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Abstract

Problems related to broadcasting in graphs

Hayk Grigoryan, Ph.D.

Concordia University, 2013

The data transmission delays become the bottleneck on modern high speed inter-

connection networks utilized by high performance computing or enterprise data cen-

ters. This motivates the study directed towards finding more efficient interconnection

topologies as well as more efficient algorithms for information exchange between the

nodes of the given network.

Broadcasting is the process of distributing a message from a node, called the

originator, to all other nodes of a communication network. Broadcasting is used

as a basic communication primitive by many higher level network operations, which

involve a set of nodes in distributed systems. Therefore, it is one the most important

operations, which can determine the total efficiency of a given distributed system.

We study interconnection networks via modeling them as graphs. The results

described in this work can be used for efficient message routing algorithms in switch

based interconnection networks as well as in the choice of the interconnection topolo-

gies of such networks.

This thesis is divided into six chapters. Chapter 1 gives a general introduction

to the research area and literature overview. Chapter 2 studies the family of graphs

for which the broadcast time is equal to the diameter. Chapter 3 studies the routing

and broadcasting problem in the Knödel graph. Chapter 4 studies the possible vertex

degrees and the possible connections between vertices of different degrees in a broad-

cast graph. Using this, a new lower bound is obtained on broadcast function B(n).

Chapter 5 presents some miscellaneous results. Chapter 6 summarizes the thesis.
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Chapter 1

Introduction

Broadcasting is the process of distributing a message from a node, called the origina-

tor, to all other nodes of a communication network. The process of this transmission

is called message broadcasting. Message broadcasting is one of the basic collective op-

erations in parallel computing [32]. It is used in the implementation of other higher

level collective operations such as: accumulation (or gather in MPI terms) where

the data from all nodes of the network is collected in the single node, scatter during

which the set of data(message) is divided into pieces and each piece is sent to differ-

ent node, or global reduction operations(for example sum, maximum, logical and/or,

etc.). Despite the importance, the effective implementation of collective operations is

still not a resolved problem [106]. The criteria for estimating the efficiency are many.

It can be the time required for broadcasting the message, the interconnection network

construction cost, fault tolerance etc.

1.1 Definitions of the main problems in the re-

search area

The real interconnection networks can be modeled in many different ways. By making

different assumptions on the communication lines of the network, on the ability of

nodes to simultaneously send/receive multiple messages and on many other network

characteristics, we can get different models. One of the most common assumptions

on the communications lines are:

1. Each call requires one unit of time.
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2. Each call involves only one informed node and one of its adjacent nodes.

3. Each node can participate in at most one call per unit of time.

Under these assumptions, the model we are getting is realistic and at the same time,

simple enough to be studied mathematically. This model in literature is called the

telephone model or classical model. Many results obtained in this model directly or

after small modifications usually are also applicable in the real world networks. For

example, the first assumption about ignoring the message length may be seen as too

artificial. However, we can still represent the real world networks with this model

where the message transmission time usually depends on the length of the message.

One approach to this, is to assume that large messages are divided into smaller ones,

so that all the message transmission times can be considered as equal.

A network can be modeled as a connected graph G = (V,E), where V is the set

of all nodes and E is the set of all communication lines.

The broadcast time b(s,G) or just b(s) of a vertex s in a connected graph G is

defined as the minimum time required to inform all the vertices of G from originator

s.

We can define themessage broadcasting from an originator s in a graph G = (V,E)

more formally. The message broadcasting is a sequence of vertex sets {s} = S0 ⊂
S1 ⊂ ... ⊂ Sk = V , where each Si represents the set of informed vertices after the

i−th time unit for all i = 1, ..., k. We also require that all the vertices of set Si\Si−1

are connected by disjoint edges with set Si−1, so they all can receive the message from

Si−1 in one time unit via these connecting edges. The minimal k will be the broadcast

time b(s,G) of vertex s in G.

The broadcast time b(G) of a graph G = (V,E) is defined as:

b(G) = max{b(s) | s ∈ V }.

The minimum broadcast time in a graph G, i.e. the broadcast time of the op-

timally chosen vertex in G, is denoted by bmin(G). The formal definition is the

following:

bmin(G) = min{b(v) | v ∈ V }.
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The set of calls used to distribute the message from originator s to all other

vertices is called a broadcast scheme for vertex s. The broadcast scheme for s is

a spanning tree rooted at s and all the communication lines are labeled with the

transmission time. Each communication line is used exactly once and the message is

always transmitted from a parent to a child. We will refer to this tree as broadcast

tree.

The broadcast center of the given graph G = (V,E), denoted BC(G), is defined

as:

BC(G) = {v | v ∈ V, b(v,G) = bmin(G)}.

Thus, BC(G) is the set of vertices in G, with the smallest broadcast time.

We observe that in each time unit, an informed vertex may send the broadcast

message to at most one of its uninformed neighbours. So after each time unit, the

number of informed vertices can at most double. Therefore, to complete the broad-

casting from a single vertex, in any graph G with n vertices we need at least ⌈log2 n⌉
time units, thus

b(G) ≥ ⌈log2 n⌉ .

A graph G on n vertices, with b(G) = ⌈log2 n⌉ is called a broadcast graph. In

other words, from each vertex of a broadcast graph, it is possible to complete the

broadcasting in the theoretically minimum possible time. A broadcast graph with the

minimum possible number of edges is called a minimum broadcast graph (mbg). More

formally, a graph G = (V,E) with |V | = n is an mbg if and only if b(G) = ⌈log2 n⌉ and
for each spanning subgraph G′ = (V,E ′), where E ′ ⊂ E, we have b(G′) > ⌈log2 n⌉.

An mbg represents the cheapest possible architecture to build a network, in which

broadcasting can be accomplished in theoretically minimum possible time. The broad-

cast function B(n) is defined as the number of edges in an mbg on n vertices.

There are two main directions of the research about broadcasting in graphs. Both

directions received considerable attention in the literature. The first one is about

finding various network related properties of a given graph. The second one is about

designing graphs with certain properties. In this thesis we focus on two problems in

the classical model of broadcasting:

1. Broadcast Time problem: Given a graph G = (V,E) and a vertex s ∈ V ,

determine b(s,G).

3



2. Minimum Broadcast Graph problem (MBG): For any given n, construct

a minimum broadcast graph on n vertices.

These two problems represent two different approaches to the broadcasting in graphs.

The solution of the first problem for a given graph G, in some sense, tells as how good

topology G is for a construction of an interconnection network where the broadcasting

is expected to be a frequent operation. The second problem addresses the issue

of optimizing the cost of the network construction between n nodes. Under the

constraint that broadcasting should be completed in the theoretically fastest possible

time, we are trying to construct a graph (interconnection topology) on n vertices

(nodes) by using the smallest possible number of edges (links).

According to [63], the broadcast time problem was introduced in 1977 by Slater,

Cockayne and Hedetniemi. Some initial research results on this problem are presented

in [26, 104]. The minimum broadcast graph problem was introduced in [27]. Large

sources of information about broadcasting and related problems are survey articles

[33, 63, 67] and book [68].

1.2 Known results about the broadcast time prob-

lem

The NP-hardness of the broadcast time problem for general graphs is mentioned

in [37] and proved in [104]. The proof used a reduction of the three-dimensional

matching (3DM) problem to the broadcast time problem. In [88] it is shown that the

broadcast time problem remains NP-hard even for regular planar graphs of degree 3.

As in the case of other NP -hard problems, the minimum broadcast time problem is

addressed by many different approximation algorithms and heuristics with reasonably

good proximities and running times.

Only for very few graph families, an algorithm for the broadcast time problem with

a polynomial time complexity is known. An algorithm with linear time complexity

for the exact solution of the broadcast time problem in trees is presented by Slater,

Cocakyne and Hedetniemi in [104]. Their algorithm finds in linear time the broadcast

center of the given tree, and using it, determines the broadcast times of all vertices of

the tree. In [95] Proskurowski suggested another linear time algorithm for the same
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problem, which without finding the broadcast center, determines the broadcast time

of a vertex in a tree. A linear time algorithm is also known for the unicyclic graphs

(connected graphs with only one cycle) [57, 58]. Algorithms for the exact solution of

the broadcast time problem for a few other tree-like graph families are presented in

[85].

1.2.1 Approximation algorithms for the broadcast time prob-

lem

The first approximation results for the broadcast time problem were an O( log2 n
log logn

) ap-

proximation algorithm presented by Ravi [96] and an O(
√
n) additive approximation

algorithm presented in [75]. The algorithm by Ravi is based on calculating the poise of

a graph. The poise of the tree is defined as the sum of its diameter and the maximum

degree. The poise of a graph G, denoted P (G), is defined as the minimum poise of

all its spanning tress. Determining the P (G) is another NP -hard problem, but Ravi

gives O(log n) approximation algorithm for it and shows the b(G) = O( logn
log logn

·P (G))

relation between broadcast time of a graph and its poise. This yields the mentioned

approximation algorithm.

Two different algorithms with O(log n) approximation ratio were presented in [4]

and in [23]. The first algorithm uses the linear programming, while the second one is

based only on a combinatorial approach. The best known approximation algorithm for

broadcast time problem is presented in [24] and has a sub-logarithmic approximation

ratio O( logn
log logn

).

There are several results on the lower bound of the possible approximation ratio

as well. By using a reduction from the E3 − SAT problem, Schindelhauer in [102]

proved that there does not exist a polynomial time approximation scheme (PTAS )

for the broadcast time problem unless P = NP . In particular the author proved

57/56− ϵ inapproximability of the broadcast time problem for arbitrary ϵ > 0. This

result was improved in [23]. It was shown that it is NP -hard to approximate the

solution of the broadcast time problem within a factor of (3− ϵ) for arbitrary ϵ > 0.
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1.2.2 Heuristics for the broadcast time problem

We observe, that in each time unit of an optimal broadcast process, the edges used

to send the message, form a maximum matching between sets of informed and un-

informed vertices. For a graph G = (V,E), let b(S,G) denote the time needed to

complete the broadcasting from set S ∈ V of informed vertices in G. Using this

notation, the following recurrence relation for B(S,G) is presented in [101]

b(S,G) = 1 +min{b(S ∪M(S), G) | M is a maximum

matching in G between sets S and V − S}.

As claimed in [101], by using this relation, a backtracking algorithm for the broad-

cast time problem with exponential running time is implemented in [100]. The com-

plexity analysis of the algorithm was not given by the authors. Various rules used

in the implementation to decrease the run time of the algorithm, make it very hard

to perform such analysis. In the same article [101], three heuristics for the broadcast

time problem are given. All of them are based on the relation above, but instead

of choosing an optimal matching in each round, they choose the matching according

to some well defined rule. In [75] it is shown that on some graphs all these three

heuristics may yield Ω(
√
n) time worse broadcast time than the optimal.

The comparison of some early suggested heuristics behavior on partial meshes

(grids) can be found in [36]. Simulation results suggest that the best results are

achieved by the heuristics presented in [6] and [60]. The heuristic in [6] is a based

on a matching and has a complexity O(Rmn log n), where R is the broadcast time

returned by the heuristic, n andm respectively are the number of vertices and edges of

the graph. The heuristic presented in [60] archives similar or on some graph models

from ns − 2 network simulator better results with significantly smaller complexity

O(Rm).

Additional results about heuristics can be found in [49, 62, 65, 97].
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1.3 Known results about the minimum broadcast

graph problem

There has been significant research on the problem of finding minimum broadcast

graphs. Despite the considerable effort, an mbg is known only for very few n. Only

three non isomorphic infinite graph families are known as minimum broadcast graphs.

These families are the hypercubeHk, the recursive circulant graphG(2k, 4) introduced

in [90] and the Knödel graph Wk,2k introduced in [73]. The hypercube and the re-

cursive circulant graph give an mbg only for n = 2k(k ≥ 1) [27, 73, 90], while the

Knödel graph is an mbg also for n = 2k − 2(k ≥ 2)[21, 70]. A detailed description

and comparison of these three graph families can be found in [30].

1.3.1 Broadcast function

The broadcast function, denoted B(n), is defined as the number of edges in an n

vertex minimum broadcast graph. To determine the value of B(n), we need to find a

solution of the corresponding MBG problem, which means that determining B(n) is

a difficult problem.

The value of the broadcast function, obtained by the above mentioned three graph

families is:

B(2k) = k · 2k−1,

B(2k − 2) = (k − 1) · (2k−1 − 1).

For some small values of n, specially constructed minimum broadcast graphs are

also known. Figure 1 illustrates minimum broadcast graphs for 2 ≤ n ≤ 15 from

[27]. All the currently known values of B(n) and the corresponding references are

presented in Table 1.

Since it is extremely difficult to find the exact values of the broadcast function,

a considerable effort has been made on finding tight upper and lower bounds on

B(n). Usually to get an upper bound on B(n) we should construct a broadcast graph

on n vertices and pick the number of its edges. For a lower bound we should use

the graph-theoretic properties of the minimum broadcast graphs, e.g. the minimum

possible vertex degree and derive from them a lower bound on its number of edges.

7



n B(n) Ref.
1 0 [27]
2 1 [27]
3 2 [27]
4 4 [27]
5 5 [27]
6 6 [27]
7 8 [27]
9 10 [27]
10 12 [27]
11 13 [27]
12 15 [27]
13 18 [27]
14 21 [27]
15 24 [27]
17 22 [89]
18 23 [9, 109]
19 25 [9, 109]
20 26 [84]
21 28 [84]
22 31 [84]
23 33 or 34 [11, 84]
24 35 or 36 [5, 9]
25 38, 39 or 40 [5, 9]
26 42 [99, 110]
27 44 [99]
28 48 [99]
29 52 [99]
30 60 [9]
31 65 [9]
58 121 [99]
59 124 [99]
60 130 [99]
61 136 [99]
63 162 [78]
127 389 [47]
1023 4650 [103]
4095 22680 [103]
2p p2p−1 [27, 73, 90]

2p − 2 (p− 1)(2p−1 − 1) [21, 70]

Table 1: Known values of broadcast function B(n).
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n=7 n=8 n=9

n=10 n=11 n=12

n=14n=13 n=15

Figure 1: Minimum broadcast graphs for 7 ≤ n ≤ 15.

Below is a list of some general properties of the broadcast function:

• B(n) ≤ 1
2
n · ⌊log2 n⌋ . This upper bound is obtained in [25] by a recursive

construction of a broadcast graph on n vertices. The construction combines

two or three smaller broadcast graphs on approximately n/2 or n/3 vertices.

This construction was generalized in [12] where the combination of 5, 6 or 7

smaller broadcast graphs was used. These 5− way, 6− way and 7− way split

methods later generalized to k − way split method described in [8].

• B(n) ≥ n
2
· (⌊log2 n⌋ − log2(1 + 2⌊log2 n⌋ − n)). This lower bound is obtained

in [39]. Let p be the index of the leftmost 0 bit in the binary representation

(αm−1αm−2...α1α0) of n−1. In [74] the B(n) ≥ n
2
·(m−p−1) bound is obtained.

This bound later improved in [52] to B(n) ≥ n
2
· (m − p − 1 + β) where β = 0

if p = 0 or if α0 = α1 = ... = αp−1 = 0, otherwise β = 1. In [103] it has been

9



shown that except few special forms of the binary representation of n − 1, the

B(n) ≥ n
2
· (m− p+ β) bound holds.

• B(n) ∈ Θ(nL(n)), where L(n) is the number of leading 1’s in the binary repre-

sentation of n− 1. This result is obtained in [40].

• B(n) ≤ n(m− k+ 1)− 2m−k − 1
2
(m− k)(3m+ k− 3) + 2k for n = 2m − 2k − r,

0 ≤ k ≤ m− 2, 0 ≤ r ≤ 2k − 1. This result is obtained in [51] where an ad-hoc

construction method is described. The construction for arbitrary n produces a

broadcast graph with the above mentioned number of edges. Considering the

fact that B(n) ∈ Θ(nL(n)), it is worth to be mentioned that this upper bound

on B(n) is O(n) for n in the range 2m + 1 ≤ n ≤ 2m + 7 · 2m−3 for arbitrary

m ≥ 3.

• B(n) is non-decreasing for all n from interval 2m−1+1 ≤ n ≤ 2m−1+2m−3. This

result is obtained in [53] and partially addressed a long-standing conjecture that

B(n) is monotone for n in the range 2m + 1 ≤ n ≤ 2m+1 for all m ≥ 0. This

conjecture is mentioned in [9, 34].

We will speak more about the broadcast function in Chapter 4 which is dedicated

to the problem of finding tight lower bounds on B(n).

1.3.2 Broadcast graph construction methods

Recall that during the discussion of the properties of broadcast function, we mentioned

methods for constructing broadcast graphs such as recursive, ad-hoc and k−way split

methods. These methods allow to construct a broadcast graph for arbitrary n and

give an upper bound on B(n). In this section we will continue this discussion.

In [70], the compounding method of broadcast graph construction was presented.

The method is based on combining smaller broadcast graphs which have certain type

of vertex cover. In [8] authors generalize the method by introducing the concept of

soled h-cover. Although it is hard to use the compounding for general n, many known

values for B(n) are obtained through this method.

A construction based on combining hypercubes is presented in [40]. Authors used

generalized Fibonacci numbers for describing the broadcast schemes in constructed

broadcast graphs. Thus referring their construction as the Fibonacci method.

10



In [108] the concepts of center node and official broadcasting was introduced.

Using these concepts, the generalized doubling method was presented to construct a

broadcast graph on 2n vertices using a broadcast graph on n vertices for some special

forms of n.

Construction, which has improved most of the known upper bounds for B(n), is

presented in [51]. It is based on compounding Knödel graphs or hypercubes and after

merging one or several vertices to get sparse broadcast graphs for most values of n.

Several other methods are presented in [1, 9, 39, 40, 47, 107, 109].

The reason why so many construction methods exist is that most of them give

good results only for very special forms of n. Known upper bounds on B(n) are

obtained by combining different methods for broadcast graph construction. This

makes it impossible to say that any single construction method is the best.

We will speak more about broadcast graph construction methods in Chapters 2

and 3.

1.4 Some well studied graph families

In this section we list some graph families with well studied properties related to

networks. Such properties are the diameter, the maximum degree, the number of

edges, broadcast time etc. Most of them are well known graphs from the graph theory.

Others are specially introduced as good topologies for interconnection networks. The

main properties of discussed graph families are summarized in Table 2. For some of

these graphs, the exact value of broadcast time is not known. In such cases the best

known lower and upper bounds in the form of an interval are given in Table 2.

• The path graph Pn (see Figure 2):

Pn = ({v1, v2, ..., vn}, {(vi, vi+1) | 1 ≤ i ≤ n− 1}).

1 2 3 n-1 n

Figure 2: The path Pn.
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• The cycle(ring) graph Cn (see Figure 3):

Cn = ({v1, v2, ..., vn}, {(vi, vi+1) | 1 ≤ i ≤ n− 1} ∪ {(v1, vn)}).

Figure 3: The C5 and C7 graphs.

• The complete graph Kn (see Figure 4):

Kn = ({v1, v2, ..., vn}, {(vi, vj) | 1 ≤ i ≤ n, 1 ≤ j ≤ n, i ̸= j}.

Figure 4: The K4 and K6 graphs.

• A tree graph Tn : A tree Tn is an acyclic connected graph on n vertices.

• The binomial tree Bd (see Figure 5): We will define the binomial tree

recursively. The binomial tree of order 0 (B0) is a single vertex. The binomial

tree of order k (Bk) has a root vertex of degree k whose children are roots of

binomial trees of order k − 1, k − 2, ..., 0 (in this order).

• The hypercube graph Hd (see Figure 6): Hd = (V,E) where

V = {(α1α2...αd) | αi ∈ {0, 1}},

E = {((β1β2...βd), (γ1γ2...γd)) | |β1 − γ1|+ |β2 − γ2|+ ...+ |βd − γd| = 1}.

12



Figure 5: The B0, B1, B2 and B3 graphs.

000

100

110 111

011

001

010

101

Figure 6: The H3 graph.

• The d-torus graph T (n1, ..., nd) (see Figure 7):

T (n1, ..., nd) = Cn1 × ...× Cnd
.

Figure 7: The T (3, 4) graph.

• The d-grid graph GD(n1, ..., nd) (see Figure 8):

GD(n1, ..., nd) = Pn1 × ...× Pnd
.

• The cube connected cycles graph CCCd: CCCd = (V,E) where

V = {(i, α) | i = 0, 1, ..., d− 1, α ∈ {0, 1}d},

E = {((i, (α1α2...αd)), ((i+ 1)mod d, (α1α2...αd)))}∪

13



Figure 8: The GD(3, 4) graph.

{(((i, α1...αj...αd)), (i, (α1...ᾱj...αd))) | j = 1, 2, ..., d}.

We can construct CCCd by replacing the vertices of the hypercube Hd with

the cycles of length d. The edges of the hypercube are adjusted such that each

vertex on a cycle will have two neighbours on the same cycle and one neighbour

in some other cycle.

• The binary de Bruijn graph DBd (see Figure 9): DBd = (V,E) where

V = {(α1α2...αd) | αi ∈ {0, 1}},

E = {((βα2...αd), (α1α2...αd−1γ)) | αi, β, γ ∈ {0, 1}}.

000

001

010 101

100 110

111

011

Figure 9: The DB3 graph.

• The star graph Sd (see Figure 10): The star graph is a member of a class of

graphs called Cayley graphs [3, 87]. The d− star graph is the Cayley graph on

the group Sd consisting of all permutations on d symbols, and the set of d− 1

generators

g = {(2, 1, 3, ..., d− 1, d), (3, 2, 1, ..., d), ...,

(i, 2, ..., i− 1, 1, i+ 1, ..., d), ..., (d, 2, 3, ..., 1)}.
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Figure 10: The S4 graph.

• The shuffle-exchange graph SEd (see Figure 11) : SEd = (V,E) where

V = {(α1α2...αd) | αi ∈ 0, 1},

E = {((α1α2...αd), (α1α2...ᾱd))} ∪ {((α1α2...αd), (αdα1...αd−1))}.

000 001

100

010

101

011

110 111

Figure 11: The SE3 graph.

• The butterfly graph BFd : BFd = (V,E) where

V = {(i, α) | i = 0, 1, ..., d− 1, α ∈ {0, 1}d},

E = {((i, (α1α2...αd)), ((i+ 1)mod d, (α1α2...αd)))}∪

{(((i, α1...αj...αd)), ((i+ 1)mod d, (α1...ᾱj...αd))) | j = 1, 2, ..., d}.
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• The Knödel graph W∆,n (see Figure 12): The Knödel graph is only defined

for an even number of vertices. W∆,n = (V,E) where

V = {(i, j) | i = 1, 2 j = 0, 1, ..., n/2− 1},

E = {((1, j), (2, (j + 2k − 1) mod (n/2))) | j = 1, ..., n/2; k = 0, 1, ...,∆− 1}.

We will speak more about the Knödel graph and its properties in Chapter 3. It

is dedicated to the routing and broadcasting problem in the Knödel graph.

(1,4)

(2,4)

(1,5)

(2,5)

(1,6)

(2,6)

(1,1)

(2,1)

(1,2)

(2,2)

(1,3)

(2,3)

(1,0)

(2,0)

(2,6)dim 0

dim 1

dim 2

Figure 12: The W3,14 graph.

• The recursive circulant graph RC(n, d) (see Figure 13): The RC(n, d)

graph introduced in [90] and is only defined for d ≥ 2. RC(n, d) = (V,E) where

V = {0, 1, ..., n− 1},

E = {(u, u+ di modn) | i = 0, 1, 2, ..., ⌈logd n⌉ − 1}.

1.5 Other models of broadcasting

The model of broadcasting discussed in previous sections is called the telephone model

or classical model. It is the most studied model, but there are some other models too.

To have a complete introduction to the research area, we will shortly describe some

of these models in the following.

1.5.1 k-broadcasting

The k-broadcasting is a variation of the classical broadcasting model where an in-

formed vertex in a single round can simultaneously inform up to k neighbours. The
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Figure 13: The RC(16, 4) graph.

k-broadcasting in trees is studied in [52, 56, 76, 77, 95, 104]. Results for general graphs

are presented in [40, 52, 74, 79, 80].

1.5.2 Open-path model

The open-path model was introduced by Farley in [26]. In this model in each time

unit an informed vertex u may send the message to an uninformed vertex v via a path

of arbitrary length. This is a generalization of the classical model where in each time

unit only adjacent vertices can receive the message from an informed vertex. The

paths used in each time unit, must be vertex disjoint. For this reason, the open-path

model is sometimes called vertex disjoint path mode broadcasting.

1.5.3 Open-line model

The open-line model is also introduced in [26]. The model is similar to the open-path

model, except that in each time unit the paths used for sending the message, must

be edge disjoint. This model is also called edge disjoint path mode broadcasting.

1.5.4 Broadcasting with universal lists

The broadcasting with universal lists is a model of broadcasting where the order in

which an informed vertex informs its neighbours is predefined and does not depend on
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the broadcast originator. The broadcast scheme in this model consists of a function,

which assigns a single ordered list of neighbours to each vertex in a graph. This list is

called the universal list. Regardless of the broadcast originator, each informed vertex

informs its neighbours in the order defined by its universal list.

This model has two versions: adaptive and nonadaptive. In the adaptive version,

each informed vertex tracks the vertices from which it receives the message. During

sending the message, it skips them from its universal list. In the nonadaptive version

an informed vertex does not know from which neighbour the message comes from. It

sends the message to all of its neighbours.

The adaptive model of broadcasting with universal lists was introduced in [98]

where the broadcasting in trees under this model was studied. In [19, 20], authors

introduced the nonadaptive model of broadcasting with universal lists. They studied

both adaptive and nonadaptive models in trees, rings, grids, toruses and complete

graphs. An upper bound on nonadaptive broadcast time for two dimensional tori

is presented in [61], where this broadcast model was studied under the name orderly

broadcasting. In [71] the nonadaptive version of this model was studied in paths, com-

plete k-ary trees, grids, complete graphs, and hypercubes. The nonadaptive broad-

casting in trees was recently studied in [55].

1.5.5 Broadcasting in unknown networks or messy broad-

casting

The messy broadcasting model was introduced in [2]. The main difference of this

model, from the classical model, is that here the protocols of nodes are not coordi-

nated. In this model, a node knows nothing about the topology of the network or

the broadcast originator. The behavior of a node only depends on its all or some

neighbours. Depending on the amount of information available for each node about

its neighbours, 3 sub models were considered. Below, these sub models are listed in

the decreasing order of information available in each node.

• Model M1: Each node knows the state of its all neighbours, i.e which are

informed and which are not. Using this information, in each time unit, an

informed node sends the message to one of its uninformed neighbours.

• Model M2: Each node keeps a list of all neighbours from which it received
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a message or sent a message. In each time unit, it sends the message to a

neighbour not present in the list.

• Model M3: Each node keeps a list of all neighbours to which it sent a message.

In each time unit it sends the message to a neighbour not present in the list.

We note that in M2 and M3 models, a node may send a message to a node which is

already informed. This is a “price” paid for the simplicity of the broadcast protocols.

The exact values for the worst-case messy broadcast time of various graphs such

as complete graphs, paths, cycles, and complete d-ary trees for all three sub models

are presented in [50]. More recent results are presented in [48]. The exact values of

the worst-case messy broadcast time in M1 and M2 models and bounds in M3 model

are given for the hypercube. In [16, 45] multidimensional directed tori and complete

bipartite graphs are studied. The average-case messy broadcast time of stars (claws),

paths, cycles, complete d-ary trees and hypercubes are studied in [81].

The same model under the name broadcasting in unknown networks is studied in

[38]. Very similar model with a limited knowledge of the network topology is studied

in [86], where a vertex knows the topology of the network only within knowledge

radius r from it.

1.5.6 Fault-tolerant broadcasting

The fault-tolerant communication is a huge area of research. It is assumed that the

nodes and/or links of the network are not reliable. A faulty link may stop transmit

messages and a faulty node may stop to send or receive messages. Number of results

are presented specially for broadcasting and gossiping in faulty networks.

The fault-tolerant broadcasting model was introduced in [82], where the k-tolerant

broadcast function Bk(n) is defined. Bk(n) is the minimum number of links in a

network supporting k-tolerant broadcasting from any originator in theoretical smallest

possible time. This research was continued in [13].

In [1], the minimal k-fault tolerant broadcast graphs were studied. Authors gener-

alize the minimum broadcast graph problem. They study the networks where up to

k links may fail, but any originator still must be able to complete the broadcasting

in optimal time.
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The survey article [91] provides detailed overview of the fault-tolerant communi-

cation problem in the context of broadcasting and gossiping. More recent overview

of the known results can be found in [68].

1.5.7 Radio broadcasting

In the radio broadcasting model, an informed vertex in each time unit can send the

message to all its neighbours simultaneously. Note that a vertex cannot send the

message to a strict subset of its neighbours. A vertex is considered to be informed if

it receives the messages from precisely one neighbour in a certain time unit. The intu-

ition behind this constraint is that a message received from more than one neighbour

in the same time unit gets corrupted. There is a considerable amount of literature

regarding this model. See e.g. [15, 17, 18, 92, 93, 105].
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2


− 2 3
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
− 2 [83]
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3
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(d+ 1) [94] [10]
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d−1 ⌈log2 n!⌉ ≤ D(Sd) ≤

⌈log2 n!⌉+

7d
4


+⌈log2 d⌉

SEd 2d 3 · 2d−1 2d− 1 3 2d− 1 [66]

BFd d · 2d d · 2d+1

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
4 1.7417d ≤ D(BFd) ≤

2d− 1 [72]
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d d

W∆,n n 1
2
∆n See [44] or

Chapter 3
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
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4


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Table 2: The properties of the discussed graph families.
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Chapter 2

Diametral Broadcast Graphs

This chapter studies the family of graphs for which the broadcast time is equal to

the diameter. The diametral broadcast graph (dbg) problem is to answer the question

whether for a given n and d a graph on n vertices can be constructed whose diameter

and broadcast time are equal to d. Several dbg constructions are presented, which

solve the dbg problem for all possible values of n and d. We also define the diametral

broadcast function DB(n, d) as the minimum possible number of edges in a dbg on

n vertices and diameter d. We describe all the trees on n vertices with diametral

broadcast time. Using these trees, we give the exact value of DB(n, d) when tree

based dbg construction is possible. For general case we give an upper bound on

DB(n, d). One of the presented dbg constructions produces for any n a broadcast

graph, which is a subgraph of hypercube. Also note that in all constructions every

vertex receives the message from the originator via shortest path.

2.1 Introduction

Recall that for the broadcast time of any graph G we have:

b(G) ≥ ⌈log2 n⌉ .

Another obvious lower bound on the broadcast time is the diameter of the graph

D(G). We have:

b(G) ≥ D(G).
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Also recall that a graph G with b(G) = ⌈log n⌉ is called a broadcast graph. A

broadcast graph with the minimum possible number of edges is called minimum

broadcast graph (mbg).

The construction of the graphs with b(G) = ⌈log2 n⌉ (i.e. broadcast graphs) is a

well studied problem in literature. See e.g. [8, 9, 12, 21, 25, 27, 39, 40, 47, 51, 53, 54,

70, 73]. However, the graphs with b(G) = D(G) have not yet been studied.

In this chapter, we introduce the problem of existence of graphs with broadcast

time equal to their diameter.

For a connected graph G on n vertices, the broadcast time can be any value from

the range

⌈log2 n⌉ ≤ b(G) ≤ n− 1.

The question is now whether for any fixed n and fixed d where ⌈log2 n⌉ ≤ d ≤ n− 1,

we can construct a graph G such that

b(G) = D(G) = d.

We refer to this problem as diametral broadcast graph(dbg) problem. For convenience,

we consider a form of the dbg problem where a diameter d and number of vertices

n from the range d + 1 ≤ n ≤ 2d are given and a graph G on n vertices such that

b(G) = D(G) = d is to be constructed.

We are interested in construction of diametral broadcast graphs with as few edges

as possible. In analogy to the broadcast function B(n), we define the diametral

broadcast function DB(n, d) as the minimum possible number of edges in a dbg on n

vertices and with diameter d.

We describe all the diametral broadcast trees and present how for a given d, we can

construct all the trees with b(T ) = D(T ) = d. We describe the values of n and d for

which a dbg construction is possible using only trees. Since the trees are the sparsest

connected graphs, this gives us the exact value of DB(n, d) for these particular values

of n and d.

To cover the rest of values of n and d which were not covered by the tree based

dbg construction, we present two other dbg constructions. We use hypercubes and

binomial trees as construction blocks. Graphs constructed with these methods provide

a solution for the dbg problem as well as upper bounds on DB(n, d).
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In the following, V (G) and E(G) will denote the set of vertices and the set of

edges in a graph G.

We recall the recursive definition of the m dimensional binomial tree Bm. B0

is a single vertex (root). For m ≥ 1, Bm is obtained from two copies of Bm−1 by

connecting their roots and setting one of the roots as the root of Bm. Recall that

|V (Bm)| = 2m, D(Bm) = 2m− 1 and b(r) = m where r is the root of Bm.

We define a binomial subtree as a tree created from binomial tree by removing

some of its vertices such that the longest path from the root to a leaf remains intact.

The dimension of a binomial subtree will be the dimension of the binomial tree from

which it is created. For example, the minimal m dimensional binomial subtree is a

path of length m.

2.2 Diametral broadcast graphs from trees

In this section we describe the class of trees with diametral broadcast time, i.e. trees

T with b(T ) = D(T ).

When n ≥ 2 is fixed, the diameter of a tree Tn on n vertices may be any value

in the range 2 ≤ D(Tn) ≤ n − 1. From the results presented in [52, 69, 77], it

follows that a broadcast time of a tree on n vertices must asymptotically be at least

log(1+
√
5)/2 n ≈ 1.44042 · log2 n. Therefore, we have:

2 ≤ D(Tn) ≤ n− 1,

1.44042 · log2 n ≤ b(Tn) ≤ n− 1.

From these inequalities it follows that when the diameter d is from the range

log2 n ≤ d ≤ 1.44042 · log2 n,

trees cannot be a diametral broadcast graph.

Lemma 1. All trees with b(T ) = D(T ) have unique diametral path of length D(T ) =

d.

Proof. The proof is by contradiction. Suppose we have tree T containing two paths

of length d. Note that if the paths intersect in two or more vertices that are not
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connected by an edge, then we will have a cycle, which is not possible. It follows that

there are only two possibilities: (a) the paths are disjoint (see Fig. 14a) or (b) the

paths intersect either in a single vertex or the intersection is a path (see Fig. 14b).

In case (a), since the tree is connected, then there is a path connecting the two

disjoint paths, which will crate a path in the tree with length greater than diameter

d, thus contradiction.

In case (b), it is clear that the paths can intersect only in a “symmetric” way,

that is before and after the “common” part, the paths must have equal lengths, i.e.

i = l and j = s, otherwise, we will have a path in the tree with length greater than

diameter d. In this case, we have a vertex (e.g. v0) and two other vertices (vd and

ud) at distance d. From observation that at round i at most one vertex (either vi or

ui) at distance i from originator v0 can be informed, it follows that b(T ) ≥ d + 1, a

contradiction.

Figure 14: Possible configurations of two paths of the length d in a tree: (a) disjoint
paths, (b) intersecting paths.

Theorem 2. A tree T is a diametral broadcast graph, i.e. b(T ) = D(T ) = d, if

and only if T contains a diametral path of length d where each inner vertex vi (i =

1, ..., d − 1) on the diametral path v0...vd is a root of a subtree of a binomial tree of

dimension min{i, d− i} − 1.

Figure 15 illustrates the maximum tree with D(T ) = d = 10.

Proof. If part: We will show that in the tree described above, d rounds are enough

to broadcast from any originator.

The broadcast strategy from any originator will be to inform the closest vertex on

the unique diametral path. After receiving the message, each vertex on the diameter

will inform its uninformed neighbour(s) on the diametral path and then will continue

broadcasting in its subtree.
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Figure 15: Tree with the maximum number of vertices and b(T ) = D(T ) = 10.

We observe that if the originator is v0 or vd, then we will need precisely d rounds

to broadcast in T . Now let’s assume that the originator u is in the subtree at vertex

vi (i = 1, ..., d − 1). We note that since the tree dimension is min{i, d − i} − 1, it

will take at most min{i, d − i} − 1 rounds to inform vi from u. After receiving the

message, vi will need at most max{i, d− i}+ 1 rounds to complete the broadcasting

in T . Therefore,

b(u) ≤ min{i, d− i} − 1 +max{i, d− i}+ 1 = d.

Only if part: From Lemma 1 it follows that each tree with b(T ) = d, contains

unique path P = v0v1...vd of length d. For end vertices of P we have:

b(v0, T ) = b(vd, T ) = d.

We have to show that from this it follows that T is the type of tree described in the

theorem.

When broadcasting from v0 (or vd), each vertex after receiving the message should

at first pass it to the next vertex on path P , otherwise after d rounds vertex vd of P will

not be informed. In the following rounds, each vertex vi can inform additional vertices

outside of the path P . It can be observed that for each inner vertex vi (i = 1, ..., d−1)

of P , the expression min{i, d − i} − 1 is the number of remaining rounds by which

broadcast process must be finished. Since T is a tree, each vertex vi is a root of a

tree (possibly empty) outside of the path P . We complete the proof by noting that

all vertices of this tree can be informed in min{i, d − i} − 1 rounds if and only if it

is a connected rooted subtree of a binomial tree of dimension min{i, d− i} − 1 with
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the root vi .

The family of diametral broadcast trees allows us to state the following theorem.

Theorem 3. For given n and d such that d + 1 ≤ n ≤
√
2 · 2 d

2 and d is odd, or

d+1 ≤ n ≤ 3
2
·2 d

2 and d is even, there exists a diametral broadcast graph on n vertices

in the class of diametral broadcast trees and DB(n, d) = n− 1.

Proof. A dbg must be a connected graph, hence DB(n, d) ≥ n−1. So, any diametral

broadcast tree, in fact, is a minimum diametral broadcast graph. We will show the

values of n and d for which a diametral broadcast tree Td exists. For these special n

and d we will have

DB(n, d) = n− 1.

For determining the maximum possible number of vertices in Td we need to con-

sider the parity of d.

Suppose d is odd. In this case the maximum diametral broadcast tree described

in Theorem 2 is actually a d+1
2

dimensional binomial tree. Thus, for odd d we have

|V (Td)| ≤ 2
d+1
2 =

√
2 · 2

d
2 .

Suppose d is even. We note that removing the middle vertex of the diameter, with

the attached tree, from diametral broadcast tree described in Theorem 2, we will get
d
2
dimensional binomial tree. By observing that the removed tree is a binomial tree

of dimension d−2
2

we will get that for even d,

|V (Td)| ≤ 2
d
2 + 2

d−2
2 =

3

2
· 2

d
2 .

From these bounds on |V (Td)| follows that for any given n and d satisfying the

theorem condition we can construct a diametral broadcast tree by picking the maximal

tree Td (on
√
2·2 d

2 or 3
2
·2 d

2 vertices) and, by keeping the diametral path intact, remove

necessary number of vertices from subtrees till we get exact n vertices.

As we see, Theorem 3 does not cover most of the possible values of d and n. This

motivates us to look at graph families other than trees for a complete solution of the

dbg problem.
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2.3 Diametral broadcast graphs from hypercube

and binomial trees

In this section we present a dbg construction for all 2
d
2 < n ≤ 2d−1. The new

construction uses a hypercube with binomial subtrees attached to its vertices.

For given positive integers m and r let us define a graph Gm,r as follows:

1. Gm,r consists of an m dimensional hypercube with binomial subtrees attached

to its vertices such that each hypercube vertex is a root of a binomial subtree

(possibly of dimension 0, i.e containing single root vertex).

2. Two of the binomial subtrees with the largest dimensions are attached to the

opposite ends of a diametral path in the hypercube. The other subtrees are

attached arbitrary.

3. Gm,r graph has two different subtypes G′
m,r and G′′

m,r. G′
m,r contains at least

two binomial subtrees of maximal dimension r (i.e. all other subtrees have at

most dimension r). G′′
m,r contains precisely one subtree of maximal dimension

r and at least one of dimension r− 1 (i.e. all other subtrees have at most r− 1

dimension).

For example, the two types of G2,2 graph with maximal number of vertices are

presented in Figure 16. In the first type, the maximal subtree dimensions are r = 2,

in the second r = 2 and r − 1 = 1. In Figure 17, G2,2 graphs with minimal number

of vertices are presented.

Figure 16: Maximal G′
2,2 with d = 6 and G′′

2,2 with d = 5.

The following lemma proves that the Gm,r graphs are diametral broadcast graphs.
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Figure 17: Minimal G′
2,2 with d = 6 and G′′

2,2 with d = 5.

Lemma 4. Gm,r is a diametral broadcast graph with

D(G′
m,r) = b(G′

m,r) = m+ 2r,

D(G′′
m,r) = b(G′′

m,r) = m+ 2r − 1.

Proof. We will show that (a) D(G′
m,r) = m + 2r, D(G′′

m,r) = m + 2r − 1 and (b)

b(G′
m,r) = m+ 2r, b(G′′

m,r) = m+ 2r − 1.

(a) In G′
m,r one of the diametral paths of m dimensional hypercube diameters will

have two subtrees of dimension r attached to its end vertices. This will create a path

of length r +m+ r = m+ 2r, which is obviously the longest possible in G, therefore

D(G′
m,r) = m+ 2r.

Similarly, in G′′
m,r one of the hypercube diameters will have subtrees of dimension r

and r − 1 attached to its end vertices. This will create a path of maximal length

r +m+ (r − 1) = m+ 2r − 1, therefore

D(G′′
m,r) = m+ 2r − 1.

(b) To broadcast from any originator u in G′
m,r, it first informs the root of its

binomial subtree which is a hypercube vertex. This can be done in at most r rounds.

In the following m rounds, all the vertices of hypercube will be informed. This means

that in at most m+r rounds, we will have all the subtree roots informed. In the next

r rounds, every hypercube vertex will inform the corresponding binomial subtree and

complete broadcasting. Therefore

b(G′
m,r) = m+ 2r.
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The proof for G′′
m,r is similar to the above, except, that if we initially need r rounds

to inform a hypercube vertex, because G′′
m,r has only one r dimensional binomial

subtree, once all the hypercube vertices are informed, we will need only r−1 additional

rounds to complete the broadcasting in binomial subtrees. Therefore in this case

b(G′′
m,r) = m+ 2r − 1.

Theorem 5. For given n and d such that 2
d
2 < n ≤ 2d−1, there exists a diametral

broadcast graph G′
m,r (or G′′

m−1,r+1) where m = 2 ⌈log2 n⌉ − d, r = d− ⌈log2 n⌉ and

DB(n, d) ≤ (2 ⌈log2 n⌉ − d− 2) · 22⌈log2 n⌉−d−1 + n ≤ 1

2
n(⌈log2 n⌉ − 1).

Proof. In the following, for given n and d we will show how to determine the values

of m and r to construct a Gm,r graph with minimal number of edges. The number of

edges in the constructed graph will provide an upper bound on DB(n, d).

For given diameter d, graph G′
m,r may contain a hypercube of dimension at most

m = d− 2. In this case we will have a G′
d−2,1 graph. The |V (G′

d−2,1)| will be maximal

if all attached subtrees have dimension 1. This will give

|V (G′
d−2,1)| = 2d−2 + 2d−2 = 2d−1.

This means that when n ≤ 2d−1 we can construct a G′
m,r dbg graph on n vertices.

Note that Gm,r contains 2
m hypercube vertices and n−2m tree vertices. There are

T1, T2, ..., T2m trees rooted at 2m hypercube vertices, with Ti = (Vi, Ei), i = 1, 2, ..., 2m.

|Ei| = |Vi|−1, thus
2m

i=1 |Ei| =
2m

i=1 |Vi|−2m = n−2m. Thus, Gm,r containsm·2m−1

hypercube edges and n−2m tree edges. It follows that E(Gm,r) = m ·2m−1+n−2m =

(m − 2) · 2m−1 + n. |E(Gm,r)| grows much faster with the size of hypercube m than

with r. So in order to construct a sparse dbg, we should pick a Gm,r with the smallest

possible m.

For given n and d, in order to solve the dbg problem with G′
m,r graph, we must

have n = |V (G′
m,r)| ≤ 2m+r and d = D(G′

m,r) = m + 2r. After substituting r = d−m
2
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from the second equality into the first inequality we will get

n ≤ 2
m+d

2 ⇒ m ≥ 2 ⌈log2 n⌉ − d.

We need m ≥ 0 to be as small as possible, but, since r cannot be a fractional number,

we also need d − m to be even. Picking m = 2 ⌈log2 n⌉ − d will guarantee that

d −m = 2d − 2 ⌈log2 n⌉ is always even. The lower bound n > 2
d
2 from the theorem

condition guarantees that m = 2 ⌈log2 n⌉ − d > 0. For the number of edges in G′
m,r

we have |E(G′
m,r)| = (m− 2) · 2m−1 + n where m = 2 ⌈log2 n⌉ − d. This gives

DB(n, d) ≤ |E(G′
m,r)| = (2 ⌈log2 n⌉ − d− 2) · 22⌈log2 n⌉−d−1 + n.

By using the fact that n ≤ 2d−1 ⇒ d ≥ ⌈log2 n⌉+ 1, we can present a less tight, but

simpler expression for the upper bound on DB(n, d).

DB(n, d) ≤ (2 ⌈log2 n⌉ − (⌈log2 n⌉+ 1)− 2) · 22⌈log2 n⌉−(⌈log2 n⌉+1)−1 + n =

(⌈log2 n⌉ − 3) · 2⌈log2 n⌉−2 + n ≤

(⌈log2 n⌉ − 3) · 2log2 n−1 + n =

1

2
n(⌈log2 n⌉ − 1).

We note that G′
m,r contains at least 2m + 2r vertices. This means that for given

n, after choosing values of m and r, we may have a case when n < 2m + 2r. This

will not allow us to use G′
m,r graph to solve the dbg problem. Instead, in this special

case, we will use G′′
m−1,r+1 graph. G′′

m−1,r+1 is a dbg with diameter

D(G′′
m−1,r+1) = (m− 1) + (r + 1) + r = m+ 2r = D(G′

m,r).

Also |E(G′′
m−1,r+1)| ≤ |E(G′

m,r)|, so the claimed upper bound on DB(n, d) remains

valid for this case. For instance, when d = 6 and n = 17, according to the construction

method, we pick m = 2 ⌈log2 n⌉ − d = 4 and r = d−m
2

= 1 and try to use G′
4,1 graph.

However, it is not a valid dbg, since G′
4,1 contains at least 18 vertices. Instead, we

pick G′′
3,2 graph (see Figure 18).

The idea of using binomial trees attached to a hypercube is not new. For example
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Figure 18: A dbg for d = 6, n = 17 based on G′′
3,2 graph.

it is used in [53] and [40] to construct broadcast graphs.

2.4 Diametral broadcast graphs from subgraphs of

hypercube

We recall that in the dbg problem, for a given diameter d, the number of vertices n

can be any value from the range d + 1 ≤ n ≤ 2d. The constructions from previous

sections give us a solution for the dbg problem only for d + 1 ≤ n ≤ 2d−1. In this

section we present a hypercube based construction for all 2d−1 + 1 ≤ n ≤ 2d.

Graphs on |V (G)| = n ≥ 2d−1 + 1 vertices and b(G) = d are in fact broadcast

graphs, meaning that to construct a dbg on n vertices for n ≥ 2d−1 + 1 one would

have to construct a broadcast graph with the additional condition that b(G) = D(G).

Thus, we cannot expect to have a trivial construction.

In this section we will construct broadcast graphs which will be subgraphs of

a hypercube, i.e. obtained from a hypercube by removing some vertices and their

adjacent edges.

Number of broadcast graph construction methods are known e.g. [25, 39, 40, 51,

70], but neither of them produces subgraphs of a hypercube. The new construction

method will not provide improvement on the number of the edges over previously

known broadcast graphs, but it will construct graphs with one important property of

being hypercube subgraphs.

We denote the diametral broadcast graphs to be constructed by HSd (d dimen-

sional hypercube subgraph).

Theorem 6. For given n and d such that 2d−1 < n ≤ 2d there exists a diametral
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broadcast graph and

DB(n, d) ≤ 1

2
(n ⌈log2 n⌉ − (⌈log2 n⌉ − ⌈log2 x⌉)x) ≤

1

2
n ⌈log2 n⌉ ,

where x = 2d − n.

Proof. We will (a) describe the construction of HSd graph and will show that (b)

b(HSd) = d, (c) D(HSd) = d, (d) E(HSd) ≤ 1
2
(n ⌈log2 n⌉ − (2d − n)) ≤ 1

2
n ⌈log2 n⌉.

(a) Assume n = 2d−x, where 0 ≤ x < 2d−1. We pick the d dimensional hypercube

Hd. Our goal is to remove x vertices from Hd such that 1 ≤ x < 2d−1 and the

remaining graph is a broadcast graph with diameter d. This will give a dbg for

2d−1 < n < 2d. For n = 2d, we trivially will pick the Hd as a dbg.

The number of vertices to be removed can be presented as x = 2α1 +2α2 + ...+2αk

where d− 1 > α1 > α2 > ... > αk ≥ 0.

We will use a recursive approach in our construction. The recursion will be on k,

i.e. on the number of terms in the above representation of x.

We require one additional condition on the removed vertices in order for the

recursion to work. That is, all the x removed vertices must be contained in a certain

⌈log2 x⌉ dimensional sub-hypercube of Hd.

The base case is when k = 1, i.e. we need to remove from a Hd hypercube 2m

vertices (m < d). We note that Hd can be presented as a d−m dimensional hypercube

where each vertex itself is a m dimensional hypercube. We will remove one of these

m dimensional sub-hypercubes and the remaining graph will be a broadcast graph of

diameter d.

For k > 1, the algorithm recursively reduces the problem of removing x = 2α1 +

2α2 + ... + 2αk vertices from Hd to the problems of removing 2α1 and 2α2 + ... + 2αk

vertices from Hd−1 hypercube. Below is the description of the recursive step.

We presentHd asH
′
d−1 andH ′′

d−1 hypercubes with one-to-one mapped vertices (see

Figure 19). We remove H ′
α1

sub-hypercube containing 2α1 from H ′
d−1 and recursively

remove x − 2α1 vertices from the sub-hypercube in H ′′
d−1 which is the image of H ′

α1
.

We can always do this, since we know that x−2α1 < 2α1 . Also we observe that all the

removed vertices will be from the Hα1+1 sub-hypercube of Hd created by combining of

H ′
α1

and H ′′
α1
. This important observation will allow us to recursively remove x− 2α1

vertices from predefined H ′′
α1

sub-hypercube of H ′′
d−1.
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Figure 19: The recursive step in the construction of HSd.

Figure 20 illustrates the recursive algorithm to construct dbg-s for d = 4 and

9 ≤ n ≤ 16.

(b) Now we will show that b(HSd) = d. According to the recursive assump-

tion, b(H ′′
d−1) = d − 1. From the broadcast properties of a hypercube we know that

b(H ′
d−1) = d− 1. Using this we have to show that b(HSd) = d.

Case 1: The originator belongs to H ′
d−1. In the first round it will inform its

corresponding vertex in H ′′
d−1. This can be done since each vertex from H ′

d−1 is

connected to a vertex from H ′′
d−1. In the following d − 1 rounds, both informed

vertices will complete the broadcasting in their sub-hypercubes. Hence b(HSd) = d.

Case 2: The originator belongs to H ′′
d−1. Since we have removed more vertices

from H ′
d−1 than from H ′′

d−1, we can claim that each vertex from H ′
d−1 is connected

to a vertex from H ′′
d−1 while the opposite is not true. The originator from H ′′

d−1 may

not have a neighbour belonging to H ′
d−1 in HSd graph and we cannot use the same

broadcast strategy as in the previous case. Instead, in first d−1 rounds the originator

will inform all the vertices of H ′′
d−1 and in the last round all these informed vertices

will inform their corresponding vertices in H ′
d−1. This can be done because, according

to the recursive construction algorithm, b(H ′′
d−1) = d− 1. So b(HSd) = d in this case

as well.

(c) Since α1 < d − 1, we can assume that H ′
α1

constitutes at most half of H ′
d−1.

The other half with its image will create a Hd−1 dimensional hypercube in the final

graph on 2d − x vertices. Combined with at least one not removed vertex from H ′′
d−1,

this will guarantee that the resulted graph will have a diameter at least d. Since it

also has a broadcast time d, it follows that diameter is at most d, hence D(HSd) = d.

(d) We recall that all the x removed vertices are contained within a ⌈log2 x⌉
dimensional hypercube. This means that each of them has at least d−⌈log2 x⌉ intact
neighbours remaining in HSd. Hence the sum of vertex degrees in HSd is upper
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bounded by n ⌈log2 n⌉ − (d − ⌈log2 x⌉)x. Based on this, we can claim the following

upper bound

E(HSd) ≤
1

2
(n ⌈log2 n⌉ − (⌈log2 n⌉ − ⌈log2 x⌉)x) ≤

1

2
n ⌈log2 n⌉ .

Figure 20: The HS4 graph for 9 ≤ n ≤ 16. The removed vertices end edges from H4

hypercube are coloured gray.

2.5 Summary and discussion

To solve the dbg problem for all possible values of n and d, we presented three different

constructions. The summary of the results on DB(n, d) diametral broadcast function

obtained via these constructions are presented in Table 3.

The first construction was based on trees and was providing the exact value of

DB(n, d). The limitation was that tree based construction was possible only for few
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values of n and d.

The second construction was based on a hypercube and binomial subtrees attached

to it. The main challenge in the construction method was for any given values of n

and d to optimally choose the hypercube and attached binomial subtrees dimensions

such that the resulting graph will be a dbg with as few edges as possible.

In the last construction a dbg was obtained by removing certain vertices with

adjacent edges from the hypercube. The main challenge was that our goal was to

construct a dbg for values of n and d such that 2d−1 < n ≤ 2d. The graphs with

|V (G)| = n > 2d−1 vertices and b(G) = d = ⌈log2 n⌉ are actually broadcast graphs.

This means that for this case the dbg problem becomes a harder version of the broad-

cast graph construction problem and we could not expect to have a simple solution

for it. The constructed HSd broadcast graphs have number of edges upper bounded

by 1
2
n ⌈log2 n⌉. Combined with the fact that the presented construction is relatively

simpler than previously known ones and that produced broadcast graphs have a much

simpler structure, that is, they are hypercube subgraphs, we can claim that the pre-

sented dbg construction method is a useful ad hoc construction of broadcast graphs

in general.

Although we have not proved specially, we note that for all constructions and

for all originators every vertex receives the broadcast message from the originator

via a shortest path. For trees this property follows from the uniqueness of the path

between any two vertices. For hypercubes the property follows from the observation

that a vertex at some distance p from the originator gets informed via a path of

length exactly p, which is obviously a shortest possible. Since Gm,r is constructed

using only trees and a hypercube it satisfies the property as well. Finally for HSd

graph the property follows from the fact that HSd is a hypercube subgraph. This

can be formally proven using recursion.

36



Range of n Upper bound on DB(n, d) Theorem

(d,
√
2 · 2 d

2 ], d is odd

(d, 3
2
· 2 d

2 ], d is even

n− 1 (is optimal) 3

(2
d
2 , 2d−1] 1

2
n(⌈log2 n⌉ − 1) 5

(2d−1, 2d] 1
2
n ⌈log2 n⌉ 6

Table 3: Summary of the presented results on DB(n, d).
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Chapter 3

Broadcasting and Routing in the

Knödel graph

The Knödel graphW∆,n is a graph of even order and degree ∆ where 2 ≤ ∆ ≤ ⌊log2 n⌋.
We study the routing and broadcasting problem in W∆,n. We give a tight bound on

the distance between any two vertices in W∆,n. We show that for almost all vertex

pairs with labels (1, x1) or (2, x1) and (1, x2) or (2, x2)

2


|x2 − x1|
2∆−1 − 1


+ 1 ≤ dist(x1, x2) ≤ 2


|x2 − x1|
2∆−1 − 1


+ 3,

where dist(x1, x2) is the distance between them. Note that the presented expression

uses only the second component of a vertex label, i.e. the partition of a vertex is not

relevant. Using some of the results on distances, we present tight bounds on b(W∆,n)

for all even n and 2 ≤ ∆ ≤ ⌊log2 n⌋. We show that

2


1

2


n− 2

2∆ − 2


+ 1 ≤ b(W∆,n) ≤


n− 2

2∆ − 2


+∆− 1.

The proofs are constructive and allow to construct a short path between any pair of

vertices and to perform quick broadcasting from any vertex in W∆,n.
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3.1 Introduction

The Knödel graph W∆,n is a regular graph of even order and degree ∆ where 2 ≤
∆ ≤ ⌊log2 n⌋. It was introduced by Knödel for ∆ = ⌊log2 n⌋ in 1975 and was used

in an optimal gossiping algorithm [73]. For smaller ∆, the Knödel graph is formally

defined in 2001 [35].

Multiple definitions are known for the Knödel graph. We use the following defi-

nition from [35], which explicitly presents the Knödel graph as a bipartite graph.

Definition 7. The Knödel graph on an even number of vertices n and of degree ∆

where 2 ≤ ∆ ≤ ⌊log2 n⌋ is defined as W∆,n = (V,E) where

V = {(i, j) | i = 1, 2; j = 0, ..., n/2− 1},

E = {((1, j), (2, (j + 2k − 1) mod (n/2))) |

j = 1, ..., n/2; k = 0, 1, ...,∆− 1}.

We say that an edge ((1, j′), (2, j′′)) ∈ E is r-dimensional if j′ = (j′′ + 2r − 1) mod

(n/2) where r = 0, 1, ...,∆−1. In this case, (1, j′) and (2, j′′) are called r-dimensional

neighbours. Also, we say that the edge is modular when j′ + 2r − 1 > n/2.

Usually the partition in which a vertex occurs is not relevant, so we just use x to

refer to either vertex (1, x) or vertex (2, x).

The Knödel graph was widely studied as an interconnection network topology

and has good properties in terms of broadcasting and gossiping. The Knödel graph

W∆,2∆ is one of the three non-isomorphic infinite graph families known to be minimum

broadcast and gossip graphs (graphs that have the smallest possible broadcast and

gossip times and the minimum possible number of edges). The other two families are

the well known hypercube [27] and the recursive circulant graph [90]. The Knödel

graphW∆−1,2∆−2 is a minimum broadcast and gossip graph also for n = 2∆−2(∆ ≥ 2)

[21, 70]. One of the advantages of the Knödel graph, as a network topology, is that it

achieves the smallest diameter among known minimum broadcast and gossip graphs

for n = 2∆(∆ ≥ 1). All the minimum broadcast graph families — k-dimensional

hypercube, C(4, 2k)-recursive circulant graph and Wk,2k Knödel graph — have the

same degree k, but have diameters equal to k,

3k−1
4


and


k+2
2


respectively. A

detailed description of some graph theoretic and communication properties of these
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three graph families and their comparison can be found in [30].

As shown in [7], the edges of the Knödel graph can be grouped into dimensions

which are similar to hypercube dimensions. This allows to use these dimensions in a

similar manner as in hypercube for broadcasting and gossiping. Unlike the hypercube,

which is only defined for n = 2k, the Knödel graph is defined for any even number of

vertices. Properties such as small diameter, vertex transitivity as a Cayley graph [64],

high vertex and edge connectivity, dimensionality, embedding properties [30] make

the Knödel graph a good candidate as a network topology and good architecture for

parallel computing. W⌊log2 n⌋,n guarantees the minimum time for broadcasting and

gossiping. So, it is a broadcast and gossip graph [7, 31, 35]. Moreover, W⌊log2 n⌋,n is

used to construct sparse broadcast graphs of a bigger size by interconnecting several

smaller copies or by adding and deleting vertices [8, 22, 46, 47, 51, 53, 54, 70].

(1,4)

(2,4)

(1,5)

(2,5)

(1,6)

(2,6)

(1,1)

(2,1)

(1,2)

(2,2)

(1,3)

(2,3)

(1,0)

(2,0)

(2,6)dim 0

dim 1

dim 2

Figure 21: The W3,14 graph and its 0, 1 and 2-dimensional edges.

Despite being highly a symmetric and widely studied graph, the diameter of the

Knödel graph D(W∆,n) is known only for n = 2∆. In [31], it was proved that

D(W∆,2∆) =

∆+2
2


. The nontrivial proof of this result is algebraic and the actual di-

ametral path is not presented. The problem of finding the shortest path between any

pair of vertices in the Knödel graphW∆,2∆ is studied in [59], where an 2-approximation

algorithm with the logarithmic time complexity is presented.

Most properties of the Knödel graph are known only for W∆,2∆ and W∆−1,2∆−2.

In this paper we present a tight upper bound on the diameter of the Knödel graph

D(W∆,n) for all even n and 2 ≤ ∆ ≤ ⌊log2 n⌋. We show that the presented bound

may differ from the actual diameter by at most 2 for almost all ∆. Our proof is

constructive and provides a near optimal diametral path in W∆,n.

The distance between vertices u and v is denoted by dist(u, v). Using these

notations and the vertex transitivity of the Knödel graph, we can state that

D(W∆,n) = max{dist(0, x)|0 ≤ x < n/2}.
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We actually give a tight upper bound on dist(0, x) for all 0 ≤ x < n/2.

We study the broadcast time problem in the Knödel graph. The broadcast time

of the Knödel graph is known only for W∆,2∆ and for W∆−1,2∆−1 . It is shown that

b(W∆,2∆) = ∆(∆ ≥ 1) [27, 73, 90] and that b(W∆−1,2∆−1) = ∆(∆ ≥ 2) [21, 70].

3.2 Paths in the Knödel graph

In this section we construct three different paths between two vertices in the Knödel

graph W∆,n. These paths have certain properties and are used in the next section to

prove the upper bound on the diameter of W∆,n.

Before presenting our formal statements, let us get better understanding of the

Knödel graph and the set of vertices which can be reached from vertex 0 using only 0

and (∆− 1)-dimensional edges. Note that we can “move” in two different directions

from vertex 0 = (1, 0) or 0 = (2, 0) of W∆,n. Figure 22 illustrates the discussed paths.

We can choose the path

(1, 0) → (2, 2∆−1 − 1) → (1, 2∆−1 − 1) → (2, 2(2∆−1 − 1)) → ...

or we can move in the opposite direction following the path

(1, 0) → (2, 0) → (1, n/2− (2∆−1 − 1)) → (2, n/2− (2∆−1 − 1)) → ....

Every second edge in these paths is 0-dimensional. The (∆ − 1)-dimensional edges

are used to move “forward” by 2∆−1 − 1 vertices, while the 0-dimensional edges are

only to change the partition. These two paths will eventually intersect or overlap

somewhere near vertex ⌈n/4⌉. Excluding vertex 0, we have only n/2 − 1 vertices in

each partition. The (∆−1)-dimensional edges will split W∆,n into


n/2−1
2∆−1−1


segments,

each having length 2∆−1 − 1, except the one containing vertex ⌈n/4⌉. We can perform

only

1
2


n/2−1
2∆−1−1


=


1
2


n−2
2∆−2


(∆−1)-dimensional passes in each of these two paths

before they intersect. Therefore, we will never use more than

1
2


n−2
2∆−2


(∆ − 1)-

dimensional passes to reach a vertex in W∆,n.

Our first lemma constructs a path between vertex 0 and some vertex y which is

relatively close to our destination vertex x. Vertex y will have a special form making

such construction straightforward. Recall that x refers to (1, x) or (2, x), and y refers
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Figure 22: Schematic illustration of the paths. Note that c =

1
2


n−2
2∆−2


.

to (1, y) or (2, y).

Lemma 8. For any vertex x of W∆,n, by using at most 2


x
2∆−1−1


+ 1 edges when

x ≤ ⌊n/4⌋ or by using at most 2


n/2−x
2∆−1−1


+1 edges when x > ⌊n/4⌋ we can construct

a path from vertex 0 to reach some vertex y such that |x− y| ≤ 2∆−1 − 1.

Proof. Our goal is to reach some vertex y of form y = c(2∆−1 − 1) or y = n/2 −
c(2∆−1 − 1) such that |x − y| ≤ 2∆−1 − 1. We use only 0 and (∆ − 1)-dimensional

edges and one of two paths described above and illustrated in Figure 22. We consider

two cases. In the first case we cover the values of x that can be reached by moving in

“clockwise” direction from vertex 0. For the remaining values of x, we use the path

from Figure 22 moving to the opposite direction.

Case 1: x ≤ ⌊n/4⌋. By alternating between 0 and (∆− 1)-dimensional edges, we

can reach a vertex y of form y = c′(2∆−1 − 1) and closest to x from vertex 0 = (2, 0).

We will need at most 2c′ + 1 edges for that. The path to reach y = (1, y) will be

(2, 0) → (1, 0) → (2, 2∆−1 − 1) → (1, 2∆−1 − 1) → (2, 2(2∆−1 − 1)) → ...

→ (2, c′(2∆−1 − 1)) → (1, c′(2∆−1 − 1)) = y.

It is clear that c′ =


x
2∆−1−1


, hence the bound on the length of constructed path

follows. From the form of y follows that |x − y| ≤ 2∆−1 − 1. Figure 23 shows the

described path from (2, 0) to y = 6 = (1, 6).

Case 2: x > ⌊n/4⌋. This case is similar to case 1 except in order to construct

42



shorter path to y of form y = n/2−c′(2∆−1 − 1), we are moving from vertex 0 = (1, 0)

in anticlockwise direction. The path for y = (2, y) will be

(1, 0) → (2, 0) → (1, n/2− (2∆−1 − 1) → (2, n/2− (2∆−1 − 1)) → ...

→ (1, n/2− (c′ − 1)(2∆−1 − 1)) → (2, n/2− (c′ − 1)(2∆−1 − 1)) = y

and will have length at most 2c′ + 1 = 2


n/2−x
2∆−1−1


+ 1. Obviously we will have

|x− y| ≤ 2∆−1 − 1 as well.

(1,4)

(2,4)

(1,5)

(2,5)

(1,6)

(2,6)

(1,1)

(2,1)

(1,2)

(2,2)

(1,3)

(2,3)

(1,0)

(2,0)

(2,6)

(1,11)

(2,11)

(1,12)

(2,12)

(1,13)

(2,13)

(1,8)

(2,8)

(1,9)

(2,9)

(1,10)

(2,10)

(1,7)

(2,7) (2,1) (2,2)(2,0)

Figure 23: A path between vertices (2, 0) and (1, 6) in W3,28 graph. To simplify the
figure, we repeat vertices (2, 0), (2, 1) and (2, 2).

The following lemma constructs a path between two vertices of W∆,n that are

relatively close to each other. More precisely, when the difference of their labels is

upper bounded by 2∆−1 − 1. We construct a path between two vertices x1 and x2

which is not necessarily a shortest path between them. To reach the given vertex with

label x2 > x1 from vertex labeled x1, we first use a large dimensional edge to “jump

over” vertex x2 and reach some vertex y ≥ x2, such that y− x2 is the smallest. After

that, we start moving from y in backward direction till we reach x2 from right. This

backward steps are performed in a greedy way. At each step, we are using the largest

dimensional edge to reach some new vertex y′ such that y′ − x2 is minimal and y′ is

on the right side of x2 i.e. y′ ≥ x2.

Lemma 9 (Existence of a special path). For any two vertices of W∆,n labeled x1

and x2, if |x2 − x1| ≤ 2∆−1 − 1, then there exists a special path between x1 and x2

of length at most 2∆− 3. This path contains one “direct” d-dimensional edge where

d ≤ ∆ − 1, some 0-dimensional edges and some edges having dimensions between 1

and d − 1 pointing in “backward” direction. The number of these backward edges is

at most ∆− 2.

Proof. Without loss of generality, we assume that x1 = 0 and x2 > x1. In order to

construct the described path, we use an edge to get from vertex 0 to some vertex
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y closest to x2 such that y > x2 and y is directly connected to 0. This will be our

“direct” d-dimensional edge. After reaching vertex y, we start to move in “backward”

direction towards x2. Once started moving in backward direction, the distance from

y to x2 which is upper bounded by 2∆−2, will be cut at least by half with each

backward edge. Therefore we need at most ∆ − 2 backward edges. Combined with

the 0-dimensional edges between these backward edges, this will give a path of length

2(∆− 2). By adding the initial edge, we get the 2∆− 3 upper bound on the length

of the constructed path.

Figure 24 shows the described path between vertices x1 = (1, 0) and x2 = (2, 5).

In the illustrated example y = 7, d = 4, the “direct” edge is ((1, 0), (2, 7)) and the

“backward” edges are ((2, 7), (1, 6)) and ((2, 6), (1, 5)).

The reason we chose this particular path between x1 to x2 is that the backward

passes can be performed in the path constructed by Lemma 8. This will be crucial

in the proof of the main theorem.

(1,4)

(2,4)

(1,5)

(2,5)

(1,6)

(2,6)

(1,1)

(2,1)

(1,2)

(2,2)

(1,3)

(2,3)

(1,0)

(2,0)

(2,6)

(1,7)

(2,7)

Figure 24: A path between vertices (1, 0) and (2, 5) in a section of a Knödel graph of
degree 5.

Our last lemma deals with the problem of finding the shortest path in a particular

section of the Knödel graph.

Lemma 10 (Shortest path approximation). For any two vertices of W∆,n labeled x1

and x2, if |x2 − x1| ≤ 2d − 1 for some d ≤ ∆− 1, then there exist a path between x1

and x2 of length at most 3 ⌈d/4⌉+ 4.

Proof. Without loss of generality, we assume that x1 = 0 and x2 > x1. Our goal is to

construct a short path from vertex 0 to vertex x2 = x ≤ 2d − 1. The proof is based

on a recursive construction of a path between vertices 0 and x having length at most

3 ⌈d/4⌉+ 4. The recursion will be on d.
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The base case is when d ≤ 3. This case is illustrated in Figure 25, from which we

observe that we can reach any vertex x where 0 ≤ x ≤ 2d − 1 = 7 with a path of

length at most 4.

For d > 3, using at most three edges, we can cut the distance between 0 and x

by a factor of 16. Figure 26 presents a schematic illustration of this. We divide the

initial interval of length 2d − 1 into eight smaller intervals A1, A2, ..., A8, each having

length at most

(2d − 1)/8


, where Ai = [(i− 1)m, im), i = 1, ..., 8 and m = 2d−3.

It is not difficult to see that all these intervals, except A6, have both their end

vertices reachable from 0 by using at most three edges. For A6, using at most 3 edges

we can reach its middle vertex 11m/2− 1 and the end vertex 6m. The paths, which

use at most 3 edges, are illustrated in Figure 26. This means that when x ∈ Ai for

all 1 ≤ i ≤ 8, using at most three edges, we will be within distance m/2 from x.

After relabeling the vertices, we will get the same problem of finding a path between

vertices 0 and x, but the new x will be at least 16 times smaller.

It will take at most

log16 (2

d − 1)

recursive steps to reach the base case, and we

will use at most three edges in each step. By combining this with at most 4 edges

used for the base case, we will get that

dist(0, x) ≤ 3

log16 (2

d − 1)

+ 4 ≤ 3 ⌈d/4⌉+ 4.

We note that each recursive step in Lemma 10 involves only constant number

of operations. Therefore the described path can be constructed by an algorithm of

complexity O(log n).

(1,4)

(2,4)

(1,5)

(2,5)

(1,6)

(2,6)

(1,1)

(2,1)

(1,2)

(2,2)

(1,3)

(2,3)

(1,0)

(2,0)

(2,6)

(1,7)

(2,7)

Figure 25: Paths from vertex 0 to all other vertices x ≤ 7 in a section of a Knödel
graph.
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Figure 26: Illustration of the recursive step. m = 2d−3

Lemma 10 can be used to construct a short path between any two vertices of W∆,n

for the case when ∆ = ⌊log2 n⌋. The length of the constructed path will be at most

3 ⌈(∆− 1)/4⌉+ 4. It follows that when ∆ = ⌊log2 n⌋, then

D(W⌊log2 n⌋,n) ≤ 3 ⌈(⌊log2 n⌋ − 1)/4⌉+ 4.

3.3 Upper bound on distance

In this section, using the lemmas from Section 2, we construct a path between vertices

0 and x for any vertex x in W∆,n. The maximum length of such a path will be an

upper bound on the diameter of W∆,n. Without loss of generality, we assume that

0 = (2, 0) and x ≤ ⌊n/4⌋. For the case x > ⌊n/4⌋, we can replace x with n/2−x and

all the following statements will remain true.

Our first upper bound on dist(0, x) in W∆,n will trivially follow from Lemma 8

and Lemma 10.

Theorem 11. For any vertex x of W∆,n,

dist(0, x) ≤ 2


x

2∆−1 − 1


+ 3 ⌈(∆− 1)/4⌉+ 5.

Proof. According to Lemma 8, for any vertex x inW∆,n, we need at most 2


x
2∆−1−1


+1

edges to reach from vertex 0 to a vertex y of form y = c(2∆−1 − 1) such that |x−y| ≤
2∆−1−1. Now we can apply Lemma 10 and claim that dist(x, y) ≤ 3 ⌈d/4⌉+4 where

d ≤ ∆− 1. Thus, we have that

dist(0, x) ≤ dist(0, y) + dist(y, x) ≤ 2


x

2∆−1 − 1


+ 3 ⌈(∆− 1)/4⌉+ 5.
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Theorem 11 combines the paths described in Lemmas 8 and 10 in the most trivial

way. With the slight modification of the path described in Lemma 8 and combining it

with paths from Lemmas 9 and 10 we can significantly improve the presented upper

bound on on the distance.

Theorem 12 (Main). For a vertex x of W∆,n, if
x

2∆−1 − 1


≥ ∆− 2

then

dist(0, x) ≤ 2


x

2∆−1 − 1


+ 3,

otherwise

dist(0, x) ≤ 2


x

2∆−1 − 1


+ 3


(∆− 2−


x

2∆−1 − 1


)/4


+ 7 ≤

3

4
∆ +

5

4


x

2∆−1 − 1


+

17

2
.

Proof. Case 1:


x
2∆−1−1


≥ ∆ − 2. From Lemma 8 we recall that


x

2∆−1−1


is the

maximum number of (∆ − 1)-dimensional edges necessary to reach a vertex of form

y = c(2∆−1 − 1) or y = n/2− c(2∆−1 − 1) closest to our destination vertex x. Recall

that ∆−2 is the maximum number of “backward” edges used in the path from Lemma

9. We observe that when


x
2∆−1−1


≥ ∆ − 2 then all the “backward” passes can be

performed by modifying the path described in Lemma 8 used to reach vertex y. We

just need to replace some of the 0-dimensional passes from Lemma 8 used only for

switching the graph partition with the corresponding “backward” passes from Lemma

9. As a result of this modification, instead of reaching y, with 2


x
2∆−1−1


+1 edges we

will reach some vertex y′ such that |x− y′| = 2∆ − 1. Using one (∆− 1)-dimensional

and one 0-dimensional edge we can perform the final pass and reach x with a path of

length at most 2


x
2∆−1−1


+ 3.

Case 2:


x
2∆−1−1


< ∆ − 2. In this case we will be able to perform only some of

the “backward” passes from Lemma 9 by modifying the path from Lemma 8. More

precisely, out of ∆ − 2 “backward” passes we will be able to perform only


x
2∆−1−1


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in the modified path. We note that each “backward” pass in Lemma 9 cuts the

distance to x by half. This means that performing


x
2∆−1−1


“backward” passes in

the path constructed by Lemma 8 of length 2


x
2∆−1−1


+3 we will be within distance

2∆−2−⌊x/(2∆−1−1)⌋ from x compared to 2∆−2 without performing these “backward”

passes. Now we can use Lemma 10 with d = ∆ − 2 −


x
2∆−1−1


and claim that by

using 3

(∆− 2−


x

2∆−1−1


)/4


+4 additional edges we will be able to reach x. Thus

dist(0, x) ≤ 2


x

2∆−1 − 1


+ 3


(∆− 2−


x

2∆−1 − 1


)/4


+ 7 ≤

3

4
∆ +

5

4


x

2∆−1 − 1


+

17

2
.

3.4 Tightness of the bound on distance

In this section we analyze the tightness of the upper bound on the distance from

Theorem 12. To do that we will first present a lower bound on dist(0, x) in the

Knödel graph W∆,n. Without loss of generality, we again assume that x ≤ ⌊n/4⌋.

Theorem 13 (Lower bound). For a vertex x of W∆,n,

dist(0, x) ≥ 2


x

2∆−1 − 1


+ 1.

Proof. First, note that in order to reach vertex x = (1, c(2∆−1−1)) where c =


x
2∆−1−1


from vertex (2, 0), we cannot construct a path shorter than the one described in

Lemma 8 and illustrated in Figure 22. This path contains exactly c+1 0-dimensional

edges used for changing the graph partition and c (∆ − 1)-dimensional edges used

for moving towards x in the fastest possible way. Thus, the lower bound dist(0, x) ≥
2


x
2∆−1−1


+ 1 follows.

The following theorem shows that the presented upper bound on dist(0, x) from

Theorem 12 is tight, in particular, almost always it is within additive factor 2 from

the actual distance.
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Theorem 14. For any 0 < ϵ < 1 there exists some N(ϵ) such that for all n ≥ N(ϵ),

∆ < (1− ϵ) ⌊log2 n⌋ and x > ϵn we have

2


x

2∆−1 − 1


+ 1 ≤ dist(0, x) ≤ 2


x

2∆−1 − 1


+ 3

in the W∆,n graph.

Proof. From Theorem 13 it follows that the upper bound from Theorem 12 for the

case when


x
2∆−1−1


≥ ∆ − 2 may differ from actual distance by at most 2. In the

following we show that under conditions of the theorem this inequality is satisfied.

After simplifying


x
2∆−1−1


≥ ∆ − 2 inequality we get the following necessary

condition for it to be true x ≥ ∆2∆−1. Using x > ϵn and ∆ < (1 − ϵ) ⌊log2 n⌋
inequalities we will get ϵn ≥ (1−ϵ) ⌊log2 n⌋ 2(1−ϵ)⌊log2 n⌋−1. After further simplifications

we get that if nϵ ≥ 1−ϵ
ϵ

⌊log2 n⌋ when the


x
2∆−1−1


≥ ∆ − 2 inequality is true.

We observe that for any fixed ϵ, the left side of nϵ ≥ 1−ϵ
ϵ

⌊log2 n⌋ inequality grows

polynomially with n, while the right side grows only logarithmically. Hence for any ϵ

there exists some N(ϵ) such that for all n > N(ϵ) this inequality will be satisfied.

Note that Theorem 12, in almost all cases, actually gives an approximation algo-

rithm to find the distance of W∆,n with an additive factor 2.

3.5 Lower and upper bounds on the diameter of

the Knödel graph

In this section we use Theorems 12 and 13 to present a tight bound on the diameter of

the Knödel graph D(W∆,n). We note that Theorem 12 gives two different expressions

for the upper bound of a vertex distance. By picking the maximal possible value for

both cases we obtain the following upper bound on the diameter of the Knödel graph.

Theorem 15 (Diameter).

D(W∆,n) ≤ max{2


⌊n/4⌋
2∆−1 − 1


+ 3,

3

4
∆ +

5

4


⌊n/4⌋

2∆−1 − 1


+

17

2
}.
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Proof. From Theorem 12 we have that for a vertex x of W∆,n,

dist(0, x) ≤ 2


x

2∆−1 − 1


+ 3

or

dist(0, x) ≤ 3

4
∆ +

5

4


x

2∆−1 − 1


+

17

2
.

Both expressions are monotonic on x, hence the maximal possible value for them is

achieved when x = ⌊n/4⌋. By substituting this value of x and taking the maximum

of resulting expressions we get

D(W∆,n) ≤ max{2


⌊n/4⌋
2∆−1 − 1


+ 3,

3

4
∆ +

5

4


⌊n/4⌋

2∆−1 − 1


+

17

2
}.

The following theorem shows that the presented upper bound is tight, in particular

it is within additive factor 2, for almost all possible values of ∆.

Theorem 16 (Tightness). For any 0 < ϵ < 1 there exists some N(ϵ) such that for

all n ≥ N(ϵ) and ∆ < (1− ϵ) ⌊log2 n⌋ we have

2


⌊n/4⌋

2∆−1 − 1


+ 1 ≤ D(W∆,n) ≤ 2


⌊n/4⌋

2∆−1 − 1


+ 3.

Proof. From Theorem 13 it follows that the upper bound on the diameter from The-

orems 12 and 15 for the case when


n/4
2∆−1−1


≥ ∆−2 may differ from actual diameter

by at most 2. Now, we find a sufficient condition for


n/4
2∆−1−1


≥ ∆−2 to be true. By

observing that


⌊n/4⌋
2∆−1−1


≥ n/2

2∆
− 1 and ∆− 2 ≤ ∆− 1 we get that if n/2

2∆
− 1 ≥ ∆− 1

then the condition is satisfied. After further simplification, we get the 2∆2∆ ≤ n

sufficient condition for


n/4
2∆−1−1


≥ ∆− 2 to be true.

It follows that for given n and ∆, where 2 ≤ ∆ ≤ ⌊log2 n⌋ such that ∆2∆+1 ≤ n,

we have 2


⌊n/4⌋
2∆−1−1


+ 1 ≤ D(W∆,n) ≤ 2


⌊n/4⌋

2∆−1−1


+ 3. Finally, we observe that for

any 0 < ϵ < 1 and ∆ < (1 − ϵ) ⌊log2 n⌋ the ∆2∆+1 ≤ n inequality is always true for

sufficiently large n.
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3.6 Broadcasting in the Knödel graph

In this section we present a tight upper and lower bounds on b(W∆,n) for all even n

and 2 ≤ ∆ ≤ ⌊log2 n⌋. For the upper bound, we will present a broadcast algorithm in

the Knödel graph. The lower will follow from the known lower bound on the diameter

of W∆,n from [44].

Let W ′
∆,2∆ be a graph obtained from W∆,2∆ by removing all the modular edges.

See Figure 27 for an illustration of W ′
4,16. Note that W

′
∆,2∆ contains only half of edges

of the original Knödel graph. The following lemma gives the broadcast time of vertex

(1, 0) in W ′
∆,2∆ .

Lemma 17.

b((1, 0),W ′
∆,2∆) = ∆.

Proof. It is clear that broadcasting from any originator must take at least ∆ time

units, since W ′
∆,2∆ has 2∆ vertices. Therefore, b((1, 0),W ′

∆,2∆) ≥ ∆. In the following,

we present a recursive algorithm for broadcasting in W ′
∆,2∆ from originator (1, 0) in

∆ time units. This will prove that b((1, 0),W ′
∆,2∆) ≤ ∆. The recursion will be on ∆.

The base case is when ∆ = 1. In this case we have two vertices connected with

an edge therefore, b(W ′
1,2) = 1.

For ∆ > 1, we note that W ′
∆,2∆ can be partitioned into two W ′

∆−1,2∆−1 graphs as

illustrated in Figure 28. The originator (1, 0) first will inform its (∆−1)−dimensional

neighbour (2, 2∆−1 − 1) in W ′
∆,2∆ . After this, both partitions of W ′

∆,2∆ will have an

informed vertex. Each of these two informed vertices will become the new broadcast

originator in its W ′
∆−1,2∆−1 graph. Since at each recursive step we use only one time

unit and cut the graph into two equal partitions, it follows that b(W ′
∆,2∆) = ∆.

Figure 27 illustrates the broadcast scheme of Lemma 17 in W ′
4,16. The bold edges

are used for sending the message and are labeled with the time at which they were

used.

In the following, we will interpret W∆,n as a “chain” of W ′
∆,2∆ graphs. The idea of

the presented broadcast algorithm is to inform one or two special vertices in each of

these W ′
∆,2∆ graphs as soon as it is possible. After getting informed, all these special

vertices will start to broadcast in their W ′
∆,2∆ graphs in parallel as in Lemma 17.
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Figure 27: The W ′
4,16 graph and the broadcast scheme.

Figure 28: Recursive partitioning and broadcasting in W ′
∆,2∆ .

Theorem 18 (Broadcast time).

2


1

2


n− 2

2∆ − 2


+ 1 ≤ b(W∆,n) ≤


n− 2

2∆ − 2


+∆− 1.

Proof. The lower bound follows from the lower bound on D(W∆,n) from Lemma 13),

since obviously we will need at least D(W∆,n) time units to inform a vertex at distance

D(W∆,n) from the broadcast originator.

To prove the upper bound, we present an algorithm for broadcasting in W∆,n. The

algorithm uses at most


n−2
2∆−2


+∆− 1 time units.

By considering only 0 and (∆ − 1)-dimensional edges, the Knödel graph can be

schematically illustrated as in Figure 22. Recall that the


n−2
2∆−2


expression represents

the number of partitions in Figure 22. We note that each partition is a W ′
∆,2∆ graph.

More precisely, we have


n−2
2∆−2


− 1 partitions of the form W ′

∆,2∆ and one partition of

the form W ′
∆,n−(


n−2

2∆−2


−1)(2∆−1−1)−1

.

The broadcast algorithm for W∆,n consists of three stages. In the first stage, we

inform all the vertices with labels (1, 0) and (2, 2∆−1− 1) in all W ′ graphs except one

or two farthest W ′ graphs from the originator. In the second stage, we use Lemma

17 to broadcast in parallel in all W ′ graphs. In the third stage, all the vertices of the

remaining one or two W ′ graphs will receive the message in just 1 or 2 time units

from neighbouring W ′ graphs and the broadcast will be complete in W∆,n.
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We note that the vertices of W∆,n with original labels y = (1, c(2∆−1 − 1)) and

y = (2, n/2 − c(2∆−1 − 1)) where 0 ≤ c ≤

1
2


n−2
2∆−2


after relabeling become the

vertices with label (1, 0) in W ′ partitions. Similarly, vertices y = (2, c(2∆−1 − 1)) and

y = (1, n/2−c(2∆−1 − 1)) where 0 ≤ c ≤

1
2


n−2
2∆−2


become the vertices (2, 2∆−1−1)

in W ′ graphs. Therefore, we can use the paths from Figure 22 in the first stage of

the broadcasting. All the vertices which need to be informed in the first stage form a

“cycle” of length


n−2
2∆−2


in W∆,n. Each “edge” of this cycle consists of one 0 and one

(∆− 1)-dimensional edge and it takes 2 time units to send a message via such edge.

It follows that we need 2

1
2


n−2
2∆−2


to complete the first stage of broadcasting, i.e

inform all the vertices of this “cycle” except one or two farthest ones from originator

(1, 0). In order to have a good upper bound on b(W∆,n), we consider the parity of
n−2
2∆−2


.

If


n−2
2∆−2


is odd then it will take 2


1
2


n−2
2∆−2


−1 =


n−2
2∆−2


−2 rounds to complete

the first stage. After this, all the W ′ partitions of the Knödel graph, except two

farthest ones from the originator (1, 0), will have their vertices with label (1, 0) and

(2, 2∆−1 − 1) informed. We note that by the end of first stage, the first step of

recursive broadcast algorithm from Lemma 22 will be complete. This means that we

only need ∆− 1 additional rounds to inform all the vertices in W ′ graphs. Finally, in

the third stage, in just 2 time units the final two uninformed W ′ graphs will receive

the broadcast message from the neighbouring and fully informed W ′. At first, the

(∆−1)-dimensional edges will be used to inform all vertices in one of the partitions in

the reaming 2 W ′ graphs. After this, the 0-dimensional edges will be used to inform

all the vertices of the second partition. It follows that

b(W∆,n) ≤ (


n− 2

2∆ − 2


− 2) + (∆− 1) + 2 =


n− 2

2∆ − 2


+∆− 1.

If


n−2
2∆−2


is even then it will take


n−2
2∆−2


− 1 rounds to complete the first stage.

We note that in this case all W ′ graphs except one, will have two vertices with labels

(1, 0) and (2, 2∆−1 − 1) informed. As in the previous case, we will need only ∆ − 1

time units tome complete the broadcasting in W ′ graphs according to Lemma 22. In

the third stage, in just one time unit, using (∆− 1)-dimensional edges we will inform

all the vertices of the remaining W ′ graph from neighbouring W ′ graphs. Hence in
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this case we also have

b(W∆,n) ≤ (


n− 2

2∆ − 2


− 1) + (∆− 1) + 1 =


n− 2

2∆ − 2


+∆− 1.

Figure 29 illustrates the broadcast algorithm of Theorem 18 in W3,32 graph. For

this case the number of partitions


n−2
2∆−2


=


30
6


= 5 is odd and we deal with the

first case of Theorem 18. The 0 and 2-dimensional edges divide the W3,32 graph

into 5 parts S1, S2, ..., S5. Each part is a W ′
3,8 graph. The goal of the first stage of

the broadcast algorithm is to inform two special vertices in S1, S2 and S5 partitions.

These are the vertices (1, 0) and (2, 3) in S1, (1, 3) and (2, 6) in S2, (2, 0) and (1, 13) in

S5. The bold edges are used to accomplish this in 3 time units. After relabeling, these

special vertices are going to have labels (1, 0) and (2, 3) in W ′
3,8 partitions. During

the second stage of the broadcasting, all these vertices will broadcast in parallel in

S1, S2 and S5 partitions as shown in Figure 30. From Lemma 17 follows that we

need only 2 time units to broadcast from originators (1, 0) and (2, 3) in W ′
3,8 i.e.

b({(1, 0), (2, 3)},W ′
3,8) = 2. The broadcast scheme is illustrated in Figure 29. It

follows that the second stage will be complete in 2 time units. Finally, in 2 more time

units, the vertices of S2 and S5 will inform all the vertices of S3 and S4. The total

broadcast time will be b(W3,32) ≤ 3 + 2 + 2 = 7.

Figure 31 illustrates the broadcast algorithm of Theorem 18 in W3,26 graph. For

this case the number of partitions


n−2
2∆−2


=


24
6


= 4 is even and we deal with the

second case of Theorem 18. The 0 and 2-dimensional edges divide the W3,32 graph

into 4 parts S1, S2, S3, S4. Each part is a W ′
3,8 graph. For this case, the goal of the

first stage of the broadcast algorithm is to inform two special vertices in S1, S2 and S4

partitions. The bold edges are used to accomplish this in 3 time units. As in the case

of W3,32, from Lemma 17 follows that we need only 2 time units to inform all vertices

in S1, S2 and S4 (see Figure 30). The broadcast scheme is illustrated in Figure 31.

Finally, in just 1 time unit, the vertices of S2 and S4, using 2-dimensional edges, will

inform all the vertices of S3. The total broadcast time will be b(W3,26) ≤ 3+2+1 = 6.
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Figure 29: Broadcast scheme in W3,32.

Figure 30: Two originator broadcast scheme in W ′
3,8.

3.7 Summary

We addressed the routing problem in the Knödel graph W∆,n and gave a tight bound

on the distance between any two vertices in W∆,n. We showed that the presented

bound differs from actual distance by at most 2 for almost all vertex pairs in W∆,n.

We also obtained tight lower and upper bounds on the diameter of the Knödel

graph W∆,n for all even n and 2 ≤ ∆ ≤ ⌊log2 n⌋. We showed that the presented

bound differs from actual diameter by at most 2 for almost all ∆.

Recall that the only known results, regarding the diameter of the Knödel graph,

were the exact value D(W∆,2∆) =

∆+2
2


[31] and an 2-approximation algorithm with

logarithmic time complexity for finding shortest path between any pair of vertices in

W∆,2∆ [59]. Lemma 10 provides D(W∆,2∆) ≤ 3 ⌈(∆− 1)/4⌉+4. Comparing this with
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Figure 31: Broadcast scheme in W3,26.

the exact expression above, we see that Lemma 10 provides an 3/2-approximation

algorithm for the problem of finding a diametral path. This is much better than the

2-approximation algorithm presented in [59].

For the broadcast time of the Knödel graph W∆,n, we showed that

2


1

2


n− 2

2∆ − 2


+ 1 ≤ b(W∆,n) ≤


n− 2

2∆ − 2


+∆− 1.

We believe that the presented lower bound, based only on D(W∆,n), can be improved.

Moreover, we state as a conjecture that the presented upper bound gives the exact

expression for b(W∆,n).

Conjecture 19.

b(W∆,n) =


n− 2

2∆ − 2


+∆− 1.

We also note that all the proofs are constructive and allow to construct a short

path between any pair of vertices and to perform quick broadcasting from any vertex

in W∆,n.
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Chapter 4

New Lower Bounds on Broadcast

Function

This chapter studies the broadcast function B(n). We consider the possible vertex

degrees and possible connections between vertices of different degrees in graphs with

b(G) = ⌈log2 n⌉. Using this, we present new lower bounds on B(n) when n = 2m− 2k

and n = 2m − 2k + 1 (3 ≤ k < m). Also, we prove that B(24) ≥ 36 for graphs with

maximum vertex degree at most 4.

4.1 Introduction

We recall that B(n) is defined as the number of edges in an mbg on n vertices.

B(n) is known only for very few particular values of n. B(n) is known for all

n ≤ 32 except for n = 23, 24 and 25. Refer to Table 1 for all currently known values

of B(n).

Since mbg’s seem to be extremely difficult to find, a long sequence of papers

presented techniques to construct broadcast graphs and to obtain upper bounds on

B(n) (see e.g. [8, 9, 12, 21, 25, 27, 30, 39, 40, 47, 51, 52, 53, 70, 73, 74, 90]). Most

techniques combine several known mbg’s and bg’s on smaller sizes to create new ones

of a larger size (see e.g. [8, 22, 51, 54, 70]). For this reason, it is very important to

design mbg’s and determine the values of B(n) for small n.

However, it is extremely difficult to prove a lower bound on B(n) that matches the

obtained upper bound. For small n, an mbg can be found by exhaustive case analysis,
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but when n becomes large, the number of possible graphs grows exponentially and

this technique is no longer useful.

The lower-bound proofs are based on the lower bound on vertex degree of a broad-

cast graph. The known minimum broadcast graphs on n = 2p and n = 2p−2 vertices

are p-regular and (p−1)-regular graphs, respectively. In these cases there are matched

lower bounds on the vertex degree. However, for other values of n, the best known

broadcast graphs are not regular, and so, the upper bounds cannot match the lower

bounds based only on the vertex degree.

Let vi be the number of vertices of degree i in broadcast graph G on n vertices.

We have the following expression for B(n),

B(n) ≥ 1

2

n−1
i=1

ivi.

Our first observation is that in an mbg on n = 2k−x vertices where 1 ≤ x ≤ 2k−1,

the minimum vertex degree must be at least k − ⌊log2 x⌋. A broadcast tree rooted

at some vertex v of a smaller degree will contain at most n = 2k − x − 1 vertices.

This number is smaller than the total number of vertices. This means that not all

vertices will be able receive the broadcast message by the time k from originator v.

This observation gives that

B(2k − x) ≥ 2k − x

2
· (k − ⌊log2 x⌋).

The fact that a given graph is an mbg determines not only the minimum possible

vertex degree in it but also the possible connections between vertices of different

degrees. By making more accurate observations the above mentioned bound can be

improved. This approach was used in [84] to obtain lower bounds on B(n) when

n = 2m − 3, n = 2m − 4, n = 2m − 5 and n = 2m − 6. The following bounds are

presented:

B(2m − 3) ≥

2m − 3

2
· (m− 2 +

3m− 5

m2 −m− 1
)


,

B(2m − 4) ≥

2m − 4

2
· (m− 2 +

4

2m+ 1
)


,

B(2m − 5) ≥

2m − 5

2
· (m− 2 +

2

2m− 1
)


,
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B(2m − 6) ≥

2m − 6

2
· (m− 2 +

1

m
)


.

The same approach is also used in [78] to get a lower bound on B(n) when n =

2m − 1.

B(2m − 1) ≥

2m − 1

2
· (m− 1 +

1

m+ 1
)


.

We find this method of getting lower bounds on B(n) promising and we will use

it to find good lower bounds on B(n) when n = 2m − 2k and n = 2m − 2k + 1

(3 ≤ k < m). The main difficulty in the above approach is that when x increases the

number of different relations between vertices of different degree increases as well and

it becomes more and more difficult to deal with them and derive an improved lower

bound on B(2k − x).

One of the motivations for looking on these two particular forms of n is that the

smallest values for which B(n) is not known are n = 23, n = 24 and n = 25. The

latter two have a form n = 2m − 7 and n = 2m − 8 respectively. Where are known

broadcast graphs on 24 and 25 vertices having 36 and 40 edges respectively [9] but

whether these graphs are mbg’s or not is not known. Tight lower bounds on B(24),

B(25) may help to address this problem.

4.2 Lower bound on B(2k − 7)

In this section we present a new lower bound on B(n) when n = 2k − 7. Later, we

generalize the presented result for n = 2m − 2k + 1. In our approach, we extend the

technique presented by Sacle in [99].

Theorem 20.

B(2k − 7) ≥ n

2
· ((k − 3) +

5k − 11

(k + 1)(k − 2)
).

Proof. Recall that in an mbg on n = 2k − 7 the minimum possible vertex degree is

k − 3. Let us look at the broadcast tree rooted at a vertex u of degree k − 3. We

observe that u must have at least one neighbour of degree at least k, at least two

neighbours of degree at least k − 1 and at least three neighbours of degree at least

k − 2. We also observe that a vertex cannot have all neighbours of degree k − 3. In

other words each vertex in the graph must have at least one vertex of degree at least

k − 2. We can write the following inequalities:
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
i≥k

(i− 1)vi ≥ vk−3,


i≥k−1

(i− 1)vi ≥ 2vk−3,


i≥k−2

(i− 1)vi ≥ 3vk−3.

For the number of edges in the graph, denoted by m, we will have

2m =

i≥k−3

ivi = n+

i≥k−3

(i− 1)vi.

This implies 
i≥k−3

(i− 1)vi = 2m− n.

After substituting this in the above three inequalities we will get

2m− n− (k − 4)vk−3 − (k − 3)vk−2 − (k − 2)vk−1 ≥ vk−3,

2m− n− (k − 4)vk−3 − (k − 3)vk−2 ≥ 2vk−3,

2m− n− (k − 4)vk−3 ≥ 3vk−3.

After rearrangement of the terms we will have

2m− n ≥ (k − 3)vk−3 + (k − 3)vk−2 + (k − 2)vk−1,

2m− n ≥ (k − 2)vk−3 + (k − 3)vk−2,

2m− n ≥ (k − 1)vk−3.

After subtracting vk−1 and vk−3 from the right hand sides of the first and the second

inequalities respectively, we will get

2m− n ≥ (k − 3)(vk−3 + vk−2 + vk−1),

2m− n ≥ (k − 3)(vk−3 + vk−2),
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2m− n ≥ (k − 1)vk−3.

It follows that

vk−3 + vk−2 + vk−1 ≤
2m− n

k − 3
,

vk−3 + vk−2 ≤
2m− n

k − 3
,

vk−3 ≤
2m− n

k − 1
.

We have that for the number of edges we also have the following expression

2m ≥ nk − (vk−1 + 2vk−2 + 3vk−3) =

= nk − (vk−1 + vk−2 + vk−3)− (vk−2 + vk−3)− vk−3.

After the substitution of the above bounds in this inequality we will have

2m ≥ nk − (2m− n)(
2

k − 3
+

1

k − 1
).

From which

m ≥ n

2
·
k + ( 2

k−3
+ 1

k−1
)

1 + ( 2
k−3

+ 1
k−1

)
=

=
n

2
·
k + ( 2

k−3
+ 1

k−1
)

1 + ( 2
k−3

+ 1
k−1

)
.

Finally, we got the following lower bound on B(2k − 7)

B(2k − 7) ≥ n

2
·
k + ( 1

k−1
+ 2

k−3
)

1 + ( 1
k−1

+ 2
k−3

)
=

n

2
· ((k − 3) +

5k − 11

(k + 1)(k − 2)
).

4.3 Lower bound on B(2k − 2p + 1)

In this section we obtain a new lower bound on B(n) where n = 2k − 2p +1 based on

the degree sequence restrictions of any broadcast graph on 2k − 2p + 1 vertices.
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Theorem 21.

B(2k − 2p + 1) ≥ 2k − 2p + 1

2
· ((k − p) +

k(2p− 1)− (p2 + p− 1)

k(k − 1)− (p− 1)
).

Proof. We observe that in an mbg on 2k − 2p +1 vertices, each vertex of degree k− p

must have at least one neighbour of degree at least k, two neighbours of degree at

least k − 1, three neighbours of degree at least k − 2, ... , p neighbours of degree at

least k − p+ 1. After noticing that a vertex cannot have all its neighbours of degree

k − p we are getting the following inequalities


i≥k

(i− 1)vi ≥ vk−p,


i≥k−1

(i− 1)vi ≥ 2vk−p,


i≥k−2

(i− 1)vi ≥ 3vk−p,

...
i≥k−p+1

(i− 1)vi ≥ pvk−p.

For the number of edges in the graph, denoted by m we will have

2m =

i≥k−p

ivi = n+

i≥k−p

(i− 1)vi.

This implies that 
i≥k−p

(i− 1)vi = 2m− n.

After substituting this in the above p inequalities and reversing their order we will

get

2m− n− (k − p− 1)vk−p ≥ pvk−p,

2m− n− (k − p− 1)vk−p − (k − p)vk−p+1 ≥ (p− 1)vk−p,

2m− n− (k − p− 1)vk−p − (k − p)vk−p+1 − (k − p+ 1)vk−p+2 ≥ (p− 2)vk−p,

...
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2m− n−
i

j=0

(k − p− 1 + j)vk−p+j ≥ (p− i)vk−p,

...

2m− n−
p−1
j=0

(k − p− 1 + j)vk−p+j ≥ vk−p.

After rearranging the terms we will have

2m− n ≥ (k − 1)vk−p,

2m− n ≥ (k − 2)vk−p + (k − p)vk−p+1,

2m− n ≥ (k − 3)vk−p + (k − p)vk−p+1 + (k − p+ 1)vk−p+2,

...

2m− n ≥ (k − p)vk−p +

p−1
j=1

(k − p− 1 + j)vk−p+j.

By replacing all the k−2, k−3, ..., k−p+1 coefficients on the right side of these

inequalities with k − p (the smallest one) we will get

2m− n ≥ (k − 1)vk−p,

2m− n ≥ (k − p)(vk−p + vk−p+1),

2m− n ≥ (k − p)(vk−p + vk−p+1 + vk−p+2),

...

2m− n ≥ (k − p)(vk−p + vk−p+1 + vk−p+2 + ...+ vk−1).

From other side we have the following trivial inequality

2m ≥ nk − (vk−1 + 2vk−2 + 3vk−3 + ...+ pvk−p) =

= nk − (vk−1 + vk−2 + vk−3 + ...+ vk−p)

−(vk−2 + vk−3 + ...+ vk−p)− (vk−3 + ...+ vk−p)− ...− vk−p.

By substituting in this inequality the upper bounds obtained in the previous set

of inequalities we will get
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2m ≥ nk − (2m− n)(
1

k − 1
+

p− 1

k − p
).

It follows that

B(2k − 2p + 1) ≥ n

2
·
k + ( 1

k−1
+ p−1

k−p
)

1 + ( 1
k−1

+ p−1
k−p

)
=

2k − 2p + 1

2
· ((k − p) +

k(2p− 1)− (p2 + p− 1)

k(k − 1)− (p− 1)
).

4.4 Lower bound on B(2k − 2p)

Using the same approach as is in the case of B(2k−2p−1), we get a new lower bound

on B(2k − 2p).

Theorem 22.

B(2k − 2p) ≥ 2k − 2p

2
· ((k − p) +

k(2p− 2)− (p2 + p− 2)

k(k − 2)− (p− 2)
).

Proof. The proof is omitted due to its similarity to the proof for B(2k − 2p − 1).

4.5 About the value of B(24)

A broadcast graph on 24 vertices and 36 edges was constructed by Bermond et al.

[9]. This gives

B(24) ≤ 36.

We will prove the B(24) ≥ 36 inequality for graphs G with ∆(G) = 4, i.e. for

graphs with maximum vertex degree at most 4.

Let vi denote the number of vertices of degree i, and αij denote the number of all

edges between vertices of degree i and j. By our definition αij = αji.

Theorem 23. A broadcast graph G on 24 vertices and ∆(G) ≤ 4, must have at least

36 edges.
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Proof. We observe that G cannot contain a vertex of degree 1, since such a vertex

will be able to inform at most 17 < 24 vertices in 5 rounds. By counting the number

of edges adjacent to vertices of degree 4, we will have

4v4 = α42 + α43 + 2α44.

2

44

34

3

3

Figure 32: Subtree of a broadcast tree rooted at a vertex of degree 2.

We also observe that the broadcast tree rooted at a vertex of degree 2 must have

a form shown in Figure 32. Except the root, all other vertices which may have degree

2 are omitted. The number next to each vertex indicates the minimal possible degree

for that vertex. For example, a vertex with label 3 may actually have degree 4.

From the figure we observe that a vertex of degree 2 must have both its neighbours

of degree 4. Therefore,

α42 = 2v2

From the fact that a vertex of degree 4 cannot have all its neighbours having

degree 2, it follows that it has at least one adjacent edge going to vertex of degree

3 or 4. Also we note that a vertex of degree 2 must have a neighbour v (left child

in Figure 32) of degree 4 having at least 2 edges going to a vertex of degree 3 or 4.

Vertex v can be shared between at most 2 vertices of degree 2. It follows that there

are at least

v2
2


such vertices “v”, i.e. vertices of degree 4 having at least 2 edges

going to a vertex of degree 3 or 4. Thus, we have that

α43 + α44 ≥ v4 +
v2
2


.

From the observation that an edge between vertices of degree 4 in Figure 32 can
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be shared among at most 4 vertices of degree 2 we have that

α44 ≥
v2
4


.

Finally, by using the expressions above we will have

4v4 = α42 + α43 + 2α44 = α42 + (α43 + α44) + α44 ≥

≥ 2v2 + v4 +
v2
2


+
v2
4


≥ (2 +

1

2
+

1

4
)v2 + v4 ⇒

⇒ 3v4 ≥
11

4
v2 ⇒ v4 ≥

11

12
v2.

To prove that b(24) ≥ 36 = 24·3
2
, we must show that in any broadcast graph of on

24 vertices, the average vertex degree is at least 3. In our case, this means that in

any broadcast graph G with ∆(G) = 4, |G| = 24, we must show that v4 ≥ v2. From

v4 ≥ 11
12
v2 it almost always follows that v4 ≥ v2. The only pair of values for which it

is not so is v2 = 12, v4 = 11, but this would mean that v3 = 24− v2− v4 = 1, which is

impossible, since in any graph the number of vertices of odd degree must be even.

4.6 Summary

In [39] it was shown that

B(n) ≥ n

2
· (⌊log2 n⌋ − log2(1 + 2⌊log2 n⌋ − n)).

Let p be the index of the leftmost 0 bit in the binary representation (αm−1αm−2...α1α0)

of n− 1. In [74] the following bound was obtained

B(n) ≥ n

2
· (m− p− 1).

This bound was later improved in [52] to

B(n) ≥ n

2
· (m− p− 1 + β)

where β = 0 if p = 0 or if α0 = α1 = ... = αp−1 = 0, otherwise β = 1.

In [103], the lower bound was further improved. It was shown that for almost all
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n,

B(n) ≥ n

2
· (D(n) + 1)2

(D(n) + 2)
,

where D(n) = m− p− 1 + β.

As we can see, the previously known lower bounds on B(n) have a rather com-

plicated form. Therefore, it is very difficult to compare analytically our new bounds

from Theorems 20 and 22 with the previous bounds. Despite this, from the numer-

ical examples presented in Table 4, we see that our new lower bounds on B(n) for

n = 2m − 2k and n = 2m − 2k + 1 (2 ≤ k < m) are much tighter than the previous

bounds.

n k p New lower bound on B(n) Previous lower bound on B(n)

5 3 2 5 5 (tight)

9 4 3 9 10 (tight)

13 4 2 18 18 (tight)

24 5 3 33 27,35

25 5 3 35 29,38

28 5 2 48 45

29 5 2 52 52

48 6 4 68 54

49 6 4 70 56

56 6 3 109 90

57 6 3 105 92

60 6 2 130 130 (tight)

61 6 2 136 136 (tight)

384 9 7 563 432

385 9 7 566 434

Table 4: Some lower bounds on B(n) from Theorems 20 and 22.
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Chapter 5

Miscellaneous Remarks

This chapter presents some basic results in our research.

5.1 Graphs with the worst possible broadcast time

This section describes all the graphs G with b(G) = n− 1.

In a connected graph G on n vertices, at each broadcast round, at least one new

vertex receives the message. Therefore,

b(G) ≤ n− 1.

To reach this bound, we must make sure that at each round exactly one new vertex

gets informed.

We begin by describing all the trees with b(T ) = n− 1.

Let S be the set of all edges between informed and uniformed vertices S =

{(v1, v′1), ..., (vk, v′k)} at each broadcast round in a tree. For any i ̸= j we must

have v′i ̸= v′j, otherwise we would have a cycle in T consisting of path (vi, v
′
i)(v

′
i, vj)

and path connecting vi and vj in the set of informed vertices. Also note that vertices

vi where 1 ≤ i ≤ k, cannot be distinct, otherwise, if for some i ̸= j, vi ̸= vj, we will

have two disjoint edges (vi, v
′
i), (vj, v

′
j) in S. Using these edges, we will be able to

inform two new vertices v′i and v′j in just one round. It follows that S has a form

S = {(v1, v′1), ..., (v1, v′k)} where all v′i’s are distinct vertices.

Theorem 24. For a tree T , b(T ) = n − 1 if and only if T has the form of a path
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connected to a “star” (K1,n) as shown in Figure 33. We have b(T ) = b(v, T ) = n− 1,

where v is one of the end vertices of the path.

Proof. Let T be a tree with b(T ) = n− 1. There must exist a vertex v ∈ V (T ) such

that b(v, T ) = n−1. Recall that the set of edges S between informed and uninformed

vertices must have a form S = {(v1, v′1), ..., (v1, v′k)}. We start broadcasting from

v and at each round we construct S. At each round, if k = 1 for the constructed

S, we will get a new vertex on a path starting at v. If at some round we get S =

{(v1, v′1), ..., (v1, v′k)} and k ̸= 1, we claim that v1 is the only neighbour for vertices

v′1, v
′
2, ..., v

′
k. We will prove this claim by contradiction. Without loss of generality,

suppose that v′2 has a neighbour v′′2 and v′′2 ̸= v1. In this case, v1 first will inform

v′2 and both vertices v1 and v′2 in the following round will be able to inform 2 new

vertices v′1 and v′′2 .

Figure 33: General form of the trees T with b(T ) = b(v) = n− 1.

Now we describe all the cyclic graphs with b(G) = n− 1.

Theorem 25. If a graph G with b(G) = n− 1 is not a tree then it must have a form

of a path connected to a triangle as shown in Figure 34.

Proof. If b(G) = n − 1, then all the spanning trees of G must have a form given by

Theorem 24 and shown in Figure 33. Therefore, we can assume that G is created

from a tree shown in Figure 33 by adding one or more edges. We observe that in

order to have b(G) = n − 1 the first added edge must connect two vertices from the

“star” part of the tree in Figure 33. We also observe that we cannot add other edges

without getting b(G) < n−1. So, we are left only with the graph presented in Figure

34.
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Figure 34: General form of the cyclic graphs G with b(G) = b(v) = n− 1.

5.2 Formulation of the broadcast time problem as

an IP problem

In order to formulate the broadcast time problem as an integer programming(IP)

problem we need more formal definition for the broadcast scheme in a graph.

The triple (vi, vj, t) denotes the fact that vertex vi at round t informs vj. A

broadcast scheme of a graph G = (V,E), |V | = n from the originator s ∈ V , denoted

BS(s,G), is defined as a set of triples

BS(s,G) = {(vi, vj, t)|vi, vj ∈ V, t ∈ {1, ..., n− 1}}

with the following properties:

1. (vi, vj, t) ∈ BS(s,G) ⇒ (vi, vj) ∈ E.

2. (vi, vj, t) ∈ BS(s,G) ⇒ vi = s or for some t′ < t,∃(vi′ , vi, t′) ∈ BS(s,G).

3. (v′i, vj, t) ∈ BS(s,G) and (v′′i , vj, t
′′) ∈ BS(s,G) ⇒ v′i = v′′i , t = t′′.

4. (vi, v
′
j, t) ∈ BS(s,G) and (vi, v

′′
j , t) ∈ BS(s,G) ⇒ v′j = v′′j .

5. |BS(s,G)| = n− 1.

Property 1 expresses the fact that a vertex can inform only its neighbours. Prop-

erty 2 expresses the fact that only an informed vertex can inform other vertices.

Property 3 expresses the fact that each vertex receives the message only once, i.e we

forbid unnecessary calls. Property 4 expresses the fact that at each round a vertex

in graph can send the message to at most 1 vertex. Finally, the last property ensures

that each vertex from V − {s} will appear as a second component of a triple belong-

ing to BS(s,G), i.e. each vertex except the originator s will receive the broadcast

message.
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Now we can formulate the IP problem. Let yi,j,t boolean variable be 1 if (vi, vj, t) ∈
BS(s,G)) and 0 otherwise. The IP problem will be:

minimize

n
i=1

zi

subject to
(i′,j)∈E,t′∈{1,...,t−1}

yi′,j,t′ ≥ yi,j,t for all i, j, t there (i, j) ∈ E, t ∈ {1, ..., n− 1}

yi,j′,t + yi,j′′,t ≤ 1 for all j′ ̸= j′′, (i, j′), (i, j′′) ∈ E
(i,j)∈E,t∈{1,...,n−1}

yi,j,t = 1(or ≥ 1) for all vj ∈ V − {s}


(i,j)∈E,t∈{1,...,n−1}

yi,j,t = n− 1


(i,j)∈E

yi,j,t ≤ zt for t = 1, ..., n− 1

yi,j,t, zt ∈ {0, 1} for all i, j, t there (i, j) ∈ E, t ∈ {1, ..., n− 1}

In the IP program we have m(n − 1) variables yi,j,t and n − 1 variables zt. In

a feasible solution of the IP program, n − 1 variables yi,j,t must be set to 1. We

also have a n − 1 possible choices for the values of zt. Therefore, in total, we will

have (n− 1) ·

m(n−1)
n−1


candidates for the IP’s solution. It follows that the exhaustive

search for the optimal solution will have a complexity O(n ·

mn
n


) = O(n · ( emn

n
)n) =

O(n(em)n).

5.3 Slightly improved general upper bound on broad-

cast time

In this section we prove a new upper bound on the broadcast time of any connected

graph G.

Let G = (V,E) be a connected graph and u, v ∈ V . dist(u, v) denotes the length
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of the shortest path between u and v in G. Also, let deg(G) denote the maximum

degree of a vertex in G. The diameter of G is defined as

diam(G) = max{dist(u, v)|u, v ∈ G}.

The radius or eccentricity of a vertex v in G is defined as

rad(v,G) = max{dist(v, x)|x ∈ G}.

The radius of G is defined as

rad(G) = min{rad(v,G)|v ∈ G}.

Theorem 26. For any connected graph G,

b(G) ≤ deg(G)⌊diam(G)/2⌋+ 1

when diam(G) is odd, and

b(G) ≤ deg(G)diam(G)/2

when diam(G) is even.

Proof. To prove the upper bounds we describe a broadcast algorithm which finishes

in deg(G) · ⌊diam(G)/2⌋+ 1 and in deg(G) · diam(G)/2 rounds respectively.

Let G = (V,E) be a connected graph with odd diameter and let o ∈ V be the

broadcast originator. The following algorithm broadcasts in G in at most deg(G) ·
⌊diam(G)/2⌋+ 1 rounds.

Step 1: Find u, v ∈ V such that dist(u, v) = diam(G). In the shortest path be-

tween u and v of odd length, pick two vertices u′ and v′ such that dist(u, u′) =

dist(v, v′) = ⌊diam(G)/2⌋ (note that u′ and v′ are the two middle vertices of a

diametral path).

Step 2: Find in G a shortest path P which connects the originator o with one of the

vertices u′, v′ and such that (u′, v′) ∈ P .

Step 3: Using path P , send the message from originator o to vertices u′ and v′.
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Step 4: Continue broadcasting from vertices u′, v′ in a “greedy” way, i.e. all informed

vertices at each broadcast round pick arbitrary uninformed neighbour and send

the message to it until all the vertices of G will receive the message.

The length of path P may at most be ⌊diam(G)/2⌋+ 1, so in the third step, the

algorithm will need at most ⌊diam(G)/2⌋+1 rounds. All the vertices of G are within

distance ⌊diam(G)/2⌋ from u′ or v′, so, in at most (deg(G)− 1)⌊diam(G)/2⌋ rounds

all of them will receive the message in the forth step of the algorithm. This claim

follows from the observation that after d(deg(G)− 1) rounds all vertices of graph G

within distance d from u′ or v′ will receive the message. For the broadcast time of o

in G we will have

b(o,G) ≤ ⌊diam(G)/2⌋+ 1 + (deg(G)− 1)⌊diam(G)/2⌋ =

deg(G)⌊diam(G)/2⌋+ 1.

So, we proved the theorem when diam(G) is odd. However when diam(G) is even,

we must slightly modify the above algorithm. The following is the modified version.

Step 1: Find u, v ∈ V such that dist(u, v) = diam(G). In the shortest path between

u and v of even length pick the vertex u′ such that dist(u, u′) = dist(u′, v) =

diam(G)/2 (u′ is the middle vertex of a diameter).

Step 2: Find in G a shortest path P which connects the originator o with the vertex

u′.

Step 3: Using path P , send the message from originator o to vertex u′.

Step 4: Continue broadcasting from the vertex u′ in a “greedy” way, i.e. all informed

vertices at each broadcast round pick arbitrary an uninformed neighbour and

send the message to it until all the vertices of G will receive the message.

In the third step the algorithm will spend at most diam(G)/2 rounds. All vertices

of G are within distance diam(G)/2 from u′, therefore, in at most (deg(G) − 1) ·
diam(G)/2 rounds all of them will receive the message. For the broadcast time of o

in G we will have

b(o,G) ≤ diam(G)/2 + (deg(G)− 1) · diam(G)/2 =
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deg(G) · diam(G)/2.

This finishes the proof of the theorem.

The previous general upper bounds on the broadcast time are presented in [68].

b(G) ≤ (deg(G)− 1) · diam(G) + 1,

b(G) ≤ deg(G) · rad(G).

Note that ⌊diam(G)/2⌋ < rad(G) when diam(G) is odd and diam(G)/2 ≤ rad(G)

otherwise. Thus, it follows that our new bounds from Theorem 26 are slightly tighter

than the ones from [68].

5.4 Relation between minimum and maximum broad-

cast times in a graph

In this section we prove a relation between the broadcast time of an arbitrary chosen

vertex in a graph and the broadcast time of a vertex from the broadcast center of the

graph.

Let OPT be the minimum broadcast time of a vertex in a graph G = (V,E).

Recall that the broadcast center(BC) is the set of vertices in G with broadcast time

OPT . The dist(v,BC) is defined as

dist(v,BC) = min{dist(v, u)|u ∈ BC}.

Lemma 27. For any vertex v ∈ V we have

dist(v,BC) ≤ OPT − 1.

Proof. From the definition of the graph broadcast center we know that for all o ∈ BC

b(o,G) = OPT . The proof will be by contradiction.

Let us assume that there exists some vertex v ∈ V with dist(v,BC) > OPT − 1.

From the fact that in OPT rounds it is possible to finish broadcasting from any

vertex o ∈ BC it follows that dist(v,BC) ≤ OPT . We need to consider only the

case when dist(v,BC) = OPT . On a path P of length OPT connecting v with the
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closest vertex o ∈ BC let u /∈ BC be the vertex attached to o. From the fact that

length(P ) = OPT it follows that in order to inform the vertex v in OPT rounds, o

at the first round must send the message to vertex u. But this means that vertex u

also may finish broadcasting in OPT rounds by first informing o, i. e. u ∈ BC which

is a contradiction.

Theorem 28. For any vertex v ∈ V we have

b(v,G) ≤ 2 ·OPT − 1.

Proof. From Lemma 27 it follows that in at most OPT − 1 rounds we will be able

to inform some vertex o ∈ BC from any originator v ∈ G. Vertex u needs only OPT

rounds to finish the broadcasting, therefore b(v,G) ≤ 2 ·OPT − 1.

Theorem 28 provides a slight improvement over the trivial bound b(v,G) ≤ 2 ·
OPT.

5.5 Broadcasting from multiple optimally chosen

originators

This section studies the broadcasting from multiple optimally chosen originators.

In particular, we are interested in knowing how much the broadcast time may be

decreased if instead of one we will be allowed to have k initially informed vertices in

a graph G. Some results related to this model are presented in [14, 29].

Let OPTk denote the broadcast time from the optimally chosen k vertices in graph

G, where by “optimally” we mean a choice which minimizes the broadcast time. We

prove that by having the opportunity to choose k originators instead of 1, we may

decrease the broadcast time in a graph at most k times.

Theorem 29. In any connected graph G,

OPT1 ≤ k ·OPTk + 1.

Proof. First we prove the case when k = 2.

Let us assume that in a connected graph G = (V,E), vertices v1, v2 ∈ V are the

optimal originators for 2 − broadcasting. See Figure 35. Let Pv1v2 be the shortest
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path connecting vertices v1, v2. From the fact that 2−broadcasting can be completed

in OPT2 rounds it follows that for every vertex u ∈ V we must have

min{distance(u, v1), distance(u, v2)} ≤ OPT2.

This is true for the vertices of path Pv1v2 as well, and means that length(P ) ≤ 2·OPT2.

Let us pick as a 1 − broadcast originator the central vertex o of path Pv1v2 (or one

of the central vertices if Pv1v2 has an even length). The 1 − broadcasting algorithm

will first inform vertices v1, v2 from o in at most OPT2 + 1 rounds and by using

2− broadcasting algorithm from v1, v2 originators we will complete the broadcasting

in OPT2 additional rounds. This means that we have a 1 − broadcasting algorithm

which completes broadcasting from originator o in at most 2 · OPT2 + 1 rounds, i.e.

b(o,G) ≤ 2 ·OPT2 + 1. Also by noticing that OPT1 ≤ b(o,G) we will have that

OPT1 ≤ 2 ·OPT2 + 1.

This completes the proof for the case k = 2.

Figure 35: Illustration of the connection between OPT1 and OPT2.

For the case k ≥ 3, again, at first we will inform from a specially chosen originator

each of the v1, v2, ..., vk optimally chosen k − broadcasting originators. After that,

they will finish the broadcasting in the next OPTk rounds. To complete the proof, we

must show how to choose such an originator and how to inform v1, v2, ..., vk vertices

in at most (k − 1) ·OPTk + 1 rounds.

Without loss of generality, let us assume that the distance between v1 and vk is

the maximum among all pairs of originators. Let Pv1vk be the shortest path between

v1 and vk containing vertices v1, v2, ..., vk. We know that as all vertices of graph G,

the vertices of Pv1vk must be within OPTk distance from some originator. It follows
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that

length(Pv1vk) ≤ 2 · (k − 1) ·OPTk.

Now we can pick as a broadcast originator the central vertex o of the path Pv1vk or

one of the central vertices if Pv1vk has an even length. In at most (k − 1) ·OPTk + 1

rounds we will be able to inform all k originators from vertex o. In additional OPTk

rounds we will be able to complete the broadcasting from these k originators.

To be able to judge how tight is the given lower bound on OPTk, let us look at

the path of length n. We observe that depending on the parity of n, the optimal

originator will be the central (when n is odd) or one of the two central vertices (when

n is even) of the path. In both cases for Pn we will have

OPT1 =
n
2


.

Now let us pick n = 2mk. We will get an optimal placement of k originators in such a

path by dividing the path into k segments of equal length and picking as originators

the middle vertices of these segments (see Figure 36). This will give the following

expression for OPTk

OPTk = m.

For OPT1 in P2mk graph we will have

OPT1 =


2mk

2


= mk = k ·OPTk.

By comparing this result with the upper bound from Theorem 29, we see that for

P2mk graph the given upper bound for OPT1 differs from the actual value by only 1.

Figure 36: Optimal placement of k = 3 originators on P12 and the optimal broadcast
scheme.
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5.6 Distance from the broadcast center and the

broadcast time

This section studies the relation between the broadcast time and the distance from

the broadcast center. We show that the broadcast time of a vertex does not depend

on its distance from the broadcast center.

In any graph, for the broadcast time of a vertex v /∈ BC, the following bounds

are true

b(BC) + 1 ≤ b(v) ≤ b(BC) + dist(v,BC).

The lower bound follows from the fact that having b(v) = b(BC) would mean that

v ∈ BC which is a contradiction. From originator v in the first dist(v,BC) rounds

we can inform a vertex in the broadcast center and complete the broadcasting in the

following b(BC) rounds. Therefore, the upper bound follows.

In [104] the authors showed that the upper bound above is actually tight for the

trees. They proved that for any vertex v in a tree

b(v) = dist(v,BC) + b(BC).

This equality says that by first informing via the shortest path (actually the only

path) from originator v a vertex u ∈ BC in dist(v,BC) rounds and by using the

broadcast scheme of u to complete the broadcasting in the next b(BC) rounds, we

will actually get an optimal broadcast scheme for v.

Whether the above equality holds for general graphs or not was an open question.

In this section, by bringing a counterexample, we show that by adding only three

edges to a tree we may have a graph where a vertex v may have arbitrary large

distance from the broadcast center, but have a broadcast time b(v) = b(BC)+1. The

constructed graph on n vertices has only n+ 2 edges and maximum degree 3.

Theorem 30. For any integer d, there exists a graph G having vertex v at distance

d from the broadcast center and such that b(v) = b(BC) + 1.

Proof. First, we will give an example of a graph which proves the theorem for d = 2, 3.

After that, we will generalize our construction for arbitrary d.

Figure 37 shows an example of graph G for d = 2, 3. We observe that BC =

{u1, u2, u3, o}. Figure 38 shows a broadcast scheme from any of these vertices in G
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v1

v2

v3

u1 u3

o

u2 v7

v8
v9

Figure 37: Illustration of the absence of the connection between broadcast time of a
vertex and its distance from the broadcast center.

that completes in 5 rounds. The number on an edge, indicates the round at which the

message is sent via that edge. Actually, Figure 38 illustrates the broadcast scheme

only when the originator is vertex u1 or o, but from the symmetry of the graph, it

follows that for originators u2 and u3 we can construct similar schemes.

1

2

2

3

3

4 5

4

5

45

5

3

4
5

u1

o

Figure 38: Broadcast scheme from the broadcast center finishing in 5 rounds.

Note that there are no other vertices which we may include in the broadcast center,

since all other vertices of G have another vertex at distance 6 so they cannot complete

broadcasting in 5 rounds (e.g. dist(v1, v7) = 6, dist(v2, v8) = 6, dist(v3, v9) = 6).

From Figure 37 we observe that dist(v2, BC) = 2 and dist(v3, BC) = 3. Figure 39

shows a broadcast scheme from vertices v2 and v3 which finishes in 6 = b(BC) + 1 =

5 + 1 rounds. This completes the proof for d = 2, 3.

For the case d > 3, we generalize the graph in Figure 37 by replacing the three
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Figure 39: Broadcast scheme from the vertex v with dist(v,BC) = 3 finishes in
b(BC) + 1 = 6 rounds.

paths of length 2 connecting the central vertex and the outer cycle with the paths of

length d− 1. The new graph is presented in Figure 40. We show that in this graph,

vertex v has a distance d from the broadcast center and its broadcast time differs

from optimally chosen vertices only by one, i.e.

dist(v,BC) = d, b(v) = b(BC) + 1.

Similar to the case d ≤ 3, we note that in the graph presented in Figure 40, the

broadcast center consists of four central vertices:

BC = {u1, u2, u3, o}.

We also observe that by increasing the length of paths connecting the central vertex

with the outer cycle by one we are increasing the broadcast time of vertices in the

broadcast center by one. Therefore, from the fact that in the graph from Figure 37

the minimum broadcast time was 5 we get that for the graph from Figure 40

b(BC) = 5 + (d− 3) = d+ 2.

It is clear that in the graph from Figure 40 we have dist(v,BC) = d. To complete

the proof we need to describe a broadcast scheme of the originator v which completes

in b(BC) + 1 = d+ 3 rounds.

An example of such a broadcast scheme is the following: in d + 3 rounds vertex
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u'd
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v12
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v4v2

v3
v5

v9

Figure 40: Illustration of the general case.

v informs all the vertices of path vv2v1v12v11v10v9ud−1ud−2...u3 of length d + 3 and

the vertices of path vv4v5v6v7v8. The vertex v3(ud), which receives the message in

the second round, after informing vertex v12 in the third round, will inform all the

vertices of path udud−1...u2u1u
′
2 in the following d rounds. Similarly, vertex v5(u

′′
d),

after receiving the message in the third round and sending it to v6 in the fourth round,

will inform all the vertices of path u′′
du

′′
d−1...u

′′
2 in the following d− 2 rounds.

Note that any vertex in the graph belongs to at least one of the four paths men-

tioned above. Therefore, the described scheme is a valid broadcast scheme from

originator v which completes in d+ 3 rounds.

Figure 41 illustrates the broadcast scheme from originator v for the case d = 5.
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Figure 41: Illustration of the case d = 5.
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Chapter 6

Summary

In this thesis we studied several problems related to broadcasting in graphs.

We studied the family of graphs for which the broadcast time is equal to the

diameter. We introduced the diametral broadcast graph (dbg) problem and presented

several dbg constructions. These constructions solved the diametral broadcast graph

problem for all possible combinations of number of vertices and diameter. In analogy

to the broadcast function, we defined the diametral broadcast function DB(n, d) as the

minimum possible number of edges in a dbg on n vertices and diameter d. We gave

the exact value of DB(n, d) for certain n and d, while for general case, we presented

upper bounds on DB(n, d).

In the second part of this work, we studied several properties of the Knödel graph

W∆,n. In particular, we studied the routing and broadcasting problem in the Knödel

graph. We obtained lower and upper bounds on the diameter of the Knödel graph

W∆,n for all n and ∆. We showed that the presented bound differs from actual

diameter by at most 2 for almost all ∆. We addressed the routing problem in the

Knödel graph and gave a tight bound on the distance between any two vertices in

W∆,n. We showed that the presented bound differs from the actual distance by at most

2 for almost all vertex pairs in W∆,n. We also addressed the broadcasting problem

in W∆,n. We presented a broadcast scheme and gave tight upper and lower bounds

on the broadcast time of W∆,n. The presented proofs are constructive and allowed to

construct a short path between any pair of vertices and to perform fast broadcasting

from any vertex in W∆,n.

The third part of this work studied the broadcast function B(n). We considered
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the possible vertex degrees and possible connections between vertices of different

degrees in broadcast graphs. Using this, we presented new lower bounds on B(n)

when n = 2m − 2k and n = 2m − 2k + 1 (3 ≤ k < m).

In the last part of this work, we presented several basic results we obtained during

our research. In particular: we described all graphs with the worst possible broad-

cast time, we formulated the broadcast time problem as an IP problem, we presented

slightly improved general upper bound on broadcast time, studied the relation be-

tween minimum and maximum broadcast times in a graph, studied the broadcasting

from multiple optimally chosen originators, and addressed a conjecture regarding the

relation of a vertex distance from the broadcast center and the broadcast time of that

vertex.

Finally, we would like to mention few open questions for future research. One of

them is to find a good lower bound on diametral broadcast function DB(n, d) defined

in Chapter 2. For given n and d such that d + 1 ≤ n ≤
√
2 · 2 d

2 and d is odd, or

d + 1 ≤ n ≤ 3
2
· 2 d

2 we gave the exact value of DB(n, d). When 2d−1 < n ≤ 2d, a

diametral broadcast graph, in fact, is a broadcast graph. Therefore, for this case, the

known lower bounds on broadcast function B(n) apply also for DB(n, d). Meanwhile,

for other values of n and d, we do not have a good lower bound on DB(n, d).

Another open question is to prove Conjecture 19 about the broadcast time of the

Knödel graph W∆,n. Even if this conjecture will be hard to prove, we still believe

that the presented lower bound on the broadcast time, based only on the diameter

of W∆,n, can be significantly improved. One possible approach to this is to use

techniques similar to ones used for getting lower bounds on the broadcast time of

butterfly graph BFd and binary de Bruijn graph DBd.

We presented some of the results of this thesis in [5, 41, 42, 43, 44].
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