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Abstract

Ultra-Short Carbon Nanotube Quantum Dot Transistors:

Electron-Hole Asymmetry, Bending Vibrons, and the Kondo Effect

Andrew McRae

Using an electromigration procedure which we recently developed, we generate

10 nm-scale single-wall carbon nanotube quantum dot (SWCNT-QD) transistors.

Because these devices are so short, we can explore fundamental mesoscopic physics,

engineer tuneable nanoelectromechanical systems (NEMS) and create ultra-short

transistors. These dramatic effects arise from enhanced electron-vibron and QD-lead

coupling in short devices.

Contrary to what has been observed in longer SWCNT devices, we observe

strong electron-hole asymmetry, due to charge doping from the metallic leads. This

asymmetry manifests itself as a striking difference between electron and hole charging

energies (up to a factor of 3), and their conductance (0D to 1D transport). The

magnitude of this asymmetry depends on the length of the SWCNT.

Suspended SWCNTs can strongly couple to their electrostatic environment

through the bending mode, and act as NEMS sensors. Shorter NEMS have higher

frequencies and therefore higher sensitivity. By creating very short devices, we observe

self-actuated bending mode frequencies up to ≈ 280 GHz, and tune this frequency by

electrostatic strain. We clearly resolve the first and second harmonic of the bending

resonance and extract their effective coupling λ∗ ∼ 1.

In high conductance devices, we observe strong electron-electron interactions, with

Kondo temperatures up to TK ≈ 28 K, and use these interactions to resolve the

energy spectrum of the QD. In devices combining Kondo and bending oscillations,

we measure a reduction in charging energy, to the point of complete suppression.

This is, to our knowledge, the first time this effect has been observed in molecular

transistors.
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Chapter 1

Introduction

While single-wall carbon nanotubes (SWCNTs) have been well researched down to the

100-nm length scale, the 10-nm scale remains largely unexplored. In this mesoscopic

regime, quantum effects begin to play a larger role, providing a platform to study

fundamental physics and generate new types of devices. The reason why this rich

system has barely been explored is because there exists no reliable method for the

production of such devices. We have recently developed a method to generate such

devices, and example of which is shown in Fig. 1.1. By understanding the challenges

involved in making ultra-short electronics devices, they can be made smaller, faster,

and more efficient [1, 2].

In-10 nm scale SWCNT transistors, the channel length is similar to the extent

of charge doping by the metallic contacts. Thus the contacts play a larger role and

dramatically affect device characteristics differently for positive and negative charge

transport. Our goal is to explore the length-dependence of specific interactions in
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these devices, such as electron-hole asymmetry, electron-vibron coupling, and the

Kondo effect, and to understand how to control them. We find that under the right

conditions, these effects can become extremely strong. Ultra-short SWCNT QDs are

of fundamental and applicable importance, but to access this physically rich system,

we must first produce 10-nm scale devices.

Figure 1.1: Ultra-short SWCNT transistor. One of our ultra-short suspended
SWCNT devices (≈ 20 nm).

By using an electromigration method, we create some of the shortest SWCNT

devices made to date [3, 4], and can explore the fundamental physics that only

becomes observable at this length scale. This technique allows us to produce high

quality samples with are suspended, clean, and short, allowing us to probe their

properties in a very controlled way. For example, in a sub-10 nm device, we measure

a room temperature transistor effect with an on/off ratio of > 4100. This is one
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of the shortest high quality SWCNT transistors made to date, and is on par with

the work being done using better quality fabrication instrumentation elsewhere [4].

In these devices we can specifically tune between different tunneling regimes, and

explore electromechanical coupling in suspended devices.

In our devices, we observe electron-hole (e-h) asymmetry which can allow us to

tune the quantum dot (QD) for holes and electrons separately. We find that we

can alter the channel length by ≈ 1 nm simply by switching from electron to hole

transport because of charge doping from the metallic leads. We observe that the

classical energy needed to charge electrons and holes differs by up to a factor of three.

In this way, a single device can behave as two; each type of carrier having different

transistor properties. This difference in electron vs. hole injection in our devices, could

be used for charge pumping by mechanical oscillations [5] or in photovoltaics [6]. This

asymmetry can also change the way in which excitons travel through SWCNTs and

therefore alter its optical properties [7].

In nearly-metallic SWCNT devices, a dramatic change is observed where holes

behave as though they are in a zero dimensional system, while electrons behave

as if they are in a one dimensional system. This tuneability allows us to observe

the particle-like quantum dot behaviour of a device, while understanding its phase

coherence through wave-like interferences. This could be useful for making devices

which use both the static QD properties and dynamic coherent electron interactions,

such as in spin Q-bits, spintronics devices or in information processing [8, 9].

Because our devices are suspended and very short, they are ideal for exploring
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strong electron-vibron (e-v) interactions in carbon nanotubes. We observe very

strong electromechanical coupling, allowing us to measure many different vibrational

quantum states. In these ultra short devices, the nanotube stretching oscillations

reach high frequencies up to 1.2 THz, and have large electron-vibron coupling

λ � 1. The bending motion of carbon nanotubes can be harnessed for use

in nanoelectromechanical systems (NEMS). These NEMS can be used for many

applications such as mechanical switches and Q-bits [10], or ultra-sensitive mass/force

sensors [11, 12, 13]. We observe a self-actuated bending mode resonance in our devices

with frequencies up to 280 GHz, the highest yet observed in SWCNT NEMS, and

quality factors up to Q ∼ 106. The strong e-v coupling in our samples, allows us to

observe the second harmonic of the bending mode using DC transport measurements.

By applying uniaxial mechanical strain, we show that these devices have large strain-

tuneability, allowing us to increase the bending frequency by a factor of 2.

Strong electron-electron (e-e) interactions can occur between the quantum dot

and the leads, which are brought closer together in ultra-short devices. We observe

a correlation between the electrons on the QD and in the leads which enhances

cotunneling, known as the Kondo effect. The strength of the Kondo effect is measured

by its onset temperature, and is dependent on the length of the SWCNT. We are

interested in pushing the limits of the Kondo temperature in SWCNT QDs by

engineering devices with small bandgaps and short lengths. To our knowledge, the

previous highest Kondo temperature recorded SWCNTs is 14 K in a several-hundred

nm nanotube [14]. We observe a very strong Kondo effect in a short (100 nm)
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SWCNT, with gate-tuneable Kondo temperatures from 17 to 28 K. Devices with

strong e-e interactions can be used for transistor applications because they reduce shot

noise [15], and can allow us to resolve excited states of QD systems [16]. Additionally

strong Kondo effect can be used to generate spintronics devices [9, 17].

We observe a theoretically predicted interaction between electrons and vibrons

in our devices, causing a polaronic shift in the energy levels of the QD [15, 18].

To our knowledge, this is the first time this effect has been observed in molecular

transistors. This interaction can boost the Kondo temperature and reduce the

classical electrostatic energy needed to charge the QD. We can to tune the effective

charging energy of our quantum dots via temperature, dramatically changing its

transistor properties. It is important to understand these effects for molecular devices,

as it can play a large role in their transistor properties [15]. Such devices could allow

us to explore nano-scale current rectification or spintronics [19].

To present these results, we will structure the thesis as follows. Chapter 2 will give

a summary of our ≈ 10 nm device microfabrication methods, and the instrumentation

that I developed during my M.Sc. Chapter 3 will give background information on

the electronic and mechanical structure of carbon nanotubes, quantum dot theory

and Coulomb blockade, before discussing the various manifestations of electron-hole

asymmetry we observe in our devices. Chapter 4 will focus on electromechanical

coupling between electron tunneling and vibronic states, followed by the Kondo effect.

We will finally discuss how e-v interactions cause a change in the observed charging

energy of our ultra-short SWCNT quantum dots.
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Chapter 2

Ultra-Short SWCNT Devices

The process which forms the groundwork for all of our research is the sequence of

microfabrication steps leading to clean and suspended 10-nm scale SWCNT devices.

Our microfabrication is guided by the structure of our devices, shown in Fig. 2.1,

which allows us to tune the electronic properties of our suspended SWCNT QDs. To

properly measure these devices, the appropriate instrumentation and experimental

set-up are required. I helped to build, design and repair several instruments during

my M.Sc. By optimizing these fabrication and measurement processes, we were able

to generate very clean ultra-short SWCNT QDs, and collect high quality data.

This chapter is structured to describe sample preparation and data taking

procedures, up to and including electronic measurements. We first describe the

full microfabrication process, including wafer preparation, SWCNT growth, electrical

contact, suspension, and finally the electromigration process. We will then discuss

my work on lab instrumentation, focusing on the 3He cryostat. To conclude, we will
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Figure 2.1: Geometric structure of our SWCNT transistors. This diagram depicts
our suspended device geometry with source, drain, and gate electrodes.

mention the methods used for data acquisition, and some of the macros coded to

simplify data analysis.

2.1 Sample Fabrication

The microfabrication procedures we use are selected to create very short, tuneable

SWCNT QDs. It is important that these procedures are performed cautiously,

patiently, and diligently; any error made throughout this sequential process nullifies

the previous effort. Our specific sample preparation method culminates in the

nanoscale etching process known as electromigration, which allows us to make some

of the shortest (< 10 nm) SWCNT transistors to date. To control the electronics of

our devices, we require source, drain, and gate electrodes. We use two Au contacts,

and the degenerately doped Si−− substrate respectively, as shown in Fig. 2.1. The

7



devices must also be suspended, not only to isolate them from any defects which may

be introduced by the substrate, but also to insulate the junctions thermally, allowing

electromigration. Our full microfabrication process, from nanotube growth to sample

measurement, is described in detail here.

2.1.1 Reactive Ion Etching (RIE)

We begin our microfabrication with a degenerately doped 4” 〈100〉 Si−− wafer, covered

with a 300 nm layer of SiO2. To ensure that we will be able to contact the backside

of the wafer electronically, we first perform a step of reactive ion etching (RIE) to

remove the oxide from one side of the wafer.

We use a standard O2 etching to clean the RIE chamber with 20 SCCM O2, at

a pressure of 200 mTorr, and at 300 mW for 2 min. We then purge and pump the

chamber three times with N2 to remove any remaining contaminants before venting

the chamber. We wipe the chamber with isopropyl alcohol (IPA) to further clean

it before loading the wafer, oxide down. We put the pump the chamber and create

a plasma with a mixture of 0.7 SCCM O2 and 6.3 SCCM CHF3 at a pressure of

125 mTorr and at 300 mW for 15 min. During this time, we ensure that the reflected

power of the matching unit remains below 50 mW. We again purge the chamber three

times with N2 before removing the sample and repeating the oxygen plasma step to

clean the chamber for the next use. The bottom of the wafer is now free of oxide and

we can ready the top of the wafer for SWCNT growth.
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2.1.2 Photolithography

Nanotubes are grown from catalyst islands by a process known as chemical vapour

deposition (CVD). The islands consist of a sub-monolayer of sputtered Fe, and are

defined by photolithography.

We rinse the wafer with acetone and IPA to ensure its cleanliness before spin

coating it with Shipley 1813 photoresist at 4000 rpm for 30 s. This process provides

a relatively even photoresist thickness of ≈ 1.4 μm, determined using ellipsometry

measurements. The wafer is then soft-baked at 115 ◦C for 1 minute to solidify the

resist. The wafer is kept under yellow light throughout this entire process to prevent

UV contamination from ruining the lithography. The wafer is then diced into thirds

using a diamond-tipped scribe so that the largest number of patterns can be exposed

on its surface.

Figure 2.2: Photolithography pattern and sputtering. (a) The photolithography mask
is made of fifteen lettered and numbered � patterns with 100 μm spacing. (b) Catalyst
islands made from sputtered iron � patterns (≈ 7 Å) used for nanotube growth.
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The photolithography pattern is shown in Fig. 2.2(a). The fifteen 5 × 5 mm

patterns on the photolithography mask are made up of 500 μm spaced letters and

numbers, A-I from left to right and 1-9 from top to bottom. This serves as a way

to mark locations on the wafer. These letters and numbers are further divided by

� shapes every 100 μm. Each third of the wafer is aligned in the SUSS M4A mask

aligner and raised into hard contact with the mask to minimize diffraction. The

intensity of the UV light is measured in the aligner, and the wafer is exposed for

the length of time needed to achieve a dose of 40 mJ/cm2. The wafer section is

then re-exposed in a blank area, approximately 7 mm longitudinally away from the

original exposure, giving a total of 30 sets of patterns per section and 90 patterns

per wafer. The section of wafer is then submerged in MF-319 photoresist developer

for 45 s to dissolve the exposed resist. The wafer is quickly rinsed with deionized

water for 20 s to remove the MF-319 and prevent over-developing of the pattern. It

is then dried using a nitrogen gun and inspected under optical microscope to ensure

that the lithography is of high quality. If the exposure is not acceptable, the resist is

fully removed with acetone and the process is repeated. We now deposit a catalyst

material for SWCNT growth.

2.1.3 Sputtered Catalyst Islands

Sputtering allows us to deposit a sub-monolayer of Fe catalyst which we use to grow

carbon nanotubes (CNTs). An optical image of the sputtered pattern (after liftoff) is

shown in Fig. 2.2(b). In a sputtering chamber, we form an Ar plasma at 10 SCCM,
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10 mTorr, and 150 mW, with less than 5 mW reflected power on the RF matching

unit. From a previous long-term sputter and profilometry test, we determine the rate

of deposition of Fe using these settings to be ≈ 3.5 Å/min.

In a fume hood we remove the unwanted Fe and photoresist by placing the

sputtered wafers in hot acetone (60 ◦C) for > 10 min. We then spray them with

hot acetone using a syringe to ensure the complete removal of the photoresist. The

wafers are inspected under a stereoscope before they are removed from the acetone

bath and rinsed with fresh acetone and IPA before being dried with a nitrogen gun.

Because they become optically invisible after annealing, we mark the positions of the

sputtered patterns on the wafer using a scribe to remember their placement.

Iron thickness is crucial for nanotube growth. If there is not enough Fe, small

nanoparticles will form during deposition and nanotubes will not grow. If there is

too much Fe, large nanoparticles will form, generating densely packed large diameter

carbon nanotubes, which are likely to be multi-walled (made from several concentric

CNT shells). We found that an intermediate thickness which forms an acceptable

yield of SWCNTs is ≈ 7 Å.

2.1.4 Chemical Vapour Deposition (CVD)

The carbon nanotubes are now grown from the sputtered islands. We use a Thermo

Scientific furnace to heat up the growth chamber and a custom built gas-mixing panel.

The sample is placed in a vacuum-tight quartz glass tube in the furnace and we flow

gases which cause the growth of SWCNTs through chemical vapour deposition.
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The exact details of the recipe we use to grow nanotubes come from a mixture

of methods used by other groups [20, 21, 22]. We first anneal the catalyst islands at

900 ◦C under atmosphere for 1.5 hrs to form Fe nanoparticles which seed the growth

of carbon nanotubes. The temperature of the furnace is reduced to 500 ◦C to safely

attach the gas lines. The carrying gas, Ar, is flowed at a rate of 0.1 SLM, while the

furnace is re-heated to 900 ◦C. The Ar flow is then stopped and 0.1 SLM of H2 is

added to the chamber for 20 min, which helps to “wet” the iron nanoparticles and

catalyze the growth of CNTs [22]. The furnace temperature is raised to 970 ◦C and

allowed to equilibrate for 3 min before the growth gas, CH3, is introduced at 0.2 SLM

for 45 min. During this time, the nanotubes grow on the substrate. Afterwards,

the flow of CH3 and H2 is stopped, Ar is flowed at 0.1 SLM, and the temperature is

reduced down to 400 ◦C. Once the furnace reaches this temperature the lid is removed

to speed the cooling. At 200 ◦C, the sample is removed, now covered with dispersed

carbon nanotubes. We must now give each nanotube their own “address”, so that

they can be located easily later.

2.1.5 Thermal Evaporation

Before searching for carbon nanotubes using the scanning electron microscope (SEM),

we perform a second photolithography to allow us to locate the SWCNTs on a

Cartesian plane. We use the same procedure and mask as for making the catalyst

islands, but this time evaporate Au instead of sputtering Fe. This process is

complicated by the fact that the new patterns must line up with the previous catalyst
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� shapes, such that they contain the newly grown carbon nanotubes. We carefully

align the mask with the help of the scribed marks that were made after the sputter

liftoff. The � shapes must be sharp and well defined for the alignment of the e-beam

lithography pattern, as will be discussed later.

We thermally evaporate metals by heating them up electronically inside of a

vacuum chamber. The thickness of the evaporated material is measured using a

crystal thickness monitor. We first evaporate 5 nm of Cr to act as a sticking layer for

better adhesion between the SiO2 and the 80 nm of Au, which is evaporated directly

afterwards. We then perform the same liftoff procedure as before, using hot acetone

and a syringe to remove the unwanted resist. Each 5×5 mm section of wafer is diced,

face up, and rinsed with acetone and IPA. These chips are now ready to be imaged

to determine the locations of the SWCNTs.

2.1.6 Scanning Electron Microscopy (SEM)

We locate the carbon nanotubes using a scanning electron microscope. SEM images

of two of our CNTs are shown in Fig. 2.3 (a)-(b). It was found that for low current

(10 μA), low working distance (≈ 6.0 mm), and low electron acceleration voltage

(1.0 keV), the nanotubes shone brightly. This is because at low accelerating voltages,

the oxide substrate becomes positively charged, while the nanotube accumulates

electrons, resulting in a sharper contrast [23]. Because the electron beam focuses

contaminants into the imaging area, the nanotubes are observed for the shortest

possible time at low magnification (700×).
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Figure 2.3: SEM and AFM of SWCNTs. (a)-(b) Scanning electron micrograph of
“straight” and “meandering” CVD grown nanotubes. For scale, distance between
� markings is 100 nm. (c)-(d) Corresponding AFM scans for the above nanotubes
with diameters 4 nm and 0.5 nm respectively with scale bars = 250 nm. Insets show
1D linecuts of AFM height along the dashed lines for each CNT.
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Ideal nanotubes are isolated and long enough such that three 25 μm bars will

fit along the tube. Usually, three long nanotubes are selected per grid pattern, at

least 1.0 mm away from one another, allowing for a maximum of 9 devices per chip.

A high resolution SEM image containing the four surrounding � shapes (later used

for alignment) is taken of the candidate nanotubes. We next measure the diameter

of the nanotubes using atomic force microscopy (AFM). Through trial and error

it was found that, as a rule of thumb, nanotubes which grew with smaller ripples

(meandering tubes) were more likely to have a smaller diameter, while nanotubes

which curved with a large radius (straight tubes) were more likely to have a larger

diameter. Large diameter nanotubes are more likely to be multi-walled. To ensure

that the candidate nanotubes are single-walled, we select nanotubes which meander

with a smaller curvature, and then measure using AFM.

2.1.7 Atomic Force Microscopy (AFM)

Atomic force microscopy is used to determine the diameter of our carbon nanotubes.

We use tapping mode with a tip radius of ≈ 10 nm. AFM scans corresponding to

the above SEM images are shown in Fig. 2.3 (c)-(d), with dashed lines corresponding

to the insets showing nanotube diameter measurements. We locate the nanotube,

confirming its position, and slowly scan the tip across the surface. To determine

its approximate diameter, nine linecuts are taken within the scan window along the

entirety of the nanotube, and the average diameter and deviation are recorded. If the

measured nanotube is less than 2.0 nm in diameter, it is likely to be single-walled,
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and is ready to be contacted by electrodes. It has been shown that Van der Waals

forces between the SWCNT and the AFM tip can cause this diameter reading to be

underestimated by ≈ 1 nm [24, 25], and we take this into account for our calculations.

Once we determine that these nanotubes are likely to be single-walled, we can now

form the device contacts directly on the nanotube.

2.1.8 Computer Aided Design (CAD) of Gold Contacts

We now prepare to deposit micron-sized Au leads directly onto the SWCNTs. Once

we have selected the best SWCNT candidates, we adjust the rotation and scaling of

our high resolution scanning electron micrograph, such that a 5× 5 μm grid lines up

with them as shown in Fig. 2.4(a). An origin is placed in the center of the � shapes

(relative to their top-left corners), and the nanotube is mapped out in the Cartesian

plane. We draw sections of the CNT in our CAD software (DesignCAD 16 or Raith e-

line plus) and the bowtie break junction patterns used for electromigration are aligned

with them, as shown in Fig. 2.4(b). These break junctions are then connected to six

rectangular bars around the outside of the pattern, which will later be used to contact

large (200 μm) photolithography pads.

If the center of the bowtie pattern is too wide, it becomes difficult to suspend

and electromigrate the junction, while if it is not wide enough there is less room for

error in the alignment, and we are more likely to miss the SWCNT altogether. We

found that a reasonable intermediate was ≈ 350 nm. The full dimensions of the break

junction patterns are shown in Fig. 2.4(c). The break junctions must be spaced out
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Figure 2.4: Alignment of e-beam lithography patterns. (a) Original scanning electron
micrograph of a CVD grown SWCNT. (b) CAD design with break junctions aligned to
the carbon nanotube. (c) Close-up of break junction and small contact bars showing
their dimensions. (d) Semitransparent overlay of gold break junctions on top of grown
nanotubes, showing proper alignment.
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(> 3 μm) to avoid proximity effects. We next use electron beam (e-beam) lithography

to define the gold contacts. An overlay image, showing the nanotube before e-beam

lithography and the gold break junctions afterwards, is shown in Fig. 2.4(d).

2.1.9 Electron-Beam Lithography (EBL)

At this stage, we prepare the chip for electron-beam lithography (EBL). This is the

process by which the micron-sized contacts are physically defined on the SWCNT.

We use a bilayer resist of copolymer EL9 (9% in ethyl lactate) and PMMA A4 resist

(polymethyl methacrylate 4% in anisole), which we sequentially spin at 3000 rpm

for 1 min, and bake for 15 min each at 170 ◦C. This gives copolymer and PMMA

thicknesses of ≈ 300 nm and ≈ 200 nm respectively.

We then load the samples into the e-beam writer, where ≈ 10 nm contamination

spots are made using the electron beam to verify proper stigma and focus. The sample

coordinates are correlated to the sample stage using either manual or automatic

alignment with the gold � shapes. This accounts for rotation, stretch, and position of

the pattern. The beam current is measured so that the appropriate dose, nominally

200 μC/cm2, can be applied to each section. We optimized the doses of the bowties

over a wide range and found that to properly expose the bowtie patterns, a dose factor

of 1.5− 2.0 times that of the bars was necessary. This is due to a reduced proximity

effect for the small area bowtie shapes. The chip is then exposed at a magnification

of ≈ 750×, accelerating voltage of 20 keV, 10 μm aperture giving a current of ≈ 40

pA, and a working distance of 8-10 mm. The samples are then carefully removed
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from the e-beam writer, developed and prepared for evaporation.

The e-beam resist is developed using MIBK (methyl isobutyl ketone). First,

the exposed sample is swirled in a solution of 1:3 MIBK:IPA for 30 s, then quickly

transferred to methanol for 15 s to remove excess MIBK, and finally placed in IPA

for > 30 s. We inspect the exposure using an optical microscope to ensure that it is

acceptable, and the sample is then prepared for evaporation. A Cr sticking layer is not

used for the deposition of 40 nm of Au because the metallic bilayer adversely affects

the quality of the electromigration. The samples are removed from the evaporator and

placed in hot acetone for the bilayer liftoff and inspected with the SEM to ensure that

the nanotube is contained within the gold break junction. Once we have contacted

our sample on the micron scale, we must then contact it macroscopically.

2.1.10 Large Contact Pads

We form 100 μm contacts using photolithography to contact the EBL pattern, as

shown in Fig. 2.5. This six-point pattern will later be used for wire bonding. After

spin-coating and soft baking the samples as before, the six-point pattern is carefully

aligned in the mask aligner to contact the six edges of the EBL pattern and exposed

using a slightly smaller dose of 35 mJ/cm2. We develop for 60 s in MF-319 and inspect

under optical microscope for proper alignment. If the exposure is deemed acceptable,

it is evaporated with a sticking layer of 5 nm Cr and 80 nm Au before liftoff in hot

acetone. We are now ready to suspend our sample.
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Figure 2.5: Lithographically defined contact pads. To wire bond our devices, we
necessitate large sticking pads of gold connected to the EBL pattern. These pads
consist of 80 nm/5 nm of evaporated Au/Cr.

2.1.11 Buffered Oxide Etching (BOE)

The oxide layer must now be etched to remove the material underneath the break

junction, thereby suspending it. Fig. 2.6 shows two samples after suspension.

Inspecting the EBL patterns using SEM deposits carbon residues which can alter the

uniformity of the etching rate of the SiO2 across the surface of the chip. Therefore, for

good suspension, we must remove this contamination. Because the carbon nanotube

is protected underneath the gold break junctions, we use RIE to etch this residue

without damaging the nanotube. This also ensures that no nanotubes will remain on

the surface causing short circuits between contacts. We use an oxygen plasma with

20 SCCM O2 at 200 mTorr and 300 mW for 2 min to clean the chip.

We suspend our devices using a buffered oxide etch, consisting of HF (hydrofluoric

acid) in a 1:7 buffer solution of 49%HF:NH4F. We use an ellipsometer to measure the
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thickness of oxide and measure the etch rate, found to be ≈ 70 nm/min. We found

through multiple suspensions on such samples that the inward etch rate underneath

the junction is approximately 1.5× the downward etch rate. Because inward etching

occurs on both sides of the junction, the minimum vertical etching distance for device

suspension is 1/3 of the junction width, ≈ 120 nm for a 350 nm break junction. It

is important not to over-etch the sample, as this can cause the contacts to collapse

on the surface, while under-etching leaves material under the gold bridge. With this

balance in mind, the time needed to fully suspend the junction can be determined

from the calibration.

Figure 2.6: Suspension of the gold bridge. (a)-(b) Tilted SEM images taken at 70◦

and 80◦ of two break junctions, 300 nm and 375 nm wide, suspended by 105 and 135
nm respectively. The gold bridges are clearly suspended, while the contacts remain
well anchored.
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The samples are etched by submerging and swirling them in the BOE solution,

and then transferring to several deionized water baths. We transfer to a bath of IPA

before drying with nitrogen. This makes it is less likely that the gold bridge will

collapse from surface tension of the solvent when it evaporates. At this point, the

samples are placed on a tilted stage and loaded into the SEM, which can effectively

rotate the samples between 60◦ − 80◦ to view the break junction from the side and

confirm suspension. The final step before loading the sample into the cryostat is to

contact the chip to the carrier.

2.1.12 Wire Bonding

The suspended devices can now be contacted to the chip carrier giving us direct

electrical contact to the sample from the mm-scale. This connection is achieved

through wire bonding.

Figure 2.7: Wire bonding. (a) First, the chip is connected mechanically and
electronically to the carrier using silver paint. (b) The large gold pads connecting the
devices are bonded to the pins of the chip carrier using Al wire. (c) SEM image of
wire bond connections to large pads courteousy of Vahid Tayari.
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The backs of the chips are contacted to the chip carrier using a conductive silver

paint, both to hold the chip in place and to make electrical contact to the back gate,

as shown in Fig. 2.7(a). We place the chip carrier and sample into a carrier socket

with all pins grounded to prevent electrostatic damage. Next, 25 μm diameter Al

wires are bonded from the carrier to the large pads. The completed bonds are shown

optically and with a scanning electron micrograph in Fig. 2.7(b)-(c). Finally, two

wire bonds are made from pins to the conductive “floor” of the chip carrier to control

the gate electrode through the silver paint. We have now achieved mm contacts to

our nm devices and are ready to connect to our measurement set-up. The device can

now be loaded into the probe.

2.1.13 Sample Probe

The chip carrier is loaded very carefully into the fully grounded sample probe socket

Fig. 2.8(a). Caution must be taken as the carrier and socket have a unidirectional

configuration. A brass “ceiling” is placed over the chip carrier and kept in place by

hex nuts to prevent any mechanical damage to the wire bonds in the sample chamber.

The contact wires are wrapped around the sample holder to improve thermal contact,

and a large amount of vacuum grease is placed around the cone seal at the base of

the sample holder to ensure that the sample space is leaktight. The sample holder

is then loaded into the sample space of the probe Fig. 2.8(b). A large nut keeps the

sample holder in place, while the sensor and heater wires are tied down to the probe

and the copper sensor holder is attached. The loaded probe is shown in Fig. 2.8(c).
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Figure 2.8: Loading the sample. (a) The chip carrier is placed into the socket which
is wired to a breakout box at the top of the probe. (b) The cone seal is loaded into
the sample space with a brass “ceiling” to prevent damage to the wire bonds. (c)
The fully loaded probe is now ready to be inserted into the cryostat.
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The sample space is now leak checked and pumped down to ∼ 10−6 mTorr using

a turbo pump and leak detector in series. The probe is then loaded onto the vacuum

lock on top of the cryostat. Because this volume is connected to the very delicate

and important 3He system, it is well pumped (∼ 10−5 mTorr) and leak checked. The

gate valve is then opened and the sample probe is slowly lowered into the cryostat to

cool the probe over several hours. Once the sample has cooled, we can perform the

final step in the fabrication of ultra-short SWCNT devices: electromigration.

2.1.14 Electromigration: Nanoscale Etching

Electromigration is a technique used to form gaps in metallic break junctions.

It was developed to make atomic-sized gaps in nanowires, forming contacts for

the investigation of molecular devices [26]. In our SWCNT samples, we use

electromigration to peel the gold bridge apart, exposing a short section of nanotube.

A diagram, depicting the electromigration process is shown in Fig. 2.9.

When a large current is passed through a narrow break junction, the dissipated

power causes the atoms therein to heat up. This heating is enhanced by the suspension

of the bridge, which prevents heat flow to the substrate. High energy electrons

(referred to collectively as the electron wind) can transfer their momentum to the

atoms in the break junction, dislodging and moving them. In our devices, the point

of highest resistance in the break junction, and therefore the point where most power

is dissipated, occurs at the constriction. After migration, the final product is a

somewhat irregular geometry with source/drain asymmetry is expected because of the
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Figure 2.9: Schematic of nanowire electromigration nanowire. High-energy electrons
collide with the metal atoms along a nanowire. The transfer of momentum can be
so large that it causes metal atoms to become dislodged and move away from the
weakest point of the nanowire.

randomness involved in the process, and because the electron wind is unidirectional.

As the atoms move away from the constriction during this process, the break junction

becomes even narrower, increasing the temperature and therefore the likelihood that

atoms will electromigrate. This makes electromigration a runaway process which, if

left unchecked, will cause a rapid, uncontrolled breaking of the wire, resulting in a

very large gap on the order of 100 nm.

Because our aim is to produce much smaller gaps, we must modify our process.

By measuring the resistance of the junction in real time, we can regulate the

electromigration process using a feedback loop, as in ref. [27]. A circuit diagram

of our set-up is shown in Fig. 2.10. We begin by slowly ramping up the voltage
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Figure 2.10: Our electromigration circuit. A circuit diagram showing the
electromigration system used to open nm-scale gaps in our gold break junctions.

across the sample, while our custom electromigration software measures current and

calculates resistance. When a significant (≈ 5%) change in resistance is detected

(indicating the start of the runaway process), the voltage is very quickly ramped

down to arrest the electromigration. By repeating this process iteratively, we slowly

etch away gold atoms and increase the resistance of the junction up to the tunnel

barrier resistance. The gaps formed by this method are so small that direct tunneling

occurs between the contacts, and we cannot measure the SWCNT. We must therefore

once again alter our method to form larger gaps.

We use a two step electromigration process, as shown in Fig. 2.11(a), to form

slightly larger gaps (∼ 10 nm). A device formed using this method is shown in Fig.

2.11(b). The first step of the process is the iterative feedback etching just described

(red). This process is continued down to a predetermined power which will determine
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Figure 2.11: Feedback-controlled electromigration technique. (a) Current vs. voltage
plot of our two step electromigration process. 1) Feedback-controlled nanoscale
etching (red) slowly removes gold from the center of the bowtie, weakening the
junction, and 2) set power breaking (black) opens a gap in the gold bridge. (b) False
coloured SEM image this device (≈ 20 nm) after electromigration. (c) Dependence
of the length of break junction on power of the second electromigration step for all
of our samples.
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the final length of our devices, and weakens the bridge for the second step: set-power

breaking (black). The voltage is ramped up across the weakened junction with the

feedback loop disabled. At the predetermined power, the avalanche electromigration

process takes over and opens a 10-nm sized gap in the junction, containing an ultra-

short exposed section of SWCNT. The voltage across the sample is quickly ramped to

zero so as not to damage the SWCNT. It was found that for ≈ 400 nm wide junctions,

the optimal breaking power to achieve a nanogap was ≈ 30 mW.

Although this process inherently contains some randomness, there is a strong

dependence of break junction length on the set-power of the second step Fig. 2.11(c).

This shows that we can roughly tune the size of the gap and therefore the length of

our device. By using this feedback controlled two-step electromigration process we

can consistently generate ultra-short undamaged SWCNT devices. Usually, this heat

generating process removes any chemical microfabrication residues, not only in the

SWCNT, but also in the contacts. Sometimes, however, further current annealing is

required to fully clean the device.

2.1.15 Current Annealing

After initial data measurements are taken, it is sometimes found that the sample is

contaminated by gold, or fabrication residues. This is especially true in devices with

very wide (> 400 nm) break junctions. We use current annealing, which locally cleans

the suspended nanotubes and contacts through power dissipation. We show a sample

annealing curve up to 2.2 μW in Fig. 2.12.
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Figure 2.12: Current annealing. Samples were annealed up to several microwatts, to
further remove gold and other impurities. This device was annealed at 2.2 μW for 10
min, effectively cleaning the sample.

To anneal, we ramp up the voltage across a device. The power dissipated along

the suspended nanotube burns off impurities and moves the gold atoms away from

the SWCNT. This effect is again enhanced by the suspension of the device, which

thermally isolates the break junction. To anneal, we use the electromigration software,

but control it manually, rather than using the feedback loop. Great care must be taken

at this point because large electric fields and currents can destroy the nanotube. We

sequentially pause the anneal at higher and higher powers for times ranging from

3 − 10 min. Typical anneal powers range from 1 − 20 μW. After annealing, we are

ready to measure our clean nm-sized devices.
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2.2 Instrumentation and Measurement

Over the course of this M.Sc., I spent much time working on measurement set-ups and

instrumentation. Without this necessary work, fabrication and measurement would

be made much more difficult, if not impossible. I helped to assemble and repair

several instruments over this time, mainly the 3He cryostat used to cool our samples

to 0.3 K, allowing us to measure the quantized energy spectra of our devices. In this

section, we outline the functionality of these instruments, as well as the work done on

them, starting with the cryostat and additional instrumentation. Then we describe

our measurement set-up and data analysis macros.

2.2.1 3He Cryostat

The ICE Oxford dryICE cryogen free 3He cryostat allows us to freeze out thermal

fluctuations and truly observe the fine electronic structure of our devices down to

0.3 K. The cryostat is outfitted with optical ports for photonic measurements, as well

as a 9.0 T superconducting magnet. My main contribution to instrumentation for

the lab was assembling and learning to use the 3He cryostat. We will describe the

functionality of the cryostat, its assembly, and then the wiring of the sample probe

for electromigration and measurement.

Our discussion of the cryostat’s functionality will be aided by the diagram in Fig.

2.13. This cryostat does not depend on the addition of cryogenic liquids to cool to

base temperature. The outer vacuum chamber (OVC) contains the entire system
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Figure 2.13: Cryostat functionality diagram. This diagram shows the three colour-
coded He circuits which sequentially cool the sample to 0.3 K: compressor loop in
green, 4He loop in red, and 3He in blue.
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preventing heat exchange with the ambient air, and large plates at various stages

inside of the fridge block radiation (50 K and 4 K plates). Three isolated helium

loops are used concurrently to achieve 0.3 K. The first loop is a closed 4He line

(green) which runs from the compressor to the Gifford-McMahon (G-M) cooler. This

cools the cold head down to ≈ 4 K by gas decompression.

The second circuit is an additional 4He loop (red) which runs from the gas reserves

in the dumps to a liquid nitrogen cold trap. This freezes out impurities and prevents

contamination of the lines inside the cryostat. The helium gas then enters the sock at

the top of the cryostat. Because this is adjacent to the cold head, the gas condenses

inside the sock, where it drips down through the needle valve (setting the flow rate),

and into the 1K pot. An oil-free Adixen pump reduces the pressure inside the 1K

pot, causing the liquid helium to evaporate and cool the surrounding area to ≈ 1.3 K.

The exhaust from the pump returns the 4He gas back to the dumps.

The final cooling step depends on the much rarer 3He gas (blue). The external

3He dump leads to a heated charcoal sorption pump (sorb) inside of the cryostat,

and then to the helium 3 tail, which surrounds the sample space. When the sorb is

hot (> 40 K) the 3He is outgassed. Its proximity to the 1K pot causes the gas to

condense into the helium 3 tail. When the sorb is cooled, it slowly pumps on the 3He

liquid, cooling the sample space to 0.3 K.

With the help of an ICE Oxford technician the system was assembled and prepared

for use in the lab. The assembled cryostat is shown in Fig. 2.14(a). For the

compressor, we built the electrical connection, provided it with cooling water lines
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Figure 2.14: Cryogen-free 3He cryostat. (a) 3He cryostat which was assembled and
configured with the help of a technician. (b) Installation of new 9 T magnet, replacing
the faulty one, which was performed alone.

and a water filter, and charged it with 4He gas. We filled the 4He dumps and leak

tested both the 4He and 3He loops before connecting to their respective dumps.

After assembly, there were some issues with 9.0 T superconducting magnet, so it was

removed and returned to American Magnetics. It was repaired there and returned

to the lab. The removal of the magnet is shown in Fig. 2.14(b). I reassembled the

system without the technician and confirmed that the magnet was working properly.

Once the cryostat was running, we rewired the sample probe with twenty-four

low resistance Manganin wires, necessary for electromigration. I soldered these wires

to the connector at the top of the probe, wrapped them down the inner chamber

with heat sinking baffles, and painted them with low temperature thermal varnish to

improve thermal contact Fig. 2.15(a). A 24 pin BNC breakout box was designed to fit
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Figure 2.15: Wiring of the probe and sample holder. (a) Wiring of the probe with
24 mangagnin wires. (b) Front and rear of the breakout box which we assembled and
wired. (c) Sample holder, which we designed and assembled.

onto the probe for noise reduction. The front and rear of the breakout box are shown

in Fig. 2.15(b). We built the breakout box with two-way switches which allow the

samples to be either grounded or connected directly to breakout box. Finally a new

sample holder, shown in Fig. 2.15(c), was designed to contain the chip-carrier socket,

protect the wire bonds, and thermally contacting the wires underneath. Once the

probe fully wired, the optimal parameters for cooling to 0.3 K were determined for

the new heat load. These settings are described in Appendix A. To prepare samples

for use in the cryostat, the further development of other instruments was necessary,

which we discuss in the following section.
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2.2.2 Additional Instrumentation

Several other instruments in the lab required attention over the course of this degree.

The contributions made will be summarized briefly here, starting with the Edwards

evaporator (including the repair of a rotary vane pump), and finally mentioning

alignment procedures for the Raith e-beam writer.

Figure 2.16: Work completed on the Edwards evaporator. (a) Edwards Evaporator.
(b) Rotary vane pump, incorporated into the wiring of the evaporator. (c) Vacuum
seals for the bell jar with new plugs and O-rings. (d) Crystal thickness monitor sensor
head which was designed and soldered in-lab.

The Edwards evaporator was non-functional when I began working on it. The

evaporator is shown in Fig. 2.16(a). I replaced the leaking cooling water lines and

attached them to our own cooling system, and then refurbished an old Adixen rotary
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vane pump. The pump was disassembled and the vanes were removed and replaced.

The inside of the pump was cleaned and all O-rings, lip seals, and gaskets were

replaced. Electrical connections from the pump were integrated into the evaporator

such that the pump could be easily turned on and off with a rotary switch, shown

in Fig. 2.16(b). We ensured that the bell jar system and electrical feedthrough were

leak-tight by replacing all O-rings and removing unnecessary materials, replacing

them with plugs for the baseplate as shown in Fig. 2.16(c). The system was leak

tested and found to reach pressures of ∼ 10−7 with the diffusion pump. Finally,

we designed a new crystal thickness monitor system and integrated it into the

evaporator. The sensor head is shown in Fig. 2.16(d). I assembled the electronic

circuit with the thickness monitor and soldered the sensor head. This allowed us to

perform evaporations in our own lab, necessary for photolithography and electron

beam lithography.

A new electron beam lithography system became available to the lab and we were

in the first generation of trained users. I attended a training course and learned

about all aspects of the system. A picture of the new Raith e-beam writer is shown

in Fig. 2.17(a). We pioneered two new alignment techniques on this system to create

SWCNT break junctions, illustrated in Fig. 2.17(b). The first method is manual

alignment. A coordinate system is set up such that corners of � shapes are equidistant

from origin. One corner of each � is lined up with the coordinate system of the

software. If this is done with diligence, it is possible to properly align the break

junction on the SWCNT.
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Figure 2.17: Alignment on the Raith electron-beam lithography writer. (a) Raith e-
beam writer. (b) Diagram depicting the usage of manual and auto-alignment marks.
We pioneered SWCNT break junction alignment using these methods. (c) SEM
confirming the resulting alignment, with a large diameter CNT visible inside of the
break junction
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The second procedure is automatic alignment. For this method, the software

locates the center of the � shapes by using edge detecting algorithms. Thus the

coordinate system must be set up so that the widths of these shapes are properly

centered in the coordinate spacing. Confirmation that the automatic alignment

method works is achieved through SEM and is shown in Fig. 2.17(c). These methods

allow us to prepare SWCNT samples, embedded in the gold contacts and ready to be

electromigrated.

2.2.3 Measurement Methods

The methods we use to collect data are centered around protecting the sample first,

and reducing noise second. We always keep the samples grounded while not being

measured, use a personal ground at all times and minimize number of ground loops

in our system. To collect data we use a National Instruments data acquisition system

(DAQ) with custom measurement software. The circuits we use for both DC and AC

measurements are shown in Fig. 2.18(a)-(b). In both cases, the lines from the sample

to the Ithaco pre-amp are wrapped in an additional coaxial cable for shielding and

kept as short as possible to prevent noise amplification. We optimized the sampling

rates, sensitivity, and rise-time averaging on the Ithaco and Lock-in amplifiers, and

all pre-amps are zeroed before data taking to prevent offsets. Low pass filters are

used on the Keithley to prevent spikes to the gate, and voltage dividers were used

when applying bias to gain full DAQ resolution. Data is collected by the DAQ and

stored on the controlling computer.
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Figure 2.18: DC and AC circuits used for measurements. (a) Electrical circuit for
DC measurement. (b) Electrical circuit for AC measurement.

2.2.4 Data Analysis

While collecting data and performing preliminary analysis, we found that much of

the graphing and analysis could be readily programmed. I coded several macros with

many functions into our graphing software of choice, Igor Pro 6.0. As a result, we can

now rebin (average over) both 2D and 1D data, automatically plot collected data,

extract all data for a single point in an image plot, extract and plot data along line

cuts from colour plots, and plot data on a log scale, amongst other functions. These

macros helped to save time and simplify analysis for all lab members. A screenshot

of one of these macros, chop movie, allowing the easy plotting of 1D data along any

line cut of a colour plot, is shown in Fig. 2.19. For more information on all of these

macros, see Appendix B.
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Figure 2.19: Data analysis macros. Screenshot of chop movie, one of the several
analysis macros written using Igor Pro which allows the user to scan through all 1D
cuts in a colour plot.
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Chapter 3

Electron-Hole Asymmetry in

SWCNT transistors

It has been observed in long (> few hundred nm) semiconducting SWCNT quantum

dots that electrons and holes have the same effective mass, energy spectrum and

charging energy, as long as the nanotubes are clean and free of impurities [28].

Conversely, in our ultra-short devices, we observe a dramatic and tuneable asymmetry

between electron and hole transport. From the regular Coulomb diamond pattern, we

determine that our nanotube devices are free of charge impurities and defects, and

that the asymmetry is caused by charge doping from the metallic contacts, which

alter the tunnel barriers. This asymmetry is reflected in the charging energy, gate

capacitance, electronic structure, and conductance of our devices. We measure a

difference in electron and hole charging energies up to a factor of 3 in our devices.

This charging energy asymmetry could be used to make devices with e-h variable
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transistors, photovoltaic devices [7] and improve charge transfer and efficiency in

SWCNT transistors [6]. In small bandgap devices, this asymmetry allows us to switch

between 0D and 1D transport regimes, which could be used for coherent electronics

[29]. By altering the doping of the contacts these asymmetric effects become tuneable,

and the difference between electron and hole potentials can be engineered to explore

fundamental physics and improve the quality nanoscale electronics devices.

In this chapter, we will first discuss the basic electronic and mechanical structure of

carbon nanotubes and the background information necessary to understand quantum

dots and Coulomb blockade. We will then describe the different manifestations of

e-h asymmetry we observe in our devices. For reference, a summary of the devices

presented in the following chapters is given in Appendix C.

3.1 Carbon Nanotubes: Background

Carbon nanotubes were discovered as a new isomorph of carbon in 1991 by Sumio

Iijima [30]. Since then, carbon nanotubes have been a hot topic of research due to their

outstanding mechanical and electronic properties, and their potential for applications

as diverse as body armor, solar cells, drug delivery vehicles and much more [31, 32].

In this section, we give a basic overview of CNT structure starting with a 2D planar

sheet of atomically thin carbon known as graphene. SWCNTs are made from a rolled

up sheet of graphene.
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Figure 3.1: Crystal lattice of graphene. (a) Hexagonal crystal lattice of graphene,
showing its lattice vectors, two atom basis in red and blue, and C-C bond spacing.
(b) First Brillouin zone of graphene (blue), showing lattice vectors in reciprocal space.

3.1.1 Graphene

Graphene was first isolated in 2004 using a scotch tape exfoliation method [33]. The

carbon atoms that make up a graphene sheet are sp2 hybridized, forming three

σ-bonds with adjacent carbon atoms. The strength of the σ-bonds is what gives

graphene its robust two dimensional structure, forming a planar sheet. What remains

is a single free electron in the 2pz orbital for conduction. The trigonal structure of the

carbon atoms forms a honeycomb-shaped lattice with C-C spacing a = 1.42, and a

two atom basis, as shown in Fig. 3.1(a). Translating this lattice into reciprocal space,

we recover the hexagonal lattice, rotated by 90◦, as shown in Fig. 3.1(b). The lattice

vectors of graphene in real and reciprocal space are given respectively by

�a1 =
a

2

(√
3x̂+ ŷ

)
�a2 =

a

2

(√
3x̂− ŷ

)
(3.1)

44



and

�b1 =
2π√
3a

(
x̂+

√
3ŷ

)
�b2 =

2π√
3a

(
x̂−

√
3ŷ

)
(3.2)

It was Wallace who first derived the electronic structure of graphene in 1947 using

the tight binding model [34]. The electrons in graphene are four-fold degenerate

owing to the two electron spins and the two equivalent sublattices forming two

isospins or equivalently, K-K’ valleys. The two atom basis can be treated as a

superposition of two hexagonal sublattices which obey Bloch periodicity, giving the

electron wavefunction in graphene [34]

ψ(�r) =
∑
1

e2πi
�k·�r1X(�r − �r1) + λ

∑
2

e2πi
�k·�r2X(�r − �r2) (3.3)

where the sums are over each entire sub-lattice, λ accounts for the phase difference

between the sub-lattices, and X is the orbital function describing the remaining 2pz

electrons. Using the Schrödinger equation, with this wavefunction, we can calculate

the band structure of graphene [35]

E(kx, ky) = ±γ

√√√√1 + 4 cos2

(√
3kxa

2

)
+ 4 cos

(
3kya

2

)
cos

(√
3kxa

2

)
(3.4)

where the ± sign defines the conduction and valence bands and γ is the hopping

integral describing the amount of overlap between nearest-neighbour orbitals. This

band structure is shown in Fig. 3.2(a). The excerpt shows the Dirac points, the points
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where the valence and conduction bands meet, in detail to the right. Near the Dirac

points we calculate a nearly linear dispersion relation, forming cones around these

points in momentum space

E(�k) ≈ ±�vf |�k| (3.5)

where vf ≈ 106 m/s is the Fermi velocity of Dirac fermions in graphene. We now

discuss what happens to the electronic structure of graphene when it is mechanically

rolled up on itself, forming a SWCNT.

Figure 3.2: Band structure of graphene and carbon nanotubes. (a) Three dimensional
band structure of graphene, with an expanded view of the Dirac cone showing
planar cuts along the energy axis. (b) Dispersion relation for metallic (black) and
semiconducting (blue) carbon nanotubes based on the Dirac cone in panel (a).
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3.1.2 Carbon Nanotubes: Electronic Structure

We can understand the origin of the electronic structure of carbon nanotubes by

their wrapping [36]. Ultimately, the wrapping determines the position of the planar

cuts along the Dirac cone in momentum space, which define the band structure of

a carbon nanotube and make it either metallic or semiconducting Fig. 3.2(b). For

a given nanotube, two perpendicular vectors describe its mechanical structure: �T ,

the translational vector, describes the axis around which the nanotube is wrapped

while �Ch, the wrapping vector, determines the classification of the nanotube. Fig.

3.3(a)-(b) shows the positions of these vectors on the honeycomb lattice, and a 3D

model of a (0,6) zigzag SWCNT respectively.

Figure 3.3: Carbon nanotubes from rolled-up graphene. (a) Real space lattice
depicting wrapping vectors for armchair, zigzag, and chiral nanotubes (b) Three
dimensional model of a metallic, zigzag carbon nanotube with wrapping vector (6,0).
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The chiral vector is defined by

�Ch = n�a1 +m�a2 (3.6)

If the wrapping vector points along (n,n) the SWCNT is a so-called armchair

nanotube, a structure with many C-C bonds parallel to Ch. If the wrapping vector

points along (n,0) the SWCNT is known as a zigzag nanotube, its name originating

from the zigzag pattern of carbon bonds running across the nanotube. The final class

is known as chiral nanotubes with wrapping vectors (n,m).

The quantization of the perpendicular wavevector in the first Brillouin zone upon

wrapping the graphene sheet creates the SWCNT band structure from a planar cut of

the Dirac cone, causing a tube to be either semiconducting or metallic, see Fig. 3.2(b).

Most zigzag and chiral nanotubes are semiconducting, while tubes with wrapping

vectors where 2n+m = (multiple of 3) have a small bandgap (< 100 meV). Armchair

nanotubes are generally metallic, however, curvature induced strain in small diameter

nanotubes can introduce small bandgaps [37]. Ignoring strain effects, the bandgap

for a given carbon nanotube depends on diameter and chirality, and is given by [38]

Eg =
2|q|γa
d cos(θ)

− qγa2

3d2 cos2(θ)
(3.7)

where q = 0, ±1 is the remainder of n/3, and d cos(θ) = (2n + m)
√
3a/2π. If the

nanotube has a large diameter, this reduces to an approximate relationship where

Eg ∼ 0.7/d eV where d is carbon nanotube diameter (in nm) [39].
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The electronic structure of carbon nanotubes is four-fold degenerate, owing to the

two spins of the electrons and two isospin valleys (clockwise and counterclockwise),

originating from the two atom basis of graphene. In a one dimensional structure,

the maximum conductance that can be achieved is e2/h due to resistance from the

constriction of the dimensions of the system [40]. Because the SWCNT has a four-

fold degeneracy, the maximum achievable conductance is 4e2/h. This conductance is

measurable directly in low contact resistance SWCNTs by measuring current while

applying a voltage across it. If we include a capacitively coupled gate electrode, this

set-up becomes a SWCNT transistor.

3.1.3 Carbon Nanotube Transistors

It is the bandgap of semiconducting SWCNTs which makes them so exciting in terms

of electronics applications such as transistors. A diagram explaining current switching

in SWCNT field effect transistors (FETs) is shown in Fig. 3.4(a)-(b). This type of

device is both useful as a platform for exploring new physics, as well as an application

in and of themselves.

When a semiconducting nanotube is contacted by source and drain electrodes

and is capacitively coupled to an additional gate electrode, it forms a nanoscale

current switch. When a voltage is applied from source to drain across this device,

no current can flow because the density of states in the band gap of the nanotube

is zero; the conduction band is empty and the valence band is full. However, by

applying a voltage to the gate electrode, we shift the bandgap of the semiconductor.
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Figure 3.4: SWCNT field effect transistor. (a) In the bandgap of the nanotube there
are no charge carriers, creating a depletion region in the nanotube. (b) By applying
gate voltage, the bandgap is shifted relative to the Fermi energy of the leads (Ef ),
adding carriers to the device and allowing current to flow.

This effectively dopes the SWCNT with charge carriers: holes for negative voltage,

and electrons for positive. The charge carriers allow the passage of current. We can

thus switch the current on and off in a controlled way using the gate electrode. This

powerful transistor effect in SWCNTs forms the basis of discussion for the remainder

of this thesis. We now discuss the single electron transistor (SET) effect observed in

SWCNT-QDs.

3.2 SWCNT Quantum Dots: Background

Before going into detail about our observed e-h asymmetry, we will first give some

background information on how we determine the electronic structure and effective
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circuit of our devices. We will first discuss zero-dimensional SWCNT systems and

Coulomb blockade, before explaining QD length measurements, electronic energy

spectrum measurements, and finally the open quantum dot regime.

3.2.1 SWCNTs in Zero Dimensions

When a one dimensional structure such as a carbon nanotube is reduced to zero

dimensions, the system is completely constrained and the density of states (DOS)

takes on the form of discrete energy levels. These act as energy levels similar to those

in an atom or molecule. This is why these 0D structures, known as quantum dots,

are often referred to as artificial atoms. We show this dimensionality reduction in a

1D SWCNT system caused by tunnel barriers in Figure. 3.5(a). The section of the

tube which is isolated by the barriers becomes a zero-dimensional system, its energy

states become discretized, and a quantum dot is formed.

The effective circuit of a QD is shown in 3.5(b). A quantum dot is structured

electronically as three capacitors in parallel from the source (CS), drain (CD), and

gate (CG), isolating the electronic island which forms a QD. There is often contact

resistance, which acts in series with the source and drain capacitances to reduce the

maximum 4e2/h conductance [20].

The energy of a quantum dot is given by [41]

U(N) =
N∑

N=1

EN +
(Ne)2

2CΣ

+NeVdot (3.8)
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Figure 3.5: From one to zero dimensions in SWCNTs. (a) A carbon nanotube is a 1D
system, with a corresponding density of states. When tunnel barriers are added to a
SWCNT, a quantum dot is formed with a discretized density of states. (b) Effective
circuit of a quantum dot, showing CS, CD, CG, and contact resistance (RS, RD).
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where EN is the internal energy of the N th quantum state of the dot, N is the number

of charge states on the dot, CΣ = CG +CS +CD is the total capacitance of system, e

is the elementary charge, and Vdot =
CSVS+CGVG

CΣ
is the total potential of the dot when

VD is grounded, as is the case in all of our devices. Chemical potential, μN , is defined

as the energy necessary to add the N th electron to the dot and is easily calculated

from eq. 3.8 to be

μN = U(N)− U(N − 1) = EN + (N − 1/2)
e2

CΣ

+ eVdot (3.9)

and the charge addition energy ΔμN is given by

ΔμN = μN+1 − μN = Δ+ Ec (3.10)

where Δ is the energy spacing between quantum levels and Ec = e2/CΣ, is the

charging energy: the classical energy necessary to charge the QD. These quantities

will become very useful in describing the physics of the quantum dot later on.

One of the possible types of tunnel barrier which can form on a SWCNT is known

as a Schottky barrier. Schottky barriers forms due to band mismatching between

a semiconductor and a metal, as shown in Fig. 3.6, and its height depends on the

relative work functions of the metal and semiconductor. Depending on the doping

from the contacts, Schottky barriers can form with different heights for electrons and

holes. The heights and widths of the Schottky barriers affects the effective size of a

quantum dot, as well as its conductance.
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Figure 3.6: Schottky barriers in SWCNTs. Schottky barriers form due to mismatching
of the bands in the carbon nanotube and the contacts. Different Schottky barrier
heights can form depending on contact doping, applied bias and gate, bandgap, and
electron vs. hole transport. Adapted from [39].

Because the carbon nanotube is heavily doped underneath the metallic contacts,

charge injection can occur up to tens of nanometers inside the contacts [42]. Therefore,

the QD leads are not the metallic contacts themselves, but rather the carbon nanotube

underneath the contacts [43]. The equation describing the height of the Schottky

barrier is then not dependent on the work function of the metal, but on the metal-

modified work function of the carbon nanotube lead, as has been shown in graphene

[44]. The barrier height for holes and electrons (Φ
P/N
SB ) is given by [39, 44]

ΦP
SB = ΦNT/M − ΦNT +

Eg

2
ΦN

SB = ΦNT − ΦNT/M +
Eg

2
(3.11)

where ΦNT/M and ΦNT are the work functions of adsorbed and suspended SWCNT

respectively, and Eg is the nanotube bandgap.
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Figure 3.7: A quantum dot single electron transistor. Energy level diagram,
illustrating how sequential tunneling is prohibited unless an energy state of the dot
resides within the bias window. The applied bias is shown by eVB, while VG shifts
the energy levels of the dot.

To better understand how current flows through a quantum dot, we use a simple

yet illustrative picture known as an energy level diagram, depicted in Fig. 3.7. The

Fermi levels of the leads, including applied bias (eVB) and temperature broadening

(kBT ), are shown on the left and right, with asymmetric tunnel barriers blocking the

classical passage of electrons. The energy levels of the quantum dot are shown in

between. If an energy level of the dot lies below the Fermi energies of the leads, it

is always occupied by an electron and there is no room for tunneling. If the energy

level of the dot lies above the two Fermi energies, it is impossible for an electron to

be excited to that level, and again no current can flow. However, if an energy level of

the dot resides between the Fermi energies of the leads, an electron can tunnel from

a lead to the dot and then into the opposing lead.

The Fermi levels of the leads are defined by the applied bias voltage (VB), while
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the occupation energy of the dot can be tuned using the gate voltage (VG). Thus, we

can tune the electronic energies of the dot and leads individually, and understand the

physical structure of our quantum dots by measuring current.

3.2.2 Coulomb Blockade in Quantum Dots

Coulomb blockade is a phenomenon observed in SETs which appears as a

characteristic diamond pattern in a colour plot of current vs. bias vs. gate voltage

(I − VB − VG), as shown in Fig. 3.8. We refer back to the energy level diagram in

Fig. 3.7 to understand what happens as we vary bias and gate independently.

In the bias direction, we measure no current when there is no energy state in

between the Fermi levels of the leads. However, a sharp increase in current is observed

once one of these energy states is encompassed by the leads, as shown in Fig. 3.8(a).

This is accomplished by increasing, or decreasing the Fermi level of the source lead

(for simplicity, we choose to ground the drain lead and pin its Fermi energy).

As we vary the gate voltage, we sweep the energy states of the dot through the

Fermi levels, eventually encompassing an energy state of the leads. Because electron

tunneling occurs across each energy state which passes between the leads, we measure

pseudo-periodic peaks in current along a gate sweep, as shown in 3.8 (b). If we

measure current while simultaneously varying bias and gate voltages, we observe the

characteristic Coulomb blockade diamond pattern, shown in 3.8(c).

The stepwise increase in current arising from the opening of new conductance

channels can be more easily observed by numerically differentiating current with
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Figure 3.8: Coulomb blockade. (a) Current vs. bias voltage showing Coulomb
blockade in a SET. (b) Current vs. gate voltage, showing sweeping of discrete energy
states in a SET at finite temperature. (c) Coulomb diamonds result from sweeping
VB, changing the bias window, and VG, changing the occupation number of the dot,
simultaneously while measuring current. (d) Physical features are more visible in
differential conductance plots of Coulomb blockade data.

57



respect to bias voltage, giving sharp peaks of conductance, rather than a smooth

increase in current, as shown in 3.8(d). Therefore much of the data in this thesis will

be presented as colour plots in dI/dV − VB − VG rather than as I − VB − VG.

The effective circuit of a quantum dot can be extracted from the geometry of the

blockade diamonds. In the following discussion, we will assume that all levels are

degenerate to give a simple picture of the Coulomb blockade. Further in this chapter

we will introduce the quantum confinement energy between electronic energy levels.

A more complete discussion of this topic is given in [41]. The way we extract the

effective circuit from our data is summarized in Fig. 3.9, with energy level diagrams

showing the relative energy levels for different positions in the blockade.

Figure 3.9: Determining the QD circuit from Coulomb blockade. Meaningful physical
properties of the quantum dot are extractable from the Coulomb diamonds. Charging
energy from diamond height (Ec), and capacitances from diamond slopes (CS, CD),
and diamond width (CG). Energy level diagrams for different points in the blockade
are shown at points A-F.
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The widths of the diamonds are directly dependent on the gate capacitance of the

quantum dot, CG, as given by

CG =
e

ΔVG

(3.12)

The charging energy (Ec) is the classical energy needed to add an additional charge

onto the quantum dot and is given by

Ec =
e

CΣ

CΣ = CG + CS + CD (3.13)

The charging energy can be read directly from the half height of the Coulomb

diamonds. The heights and widths of the diamonds are related by a prefactor (α),

which remains constant for all charge states as long as the quantum dot capacitances

remain constant

ΔVG = α
Ec

e
α =

CS + CD

CG

+ 1 (3.14)

An inequality in source and drain capacitances of the system results in a difference

between the positive and negative slopes of the Coulomb diamonds. The source and

drain capacitances are given respectively by

ΔVSD = −CG

CS

ΔVG ΔVSD =
CG

CD + CG

ΔVG (3.15)

The tunneling rate through the quantum dot, Γ, depends on the rate of tunneling

through the source and drain leads, ΓS and ΓD respectively. These quantities can

be determined by measuring the broadening of the source and drain conductance
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peaks, corresponding to negative and positive blockade slopes, at full-width-half-max.

Together these give the rate of tunneling through the QD

Γ =
ΓSΓD

ΓS + ΓD

(3.16)

If the coupling to one lead is much greater than the other, the weak lead acts as a

bottleneck and determines the tunneling rate of the system.

It is also possible to determine the bandgap of the nanotube from the Coulomb

blockade. If the QD is free of charge impurities, the charge degeneracy point (N = 0)

occurs at VG = 0. It is here that we can directly measure the band gap. The energy

necessary to add an electron to the N = 0 state is equal to the charging energy plus

the energy needed to overcome the bandgap: eV N=0
add = Ec +Eg. Thus, by measuring

the height of the central diamond and subtracting the charging energy (measured from

the adjacent diamonds), we can determine the band gap of the carbon nanotube.

We observe a falloff of charging energies from the charge degeneracy point. This is

because the first few charge states are underscreened, and because the potential of the

nanotube is sensitive to a small change in the potential barrier widths for small N [45].

In all of our semiconducting devices, we observe a reasonable agreement between the

expected bandgap, based on radius of the nanotubes, and the radii determined from

AFM measurements, with a correction of ≈ 1 nm for Van der Waals forces [25]. We

can now use the information learned from the blockade diamonds to determine the

physical size of the QD.
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3.2.3 Length of SWCNT QDs

The majority of the energy scales in our SWCNT devices are length dependent

because the size of the QD determines the shape of the electron confinement potential,

gate capacitance, and the mechanics of the nanotube. Therefore it is very important

that the length of the SWCNT quantum dot be accurately determined. While we can

directly measure the length of exposed SWCNT from an SEM image when the tube

is visible, screening from the gold contacts and the sheer smallness of the devices,

doesn’t always make this possible. We find a good agreement between theory and

experiment for both longer (> 100 nm) and shorter (< 25 nm) SWCNT devices using

a model which treats the nanotube as a wire suspended over a plane [39]. Because

our substrate acts as two capacitors in series, the model depends on the thicknesses

of the oxide and vacuum layers (tox and tvac), as well as the dielectric constant of the

oxide layer εox

CG

L
=

2πεox
εox
ε0

cosh−1
(
tvac
r

)
+ cosh−1

(
tvac+tox
r+tvac

) (3.17)

where L is the length of the gateable (exposed) SWCNT, εox = 3.9ε0 for SiO2, and

r = d/2 is the radius of the nanotube. Because gate capacitance depends on length,

it becomes apparent that a given device is ultra-short if the diamonds are � 1 V wide

for ≈ 125 nm suspension.

The lengths of our devices can also be confirmed by measuring the energies of the

QD excited states. Quantized vibrational mechanical excitations known as vibrons

are not directly affected by e-h asymmetry, and will therefore be treated in chapter 4,
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but the electronic structure of the quantum dot and its length dependence, will be

investigated in the following section.

3.2.4 Electronic Structure of SWCNT QDs

The quantum energy spacing of electrons (Δ), has been ignored up until now for

simplicity’s sake. This energy arises from the quantum confinement of electrons to

a given potential. Several studies have found that the most accurate (and easiest)

potential comes from a Dirac particle-in-a-box derivation. The energy spacing for

metallic and semiconducting electrons is given respectively by [39]

Δ =
hvf
2L

Δn =

√(
nhvf
2L

)2

+

(
Eg

2

)2

−
√(

(n− 1)hvf
2L

)2

+

(
Eg

2

)2

(3.18)

where vf ≈ 8.1 × 105 is the Fermi velocity in carbon nanotubes, n is the electronic

energy level number, and Eg is the band gap of the carbon nanotube [39]. Using

this model, metallic nanotubes always have the same linear energy spacing, while

semiconducting nanotubes have an energy spacing which increases with n. In short

devices with a slow varying potential, harmonic or hard-wall models have been

employed [28]. To calculate the spacing in these regimes we must know the effective

mass of charge carriers in the valence and conduction bands, given by the inverse

curvature of the band structure

meff = �
2

(
∂2E

∂k2

)−1

=

[(
hvf
2L

)2

+
(

Eg

2

)2
]3/2

(
vfEg

2

)2 (3.19)
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For a harmonic potential, the energy spacing is independent of the energy level and

is set to be equal to Eg/2 at the edges of the QD. The spacing is given by [28]

Δharm = �ω0 =
�

2

√
4Eg

meffL2
(3.20)

Alternatively, the hard wall potential gives an energy spacing which does depend on

the energy level number [28]

Δhw
n =

�
2π2 (2n− 1)

2meffL2
(3.21)

We can measure the electronic energy spacing in our devices directly from the

Coulomb blockade, as shown in Fig. 3.10. Because SWCNTs are four-fold degenerate,

from the two electron spins and two valley isospins, a new energy level must be opened

every 4N th charge state. A diagram depicts this phenomenon in Fig. 3.10(a). In panel

(b) we show a I − VB − VG plot of one of our four-fold degenerate devices, Device A.

In the 4N charge states, the electron addition energy (eVadd) is measured from the

heights of the diamonds, and is given by Ec + Δ. For every other charge state,

the height of the Coulomb diamonds is simply Vadd = Ec. Therefore, an accurate

measure of Δ is attainable by measuring the height of a 4N diamond and subtracting

the height of an adjacent diamond.

Although this four-fold picture describes the majority of our devices, in others

we observe only a two-fold degeneracy, as is illustrated in Fig. 3.11. Mixing of the

two degenerate isospin valleys can lift the orbital degeneracy, splitting the two energy
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Figure 3.10: Four-fold degeneracy in our SWCNTQDs. (a) Bandgap diagram showing
the four-fold degeneracy in metallic and semiconducting carbon nanotubes. (b) In
Device A, an increase in charge addition energy from the electronic energy levels (Δ)
is visible in every fourth charge state in this devices. The four-fold degeneracy arises
from the two spins and two isospin orbitals in a carbon nanotube. Holes are labeled
as negative integers.
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levels by value δKK′ [16, 46]. A diagram of the band structure of a two-fold degenerate

device with isospin splitting is shown in Fig. 3.11(a). In panel (b) we show a I−VB−VG

plot of one of our two-fold degenerate devices, Device B. In this plot, we can clearly

see the effects of Ec, Δ, and δKK′ in this device.

Figure 3.11: Two-fold degeneracy in our SWCNT QDs. (a) Bandgap diagram
showing the effect of K-K’ scattering, which lifts the isospin degeneracy in metallic
and semiconducting carbon nanotubes. (b) In device B we measure a two-fold
degeneracy, arising from K-K’ scattering. We measure charging energy (Ec) from
the odd numbered charge states. The electron spacing (Δ) contributes to the 4N
states, but an additional energy to overcome δKK′ is necessary in the 4N+2 states.

Thus, the effective circuit and energy spacing of a QD can be measured in detail

through transport spectroscopy and analysis of the Coulomb blockade. However, if

the potential height of the tunneling barriers becomes greatly reduced, a new regime

is achieved, from which electronic structure must be determined in a different manner.

65



3.2.5 Open Quantum Dot Regime

In the case of very small tunneling barriers, the QD becomes what is known as an

open dot [47]. Under these high conductance conditions, the tunnel junctions are

semitransparent. This causes the nanotube to act as a one dimensional electron

waveguide [29], in which the electrons are partially reflected at the contacts and form

an interference pattern. This is called the Fabry-Pérot regime, and is only visible

in systems where Δ > Γ > Ec [48]. A diagram showing the origin of Fabry-Pérot

interferences is shown in Fig. 3.12(a), and the calculated interference pattern from

ref. [29] is shown in panel (b). Open dot devices allow us to understand and measure

coherent transport in carbon nanotubes by measuring these electron interferences.

Figure 3.12: Fabry-Pérot interferences. (a) Diagram illustrating Fabry-Pérot
interferences. Electrons are reflected at the semi-transparent tunnel barriers and
interfere constructively or destructively depending on their energy and phase. (b)
dI/dV − VB − VG plot, showing interference pattern and relevant voltage spacings.
Adapted from [29].

From the interference spacing we can learn about the energy spectrum and size of

the quantum dot. The bias at which the first crossing point of positive interference

occurs (Vc), corresponds to a single electronic energy spacing, with energy levels
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aligned with each of the source and drain leads [48]. This alignment results in

constructive interference and a conductance maximum is achieved. This can allow us

to measure Δ [29]

Vc =
Δ

e
(3.22)

The interference pattern can also be adjusted by shifting the energy of the QD using

the gate electrode. The gate dependence of this interference pattern is described by

ΔVG =
4e

CG

(3.23)

This cross-hatching pattern is a distinctive feature and can be used, much like

Coulomb blockade, to learn about the energy spectrum of the quantum dot.

We now have the theoretical understanding of electron transport spectroscopy and

Coulomb blockade to understand the data collected from our QDs. We now use this

understanding to investigate the strong electron-hole asymmetry we observe in our

devices.

3.3 Electron-Hole Asymmetry

Symmetry between electron and hole states has been observed in long (> 200 nm)

metallic and semiconducting nanotubes [28]. However as semiconducting devices

become shorter, the leads play a proportionally larger role, and any e-h asymmetry

due to charge doping from the metallic contacts becomes magnified. In our devices we
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observe several dramatic manifestations of this charge carrier asymmetry, including a

factor of 3 difference between electron and hole charging energies, and a tuneability

between 0D and 1D behaviour. Since the confinement potential is different for

electrons and holes, we can effectively tune between two different transistors in the

same device. In addition, because the asymmetry is heavily dependent on the contact

region, we can engineer e-h asymmetry in future devices by altering the properties of

the contacts.

We will first discuss the asymmetries observed in the charging energies and widths

of the Coulomb diamonds for electrons and holes, before exploring the ultra-short

room temperature SWCNT-FET regime in a highly asymmetric device. We will

then investigate conductance asymmetry which allows us to probe different tunneling

regimes by switching between positive and negative charge carriers.

3.3.1 Asymmetry in Charging Energy and Blockade

Diamond Width

We observe a clear change in charging energy from holes to electrons in our ultra-short

devices. This asymmetry is strong, with the ratio between charging energies for holes

and electrons, above 300% in Device B.

Because we observe that electrons have a lower charging energy and higher

conductance than holes, we can conclude that the electron tunneling barriers are

smaller, and therefore the contacts are n-doping the carbon nanotube [45]. In the
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diagrams in Fig. 3.13(a)-(b) we show hole and electron transport respectively for n-

doping leads. N-doping raises the Fermi levels of the leads in relation to the mid-gap

of the nanotube, resulting in a barrier junction which is smaller for electrons than for

holes. From eq. 3.11, we can understand that the magnitude of the tunnel barriers

depends on the bandgap of the nanotube, but their asymmetry depends on the work

function of the carbon nanotube under the metallic leads [39, 44].

Figure 3.13: Diagram illustrating the origin of e-h asymmetry. Charge doping from
the leads shifts their Fermi level relative to the bandgap. In this n-type device, the
tunnel barriers are larger for hole transport (a), than electron transport (b).

We show this e-h symmetry about the third charge state in differential

conductance colour plots in Fig. 3.14(a)-(b) for Devices B and C respectively. The

lengths of these devices are ≈ 15 nm and 45 nm. The heights of the diamonds (Vadd)

are clearly different for electrons and holes (e−/h+).

One way to quantify this asymmetry is by taking a ratio of diamond heights (Vadd)

or widths (ΔVG) for holes vs. electrons. We plot the dependence of diamond width
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Figure 3.14: Charging energy asymmetry. (a)-(b) Differential conductance plots of
Devices B and C with lengths ≈ 15 nm and ≈ 45 nm respectively, showing clear
electron hole asymmetry in diamond heights (Vadd). (c)-(d) Dependence of average
fractional e-h asymmetry of Vadd and ΔVG vs. length for several of our devices. We
note a strong asymmetry ratio in Vadd, up to a factor of 3.
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asymmetry ratio (ΔV h+

G /ΔV e−
G ) and addition energy asymmetry ratio (V h+

add/V
e−
add) vs.

L−1 in Fig. 3.14(c)-(d) respectively. We observe a weak asymmetry dependence of

the diamond widths, corresponding to an overall change in channel length of ≈ 1 nm

from electron transport to hole transport. This arises from a difference between

the Schottky barrier heights, and therefore tunnel barrier widths, for electron vs.

hole transport. In ultra-short (≈ 10 nm) devices, this small change corresponds to a

difference in length of ≈ 10%, while in longer devices this effect is proportionally much

weaker. This explains why e-h asymmetric channel lengths have not been resolved

before in previous SWCNT QD research.

The charging energy e-h ratio (approximately equal to the Vadd ratio) has a much

stronger length dependence than the diamond width ratio. Recall that Ec ∝ C−1
Σ

and CG ∝ L. As length decreases into the ultra-short regime, CG becomes negligible

compared to CS and CD, and these latter quantities dominate Ec. Because CS and

CD depend predominantly on the e-h asymmetric Schottky barriers at the contacts,

the charging energy becomes asymmetric as well. The asymmetry is present even in

longer devices if there is any contact doping, but is reduced in magnitude by the gate

capacitance to the point where it cannot be resolved. An alternative way to think of

the length dependence of the asymmetry is in the relative size of the contact barriers

to the full length of the QD. The tunnel barrier sizes do not depend on SWCNT

length. Therefore, in ultra-short devices the barriers cover a large portion of the

carbon nanotube, magnifying the asymmetry. Note that for none of our samples is

the hole channel longer than the electron channel.

71



The n-type behaviour observed in our devices is contrary to the p-type behaviour

normally observed in gold-contacted SWCNTs. However, n-type carbon nanotubes

with gold contacts have been achieved in the past through temperature annealing

[45, 49]. Annealing gold contacts has been found to remove p-doping impurities such

as oxygen, causing a steady n-doping of the contacts by lowering their work function,

affecting transport in the SWCNT. In our devices, we likely observe n-doping because

in short suspended devices electromigration anneals the contacts as well as the carbon

nanotube. This conclusion can be further corroborated when we warm an ultra-short

device to room temperature, as we will see in the following section.

3.3.2 Ultra-short Room Temperature SWCNT Transistors

We observe a switching of n-type behaviour to p-type behaviour in Device D which we

warm up to room temperature. We determine the length of this device to be ≈ 5 nm

from its gate capacitance and observe an n-doping effect at low temperature with

higher conductance for electrons than for holes, as shown in Fig. 3.15(a). However,

at room temperature we find that the contacts p-dope the device, with higher

conductance for holes than electrons as shown in Fig. 3.15(b). This change in doping

can be explained in the following way. As we warm our sample to room temperature,

the dopants which were annealed out of the device during electromigration, as well

as any gases adsorbed to the inner walls of the sample space are desorbed. These

impurities can then re-dope the contacts, changing their work function and resulting

in a distinctive switch to p-type behaviour.
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Figure 3.15: Ultra-short SWCNT transistor at 300 K. (a) Low temperature I−VB−VG

plot, showing n-type behaviour. From diamond widths LG ≈ 5 nm. (b) Room
temperature I − VB − VG plot, showing p-type behaviour. (c) Gate cut along the
black line in (b), showing a strong transistor effect with on/off ratio of > 4100. Inset:
SEM image of this device with LSEM � 10 nm.

In this sub-10 nm device, we observe a strong transistor effect, with an on/off

ratio greater than 4000 at room temperature, as shown in Fig. 3.15(c), taken along

the horizontal black line in panel (b). An SEM micrograph of this device is shown

in the inset. This device cannot be resolved by SEM measurements, and is therefore

� 10 nm in length. It has been predicted that in such short devices, a strong transistor

effect is not possible, due to direct source-drain tunneling across the QD [2]. However,

our device, much like the 9 nm device from ref. [4], shows otherwise.

The strong conductance asymmetry observed in our room temperature

measurements is also reflected in devices with very small bandgaps at low

temperature. This can actually result in a difference between electron and hole

tunneling regimes, where electrons behave as though they are in a 1D channel, and

holes remain in a 0D single electron transistor.
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3.3.3 Conductance Asymmetry: Open QD

In metallic carbon nanotubes, there are no Schottky barriers and tunnel junctions

arise from defects at the contacts [39]. If the metallic device is shorter than the

coherence length of the electrons, it behaves as an electron waveguide and Fabry-

Pérot interferences emerge [29]. The electronic energy spacing in metallic Fabry-Pérot

devices is the Dirac particle-in-a-box potential, Δ = hvf/2L. In semiconducting

nanotubes, the Schottky barriers are normally too large to be semi-transparent and

Fabry-Pérot interferences are not present. However, if the bandgap is small, the

barriers are reduced, making the interface behave more like a metallic junction, and

allowing one dimensional transport.

Figure 3.16: Gate tuneable tunnel barriers. (a) One of our high conductance
SWCNT devices (≈ 100 nm) showing Fabry-Pérot interferences on the electron
side and Coulomb blockade on the hole side. We extract CG = 0.78 ± 0.07 aF,
Δ = 13.5± 1 meV, Ec = 8± 1 meV and Eg = 54± 10 meV.
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We show data from Device E, one of our high conductance devices, in Fig.

3.16(a), with Fabry-Pérot interference on the electron side and Coulomb blockade

on the hole side. This behaviour indicates n-doping from the annealed contacts.

This conductance asymmetry has been observed previously in longer small-bandgap

devices [47], but was not resolved as clearly. Devices do not need to be ultra-short to

observe this effect because coherence length is long (> 600 nm) in SWCNTs [29].

From the Coulomb blockade width, we determine the gate capacitance of this

sample to be CG = 0.78± 0.07 aF corresponding to a QD of length LG = 102± 9 nm,

in good agreement with SEM measurements LSEM = 104 ± 9. From the heights of

the diamonds we measure electron spacing ΔCB = 13.5± 1 meV, corresponding to a

Dirac particle-in-a-box QD length LΔ = 124 ± 9 nm, in reasonable agreement with

the other length measurements. We measure the charging energy from the heights of

high occupancy odd charge states Ec = 8 ± 1 meV, and extrapolate the bandgap at

N = 0 to be Eg = 54± 10 meV, indicating that this is a small-bandgap nanotube.

We can now compare our device measurements between the Coulomb blockade

diamonds and the Fabry-Pérot interferences. From the gate dependence of the

oscillations, using CG from the blockade diamonds on the hole side, we calculate

a very similar quantum dot length LG = 100 ± 20 nm. However the bias crossing

point, Vc, gives an electronic energy spacing ΔFP = 4.7±0.6 meV, quite different from

the electron spacing measured for holes. Using the Dirac particle-in-a-box potential,

this corresponds to a length of L = 350 ± 50, much longer than any of the other

measurements made for this device.
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This incongruity could be due to the fact that the shape of the potential is different

for electrons and holes, resulting in different confinement energies. For example if we

use a hard-wall potential to determine the nanotube length from Vc on the Fabry-

Pérot side, L ≈ 86 nm, in much better agreement with the other measurements.

Another possibility is this effect is caused by the extension of the quantum dot

under the n-doping leads because the tunnel barriers are so small. If the SWCNT

extends far under the leads, it is conceivable that electron injection could occur far

under the leads, increasing the length of the waveguide and reducing the electron

energy spacing. Screening from the leads prevent this area from being gated, so this

effect would not be reflected in the width of the Fabry-Pérot interference pattern.

We have shown in our devices that a strong electron-hole asymmetry arises

from doping by the metallic contacts. The magnitude of the asymmetry depends

on the Schottky barrier difference between electrons and holes, and the length of

the SWCNT device. This can result in up to a factor of 3 difference in charging

energy for electrons and holes in our devices. We also observe a strong asymmetry

in terms of transport regimes, where electrons behave as though they are in a 1D

system and holes behave as though they are in a 0D system. By studying this

asymmetry, we can understand electron and hole injection separately and engineer

more efficient transistors, gain a better understanding of the scaling limitations of

ultra-short nanotubes [2], and develop new types of devices [7]. Now that we have an

understanding of contact interactions, we can investigate strong electron-electron and

electron-vibron interactions, which are enhanced by the short length of our devices.
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Chapter 4

High Kondo Temperature,

Self-Actuated Bending Vibrons,

and Reduced Charging Energy

We have explored the downscaling of SWCNT transistors to the 10-nm scale.

Because these devices are so short, we observe an increased strength of quasi-particle

interactions. We now focus on the effects of strong electron vibron (e-v), and electron-

electron (e-e) interactions in our devices. We observe three main effects in ultra-short

SWCNTs from these interactions.

The first is a strong e-e interaction, resulting in the Kondo effect, which can be

used for molecular spintronics applications [50], or as a tool to measure the electronic

spectrum of the QD [16]. In our short devices e-e coupling is enhanced and we

measure Kondo temperatures up to TK = 28 K, which is to our knowledge a factor
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of 2 larger than the highest TK observed to date in SWCNTs [14].

The second is a strong e-v coupling to the bending mode of the SWCNT.

We have recently shown that ultra-short carbon nanotubes can form self-actuated

nanoelectromechanical systems (NEMS) and measured self-actuated bending

frequencies up to ≈ 280 GHz using DC transport [11]. The short length and strain

tuneability of these devices make them promising candidates for supersensitive mass

or force sensors, with down to yoctogram sensitivity [51]. Due to strong e-v coupling

We observe a second harmonic of the bending mode in our devices, and its low-bias

onset caused by increased conductance from the Kondo effect.

Finally, we measure a device with both the Kondo effect and bending vibrons. As

a result of strong e-v coupling, a reduction in the classical energy needed to charge the

QD is observed. This effect is so strong that we observe a near complete suppression

of the charging energy. Although predicted as early as 2004 [18], this is the first time

this effect has been observed experimentally to our knowledge. These types of devices

could be used as NEMS sensors, current rectifiers, or in spin transport applications

such as spin filters [9, 19, 50].

We will first discuss some background information on the Kondo effect before

highlighting the very strong Kondo effect we observe in our devices. We will

then give background information on vibronic interactions in SWCNT QDs before

discussing bending oscillations and the observation of the second bending harmonic

that we observe in our devices. We will finally discuss how these strong e-e and e-v

interactions reduce the electronic charging energy in our devices.
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4.1 The Kondo Effect: Background

The Kondo effect has been well documented in several molecular systems, including

SWCNTs, and in semiconductor two dimensional electron gas system [15, 52]. This

electron-electron (e-e) interaction enhances the likelihood of cotunneling through the

coupling of electron spins in the QD and the leads. This can serve as a tool to measure

excited states of the dot inside of the blockade, and can be used to develop coherent

spintronics devices in SWCNTs such as spin filters [9, 53].

In this section we first describe the theory of Kondo effect with SU(2) symmetry,

before discussing its length and temperature dependence. We will follow up

by discussing the SU(4) Kondo effect and the various Kondo-enhanced inelastic

cotunneling processes which occur at finite bias in our devices.

4.1.1 Origin of the SU(2) Kondo Effect

In a given charge state diamond with no bias voltage applied, a quantum dot normally

resides within the Coulomb blockade; no energy states of the QD are aligned with the

leads and current is blockaded as explained in section 3.2.2. Therefore, in general, we

expect to see no conductance at low bias inside of the Coulomb diamonds. When a

single electron or hole occupies an energy level of a quantum dot, the charge behaves

a spin impurity, which can be screened by the spins in the leads, increasing the

likelihood of cotunneling.

Cotunneling is a second order tunneling process which depends on two
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simultaneous and coherent tunneling events. An electron from one of the leads tunnels

onto the QD, while the electron occupying the dot tunnels onto the opposite lead

within the uncertainty time. Because energy is conserved in a cotunneling process,

it is not restricted by the Coulomb blockade and appears as a very small zero-bias

conductance peak for the odd numbered states of the QD. This second order process

is much less probable than first order sequential tunneling across a quantum dot.

As a result, these zero-bias conductance peaks cannot normally be resolved, even at

temperatures as low as ∼ 10 mK.

As shown in Fig. 4.1(a), the spin of the electron on the QD can form an

entangled singlet state with a spins in the leads. These electrons are now coupled

together, increasing the likelihood of cotunneling and rendering these zero-bias peaks

observable. This can be thought of as a cloud of spins on the lead screening the

spin impurity on the QD, reducing scattering and allowing the flow of current. This

process is known as the SU(2) Kondo effect, whose name comes from group theory

nomenclature, and describes the 2D nature of the S = � state [54]. Each cotunneling

event causes the spin of the dot to change between S = � and S = -�, as shown

in Fig. 4.1(a). For this reason, the Kondo effect is known as a spin-flip process. In

differential conductance plots, the SU(2) Kondo effect is manifested as a zero-bias

conductance peak with a maximum value of 2e2/h at the oddly occupied states of the

QD as shown in Fig. 4.1(b).

The strength of the Kondo effect is characterized in terms of temperature. At

higher temperature, the entanglement between dot at lead is disrupted by thermal
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Figure 4.1: Diagram illustrating the Kondo effect. (a) Coupling between an electron
on the QD and an electron in the leads can result in an entangled state which increases
the likelihood of cotunneling at zero bias. (b) Schematic, showing a Kondo resonance
at zero bias for odd occupation.

fluctuations. The Kondo temperature (TK) is the characteristic temperature at which

the Kondo effect becomes observable in a given system. The expected strength of the

Kondo effect is derived from Anderson impurity model using perturbation theory

with a flat-band assumption [55], giving an analytical expression for the Kondo

temperature in the center of the blockade [53]

TK =
√
ΓEc exp

(
−π

4

Ec

Γ

)
(4.1)

where Γ is electron tunneling rate and Ec is charging energy. Γ is determined by

the nature of the tunneling barriers and therefore the bandgap of the SWCNT. The

term in the exponent is roughly independent of length, so the strength of the Kondo

temperature depends on the product
√
ΓEc. Thus, we expect to observe a stronger

Kondo effect in small-bandgap devices, with large Γ. Because Ec increases with
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decreasing L through CG, we expect to observe a stronger Kondo effect in shorter

devices, especially when CS/D are small.

The characteristic volume over which Kondo interactions take place in a system

is known as the Kondo cloud, whose length scale, (ξK), depends on the Kondo

temperature: ξK = �vf/kBTK , where vf = 8.1 × 105 m/s is the Fermi velocity in

SWCNTs [56]. In carbon nanotubes with Kondo temperatures on the order of 1.0 K

the Kondo cloud is ξK ∼ 1 μm, extending far under the electrodes of our devices. For

higher Kondo temperatures the Kondo cloud is reduced in size and therefore requires

shorter QDs.

The Kondo temperature can be determined by measuring the height of the

differential conductance Kondo peak while varying temperature. To determine the

Kondo temperature, this data is fit using the Goldldhaber-Gordon model [57]

G(T ) = G0

(
1 + (21/s − 1)

(
T

TK

)2
)−s

(4.2)

where G0 is the conductance of the peak at T = 0, and s is a fitting parameter

which depends on the spin of the impurity and its screening. For spin-� systems,

s = 0.22±0.01. It has also been shown that the Kondo temperature can be extracted

from the half-width half-max (HWHM) of the Kondo peak at low temperatures

[58]. In SWCNTs, the strength of the Kondo effect is greatly increased by the four-

fold degeneracy of the electrons, creating a hyperspin interaction and increasing the

symmetry of the Kondo resonance to SU(4).

82



4.1.2 SU(4) Kondo Effect and Zeeman Splitting

In carbon nanotube systems the Kondo effect is not only limited to spin flip-processes:

an entanglement between orbital states (the two isospins), occurs as well [17]. The

four possible cotunneling pathways become entangled in a four component hyperspin

(spin ⊗ isospin) configuration which is shown in Fig. 4.2. The SU(4) Kondo effect is

characterized by having a conductance of 4e2/h, higher than its SU(2) counterpart

(2e2/h), as well as being stronger with TK reaching temperatures up to 14 K [14, 17].

In carbon nanotubes, SU(4) symmetry can only exist in the odd electronic states:

every 4N state is a full shell and has no levels for zero-bias cotunneling, and every

4N + 2 state forms a singlet or triplet state on the dot, preventing single electron

coupling to the leads. Thus, the SU(4) Kondo effect is manifested as a zero-bias

conductance peak in these diamonds, much like the SU(2) configuration.

Under perpendicular magnetic field B⊥, the once degenerate spin states become

split by the Zeeman splitting energy

EZ = gμBB⊥ (4.3)

where g = 2.0 is the g-factor of the electron, and μB is the Bohr magneton. This

splitting of the Kondo peaks has a slope of ±0.116 meV/T. Under parallel magnetic

field B‖, the spin states split in the same way. However, while the isospin states

are not magnetically coupled in perpendicular magnetic field, in parallel field these

isospin states couple even more strongly that Zeeman splitting. This is a result of the
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Figure 4.2: Schematic showing SU(2) vs. SU(4) Kondo effect. (a)-(b) Entanglement
between two spin states or two orbital states causes SU(2) Kondo effect. (c) When spin
and orbital entanglement occur simultaneously in a four-fold degenerate SWCNT, the
much more robust SU(4) hyperspin configuration is achieved.

magnetic moments generated parallel to the carbon nanotube by the clockwise and

counterclockwise motions of the isospin valleys. This results in an additional splitting

of the isospin, with a greater slope [24]. The orbital Zeeman splitting is given by [17]

Eorb
Z = 2μorbB‖ (4.4)

where μorb is the orbital magnetic moment of electrons in the two isospin valleys.

In our measurement set-up, we have a perpendicular magnetic field which we can

use to probe the Kondo effect, and measure the g-factor of the electrons in our system.

Apart from these zero-bias peaks, other Kondo correlations can occur at finite bias.

These inelastic cotunneling peaks, can be used as a tool to learn about the excited

states of an ultra-short quantum dot with high precision.
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4.1.3 Inelastic Kondo Resonances

When two states are non-degenerate, it is not energetically possible for cotunneling to

occur, as shown in Fig. 4.3(a). Therefore, no zero-bias conductance peak is observed.

However, by applying a bias voltage to the device, the energy needed to make up

for the non-degeneracy is provided externally to the QD. This is known as inelastic

cotunneling, and is observed as a conductance peak parallel to the gate axis at a finite

bias equal to the difference in energy between these two levels. [16].

By measuring inelastic cotunneling it becomes possible to map out the energy

states of a quantum dot for a given occupancy. It is only possible to observe Kondo

enhanced inelastic cotunneling through an energy state which is smaller than the

charging energy of the diamond (so that it appears in the blockade), and if the bias

energy is larger than kBTk, so as not to disrupt the Kondo cloud. Here we will discuss

some of the types of inelastic peaks we can observe in our ultra-short QDs, including

the singlet-triplet Kondo effect [59], the energy level Kondo effect [16], and the vibron

assisted Kondo effect [60], whose energy level diagrams are shown in Fig. 4.3(b)-(d).

In these diagrams, the charging energy is larger than the excitation energies and

therefore prevents the full occupancy of the SWCNT. The inelastic nature of these

effects does not allow them to be characterized as SU(2) or SU(4) [16].

The singlet-triplet Kondo effect, shown in Fig. 4.3(b), is an enhanced cotunneling

process that occurs at finite bias between different configurations of the doubly

occupied QD [61]. The measured resonances from the singlet-triplet Kondo effect

depend on the energy scales of the system, and only occur in states with 4N + 2
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Figure 4.3: Inelastic Kondo effects. (a) When two levels are non degenerate, energy
conservation prevents the Kondo effect. However, when VB reaches the excitation
energy, a finite-bias Kondo peak can be observed. (b) The singlet-triplet Kondo
effect arises from a triplet excitation state in a doubly occupied QD at eVB =≈ δKK′ .
(c) The energy level Kondo effect can only arise if TK is large. Inelastic cotunneling
can occur through higher electronic excitations and a peak is observed at eVB = Δ.
(d) Vibron assisted cotunneling can also be enhanced by the Kondo effect and is
observed as finite bias resonances at multiples of the vibronic energy eVB = ΔEvib.
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charge carriers. The QD singlet and triplet states are shown in Fig. 4.4. A quantum

singlet is made up of two electrons of opposite spin sharing the same energy level. If

the orbital splitting δKK′ (as defined in section 3.2.4), is smaller than the ferromagnetic

exchange energy J , (a manifestation of Hund’s rule), the ground state is the triplet

state, with one electron on each orbital. Since there are unpaired electrons, this allows

zero-bias cotunneling. However, when δKK′ > J (normally the case), the ground state

is the singlet state which is fully occupied and does not allow cotunneling. If a bias

equal to δKK′ is applied, the energy difference between the levels is absorbed by the

dot and an inelastic Kondo resonance occurs. This is observed as a cotunneling peak

at VB ≈ δKK′ . Under magnetic field, this peak splits into three, one each for each of

the spins S = −1, 0, 1.

Figure 4.4: Singlet and triplet states of a doubly degenerate QD. The energies of the
singlet |s〉 and triplet |t〉 states are given for a doubly occupied QD. Positive and
negative signs indicate the two isospin orbitals separated by an energy δKK′ , J is the
ferromagnetic exchange energy and Es is the singlet state energy.
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The energy level Kondo effect, shown in Fig. 4.3(c), occurs at the electron energy

spacing [16]. This is only possible if the Kondo effect is very strong, such that high

biases do not disrupt the Kondo cloud (eVB < kBTK). The cotunneling peak from

this Kondo effect is observable for every blockade diamond, because the subshell

spacing is always the same for a given charge state. This state can never cause zero-

bias cotunneling because the two energy levels are separated by the electron energy

spacing. This results in an enhanced cotunneling peak at VB = Δ.

Although it has been less commonly observed [15, 60], certain molecular devices

have shown Kondo peaks at vibronic energies, matching theoretical predictions [62].

These peaks are caused by a Kondo resonance through the excited electron +

vibron(s) state. The details regarding this vibrational energy spectrum will be given

in section 4.3, but the general concept is the same for all inelastic Kondo effects. This

resonance occurs at VB = ΔEvib, which depends on the vibronic mode and frequency.

In our devices the Kondo effect allows us to observe the vibrational spectrum which

would be otherwise unresolvable. We will explore the Kondo effect in our devices,

and its interaction with vibronic modes in the following sections.
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4.2 Strong Kondo Effect and Cotunneling

Spectroscopy

We now turn to our own results to explore the Kondo effect in ultra-short SWCNT

devices. One of the limitations of using ultra-short SWCNT devices is that the

charging energies are very large. This means that high bias measurements must be

made to fully measure the Coulomb blockade. The high-bias features are thermally

broadened, (eV ≈ kBT ), making them difficult to resolve with high precision. This

reduces the accuracy of measurements involving diamond height such as the electron

energy spacing (Δ). We observe strong inelastic cotunneling peaks, which we use as

a tool to image the electronic energy structure of our QDs at much lower bias, giving

high precision measurements of the electronic structure of our ultra-short QDs.

In a short carbon nanotube with a small bandgap, we measure a very strong

Kondo effect with Kondo temperatures up to TK = 28 K. We observe that this

Kondo temperature is gate-tuneable by nearly a factor of two. To our knowledge,

this is the strongest Kondo effect observed in SWCNTs to date.

4.2.1 Inelastic Cotunneling Spectroscopy

In our devices, we observe zero-bias cotunneling peaks as well as several excited

states. A differential conductance plot from one such sample, Device A, is shown

in Fig. 4.5(a). Using SEM, we measure this device to have LSEM ≈ 15 nm,

matching the length determined from this device’s gate capacitance LG = 12± 5 nm.
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We observe electron energy level Kondo peaks at Δ = 30 ± 3 meV across all

charge states, matching Δ measured from the diamond heights. Because we cannot

observe the charge degeneracy diamond, we determine its bandgap from AFM radius

measurements. The expected bandgap, is ≈ 700 meV. This gives an electronic energy

spacing of Δharm = 47 ± 3 meV. This discrepancy could arise from systematic error

regarding the diameter measurement, or perhaps more likely, could occur because this

carbon nanotube is of the small bandgap variety.

We first investigate the diamonds with odd hole occupation number to understand

the zero-bias Kondo effect observed in this device. We confirm that we are observing

the Kondo effect by measuring its Kondo temperature using two methods. We

determine the Kondo temperature by measuring the HWHM of the Kondo peak

along the dashed line in Fig. 4.5(a) at 0.3 K, shown in panel (b), giving TK ≈ 4.5.

We then measure the heights of the Kondo peaks vs. temperature as shown in Fig.

4.5(c), and fit them to the Goldhaber-Gordon model, (eq. 4.2), with s = 0.21 for a

spin-� system. We confirm TK = 4.4± 0.2 K in this device.

We now explore the magnetic field dependence of this device. In Fig. 4.5(d), we

show magnetic field splitting in differential conductance colour plots from 0 to 9 T.

This data corresponds to the boxed area in panel (a) with 4N +1 and 4N +3 charge

states labelled i and ii. We plot the positions of the Kondo peaks with respect to

magnetic field for states i and ii in Figs. 4.5(e)-(f) respectively. From linear fits to

the splitting, we calculate an average g-factor of gav = 1.92±0.08, in good agreement

with the expected value, g = 2.0.
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Figure 4.5: The Kondo effect in our devices. (a) Differential conductance plot for
Device A showing the Kondo effect. Along the dashed line, we extract a differential
bias plot, shown in (b). The HWHM of the Kondo peak gives TK ≈ 4.5 K. (c)
Temperature dependence of the Kondo peak, fit using the Goldhaber-Gordon model,
giving TK = 4.4± 0.2 K. (d) Magnetic field dependence of the Kondo effect at 0 and
9 T, from the boxed section in (a). (e)-(f) We observe a linear Zeeman splitting of the
Kondo peaks, noted by i and ii, with respect to magnetic field, giving gav = 1.92±0.08.
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Figure 4.6: Zero field splitting and the singlet-triplet Kondo effect. (a) Device A
differential conductance plot at 9T, showing dashed and solid lines corresponding
to the locations of the 1D cuts in panels (b) and (c). (b) We observe a split peak
which is independent of applied magnetic field, resulting from a magnetic impurity.
(c) We observe a 3-way splitting of the triplet Kondo peak with magnetic field and a
small zero-bias peak in this device. (d) This 3-way splitting has a linear dependence
on magnetic field, giving gav ≈ 1.72. From the splitting of these peaks we measure
δKK′ ≈ 4.9 meV. The zero-bias peak, likely from the impurity, splits with g ≈ 2.04.
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Fig. 4.6(a) shows linecuts along the same with dashed and solid lines corresponding

to panels (b) and (c) respectively. In panel (b), we show that the central peak is split

by ≈ 0.33 meV at B = 0, and does not split with B⊥, indicating that this state is

isospin based. Using an electron g-factor g = 2.0, this is equivalent to a magnetic

field of 1.4 T. A similar zero-field splitting of 0.51 T has been previously observed

[63], and was attributed to the localized field of a magnetic impurity, most likely a

ferromagnetic nanoparticle leftover from SWCNT growth. In our case we observe a

zero-field splitting which is three times as large. This indicates that ultra-short carbon

nanotubes could be a good platform for developing magnetic impurity sensors.

Now we wish to understand the magnetic dependence of the doubly occupied

diamond with charge state 4N + 2. We show differential conductance data along the

solid line in 4.6(a) at 0 and 9 T in panel (c). The large peaks at±5 meV split into three

as magnetic field is applied, corresponding to overall spins of±1 and 0 on the QD. This

signifies that we are observing the triplet state, and can therefore measure its energy,

approximately equivalent to the magnitude of intervalley scattering: δKK′ ≈ 4.9 meV.

We show the magnetic field dependence of the triplet state in panel (d), and measure

gav ≈ 1.72 at positive and negative bias (red and purple arrows), which is less than the

expected value. A reduction of g has been observed in the past, and was attributed

to strong e-e interactions or spin orbit coupling [28]. A final feature to point out in

this data is the barely visible zero bias peak (blue arrow) which splits with g ≈ 2.04

in the same diamond. This is likely due to by Zeeman splitting of the electrons on

the magnetic nanoparticle itself.
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In the same device, we observe a coexistence of the Kondo effect and

electromechanical coupling. In Fig. 4.7(a), we show a differential conductance colour

plot corresponding to a few-hole state, with solid and dashed lines corresponding to

the bias plots in panels (b) and (c). The data in these latter two panels was taken using

AC measurement techniques. In panel (a) we observe excitation sidebands which run

parallel to the Coulomb blockade (see sec. 4.3.2), some of which may correspond to

vibronic excitations. However, it is difficult to determine the energy of the vibronic

states in this device because no regularly spaced vibronic sidebands are visible. This

is likely due to a somewhat weak electromechanical coupling in this device.

Figure 4.7: Stretching vibron assisted cotunneling. (a) Differential conductance
colour plot, showing a partially unresolved sideband excitation spectrum (red arrows).
Solid and dashed lines correspond to data in panels (b)-(c). Blue arrows point out
weak zero-bias Kondo peaks for few-hole occupation. Red arrows point out the
evenly spaced inelastic cotunneling peaks caused by vibronic excitations with energy
ΔEstretch = 1.65±0.08 meV, matching the expected energy for this L ≈ 15 nm device.

However, we are able to resolve the vibronic spectrum due to Kondo enhanced

inelastic cotunneling through vibronic excitations. In panels (b) and (c), in addition to
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the zero-bias Kondo peaks (blue arrows), we resolve the first few stretching vibrons

(red arrow) with energy spacing ΔEstretch = 1.65 ± 0.08 meV, corresponding to a

vibronic length of Lvib = 22±3 nm. We find that their energies are not gate dependent,

as expected for stretching vibrons. The excitation energies are in good agreement with

the SEM length of this device LSEM = 15 ± 5 nm, and give a slightly larger length

than that of the hole channel of the QD, Lh+

G = 11 ± 2 nm, as is expected for an

n-doped nanotube. Because the vibron length is greater than that of the QD, it is no

surprise that e-v coupling is weak, as will be explained in section 4.3.2.

We only observe these vibronic peaks for few-hole occupation of the QD (large

VG). This is because at few-hole occupation the tunnel barriers are larger and the

zero-bias Kondo resonance which normally masks the faint vibronic peaks becomes

weaker. Thus, we find that due to the Kondo resonance, we can measure stretching

vibron assisted cotunneling in diamonds where these cannot be resolved in the

sequential tunneling sidebands, allowing us to probe the vibronic spectrum and better

understand the physics of our devices.

Inelastic cotunneling Kondo resonances allow us to measure the electronic

spectrum of ultra-short SWCNTs at low bias, as long as the device is below the

Kondo temperature. In other devices, we push the limits of the strength of the

Kondo effect in SWCNTs, allowing us to observe these effects at higher temperature.
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4.2.2 High Kondo Temperatures

In very short and high conductance devices, Γ and Ec are both large. According

to equation 4.1, these factors increase the Kondo temperature and can allow us to

make ultra-short devices with stronger electron-electron correlations. Our highest

conductance sample is Device E, showing Fabry-Pérot oscillations on the electron

side (see section 3.3.3). Hole transport through this ≈ 100 nm long device is in the

blockade regime and shows a very strong Kondo effect, as shown in Fig. 4.8(a).

Figure 4.8: High Kondo Temperatures. (a) Differential conductance plot from Device
E, showing a strong Kondo effect. We observe inelastic Kondo peaks, corresponding
to Δ and 2Δ, pointed out by the black arrows. The red and black lines correspond
to the bias cuts in (b) and (c) respectively. The HWHM of the Kondo peak gives
TK ≈ 28 K. We observe that the inelastic peaks are as strong as the zero-bias peak.

From the HWHM of the zero-bias peaks, we measure TK ranging from 17 K to

28 K with increasing |VG|. A strong and tuneable Kondo effect with different physical

properties has been observed in a 2D sheet of graphene (TK = 30 − 90 K) [64], and
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the Kondo temperature has been found to be tuneable by a factor of two in other QD

systems (TK < 1 K) [65]. However, to our knowledge, no other system has observed

0D transport with this high Kondo temperature and large degree of tuneability. This

high degree of control in Device E arises from the high electron tunneling rate strong

tuneability of tunneling barriers as a result of its small bandgap. Along the red line

in Fig. 4.8(a) we plot the differential conductance in panel (b). The HWHM of this

peak gives TK ≈ 28 K. To our knowledge, this is the highest Kondo temperature

observed in SWCNT QDs to date.

We observe a strong electron energy Kondo effect at |VB| = 13.5± 2 meV across

the entire blockade pattern, and a slightly weaker one at approximately twice this

energy |VB| = 26 ± 3 meV, as pointed out by the black arrows in panel (a). These

energies agree with electron spacing measured from diamond heights Δ = 11±2 meV.

This corresponds to a Dirac particle-in-a-box potential of length LΔ ≈ 124± 16 nm,

in reasonable agreement with SEM and gate capacitance measurements which give

L = 103 ± 9 nm. The strength of these peaks is measured along the black line in

Fig. 4.8(a) and shown to be as strong as the zero-bias Kondo peak in panel (c).

The second electronic excitation at 2Δ has not been observed before in SWCNT

QDs, and shows that the Kondo effect persists to very high energies, confirming its

strength. Besides high conductance and short length, the Kondo effect can be further

strengthened through electron-vibron coupling [66], allowing us to reach even higher

Kondo temperatures. Here we shift focus from strong e-e interactions to e-v coupling

in SWCNTs.
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4.3 Vibrons in SWCNTs: Background

Quantized mechanical excitations in a finite crystal lattice are known as vibrons.

When a tunneling electron interacts with the deformation potential of the lattice

structure, vibrons can be excited in the SWCNT. There are several different

vibrational degrees of freedom in SWCNTs, as outlined in Fig. 4.9. Each oscillation

mode has a different energy (ΔEvib) and e-v coupling (λvib), which depends on the

physical and electronic structure of the nanotube. Electron-vibron coupling describes

the strength of the interaction between charge carriers and the mechanical degrees

of freedom of the nanotube, and is related to the probability that a tunneling event

will excite a vibron [67]. Here we will briefly review the theory of e-v interactions

following ref. [68], focusing on the stretching and bending modes. The breathing

and twisting modes tend to be very weakly coupled to the longitudinal injection of

electrons in SWCNT devices, and are thus not observed in our devices.

4.3.1 System Hamiltonian

Fist we give the Hamiltonian of the system, which comes from the Anderson-Holstein

model, which depends on contributions from the electrons on the QD, vibrons, the

leads, and electron tunneling. H = Hel +Hvib +Hleads +HT . Here, we only expand

the terms which contribute to e-v coupling and the energy of the QD [68]

H =
∑
s=↑,↓

∑
v,q

[
ε+ λ(v)

q �ω(v)
q (b(v)q

† + b(v)q )j
]
ns+Un↑n↓+

∑
v,q

�ω(v)
q b(v)q

†b(v)q +Hleads+HT

(4.5)
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Figure 4.9: Vibrational degrees of freedom in a carbon nanotube. A SWCNT can
vibrate in a variety of manners including (top to bottom) stretching, bending, twisting
and breathing. Adapted from [68].
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where ↑ and ↓ denote electron spin, v and q represent the type of vibron and its

wavenumber, ε is the electronic energy, λq is e-v coupling, ωq is vibron frequency, ns

is the spin-number operator, j = 1, 2 describes weather the e-v interaction is linear or

quadratic (depending on the symmetry of the vibronic mode) and b†q and bq are the

vibron creation and annihilation operators. For all but the bending vibrational mode

the coupling is linear and j = 1, while j = 2 for the quadratically coupled bending

mode. This Hamiltonian is the starting point to understand e-v interactions in the

QD system. We first discuss the stretching vibrations of the SWCNT which couple

most strongly to longitudinal electron tunneling.

4.3.2 Stretching Vibrons

The longitudinal stretching vibrons of a carbon nanotube have been measured in

Coulomb blockade data by several groups, and match well with theoretical predictions

describing their relative strengths and energies [69]. A tunneling electron can excite a

quantum of vibrational energy as long as e-v coupling is strong. These excited states

provide additional tunneling pathways for the electron, as shown in Fig. 4.10(a).

Therefore, vibrational excitations appear as sidebands to the Coulomb blockade,

which onset when the Fermi level of the lead lines up with the excitation energy.

A data plot showing these vibronic sidebands from [69] is shown in Fig. 4.10(b). In

a differential conductance plot, these sidebands have energy spacings equal to the

vibronic energy ΔEstretch.
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Figure 4.10: Stretching vibron sidebands. (a) Energy level diagram, showing how a
vibronic excitation causes an increase in conductance. (b) Adapted from [69]. In this
65 nm device, many sidebands are observed from vibronic excitations. Their spacing
is given by ΔEvib = 0.8± 0.2 meV. Electronic excited states (Δ = 6.8± 2.5 meV) are
identified by the black arrows. Low bias vibron peaks are weak due to Franck-Condon
giving a strong e-v coupling λstretch ≈ 1.8.

The energy of a stretching vibron is given by [70]

Estretch =
hvph
2Lv

vph =

√
Y

ρ
(4.6)

where h is Planck’s constant, vph is the speed of sound in a carbon nanotube, Lv is

its length, Y ≈ 1 TPa is the bulk modulus of CNTs, and ρ = 3080/d kg/m3 is the

carbon nanotube density which depends on d, its diameter in nm. The stretching

mode coupling depends on the relative sizes and positions of the dot and vibron.

Depending on the mechanical pinning of the CNT, these do not always coincide. For

long vibrons which occupy the entire QD (Ld = Lvib), the electron vibron coupling

is only non-zero when the vibronic wavenumber integer (m) is equal to twice the
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electronic excitation number of the electron n′ and is given by [68]

λstretch ≈ −δm,2n′
1.5√
mπd

(4.7)

If the quantum dot is much smaller than the length of the vibron Ld � Lvib, the e-v

coupling is more dependent on the position of the QD in relation to the vibron. If

the dot is localized in a region of intense vibron-induced strain, the coupling reaches

a maximum value

λmax
stretch ≈ 3.0√

mπd
(4.8)

The m and d dependence of these equations ensures that only the only appreciable

coupling occurs in long-wavelength modes in small diameter nanotubes.

The relative intensity of the vibron peaks is described by the Franck-Condon

model [69]. For strong e-v coupling, this model predicts the suppression of low bias

vibronic sidebands, due to a small overlap between the wavefunctions of the electron

before and after the excitation of a vibron [69]. The Franck-Condon model allows us

to fit the measured differential conductance peaks by

(
dI

dV

)max

m

∝ e−ggm

m!
(4.9)

where m is the vibron wavenumber integer, and the Franck-Condon factor (g), is

related to the electron-vibron coupling parameter by g = λ2. For g ≥ 1 (strong

coupling), the peaks for small m are exponentially suppressed, and only the large m
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vibronic peaks can be resolved. The e-v coupling can be measured experimentally

by fitting the intensity of the vibron peaks with respect to vibron number. Although

understanding the nature of stretching vibrons is of fundamental importance, the

bending oscillations of a nanotube are more useful for NEMS applications.

4.3.3 Bending Vibrons

Unlike stretching vibrons, bending vibrons are not expected to couple strongly to the

longitudinal injection of electrons in to the nanotube. The maximal coupling for the

bending mode is given by [68]

λmax
bend ≈

40Lvib

m2 (πd)3
(4.10)

for nb = 1, where nb is the integer harmonic of the bending mode. This relationship

defines a strong bending mode coupling only for long wavelength vibrons in devices

where the nanotubes are very long, and have small diameter. Experimentally, this

quantity can be measured by [71]

λexp
bend =

F 2

�m∗
tube (2πfbend)

3 (4.11)

where F is the electrostatic force on the CNT,m∗
tube = 0.725ρLtubeπr

2
tube is the effective

mass of the oscillator, where ρ , Ltube, and rtube are the density, length, and radius, of

the nanotube respectively, and fbend is the bending frequency. The electrostatic force
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on the SWCNT is given by the QD potential [72]

F =
1

2
C ′

G

(
VG +

CGVG −Ne

CΣ

)2

(4.12)

where C ′
G = ∂CG/∂tvac is the differential gate capacitance with respect to the

oscillatory deflection of the nanotube, CG and VG are the gate capacitance and gate

voltage, and CΣ is the sum capacitance of the system. For the higher harmonics,

nb ≥ 2, the coupling is even weaker and decreases with increasing nb [68]

λmax
bend ≈ 10−4n

2
b + 1

n4
b

πd

Lvib

(4.13)

Figure 4.11: Positive feedback mechanism for bending vibrons. For sharp Coulomb
diamonds, a deflection of the nanotube can alter the gate capacitance. The causes the
electron state to cross the Coulomb threshold, increasing the likelihood of tunneling
in phase with the oscillatory motion. The electron on the QD is electrostatically
attracted to the gate electrode driving the oscillations through a positive feedback
mechanism. This makes it possible to observe the bending mode with DC transport.
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Thus, we do not expect to see any sidebands from the bending mode in our

data; the coupling is simply too weak. For comparison, strong e-v coupling to the

stretching mode is given by λstretch > 1, while typical values for the bending mode

are λstretch ∼ 10−4. However, it does become possible to observe collective resonant

oscillations of the nanotube through a positive feedback mechanism [73], which is

depicted schematically in Fig. 4.11. An image charge on the gate electrode causes an

attractive interaction between the nanotube and the substrate, which is only present

when the QD is occupied. This small shift in position modulates gate capacitance. As

long as the blockade diamonds are very sharp, this change in capacitance can cause

the QD state to cross the Coulomb threshold, increasing the likelihood of tunneling at

the nadir of the nanotube’s motion. This electromechanical driving further actuates

the device. The electrons enhance the bending through an electrostatic attraction in

phase with the bending of the nanotube. This forms the positive feedback necessary to

observe the bending mode [11]. This feedback causes a deformation of the Coulomb

diamond such that we can observe this bending mode resonance deep inside the

blockade where current is normally disallowed.

To excite this resonant positive feedback, several conditions are necessary. First,

the source-drain bias must be large enough to excite oscillations with energy ΔEbend =

hfbend, which for devices under minimal longitudinal strain is given by [74]

fbend,T=0 = 11.19
d

(4πLvib)
2

√
Y

ρ
(4.14)
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In our 100s of GHz devices we expect Ebend < 1 meV. Second, the tunneling rate

through the device must be at least equal to the bending mode frequency, such that

each bending vibron coincides with the tunneling of at least one electron, Γ ≥ fbend.

This allows the continuous driving of the oscillatory motion. Third, the Coulomb

thresholds must be very sharp so that a small change in CG results in a large change

in conductance.

The final condition necessary for self-actuation of the bending mode is a high

quality factor (Q). In large Q devices, the vibrons are long lived, allowing many

in-phase vibrons populate the QD, increasing the amplitude of the oscillator [72].

In turn, this increases the likelihood that a tunneling event will coincide with the

excitation of a vibron. This gives an effective e-v coupling λ∗
bend = λbend

√
Q, coming

from the probability of electron coupling (g = λ2), which depends on the number of

vibrons occupying the dot: g∗ = Qg.

Assuming harmonic motion, the Q-factor in our devices is given by [72]

1

Q
=

1

2πfbendm∗
tube

(
2C ′

GVg

ΓCΣ

)2

G (4.15)

where C ′
G is again the derivative of the gate capacitance in the direction normal to

the substrate, and VG and G are the gate voltage and conductance at which the

resonance occurs respectively. By substituting variables, we find that Q ∝ 1/L2
vib.

Because Q and Ec are both inversely related to length, we only expect to observe this

positive feedback in ultra-short devices. This explains why the bending mode was not
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until recently observed through DC transport in carbon nanotubes [11]. A schematic

diagram showing differential conductance plot including the bending mode resonance

and stretching vibrons is shown in Fig. 4.12(a).

Figure 4.12: Bending frequency measurement from Coulomb blockade. (a) Schematic
diagram showing vibronic effects in a differential conductance plot. Black, red and
blue arrows point out stretching vibrons, in-phase bending resonance out-of-phase
bending resonance respectively. The dashed line shows the ideal position to measure
bending frequency, where external contributions are minimal. (b) This ideal point of
measurement corresponds to the inflection point, in a IBM − VG plot from Device B.

Depending on the relative phases of the bending oscillations and electron

tunneling, the bending mode can enhance or reduce the flow of current by forward

or back scattering of electrons [75]. In our devices the relative phase of bending

motion to electron tunneling is determined by the Q-factor, bending frequency, and

capacitances of the system [72, 75]. To fully understand this phase behaviour requires

complicated modeling and is beyond the scope of this thesis.

Because we observe both current enhancement from the Coulomb peaks and

out-of-phase damping further along the bending mode resonance, it is important
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to measure the current where these effects are minimal to determine the bending

frequency. This occurs at approximately the inflection point of a I−VG plot along

the bending resonance as shown in Fig. 4.12(b). This corresponds to a point

approximately one quarter of the diamond width at resonance, along the dotted line

shown in panel (a). Here we are deep enough inside the valley to reduce current from

sequential tunneling, but to avoid the further reduction from out of phase driving. In

this region the only mechanism allowing the tunneling of electrons is the e-v coupling

to the bending mode, with approximately one electron tunneled per oscillation [11, 73]

Thus, we can measure the bending frequency indirectly though current measurements

in DC transport.

Γ =
IBM

e
≈ fbend (4.16)

where IBM is the current along the bending resonance deep inside the blockade

diamonds. Depending on the magnitude of the bending frequency compared to the

background, the error in determining this ideal measurement position can be sizeable,

but generally gives less than 30 % error in the frequency measurement.

We can tune the frequency of the bending mode resonance by applying strain to

the nanotube. The strain induced frequency is given by [74]

fbend,T 	=0 =
1

2π

[
3.54

dLvib

√
T

ρ
+

πd

2L2
vib

√
Y

ρ

]
(4.17)

where T is the tension in the carbon nanotube. Tension in the carbon nanotube

can be, built into the geometry of the contacts during suspension, or can be applied
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Figure 4.13: Electrostatic strain tuning of a SWCNT NEMS device. A capacitive
attraction between the back-gate electrode and the suspended contacts causes them
to bend towards the substrate. The suspended contacts act as lever arms which can
apply large strains, up to ≈ 10% [11].

electrostatically, by applying a gate voltage which causes the suspended contacts to

act as lever arms. A diagram illustrating the nature of electrostatic strain tuning in

our SWCNT NEMS is shown in Fig. 4.13. Thus, we can electrostatically alter the

tension in the carbon nanotube, and tune its bending frequency.

4.4 Bending Mode Resonances and SWCNT

NEMS Devices

We clearly resolve vibronic effects in our devices using DC transport spectroscopy.

This is in part due to the fact that our nanotubes are suspended (no damping by the

substrate), and in part due to the cleanliness of our devices from the electromigration

process. Because our devices are so short, the vibronic energies become large and

therefore easy to resolve. Here we describe the vibronic signatures we observe, starting

with stretching mode sidebands, and then self-actuated bending mode resonances.
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4.4.1 Stretching Vibrons in Ultra-short SWCNTs

We observe stretching mode oscillations with many sidebands in our devices.

Differential conductance data from two such devices, are given in Fig. 4.14. The

stretching vibrons can be resolved as sidebands, pointed out by the black arrows.

Figure 4.14: Stretching vibrons in our devices. (a)-(b) We measure vibronic energies
from two devices as the separation between vibronic sidebands, highlighted by the
black arrows. These energies, 4.9 and 2.8 meV respectively, correspond to devices of
length 10.8 and 16.3 nm respectively, in good agreement with SEM measurements.

The energies of the vibrons can be read directly from the differential conductance

plots at the points where the sidebands cross the blockade thresholds, highlighted

by the black arrows. We measure vibronic energies of 4.9 and 2.8 meV respectively,

corresponding to stretching frequencies of 1.2 and 0.7 THz. Using equation 4.6, this

corresponds to lengths Lvib = 10.8 and 16.3 nm respectively. Although the nanotubes

were not visible in SEM images of these devices due to their short length, we estimate
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the lengths of the devices by measuring the gap between the electrodes in the vicinity

of the nanotube. We find reasonable agreement with lengths of LSEM ≈ 11.7 and 18.8

nm respectively. Thus, by measuring the stretching vibron spectrum, we can confirm

the length of our ultra-short devices.

We observe the suppression of low bias stretching vibrons in panel (b). This

is due to Franck-Condon blockade, resulting of the small overlap of the electronic

wavefunctions before and after the emission of a vibron [69]. Because we observe

many sidebands of similar amplitudes at high bias, and exponentially suppressed

sidebands at low bias in our devices, we deduce from the Franck-Condon model

that our devices have a strong e-v coupling with λstretch � 1. While stretching

vibrons are of fundamental interest, bending vibrons are more useful in terms of

NEMS applications and will be discussed in detail in the following sections.

4.4.2 Proof of Bending Vibrons in Ultra-short SWCNTs

We will now outline the previous work that has been done on bending vibron

resonances in ultra-short carbon nanotubes in our group, showing how we observe

the bending mode through a positive feedback mechanism. These results have been

published in ref. [11].

We observe a positive feedback mediated bending mode resonance in several of

our ultra-short devices. A differential conductance colour plot from one such device

with L ≈ 22 nm shown in Fig. 4.15. As explained in section 4.3.3, we can measure

current deep in the blockade along the bending mode resonance peak, giving us
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an approximate measure of the bending resonance frequency. In the differential

conductance plot in Fig. 4.15(a), we again observe stretching vibronic sidebands

running parallel to the blockade lines. However a sharp, non-parallel feature exists

around VB = 40 meV, corresponding to the bending mode resonance. We highlight

this peak using a dashed line. Current and differential conductance plots along the

red and black solid lines are shown in panels (b) and (c) respectively. Panel (c) shows

that the bending resonances are much sharper and stronger than the stretching vibron

peaks. This is because of the strong positive feedback nature of the bending resonance.

Figure 4.15: Self-actuated bending frequency from DC measurements. (a) Differential
conductance plot, showing stretching mode sidebands (black arrows) and bending
mode resonance (dashed line). (b) 1D cuts along the red and black lines showing
current vs. bias. (c) Corresponding dI/dV plots, highlighting the sharpness of the
bending resonance. Extracting frequency from current deep inside the blockade
we measure fbend ≈ 75 GHz, matching the theoretical frequency for a L ≈ 22 nm
nanotube fT=0 ≈ 63 GHz. Adapted from [11].
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We measure current deep in the blockade to be I = 12 ± 5 nA at the resonance

peak, corresponding to a bending frequency of fbend ≈ Γ = 75 ± 30 GHz. This is in

good agreement with the frequency calculated from equation 4.14, fT=0 ≈ 63 GHz.

We observe this agreement in several devices in the 20-30 nm range [11].

We observe that by annealing a given device, the bending resonance becomes

sharper, and can even emerge in a sample where bending mode resonances did not at

first appear. This is because current annealing increases the quality factor, thereby

increasing the effective e-v coupling λ∗
bend. In the above device, we calculate the Q-

factor to be Q ∼ 106 using equation 4.15, one of the highest Q factors measured in

CNTs to date [72]. This enhances the positive feedback and makes DC measurement

of this self-actuated system possible.

We find that the frequency of oscillation is tuneable by applying tension to the

nanotube. We can actuate this tension using the electrostatic attraction between the

suspended contacts and the gate, stretching the carbon nanotube. We model this

attraction and determine that tension in the nanotube goes like T ∝ V 2
G [11]. The

data where this is best exemplified is shown in Fig. 4.16(a). We extract the current

along the bending mode (black points) and find that in the Coulomb valleys we have

a good agreement with theory for both the high and low tension regimes from eq. 4.14

and 4.17 [11]. From the current at low and high tension we observe that we can tune

the bending frequency by a factor of two from ≈ 75 to ≈ 150 GHz.

We have been able to achieve ultra high-frequency devices in a device with built-

in mechanical strain. In one of our devices, the contacts became partially collapsed
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Figure 4.16: Strain tuneable bending mode oscillations. (a) Differential conductance
data from an electrostatically strained device. By applying a gate voltage, we can
tune the bending resonance frequency from ≈ 80 to ≈ 150 GHz in this sample. (b)
SEM image of a mechanically strained junction, with built-in strain from partially
suspended contacts. (c) Corresponding differential conductance plot showing a
stretching sideband (black arrow) and bending mode resonance (red arrow/dashed
line). In this device we measure a bending frequency ≈ 280 GHz. Adapted from [11].
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during suspension, applying a large degree of strain as shown in Fig. 4.16(b), with the

corresponding differential conductance plot shown in panel (c). By calculating the

geometric strain from the positions of the contacts to be ≈ 11%, we determine the

expected frequency to be fT 	=0 = 176±49 GHz. This matches the frequency extracted

from the Coulomb valleys of this device, giving fbend = 281 ± 63 GHz. By carefully

engineering very short devices under large strains, we may be able to attain tuneable

THz NEMS for ultrasensitive mass/force sensor applications with better than proton

mass resolution [51]. This section has summarized the data published in ref. [11],

showing that we observe a strong bending resonance in our ultra-short devices. Now

we move on to discuss the new, unpublished results we measure from bending mode

oscillations.

4.4.3 Bending Vibrons: New Results

We now investigate a sample with both strong e-e interactions, manifested as the

Kondo effect, and strong e-v interactions resulting in the bending mode resonance.

We show data differential conductance data from Device B, corresponding to electron

occupations N = 2−5 in Fig. 4.17(a), with panels (b)-(c) showing 1D cuts in current

and differential conductance along the red and black vertical lines. The odd and

even charge states have very different diamond heights in this device. This will be

explored in section 4.5. We highlight the Kondo peaks (which will be analyzed in

section 4.5.2), with white arrows, and the bending resonances with black arrows.

From the widths of the diamonds we determine the length of the quantum dot to
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be Lvib = 16 ± 2 nm. Using eq. 4.14, this corresponds to a zero tension resonance

frequency of fT=0 = 51 ± 9 GHz. The corresponding energy of the bending vibrons

is ΔEbend ≈ 0.2 meV. We might expect to observe Kondo enhanced vibronic inelastic

cotunneling peaks in this device, but this energy is too small to be observed, as it is

masked by the large zero-bias Kondo effect.

Figure 4.17: Bending vibrons and the Kondo effect. (a) Differential conductance plot
from Device B. The measured bending frequency fbend ≈ 45 is in good agreement
with the expected frequency fT=0 ≈ 50 GHz in this ≈ 15 nm device. We observe the
second bending harmonic (upper black arrow) with f2 ≈ 84 GHz. (b) 1D cuts along
the black and red lines, show current vs. bias voltage. (c) Corresponding differential
conductance plots illustrate the strength of the Kondo peak at zero bias in relation
to the adjacent bending mode peaks at VB = 1− 2 meV.

We extract the bending frequency deep inside the Coulomb diamond along the

red line in Fig. 4.17(a). We note that the onset of the bending mode occurs at
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a much lower bias than has been observed in other devices. This is because the

Kondo effect enhances the conductance at low bias, allowing the QD to reach the

current needed to drive the bending mode at a much lower energy. This emphasizes

that the positive feedback truly depends on tunneling rate, and not energy. We

extract current of the resonance to be I = 7 ± 2 nA, corresponding to a bending

frequency of fbend = 45 ± 13 GHz, in good agreement with theory. We observe an

additional, similar looking second peak at 3.1±0.1 meV. This peak occurs at a current

of ≈ 13.5 nA, corresponding to a bending mode frequency of 84 ± 10 GHz. Because

this is approximately double the frequency of the first bending mode, we conclude

that this is the second harmonic. This is the first time that the second harmonic has

been observed by DC measurement. Using equations 4.15 and 4.11, we determine the

Q-factor in this device to be Q = 3± 2× 104, and e-v coupling λbend = 5± 2× 10−2.

This gives an effective coupling λ∗
bend = λbend

√
Q = 9± 3. We find that the effective

coupling of the second harmonic is somewhat lower λ∗
bend = 4 ± 1, as expected [68].

This explains why the second harmonic peak is less sharp.

In Fig. 4.17(b)-(c) we show one dimensional bias cuts in current and differential

conductance respectively along the red and black lines from panel (a). We observe

strong bending mode peaks at finite bias, which are only slightly stronger than the

zero-bias Kondo peaks.

We see the effects of current annealing in this device in Fig. 4.18. This device

was annealed for 10 min at 8 μA and ≈ 600 meV, corresponding to a power of

4.8 μW. It can be seen that after annealing, the bending modes and Kondo resonance
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Figure 4.18: The effects of current annealing. Device B was annealed several times,
but the best annealing was found to be 10 min at 4.8 μW. The clear result is that
the Kondo peaks and bending resonances became stronger and better resolved.

both became sharper, and the second harmonic of the bending mode becomes visible.

This is because annealing cleans the carbon nanotube, increasing its quality factor

and improving the positive feedback resonance. The Kondo peak becomes sharper

though stronger electron-vibron coupling, as explained in ref. [18]. Now we discuss

another manifestation of the strong e-v coupling in this device, a renormalization of

the classical energy needed to charge the QD.
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4.5 Charging Energy Reduction by Bending

Vibrons and the Kondo Effect

In devices where the vibronic frequency and coupling are both large, it becomes

possible for polarons, quasiparticles made up of a moving electron and its surrounding

polarization field in a crystal lattice, to alter the energy states of the system [18]. This

can be thought of as a quasiparticle consisting of an electron surrounded by a cloud of

vibrons. Depending on the strength of this e-v coupling, two possible regimes emerge.

For weaker e-v coupling, the charging energy of odd-numbered diamonds is reduced

by a polaronic shift, while for very strong e-v coupling, the effective charging energy

becomes negative, causing a charge analogue of the Kondo effect to emerge [19, 76].

Strong electron-vibron coupling can also enhance the Kondo effect by increasing the

QD-lead coupling, and allowing us to reach higher Kondo temperatures.

4.5.1 Charging Energy Renormalization: Background

In devices where the vibron frequency and e-v coupling are both large, it becomes

possible for polaronic effects to alter the energy states of the system. In our ultra-short

devices, both the degree of e-v coupling and frequency can be very high, amplifying

the magnitude of this renormalization. The effective charging energy (E∗
c ) of a system

with strong e− v coupling is given by [18, 66]

E∗
c = Ec − 2λ∗2

vibhf0 (4.18)
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In our devices, the bending mode is weakly coupled, but the effective coupling can

be strong λ∗
bend = λbend

√
Q ∼ 1. In two-fold degenerate QDs, charging energy

renormalization is predicted to affect the odd numbered diamonds only. This

is because only the odd numbered states are affected by the polaronic shift, as

determined from the Hamiltonian of the system [18]. This causes the merger of

the blockade peaks in the gate direction, and a reduction of the diamond heights,

which can be so strong that it suppresses the charging energy altogether, eliminating

odd diamond states [19].

The Kondo coupling (J) is enhanced by e-v coupling in this regime, and therefore,

so is the Kondo temperature. The normalized increase in Kondo coupling for weak

e-v coupling is given by [18]

Jvib
J0

≈ 1 +
2λ2hf0/Ec

1 + Ec/hf0
+ h.c. TK ∝ exp

( −1

Jvibρ0

)
(4.19)

where ρ0 is the electronic Green function describing the interaction between the

SWCNT and the leads. From this equation, we can understand that as λ and

f0 increase, the Kondo temperature increases. Therefore, electron-vibron coupling

enhances e-e interactions in our devices.

For very strong e-v coupling, such that Ec − 2λ∗2
vibhf0 < 0, the negative effective

charging energy results in an attractive force between electrons. A charge based

analogue of the Kondo effect emerges, which has its own Kondo temperature, and

is expected to eliminate Coulomb blockade diamonds [66]. In this case, the ground
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state of the system is degenerate between zero and double occupancy, with the charge

Kondo effect flipping between these two. This results in pair tunneling across the

device [19]. In our devices, we observe the weak coupling regime, with charging

energy reduction of the odd charge states, and an absence of the charge Kondo effect.

4.5.2 Observation of Charging Energy Reduction and the

Kondo Effect

Because of the short length of our devices, we achieve high bending mode frequencies

and strong e-v coupling. As a result, we observe a polaronic charging energy

renormalization, and a Kondo effect which is enhanced by electron-vibron coupling.

In device B, we observe a reduction of the charging energy, and width, of the odd

diamonds, as shown in Fig. 4.19.

Figure 4.19: Charging energy reduction in Coulomb blockade. We observe for odd
electron occupancy both the charging energy (Ec), and the width of the blockade
diamonds (ΔVG) are greatly reduced due to a polaronic shift of the QD energy levels.
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First we investigate the Kondo effect in this 2-fold degenerate device. We

determine the Kondo temperature, as shown in Fig. 4.20(a)-(b). A differential

conductance vs. bias plot shows the HWHM of the Kondo peak to be TK ≈ 1.6 K.

Using the Goldhaber-Gordon model, we extract a Kondo temperature TK ≈ 1.5 K,

in good agreement, confirming that this is indeed the Kondo effect. We also observe

splitting of the Kondo peak from 0-9 T, shown in Fig. 4.20(c)-(d). However, the

g-factor we extract from this splitting is quite small, g = 1.5 ± 0.2. This could be

explained by spin-orbit coupling or strong e-e interactions such as the formation of

a Wigner crystal [28]. An alternative explanation could be the strong e-v coupling

we observe in our devices, interacts with the magnetic field, or that the g-factor of

polarons in our devices is smaller than that of electrons.

At high temperature the Q-factor of the oscillator decreases due to thermal

dissipation and the blockade peaks become thermally broadened. This disrupts the

positive feedback mechanism necessary to excite the bending resonance, and renders

the charging energy reduction negligible. We show this effect in Fig. 4.21(a)-(b) with

differential conductance data from Device B at 50 K and 0.3 K respectively. In panels

(c)-(d) we show the smooth Vadd and ΔVG curves at 50 K (black), in contrast to the

drastic variations between even and odd occupation observed at 0.3 K (red). This

is because as we lower T , the bending mode feedback becomes active, and polaronic

shifts reduce the size of the odd diamonds.

By comparing the same charge states at different temperatures we can measure the

effective charging energy. For the third electron state, we measure E∗
c = 3.9±0.3 meV,
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Figure 4.20: Bending mode and Kondo: temperature and magnetic field dependence.
(a) Bias sweep along VG = 6.91, showing Kondo peak with HWHM giving a Kondo
temperature TK ≈ 1.6 K. (b) We observe good agreement with the Goldhaber-
Gordon model for the temperature dependence of the differential conductance peak
and confirm that TK ≈ 1.5 K. (c)-(d) We observe zero bias peak-splitting as we
increase from 0 to 9 T, and calculate g = 1.5± 0.2.
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Figure 4.21: Charging energy reduction in device B. (a) Differential conductance plot
showing evenly spaced diamonds at 50 K. (b) Similar differential conductance plot at
0.3 K, showing a reduction in charging energy for diamonds with odd occupation from
the onset of the bending mode. (c)-(d) Addition energy and blockade diamond width
at 50 K (black) and 0.3 K (red). We observe the clear charging energy reduction for
odd numbered states at low temperature.
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and Ec = 18.5 ± 2 meV. Using the measured fbend ≈ 50 GHz, we determine the

experimental e-v coupling to be λ∗
bend = 5 ± 2, in agreement which the theoretically

determined value of λ∗
bend = 9 ± 3. Because bending frequency and effective e-v

coupling increase with gate in this device, the charging energy of odd diamonds is

reduced with increasing charge occupancy to the point of complete suppression.

To illustrate that the diamond spacing truly is regular at high T , we show an

I − VG plot at 32 K in Fig. 4.22(a). We observe an increase in conductance away

from the bandgap due to n-doping from the contacts, with a superimposed pattern of

periodic blockade peaks. In panel (b), we show the gate sweep behaviour from 0.6 K

to 16 K. We can observe the convergence of two phenomena with decreasing T .

Figure 4.22: Effective charging energy and the Kondo effect. (a) Gate sweep of Device
B at 32 K, showing regular Coulomb oscillations which saturate due to n-type doping
by the contacts. (b) Gate sweeps as in (a) at temperatures ranging from 0.6 K to 16 K.
The Coulomb peaks begin to merge for odd occupation with increasing temperature.
This is due to the onset of the bending resonance at low temperature reducing Ec,
and an increase in zero-bias conductance from the Kondo effect [18].
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First, the effective charging energy becomes smaller. We observe pairs of evenly

spaced peaks at high temperature which merge together at lower T . This is due to

the thermal smearing of the bending mode resonance, which disrupts the positive

feedback and eliminates the polaronic reduction of the charging energy at high T .

Second, the sets of two Coulomb peaks are not just being added linearly as

temperature is lowered, and additional conductance peak begins to dominate. This

is due to the Kondo effect which is enhanced by strong e-v coupling and high vibron

frequency [18]. Above the Kondo temperature, this effect does not play a large role,

but as the temperature decreases, the Kondo effect begins to obscure the blockade

diamonds completely, as can be seen for high occupation at 0.6 K in panel (b). Thus,

in this device, we observe the predicted behaviour of polarons and the Kondo effect

[18] in molecular transistors for the first time, to our knowledge.

By attaining this regime with very small or even negative effective charging energy,

new applications become available. For example, in devices with asymmetric source-

drain tunnel barriers, and a negative effective charging energy, it has been predicted

that the shape of the Coulomb peaks becomes gate-asymmetric [19]. Therefore, by

tuning the gate to either the positive or negative blockade peak, only positive or

negative current could flow respectively. This could allow such a nanometer scale

device to rectify an AC signal into a DC signal. This type of device could also

be used to explore new applications of electron-vibron coupling, form new types of

NEMS devices or, to explore the charge Kondo effect and negative charging energies

in ultra-short carbon nanotubes [19, 66].
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Chapter 5

Conclusion

We refined an electromigration procedure to fabricate very short (∼ 10 nm) and clean

SWCNT quantum dots. Although the sub-10 nm QD regime has been touched on

at room temperature [4], to our knowledge, no one has created suspended devices

below the 10 nm length scale, or investigated ∼ 10 nm SWCNTs at low temperature.

By creating such short devices, we study contact effects and explore the limits of

downscaling molecular transistors, investigate electromechanical interactions which

can be used to form high quality NEMS devices [11, 51], study electron coherence

effects [9] and investigate quasi-particle interactions [19]. Several of these effects

are exemplified in the differential conductance plot from one of our devices shown

in Fig. 5.1, which shows conductance asymmetry, Coulomb blockade, Fabry-Pérot

interferences and a very strong Kondo effect all in the same device.

We described the fabrication steps and instrumentation necessary to generate

and measure these devices, culminating in the electromigration procedure.
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Figure 5.1: Vast tuneability in ultra-short SWCNTs. In our devices, we observe
striking differences between the behaviour of electrons and holes and strong electron
spin coherence resulting in gate-tuneable Kondo effects with TK up to 28 K.

Electromigration allows us to etch our gold break junctions on the nanoscale,

separating the contacts by just a few nanometers and defining our ultra-short devices,

while simultaneously annealing them [3]. We measure a strong transistor effect with

an on/off ratio of > 4100 in one of our devices at 300 K. At less than 10 nm, this is

one of the smallest SWCNT transistors made to date, and its fabrication only made

possible by our electromigration method.

We explored the electron-hole transport asymmetry which arises from doping by

the contacts in our short devices. This results in a fundamental difference between the

electronic potential, conductance, channel length, and transport regime for electrons

and holes. In our devices, we observe an asymmetry in the charging energy of electrons

and holes up to a factor of 3. In small bandgap devices, we observe a conductance

asymmetry which allows us to tune between the Coulomb blockade regime and the
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Fabry-Pérot regime using an electrostatically coupled gate electrode. These gate

tuneable barriers could be useful in electronics devices which require coherent electron

physics [29], while still preserving QD behaviour.

In our devices, mechanical bending vibrations of the nanotube have been observed

with very high frequencies up to 280 GHz [11]. These devices have high Q-factors

(Q ∼ 106) which allow us to observe self-actuated bending mode resonances using

DC transport. We observe the second harmonic of the bending mode and measure

the effective electron-vibron coupling to be λ∗
bend > 1. As NEMS, these devices could

be used as sensitive mass sensors [12, 13], or in charge pumping circuits [77].

Due to strong spin interactions between the QD and the leads, we measure some

of the highest Kondo temperatures in SWCNTs to date. The Kondo temperature is

enhanced by the short length of our devices, giving TK up to 28 K. In addition, we

find that the Kondo temperature is highly gate-tuneable to 17 K, nearly a factor of 2.

This coherent electron physics could be exploited in spintronics applications [8, 9],

be used as a tool to measure excitation spectra [16] and could further enhance the

bending mode [15].

A reduction of the charging in our devices at low temperature indicates polaronic

renormalization of the odd occupation energy levels of the quantum dot. This is

a result of strongly coupled high frequency bending vibrons. We find that the

charging energy is suppressed to the point of elimination for high electron occupation.

Although predicted as early as 2004 [18], this is to our knowledge the first time this

effect has been observed in molecular transistors. By enhancing this effect, new types
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of devices, such as nanoscale current rectifiers or spintronics devices can be made

using the charge analogue of the Kondo effect [19, 66].

By pushing scaling limits of SWCNT quantum dot transistors, we have been able

to observe new fundamental physics, which helps us to gain understanding of short

SWCNT systems and could be used in a variety of nanoscale electronics devices.

While some of our research confirms what has been previously predicted, we also

find some dramatic differences. These can allow us to engineer new types of devices,

and push the scaling limits of SWCNT nanoelectronics into the few-nanometer range,

allowing for new types of smaller, faster, and more efficient electronic devices in the

future.
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Appendix A

Operation of Cryostat

Putting the system in neutral. When neither condensing nor cooling:

• Sorb Heater: off

• Needle Valve: ≈ 8

• 3He dumps: ≈ 0 mbar

• Pirani: 1− 5 mbar

• 1K pot: 1.3− 1.5 K

These settings allow a liquid 4He reservoir to build up in the sock and maximal cooling

of the 1K pot. The needle valve allows liquid 4He to flow from the sock to the 1K pot.

As the needle valve is closed, the 1K pot will drop in temperature; this is because the

maximum surface area to volume ratio in the 1K pot will be achieved. Be sure not

to completely block the flow through the needle valve.
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Condensing Helium 3 into the 3He tail:

• Check Loop 1 settings, 40-45 K on Cryocon

• Sorb Heater: on (“control” button on Cryocon)

• Needle Valve: ≈ 7

• Allow temperature to stabilize at 40-45 K

• Let 3He condense for 1-2 hours

• 3He dump pressure should rise to ≈ 40 mbar, then fall to 0 mbar

• 1K pot 1.3 K

These settings will allow the sorb to heat up, while still maintaining a low temperature

on the 1K pot and not boil off much LHe4 in the sock. Heating the sorb outgases the

3He. When this gas passes near (through) the 1K pot, it cools and condenses into

the 3He tail.
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Running to Base Temperature

• Sorb Heater: off (push “stop” button on Cryocon)

• Needle Valve: ≈ 10.5

• Allow temperatures to drop and stabilize at ≈ 0.3 K

• Then close needle valve to ≈ 9

• 3He dump pressure be 0 mbar

• Sorb temperature should drop to � 12 K

Having the needle valve open more at first will cause the 1 K pot to rise in temperature

and the LHe4 reservoir in the sock to start depleting (4He dump pressure increases).

However, opening the needle valve will cool the sorb more quickly and cause less 3He

to be absorbed on cooldown, increasing hold time. Once the sorb has cooled, adjust

the needle valve so that the sorb stays below 12 K, but the 1K pot is as cold as

possible.
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Appendix B

Igor Pro Macros

Introduction:

These macros will make data analysis easier, but they often depend on each other.

I will outline the dependencies here, discussing what input is needed and then

state the procedure for using each macro, before mentioning why certain errors are

called. It is important to know that Igor can only handle wave names with up to 31

characters. Here I limit the char number to 30 just to be safe. In addition, all Igor

object names must only contain alphanumeric characters and the underscore. No

other characters are allowed. I did not have time to create error detection for this

problem.
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ChopMacro v 1.2:

Function: This macro is a function which runs off of Matt’s Partial Chop and Load

macro, making it easier to use. This macro chops a 2D wave into all possible 1D bias

or gate waves. This macro requires input with the same formatting as the output

from Plot Everything v4.2.

Dependencies: This macro depends on functions within the ChopMovie v7.5 macro

and the Partial Chop and Load v3.1 macro.

Usage: To use this macro, select a top graph (2D plot) and click the ChopMacroBGC

item from the dropdown list. You will be prompted to select whether you want bias

or gate waves. Click ok and the waves will be chopped for you.

Errors: This macro leaves a buffer of 10 characters in the macro name for the output,

so the input wave cannot be more than 20 characters. This macro does not work for

dI/dV plots.
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ChopMovie v 7.5:

Function: This macro chops a given 2D wave into all possible 1D bias or gate waves

and then plots them as 1D cuts according to the position of the cursor on the plot.

This cursor can be moved by mouse or by the arrow keys to create a movie of the

1D cuts. This macro requires input with the same formatting as the output from

Plot Everything v4.2 or Rebin2D v4.0.

Dependencies: This macro depends on functions within the Partial Chop and Load

v3.1 function.

Usage: To use this macro, select the top graph (2D plot) and click the chop movie

item from the dropdown list. Now you may drag the cursor around with the mouse

or keyboard to see differential and current 1D cuts for bias and gate sweeps. To

save a graph as a new plot, click export. It will create the same plot with an “e”

extension. When finished, click stop and you will be prompted to either keep the

chopped waves, or kill them.

Errors: This macro leaves a buffer of 12 characters in the macro name for the output,

so the input wave cannot be more than 18 characters. This macro does not work

for dI/dV plots. If an instance of the moviecontrol window is still active, it must be

closed. The source waves must be present.
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Colourplot Mega v 4.0:

Function: This is a modification of the colourplot macro by Joshua. It is designed

to work in sync with the other macros and depict I − VB − VG 2D data properly. It

is easier to use this function through the Plot Everything macro, but this one still

works if that is not possible.

Dependencies: This macro depends on Image Range adjust.

Usage: To use this macro, just choose colourplot mega from the dropdown list. You

will be prompted to fill in data about your sample. “Plot everything” does this for

you, but if you need to use this macro: select bias gate and current waves from the

dropdown menus of the macro, select output matrix name and choose whether you

want image, table or both, Temperature at which the data was taken, prefactor

symbol (n,u,m) and corresponding factor (1E-9,1E-6,1E-3). Igor will do the rest.

Errors: None built in.
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Extract Cursor (BCG) v 4.0:

Function: This macro creates a table of values from dI/dV and current plots selected

by the user, allowing the user to select points highlighting certain features of the

plots. Dependencies: None.

Usage: To use this macro bring a 2D image to the foreground, either I − VB − VG or

dI/dV − VB − VG. Choose the macro from the dropdown list, name the table where

the data will be stored, and choose if your data is dI/dV or current in the z axis.

Adjust the cursor to collect the first value. This will be a 3 column I − VB − VG

table for a current plot. For a dI/dV plot, the macro with store dI/dV − VB − VG

data and corresponding current data (as long as the current wave is present) in a 4

column table. Click continue after moving the cursor to the first point, select if you

would like to continue or stop taking data points. Repeat as necessary.

Errors: Will show error if Chop Movie macro is running. Both depend on cursors

and cannot run at the same time.

Partial chop and Load v 3.1

Function: This function chops specific waves from 2D data. An easier, but more

restricted user input is available through ChopMacro v1.2. For more information,

see Matt’s PDF on this macro.
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PlotEverything v 4.4:

Function: This macro takes output from motorcurve and electromigrator software by

Joshua and plots it in a nice format. This macro works for bias sweeps, gate sweeps

and megasweeps (bias ad gate) for plotting differential conductance and current as

well as annealing curves and migration curves. All input voltages must be in volts,

unless otherwise specified. Input must be made in the following manner: any number

of characters and underscores followed by a space, then automatic naming from

Joshua’s software. Ex. **** ** **** * Mega Sweep or **** ***** ELECTROM.

This is easily achievable in the software by typing in your data set name, followed by

a single space. The software will do the rest. Igor will save the waves under the same

name with a new prefix ex. Bias, Curr, Gate. This format can then be used in

the other macros. For a megasweep, the suffix DIF implies a 2D image wave, while

DIF1, is the 1D dI/dV wave.

Dependencies: This macro depends on the colourplot mega v4.0 macro for mega

sweeps and Image Range Adjust.

Usage: To use this macro select it from the dropdown menu. You will be prompted

to input the temperature at which the data was taken and the external resistance

of the circuit (input of zero resistance does not take this into account). In addition,

this resistance correction will fail if the bias points are too close to zero, causing

a round off singularity. The macro will automatically take you to the computer’s
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data folder where you can select your data file. The software will read the type of

data and the current units, incorporating this into its plotting algorithms. If you

select a Gate Sweep data file, you will be prompted to input a bias voltage at which

the gate sweep was taken. Igor will save an image of your plot automatically to

C:/data/igorimages/(todays date).

Errors: If the file name does not contain a space, Igor will give an error as it cannot

find what type of data it is. If the name is too long, Igor will give an error. If waves

of the same name already exist, Igor will replot the data, but will not overwrite the

old waves. An invalid prefactor in the data file will also produce an error. This

would mean that something has been changed in the CVI file.

SaveImage v 1.0:

Function: This macro saves the top graph to C:/data/igorimages/todays date,

naming it automatically. This is much faster than going through the “save graphics”

menu.

Usage: Bring whichever graph you want to save to the front of the experiment.

Select save image from the dropdown menu.

Errors: If no image or trace is detected on the top graph, the macro will abort.
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Rebin1D v 1.3:

Function: This macro uses the built-in interpolate function to bin data points

together, averaging out noise. Both the input bias/gate wave and current wave will

be rebinned.

Usage: To use this macro select it from the dropdown menu. You will be prompted

to select the x and y waves for rebinning, as well as how many points you want

to average over per new data point: the bin size (does not have to be an integer).

Lastly, choose the prefactor of the current wave. Igor will plot and save the new waves.

Errors: If wave name is too long, an error will occur. If x and y waves have different

dimensions, an error will occur. If binsize is greater than the number of points or less

than one (indicating a greater number of data points), an error will occur. Invalid

prefactor will also result in an error.
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Rebin2D v 4.0:

Function: This macro uses a function similar to rebin1d after chopping all of the

bias (gate) waves. It then parses all of this information back together to be plotted

as a 2D image. This macro can handle either one bias rebin, one gate rebin, or one

bias and one gate rebin. Due to naming restrictions, further rebinning is not possible

Finally, this macro will add a fair bit of text to the wave name, so it is important to

keep wave names short, especially if you plan on doing a bias rebin and a gate rebin

of the same graph.

Dependencies: This macro depends on colourplot mega v.4.0 and Image Range adjust.

Usage: Bring the selected I-Vb-Vg plot to the foreground. Select rebin2d from the

drop down menu and choose whether you want to rebin the bias or gate waves, and

how many points per bin (does not have to be an integer) you would like. The macro

will do the rest, plotting the I − VB − VG and dI/dV plots.

Errors: This macro will give an error if the plot is not I − VB − VG, if you try to

rebin the same direction on the same plot twice, if the wave name is too long, if the

bin size is too big (greater than number of points) or too small (< 1) or if the wave

dimensions are off.
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Appendix C

Table C.1: Device Summary

Device Length (nm) Bandgap (meV) V h+

add/V
e−
add TK (K) fvib (GHz)

A1 15± 5 - - 4.4± 0.2 -

B2 15± 5 255± 35 3.1 1.6± 0.2 fb = 45± 13

C 45± 10 110± 15 1.2 - -

D3 ≈ 5 380± 80 3.4 - fs ≈ 3800

E4 104± 9 54± 10 - ≈ 28 -

1Kondo splitting by magnetic impurity at B = 0 and singlet-triplet Kondo effect
2Second bending harmonic and polaronic renormalization, E∗

c → 0
3Room temperature transistor with Ion/Ioff > 4100
4Gate-tuneable transition from Coulomb blockade to Fabry-Pérot and very strong Kondo effect
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