
New Heuristic for Message Broadcasting in Arbitrary Networks

Cosmin Jimborean

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Computer Science at

Concordia University

Montreal, Quebec, Canada

September 2013

©Cosmin Jimborean, 2013

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Cosmin Jimborean

Entitled: New Heuristic for Message Broadcasting in Arbitrary Networks

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science

complies with the regulation of the University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:

_____________________________________ Chair

Dr. N. Shiri

_____________________________________ Examiner

Dr. J. W. Atwood

_____________________________________ Examiner

Dr. D. Goswami

_____________________________________ Supervisor

Dr. H. Harutyunyan

Approved by ___

Chair of Department or Graduate Program Director

________2013 ___

 Dr. Christopher W. Trueman, Interim Dean

 Faculty of Engineering and Computer Science

iii

Abstract

New Heuristic for Message Broadcasting in Arbitrary Networks

Cosmin Jimborean

Efficient information dissemination in interconnection networks is a key research area

because of the major role it plays in the modern interconnected world. A vast number of

topics ranging from distributed computing to Internet communication rely on efficient

information dissemination. Broadcasting is one of the information dissemination

primitives. The minimum broadcast time problem in arbitrary networks has been

examined since the 1970s. Finding an optimal broadcasting scheme for any originator in

an arbitrary network has been proved to be an NP-Hard problem. In the current thesis, a

new heuristic that generates broadcast schemes in arbitrary networks is presented. The

heuristic has (| | | |) time complexity, where is the set of nodes and is the set

of the links of the network. Computer simulations in some commonly used topologies

and network models show that compared to the existing heuristics the new heuristic

shows better performance in some network models, and comparable performance in

other network models, while having a low complexity similar to the best existing

heuristics. Another advantage of the new heuristic is that approximately one half of the

vertices receive the message via a shortest path from the broadcast originator, while the

rest of the vertices receive the message via a path at most three hops longer.

iv

Acknowledgements

I would like to express my sincere thank you to my supervisor Dr. H. A. Harutyunyan, for

his assistance and constructive criticism in the preparation of this thesis.

I would also like to thank my parents for their unconditional support not only

throughout this degree, but also throughout all my life.

Last but not the least, I would like to thank my wife Ana who has always supported and

encouraged me with unending love and respect.

v

Contents

List of Figures …… vii

List of Tables ……… x

1 Introduction ... 1

1.1 Problem statement .. 2

1.2 NP-Completeness ... 3

1.3 Thesis Outline ... 8

2 Background .. 9

2.1 Commonly Used Topologies ... 9

2.2 Existing Approximation and Heuristic Algorithms ... 17

2.2.1 Approximation Algorithms .. 17

2.2.2 Heuristic Algorithms ... 19

3 Proposed Heuristic Algorithm ... 35

3.1 Algorithm .. 36

3.2 Complexity .. 43

4 Simulation Results and Comparisons with other Heuristics 45

4.1 Commonly Used Topologies ... 46

vi

4.1.1 Hypercube ... 46

4.1.2 Cube Connected Cycles ... 49

4.1.3 Shuffle-Exchange... 51

4.1.4 DeBruijn .. 53

4.1.5 Butterfly .. 56

4.2 Other Topologies .. 58

4.2.1 GT-ITM Random Model .. 68

4.2.2 GT-ITM Transit-Stub Model .. 71

4.2.3 Tiers Model ... 75

4.2.4 BRITE Top-down Hierarchical Model .. 79

5 Conclusion and Future Work ... 86

References .. 89

vii

List of Figures

Figure 1 The graph .. 5

Figure 2 The Graph ... 7

Figure 3 Path ... 9

Figure 4 Cycle .. 10

Figure 5 Complete Graph .. 10

Figure 6 Hypercubes and .. 11

Figure 7 Cube-Connected Cycles .. 12

Figure 8 Shuffle-Exchange .. 12

Figure 9 DeBrujin .. 13

Figure 10 Butterfly .. 14

Figure 11 -Grid ... 15

Figure 12 -Torus ... 16

Figure 13 and .. 17

Figure 14 The dispersion region () for message at round 21

Figure 15 Definitions in TBA. .. 24

Figure 16 (a) The original graph . (b) The layer graph .. 26

Figure 17 (a) A bipartite graph . (b) Its corresponding flow graph 28

Figure 18 (a) The original graph with originator a. (b) The layer graph . (c) and (d)

Possible broadcast schemes with different broadcast times, 3 and 4 respectively. 32

Figure 19 The original bipartite graph between two layers of the layer graph 39

file:///C:/Users/i822288/Documents/00%20Cosmin/99%20thesis/01/Cosmin%20Thesis.docx%23_Toc366415919

viii

Figure 20 Parent is added to the matching ... 39

Figure 21 Parent is added to the matching ... 40

Figure 22 Child is moved from parent to .. 40

Figure 23 Child is moved from parent to parent ... 41

Figure 24 Parent is added to the matching ... 41

Figure 25 Child is moved from parent to parent ... 42

Figure 26 The final matching .. 42

Figure 27 Simulation chart in Hypercubes ... 48

Figure 28 Simulation chart in Cube-Connected Cycles... 50

Figure 29 Simulation chart in Shuffle-Exchange graphs ... 52

Figure 30 Simulation chart in DeBruijn graphs ... 55

Figure 31 Simulation chart in Butterfly graphs... 57

Figure 32 Example of Internet Domain Structure .. 60

Figure 33 A typical Tiers internetwork ... 63

Figure 34 A large Tiers internetwork .. 64

Figure 35 BRITE Top-down hierarchical model .. 67

Figure 36 Simulation chart in GT-ITM Random model with 200 vertices 69

Figure 37 Simulation results in GT-ITM Random model with 500 vertices 71

Figure 38 Simulation results in GT-ITM Transit-Stub model with 600 vertices.............. 73

Figure 39 Simulation results in GT-ITM Transit-Stub model with 1056 vertices 75

Figure 40 Simulation results in Tiers model with 355 vertices....................................... 77

Figure 41 Simulation results in Tiers model with 1105 vertices 79

ix

Figure 42 Simulation results in BRITE Top-down Waxman model with 400 vertices 81

Figure 43 Simulation results in BRITE Top-down BA model with 400 vertices 82

Figure 44 Simulation results in BRITE Top-down Waxman model with 1000 vertices .. 84

Figure 45 Simulation results in BRITE Top-down BA model with 1000 vertices 85

x

List of Tables

Table 1 Simulation results in Hypercubes ... 47

Table 2 Simulation Results in Cube-Connected Cycles .. 49

Table 3 Simulation results of different heuristics in Shuffle-Exchange graphs 51

Table 4 Simulation results in DeBruijn graphs ... 54

Table 5 Simulation results in Butterfly graphs ... 56

Table 6 Simulation results in GT-ITM Random model with 200 vertices 69

Table 7 Simulation results in GT-ITM Random model with 500 vertices 70

Table 8 Simulation results in GT-ITM Transit-Stub model with 600 vertices 72

Table 9 Simulation results in GT-ITM Transit-Stub model with 1056 vertices 74

Table 10 Parameters for Tiers model with 355 vertices ... 76

Table 11 Parameters for Tiers model with 1105 vertices ... 76

Table 12 Simulation results in Tiers model with 355 vertices....................................... 77

Table 13 Simulation results in Tiers model with 1105 vertices 78

Table 14 Simulation results in BRITE Top-down Waxman model with 400 vertices 80

Table 15 Simulation results in BRITE Top-down BA model with 400 vertices 82

Table 16 Simulation results in BRITE Top-down Waxman model with 1000 vertices .. 83

Table 17 Simulation results in BRITE Top-down BA model with 1000 vertices 85

1

1 Introduction

In computer science, information dissemination encapsulates a set of problems related

to the distribution of information within an interconnection network. One of the most

researched computer science topics in the last years, efficient information

dissemination is important for an increasing number of topics, such as parallel and

distributed computing, internet networks, virtual social networks and

telecommunication networks.

In the past, computer processing power was consistently increased by boosting

processor clock speed from kilohertz to gigahertz. Recently, the increases of clock speed

seemed to have reached their limit and with the cost of hardware decreasing

dramatically, the trend to increase processing power is to build massive multi-processor

systems. The size of multi-processor systems has exploded in the last few years and

hundred-thousand processor systems have already been built. Under these conditions,

the problems of information dissemination are especially important when designing

such massive interconnection networks for parallel and distributed computing. In

parallel and distributed computing, the ability of the processors in the interconnection

network to communicate efficiently is crucial. To study these problems, an

interconnection network is modeled as a connected undirected graph where processors

are represented by the nodes of the graph and the communication links are represented

by the edges of the graph. [24]

2

Information dissemination includes problems related to broadcasting, accumulation and

gossiping. The distribution of information from one to all is known as broadcasting.

Gathering the information from all to one is known as accumulation. Gathering the

information from all and distributing it to all is known as gossiping.

In this thesis we will focus on broadcasting.

1.1 Problem statement

The distribution of information can be classified in four main classes:

 Routing, distribute information from one to one;

 Broadcasting, distribute information from one to all;

 Multicasting, distribute information from one to multiple, but not all;

 Gossiping, distribute information from all to all.

In this thesis, we will focus on broadcasting, in which messages are distributed from one

node to the rest of the nodes in the network.

As mentioned above, an interconnection network is modeled as a connected undirected

graph (), where is the set of vertices and is the set of edges in the graph

 . Using this model, Hromkovic et al. [22] gives the following abstract definition of

broadcasting

“Let () be a graph and let be a node of . Let know a piece of

information () which is unknown to all nodes in . The problem is to find

3

a communication strategy (algorithm) such that all nodes in learn this piece of

information ().”[22]

A communication strategy is a sequence of steps called rounds. A round is equivalent to

one discrete time unit. The broadcasting communication strategy always starts with one

given informed vertex, also called the originator, and all other vertices being

uninformed. During each round, each informed vertex sends the piece of information to

exactly one of its uninformed neighbor vertices. The process repeats until all vertices are

informed.

It is obvious that for a given graph and a given originator, multiple broadcasting

communication strategies exist. The efficiency of a communication strategy is measured

by the number of communication rounds needed to distribute the information from the

source vertex to all vertices.

1.2 NP-Completeness

A problem is in class NP if a given solution to this problem can be verified in polynomial

time. A problem is said to be NP-Complete if it is NP and it is as difficult as any other NP-

complete problem.

At first glance, since the definition of broadcasting is straightforward, broadcasting

problems do not seem very hard. However, as many other apparently simple problems,

broadcasting problems were proved to be intractable. To prove that a problem is NP-

complete, one must first show that it is NP, and second to show that some known NP-

complete problem is reducible to it. In [37], Slater et al. present the proof that the

4

problem of determining () for an arbitrary vertex in an arbitrary graph is NP-

complete. The problem used as a known NP-complete problem is the three-dimensional

matching problem (3DM), which was shown to be NP-complete in [17]. The 3DM

problem is reduced to the broadcast problem in polynomial time. Below we present the

proof given in [37].

The proof shows that the 3DM problem is reducible in polynomial time to a more

general Broadcast Time problem in which at round 0 a set of vertices already has the

message and wants to broadcast it to the rest of the graph. The particular case when

the set of originator vertices contains only one originator vertex represents our

broadcast problem of determining () for an arbitrary vertex in an arbitrary graph .

The general Broadcast Time problem is formally defined as follows. Given a graph

 with a specified set of vertices and a positive integer is there a

sequence where ()

{ } , and ? Here is the total broadcast

time, is the set of informed vertices at round , and is the set of edges used at

round . It is obvious that when | | , then this problem becomes our broadcast

problem of determining () for an arbitrary vertex in an arbitrary graph .

The 3DM problem is defined as follows. Given sets ,

 , and , does there exist a subset

 and | | , such that every two elements in disagree in all three

coordinates?[17]

5

Starting from the sets , , and in the 3DM problem, a graph is constructed in

polynomial time as shown in Figure 1, adapted from [37]. First, each vertex

() is connected to vertices of , of and of . For example, vertex

() is connected to , and . Second, create a set of vertices containing a

vertex for each vertex in and construct a complete bipartite subgraph from the

independent sets and . Finally, construct remaining vertices and edges exactly as

shown in Figure 1. The proof below shows that the 3DM problem is reducible to a

broadcast time problem with in the graph .

Figure 1 The graph

6

Given a solution for the broadcast time problem in we will show that this is a solution

to the broadcast time problem if and only if it is a solution of the 3DM problem. We

start by observing that the right side subset of | | vertices of must start

informing the top right vertices in the first round, so that after 4 rounds all vertices on

the top right side are informed. Similarly, the left side subset of vertices must start

informing the top left vertices no later than the second round, meaning they are only

free for the first round. In order to inform all the vertices on the bottom line in round 4,

the left side vertices in must inform an -subset of at round 1 and the

vertices in must be able to inform distinct elements of , and at rounds 2, 3 and 4

respectively. This is possible if and only if is a solution of the 3DM problem.

The next step is to show that 3DM is reducible to determining the broadcast time for an

arbitrary graph with an arbitrary originator . First construct the graph shown in

Figure 2, adapted from [37], as follows. Starting from graph , add a vertex , an

independent vertex set , and the edges () | | .

Every vertex joins paths of lengths . Finally, create a matching

between and by adding edges.

7

Figure 2 The Graph

Given the problem to determine whether () in graph , consider the

following solution. Vertex will inform each vertex at round . In turn, each will

broadcast the message to the paths connected to it in decreasing path length order. In

the end, at time unit , informs its matched vertex in , so that every vertex in

 will be informed at round . Thus determining if () in graph

becomes equivalent to determining if the broadcasting in graph can be done in 4

rounds, which is the broadcast time problem with in graph .

In such cases where a general problem is NP-Complete, the research community

narrows its focus on more specific instances of the problem. However, the broadcast

8

time problem was proved to also be NP-Complete for specific topologies, such as planar

graphs [25, 26], and bounded degree graphs [7, 9, 32]. In addition, researchers usually

also approach the problem with approximation algorithms. Schindelhauer et al. [36]

provide results on the inapproximability of the broadcast time problem. In the end, the

problem is approached with heuristic algorithms whose results cannot be

approximated, but give good simulation results in practice.

1.3 Thesis Outline

Chapter 1 introduces the information dissemination topic, narrowing on the

broadcasting problem and the NP-completeness of this problem. Chapter 2 goes deeper

into the broadcasting problem in computer networks, presenting commonly used

network topologies and some of the existing broadcast heuristics. A new heuristic is

presented in Chapter 3 and in Chapter 4 the simulation results of this new heuristic are

compared to the simulation results of some existing heuristics.

Finally, conclusions and future work are discussed in Chapter 5.

9

2 Background

An interconnection topology or network topology describes the structure of a network

and of the elements that compose the network, such as nodes and edges [40]. Many

topologies of interconnection networks exist; in the first part of this chapter we will

present a set of commonly used topologies and their properties.

2.1 Commonly Used Topologies

Commonly used topologies are topologies of interconnection networks with specific

properties. They are very popular in the research community and their properties and

broadcasting behavior have been studied extensively [15, 24, 29] and [20].

The Path is a very simple graph composed of a sequence of vertices where each

vertex is connected to the next vertex in the sequence. In a path with vertices, the

start and end vertices have degree , whereas all other vertices have degree . The

diameter of path is equal to . The broadcast time of path is also and is

given by the broadcast time of the start and end vertices. Figure 3 shows a path with 7

vertices.

Figure 3 Path

The Cycle is a path with the start and end vertices connected. In a cycle , all

vertices have degree , the diameter is ⌊

⌋, and the broadcast time of the cycle is ⌈

⌉.

Figure 4 shows a cycle with 7 vertices.

10

The Complete Graph is a graph with vertices where every two distinct vertices are

connected. Figure 5 shows a complete graph with 6 vertices.

Figure 5 Complete Graph

In a complete graph , all vertices have degree , the diameter is , and the

broadcast time is ⌈ ⌉. The broadcast time is obtained by noticing that at each round

except the last round the number of informed vertices will double because every

informed vertex will inform an uninformed neighbor.

The Hypercube is a graph with vertices, where each vertex represents a binary

string of length and each vertex is connected to those vertices whose binary string

representation differs in exactly one bit. An ()-dimensional hypercube can be

constructed by connecting each pair of corresponding vertices of two -dimensional

hypercubes. Figure 6 shows two hypercubes of dimension 3 and 4.

Figure 4 Cycle

11

Figure 6 Hypercubes and

In hypercube all vertices have degree , the diameter is and there are

edges. The broadcast time of hypercube is , which is easily justified by noticing that at

each round all informed vertices inform an uninformed neighbor, such that at each

round the number of informed vertices doubles.

The Cube-Connected Cycles is the graph obtained by replacing each vertex of the

hypercube with a cycle of vertices. The -th dimension edge incident to a node of

the hypercube is then connected to the -th node of the corresponding cycle of the

 . Figure 7 shows a 3-dimensional Cube-Connected Cycles graph.

12

Figure 7 Cube-Connected Cycles

A cube-connected cycles has vertices, each vertex has degree 3, and the

diameter is equal to ⌊

⌋ . The optimal broadcast scheme is that every

informed vertex informs first its hypercube neighbor, and then informs the right

neighbor on the cycle and in the end the left neighbor. The broadcast time of this

scheme is () ⌈

⌉ as shown in [30].

The Shuffle-Exchange is a graph whose vertices are represented by binary strings

of length m. Figure 8 shows a Shuffle-Exchange graph of dimension 3.

Figure 8 Shuffle-Exchange

13

Each vertex of , where is a binary string of length and is in , is

connected to vertices and , where is the binary complement of . The Shuffle-

Exchange is a graph with vertices, maximum degree 3, and diameter . The

exact broadcast time is not known, but an upper bound () was proved

by [23].

The DeBruijn is a graph whose vertices can be represented by binary strings of

length and each vertex , where is a binary string of length and is in

 , is connected to vertices , where is in . Figure 9 shows a DeBruijn graph

of dimension 3.

Figure 9 DeBrujin

 has vertices, diameter and maximum degree 4. The lower bound of the

broadcasting time is () , proven in [27]. The upper bound is

 () , proven in [6].

The Butterfly is a graph whose vertices are in ,

where denotes the set of length- binary strings. For each ,

 the vertex () is connected to vertices (()) and ((

14

) ()) , where () , and is the binary

complement of . Figure 10 shows a Butterfly graph of dimension 3.

Figure 10 Butterfly

The number of vertices of is , the maximum degree is 4 and the diameter of

 is ⌊

⌋. The broadcast time of an -dimensional Butterfly graph is

 () , proven in [27].

The d-Grid [] is a graph whose vertices are represented by -tuples

of positive integers (), where for all . Each edge

connects two vertices whose -tuples differ in exactly one coordinate by exactly one.

For example, in [], shown in Figure 11, vertex () is connected to vertices

(), (), () and ().

15

Figure 11 -Grid []

The number of vertices of [] is , the maximum

degree is when , and the diameter is () () ().

The broadcast time of a 2-Grid [] is as presented in [20].

The -Torus [] is a graph created by connecting both ends of each

dimension of a -Grid graph. Figure 12 shows a -Torus graph of dimension .

16

Figure 12 -Torus []

The broadcast time of a 2-Torus [] is ⌈

⌉ ⌈

⌉, when or is even, and it is

⌈

⌉ ⌈

⌉ , when both and are odd [13].

The Knӧdel graph is a graph on vertices (even) and of maximum degree

 . The vertices of are represented as () pairs, where and

 (⁄) . For every , (⁄) , there is an edge between vertex

() and every vertex (⁄), for [16].

For , an edge that connects a vertex () to the vertex (

 ⁄) is said to be in dimension . Figure 13 shows two Knӧdel graphs, with

 and and , respectively.

17

Figure 13 and

2.2 Existing Approximation and Heuristic Algorithms

The minimum broadcast time problem in arbitrary networks has been examined since

the late 1970s [14]. In 1981, Scheuermann et al. publish their first attempts to solve the

problem [34]. Then, in 1984, Scheuermann et al. present an exact solution based on

dynamic programming to the problem of optimal broadcasting in arbitrary networks,

but this exact algorithm is not computationally efficient in large networks [35].

As described in the NP-Completeness section, the problem of finding the minimum

broadcast time of an arbitrary originator in an arbitrary graph is NP-complete [37]. As a

result, a large number of approximation algorithms and heuristic algorithms have been

proposed. This section examines some of the most important ones.

2.2.1 Approximation Algorithms

An approximation algorithm is an algorithm that does not provide an optimal solution

but which, nevertheless, provides a solution that is proven to be within a certain degree

of proximity to the optimal solution.

18

Kortsarz and Peleg [28] present one of the first approximation algorithms for

broadcasting in arbitrary graphs. For an arbitrary graph (), their algorithm is an

 (√| |)-additive approximation algorithm. Ravi introduces an algorithm for the

broadcasting problem which gives an (
 | |

 | |
)-approximation [33].

There are also several approximation algorithms that attempt to improve broadcasting

time using methods that are not focused solely on the optimization of the bound time.

Hoelting et al. propose a genetic algorithm that generates a heuristic of complexity

 () by using a global precedence vector [21]. An integer programming formulation

is used in [2] to generate an () approximation algorithm. Finally, Barth et al.

propose a general approach to structured communication that can be applied to any

network to improve the broadcasting time therein [4].

To the best of our knowledge, the optimal theoretical upper bound approximation is

presented in [11], a broadcast approximation of (
 | |

 | |
 ()) rounds.

In addition to being NP-complete, the problem of finding a minimum broadcast time of

an arbitrary originator in an arbitrary graph is also difficult to approximate [2, 12, 33]. As

a result, one must go beyond approximation algorithms and consider heuristic

algorithms to attempt to resolve the minimum broadcast time problem.

19

2.2.2 Heuristic Algorithms

A heuristic algorithm is an algorithm that solves a hard problem, by providing a solution

that is not optimal, complete or accurate, but it has good performance results in

practice and it is fast to find and implement.

The following subsections describe several existing heuristic algorithms used to solve

the minimum broadcasting time problem. These heuristics will be used as the baseline

for comparison with the new heuristic introduced in the section Proposed Heuristic

Algorithm.

The performance of existing heuristic algorithms varies based on the topology of the

network in which they are applied. For instance, Round Heuristic [5] and the Tree Based

Algorithm [18] offer good performance in most commonly used topologies, and even

better performance in network models from ns-2 simulator [1, 2, 10, 42]. The Random

and Semi-Random heuristics [38] have, in general, worse performance than Round

Heuristic (RH) and the Tree Based Algorithm (TBA) in commonly used topologies, but in

ns-2 simulator network models they generate better results in graphs of GT-ITM Transit-

Stub model and Tiers model.

2.2.2.1 Round Heuristic

The Round Heuristic [5] assigns a weight to each edge of a network, activates matched

edges using a maximum weighted matching algorithm, and uses the active edges to

transfer the message through the network. This procedure is performed during each

20

broadcasting round and is continued until the message is transmitted throughout the

entire network.

The simulation results in a number of graphs [5] show that the performance of the

Round Heuristic comes close to the minimum broadcasting time in a graph.

Logical and efficient assigning of weights to each edge of a graph is a fundamental part

of the Round Heuristic. Two different approaches can be used to perform the

assignment: Potential Approach and Breadth-First-Search (BFS).

In the Potential Approach, a weight of 0 or 1 is assigned to each edge (), where 1 is

assigned if either or know the message to broadcast and 0 otherwise.

Although it is fast and does not require large amounts of memory, the Potential

Approach is somewhat simplistic, focusing solely on the current location in the network,

and lacking a global view. Therefore, typically this approach is not used.

Although it is generally slower and uses more memory than the Potential Approach, the

Breadth-First Search is much more comprehensive, and is the approach typically used.

Several important concepts must be defined prior to describing the BFS approach.

The dispersion region () of a message in a connected graph is the set of

vertices that know message at the beginning of round . For any vertex we denote

 () the shortest distance in the graph from vertex to a vertex ().

The set of border-crossing edges () is defined as () () |

 () () . We also denote by () the subset of all edges in

21

 () that lie on the shortest path from () to , for any vertex ().

Figure 14, adapted from [5], illustrates the dispersion region () for a message at

round . The border-crossing edges are shown in bold. () and ()

 .

Figure 14 The dispersion region () for message at round

At each round, border-crossing edges can be used to spread further in that round.

Each border-crossing edge will be assigned a weight that represents the sum of the

contributions by each message . The weight indicates how useful a given edge

 () is for the broadcasting of message , and it is calculated taking into

account how useful is and how far is from (). The best route for message p is

through a shortest path from () to all uninformed vertices. Edge () is

22

considered more useful, if it lies on many of these shortest paths. Another criteria

considered to calculate the weight of is (). The further away is from

 (), the higher the priority to forwarding towards , hence the higher weight of

 . Based on the above, the weight that all vertices () contribute to every

edge () is calculated using the formula below:

 ()
 ()

| ()|

 and are two parameters and for every vertex , at round ,

 () and () are calculated. A modified breadth first search algorithm [5] is

used to calculate () and () in order of increasing (). When

 () , then () contains all edges that connect to a vertex in

 (). When () , then () is the union of the sets
(), for

all vertices adjacent to with
() () .

Calculating () for any vertex requires analyzing at most | | vertices with at

most | | edges each, taking (| || |) time. For all vertices this calculation takes

 (| | | |), which is also the time it takes to calculate the weights for one round. So,

without taking into account the matching step, the Round Heuristic takes (| | | |),

where is the number of rounds of broadcasting.

The two parameters and have a great impact on the value of the

weight, thus playing a significant role in the performance of the heuristic. The simulation

results of the Round Heuristic in commonly used topologies give in some cases results

23

close or equal to the optimal broadcast time [5]. We will look closer at these results in

Chapter 4.

2.2.2.2 Tree Based Algorithm

The Tree Based Algorithm (TBA) presented in [18] builds upon the ideas from the Round

Heuristic. In round , TBA separates the graph into two regions, the bright region and

the dark region. The bright region consists of all informed vertices, similar to the

Dispersion Region in Round Heuristic, while the dark region consists of all uninformed

vertices. All informed vertices that have neighbors in the dark region are called the

bright border, denoted by (). Given an uninformed vertex and its uninformed

neighbor , we say is a child of , if () () where () stands for

the shortest distance from uninformed vertex to () . The children and the

children’s children are all called the descendants.

Figure 15, adapted from [18], shows the definitions in TBA. Vertex is the originator.

After three rounds, all vertices in the dark region are still uninformed. The informed

vertices, with shadowed backgrounds belong to (). Vertices and are

children of vertex , and vertex is a child of vertices and . In other words, vertices ,

 and are descendants of vertex .

24

Figure 15 Definitions in TBA.

At each round, the TBA computes a matching between the set of informed and

uninformed vertices and then disseminates the message to the uninformed vertices

using this matching. A modified breadth first search algorithm (BFS), from the vertices

on the bright border () towards the uninformed vertices, is used to compute the

matching. The modified BFS algorithm labels all uninformed vertices with (). As

described above, the distances () define the parent-child relationships between

the uninformed vertices. Then, for each uninformed vertex , its weight at round ,

denoted by (), is calculated using the strategy of the optimal broadcasting in trees.

If has no children, then () . Otherwise, if has children ,

25

arranged in decreasing order of their weights, () () (),

then the weight assigned to vertex at round is () () . In

the next step, a maximum weighted matching is computed between uninformed and

informed vertices using a heuristic that aims firstly to maximize the number of pairs of

vertices in the matching and secondly to maximize the weights of matched vertices. In

the last step, each matched informed vertex will inform its uninformed pair.

The number of rounds needed to inform all vertices is the broadcast time. From [18] we

learn that the time complexity of each round is (| | | |) (| |), resulting in a

total time complexity of (| |).

A refined version of the TBA calculates the weight of a child depending on the number

of parents, allowing TBA to obtain better results in some topologies. The refined version

has the same time complexity as the original heuristic.

Simulation results for commonly used topologies and other network models show that

TBA has good results in practice, even better than the Round Heuristic in most cases.

2.2.2.3 Minimum-Weight Cover Heuristic

The Minimum-Weight Cover (MWC) heuristic applies the MWC algorithm from [28] in

the layer graph of a connected graph (). To better understand the heuristic, we

will first define the layer graph and the MWC problem, subsequently combining them

together to solve the broadcasting problem.

26

Definition 1 Given an originator and any vertex , the layer of , denoted by (), is

the shortest distance from to . A graph () is called a layer graph of graph

 , where and for any edge () , () iff () () .[38]

Figure 16 shows an example of a layer graph where it is obvious that each two adjacent

layers of the layer graph constitute a bipartite graph.

Figure 16 (a) The original graph . (b) The layer graph

The Minimum-Weight Cover problem presented in [28] is stated below.

Let () be a bipartite graph with bipartition (), edge set , and a weight

function on the edges, and no isolated vertices. A control function

 , where () implies that () , and we say that controls

(or dominates) . Each vertex is called a server, and each vertex is

called a customer.

27

For every server , denote the customers dominated by by () (), and

denote the edges connecting with its customers by
 (()) . Assuming,

without loss of generality, that all the customers dominated by are ordered such that

 (
) (

) for every , the weight of is defined as

 ()

{

 (
) }

The MWC problem. Given a bipartite graph (), determine a control function

 whose weight () is minimal. The function is called the minimum

control function for G.

The problem is solved using a pseudo polynomial algorithm. The algorithm verifies

whether there exists a positive integer , and a control function , such that () ,

where () () | | . Starting from the algorithm

constructs a modified flow graph . In [28] it is proved that has a control function

with weight () , iff it is possible to push | | units of flow from the source to the

sink on .

28

Figure 17 (a) A bipartite graph . (b) Its corresponding flow graph .

The construction of the flow graph starts by adding a source vertex and a sink

vertex to the original graph . Then, assuming that is the maximal weight that is

less than or equal to of an edge incident to , duplicate into copies

and arrange the copies in an arbitrary order . For , the first copy of ,

create a directed edge () with capacity and a directed edge () with

capacity , from to every customer such that () . For the -th copy

of , , create a directed edge () with capacity and a directed edge ()

with capacity to all the customers such that () and () .

Finally, for each customer , create a directed edge () with capacity 1.

29

The MWC algorithm is given below.

1. Start with () and () | |.

2. Repeat

a. ⌈

⌉.

b. Construct the flow graph .

c. Compute the maximal flow on from source to sink.

d. If the maximal flow is | |

i. Then set

ii. Else set

3. Until .

4. Return the minimum control function corresponding to the maximal flow

computed on .

To solve the minimum time broadcasting problem, MWC heuristic first constructs a

layer graph by performing a breadth-first search starting from the originator in the

arbitrary graph and removing all the edges that have not been traversed during the

breadth-first search. Then, it performs the MWC algorithm between adjacent layers in

the layer graph as well. A spanning tree will be generated, and based on that we can

obtain the broadcast scheme.

Dinic’s maximum flow algorithm has complexity (| | | |). When applying Dinic’s

maximum flow algorithm to the MWC algorithm, the total time complexity of the MWC

algorithm is (| | | | | |).

30

2.2.2.4 Minimum-Weight Cover Modified Heuristic

In the previous section we looked at an algorithm that, for any bipartite graph Let

 () with bipartition (), edge set , and a weight function , finds the

minimum value of
 (

) . A modified MWC algorithm which aims

to minimize
 (

) is proposed in [38].

Starting from the control function generated by the MWC algorithm the

MWC-Modified algorithm first labels all servers with a weight

{

 (

)}. Then, the servers are ordered in descending order of their weights

 | |

. Finally, for each going from
 to {

 } ,

generate a new control function such that {
 } , keeping as

small as possible.

The MWC-Modified algorithm does not increase the complexity of the MWC algorithm.

The additional step that analyzes all servers, trying to reduce their weights by modifying

the control function, has a complexity of (| | | |). Therefore the total complexity of

the MWC-Modified is still (| | | | | |) when using Dinic’s maximum flow

algorithm for the MWC part.

2.2.2.5 Random Heuristic

The Random Heuristic uses the shortest paths to disseminate the message from the

originator to the rest of the graph. Similar to the MWC Heuristic, first, a layer graph is

constructed from the original graph. A parent-child relationship is defined between the

31

neighbor vertices in the layer graph as follows: is a child of if and are connected

and () () . Implicitly, is a parent of . The children of vertex are its

descendants, and the children of the descendants of are also descendants of . The

heuristic uses the concept of estimated broadcast time of a vertex in graph ,

denoted by (), and calculated using the following recursion.

1. () is equal to , if vertex has no children.

2. If has children, , and all these children are in the descending

order of () , i.e., () () , then () () ,

where .

In [19], a linear algorithm is presented to calculate () if the estimated broadcast

times of the children of , (), are given, where is a child of vertex , and

 . The complexity of this algorithm is ().

Furthermore, in [19] it is also proved that, for any vertex in a tree, () is exactly the

time that vertex broadcasts the message to all of its descendants.

The Random Heuristic is very simple and has the three steps below.

1. Construct the layer graph of the arbitrary graph by performing a breadth-

first search starting from the originator and removing all the edges that have

not been traversed during the breadth-first search.

32

2. Construct a spanning tree as follows. For every two adjacent layers of ,

randomly match children with only one of their parents and remove unused

edges between the two adjacent layers.

3. Calculate () for each vertex of the spanning tree.

Figure 18 (a) The original graph with originator a. (b) The layer graph . (c) and

(d) Possible broadcast schemes with different broadcast times, 3 and 4 respectively.

The broadcast time of in graph is ().

33

The complexity of the algorithm is the sum of the complexities of the three steps.

Constructing the layer graph takes (| |) time, constructing the spanning tree takes

 (| |) time since all vertices are randomly assigned a parent, and finally, calculating

 () for all vertices takes (| |) time. The total time complexity of the Random

Heuristic is (| |) (| |) (| |).

2.2.2.6 Semi-Random Heuristic

The Random Heuristic is very simple and has low complexity, but it has random steps,

therefore it could potentially be improved. The Semi-Random heuristic, described in

[19], replaces the random matching of children to a parent by a strategy that aims to

minimize () , for each parent on the same layer.

The Semi-Random heuristic presented in [19] is as follows.

1. Construct the layer graph of the arbitrary graph by performing a breadth-

first search starting from the originator and removing all the edges that have

not been traversed during the breadth-first search.

2. Assuming that has layers, label all vertices on layer with ().

3. For each layer starting from to , call procedure SRM.

4. The broadcast time of in graph is ().

The procedure SRM receives as input all vertices on layers and and is as follows.

1. On layer , for each parent do the following:

34

a. Match with those children that have different weights and remove all

edges that connect these children with other parents;

b. Label with () not including those unmatched children.

2. For each unmatched child, do the following:

a. Match it with the parent of the smallest weight, and remove its edges

connecting to other parents;

b. Update the weight () for its matched parent .

The Semi-Random heuristic has the same time complexity as the Random heuristic. The

complexity of the construction of the layer graph and the complexity of the procedure

SRM are both (| |). Their sum makes the total complexity of the Semi-Random

heuristic equal to (| |).

35

3 Proposed Heuristic Algorithm

In this chapter we will propose a new heuristic algorithm, which aims to improve the

existing heuristics. We have seen in the previous chapter that the Semi-Random

heuristic has a low complexity and good results in practice, but it still makes potentially

non optimal decisions by randomly matching children with parents. The new heuristic

proposes a new strategy to match children and parents from adjacent layers of the layer

graph, aiming to make less random decisions.

We recall the concept of estimated broadcast time of a vertex in graph , denoted by

 (), which we have already seen above in [19]. In this chapter, the term weight of

is interchangeably used to refer to the estimated broadcast time of The following

recursion is used to calculate ()

1. () is equal to , if vertex has no children.

2. If has children, , and all these children are in the descending

order of their weights () , i.e., () () , then ()

 () , where .

The new strategy to match children and parents from adjacent layers of the layer graph

attempts to minimize the () , for all parents on the same layer.

Additionally, we have observed that in sparse graphs, removing the edges that are not

needed while constructing the layer graph has a significant negative impact on the

overall performance of the algorithm. Therefore, our new heuristic does not remove

36

these edges completely; instead it keeps them as inactive and tries to take advantage of

them once the layer by layer matching of children to parents is completed.

3.1 Algorithm

The new heuristic algorithm is presented below.

1. Construct the layer graph of the arbitrary graph by performing a breadth-

first search starting from the originator and marking as inactive all the edges

that have not been traversed during the breadth-first search.

2. Assuming that has layers, numbered from to , label all the vertices

 of layer with ().

3. For each layer starting from to , call procedure Matching to match

children to one parent.

4. Perform procedure Broadcast and Improve on the resulting spanning tree.

5. The broadcast time of in graph is the number of rounds returned by

procedure Broadcast and Improve.

PROCEDURE Matching

Input: All vertices on layer and layer and all edges between these two layers in

the layer graph.

1. Order the parents by decreasing number of children and denote the parents by

 where has the most number of children and the least number

of children.

37

2. Start with an empty matching.

3. Add and all its children to the matching.

4. Match with all its children.

5. For each parent , starting from to , take the following actions:

a. Add and all its children to the matching.

b. Match with all its unmatched children at this step (those who have

as single parent)

c. Reposition in the matching such that the parents in the matching are

ordered by decreasing estimated broadcast time ().

d. Find the parent which gives () and denote

this parent as .

e. If is then remove all unused edges and go to step 5.

f. If the number of children common to both and is , then remove

all unused edges and go to step 5.

g. If () then remove all unused edges and go to step 5.

h. From the children common to both and , choose the maximum

weight child which has the same weight as another child of .

Remove the edge matching it to and match it to .

i. Go to step 5.c.

38

PROCEDURE Broadcast and Improve

Input: A spanning tree, including inactive edges between siblings and the originator .

Output: A broadcast scheme in the spanning tree and a number of rounds required to

broadcast a message in the spanning tree.

1. Inform originator and order its children in decreasing order of their .

2. While there remain uninformed vertices do

a. For each informed vertex do

i. If has uninformed children, inform its next uninformed child and

order the child’s children in decreasing order of their .

ii. Else if has uninformed siblings, inform the next uninformed

sibling that has maximum and order the children of that

sibling by decreasing order of their .

3. Output the broadcast scheme and the number of times the step 2 was

performed.

The procedure Matching is the most important part of the algorithm. Its main goal is to

assign children to parents in such a way that () becomes as small as

possible. To achieve this, at each step, the algorithm tries to remove children from the

parent with maximum at that point and assign to the parent processed at that step.

For a better understanding of the algorithm, an example of the procedure Matching is

presented below. Figure 19 shows a bipartite graph between two layers of the layer

39

graph representing the input to procedure Matching. The estimated broadcast time

for each child is labeled on the graph.

Figure 19 The original bipartite graph between two layers of the layer graph

After ordering the parents by decreasing number of children, parent with the most

children is added to the matching and its estimated broadcast time is calculated. Figure

20 shows the matching at this point.

Figure 20 Parent is added to the matching

Next step is shown in Figure 21. Parent , the next one in order of decreasing number of

children, is added to the matching together with all its children that have not already

been added before. In this case child is the only child of that has not already been

added, so gets added to the matching and matched with . The dashed lines represent

unused edges that adds to the matching and which could potentially be used in the

next steps to minimize the estimated broadcast time of .

40

Figure 21 Parent is added to the matching

At this point, will try to minimize the estimated broadcast time of by taking over one

of ’s children. Since the children with the same broadcast time are the ones that

increase the estimated broadcast time of their parent, the algorithm chooses from the

children with the same broadcast times, a child that has the max broadcast time among

the children that are common to and . In Figure 22 we see that is moved from to

 , hence the broadcast time of decreases to and the broadcast time of increases

to .

Figure 22 Child is moved from parent to

Since the broadcast time of is still less than the broadcast time of , the previous step

is repeated and child gets moved from to , making the broadcast times of and

equal to .

41

Figure 23 Child is moved from parent to parent

Because the broadcast time of the current parent is now equal to the broadcast time

of , the algorithm considers the processing of parent complete and moves to the

next parent. Parent and all its children and edges are added to the matching. Since

does not have any children of its own, its initial broadcast time is .

Figure 24 Parent is added to the matching

At this point, in decreasing order of their estimated broadcast time (), parents

 respectively have:

 () ()

 () ()

 () ()

42

hence

 () is given by parent , with () , therefore parent

 takes over child from parent and the resulting matching is shown in Figure 25.

Figure 25 Child is moved from parent to parent

Once again, in decreasing order of their estimated broadcast time (), parents

 respectively have:

 () ()

 () ()

 () ()

Since has now become one of the parents whose ()

 () , the processing of parent is considered complete and since there are no

more parents, the procedure terminates. The final matching is shown in Figure 26.

Figure 26 The final matching

43

3.2 Complexity

The first step of the algorithm is the breadth-first search to construct the layer graph

and its time complexity is (| | | |) (| |).

During the Procedure Matching, first, the parents must be sorted by decreasing number

of children. Assuming there are layers and parents on each layer, where ,

the complexity of sorting the parents on one layer is and the total complexity

for all layers is ∑

 . Since for all [] , | | , then of course

∑

 ∑ | |

 | | | |, hence in the worst case this step has

| | | | complexity.

In the second step, the matching requires calculating () for each parent , then

finding the parent which gives () and moving children from one

parent to another. From [38] we know that calculating () has complexity

 (()), where () is the degree of vertex , therefore the total complexity for

all parents is ∑ () (| |). Finding the parent that gives

 () has complexity () where is the number of parents on one layer, hence the

total complexity for all layers is the number of vertices in the graph, (| |). Moving

children from parent to parent looks in the worst case at each one of the

children of and it searches for a child of with the same weight as the respective

child of . Each binary search takes at most (| |), and needs to be done for at

most all edges, hence the total complexity of this step is (| | | |).

44

The total complexity of the procedure Matching is (| | | | | | | |)

 (| | | |).

The last step is the procedure Broadcast and Improve which performs a broadcast using

the spanning tree generated in the previous step and verifies if idle edges between

vertices on the same layer can be used to improve the broadcast time. In the worst

case, the procedure goes through all the edges of the graph, hence the complexity of

this procedure is (| |).

Finally, the total complexity of the algorithm is the sum of the complexities of the

procedures above (| |) (| | | |) (| | | |).

45

4 Simulation Results and Comparisons with other Heuristics

This chapter focuses on the evaluation of the new heuristic in practice, presenting its

results when run on commonly used network topologies, and on other network

topologies, the GT-ITM topology, the Tiers topology, and the BRITE topology from the

NS-2 simulator, the most popular network simulator in the network research

community.

The results we obtained are compared with the results of all the heuristics presented in

the previous chapters

 The result of Round Heuristic from [5] (RH)

 The Tree Based Algorithm obtained from [18] (TBA);

 The Random algorithm from [38] (P-R);

 The Semi-Random algorithm [38] (S-R);

 The Minimum-Weight Cover heuristic from [38] (MWC);

 The Minimum-Weight Cover Modified heuristic [38] (MWC-M)

The results are presented in table format with each algorithm on its individual column.

In addition to the heuristics abbreviations above, the following abbreviations are also

used:

 OPT: The optimal broadcast time in the respective topology;

 LOW: The best known theoretical lower bound on the broadcast time in the

respective topology;

46

 UP: The best known theoretical upper bound on the broadcast time in the

respective topology;

 D: The dimension of the topology;

In statistics, a confidence interval (CI) is a kind of interval used to indicate the reliability

of an estimate of a population parameter. Instead of estimating the parameter by a

single value, an interval likely to include the parameter is given. How likely the interval is

to contain the parameter is determined by the confidence level or confidence

coefficient. Increasing the desired confidence level will widen the confidence interval. A

confidence interval is always qualified by a particular confidence level, usually expressed

as a percentage; thus one speaks of a ”95% confidence interval”. The end points of the

confidence interval are referred to as confidence limits.[41]

We performed the simulation of the new heuristic 20 times for each graph. Since all

samples were of the same value, there was no need to compute the confidence

intervals, which is the first advantage of the new heuristic over the existing Random and

Semi-Random algorithms.

4.1 Commonly Used Topologies

The commonly used topologies studied in this section are Hypercube (), Cube

Connected Cycles (), Shuffle-Exchange (), deBruijn () and Butterfly ().

4.1.1 Hypercube

We have already seen above that the broadcast time of the Hypercube of dimension

is exactly equal to . The optimal broadcast times of the Hypercube from [24] together

47

with the simulation results of the previous mentioned heuristics and the New Heuristic

are presented in Table 1.

D OPT TBA MWC MWC-M P-R S-R New H

3 3 3 4 3 3 3 3

4 4 4 5 5 4 4 4

5 5 5 6 6 6 5 5

6 6 6 8 9 8 7 6

7 7 7 10 10 10 9 7

8 8 9 12 11 12 11 8

9 9 10 15 13 14 14 9

10 10 11 16 16 17 15 10

11 11 12 18 17 19 18 11

12 12 13 20 20 22 20 12

13 13 14 - - 24 22 13

14 14 15 - - 27 25 14

15 15 16 - - 30 27 15

16 16 17 - - 32 30 16

17 17 18 - - 35 32 17

18 18 19 - - 38 34 18

19 19 20 - - 41 37 19

20 20 21 - - 43 39 20

Table 1 Simulation results in Hypercubes

Figure 27 shows a chart of the simulation results in Hypercubes and we can immediately

observe that the New Heuristic provides optimal broadcast time for all dimensions

where simulations were run. It clearly performs much better than all the other previous

heuristics. The only previous heuristic that has close performance is the Tree Based

Algorithm, whose broadcast time is equal to or just 1 more than the optimal broadcast

time. With similar time complexity as the Tree Based Algorithm and optimal broadcast

time independent of the dimension, we can surely say that the New Heuristic is very

suitable for Hypercubes.

48

Figure 27 Simulation chart in Hypercubes

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

TBA 3 4 5 6 7 9 10 11 12 13 14 15 16 17 18 19 20 21

MWC 4 5 6 8 10 12 15 16 18 20

MWC-M 3 5 6 9 10 11 13 16 17 20

P-R 3 4 6 8 10 12 14 17 19 22 24 27 30 32 35 38 41 43

S-R 3 4 5 7 9 11 14 15 18 20 22 25 27 30 32 34 37 39

New H 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

5

10

15

20

25

30

35

40

45

50

49

4.1.2 Cube Connected Cycles

The theoretical lower and upper bound in Cube Connected Cycles are presented in [24].

The simulation results of the New Heuristic are always lower than the theoretical upper

bound, usually 1 round less than the upper bound. Compared to the Round Heuristic

and the Tree Based Algorithm, which are the previous best heuristics in practice, the

New Heuristic has similar results with the exception of dimension 5, 6, and 7. For higher

dimensions the results are mostly the same as the best heuristics.

D LOW UP RH TBA MWC MWC-M P-R S-R New H

3 6 7 6 6 7 6 6 6 7

4 9 9 9 9 10 10 9 9 9

5 11 12 11 11 12 12 11 11 12

6 13 14 13 13 14 14 14 14 14

7 16 17 16 16 17 16 16 16 17

8 18 19 18 18 20 19 19 19 18

9 21 22 21 21 22 22 21 21 21

10 23 24 23 23 24 24 24 24 23

11 26 27 26 26 - - 27 27 26

12 28 29 28 28 - - 29 29 28

13 31 32 31 31 - - 32 32 31

14 33 34 33 33 - - 35 34 34

15 36 37 - 36 - - 37 37 36

16 38 39 - 39 - - 40 40 39

Table 2 Simulation Results in Cube-Connected Cycles

50

Figure 28 Simulation chart in Cube-Connected Cycles

3 4 5 6 7 8 9 10 11 12 13 14 15 16

RH 6 9 11 13 16 18 21 23 26 28 31 33

TBA 6 9 11 13 16 18 21 23 26 28 31 33 36 39

MWC 7 10 12 14 17 20 22 24

MWC-M 6 10 12 14 16 19 22 24

P-R 6 9 11 14 16 19 21 24 27 29 32 35 37 40

S-R 6 9 11 14 16 19 21 24 27 29 32 34 37 40

New H 7 9 12 14 17 18 21 23 26 28 31 34 36 39

0

5

10

15

20

25

30

35

40

45

51

4.1.3 Shuffle-Exchange

The optimal broadcast times in Shuffle-Exchange graphs are presented in [24].

Compared with the previous algorithms with the best performance, the Round Heuristic

and the Tree Based Algorithm, the New algorithm has the same performance with the

exception of dimensions 9, 10 and 11. When the dimension is less or equal than 8, the

resulting broadcast times are optimal. From dimension 9 and up, the broadcast times

are always 1 round more than the optimal, for the New Algorithm, as well as for the

previous best algorithms, the Round Heuristic and the Tree Based Algorithm. Table 3

shows the simulation results in Shuffle-Exchange graphs.

D OPT RH TBA MWC MWC-M P-R S-R New H

3 5 5 5 5 5 5 5 5

4 7 7 7 7 7 7 7 7

5 9 9 9 10 9 9 9 9

6 11 11 11 12 12 11 11 11

7 13 13 13 14 14 13 13 13

8 15 15 15 16 16 15 15 15

9 17 17 17 18 18 18 18 18

10 19 19 19 20 20 20 20 20

11 21 21 21 22 22 22 22 22

12 23 24 24 24 24 24 24 24

13 25 26 26 - - 26 26 26

14 27 28 28 - - 28 28 28

15 29 - 30 - - 30 30 30

16 31 - 32 - - 33 32 32

17 33 - 34 - - 35 34 34

18 35 - 36 - - 37 36 36

19 37 - 38 - - 39 38 38

20 39 - 40 - - 41 40 40

Table 3 Simulation results of different heuristics in Shuffle-Exchange graphs

52

In the chart in Figure 29 we notice even better the similar performance of the new

algorithm versus previous ones, since the plots of the simulation results are mostly

overlapping.

Figure 29 Simulation chart in Shuffle-Exchange graphs

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

RH 5 7 9 11 13 15 17 19 21 24 26 28

TBA 5 7 9 11 13 15 17 19 21 24 26 28 30 32 34 36 38 40

MWC 5 7 10 12 14 16 18 20 22 24

MWC-M 5 7 9 12 14 16 18 20 22 24

P-R 5 7 9 11 13 15 18 20 22 24 26 28 30 33 35 37 39 41

S-R 5 7 9 11 13 15 18 20 22 24 26 28 30 32 34 36 38 40

New H 5 7 9 11 13 15 18 20 22 24 26 28 30 32 34 36 38 40

0

5

10

15

20

25

30

35

40

45

53

4.1.4 DeBruijn

Table 4 shows the simulation results of different heuristics in DeBruijn graphs as well as

the lower and upper bounds of DeBruijn graphs. The lower bounds were calculated

using the formulas in [27], and they only hold asymptotically. For this reason, Table 4

shows for dimensions 4 and 5 some broadcast times that are less than the given lower

bounds.

The simulation results of the New algorithm are the same as the results of the Semi-

Random algorithm. For dimensions lower than 17, they do not exceed the upper bound.

The Round Heuristic and Tree Based Algorithm have, again, the best results, equal or

close to the lower bounds. For most dimensions, the difference between the New

algorithm and the best results is at most 2 rounds.

54

D LOW UP RH TBA MWC MWC-M P-R S-R New H

3 4 6 4 4 4 4 4 4 4

4 6 8 5 5 5 5 5 5 5

5 7 9 7 6 7 7 7 7 7

6 8 11 8 8 8 8 8 8 8

7 10 12 9 9 10 10 10 10 10

8 11 14 11 11 12 12 12 12 12

9 12 15 12 12 14 14 14 13 13

10 14 17 14 14 15 15 15 15 15

11 15 18 15 15 17 17 17 17 17

12 16 20 17 17 19 19 19 19 19

13 18 21 18 18 - - 21 20 20

14 19 23 20 20 - - 22 22 22

15 20 24 - 21 - - 24 24 24

16 22 26 - 23 - - 26 26 26

17 23 27 - 25 - - 28 28 28

18 24 29 - 26 - - 30 30 30

19 26 30 - 28 - - 32 32 32

20 27 32 - 29 - - 34 33 34

Table 4 Simulation results in DeBruijn graphs

The charts in Figure 30 show that the Round Heuristic and the Tree Based Algorithms

have the best results and that the results of the New algorithm and the Semi-Random

one are overlapping.

55

Figure 30 Simulation chart in DeBruijn graphs

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

RH 4 5 7 8 9 11 12 14 15 17 18 20

TBA 4 5 6 8 9 11 12 14 15 17 18 20 21 23 25 26 28 29

MWC 4 5 7 8 10 12 14 15 17 19

MWC-M 4 5 7 8 10 12 14 15 17 19

P-R 4 5 7 8 10 12 14 15 17 19 21 22 24 26 28 30 32 34

S-R 4 5 7 8 10 12 13 15 17 19 20 22 24 26 28 30 32 33

New H 4 5 7 8 10 12 13 15 17 19 20 22 24 26 28 30 32 34

0

5

10

15

20

25

30

35

40

56

4.1.5 Butterfly

Table 5 shows the simulation results of the different algorithms in Butterfly graphs. The

lower and upper bounds are the ones presented in [24]. The New algorithm performs

similar to the Semi-Random algorithm for lower dimension, up to 7. As the dimension

increases, the New algorithm is consistently 1 round better than the Semi-Random

algorithm. The best algorithms are again the Round Heuristic and the Tree Based

Algorithm. The difference between the best results and the results of the New algorithm

varies between 1 and 3 rounds, increasing with higher dimensions.

D LOW UP RH TBA MWC MWC-M P-R S-R New H

3 5 5 5 5 6 6 5 5 6

4 7 7 7 7 9 8 8 8 8

5 8 9 9 9 11 10 10 10 10

6 10 11 10 10 12 12 12 12 12

7 11 13 12 12 14 14 14 14 14

8 13 15 14 14 16 16 16 16 15

9 15 17 16 16 18 18 18 18 18

10 16 19 17 18 20 20 20 20 19

11 18 21 19 19 - - 22 22 21

12 19 23 22 21 - - 24 24 23

13 21 25 23 23 - - 26 26 25

14 23 27 24 25 - - 29 28 27

15 24 29 - 27 - - 31 30 29

16 26 31 - 29 - - 33 32 31

Table 5 Simulation results in Butterfly graphs

Plotting the simulation results yields the chart in Figure 31, which shows that although

the New algorithm performs slightly better than the Semi-Random algorithm, it still

does not achieve broadcast times as good as the Round Heuristic or the Tree Based

Algorithm.

57

Figure 31 Simulation chart in Butterfly graphs

3 4 5 6 7 8 9 10 11 12 13 14 15 16

RH 5 7 9 10 12 14 16 17 19 22 23 24

TBA 5 7 9 10 12 14 16 18 19 21 23 25 27 29

MWC 6 9 11 12 14 16 18 20

MWC-M 6 8 10 12 14 16 18 20

P-R 5 8 10 12 14 16 18 20 22 24 26 29 31 33

S-R 5 8 10 12 14 16 18 20 22 24 26 28 30 32

New H 6 8 10 12 14 15 18 19 21 23 25 27 29 31

0

5

10

15

20

25

30

35

58

4.2 Other Topologies

This section discusses the broadcasting problem in different network models that are

popular in the research in interconnection networks community. The simulation results

of the New algorithm are presented and comparisons are made with the existing

algorithms we previously discussed, Round Heuristic, the Tree Based Heuristic, the MWC

and MWC-M heuristics, and the Random and Semi-Random heuristic.

In this thesis we focus on four different network models, GT-ITM Random [42], GT-ITM

Transit-Stub [42], Tiers [10], and BRITE Top-down Hierarchical models [31]. These

network models have been developed by different research groups and they can all be

integrated with the NS-2 simulator. The NS-2 is a simulator used for research in

interconnection networks and one of its many features is its ability to generate

topologies based on different network models.

GT-ITM stands for Georgia Tech Internetwork Topology Models and contains the two

models GT-ITM Random and Transit-Stub.

The GT-ITM Random model uses a pure random generator, which randomly places

vertices on a plane and connects each pair of vertices based on a probability . It is

obvious that this network model is driven by the probability . Although this random

model does not correspond to any real network, it is still presented and discussed in the

network research community.

The GT-ITM Transit-Stub models the Internet. Small networks, such as private company

or campus networks called LANs (Local Area Networks) are formed. These are then

59

typically connected together into Metropolitan Area Networks (MANs), which can

connect multiple LANs in a larger area, such as city, or Wide Area Networks (WANs),

which can be extended to LANs from an entire country or the whole world. The Transit-

Stub model regards each independent network as a routing domain. All the vertices

from one independent network are part of the same routing domain and share the

same routing information. Routing domains are classified in two types, stub domains

and transit domains. Stub domains are local and are concerned with local domain traffic,

corresponding to the LANs in the Internet model. Transit domains are global, their goal

is to interconnect stub domains and correspond to the MANs or WANs in the Internet

model.

Stub domains are usually not connected directly to each other, although it can happen;

but typically stub domains are first connected directly to one or multiple transit domains

and from thereon indirectly to other stub domains. Depending on whether a stub

domain is connected to one or multiple transit domains, the stub domain is called

single-homed or respectively multi-homed. A gateway node in the stub domain is

connected to a node in the transit domain, which in turn can connect to another node in

the same transit domain or in another transit domain or to other gateway nodes from

other stub domains. The transit domain nodes are also called backbone nodes.

A method to produce transit-stub graphs by interconnecting transit and stub domains is

presented in [43]. This method first generates a connected random graph; each node in

that graph represents an entire transit domain. Each node in that graph is then replaced

60

by another connected random graph, representing the backbone topology of one transit

domain. Next, for each node in each transit domain, it generates a number of connected

random graphs representing the stub domains attached to that node. Each of these stub

domains has an edge to its transit node. Finally, it adds some extra connectivity, in the

form of edges between pairs of nodes, one from a transit domain and one from a stub

or one from each of two different stub domains. Method parameters control the

number of extra edges of each type. Figure 32, adapted from [43], shows an example of

such a structure.

Figure 32 Example of Internet Domain Structure

The size of the graph (number of nodes) and the distribution of nodes between transit

and stub domains in this method are controlled by the following parameters:

 The number of transit domains

61

 The average number of nodes per transit domain

 The average number of stub domains per transit node

 The number of average nodes per stub domain

The following parameters control the total number of edges in the GT-ITM Transit-Stub

model:

 The number of transit-stub and stub-stub edges

 The probability of an edge between each pair of nodes in the transit domains

and stub domains

The Tiers model is one of the most realistic models for generating random networks.

Similar to the GT-ITM Transit-Stub, it has the hierarchical domain structure that is

present in the Internet. The three levels of hierarchy, the WAN, MAN and LAN levels, are

modeled, corresponding to transit domains, stub domains, and LANs attached to stub

nodes. The three levels are also called tiers, hence the name Tiers model. The model

only supports one WAN.

The Tiers model creates the three hierarchy levels one by one, WAN first, then MANs

and finally LANs. The various types of networks are then interconnected according to a

given set of parameters. WANs and MANs are created by placing nodes at random in a

grid and connecting them in sub-graphs by joining all the nodes in a single WAN or MAN

domain using a minimum spanning tree. Since minimum spanning trees are sometimes

used in reality as the basis for laying out large networks, the use of a minimum spanning

tree makes the Tiers model more realistic. LANs such as Ethernet and Token Rings are

62

modeled as star topologies. This significantly reduces the number of edges in the graph

and reflects the lack of physical redundancy in most LANs. The LAN networks are

created by choosing one node in each LAN as the center of the star and connecting

every other node to it with a single edge.

The set of parameters below is used to generate a Tiers model network:

 , the number of WANs and , the number of nodes in a WAN. is taken

as 1 for simplicity.

 , the number of corporate/institutional networks (MANs) and , the number

of nodes per MAN.

 , the number of LANs per MAN and , the number of nodes per LAN.

The total number of nodes in the graph, N, is given by

The other parameters of the model are:

 The degree of intranetwork redundancy in the WAN (), MAN () and LAN

(). This is expressed simply as the degree (number of directed edges) from a

node to another node of the same type. So is usually 1, might be 2 and

 could be 3.

 The degree of internetwork redundancy between networks. This is the number

of connections between a MAN and a WAN () or a LAN and a MAN ().

63

Figure 33 and Figure 34, adapted from [8], show a typical full internetwork, and

respectively a larger internetwork as generated by Tiers. The first one has one WAN

with eight nodes, three MANs with three nodes each and two LANs per MAN with three

nodes per LAN. The second one is larger and the endpoints of the links to MAN and LAN

nodes have been omitted for clarity, so only the WAN nodes are seen clearly.

Figure 33 A typical Tiers internetwork

64

Figure 34 A large Tiers internetwork

GT-ITM Transit-Stub and Tiers implementations generate networks whose topology

resembles typical internetworks. Both implementations are based on the explicitly

hierarchical modeling approach described in [8]. Tiers introduces a different method for

connecting the nodes in a network, by using a minimum spanning tree, which

guarantees connectivity, and produces more realistic networks at the WAN scale. The

Transit-Stub implementation uses a smaller set of parameters to control the different

aspects of the network, hence takes a more probabilistic approach than that of Tiers. In

both implementations, most of the parameters can be expected to remain constant

between runs of generated networks.

65

Finally, we briefly present BRITE, the Boston university Representative Internet

Topology gEnerator, which is a topology generation tool that provides a researcher with

a wide variety of generation models, as well as the ability to easily extend such a set by

combining existing models or adding new ones [31]. BRITE has the capability to work

with many different generation models. Some of them are very similar and share

implementation code, and others are completely different and share no functionality.

Some can be imported models, such as GT-ITM or Tiers, others can be generated by

BRITE, e.g. Flat Router-level Models, Flat AS-level Models, and Top-down Hierarchical

Models.

Flat topology models are the early models where the nodes are randomly placed on a

Euclidean plane irrespective of any hierarchy order among them as opposed to later

hierarchical topology models such as the Tiers and the Transit-Stub. BRITE generates

Flat Router-level models in two major steps. First, the nodes are placed on a Euclidean

plane randomly or in a heavy-tailed way. When node placement is random, each node is

placed in a randomly selected location of the plane. When the placement is heavy-

tailed, BRITE divides the plane into squares. Each of these squares is assigned a number

of nodes drawn from a heavy-tailed distribution. Once that value is assigned, then that

many nodes are placed randomly in the square. Second, edges are added to the graph in

one of two ways:

 Using one of the most commonly used models for generating graphs, Waxman’s

probability model [39], which considers all possible pairs () of nodes and

66

uses the probability function , where () ()⁄ to create an edge,

where is the Euclidean distance between the nodes and , is the maximum

possible distance between the two nodes and and are parameters in the

range , .

 Using the Barabasi-Albert (BA) [3] model, which connects the nodes according to

an incremental growth approach. Incremental growth refers to growing

networks that are formed by the continual addition of new nodes, and thus the

gradual increase in the size of the network. When a node is added to the

network, the probability that it connects to a node already in the network is

given by:

 ()

∑

where is the degree of the target node, is the set of nodes already in the

network and ∑ is the sum of the degrees of all nodes that are already in

the network.

Flat AS-level Models represent AS-level topologies. An Autonomous System (AS)-level

network is a network under a single administration domain. The AS-level models

currently provided by BRITE are very similar to the models provided for generating

router-level topologies. The main difference between these router-level and AS-level

models is the fact that AS models place AS nodes in the plane and these can contain

associated topologies.

67

Finally, BRITE also supports generation of hierarchical topologies, currently only of two-

level hierarchical topologies. However, two-level hierarchical topologies are in

concordance to the two level routing hierarchy that has persisted in the Internet since

ARPANET evolved into a network of networks interconnecting multiple autonomous

systems.

Figure 35 BRITE Top-down hierarchical model

BRITE uses a top-down approach to generate hierarchical topologies. Figure 35 adapted

from [31], shows a top-down hierarchical model. BRITE first generates an AS-level

topology (1) using one of the available flat AS-level models (e.g. Waxman, BA, etc.).

Next, for each node in the AS-level topology BRITE will generate a router-level topology

(2) using a generation model from the available flat models that can be used at the

68

router-level. The router-level topologies are interconnected using one of four edge

connection mechanisms, borrowed from the popular GT-ITM topology generator. The

main goal is to gradually increase the set of edge connection methods with models that

reflect what actually happens in Internet topologies.

4.2.1 GT-ITM Random Model

The results of our simulations in the GT-ITM Random model are presented in this

chapter. Our results in the GT-ITM graph with 200 vertices are shown in Table 6 and

Figure 36, which also show the data collected by the previous algorithms we already

discussed. The parameter P is an input parameter to the GT-ITM topology generator and

represents the probability of having an edge between each pair of vertices. Obviously, a

higher probability leads to more edges in the graph.

We can observe that for graphs with small number of edges (small P) the New heuristic

performs slightly worse than previous heuristics, but as the number of edges increases,

the New heuristic tends to perform better than all other heuristics except for the Round

Heuristic and the Tree Based Algorithm. Compared to these two, the result of the New

heuristic are only one round more, but the New Heuristic has the advantage of a much

lower time complexity than the Round Heuristic.

69

P Edge RH TBA MWC MWC-M P-R S-R New H

0.015 316 10 10 11 11 10 10 11

0.016 346 10 10 11 11 10 10 12

0.017 373 10 10 11 11 10 10 11

0.018 388 9 9 11 11 10 10 10

0.019 391 11 11 10 10 10 10 12

0.02 411 9 9 10 10 10 10 10

0.022 423 9 9 10 10 10 10 10

0.024 475 8 8 10 11 10 10 9

0.025 494 9 8 11 11 10 10 10

0.026 507 8 8 11 10 10 10 9

Table 6 Simulation results in GT-ITM Random model with 200 vertices

Figure 36 Simulation chart in GT-ITM Random model with 200 vertices

The simulation results in the GT-ITM Random model with 500 vertices are shown in

Table 7 and Figure 37. In this case the Tree Based Algorithm has the best results, with

the Round Heuristic following closely, whereas the results of all other previous

316 346 373 388 391 411 423 475 494 507

RH 10 10 10 9 11 9 9 8 9 8

TBA 10 10 10 9 11 9 9 8 8 8

MWC 11 11 11 11 10 10 10 10 11 11

MWC-M 11 11 11 11 10 10 10 11 11 10

P-R 10 10 10 10 10 10 10 10 10 10

S-R 10 10 10 10 10 10 10 10 10 10

New H 11 12 11 10 12 10 10 9 10 9

7

8

9

10

11

12

13

70

algorithms climb up slowly as the number of edges increases. In contrast, the

performance of the New algorithm gets better with the increase in number of edges and

when the number of edges is 2074, while the Semi-Random algorithm’s results are

almost twice those of the Round Heuristic and the Tree Based Algorithm, the

performance of the New algorithm gets closer to the best results with only one round

more. Compared to the Round Heuristic, the New Heuristic has the advantage of a much

lower time complexity; therefore the only previous algorithm with similar time

complexity that beats the New heuristic is TBA. However, compared to the TBA

algorithm, the New algorithm has the advantage that approximately one half of the

vertices are informed via a shortest path from the broadcast originator, while the rest of

the vertices receive the message via a path at most three hops longer.

P Edge RH TBA MWC MWC-M P-R S-R New H

0.008 1003 10 10 13 13 12 12 13

0.009 1198 11 10 13 13 12 12 12

0.01 1238 10 10 13 13 12 12 12

0.011 1413 11 10 13 13 13 13 11

0.012 1481 10 10 13 13 13 13 11

0.014 1725 10 10 13 14 13 13 11

0.015 1830 10 9 14 14 14 14 11

0.016 2074 9 9 15 16 15 15 10

Table 7 Simulation results in GT-ITM Random model with 500 vertices

71

Figure 37 Simulation results in GT-ITM Random model with 500 vertices

4.2.2 GT-ITM Transit-Stub Model

We studied two types of GT-ITM Transit-Stub graphs, one with 600 vertices and the

second with 1056 vertices.

The GT-ITM Transit-Stub graphs with 600 vertices were generated using the same

parameters used in [38] as follows. The initial seed was 47. Each graph had 3 stub

domains per transit node, with no extra transit-stub or stub-stub edges. There were 3

transit domains, each of which had 8 nodes, and an edge between each pair of nodes

with probability 0.5. Meanwhile, each stub domain had (on average) 8 nodes, and edge

probability was also 0.5. The number of vertices is given by () .

1003 1198 1238 1413 1481 1725 1830 2074

RH 10 11 10 11 10 10 10 9

TBA 10 10 10 10 10 10 9 9

MWC 13 13 13 13 13 13 14 15

MWC-M 13 13 13 13 13 14 14 16

P-R 12 12 12 13 13 13 14 15

S-R 12 12 12 13 13 13 14 15

New H 13 12 12 11 11 11 11 10

8

9

10

11

12

13

14

15

16

17

72

The simulation results in graphs with increasing number of edges are presented below

in Table 8 and Figure 38. The results fluctuate a lot between all the algorithms, but they

remain in a small range between 13 and 16 rounds for all number of edges. For this

model, the best results are given by the Random and Semi-Random algorithms. The

New algorithm matches the best results in some cases and in most other cases performs

just one round worse than the best one. However, compared to the Semi-Random

algorithm, the New algorithm has the advantage that it is more reliable, producing the

same results for repeated runs, whereas the results of the Semi-Random algorithm can

vary between runs. Compared to the TBA algorithm, the New algorithm has the

advantage that approximately one half of the vertices are informed via a shortest path

from the broadcast originator, while the rest of the vertices receive the message via a

path at most three hops longer.

Edge RH TBA MWC MWC-M P-R S-R New H

1169 14 13 14 13 13 13 14

1190 14 14 14 14 13 13 13

1200 16 15 14 14 13 13 15

1206 14 14 14 14 14 14 15

1219 15 14 14 14 13 13 15

1222 15 14 15 15 14 14 14

1231 14 13 14 14 13 13 14

1232 14 13 14 14 13 13 14

1247 13 14 14 14 14 14 14

1280 14 13 14 14 13 14 15

Table 8 Simulation results in GT-ITM Transit-Stub model with 600 vertices

73

Figure 38 Simulation results in GT-ITM Transit-Stub model with 600 vertices

The GT-ITM Transit-Stub graphs with 1056 vertices were generated using the same

parameters used in [38] as follows. The initial seed was 47. Each graph had 4 stub

domains per transit node, with no extra transit-stub or stub-stub edges. There were 4

transit domains, each of which had 8 nodes, and an edge between each pair of nodes

with probability 0.5. Meanwhile, each stub domain had (on average) 8 nodes, and edge

probability was also 0.5. The number of vertices is given by ()

 .

Once again, simulation results in graphs with increasing number of edges are presented

below in Table 9 and Figure 39. The results are similar to the GT-ITM Transit-Stub model

with 600 vertices in the sense that the results fluctuate a lot between all the algorithms.

1169 1190 1200 1206 1219 1222 1231 1232 1247 1280

RH 14 14 16 14 15 15 14 14 13 14

TBA 13 14 15 14 14 14 13 13 14 13

MWC 14 14 14 14 14 15 14 14 14 14

MWC-M 13 14 14 14 14 15 14 14 14 14

P-R 13 13 13 14 13 14 13 13 14 13

S-R 13 13 13 14 13 14 13 13 14 14

New H 14 13 15 15 15 14 14 14 14 15

12

12.5

13

13.5

14

14.5

15

15.5

16

16.5

74

Again, for this model, the best results are given by the Random and Semi-Random

algorithms. The New algorithm matches the best results in some cases and in most

other cases performs just one round worse than the best one. However, compared to

the Semi-Random algorithm, the New algorithm has the advantage that it is more

reliable, producing the same results for repeated runs, whereas the results of the Semi-

Random algorithm can vary between runs. Compared to the TBA algorithm, the New

algorithm has the advantage that approximately one half of the vertices are informed

via a shortest path from the broadcast originator, while the rest of the vertices receive

the message via a path at most three hops longer.

Edge RH TBA MWC MWC-M P-R S-R New H

2115 17 16 16 17 16 16 16

2121 17 17 16 15 15 15 16

2142 16 15 16 15 15 15 16

2151 15 15 16 15 15 15 17

2169 17 17 16 16 15 15 15

2177 18 17 16 16 16 16 16

2185 16 16 15 15 15 15 16

2219 17 16 15 16 15 15 15

2220 15 15 15 15 14 14 16

2230 16 15 16 16 15 15 16

Table 9 Simulation results in GT-ITM Transit-Stub model with 1056 vertices

75

Figure 39 Simulation results in GT-ITM Transit-Stub model with 1056 vertices

4.2.3 Tiers Model

We studied two types of Tiers graphs, one with 355 vertices and the second with 1105

vertices. The parameters for these graphs are the same as in [38] and listed in Table 10

and Table 11. The graphs with 355 vertices have one WAN, ten MANs and five LANs,

while graphs of 1105 vertices have one WAN, ten MANs and ten LANs.

2115 2121 2142 2151 2169 2177 2185 2219 2220 2230

RH 17 17 16 15 17 18 16 17 15 16

TBA 16 17 15 15 17 17 16 16 15 15

MWC 16 16 16 16 16 16 15 15 15 16

MWC-M 17 15 15 15 16 16 15 16 15 16

P-R 16 15 15 15 15 16 15 15 14 15

S-R 16 15 15 15 15 16 15 15 14 15

New H 16 16 16 17 15 16 16 15 16 16

13

14

15

16

17

18

19

76

Edge

354 1 10 5 5 10 5 1 1 1 1 1

414 1 10 5 5 10 5 1 1 1 2 2

474 1 10 5 5 10 5 1 1 1 3 3

357 1 10 5 5 10 5 2 1 1 1 1

477 1 10 5 5 10 5 2 1 1 3 3

535 1 10 5 5 10 5 2 1 1 4 4

422 1 10 5 5 10 5 3 2 1 2 2

482 1 10 5 5 10 5 3 2 1 3 3

541 1 10 5 5 10 5 3 2 1 4 4

Table 10 Parameters for Tiers model with 355 vertices

Edge

1214 1 10 10 5 10 10 1 1 1 2 2

1324 1 10 10 5 10 10 1 1 1 3 3

1447 1 10 10 5 10 10 1 1 1 4 4

1106 1 10 10 5 10 10 2 2 1 1 1

1216 1 10 10 5 10 10 2 2 1 2 2

1326 1 10 10 5 10 10 2 2 1 3 3

1110 1 10 10 5 10 10 3 2 1 1 1

1220 1 10 10 5 10 10 3 2 1 2 2

1331 1 10 10 5 10 10 3 2 1 3 3

1449 1 10 10 5 10 10 2 2 1 4 4

Table 11 Parameters for Tiers model with 1105 vertices

In Table 12 and Figure 40 we present the simulation results in Tiers graphs with 355

vertices and increasing number of edges from 354 to 541. We can observe that the

results of all the algorithms fluctuate a lot, and it is hard to point out which one works

the best. The New algorithm has poor performance for low number of edges, but as the

number of edges increases, its performance gets similar to the previous algorithms.

Also, compared to the Semi-Random algorithm, the New algorithm has the advantage

that it is deterministic, producing the same results for repeated runs, whereas the

results of the Semi-Random algorithm can vary between runs.

77

Edge RH TBA MWC MWC-M P-R S-R New H

354 17 17 16 16 16 16 18

414 15 14 14 14 14 14 17

474 14 13 14 14 14 14 17

357 17 17 16 16 16 16 19

477 15 14 14 14 14 14 16

535 16 15 13 13 13 13 17

422 15 14 14 14 14 14 15

482 14 13 14 14 14 14 14

541 14 14 14 13 13 13 14

Table 12 Simulation results in Tiers model with 355 vertices

Figure 40 Simulation results in Tiers model with 355 vertices

In Table 13 and Figure 41 we present the simulation results in Tiers graphs with 1105

vertices and different number of edges between 1106 and 1449. Once again, we can

354 414 474 357 477 535 422 482 541

RH 17 15 14 17 15 16 15 14 14

TBA 17 14 13 17 14 15 14 13 14

MWC 16 14 14 16 14 13 14 14 14

MWC-M 16 14 14 16 14 13 14 14 13

P-R 16 14 14 16 14 13 14 14 13

S-R 16 14 14 16 14 13 14 14 13

New H 18 17 17 19 16 17 15 14 14

12

13

14

15

16

17

18

19

20

78

observe that the results of all the algorithms fluctuate a lot. The Random and Semi-

Random algorithms give best results in seven of the ten graphs, and the New algorithm

gives the best results in three graphs, the ones with 1447, 1216, and 1220 edges.

However, compared to the Semi-Random algorithm, the New algorithm has the

advantage that it is deterministic, producing the same results for repeated runs,

whereas the results of the Semi-Random algorithm can vary between runs. Compared to

the TBA algorithm, the New algorithm has the advantage that approximately one half of

the vertices are informed via a shortest path from the broadcast originator, while the

rest of the vertices receive the message via a path at most three hops longer.

Edge RH TBA MWC MWC-M P-R S-R New H

1214 22 21 21 21 21 21 23

1324 23 21 21 20 20 20 21

1447 22 21 22 22 22 22 21

1106 24 24 21 21 21 21 23

1216 22 21 21 21 21 21 20

1326 23 21 20 21 20 20 21

1110 24 23 21 21 21 21 23

1220 22 21 21 21 21 21 21

1331 20 20 20 20 20 20 21

1449 21 20 22 22 22 22 21

Table 13 Simulation results in Tiers model with 1105 vertices

79

Figure 41 Simulation results in Tiers model with 1105 vertices

4.2.4 BRITE Top-down Hierarchical Model

In this section we present our simulation results in Top-down hierarchical model graphs

generated with the BRITE topology generator. Four types of graphs were studied, two

with 400 vertices and two with 1000 vertices, each one constructed with Waxman and

Barabasi-Albert models. Since there are no previous results in these topologies for the

Round Heuristic and Tree Based Algorithm, the results of the New algorithm are

compared only with the other four (P-R, S-R, MWC and MWC-Modified). The

configurations of the graphs studied uses the same parameters as in [38].

1214 1324 1447 1106 1216 1326 1110 1220 1331 1449

RH 22 23 22 24 22 23 24 22 20 21

TBA 21 21 21 24 21 21 23 21 20 20

MWC 21 21 22 21 21 20 21 21 20 22

MWC-M 21 20 22 21 21 21 21 21 20 22

P-R 21 20 22 21 21 20 21 21 20 22

S-R 21 20 22 21 21 20 21 21 20 22

New H 23 21 21 23 20 21 23 21 21 21

19

20

21

22

23

24

25

80

In the BRITE Top-down models with 400 vertices the number of vertices at AS-level and

Route-level are both 20, the number of links added per new node ranges from 1 to 9,

and the edge connection model is set to Smallest Degree. The parameters of the

Waxman model are and .

In Table 14 and Figure 42 we present the simulation results in the BRITE Top-down

Waxman model with 400 vertices. With the number of edges increasing, the results of

the previous four heuristics decline first, and then ascend slowly. In contrast, we can

clearly observe that the new algorithm not only performs better as the number of edges

increases, but the difference of 6 rounds better in the graph with 2755 edges is quite

significant compared to the Semi-Random algorithm for example.

Edge MWC MWC-M P-R S-R New H

420 22 22 22 22 28

840 15 15 15 14 14

1260 13 13 13 12 14

1680 14 14 13 13 12

2092 15 14 13 13 12

2440 16 16 14 14 12

2671 17 17 16 16 12

2733 18 18 16 15 11

2755 19 18 18 18 12

Table 14 Simulation results in BRITE Top-down Waxman model with 400 vertices

81

Figure 42 Simulation results in BRITE Top-down Waxman model with 400 vertices

In Table 15 and Figure 43 we present the simulation results in the BRITE Top-down

Barabasi-Albert model with 400 vertices. The results are similar to the previous model,

the Waxman with 400 vertices. The New algorithm provides the best results as the

number of edges increases, whereas the performance of the previous four algorithms

slowly gets worse with higher number of edges. Once again, for the graph with the most

edges, 2835, the difference of 4 rounds by which the New Algorithm is better than the

next one in performance, is quite significant.

420 840 1260 1680 2092 2440 2671 2733 2755

MWC 22 15 13 14 15 16 17 18 19

MWC-M 22 15 13 14 14 16 17 18 18

P-R 22 15 13 13 13 14 16 16 18

S-R 22 14 12 13 13 14 16 15 18

New H 28 14 14 12 12 12 12 11 12

10

12

14

16

18

20

22

24

26

28

30

82

Edge MWC MWC-M P-R S-R New H

399 22 22 22 22 28

777 17 17 17 16 16

1134 15 14 14 13 13

1470 14 13 13 13 12

1785 14 14 13 13 12

2079 14 14 13 13 12

2352 14 14 14 14 12

2604 16 16 14 14 12

2835 16 16 16 15 11

Table 15 Simulation results in BRITE Top-down BA model with 400 vertices

Figure 43 Simulation results in BRITE Top-down BA model with 400 vertices

In the BRITE Top-down models with 1000 vertices the number of vertices at AS-level is

20, and at Route-level is 50, the number of links added per new node ranges from 1 to 9,

399 777 1134 1470 1785 2079 2352 2604 2835

MWC 22 17 15 14 14 14 14 16 16

MWC-M 22 17 14 13 14 14 14 16 16

P-R 22 17 14 13 13 13 14 14 16

S-R 22 16 13 13 13 13 14 14 15

New H 28 16 13 12 12 12 12 12 11

10

12

14

16

18

20

22

24

26

28

30

83

and the edge connection model is set to Smallest Degree. The parameters of the

Waxman model are and .

In Table 16 and Figure 44 we present the simulation results in the BRITE Top-down

Waxman model with 1000 vertices. The behavior of the algorithms studied is similar to

the behavior in the models with 400 vertices. The previous algorithms exhibit decreasing

performance with the increase in number of edges. In contrast the performance of the

New algorithm improves and for the graphs with high number of edges it gets 2 or 3

rounds better than the next best results.

Edge MWC MWC-M P-R S-R New H

1020 29 29 29 29 30

2040 19 19 18 18 17

3060 19 19 18 17 17

4080 17 18 17 16 15

5100 18 18 16 16 16

6108 18 18 17 16 14

7116 19 18 17 17 14

8117 19 19 17 18 15

9122 19 19 17 19 14

Table 16 Simulation results in BRITE Top-down Waxman model with 1000 vertices

84

Figure 44 Simulation results in BRITE Top-down Waxman model with 1000 vertices

In Table 17 and Figure 45 we present the simulation results in the BRITE Top-down

Barabasi-Albert model with 1000 vertices. The trend we observed in the previous BRITE

models appears also in this model. With the exception of the graph with 999 edges, the

New algorithm beats the next best results of the previous algorithms by at least 2

rounds, and in a couple of graphs by 4 rounds.

1020 2040 3060 4080 5100 6108 7116 8117 9122

MWC 29 19 19 17 18 18 19 19 19

MWC-M 29 19 19 18 18 18 18 19 19

P-R 29 18 18 17 16 17 17 17 17

S-R 29 18 17 16 16 16 17 18 19

New H 30 17 17 15 16 14 14 15 14

12

14

16

18

20

22

24

26

28

30

32

85

Edge MWC MWC-M P-R S-R New H

999 35 35 35 35 36

1977 23 23 22 22 20

2934 24 25 23 21 17

3870 22 22 21 18 16

4785 20 20 19 17 15

5679 19 19 18 17 15

6552 19 18 18 17 14

7404 20 19 17 17 13

8235 19 19 17 18 14

Table 17 Simulation results in BRITE Top-down BA model with 1000 vertices

Figure 45 Simulation results in BRITE Top-down BA model with 1000 vertices

999 1977 2934 3870 4785 5679 6552 7404 8235

MWC 35 23 24 22 20 19 19 20 19

MWC-M 35 23 25 22 20 19 18 19 19

P-R 35 22 23 21 19 18 18 17 17

S-R 35 22 21 18 17 17 17 17 18

New H 36 20 17 16 15 15 14 13 14

12

17

22

27

32

37

86

5 Conclusion and Future Work

We set out to examine and improve upon algorithms for broadcasting in arbitrary

graphs. We have accomplished the following.

Given that determining the broadcast time for an arbitrary vertex in an arbitrary graph

 is NP-complete, we surveyed existing approximation and heuristic algorithms and

analyzed their behavior in both commonly used topologies and other topologies used to

study networking algorithms.

Since generating example networks is important for testing broadcasting algorithms, we

described some of the difficulties of modeling the topology of typical communications

networks and provided brief details for different modeling approaches and several

implementations popular in the research community.

We also proposed a New heuristic for broadcasting in arbitrary networks. Based on the

layer graph, the New heuristic first generates a spanning tree using a new matching

strategy between each pair of adjacent layers. The new matching strategy is a greedy

strategy, which tries to locally optimize the broadcast time between each pair of

adjacent layers hoping this would yield a close to optimum global broadcast time. In the

final step, the broadcast scheme is improved by considering vertices that are idle at any

round and potential edges that were removed from the initial graph during the

construction of the layer graph. The final broadcast scheme has the advantage that

approximately one half of the vertices are informed via a shortest path from the

87

broadcast originator, while the rest of the vertices receive the message via a path at

most three hops longer.

The New heuristic outperforms previous heuristics in Hypercubes, where it produces

optimal broadcast time. It also produces optimal broadcast time in most of the

dimensions simulated in Cube Connected Cycles, matching the performance of the best

previous results. Previous performance results in Shuffle-Exchange graphs are also

matched.

Looking at network topologies that mimic the Internet model, the performance of the

New algorithm varies from model to model. In BRITE Top-down hierarchical model

topologies the results are much better than previous heuristics. The new algorithm, not

only gives the best results, but it consistently beats the best previous heuristics by two

or more rounds. In GT-ITM models it is similar to previous heuristics. In Tiers models, it

performs poorly for graphs with low number of edges, but starts catching up to the best

results as the number of edges increases.

The other advantage of the New algorithm is its low time complexity of (| | | |),

which is very close to (| |), the lowest complexity of some of the other heuristics

mentioned in this thesis. Still, the new heuristic has comparable or even better

broadcast times.

From the current results, one can see that a local matching strategy, layer by layer in the

layer graph does not yield the best results in all topologies, so future improvements

could be made so that the layer by layer matching strategy is made more global,

88

considering also what happens in upper layers of the layer graph. Looking at all the

heuristics discussed in this thesis, we can also observe that it would probably be difficult

to design a new heuristic with better performance because some of the existing

heuristics already achieve the optimal broadcast time | | in some networks. Future

work might also approach the problem from a different angle and try to design an

approximation algorithm for the problem of broadcast time in arbitrary graphs.

89

References

1. W. Aiello, F. Chung, and L. Lu. Random evolution in massive graphs, in

Foundations of Computer Science, 2001. Proceedings. 42nd IEEE Symposium on,

2001. IEEE. p. 510-519.

2. A. Bar-Noy, S. Guha, J. Naor, and B. Schieber, Message Multicasting in

Heterogeneous Networks. SIAM Journal on Computing, 2000. 30(2): p. 347-358.

3. A.-L. Barabási and R. Albert, Emergence of Scaling in Random Networks. Science,

1999. 286(5439): p. 509-512.

4. D. Barth and P. Fraigniaud, Approximation algorithms for structured

communication problems, in Proceedings of the ninth annual ACM symposium on

Parallel algorithms and architectures, 1997, ACM: Newport, Rhode Island, USA.

p. 180-188.

5. R. Beier and J.F. Sibeyn, A powerful heuristic for telephone gossiping, in

Proceedings of Seventh International Colloquium on Structural Information and

Communication Complexity, SIROCCO 2000, p. 17-36.

6. J.-C. Bermond and C. Peyrat. Broadcasting in de Bruijn networks, in Proc. 19th SE

Conference on Combinatorics, Congressus Numerantium, 1988. p. 283-292.

7. J.-C. Bermond, P. Hell, A.L. Liestman, and J.G. Peters, Broadcasting in bounded

degree graphs. SIAM Journal on Discrete Mathematics, 1992. 5(1): p. 10-24.

90

8. K.L. Calvert, M.B. Doar, and E.W. Zegura, Modeling Internet topology.

Communications Magazine, IEEE, 1997. 35(6): p. 160-163.

9. M.J. Dinneen, The complexity of broadcasting in bounded-degree networks.

Computer Research and Applications, 1994.

10. M.B. Doar. A better model for generating test networks, in Global

Telecommunications Conference, 1996. IEEE. p. 86-93.

11. M. Elkin and G. Kortsarz, Sublogarithmic approximation for telephone multicast:

path out of jungle (extended abstract), in Proceedings of the fourteenth annual

ACM-SIAM symposium on Discrete algorithms, 2003, Society for Industrial and

Applied Mathematics: Baltimore, Maryland. p. 76-85.

12. M. Elkin and G. Kortsarz, A Combinatorial Logarithmic Approximation Algorithm

for the Directed Telephone Broadcast Problem. SIAM Journal on Computing,

2005. 35(3): p. 672-689.

13. A. Farley and S. Hedetniemi. Broadcasting in grid graphs, in Proc. 9th SE Conf.

Combinatorics, Graph Theory, and Computing, Utilitas Mathematica, 1978. p.

275-288.

14. A. Farley, S. Hedetniemi, S. Mitchell, and A. Proskurowski, Minimum broadcast

graphs. Discrete Mathematics, 1979. 25(2): p. 189-193.

15. P. Fraigniaud and E. Lazard, Methods and problems of communication in usual

networks. Discrete Applied Mathematics, 1994. 53(1–3): p. 79-133.

16. P. Fraigniaud and J.G. Peters, Minimum linear gossip graphs and maximal linear

(Δ, k)-gossip graphs. Networks, 2001. 38(3): p. 150-162.

91

17. M.R. Gary and D.S. Johnson, Computers and Intractability: A Guide to the Theory

of NP-completeness, 1979, WH Freeman and Company, New York.

18. H.A. Harutyunyan and B. Shao, An efficient heuristic for broadcasting in

networks. Journal of Parallel and Distributed Computing, 2006. 66(1): p. 68-76.

19. H.A. Harutyunyan and W. Wei. Broadcasting Algorithm Via Shortest Paths, in

Parallel and Distributed Systems (ICPADS), 2010 IEEE 16th International

Conference on, 2010. p. 299-305.

20. S.M. Hedetniemi, S.T. Hedetniemi, and A.L. Liestman, A survey of gossiping and

broadcasting in communication networks. Networks, 1988. 18(4): p. 319-349.

21. C.J. Hoelting, D.A. Schoenefeld, and R.L. Wainwright, A genetic algorithm for the

minimum broadcast time problem using a global precedence vector, in

Proceedings of the 1996 ACM symposium on Applied Computing, 1996, ACM:

Philadelphia, Pennsylvania, USA. p. 258-262.

22. J. Hromkovic, R. Klasing, A. Pelc, P. Ruzicka, and W. Unger, Dissemination of

Information in Communication Networks: Broadcasting, Gossiping, Leader

Election, and Fault-Tolerance (Texts in Theoretical Computer Science. An EATCS

Series). 2005.

23. J. Hromkovič, C.-D. Jeschke, and B. Monien, Optimal algorithms for dissemination

of information in some interconnection networks. Algorithmica, 1993. 10(1): p.

24-40.

92

24. J. Hromkovič, R. Klasing, B. Monien, and R. Peine, Dissemination of information in

interconnection networks (broadcasting & gossiping), in Combinatorial network

theory. 1996, Springer. p. 125-212.

25. A. Jakoby, R. Reischuk, and C. Schindelhauer, The complexity of broadcasting in

planar and decomposable graphs. Discrete Applied Mathematics, 1998. 83(1): p.

179-206.

26. K. Jansen and H. Müller, The minimum broadcast time problem for several

processor networks. Theoretical Computer Science, 1995. 147(1–2): p. 69-85.

27. R. Klasing, B. Monien, R. Peine, and E.A. Stöhr, Broadcasting in butterfly and

deBruijn networks. Discrete Applied Mathematics, 1994. 53(1–3): p. 183-197.

28. G. Kortsarz and D. Peleg, Approximation Algorithms for Minimum-Time

Broadcast. SIAM Journal on Discrete Mathematics, 1995. 8(3): p. 401-427.

29. F. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees,

Hypercubes. 1992, Morgan Kaufmann, San Mateo, CA.

30. A. Liestman and J. Peters, Broadcast Networks of Bounded Degree. SIAM Journal

on Discrete Mathematics, 1988. 1(4): p. 531-540.

31. A. Medina, A. Lakhina, I. Matta, and J. Byers. BRITE: an approach to universal

topology generation, in Modeling, Analysis and Simulation of Computer and

Telecommunication Systems, 2001. Proceedings. Ninth International Symposium

on, 2001. p. 346-353.

32. M. Middendorf, Minimum broadcast time is NP-complete for 3-regular planar

graphs and deadline 2. Information Processing Letters, 1993. 46(6): p. 281-287.

93

33. R. Ravi. Rapid rumor ramification: approximating the minimum broadcast time,

in Foundations of Computer Science, 1994 Proceedings., 35th Annual Symposium

on, 1994. p. 202-213.

34. P. Scheuermann and M. Edelberg, Optimal broadcasting in point-to-point

computer networks. Dep. Elec. Eng. Comput. Sci., Northwestern Univ., Evanston,

IL, Tech. Rep, 1981.

35. P. Scheuermann and G. Wu, Heuristic algorithms for broadcasting in point-to-

point computer networks. Computers, IEEE Transactions on, 1984. 100(9): p. 804-

811.

36. C. Schindelhauer, On the inapproximability of broadcasting time. Approximation

Algorithms for Combinatorial Optimization, 2000: p. 226-237.

37. P.J. Slater, E.J. Cockayne, and S.T. Hedetniemi, Information dissemination in

trees. SIAM Journal on Computing, 1981. 10(4): p. 692-701.

38. W. Wang, Heuristics for Message Broadcasting in Arbitrary Networks, Masters

Thesis, in Computer Science, Concordia University. 2010, p. 86.

39. B.M. Waxman, Routing of multipoint connections. Selected Areas in

Communications, IEEE Journal on, 1988. 6(9): p. 1617-1622.

40. Wikipedia. Network topology. Available from:

http://en.wikipedia.org/wiki/Network_topology, last visited 2013 March, 2nd.

41. Wikipedia. Confidence Interval. Available from:

http://en.wikipedia.org/wiki/Confidence_interval, last visited 2013 July, 2nd.

http://en.wikipedia.org/wiki/Network_topology
http://en.wikipedia.org/wiki/Confidence_interval

94

42. E.W. Zegura, K.L. Calvert, and S. Bhattacharjee. How to model an internetwork, in

INFOCOM'96. Fifteenth Annual Joint Conference of the IEEE Computer Societies.

Networking the Next Generation. Proceedings IEEE, 1996. IEEE. p. 594-602.

43. E.W. Zegura, K.L. Calvert, and M.J. Donahoo, A quantitative comparison of graph-

based models for Internet topology. IEEE/ACM Transactions on Networking

(TON), 1997. 5(6): p. 770-783.

