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Abstract 

New Heuristic for Message Broadcasting in Arbitrary Networks 

 

Cosmin Jimborean 

 

 

Efficient information dissemination in interconnection networks is a key research area 

because of the major role it plays in the modern interconnected world. A vast number of 

topics ranging from distributed computing to Internet communication rely on efficient 

information dissemination. Broadcasting is one of the information dissemination 

primitives. The minimum broadcast time problem in arbitrary networks has been 

examined since the 1970s. Finding an optimal broadcasting scheme for any originator in 

an arbitrary network has been proved to be an NP-Hard problem. In the current thesis, a 

new heuristic that generates broadcast schemes in arbitrary networks is presented. The 

heuristic has  (| |    | |) time complexity, where   is the set of nodes and   is the set 

of the links of the network. Computer simulations in some commonly used topologies 

and network models show that compared to the existing heuristics the new heuristic 

shows better performance in some network models, and comparable performance in 

other network models, while having a low complexity similar to the best existing 

heuristics. Another advantage of the new heuristic is that approximately one half of the 

vertices receive the message via a shortest path from the broadcast originator, while the 

rest of the vertices receive the message via a path at most three hops longer. 
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1 Introduction 

In computer science, information dissemination encapsulates a set of problems related 

to the distribution of information within an interconnection network. One of the most 

researched computer science topics in the last years, efficient information 

dissemination is important for an increasing number of topics, such as parallel and 

distributed computing, internet networks, virtual social networks and 

telecommunication networks.  

In the past, computer processing power was consistently increased by boosting 

processor clock speed from kilohertz to gigahertz. Recently, the increases of clock speed 

seemed to have reached their limit and with the cost of hardware decreasing 

dramatically, the trend to increase processing power is to build massive multi-processor 

systems. The size of multi-processor systems has exploded in the last few years and 

hundred-thousand processor systems have already been built. Under these conditions, 

the problems of information dissemination are especially important when designing 

such massive interconnection networks for parallel and distributed computing. In 

parallel and distributed computing, the ability of the processors in the interconnection 

network to communicate efficiently is crucial. To study these problems, an 

interconnection network is modeled as a connected undirected graph where processors 

are represented by the nodes of the graph and the communication links are represented 

by the edges of the graph. [24] 
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Information dissemination includes problems related to broadcasting, accumulation and 

gossiping. The distribution of information from one to all is known as broadcasting. 

Gathering the information from all to one is known as accumulation. Gathering the 

information from all and distributing it to all is known as gossiping. 

In this thesis we will focus on broadcasting. 

1.1 Problem statement 

The distribution of information can be classified in four main classes: 

 Routing, distribute information from one to one; 

 Broadcasting, distribute information from one to all; 

 Multicasting, distribute information from one to multiple, but not all; 

 Gossiping, distribute information from all to all. 

In this thesis, we will focus on broadcasting, in which messages are distributed from one 

node to the rest of the nodes in the network. 

As mentioned above, an interconnection network is modeled as a connected undirected 

graph     (   ), where   is the set of vertices and   is the set of edges in the graph 

 . Using this model, Hromkovic et al. [22] gives the following abstract definition of 

broadcasting 

“Let     (   ) be a graph and let     be a node of  . Let   know a piece of 

information  ( ) which is unknown to all nodes in      . The problem is to find 
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a communication strategy (algorithm) such that all nodes in   learn this piece of 

information  ( ).”[22] 

A communication strategy is a sequence of steps called rounds. A round is equivalent to 

one discrete time unit. The broadcasting communication strategy always starts with one 

given informed vertex, also called the originator, and all other vertices being 

uninformed. During each round, each informed vertex sends the piece of information to 

exactly one of its uninformed neighbor vertices. The process repeats until all vertices are 

informed. 

It is obvious that for a given graph and a given originator, multiple broadcasting 

communication strategies exist. The efficiency of a communication strategy is measured 

by the number of communication rounds needed to distribute the information from the 

source vertex to all vertices. 

1.2 NP-Completeness 

A problem is in class NP if a given solution to this problem can be verified in polynomial 

time. A problem is said to be NP-Complete if it is NP and it is as difficult as any other NP-

complete problem.  

At first glance, since the definition of broadcasting is straightforward, broadcasting 

problems do not seem very hard. However, as many other apparently simple problems, 

broadcasting problems were proved to be intractable. To prove that a problem is NP-

complete, one must first show that it is NP, and second to show that some known NP-

complete problem is reducible to it. In [37], Slater et al. present the proof that the 
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problem of determining  ( ) for an arbitrary vertex   in an arbitrary graph   is NP-

complete. The problem used as a known NP-complete problem is the three-dimensional 

matching problem (3DM), which was shown to be NP-complete in [17]. The 3DM 

problem is reduced to the broadcast problem in polynomial time. Below we present the 

proof given in [37]. 

The proof shows that the 3DM problem is reducible in polynomial time to a more 

general Broadcast Time problem in which at round 0 a set of vertices already has the 

message and wants to broadcast it to the rest of the graph. The particular case when 

the set of originator vertices contains only one originator vertex represents our 

broadcast problem of determining  ( ) for an arbitrary vertex   in an arbitrary graph  .  

The general Broadcast Time problem is formally defined as follows. Given a graph 

        with a specified set of vertices      and a positive integer    is there a 

sequence                        where           (     )       

{                   }              , and     ? Here   is the total broadcast 

time,    is the set of informed vertices at round  , and     is the set of edges used at 

round  . It is obvious that when |  |   , then this problem becomes our broadcast 

problem of determining  ( ) for an arbitrary vertex   in an arbitrary graph  . 

The 3DM problem is defined as follows. Given sets               ,   

            ,                and        , does there exist a subset 

    and | |     , such that every two elements in   disagree in all three 

coordinates?[17] 
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Starting from the sets  ,  ,   and   in the 3DM problem, a graph   is constructed in 

polynomial time   as shown in Figure 1, adapted from [37]. First, each vertex 

(        )    is connected to vertices    of  ,    of   and    of  . For example, vertex 

(        ) is connected to   ,    and   . Second, create a set of vertices    containing a 

vertex for each vertex in   and construct a complete bipartite subgraph from the 

independent sets     and  . Finally, construct remaining vertices and edges exactly as 

shown in Figure 1. The proof below shows that the 3DM problem is reducible to a 

broadcast time problem with     in the graph  . 

 

Figure 1 The graph   
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Given a solution for the broadcast time problem in   we will show that this is a solution 

to the broadcast time problem if and only if it is a solution of the 3DM problem. We 

start by observing that the right side subset of | |    vertices of    must start 

informing the top right vertices in the first round, so that after 4 rounds all vertices on 

the top right side are informed. Similarly, the left side subset of   vertices must start 

informing the top left vertices no later than the second round, meaning they are only 

free for the first round. In order to inform all the vertices on the bottom line in round 4, 

the left side   vertices in    must inform an  -subset   of   at round 1 and the 

vertices in   must be able to inform distinct elements of  ,   and   at rounds 2, 3 and 4 

respectively. This is possible if and only if   is a solution of the 3DM problem. 

The next step is to show that 3DM is reducible to determining the broadcast time for an 

arbitrary graph   with an arbitrary originator  . First construct the graph   shown in 

Figure 2, adapted from [37], as follows. Starting from graph  , add a vertex  , an 

independent vertex set               , and the edges  (    )       |  | . 

Every vertex    joins     paths of lengths            . Finally, create a matching 

between   and    by adding   edges. 
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Figure 2 The Graph   

 

Given the problem to determine whether  ( )          in graph  , consider the 

following solution. Vertex   will inform each vertex    at round  . In turn, each    will 

broadcast the message to the paths connected to it in decreasing path length order. In 

the end, at time unit      ,    informs its matched vertex in   , so that every vertex in 

   will be informed at round      . Thus determining if  ( )          in graph   

becomes equivalent to determining if the broadcasting in graph   can be done in 4 

rounds, which is the broadcast time problem with       in graph  . 

In such cases where a general problem is NP-Complete, the research community 

narrows its focus on more specific instances of the problem. However, the broadcast 
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time problem was proved to also be NP-Complete for specific topologies, such as planar 

graphs [25, 26], and bounded degree graphs [7, 9, 32]. In addition, researchers usually 

also approach the problem with approximation algorithms. Schindelhauer et al. [36] 

provide results on the inapproximability of the broadcast time problem. In the end, the 

problem is approached with heuristic algorithms whose results cannot be 

approximated, but give good simulation results in practice.  

1.3 Thesis Outline 

Chapter 1 introduces the information dissemination topic, narrowing on the 

broadcasting problem and the NP-completeness of this problem. Chapter 2 goes deeper 

into the broadcasting problem in computer networks, presenting commonly used 

network topologies and some of the existing broadcast heuristics. A new heuristic is 

presented in Chapter 3 and in Chapter 4 the simulation results of this new heuristic are 

compared to the simulation results of some existing heuristics. 

Finally, conclusions and future work are discussed in Chapter 5. 
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2 Background 

An interconnection topology or network topology describes the structure of a network 

and of the elements that compose the network, such as nodes and edges [40]. Many 

topologies of interconnection networks exist; in the first part of this chapter we will 

present a set of commonly used topologies and their properties. 

2.1 Commonly Used Topologies 

Commonly used topologies are topologies of interconnection networks with specific 

properties. They are very popular in the research community and their properties and 

broadcasting behavior have been studied extensively [15, 24, 29] and [20].  

The Path    is a very simple graph composed of a sequence of   vertices where each 

vertex is connected to the next vertex in the sequence.  In a path    with   vertices, the 

start and end vertices have degree  , whereas all other vertices have degree  . The 

diameter of path    is equal to    . The broadcast time of path    is also     and is 

given by the broadcast time of the start and end vertices. Figure 3 shows a path with 7 

vertices.  

 

Figure 3 Path    

The Cycle    is a path    with the start and end vertices connected. In a cycle   , all 

vertices have degree  , the diameter is ⌊
 

 
⌋, and the broadcast time of the cycle is ⌈

 

 
⌉. 

Figure 4 shows a cycle with 7 vertices. 
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The Complete Graph    is a graph with   vertices where every two distinct vertices are 

connected. Figure 5 shows a complete graph with 6 vertices. 

 

Figure 5 Complete Graph    

In a complete graph   , all vertices have degree    , the diameter is  , and the 

broadcast time is ⌈    ⌉. The broadcast time is obtained by noticing that at each round 

except the last round the number of informed vertices will double because every 

informed vertex will inform an uninformed neighbor.  

The Hypercube    is a graph with    vertices, where each vertex represents a binary 

string of length   and each vertex is connected to those vertices whose binary string 

representation differs in exactly one bit. An (     )-dimensional hypercube can be 

constructed by connecting each pair of corresponding vertices of two  -dimensional 

hypercubes. Figure 6 shows two hypercubes of dimension 3 and 4. 

Figure 4 Cycle    
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Figure 6 Hypercubes    and    

In hypercube    all vertices have degree  , the diameter is   and there are       

edges. The broadcast time of hypercube is  , which is easily justified by noticing that at 

each round all informed vertices inform an uninformed neighbor, such that at each 

round the number of informed vertices doubles.  

The Cube-Connected Cycles      is the graph obtained by replacing each vertex of the 

hypercube    with a cycle of   vertices. The  -th dimension edge incident to a node of 

the hypercube is then connected to the  -th node of the corresponding cycle of the 

    . Figure 7 shows a 3-dimensional Cube-Connected Cycles graph. 
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Figure 7 Cube-Connected Cycles      

A cube-connected cycles      has     vertices, each vertex has degree 3, and the 

diameter is equal to    ⌊
 

 
⌋   . The optimal broadcast scheme is that every 

informed vertex informs first its hypercube neighbor, and then informs the right 

neighbor on the cycle and in the end the left neighbor. The broadcast time of this 

scheme is  (    )   ⌈
  

 
⌉    as shown in  [30]. 

The Shuffle-Exchange     is a graph whose vertices are represented by binary strings 

of length m. Figure 8 shows a Shuffle-Exchange graph of dimension 3.  

 

Figure 8 Shuffle-Exchange     
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Each vertex    of    , where   is a binary string of length     and   is in      , is 

connected to vertices    and   , where   is the binary complement of  . The Shuffle-

Exchange is a graph with    vertices, maximum degree 3, and diameter     . The 

exact broadcast time is not known, but an upper bound  (   )       was proved 

by [23]. 

The DeBruijn     is a graph whose vertices can be represented by binary strings of 

length   and each vertex   , where   is a binary string of length     and   is in 

     , is connected to vertices   , where   is in      . Figure 9 shows a DeBruijn graph 

of dimension 3. 

 

Figure 9 DeBrujin     

    has    vertices, diameter   and maximum degree 4. The lower bound of the 

broadcasting time is  (   )         , proven in [27]. The upper bound is 

 (   )          , proven in [6]. 

The Butterfly     is a graph whose vertices are in                      , 

where        denotes the set of length-  binary strings. For each              , 

         the vertex (   )  is connected to vertices ((   )        )  and ((  
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 )        ( )) , where  ( )                     , and    is the binary 

complement of   . Figure 10 shows a Butterfly graph of dimension 3.  

 

Figure 10 Butterfly     

The number of vertices of     is    , the maximum degree is 4 and the diameter of 

    is ⌊
  

 
⌋. The broadcast time of an  -dimensional Butterfly graph is         

 (   )      , proven in [27]. 

The d-Grid  [          ] is a graph whose vertices are represented by  -tuples 

of positive integers (          ), where         for all            . Each edge 

connects two vertices whose  -tuples differ in exactly one coordinate by exactly one. 

For example, in  [   ], shown in Figure 11, vertex (   ) is connected to vertices 

(   ), (   ), (   ) and (   ). 
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Figure 11  -Grid  [   ] 

The number of vertices of  [          ] is           , the maximum 

degree is    when     , and the diameter is (    )  (    )    (    ). 

The broadcast time of a 2-Grid  [     ] is         as presented in [20]. 

The  -Torus  [          ] is a graph created by connecting both ends of each 

dimension of a  -Grid graph. Figure 12 shows a  -Torus graph of dimension    . 



 

16 
 

 

Figure 12  -Torus  [   ] 

The broadcast time of a 2-Torus  [     ] is ⌈
  

 
⌉  ⌈

  

 
⌉, when   or    is even, and it is 

⌈
  

 
⌉  ⌈

  

 
⌉   , when both   and    are odd [13]. 

The Knӧdel graph      is a graph on     vertices (  even) and of maximum degree 

   . The vertices of      are represented as (   )  pairs, where       and 

    (  ⁄ )   . For every  ,     (  ⁄ )   , there is an edge between vertex 

(   ) and every vertex (               ⁄ ), for           [16]. 

For        , an edge that connects a vertex (   ) to the vertex (       

        ⁄ ) is said to be in dimension  . Figure 13 shows two Knӧdel graphs, with 

    and      and    , respectively. 
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Figure 13       and      

2.2 Existing Approximation and Heuristic Algorithms 

The minimum broadcast time problem in arbitrary networks has been examined since 

the late 1970s [14]. In 1981, Scheuermann et al. publish their first attempts to solve the 

problem [34]. Then, in 1984, Scheuermann et al. present an exact solution based on 

dynamic programming to the problem of optimal broadcasting in arbitrary networks, 

but this exact algorithm is not computationally efficient in large networks [35]. 

As described in the NP-Completeness section, the problem of finding the minimum 

broadcast time of an arbitrary originator in an arbitrary graph is NP-complete [37]. As a 

result, a large number of approximation algorithms and heuristic algorithms have been 

proposed. This section examines some of the most important ones. 

2.2.1 Approximation Algorithms 

An approximation algorithm is an algorithm that does not provide an optimal solution 

but which, nevertheless, provides a solution that is proven to be within a certain degree 

of proximity to the optimal solution.  
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Kortsarz and Peleg [28] present one of the first approximation algorithms for 

broadcasting in arbitrary graphs. For an arbitrary graph   (   ), their algorithm is an 

 (√| |)-additive approximation algorithm. Ravi introduces an algorithm for the 

broadcasting problem which gives an  (
    | |

      | |
)-approximation [33].  

There are also several approximation algorithms that attempt to improve broadcasting 

time using methods that are not focused solely on the optimization of the bound time. 

Hoelting et al. propose a genetic algorithm that generates a heuristic of complexity 

 (   ) by using a global precedence vector [21]. An integer programming formulation 

is used in [2] to generate an  (    ) approximation algorithm. Finally, Barth et al. 

propose a general approach to structured communication that can be applied to any 

network to improve the broadcasting time therein [4]. 

To the best of our knowledge, the optimal theoretical upper bound approximation is 

presented in [11], a broadcast approximation of  (
   | |

      | |
 ( )) rounds.  

In addition to being NP-complete, the problem of finding a minimum broadcast time of 

an arbitrary originator in an arbitrary graph is also difficult to approximate [2, 12, 33]. As 

a result, one must go beyond approximation algorithms and consider heuristic 

algorithms to attempt to resolve the minimum broadcast time problem.  
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2.2.2 Heuristic Algorithms 

A heuristic algorithm is an algorithm that solves a hard problem, by providing a solution 

that is not optimal, complete or accurate, but it has good performance results in 

practice and it is fast to find and implement.  

The following subsections describe several existing heuristic algorithms used to solve 

the minimum broadcasting time problem. These heuristics will be used as the baseline 

for comparison with the new heuristic introduced in the section Proposed Heuristic 

Algorithm. 

The performance of existing heuristic algorithms varies based on the topology of the 

network in which they are applied. For instance, Round Heuristic [5] and the Tree Based 

Algorithm [18] offer good performance in most commonly used topologies, and even 

better performance in network models from ns-2 simulator [1, 2, 10, 42]. The Random 

and Semi-Random heuristics [38] have, in general, worse performance than Round 

Heuristic (RH) and the Tree Based Algorithm (TBA) in commonly used topologies, but in 

ns-2 simulator network models they generate better results in graphs of GT-ITM Transit-

Stub model and Tiers model. 

2.2.2.1 Round Heuristic 

The Round Heuristic [5] assigns a weight to each edge of a network, activates matched 

edges using a maximum weighted matching algorithm, and uses the active edges to 

transfer the message through the network. This procedure is performed during each 
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broadcasting round and is continued until the message is transmitted throughout the 

entire network. 

The simulation results in a number of graphs [5] show that the performance of the 

Round Heuristic comes close to the minimum broadcasting time in a graph. 

Logical and efficient assigning of weights to each edge of a graph is a fundamental part 

of the Round Heuristic. Two different approaches can be used to perform the 

assignment: Potential Approach and Breadth-First-Search (BFS). 

In the Potential Approach, a weight of 0 or 1 is assigned to each edge (   ), where 1 is 

assigned if either   or   know the message to broadcast and 0 otherwise. 

Although it is fast and does not require large amounts of memory, the Potential 

Approach is somewhat simplistic, focusing solely on the current location in the network, 

and lacking a global view. Therefore, typically this approach is not used. 

Although it is generally slower and uses more memory than the Potential Approach, the 

Breadth-First Search is much more comprehensive, and is the approach typically used. 

Several important concepts must be defined prior to describing the BFS approach.  

The dispersion region   (   ) of a message   in a connected graph is the set of 

vertices that know message   at the beginning of round  . For any vertex    we denote 

     (   ) the shortest distance in the graph from vertex   to a vertex     (   ). 

The set of border-crossing edges    (   ) is defined as    (   )   (   )   |  

  (   )         (   ) . We also denote by     (   ) the subset of all edges in 
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   (   ) that lie on the shortest path from   (   ) to  , for any vertex     (   ). 

Figure 14, adapted from [5], illustrates the dispersion region   (   ) for a message   at 

round  . The border-crossing edges are shown in bold.      (   )    and     (   )  

       . 

 

Figure 14 The dispersion region   (   ) for message   at round   

At each round, border-crossing edges can be used to spread   further in that round. 

Each border-crossing edge will be assigned a weight that represents the sum of the 

contributions by each message  . The weight indicates how useful a given edge 

     (   ) is for the broadcasting of message  , and it is calculated taking into 

account how useful   is and how far   is from   (   ). The best route for message p is 

through a shortest path from   (   ) to all uninformed vertices. Edge      (   ) is 
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considered more useful, if it lies on many of these shortest paths.  Another criteria 

considered to calculate the weight of   is      (   ). The further away   is from 

  (   ), the higher the priority to forwarding   towards  , hence the higher weight of 

 . Based on the above, the weight that all vertices     (   ) contribute to every 

edge       (   ) is calculated using the formula below: 

      (     )  
     (   )

        

|    (   )|
       

 

         and         are two parameters and for every vertex  , at round  , 

     (   ) and     (   ) are calculated. A modified breadth first search algorithm [5] is 

used to calculate      (   ) and     (   ) in order of increasing      (   ). When 

     (   )   , then     (   )  contains all edges that connect   to a vertex in 

  (   ). When      (   )   , then     (   ) is the union of the sets      
(   ), for 

all vertices    adjacent to   with       
(   )       (   )   . 

Calculating     (   ) for any vertex   requires analyzing at most | | vertices with at 

most | | edges each, taking  (| || |) time. For all vertices   this calculation takes 

 (| | | |), which is also the time it takes to calculate the weights for one round. So, 

without taking into account the matching step, the Round Heuristic takes  ( | | | |), 

where   is the number of rounds of broadcasting. 

The two parameters          and         have a great impact on the value of the 

weight, thus playing a significant role in the performance of the heuristic. The simulation 

results of the Round Heuristic in commonly used topologies give in some cases results 
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close or equal to the optimal broadcast time [5]. We will look closer at these results in 

Chapter 4. 

2.2.2.2 Tree Based Algorithm 

The Tree Based Algorithm (TBA) presented in [18] builds upon the ideas from the Round 

Heuristic. In round  , TBA separates the graph into two regions, the bright region and 

the dark region. The bright region consists of all informed vertices, similar to the 

Dispersion Region in Round Heuristic, while the dark region consists of all uninformed 

vertices. All informed vertices that have neighbors in the dark region are called the 

bright border, denoted by   ( ). Given an uninformed vertex   and its uninformed 

neighbor  , we say   is a child of  , if  (   )   (   )     where  (   ) stands for 

the shortest distance from uninformed vertex   to   ( ) . The children and the 

children’s children are all called the descendants. 

Figure 15, adapted from [18], shows the definitions in TBA. Vertex   is the originator. 

After three rounds, all vertices in the dark region are still uninformed. The informed 

vertices,       with shadowed backgrounds belong to   ( ). Vertices   and   are 

children of vertex  , and vertex   is a child of vertices   and  . In other words, vertices  , 

  and   are descendants of vertex  . 
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Figure 15 Definitions in TBA. 

At each round, the TBA computes a matching between the set of informed and 

uninformed vertices and then disseminates the message to the uninformed vertices 

using this matching. A modified breadth first search algorithm (BFS), from the vertices 

on the bright border   ( ) towards the uninformed vertices, is used to compute the 

matching. The modified BFS algorithm labels all uninformed vertices   with  (   ). As 

described above, the distances  (   ) define the parent-child relationships between 

the uninformed vertices. Then, for each uninformed vertex  , its weight at round  , 

denoted by  (   ), is calculated using the strategy of the optimal broadcasting in trees. 

If   has no children, then  (   )   . Otherwise, if   has   children           , 
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arranged in decreasing order of their weights,  (    )   (    )     (    ), 

then the weight assigned to vertex   at round   is  (   )            (    )    . In 

the next step, a maximum weighted matching is computed between uninformed and 

informed vertices using a heuristic that aims firstly to maximize the number of pairs of 

vertices in the matching and secondly to maximize the weights of matched vertices. In 

the last step, each matched informed vertex will inform its uninformed pair.  

The number of rounds needed to inform all vertices is the broadcast time. From [18] we 

learn that the time complexity of each round is  (| |  | |)   (| |), resulting in a 

total time complexity of  ( | |). 

A refined version of the TBA calculates the weight of a child depending on the number 

of parents, allowing TBA to obtain better results in some topologies. The refined version 

has the same time complexity as the original heuristic. 

Simulation results for commonly used topologies and other network models show that 

TBA has good results in practice, even better than the Round Heuristic in most cases.  

2.2.2.3 Minimum-Weight Cover Heuristic 

The Minimum-Weight Cover (MWC) heuristic applies the MWC algorithm from [28] in 

the layer graph of a connected graph   (   ). To better understand the heuristic, we 

will first define the layer graph and the MWC problem, subsequently combining them 

together to solve the broadcasting problem. 
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Definition 1 Given an originator   and any vertex  , the layer of  , denoted by  ( ), is 

the shortest distance from   to  . A graph    (     ) is called a layer graph of graph 

 , where      and for any edge (   )   , (   )     iff  ( )   ( )   .[38] 

Figure 16 shows an example of a layer graph where it is obvious that each two adjacent 

layers of the layer graph constitute a bipartite graph. 

 

Figure 16 (a) The original graph  . (b) The layer graph    

The Minimum-Weight Cover problem presented in [28] is stated below. 

Let  (         ) be a bipartite graph with bipartition (     ), edge set  , and a weight 

function         on the edges, and no isolated vertices. A control function 

        , where  (  )     implies that (     )   , and we say that    controls 

(or dominates)   . Each vertex       is called a server, and each vertex       is 

called a customer. 
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For every server     , denote the customers dominated by   by   ( )     ( ), and 

denote the edges connecting   with its customers by   
  (    ( )) . Assuming, 

without loss of generality, that all the customers dominated by   are ordered such that 

 (  
 )   (    

 ) for every  , the weight of   is defined as 

 ( )     
    

{   
 

    (  
 ) } 

The MWC problem. Given a bipartite graph  (         ), determine a control function 

         whose weight  ( ) is minimal. The function   is called the minimum 

control function for G. 

The problem is solved using a pseudo polynomial algorithm. The algorithm verifies 

whether there exists a positive integer  , and a control function  , such that  ( )   , 

where       ( )            ( )  |  | . Starting from    the algorithm 

constructs a modified flow graph    . In [28] it is proved that   has a control function   

with weight  ( )   , iff it is possible to push |  | units of flow from the source to the 

sink on    .  
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Figure 17 (a) A bipartite graph  . (b) Its corresponding flow graph    . 

The construction of the flow graph     starts by adding a source vertex   and a sink 

vertex   to the original graph  . Then, assuming that    is the maximal weight that is 

less than or equal to     of an edge incident to     , duplicate   into      copies 

and arrange the copies in an arbitrary order           . For   , the first copy of  , 

create a directed edge (    ) with capacity      and a directed edge (    ) with 

capacity  , from    to every customer      such that (   )   . For     the  -th copy 

of  ,    , create a directed edge (    ) with capacity   and a directed edge (    ) 

with capacity   to all the customers   such that (   )    and  (   )        . 

Finally, for each customer     , create a directed edge (   ) with capacity 1. 
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The MWC algorithm is given below. 

1. Start with          ( )    and          ( )  |  |. 

2. Repeat 

a.   ⌈
     

 
⌉. 

b. Construct the flow graph    . 

c. Compute the maximal flow on     from source to sink. 

d. If the maximal flow is |  | 

i. Then set      

ii. Else set      

3. Until          . 

4. Return the minimum control function   corresponding to the maximal flow 

computed on     . 

To solve the minimum time broadcasting problem, MWC heuristic first constructs a 

layer graph    by performing a breadth-first search starting from the originator   in the 

arbitrary graph   and removing all the edges that have not been traversed during the 

breadth-first search. Then, it performs the MWC algorithm between adjacent layers in 

the layer graph as well. A spanning tree will be generated, and based on that we can 

obtain the broadcast scheme. 

Dinic’s maximum flow algorithm has complexity  (| | | |). When applying Dinic’s 

maximum flow algorithm to the MWC algorithm, the total time complexity of the MWC 

algorithm is  (| | | |    | |). 
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2.2.2.4 Minimum-Weight Cover Modified Heuristic 

In the previous section we looked at an algorithm that, for any bipartite graph Let 

 (         ) with bipartition (     ), edge set  , and a weight function  , finds the 

minimum value of        
         (  

 )  . A modified MWC algorithm which aims 

to minimize         
         (  

 )     is proposed in [38].  

Starting from the control function          generated by the MWC algorithm the 

MWC-Modified algorithm first labels all servers with a weight    
    

 
 

  
  

{  

 ( 
 

  )}. Then, the servers are ordered in descending order of their weights    
 

   
     |  |

. Finally, for each    going from    
   to     {   

  } , 

generate a new control function    such that      {   
  }    , keeping    as 

small as possible. 

The MWC-Modified algorithm does not increase the complexity of the MWC algorithm. 

The additional step that analyzes all servers, trying to reduce their weights by modifying 

the control function, has a complexity of  (| | | |). Therefore the total complexity of 

the MWC-Modified is still  (| | | |    | |)  when using Dinic’s maximum flow 

algorithm for the MWC part. 

2.2.2.5 Random Heuristic 

The Random Heuristic uses the shortest paths to disseminate the message from the 

originator to the rest of the graph. Similar to the MWC Heuristic, first, a layer graph is 

constructed from the original graph. A parent-child relationship is defined between the 



 

31 
 

neighbor vertices in the layer graph as follows:   is a child of   if   and   are connected 

and  ( )   ( )   . Implicitly,   is a parent of  . The children of vertex   are its 

descendants, and the children of the descendants of   are also descendants of  . The 

heuristic uses the concept of estimated broadcast time of a vertex   in graph  , 

denoted by   ( ), and calculated using the following recursion. 

1.   ( ) is equal to  , if vertex   has no children. 

2. If   has   children,           , and all these children are in the descending 

order of   (  ) , i.e.,   (  )    (    ) , then   ( )        (  )    , 

where      . 

In [19], a linear algorithm is presented to calculate   ( ) if the estimated broadcast 

times of the children of  ,   (  ), are given, where    is a child of vertex  , and 

     . The complexity of this algorithm is  ( ). 

Furthermore, in [19] it is also proved that, for any vertex   in a tree,   ( ) is exactly the 

time that vertex   broadcasts the message to all of its descendants. 

The Random Heuristic is very simple and has the three steps below. 

1. Construct the layer graph   of the arbitrary graph   by performing a breadth-

first search starting from the originator   and removing all the edges that have 

not been traversed during the breadth-first search. 
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2. Construct a spanning tree as follows. For every two adjacent layers of   , 

randomly match children with only one of their parents and remove unused 

edges between the two adjacent layers. 

3. Calculate   ( ) for each vertex   of the spanning tree. 

 

Figure 18 (a) The original graph   with originator a. (b) The layer graph   . (c) and 

(d) Possible broadcast schemes with different broadcast times, 3 and 4 respectively.  

The broadcast time of   in graph   is   ( ). 
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The complexity of the algorithm is the sum of the complexities of the three steps. 

Constructing the layer graph takes  (| |) time, constructing the spanning tree takes 

 (| |) time since all vertices are randomly assigned a parent, and finally, calculating 

  ( ) for all vertices   takes  (| |) time. The total time complexity of the Random 

Heuristic is  (| |)   (| |)   (| |). 

2.2.2.6 Semi-Random Heuristic 

The Random Heuristic is very simple and has low complexity, but it has random steps, 

therefore it could potentially be improved. The Semi-Random heuristic, described in 

[19], replaces the random matching of children to a parent by a strategy that aims to 

minimize       (  ) , for each parent    on the same layer. 

The Semi-Random heuristic presented in [19] is as follows. 

1. Construct the layer graph   of the arbitrary graph   by performing a breadth-

first search starting from the originator   and removing all the edges that have 

not been traversed during the breadth-first search. 

2. Assuming that    has   layers, label all vertices    on layer     with   (  ). 

3. For each layer   starting from     to  , call procedure SRM.  

4. The broadcast time of   in graph   is   ( ). 

The procedure SRM receives as input all vertices on layers   and     and is as follows. 

1. On layer  , for each parent    do the following: 
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a. Match    with those children that have different weights and remove all 

edges that connect these children with other parents; 

b. Label    with   (  ) not including those unmatched children. 

2. For each unmatched child, do the following: 

a. Match it with the parent of the smallest weight, and remove its edges 

connecting to other parents; 

b. Update the weight   ( ) for its matched parent  . 

The Semi-Random heuristic has the same time complexity as the Random heuristic. The 

complexity of the construction of the layer graph and the complexity of the procedure 

SRM are both  (| |). Their sum makes the total complexity of the Semi-Random 

heuristic equal to  (| |). 
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3 Proposed Heuristic Algorithm 

In this chapter we will propose a new heuristic algorithm, which aims to improve the 

existing heuristics. We have seen in the previous chapter that the Semi-Random 

heuristic has a low complexity and good results in practice, but it still makes potentially 

non optimal decisions by randomly matching children with parents. The new heuristic 

proposes a new strategy to match children and parents from adjacent layers of the layer 

graph, aiming to make less random decisions. 

We recall the concept of estimated broadcast time of a vertex   in graph  , denoted by 

  ( ), which we have already seen above in [19]. In this chapter, the term weight of   

is interchangeably used to refer to the estimated broadcast time of    The following 

recursion is used to calculate   ( )  

1.   ( ) is equal to  , if vertex   has no children. 

2. If   has   children,           , and all these children are in the descending 

order of their weights   (  ) , i.e.,   (  )    (    ) , then   ( )  

      (  )    , where      . 

The new strategy to match children and parents from adjacent layers of the layer graph 

attempts to minimize the       (  ) , for all parents    on the same layer.  

Additionally, we have observed that in sparse graphs, removing the edges that are not 

needed while constructing the layer graph has a significant negative impact on the 

overall performance of the algorithm. Therefore, our new heuristic does not remove 
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these edges completely; instead it keeps them as inactive and tries to take advantage of 

them once the layer by layer matching of children to parents is completed. 

3.1 Algorithm 

The new heuristic algorithm is presented below. 

1. Construct the layer graph    of the arbitrary graph   by performing a breadth-

first search starting from the originator   and marking as inactive all the edges 

that have not been traversed during the breadth-first search. 

2. Assuming that    has   layers, numbered from   to    , label all the vertices 

   of layer     with   (  ). 

3. For each layer   starting from     to  , call procedure Matching to match 

children to one parent.  

4. Perform procedure Broadcast and Improve on the resulting spanning tree. 

5. The broadcast time of   in graph   is the number of rounds returned by 

procedure Broadcast and Improve. 

PROCEDURE Matching 

Input: All vertices on layer   and layer     and all edges between these two layers in 

the layer graph. 

1. Order the parents by decreasing number of children and denote the parents by 

           where    has the most number of children and    the least number 

of children. 
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2. Start with an empty matching.  

3. Add    and all its children to the matching. 

4. Match    with all its children.  

5. For each parent   , starting from    to   , take the following actions: 

a. Add    and all its children to the matching.  

b. Match    with all its unmatched children at this step (those who have    

as single parent) 

c. Reposition    in the matching such that the parents in the matching are 

ordered by decreasing estimated broadcast time   (  ). 

d. Find the parent    which gives                   (  )  and denote 

this parent as     . 

e. If      is    then remove all unused edges and go to step 5. 

f. If the number of children common to both      and    is  , then remove 

all unused edges and go to step 5. 

g. If       (  ) then remove all unused edges and go to step 5. 

h. From the children common to both      and   , choose the maximum 

weight child which has the same weight as another child of     . 

Remove the edge matching it to      and match it to   . 

i. Go to step 5.c. 
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PROCEDURE Broadcast and Improve 

Input: A spanning tree, including inactive edges between siblings and the originator  . 

Output: A broadcast scheme in the spanning tree and a number of rounds required to 

broadcast a message in the spanning tree. 

1. Inform originator   and order its children in decreasing order of their   . 

2. While there remain uninformed vertices do 

a. For each informed vertex   do 

i. If   has uninformed children, inform its next uninformed child and 

order the child’s children in decreasing order of their   . 

ii. Else if   has uninformed siblings, inform the next uninformed 

sibling that has maximum    and order the children of that 

sibling by decreasing order of their   . 

3. Output the broadcast scheme and the number of times the step 2 was 

performed. 

The procedure Matching is the most important part of the algorithm. Its main goal is to 

assign children to parents in such a way that       (  )  becomes as small as 

possible. To achieve this, at each step, the algorithm tries to remove children from the 

parent with maximum    at that point and assign to the parent processed at that step. 

For a better understanding of the algorithm, an example of the procedure Matching is 

presented below. Figure 19 shows a bipartite graph between two layers of the layer 
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graph    representing the input to procedure Matching. The estimated broadcast time 

for each child is labeled on the graph. 

 

Figure 19 The original bipartite graph between two layers of the layer graph    

After ordering the parents by decreasing number of children, parent   with the most 

children is added to the matching and its estimated broadcast time is calculated. Figure 

20 shows the matching at this point. 

 

Figure 20 Parent   is added to the matching 

Next step is shown in Figure 21. Parent  , the next one in order of decreasing number of 

children, is added to the matching together with all its children that have not already 

been added before. In this case child   is the only child of   that has not already been 

added, so   gets added to the matching and matched with  . The dashed lines represent 

unused edges that   adds to the matching and which could potentially be used in the 

next steps to minimize the estimated broadcast time of  . 
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Figure 21 Parent   is added to the matching 

At this point,   will try to minimize the estimated broadcast time of   by taking over one 

of  ’s children. Since the children with the same broadcast time are the ones that 

increase the estimated broadcast time of their parent, the algorithm chooses from the 

children with the same broadcast times, a child that has the max broadcast time among 

the children that are common to   and  . In Figure 22 we see that   is moved from   to 

 , hence the broadcast time of   decreases to   and the broadcast time of   increases 

to  . 

 

Figure 22 Child   is moved from parent   to   

Since the broadcast time of   is still less than the broadcast time of  , the previous step 

is repeated and child   gets moved from   to  , making the broadcast times of   and   

equal to  . 
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Figure 23 Child   is moved from parent   to parent   

Because the broadcast time of the current parent   is now equal to the broadcast time 

of  , the algorithm considers the processing of parent   complete and moves to the 

next parent. Parent   and all its children and edges are added to the matching. Since   

does not have any children of its own, its initial broadcast time is  . 

 

Figure 24 Parent   is added to the matching 

At this point, in decreasing order of their estimated broadcast time   (  ), parents 

      respectively have: 

  ( )       ( )        

  ( )       ( )         

  ( )       ( )        
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hence         
     

     (  )   is given by parent  , with  ( )   , therefore parent 

  takes over child   from parent   and the resulting matching is shown in Figure 25. 

 

Figure 25 Child   is moved from parent   to parent   

Once again, in decreasing order of their estimated broadcast time   (  ), parents 

      respectively have: 

  ( )       ( )        

  ( )       ( )         

  ( )       ( )        

Since   has now become one of the parents whose  ( )                  

  (  )   , the  processing of parent   is considered complete and since there are no 

more parents, the procedure terminates. The final matching is shown in Figure 26. 

 

Figure 26 The final matching 
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3.2 Complexity 

The first step of the algorithm is the breadth-first search to construct the layer graph 

and its time complexity is  (| |  | |)   (| |). 

During the Procedure Matching, first, the parents must be sorted by decreasing number 

of children. Assuming there are   layers and    parents on each layer, where      , 

the complexity of sorting the parents on one layer is          and the total complexity 

for all   layers is ∑        
 
   . Since for all   [   ] ,    | | , then of course 

∑        
 
    ∑      | | 

    | |    | |,  hence in the worst case this step has 

| |    | | complexity. 

In the second step, the matching requires calculating   (  ) for each parent   , then 

finding the parent    which gives              (  )  and moving children from one 

parent to another. From [38] we know that calculating   ( )  has complexity 

 (   ( )), where    ( ) is the degree of vertex  , therefore the total complexity for 

all parents is ∑    ( )     (| |). Finding the parent    that gives            

  (  )  has complexity  ( ) where   is the number of parents on one layer, hence the 

total complexity for all layers is the number of vertices in the graph,  (| |). Moving 

children from parent      to parent    looks in the worst case at each one of the 

children of    and it searches for a child of      with the same weight as the respective 

child of   . Each binary search takes at most  (   | |), and needs to be done for at 

most all edges, hence the total complexity of this step is  (| |    | |). 
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The total complexity of the procedure Matching is  (| |    | |  | |    | |)  

 (| |    | |). 

The last step is the procedure Broadcast and Improve which performs a broadcast using 

the spanning tree generated in the previous step and verifies if idle edges between 

vertices on the same layer can be used to improve the broadcast time. In the worst 

case, the procedure goes through all the edges of the graph, hence the complexity of 

this procedure is  (| |). 

Finally, the total complexity of the algorithm is the sum of the complexities of the 

procedures above  (| |)   (| |    | |)   (| |    | |). 
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4 Simulation Results and Comparisons with other Heuristics 

This chapter focuses on the evaluation of the new heuristic in practice, presenting its 

results when run on commonly used network topologies, and on other network 

topologies, the GT-ITM topology, the Tiers topology, and the BRITE topology from the 

NS-2 simulator, the most popular network simulator in the network research 

community.  

The results we obtained are compared with the results of all the heuristics presented in 

the previous chapters 

 The result of Round Heuristic from [5] (RH) 

 The Tree Based Algorithm obtained from [18] (TBA); 

 The Random algorithm from [38] (P-R); 

 The Semi-Random algorithm [38] (S-R); 

 The Minimum-Weight Cover heuristic from [38] (MWC); 

 The Minimum-Weight Cover Modified heuristic [38] (MWC-M) 

The results are presented in table format with each algorithm on its individual column. 

In addition to the heuristics abbreviations above, the following abbreviations are also 

used:  

 OPT: The optimal broadcast time in the respective topology; 

 LOW: The best known theoretical lower bound on the broadcast time in the 

respective topology; 
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 UP: The best known theoretical upper bound on the broadcast time in the 

respective topology; 

 D: The dimension of the topology; 

In statistics, a confidence interval (CI) is a kind of interval used to indicate the reliability 

of an estimate of a population parameter. Instead of estimating the parameter by a 

single value, an interval likely to include the parameter is given. How likely the interval is 

to contain the parameter is determined by the confidence level or confidence 

coefficient. Increasing the desired confidence level will widen the confidence interval. A 

confidence interval is always qualified by a particular confidence level, usually expressed 

as a percentage; thus one speaks of a ”95% confidence interval”. The end points of the 

confidence interval are referred to as confidence limits.[41] 

We performed the simulation of the new heuristic 20 times for each graph. Since all 

samples were of the same value, there was no need to compute the confidence 

intervals, which is the first advantage of the new heuristic over the existing Random and 

Semi-Random algorithms. 

4.1 Commonly Used Topologies 

The commonly used topologies studied in this section are Hypercube (  ), Cube 

Connected Cycles (    ), Shuffle-Exchange (   ), deBruijn (   ) and Butterfly (   ). 

4.1.1 Hypercube 

We have already seen above that the broadcast time of the Hypercube of dimension   

is exactly equal to  . The optimal broadcast times of the Hypercube from [24] together 
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with the simulation results of the previous mentioned heuristics and the New Heuristic 

are presented in Table 1.  

D OPT TBA MWC MWC-M P-R S-R New H 

3 3 3 4 3 3 3 3 

4 4 4 5 5 4 4 4 

5 5 5 6 6 6 5 5 

6 6 6 8 9 8 7 6 

7 7 7 10 10 10 9 7 

8 8 9 12 11 12 11 8 

9 9 10 15 13 14 14 9 

10 10 11 16 16 17 15 10 

11 11 12 18 17 19 18 11 

12 12 13 20 20 22 20 12 

13 13 14 - - 24 22 13 

14 14 15 - - 27 25 14 

15 15 16 - - 30 27 15 

16 16 17 - - 32 30 16 

17 17 18 - - 35 32 17 

18 18 19 - - 38 34 18 

19 19 20 - - 41 37 19 

20 20 21 - - 43 39 20 

Table 1  Simulation results in Hypercubes    

Figure 27 shows a chart of the simulation results in Hypercubes and we can immediately 

observe that the New Heuristic provides optimal broadcast time for all dimensions 

where simulations were run. It clearly performs much better than all the other previous 

heuristics. The only previous heuristic that has close performance is the Tree Based 

Algorithm, whose broadcast time is equal to or just 1 more than the optimal broadcast 

time. With similar time complexity as the Tree Based Algorithm and optimal broadcast 

time independent of the dimension, we can surely say that the New Heuristic is very 

suitable for Hypercubes. 
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Figure 27 Simulation chart in Hypercubes 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

TBA 3 4 5 6 7 9 10 11 12 13 14 15 16 17 18 19 20 21

MWC 4 5 6 8 10 12 15 16 18 20

MWC-M 3 5 6 9 10 11 13 16 17 20

P-R 3 4 6 8 10 12 14 17 19 22 24 27 30 32 35 38 41 43

S-R 3 4 5 7 9 11 14 15 18 20 22 25 27 30 32 34 37 39

New H 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
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4.1.2 Cube Connected Cycles 

The theoretical lower and upper bound in Cube Connected Cycles are presented in [24]. 

The simulation results of the New Heuristic are always lower than the theoretical upper 

bound, usually 1 round less than the upper bound. Compared to the Round Heuristic 

and the Tree Based Algorithm, which are the previous best heuristics in practice, the 

New Heuristic has similar results with the exception of dimension 5, 6, and 7. For higher 

dimensions the results are mostly the same as the best heuristics. 

D LOW UP RH TBA MWC MWC-M P-R S-R New H 

3 6 7 6 6 7 6 6 6 7 

4 9 9 9 9 10 10 9 9 9 

5 11 12 11 11 12 12 11 11 12 

6 13 14 13 13 14 14 14 14 14 

7 16 17 16 16 17 16 16 16 17 

8 18 19 18 18 20 19 19 19 18 

9 21 22 21 21 22 22 21 21 21 

10 23 24 23 23 24 24 24 24 23 

11 26 27 26 26 - - 27 27 26 

12 28 29 28 28 - - 29 29 28 

13 31 32 31 31 - - 32 32 31 

14 33 34 33 33 - - 35 34 34 

15 36 37 - 36 - - 37 37 36 

16 38 39 - 39 - - 40 40 39 

Table 2  Simulation Results in Cube-Connected Cycles      
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Figure 28 Simulation chart in Cube-Connected Cycles 
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4.1.3 Shuffle-Exchange 

The optimal broadcast times in Shuffle-Exchange graphs are presented in [24]. 

Compared with the previous algorithms with the best performance, the Round Heuristic 

and the Tree Based Algorithm, the New algorithm has the same performance with the 

exception of dimensions 9, 10 and 11. When the dimension is less or equal than 8, the 

resulting broadcast times are optimal. From dimension 9 and up, the broadcast times 

are always 1 round more than the optimal, for the New Algorithm, as well as for the 

previous best algorithms, the Round Heuristic and the Tree Based Algorithm. Table 3 

shows the simulation results in Shuffle-Exchange graphs.  

D OPT RH TBA MWC MWC-M P-R S-R New H 

3 5 5 5 5 5 5 5 5 

4 7 7 7 7 7 7 7 7 

5 9 9 9 10 9 9 9 9 

6 11 11 11 12 12 11 11 11 

7 13 13 13 14 14 13 13 13 

8 15 15 15 16 16 15 15 15 

9 17 17 17 18 18 18 18 18 

10 19 19 19 20 20 20 20 20 

11 21 21 21 22 22 22 22 22 

12 23 24 24 24 24 24 24 24 

13 25 26 26 - - 26 26 26 

14 27 28 28 - - 28 28 28 

15 29 - 30 - - 30 30 30 

16 31 - 32 - - 33 32 32 

17 33 - 34 - - 35 34 34 

18 35 - 36 - - 37 36 36 

19 37 - 38 - - 39 38 38 

20 39 - 40 - - 41 40 40 

Table 3  Simulation results of different heuristics in Shuffle-Exchange graphs 
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In the chart in Figure 29 we notice even better the similar performance of the new 

algorithm versus previous ones, since the plots of the simulation results are mostly 

overlapping. 

 

Figure 29 Simulation chart in Shuffle-Exchange graphs 
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S-R 5 7 9 11 13 15 18 20 22 24 26 28 30 32 34 36 38 40
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4.1.4 DeBruijn 

Table 4 shows the simulation results of different heuristics in DeBruijn graphs as well as 

the lower and upper bounds of DeBruijn graphs. The lower bounds were calculated 

using the formulas in [27], and they only hold asymptotically. For this reason, Table 4 

shows for dimensions 4 and 5 some broadcast times that are less than the given lower 

bounds. 

The simulation results of the New algorithm are the same as the results of the Semi-

Random algorithm. For dimensions lower than 17, they do not exceed the upper bound. 

The Round Heuristic and Tree Based Algorithm have, again, the best results, equal or 

close to the lower bounds. For most dimensions, the difference between the New 

algorithm and the best results is at most 2 rounds. 
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D LOW UP RH TBA MWC MWC-M P-R S-R New H 

3 4 6 4 4 4 4 4 4 4 

4 6 8 5 5 5 5 5 5 5 

5 7 9 7 6 7 7 7 7 7 

6 8 11 8 8 8 8 8 8 8 

7 10 12 9 9 10 10 10 10 10 

8 11 14 11 11 12 12 12 12 12 

9 12 15 12 12 14 14 14 13 13 

10 14 17 14 14 15 15 15 15 15 

11 15 18 15 15 17 17 17 17 17 

12 16 20 17 17 19 19 19 19 19 

13 18 21 18 18 - - 21 20 20 

14 19 23 20 20 - - 22 22 22 

15 20 24 - 21 - - 24 24 24 

16 22 26 - 23 - - 26 26 26 

17 23 27 - 25 - - 28 28 28 

18 24 29 - 26 - - 30 30 30 

19 26 30 - 28 - - 32 32 32 

20 27 32 - 29 - - 34 33 34 

Table 4  Simulation results in DeBruijn graphs 

The charts in Figure 30 show that the Round Heuristic and the Tree Based Algorithms 

have the best results and that the results of the New algorithm and the Semi-Random 

one are overlapping.  
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Figure 30 Simulation chart in DeBruijn graphs 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

RH 4 5 7 8 9 11 12 14 15 17 18 20

TBA 4 5 6 8 9 11 12 14 15 17 18 20 21 23 25 26 28 29
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MWC-M 4 5 7 8 10 12 14 15 17 19

P-R 4 5 7 8 10 12 14 15 17 19 21 22 24 26 28 30 32 34

S-R 4 5 7 8 10 12 13 15 17 19 20 22 24 26 28 30 32 33

New H 4 5 7 8 10 12 13 15 17 19 20 22 24 26 28 30 32 34
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4.1.5 Butterfly 

Table 5 shows the simulation results of the different algorithms in Butterfly graphs. The 

lower and upper bounds are the ones presented in [24]. The New algorithm performs 

similar to the Semi-Random algorithm for lower dimension, up to 7. As the dimension 

increases, the New algorithm is consistently 1 round better than the Semi-Random 

algorithm. The best algorithms are again the Round Heuristic and the Tree Based 

Algorithm. The difference between the best results and the results of the New algorithm 

varies between 1 and 3 rounds, increasing with higher dimensions. 

D LOW UP RH TBA MWC MWC-M P-R S-R New H 

3 5 5 5 5 6 6 5 5 6 

4 7 7 7 7 9 8 8 8 8 

5 8 9 9 9 11 10 10 10 10 

6 10 11 10 10 12 12 12 12 12 

7 11 13 12 12 14 14 14 14 14 

8 13 15 14 14 16 16 16 16 15 

9 15 17 16 16 18 18 18 18 18 

10 16 19 17 18 20 20 20 20 19 

11 18 21 19 19 - - 22 22 21 

12 19 23 22 21 - - 24 24 23 

13 21 25 23 23 - - 26 26 25 

14 23 27 24 25 - - 29 28 27 

15 24 29 - 27 - - 31 30 29 

16 26 31 - 29 - - 33 32 31 

Table 5  Simulation results in Butterfly graphs 

Plotting the simulation results yields the chart in Figure 31, which shows that although 

the New algorithm performs slightly better than the Semi-Random algorithm, it still 

does not achieve broadcast times as good as the Round Heuristic or the Tree Based 

Algorithm. 
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Figure 31 Simulation chart in Butterfly graphs 
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4.2 Other Topologies 

This section discusses the broadcasting problem in different network models that are 

popular in the research in interconnection networks community. The simulation results 

of the New algorithm are presented and comparisons are made with the existing 

algorithms we previously discussed, Round Heuristic, the Tree Based Heuristic, the MWC 

and MWC-M heuristics, and the Random and Semi-Random heuristic. 

In this thesis we focus on four different network models, GT-ITM Random [42], GT-ITM 

Transit-Stub [42], Tiers [10], and BRITE Top-down Hierarchical models [31]. These 

network models have been developed by different research groups and they can all be 

integrated with the NS-2 simulator. The NS-2 is a simulator used for research in 

interconnection networks and one of its many features is its ability to generate 

topologies based on different network models.  

GT-ITM stands for Georgia Tech Internetwork Topology Models and contains the two 

models GT-ITM Random and Transit-Stub. 

The GT-ITM Random model uses a pure random generator, which randomly places 

vertices on a plane and connects each pair of vertices based on a probability  . It is 

obvious that this network model is driven by the probability  . Although this random 

model does not correspond to any real network, it is still presented and discussed in the 

network research community. 

The GT-ITM Transit-Stub models the Internet. Small networks, such as private company 

or campus networks called LANs (Local Area Networks) are formed. These are then 
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typically connected together into Metropolitan Area Networks (MANs), which can 

connect multiple LANs in a larger area, such as city, or Wide Area Networks (WANs), 

which can be extended to LANs from an entire country or the whole world. The Transit-

Stub model regards each independent network as a routing domain. All the vertices 

from one independent network are part of the same routing domain and share the 

same routing information. Routing domains are classified in two types, stub domains 

and transit domains. Stub domains are local and are concerned with local domain traffic, 

corresponding to the LANs in the Internet model. Transit domains are global, their goal 

is to interconnect stub domains and correspond to the MANs or WANs in the Internet 

model.  

Stub domains are usually not connected directly to each other, although it can happen; 

but typically stub domains are first connected directly to one or multiple transit domains 

and from thereon indirectly to other stub domains. Depending on whether a stub 

domain is connected to one or multiple transit domains, the stub domain is called 

single-homed or respectively multi-homed. A gateway node in the stub domain is 

connected to a node in the transit domain, which in turn can connect to another node in 

the same transit domain or in another transit domain or to other gateway nodes from 

other stub domains. The transit domain nodes are also called backbone nodes. 

A method to produce transit-stub graphs by interconnecting transit and stub domains is 

presented in [43]. This method first generates a connected random graph; each node in 

that graph represents an entire transit domain. Each node in that graph is then replaced 
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by another connected random graph, representing the backbone topology of one transit 

domain. Next, for each node in each transit domain, it generates a number of connected 

random graphs representing the stub domains attached to that node. Each of these stub 

domains has an edge to its transit node. Finally, it adds some extra connectivity, in the 

form of edges between pairs of nodes, one from a transit domain and one from a stub 

or one from each of two different stub domains. Method parameters control the 

number of extra edges of each type. Figure 32, adapted from [43], shows an example of 

such a structure. 

 

 

Figure 32 Example of Internet Domain Structure 

The size of the graph (number of nodes) and the distribution of nodes between transit 

and stub domains in this method are controlled by the following parameters: 

 The number of transit domains 
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 The average number of nodes per transit domain 

 The average number of stub domains per transit node 

 The number of average nodes per stub domain 

The following parameters control the total number of edges in the GT-ITM Transit-Stub 

model: 

 The number of transit-stub and stub-stub edges 

 The probability of an edge between each pair of nodes in the transit domains 

and stub domains 

The Tiers model is one of the most realistic models for generating random networks. 

Similar to the GT-ITM Transit-Stub, it has the hierarchical domain structure that is 

present in the Internet. The three levels of hierarchy, the WAN, MAN and LAN levels, are 

modeled, corresponding to transit domains, stub domains, and LANs attached to stub 

nodes. The three levels are also called tiers, hence the name Tiers model. The model 

only supports one WAN.  

The Tiers model creates the three hierarchy levels one by one, WAN first, then MANs 

and finally LANs. The various types of networks are then interconnected according to a 

given set of parameters. WANs and MANs are created by placing nodes at random in a 

grid and connecting them in sub-graphs by joining all the nodes in a single WAN or MAN 

domain using a minimum spanning tree. Since minimum spanning trees are sometimes 

used in reality as the basis for laying out large networks, the use of a minimum spanning 

tree makes the Tiers model more realistic. LANs such as Ethernet and Token Rings are 
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modeled as star topologies. This significantly reduces the number of edges in the graph 

and reflects the lack of physical redundancy in most LANs. The LAN networks are 

created by choosing one node in each LAN as the center of the star and connecting 

every other node to it with a single edge. 

The set of parameters below is used to generate a Tiers model network: 

   , the number of WANs and   , the number of nodes in a WAN.    is taken 

as 1 for simplicity. 

   , the number of corporate/institutional networks (MANs) and  , the number 

of nodes per MAN. 

   , the number of LANs per MAN and   , the number of nodes per LAN. 

The total number of nodes in the graph, N, is given by 

                 

The other parameters of the model are: 

 The degree of intranetwork redundancy in the WAN (  ), MAN (  ) and LAN 

(  ). This is expressed simply as the degree (number of directed edges) from a 

node to another node of the same type. So    is usually 1,    might be 2 and 

   could be 3. 

 The degree of internetwork redundancy between networks. This is the number 

of connections between a MAN and a WAN (   ) or a LAN and a MAN (   ). 
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Figure 33 and Figure 34, adapted from [8], show a typical full internetwork, and 

respectively a larger internetwork as generated by Tiers. The first one has one WAN 

with eight nodes, three MANs with three nodes each and two LANs per MAN with three 

nodes per LAN. The second one is larger and the endpoints of the links to MAN and LAN 

nodes have been omitted for clarity, so only the WAN nodes are seen clearly. 

 

 

Figure 33 A typical Tiers internetwork 
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Figure 34 A large Tiers internetwork 

GT-ITM Transit-Stub and Tiers implementations generate networks whose topology 

resembles typical internetworks. Both implementations are based on the explicitly 

hierarchical modeling approach described in [8]. Tiers introduces a different method for 

connecting the nodes in a network, by using a minimum spanning tree, which 

guarantees connectivity, and produces more realistic networks at the WAN scale. The 

Transit-Stub implementation uses a smaller set of parameters to control the different 

aspects of the network, hence takes a more probabilistic approach than that of Tiers. In 

both implementations, most of the parameters can be expected to remain constant 

between runs of generated networks. 
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Finally, we briefly present BRITE, the Boston university Representative Internet 

Topology gEnerator, which is a topology generation tool that provides a researcher with 

a wide variety of generation models, as well as the ability to easily extend such a set by 

combining existing models or adding new ones [31]. BRITE has the capability to work 

with many different generation models. Some of them are very similar and share 

implementation code, and others are completely different and share no functionality. 

Some can be imported models, such as GT-ITM or Tiers, others can be generated by 

BRITE, e.g. Flat Router-level Models, Flat AS-level Models, and Top-down Hierarchical 

Models.  

Flat topology models are the early models where the nodes are randomly placed on a 

Euclidean plane irrespective of any hierarchy order among them as opposed to later 

hierarchical topology models such as the Tiers and the Transit-Stub. BRITE generates 

Flat Router-level models in two major steps. First, the nodes are placed on a Euclidean 

plane randomly or in a heavy-tailed way. When node placement is random, each node is 

placed in a randomly selected location of the plane. When the placement is heavy-

tailed, BRITE divides the plane into squares. Each of these squares is assigned a number 

of nodes drawn from a heavy-tailed distribution. Once that value is assigned, then that 

many nodes are placed randomly in the square. Second, edges are added to the graph in 

one of two ways: 

 Using one of the most commonly used models for generating graphs, Waxman’s 

probability model [39], which considers all possible pairs (   ) of nodes and 
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uses the probability function   , where   (   )      (  )⁄  to create an edge, 

where   is the Euclidean distance between the nodes   and  ,   is the maximum 

possible distance between the two nodes and   and   are parameters in the 

range    ,    .  

 Using the Barabasi-Albert (BA) [3] model, which connects the nodes according to 

an incremental growth approach. Incremental growth refers to growing 

networks that are formed by the continual addition of new nodes, and thus the 

gradual increase in the size of the network. When a node   is added to the 

network, the probability that it connects to a node   already in the network is 

given by: 

 (   )  
  

∑      
 

where    is the degree of the target node,   is the set of nodes already in the 

network and ∑       is the sum of the degrees of all nodes that are already in 

the network. 

Flat AS-level Models represent AS-level topologies. An Autonomous System (AS)-level 

network is a network under a single administration domain. The AS-level models 

currently provided by BRITE are very similar to the models provided for generating 

router-level topologies. The main difference between these router-level and AS-level 

models is the fact that AS models place AS nodes in the plane and these can contain 

associated topologies. 
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Finally, BRITE also supports generation of hierarchical topologies, currently only of two-

level hierarchical topologies. However, two-level hierarchical topologies are in 

concordance to the two level routing hierarchy that has persisted in the Internet since 

ARPANET evolved into a network of networks interconnecting multiple autonomous 

systems. 

 

Figure 35 BRITE Top-down hierarchical model 

BRITE uses a top-down approach to generate hierarchical topologies. Figure 35 adapted 

from [31], shows a top-down hierarchical model. BRITE first generates an AS-level 

topology (1) using one of the available flat AS-level models (e.g. Waxman, BA, etc.). 

Next, for each node in the AS-level topology BRITE will generate a router-level topology 

(2) using a generation model from the available flat models that can be used at the 
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router-level. The router-level topologies are interconnected using one of four edge 

connection mechanisms, borrowed from the popular GT-ITM topology generator. The 

main goal is to gradually increase the set of edge connection methods with models that 

reflect what actually happens in Internet topologies. 

4.2.1 GT-ITM Random Model 

The results of our simulations in the GT-ITM Random model are presented in this 

chapter. Our results in the GT-ITM graph with 200 vertices are shown in Table 6 and 

Figure 36, which also show the data collected by the previous algorithms we already 

discussed. The parameter P is an input parameter to the GT-ITM topology generator and 

represents the probability of having an edge between each pair of vertices. Obviously, a 

higher probability leads to more edges in the graph. 

We can observe that for graphs with small number of edges (small P) the New heuristic 

performs slightly worse than previous heuristics, but as the number of edges increases, 

the New heuristic tends to perform better than all other heuristics except for the Round 

Heuristic and the Tree Based Algorithm. Compared to these two, the result of the New 

heuristic are only one round more, but the New Heuristic has the advantage of a much 

lower time complexity than the Round Heuristic.  
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P Edge RH TBA MWC MWC-M P-R S-R New H 

0.015 316 10 10 11 11 10 10 11 

0.016 346 10 10 11 11 10 10 12 

0.017 373 10 10 11 11 10 10 11 

0.018 388 9 9 11 11 10 10 10 

0.019 391 11 11 10 10 10 10 12 

0.02 411 9 9 10 10 10 10 10 

0.022 423 9 9 10 10 10 10 10 

0.024 475 8 8 10 11 10 10 9 

0.025 494 9 8 11 11 10 10 10 

0.026 507 8 8 11 10 10 10 9 

Table 6  Simulation results in GT-ITM Random model with 200 vertices 

 

Figure 36 Simulation chart in GT-ITM Random model with 200 vertices 

The simulation results in the GT-ITM Random model with 500 vertices are shown in 

Table 7 and Figure 37. In this case the Tree Based Algorithm has the best results, with 

the Round Heuristic following closely, whereas the results of all other previous 

316 346 373 388 391 411 423 475 494 507

RH 10 10 10 9 11 9 9 8 9 8

TBA 10 10 10 9 11 9 9 8 8 8

MWC 11 11 11 11 10 10 10 10 11 11

MWC-M 11 11 11 11 10 10 10 11 11 10

P-R 10 10 10 10 10 10 10 10 10 10

S-R 10 10 10 10 10 10 10 10 10 10

New H 11 12 11 10 12 10 10 9 10 9
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algorithms climb up slowly as the number of edges increases. In contrast, the 

performance of the New algorithm gets better with the increase in number of edges and 

when the number of edges is 2074, while the Semi-Random algorithm’s results are 

almost twice those of the Round Heuristic and the Tree Based Algorithm, the 

performance of the New algorithm gets closer to the best results with only one round 

more. Compared to the Round Heuristic, the New Heuristic has the advantage of a much 

lower time complexity; therefore the only previous algorithm with similar time 

complexity that beats the New heuristic is TBA. However, compared to the TBA 

algorithm, the New algorithm has the advantage that approximately one half of the 

vertices are informed via a shortest path from the broadcast originator, while the rest of 

the vertices receive the message via a path at most three hops longer. 

 

P Edge RH TBA MWC MWC-M P-R S-R New H 

0.008 1003 10 10 13 13 12 12 13 

0.009 1198 11 10 13 13 12 12 12 

0.01 1238 10 10 13 13 12 12 12 

0.011 1413 11 10 13 13 13 13 11 

0.012 1481 10 10 13 13 13 13 11 

0.014 1725 10 10 13 14 13 13 11 

0.015 1830 10 9 14 14 14 14 11 

0.016 2074 9 9 15 16 15 15 10 

Table 7  Simulation results in GT-ITM Random model with 500 vertices 
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Figure 37 Simulation results in GT-ITM Random model with 500 vertices 

4.2.2 GT-ITM Transit-Stub Model 

We studied two types of GT-ITM Transit-Stub graphs, one with 600 vertices and the 

second with 1056 vertices. 

The GT-ITM Transit-Stub graphs with 600 vertices were generated using the same 

parameters used in [38] as follows. The initial seed was 47. Each graph had 3 stub 

domains per transit node, with no extra transit-stub or stub-stub edges. There were 3 

transit domains, each of which had 8 nodes, and an edge between each pair of nodes 

with probability 0.5. Meanwhile, each stub domain had (on average) 8 nodes, and edge 

probability was also 0.5. The number of vertices is given by     (     )     . 

1003 1198 1238 1413 1481 1725 1830 2074

RH 10 11 10 11 10 10 10 9

TBA 10 10 10 10 10 10 9 9

MWC 13 13 13 13 13 13 14 15

MWC-M 13 13 13 13 13 14 14 16

P-R 12 12 12 13 13 13 14 15

S-R 12 12 12 13 13 13 14 15

New H 13 12 12 11 11 11 11 10
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The simulation results in graphs with increasing number of edges are presented below 

in Table 8 and Figure 38. The results fluctuate a lot between all the algorithms, but they 

remain in a small range between 13 and 16 rounds for all number of edges. For this 

model, the best results are given by the Random and Semi-Random algorithms. The 

New algorithm matches the best results in some cases and in most other cases performs 

just one round worse than the best one. However, compared to the Semi-Random 

algorithm, the New algorithm has the advantage that it is more reliable, producing the 

same results for repeated runs, whereas the results of the Semi-Random algorithm can 

vary between runs. Compared to the TBA algorithm, the New algorithm has the 

advantage that approximately one half of the vertices are informed via a shortest path 

from the broadcast originator, while the rest of the vertices receive the message via a 

path at most three hops longer. 

 

Edge RH TBA MWC MWC-M P-R S-R New H 

1169 14 13 14 13 13 13 14 

1190 14 14 14 14 13 13 13 

1200 16 15 14 14 13 13 15 

1206 14 14 14 14 14 14 15 

1219 15 14 14 14 13 13 15 

1222 15 14 15 15 14 14 14 

1231 14 13 14 14 13 13 14 

1232 14 13 14 14 13 13 14 

1247 13 14 14 14 14 14 14 

1280 14 13 14 14 13 14 15 

Table 8  Simulation results in GT-ITM Transit-Stub model with 600 vertices 
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Figure 38 Simulation results in GT-ITM Transit-Stub model with 600 vertices 

The GT-ITM Transit-Stub graphs with 1056 vertices were generated using the same 

parameters used in [38] as follows. The initial seed was 47. Each graph had 4 stub 

domains per transit node, with no extra transit-stub or stub-stub edges. There were 4 

transit domains, each of which had 8 nodes, and an edge between each pair of nodes 

with probability 0.5. Meanwhile, each stub domain had (on average) 8 nodes, and edge 

probability was also 0.5. The number of vertices is given by     (     )  

    . 

Once again, simulation results in graphs with increasing number of edges are presented 

below in Table 9 and Figure 39. The results are similar to the GT-ITM Transit-Stub model 

with 600 vertices in the sense that the results fluctuate a lot between all the algorithms. 
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S-R 13 13 13 14 13 14 13 13 14 14

New H 14 13 15 15 15 14 14 14 14 15
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Again, for this model, the best results are given by the Random and Semi-Random 

algorithms. The New algorithm matches the best results in some cases and in most 

other cases performs just one round worse than the best one. However, compared to 

the Semi-Random algorithm, the New algorithm has the advantage that it is more 

reliable, producing the same results for repeated runs, whereas the results of the Semi-

Random algorithm can vary between runs. Compared to the TBA algorithm, the New 

algorithm has the advantage that approximately one half of the vertices are informed 

via a shortest path from the broadcast originator, while the rest of the vertices receive 

the message via a path at most three hops longer. 

Edge RH TBA MWC MWC-M P-R S-R New H 

2115 17 16 16 17 16 16 16 

2121 17 17 16 15 15 15 16 

2142 16 15 16 15 15 15 16 

2151 15 15 16 15 15 15 17 

2169 17 17 16 16 15 15 15 

2177 18 17 16 16 16 16 16 

2185 16 16 15 15 15 15 16 

2219 17 16 15 16 15 15 15 

2220 15 15 15 15 14 14 16 

2230 16 15 16 16 15 15 16 

Table 9  Simulation results in GT-ITM Transit-Stub model with 1056 vertices 
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Figure 39 Simulation results in GT-ITM Transit-Stub model with 1056 vertices 

4.2.3 Tiers Model 

We studied two types of Tiers graphs, one with 355 vertices and the second with 1105 

vertices. The parameters for these graphs are the same as in [38] and listed in Table 10 

and Table 11. The graphs with 355 vertices have one WAN, ten MANs and five LANs, 

while graphs of 1105 vertices have one WAN, ten MANs and ten LANs. 

2115 2121 2142 2151 2169 2177 2185 2219 2220 2230

RH 17 17 16 15 17 18 16 17 15 16

TBA 16 17 15 15 17 17 16 16 15 15

MWC 16 16 16 16 16 16 15 15 15 16

MWC-M 17 15 15 15 16 16 15 16 15 16

P-R 16 15 15 15 15 16 15 15 14 15

S-R 16 15 15 15 15 16 15 15 14 15

New H 16 16 16 17 15 16 16 15 16 16
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Edge                                    

354 1 10 5 5 10 5 1 1 1 1 1 

414 1 10 5 5 10 5 1 1 1 2 2 

474 1 10 5 5 10 5 1 1 1 3 3 

357 1 10 5 5 10 5 2 1 1 1 1 

477 1 10 5 5 10 5 2 1 1 3 3 

535 1 10 5 5 10 5 2 1 1 4 4 

422 1 10 5 5 10 5 3 2 1 2 2 

482 1 10 5 5 10 5 3 2 1 3 3 

541 1 10 5 5 10 5 3 2 1 4 4 

Table 10 Parameters for Tiers model with 355 vertices 

Edge                                    

1214 1 10 10 5 10 10 1 1 1 2 2 

1324 1 10 10 5 10 10 1 1 1 3 3 

1447 1 10 10 5 10 10 1 1 1 4 4 

1106 1 10 10 5 10 10 2 2 1 1 1 

1216 1 10 10 5 10 10 2 2 1 2 2 

1326 1 10 10 5 10 10 2 2 1 3 3 

1110 1 10 10 5 10 10 3 2 1 1 1 

1220 1 10 10 5 10 10 3 2 1 2 2 

1331 1 10 10 5 10 10 3 2 1 3 3 

1449 1 10 10 5 10 10 2 2 1 4 4 

Table 11 Parameters for Tiers model with 1105 vertices 

In Table 12 and Figure 40 we present the simulation results in Tiers graphs with 355 

vertices and increasing number of edges from 354 to 541. We can observe that the 

results of all the algorithms fluctuate a lot, and it is hard to point out which one works 

the best. The New algorithm has poor performance for low number of edges, but as the 

number of edges increases, its performance gets similar to the previous algorithms. 

Also, compared to the Semi-Random algorithm, the New algorithm has the advantage 

that it is deterministic, producing the same results for repeated runs, whereas the 

results of the Semi-Random algorithm can vary between runs. 
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Edge RH TBA MWC MWC-M P-R S-R New H 

354 17 17 16 16 16 16 18 

414 15 14 14 14 14 14 17 

474 14 13 14 14 14 14 17 

357 17 17 16 16 16 16 19 

477 15 14 14 14 14 14 16 

535 16 15 13 13 13 13 17 

422 15 14 14 14 14 14 15 

482 14 13 14 14 14 14 14 

541 14 14 14 13 13 13 14 

Table 12 Simulation results in Tiers model with 355 vertices 

 

Figure 40 Simulation results in Tiers model with 355 vertices 

In Table 13 and Figure 41 we present the simulation results in Tiers graphs with 1105 

vertices and different number of edges between 1106 and 1449. Once again, we can 

354 414 474 357 477 535 422 482 541

RH 17 15 14 17 15 16 15 14 14

TBA 17 14 13 17 14 15 14 13 14

MWC 16 14 14 16 14 13 14 14 14

MWC-M 16 14 14 16 14 13 14 14 13

P-R 16 14 14 16 14 13 14 14 13

S-R 16 14 14 16 14 13 14 14 13

New H 18 17 17 19 16 17 15 14 14
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observe that the results of all the algorithms fluctuate a lot. The Random and Semi-

Random algorithms give best results in seven of the ten graphs, and the New algorithm 

gives the best results in three graphs, the ones with 1447, 1216, and 1220 edges. 

However, compared to the Semi-Random algorithm, the New algorithm has the 

advantage that it is deterministic, producing the same results for repeated runs, 

whereas the results of the Semi-Random algorithm can vary between runs. Compared to 

the TBA algorithm, the New algorithm has the advantage that approximately one half of 

the vertices are informed via a shortest path from the broadcast originator, while the 

rest of the vertices receive the message via a path at most three hops longer. 

Edge RH TBA MWC MWC-M P-R S-R New H 

1214 22 21 21 21 21 21 23 

1324 23 21 21 20 20 20 21 

1447 22 21 22 22 22 22 21 

1106 24 24 21 21 21 21 23 

1216 22 21 21 21 21 21 20 

1326 23 21 20 21 20 20 21 

1110 24 23 21 21 21 21 23 

1220 22 21 21 21 21 21 21 

1331 20 20 20 20 20 20 21 

1449 21 20 22 22 22 22 21 

Table 13 Simulation results in Tiers model with 1105 vertices 
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Figure 41 Simulation results in Tiers model with 1105 vertices 

 

4.2.4 BRITE Top-down Hierarchical Model 

In this section we present our simulation results in Top-down hierarchical model graphs 

generated with the BRITE topology generator. Four types of graphs were studied, two 

with 400 vertices and two with 1000 vertices, each one constructed with Waxman and 

Barabasi-Albert models. Since there are no previous results in these topologies for the 

Round Heuristic and Tree Based Algorithm, the results of the New algorithm are 

compared only with the other four (P-R, S-R, MWC and MWC-Modified). The 

configurations of the graphs studied uses the same parameters as in [38]. 

1214 1324 1447 1106 1216 1326 1110 1220 1331 1449

RH 22 23 22 24 22 23 24 22 20 21

TBA 21 21 21 24 21 21 23 21 20 20

MWC 21 21 22 21 21 20 21 21 20 22

MWC-M 21 20 22 21 21 21 21 21 20 22

P-R 21 20 22 21 21 20 21 21 20 22

S-R 21 20 22 21 21 20 21 21 20 22

New H 23 21 21 23 20 21 23 21 21 21
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In the BRITE Top-down models with 400 vertices the number of vertices at AS-level and 

Route-level are both 20, the number of links added per new node ranges from 1 to 9, 

and the edge connection model is set to Smallest Degree. The parameters of the 

Waxman model are        and      . 

In Table 14 and Figure 42 we present the simulation results in the BRITE Top-down 

Waxman model with 400 vertices. With the number of edges increasing, the results of 

the previous four heuristics decline first, and then ascend slowly. In contrast, we can 

clearly observe that the new algorithm not only performs better as the number of edges 

increases, but the difference of 6 rounds better in the graph with 2755 edges is quite 

significant compared to the Semi-Random algorithm for example. 

Edge MWC MWC-M P-R S-R New H 

420 22 22 22 22 28 

840 15 15 15 14 14 

1260 13 13 13 12 14 

1680 14 14 13 13 12 

2092 15 14 13 13 12 

2440 16 16 14 14 12 

2671 17 17 16 16 12 

2733 18 18 16 15 11 

2755 19 18 18 18 12 

Table 14 Simulation results in BRITE Top-down Waxman model with 400 vertices 
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Figure 42 Simulation results in BRITE Top-down Waxman model with 400 vertices 

In Table 15 and Figure 43 we present the simulation results in the BRITE Top-down 

Barabasi-Albert model with 400 vertices. The results are similar to the previous model, 

the Waxman with 400 vertices. The New algorithm provides the best results as the 

number of edges increases, whereas the performance of the previous four algorithms 

slowly gets worse with higher number of edges. Once again, for the graph with the most 

edges, 2835, the difference of 4 rounds by which the New Algorithm is better than the 

next one in performance, is quite significant. 

420 840 1260 1680 2092 2440 2671 2733 2755

MWC 22 15 13 14 15 16 17 18 19

MWC-M 22 15 13 14 14 16 17 18 18

P-R 22 15 13 13 13 14 16 16 18

S-R 22 14 12 13 13 14 16 15 18

New H 28 14 14 12 12 12 12 11 12
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Edge MWC MWC-M P-R S-R New H 

399 22 22 22 22 28 

777 17 17 17 16 16 

1134 15 14 14 13 13 

1470 14 13 13 13 12 

1785 14 14 13 13 12 

2079 14 14 13 13 12 

2352 14 14 14 14 12 

2604 16 16 14 14 12 

2835 16 16 16 15 11 

Table 15 Simulation results in BRITE Top-down BA model with 400 vertices 

 

Figure 43 Simulation results in BRITE Top-down BA model with 400 vertices 

In the BRITE Top-down models with 1000 vertices the number of vertices at AS-level is 

20, and at Route-level is 50, the number of links added per new node ranges from 1 to 9, 

399 777 1134 1470 1785 2079 2352 2604 2835

MWC 22 17 15 14 14 14 14 16 16

MWC-M 22 17 14 13 14 14 14 16 16

P-R 22 17 14 13 13 13 14 14 16

S-R 22 16 13 13 13 13 14 14 15

New H 28 16 13 12 12 12 12 12 11
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and the edge connection model is set to Smallest Degree. The parameters of the 

Waxman model are        and      . 

In Table 16 and Figure 44 we present the simulation results in the BRITE Top-down 

Waxman model with 1000 vertices. The behavior of the algorithms studied is similar to 

the behavior in the models with 400 vertices. The previous algorithms exhibit decreasing 

performance with the increase in number of edges. In contrast the performance of the 

New algorithm improves and for the graphs with high number of edges it gets 2 or 3 

rounds better than the next best results. 

Edge MWC MWC-M P-R S-R New H 

1020 29 29 29 29 30 

2040 19 19 18 18 17 

3060 19 19 18 17 17 

4080 17 18 17 16 15 

5100 18 18 16 16 16 

6108 18 18 17 16 14 

7116 19 18 17 17 14 

8117 19 19 17 18 15 

9122 19 19 17 19 14 

Table 16 Simulation results in BRITE Top-down Waxman model with 1000 vertices 



 

84 
 

 

Figure 44 Simulation results in BRITE Top-down Waxman model with 1000 vertices 

In Table 17 and Figure 45 we present the simulation results in the BRITE Top-down 

Barabasi-Albert model with 1000 vertices. The trend we observed in the previous BRITE 

models appears also in this model. With the exception of the graph with 999 edges, the 

New algorithm beats the next best results of the previous algorithms by at least 2 

rounds, and in a couple of graphs by 4 rounds. 

1020 2040 3060 4080 5100 6108 7116 8117 9122

MWC 29 19 19 17 18 18 19 19 19

MWC-M 29 19 19 18 18 18 18 19 19

P-R 29 18 18 17 16 17 17 17 17

S-R 29 18 17 16 16 16 17 18 19

New H 30 17 17 15 16 14 14 15 14
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Edge MWC MWC-M P-R S-R New H 

999 35 35 35 35 36 

1977 23 23 22 22 20 

2934 24 25 23 21 17 

3870 22 22 21 18 16 

4785 20 20 19 17 15 

5679 19 19 18 17 15 

6552 19 18 18 17 14 

7404 20 19 17 17 13 

8235 19 19 17 18 14 

Table 17 Simulation results in BRITE Top-down BA model with 1000 vertices 

 

Figure 45 Simulation results in BRITE Top-down BA model with 1000 vertices 

999 1977 2934 3870 4785 5679 6552 7404 8235

MWC 35 23 24 22 20 19 19 20 19

MWC-M 35 23 25 22 20 19 18 19 19

P-R 35 22 23 21 19 18 18 17 17

S-R 35 22 21 18 17 17 17 17 18

New H 36 20 17 16 15 15 14 13 14
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5 Conclusion and Future Work 

We set out to examine and improve upon algorithms for broadcasting in arbitrary 

graphs. We have accomplished the following. 

Given that determining the broadcast time for an arbitrary vertex   in an arbitrary graph 

  is NP-complete, we surveyed existing approximation and heuristic algorithms and 

analyzed their behavior in both commonly used topologies and other topologies used to 

study networking algorithms. 

Since generating example networks is important for testing broadcasting algorithms, we 

described some of the difficulties of modeling the topology of typical communications 

networks and provided brief details for different modeling approaches and several 

implementations popular in the research community. 

We also proposed a New heuristic for broadcasting in arbitrary networks. Based on the 

layer graph, the New heuristic first generates a spanning tree using a new matching 

strategy between each pair of adjacent layers. The new matching strategy is a greedy 

strategy, which tries to locally optimize the broadcast time between each pair of 

adjacent layers hoping this would yield a close to optimum global broadcast time. In the 

final step, the broadcast scheme is improved by considering vertices that are idle at any 

round and potential edges that were removed from the initial graph during the 

construction of the layer graph. The final broadcast scheme has the advantage that 

approximately one half of the vertices are informed via a shortest path from the 
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broadcast originator, while the rest of the vertices receive the message via a path at 

most three hops longer. 

The New heuristic outperforms previous heuristics in Hypercubes, where it produces 

optimal broadcast time. It also produces optimal broadcast time in most of the 

dimensions simulated in Cube Connected Cycles, matching the performance of the best 

previous results. Previous performance results in Shuffle-Exchange graphs are also 

matched. 

Looking at network topologies that mimic the Internet model, the performance of the 

New algorithm varies from model to model. In BRITE Top-down hierarchical model 

topologies the results are much better than previous heuristics. The new algorithm, not 

only gives the best results, but it consistently beats the best previous heuristics by two 

or more rounds. In GT-ITM models it is similar to previous heuristics. In Tiers models, it 

performs poorly for graphs with low number of edges, but starts catching up to the best 

results as the number of edges increases.  

The other advantage of the New algorithm is its low time complexity of  (| |    | |), 

which is very close to  (| |), the lowest complexity of some of the other heuristics 

mentioned in this thesis. Still, the new heuristic has comparable or even better 

broadcast times. 

From the current results, one can see that a local matching strategy, layer by layer in the 

layer graph does not yield the best results in all topologies, so future improvements 

could be made so that the layer by layer matching strategy is made more global, 
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considering also what happens in upper layers of the layer graph. Looking at all the 

heuristics discussed in this thesis, we can also observe that it would probably be difficult 

to design a new heuristic with better performance because some of the existing 

heuristics already achieve the optimal broadcast time    | | in some networks. Future 

work might also approach the problem from a different angle and try to design an 

approximation algorithm for the problem of broadcast time in arbitrary graphs.  
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