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ABSTRACT 

 

 

Exploring the Effect of Individual Protective Behaviors on Influenza Transmission, 

Using an Agent Based Model. 

ELNAZ KARIMI 

 

 

Individuals develop different protective behavioral patterns toward a specific disease 

based on their knowledge of effective interventions. Understanding how people behave 

individually toward an outbreak of a disease can help experts to evaluate different control 

strategies and to implement the most effective one.  

In this research we use the Health Belief Model (HBM) to evaluate the health behavior of 

students toward influenza in Concordia University and its effect on the spread of virus 

within the target population. We conduct a survey to gather information about the health-

related attitudes and beliefs of students. We apply our survey a control and a treatment 

group to explore the effect of education on people’s health-related behaviors patterns. 

Control group reflects the behavioral patterns of students based on their general 

knowledge of influenza and its interventions while the treatment group illustrates the 

level of behavioral changes after individuals have been educated by a health care expert.  

In this research we use an agent-based simulation to explore the effect of individuals 

behaviors patterns on the spread of influenza and illustrate how the health-related 

behavior changes in individuals can affect the chances of exposure to the virus.  
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1. Introduction 

Influenza outbreaks occur every year, but the timing, severity, and duration vary from 

season to season. Although, fever, fatigue, aching muscles and cough are the most 

common consequences of catching the flu virus, serious health complications and lost 

work time continue to have a huge annual health and economic impact of total $87 

billion/year in US. (Molinari et al., 2007) Seasonal influenza attack rates vary from 10% 

to 30 % in adults and 20 % to 50 % in children. (Attack rates are defined as the 

percentage of infected population) (Neuzil et al., 2002) An infected person can spread the 

influenza virus even before the symptoms appears. The constant genetic changes of 

influenza virus raise the possibility that an outbreak could appear. This, combined with 

the easy transmission of the virus, illustrates the need to control the health impact of 

seasonal influenza outbreaks. 

A hallmark of educational experience is the frequent interactions between students. These 

interactions can lead to a high attack rate not only in school but also a higher secondary 

attack rate in both student and teacher households. Occurrence of outbreak in schools 

causes a significant increase in student health center visits, medication usage, 

absenteeism and work loss. (Dalton CB et al., 2008)  Given their high attack rates, 

schools are an ideal place for the development of interventions and health promotion 

programs to prevent influenza outbreak, which can lead to an increase in community 

immunization coverage (Heymann et al., 2004). Delivering such programs in schools can 

also alleviate many of the common barriers of community-based treatments, such as time, 

location, transportation and cost. (King Jr et al., 2006). Problems such as the high cost of 
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treatment, general acceptance of disease interventions, surge capacity, vaccination 

capacity, timing and the limitation of information distribution and etc. are the challenges 

that health care officials need to overcome. (Yarmand, 2010) 

The difference between pandemic and seasonal influenza is that seasonal flu is 

predictable and has the potential to be controllable with evidenced-based management 

strategies (Thompson WW et al, 2003); (Thompson WW et al., 2004) While these 

strategies won’t get rid of the flu, better management can greatly reduce the number of 

individuals impacted as well as the severity and duration of illness. The best way to 

understand the current dynamics of seasonal flu, and more importantly to manage flu and 

improve outcomes is through the power of modeling and simulation. Such models may 

serve many functions in emergency preparedness and planning, including assisting 

healthcare officials in understanding the scope of problems, providing insights into the 

downstream effects of proposed interventions, and evaluating cost, risk, and outcomes of 

different diseases attacks. 

The objectives of this research were to understand the effect of self- initiated behaviors of 

individuals to improve their protection against a disease, on transmission of influenza, 

and to identify the strength of understanding such behaviors to develop mitigation 

strategies. In this study we constructed a Health Belief Model to investigate individual 

perceptions of the influenza virus and identified factors that impacted student intention to 

develop the two main protective behaviors (vaccination and social distancing) toward 

influenza. This study also investigated the impact of information distribution and an 

educational program. An agent-based discrete event model was then developed to 

represent the contact network of individuals. To have a realistic estimation of the model 
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parameters and validate the model, we need a target population. The transmission of 

influenza within the contact network and the corresponding outbreak was simulated in a 

university setting.  . 

We hope that the results of this research help health care officials in their decision 

making process about implementing educational programs to increase the rate of 

influenza interventions. 
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2. Literature Review 

This chapter assesses the literature relevant to disease modeling, with emphasis placed on 

agent-based simulation. Then Health Belief Model and its contribution to explore 

protective behaviors toward various diseases are discussed, 

2.1. Mathematical Modeling  

Mathematical models have been developed to analyze the progress of infectious diseases 

in a population, estimate the key parameters such as thresholds, basic reproduction 

numbers and contact numbers, determine their sensitivities to changes and examine 

different control strategies. (Hethcote, 2000) These models help to understand the 

transmission characteristics of infectious diseases in a population which can lead to better 

approaches to decreasing the attack rates. Such models can also be helpful in designing 

epidemiological surveys, identifying crucial data that should be collected, general 

forecasting and estimating their uncertainty. (Hethcote, 2000) The origin of deterministic 

epidemiological models dates back to early 20
th

 century when Hamer attempted to 

understand and analyze the measles epidemics by developing a discrete time model, in 

1906. Hamer demonstrated the number of newly cases per unit time by considering the 

fraction of susceptible and infected individual in the target population. (Hamer, 1906) In 

1926 Kermack and McKendrick introduced the concept of thresholds for the first time. 

They indicated that the fraction of infected individuals within a population must exceed a 

critical value (threshold) to trigger an epidemic . (Kermack, McKendrick, 1927) This 

value is often denoted as R0. R0 is defined as the number of secondary infections caused 

by a single primary infection. When R0 < 1, each person who contracts the disease will 

infect less than one person before dying or recovering, so the outbreak will not occur. 
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When R0 > 1,each person who is infected will infect more than one person, so the 

epidemic will spread. (Hethcote, 2000) Since then, mathematical epidemiology 

demonstrated an exponential growth and variety of models have been formulated, 

analyzed, and applied to various infectious diseases. (Hethcote, 2000) 

Compartmental models are the simplest and most fundamental epidemiological models. 

In compartmental models, the target population is divided into different compartments 

based on the state of individuals toward a disease (such as Susceptible, Exposed, Infected 

and Recovered) and is considered to have homogenous characteristics. (Hethcote, 2000)  

Compartmental models were first introduced between 1900 and 1935 by R.A. Ross, W.H. 

Hamer, A.G. McKendrick and other researchers such as W.O. Kermack. (Brauer, 2008)  

Since the development of compartmental models they have been widely used to analyze 

and understand the spread of various infectious diseases and the impact of different 

control strategies. One example is the study of 1918 pandemic influenza by Mills et al, in 

2004. In this study a SEIR model was developed to estimate the reproductive number of 

the pandemic. (Mills et al., 2004)  Another example is  the study of SARS outbreak in 

China by Zhang et al in 2005. In this study a SEIR model was developed to assess the 

effectiveness of different control strategies.(Zhang et al, 2005)  

2.2 Agent Based Simulation 

Agent-Based Modeling and Simulation (ABMS) is a relatively new approach in modeling 

infectious diseases. In these simulations individuals in a population, known as “agents”, 

have distinct behaviors, and also social interactions with other agents, which in turn 

influence their behaviors. Modeling the transmission of an infectious disease using 

ABMS helps researchers to understand the effects of such diversity of behaviors and 
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attributes between individuals and also the effects that interactions among agents have on 

the transmission of disease within the population as a whole. The first attempts to 

develop an agent-based pandemic simulation model were in 1976, when Elveback 

developed an ABS to model 1918 Pandemic Influenza. (Elveback, 1976) This study 

modeled the interaction of 1000 people in the community, mixed in different groups such 

as family, neighborhoods and schools and defined the transmission risk as a function of 

contact time between individuals. Age-specific transmission hazard rates were obtained 

from the patterns observed in the 1968 and 1957 pandemics. Behavioral changes such as 

contact reduction and quarantine for school children were also considered in the model. 

All subsequent studies that adopt an ABMS approach, or an approach that considers non-

homogeneous population to model an infectious disease outbreak, have many core 

features of this study. Another good example of earlier agent-based models was the 

model developed by Halloren et al. in 2002, which estimated the effectiveness of 

interventions such as vaccination, in keeping the attack rate of an epidemic below a pre-

defined limit in a virtual population with 2,000 agents. (Halloran et al., 2002) 

Later on, ABMS approaches were extended to study both the transmission of disease and 

the effect of interventions within larger populations under bioterrorism attack in 

correspondence with real world. (M. J. Haber, 2007) (T. Das, 2008) (Longini, 2004). A 

good example of such simulations was EpiSimS, developed by Los Alamos National 

Laboratory, to simulate the spread of pandemic influenza in the Greater Los Angeles area 

with over 18 million agents in over half a million geographic sub-locations. The hour-by-

hour contact patterns used in EpiSimS were obtained from the United States National 

Household Travel Survey by recording the movement of people through different 
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locations during sampled days. EpiSims was used in several studies to explore the effect 

of various interventions strategies on the spread of disease. For example one study found 

that school closures did not have a strong effect on a pandemic's attack rate, rather than 

delayed the pandemic's peak. (Lee et al., 2010). Another study involving EpiSimS slowed 

that the combination of school closures and antiviral treatments were successful in 

significantly reducing the infection rate before the vaccine became available. (S. M. 

Mniszewski, 2008)  

Another large scale simulation developed by Das et al. in 2008 with over 1.1 million 

agents, was also designed to help healthcare executives in developing mitigation 

strategies related to vaccination, prophylaxis, social distancing and hospital admission by 

incorporating a variety of decision factors , in the case of an epidemic. (Das et al.,  2008) 

One of the most crucial parameters that needs to be quantified when simulating an 

infectious disease is the probability of virus transmission between any infectious and 

susceptible person. Brankston et al. introduced four possible modes of human to human 

transmission for influenza:  

1. Airborne aerosols: transmission happens when individuals breathe in very small 

particles known as aerosols, defined as ≤ 5μm in diameter. These particles are spread by 

coughing, speaking, or breathing, or when larger droplets evaporate. 

2. Droplets: droplets are larger particles than aerosols (>5μm). Transmission occurs when 

droplets make direct contact with the interior (mucosa) of the nose or mouth oral. This 

occurs when an infected individual spreads droplets, generally by coughing , sneezing or 

speaking. 
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3.Direct contact: transmission happens when infectious and susceptible people come into 

direct physical contact. 

4. Transmission occurs when particles (either aerosolized or droplet) land on objects and 

are touched by susceptible individuals. (Brankston G, 2007) 

Despite vast experimental and epidemiological literature on the matter, there is no 

conclusive assurance on the relative importance of those modes. Consequently, it is not 

possible to validate how transmission risk should be quantified. (Brankston G, 2007) 

Although many pandemic simulation models have been used to test various mitigation 

strategies, one of the characteristics of a population that usually is left out of models, is 

the self-initiated behaviors that individuals develop to protect themselves in an outbreak. 

Many psychological models have been proposed to explore the impact of human 

behavioral change on the spread of an infectious disease. These models could provide a 

relatively comprehensive understanding of the effect of psychological, social, economic 

and environmental factors on the individual’s health behavior. .(Glantz et al. 2007) 

Glantz propose Health Belief Model (HBM), Theory of Reasoned, Action/Planned 

Behavior, Social Cognitive Theory and the Transtheoretical Model as the four most 

commonly used psychological models for this purpose, every one of which has proven to 

have its own strength on exploring different aspects of such behaviors.(Glantz et al. 

2007) 

2.3 Health Belief Model 

HBM was first proposed by a group of social psychologists in the 1950s to explain why 

medical screening programs offered by the U.S. Public Health service were not very 

successful.(Rosenstock,1974) HBM suggests that when individuals believe that a 
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condition is a threat to their personal health and developing a specific behavior will 

reduce the perceived threat, the likelihood of engaging in that behavior will increase. The 

following four factors are the original construction of HBM: 

•Perceived Susceptibility: The level of risk the individual is in, toward that illness  

•Perceived Severity: The seriousness of the consequences associated with the illness  

•Perceived Benefit: The benefits of developing the protective behavior  

•Perceived Barrier: The negative effects and the barriers associated with developing the 

protective behavior (Janz, 1984) 

Since it was first developed, the HBM model has been reformulated to increase its 

effectiveness by incorporating psychological and social factors. Cognitive factors such as 

Cues to Action (strategies that increases individual willingness to develop a behavior) 

and Self-efficacy (individual confidence to develop the behavior) were introduced by 

Bandura. (Bandura, 1977) Later, the importance of self-efficacy as the required trigger 

for the action was acknowledged and the model was extended with self-efficacy as an 

additional independent variable along with the traditional ones. (Rosenstock, 1988). 

Together these six factors of the HBM provide a useful framework for designing 

behavior change strategies. 

HBM has been used in many studies related to diseases such as cancer, HIV, hepatitis B, 

etc , to analyze the outcomes of developing interventions to minimize the adverse 

outcomes (Champion et al., 2008) (Lin et al.,  2005) (De Wit et al., 2006). One of the 

most common practice area of HBM is in the field of HIV. For example a study among  

Asian-American college students , introduced  the perceived severity and barriers to be 

significant predictors of developing protective behaviors such as precaution in the 
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selection of sexual partners and reduction of  the numbers of sexual partners. Another 

study investigated the effect of the HBM constructs on three of protective behaviors 

toward HIV: number of sexual partners, frequency of sexual intercourse, and consistency 

of condom use. The study indicated that self-efficacy was a significant predictor of all 

three behaviors. Perceived barrier was a significant predictor of frequency of intercourse 

and perceived severity was a significant predictor of frequency of condom use.(kraemer, 

2006) 

HBM has also been used to study beliefs and behaviors toward influenza virus 

vaccination. (Coe et al.,  2012), (Lau et al., 2010), (Maurer et al.,2010).  A study 

developed a school-based educational program constructed from the Health Belief 

Model, toward seasonal flu vaccination for a year, which led to a significant increase of 

vaccination rates among middle and high school students, in US. (Painter et al., 2010). 

Another study investigated the effect of the HBM variables on two protective behaviors 

toward influenza: vaccination, and avoiding the crowded places. This study indicated that 

all HBM variables except perceived susceptibility were significant predictors of 

vaccination and avoiding crowded places was correlated with only perceived benefit of 

this behavior. (Durham et al., 2012) 
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3. Modeling: 

 

In this chapter, we present the modeling process. We start by a detailed discussion of the 

model development key concepts. Then we present the HBM study representation.  

3.1 Compartmental Model 

Compartmental model is described by the flow of individual between disease classes such 

as M (Maternally derived immunity), S (Susceptible), E (Exposed), I (Infectious), and R 

(Recovered) based on specific rates; as shown in Figure 1. (Hethcote et al., 2000) In 

compatmental models the population is assumed to have homogenous charactristics. 

(Hethcote et al., 2000) 

Figure I. Transfer diagram for the MSEIR model (Hethcote et al., 2000) 

 

 

From different existing acronyms such as MSEIR, MSEIRS, SEIR, SEIRS, SIR, SIRS, 

SEI, SEIS, SI, and SIS, SEIR model is considered to be the best approach to represent the 

characteristics of influenza virus. (Kraemer, 2006)  

As shown in figure I, three transfer rates needs to be defined for the flow of individuals 

between the compartments. The first transfer rate is the “Horizontal Incidence” which 

determines the number of susceptible individuals that get exposed to virus per unit of 
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time. (Hethcote, 2000). Horizontal Incidence is calculated based on the “average number 

of effective contacts” of a susceptible person per unit time and the fraction of infected 

individuals within the target population. The transfer rate between E and I compartments 

and the transfer rate between I and R compartments are defined as a function of number 

of individual in a compartment and the average of waiting time in the next compartment. 

(Hethcote, 2000) 

The number of individuals in each of compartments are denoted by S(t), E(t), I(t) and 

R(t) for Suceptible, Exposed, Infected and Recovered compartments respectively. The 

total number of individuals in target population is denoted by N at time t which can be 

assessed by  

𝑁(𝑡 )= 𝑆(𝑡 )+𝐸(𝑡 )+𝐼(𝑡 )+𝑅(𝑡 )      (1) 

 

The infectious fraction at time (   (t)) and susceptible fraction at time (  (t)) can be 

calculated by 

 

     (t) = 
    

    
                                       (2) 

   (t) =
    

    
                                          (3) 

 

 

Then if we denote the average number of effective contacts of a susceptible person per 

unit time by β , then the average number of contacts with infected individuals per unit 

time for a susceptible person is  
  

 
 = 𝛽 𝐼   and  (

  

 
) 𝑆  𝛽𝑁     is the number of new 
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cases per unit time. (Hethcote, 2002) As a result, if we denote the horizontal incidence at 

time 𝑡 by H(t), then we have  

 

   H (t) = 𝛽 (𝑡) (𝑡)  (𝑡)           (4)  (Yarmand, 2011) 

 

Estimates based on research on the duration for which infected people shed virus indicate 

a latent period of about 1.9 days and an infectious period of 4.1 days.(Longini et al, 2004) 

These correspond to the average amount of time one would be in the E and I 

compartments of the model, respectively. 

The use of an SEIR model also is efficient with the behavioral interventions likely to be 

used against influenza. Preventive behaviors such as vaccination, social distancing and 

hand washing would be targeted to susceptible people. Similarly, isolation applies only to 

those who are presently infected. 

3.2. Model Development 

 

We applied a discrete-event agent-based simulation to model a virtual replication of 

influenza outbreak in a university setting. The synthetic population was constructed to 

match the population of Concordia University’s undergraduate engineering students at 

the time. Other inhabitants such as faculty, staff, visitors and graduate students were not 

considered in this simulation. The university was represented physically by a set of sub 

locations in which students were more likely to interact with each other. The locations 

were reasonably isolated from students of other majors. Each student moved from 

location to location throughout a typical day defined by their schedule. Disease related 

data was taken from the literature of influenza studies. The required data about student 
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schedules, as well as the time, duration and location of each course was obtained from 

Concordia’s Undergraduate Student Course Database. To acquire data on student 

activities on campus, and their health related behavior toward influenza a questionnaire 

survey was conducted. Information about school sub-locations geography, including 

seating orders was obtained from Concordia’s Security Department.  

3.3. Model Assumption and Parameters 

3.3.1. Influenza Transmission 

One of the most crucial parameters that needs to be quantified when simulating an 

infectious disease is the probability of virus transmission between any infected and 

susceptible person. There are several modes of influenza transmission, and despite vast 

experimental and epidemiological literature on the matter, there is no conclusive 

assurance on the relative importance of those modes. Consequently, it is not possible to 

validate how transmission risk should be quantified.  (Brankston G, 2007) In agent-based 

models such as ours, the probability of the transmission of disease between two people in 

close contact over time is typically assumed to be captured with a hazard rate. (Brankston 

G, 2007) Although this hazard rate could vary according to factors such as temperature, 

humidity, ventilation individual susceptibility, etc., it is not unreasonable to consider an 

average population hazard rate for influenza transmission.(Haber et al, 2007) In addition, 

these infectious contacts are believed to occur only within a specific radius of the 

infectious person (Brankston G, 2007) Table I illustrates the probability that such contact 

between a susceptible individual and an infectious one lead to exposure to the virus, 

obtained using per minute hazard rates estimated by Haber et al.(Haber et al, 2007)  As 

show in Table I the  probability for the contacts between two adults is λ= 0.00032. The 
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probability that a susceptible individual becomes infected during a physical contact 

within a specific radios (1.888 meters for influenza), can be calculated by a transmission 

probability of per minute contact with any infectious individual that one comes into 

contact with: 

       𝑡                                        (5) 

 Since the number of people at a location at any time varies widely, once a susceptible 

person arrives to a location, s/he may come in contact with more than one infectious 

person at a time. Therefore in this simulation once a susceptible person decided to leave a 

sub location in the model the probability of infection was calculated based on the period 

of contact for all the infectious contacts s/he made in that sub location: 

       𝑡                                 (6) 

Table I: Transmission rates (λϋ) from an infected person in age group j to a susceptible person in age 

group i. (Haber et al, 2007) 

 

 Age group of susceptible  

Age group of infected  0–4 5–18 19–64 >65 

0–4 0.00059 0.00062 0.00033 0.00080 

5–18 0.00058 0.00061 0.00033 0.00080 

19–64 0.00057 0.00053 0.00032 0.00080 

>65 0.00057 0.00054 0.00029 0.00102 
 

    

 

Once an individual left the school, the probability that transmission occurred during their 

absence was calculated for each susceptible person, based on the average number of 

contacts made in  their community or household, using the estimated duration of contacts 
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and number of contacts in the household or community by a susceptible person with age 

between 19-64. 

 

 

 

Table II:  Average duration of contacts with household members per minutes. (Haber et al, 2007) 

 

 Age group of susceptible  

Age group of infected  0–4 5–18 19–64 >65 

0–4 120 60 120 60 

5–18 60 120 120 60 

19–64 120 120 120 120 

>65 60 60 120 120 
 

    

 

Table III: Number of contacted persons and total duration of all contacts with 1 person in the 

community. (Haber et al, 2007) 

 Age group of susceptible (i) 

Age group of infected (j) 0–4 5–18 19–64 >65 

0–4 2,60 1,30 0 0 

5–18 1,30 2,60 0 0 

19–64 0 0 2,60 2,60 

>65 0 0 120 2,60 
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3.3.2 Disease Parameters 

In this simulation once a susceptible person was exposed to the virus, s/he entered into 

latent and incubation stages followed by a symptomatic or asymptomatic infectious 

period. During the latent period the individual was infected but not yet able to transmit 

the virus. The incubation period, was considered to be one day longer than the latent 

period for the influenza virus and was the period between the exposure to the virus and 

the onset of symptoms of the disease. After the infectious period finished the individual 

recovered from the disease and stayed immune to virus for the rest of the flu season.  

 

                                                           Infectious-Asymptomatic                                        

Susceptible              Exposed-Noninfectious                                                                 Recovered           

                                                                               Infectious-Symptomatic 

Figure II: Disease stages in simulation 

 

Estimated distributions for the latent and infectious periods used in this simulation were 

obtained from Elveback et al. Each individual was assigned a health status attribute at 

time which was associated with one of following timelines: susceptible, exposed-

noninfectious (latent period), infectious-asymptomatic, infectious-symptomatic and 

recovered. (Elveback etal.,1976) We assumed that the probability of developing 

symptoms, given influenza infection, was 0.67 and that an infected person who did not 
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become ill was 50% less infectious than one who did, but the incubation and infectious 

period durations is the same as those cases that do exhibit symptoms. (Longini, 2005) 

Figure III displays the periods and parameter values used in model.            

          

       

 

Figure III : Influenza Parameters. (Longini, 2005) 

 

3.3.3 Influenza Interventions and Individual Behavior 

In the event of a disease outbreak with a high attack rate in a population, it is likely that 

much of the behavioral control would be done through personal protective behavior, such 

as vaccination or social distancing. These behaviors are likely to be important control 

measures for those people who are susceptible to disease and could have a significant 

impact on the transmission of disease.  It is believed that decreasing the amount of 

contact between infected and susceptible individuals by encouraging them to avoid 

crowded places or close physical contact with each other could slow the outbreak and 
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lower its peak, (Bell DM, 2006) (Heymann A, 2004). For instance in the 1918 influenza 

pandemic, people avoided places where they might come into contact with others, out of 

fear that close contacts would expose them to greater risk of infection and that staying 

home would protect them from illness. (Barry, 2004) 

In this study we constructed a Health Belief Model to investigate individual perceptions 

of the influenza virus and identified factors that impacted student intention to develop the 

two main protective behaviors (vaccination and social distancing) toward influenza. This 

study also investigated the impact of information distribution and an educational 

program. Results gained from this study about participants perception were used to 

debates probabilities of social distancing and vaccination for each individual incorporated 

into simulation as the health-behavior pattern. This cross-sectional study was conducted 

in Concordia University. Students from the Faculty of Engineering and Computer 

Science undergraduate population were targeted for participation in this study due to 

accessibility, expense, and time considerations. Background information of participants 

such as age and education were not considered in the study because of the generally 

homogenous characteristics of the target population. 

3.4. Health Belief Model (HBM) 

3.4.1. Theoretical Framework 

Psychologists have developed many models to explain individuals’ attitudes and beliefs 

toward their health and how to implement educational strategies to change their health 

behaviors. Such models are known as value-expectancy theories which are based on the 

idea that individuals expect specific outcomes for their actions. (Hilyer, Veasey, Oldfield, 

& McCormick, 1999) HBM is one of the most well-known value-expectancy theories 
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that emphasize on two variables: 1) the value an individual places on a specific outcome 

and 2) the likelihood that individual considers for a behavior to result in that outcome. As 

discussed before, The following factors are the construction of HBM: 

 Perceived Susceptibility  

 Perceived Severity  

 Perceived Benefit  

 Perceived Barrier (Janz, 1984) 

Perceived susceptibility measures the level of vulnerability or risk that one feels toward 

an illness. Perceived susceptibility measures the level of seriousness of consequences 

(both medical and social) that one considers for contracting an illness.  Both perceived 

susceptibility and perceived severity provide an individual with motivation to act. 

(Rosenstock, 1974) Perceived benefits illustrate the individual’ perception of feasibility 

and effectiveness of a specific behavior or intervention to reduce the threat of an illness. 

Perceived barriers illustrate individual perception of adverse effects of an action such as 

its cost, side effects, inconveniency, time-consuming and etc. (Janz, 1984)  

Behavior during an epidemic is best modeled using the four core constructs of the Health 

Belief Model: perceived susceptibility, perceived severity, perceived benefits and 

perceived barriers ( Kraemer, 2006) 

3.4.2. Survey Instrument 

In this study social distancing and vaccination were considered as the protective 

behaviors individuals could develop toward the influenza virus.  

In order to consider all the possible perceived barriers and benefits of each interventions 

that individuals might have and possible perceptions toward influenza which could be 
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defined as their perceived severity and susceptibility, we included 2 or 3 questions for 

each domain 

A 25-item questionnaire was developed to assess the study objectives. The first portion of 

the questionnaire contained of 20 questions, separated into a five-point Likert scale (1 = 

strongly disagree to 5 = strongly agree) based on HBM variables (perceived susceptibility 

and severity toward influenza and the perceived benefits and barrier of its interventions). 

The second portion of the questionnaire contained questions investigating students’ 

history for applying the interventions, (3 items) and questions based on cues to action 

variable (2 Items). (See Appendix III for more information) 

3.4.3. Data Collection 

The survey was initially administered in two different sections of the same engineering 

course. The first survey administered was a control. The second survey administered 

involved a treatment consisting of a health promotion specialist talking to students about 

influenza and its interventions for 20 minutes. The educational program focused on the 

core HBM variables: Susceptibility of people to influenza virus, severity of influenza, 

benefits and barriers of Vaccination, benefits and barriers of social distancing. Since the 

second survey was administered on the day of an exam, there were significantly more 

students in attendance. In order to better compare the impacts of the treatment with the 

control, we collected 60 additional surveys at the university library. We conducted a two-

sided mean difference t-test to confirm that the surveys collected in class and at the 

library were substantially similar to one another. This analysis is included below. 
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3.4.4. Data Analysis 

Data were analyzed using SPSS/PC software Version 13.0. In this section we describe the 

methodology used to analyze the survey results. Descriptive statistics including mean and 

standard deviation were calculated for all variables. Descriptive statistics were helpful in 

generally describing the HBM variables.  

In the second step, the HBM-based questions were clustered according to domains 

(perceived susceptibility to the virus, perceived severity of the virus, perceived benefits 

of interventions and the perceived barriers of interventions).  A two-sided mean 

difference t-test was conducted for all questions to measure the effect of treatment.   

HBM variables assessed with more than one question required a measure of internal 

consistency. Cronbach’s alpha was calculated for the perceived susceptibility of influenza 

with three questions in its domain. Item demonstrating low correlation with their 

respective scales were deleted and internal consistency was recomputed by SPSS. 

Pearson’s correlation was used for the domain with two items. A scaled mean was 

calculated for domains with an alpha coefficient or Pearson correlation > 0.5.  

Bivariate logistic regression was used to assess the relationship between health belief 

model domains and influenza interventions. Response categories for the 17 HBM 

questions was put into binary categories: either low (the five-point items between levels 

1–2) or high (those between levels 3-5). “No interventions” were considered as the 

reference categories and p-values less than 0.05 were considered as statistically 

significant. (See Appendix I for more information on bivariate logistic regression) 

Finally, a multivariate logistic regression analysis was performed to construct the logistic 

regression Health Belief Model and to identify significant predictors of the target 
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preventive behavior Table VI. Odds ratios (ORs) for each predictor were estimated from 

the logistic regression. (See Appendix II for more information on Multivariate logistic 

regression) 

3.4.5. Results 

Demographic information and intervention history 

Of the 240 students who responded to the survey, 57% were male and 43% were female. 

An increase in participant vaccination rate was observed in the population compared to 

previous years. Approximately 28% of students had influenza vaccination experience in 

the past and 32% were vaccinated in the current year. 14% of students had a member of a 

high risk influenza group in their household. 67% of students with a high risk member in 

their household were vaccinated against influenza. Approximately 62% of students 

applied social distancing in their daily contacts with others and 52% of students with high 

risk members in their household applied social distancing.   

Health Belief Model variables  

Table IV displays the results of the internal reliability test. All the questions passed the 

reliability test within their target domains (Cronbach’s alpha for perceived susceptibility 

and Pearson correlations for other domains are > 0.5) 

Table IV also displays a summary of the scaled means and standard deviations of each of 

the HBM variables in the survey. We conducted the t-test to determine if there is a 

significant difference between HBM variables of control groups and the treatment group. 

Subjects in the treatment group demonstrate a significant difference at the 0.05 α level for 

the mean values of perceived susceptibility, perceived barrier to vaccination and the 

perceived benefit of social distancing. 
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Table IV: Summary of Health Belief Model responses of survey participants 

 

The significance of differences between answers of control and treatment group, are indicated:*for 

p≤0.05,** for p≤0. 

 

 

 

 

 

 

 

 

 

Items Control Group 

 (n=120) 
Treatment Group 

Session(n=140) 

HBM Variables Mean(SD)  Alpha Mean(SD) Alpha 

Perceived Susceptibility: 

1- If I get the influenza virus, I will get sick.  

2- I am at risk of getting the influenza virus by going to the university.  

3- My family members are at risk of getting the influenza virus.  

Scaled 1 to 5, for strongly disagree, disagree, neutral, agree, strongly agree 

 

3.07(0.76) 

 

 

0.67 

 

3.87(0.82)* 

 

0.72 

 Perceived Severity:  
1- If I get the influenza virus, it will disrupt my studies.  

2- If I get the influenza virus, others in my home will get sick. 

Scaled 1 to 5, for strongly disagree, disagree, neutral, agree, strongly agree 

 

3.02(0.79) 

 

0.61 

 

3.12(0.89) 

 

0.59 

 Vaccination Perceived Benefits 

1-  If I get the influenza vaccine, I will not get sick from the influenza 

virus. 

Scaled 1 to 5, for strongly disagree, disagree, neutral, agree, strongly agree 

 

3.05(0.72) 

 

 

 

3.16(0.63) 

 

 

 Vaccination Perceived Barriers 

1- If I get the influenza vaccine, I will have side effects.  

2- It is inconvenient to get the influenza vaccine. 

Scaled 1 to 5, for strongly disagree, disagree, neutral, agree, strongly agree 

 

3.87(0.8) 

 

   0.63 

 

2.33(0.88)*

* 

 

0.57 

 Self- Isolation Perceived Benefits 

1- I will recover faster if I rest at home as soon as influenza symptoms 

develop. 

Scaled 1 to 5, for strongly disagree, disagree, neutral, agree, strongly agree 

 

3.72(0.92) 

  

3.78(0.93) 

 

  Self- Isolation Perceived Barriers 

1- Staying at home when I am sick has a negative effect on my studies.  

2- My professors do not consider illness as an excusable reason for 

absence. 

Scaled 1 to 5, for strongly disagree, disagree, neutral, agree, strongly agree 

 

3.97(0.85) 

 

0.83 

 

3.51(0.62) 

 

0.71 

   Physical Distancing Perceived Benefit 

1- Avoiding crowded places reduces my likelihood of catching 

influenza.  

2- Avoiding physical contact with sick people reduces my likelihood of 

catching influenza 

Scaled 1 to 5, for strongly disagree, disagree, neutral, agree, strongly agree 

 

3.51(0.78) 

 

0.69 

 

4.23(0.89)* 

 

0.61 

  Physical Distancing Perceived Barriers 

1- It is difficult to avoid close physical contact with my friends when I 

am sick.  

2- It is difficult to avoid crowded places at the university. 

Scaled 1 to 5, for strongly disagree, disagree, neutral, agree, strongly agree 

 

3.72(0.79) 

 

0.73 

 

3.78(1.12) 

 

0.54 
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Vaccination in respect to Core HBM variables 

The bivariate logistic regression results are summarized in Table V. Results of regression 

for the surveys of control group, indicated that vaccination is highly correlated with 

perceived severity of influenza (2.23 odds ratio) and also perceived benefit (2.1 odds 

ratio). This means that an individual with a high perceived severity of influenza and low 

perceived barriers, benefits and susceptibility is 2.2 times more likely to vaccinate than 

an individual with a low perception of all HBM variables. Perceived barrier to 

vaccination was also highly correlated with the decision to vaccinate; those who 

perceived high barriers to vaccination were half as likely to vaccinate as those who 

perceived low barriers, all other HBM variables being equal. (0.55 odds ratio). There is 

no significant correlation between the perceived susceptibility of disease and vaccination. 

Results of regression for the surveys treatment group (with the information session) 

indicated that vaccination is highly correlated with all the HBM variables but particularly 

between vaccination and the perceived benefits of this behavior (2.25 odds ratio). 

The multivariate logistic regression results are summarized in Table VI. Results of 

regression for the control indicate that all of HBM variables are correlated with 

vaccination, but perceived severity of disease is not significant. Results of multivariate 

regression for the treatment group indicated that vaccination is highly correlated with all 

the HBM variables. 
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Table V: Bivariate regression of HBM variables attitudinal variables and influenza 

interventions 

 Vaccination Self-Isolation Physical distancing 

Control Treatment Control Treatment Control Treatment 

Odds 

Ratio 

P-

Value 

Odds 

ratio 

P- 

Value 

Odds 

Ratio 

P-value Odds 

Ratio 

P-

Value 

Odds 

Ratio 

P-

Value 

Odds 

Ratio 

P-

Value 

Perceived 

Susceptibility: 

Strongly agree, 

agree,neutral 

Strongly disagree, 

disagree 

 

1 

2.233 

 

 

0.021* 

1 

2.41 0.041* 

 

1 

1.272 

 

 

0.0177 

1 

3.420 0.048 n.s. 

 

 

 

1 

1.783 0.032* 

Perceived Severity:  

Strongly agree, agree, 

neutral 

Strongly disagree, 

disagree 

1 

1.97 

 

0.063 

1 

2.061 0.037* 

 

1 

2.318 0.0021* 

1 

1.573 0.44 

 

1 

1.967 

 

0.086 

1 

1.921 0.029* 

Vaccination Perceived 

Benefits 

Strongly agree, agree, 

neutral 

Strongly disagree, 

disagree 

 

1 

2.087 0.006* 

1 

2.254 0.009** n.a.  n.a.  n.a.  n.a  

 Vaccination 

Perceived Barriers 
Strongly agree, agree, 

neutral 

Strongly disagree, 

disagree 

 

1 

0.553 0.034* 

1 

0.675 0.016* n.a.  n.a.  n.a.  n.a.  

 Self- Isolation 

Perceived Benefits 
Strongly agree, agree, 

neutral 

Strongly disagree, 

disagree n.a.  n.a.  

1 

1.485 

 

0.095 

1 

1.862 0.080 n.a.  n.a.  

  Self- Isolation 

Perceived Barriers 

Strongly agree, agree, 

neutral 

Strongly disagree, 

disagree n.a.  n.a.  

1 

0.433 0.037* 

1 

0.44 0.0004 n.a.  n.a.  

 Physical Distancing 

Perceived Benefit 
Strongly agree, agree, 

neutral 

Strongly disagree, 

disagree n.a.  n.a.  n.a.  n.a.  

1 

2.683 0.039* 

1 

3.789 0.0007 

Physical Distancing 

Perceived Barriers 

Strongly agree, agree, 

neutral 

Strongly disagree, 

disagree n.a.  n.a.  n.a.  n.a.  

1 

0.64 0.022* 

1 

0.87 0.29 

Notes:* p≤0.05,**p≤0.01,***p≤0.001. NA (Not Applicable), NS (Not Significant at p≤0.05 
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Self-Isolation in respect to Core HBM variables 

Bivariate logistic regression for the control group indicated that self-isolation is highly 

correlated with the perceived severity of influenza (OR=2.318) and the perceived severity 

of influenza (OR=2.22). Additionally, individuals who perceived barriers to self-

isolation,  were significantly less likely to consider self-isolation (OR=0.433). There is no 

significant correlation between self-isolation and the perceived benefits of this behavior. 

Results for the treatment group indicated that self-isolation is highly correlated with the 

perceived susceptibility of disease (OR=3.420) and the perceived barriers of self-isolation 

(OR=3.420). There is no significant correlation between self-isolation and other HBM 

variables. 

The multivariate logistic regression results are summarized in Table VI. Results of 

regression for the control group indicate that all of HBM variables are correlated with 

self-isolation, but the perceived benefit of self-isolation is not significant. Regression 

results for the treatment group indicate that perceived susceptibility, benefits and barriers 

are correlated with self-isolation, but the perceived benefit of self-isolation and perceived 

severity of influenza are not correlated. 

Physical- Distancing in respect to Core HBM variables 

Results of the bivariate regression for the surveys of control group indicated that physical 

distancing is highly correlated with the perceived barrier (OR=0.64; individuals who 

perceive barriers to physical distancing are less likely to practice it) and perceived 

benefits (OR=2.683) of physical distancing. There is no significant correlation between 

physical distancing and perceived susceptibility and perceived severity of influenza. For 

the treatment group, physical distancing is highly correlated with perceived susceptibility 
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(OR=1.783) and perceived severity (OR=1.921) of disease and the perceived benefits 

(OR=3.789) of physical distancing. There is no significant correlation between physical 

distancing and the perceived barrier of this behavior. 

The multivariate logistic regression for the control group indicates that perceived 

susceptibility to influenza, perceived barriers and perceived benefits of physical 

distancing are correlated with physical distancing while the perceived severity of 

influenza is not quite significant at the .05 level. Multivariate regression results for the 

treatment group indicated that all HBM variables are correlated with physical distancing, 

while self-isolation was correlated with perceived susceptibility to influenza and 

perceived barriers and benefits of self-isolation, but the perceived severity of influenza is 

not correlated with self-isolation.(Table VI)  

The multivariate logistic regression indicates that all the HBM variables are correlated 

with physical distancing in both control and treatment group, however perceived severity 

of influenza in control group is not significant at the  0.05 level. The results also indicate 

that all the HBM variables except perceived benefits of self-isolation are correlated with 

this intervention in control group. The results for treatment group indicate that all HBM 

variables are correlated with self-isolation except perceived severity of influenza.(Table 

VI) 
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Table VI: Multivariate logistic regression of HBM variables attitudinal variables 

associated with influenza interventions 

 Vaccination Self-Isolation Physical distancing 

Control Group Treatment 

Group 

Control Group Treatment 

Group 

Control Group Treatment 

Group 

Odds 

Ratio 

P-

Value 

Odds 

ratio 

P- Value Odds 

ratio 

P-value Odds 

ratio 

P-

Value 

Odds 

ratio 

P-

Value 

Odds 

ratio 

P-

Value 

 

Perceived Susceptibility: 

Strongly agree, agree, neutral, 

Strongly disagree, disagree 

1 

2.6 0.003 

1 

3.41 0.041 

 

1 

1.743 0.021 

1 

3.84 0.0089 

1 

1.243 0.032 

1 

1.541 0.0118 

 

Perceived Severity:  

Strongly agree, agree, neutral 

Strongly disagree, disagree 

 

1 

1.42 0.58 

1 

1.73 0.0032** 

1 

2.221 0.00079 

1 

1.523 0.3 

1 

1.426 0.0566 

1 

2.623 0.015 

  

Vaccination Perceived Benefits 

Strongly agree, agree, neutral 

Strongly disagree, disagree 

1 

2.58 0.0061 

1 

2.62 0.086 

n.a. 

 

n.a. 

 

n.a. 

 

n.a. 

 

  

Vaccination Perceived Barriers 

Strongly disagree, disagree, 

neutral 

Strongly agree, agree 

1 

0.421 0.012 0.632 0.021 

n.a. 

 

n.a. 

 

n.a. 

 

n.a. 

 

  

Self- Isolation Perceived 

Benefits 

Strongly agree, agree, neutral 

Strongly disagree, disagree 

 

n.a. 

 

n.a 

 

 

1 

2.712 0.368 

1 

2.473 0.00062 

n.a. 

 

n.a. 

 

   

Self- Isolation Perceived 

Barriers 

Strongly disagree, disagree, 

neutral 

Strongly agree, agree 

n.a. 

 

n.a. 

 

1 

0.277 0.0021 0.341 0.0469 

n.a. 

 

n.a. 

 

   

Physical Distancing Perceived 

Benefit 

Strongly agree, agree, neutral 

Strongly disagree, disagree 

n.a. 

 

n.a 

 

n.a. 

 

n.a. 

 

1 

2.564 0.041 

1 

4.6 0.0056 

 

Physical Distancing Perceived 

Barriers 

Strongly disagree, disagree, 

neutral 

Strongly agree, agree 

n.a. 

 

n.a. 

 

n.a. 

 

n.a. 

 

1 

0.371 0.026 

1 

0.762 0.0036 

Notes:* p≤0.05,**p≤0.01,***p≤0.001. NA (Not Applicable), NS (Not Significant at p≤0.05) 
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Gender and Cues to Action Variables 

Table VII displays the results of gender and cues to action variables included in the 

survey. Results shows that participants who live with a member of a group at risk for 

influenza are more likely (3.226 odds ratio) to receive vaccination and also to apply 

distance in their physical contacts with others (2.259 odds ratio). The results also indicate 

that females are more likely to develop social distancing behavior toward influenza and 

people with past vaccination experience are more likely to get vaccinated in the future.  

Perceived Susceptibility of influenza in respect to Cues to Action variables 

Our regression results did not indicate significant correlation between perceived 

susceptibility of influenza and past experience of vaccination. However there is a 

significant correlation between perceived susceptibility of influenza and living with a 

member of a high risk group (OR=1.892). (Table VIII) 

Table VII: Bivariate logistic regression of Gender and Cues to Action variables 

associated with influenza interventions 

 Vaccination Self-Isolation Physical distancing 

 Odds 

Ratio 

P-Value Odds 

Ratio 

P-Value Odds 

Ratio 

P-Value 

 

Gender 

Male 

Female 

n.s 

 

1 

0.234 0.042 

1 

0.395 0.0095 

Have you ever been vaccinated 

against influenza in the 

past?(cues to action) 

Yes 

No 

1 

5.4 0.013 

n.s. 

 

n.s. 

 

Does someone with a 

compromised immune system 

live in your home?(cues to 

action) 

Yes 

No  

 

1 

3.226 

 

0.036 

 

n.s. 

 

1 

2.592 

 

0.03 

 

Notes:* p≤0.05,**p≤0.01,***p≤0.001. NA (Not Applicable), NS (Not Significant at p≤0.05) 
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Table VIII: Bivariate logistic regression of cues to action variables associated with 

perceived susceptibility of influenza 

 Perceived Susceptibility 

 Odds Ratio P-Value 

Have you ever been vaccinated against influenza in the 

past?(cues to action) 

Yes 

No 

n.s. 

 

Does someone with a compromised immune system live 

in your home?(cues to action) 

Yes 

No  

 

1 

1.892 0.0073 

Notes:* p≤0.05,**p≤0.01,***p≤0.001. NA (Not Applicable), NS (Not Significant at p≤0.05) 

 

3.4.6. Discussion 

The comparison of survey sessions in Table I revealed a significant increase in perceived 

susceptibility of influenza after the health information session.  This result suggests that 

providing participants with information on their high susceptibility to influenza and 

various routes of influenza transmission, the virus high potential for transmission and 

physical susceptibility of influenza, by a specialist could increase the perceived 

susceptibility to influenza. Also, a significant increase in participants’ perceived low 

barriers of influenza vaccination was observed after the health information session. The 

specialists provided students with information on Concordia’s new policy to vaccinate 

students, staff and faculty who are or live with a member of high risk group in 

Concordia’s Health Center for free and also the Center’s ability to provide others with 

vaccination services at low cost. The information session did not cause any significant 

change on the perceived severity of influenza and the perceived benefits of vaccination. 

The analyses of HBM variables revealed that perceived susceptibility to influenza, 

perceived benefits and perceived barriers to vaccination are the core predictors of this 

protective behavior (Table VI). These results suggest that educational programs or 

information distributions which provide sufficient information to increase individuals’ 
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perceived susceptibility toward influenza, and also provide participants with enough 

information on influenza vaccination, its efficiency, its low potential side effects and 

availability, could increase the rate of developing this efficient protective behavior. 

The result of comparison between sessions (Table IV) also revealed that the participants’ 

perceived benefits of social distancing increased after the information session. The results 

of multivariate logistic regression (Table VI) demonstrate that perceived susceptibility, 

perceived barriers and perceived benefits of both self-isolation and social distancing are 

the significant predictors for these behaviors. These results suggest educational programs 

which focus on susceptibility to the influenza virus (by focusing on the high probability 

of the disease transmission via physical contacts) and the perceived benefits and 

perceived barriers of social distancing (by providing information on university policies to 

ensure that there are no academic consequences for staying home while sick, i.e., no 

punishment for missed classes and examinations, turning in assignments late, etc.) will 

have a higher effect on increasing students self-isolation. 

In our study, participants with a history of vaccination against influenza prior to current 

year (cues to action) were more likely (5.4 odds ratio) to receive vaccination than people 

with no history of vaccination. Variables such as experience, the level of comfort with the 

vaccine and developed health beliefs; such as the perceived benefits (with mean of 4.02 

for people with history of vaccination) and the perceived barriers (with mean of 2.21 for 

people with history of vaccination) may be the cause of such behaviors.  These results 

suggest that educational programs which focus on the portion of the population with no 

history of vaccination could be more helpful to increase the total vaccination rate. 
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Participants with members of high risk groups in their household (cues to action) also 

were more likely to develop protective behaviors toward influenza.   

Our results show that educational programs and information distribution could be very 

helpful in changing individual attitudes and beliefs toward influenza, which could in turn 

lead to developing protective behaviors. Such programs should focus on providing 

information on perceived benefits of social distancing and vaccination. In addition, we 

expect to see benefits from policies aimed at reducing the costs of vaccination and 

increasing accessibility in places such as university-based health centers. In addition,  

policies to minimize the costs and consequences of missing work and school in order to 

support self-isolation during outbreaks may be a key to reducing seasonal influenza 

outbreaks. 

3.5. Incorporating Individual Behaviors into Simulation 

Students protective behaviors were estimated using the four core domains of the Health 

Belief Model: perceived susceptibility, perceived severity, perceived benefits and 

perceived barriers of based on the HBM survey. These variables interact to produce a 

probability of action for each intervention.  

The probabilities of social distancing and vaccination for each individual were 

incorporated into the simulation as the health-behavior pattern, driven from the standard 

logistic regression equation expressed in terms of odds ratios.                           

 

            
    ∏  

 

  

      ∏  
 

  
               (7) 
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Equation 7 gave a value p (behavior) between 0 and 1.  A random number was generated 

based on the probability. Behavior was determined as ‘engages in behavior’ if the random 

number > p (behavior), ‘does not engage in behavior’ otherwise.          represents 

the four HBM domains.  𝑅  indicates the relative odds ratio of the behavior when the 

corresponding domain status is ‘high’ relative to when it is ‘low’ (correspondence odds 

ratio of multivariate logistic regression).    is a binary variable representing the state of 

the corresponding HBM domain, with a value of 1 indicating a ‘high’ state of the HBM 

domain and a value of 0 indicating a ‘low’ state.  𝑅  functions as a calibration constant 

by defining the probability of the behavior when all     variables are in the ‘low’ state. 

Developing a behavior is most likely to have a positive correlation with ‘high’ state of 

perceived susceptibility to disease, perceived severity to disease and perceived benefits of 

the behavior. However developing a behavior is most likely to have a positive correlation 

with ‘low’ state of perceived barrier to the behavior. 

Since the influenza vaccine contains only the three main strains of the virus, the 

efficiency of vaccine to prevent infection was estimated to be 87%.  Those that were 

vaccinated and became infected had their infectiousness hazard rate reduced by a factor 

of 50%, relative to unvaccinated cases. In addition, vaccination reduces the infectious 

period by one day. (Longini, 2005) we chose to use historical values from the literature 

rather than the most recent values due to year to year change of vaccination efficiency 

and also to be able to compare the results of this simulation to other existing simulations. 

Social distancing (avoidance of close physical contact) was employed in the model as a 

reduction in the probability of infection. It was assumed that social distancing reduces 

both the susceptibility and infectiousness of the population by a certain percentage. 
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 Self-isolation was employed in the model as an option for infectious people. Individuals 

may decide to go into the self-isolation after developing symptoms. These individuals 

would be transferred to their normal schedule compartment after the end of the infectious 

period. 

Table IX illustrates a summary of the set of attributes of individuals and information 

required to build the contact network as well as disease related data. 

Table IX: Summery of HBM variables multivariable logistic regression odds ratio 

for influenza interventions 

Interventions HBM Variables 

Odds 

Ratio 

Interventions HBM Variables 

Odds 

Ratio 

Vaccination Perceived Susceptibility 2.6 Vaccination Perceived Susceptibility 3.41 

  Perceived Severity 

 

  Perceived Severity 1.73 

  Perceived Benefits 2.58   Perceived Benefits 

 

  Perceived Barriers 0.421   Perceived Barriers 0.632 

Social 

Distancing 

 

Perceived Susceptibility 

 

1.243 

Social 

Distancing 

 

Perceived Susceptibility 

 

1.541 

  Perceived Severity 

 

  Perceived Severity 2.623 

  Perceived Benefits 2.564   Perceived Benefits 4.6 

  Perceived Barriers 0.371   Perceived Barriers 0.762 

*p value< 0.05 

 

 

 



36 
 

Table X: Cumulative probabilities of frequency for behavior combinations (Control 

Group) 

Combinations Perceived  

Susceptibility 

Perceived 

Severity 

Perceived 

Vaccination 

Benefit 

Perceived 

Vaccination 

Barrier 

Perceived 

Physical 

distancing 

Benefit 

Perceived 

Physical 

distancing 

Barrier 

Perceived 

Self- 

Isolation 

Benefit 

Perceived 

Self- 

Isolation 

Barrier 

Probability 

1 0 0 0 1 0 1 0 1 3.1 

2 0 0 0 1 1 0 0 1 4.6 

3 0 0 0 1 1 1 0 1 7.7 

4 0 0 1 0 0 1 0 0 9.2 

5 0 0 1 0 1 0 0 0 13.8 

6 0 0 1 0 1 1 0 0 16.9 

7 0 0 1 1 0 0 0 1 18.5 

8 0 0 1 1 1 0 1 1 20.0 

9 0 0 1 1 1 1 1 1 21.5 

10 0 1 0 0 0 1 0 0 23.1 

11 0 1 0 0 1 0 1 0 26.2 

12 0 1 0 0 1 1 0 0 27.7 

13 0 1 0 1 1 0 0 1 29.2 

14 0 1 0 1 1 0 1 1 30.8 

15 0 1 0 1 1 1 0 1 33.8 

16 0 1 1 0 0 0 1 0 35.4 

17 0 1 1 0 1 0 0 0 36.9 

18 0 1 1 0 1 0 1 0 38.5 

19 0 1 1 0 1 1 0 0 40.0 

20 0 1 1 1 0 1 1 1 41.5 

21 0 1 1 1 1 0 0 1 46.2 

22 0 1 1 1 1 0 1 1 49.2 

23 0 1 1 1 1 1 0 1 50.8 

24 0 1 1 1 1 1 1 1 53.8 

25 1 0 0 0 0 0 1 0 55.4 

26 1 0 0 0 1 0 0 0 56.9 

27 1 0 0 1 1 1 0 1 58.5 

28 1 0 1 0 0 1 1 0 60.0 
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29 1 0 1 0 1 1 0 0 61.5 

30 1 0 1 1 0 1 0 1 63.1 

31 1 1 0 0 1 1 0 0 66.2 

32 1 1 0 1 1 0 0 1 69.2 

33 1 1 0 1 1 1 0 1 70.8 

34 1 1 0 1 1 1 1 1 73.8 

35 1 1 1 0 1 0 0 0 75.4 

36 1 1 1 0 1 1 1 0 78.5 

37 1 1 1 1 0 0 0 1 80.0 

38 1 1 1 1 1 0 0 1 83.1 

39 1 1 1 1 1 0 1 1 87.7 

40 1 1 1 1 1 1 0 1 95.4 

41 1 1 1 1 1 1 1 1 100.0 

 

Table XI: Cumulative probabilities of frequency for behavior combinations 

(Treatment Group) 

Combinations Perceived 

Susceptibility 

Perceived 

Severity 

Perceived 

Vaccination 

Benefit 

Perceived 

Vaccination 

Barrier 

Perceived 

Physical 

distancing 

Benefit 

Perceived 

Physical 

distancing 

Barrier 

Perceived 

Self- 

Isolation 

Benefit 

Perceived 

Self- 

Isolation 

Barrier 

Probability 

1 0 0 0 0 0 0 0 0 .7 

2 0 0 0 0 0 1 1 0 1.4 

3 0 0 0 1 1 1 1 1 2.2 

4 0 1 0 0 0 0 1 1 2.9 

5 0 1 0 1 1 1 1 1 5.0 

6 0 1 1 0 1 1 1 1 6.5 

7 0 1 1 1 1 1 1 1 7.2 

8 1 0 0 1 1 1 1 1 7.9 

9 1 0 1 0 0 1 1 1 8.6 

10 1 0 1 1 1 1 1 1 10.1 

11 1 1 0 0 1 1 1 0 10.8 

12 1 1 0 0 1 1 1 1 14.4 

13 1 1 0 1 0 1 0 0 15.1 
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14 1 1 0 1 0 1 1 1 17.3 

15 1 1 0 1 1 1 1 0 19.4 

16 1 1 0 1 1 1 1 1 45.3 

17 1 1 1 0 1 1 1 1 48.2 

18 1 1 1 1 0 0 1 1 48.9 

19 1 1 1 1 0 1 1 0 49.6 

20 1 1 1 1 0 1 1 1 52.5 

21 1 1 1 1 1 1 0 1 54.0 

22 1 1 1 1 1 1 1 0 56.1 

23 1 1 1 1 1 1 1 1 100.0 

 

The multivariate logistic model represents behavioral decisions as a function of a set of 

states of the HBM constructs. At the start of simulation a random number was generated 

for each individual based on the probabilities derived from the survey results. (Table X 

and XI). The probabilities of three behaviors: vaccination, social distancing and isolation, 

were calculated based on the behavior states and odds ratio derived from survey. 

3.6. Contact Network 

The flow of students through a university involved a modest number of decision points.  

Therefore, students were assigned to have hypothetical specific daily activities .To 

acquire data on students’ activities on campus, a questionnaire survey was conducted. A 

total 260 valid questionnaires were collected from undergraduate engineering students at 

Concordia University. These data were inputted into the simulation database to build 

student activity patterns. According to the collected data students were more likely to 

spend their free time on campus in the library, laboratories, student lounge and gym .Also 

some preferred to spend their free time off campus. Whenever agent finished a scheduled 

class it was given the option to select its next location based on these activity patterns. 

Each location in the simulation was described by a matrix of seating orders. Students 
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were assigned to an element of the matrix randomly upon their arrival to a location. For 

susceptible individuals, all the nearby elements which were within the attack radius were 

monitored for infectious contacts and once that person decided to leave the location the 

probability of infection were calculated. If infectious contacts were effective the health 

status was changed to exposed-noninfectious. Once a susceptible individual left campus 

the probability that s/he came back to school exposed to the virus was calculated based 

on duration and the average contacts that an individual might have in the general 

community or household following the assumptions in Haber et al. study (Haber et al., 

2007)  

Table XII Summary of information used in simulation 

Individual Attributes System Information 

Social Student ID Locations Geography  

  Class Schedules Disease  Infectivity Index  

  Activity Schedules   Vaccination Efficiency 

Behavior HBM Variables   Social Distancing Efficiency 

  Vaccination 

Probability 

  Infectious Period Distribution 

  Social Distancing 

Probability 

  Exposed Period Distribution 

  Self-Isolation 

Probability 

  Symptomatic and Asymptomatic 

Probability 

Disease Exposed Period   Asymptomatic case Infectivity 

 Infectious Period   
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3.7 Simulation Structure 

We used Arena Simulation Software 13.9 to build our model. In this section we discuss 

the compartments of the simulation.  

Station Information: 

In this section stations’ information, related to each location (classrooms, laboratories, 

library, student lounge), such as station ID, station’s seating arrangements and station’s 

capacity was incorporated into simulation from excel files. ( Figure IV) 

 

Figure IV: Simulation Capture of stations information 

Individual Attributes: 

In this section student attributes such as student ID, the probability of developing 

protective behaviors (vaccination physical distancing and isolation), students course 

schedules, disease attributes such as latent period and infectious period, etc. were 

incorporated into the simulation. (Figure V) 

 

Figure V: Simulation Capture of individual attributes 
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Decision Station: 

Decision station was developed to regulate agents’ flow in simulation. Once an agent 

finishes its activity. It enters decision station to be sent to its next activity. If the next 

activity is a scheduled class in less than 20 minutes, agent is hold in decision station until 

the activity starts. If the next scheduled class is in more than 20 minutes, agent is sent to 

one of the following stations: Home, Out, Library , Laboratory or Student Lounge, based 

on the probabilities driven from survey. ( Figure VI) 

 

Figure VI: Simulation Capture of Decision Station 

Classroom, Laboratories. Library and Student Lounge 

Once an agent enters to one of the following stations: Classroom, Laboratories. Library 

and Student Lounge, it is assigned to a seat randomly. Disease state of agents assigned to 

seats within the influenza attack distance is checked at arrival and departure of a 

susceptible agent and probability of infection is calculated based on attack duration and 

hazard rates. (Figure VII and VIII) 



42 
 

 

Figure VII: Simulation Capture of Classrooms and laboratories 

 

Figure VIII: Simulation Capture of Library and Student Lounge 
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Home Station:  

Home Station represents the household of students. In this station, disease state of agents 

is checked. If agent is in latent or infectious state and the latent or infectious period is 

passed, disease state is changed to Infectious-Asymptomatic/ Infectious-Symptomatic or 

Recovered respectively. If agent disease state is Susceptible the probability of infection is 

calculated. (Figure IX) 

 

Figure IX: Simulation Capture of Home Station 

Community 

Home Station represents the community. If agent disease state is Susceptible the 

probability of infection is calculated. (Figure X) 

 

Figure X: Simulation Capture of community 
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4 Results 

In this chapter, we present the numerical results of our analysis in three sections. First we 

validate our simulation by comparing results of our disease spread simulation such as 

attack rate, peak period and R0 to results of similar studies. Then we present the result of 

two pre-defined scenarios. First scenario illustrates the spread of influenza within the 

target population using the odds ratios driven from control group and second scenario 

illustrates the spread of influenza within the target population using the odds ratios driven 

from treatment group. 

4.1. Model Validation 

The baseline scenario was defined without consideration of individual protective 

behaviors. 33% of individuals who became infected withdrew from their daily activity 

schedules once they got sick, and remained at home through their symptomatic period 

(Longini, 2004). To validate our simulation two approaches were considered. First, the 

peak time of the outbreak in the university was obtained from the curve of the number of 

infected individuals per day in the system with the baseline scenario of 4864 susceptible 

students. (Figure XI) The number of infection and the attack rates of influenza with 95 

percent confidence intervals for the baseline scenario for 20 simulations are shown in 

Table XIII. The peak infection rate occurred from days 24 to 30 after the start of the 

outbreak with the average rate of 165 new cases per day. By the day when the peak new 

case rate occurs, the cumulative number of infections reaches the average of 1813.6. The 

simulation was run out to day 60, by which time the average of 2735 people had been 

infected and the overall attack rate was more than 50% (in a population with 4884 
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susceptible individuals and no protective behaviors) These results were consistent with 

the study of Yang and Atkinsonin a characteristically similar population with the peak 

time between 20 and 25 days and overall attack rate of more than 50%. Second, the value 

of R0, (defined the number of secondary infection of individuals in a susceptible 

population by the introduction of a single infectious individual) (Diekmann, Heesterbeek, 

& Metz, 1990), was estimated by calculating the number of secondary infections after 

entering only one infected individual in the simulation. In the literature the value of R0 of 

influenza was estimated from 0.9 to 2.1 with a mean of 1.3 (Chowell Miller, & Viboud, 

2007; Ferguson et al., 2005; Mills, Robins, & Lipsitch, 2004). In our simulation the value 

of R0 after 20 simulations was estimated to be 1.45.  

 

Figure XI: Number of New infection per day 

4.2. Health-related protective behaviors 

The second scenario included the HBM variables, which were used to calculate the 

probability of developing the protective behaviors (social distancing and vaccination) for 

each agent in the system and also the probability of self-isolation. It should be noted that 

individuals who applied social distancing in their contacts with others when they were 

sick reduced the probability of infection for others. An average of 1614 ± 11 cases of 

influenza was observed with the attack rate of approximately 34 percent. We run the 

simulations for 70 days. The peak of the outbreak was also delayed by an average of 6 
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days and the average rate of new cases in the peak period was 123 per day. Of the 

average of 488 ± 9 people who developed both protective behaviors only 18 ±3 did not 

escape infection. Of 603± 8 individuals who just vaccinated themselves against influenza 

62 ±3 got sick with flu and from 628 ± 11 students who just applied social distancing on 

their contacts with others 289 ± 3 still got sick with flu. The self-initiated protective 

behaviors of population toward influenza were able to reduce the attack rate by more than 

16 percent.  483 ± 6 people preferred to stay at home when they were sick with flu. The 

difference between the protection efficiency of vaccination and social distancing explains 

the significant difference between the rate of people who got infected even though they 

were vaccinated and those who applied social distancing in their contacts. An average of 

Total 1721 (approximately 35 %) of students developed at least one self-initiated 

protective behavior toward influenza. Therefore an average of 75% percent of people 

who got sick during flu season, were the people with no self-initiated protective behavior 

toward influenza. These results illustrate that considering the current state of individuals 

perceived susceptibility and severity of influenza along with the perceived benefits and 

perceived barriers of interventions could have a significant effect on the attack rate of 

influenza within a university. 

4.3. Educational Program 

The third scenario included the protective behaviors that individuals developed, after 

receiving a treatment in the form of an educational program designed to increase 

students’ willingness to get vaccinated or apply social distancing in their social contacts 

with others in case of an influenza outbreak in the university. The multivariable logistic 

regression of HBM variables provided us with individual health-related activities during 



47 
 

a flu season. After 20 simulation runs for this scenario, the result illustrated that only an 

average of 987 ± 6 (attack rate of 21 %) , cases of influenza occurred. Of the 598 ± 12 

people (on average) who developed both protective behaviors only 21 ± 5 did not escape 

the infection. Of the 1013±22 whom just vaccinated themselves against influenza 95±4 

were sick with flu and from 928±16 students who just applied social distancing on their 

contacts with others, only 273 ±9 were sick with flu.  283 ± 6 people preferred to stay at 

home when they were sick with flu. Total attack rate of influenza decreased by 

approximately 12 after the educational program which led to a 20% percent increase in 

number of vaccination and 42%  increase in social distancing behavior. The peak of the 

outbreak was shifted by an average of 8 days and the total number of new infected cases 

in the peak of the outbreak decreased by 34 percent. The summary of results extracted 

from simulations for both scenarios is described in table XIV. 

Table XIII : Summery of simulation results 

Statistics  

Baseline Scenario Control Scenario Treatment Scenario 

N 95 %CI N 95% CI N 95 % CI 

Total Cases 2735.17 ±31.61 1614.61 ± 11.34 987.12 ±16.35 

Peak Cases 165.44  123.31  87.5  

Peak Day 20-25  26-34  37-45  

Self-Isolation Cases 896.31 ±17.81 483.41 ±9.21 383.41 ±11.34 
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Table XIV: Comparisons of control and treatment scenarios 

Statistics  

Control 

Scenario 

Treatment 

Scenario 

N  95% CI N 95 % CI 

Total Number of Hybrid Behaviors 488  ± 9 598  ± 12 

Total Infected Cases with Hybrid Behaviors 18  ±4 21  ± 5 

Total Number of Vaccination 603 ± 8 1013 ±22 

Total Infected Cases for  vaccination 62  ±3 95 ±4 

Total Number of Social Distancing 628  ± 11 928 ±16 

Total Number of Infected Cases with social distancing 289  ±7 273  ±9 

5. Conclusion  

This agent based simulation model is the first of its kind to incorporate the effect of 

instinctive protective behaviors that individuals develop on the spread of an infectious 

disease within a structured population. The evaluation of results indicated that such 

behaviors were successful in controlling the outbreak in a high contact rate place such as 

a university by a significant decrease on the attack rate (approximately 17%) of disease 

among the population and an observable moderate peak of outbreak by a 25 % reduction 

in the peak number of cases. This result highlights the importance of considering self-

initiated behaviors that individuals develop to protect themselves in case of an outbreak. 

It should be noted that both protective behaviors (social distancing and vaccination) are 

dependent on each other, which may explain the enhancing effect of these behaviors on 
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controlling the outbreak, compared to other studies which have incorporated influenza 

interventions as independent parameters. (M. J. Haber, 2007) (T. Das, 2008) (Longini, 

2004) The effect of social distancing on controlling the transmission is explained by 

characteristics of influenza virus transmission as an airborne virus, individuals have to be 

within a certain distance of each other for a contact to be effective. The output of our 

simulations also provide evidence that, along with vaccination, non-pharmaceutical 

interventions such as social distancing are able to control the outbreak of disease , which 

could help individuals with perceived high barriers of vaccination to protect themselves 

against influenza. The simulation also provides significant evidence for the effect of an 

HBM theory-based educational program to increase the rate of applying the target 

interventions among populations (vaccination by 22 % percent and social distancing by 

41%) and consequently to control the outbreak. Although the probability that a person 

develops a protective behavior cannot be entirely controlled, studies have demonstrated 

that providing information which targets different aspects of disease and its interventions 

could have a significant effect on such probabilities.  

6. Future Work 

The modeling approach used to simulate the transmission of influenza provides a novel 

representation of the real world by considering aspects of both social and health related 

individual behavior patterns, which could be applied to different circumstances of other 

infectious diseases or other population structures. Although a university environment was 

defined as the target population in this simulation, the model could be applied to larger 

case studies, provided sufficient data resources for both individual activity patterns and 
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health behaviors (by conducting HBM on populations with more characteristics diversity 

such as age, race and education level). The advantages of this study include 

understanding individual behavior and its effect on the spread of disease and efficiency of 

educational programs to shape behavior. Some of the characteristics of this model such as 

the massive data collection required to develop the social activity patterns, the 

uncertainty of influenza transmission probability calculation and the limitations of HBM 

to explore other factors that might influence people decision making process (for example 

fear and diversity of population) could lessen the efficiency of this simulation on larger 

case studies. Instead, lessons learned from models at this scale may need to be 

generalized for larger populations. Another future direction may be the implication of 

probabilistic risk assessment (PRA) to calculate the risk of disease transmission for 

different educational programs.  Finally the estimation of real costs for each intervention, 

the cost of loss work for students in case of infection and cost of educational programs 

could provide us with cost-effectiveness analysis of educational programs and 

interventions , which  is another improvement that may be followed in the future, which 

of course depends on the availability of data. 
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Appendix I: Binary Logistic Regression 

 

The logistic model has the form of predictor Y is:  

  (
 

   
)                , 

 where π is the probability of the outcome of interest, under variable Y, α is the Y 

intercept, and β is the slope parameter.  

 

 Odds of an Event is: 

ODDS = P (A) / 1 – P (A) 

where P(A) is the probability of event A.  

For instance if the odds of event A are 4, this means that A is 4 times more likely to 

happen than not happen.  

This concept could be applied to a case of the ratio of odds of an event for one group 

relative to the odds of the same event for another group. The odds ratio of an event for 

two groups can be expressed as follows: 

                                

                                
 

 

Therefore, the regression coefficient β, calculated in logistic regression is the estimated 

increase in the log odds of the outcome per unit increase in the value of the predictor 

variable. In other words, the exponential function of the regression coefficient (  ) is the 

odds ratio associated with a one-unit increase in the predictor variable. 
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The odds ratio is used to determine whether a particular predictor is a risk factor for a 

particular outcome, and to compare the magnitude of various risk factors for that 

outcome. 

OR= 1:  means that predictor variable does not affect odds of outcome 

OR>1: means that the predictor variable is associated with higher odds of outcome 

OR<1 : means that the predictor variable is associated with lower odds of outcome 

If the dependent variable in a logistic regression results in two mutually exclusive 

outcomes, for example, pass or fail, or as in our model to develop a behavior or not, a 

binary logistic regression would be used to describe the outcome. In this study the odds 

ratio were used to determine whether the state of each HBM variable (binary predictor as 

0 for low and 1 for high perceived variable)  is associated (correlated) with developing 

protective behaviors ( binary outcome). 

The 95% confidence intervals (CI) were also used in the model to estimate the precision 

of the odds ratios. A large CI indicates a low level of precision of the odds ratio, whereas 

a small CI indicates a higher precision of the odds ratio. 
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Appendix II: Multivariate Logistic Regression 

If π(x) represent the probability of an event that depends on n independent variables, 

then, using formulation for modeling the probability, we have: 

      
                   

                     
 

The corresponding logistic function from this, we calculate (letting X represent the whole 

set of variables X1, X2, . . . , Xp): 

    𝑡        𝛽  𝛽    𝛽     𝛽    

In the calculated multivariate logistic regression for our model, each estimated coefficient 

is the expected change in the log odds of engaging in the protective behavior, if the 

corresponding HBM variable state changes from low to high, holding the other predictor 

variables constant.  The value of    illustrates the likelihood of engaging in preventive 

behaviors among those who perceived all four variables lowly. 
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Appendix III: Survey 
  

Gender 

 Female      Male 

Status 

 Undergraduate Student      Graduate Student      Faculty     Staff      Other         

Faculty 

 ENCS      JMSB     Fine Arts      Arts & Science      Other 

 

 Strongly 

Disagree Disagree Neutral Agree 

Strongly 

Agree 

If I get the influenza virus, I will get sick.      

If I get the influenza virus, it will disrupt my 

studies.  

     

If I get the influenza virus, others in my home 

will get sick.  

     

I am at risk of getting the influenza virus by 

going to the university. 

     

My family members are at risk of getting the 

influenza virus. 

     

I feel knowledgeable about my risk of getting the 

influenza virus. 

     

If I get the influenza vaccine, I will not get sick 

from the influenza virus. 
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If I get the influenza vaccine, I will have side 

effects.  

     

It is inconvenient to get the influenza vaccine.      

I will recover faster if I rest at home as soon as 

influenza symptoms develop. 

     

Staying at home when I am sick has a negative 

effect on my studies. 

     

My professors do not consider illness as an 

excusable reason for absence. 

     

Avoiding crowded places reduces my likelihood 

of catching influenza. 

     

Avoiding physical contact with sick people 

reduces my likelihood of catching influenza. 

     

It is difficult to avoid close physical contact with 

my friends when I am sick. 

     

It is difficult to avoid crowded places at the 

university. 

     

My knowledge about influenza and its 

interventions is sufficient. 

     

I will use medication if I get the influenza virus.      
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Where do you prefer to spend time when you have a gap between lectures? 

 Never Sometimes Often Very Often 

Off Campus     

Le Gym     

Library     

Laboratories     

Student Lounge in Hall Building     

Other (Please specify):     

 

How often do the following resources provide you with information about 

influenza? 

 

Never Sometimes Often 

Very 

Often 

TV     

Newspaper     

Family member or friend     

Pharmacist     

Nurse     

Posters around university     

Internet     

Other (Please specify):     
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How likely are you to use the following to prevent influenza? 

 Very 

Unlikely Unlikely Likely 

Very 

Likely 

Vaccine     

Avoiding physical contact     

Using masks     

Using hand sanitizer     

Antiviral drugs     

Other (Please specify):     

 

Have you been vaccinated against influenza this year? 

 Yes      No 

Have you ever been vaccinated against influenza? 

 Yes      No 

Does someone with a compromised immune system live in your home (e.g., infants, elderly, pregnant 

women)?                                                                               Yes      No 

 

 

 

 


