in an epoxy slab made the bonding between

the orthogonally oriented wires less important.

4.4 Woven Reinforcements

The surface of a CFC panel with woven reinforcements is shown in Fig. 4.6 [37].

This is the same panel that was used in Chapter 3 as antenna ground plane. The

panel is composed of two layers of carbon-fiber fabrics embedded in an epoxy host
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Figure 4.7: (a)-(c) are, respectively, the unit cells of a 1D, 2D-bonded, and 2D-
unbonded arrays of carbon-fiber fabrics embedded in a dielectric slab. Moreover,
P = 2.2 mm, W = 2 mm, t = 0.159 mm, and g = 0.0159 mm. The dielectric slab
has a permittivity of εm = 3.6ε0 and the carbon-fiber bundles have a conductivity of
σ = 104 S/m.

medium [37]. The panel has a thickness of L = 0.635 mm. The exact geometry of

a woven structure is available in [38]. For simplicity, the entanglement associated

with the weaves is ignored and the cross section of the bundles is approximated to be

rectangular with a width of W = 2 mm and thickness of t = L/4 = 0.159 mm. The

permittivity and conductivity of the fiber bundles are assumed to be ε0 and 104 S/m,

respectively. The epoxy slab is lossless with a permittivity of εm = 3.6ε0 [4]. Although

the panel shown in Fig. 4.6 is reinforced with two layers of carbon-fiber fabrics the

panels simulated in this chapter are reinforced with reinforcements shown in Fig. 4.7.

Moreover, it is assumed that the CFC panel is infinite so that plane wave reflection

and transmission coefficients may be defined. Based on the geometry shown in Fig.

4.6, the periodicity of the panel is assumed to be P = 2.2 mm along the x- and y-axis.

Based on the physical structure of the panel, the three geometries shown in Fig. 4.7

are conceived. The panel with a 1D array of reinforcements serves as a reference panel.
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Figure 4.8: The reflection and transmission coefficients of a 1D-array of carbon-fiber
fabrics embedded in a dielectric slab (Fig. 4.7a) for a normally incident plane wave.
The incident plane wave may be polarized parallel (||) or perpendicular (⊥) to the
orientation of the fiber bundles.

With reference to Fig. 4.7, the gap between the orthogonally oriented fiber bundles

in the unbonded structure is denoted as g where g = 0 reduces the 2D-unbonded to

the 2D-bonded configuration. In the following sections, the structures shown in Fig.

4.7 are simulated and the results are discussed.

4.5 1D-Array Reinforcement

Fig. 4.7a shows the unit cell of an infinite 1D-array of carbon-fiber bundles that

are oriented along the x-axis with a periodicity of P = 2.2 mm along the y-axis.

The thickness of the binding dielectric epoxy is assumed to be L = 0.635 mm. It is

assumed that the bundles have a rectangular cross section with a width of W = 2 mm

and thickness of t = 0.159 mm. The incident plane wave may be polarized parallel

or orthogonal to the fabrics’ orientation. Figs. 4.8a and 4.8b show the simulation

results for the reflection and transmission coefficients of the embedded 1D-array for a

normally incident plane wave. A good agreement between results produced by FEKO,

HFSS, and CST Microwave Studio is observed [39].

Agreement between FEKO and other solvers could not be obtained for f <

0.5 GHz and f > 5 GHz. However, for f < 0.5 GHz a solution may be obtained
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by using a larger unit cell. In the non-periodic solver metallic media in FEKO could

be used for t ≤ δs or t ≥ δs where t is the material thickness and δs is the skin-

depth. However, in the periodic solver the carbon-fiber bundles had to be modeled

as lossy dielectric materials because t ≥ δs. But using a lossy dielectric instead of

metallic medium introduces a new problem of λ 
 λ0 while meshing and simulating

the geometry for f > 5 GHz.

Figs. 4.8a and 4.8b show that at frequencies below 1 GHz, if the incident plane

wave is polarized orthogonal to the bundles then the embedded 1D-array acts as a

lossless dielectric slab. However, if the incident plane wave is polarized parallel to

the bundles then the embedded 1D-array behaves as a lossy conducting slab. Fur-

thermore, the transmission coefficient of the embedded 1D-array for a normally inci-

dent plane wave polarized parallel to the fibers orientation is |T||| = −49 dB. Since

|Γ||| ≈ 0 dB for f ≤ 1 GHz the incident plane wave is reflected and not absorbed by

the panel.

4.6 2D-Bonded and Unbonded Reinforcements

Figs. 4.7b and 4.7c show the geometries of the 2D-bonded and 2D-unbonded arrays

of fiber bundles that are embedded in an epoxy slab. The gap between the orthog-

onally oriented fiber bundles is denoted as g. In order to examine bonding effects

the gap should be chosen small compared to the bundles thickness t; Therefore, g is

chosen as t/10. Fig. 4.9 shows the reflection and transmission coefficients of the CFC

panels with 2D-bonded and 2D-unbonded reinforcements for two normally incident

plane waves polarized along x̂ or ŷ. The simulations are performed using FEKO,

HFSS, and CST Microwave Studio and a good agreement between the solutions are

obtained. Figs. 4.9a-4.9d show that at normal incidence, the transmission and re-

flection coefficient of the 2D-bonded structure is not dependent on the polarization

of the incident plane wave for f ≤ 1 GHz. Moreover, the transmission coefficient of
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Figure 4.9: The reflection and transmission coefficients of the 2D-bonded and 2D-
unbonded carbon-fiber bundles embedded in a dielectric slab, as shown in Figs. 4.7b
and 4.7c. The incident plane wave propagates normal to the panels and can be
polarized along the x-axis (||) or y-axis (⊥). ||-|| (⊥-⊥) represents the co-polarization
component of the reflection or transmission coefficient when the incident plane wave
is polarized along the x-axis (y-axis).

the 2D-unbonded configuration is -49 dB for f ≤ 1 GHz which equals to that of the

1D-array discussed in the previous section. Fig. 4.9c shows that the transmission

coefficient of the bonded structure is -54 dB for f ≤ 1 GHz.

In summary, bonding orthogonally oriented carbon-fiber bundles causes the fiber

bundles that are oriented orthogonal to the polarization of the incident plane wave

to attenuate the incident plane wave also. This is an important conclusion which

may be used in increasing the SE of CFC materials. At f = 1 GHz, the bundles

thickness equals to the skin depth in the carbon-fibers. For f ≤ 1 GHz, the bundles

are completely penetrated by the incident plane wave and the SE is provided by
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reflection. For f > 1 GHz, absorption of the incident plane wave in the carbon-fibers

also contributes in SE. That is why the transmission coefficients start to decrease for

f > 1 GHz.

4.7 Conclusions

In this chapter, effects of the bonding between orthogonally oriented wires or fiber

bundles were investigated. It was assumed that structures under consideration are

infinite panels so that the double periodic boundary conditions could be employed

in the simulations. The wires were assumed to be PEC and were modeled using the

thin wire approximation. For wire meshes in free space, FEKO simulation results for

the co- and cross-polarization transmission coefficients were validated with published

results. It was observed that unbonded wire meshes in free space were preferable

over the bonded wire meshes from a SE point of view. However, embedding the

wire meshes in an epoxy slab reduced the effects of bonding on the transmission and

reflection coefficients. In other words, although unbonded wire meshes in free space

are preferable over bonded wire meshes from a SE point of view, that advantage is

weakened by embedding unbonded wire meshes in a dielectric material. The reflection

and transmission coefficients of CFC panels with reinforcements in the form of fiber

bundles were obtained. It was assumed that the reinforcing fiber bundles had a

rectangular cross section with a width of 2 mm and thickness of 0.159 mm. The

fiber bundles were modeled using lossy dielectric materials with a conductivity of

104 S/m. Simulation results showed that bonded fiber bundles were preferable over

the unbonded from a SE point of view. In fact, the bondings caused the bundles

that are oriented orthogonal to the polarization of the incident plane to contribute in

the shielding process. This is a useful point which may be employed to enhance the

shielding capabilities of CFC panels.



Chapter 5

Shielding Effectiveness of CFC

Enclosures

5.1 Introduction

CFC materials can be modeled as isotropic lossy conducting media with a conductivity

in the order of σ = 104 S/m [15]. In this chapter, the capabilities and limitations of

FEKO in modeling conducting materials are investigated. The focus is on the Surface

Integral Equations (SIE) solutions to SE problems involving CFC materials. By

default, FEKO treats conducting materials as impedance sheets rather than generally

penetrable objects because fields decay very rapidly inside conducting materials [32].

FEKO User’s manual recommends Modeling conducting materials using “Metallic

Media” [32]. “Metallic Media” that are bound by free space regions are modeled

as impedance sheets [32]. The sheet impedance Zs is the proportionality constant

between the tangential electric field and the electric surface currents on the sheet

[32]. The value of the sheet impedance is automatically calculated by FEKO. If

the sheet impedance has been obtained through measurement techniques or other

analytical solutions then the user can also use custom values for the sheet impedance.

In order to validate FEKO’s ability in calculating large SE quantities inside CFC

44
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(a) (b)

Figure 5.1: (a) and (b) are the FEKO Simulation results for the total electric field
inside a hollow spherical PEC shell with a radius of 3 m for an incident plane wave
given by E = ẑe−jk0y at the frequency of 100 MHz. In case (a) fields inside the shell
are obtained using the free space MoM whereas in case (b) fields are obtained by
using the inside-outside formulation [5].

enclosures certain benchmark solutions are generated in this chapter.

This chapter is outlined as follows. In Section 5.2, the inside-outside formulation is

elaborated and its difference with the free space MoM is explained. An infinite CFC

panel modeled as a lossy dielectric material is simulated in FEKO and the results

are compared with the analytic solution in Section 5.3. In Section 5.4, benchmark

numerical results for the electric and magnetic SE inside a hollow spherical CFC shell

are presented and compared with FEKO simulation results. Finally, conclusions are

made in Section 5.5.

5.2 The Inside-Outside SIE Formulation

If a closed PEC surface is bound by free space regions then FEKO uses the free

space MoM to find the electric surface currents on the PEC surface such that the

scattered and incident electric fields cancel each other everywhere inside the PEC

shell. This requires perfect cancellation of the tangential components of the incident

and scattered electric fields everywhere on the PEC surface. In fact, a very small



CHAPTER 5. SHIELDING EFFECTIVENESS OF CFC ENCLOSURES 46

error in the cancellation of the tangential electric fields causes large SE errors on the

dB-scale [5].

Fig. 5.1a shows the cross sectional view of a hollow spherical PEC shell with a

radius of 3 m which is illuminated by a plane wave with a frequency of 100 MHz. The

shell is bound by free space regions in the FEKO model and the free space MoM is

used to solve the problem by default. Using the standard mesh settings, the electric

fields inside the shell on the x-y plane are obtained and results are shown in Fig. 5.1a.

The magnitude of the electric fields inside the shell should be 0 V/m or −∞ dB V/m.

Effects of the imperfect cancellation of the incident and scattered fields are evident

in Fig. 5.1a. It is observed that the electric fields produced by the surface currents

on shell are capable of canceling the incident electric field down to a range of -22.5

dB V/m to -90 dB V/m. Fig. 5.1a also shows that the error tends to be larger in the

vicinity of the walls of the shell.

If the SIE is formulated such that total fields inside the shell are given by one

set of electric surface currents and the scattered fields outside the shell are obtained

by another set of surface currents then the inside-outside formulation is obtained [5].

Obviously, the inside-outside formulation is based on the surface equivalence principle

(SEP) [40]. Using the inside-outside formulation, perfect cancellation of the incident

and scattered fields inside the PEC shell is no longer required and large SE quantities

can be obtained. In order to replace the free space MoM with the inside-outside

formulation the only requirement is to change the material inside the hollow PEC

shell from free space to a dielectric material with a relative permittivity of unity

[5]. Having done that, the electric fields inside the shell are shown in Fig. 5.1b. It is

observed that the magnitude of the electric fields inside shell is now as low as -1000 dB

V/m. In fact, 0.0 on a linear scale is shown as -1000 dB on a dB-scale in FEKO. The

magnitude of the magnetic fields inside the shell is not shown for the sake of brevity

but they are also -1000 dB A/m on the x-y plane inside the shell. Application of

the inside-outside SIE formulation requires twice as many unknowns as the free space
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Figure 5.2: (a) The geometry of the unit cell of an infinite CFC panel modeled as a
dielectric material with σ = 104 S/m. The panel thickness is 0.159 mm. The triangle
edge length (TEL) denotes the mesh size in FEKO. TEL is expressed in terms of the
wavelength in the CFC panel. (b) The transmission coefficient of the panel shown in
Fig. 5.2a for a normally incident plane wave. The incident plane wave is polarized
along the x-axis and its frequency varies from 1 GHz to 20 GHz.

MoM. In return, it makes it possible to calculate very large SE quantities. In Section

5.4, capabilities of the inside-outside formulation will be further explored. The SE of

the simplest closed CFC structure which is an infinite CFC slab is calculated in the

next section.

5.3 SE of an Infinite CFC Panel

In order to obtain the SE of an infinite CFC panel whose thickness is larger than

the skin-depth in the material a solution could only be obtained if the panel were

modeled as a lossy dielectric material with σ = 104 S/m. The geometry of the

problem is shown in Fig. 5.2. The panel has a thickness of t = 0.159 mm and the

double periodic boundary conditions are used in the simulations.

The transmission coefficient of the panel for a normally incident plane wave is

calculated in the frequency range of 1 GHz to 20 GHz. The skin depth in the panel is

δs = 0.159 mm and δs = 0.036 mm at f = 1 GHz and f = 20 GHz, respectively. The

width of the unit cell in Fig. 5.2 is chosen as W = 5λ where λ is the wavelength in
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the panel at the frequency of the incident plane wave. Inside the CFC panel and at

f = 1 GHz, λ = 1 mm but λ0 = 300 mm; consequently, we have W = 5λ = λ0/6 = 5

mm. Although in the FEKO examples guide a unit cell size of λ0/2 was employed a

choice of W = λ0/6 had to be made because the periodic solver crashed for W > λ0/6

[41].

The simulation results for the transmission coefficient of the panel are compared

with the analytic solution in Fig. 5.2b. The simulations are performed with two

different mesh sizes i.e., triangle edge length (TEL)=2.5λ and TEL=λ. Fig. 5.2b

shows that satisfactory results are obtained only for TEL=λ. It should be noted

that at normal incidence the surface currents are constant with no variations on the

surface. In other words, Fig. 5.2b shows that in SE calculations the mesh size on the

surface of a dielectric material should be chosen smaller than or equal to the material

wavelength.

The SIE formulation associated with Poggio, Miller, Chang, Harrington, Wu and

Tsai (PMCHWT) is used by FEKO to model dielectric materials. In other words,

FEKO uses the PMCHWT formulation to calculate the surface currents on the top

and bottom faces of the unit cell. In the PMCHWT formulation, the SEP is em-

ployed to postulate the existence of equivalent electric and magnetic surface currents

on the boundary of the scatterer such that Js and Ms produce the scattered fields

outside the scatterer but the total fields inside the obstacle. Js and Ms are found

by imposing boundary conditions associated with the continuity of the tangential

electric and magnetic fields on the boundary of the scatterer. The elements of the

MoM matrix in the PMCHWT formulation are dependent on the wavelength in the

conducting material as well as the free space wavelength [42, 43]. For materials with

a conductivity in the order of 104 S/m, this leads to an excessive simulation time and

loss of accuracy in SE problems. Therefore, instead of using the exact formulation

alternative SIE formulations along with approximate boundary conditions are widely

used when modeling conducting media.
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Therefore, modeling CFC panels as lossy dielectric materials in SE calculations

requires extensive simulation resources and is not efficient. In order to eliminate the

dependence of the mesh size to the material wavelength the inside-outside formulation

is employed in FEKO [5].

5.4 SE Inside a Hollow CFC Shell

In this section, it is assumed that a hollow spherical CFC shell in free space is illu-

minated by a plane wave of Ei = x̂e−jk0z where k0 = 2πf
√

μ0ε0 and f varies in the

range of 1 MHz to 100 MHz. The shell has a radius of 3 m, thickness of 1 mm, and

conductivity of σ = 104 S/m. The shell’s center is coincident with the origin of the

coordinate system. In this section, we are interested in calculating the electric and

magnetic fields inside the shell.

The problem of scattering by concentric spheres is considered in [44]. Calculating

the analytic solution for the SE inside a hollow spherical shell is straightforward [45].

However, if the shell is a made of a conducting material with σ = 104 S/m then

the analytic solutions could not be numerically evaluated because of an overflow in

the involving Schelkunoff Bessel functions. A method is developed to eliminate this

problem and is presented in Appendix A.

The procedure for defining the problem in FEKO is as follows. At first, a metallic

medium named “cfc” with a conductivity of 104 S/m is defined. Next, a dielectric

medium named “air” with a relative permittivity of unity is created. Then, a solid

sphere with a radius of 3 m is constructed in FEKO and the material of the sphere

is changed from the default PEC to “air”. Finally, the surface (“face”) of the sphere

is set to be “cfc” with a thickness of 1 mm. Fig. 5.3 shows the FEKO simulation

results and the analytic solutions for the electric fields |E(x = 0, y = 0, z = 0)| and

normalized magnetic fields |η0H(x = 0, y = 0, z = 0)| at the shell’s center; η0 is the

characteristic impedance of the free space. The SE to electric or magnetic fields at
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Figure 5.3: The analytic and simulation results for the electric and normalized mag-
netic fields at the center of a hollow spherical CFC shell with a radius of 3 m, thickness
of 1 mm, and conductivity of σ = 104 S/m. The incident plane wave is Ei = x̂e−jk0z.

shell’s center would be the negative of the values that are read from Fig. 5.3. A good

agreement between the FEKO and analytic solution is observed in the frequency span

of 1 MHz to 100 MHz. For a hollow spherical shell with a radius of 3 m, the TM r
m,1,1

and TEr
m,1,1 modes have the resonance frequencies of f = 43.672 MHz and f = 71.508

MHz, respectively [45]. Fig. 5.3 shows that at the dominant resonance frequency of

the cavity, the leakage of the electric fields into the cavity is increased by almost 60

dB.

At frequencies below the dominant mode of the cavity (TM r
m,1,1), the electric

and magnetic fields at the shell’s center behave differently. In fact, as the frequency

decreases, the magnitude of the leaked electric fields reduce by 20 dB/decade while

the magnitude of the leaked magnetic fields increase by 20 dB/decade. Therefore, the

leaked magnetic fields as well as electric fields inside the shell must be examined to

ensure EMC requirements are met. In Appendix A, it is shown that at the center of

the shell, the analytic solution for the magnitude of the electric and magnetic fields

reduces from a summation of infinite terms to only one term.

The sharp increase in leakage of the fields at the cavity’s resonance frequencies are

further examined by calculating the electric and magnetic fields inside the shell on the

z-axis and at the frequencies of f = 43.672 MHz and f = 71.508 MHz corresponding
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Figure 5.4: The analytic and simulation results for the electric and magnetic fields
on the z-axis inside a hollow spherical CFC shell with a radius of 3 m, thickness of
1 mm, and conductivity of σ = 104 S/m. The incident plane wave is Ei = x̂e−jk0z

where k0 is wavenumber of the incident plane wave at the frequencies of 43.672 MHz
and 71.508 MHz.

to the TM r
m,1,1 and TEr

m,1,1 resonances of the spherical cavity. Fig. 5.4 shows a very

good agreement between the FEKO simulation results and analytic solutions for the

electric and magnetic fields on the z-axis. In order to obtain the agreement, the mesh

size is chosen as TEL=λ0/20 where λ0 is the wavelength of the incident plane wave in

free space. The SE of an infinite CFC panel with a thickness of 1 mm to a normally

incident plane wave at f = 43.672 MHz is 66 dB. However, the electric SE of the

same CFC material when used as a hollow spherical shell can be as low as 15 dB at

cavity resonances. Fig. 5.4 shows that the magnetic SE inside the shell can be as low

as 10 dB at cavity resonances.
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5.5 Conclusions

This chapter was focused on the calculation of the electric and magnetic SE inside

CFC enclosures. It was observed that an approximate solution based on using metallic

media in FEKO should replace the exact PMCHWT formulation when modeling

penetrable materials with σ = 104 S/m. This was proved by showing that the if a

CFC panel is modeled as a lossy dielectric material then the mesh size has to be chosen

as small as the wavelength in the CFC material. Using the problem of scattering by a

hollow spherical PEC shell, the free space MoM and inside-outside formulations were

compared. In the free space MoM formulation the sum of the surface currents on the

inner and outer sides of the PEC shell was calculated and the fields everywhere in

space were the summation of the incident and scattered fields. Using this formulation

the maximum SE that could be calculated near to the walls of a shell was limited to

22.5 dB. This is because the cancellation of the incident and scattered fields could

not be perfect because of discretization of the surface currents and finite precision

arithmetic operations. It was shown that the inside-outside formulation is capable of

calculating SE quantities as large as 1000 dB at the expense of doubling the number

of unknowns. In the inside-outside formulation, the electric surface currents inside

and outside the shell were individually calculated. In order to replace the free space

MoM with the inside-outside formulation in FEKO the CFC panel should be backed

by a dielectric material with a permittivity of ε0.

For the SE inside a hollow spherical CFC shell, FEKO simulation results were

compared with the analytic solution and a good agreement was obtained. To calculate

SE quantities inside the shell the mesh size was chosen as λ0/20 which is smaller than

the default value of λ0/12. It was observed that the SE was significantly compromised

at the cavity’s resonance frequencies. At frequencies much smaller than the dominant

resonance of the cavity, as the frequency was decreasing, the electric SE increased by

20 dB/decade while the magnetic SE decreased by 20 dB/decade. While evaluating

the benchmark analytic solutions for the SE inside a hollow spherical CFC shell
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certain numerical difficulties were encountered and resolved.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

A literature survey in Chapter 1 showed that CFC materials could be modeled as

conducting materials with a conductivity in the order of 104 S/m. Furthermore,

the radiation pattern and gain of antennas that were mounted on metallic ground

planes were practically unchanged by replacing the ground plane with a CFC one.

Therefore, the focus of the thesis was on the calculation of the SE of CFC structures

using FEKO.

In Chapter 2, the reflection and transmission coefficients of the idealized model

of CFC panels with one, two, and four laminates were obtained with the FEKO

skin-effect approximation and the results were validated with published literature

and other commercially available software. Using homogenization techniques the in-

homogeneous structure of the idealized model of CFC panels were simplified to an

equivalent multilayer structure. All layers of the equivalent multilayer model were

homogeneous but certain layers were anisotropic. The tensor conductivity and per-

mittivity of each layer of the equivalent multilayer model were specified in FEKO. A

stack-to-sheet conversion approach was used to shrink the equivalent multilayer model

to an impedance sheet with zero thickness. Using the skin-effect approximation the
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total VEP currents that penetrated a CFC panel were reproduced on an impedance

sheet. Furthermore, the VEP currents normal to a CFC panel were ignored. The ten-

sor sheet impedance of a CFC panel was found such that the tangential electric field

in the panel equaled to that on the impedance sheet. Therefore, the CFC panel had

to be thin with respect to the material wavelength so that the electric field was almost

constant in the panel. It was observed that approximations made in the skin-effect

model could be ignored in simulation results for the reflection coefficient. However,

simulation results for the transmission coefficient were in agreement with exact solu-

tions only if the panel was thin with respect to the material wavelength. It was shown

that the stack-to-sheet conversion and not the homogenization techniques limited the

largest frequency at which the FEKO skin-effect approximation could be used in SE

calculations. Furthermore, to use the skin-effect approximation the panel’s physical

thickness had to be thin compared to the panel’s lateral dimensions. The magnetic

SE at the center of a hollow cubic shell with a CFC face was calculated using the skin-

effect and inside-outside approaches and the results were compared with published

literature. Although results of the skin-effect model were in agreement with other

solutions when the panel’s thickness was smaller than or equal to the skin-depth,

application of the skin-effect approximation in SE calculations required a very fine

mesh. That said, for a fixed mesh size, the skin-effect model created as many un-

knowns as if the CFC panel composed of multiple laminates was simply a PEC sheet.

This was the greatest merit of the skin-effect approximation which made it useful for

calculating the far-zone scattered fields of electrically large CFC structures, such as

aircraft. In fact, if a CFC panel is not quasi-isotropic or its thickness is not larger

than the skin depth in the panel then it must be modeled as a laminated material

using the skin-effect approximation rather than a PEC sheet.

In Chapter 3, it was shown that the reflection coefficient and radiation pattern

of monopole antennas operated up to a frequency of 12.5 GHz were not altered if

the metallic ground plane was replaced by a much lighter CFC one. Sandpapering
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the feed area or using conductive tapes were found to be unnecessary for operating

monopole antennas mounted on CFC ground planes.

Monopole antennas mounted on metallic and CFC cubic shells were operated at

the frequency of 3 MHz and 100 MHz and the radiated EMI inside the shells were

calculated. It was shown that by replacing aluminum with CFC the pattern of the

leaked fields did not change but the strength of the leaked fields increased. It was

observed that as the frequency decreased effects of the lower conductivity of CFC

panels compared to the metallic ones became more of concern because a CFC barrier

with the same physical thickness as the metallic panel might no longer be much thicker

than the skin-depth in the barrier. The maximum leakage of EM fields inside a cubic

CFC enclosure occurred near to the feed point and could be 70 dB larger compared

to other locations in the shell away from the feed point. The leakage of EM fields into

the shell increased as the frequency decreased. Furthermore, the quantity of fields at

one point could not be interpreted as the general value of fields in CFC enclosures.

In Chapter 4, effects of bonding between orthogonally oriented reinforcements

were examined. PEC wire meshes were modeled using the thin wire assumption and

reinforcements in the form of carbon-fiber bundles had to be modeled as dielectric

materials with σ = 104 S/m. The published results for the co- and cross-polarization

transmission coefficients of bonded and unbonded wire meshes were reproduced using

the periodic MoM solver in FEKO. It was observed that in free space, wire meshes

with unbonded junctions were preferable to wire meshes with bonded junctions from

a SE standpoint. However, bonded wire meshes were more isotropic compared to

the unbonded and created weaker cross-polarization components. It was shown that

embedding wire meshes in an epoxy slab weakened effects of the bonding at the

junctions.

Based on the geometry of a purchased CFC panel, reinforcements in the form of

carbon-fiber bundles were conceived. The carbon-fiber bundles had a width of 2 mm

and thickness of 0.159 mm. It was shown that bonding the junctions improved the SE



CHAPTER 6. CONCLUSIONS AND FUTURE WORK 57

of CFC panels with reinforcements in the form of carbon-fiber bundles. Furthermore,

in the case of unbonded junctions the reinforcements that were oriented orthogonal

to the orientation of the polarization of the incident plane wave were transparent to

a normally incident plane wave. Moreover, the periodic solver in FEKO took much

longer simulation time compared to HFSS or CST Microwave Studio for the same

problem involving carbon-fiber bundles.

Chapter 5 was focused on EM modeling of conducting materials with σ = 104 S/m

in SE calculations. To calculate the SE of an infinite CFC panel at a frequency

for which the panel’s thickness was larger than the skin-depth the panel had to be

modeled as a dielectric material with σ = 104 S/m. It was observed that the exact

PMCHWT formulation which was used for modeling dielectric materials required

that the mesh size be determined by the wavelength in the CFC material and not

free space. Therefore, approximate instead of exact formulations were adapted for

calculating the SE of conducting structures.

The maximum dB-quantity of the SE that could be obtained using the free space

MoM was found to be very sensitive to the numerical errors associated with the

cancellation of the incident and scattered fields. Furthermore, the free space MoM

was based on calculating the sum of the surface currents on both sides of sheets while

the inside-outside formulation calculated currents on each side of sheets. That was the

reason that the inside-outside formulation created twice as many unknowns as the free

space MoM did. The total fields inside a hollow spherical PEC shell illuminated by a

plane wave were calculated using the free space MoM and inside-outside formulations.

When the free space MoM was employed, the electric fields inside the shell were in

the order of -22.5 dB V/m near to the walls of the shell while in the inside-outside

formulation the electric fields were in the order of -1000 dB V/m.

The SE quantities obtained using the inside-outside formulation were validated

by creating benchmark solutions for the SE inside a hollow spherical CFC shell. The

analytic solution needed to be modified to overcome the overflow of the Schelkunoff
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Bessel functions that were associated with the conducting media. In order to obtain

agreement with the benchmark solutions FEKO simulations were performed using

the inside-outside formulation and a mesh size of λ0/20 instead of the default value

of λ0/12. At frequencies below the resonance of the dominant mode of the spherical

cavity the SE to electric fields increased by 20 dB/decade as the frequency decreased

but the magnetic SE was decreasing with the same rate. The SE could be reduced

by 60 dB at the resonance frequencies of the spherical cavity.

6.2 Future Work

In future work, the periodic MoM solver in FEKO should be accelerated because at

this time the FEKO’s periodic solver often requires a much longer simulation time

compared to other commercially available FEM or finite integration technique (FIT)

solvers.

The CFC panel reinforced with carbon-fiber bundles was simulated up to 10 GHz.

It would be advantageous to simulate the panel at higher frequencies and verify the

simulation results and the differences between the bonded and unbonded configura-

tions. Moreover, effects of a non-zero contact resistance at the junctions of bonded

and unbonded reinforcements on the SE can also be investigated.

Materials with σ = 104 S/m cannot always be treated using the inside-outside

formulation e.g., a periodic array of carbon-fiber bundles. In fact, it is necessary to

modify the MoM solver so that it can efficiently handle materials with σ = 104 S/m

in SE calculations using an exact SIE formulation.

The inside-outside formulation in FEKO could not be applied to anisotropic lay-

ered media. This is another feature that can be added to FEKO.

It would be interesting to examine the reduction of the electric and magnetic SE of

non-spherical hollow CFC shells at their resonance frequencies e.g., inside an aircraft

fuel tank. Furthermore, it would be worthwhile to calculate the interference that is
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caused by a transmitter operated by a passenger inside the aircraft on the antennas

that are mounted on the aircraft fuselage using the inside-outside formulation.

Modeling CFC materials in SE calculations has proved to be a challenge due to

their moderate conductivity of σ = 104 S/m. This work was an effort on identifying

key issues in modeling CFC materials in commercially available MoM-solvers. It is

hoped that future researchers and practicing engineers find this thesis useful in their

carrier.
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Appendix A

SE Inside a Hollow Spherical CFC

Shell

A.1 Formulating the Problem

In this appendix, the analytic expression for the EM fields that leak through a hol-

low spherical shell are derived and a method is proposed to overcome the numerical

problems that occur in the analytic solution when the shell’s material is CFC. Fig.

A.1 shows the cross section of a hollow spherical CFC shell which is illuminated by a

plane wave. With reference to Fig. A.1, a and b represent the inner and outer radii of

the shell, respectively. Furthermore, the subscripts 1, 2, and 3 represent the regions

corresponding to r ≤ a, a ≤ r ≤ b, and r ≥ b, respectively. The electric and magnetic

fields associated with the incident plane wave are, respectively, given by

Ei = x̂Ei
x = x̂e−jk3z (A.1)

and

Hi = ŷH i
y = ŷ

1

η3

e−jk3z (A.2)
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Figure A.1: The cross section of a hollow spherical CFC shell which is illuminated by
a plane wave. a and b represent the inner and outer radii of the shell, respectively.
The subscripts 1, 2, and 3, respectively, represent the regions corresponding to r ≤ a,
a ≤ r ≤ b, and r ≥ b.

where k3 and η3 are, respectively, the wavenumber and impedance of the incident

plane wave. In order to calculate the electric and magnetic fields that leak into the

shell the spherical coordinate system and the concept of electric and magnetic vector

potentials are employed [45]. The analytic solution is obtained by finding sets of

spherical wave functions that satisfy the boundary conditions at r = a and r = b.

The boundary conditions are the continuity of the tangential electric and magnetic

fields at r = a and r = b. To satisfy the boundary conditions, it is necessary and

sufficient to include TM r and TEr modes which are specified by the vector potentials

A = r̂Ar and F = r̂Fr, respectively. In the spherical coordinate system Ar/r and

Fr/r satisfy the following scalar Helmholtz equations [45]:

(∇2 + k2)
Ar

r
= 0, (A.3)

(∇2 + k2)
Fr

r
= 0 (A.4)

where k is the wavenumber. Therefore, the electric and magnetic vector potentials

everywhere in space should be expressed in terms of spherical wave functions that

satisfy (A.3) or (A.4) and the boundary conditions. The electric and magnetic vector

potentials in regions 1, 2, and 3 are written as follows.
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For region 1 i.e., 0 ≤ r ≤ a we have:

A1
r =

cos φ

ωμ1

∞∑
n=1

j−n 2n + 1

n(n + 1)
anĴn(k1r)P

1
n(cos θ), (A.5)

F 1
r =

sin φ

k1

∞∑
n=1

j−n 2n + 1

n(n + 1)
bnĴn(k1r)P

1
n(cos θ). (A.6)

For region 2 i.e., a ≤ r ≤ b we have:

A2
r =

cos φ

ωμ2

∞∑
n=1

j−n 2n + 1

n(n + 1)

[
cnĴn(k2r) + dnN̂n(k2r)

]
P 1

n(cos θ), (A.7)

F 2
r =

sin φ

k2

∞∑
n=1

j−n 2n + 1

n(n + 1)

[
enĴn(k2r) + fnN̂n(k2r)

]
P 1

n(cos θ). (A.8)

For region 3 i.e., r ≥ b we have:

A3
r =

cos φ

ωμ3

∞∑
n=1

j−n 2n + 1

n(n + 1)

[
Ĵn(k3r) + gnĤ(2)

n (k3r)
]
P 1

n(cos θ), (A.9)

F 3
r =

sin φ

k3

∞∑
n=1

j−n 2n + 1

n(n + 1)

[
Ĵn(k3r) + hnĤ

(2)
n (k3r)

]
P 1

n(cos θ). (A.10)

In (A.5)-(A.10) μi is the permeability of region i, ki = ω
√

μiεi is the propagation

constant in region i, and εi is the complex permittivity of region i. In (A.9) and

(A.10), the incident plane wave is expressed in terms of spherical wave functions as

[45]:

Ai
r =

cos φ

ωμ3

∞∑
n=1

j−n 2n + 1

n(n + 1)
Ĵn(k3r)P

1
n(cos θ), (A.11)

F i
r =

sin φ

k3

∞∑
n=1

j−n 2n + 1

n(n + 1)
Ĵn(k3r)P

1
n(cos θ). (A.12)

where P 1
n (cos θ) is the associated legendre function of degree n and order 1. Further-

more, in (A.5)-(A.12) Ĵn(.) and N̂n(.) are the Schelkunoff Bessel functions of the first

and second kind and integer order n which can be expressed as [45, 46]

Ĵn(z) = z
[
fn(z) sin z + (−1)n+1f−n−1(z) cos z

]
(A.13)
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and

N̂n(z) = z
[−fn(z) cos z + (−1)n+1f−n−1(z) sin z

]
(A.14)

where

f0(z) = 1
z

f1(z) = 1
z2

fn−1(z) + fn+1(z) = (2n + 1)fn(z)
z

. (A.15)

Furthermore, Ĥ
(2)
n (.) = Ĵn(.) − jN̂n(.).

By calculating the unknown coefficients an, bn, cn, dn, en, fn, gn, and hn in (A.5)-

(A.10) the vector potentials everywhere in space can be obtained. an, bn,...,hn are

found such that the boundary conditions at r = a, and r = b are satisfied. Since

there are no impressed surface currents at r = a and r = b the tangential components

of the electric and magnetic fields (Eθ, Hθ, Eφ, and Hφ) are continuous at r = a and

r = b. The tangential fields at r = a−, r = b−, r = a+, and r = b+ can be obtained

from (A.5)-(A.10) by using the following equations [45]:

Ei
θ =

−1

r sin θ

∂F i
r

∂φ
+

1

jωεi

∂2Ai
r

r∂r∂θ
, (A.16)

Ei
φ =

1

r

∂F i
r

∂θ
+

1

jωεi

1

r sin θ

∂2Ai
r

∂r∂φ
, (A.17)

H i
θ =

1

r sin θ

∂Ai
r

∂φ
+

1

jωμi

∂2F i
r

r∂r∂θ
, (A.18)

and

H i
φ =

1

r

∂F i
r

∂θ
+

1

jωεi

1

r sin θ

∂2Ai
r

∂r∂φ
(A.19)

where i denotes the region in which fields are evaluated. Using (A.5), (A.6), and

(A.16), Eθ in region 1 at r = a− and Eθ in region 2 at r = a+ can be written as:

E1
θ |r=a− = − cos φ

∞∑
n=1

j−n 2n + 1

n(n + 1)
bn

Ĵn(k1a)

k1a

P 1
n(cos θ)

sin θ
+

−j cos φ
∞∑

n=1

j−n 2n + 1

n(n + 1)
an

Ĵ ′
n(k1a)

k1a

∂P 1
n(cos θ)

∂θ

(A.20)
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and

E2
θ |r=a+ = − cos φ

∞∑
n=1

j−n 2n + 1

n(n + 1)

[
en

Ĵn(k2a)

k2a
+ fn

N̂n(k2a)

k2a

]
P 1

n(cos θ)

sin θ
+

−j cos φ
∞∑

n=1

j−n 2n + 1

n(n + 1)

[
cn

Ĵ ′
n(k2a)

k2a
+ dn

N̂ ′
n(k2a)

k2a

]
∂P 1

n(cos θ)

∂θ
.

(A.21)

By imposing the boundary condition that E1
θ |r=a− = E2

θ |r=a+ the following equations

are obtained:

an

Ĵ ′
n(k1a)

k1a
− cn

Ĵ ′
n(k2a)

k2a
− dn

N̂ ′
n(k2a)

k2a
= 0 (A.22)

and

bn

Ĵn(k1a)

k1a
− en

Ĵn(k2a)

k2a
− fn

N̂n(k2a)

k2a
= 0. (A.23)

It is worth noting that conditions that make Eθ continuous at r = a or r = b also

make Eφ continuous at r = a or r = b. This conclusion can be extended to magnetic

fields, also. Using (A.5), (A.6), and (A.18) the magnetic fields in region 1 at r = a−

and in region 2 at r = a+ are written as

H1
θ |r=a− = −sin φ

η1

∞∑
n=1

j−n 2n + 1

n(n + 1)
an

Ĵn(k1a)

k1a

P 1
n(cos θ)

sin θ
+

sin φ

jη1

∞∑
n=1

j−n 2n + 1

n(n + 1)
bn

Ĵ ′
n(k1a)

k1a

∂P 1
n(cos θ)

∂θ

(A.24)

and

H2
θ |r=a+ = −sin φ

η2

∞∑
n=1

j−n 2n + 1

n(n + 1)

[
cn

Ĵn(k2a)

k2a
+ dn

N̂n(k2a)

k2a

]
P 1

n(cos θ)

sin θ
+

sin φ

jη2

∞∑
n=1

j−n 2n + 1

n(n + 1)

[
en

Ĵ ′
n(k2a)

k2a
+ fn

N̂ ′
n(k2a)

k2a

]
∂P 1

n(cos θ)

∂θ
.

(A.25)

Imposing the boundary condition that H1
θ |r=a− = H2

θ |r=a+ lead to

an

Ĵn(k1a)

η1k1a
− cn

Ĵn(k2a)

η2k2a
− dn

N̂n(k2a)

η2k2a
= 0 (A.26)
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and

bn

Ĵ ′
n(k1a)

η1k1a
− en

Ĵ ′
n(k2a)

η2k2a
− fn

N̂ ′
n(k2a)

η2k2a
= 0. (A.27)

Using (A.7), (A.8), and (A.16) Eθ in region 1 at r = b− and Eθ in region 2 at r = b+

can be written as

E2
θ |r=b− = − cos φ

∞∑
n=1

j−n 2n + 1

n(n + 1)

[
en

Ĵn(k2b)

k2b
+ fn

N̂n(k2b)

k2b

]
P 1

n(cos θ)

sin θ
+

−j cos φ
∞∑

n=1

j−n 2n + 1

n(n + 1)

[
cn

Ĵ ′
n(k2b)

k2b
+ dn

N̂ ′
n(k2b)

k2b

]
∂P 1

n(cos θ)

∂θ

(A.28)

and

E3
θ |r=b+ = − cos φ

∞∑
n=1

j−n 2n + 1

n(n + 1)

[
Ĵn(k3b)

k3b
+ hn

Ĥ
(2)
n (k3b)

k3b

]
P 1

n(cos θ)

sin θ
+

−j cos φ

∞∑
n=1

j−n 2n + 1

n(n + 1)

[
Ĵ ′

n(k3b)

k3b
+ gn

Ĥ
(2)′

n (k3b)

k3b

]
∂P 1

n(cos θ)

∂θ
.

(A.29)

The boundary conditions associated with the continuity of the electric fields at r = b

lead to

cn

Ĵ ′
n(k2b)

k2b
+ dn

N̂ ′
n(k2b)

k2b
− gn

Ĥ
(2)′
n (k3b)

k3b
− Ĵ ′

n(k3b)

k3b
= 0 (A.30)

and

en

Ĵn(k2b)

k2b
+ fn

N̂n(k2b)

k2b
− hn

Ĥ
(2)
n (k3b)

k3b
− Ĵ ′

n(k3b)

k3b
= 0. (A.31)

Using (A.7)-(A.10), and (A.18) the magnetic fields at r = b− and r = b+ can be

written as

H2
θ |r=b− = −sin φ

η2

∞∑
n=1

j−n 2n + 1

n(n + 1)

[
cn

Ĵn(k2b)

k2b
+ dn

N̂n(k2b)

k2b

]
P 1

n(cos θ)

sin θ
+

sin φ

jη2

∞∑
n=1

j−n 2n + 1

n(n + 1)

[
en

Ĵ ′
n(k2b)

k2b
+ fn

N̂ ′
n(k2b)

k2b

]
∂P 1

n(cos θ)

∂θ

(A.32)
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and

H3
θ |r=b+ = −sin φ

η3

∞∑
n=1

j−n 2n + 1

n(n + 1)

[
Ĵn(k3b)

k3b
+ gn

Ĥ
(2)
n (k3b)

k3b

]
P 1

n(cos θ)

sin θ
+

sin φ

jη3

∞∑
n=1

j−n 2n + 1

n(n + 1)

[
Ĵ ′

n(k3b)

k3b
+ hn

Ĥ
(2)′

n (k3b)

k3b

]
∂P 1

n(cos θ)

∂θ
.

(A.33)

The boundary conditions associated with the continuity of the magnetic fields at

r = b lead to

cn

Ĵn(k2b)

η2k2b
+ dn

N̂n(k2b)

η2k2b
− gn

Ĥ
(2)
n (k3b)

η3k3b
− Ĵn(k3b)

η3k3b
= 0 (A.34)

and

en

Ĵ ′
n(k2b)

η2k2b
+ fn

N̂ ′
n(k2b)

η2k2b
− hn

Ĥ
(2)′
n (k3b)

η3k3b
− Ĵ ′

n(k3b)

η3k3b
= 0. (A.35)

Now that the boundary conditions are imposed the eight unknown coefficients an,...,hn

may be determined. In the matrix form (A.22), (A.23), (A.26), (A.27), (A.30), (A.31),

(A.34), and (A.35) can be written as

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ĵ ′
n
(k1a)
k1a

−Ĵ ′
n
(k2a)

k2a

−N̂ ′
n
(k2a)

k2a
0

Ĵn(k1a)
η1k1a

−Ĵn(k2a)
η2k2a

−N̂n(k2a)
η2k2b

0

0 Ĵ ′
n
(k2b)
k2b

N̂ ′
n
(k2b)
k2b

−Ĥ
(2)′
n (k3b)
k3b

0 Ĵn(k2b)
η2k2b

N̂n(k2b)
η2k2b

−Ĥ
(2)
n (k3b)
η3k3b

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

an

cn

dn

gn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

0

Ĵ ′
n
(k3b)
k3b

Ĵn(k3b)
η3k3b

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(A.36)

and ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ĵn(k1a)
k1a

−Ĵn(k2a)
k2a

−N̂n(k2a)
k2a

0

Ĵ ′
n
(k1a)

η1k1a

−Ĵ ′
n
(k2a)

η2k2a

−N̂ ′
n
(k2a)

η2k2a
0

0 Ĵn(k2b)
k2b

N̂n(k2b)
k2b

−Ĥ
(2)
n (k3b)
k3b

0 Ĵ ′
n
(k2b)

η2k2b

N̂ ′
n
(k2b)

η2k2b

−Ĥ
(2)′
n (k3b)
η3k3a

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

bn

en

fn

hn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

0

Ĵn(k3b)
k3b

Ĵ ′
n
(k3b)

η3k3a

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (A.37)

Eqs. (A.36) and (A.37) may be solved using the standard numerical methods for

solving linear systems [47]. Then, the electric and magnetic fields that leak through

the shell to the region of r ≤ a can be expressed using (A.5), (A.6), and the following
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equations [45]:

E1
r =

1

jωε1

(k2
1 +

∂2

∂r2
)A1

r = −j cos φ

∞∑
n=1

j−n 2n + 1

n(n + 1)
an

[
Ĵn(k1r) + Ĵ ′′

n(k1r)
]
P 1

n(cos θ),

(A.38)

E1
θ =

−1

r sin θ

∂F 1
r

∂φ
+

1

jωε1

∂2A1
r

r∂r∂θ
= − cos φ

∞∑
n=1

j−n 2n + 1

n(n + 1)
bn

Ĵn(k1r)

k1r

P 1
n(cos θ)

sin θ

−j cos φ

∞∑
n=1

j−n 2n + 1

n(n + 1)
an

Ĵ ′
n(k1r)

k1r

∂P 1
n(cos θ)

∂θ
,

(A.39)

E1
φ =

1

r

∂F 1
r

∂θ
+

1

jωε1

1

r sin θ

∂2A1
r

∂r∂φ
= sin φ

∞∑
n=1

j−n 2n + 1

n(n + 1)
bn

Ĵn(k1r)

k1r

∂P 1
n(cos θ)

∂θ

+j sin φ

∞∑
n=1

j−n 2n + 1

n(n + 1)
an

Ĵ ′
n(k1r)

k1r

P 1
n(cos θ)

sin θ
,

(A.40)

H1
r =

1

jωμ1

(k2
1+

∂2

∂r2
)F 1

r =
1

jη1

sin φ
∞∑

n=1

j−n 2n + 1

n(n + 1)
bn

[
Ĵn(k1r) + Ĵ ′′

n(k1r)
]
P 1

n(cos θ),

(A.41)

H1
θ =

1

r sin θ

∂A1
r

∂φ
+

1

jωμ1

∂2F 1
r

r∂r∂θ
= − sin φ

η1

∞∑
n=1

j−n 2n + 1

n(n + 1)
an

Ĵn(k1r)

k1r

P 1
n(cos θ)

sin θ

+
sin φ

jη1

∞∑
n=1

j−n 2n + 1

n(n + 1)
bn

Ĵ ′
n(k1r)

k1r

∂P 1
n(cos θ)

∂θ
,

(A.42)

and

H1
φ =

1

r

∂F 1
r

∂θ
+

1

jωε1

1

r sin θ

∂2A1
r

∂r∂φ
=
− cos φ

η1

∞∑
n=1

j−n 2n + 1

n(n + 1)
bn

Ĵn(k1r)

k1r

∂P 1
n(cos θ)

∂θ

+
cos φ

jη1

∞∑
n=1

j−n 2n + 1

n(n + 1)
an

Ĵ ′
n(k1r)

k1r

P 1
n(cos θ)

sin θ
.

(A.43)
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A.2 Fields at the Origin

Eqs. (A.38)-(A.43) may be used to calculate fields everywhere inside the shell. The

fields at the origin can be found using only the terms a1 and b1. Using (A.38)-(A.43)

the magnitude of the electric and magnetic fields at the origin are, respectively

lim
r→0

|E1(r, θ, φ)| =
√

|E1
r |2 + |E1

θ |2 + |E1
φ|2 = |a1| (A.44)

and

lim
r→0

|H1(r, θ, φ)| =
√
|H1

r |2 + |H1
θ |2 + |H1

φ|2 =
|b1|
η0

. (A.45)

To obtain (A.44) and (A.45) use has been made of the following limitations and

identities [46]:

lim
r→0

Ĵn(k1r)

k1r
= 0, n ≥ 1, (A.46)

lim
r→0

Ĵ ′
n(k1r)

k1r
= lim

r→0
Ĵ ′′

n(k1r) =

⎧⎪⎪⎨
⎪⎪⎩

2/3, n = 1

0, n > 1

, (A.47)

P1(cos θ) = cos θ, (A.48)

and

P 1
1 (cos θ) =

∂P1(cos θ)

∂θ
= − sin θ. (A.49)

A.3 Numerical Issues

Fig. A.1 shows a hollow spherical CFC shell which is illuminated by a plane wave at

the frequency of f = 100 MHz. The propagation constant in the CFC material with

σ = 104 S/m is given by [36]

k2 =

√
j2πfμ0σ

j
= 1986.9 − j1986.9 [rad/m]. (A.50)
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Using (A.50), the Schelkunoff Bessel functions Ĵn(k2b) and N̂n(k2b) which are given

by (A.13)-(A.15) could not be evaluated for b > 35 cm even when double precision

variable are employed. This is because sin(k2b) and cos(k2b) overflow for b > 35 cm.

To eliminate this problem, an and bn are expressed in terms of sin [k2(b − a)] and

cos [k2(b − a)] as described in the following.

Using (A.36) and (A.37), an and bn can be written as

an =

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 −Ĵ ′
n
(k2a)

k2a

−N̂ ′
n
(k2a)

k2a
0

0 −Ĵn(k2a)
η2k2a

−N̂n(k2a)
η2k2a

0

Ĵ ′
n
(k3b)
k3b

Ĵ ′
n
(k2b)
k2b

N̂ ′
n
(k2b)
k2b

−Ĥ
(2)′
n (k3b)
k3b

Ĵn(k3b)
η3k3b

Ĵn(k2b)
η2k2b

N̂n(k2b)
η2k2b

−Ĥ
(2)
n (k3b)
η3k3b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ĵ ′
n
(k1a)
k1a

−Ĵ ′
n
(k2a)

k2a

−N̂ ′
n
(k2a)

k2a
0

Ĵn(k1a)
η1k1a

−Ĵn(k2a)
η2k2a

−N̂n(k2a)
η2k2a

0

0 Ĵ ′
n
(k2b)
k2b

N̂ ′
n
(k2b)
k2b

−Ĥ
(2)′
n (k3b)
k3b

0 Ĵn(k2b)
η2k2b

N̂n(k2b)
η2k2b

−Ĥ
(2)
n (k3b)
η3k3b

∣∣∣∣∣∣∣∣∣∣∣∣∣

=

1
jη2η3(k2ak3b)2

ΔTM
n

(A.51)

and

bn =

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 −Ĵn(k2a)
k2a

−N̂n(k2a)
k2a

0

0 −Ĵ ′
n
(k2a)

η2k2a

−N̂ ′
n
(k2a)

η2k2a
0

Ĵn(k3b)
k3b

Ĵn(k2b)
k2b

N̂n(k2b)
k2b

−Ĥ
(2)
n (k3b)
k3b

Ĵ ′
n
(k3b)

η3k3b

Ĵ ′
n
(k2b)

η2k2b

N̂ ′
n
(k2b)

η2k2b

−Ĥ
(2)′
n (k3b)
η3k3b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ĵn(k1a)
k1a

−Ĵn(k2a)
k2a

−N̂n(k2a)
k2a

0

Ĵ ′
n
(k1a)

η1k1a

−Ĵ ′
n
(k2a)

η2k2a

−N̂ ′
n
(k2a)

η2k2a
0

0 Ĵn(k2b)
k2b

N̂n(k2b)
k2b

−Ĥ
(2)
n (k3b)
k3b

0 Ĵ ′
n
(k2b)

η2k2b

N̂ ′
n
(k2b)

η2k2b

−Ĥ
(2)′
n (k3b)
η3k3b

∣∣∣∣∣∣∣∣∣∣∣∣∣

=

j

η2η3(k2ak3b)2

ΔTE
n

(A.52)



APPENDIX A. SE INSIDE A HOLLOW SPHERICAL CFC SHELL 75

where

ΔTM
n = − 1

η1η2k1k3(k2ab)2
Ĵn(k1a)Ĥ(2)′

n (k3b)
[
Ĵn(k2b)N̂

′
n(k2a) − N̂n(k2b)Ĵ

′
n(k2a)

]
− 1

η1η3k1k3(k2ab)2
Ĵn(k1a)Ĥ(2)

n (k3b)
[
Ĵ ′

n(k2a)N̂ ′
n(k2b) − N̂ ′

n(k2a)Ĵ ′
n(k2b)

]
− 1

η3η2k1k3(k2ab)2
Ĵ ′

n(k1a)Ĥ(2)
n (k3b)

[
Ĵ ′

n(k2b)N̂n(k2a) − N̂ ′
n(k2b)Ĵn(k2a)

]
− 1

η2
2k1k3(k2ab)2

Ĵ ′
n(k1a)Ĥ(2)′

n (k3b)
[
Ĵn(k2a)N̂n(k2b) − N̂n(k2a)Ĵn(k2b)

]
,

(A.53)

and

ΔTE
n = − 1

η2η3k1k3(k2ab)2
Ĵn(k1a)Ĥ(2)′

n (k3b)
[
Ĵn(k2b)N̂

′
n(k2a) − N̂n(k2b)Ĵ

′
n(k2a)

]
− 1

η2
2k1k3(k2ab)2

Ĵn(k1a)Ĥ(2)
n (k3b)

[
Ĵ ′

n(k2a)N̂ ′
n(k2b) − N̂ ′

n(k2a)Ĵ ′
n(k2b)

]
− 1

η1η2k1k3(k2ab)2
Ĵ ′

n(k1a)Ĥ(2)
n (k3b)

[
Ĵ ′

n(k2b)N̂n(k2a) − N̂ ′
n(k2b)Ĵn(k2a)

]
− 1

η1η3k1k3(k2ab)2
Ĵ ′

n(k1a)Ĥ(2)′

n (k3b)
[
Ĵn(k2a)N̂n(k2b) − N̂n(k2a)Ĵn(k2b)

]
.

(A.54)

The numerators in (A.51) and (A.52) are simplified using

W (Ĵn(k3b), Ĥ
(2)
n (k3b)) = −j (A.55)

and

W (Ĵn(k2a), N̂n(k2a)) = 1 (A.56)

where W (., .) is the Wronskian operator [45, 46]. In order to evaluate (A.53) and

(A.54), the terms Ĵn(k2a), Ĵ ′
n(k2a), Ĵn(k2b), Ĵ ′

n(k2b), N̂n(k2a), N̂ ′
n(k2a), N̂n(k2b),

N̂ ′
n(k2b) should not be evaluated individually. Instead the following equations should

be used:

Ĵn(k2a)N̂n(k2b) − N̂n(k2a)Ĵn(k2b) = k2
2abW 1

n(k2a, k2b), (A.57)
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Ĵ ′
n(k2b)N̂n(k2a) − N̂ ′

n(k2b)Ĵn(k2a) = −k2aW 1
n(k2a, k2b) + k2

2ab[W 2
n(k2a, k2b)

+W 3
n(k2a, k2b)],

(A.58)

Ĵn(k2b)N̂
′
n(k2a) − N̂n(k2b)Ĵ

′
n(k2a) = −k2bW

1
n(k2a, k2b) + k2

2ab[W 4
n(k2a, k2b)

−W 3
n(k2a, k2b)],

(A.59)

and

Ĵ ′
n(k2a)N̂ ′

n(k2b) − N̂ ′
n(k2a)Ĵ ′

n(k2b) = W 1
n(k2a, k2b) + k2

2ab[W 5
n(k2a, k2b)+

W 6
n(k2a, k2b) + W 1

n(k2a, k2b)] + k2a
[
W 3

n(k2a, k2b) − W 4
n(k2a, k2b)

]
−k2b

[
W 2

n(k2a, k2b) + W 3
n(k2a, k2b)

]
.

(A.60)

Moreover, W 1
n(k2a, k2b), W 2

n(k2a, k2b),...,W
6
n(k2a, k2b) are given by:

W 1
n(k2a, k2b) = (−1)n+1 [fn(k2a)f−n−1(k2b) − fn(k2b)f−n−1(k2a)] cos(k2b − k2a)+

[fn(k2a)fn(k2b) + f−n−1(k2a)f−n−1(k2b)] sin(k2b − k2a),

(A.61)

W 2
n(k2a, k2b) = (−1)(n+1)

[
f−n−1(k2a)f ′

n(k2b) − fn(k2a)f ′
−n−1(k2b)

]
cos [k2(b − a)]−[

f−n−1(k2a)f ′
−n−1(k2b) + fn(k2a)f ′

n(k2b)
]
sin [k2(b − a)] ,

(A.62)

W 3
n(k2a, k2b) = (−1)(n+1)

[
fn(k2a)f ′

−n−1(k2b) − fn(k2b)f
′
−n−1(k2a)

]
sin [k2(b − a)]−

[fn(k2a)f ′
n(k2b) + f−n−1(k2a)f−n−1(k2b)] cos [k2(b − a)] ,

(A.63)

W 4
n(k2a, k2b) = (−1)n+1

[
f ′
−n−1(k2a)fn(k2b) − f ′

n(k2a)f−n−1(k2b)
]
cos [k2(b − a)]−[

f ′
−n−1(k2a)f−n−1(k2b) + f ′

n(k2a)fn(k2b)
]
sin [k2(b − a)] ,

(A.64)

W 5
n(k2a, k2b) =

[
f ′

n(k2a)f ′
n(k2b) + f ′

−n−1(k2a)f ′
−n−1(k2b)

]
sin [k2(b − a)]

+(−1)n+1
[
f ′

n(k2a)f ′
−n−1(k2b) − f ′

n(k2b)f
′
−n−1(k2a)

]
cos [k2(b − a)] ,

(A.65)
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and

W 6
n(k2a, k2b) = sin [k2(b − a)] (−1)n+1[fn(k2a)f ′

−n−1(k2b) − f ′
n(k2a)f−n−1(k2b)−

f−n−1(k2a)f ′
n(k2b) + f ′

−n−1(k2a)fn(k2b)]+

cos [k2(b − a)] [−fn(k2a)f ′
n(k2b) + fn′(k2a)fn(k2b)−

f−n−1(k2a)f ′
−n−1(k2b) + f ′

−n−1(k2a)f−n−1(k2b)].

(A.66)

Eqs. (A.61)-(A.66) are obtained by replacing (A.13)-(A.15) in (A.53) and (A.54) and

simplifying the resulting expressions using the symbolic math toolbox in MATLAB

[48].


