

Requirements Modeling:

from Natural Language to Conceptual Models Using Recursive Object

Model (ROM) Analysis

Min Wang

A Thesis

In the Department

of

Electrical and Computer Engineering

Concordia University

Presented in Partial Fulfillment of the Requirements

For the Degree of

Doctor of Philosophy (Electrical and Computer Engineering) at

Concordia University

Montreal, Quebec, Canada

July, 2013

© Min Wang, 2013

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Ms. Min Wang

Entitled: “Requirements Modeling: from Natural Language to

Conceptual Models Using ROM Analysis”

and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Electrical and Computer Engineering)

complies with the regulations of the University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining committee:

 Chair

 Dr. Weiming Shen External Examiner

 Dr. Olga S. Ormandjieva External Examiner

 Dr. Abdelwahab Hamou-Lhadj Examiner

 Dr. Benjamin Fung Examiner

 Dr. Yong Zeng Supervisor

Approved by

 Chair of Department or Graduate Program Director

 20

 Dean of Faculty of Engineering & Computer Science

 iii

ABSTRACT

Requirements Modeling: from Natural Language to Conceptual Models Using

Recursive Object Model (ROM) Analysis

Min Wang Ph.D.

Concordia University, 2013

Requirements elicitation and modeling are critical for the success of product development

not only in software engineering but also in other engineering fields. Collecting the right

requirements at each stage and transforming them into conceptual models are essential in

delivering a successful product. In most cases, original requirements are represented by

natural language in engineering. However, a key challenge faced by industries is to

transform existing loosely structured legacy requirements document into the structured

representations. This transformation process is extremely time-consuming and prone-to-

error. Some efforts in research have been made to develop automatic or semi-automatic

processes to bridge natural language and formal representation. Motivated by both the

strong industrial need to automatically formalize natural language based requirements

(NLR) and the research breakthrough in product requirements modeling, this present

thesis proposes a new approach to transforming product requirements from their

unrestricted natural language representation to structured conceptual models by using

Recursive Object Model (ROM).

 iv

The proposed approach includes the following three main aspects: 1) developing criteria

for the completeness and necessity of design requirements corresponding to certain

design stage, 2) developing a dynamic requirements elicitation approach to refine

requirements, and 3) developing algorithms for transforming design requirements from

natural language to conceptual models, such as Use Case Model by Universal Modeling

Language (UML) and Function-Behavior-State (FBS) model. This presented research

involves Natural Language Processing (NLP) techniques, in conjunction with question

asking (QA) strategy and conceptual modeling algorithms. The significant tasks include

defining the scope of the right requirements, automatically question asking to elicit

requirements, formulating the transformation of requirements text into conceptual models,

generating the rules for the conceptual modeling, developing algorithms based on the

transformation rules, and finally automating the requirements modeling process through

software prototypes.

The research foundation of this thesis is the Environment Based Design (EBD)

methodology which is derived from axiomatic theory of design modeling (ATDM). To

bridge the gap between unrestricted natural language and formal conceptual models, an

intermediate representation, ROM, is the core for representing the semantics of design

requirements throughout the requirements evolution process.

 v

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my supervisor, Dr. Y.

Zeng for providing me with the opportunity to do this challenging and rewarding research

and for his invaluable guidance, advice, encouragement and financial support throughout

my PhD study. His passion and dedication in the pursuit of the truth in research, his

insightful sense of the best research directions, his logical and creative thinking about

research and life have influenced every aspect of my research and life. I would also like

to thank my thesis committee members, Dr. O. Ormandjieva, Dr. W. Hamou-Lhadj, Dr.

B. Fung, and Dr. W. Shen for their constructive suggestions and comments on my

research.

I would like to extend my thanks to my colleagues Mr. Lei Chen, Mr. Suo Tan, Ms.

Thanh An Nguyen, Ms. Yijing Zeng, Dr. Xiaoguang Deng, Dr. Wei Liu and other

members in the Design Lab for their comments on my research and the friendship

throughout the past years. I would also express my appreciation to the professors and

staffs in ECE and CIISE of Concordia University, who have provided a wonderful

academic surroundings for me to complete this study.

Last but not least, I wish to express my appreciation to my beloved family. I am very

grateful towards my parents, my brother, and my sister. I owe a lot to my husband, Wei,

for his extraordinary patience, love, and support over so many years. My son Eric always

brings joyfulness and hope for my life. I cannot imagine being able to reach this point

without their love.

 vi

Table of Contents

List of Figures .. ix

List of Tables ... xi

List of Abbreviations ... xiii

Chapter 1 Introduction .. 1

 Background and Motivation .. 1 1.1

 Objectives .. 5 1.2

 Challenges ... 9 1.3

 Research Contributions ... 9 1.4

 Thesis Structure ... 10 1.5

Chapter 2 Literature Review ... 12

 Design and Design Process ... 12 2.1

 Requirements Engineering .. 15 2.2

 Requirements Elicitation ... 20 2.3

 Requirements Modeling .. 25 2.4

 Conceptual Models .. 28 2.5

 Linguistic Analysis .. 35 2.6

Chapter 3 Research Foundations .. 38

 Axiomatic Theory of Design Modeling (ATDM) ... 38 3.1

 Environment-Based Design (EBD) ... 40 3.2

 Recursive Object Model (ROM) ... 45 3.3

Chapter 4 Environment-based Requirements Roadmap and Dynamic Requirements

Elicitation based on Requirements Roadmap ... 48

 Environment-based Requirements Roadmap .. 49 4.1

4.1.1 Necessity of requirements .. 50

4.1.2 Completeness of requirements .. 52

4.1.3 Environment-based requirements roadmap .. 54

 Dynamic Requirements Elicitation Based on Environment-based Roadmap 61 4.2

4.2.1 Dynamic elicitation through question asking ... 61

 vii

4.2.2 Algorithm of question asking ... 64

 Evaluation of the Question Asking Approach based on Environment-based 4.3

Roadmap: a Case Study... 75

4.3.1 Energy trading software system background .. 75

4.3.2 Question asking process for energy trading system ... 76

Chapter 5 Structure of Conceptual Models ... 92

 Conceptual Models .. 92 5.1

 Product-Environment System (PES) ... 93 5.2

 FBS Model .. 95 5.3

Chapter 6 Formalization of Transformation from Requirements Text to Conceptual

Models... 101

 Transformation from Requirements Text to a Conceptual Model 101 6.1

 Representation of States in Transformation from ROM to Conceptual Model 103 6.2

Chapter 7 Algorithm of Transformation from Requirements to FBS 112

 Transformation Rules from ROM to FBS ... 113 7.1

7.1.1 Transformation rules from ROM to PES .. 113

7.1.2 Transformation rules from PES to FBS .. 118

 The transformation Algorithm .. 119 7.2

Chapter 8 Algorithm of Transformation from Requirements Text to UML 125

 Transformation Algorithm from ROM to Use Case Model 127 8.1

8.1.1 Use Case Model analysis .. 127

8.1.2 Transformation algorithms ... 129

 Transformation Algorithm from ROM to Domain Model 134 8.2

8.2.1 Domain model analysis .. 134

8.2.2 Transformation algorithms ... 138

Chapter 9 Case Studies for Transformation from Requirements Text to Conceptual

Models... 143

 Design Patent of Low Temperature Clothes Dryer ... 143 9.1

 Requirements of Energy Trading System ... 150 9.2

 Requirements of POS Management System ... 153 9.3

 viii

 Evaluation of the Proposed Methods .. 159 9.4

 Summary ... 163 9.5

Chapter 10 Conclusions and Future Work .. 164

 Conclusions ... 164 10.1

 Future Work .. 165 10.2

References ... 167

 ix

List of Figures

Figure 1-1 Research framework .. 8

Figure 2-1 Eight levels of requirements .. 18

Figure 2-2 SysML Diagram Types .. 31

Figure 2-3 Relationship between function, behaviour and state 34

Figure 3-1 Evolution of the design process ... 41

Figure 3-2 EBD: process model .. 42

Figure 3-3 Product-Environment System .. 43

Figure 3-4 State space of design under synthesis and evaluation operators 44

Figure 4-1 Requirement clarification and explication ... 49

Figure 4-2 Evolution of the design process ... 52

Figure 4-3 Requirements roadmap .. 56

Figure 4-4 Generic inquiry process for requirements elicitation 63

Figure 4-5 Asking the generic questions ... 65

Figure 4-6 Asking domain specific questions ... 73

Figure 4-7 The ROM diagram for original requirements .. 76

Figure 4-8 The PES of automation system .. 77

Figure 5-1 Product-environment system from subjective and objective perspective 95

Figure 5-2 ATDM perspective of FBS model ... 96

Figure 5-3 The ROM diagram for the definition of function 97

Figure 6-1 Transformation from requirements text to FBS model 102

Figure 6-2 Transformation from ROM to a conceptual model 103

Figure 6-3 ROM feature of a noun object N .. 106

Figure 6-4 ROM feature of a verb object V ... 107

Figure 6-5 ROM feature of an adjective object Aj ... 108

Figure 6-6 ROM feature of an adverb object Av .. 108

Figure 6-7 ROM feature of a determiner object D .. 109

Figure 6-8 ROM feature of a preposition object P .. 109

Figure 6-9 ROM feature of a conjunction object Cj .. 110

Figure 7-1 Structure of ROM - FBS system .. 112

 x

Figure 7-2 ROM and PES features: a complete map ... 113

Figure 7-3 Framework for the transformation of a design text into a FBS model .. 120

Figure 8-1 An example of Use case diagram .. 128

Figure 8-2 Transformation from ROM to UCM ... 130

Figure 8-3 Structure of PES - UCM system .. 130

Figure 8-4 An example of domain model .. 134

Figure 8-5 Transformation from ROM to DM .. 138

Figure 9-1 ROM diagram for the low temperature clothes dryer 145

Figure 9-2 PES diagram of automation system example .. 149

Figure 9-3 FBS diagram of design paten example .. 150

Figure 9-4 ROM diagram of automation system ... 151

Figure 9-5 PES diagram of automation system example .. 153

Figure 9-6 ROM diagram of POS system requirement text 155

Figure 9-7 PES of POS system example ... 157

Figure 9-8 Use Case diagram output of R2UML .. 158

Figure 9-9 Domain Diagram (Class Diagram) output of R2UML 159

 xi

List of Tables

Table 3-1 Elements of recursive object model (ROM) ... 45

Table 3-2 Examples of ROM diagrams ... 46

Table 4-1 The requirement category in Volere ... 57

Table 4-2 Environment-based requirement roadmap category 60

Table 4-3 Question asking algorithm for requirements elicitation 64

Table 4-4 Rules for objects analysis .. 66

Table 4-5 Questions template for object analysis ... 66

Table 4-6 Algorithm for generic question generation ... 67

Table 4-7 Identification rules from ROM diagram to PES 68

Table 4-8 Algorithm for identification of PES from ROM 70

Table 4-9 Questions generation rules for domain specific questions 73

Table 4-10 Algorithm for domain question generation ... 74

Table 4-11 Object analysis .. 78

Table 4-12 List of the first round questions .. 80

Table 4-13 Questions and answers about life cycle .. 83

Table 5-1 Representation of FBS system .. 100

Table 6-1 Object features .. 105

Table 6-2 Verb category .. 107

Table 6-3 Object mappings between POS, ROM, PES and FBS features 110

Table 7-1 Transition rules from ROM to PES ... 115

Table 7-2 Application examples of rules in Table 7-1. ... 117

Table 7-3 Transition rules from PES to FBS ... 118

Table 7-4 Transformation algorithm from ROM to FBS .. 121

Table 7-5 Algorithm of determining product object ... 121

Table 7-6 Algorithm of identifying functions and environments 122

Table 7-7 Algorithm of identifying product components and attributes 123

Table 7-8 Algorithm of identifying environment from environment 124

Table 8-1 Transition rules from PES to use case model.. 131

Table 8-2 Transformation algorithm from PES to use case model 132

 xii

Table 8-3 Algorithm of determining system of use case model 132

Table 8-4 Algorithm of determining actors of use case model 133

Table 8-5 Algorithm of identifying actions ... 133

Table 8-6 Conceptual Class Category List .. 135

Table 8-7 Transition rules from PES to domain model ... 140

Table 8-8 Transformation algorithm from PES to domain model 140

Table 8-9 Algorithm of determining conceptual class of domain model 141

Table 8-10 Algorithm of determining attributes of domain model 141

Table 8-11 Algorithm of identifying associations ... 142

Table 9-1 Noun objects in ROM diagram ... 145

Table 9-2 The output of design patent example .. 148

Table 9-3 The output of requirement text example ... 152

Table 9-4 The PES of POS system example ... 155

Table 9-5 Evaluation results of design patent case .. 161

Table 9-6 Evaluation results of POS management system 162

 xiii

List of Abbreviations

EBD: Environment-Based Design

ROM: Recursive Object Model

PES: Product-Environment System

UML: Universal Modeling Language

OMG SysML: OMG Systems Modeling Language

UCD: Use Case Diagram

DM: Domain Model

FBS: Function-Behavior-State

QA: Question Asking

R2UML: ROM to UML

R2FBS: ROM to FBS

NLR: Natural Language based Requirements

1

Chapter 1

Introduction

 Background and Motivation 1.1

Requirements are a foundational aspect of system engineering, software engineering, or

enterprise engineering. Along with the increasing scale of product development, the

significance and effects of requirements are becoming more outstanding. They play a

driving role and provide all the necessary information to implement product development

or process optimization on time within budget. The requirement quality is the key for the

success of the whole product lifecycle. It is imperative that requirements must be

gathered and extracted into necessary, specific, complete dimension, and understood by

all stakeholders of development project. Requirements can be described in a natural

language, sketches, equations, and some other forms like multimedia. They are the

starting point and basis for the design phase. Design information can be contained in

various representations, such as text, verbal statements, graphic models and mathematical

expressions. Among all the representations, natural language is the most flexible yet

ambiguous means even it is the most widely used; graphic models are the more effective

and the more efficient; mathematical language is the most precise.

Along with the advancement of computing technologies, more and more design tasks are

directly or indirectly aided by computers. Directly, some design tasks are automated such

as geometric modeling, structural analysis and optimization. Indirectly, some design tasks

are being conducted through collaboration between human and computers such as

drafting, innovation, and requirements elicitation. In order to support the entire design

2

process, emerging CAD/E systems must be able to support the smooth integration of

systems with other systems and with their human users. The basis of this integration is a

semantic model that can accommodate the communication of systems with each other

and with their human users (Luh et al., 2012).

Technologies supporting this communication range from early efforts on geometric

reasoning (Marefat and Kashyap, 1990; Wilson and Latombe, 1994) to recent progresses

on data/knowledge mining (Fayyad et al., 1996; Lin and Katz, 2003). Another application

in CAD/E closely related to semantics is the acquisition of design knowledge from

existing design requirements. It is useful to extract critical design information relevant

from the design requirements to a new design or redesign. Critical information can only

be identified if the semantics of the requirements is understood. It must also be pointed

out that a design requirement by itself and in its textual form is only a piece of passive

knowledge. Its application depends on how the designer understands and digests the

active design knowledge implied in the document so that they can be logically associated

with a design situation. By definition, the understanding of requirements is the

transformation from requirements into a formal representation constituted by a set of

semantic components and their relationships (Wiggins and McTighe, 2005), which are

conceptual models actually. Therefore, the transformation from requirements into a

formal or semi-formal representation is necessary and essential for design, industry, and

business. This representation provides a shared view of the product throughout the entire

design process, enabling a design team to detect issues early and prevent problems that

would otherwise delay development and degrade design quality.

3

For representing semantic information appearing in the design process, some formal and

structured conceptual models are developed and applied in different fields. For example,

in software engineering, Universal Modeling Language (UML) (OMG-UML, 2011) is a

widely adopted software modeling notation to specify, construct and document the

artifacts of systems. A few semantic approaches have been developed to process class

diagrams (Chen and Zeng, 2009), state machines (Lano and Clark, 2007), interactions

(Lano, 2007), use cases (Chen and Zeng, 2009), OCL (Markovic and Barbosa, 2008) and

activity diagrams (Storrle and Hausmann, 2005). However, UML is a software-specific

language, which does not support the general needs of design in other domains (Wölkl

and Shea, 2009). SysML is used to specify, analyze, and design systems that may

include hardware, software, and personnel (Friedenthal et al., 2008; OMG-SysML, 2011;

Soares and Vrancken, 2008; Weilkiens, 2007). Since SysML is based on UML, it also

facilitates integration between systems and software development.

In the design of engineering systems, especially mechanical and architectural systems,

function is recognized as the bridge between human desires and physical behavior of

artifacts. Among various function-based models (Deng, 2002; Erden et al., 2008; Gero

and Kannengiesser, 2007; Goel et al., 2009; Umeda and Tomiyama, 1995), the Function-

Behaviour-State (FBS) model was proposed by Umeda and Tomiyama as a framework to

represent a design object hierarchically and to define a function as an association of

human intention and behaviour (Umeda and Tomiyama, 1995). The FBS model has

drawn a lot of attention in design research as it provides a knowledge representational

4

scheme for conceptual design, and for the knowledge intensive engineering framework

(Yoshioka et al., 2004).

A lot of efforts in research have been made to develop automatic or semi-automatic

transformation from natural language to conceptual models. Tjoa and Berger proposed an

approach to transforming natural language based requirements specifications into an EER

model (Tjoa and Berger, 1993). Mala and Uma present an approach to extracting the

object-oriented elements of the required system (Mala and Uma, 2006). Gnesi et. al.

developed an automatic tool for the analysis of natural language requirements (Gnesi et

al., 2005). Liu et al. proposed a methodology with Use-case language schemas to

automate natural language requirements analysis and class model generation based on the

Rational Unified Process (RUP) (Liu et al., 2004). Due to the difficulties in natural

language processing (Kanda et al., 2008) and the huge gap between natural language and

structured models (Fantechi et al., 1994; Gnesi et al., 2005; Osborne and MacNish, 1996),

those efforts have achieved very limited success.

This thesis attempt to deal with the gap between unrestricted natural language based

requirements and structured conceptual model through an intermediate model - Recursive

Object Model (ROM) (Zeng, 2008), which captures the semantic information of the

concerned natural language. Through study and practice in engineering, the ROM based

transformation can help to extract system dynamics during the earlier design stage

(Medyna et al., 2012) and facilitate the general modelling process (Ozaydin and Tanik,

2011) and specific design methods such as TRIZ (Cascini, 2012). The proposed approach

first generates the ROM diagram of product requirements. Then the key elements

5

included in the requirement text, and all the design information such as product

components, product environment, and relations between them are extracted based on

predefined rules. Finally, the key elements are transformed into a conceptual model.

 Objectives 1.2

In most cases, customers describe their intent using natural language. For various reasons,

customers may not be able to describe their needs accurately. The scope of the research

presented in this thesis is limited in the initial requirements described in natural language.

This research aims to present new approaches to developing requirements and

transforming requirements into conceptual models in a systematic manner. Developing

requirements means talking to all stakeholders involved to produce a robust set of

requirements. Among the characteristics of high quality requirements, necessity and

completeness are firstly needed for the success of a product development. Without them,

you may end up spending more money to fix a problem or pay for costly customizing

because you didn’t identify all the components at the beginning. Therefore, requirements

elicitation through clarifying and explicating the initial requirements to refined

requirements is necessary preparation for this aim.

On the other hand, the fierce market competition enforces industries to keep improving

and innovating their products. Catching market trends is the art of requirement collection

and analysis. Environment-Based Design (EBD) methodology (Zeng, 2004a; Zeng,

2004b; Zeng, 2011) provides us with a feasible and systematic solution. The environment

analysis approach in EBD can help us overview the requirements from a wider

6

perspective, collecting and analyzing them more systematically and all-round. Moreover,

proved by practice, EBD guides both routine and creative design naturally not only for

engineering but also for personal development, even for research.

Motivated by EBD, some questions should be asked for effective eliciting necessary and

complete requirements. The first question is what are the criteria of necessary and

complete requirements? Criteria are needed to evaluate the requirements, at the same

time; the criteria can direct a roadmap to collect the requirements. The second question is

how to get necessary and complete requirements in a more systematic manner? However,

natural language may easily lead to ambiguous or distorted understanding of the user's

original intents (Oxman, 2004). Moreover, within most product development frameworks

requirement generations are some of the more ill-defined and least structured activities

(Arthur and Gröner, 2005). Therefore, the use of more precise NLP system or linguistic

tools will help to support the product development in general and requirements analysis

in particular.

The second aim of this research is transforming natural language based requirements into

conceptual models, during which semantic information needs to be analyzed, extracted

and formulated through transformation mechanism. In the same way, the NLP system

will be utilized in semantic analysis. In addition, an automatic and structured framework

will help to reduce the misconception and improve the efficiency and quality.

To achieve above aims, we propose the research framework shown in Figure 1-1. This

framework illustrates that the transformation process from initial requirements to

7

conceptual models consists of two steps: 1) clarification and/or explication from initial

requirements to refined requirements, and 2) transformation from refined requirements to

conceptual models through extracting the semantic meaning of the requirements by

performing a series of systematic procedures. The requirements refinement process is not

necessarily linear in nature, but an iterative process that constantly refines existing

requirements and identifies new ones, which matches the whole design activities iteration

process accordingly.

Based on our research, an automatic question-asking strategy based on proper

requirements roadmap is effective and feasible in the communication process for

collecting and refining requirements purpose. The research foundation of requirements

roadmap and Question-Asking strategy is the Environment Based Design (EBD)

methodology while Recursive Object Model (ROM) has been found to be a valuable tool

for representing the semantics of design requirements in both question asking and

semantic analysis.

8

Refined RequirementsRefined Requirements

UML
SysML

FBS

Conceptual ModelsRequirements descriptionRequirements description

Question-Asking Automatic Transformation

Question-Asking

Strategy

Require-
ments

Roadmap

Formalization for
Transformation

Transformation
Algorithm

Semantic
Analysis

Semantic
Analysis

Question-Asking
Algorithm

ROM EBD

Figure 1-1 Research framework

Overall, the objectives of this research are extracted as follows based on the framework:

 Development of criteria/roadmap for the completeness and necessity of

requirements based on EBD,

 Development of dynamic requirements elicitation strategy based on semantics and

requirements roadmap,

 Formalization of the transformation from natural language based design

requirements to conceptual models,

9

 Development of transformation algorithm from ROM to conceptual models (such

as Domain Model and FBS) and prototypes, and

 Validation of proposed approach by case studies.

 Challenges 1.3

Natural language forms a majority of design requirements, which reflects customer’s

needs. The difficulties in requirements elicitation and modeling lie in the understanding

of such natural language based requirements accurately and thoroughly and capturing of

semantics implied in an interested text and the identification of missing information.

Great challenges still exist in this attempt, among which is the capturing of semantics

from product design requirements. An extreme in this front is the processing of existing

unrestricted natural language and transforming into the structured representations.

Furthermore, design requirements for a complex product or process may include a great

amount of information, which is extremely tedious for human processing. This

transformation process is extremely time-consuming and prone-to-error. Therefore, a

systematic and computer assisted requirements conceptual modeling is on demand

definitely.

 Research Contributions 1.4

The research in this thesis has made the following major contributions:

1) An environment-based requirements roadmap is proposed to direct

requirements elicitation.

10

2) Question asking strategy is developed to effectively elicit complete

requirements,

3) A general framework is proposed for formulizing the transformation from

design requirements into conceptual models (UML, FBS) ,

4) Algorithms, including transformation rules and procedures, are developed for

transforming design requirements into conceptual FBS, Use Case Model and

Domain Model,

5) Software prototypes of Question Asking, R2UML and R2FBS are developed to

implement the algorithms.

6) Three case studies from different engineering fields have been performed to

demonstrate how the proposed algorithms work.

 Thesis Structure 1.5

Chapter 1 presents the motivation, objectives, significance and overview of the present

thesis.

Chapter 2 examines the previous research dealing with the requirements classification,

requirements elicitation and requirements modeling from the fields of design science and

computer science.

11

Chapter 3 introduces the theoretical foundations of this thesis, including the concepts of

design thinking, design, Environment-Based Design (EBD) and Recursive Object

Modeling (ROM).

Chapter 4 elaborates an environment-based roadmap for developing complete

requirements, and dynamic requirement elicitation based on the proposed roadmap and

question asking strategy. An example of energy trading system is chosen to illustrate the

approach.

Chapter 5 analyzes the structure of conceptual models, such as FBS model and domain

model.

Chapter 6 presents the formalization for transforming requirements into conceptual

models.

Chapter 7 presents the algorithm of transformation from requirements text into FBS.

Chapter 8 presents the algorithm of transformation from requirements text into Use Case

Model and Domain Model.

Chapter 9 evaluates proposed transformation from design text to FBS, Use Case Model,

and Domain Model respectively through three case studies of design patent, energy

trading system requirements, and POS system requirements.

Chapter 10 summarizes the research work and gives suggestions for future work.

12

Chapter 2

Literature Review

The objective of the present thesis is to develop the creteira for complete requirements

and elicit and model the product requirements, which will facilitate design process and

enhance the quality of design. To achieve this objective, this literature review will cover

the following areas:

 Design and design process which provide the context for the present research,

 Product requirements and classification,

 Requirements elicitation methods,

 Requirements modeling,

 Conceptual models including UML, SysML and FBS, and

 Linguistic analysis for requirements

 Design and Design Process 2.1

Researchers have provided various descriptions of the term “design” such as: design

activities are generally considered to be a form of complex problem solving (Simon,

1969); design begins with a needs-analysis (Asimow, 1962); design is a social activity

(Minneman, 1991). In some design studies, the objectives usually focus on finding

common characteristics from different engineering domains, within the framework of

13

cognitive science (Prabhakar and Goel, 1998). Therefore, design process can be regarded

as a cognitive process intended to produce a solution to a design task. As a matter of fact,

the design process varies from product to product and from industry to industry. In a

generic framework, any product must go through five phases: project definition,

specification definition, conceptual design, product development and product support

(Ullman, 2002).

The nature of design requirements and the design process have been the subject of a wide

variety of research. Recently, some approaches have been proposed in this field, such as

methodology-based design and language-based design (Darlington and Culley, 2002). In

the category of methodology-based design, some methods for the development of design

support mechanisms have been applied, such as quality function deployment (QFD)

(Akao and Glenn, 2003; Clausing, 1998), a taxonomic approach (Gershenson and

Stauffer, 1999), key characteristics (Verstijnen et al., 1998), and functional

decomposition. Darlington and Culley classified the research in this category into two

kinds of noticeable design theories (Darlington and Culley, 2002). One comes from

Wootton who made an analysis of the design requirement process in terms of the

stakeholders and information sources involved in the complexity of developing new

products as corporate activity (Wootton et al., 1998). The theory provides the foundation

of a prescriptive guide to the process of requirement capturing for industrial use. The

other one, a science-based approach to product design theory, comes from Zeng and Gu

(Zeng and Gu, 1999). They proposed a set theory-based representation scheme for the

representation of the design objects that evolve during the design process. As the

14

continuation of the efforts in the science-based approach to product design theory, Zeng

proposed a new design methodology, environment based design (EBD), which is a step-

by-step approach to solving a poorly defined problem and which can assist the designers

in delivering creative and innovative design solutions (Zeng et al., 2004).

In recent years, many researchers study, compare, and apply the EBD theory as well as

applications in their research. For example, Maletz applies the formalization process of

product requirements into an integrated requirements modeling approach in his PhD

research, which is a contribution towards the integration of requirements into a holistic

product lifecycle management strategy (Maletz, 2008). Weissman et al. adapt the

concepts from EBD such as defining a product in terms of the elements of its

environment, the use of requirement categories based on the product’s life stages, and

mapping natural language to a standardized representation, for their computational

framework for authoring and searching product design specifications (Weissman et al.,

2011). Another research in software engineering is Moroz’s thesis. As the project

manager of a software company, Moroz leads his group applying the EBD of Software

(EBD-S) into agile software development by providing a light-weight and flexible

framework for the architecture and design documentation, formalized design concept

generation and effective system evolution control. This integration of EBD-S to the real-

world Scrum development process is demonstrated on the example of Telecom Expense

Management software development. Based on their work, Moroz concludes that the

EBD-S approach resulted in 25% project time saving due to more accurate estimations,

higher code quality and lower error rate (Moroz, 2011). All these research work testifies

15

the EBD theory and approach are feasible and promising in theory and practice from

different engineering perspective.

 Requirements Engineering 2.2

In engineering, a requirement is a singular documented need of what a particular product

or service should be or perform. It is a statement that identifies a necessary attribute,

capability, characteristic, or quality of a system in order for it to have value and utility to

a user (Wikipedia, 2011). Requirements are most commonly used in systems engineering,

software engineering, or enterprise engineering. Developing requirements means talking

to all stakeholders involved to produce a robust set of requirements.

A requirement needs to meet several criteria to be considered a “good requirement” (Hull

et al., 2005; Leffingwell and Widrig., 2003; Young, 2001; Zielczynski, 2007). The

following are characteristics of a Good Requirement:

 Unambiguous: there should be only one way to interpret the requirement.

 Testable (verifiable): testers should be able to verify whether the requirement is

implemented correctly. To be testable, requirements should be clear, precise, and

unambiguous. Some words can make a requirement untestable (Hull et al., 2005):

o Some adjectives: robust, safe, accurate, effective, efficient, expandable,

flexible, maintainable, reliable, user-friendly, adequate

o Some adverbs and adverbial phrases: quickly, safely, in a timely manner

o Nonspecific words or acronyms: etc., and/or, TBD

16

o Modifying phrases: as appropriate, as required, if necessary, shall be

considered

o Vague words: manage, handle

o Passive voice: the subject of the sentence receives the action of the verb rather

than performing it

o Indefinite pronouns: few, many, most, much, several, any, anybody, anything,

some, somebody, someone, etc.

 Clear (concise, terse, simple, precise): requirements should not contain unnecessary

verbiage or information. They should be stated clearly and simply.

 Correct: If a requirement contains facts, these facts should be true.

 Understandable: requirements should be grammatically correct and written in a

consistent style. Standard conventions should be used. The word “shall” should be

used instead of “will,” “must,” or “may.”

 Feasible (realistic, possible): the requirement should be doable within existing

constraints such as time, money, and available resources.

 Independent: to understand the requirement, there should not be a need to know any

other requirement.

 Atomic: the requirement should contain a single traceable element.

17

 Necessary: a requirement is unnecessary if none of the stakeholders needs the

requirement, or removing the requirement will not affect the system.

 Implementation-free (abstract): Requirements should not contain unnecessary design

and implementation information.

Besides these criteria for individual requirements, three criteria apply to the set of

requirements. The set should be

 Consistent: There should not be any conflicts between the requirements.

 Nonredundant: Each requirement should be expressed only once and should not

overlap with another requirement.

 Complete: A requirement should be specified for all conditions that can occur.

In software engineering, it is widely recognized that requirements can be classified into:

functional and nonfunctional requirements; nonfunctional requirements are classified

further as performance/reliability, interfaces and design constraints (Southwell et al.,

1987). In security requirements engineering (SRE), security requirements are split from

function and nonfunctional requirements with more detailed classification (Fabian et al.,

2010). Cleland-Huang et al. proposed an automated classification of non-functional

requirements (Cleland-Huang et al., 2007). Casamayor et al. proposed a semi-supervised

classification of non-functional requirements (Casamayor et al., 2009). In design lab of

Concordia University, Chen and Zeng gave a useful classification of requirements in

18

generic engineering point of view, shown in Figure 2-1 , the product requirements are

categorized into eight levels according to the environments the product resides in: natural

laws, social law and regulations, technical limitation, cost, time and human resource,

basic functions, extended functions, exception control level, and human-machine

interface (Chen and Zeng, 2006). In this model, the priority is determined that the

requirements at the lower levels have higher priority in developing a design solution.

Other classification framework for software requirements prioritization approaches are

proposed on emphasizing differences and similarities among eleven selected approaches

(Carod and Cechich, 2009).

Human-

machine

interface

Social laws, technical regulations, or other mandatory criteria

Natural laws and rules

Technical limitations

Cost, time, human resource

Basic functions

Extended functions

Exception control

Figure 2-1 Eight levels of requirements (Chen and Zeng, 2006)

From practice, research and business analysis points of view, VOLERE (Volere, 2010), a

famous requirements specification template, is widely used by organizations for

discovering, organizing, and communicating their requirements. VOLERE classifies

19

requirements into functional requirements, non-functional requirements, project

constraints, design constraints, project drivers, and project issues. This template with

detailed further classifications in each of category provides comprehensive support for

understanding a product to be designed. Besides, this template can be used with some

popular tools, such as DOORS (IBM, 2011a), Requisite (IBM, 2011b), Caliber RM

(Borland, 2011), etc. In practice, different requirements classification may lead to

different design method (Amyot, 2003).

Requirements engineering (RE) is the systematic approach of developing requirements

through an iterative cooperative process of analyzing the problem, documenting the

resulting observations in a variety of representation formats, and checking the accuracy

of the understanding gained (Loucopoulos and Karakostas, 1995).

The software systems RE is constituted by five core activities of eliciting requirements,

modeling and analyzing requirements, communicating requirements, agreeing

requirements, and evolving requirements. In practice as other design process, these core

activities are interleaved, iterative, and may span the entire software system development

life cycle (Nuseibeh and Easterbrook, 2000). Many methods and approaches have been

proposed and applied, also endlessly research efforts are being conducted in these

activities in requirements engineering.

20

 Requirements Elicitation 2.3

Requirements elicitation is the first step and critical activity in the early phases of

requirements engineering. It is a process of interactions between customers, designers,

project managers, and other partners of the product development. The aims of

requirements elicitation are set up to identify the system boundaries, stakeholders,

business goals, technical goals, and tasks in a project. It is reported that more bugs occur

in requirements specification than in coding (56% vs. 7%) and furthermore bugs in

requirements specification are more expensive to correct (82% vs. 1%) (Martin, 1987).

Macaulay identified five possible causes of system failures, presented below in

descending order of effect: 1) Poor communication between people; 2) Lack of

appropriate knowledge or shared understanding; 3) Inappropriate, incomplete or

inaccurate documentation; 4) Lack of a systematic process; and 5) Poor management of

people or resources (Macaulay, 1996). To deal with these problems, a framework of

methodological approaches to requirements elicitation is proposed with four-dimension

view: user participation and selection, user-designer interaction, communication activities,

and techniques (Coughlan and Macredie, 2002). Another important issue is due to the

iterative nature of design, requirements will evolve and change (Morkos et al., 2012). A

good requirements elicitation method should predict the requirement change propagation.

Accordingly, it can be seen that effective communication and accurate statements of

requirements are the key factors in the design of successful systems. However, achieving

a shared understanding of requirements is difficult in any situation, obtaining the right

21

requirements therefore implies efforts in software development process (Aranda et al.,

2010). Natural language is usually a major means of communication during the elicitation

process (Lecoeuche et al., 1998). Natural language allows design requirements to be

discussed with enormous semantic richness easily and naturally by non-specialists.

However, natural language descriptions carry lots of noises, ambiguities, and

contradictions, as pointed out by Meyer (Meyer, 1985). Therefore, requirements

elicitation has to deal with informality, incompleteness and inconsistency (Leite and

Cesar, 1987).

Collecting information is the basic approach in requirements elicitation by in-site

observation, formal interviews, informal discussions, questionnaires, and history

utilization (Andreou, 2003). Abundant elicitation techniques are presented and adopted in

numerous projects. Traditional techniques include questionnaires, surveys, interviews,

analysis of existing documentation such as organizational charts, process models or

standards, and user or other manuals of existing systems. Group elicitation techniques

have brainstorming and focus groups, as well as RAD/JAD workshops. Others classes

techniques like prototyping techniques, model-driven techniques, cognitive techniques,

and contextual techniques may be integrated in use with traditional and groups techniques

(Sajid et al., 2010). We summarized some major methods as follows:

 Interviews: interviews are the most common technique used for gathering information

during requirements elicitation as other traditional methods. However there are no

standardized procedures for structuring information received from interviews (Zeroual,

22

1989). It is also challenging to integrate different interpretations, goals, objectives,

communication styles, and use of terminology into a single set of requirements

(Hickey and Davis, 2004).

 Issue-based information system (IBIS) (Christel and Kang, 1992; Conklin et al.,

1991): IBIS provides an integrated approach to organizing information from

interviews, though it does not support automated checking of consistency, nor support

for types outside of issues, positions, and arguments.

 Joint application design (JAD): JAD, a team technique, focuses on improving the

group process and getting the right people involved from the beginning (Zahniser,

1990). It promotes the cooperation, understanding, and teamwork. Meanwhile, JAD

enhances idea generation and evaluation, communication, and consensus generation.

JAD is specifically designed for the development of large computer systems and it has

been used successfully by IBM since the late 1970s (Wood and Silver, 1995).

 Misuse cases: Misuse cases apply the concept of a negative scenario in a use-case

context. One significant characteristic of misuse cases is that they seem to lead to

quality requirements, such as those for safety and security, whereas other elicitation

methods are focused on end-user requirements (Alexander, 2003).

In order to promote understanding and gathering of information in elicitation, many

elicitation approaches represent the requirements from different viewpoints such as:

 Controlled requirements expression (CORE): CORE provides a framework for

analyzing and expressing requirements in a structured diagrammatic notation (Christel

23

and Kang, 1992; Mullery, 1979). However, CORE does not effectively represent

timing behavior and reuse; the support of complex data descriptions remains to be a

problem.

 Feature-oriented domain analysis (FODA) (Kang et al., 1990): FODA is a domain

analysis method that focuses on developing reusable assets. The FODA method,

founded on two modeling concepts: abstraction and refinement (Kean, 1997), abstracts

different applications to the level where no differences exist between the applications.

Specific applications in the domain are developed as refinements of the domain

products.

 Critical discourse analysis (CDA) (Schiffrin, 1994): CDA uses sociolinguistic methods

to analyze verbal and written discourse. Sociolinguistics assigns special significance to

the structure of speech and texts; it also provides methods for specifying the linguistic

features of different types of discourse units and the way they are tied together into

larger units of meaning (Alvarez, 2002). In particular, CDA can be used to analyze

interviews from requirements elicitation and to understand the narratives and "stories"

that emerge during the interviews.

 Accelerated Requirements Method (ARM) (Hubbard et al., 2000): The ARM process

is a facilitated requirements elicitation and description activity. Overall, there are three

phases of the process: preparation phase, facilitated session phase and deliverable

closure phase. During the preparation phase, planning and preparation are completed

to ensure an effective session. During the session phase, a trained--and content neutral-

24

-facilitator leads the selected participants through a structured process to collect the

functional requirements of the project under consideration. And in the closure phase,

the key deliverables, such as a requirements collection, are polished.

 Quality Function Deployment QFD: QFD is "an overall concept that provides a means

of translating customer requirements into the appropriate technical requirements for

each stage of product development and production (QFD-Institute, 2005). The

distinguishing attribute of QFD is the focus on customer needs throughout all product

development activities. By using QFD, organizations can promote teamwork,

prioritize action items, define clear objectives, and reduce development time (QFD-

Institute, 2005). Although QFD covers a broad portion of the product development life

cycle, the earlier stages of the QFD process are applicable to requirements elicitation

for software engineering (Mead, 2006). These stages include: 1) identifying the

customer (stakeholders), 2) gathering high-level customer requirements, 3)

constructing a set of system features that can satisfy customer needs, and 4) creating a

matrix to evaluate system features against satisfaction of customer needs.

As we observe, each technique has trade-offs between strength and weakness. In practice,

proper one or more techniques can be applied according to the type and volume of a

project. Among those techniques, question-asking approach no matter in questionnaires,

surveys, electronic interviews, face-to-face interviews or others may be adopted widely.

Though a lot of efforts have been made to address the problems in requirements

elicitation, not much research results have been reported regarding the approaches based

25

on questioning and answering. Hands et al. propose a computer-based interviewing tool

which may enhance the requirements gathering process and conducting user evaluation,

however it was executed by the predefined questions (Hands et al., 2004). Another

investigation was Eris’s work on the role of effective inquiry in the innovative

engineering design process (Eris, 2004). But his work falls short of a methodology on

how to make effective inquiries. Tom and Sitte presented a formal approach named

Requirements Elicitation of Future Users by Systems Scenarios (REFUSS) to derive

future user requirements (Tom and Sitte, 2009). Wang and Zeng proposed a systematic

iterative question-asking approach to elicit product requirements (Wang and Zeng, 2009).

This approach aims at identifying the customer’s real intent and at capturing the

complete product requirements by asking questions based on a semantic analysis of the

requirements text, which is represented by ROM diagrams. The question asking approach

is feasible and promising by the initial experiments. However, the algorithms and

generation rules for question asking need to be improved before it can be put into

industrial applications.

 Requirements Modeling 2.4

Requirements modeling is a fundamental activity in RE and it is the construction of

abstract descriptions that are amenable to interpretation. Models can be used to represent

a whole range of products of the RE process.

Some general categories of RE modeling approaches are described below:

26

 Enterprise modeling: Enterprise modeling and analysis deals with understanding and

organization’s structure; the business rules, the goals, tasks and responsibilities of its

constituent members, and the data that it needs, generates and manipulates. Enterprise

modeling is often used to capture the purpose of a system by describing the behavior

of the organization in which that system will operate (Loucopoulos and Kavakli,

1995), or model an enterprise in terms of its business rules, workflows and the services

that it will provide (Greenspan and Feblowitz, 1993).

 Data modeling: Data modeling is used in large computer-based systems, especially

information systems to understand, manipulate and manage information data.

Traditionally, Entity-Relationship-Attribute (ERA) (Johnson and Henderson, 2011)

modeling is used for data modeling and analysis; Nowadays, Object-Oriented

modeling is increasingly supplanting ERA techniques by using class and object

hierarchies.

 Behavioral modeling: Modeling the dynamic or functional behavior of stakeholders

and systems, both existing and required, is often involved in modeling requirements

process. A suggested way is to start by modeling the current physical system, and

analyze this to determine the current logical system, and finally build the model of

new logical system. Structured, object-oriented or formal modeling methods can be

used in behavioral modeling.

 Domain modeling: It a significant proportion in RE process, because domain model

provides an abstract description of the world in which a designed system will operate

27

and interacting with its environment. Explicit domain models permit detailed

reasoning about the domain, and provide opportunities for requirements reuse within a

domain.

 Modeling Non-Functional Requirements (NFRs): Modeling NFRs is more difficult

since it is not easy to express and analyze NFRs as measurable way. Besides, NFRs as

properties of a system as a whole cannot be verified for individual components.

Recent investigations show that Xu et al. proposed a grouping mechanism to model

NFRs in software architectures directly and explicitly (Xu et al., 2005). Saleh and Al-

Zarouni proposed an approach to capturing non-functional software requirements

using the user requirements notation (Saleh and Al-Zarouni, 2004). Cysneiros and

Leite present a process to elicit NFRs, analyze their interdependencies, and trace them

to functional conceptual models expressed by UML (Cysneiros et al., 2001).

 Analyzing requirements models: Modeling requirements provides opportunity for

analyzing them. Investigated analysis techniques include requirements animation,

automated reasoning, case-based reasoning and knowledge-based critiquing,

consistency checking, and a variety of techniques for validation and verification

(Nuseibeh and Easterbrook, 2000).

In software engineering process, a sequence of transformations is performed starting from

requirements and ending with implementation to build a software system. Many

researches devoted into the transformation between user requirements and analysis

models in recent years. Tjoa and Berger proposed an approach to transform natural

28

language based requirements specifications into an Extended Entity Relation (EER)

model (Tjoa and Berger, 1993). Subramaniam et al. presented an approach to automating

the transition from stakeholders' requests to use cases in OOADK (Subramaniam et al.,

2004). Yue et al. presented a conceptual framework to provide common concepts and

terminology and to define a unified transformation process (Tseng et al., 2005). Gorschek

and Wohlin developed a Requirements Abstraction Model to response to the industrial

need (Gorschek and Wohlin, 2006). This model consists of four abstraction levels:

product level (goal), feature level (features), function level (functions/actions), and

component level (details-consists of). However, thesis tasks are still mainly manually

accomplished through iterative communication with the customer, which is often a

recursive brainstorming process: gathering and formulating customer requirements,

generating preliminary solutions, and refining customer requirements.

 Conceptual Models 2.5

This research’s goal is to propose a computer-aided modeling approach from natural

language based design requirements to conceptual models. A conceptual model is a high-

level description of an application. It enumerates all concepts in the application that users

can encounter, describes how those concepts relate to each other, and explains how those

concepts fit into tasks that users perform with the application (Johnson and Henderson,

2011).

The conceptual model is explicitly chosen to be independent of design or implementation

concerns. The aim of a conceptual model is to express the meaning of terms and concepts

29

used by users such as domain experts to discuss the problem, and to find the correct

relationships between different concepts. The conceptual model attempts to clarify the

meaning of various, usually ambiguous terms, and ensure that problems with different

interpretations of the terms and concepts cannot occur. Such differing interpretations

could easily cause confusion amongst stakeholders, especially those responsible for

designing and implementing a solution, where the conceptual model provides a key

artifact of business understanding and clarity. Once the concepts have been modeled, the

model becomes a stable basis for subsequent development of applications. The concepts

of the conceptual model can be mapped into physical design or implementation

constructs.

A lot of conceptual models were developed or being developed in various engineering

fields such as domain model, Entity-Relationship (ER) model, and Function-Behaviour-

State (FBS). A conceptual model can be described using various notations, such as UML

(OMG-UML, 2011) for object modelling, or Information Engineering (IE) or IDEF1X

for Entity Relationship Modelling.

In software engineering, Universal Modeling Language (UML) (Fowler, 2003; Lano,

2009; Rumbaugh et al., 1998) is a widely adopted software modeling notation to specify,

construct and document the artefacts of systems (OMG-UML, 2011). A large number of

semantic approaches have been developed as subjects including Use Cases, class

diagrams, state machines, interactions, OCL, and activity diagrams and so on. Each

category has its own advantages and disadvantages, such as, Use Cases are popular due to

their simplicity, acting as a bridge between technical and business stakeholders, the

30

compact graphical nature to represent requirements, and even as a basis for managers

when doing project estimation (Diev, 2006). However, Use Cases are helpful mainly to

model functional requirements, but not for others like non-functional requirements. Also

Use Case diagrams lack well-defined semantics, which may lead to differences in

interpretations by stakeholders. Another typical conceptual model in UML notation is a

class diagram in which classes represent concepts, associations represent relationships

between concepts and role types of an association represent role types taken by instances

of the modelled concepts in various situations. In ER notation, the conceptual model is

described with an ER Diagram in which entities represent concepts, whereas cardinality

and optionality represent relationships between concepts.

Many researches are conducted on the requirements modeling by UML. Liu et al.

proposed a methodology with Use-case language schemas to automate natural language

requirements analysis and class model generation based on the Rational Unified Process

(RUP). They developed a CASE (Computer aided Software Engineering) tool, Use-Case

driven Development Assistant (UCDA) to support their approach (Liu et al., 2004).

However, UML is a software-specific language, and does not support the general needs

of designing in broader fields. Therefore, OMG Systems Modeling Language (OMG

SysML™) (Friedenthal et al., 2008; OMG-SysML, 2011; Weilkiens, 2007) was created

and has been steadily gaining popularity in different areas like Wölkl and Shea’s work

(Wölkl and Shea, 2009).

31

The SysML is a general-purpose graphical modeling language for specifying, analyzing,

designing, and verifying complex systems that may include hardware, software,

information, personnel, procedures, and facilities. In particular, the language provides

graphical representations with a semantic foundation for modeling system requirements,

behavior, structure, and parametrics, which is used to integrate with other engineering

analysis models (OMG-UML, 2011). SysML represents a subset of UML 2 with

extensions needed to satisfy the requirements of the UML™ for Systems Engineering

RFP as indicated in Figure 2-2. SysML is the response to the UML for systems

engineers’ request for proposal, therefore, SysML was designed with “real” systems in

mind, whereas UML is software oriented.

Figure 2-2 SysML Diagram Types (OMG-SysML, 2011)

SysML allows engineers to describe how a system interacts with its environment, and

how its parts must interact to achieve the desired system behaviour and performance. The

http://www.uml.org/

32

SysML model provides a shared view of the system, enabling a design team to surface

issues early and prevent problems that would otherwise delay development and degrade

design quality. Since SysML is based on UML, it also facilitates integration between

systems and software development. SysML can be used in many important activities

during the system life cycle, such as in communication with stakeholders, improving

system knowledge, model execution and verification, documentation for maintenance.

The SysML Requirements diagram, the SysML Use Cases diagram, and the SysML

Requirements table are applied to specify and model a list of user requirements for a road

traffic management system (Soares and Vrancken, 2008).

SysML is a precise language, including support for constraints and parametric analysis,

which allows models to be analyzed and simulated, greatly improving the value of the

systems model, compared to textual system descriptions. SysML improves

communication across team members and between teams by providing a formal language

for sharing systems information among all project stakeholders. And SysML helps reduce

errors and ambiguities during systems development processes by offering a more

complete representation of systems. Therefore SysML is more and more adopted in

model-based systems engineering.

In engineering, more function modeling oriented approaches are proposed to construct a

basis for solving the representation problems of complex products and their complex

development processes, such as, Gero proposed a dynamic design model using the

concepts of function, behaviour, and structure with the transformation between these

(Gero and Kannengiesser, 2007). Gero’s Function-Behaviour-Structure (FBStr) is useful

33

to demonstrate the conceptual relation between function, behaviour, and structure.

Structure–behavior–function (SBF) (Bhatta and Goel, 1994; Bhatta and Goel, 1997)

provides an ontology for teleological modeling, and SBF models of engineering systems

have been used in computer programs for automated design and problem solving (Goel et

al., 2009). Another conceptual model, Function-Behaviour-State (FBS) model of Umeda

and Tomiyama provides a systematic method for decomposition and embodiment of

functional design. FBS model as a framework represents a design object hierarchically

and defines a function as an association of human intention and behaviour (Umeda and

Tomiyama, 1995). With supports of the developed computer tool, FBS Modeller, the FBS

modeling was extended and applied by researchers in the design research field (Chase

and Liew, 2001; Deng, 2002; Erden et al., 2008; Gero and Kannengiesser, 2007; Umeda

et al., 1990; Umeda and Tomiyama, 1995). Overall, the function modeling bridges the

gap between the high-level requirements and the low-level details (Erden et al., 2008).

In the FBS modeling theory, function is defined as the bridge between human intention

and physical behaviour of artifacts whereas the structure of a design object is represented

hierarchically (Umeda and Tomiyama, 1995). Figure 2-3 shows the relationship among

function, behaviour, and state.

34

Figure 2-3 Relationship between function, behaviour and state (Umeda and Tomiyama,

1995)

FBS modeling requires that its users understand the product requirements thoroughly and

distinguish the different functional stages and relationship between the functions. This

could be a challenging task for a complex engineering project. Design document for a

complex engineering product or process may include a great amount of information,

which is extremely tedious for human processing. To support the application of the FBS

modeling theory, a software tool – the FBS modeler – is developed to support the

conceptual design. The FBS modeler provides a function decomposition method, which

includes causal and task decompositions (Umeda and Tomiyama, 1995). The

decomposition process largely depends on the designer’s knowledge and experience with

the FBS theory, which may result in different FBS models for the same design problem.

Furthermore, design text mainly focus on describing the components and functionality of

a product system, however, it is described by natural language, which may easily lead to

35

different understanding due to its ambiguity. While, FBS modeling are more appropriate

and helpful for design with more accurate and restricted styles.

 Linguistic Analysis 2.6

A robust requirements engineering approach should have a robust notation system for

modeling and documentation of user and system requirements or rationales, also for

analysis of business and architecture. The traditional User Requirements Notation (URN)

(Amyot, 2003) is a semi-formal, lightweight graphical language for modeling and

analyzing requirements in the form of goals and scenarios. URN combines two existing

notations: Goal-oriented Requirement Language (GRL) and Use Case Maps (UCMs).

The URN aims to support the elicitation, analysis, specification, and validation of

requirements. And it is the first standardization effort to address explicitly, in a graphical

way and in one unified language, goals (non-functional requirements - GRL) and

scenarios (functional requirements - UCMs), and the links between them (Amyot, 2003).

In order to support the smooth flow of the design process, it is critical to identify the

semantic structure underlying in design requirements. Therefore, linguistic analysis is

essential for extracting semantics from design text. A systematic online market research

for requirements analysis using linguistic tools indicates that the use of linguistic

instruments (Mich et al., 2004).

Chen studied the correspondence between English sentence structure and ER (Entity-

Relationship) diagrams, and proposes eleven rules for translation of information

requirements into ER model. The basic constructs of English, such as noun, verb,

36

adjective, adverb, gerund, and clause, are found to have counterparts in ER diagrammatic

technique (Chen, 1983).

Several CASE tools have been developed for research to supply the functionality of NL

requirements. CoGenTex Inc. developed a prototype LIDA (Linguistic assistant for

Domain Analysis), which provides linguistic assistance in the model development

process (Overmyer et al., 2001). UCDA by Liu et al. can assist the software developer to

geneate use-case diagrams, use-case specifications, robustness diagrams, collaboration

diagrams and calss diagrams in IBM Rational Rose (Liu et al., 2004); CIRCE is used in

systematic analysis of natural language requirements (Ambriola and Gervasi, 2006); Al-

Safadi proposed a semi-automated approach by constructing of CASE tool, named DBDT

(database-designing tool), to transform a natural language description into a conceptual

data model of enhanced-ER model (Al-Safadi, 2009).

Zeng proposed a new graphic language called Recursive Object Model (ROM) to present

natural language used in engineering. The ROM is not only the linguistic tool for

capturing the semantics of the requirements text, but also a notation system to specify and

discover requirements for a proposed system or an evolving system, and review such

requirements for correctness and completeness (Zeng, 2008). Other NLP systems are

developed in natural language based requirements modeling, Such as RELAX to address

uncertainty in self-adaptive systems requirement (Whittle et al., 2010). Among these NLP

systems, recently ROM has drawn a lot of attention, since it has proven sufficient to

represent the technical English text. Seresht and Ormandjieva propose an automated

assistance for use cases elicitation from user requirements text by applying ROM to

37

represent software requirements (Seresht and Ormandjieva, 2008). Maletz applies our

formalization process of product requirements, in which ROM serves the core

foundation, into an integrated requirements modeling approach in product lifecycle

management for his PhD research (Maletz, 2008). Christophe et al. propose a

combination of both ROM and semantic disambiguation approaches for the refinement of

the requirements, which presents the possibilities of both approaches in terms of

formalizing requirements in order to enhance the entire design process by providing

relevant and well-formed information on the initial conditions of the design problem. In

this thesis, ROM and ROM Q/A setting the framework for requirements and formalizing

their structure whereas the semantic disambiguation approach searches for the essence of

each concept used in the description of the design problem (Christophe et al., 2011). It

has been tested that ROM is feasible and effective for dealing with instruct natural

language used in engineering documents where only statements are involved. Therefore,

ROM provides foundation for our research.

38

Chapter 3

Research Foundations

This chapter introduces the theoretical foundations of the present thesis: axiomatic theory

of design modeling (ATDM) (Zeng, 2002), environment-based design (EBD) (Zeng,

2004a; Zeng, 2004b), and Recursive Object Model (ROM) (Zeng, 2008). ATDM is a

logical tool for representing and reasoning about object structure (Zeng, 2002). It

provides a formal approach that allows for the development of design theories following

logical steps based on mathematical concepts and axioms. EBD is a new design

methodology derived from ATDM. It provides step-by-step procedures to guide a

designer in an environment changing process (Zeng, 2004a; Zeng, 2004b; Zeng, 2011).

Three activities of environment analysis, conflict identification, and solution generation

constitute the environment-based procedures. The proposed requirements modeling

approach will enrich the EBD from content to practice. Meanwhile, one of the key

methods for environment analysis in EBD is linguistic analysis. Echoing the recursive

design logic, ROM is designed to support the processing of semantics in design.

 Axiomatic Theory of Design Modeling (ATDM) 3.1

Axiomatic theory of design modeling is a logical tool for representing and reasoning

about structures of design, especially the conceptual design (Zeng, 2002). It provides a

formal approach that allows for the development of design theories following logical

steps based on mathematical concepts and axioms. The primitive concepts of universe,

39

object, and relation are used in the axiomatic theory of design modeling, based on which

two axioms are defined in the axiomatic theory of design modeling.

[Axiom1] Everything in the universe is an object.

[Axiom 2] There are relations between objects.

Two corollaries of the axiomatic theory od design modeling are introduced to represent

various relations in the universe.

 [Corollary1] Every object in the universe includes other objects. Symbolically,

B, A B,A (3-1)

[Corollary2] Every object in the universe interacts with other objects. Symbolically,

, BA, B,AC C (3-2)

where C is called the interaction of A and B.

Based on the Corollary 1 and 2, a key concept in ATDM, the structure operation is

developed to model the structure of complex objects. The structure operation, denoted by

, is defined as the union () of an object O and the interaction () of the object with

itself. The structure operation is developed.

O),(OOO (3-3)

where O is the structure of object O.

40

In addition, an object is primitive if and only if

O.O (3-4)

A primitive object includes only one object. The designation of a primitive object

depends on the context of design and the designer’s expertise.

 Environment-Based Design (EBD) 3.2

The traditional view of the design process is that design evolution goes through the

following stages: specification of design requirements, design synthesis, and design

evaluation. These three stages iterate until a satisfying design solution is found.

Zeng and Cheng indicated that design is a recursive process in which a satisfying design

solution must pass an evaluation defined by the design knowledge that is recursively

dependent on the design solution to be evaluated (Zeng and Cheng, 1991). Since the

design knowledge, which implies the design criteria, is part of the design problem, the

generation of design solutions indeed changes the original design problem. This

observation leads to the proposal of the recursive logic as the logic of design (Zeng and

Cheng, 1991). Based on this logic, the design process is described as a series of design

states defined by both product descriptions and product requirements, as is shown in

Figure 3-1 (Zeng and Gu, 1999), where design requirements and design solutions co-

evolve throughout the design process. Therefore, it is fundamentally impossible to

distinguish design problem and design solutions.

41

When the word design problem is used, the design problem is given with a partial

solution attached. When the word design solution is used, the design solution is bundled

with further design problems. In this thesis, design states, design problem, and design

solutions will be used interchangeably to mean the state of design. The recursive structure

of design can be formally represented by the evolution of both design requirements and

product descriptions (Zeng and Gu, 1999).

 State of design

time: t

t0

t1

tn ti

Design requirements

Product descriptions

Design requirements

Product descriptions

Design requirements

Product descriptions

Design requirements

Product descriptions

Figure 3-1 Evolution of the design process (Zeng, 2004b)

Different from traditional design methodologies, which are largely based on the

understanding that a generic design process comprises analysis, synthesis, and evaluation,

the Environment-Based Design Theory (Zeng, 2004a; Zeng, 2004b; Zeng, 2011) was

logically derived from the axiomatic theory of design modeling (Zeng, 2002), which was

founded on the recursive logic of design (Zeng and Cheng, 1991). EBD is a prescriptive

model of design that guides designers from the elicitation of customer requirements

throughout the generation and evaluation of design concepts. Also, EBD is a descriptive

model of the design process that illustrates how designers accomplish a design task.

42

Figure 3-2 EBD: process model (Zeng, 2011)

As is illustrated in Figure 3-2, EBD includes the following three main activities:

environment analysis, conflict identification, and concept generation. These three

activities work together to update environment and its internal relationships to generate

progressively and simultaneously and refine the design specifications and design

solutions.

The objective of environment analysis is to identify the key environment components, in

which the product works, and the relationships between the environment components and

as well as between product and environments. From the environment implied in the

design problem described by the customer(s), the designer will introduce extra

environment components that are relevant to the design problem at hands. The results

from this analysis constitute an environment system. One of the key methods for

environment analysis is linguistic analysis (Chen et al., 2007). Following the

environment analysis, conflicts should be identified among the relations between

environment components. At the third stage of EBD, a set of key environment conflicts

43

will be chosen to be resolved by generating some design concepts. This process continues

until no more unacceptable environment conflicts exist.

It is shown that both design requirements and product descriptions, as illustrated in

Figure 3-1, are implied in product system (Zeng et al., 2004), which is called Product-

Environment System (PES) in this thesis. A PES is defined as the structure of an object

() including both a product (S) and its environment (E).

(3-5)

where is the object that is included in any object. E and S are structures of the

environment and product, respectively; ES and SE are the interactions between

environment and product. A PES can be illustrated in Figure 3-3.

Figure 3-3 Product-Environment System (Zeng et al., 2004)

Since environment as well as product may have components, structures E and S can

be further decomposed into the structures of these components as well as their mutual

interactions according to the definition of structure operation. Eq. (3-5) indeed presents a

],S[E S E, E),S(S)E(S)(E)(S)E(Ω

44

recursive structure of a product system. Therefore, the structure operation provides a

mechanism that can flexibly represent the structure of any complex object.

EBD theory indicates that the source of design requirements is product environment E

(Zeng, 2004b). During the environment based design process, the evolution from the

design state Ei to the design state Ei+1 is governed by the following design governing

equation, where Ki
s
 and Ki

e
 are evaluation and synthesis operators, respectively.

(3-6)

The synthesis operator stretches the state space of design whereas the evaluation operator

folds and reduces the state space. The final design solution is the balance of those two

forces. This governing equation is indeed another form of the recursive logic of design

(Zeng and Cheng, 1991). (3-6) illustrates this governing equation.

Figure 3-4 State space of design under synthesis and evaluation operators (Zeng, 2004b)

.))E(K(KE i
e
i

s
i1i

state of design: Ei

synthesis operator s
iK

evaluation operator e
i

K

design solution

time: t

Ei

45

The EBD with its theorem of design logic, design evolution, design formulation and

design process provides theoretical foundation for this thesis in requirement elicitation

and transformation.

 Recursive Object Model (ROM) 3.3

Recursive object model (ROM) is a graphic representation of linguistic structure, derived

from axiomatic theory of design modeling (Zeng, 2008). ROM uses five symbols to

represent primitive object, compound object, constraint relation, predicate relation and

connection relation, as shown in Table 3-1. These objects and relations can be mapped in

the design problem described by natural language. ROM can be used to collect, organize,

interpret, and analyze the characteristics by inferring from multiple object relationships

implied in the natural language.

Table 3-1 Elements of recursive object model (ROM) (Zeng, 2008)

Type Symbol Description

Object

Primitive
Object

 Everything in the universe

Compound
Object

O

An object that includes at least 2 other objects

Relations

Constraint
Relation

A descriptive or limiting relation

Connection
Relation

 To connect two objects that do not constrain each
other

Predicate
Relation

 An object’s action on the other or an object’s
states.

O

46

ROM has been applied to software engineering (Seresht and Ormandjieva, 2008),

language translation (Wen et al., 2013; Wen et al., 2011), requirements elicitation (Wang

and Zeng, 2009), and cognitive design research (Zhu et al., 2007). Such as Seresht and

Ormandjieva used this model and Expert Comparable Contextual (ECC) models to elicit

use cases from requirements text (Seresht and Ormandjieva, 2008). Chen and Zeng

proposed an approach to automatically transform a requirement text into two UML

diagrams – use case and class diagram based on ROM (Zeng, 2008). It has been proved

that ROM is effective for the collection of the right information, identification of

conflicts, and solution generation (Zeng, 2011)

Table 3-2 shows several examples of ROM diagrams to illustrate how to represent natural

language using ROM.

Table 3-2 Examples of ROM diagrams

Natural language ROM diagram

Cashier enters item

identifier. itemcashier enters identifier

Customer leaves with

receipt and goods.
customer

receipt

leaves with and

goods

47

System sends sale and

payment information to

the external Accounting

system and Inventory

system.

system

sale

sends

and

payment

to

Inventory
 systems

Accounting
system

externaland

information

Energy trading is the

activity involving

trading energy related

commodities, such as

power, natural gas,

crude oil, and refined

products like fuel oil,

heat oil, gasoline.

 trading is activity

involving trading commodities such as

power

Natural
gas

Crude oil

Refined
products

and

like

Fuel oil

Heat oil

gasoline
and

48

Chapter 4

Environment-based Requirements Roadmap and Dynamic

Requirements Elicitation based on Requirements Roadmap

This chapter presents an environment-based roadmap for requirements in terms of the

lifecycle of a product and the environment components that the product resides in. This

roadmap builds up the criteria for completeness and necessity of the requirements. The

first criterion classifies the product requirements in terms of the product life cycle

whereas the second classifies them by different levels from natural, built and human

environments.

In this chapter, the environment-based roadmap is applied in the dynamic inquiry

approach for eliciting requirements from design text represented by ROM diagram. A

case study of energy trading system is used to show the feasibility of this approach.

The framework of this chapter is illustrated in Figure 4-1, in which, clarifying and

explicating the initial requirements towards refined requirements is necessary preparation

for effective requirements elicitation. Based on our research, a question-asking based

communication is effective in collecting and refining requirements based on a well-

defined requirement roadmap. The research foundation of requirements roadmap and

Question-Asking strategy is the Environment Based Design (EBD) methodology while

Recursive Object Model (ROM) has been found to be a valuable tool for representing the

semantics of design requirements in both question asking and semantic analysis.

49

Refined RequirementsRefined Requirements

Clarification

Initial RequirementsInitial Requirements

Explication

ROM

Requirements

Roadmap
Question-Asking

Strategy

Semantic

Analysis

EBD

Figure 4-1 Requirement clarification and explication

 Environment-based Requirements Roadmap 4.1

Requirements elicitation is the first and indispensable stage in the product life cycle.

Therefore, the adequate list of requirements to be elicited at certain stage of product life

cycle is important in requirements gathering process. If these requirements are

incomplete, it may cause a huge waste of resource to make up the missing requirements

in the later stages; however, if else too much or necessary requirements are considered at

earlier stages, they may limit the product in some degree, therefore the best solution may

be missed.

50

For the success of a product design, high quality requirements are demand: unambiguous,

verifiable, precise, independent, necessary, consistent, understandable, clear, complete,

nonredundant etc. (Hull et al., 2005; Leffingwell and Widrig., 2003; Young, 2001;

Zielczynski, 2007). Among these criteria, some are related to representation of natural

language and are easy to be implemented, such as unambiguous, understandable and clear.

Whereas, the criteria of necessary and complete are closely related to others and fatefully

impact the whole design process. Even there are no clear criteria about the necessity and

completeness to implement. Therefore, this thesis is focus on proposing a roadmap for

the two requirement criteria: necessity and completeness.

Necessity means to collect right requirements at right time, whereas completeness means

to elicit all the requirements based on the environments throughout the whole life cycle.

It is difficult to clearly define the criteria of completeness and necessity of requirements.

However, it is feasible to approach the goal directed by an effective roadmap. This

section proposes an environment-based requirements roadmap for collecting necessary

and complete requirements.

4.1.1 Necessity of requirements

The necessity of requirements is addressed by the logic of design. The traditional view of

the design process is that design evolution goes through the following stages:

specification of design requirements, design synthesis, and design evaluation. These three

stages iterate until a satisfying design solution is found. While in recursive design logic

of view (Zeng and Cheng, 1991), the design process is described as a series of design

51

states defined by both product descriptions and product requirements, as is shown in

Figure 3-1 (Zeng and Gu, 1999), where design requirements and design solutions co-

evolve throughout the design process or life cycle. When the word design problem is

used, the design problem is given with a partial solution attached. When the word design

solution is used, the design solution is bundled with further design problems. Therefore, it

is fundamentally impossible to distinguish design problem and design solutions.

The requirements depend on the changes of solutions, which cause the uncertainty of

design requirements. Therefore, to decrease the times of iteration in life cycle, we have to

find out the only necessary requirements at certain stage.

In the design process illustrated in Figure 4-2, the design state could evolve to a new

design state with a more abstract or more detailed design solution. The more abstract

design state often implies a design problem that reflects better the customer’s real intent.

While the more detailed design state implies more complete requirements and product

descriptions. In a design stage, specific design requirements should be identified for the

design solution to the stage. If more requirements out of the stage are determined at a

specific time, the design solution may be limited by requirements. While, if less

requirements are given at the specific time, the design solution could be beyond the

requirements. Therefore, specific requirements should be collected at specific time for

accurate design solutions.

52

Figure 4-2 Evolution of the design process (Wang and Zeng, 2009)

4.1.2 Completeness of requirements

Based on the theorem of ATDM, It is shown that all the product requirements in a design

problem are imposed by the product environment (E) in which the product is expected to

work (Zeng, 2004b). In EBD theory, the source of design requirements is product

environments. Product environments are the driving forces of a design process and

provide a foundation for the classification and management of the product requirements

(Zeng, 2004b).

Illustrated in Figure 3-3, both design requirements and product descriptions are implied

in Product-Environment System (PES). A PES is defined as the structure of an object ()

Fin
d c

om
ple

te
 p

ro
duct

 re
quire

m
en

ts

time: t

State of design

t0 t1 tnti

Product

requirements

Product

descriptions

Product

requirements

Product

descriptions

Product

requirements

Product

descriptions

Product

requirements

Product

descriptions

Id
en

tif
y

re
al

 in
te

nt

53

including both a product (S) and its environment (E), which is represented in Equation

(4-1).

(4-1)

Product requirements are part of interactions between product and environment. Design

constraints belong to the relations from environment E to the product S (ES) whereas

product functions belong to the relations from product S to environment E (SE).

It is relatively easy to identify the environment in which the product is expected to work.

In general, the product environment can be partitioned into a finite number of sub-

environments. It can be observed from the statement that any product will work in three

environments: natural, built, and human. To work in natural environment, a product

should obey all natural laws, otherwise the product will not be able to exist. This involves

requirements such as safety and reliability. The built environment includes all artifacts

built or created by human beings. To work in the built environment, a product must

satisfy the requirements such as manufacturability and transportability. The human

environment includes all human users and operators in the life cycle of a product. To

survive in the human environment, a product must satisfy the requirements such as

salability, operability, and maintainability.

Obviously, different ways to organize the components in product environment will lead

to different formulations of product requirements. Such as Chen and Zeng formulate

design problems in terms of different classification schemes of environment as natural

],S[E S E, E),S(S)E(S)(E)(S)E(Ω

54

laws, social law and regulations, technical limitation, cost, time and human resource,

basic functions, extended functions, exception control level, and human-machine

interface (Chen and Zeng, 2004). Corresponding to the subjective and objective realms

adopted by Erden et al (Erden et al., 2008), environments can be divided into subjective

and objective environments (Wen et al., 2013). The subjective environments include the

users of the product whereas the objective environments include all other environment

components that have impact on the behaviour of the product.

The environment components and the relationships between these environment

components compose the environment system. Theoretically, the completeness of

requirements depends on the environments of the product: the more environment

components and their relations are considered, the more complete requirements are

collected.

4.1.3 Environment-based requirements roadmap

From demand and supply points of view, design is a recursive process of generating

requirements by the demand side and satisfying it by the supply side, which is usually the

designer. And product environment could be defined by all the players included in the

demand side. These players are human environments which perform different functions

in the product life cycle. For effective eliciting complete and necessay product

requirements at different stages in the process of product design, it is useful to classify

and order these requirements in terms of product life cycle.

55

The Product Life Cycle (PLC) is used to map the lifespan of a product. There are specific

stages in the life of a product for different disciplines such as system engineering, product

design, manufacturing, software engineering, marketing etc. From an engineering

perspective, the stages of product life cycle include design, manufacture, sales,

transportation, use, maintenance, and recycle (Chen and Zeng, 2006). A typical life cycle

of software includes requirements phase, specification phase, design phase,

implementation phase, integration phase, maintenance phase and retirement (Schach,

2002). These are four stages of introduction stage, growth stage, maturity stage and

decline stage in marketing (Esmaeilsabzali et al., 2010).

An environment-based requirements roadmap is proposed in this thesis, which is

illustrated in Figure 4-3. From definition the roadmap is a plan or guide to show how

something is arranged or can be accomplished. This roadmap categorizes product

environments in terms of two criteria. One criterion partitions product environments

based on the product life cycle. The other criterion classifies the product environment

into natural, built, and human environments. Considering both of product life cycle and

environment components will help for eliciting necessary requirements at specific stages

and for complete requirements for the whole life cycle.

56

Figure 4-3 Requirements roadmap

The proposed roadmap describes the three basic environment categories for the whole

lifecycle of the product to be designed. Any requirement stems from an environment at

specific stage of life cycle. While the detailed environment components and the stages of

product life cycle are specific with that product.

In software engineering, it is recognized that requirements are categorized into project

drivers, project constraints, design constraint, functional requirements, non-functional

requirements, and project issues. For example Volere requirement template list the

detailed category for requirement document, which is shown in Table 4-1 (Volere, 2010).

Product Life Cycle

Product Environment

Natural

Built

Human

Stage 1 Stage 2 Stage 3 Stage 4 …. Stage n

57

Table 4-1 The requirement category in Volere

Category Order
Requirement
item

Details

Project
drivers

R1
Purpose of the
project

a. The user business or background of the
project effort

b. Goals of the project

R2 Stakeholders

a. The client
b. The customer
c. Other stakeholders
d. The Hands-On Users of the product
e. Personas
f. Priorities assigned to users
g. User participation
h. Maintenance users and service technicians

Project
constraints

R3
Mandated
constraints

a. Solution constraints
b. Implementation environment of the

current system
c. Partner or collaborative applications
d. Off-the-Shelf software
e. Anticipated workplace environment
f. Schedule constraints
g. Budget constraints

R4
Naming
conventions and
terminology

a. Definitions of all terms, including
acronyms, used in the project

R5
Relevant facts
and assumptions

a. Relevant facts
b. Business rules
c. Assumptions

Functional
requirements

R6
The scope of the
work

a. The current situation
b. The context of the work
c. Working partitioning
d. Specifying a business use case (BUC)

R7
Business data
model and data
dictionary

a. Data model
b. Data dictionary

R8
The scope of the
product

a. Product boundary
b. Product use case table

R9
Functional and
data
requirements

a. Functional requirements

58

Non-
functional
requirements

R10
Look and feel
requirements

a. Appearance requirements
b. Style requirements

R11
Usability and
humanity
requirements

a. Ease of user requirements
b. Personalization and internationalization

requirements
c. Learning requirements
d. Understandability and politeness

requirements
e. Accessibility requirements

R12
Performance
requirements

a. Speed and latency requirements
b. Safety-critical requirements
c. Precision or accuracy requirements
d. Reliability and availability requirements
e. Robustness or fault-tolerance

requirements
f. Capacity requirements
g. Scalability or extensibility requirements
h. Longevity requirements

R13
Operational and
environmental
requirements

a. Expected physical environment
b. Requirements for interfacing with adjacent

systems
c. Productization requirements
d. Release requirements

R14
Maintainability
and support
requirements

a. Maintenance requirements
b. Supportability requirements
c. Adaptability requirements

R15
Security
requirements

a. Access requirements
b. Integrity requirements
c. Privacy requirements
d. Audit requirements
e. Immunity requirements

R16
Cultural and
political
requirements

a. Cultural requirements
b. Political requirements

R17
Legal
requirements

a. Compliance requirements
b. Standards requirements

Project issues

R18 Open issues

R19
Off-the-shelf
solutions

a. Ready-made products
b. Reusable components
c. Products that can be copied

R20 New problems a. Effects on the current environment

59

b. Effects on the installed systems
c. Potential user problems
d. Limitations in the anticipated

implementation environment that may
inhibit the new product

e. Follow-up problems

R21 Tasks
a. Project planning
b. Lanning of the development phases

R22
Migration to the
new product

a. Requirements for migration to the new
product

b. Data that has to be modified or translated
for the new system

R23 Risks

R24 Costs

R25
User
documentation
and training

a. User documentation requirements
b. Training requirements

R26 Waiting room

R27
Ideas for
solutions

However, on account to the complexity and workload of modern software, it is not

facilitative to apply the template in a computer-aided environment. In proposed

Environment-based requirement roadmap, the three types of environments can be further

classified into seven categories as Volere, whereas the stages correspond to the seven

stages of product life cycle. This Environment-based requirement roadmap for software

product is illustrated in Table 4-2, in which at each stage of software life cycle, different

category environment should be considered for collecting requirements.

60

Table 4-2 Environment-based requirement roadmap category

Environments

Stages in product life cycle

R
eq

u
ir

em
en

ts

Sp
ec

if
ic

at
io

n

D
es

ig
n

Im
p

le
m

en
ta

ti
o

n

In
te

gr
at

io
n

M
an

u
fa

ct
u

re

R
et

ir
em

en
t

Human
Environments

Purpose R1 R1 R1 R1 R1 R1 R1

Stakeholders R2 R2 R2 R2 R2 R2 R2

Functional
requirements

R6
R7
R8
R9

R6
R7
R8
R9

R6
R7
R8
R9

R6
R7
R8
R9

R6
R7
R8
R9

R6
R7
R8
R9

R6
R7
R8
R9

Built
Environments

Constrains
R3
R4
R5

R3
R4
R5

R3
R4
R5

R3
R4
R5

R3
R4
R5

R3
R4
R5

R3
R4
R5

Non-
functional
requirements

R10
R11
R12
R13
R14
R15
R16
R17

R10
R11
R12
R13
R14
R15
R16
R17

R10
R11
R12
R13
R14
R15
R16
R17

R10
R11
R12
R13
R14
R15
R16
R17

R10
R11
R12
R13
R14
R15
R16
R17

R10
R11
R12
R13
R14
R15
R16
R17

R10
R11
R12
R13
R14
R15
R16
R17

Project issues

R18
R19
R20
R21
R22
R23
R24
R25
R26
R27

R18
R19
R20
R21
R22
R23
R24
R25
R26
R27

R18
R19
R20
R21
R22
R23
R24
R25
R26
R27

R18
R19
R20
R21
R22
R23
R24
R25
R26
R27

R18
R19
R20
R21
R22
R23
R24
R25
R26
R27

R18
R19
R20
R21
R22
R23
R24
R25
R26
R27

R18
R19
R20
R21
R22
R23
R24
R25
R26
R27

Natural
Environments

Constrains
R3
R4
R5

R3
R4
R5

R3
R4
R5

R3
R4
R5

R3
R4
R5

R3
R4
R5

R3
R4
R5

61

 Dynamic Requirements Elicitation Based on Environment-based 4.2

Roadmap

This section introduces a dynamic inquiry approach to eliciting requirements based on

proposed Environment-based roadmap. An algorithm of question asking is presented to

assist requirements elicitation.

4.2.1 Dynamic elicitation through question asking

In recursive design process illustrated in Figure 3-1, design stage could evolve to a new

stage. On the one hand, designers may have to remove some information from the current

design state in order to identify the real intent. On the other hand, designers may

supplement information to find complete product requirements. In this process, questions

set up goals which lead the design stage to move in either of the two directions as shown

in Figure 4-2.

A generic inquiry approach was proposed in an attempt to ensure that the real needs of

the customers were being met and to support requirements extension process for

dynamically eliciting more complete requirements (Wang and Zeng, 2009; Wang et al.,

2013). The iterative inquiry process, illustrated in Figure 4-4, starts from design problem

description described in natural language provided by customers. The design problem

description will be represented as ROM diagram by a computer tool ROMA. Based on

the ROM diagram the process finally gets the results of design requirements through two

types of inquiries: generic questions and domain questions. The first type of questions

are generated for the clarification and extension of the meaning of design problem

62

whereas the second type of questions of domain specific questions are generated for

implicit design information related to the current problem. An intermediate component is

product-environment system, which is generated after design problem analysis and

prepared for domain problem extension.

63

Generic Inquiry Process

Question Algorithm

Question Algorithm

Original Requirements

ROM Diagram

Generic Questions

Answers

Domain Questions

Answers

Refined Requirements

ROMA Tool

Design problem analysis

Design problem extension

Product-Environment

System (PES)

Search Engine

Search Engine

Rules

Figure 4-4 Generic inquiry process for requirements elicitation

Both of the inquiry processes generate questions by applying question generation

algorithm which consists of question rules, templates and procedures.

64

4.2.2 Algorithm of question asking

The algorithm of question asking for requirements elicitation is shown in Table 4-3. The

input is design text described by natural language, whereas the output is design

requirements. The main steps in the algorithm are ROM diagram generation, generic

question generation, PES identification and domain question generation.

Table 4-3 Question asking algorithm for requirements elicitation

Algorithm RequirementsElicitation(Text: design text)

1: Transform design text into ROM diagram ROMTransform(design text)

2: Analyze ROM diagram through generic questions

3: Update ROM diagram

4: Identify Product-Environment System

5: Extend design problem through domain questions

6: Update Product-Environment System

7: Output design requirements

Since the generation of ROM diagram from design text has been dealt with elsewhere

(Zeng, 2008), this chapter focus on the other three steps.

4.2.2.1 Algorithm of generic question generation

The generic questions illustrated in Figure 4-5 aim to clarify the meanings of provided

information to identify the customer’s real intent. The input of generic question

generation is a ROM diagram corresponding to design problem description. The ROM

diagram will go through an object analysis process to rank and record all objects and their

adjacent objects into a list. Based on the object list, questions are generated by the

65

algorithm illustrated in Table 4-3 through the rules given in Table 4-4 and templates in

Table 4-5.

Asking the Generic Questions

ROM Diagram

Objects List

Constraining and

Predicating Objects

Questions for Constraining Objects

next

constrain

or

predicate

object

Questions for Aiming Objects

End

next

object

Template

Rules

Figure 4-5 Asking the generic questions

66

Table 4-4 Rules for objects analysis

 Rule1 An object with the most constrains (constraining objects and

predicating objects) should be considered first.

 Rule2 Before an object can be further defined, the objects constraining

them or having predicate relations with them should be further

refined. Exceptions should be applied in sub rules.

Rule 2.1 Exceptions for the constraining objects: the objects of

determiner, quantifier and number do not need to be

refined; the objects of preposition and conjunction do

not need to be refined, however, the objects connecting

them should be refined further.

Rule 2.2 Exceptions for the predicate relations: some verbs

including linking verbs (is/are/was/be), auxiliary verbs

(have/has/had), and modal verbs (need/may) do not

need to be refined, however, the objects connecting with

them should be refined.

Rule 2.3 Exceptions for connecting objects: conjunctions (and/or/

but) do not need to be refined; however, their connected

objects should be refined.

 Rule3 All the objects should be indicated “asked” if they have been refined,

and they will not be asked repeatedly.

Table 4-5 Questions template for object analysis (Wang and Zeng, 2009)

T1 For a concrete, proper, or abstract noun N Question: What is N?

T2 For a noun naming a quantity Q of an object N,

such as height, width, length, capacity, and

level, such as height, width, length, capacity,

Question: How many /

much / long / big /… is the

Q of N?

67

level

T3 For a verb V Question: Why V? Who V?

How to V? When V? or

Where V?

T4 For a modifier M of a verb V Question: Why V M?

T5 For an adjective or an adverb A Question: What do you

mean by A?

T6 For a relation R that misses related objects Question: What (who) R

(the given object)? Or (the

given object) R what

(whom)?

Table 4-6 Algorithm for generic question generation

Algorithm GenericQuestin(ROMDiagram: ROM)

1: Determine the order of objects from ROM

2: Repeat

3: Ask a generic question

4: Collect answer for the generic question

5: Generate ROM diagram for the answer

6: Update ROM diagram by merging the answer

7: Repeat Step 1-6

8: Until all the necessary objects in ROM are defined

9: Output ROM diagram

68

4.2.2.2 Algorithm of PES identification

A PES is an important intermediate model, which is consist of products, environments,

and relations among products and environments (Zeng, 2002). Products and

environments can be further decomposed into components and attributes for different

purposes. The algorithm of identification of PES from ROM is shown in Table 4-8,

which applies the identification rules listed in Table 4-7.

Table 4-7 Identification rules from ROM diagram to PES

Identify product

Rule 1: If the POS feature of an object O in a ROM diagram is noun (N), and its

ROM feature satisfies one of the following conditions, then this object is a product

(Pr):

1) The object has a predicate relation directed from a human (Eh) object through a

meta verb (Vm).

2) The object is a center object which has at least one predicate relation directing

towards another object (Ox) through a function verb (Vf), but no predicate relation

directed towards it from object (Oy) through a function verb.

Identify product components

Rule 2: If the POS feature of an object O in a ROM diagram is noun (N) and its

ROM feature satisfies one of the following conditions, then this object is a product

component (Cp):

1) The object is constrained by a product (Pr) or any other product component (Cp)

object and is neither an attribute nor environment.

2) The object has a predicate relation directed from a product or product component

through a structure verb (Vs).

3) The object is constrained by a preposition object (P) which connects a product or

product component.

Identify product attributes

Rule 3: If the POS of an object O in a ROM diagram is noun (N) or adjective (Aj),

and its ROM features satisfy one of the following conditions, then this object is an

attribute (Ap) of a product (Pr) or component (Cp):

1) It constraining a product or a product component and is neither a product nor

product component.

2) It has a predicate relation directed from a product or product component through a

linking verb (Vl).

Identify product attribute value

69

Rule 4: If the POS feature of an object O in a ROM diagram is noun (N), adjective

(Aj), or adverb (Av), and the ROM feature satisfies one of the following conditions,

then this object is an attribute value (Va):

1) It constrains an attribute of a product or a product component.

2) It has a predicate relation directed from an attribute object through a linking verb

(Vl).

Identify environments

Rule 5: If the POS feature of an object O in a ROM diagram is noun (N) and its

ROM feature satisfies one of the following conditions, then this object is an

environment (Ep) of a product (Pr) or product component (Cp):

1) It has a predicate relation directed from a product or product component through a

function verb (Vf), but it is not a product, product component, attribute, or attribute

value.

2) It has a predicate relation directed from an environment object through a function

verb (Vf).

3) It constrains a function object (Vf) of a product or product component through a

preposition object (P).

Environments can be classified further as the Rule 5.1 to Rule 5.3

Rule 5.1: If an object in a ROM diagram is an environment object and is also a

human user or operator in the life cycle of the product, then this object is a human

environment.

Rule 5.2: If an object in a ROM diagram is an environment object and is also an

artefact built or created by human beings, then this object is a built environment.

Rule 5.3: If an object in a ROM diagram is an environment object but is neither a

human nor a built environment, then this object is a natural environment.

Identify environment components

Rule 6: If the POS feature of an object O in a ROM diagram is noun (N) and its

ROM feature satisfies one of the following conditions, then this object is an

environment component (Ce):

1) The object is constrained by an environment (Ep) or environment component (Ce),

but it is not a product or a product component.

2) The object has a predicate relation directed towards it from an environment object

through a structure verb (Vs).

3) The object is constrained by a preposition object (P) which connects an

environment object.

Identify environment attributes

Rule 7: If the POS of an object O in a ROM diagram is noun (N) or adjective (Aj),

and the ROM features satisfy one of the following conditions, then this object is an

attribute (Ae) of an environment (Ep):

1) It is constraining an environment (Ep) or an environment component (Ce).

2) It has a predicate relation directed from an environment or an environment

component through a linking verb (Vl).

Identify environment attribute value

70

Rule 8: If the POS feature of an object O in a ROM diagram is noun (N), adjective

(Aj), or adverb (Av) and its ROM feature satisfies one of the following conditions,

then this object is an environment attribute value (Vae):

1) It constrains an environment attribute object (Ae).

2) It has a predicate relation directed from an environment attribute object and the

predicate verb is a linking verb (Vl).

Identify relations

Rule 9: Relations exist among product, product components, and environments.

Those relations reflect constraint relation or predicate relations in the ROM diagram.

Table 4-8 Algorithm for identification of PES from ROM

Algorithm of identifying PES PES(ROMDiagram: ROM)

1: Determine the product object from ROM

2: Repeat

3: Identify environments

4: Identify product components and attributes

5: Identify environments from environments

6: Until all the noun objects in ROM are defined

7: Output the PES model

Algorithm of determining product Product(ROMDiagram: ROM)

1: Sort the noun objects into a list On by the number of predicate and

constraint relations

2: for all O On

3: if O satisfies Rule 1 then Product O

4: else delete O from On

5: end if

6: end for

Algorithm of identifying environments Environment(Product or Component: S)

1: for all verb V directed from S to noun object N

2: if V satisfies Rule 11, Environment N, Function V+ N

3: end for

71

Algorithm of identifying product components and attributes

Component_Attribute(Product or Component: S)

1: for all N which has a predicated relation directed from S by Ov

2: if Ov is a structure verb that satisfies Rule 2.2) then Component N

3: end for

4: for all adjective Aj which has a predicate relation directed from S by Ov

5: if Ov is a linking verb that satisfies Rule 3.2) then attribute Aj

6: end for

7: for all Oc O which is constraining S through a preposition object

8: if Oc satisfies Rule 2.3) then Component Oc

9: end for

10: for all Oc O which is constrained by S

11: if Oc satisfy Rule 2.1) then Component Oc

12: end for

13: for all Oa O which is constraining S

14: if Oa satisfy Rule 3.1) then attribute Oa

15: end for

Algorithm of identifying environments from an environment

 Environment_Environment(Environment: E)

1: for all Oe which has a predicated relation directed from E by Ov

2: if Ov is a function verb that satisfies Rule 5.2) then Environment Oe

3: if Ov is a structure verb that satisfies Rule 6.2) then

EnvironmentComponent Oe

4: if Ov is a linking verb that satisfies Rule 7.2) then EnvironmentAttribute

 Oe

5: end for

6: for all noun object Oe which is constrained by E

7: if Oe satisfies Rule 6.1) then EnvironmentComponent Oe

8: end for

9: for all noun object Oe which is constrained by E through a preposition object

10: if Oc satisfies Rule 6.3) then EnvironmentComponent Oc

72

11: end for

4.2.2.3 Algorithm of domain question generation

Asking domain specific questions illustrated in Figure 4-6 aims to identify complete

environment components and their relations for collecting complete requirements based

on the EBD-based roadmap. The procedure for asking domain specific questions is given

in Table 4-9. The input of this procedure is PES, which identifies the product, product

components, product attributes, product environments, and relations among them. At the

beginning of domain analysis, the PES may not complete and need to be supplemented

systematically. The algorithm of domain question generation is shown in Table 4-10.

73

Asking the Domain Questions

Product-Environment

System (PES)

Life Cycle States

Environment Components

Questions for Environments

next

component

End

next

stage

Template

Questions for Life Cycle

roadmap

Template

Figure 4-6 Asking domain specific questions

Table 4-9 Questions generation rules for domain specific questions

Rule 1 The life cycle of the product should be identified by asking the

question: what is the life cycle of the product to be designed?

Rule 2 The environments should be identified at each stage of the

lifecycle according to the EBD based roadmap by asking the

74

question: what environments are related to the product in the stage

X?

Rule 3 The relations between product and environments and between

environments should be identified by asking the questions: what

relations between A and B?

Rule 4 The sequence of questions is determined by the levels of

requirements in roadmap so that those requirements at the lower

levels have higher priority and can be asked earlier.

Rule 5 The answers should be gone through generic analysis for accuracy.

Table 4-10 Algorithm for domain question generation

Algorithm DomainQuestion(PES)

1: Get product and environment objects from PES

2: Ask a question about lifecycle of the product by Rule 1

3: Collect answer about lifecycle

4: Repeat

5: Ask a domain question on environment by Rule 2

6: Collect answer for the domain question

7: Analyze answer by generic questions

8: Until all the environments are defined

9: Update PES

10: Repeat

11: Ask a domain question on relation by Rule 3

12: Until all the relations are defined

13: Update and output PES

75

 Evaluation of the Question Asking Approach based on Environment-4.3

based Requirements Roadmap: a Case Study

An example of requirements elicitation process for an energy trading software system is

performed to illustrate the question asking approach. A software prototype called

Question Asking has been developed based on the question generation rules and

algorithms presented in the previous section. Another prototype called ROM2PES is used

for transforming ROM diagram to PES, which connect two types of question generation.

The simulation process and the results of case study are used to evaluate the proposed

work.

4.3.1 Energy trading software system background

The following paragraph, provided by an energy trading company, describes their

business activities. The aim of this project is to help the company to identify the

requirements for the new system starting.

Energy trading is the activity involving trading energy related commodities, such as

power, natural gas, crude oil, and refined products like fuel oil, heat oil, gasoline etc.

Energy is not only a consumer product, but also an investment product. As a consumer

product, energy producers need to know existing demand, potential demand, and

existing supply and potential supply; as an investment product, investment institutions

need to know the return and risk of the investment. Given the huge demand of energy

and big energy price volatility, an automation system is the only choice to manage the

energy trading.

76

From the original description, a more detailed PES system can be completed through a

series of question asking process. The PES includes all the possible environments and

relations among product and environments, which assists the requirements identification.

4.3.2 Question asking process for energy trading system

First of all, a ROM diagram for the original requirements description is generated, which

is illustrated in Figure 4-7. The ROM diagram is the input for the question generation.

Figure 4-7 The ROM diagram for original requirements

 trading is activity

the

involving trading

energy

commodities such as

power

Natural gas

Crude oil

Refined products

and

like

Fuel oil

Heat oil

gasoline

etc

and

energy

is

product consumer

not only

a

product investment

an

but also

energy producers need to know

and

demand demand

consumer

existing potential exiting potential

supply supply

as

institutions

need to know

as

and

returnrisk

the

automation

system

an

is

only

choice

the

to

manage

the

given

huge

demand

and

energy

volatility price

big

=

=

=

=

77

The original PES system based on the given description is identified as Figure 4-8.

Figure 4-8 The PES of automation system

In this case, all the objects are identified and the numbers of relations on each object in

the ROM diagram are calculated by the software prototype. The meaningful noun objects

and their relation numbers are listed in Table 4-11. Also the constraining objects of each

noun object are listed in the table.

Environments
Products

system

trading

activitycommodities

product

consumer

supply

producers

returndemand

erergy

manage

investment

institutions

risk

power
natural

gas
crude oil

refined
products

fuel oil heat oil gasoline

istrades

such as

like

is

need to know

involving

productas

need to know

as

environment product componentfunctionattribute

existing potential huge energy investment

automationonly choice

78

Table 4-11 Object analysis

Object
order

Object
Number of
constrain
relations

Constraining object(s)

1 trading 5

energy,
is activity,
involving,
manage,
commodities

47 system 3

manage trading,
automation,
is choice,
is given demand and volatility

3 activity 2
is,
involving

6 commodities 2
energy,
is traded

7 energy 2
is product,
such as

21 product 2
for,
consumer

23 product 2
investment,
for

30 institutions 2
investment,
need

50 choice 2
only,
is

55 demand 2
huge,
energy

56 volatility 2
big,
price

38 demand 1 existing

40 demand 1 potential

42 supply 1 existing

44 supply 1 potential

57 price 1 energy

79

36 risk 1 investment

Below are the examples that illustrate how the algorithm is implemented according to the

ranking of noun objects shown in Table 4-11.

According to Rule1 “center object is the (noun or verb form noun) object with the most

relations of predicate and constrain”, the center object should be the entry object for

analyzing a text.

In this case, object 1 “trading” is the center object with five predicate and constrain

relations. Object 7 “energy” constrains the center object; objects that have predicate

relation with it are object 2 “is”, object 48 “manage”, object 4 “involving”, and object 6

“commodities”.

Based on Rule2 “before an object can be further defined, the objects constraining and/or

predicating them should be refined”, for defining center object “trading”, other five

objects (“energy”, “is”, “involving”, “trading”, “commodities”) and/or their constraining

and predicating objects should be pre-defined.

Therefore, for object “energy”, its constraints include “such as” and “like”. No questions

to ask according to Rule 2.1 (preposition) and Rule 2.3 (and/or). But the objects related to

them should be defined, so the questions will be asked from Question 1 to 8 as in the

Table 4-12. Then predicate of “energy” is “is” and its consequence. Questions will be

asked from Question 9 to 37 to refine “energy”. During the question asking process,

80

questions for a verb object follow the question template in Table 4-5. For example the

Question 17 to 20 are for verb “need to”.

After “energy” is refined, questions go back to “commodities” as Question 38. Then

other questions according to the sequence of object list will be generated until all the

objects in the list are refined.

Table 4-12 List of the first round questions

Question
Number

Related Object(s) Question

1 energy What is power?

2 energy What is natural gas?

3 energy What is crude oil?

4 energy What is refined product?

5 energy What is gasoline?

6 energy What is heat oil?

7 energy What is fuel oil?

8 energy What is energy?

9 Energy is Who is the consumer?

10 Energy is What is a consumer product?

11 Energy is What are energy producers?

12 Energy is How is energy a consumer product?

13 consumer What is the existing demand?

14 consumer What is the potential demand?

15 consumer What is the existing supply?

16 consumer What is the potential supply?

17 need to Why do energy producers need to know existing and
potential demand and supply?

18 need to When do energy producers need to know existing
and potential demand and supply?

19 know How do energy producers know existing and
potential demand and supply?

81

20 know Where do energy producers know existing and
potential demand and supply from?

21 product What is investment?

22 product What are investment institutions?

23 product What is the investment return for an energy
product?

24 product What is investment risk for an energy product?

25 is How is energy an investment product?

26 need to Why do investment institutions need to know
investment return and risk for an energy product?

27 need to How do investment institutions need to know
investment return and risk for an energy product?

28 need to Where do investment institutions need to know
investment return and risk for an energy product
from?

29 given What is huge energy demand?

30 huge How huge is energy demand?

31 given What is energy price volatility?

32 big How big is volatility of the energy price?

33 given Who (or what) give the huge energy demand and
energy price volatility?

34 given Why do they give the huge energy demand and
energy price volatility?

35 given When do they give the huge energy demand and
energy price volatility?

36 given How to give the huge energy demand and energy
price volatility?

37 given Where to give the huge energy demand and energy
price volatility?

38 commodities What are energy-related commodities?

39 trading Who trades energy-related commodities?

40 trading Why do they trade energy-related commodities?

41 trading How do they trade energy-related commodities?

42 trading When do they trade energy-related commodities?

43 trading Where do they trade energy-related commodities?

82

44 system What is trading?

45 manage What is energy trading?

46 activity What activity is involving trading energy related
commodities?

47 involving How is energy trading an activity involving trading
energy related commodities?

48 system What is automation? What is an automation
system?

49 system What is an automation system?

50 is What is a choice? (What are choices to manage
energy trading?)

51 is How is an automation system a choice to manage
energy trading?

52 manage Why does an automation system manage energy
trading?

53 manage When does an automation system manage energy
trading?

54 manage Where does an automation system manage energy
trading?

The answers of these questions are collected from all resources and analyzed as the

similar procedures as original requirements, which are addressed in the project report

(Wang, 2012). Afterwards, the system requirements are more clear and detailed.

According to the updated requirements based on the first round of answers mainly given

by the company, the product of this case is the “automation system”; its main function is

“managing energy trading”. To collect domain related requirements, the second round of

domain questions about lifecycle in energy trading and environments are generated and

the answers are collected from some resources mainly from customer.

83

The questions and answers are listed in Table 4-13. The first question is about life cycle:

What is the life cycle of energy trading? After the stages of life cycle are identified,

questions about environments of each stage will be asked. For example, Questions 2 to 8

in Table 4-13 are for transaction capture process.

Table 4-13 Questions and answers about life cycle

Question Answer

1 What is the life cycle of energy
trading?

The life cycle of managing energy trading
includes Transaction Capture, Pricing Feeds,
Contract Management, Risk Management,
Operations and Nominations,
Invoicing/Accounts Payable/Accounts
Receivable, PnL Analysis/Reporting, and
Management Reporting/Decision.

2 Who (stakeholders) will
involve in transaction capture
process? (Such as who are the
client/ customer/users/other
stakeholders of a current
system?)

Traders, marketers, and operation managers.

3 What are the roles of different
stakeholders in transaction
capture process?

Traders will bid the market and make decisions
to execute the transaction.

4 What are the activities for
different stakeholders in
transaction capture process?

Traders enter transactions.

5 What relationships (or
collaboration) are there
between the stakeholders in
transaction capture process
with the stakeholders in other
events such as pricing feeds?

Each stakeholder is playing individual
important role in the whole trading business.
They will collaborate to make sure all
information is complete and accurate.

6 What are the existing business
processes for transaction
capture, including the manual
and automated processes?

Transactions will be manually booked in the
beginning in different systems or
spreadsheets, and then be consolidated into
one automation system.

7 Could you give a scenario(s) For example, Trader Jack is trading WTI crude

84

that may happen in
transaction capture process if
possible?

oil in CME at Chicago. Jack will go to CME
online system to enter the transaction, then
through CME gateway, the transaction will be
imported into the in-house system used by
Jack. From then on, Jack would track and
analyze the transaction in the in-house system.

8 What do you want to change
or improve for transaction
capture in new system?

User friendly;

9 Who (stakeholders) will
involve in pricing feeds
process? (Who are the client/
customer/users/other
stakeholders of a current
system?)

Product Control managers and Settlement
managers.

10 What are the roles of different
stakeholders in pricing feeds
process?

Product Control managers to make sure
correct products are used, and make sure the
market data is used properly for each product.

11 What are the activities for
different stakeholders in
pricing feeds process?

Product Control managers will load and verify
market data for each energy product.

12 What relationships (or
collaboration) are there
between the stakeholders in
pricing feeds process with the
stakeholders in other events
such as contract management?

Each stakeholder is playing individual
important role in the whole trading business.
They will collaborate to make sure all
information is complete and accurate.

13 What are the existing business
processes for pricing feeds,
including the manual and
automated processes?

Stakeholders will look up the market data and
settlement prices from the market. Then,
those data will either be manually entered into
the energy trading system, or through other
pricing feeding system.

14 Could you give a scenario(s)
that may happen in pricing
feeds process if possible?

For example, one transaction is trading WTI for
September 2012 contract month. As of August
20, 2012, the price for September 2012 WTI is
known. On August 20, 2012, Settlement
managers would go to CME website or other
market data source to look up the price. Then
that price will be manually entered into the in-
house energy trading system.

15 What do you want to change User friendly;

85

or improve for pricing feeds in
new system?

16 Who (stakeholders) will
involve in contract
management process? (Who
are the client/
customer/users/other
stakeholders of a current
system?)

Contract managers will involve in contract
management process.

17 What are the roles of different
stakeholders in contract
management process?

Contract mangers are responsible for
managing the contract.

18 What are the activities for
different stakeholders in
contract management
process?

Contract managers will manage company,
contract and confirmation.

19 What relationships (or
collaboration) are there
between the stakeholders in
contract management process
with the stakeholders in other
events such as pricing feeds?

Each stakeholder is playing individual
important role in the whole trading business.
They will collaborate to make sure all
information is complete and accurate.

20 What are the existing business
processes for contract
management, including the
manual and automated
processes?

Company and contract information will be
entered into system manually, the confirm
process will be automated by system.

21 Could you give a scenario(s)
that may happen in contract
management process if
possible?

Contract manager will set up the company
profile, including company name, address,
contact and credit related information, then
the contract with the company will be set up,
and all transactions tied to the contract would
be verified and confirmed.

22 What do you want to change
or improve for contract
management in new system?

Automate most of the processes.

23 Who (stakeholders) will
involve in risk management
process? (Who are the client/
customer/users/other
stakeholders of a current

Risk managers will involve in risk management
process.

86

system?)

24 What are the roles of different
stakeholders in risk
management process?

Risk managers will be responsible for
managing energy trading related risk limits.

25 What are the activities for
different stakeholders in risk
management process?

Risk managers will use different scenarios to
manage market risk, credit risk and
operational risk.

26 What relationships (or
collaboration) are there
between the stakeholders in
risk management process with
the stakeholders in other
events such as contract
management?

Each stakeholder is playing individual
important role in the whole trading business.
They will collaborate to make sure all
information is complete and accurate.

27 What are the existing business
processes for risk
management, including the
manual and automated
processes?

Most risk related processes have been
automated. Scenarios will be set up, then each
scenario will be processed by system, the
output for the system will be used to help
manage all risk limits.

28 Could you give a scenario(s)
that may happen in risk
management process if
possible?

For example, given the volatility of the crude
market and the regulation, extra capita is set
aside to make sure the worst loss would be
covered. So the worst loss is the market risk
limit and would be calculated by the system.
Commonly, VaR (value-at-risk) would be used
to monitor the market risk. Risk managers
would decide the scenario settings for the VaR,
then the system would calculate the VaR
covering all energy trading business. The result
will be monitored closely to make sure the VaR
is within the business limit. If there is limit
breach, investigation is required to understand
the mechanics.

29 What do you want to change
or improve for risk
management in new system?

User friendly;

30 Who (stakeholders) will
involve in operations and
nominations process? Who are
the client/
customer/users/other

Operation mangers will involve in operations
and nominations process.

87

stakeholders of a current
system?)

31 What are the roles of different
stakeholders in operations and
nominations process?

Operation managers are responsible for
operations and nominations.

32 What are the activities for
different stakeholders in
operations and nominations
process?

Operation managers will verify trading product
being setup correctly, and will be responsible
for scheduling and nomination for physical
delivery.

33 What relationships (or
collaboration) are there
between the stakeholders in
operations and nominations
process with the stakeholders
in other events such as
contract management?

Each stakeholder is playing individual
important role in the whole trading business.
They will collaborate to make sure all
information is complete and accurate.

34 What are the existing business
processes for operations and
nominations, including the
manual and automated
processes?

After transaction is booked into system,
operation managers will valid the transaction
to make sure the information is complete and
accurate. For physical delivery, operation
managers will nominate the delivery volume
with counterparty or pipeline operator.

35 Could you give a scenario(s)
that may happen in operations
and nominations process if
possible?

For example, a purchase contract has been
assigned with counterparty to deliver natural
gas at City-Gate in Chicago through
TransCanada Pipeline Inc. After the
transaction is entered into the energy trading
system, operation managers will check the
details of the transaction to make sure the
delivery date, delivery volume and pricing are
correct according to the contract. Then when
the delivery time comes, operation managers
will schedule the delivery volume with
TransCanada Pipeline Inc, and notify the
counterparty the time and location to receive
the natural gas.

36 What do you want to change
or improve for operations and
nominations in new system?

User friendly;

37 Who (stakeholders) will
involve in Invoicing/Accounts

Accountants will involve in this process.

88

Payable/Accounts Receivable
process? (Who are the client/
customer/users/other
stakeholders of a current
system?)

38 What are the roles of different
stakeholders in
Invoicing/Accounts
Payable/Accounts Receivable
process?

Accountants will be responsible for all aspects
of this process.

39 What are the activities for
different stakeholders in
Invoicing/Accounts
Payable/Accounts Receivable
process?

Accountants enter settled prices for each
traded product, generate invoice and verify
invoice with counterparty statements. General
ledgers will be maintained and all accounting
related process and reporting would be
managed properly.

40 What relationships (or
collaboration) are there
between the stakeholders in
Invoicing/Accounts
Payable/Accounts Receivable
process with the stakeholders
in other events such as
contract management?

Each stakeholder is playing individual
important role in the whole trading business.
They will collaborate to make sure all
information is complete and accurate.

41 What are the existing business
processes for
Invoicing/Accounts
Payable/Accounts Receivable,
including the manual and
automated processes?

Once the prices are fed into energy trading
system and transactions are verified,
accountants will generate invoice statements.
After reconciling the statements from
counterparties, the invoices will be delivered
to counterparties. At the same time, the
invoice statements will be used to generate
General Ledger, financial statements, financial
reporting and financial analysis.

42 Could you give a scenario(s)
that may happen in
Invoicing/Accounts
Payable/Accounts Receivable
process if possible?

For example, transaction was entered for a
WTI crude oil fix-float swap to pay fixed price
of $95 USD per barrel to receive Last Day June
2012 WTI future contract. The invoice
payment date for this transaction was June 5,
2012. The Last Day price would be known on
May 20, 2012, it was $97 USD per barrel. In
this case, the settlement price of $97 USD per

89

barrel would be collected from market and
entered into the energy trading system on
May 20, 2012. An invoice statement would be
generated and sent out before June 5, 2012 to
counterparty to pay $2 USD per barrel and the
invoice due date would be June 5, 2012. The
invoice would be posted as General Ledger
entry and would be used for financial analysis,
and financial reporting.

43 What do you want to change
or improve for
Invoicing/Accounts
Payable/Accounts Receivable
in new system?

User friendly;

44 Who (stakeholders) will
involve in PnL
Analysis/Reporting process?
(Who are the client/
customer/users/other
stakeholders of a current
system?)

Product Control managers will involve in PnL
Anlysis/Reporting process.

45 What are the roles of different
stakeholders in PnL
Analysis/Reporting process?

Product Control managers are responsible for
PnL Analysis/Reporting.

46 What are the activities for
different stakeholders in PnL
Analysis/Reporting process?

Product Control managers would assure
correct products and correct models are used
to value the trading business. All historical
cash and forward value are monitored and
analyzed closely to provide accurate PnL
(Profit and Loss). At the same time, the PnL
would be explained properly.

47 What relationships (or
collaboration) are there
between the stakeholders in
PnL Analysis/Reporting process
with the stakeholders in other
events such as contract
management?

Product Control managers would work very
closely to operation group to make sure
correct products be traded. Product Control
managers will compare the PnL with trading
desk’s estimate. If there is discrepancy, a
detailed explanation should be provided.

48 What are the existing business
processes for PnL
Analysis/Reporting, including

Most of PnL Analysis/Reporting functions are
automated. Given the complexity of this
process, lots of spreadsheets will be used to

90

the manual and automated
processes?

help the analysis. Daily PnL will be generated
by the energy trading system, then the PnL will
be explained by different categories based on
market factors.

49 Could you give a scenario(s)
that may happen in PnL
Analysis/Reporting process if
possible?

For example, PnL is $1,000,000 between 2
business days. PnL analysis is required to find
out which market factors contributed the PnL,
and how much contribution for each factor.
Commodity price, interest rate, currency
exchange rate, volatility and time are the most
important market factors to impact PnL
analysis.

50 What do you want to change
or improve for PnL
Analysis/Reporting in new
system?

Better models for PnL analysis;

51 Who (stakeholders) will
involve in Management
Reporting/Decision process?
(Who are the client/
customer/users/other
stakeholders of a current
system?)

Senior Executives will involve in Manager
Report/Decision process.

52 What are the roles of different
stakeholders in Management
Reporting/Decision process?

Senior Executives will be responsible for
Management Reporting/Decision process.

53 What are the activities for
different stakeholders in
Management
Reporting/Decision process?

Senior Executives will monitor the PnL, all risk
limits, they will make decisions on business
model and risk tolerance.

54 What relationships (or
collaboration) are there
between the stakeholders in
Management
Reporting/Decision process
with the stakeholders in other
events such as contract
management?

Senior Executives will monitor all other
stakeholders to make sure each segment of
the business has been implemented properly.

55 What are the existing business
processes for Management
Reporting/Decision, including

PnL and risk limits will be reported to Senior
Executives on daily basis. Senior Executives will
work very closely to marketing group to

91

the manual and automated
processes?

validate business models against current and
future market conditions. Based on the
information, decisions would be made to carry
on current business strategy and business
model, or change them.

56 Could you give a scenario(s)
that may happen in
Management
Reporting/Decision process if
possible?

For example, natural gas prices have been
subdued in last few years due to technology
breakthrough in shale gas . In the meantime,
the crude oil price stays high due to tighter
supply to meet demand. After analyze the
whole business book, a decision would be
made to trade less natural gas in short term.
The team would spend more effort in crude oil
marketing and price discovery.

57 What do you want to change
or improve for Management
Reporting/Decision in new
system?

User friendly;

The case study in this chapter only illustrates the question asking process for collecting

more complete and necessary requirements. The outcomes of the project are a few

conceptual models of Use Case diagram, state diagram, class diagram, and architecture

diagram, which are addressed in the project report (Wang, 2012). The questions generation

process is automatically accomplished, which is the contribution, comparing with traditional

experienced-based brainstorming process.

92

Chapter 5 Structure of Conceptual Models

This chapter analyzes the general structure of conceptual models and takes PES model

and FBS model for particular instances to find out possibility of transformation from one

to another.

 Conceptual Models 5.1

A conceptual model is high-level abstraction that describes what people can do with the

application or service and what concepts they need to understand in order to use it.

Specifically, conceptual models can be used in the following aspects: (1) describe

structure models in terms of entities, relationships, and constraints; (2) describe behavior

or functional models in terms of states, transitions among states, and actions performed in

states and transitions; and (3) describe interactions and user interfaces in terms of

messages sent and received and information exchanged. Such as in software development,

a conceptual model enable clients and analysts to understand one another, enable analysts

to communicate successfully with application programmers, and in some cases

automatically generate parts of the software application.

Several conceptual models are widely used in different engineering fields, such as Use

Case Model, Domain Model, Entity-Relationship (ER) Model, Function-Behaviour-State

(FBS) model, and Product-Environment System (PES). Those conceptual models specify

and describe concepts and relationships between these concepts. For example, in a class

diagram, classes represent concepts, associations represent relationships between

concepts and role types of an association represent role types taken by instances of the

93

modelled concepts in various situations. In ER notation, entities represent concepts,

cardinality and optionality represent relationships between concepts. In PES, product,

product components and their attributes describe the system to be developed,

environments and their attributes describe the outside of the system, whereas the

relationships represent the interactions between system and outside. Regardless of the

different notations, those conceptual models have same composition with the concepts

and relationships between these concepts. As well the concepts can be decomposed into

several primitive ones. Any conceptual can be formulated as Eq. (5-1), where S denotes

a conceptual model; Ei and Ej are primitive concepts; Ei Ej is the relationship between

Ei and Ej.

n

1i
j

n

ji
1j

i

n

1i
i

n

1i
i)E(E)E()E(S

 (5-1)

 Product-Environment System (PES) 5.2

During the design process, design description keep evolving from informal and

unstructured to more formal and structured representations. However, as was indicated in

(Chen and Zeng, 2006; Zeng and Gu, 1999), each design state embodies both design

problem and design solutions. At any stage of design, all the design information is

included in the structure of the A Product-Environment System (PES). The PES reflects

the product, environments and relations between environments and product for a design

problem.

94

A PES is defined as the structure of an object () including both a product (S) and its

environment (E).

(5-2)

where E and S are structures of the environment and product, respectively; ES and

SE are the interactions between environment and product. A PES is illustrated in Figure

3-3.

Corresponding to the subjective and objective realms adopted by Erden et al (Erden et al.,

2008), we can divide the environment E into subjective and objective environments. The

subjective environment, denoted by Es, includes the users of the product whereas the

objective environment, denoted by Eo, includes all of the other environment components

that have an impact on the behaviour of the product. Therefore,

).ES)(E(S))(E((ES))(E(E

)ES)(E(S))(E((ES))(E()E(

S))(E(E

S)E(EΩ

soosos

soosos

os

os

 (5-3)

Eq. (5-3) is illustrated in Figure 5-1.

],S[E S E, E),S(S)E(S)(E)(S)E(Ω

95

Figure 5-1 Product-environment system from subjective and objective perspective (Wang

et al., 2013)

 FBS Model 5.3

The FBS model is a hierarchical knowledge representation scheme that defines a function

as an association between human intention and behaviour (Umeda and Tomiyama, 1995).

The FBS model includes functions, behaviours, states, and physical phenomena. In this

research, we study the FBS model based on Umeda and Tomiyama’s work. FBS

modeling includes three parts: representation of function, FBS diagram, causal

decomposition and task decomposition (Umeda and Tomiyama, 1995). In order to

represent function, the concepts of F-B relationship, state, behaviour, physical

phenomena and aspect are introduced. A FBS diagram is used to distinguish between the

subjective part and the objective part of a design object, to represent a function as an

association of subjective concepts and objective concepts rather than just either of them,

and to represent a design object hierarchically in order to support a modeling process that

details functional and behavioural descriptions concurrently. Based on the FBS diagram,

96

two approaches were proposed for functional decomposition: causal and task

decompositions (Umeda and Tomiyama, 1995).

Figure 5-2 ATDM perspective of FBS model (Wang et al., 2013)

In this subsection, we will reformulate FBS using the ATDM theory. As will be shown

later in this thesis, this reformulation will be the foundation for the development of an

algorithm to transform a design text into a FBS model.

In FBS modeling, Umeda and Tomiyama define a function as “a description of

behaviour recognized by a human through abstraction in order to utilize it” (Umeda and

Tomiyama, 1995). The ROM diagram of this definition is shown in Figure 5-3, which

reveals the relation between function, behavior and human. This relation is formally

represented in Eq. (5-4)

97

B,EF h
(5-4)

where F denotes function, Eh is human environment, and B is behavior. Eq. (5-4) implies

that the function (F) can be represented as a human perception or abstraction of behaviour.

function

is

description

behaviour

recognize human

through

abstract

utilize

to

 Figure 5-3 The ROM diagram for the definition of function (Wang et al., 2013)

In order to define behavior, the concept of state is introduced. “A state is represented as

S(E, A, R), where E denotes identifiers of entities included in this state; A denotes

attributes of entities; R denotes relations in the state that includes relations among entities,

between entities and attributes, and among attributes” (Umeda and Tomiyama, 1995).

This statement can be represented using Axiomatic Theory of Design Modeling (Zeng,

2002). The state S(E, A, R) is represented by Eq. (5-5) and the relation R is denoted in Eq.

(5-6).

R,AES (5-5)

98

A).(AE)(AA)(EE)(ER

(5-6)

Substituting R in Eq. (5-6) into Eq. (5-5), we get

A).(EA)(AE)(AA)(EE)(EAES

(5-7)

Since A denotes attributes of entities (E), E can be seen as a part of A, i.e. AE ,

A.S (5-8)

“Behaviour is defined by sequential one and more changes of states over time. Behaviour

b is represented as (s0, t0), (s1, t1), … , (sn, tn) (n 0; si S, ti T), where S and T

denote a set of states and an ordered set of time respectively” (Umeda and Tomiyama,

1995). Therefore, behaviour is a kind of relation from one state to another.

T,SSt

(5-9)

B.b (5-10)

“A physical phenomenon PP causes a state transition from (si, ti) to (sj, tj) (i j), where

s, represents the required condition for activating this phenomenon” (Umeda and

Tomiyama, 1995). We use Et to denote the environment and Sp to denote the product in a

product system. Then the physical phenomenon PP is a kind of relation from environment

to product as shown in Eq. (5-11).

99

.SEpp pt

(5-11)

Thus behaviour b can be described by its initial state (s0, t0) and a set of physical

phenomena PP.

“An aspect ASP is defined as ASP=(E, A, R, PP, T), where E, A, R, PP ,and T denotes

sets of all entities, attributes, relations, physical phenomena and time of the current

interest respectively” (Umeda and Tomiyama, 1995). Aspect ASP can be represented by

Eq. (5-12), which is the structure of the product system. Therefore, aspect is a kind of

description of product system which consists of product, environment and relations.

).E(SR)E(SASP tptp

(5-12)

By decomposing the product structure, behaviour B can be divided into a series of

primitive behaviours, which can be represented as Eq. (5-13).

.B...BBB n21

(5-13)

Therefore, Eq. (5-4) can be expanded as Eq. (5-14).

).F(F...)F(FF...FF

))B(B...)B(B)B(...)B()B((E

BEF

nm21n21

nm21n21h

h

(5-14)

From the representations of behaviour and state in Eq. (5-9) and Eq. (5-10), a state is the

relation of the structure of attributes within the state to time, and behaviour is the change

of states over time. Hence, a function could also be decomposed by time. If the

100

decomposition is by time, it is the causal decomposition; otherwise, it is task

decomposition.

Table 5-1 summarizes the representations of FBS corresponding to the product-

environment system. This correspondence provides the mathematical foundation for the

transformation from ROM to FBS, since the ROM diagram for a design text implies a

product-environment system.

Table 5-1 Representation of FBS system

FBS Product-Environment System
Mathematical

Representation

Product: Sp Structure of entities and attributes (E A)

State: St Structure of entity attributes at time t (A)T

Behavior: B Relation of one state to another St St

Function: F Relation of human to behavior EhB

Physical

phenomena: PP
Relation of environment to product En Sp

Aspect: ASP Product-Environment system (Sp En)

101

Chapter 6

Formalization of Transformation from Requirements Text to

Conceptual Models

After collecting complete requirements, a transformation of design requirements into

conceptual models is needed for design in a product development process. The third

objective of this PhD research is to develop a general approach to transforming

unrestricted natural language based requirement text into structured conceptual models,

such as FBS model and domain model by using a formal design method – Environment

Based Design (EBD).

 Transformation from Requirements Text to a Conceptual Model 6.1

Figure 6-1 shows the transformation process from a requirements text to a conceptual

model. This process can be divided into two sub-processes: first, the requirements text

described in natural language will go through a linguistic analysis process using the

computer tool ROMA, which generates a ROM diagram for the requirements text; then,

another transformation process transforms the ROM diagram into a conceptual model.

Since the first process has been dealt with elsewhere (Zeng, 2008), this research focuses

on the second process. Therefore, the input of this transformation is the ROM diagram

corresponding to a requirements text whereas the output is a conceptual model.

102

OUTPUT:

Conceptual Model

OUTPUT:

Conceptual Model

Transformation

ROM to

Conceptual Model

ROMTransformation

Text to ROM

INPUT:

Requirements

INPUT:

Requirements

Transformation

Requirements to a

Conceptual Model

Figure 6-1 Transformation from requirements text to FBS model (Wang et al., 2013)

The input of the transformation is ROM, which is introduced in theoretical foundations.

In the following sections, the output FBS and the relations between the input and output

are analyzed, and accordingly the transition rules are derived. At last, the algorithms are

described. The foundation of this discussion is Axiomatic Theory of Design Modeling

(ATDM) (Zeng, 2002).

Requirements text includes paragraphs, phrases, and words. Its structure can be modeled

by a ROM diagram (Zeng, 2008), which uses five symbols to represent primitive object,

compound object, constraint relation, predicate relation and connection relation, as shown

in Table 3-1. ROM is effective for representing natural language, whereas it is not

convenient for human designers to draw and to manipulate when the diagram becomes

big. In our research ROM diagrams are generated by software ROMA which is

developed by Design Lab.

103

The transformation from ROM to a conceptual model is illustrated in Figure 6-2, in

which a Product-Environment System is used as an intermediate between ROM and

conceptual model.

Environment

Product

ROM Conceptual Model

Figure 6-2 Transformation from ROM to a conceptual model

 Representation of States in Transformation from ROM to Conceptual 6.2

Model

In order to define any state in the transformation from ROM to a conceptual model, it is

critical to list all of the necessary features for each state. In this research four types

features are identified, which are: POS (Part-of-Speech) feature, ROM (Recursive Object

Model) feature, PES (Product-Environment System) feature, and CM (Conceptual Model)

feature.

Firstly, since each object in a ROM diagram is a word in the design text that needs to be

processed, every object in a ROM diagram must have a part of speech (POS). In addition,

104

some of the objects can be further classified according to their linguistic functions. For

example, some noun objects describe humans, some other noun objects have their verb

counterparts, and some verbs are linking verbs. The POS feature for a transformation

state thus includes noun (n), verb (v), adjective (a), adverb (ad), determiner (d),

preposition (p), and conjunction (c), together with predefined attributes associated with

some semantic functions that the object may carry and are related to the transformation.

Secondly, the ROM features for a transformation state are objects, predicate relations,

constraint relations and connection relations. Thirdly, the PES features for a

transformation state are primitive components included in a product-environment system,

which are products, product components, product attributes, product attribute values,

environments, environment components, environment attributes, environment attribute

values, and relations among them. Finally, FBS features for a transformation state are

function, behavior, state, physical phenomena and aspect.

In transforming a ROM diagram to a FBS model, any state may include a combination of

the four afore mentioned features: POS, ROM, PES and FBS. Each object in the starting

state has both POS and ROM features defined and the other two unknown whereas the

ending state is constituted by the objects with all four features defined, Therefore, during

the process of transformation from a ROM diagram into a FBS model, an object can be

represented as quadruplet of features, which is denoted by f(O) as:

. FBS(O) PES(O), POS(O),ROM(O),f(O)

(6-1)

105

The aim of the research presented in this chapter is to identify FBS features from ROM

and POS features through PES features. Table 6-1 summarizes these six types of object

features.

Table 6-1 Object features

Object
Features

Domain

ROM feature {object, predicate relation, constraint relation, connection
relation, undefined}

POS feature {noun, verb, adjective, adverb ,determiner, preposition,
conjunction, undefined}

PES feature {product, product component, product attribute, product
attribute value, environment, environment component,
environment attribute, environment attribute value,
relation, undefined}

FBS feature {function, behavior, state, physical phenomenon, aspect,
undefined}

UCD feature {system, actor, use case, undefined}

DM feature {class, attribute, association, undefined}

In fact, the category of object and the number of relations associated with each object

reflects the role and importance of this object in the ROM diagram. ROM features of an

object (ROM(O)) are a list of relations (R) that relate a set of objects (O). Each type of

objects has relations with other objects in the ROM diagram. For example, a noun object

may be constrained by other objects, may constrain other objects, and may have a

predicate relation to or from other objects. Any object may connect with other objects of

the same POS by conjunctions.

106

All of the possible relations to a noun object are illustrated in Figure 6-3. The constraint

relation to a noun object N from an adjective or noun object B is denoted by Cs(B,N); the

constraint relation to a noun object N4 is denoted by Cs(N, N4); the constraint relation to

noun object N1 through a preposition object P is denoted by Cs(N2,P,N); the predicate

relation directing from noun object N3 to N through verb V1 is denoted by V1(N3, N); the

predicate relation directing from object N to a noun or adjective object A through verb V2

is denoted by V2(N, A); the connection relation between N and noun object N2 is denoted

by Cn(N, N2). Thereby, the ROM feature of a noun object N can be denoted by

).,(),(),(

),,(),(),()ROM(

2231

24

NNCANVNNV

NPNCNNCNBCN

n

sss

(6-2)

B: noun or
adjective

A: noun or
adjective

N:nounN4 :noun V2 :verb

V1 :verb

N3 :noun

N2 :noun

P:
preposition

N1 :noun

Figure 6-3 ROM feature of a noun object N

As is shown in Figure 6-4, a verb object V may be constrained by an adverb object A,

connected with another verb V1 by conjunction, or has predicate relation directing from a

107

noun object N to a noun or adjective object B. The ROM feature of a verb object V can be

denoted by

).,(),(),()ROM(1VVCBNVVACV ns

(6-3)

A: adverb

B: noun or
adjective

V: verb

V1: verb

N: noun

Figure 6-4 ROM feature of a verb object V

Meanwhile, the type of verbs in a predicate relation may determine the role of the verbs

in the design. The verbs can be categorized into meta verbs (Vm), function verbs (Vf),

linking verbs (Vl), and structure verbs (Vs) as shown in Table 6-2. A meta verb relates

designers to a product or its working environment; a function verb relates a product to its

working environment; a linking verb introduces an attribute of the product; and a

structure verb defines the components of a product.

Table 6-2 Verb category

Verb category Description Examples

Meta verbs (Vm) relates designers to a product
system

design, develop

Function verbs (Vf) relates a product to its environment support, maintain, raise

Linking verbs (Vl) introduces a product’s properties be, is, are

Structure verbs (Vs) defines a product’s components have, include, consist of

108

An adjective, Aj in Figure 6-5, may constrain a noun object N2, may be constrained by an

adverb Av, may have a predicate relation directed by a linking verb Vl, or connect with

another adjective Aj1. The basic ROM diagram for an adjective object is shown in Figure

6-5. The ROM feature of an adjective object Aj can be denoted by

).,(),(),(),()ROM(112 jjnjljvsjsj AACANVAACNACA

(6-4)

Vl: verb

Aj1: adjective N2: noun

Aj: adjectiveN1: noun Av: adverb

Figure 6-5 ROM feature of an adjective object Aj

Similarly, an adverb Av may constrain a verb object V or an adjective object Aj, and may

be connected with another adverb Av1, as is shown in Figure 6-6. The ROM feature of an

adverb object Av can be denoted by

).,(),(),()ROM(1vvnjvsvsv AACAACVACA

(6-5)

Av: adverb

B: noun or
adjective

V: verb

Av1: adverbAj: adjective

N: noun

Figure 6-6 ROM feature of an adverb object Av

109

A determiner D can only constrain a noun object N as is shown in Figure 6-7. The ROM

feature of a determiner object D can be denoted by

).,()ROM(NDCD s

(6-6)

D: determiner

N: noun

Figure 6-7 ROM feature of a determiner object D

A preposition P may constrain a verb object V or a noun object N3 from a noun object N2,

as is shown in Figure 6-8. The ROM feature of a preposition object P can be denoted by

).,,(),,()ROM(322 NPNCVPNCP ss

(6-7)

V: verb

N2: nounP: prepostion

B: noun or
adjective

N1: noun

N3: noun

Figure 6-8 ROM feature of a preposition object P

A conjunction Cj can only connect two same types of objects B1 and B2 as is shown in

Figure 6-9. The ROM feature of a conjunction object Cj can be denoted by

110

).,()ROM(21 BBCJ j

(6-8)

B1

Cj B2

Figure 6-9 ROM feature of a conjunction object Cj

According to the analysis of word features in a ROM diagram, different types of words

may play different roles in a product-environment system. For example, a noun object

can be a product, a product component, an environment, or an attribute. An adjective or

adverb object can be an attribute. A verb object can be an interaction between two other

objects. Preposition and conjunction objects connect other PES features into a system.

The mappings between POS features, ROM features, PES features, and FBS features are

described in Table 6-3.

Table 6-3 Object mappings between POS, ROM, PES and FBS features

POS Feature ROM
Features

PES
Features

FBS
Features

Noun
(N)

).,(),(

),(),,(

),(),()ROM(

22

312

4

NNCANV

NNVNPNC

NNCNBCN

n

s

ss

 Product (Pr)

Product Component

(Cp)

Attribute (Ap)

Attribute Value (Va)

Environment (Ep)

Environment

component (Ce)

State (S)

111

Environment Attribute

(Ae)

Environment Attribute

Value (Vae)

Verb
(V)

).,(),(),()ROM(1VVCBNVVACV ns Relation (R) Function
(F)
Behavior
(B)

Adjective
(Aj)).,(),(

),(),()ROM(

11

2

jjnjl

jvsjsj

AACANV

AACNACA

 Attribute (Ap/ Ae) State (S)

Adverb
(Av)).,(

),(),()ROM(

1vvn

jvsvsv

AAC

AACVACA

 Relation (R) State (S)

Determiner
(D)

).,()ROM(NDCD s Relation (R) n/a

Preposition
(P)

).,,(),,()ROM(322 NPNCVPNCP ss

Relation (R) n/a

Conjunction
(Cj)

).,()ROM(21 BBCJ j Relation (R) n/a

112

Chapter 7

Algorithm of Transformation from Requirements to FBS

This chapter introduces the algorithm of transformation from requirements text to FBS.

According to the traditional understanding, an algorithm is a finite, unambiguous

description of an effective procedure for the solution of a class of problems. The

procedure in an algorithm is often called a transformation. A transformation is defined by

a set of transitions which deal with all the possible cases included in the class of problems

for which the algorithm was designed (Davis et al., 1994).

Based on the structure operation, the transformation system () from a ROM diagram

(ROM) to a FBS model (FBS) can be formally represented in Eq. (7-1).

ROM),(FBSFBS)(ROMFBS)(ROM)(FBS)(ROMΣ (7-1)

which is illustrated in Figure 7-1.

ROM FBS

R
O

M

R
O

M
 F

B
S

F
B

S

ROM

FBS

ROMFBS

FBSROM

Figure 7-1 Structure of ROM - FBS system (Wang et al., 2013)

The transformation algorithm is part of ROMFBS. In order to develop this algorithm,

the structures of the ROM diagram (ROM) and of the FBS (FBS) must first be

113

formalized. ROM is introduced in Chapter 3, whereas FBS has been formulated in

Section 5.3. This chapter focuses on the transformation rules and procedures.

 Transformation Rules from ROM to FBS 7.1

7.1.1 Transformation rules from ROM to PES

The transformation from a ROM diagram to a product-environment system (PES) means

to identify the PES features for each object according to its POS and ROM features.

Based on basic ROM and POS features of each type of object summarized in Section 6.2,

a ROM diagram with PES features is illustrated in Figure 7-2, which shows all of the

possible roles and relations that may be included in a product-environment system (PES).

The transition rules from POS and ROM features of a given design text to PES can be

derived from this ROM diagram.

Aj/N
(Product Attribute)

N1

(Product)

Vm

(meta verb)

Vs1

(structure verb)

N3

(Pro Component)

N5

(P Attribute Value)

Vl2

(linking verb)

Vs2

(structure verb)

Vf1

(function verb)

N2

(Environment)

B1
(Pro Com Attribute)

N6

(Pro Com Attr value)

Vl4

(linking verb)

Vl3

(linking verb)

N4

(Env Attribute)

N7

(Env Attr value)

Vl5

(linking verb)

Vl6

(linking verb)

N8

(Env Component)

Vs3

(structure verb)

P2

(preposition)

Vf2

(function verb)

Nh

(Human Environment)

Vl1

(linking verb)

N9

(Pro Component)

P1

(preposition: of)

P1
(preposition: of)

P3

(preposition: of)

Figure 7-2 ROM and PES features: a complete map

114

In a ROM diagram, the number of relations associated with each object can be calculated

from the diagram. A center object is defined as the object that has the most number of

predicate and constrained relations. One ROM diagram may have one or more center

objects. In most cases, a center object is a noun object. A center object is important in

ROM and is often the starting point for analyzing the ROM diagram. For example, in

Figure 6-3, which shows the ROM feature of a noun object N, object N has two predicate

relations and two constrained relations, which could affect the semantics of the noun

object; therefore, N is the center object. Noun objects play roles in PES such as products,

components, attributes, and environments. The center of a PES is product; therefore,

determining the product object is a precondition for identifying PES features from a

ROM diagram.

Rule1 given in Table 7-1 is used to identify the product object from a ROM diagram.

There are two possibilities: 1) the noun object has a predicate relation directed by a meta

verb such as “design” and “develop” with human object being its subject; and 2) the noun

object is a center object that is related to at least one function verb directed towards other

objects, but no function verb directed towards it. After the product object is identified, the

PES feature of the product object is updated. Then the components, component values,

attributes, and environments can be identified recursively according to related rules listed

in Table 7-1. Relations exist among product, product components, component value, and

environments through predicate relations and constrain relations.

115

Table 7-1 Transition rules from ROM to PES

Identify product

Rule 1: If the POS feature of an object O in a ROM diagram is noun (N), and its

ROM feature satisfies one of the following conditions, then this object is a product

(Pr):

3) The object has a predicate relation directed from a human (Eh) object through a

meta verb (Vm).

4) The object is a center object which has at least one predicate relation directing

towards another object (Ox) through a function verb (Vf), but no predicate relation

directed towards it from object (Oy) through a function verb.

.),)(())),(),((),(()(())((OPOPESOOVOOVOEVOROMNOPOS ryfxfhm

Identify product components

Rule 2: If the POS feature of an object O in a ROM diagram is noun (N) and its

ROM feature satisfies one of the following conditions, then this object is a product

component (Cp):

4) The object is constrained by a product (Pr) or any other product component (Cp)

object and is neither an attribute nor environment.

5) The object has a predicate relation directed from a product or product component

through a structure verb (Vs).

6) The object is constrained by a preposition object (P) which connects a product or

product component.

.,)()),),(()),(()),(()(())((OCOPESOPCPCOCPVOCPCOROMNOPOS pprsprsprs

Identify product attributes

Rule 3: If the POS of an object O in a ROM diagram is noun (N) or adjective (Aj),

and its ROM features satisfy one of the following conditions, then this object is an

attribute (Ap) of a product (Pr) or component (Cp):

3) It constraining a product or a product component and is neither a product nor

product component.

4) It has a predicate relation directed from a product or product component through a

linking verb (Vl).

.,)())),(())(,()(())((OAOPESOCPVCPOCOROMANOPOS pprlprsj

Identify product attribute value

Rule 4: If the POS feature of an object O in a ROM diagram is noun (N), adjective

(Aj), or adverb (Av), and the ROM feature satisfies one of the following conditions,

then this object is an attribute value (Va):

3) It constrains an attribute of a product or a product component.

4) It has a predicate relation directed from an attribute object through a linking verb

116

(Vl).

.,)()),(),()(())((OVOPESOAVAOCOROMAANOPOS aplpsvj

Identify environments

Rule 5: If the POS feature of an object O in a ROM diagram is noun (N) and its

ROM feature satisfies one of the following conditions, then this object is an

environment (Ep) of a product (Pr) or product component (Cp):

4) It has a predicate relation directed from a product or product component through a

function verb (Vf), but it is not a product, product component, attribute, or attribute

value.

5) It has a predicate relation directed from an environment object through a function

verb (Vf).

6) It constrains a function object (Vf) of a product or product component through a

preposition object (P).

.,)()),,(),()),((()(())((OEOPESVPOCOEVOCPVOROMNOPOS pfspfprf

Environments can be classified further as the Rule 5.1 to Rule 5.3

Rule 5.1: If an object in a ROM diagram is an environment object and is also a

human user or operator in the life cycle of the product, then this object is a human

environment.

Rule 5.2: If an object in a ROM diagram is an environment object and is also an

artefact built or created by human beings, then this object is a built environment.

Rule 5.3: If an object in a ROM diagram is an environment object but is neither a

human nor a built environment, then this object is a natural environment.

Identify environment components

Rule 6: If the POS feature of an object O in a ROM diagram is noun (N) and its

ROM feature satisfies one of the following conditions, then this object is an

environment component (Ce):

4) The object is constrained by an environment (Ep) or environment component (Ce),

but it is not a product or a product component.

5) The object has a predicate relation directed towards it from an environment object

through a structure verb (Vs).

6) The object is constrained by a preposition object (P) which connects an

environment object.

.,)()),),(()),(()),(()(())((OCOPESOPCECOCEVOCECOROMNOPOS eepsepseps

Identify environment attributes

Rule 7: If the POS of an object O in a ROM diagram is noun (N) or adjective (Aj),

and the ROM features satisfy one of the following conditions, then this object is an

attribute (Ae) of an environment (Ep):

1) It is constrained by an environment (Ep) or an environment component (Ce).

117

2) It has a predicate relation directed from an environment or an environment

component through a linking verb (Vl).

.,)())),(())(,()(())((OAOPESOCEVCEOCOROMANOPOS eeplepsj

Identify environment attribute value

Rule 8: If the POS feature of an object O in a ROM diagram is noun (N), adjective

(Aj), or adverb (Av) and its ROM feature satisfies one of the following conditions,

then this object is an environment attribute value (Vae):

1) It constrains an environment attribute object (Ae).

2) It has a predicate relation directed from an environment attribute object and the

predicate verb is a linking verb (Vl).

.,)()),(),()(())((OVOPESOAVAOCOROMAANOPOS aeelesdj

Identify relations

Rule 9: Relations exist among product, product components, and environments.

Those relations reflect constraint relation or predicate relations in the ROM diagram.

Some examples given in Table 7-2 demonstrate how the rules in Table 7-1 are applied

according to the ROM diagram shown in Figure 7-2.

Table 7-2 Application examples of rules in Table 7-1.

Condition Result Rule

“Nh” is human and “Vm” is a meta verb. “N1” is a “product”. Rule 1-1)

“N2” is a center object with eight
constraining and predicate relations, but it
has a predicate relation directed from “N1”

through “Vf1 ”and another predicate relation
from “N3” through “Vf2”, so “N2” is not a
product. Similarly the second center object
“N3” is not a product. Then the third center
object “N1” has six constraining and
predicate relations.

“N1” is a “product”. Rule 1-2)

“N1” is a product, and “N3” has a relation
“V(N1,N3)”.

“N3” is a component of the
product “N1”

Rule 2-2)

“N1” is a product, and “N3” has a relation “N3” is a component of the Rule 2-3)

118

“Cs(N1,Pof,N3)”. product “N1”

“N3” is product component, and “B1” has a
relation “Cs(B1,N3)”

“B1“ is an attribute of “N3” Rule 3-1)

“N3” is product component, and “B1” has a
relation “V13(B1,N3)“

“B1“ is an attribute of “N3” Rule 3-2)

“N1” is a product, and “N2” has a relation
“Vf1(N1,N3)”

“N2” is an environment of
“N1”

Rule 5-1)

7.1.2 Transformation rules from PES to FBS

Transformation from product-environment system (PES) to FBS model is the process of

identifying FBS features based on PES, ROM and POS features. The components of FBS

features include states, functions, behaviors, physical phenomena and aspect.

Transition rules from product-environment system (PES) to a FBS model are shown in

Table 7-3. It must be noted that since function and behaviour are generally distinguished

only relatively according to the stage of a design (Zeng and Gu, 1999), they are treated by

the same rule.

Table 7-3 Transition rules from PES to FBS

Define states

Rule 10: If two objects in a ROM diagram are related in such a way that:1) the first

object is a product or a product component, and 2) the second object is the attribute of

the product or product component, then both objects together makes an element of a

state.

Define behaviours and functions

Rule 11: If two objects in a ROM diagram are related in such a way that: 1) the first

object is a function verb directed from a product or product component, 2) the second

object is a noun object directed from the first object, then both objects together makes

a behaviour or a function.

Rule 12: If the product is the noun form of a verb (e.g. verb+”er/or”), then one of the

main functions is the combination of the following two objects: the first object is the

verb form of the product whereas the second object is the closest noun object

119

constraining the product.

Define physical phenomena

Rule 13: If a combination of three objects in a ROM diagram satisfies the condition

that the first object is an environment, the second object is a verb object directed from

an environment, and the third object is a product or product component directed from

the verb object, then this combination is a physical phenomenon.

Define aspects

Rule 14: Aspect means a whole product environment-system.

 The transformation Algorithm 7.2

Figure 7-3 shows the framework for the transformation from a design text to a FBS

model. First, the design document described in natural language will go through a

linguistic analysis process using the computer tool ROMA, which generates the ROM

diagram of the design text. Then, the ROM diagram is transformed into the FBS model

through another computer tool called R2FBS based on the transition rules introduced in

the previous sections. This section will introduce the algorithms transforming a ROM

diagram to a FBS model through the product environment system (PES).

120

Design document to FBS

Transition rules

INPUT:

Design Document

ROM

OUTPUT:

Conceptual Model - FBS

Linguistic Analysis

ROMA

FBS Transformation

R2FBS

Figure 7-3 Framework for the transformation of a design text into a FBS model

Since all of FBS features come directly from PES features, once PES features are

determined, a FBS feature is defined, hence, transformation processes from ROM to PES

and from PES to FBS are combined.

The proposed algorithm is shown in Table 7-4. The starting point of this algorithm is to

determine the product object in the ROM diagram. Then the product components, product

attributes, attribute values, environments, environment components, environment

attribute objects and relations among objects can be determined by traversing the ROM

diagram while applying the transition rules.

121

Table 7-4 Transformation algorithm from ROM to FBS

Algorithm R2FBS(ROMDiagram: ROM)

1: Determine the product object from ROM

2: Repeat

3: Identify functions and environments

4: Identify product components and attributes

5: Identify environments from environments

6: Until all the noun objects in ROM are defined

7: Output the FBS model

In the algorithm of determining product object shown in Table 7-5, all noun objects in

ROM are sorted into a list according to the number of predicate and constraint relations.

If the object with most such relations satisfies Rule 1 then the product is determined.

Otherwise, the object is deleted from the list and the next object will be decided

recursively, until the product object is determined or no product can be found.

Table 7-5 Algorithm of determining product object

Algorithm Product(ROMDiagram: ROM)

1: Sort the noun objects into a list On by the number of predicate and

constraint relations

2: for all O On

3: if O satisfies Rule 1 then Product O

4: else delete O from On

5: end if

6: end for

122

In the algorithm of identifying functions and environments shown in Table 7-6, if product

S is a noun form of a verb, then its function is the verb form with its closest constraint of

S according to Rule 12. If S has a predicate relation directing to a noun object by a

function verb, then a function and environment can be identified according to Rule 11.

For each identified environment, its related environments can be further identified by

calling algorithm of identifying environments from an environment.

Table 7-6 Algorithm of identifying functions and environments

Algorithm Function_Environment(Product or Component: S)

1: if S satisfies Rule 12 then

2: Function verb form of S + closest constrain of S

3: end if

4: for all verb V directed from S to noun object N

5: if V satisfies Rule 11, Environment N, Function V+ N

6: end for

In the algorithm of identifying product components and attributes shown in Table 7-7, if

product S has a predicate relation directing to a noun by a structure verb, then a product

component can be identified according to Rule 2.2). If S has a predicate relation directed

to a noun or adjective by a linking verb, then an attribute of the product can be identified

according to Rule 3.2). If S has a constraint relation by a preposition, then a product

component identified according to Rule 2.3). If S has a constraint relation with a noun

object, then a product attribute can be identified according to Rule 3.1). If S constrains

another noun object, then a product component can be identified according to Rule 2.1).

123

For each identified component, its sub functions, environments and attributes then can be

determined by related algorithms.

Table 7-7 Algorithm of identifying product components and attributes

Algorithm Component_Attribute(Product or Component: S)

1: for all N which has a predicated relation directed from S by Ov

2: if Ov is a structure verb that satisfies Rule 2.2) then Component N

3: end for

4: for all adjective Aj which has a predicate relation directed from S by Ov

5: if Ov is a linking verb that satisfies Rule 3.2) then attribute Aj

6: end for

7: for all Oc O which is constraining S through a preposition object

8: if Oc satisfies Rule 2.3) then Component Oc

9: end for

10: for all Oc O which is constrained by S

11: if Oc satisfy Rule 2.1) then Component Oc

12: end for

13: for all Oa O which is constraining S

14: if Oa satisfy Rule 3.1) then attribute Oa

15: end for

In the algorithm of identifying environments from an environment shown in Table 7-8, if

environment E has a predicate relation directing to others through a function verb, then a

new environment can be identified according to Rule 5.2). If E has a predicate relation

directing to others through a structure verb, then an environment component can be

identified according to Rule 6.2). If E has a predicate relation directing to others through

124

a linking verb, then an environment attribute can be identified according to Rule 7.2). If E

has a constraint relation by a noun or preposition, then a new environment can be

identified according to Rule 6.1) and 6.3). Whenever an environment is identified, new

environments related to which can be then identified recursively by the algorithm.

Table 7-8 Algorithm of identifying environment from environment

Algorithm Environment_Environment(Environment: E)

1: for all Oe which has a predicated relation directed from E by Ov

2: if Ov is a function verb that satisfies Rule 5.2) then Environment Oe

3: if Ov is a structure verb that satisfies Rule 6.2) then EnvironmentComponent

 Oe

4: if Ov is a linking verb that satisfies Rule 7.2) then EnvironmentAttribute

Oe

5: end for

6: for all noun object Oe which is constrained by E

7: if Oe satisfies Rule 6.1) then EnvironmentComponent Oe

8: end for

9: for all noun object Oe which is constrained by E through a preposition object

10: if Oc satisfies Rule 6.3) then EnvironmentComponent Oc

11: end for

125

Chapter 8

Algorithm of Transformation from Requirements Text to UML

Current engineering practice is to generate UML diagrams from original customer

requirements manually through iterative communicating with the customer. This is often

a recursive process: gathering and formulating customer requirements, generating

preliminary solutions, and refining customer requirements (Zeng and Cheng, 1991). The

final requirement specification, often in the form of UML diagrams, comes from such a

brainstorming process. However, as the business becomes more and more complex,

multiple customers with different backgrounds are usually involved in the requirement

modeling process. Misunderstanding of the customer’s real needs is a major issue that

may lead to incorrect UML models. There exists a contradiction between ambiguous

natural language based product requirements description and the precise UML diagrams

that model the product requirements.

Furthermore, for complex engineering projects, requirement document includes a great

amount of information, which is extremely tedious for human processing. Efforts have

been made to develop automatic or semi-automatic processes to bridge those two

extremes: unrestricted natural language text and structured formal representation (Mala

and Uma, 2006; Nuseibeh and Easterbrook, 2000). Still, due to the difficulties in

processing unrestricted natural language, the success from those efforts is limited

(Fantechi et al., 1994; Gnesi et al., 2005; Osborne and MacNish, 1996).

126

To bridge the gap between unrestricted natural language and formal UML diagrams, an

intermediate representation will be useful. The approach proposed in this chapter is based

on such an intermediate representation: Recursive Object Model (ROM) (Zeng, 2008).

ROM, which is derived from a mathematical theory (Zeng, 2002), can represent all the

linguistic elements in natural language. The semantics of a text can be derived from the

ROM diagram. The proposed approach firstly generates the ROM diagram of a text

describing the product requirements, from which use case and class diagrams are

extracted.

Automatic generation of UML models relies on the full understanding of natural

language based requirements description. For example, if an engineer wants to draw a use

case diagram, he or she needs to understand the requirement at first and then get the actor

and actions related to UML standard. Our research aims to simulate the human activities

in requirement analysis process and automatically generate UML diagrams through a

software system.

Based on the previous discussions, it is possible to get the semantic structure of a

requirement text and then automatically generate UML models based on the semantic

structure. This subsection describes the procedures and rules for the automatic generation

of UML models from the ROM diagram representing a text.

The transformation from ROM to UML consists of two parts: transformation from ROM

to PES and from PES to UML. The first part is the same as transformation from ROM to

FBS which is described in 7.1. In this section, the transformation from PES to UML will

127

be dressed from transformation rules and algorithm. Since several categories of UML are

used popularly with different features and presentations, which results in different

transformation rules and algorithms. Our current research is mainly focused on Use Case

Diagram and Class Diagram. Use Case diagram has two types of objects – actor and

action whereas Class diagram has class name, method and property. Each component of

the two types of UML will be analyzed through ATDM. In this thesis, we apply Use Case

diagram and domain model as examples to show how the transformation works founded

by the same theory.

 Transformation Algorithm from ROM to Use Case Model 8.1

8.1.1 Use Case Model analysis

The UML provides use case model notation to illustrate the names of actors, use cases,

and the relationships between them. A use case diagram in Figure 8-1 illustrates use cases

in a web-based file system. Usually use cases deal primarily in the functional or

behavioral requirements that indicate what the system will do (Larman, 2004). A use case

diagram does not show the detail of the use cases: it only summarizes some of the

relationships between use cases, actors, and systems, for example who uses the system,

and what they can do with it.

The components of a Use Case diagram include three parts: a) system or application, b)

actors such as people, organizations, or external systems, c) actions.

128

There are three kinds of actors: primary actors having user goals, supporting actors

providing service, and offstage actors having an interest in the behavior of the use case.

Take an example of POS system, casher is a primary actor, automated payment

authorization service is a supporting actor, and government tax agency is an offstage

actor.

Web-based File System

User

Login

View / Download

File

Delete File

Update File

Upload File

Administrator

Manage Account

Register

Figure 8-1 An example of Use case diagram

129

In software engineering, the basic procedure of finding primary use cases are described

below: (Larman, 2004)

1. Choose the system boundary: identify if it is a software application, the

hardware and application as a unit, that plus a person using it, or an entire

organization.

2. Identify the primary actors that have goals fulfilled through using services of

the system.

3. Identify the goals for each primary actor.

4. Define use cases that satisfy user goals; name them according to their goal.

Usually, user-goal level use cases will be one-to-one with user goals, but there

is at least one exception, as will be examined.

This procedure directs professionals to identify use cases from requirements manually.

While, the objective of this research is to provide an automatic platform for an

unprofessional to transform requirement text into use case model.

8.1.2 Transformation algorithms

The transformation from ROM to UCM shown in Figure 8-2Figure 8-4 can be

decomposed into two parts: from a ROM diagram to a product-environment system (PES)

and from a PES to a use case model (UCM). The transformation from ROM to PES has

been addressed in Chapter 7. This section focuses on the second process: from PES to

UCM.

130

Environment

Product

ROM UCM

 PES

Figure 8-2 Transformation from ROM to UCM

A PES consists of the structure of product, product components, product attributes,

environments, environment components, environment attributes, and relations among

them. After transformed from ROM to PES, the objects in a ROM diagram have been

updated with PES feature.

PES UCM

P
E

S

P
E

S

U
C

M

U
C

M

PES

UCM

PESUCM

UCMPES

M

Figure 8-3 Structure of PES - UCM system

Transformation from product-environment system (PES) to use case model (UCM) is the

process of identifying use case features based on PES, ROM and POS features, which is

shown in Figure 8-3. The structure of PES can be illustrated as Figure 5-1 corresponding

131

to the subjective and objective realms. Environment E can be divided into subjective and

objective environments. The subjective environment, denoted by Es, includes the users of

the product whereas the objective environment, denoted by Eo, includes all of the other

environment components that have an impact on the behaviour of the product.

Thus the PES provides the intermediate of ROM diagram and use case diagram. Such as,

an actor does not belong to system, but it belongs to environments, most case as a human

environment. And the system includes product, product components, and product

attributes. Actions are relations of actors to the system and other environments, which are

verb phrases.

Transition rules from product-environment system (PES) to a use case model are shown

in Table 8-1.

Table 8-1 Transition rules from PES to use case model

Define system

Rule 1: The product object in PES is the system.

Rule 1.1: A component of product belongs to the system.

Rule 1.2: A product attribute belongs to system.

Rule 1.3: A product attribute value belongs to system.

Define actor

Rule 2: An environment with human attribute is an actor.

Rule 3: A special noun phrase about organizations or external systems is an actor.

Define action

Rule 4: If two objects in a ROM diagram are related in such a way that: 1) the first

object is a function verb directed from an actor, 2) the second object is a noun object

directed from the first object, then both objects together makes an action.

132

Since all of use case features come directly from PES features, once PES features are

determined, the use case model is defined, hence, transformation processes from ROM to

PES and from PES to UCD are combined.

The proposed algorithm is shown in Table 8-1. The algorithm first determines the system

which is composed of product object, product components, product attributes, and

attribute values. Recursively determining actors are the second step. Then actions

performed by each actor can be determined by applying the transition rules from the

ROM diagram.

Table 8-2 Transformation algorithm from PES to use case model

Algorithm PES2UCM(ROMDiagram: PES)

1: Determine the system from PES

2: Repeat

3: Determine the actor from PES

4: Until all the noun objects in PES are considered

5: Repeat

6: Determine the action of an actor from PES

7: Until all the actor are considered

8: Output the UCM model

In the algorithm of determining use case system shown in Table 8-3, all noun objects in

ROM satisfies Rule 1 then the product is determined.

Table 8-3 Algorithm of determining system of use case model

Algorithm System(ROMDiagram: PES)

1: for all O On

133

2: if O satisfies Rule 1 then System O

3: end if

4: end for

Similarly, the objects satisfying Rule 2 or Rule 3 are identified as actors shown in Table

8-4.

Table 8-4 Algorithm of determining actors of use case model

Algorithm Actor(ROMDiagram: PES)

1: for all O On

2: if O satisfies Rule 2 or Rule 3 then Actor O

3: end if

4: end for

In the algorithm of identifying actions shown in Table 8-5, if an actor A has a predicate

relation directing to a noun object by a function verb, then an action of the actor can be

identified according to Rule 4.

Table 8-5 Algorithm of identifying actions

Algorithm Action(Actor: A, ROMDiagram: PES)

1: for all verb V directed from A to noun object N

2: if V satisfies Rule 4, Action V+ N

3: end for

134

 Transformation Algorithm from ROM to Domain Model 8.2

8.2.1 Domain model analysis

A domain model is a visual representation of conceptual classes or real-situation objects

which illustrates noteworthy concepts in a domain (Larman, 2004). It can act as a source

of inspiration for designing some software objects. Domain models have also been called

conceptual models, domain object models, and analysis object models.

Applying UML notation, a domain model provides a conceptual perspective illustrated

with a set of class diagrams in which no operations (method signatures) are defined. An

example of domain model is shown in Figure 8-4. The components of a domain model

include domain objects or conceptual classes, associations between conceptual classes,

and attributes of conceptual classes.

-amount

Payment
-date
-time

Sale
1 1Pays-for

Figure 8-4 An example of domain model

The procedure of creating a domain model is ffinding the conceptual classes and then

adding association and attributes.

135

8.2.1.1 Conceptual classes

A conceptual class is a real-world concept or thing in a conceptual or essential

perspective (Larman, 2004). The UP Domain Model contains conceptual classes.

In software engineering, there are three traditional strategies to find conceptual classes:

A) Reusing existing models which are published, well-crafted domain models or data

models for many common domains, such as inventory, finance, health, and so

forth, however, this method is outside our scope.

B) Using a category list shown in Table 8-6.

Table 8-6 Conceptual Class Category List (Larman, 2004).

Conceptual Class Category Examples

Business transactions

Sale

Payment

Reservation

Transaction line items SalesLineItem

Product or service related to a transaction

Item

Flight

Seat

Meal

Rules and policies
RefundPolicy

CancellationPolicy

Roles of people or organizations; actors

Cashier

Customer

Monopoly

Player

Passenger

Airline

Place of transaction or service

Store

Airport

Plane

136

Seat

Noteworthy events

Sale

Payment

Flight

Landing

Physical objects

Item

Register Board

Airplane

Descriptions of things
ProductDescription

FlightDescription

Catalogs
ProductCatalog

FlightCatalog

Containers of things (physical or

information)

Store

Bin

Board

Airplane

Things in a container
Item

Passenger

Other collaborating systems
CreditAuthorizationSystem

AirTrafficControl

Records of finance, work, contracts, legal

matters

Receipt

Ledger

EmploymentContract

MaintenanceLog

Financial instruments

Cash

Check

LineOfCredit

TicketCredit

Schedules, manuals, documents for

references

DailyPriceChangeList

RepairManual

RepairSchedule

Organizations
SalesDepartment

ObjectAirline

C) Identifying noun phrases through linguistic analysis. In textual description of a

domain, nouns and noun phrases are considered as candidate conceptual classes or

attributes (Moreno, 1997).

137

Challenges:

 However, in such natural language modeling method, ambiguity of natural

language and technical noun-to-class mapping are still challenges.

 The sources of linguistic analysis can be use cases, other documents or the minds

of experts. Among those, the fully dressed use cases are one rich source to mine

for noun phrase identification of complete domain.

 Distinguishing the candidate conceptual classes and attributes is another challenge.

 Different noun phrases may represent the same conceptual class or attribute,

which is another challenge.

 For the imprecision and ambiguities of natural language, linguistic analysis is

recommended in combination with the conceptual class category list technique.

8.2.1.2 Association and attributes

An association is a relationship between classes. In the UML, associations are defined as

"the semantic relationship between two or more classifiers that involve connections

among their instances." The name of an association should comply with the convention

of “ClassName-VerbPhrase-ClassName” format where the verb phrase creates a

sequence that is readable and meaningful.

An attribute is a logical data value of an object. Informally, most attribute types should be

what are often thought of as "primitive" data types, such as numbers and booleans. The

138

type of an attribute should not normally be a complex domain concept, such as a Sale or

Airport.

The rule of distinguishing Attributes and Classes: If we do not think of some conceptual

class X as a number or text in the real world, X is probably a conceptual class, not an

attribute.

As a conceptual model, domain model does not need to list methods, whereas methods

can be shown in class diagram for object oriented analysis. However, in this research for

illustrating the functions of each class, the methods may be shown if they can be

identified from semantics.

8.2.2 Transformation algorithms

The transformation from ROM to DM shown in Figure 8-5 takes the product-

environment system (PES) as an intermediate between ROM and domain model (DM).

Therefore, the transformation from PES to DM is the focus on the section.

Environment

Product

ROM DM

 PES

Figure 8-5 Transformation from ROM to DM

139

The components of a domain model include conceptual classes, associations, attributes,

and methods. In a PES, product, product components, product attributes, product attribute

value, environments, environment components, environment attributes, environment

attribute value, and relations have been identified and updated with PES features in ROM

diagram.

The product to be designed is the center of the ROM diagram for a description with most

constrained relations. Whereas, a product object is not a conceptual class since it does not

exist in the time of design. And product components are not conceptual classes for the

same reason. Only environments, environment components, and environment attributes

are possibly conceptual classes, since these describe things or services of real-world.

Therefore, identifying conceptual classes, associations, attributes, and methods of a

domain model based on PES, ROM and POS features is simplified in practice. Such as,

conceptual classes are noun objects with

Thus the PES provides the intermediate of ROM diagram and use case diagram. Such as,

an actor does not belong to system, but it belongs to environments, in most case as a

human environment. And the system includes product, product components, and product

attributes. Actions are relations of actors to the system and other environments, which are

verb phrases.

Transition rules from product-environment system (PES) to a domain model are shown in

Table 8-7.

140

Table 8-7 Transition rules from PES to domain model

Define conceptual classes

Rule 1: The product or product component object in PES is not a conceptual class.

Rule 2: An environment or environment component may be a conceptual class.

Define attributes

Rule 3: If an environment E1 is constrained by another environment E2, E1 can be

the attribute of E2.

Define associations

Rule 4: The relation of two objects in PES forms the association of the two classes

in domain model.

Rule 5: The format of association is ClassName-VerbPhrase-ClassName.

The conceptual classes, associations and attributes of PES can be identified from PES

features and ROM features easily.

The proposed algorithm is shown in Table 8-8. The algorithm first determines the classes

which are identified from environments in PES. Recursively determining attributes is the

second step. Then associations between two classes can be determined by applying the

transition rules from the ROM diagram.

Table 8-8 Transformation algorithm from PES to domain model

Algorithm PES2UCM(ROMDiagram: PES)

1: Repeat

2: Determine the class from PES

3: Until all the environment objects in PES are considered

4: Repeat

141

5: Determine the attribute of a class from PES

6: Until all the environment are considered

7: Repeat

8: Determine the association of two classes from PES

9: Until all the relations are considered

10: Output the DM model

In the algorithm of determining a conceptual class shown in Table 8-9, all noun objects in

ROM satisfies Rule 1 and Rule 2 then the product is determined.

Table 8-9 Algorithm of determining conceptual class of domain model

Algorithm Class(ROMDiagram: PES)

1: for all O On

2: if O satisfies Rule 1 and Rule 2 then Class O

3: end if

4: end for

Similarly, the objects satisfying Rule 3 are identified as attributes shown in Table 8-10.

Table 8-10 Algorithm of determining attributes of domain model

Algorithm Attribute(ROMDiagram: PES)

1: for all O On

2: if O satisfies Rule 3 then Attribute O

3: end if

4: end for

142

In the algorithm of identifying association shown inTable 8-5, if an actor A has a

predicate relation directing to a noun object by a function verb, then an action of the actor

can be identified according to Rule 4.

Table 8-11 Algorithm of identifying associations

Algorithm Association(Class: A ,B; ROMDiagram: PES)

1: for all verb V directed from A to noun object N

2: if V satisfies Rule 4, Action V+ N

3: end for

143

Chapter 9

Case Studies for Transformation from Requirements Text to

Conceptual Models

Two software prototypes called R2FBS and R2UML have been developed by Min Wang

based on the transition rules presented in the previous sections. The prototypes are

implemented in the Microsoft Windows environment using C#. The input of the software

is a XRD file which stores a ROM diagram corresponding to a design text and the output

is a FBS model and UML diagram respectively. R2FBS and R2UML have three critical

functional parts. One is the XML parsing combined with graph traversal algorithms and

calculation of relations for each object. The second is an algorithm that identifies the PES

features from ROM and POS features. The third one is the transformation from PES

features to specific conceptual model features. Three examples from different

engineering disciplines are used to show how the algorithms work. Besides, the results of

these cases are evaluated comparing with the results from experts. The first two examples

are used to transform FBS model, while the last one for Use Case and Domain model.

 Design Patent of Low Temperature Clothes Dryer 9.1

A United States Patent on “a low temperature clothes dryer” is chosen as an example to

show how the rules are applied. The following gives the description of the design patent:

A low temperature clothes dryer having a drying chamber provides removable

horizontal screens supporting clothing items and a hanging bar for hanging clothes to

be dried. A timing control allows setting the time of operation of the drying cabinet.

An electric heater with thermostat is provided to initially raise and maintain the air

temperature within the drying chamber to at least about 90 degrees F. The

144

dehumidifier is then operated, providing for circulation through the ducts and drying

cabinet by an internal fan. The dehumidifier has an evaporator, through which warm,

humid air is passed, thereby cooling the air and condensing water therefrom, the

water being collected in a removable container or drained through a drain hose. The

fan forces the cooled, dried air through a condenser which heats the dried air for

recirculation through the drying chamber by means of ducts, thereby drying the

clothing therein.

- From United States Patent, Patent No.: US 7,377,052 B2; Date of Patent: May 27,

2008

The text in the design patent of this low temperature clothes dryer is transformed into a

ROM diagram as in Figure 9-1, which is the input for proposed algorithm to

automatically generating a FBS model from a ROM diagram.

145

Figure 9-1 ROM diagram for the low temperature clothes dryer

In this example, all the objects are identified and the numbers of relations on each object

in the ROM diagram are calculated. The major noun objects and relation numbers are

listed in Table 9-1.

Table 9-1 Noun objects in ROM diagram

Object
Number of

predicate

Preposition

object

Predicate

+object
Role in FBS

dryer 5

having

chamber;

provides bar;

provides

screens;

provides

heater;

having

dehumidifier

product

dryer dry

clothes

main

function

drying chamber 0
through,

within
 component

hanging bar 1 hanging clothes component

horizontal

screens
1

supporting

items
component

electric heater 2

maintain

temperature;

raise

temperature

component

dehumidifier 4

provide for

circulation;

has evaporator;

condensing

water;

cooling air

component

timing control 1 setting time component

evaporator 0
through,

from
 component

146

internal fan 0 by component

thermostat 0 with component

ducts 0 through component

removable

container
0 in component

drain hose 0 through component

condenser 0 through component

clothes 0
environmen

t

By applying the algorithm R2FBS introduced in the previous section, the FBS modeling

process is shown in the following three steps:

Step 1: Determining product by applying algorithm Product(ROM)

The input is ROM, for each noun object in which, the constraint relations and

predicate relations are calculated. The noun object “dryer” has five predicate

relations and three constraint relations, which is the greatest number of predicate

and constraint relations in all noun objects. Furthermore, it has no predicate

relation directing towards it. Therefore, “dryer” can be identified as product

object based on Rule 1.

Step 2: Identifying functions and environments by applying algorithm

Function_Environment(“dryer”)

The input is product “dryer”, which is a noun form of the verb “dry” and ts closest

constraint is “clothes”. Therefore, the main function is “dry clothes”, and

environment is “clothes” according to Rule 12.

147

Step 3: Identifying product components and attributes by applying algorithm

Component_Attribute(“dryer”)

The algorithm searches for noun and adjective objects that constrain the “dryer”.

Those objects are identified as attributes. For example “low temperature” is an

attribute of “dryer” according to Rule 3.1).

Then the algorithm searches for noun objects which are directed from “dryer” by

structure verbs of “provides” and “having”; therefore, the components of

“screens”, “bar”, “chamber”, “heater”, and “dehumidifier” are identified

according to Rule 2.2). Based on identified product components, the algorithm

calls Function_Environment(component) and Componens_Attribute(component)

recursively, then sub functions, environments, and components of these

components can be identified, such as a function of “supporting items” for

“screens”, function of “hanging clothes” for “bar”, attribute of “drying” for

“chamber”, attribute of “removable” for “screens”, and components of “ducts”,

“evaporator”, “thermostat”, “container”, “hose”, and “condenser” are identified

through related rules. For each new identified environment,

Environment_Environment(environment) is called to identify environments

related to it.

At last, the output of the design patent example is shown in Table 9-2, which lists the

identified components of PES and FBS by prototype of R2FBS. The PES diagram is

generated based on the elicited components shown in Figure 9-2, which illustrates the

148

product, components, functions, environments, attributes and the relations among them

for the dryer patent example. A FBS diagram generated by the prototype is shown in

Figure 9-3.

Table 9-2 The output of design patent example

PES
&
FBS

Product dryer

Main function dry clothes

Product
component

horizontal screens, hanging bar, drying chamber,
thermostat, timing control, electric heater,
dehumidifier, ducts, internal fan, condenser,
removable container, drain hose, evaporator

Product attribute
(state)

low temperature for dryer, removable for screens,
horizontal for screens, hanging for bar, drying for
chamber, electric for heater, timing for control,
internal for fan, removable for container, drain for
hose

Sub-function screens -- supporting items, bar -- hanging clothes,
control -- setting time, heater -- maintain
temperature, heater -- raise temperature,
dehumidifier -- providing for circulation, fan --
forces air, condenser -- heats air, dehumidifier --
condensing water, dehumidifier -- cooling air

Environment items, clothes, clothing, temperature, time,
circulation, water, air

Environment
attribute

clothing for items, dried for clothes, air for
temperature operation for time, cooled for air,
dried for air, there for water, warm for air, humid
for air, there for air

149

Environments

Products

dryer

chamber

bar

screens

thermostat

control

heater

ducts

container

dehumidifier

hose

fan

condenser

evaporator

clothes

Items clothingtemperaturetime circulation water airclothes

dry

supportinghanging setting maintain and raise providing for forces heatscondensing cooling

environment product componentfunctionattribute

low temperature

removable horizontalhanging

drying

electrictiming internalremovable drain

dried operation cooleddriedthere

air

drying

clothing 90 degree warm humidair

Figure 9-2 PES diagram of automation system example

150

Figure 9-3 FBS diagram of design paten example

 Requirements of Energy Trading System 9.2

This second example is extracted from an industrial project. This project aims to identify

and develop system requirements starting from a brief description of the energy trading

business as shown below.

Energy trading is the activity involving trading energy related commodities, such

as power, natural gas, crude oil, and refined products like fuel oil, heat oil,

gasoline etc. Energy is not only a consumer product, but also an investment

product. As a consumer product, energy producers need to know existing

demand, potential demand, and existing supply and potential supply; as an

151

investment product, investment institutions need to know the return and risk of

the investment. Given the huge demand of energy and big energy price volatility,

an automation system is the only choice to manage the energy trading.

In the same way, we generate a ROM diagram for the text, which is illustrated in Figure

9-4.

Figure 9-4 ROM diagram of automation system

152

The output of R2FBS is shown in Table 9-3, and the PES diagram is illustrated in Figure

9-5.

Table 9-3 The output of requirement text example

PES
&
FBS

Product automation system

Product attribute automation, only choice

Main function manage trading

Product
component

n/a

Sub-function n/a

Environment trading, energy, activity, commodities, product,
consumer, demand, producers, supply, investment,
return, institutions, risk, power, natural gas, crude
oil, refined products, fuel oil, heat oil, gasoline

Environment
attribute

energy for trading, consumer for product, existing
for demand, potential for demand, huge for
demand, energy for demand, potential for supply,
existing for supply, investment for product,
investment for risk, energy for commodities, such
as for commodities, like for refined products

153

Environments
Products

system

trading

activitycommodities

product

consumer

supply

producers

returndemand

erergy

manage

investment

institutions

risk

power
natural

gas
crude oil

refined
products

fuel oil heat oil gasoline

istrades

such as

like

is

need to know

involving

productas

need to know

as

environment product componentfunctionattribute

existing potential huge energy investment

automationonly choice

Figure 9-5 PES diagram of automation system example

 Requirements of POS Management System 9.3

To test the approach of transformation of requirements to UML, a simple example of

main scenario text for a POS application will be illustrated in this section. As was

discussed above, the input of the case is a natural language based requirement scenario

description given as below (Larman, 2004).

1. Customer arrives at POS checkout with goods and/or services to purchase.

2. Cashier starts a new sale.

154

3. Cashier enters item identifier.

4. System records sale line item and presents item description, price, and running

total. Price calculated from a set of price rules.

5. Cashier repeats steps 3-4 until indicates done.

6. System presents total with taxes calculated.

7. Cashier tells customer the total, and asks for payment.

8. Customer pays and system handles payment.

9. System logs completed sale and sends sale and payment information to the

external Accounting system and Inventory system.

10. System presents receipt.

11. Customer leaves with receipt and goods.

This requirement scenario text shows a check-out process occurred in most stores. From

the system design point of view, the product of this description is a system and there are

actors using the system. By analyzing the requirements, the designer can identify the

actors, their actions, and some basic functions of this system. The ROM diagram of

above description is shown in Figure 9-6.

155

customer

POS
checkout

system

item

arrives at with goods

cashier

starts sale

enters identifier

records presents

description

repeats

indicates

done presents

total

with taxes

tells

asks for

pays

handles

logs

sale

completed

sends

andpayment

to

Inventory
 systems

Accounting
system

external

presents

receipt

leaves with and

step
3-4

sale line

until

and/or services

purchases

total

running

and price

calculates

and

information

calculates from

rules

new

Figure 9-6 ROM diagram of POS system requirement text

The output of PES is shown in Table 9-4, and the PES is illustrated in Figure 9-7.

Table 9-4 The PES of POS system example

PES

Product System

Product attribute Null

Main function Records sale line item
Presents item description
Presents item price

156

Presents running total
Calculates price
Indicates done
Calculates total with taxes
Presents total with taxes
Handles payment
Logs completed sale
Sends sale and payment information
Presents receipt

Product
component

POS checkout

Sub-function Null

Environment Customer
Cashier
POS checkout
Goods
Services
Sale line
Identifier
Sale
Item
Price
Rules
Taxes
Payment
External Accounting System
External Inventory System
Receipt

Environment
attribute

Completed for sale
Running for total

157

Environments
Products

system

item

cashier

records

receipt

asks for

leaves

environment product componentfunctionattribute

sale-line

presents

description

indicatespresents

price

handles

payment

logs

sale

sends

customer

pays

arrives at

POS
checkout

goods

with with

presents

starts

enters

tells

identifier

taxes

with

Inventory
systems

running
total

calculates

total

Accounting
systems

Figure 9-7 PES of POS system example

From XRD file generated by the ROMA system, R2UML software will automatically

generate and display the UML diagrams, based on the generation rules introduced in the

previous section. Figure 9-8 and Figure 9-9 show the use case and class diagrams of the

test case respectively based on the output of PES.

158

Figure 9-8 Use Case diagram output of R2UML

159

Customer

Cashier

POS checkout

Goods Services

Payment

Sale

Item

Sale line

-amount
-taxes

Total

Price

Accounting System

Inventory System

Figure 9-9 Domain Diagram (Class Diagram) output of R2UML

 Evaluation of the Proposed Methods 9.4

The proposed work is deduced from the recursive logic and Axiomatic Theory and

Design Modeling (ATDM) theoretically, which provides theoretical validation. The

software prototypes for transformation from ROM to FBS and UML model are

development to simulate the algorithms, which provides the simulation validation.

Another important evaluation works are experiments through various case studies by

applying proposed approaches and prototypes described in the previous subsections. The

160

experimental strategy is developed to show how close the conceptual models developed

using our methodology are to those developed by experts in specific domain such as

mechanical engineering and requirements engineering. The evaluation method is similar

with Seresht’s work (Seresht, 2008).

The second case of energy trading system is a real industry project. The aim is helping

the company clarify and explicit their requirements through question asking and

requirements modeling process. In the project, the transformation from requirements to

FBS is only an intermediate for the final deliveries. The clients of the project are very

satisfied with our results, which are addressed in the project report (Wang, 2012).

Therefore the evaluation of transformation from requirements to conceptual models is

focus on the two cases of design patent of low temperature clothes dryer and POS

management system.

For the case of design patent of low temperature clothes dryer, the descriptions of patent

was distributed to an expert in mechanical engineering, who has in-depth knowledge of

modeling the requirements as well as industrial experience. The expert was asked to

create a FBS model for the patent description. Then the FBS model developed using our

methodology was compared with the expert’s model. The comparisons are assigned on

the categories of product, product components, functions and attributes. The result “equal”

means that the extraction of ROM2FBS is exactly the same as expert’s result.

“Equivalent” means the result is similar with expert’s result in the meaning but with

different name. “Incorrect” means the result of ROM2FBS did not exist in the expert’s

161

model and it was considered wrong based on our common sense, whiles as “extra” means

it was correct or valid but not stated in the expert model. The evaluation results are

illustrated in Table 9-5. For example our method identified the same product, extra 30.77%

but valid (more detailed) product components comparing with expert, and 91.67% equal

functions with only 8.33% equivalent functions with different expressions but the same

meanings. That was because experts involved domain knowledge in the modeling process,

which changed the expressions from text descriptions to technical terminologies. Besides,

the percentage of missing components is compared to the expert’s results. For example

none of the product, product components and attributes was missing, but 25% functions

were missing since the experts put extra functions to the product component which had

no such function descriptions in the text however.

We conclude from the results that our approach are better than human analysts at

extracting product, functions and attributes exactly according to the descriptions with

high accuracy and efficiency.

Table 9-5 Evaluation results of design patent case

Product

 Equal Equivalent Incorrect Extra Missing

ROM2FBS 100% 0 0 0 0

Product Components

 Equal Equivalent Incorrect Extra Missing

ROM2FBS 69.23% 30.77% 0 0 0

Functions

 Equal Equivalent Incorrect Extra Missing

162

ROM2FBS 91.67% 8.33% 0 0 25%

Attributes

 Equal Equivalent Incorrect Extra Missing

ROM2FBS 80% 10% 0 10% 0

For the case of POS management system, the similar evaluation process was performed

between experts and the prototype ROM2UML. The evaluation results are illustrated in

Table 9-6. We conclude that ROM2UML is closer to the expert’s model with high

efficiency in terms of completeness of the identified actor, use case, communication and

concepts because none of them are missing. Moreover, ROM2UML helped identifying

extra information undetected by the analysts.

Table 9-6 Evaluation results of POS management system

Actor

 Equal Equivalent Incorrect Extra Missing

ROM2UML 100% 0 0 0 0

Use Case

 Equal Equivalent Incorrect Extra Missing

ROM2UML 88.89% 11.11% 0 0 0

Communication

 Equal Equivalent Incorrect Extra Missing

ROM2UML 100% 0 0 0 0

Concept

 Equal Equivalent Incorrect Extra Missing

ROM2UML 69.23% 7.69% 0 23.08% 0

163

The results of the experiments proved the validity and feasibility of the proposed

methodology. At the same time it proved that the qualities of requirements description in

completeness and accuracy are essential, since they directly decide the quality of

conceptual models.

 Summary 9.5

As presented above, the first example about clothes dryer is a patent text, which is

associated with the final stage of design; therefore the generated PES-FBS diagram is

focused more on product aspects with functions. In contrast, the second example about

automation system is a requirement text, which is associated with the early design stage;

the PES-FBS diagram is mainly composed by environments of the product. The third

example shows the transformation of use case diagram and domain model from

requirement text which describes functional scenarios.

Though the given examples used only three short paragraphs respectively, the principles

and concepts can be applied to long and large documents. The challenge with large

document lies mainly in the complexity of ROM diagrams. The results of examples show

that the proposed approach for transformation of design text into FBS model and UML is

feasible.

164

Chapter 10

Conclusions and Future Work

 Conclusions 10.1

Requirements elicitation and functional modeling are important at early stages of product

design, for which most design information is described by unrestricted natural language.

High quality design requirements and function models are extremely useful for the

successfulness of the product design and manufacture. Representing and dealing with

natural language based requirements are challenging and critical work. This research

aims to present criteria for complete and necessary requirements and propose novel

approaches to automatically eliciting and formalizing requirements from natural language

into structured conceptual models directly.

For requirements elicitation, we propose an Environment-based roadmap for

completeness and necessity of requirements; also we develop a question-asking approach

to dynamically generate questions for eliciting the necessary and complete requirements

based on the roadmap. For requirements modeling, we propose a generic formalization

for transforming requirements into conceptual models.

This research applies ROM to represent requirements text. The ROM diagram

corresponding to the text carries the main semantic information implied in the text. Both

the ROM diagram and the conceptual model are related to a product-environment system

through the Axiomatic Theory of Design Modeling. Rules are developed to map the

objects and relations in a ROM diagram to the concepts and relations in a conceptual

165

model. Algorithms are developed to support the transformation from a ROM diagram to

FBS model, Use Case Model, and Domain Model.

For assisting our research, a few software prototypes have been designed and

implemented for question generation and transformation to FBS, Use Case, and Domain

Models. Three case studies in different fields are performed to examine and demonstrate

how the proposed approach works. For a new research approach derived from EBD

theory, this work has been theoretical proven and experimental validated through these

case studies.

It must be indicated that the proposed approach does not intend to exclude human users

from the loop. On the contrary, this approach may help engineers better understand

requirements, especially in a large project, by reducing the ambiguities of human

understanding in analyzing requirements and by increasing the consistency of the final

function models when multiple engineers are involved. Besides, this thesis is founded by

EBD theory; meanwhile, it enriches the approach of Environment Analysis in EBD.

 Future Work 10.2

In this present thesis, an Environment-based requirement roadmap is proposed to support

requirements elicitation; and a new approach by ROM analysis is presented for

transformation from natural language to conceptual models. Through a few case studies,

the results have shown they are effective and feasible to support requirements modeling.

The following work can be continued in the future.

166

1) As can be seen from this thesis, our current approach largely depends on the

capability and capacity of the ROMA system, which captures the semantics of

natural language text. Therefore, the accuracy of ROMA is of a critical

importance. Although ROMA is already very robust, it is still under further

development.

2) Another problem that needs to be dealt with is the study of the structure of large

requirement documents so that they can be pre-processed by the ROMA system.

3) It must be pointed out that the examples used in this thesis are short paragraphs. A

more complex text may increase the size of ROM diagram. Though theoretically,

the present algorithms will work for ROM diagrams of any complexity, future

research is needed for how to efficiently transform large text into a set of shorter

paragraphs.

4) The rules for transforming a ROM diagram to a conceptual model should be

further validated through a more comprehensive system test based on statistical

analysis.

5) Transformation from ROM diagram to other conceptual models such as class

diagram and ER model should be conducted.

167

References

Akao, Y. and Glenn, M., 2003. The leading edge in QFD: past, present, and future.

International Journal of Quality and Reliability Management, 20(1): 20-35.

Al-Safadi, L.A.E., 2009. Natural language processing for conceptual modeling.

International Journal of Digital Content Technology and its Applications 3(3): 47-59.

Alexander, I., 2003. Misuse cases help to elicit non-functional requirements. Computing

& Control Engineering 40-45.

Alvarez, R., 2002. Discourse analysis of requirements and knowledge elicitation

interviews, Proceedings of the 35th Hawaii International Conference on System Sciences,

Big Island.

Ambriola, V. and Gervasi, V., 2006. On the systematic analysis of natural language

requirements with CIRCE. Automated Software Engineering, 13(1): 107-167.

Amyot, D., 2003. Introduction to the User Requirements Notation: Learning by Example,

SITE, University of Ottawa.

Andreou, A.S., 2003. Promoting software quality through a human, social and

organisational requirements elicitation process. Requirements Engineering, 8(2): 85-101.

Aranda, G.N., Vizcaíno, A. and Piattini, M., 2010. A framework to improve

communication during the requirements elicitation process in GSD projects.

Requirements Engineering, 15(4): 397-417.

168

Arthur, J.D. and Gröner, M.K., 2005. An operational model for structuring the

requirements generation process. Requirements Engineering, 10(1): 45-62.

Asimow, M., 1962. Introduction to design. Prentice Hall.

Bhatta, S. and Goel, A., 1994. Model-based discovery of physical principles from design

experiences. Artificial Intelligence for Engineering Design, Analysis and Manufacturing,

8(2): 113-123.

Bhatta, S. and Goel, A., 1997. Learning generic mechanisms for innovative design

adaptation. Journal of Learning Sciences, 6(4): 367-396.

Borland, 2011. CaliberRM Enterprise software requirements management.

Carod, N.M. and Cechich, A., 2009. A Classification framework for Software

Requirements Prioritization Approaches. Revista Colombiana de Computación, 10(2).

Casamayor, A., Godoy, D. and Campo, M., 2009. Semi-Supervised Classication of Non-

Functional Requirements: An Empirical Analysis. Artificial Intelligence, 44(35-45).

Cascini, G., 2012. TRIZ-based Anticipatory Design of Future Products and Processes.

Transactions of the SDPS: Journal of Integrated Design and Process Science, 16(3).

Chase, S.C. and Liew, P., 2001. A framework for redesign using FBS models and

grammar adaptation. In: B.d. Vries, J.v. Leeuwen and H. Achten (Editors), Computer

aided architectural design futures 2001. Kluwer Academic Publishers, pp. 467-477.

169

Chen, L. and Zeng, Y., 2009. Automatic generation of UML diagrams from product

requirement requirements described by natural language, The 2009 ASME International

Design Engineering Technical Conferences (IDETC) and Computers and Information in

Engineering Conference, San Diego, USA.

Chen, P.P.-S., 1983. English sentence structure and entity-relationship diagrams.

Information Sciences, 29(2): 127-149.

Chen, Z., Yao, S., Lin, J., Zeng, Y. and Eberlein, A., 2007. Formalization of product

requirements: from natural language descriptions to formal specifications. Int. J.

Manufacturing Research, 2(3): 362-387.

Chen, Z.Y. and Zeng, Y., 2006. Classification of product requirements based on product

environment. Concurrent Engineering: Research and Applications, An International

Journal, 14(3): 219-230.

Christel, M.G. and Kang, K.C., 1992. Issues in requirements elicitation, Software

Engineering Institute, Carmegie Mellon University, Pittsburgh, Pennsylvania.

Christophe, F., Wang, M., Coatanéa, E., Zeng, Y. and Bernard, A., 2011. Grammatical

and semantic disambiguation of requirements at elicitation and representation stages,

Proceedings of the ASME 2011 International Design Engineering Technical Conferences

& Computers and Information in Engineering Conference, Washington, DC, USA

(accepted).

170

Clausing, D., 1998. Total quality development. American Society of Mechanical

Engineers, New York.

Cleland-Huang, J., Settimi, R., Zou, X. and Solc, P., 2007. Automated classification of

non-functional requirements. Requirements Engineering, 12(2): 103-120.

Conklin, Jeff and Yakemovic, K.C.B., 1991. A process-oriented approach to design

rationale. Human-Computer Interaction, 6(3): 357-391.

Coughlan, J. and Macredie, R.D., 2002. Effective communication in requirements

elicitation: a comparison of methodologies Requirements Engineering, 7(2): 47-60.

Cysneiros, L.M., Leite, J.C.S.d.P. and Neto, J.d.M.S., 2001. A rramework for integrating

non-functional requirements into conceptual models. Requirements Engineering, 6(2):

97-115.

Darlington, M.J. and Culley, S.J., 2002. Current research in the engineering design

requirement. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of

Engineering Manufacture, 216(3): 375-388.

Davis, M.D., Sigal, R. and Weyuker, E.J., 1994. Computability, complexity and

languages: fundamentals of theoretical computer science. Academic Press.

Deng, Y.M., 2002. Function and behavior representation in conceptual mechanical

design. AI EDAM, 16(05): 343-362.

171

Diev, S., 2006. Use cases modeling and software estimation: applying use case points.

SIGSOFT Software Engineering Notes, 31(6): 1-4.

Erden, M.S. et al., 2008. A review of function modeling: Approaches and applications.

AI EDAM, 22(02): 147-169.

Eris, O., 2004. Effective inquiry for innovative engineering design. Kluwer Academic

Publishers, Stanford University, 154 pp.

Esmaeilsabzali, S., Day, N.A., Atlee, J.M. and Niu, J., 2010. Deconstructing the

semantics of big-step modelling languages. Requirements Engineering, 15(2): 235-265.

Fabian, B., Gürses, S., Heisel, M., Santen, T. and Schmidt, H., 2010. A comparison of

security requirements engineering methods. Requirements Engineering, 15(1): 7-40.

Fantechi, A. et al., 1994. Assisting requirement formalization by means of natural

language translation. Formal Methods in System Design, 1994. 4: p. 243–263., 4(3): 243-

363.

Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P. and Uthurusamy, R., 1996. Advances in

knowledge discovery and data mining. Menlo Park, Calif. : AAAI Press : MIT Press,

c1996.

Fowler, M., 2003. UML distilled: a brief guide to the standard object modeling language.

Object technology series. Addision-Wesley.

172

Friedenthal, S., Steiner, R. and Moore, A., 2008. A practical guide to SysML: the systems

modeling language. Amsterdam; Elsevier/Morgan Kaufmann OMG Press, Boston.

Gero, J.S. and Kannengiesser, U., 2007. A function-behavior-structure ontology of

processes. AI EDAM, 21(04): 379-391.

Gershenson, J.K. and Stauffer, L., A., 1999. A taxonomy for design requirements from

corporate customers. Research in Engineering Design, 11(2): 103-115.

Gnesi, S., Lami, G., Trentanni, G., Fabbrini, F. and Fusani, M., 2005. An Automatic Tool

for the Analysis of Natural Language Requirements. International Journal of Computer

Systems Science and Engineering, 20(1).

Goel, A.K., Rugaber, S. and Vattam, S., 2009. Structure, behavior, and function of

complex systems: The structure, behavior, and function modeling language. AI EDAM,

23(Special Issue 01): 23-35.

Gorschek, T. and Wohlin, C., 2006. Requirements abstraction model. Requirements

Engineering, 11(1): 79-101.

Greenspan, S. and Feblowitz, M., 1993. Requirements engineering using the SOS

paradigm, 1st International symposium on requirements engineering, San diego, USA,

pp. 260-263.

173

Hands, K., Peiris, D.R. and Gregor, P., 2004. Development of a computer-based

interviewing tool to enhance the requirements gathering process. Requirements

Engineering, 9(3): 204-216.

Hickey, A. and Davis, A., 2004. A unified model of requirements elicitation. Journal of

Management Information Systems, 20(4): 65-84.

Hubbard, R., Mead, N. and Schroeder, C., 2000. An assessment of the relative efficiency

of a facilitator-driven requirements collection process with respect to the conventional

interview method, International Conference on Requirements Engineering. IEEE

Computer Society Press, Los Alamitos, CA.

Hull, E., Jackson, K. and Dick, J., 2005. Requirements Engineering. Springer, London.

IBM, 2011a. IBM Rational DOORS.

IBM, 2011b. IBM Rational RequisitePro.

Johnson, J. and Henderson, A., 2011. Conceptual Models Core to Good Design. Morgan

& Claypool Publishers.

Kanda, A., Teegavarapu, S., Summers, J. and Mocko, G., 2008. Patent Driven Design:

Exploring the Possibility of Using Patents to Drive New Design, Tools and Methods for

Competitive Engineering Conference, Izmir, Turkey.

174

Kang, K.C., Cohen, S.G., Hess, J.A., Novack, W.E. and Peterson, A.S., 1990. Feature-

oriented domain analysis feasibility study. Software Engineering Institute, Pittsburgh,

PA.

Kean, L., 1997. Feature-oriented domain analysis, Carnegie Mellon, Software

Engineering Institute.

Lano, K., 2007. Formal specification using interaction diagrams, SEFM'07 proceedings.

Lano, K., 2009. UML 2 semantics and applications. Wiley, Hkboken, N.J.

Lano, K. and Clark, D., 2007. Direct semantics of extended state machines, TOOLS'07.

Larman, C., 2004. Applying UML and Patterns: An Introduction to Object-Oriented

Analysis and Design and Iterative Development. Addison Wesley Professional.

Lecoeuche, R., Mellish, C. and Roberston, D., 1998. A framework for requirements

elicitation through mixed-initiative dialogue, International Conference on Requirements

Engineering: Putting Requirements Engineering to Practice.

Leffingwell, D. and Widrig., D., 2003. Managing Software Requirements: A Use Case

Approach, Second Edition. Addison-Wesley, Boston, MA.

Leite and Cesar, J., 1987. A survey on requirements analysis, Department of Information

and Computer Science, University of California at Irvine.

175

Lin, J. and Katz, B., 2003. Question Answering from the Web Using Knowledge

Annotation and Knowledge Mining Techniques, Conference on Information and

Knowledge Management, Proceedings of the twelfth international conference on

Information and knowledge management, New Orleans, LA, USA pp. 116-123.

Liu, D., Subramaniam, K., Eberlein, A. and Far, B.H., 2004. Natural language

requirements analysis and class model generation using UCDA. Innovations in Applied

Artificial Intelligence, Lecture Notes in computer Science, 3029: 295-304.

Loucopoulos, P. and Karakostas, V., 1995. System requirements engineering. McGraw-

Hill.

Loucopoulos, P. and Kavakli, E., 1995. Enterprise modelling and the teleological

approach to requirements engineering. International journal of intelligent and cooperative

information systems, 4(1): 45-79.

Luh, D.-B., Ma, C.-H., Hsieh, M.-H. and Huang, C.-Y., 2012. Using the Systematic

Empathic Design Method for Customer-centered Products Development. Transactions of

the SDPS: Journal of Integrated Design and Process Science, 16(2).

Macaulay, L., 1996. Requirements engineering. Springer, London.

Mala, G.S.A. and Uma, G.V., 2006. Automatic construction of object oriented design

models [UML diagrams] from natural language requirements specification, Pricai 2006:

176

Trends in Artificial Intelligence, Proceedings. Lecture Notes in Artificial Intelligence, pp.

1155-1159.

Maletz, M., 2008. Integrated requirements modeling A contribution towards the

integration of requirements into a holistic product lifecycle management strategy, Graz,

Austria.

Marefat, M. and Kashyap, R.L., 1990. Geometric Reasoning for Recognition of Three-

Dimensional Object Features. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 12(10): 949-965.

Markovic, S. and Barbosa, L.S., 2008. Semantics of OCL specified with QVT. Software

and Systems Modelling, 7(4).

Martin, J., 1987. Information engineering, Vol 3: Meeting the needs of users more

directly. Savant Institute, Carnforth, U.K.

Mead, N.R., 2006. Requirements elicitation introduction, Software Engineering Institute,

Carnegie Mellon University, Pittsburgh, Pennsylvania.

Medyna, G., Nonsiri, S., Coatanéa, E. and Bernard, A., 2012. Modelling, Evaluation and

Simulation during the Early Design Stages: Toward the Development of an Approach

Limiting the Need for Specific Knowledge. Transactions of the SDPS: Journal of

Integrated Design and Process Science.

Meyer, B., 1985. On formalism in specifications. IEEE Software, 2(1): 6-26.

177

Mich, L., Franch, M. and Inverardi, P.N., 2004. Market research for requirements

analysis using linguistic tools. Requirements Engineering, 9(1): 40-56.

Minneman, S.L., 1991. The social construction of a technical reality: empirical studies of

group engineering design practice, Stanford University.

Moreno, A.M., 1997. Object Oriented Analysis from Textual Specifications, Proceedings

of the 9th International Conference on Software Engineering and Knowledge

Engineering, Madrid.

Morkos, B., Shankar, P. and Summers, J.D., 2012. Predicting requirement change

propagation, using higher order design structure matrices: an industry case study. Journal

of Engineering Design, 23(12): 905-926.

Moroz, A., 2011. Environment-Based Design of software: an agile software design

mothod, Concordia Universtiy Montreal.

Mullery, G.P., 1979. CORE: a method for controlled requirements specification,

Proceedings of the 4th International Conference on Software Engineering (ICSE-4). CA:

IEEE Computer Society Press, Munich, Germany, pp. 126-135.

Nuseibeh, B. and Easterbrook, S., 2000. Requirements engineering: a roadmap,

Proceedings of the Conference on The Future of Software Engineering ACM Press

Limerick, Ireland pp. 35-46.

178

OMG-SysML, 2011. OMG SysML. (http://www.omgsysml.org/, Accessed on 2 May

2011).

OMG-UML, 2011. OMG UML. (http://www.omg.org/spec/UML/, Accessed on 2 May

2011).

Osborne, M. and MacNish, C.K., 1996. Processing natural language software

requirement specifications, 2nd IEEE International Conference on Requirements

Engineering. IEEE Press.

Overmyer, S., Lavoie, B. and Rambow, O., 2001. Conceptual modeling through linguistic

analysis using LIDA, In Proceedings of 23rd International Conference on Software

Engineering (ICSE 2001), Toronto, Canada.

Oxman, R., 2004. Think-maps: teaching design thinking in design education. Design

Studies, 25(1): 63-91.

Ozaydin, B. and Tanik, M.M., 2011. System Moldeling and Analysis Using

Communication Channels. Transactions of the SDPS: Journal of Integrated Design and

Process Science, 15(1): 1-33.

Prabhakar, S. and Goel, A.K., 1998. Functional modeling for enabling adaptive design of

devices for new environments. Artificial Intelligence in Engineering, 12(4): 417-444(28).

QFD-Institute, 2005. Frequently asked questions about QFD, (http://www.qfdi.org/,

Accessed on 5 August 2007).

http://www.omgsysml.org/
http://www.omg.org/spec/UML/
http://www.qfdi.org/

179

Rumbaugh, J., Jacobson, I. and Booch, G., 1998. The unified modeling language

reference manual. Addison-Wesley.

Sajid, A., Nayyar, A. and Mohsin, A., 2010. Modern trends towards requirement

elicitation, Proceedings of the 2010 National Software Engineering Conference

(NSEC'10). ACM, New York, NY, USA.

Saleh, K. and Al-Zarouni, A., 2004. Capturing non-functional software requirements

using the user requiremetns notation, International research conference on innovations in

information technology.

Schach, S.R., 2002. Obect-oriented and classical software engineering. McGraw Hill.

Schiffrin, D., 1994. Approaches to discourse. Blackwell Publishers Ltd, Oxford, England.

Seresht, S.M., 2008. A methodology for semi-automatic assistance in elicitation and

analysis of textual user requirements, Concordia University, Montreal, 122 pp.

Seresht, S.M. and Ormandjieva, O., 2008. Automated Assistance for Use Cases

Elicitation from User Requirements Text, 11th Workshop on Requirements Engineering,

Barcelona.

Simon, H., 1969. The sciences of the artificial. MIT Press, Cambridge, MA.

Soares, M.S. and Vrancken, L., 2008. Model-driven user requirements specification using

SysML. Journal of Software, 3(6): 57-68.

180

Southwell, K. et al., 1987. Requirements definition and design, The STARTS Guide,

Second Edition. National Computing Centre, pp. 177-313.

Storrle, H. and Hausmann, J., 2005. Towards a formal semantics of UML 2.0 activities.

Software Engineering, 64.

Subramaniam, K., Far, B.H. and Eberlein, A., 2004. Automating the transition from

stakeholders' requests to use cases in OOAD, Electrical and Computer Engineering,

2004. Canadian Conference on, pp. 515-518 Vol.1.

Tjoa, A.M. and Berger, L., 1993. Transformation of requirements specifications

expressed in natural language into an EER model, Proceedings of the 12th International

conference on Entity-Relationship Approach (ER'93), Airlington, Texas USA.

Tom, M. and Sitte, J., 2009. Future user requirement elicitation for technology

investment: A formal approach, IEEE International Conference on Systems, Man, and

Cybernetics. SMC San Antonio, TX, pp. 2116-2121.

Tseng, Y.-H., Wang, Y.-M., Juang, D.-W. and Lin, C.-J., 2005. Text mining for patent

map analysis, IACIS Pacific 2005 Conference Proceedings, pp. 1109-1116.

Ullman, D.G., 2002. The mechanical design process. McGraw-Hill, New York.

Umeda, Y., Takeda, H., Tomiyama, T. and Yoshikawa, H., 1990. Function, behaviour,

and structure. Applications of artificial intelligence in engineering: 177-193.

181

Umeda, Y. and Tomiyama, T., 1995. FBS modeling: modeling scheme of function for

conceptual design, Proceedings of working papers of the 9th international workshop on

qualitative reasoning about physical systems, Amsterdam, pp. 271-278.

Verstijnen, I.M., van Leeuwen, C., Goldschmidt, G., Hamel, R. and Hennessey, J.M.,

1998. Sketching and creative discovery. Design Studies, 19(4): 519-546.

Volere, 2010. Requirements specification template. In: James and S. Robertson (Editors).

Wang, M., 2012. Project Report for Identifying Requirements in Energy Trading System,

Concordia Institute for Information Systems Engineering, Montreal, Canada.

Wang, M. and Zeng, Y., 2009. Asking the right questions to elicit product requirements.

International Journal of Computer Integrated Manufacturing, 22(4): 283-293.

Wang, M., Zeng, Y., Chen, L. and Eberlein, A., 2013. An algorithm for transforming

design text ROM diagram into FBS model. Computers in Industry, 64: 499-513.

Weilkiens, T., 2007. Systems engineering with SysML/UML : Modeling, analysis,

design. Amsterdam; Morgan Kaufmann OMG Press, Elsevier, Boston.

Weissman, A. et al., 2011. A computational framework for authoring and searching

product design specifications. Advanced Engineering Informatics, 25(3): 516-534.

Wen, K., Tan, S., Wang, J., Li, R. and Gao, Y., 2013. A model based transformation

paradigm for cross-language collaborations. Advanced Engineering Informatics(0).

182

Wen, K., Wang, J., Li, R. and Li, Y., 2011. Cross-Language Transformation based on

Recursive Object Model in Understanding Product Requirements, SDPS, Jeju Island,

South Korea.

Whittle, J., Sawyer, P., Bencomo, N., Cheng, B.H.C. and Bruel, J.-M., 2010. RELAX: A

language to address uncertainty in self-adaptive systems requirement. Requirements

Engineering, 15(2): 177-196.

Wiggins, G. and McTighe, J., 2005. Understanding by design. Association for

Supervision and Curriculum Development (ASCD).

Wikipedia, 2011. Requirements. (http://en.wikipedia.org/wiki/Requirements, Accessd on

2 March 2011).

Wilson, R.H. and Latombe, J.-C., 1994. Geometric reasoning about mechanical

assembly. Artificial Intelligence, 71(2): 371-396.

Wölkl, S. and Shea, K., 2009. A computational product model for conceptual design

using SysML, International Design Engineering Technical Conferences & Computers and

Information in Engineering Conference, ASME 2009, San Diego, USA.

Wood, J. and Silver, D., 1995. Joint application development. Wiley, New York.

Wootton, A.B., Cooper, R. and Bruce, M., 1998. Requirements capture: theory and

practice. The Engineering and Physical Sciences Research Council Technology

Management Initiative, 18(8-9): 497-511.

http://en.wikipedia.org/wiki/Requirements

183

Xu, L., Ziv, H. and Richardson, D., 2005. Towards modeling nonfunctional requirements

in software architecture, In Proceedings of Aspect-Oriented Software Design, Workshop

on AspectOriented Requirements Engineering and Architecture Design.

Yoshioka, M. et al., 2004. Physical concept ontology for the knowledge intensive

engineering framework. Advanced Engineering Informatics, 18(2): 95-113.

Young, R.R., 2001. Effective Requirements Practices. Addison-Wesley, Boston, MA.

Zahniser, R.A., 1990. How to speed development with group sessions. IEEE Software:

109-110.

Zeng, Y., 2002. Axiomatic theory of design modeling. Transaction of SDPS: Journal of

Integrated Design and Process Science, 6(3): 1-28.

Zeng, Y., 2004a. Environment-based design: process model, Concordia Institute for

Information Systems Engineering, Concordia University, Montreal.

Zeng, Y., 2004b. Environment-based formulation of design problem. Transaction of

SDPS: Journal of Integrated Design and Process Science, 8(4): 45-63.

Zeng, Y., 2008. Recursive Object Model (ROM) - Modeling of Linguistic Information in

Engineering Design. Computers in Industry, 59(6): 612-625.

Zeng, Y., 2011. Environment-based Desgin (EBD), Proceedings of the ASME 2011

International Design Engineering Technical Conferences & Computers and Information

in Engineering Conference, Washingtong DC, USA.

184

Zeng, Y. and Cheng, G.D., 1991. On the logic of design. Design Studies, 12(3): 137-141.

Zeng, Y. and Gu, P., 1999. A science-based approach to product design theory Part II:

Formulation of design requirements and products. Robotics and Computer Integrated

Manufacturing, 14(4): 341-352.

Zeng, Y. et al., 2004. Mathematical foundation for modeling conceptual design sketches.

Transactions of the ASME: Journal of Computing and Information Science in

Engineering, 4(2): 150-159.

Zeroual, K., 1989. An approach for automating the specification-acquisition process, In

Proceedings of the Second International Workshop on Software Engineering and Its

Applications, Toulouse, Nanterre, France, pp. 349-355.

Zhu, S., Yao, S.J. and Zeng, Y., 2007. A novel approach to quantifying designer's mental

stress in the conceptual design process ASME DETC/CIE, Las Vegas, Nevada, USA, pp.

DETC2007-35887.

Zielczynski, P., 2007. Requirements Management Using IBM Rational RequisitePro.

IBM Press.

