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ABSTRACT 

        It is an accepted fact that our atmosphere bears an increasing load of pollutants: 

carbon dioxide, ozone, oxides of nitrogen and sulfur, volatile organic compounds 

(VOCs), particulates, and heavy metals. The adverse health and environment effects of 

air pollution have been a major concern in shaping our environmental quality. The World 

Health Organization (WHO) estimates that 1.5 billion people living in the urban areas 

throughout the world are exposed to dangerous levels of air pollution and 2 million 

premature deaths occur annually. A year shortening of life expectancy by an average is 

also the result of air pollution. Air pollution risk assessment, especially in urban areas, 

is currently one of the most important environmental issues for human health.  

        Air quality model is a useful tool to simulate the complex dispersion of pollutants 

in the atmosphere and to predict the long-term effects on ground and spatial levels, and 

it plays an important role in air pollution risk assessment. Since there are inherent 

complexities and uncertainties associated with land use information, meteorological 

conditions, emission spatial allocation, as well as physical and chemical reactions in air 

quality modeling, it still needs to be further explored. The emergences of new spatial 

information technologies, such as satellite remote sensing technology and Geographic 

Information Systems (GIS) open a new era for air quality modeling and air pollution risk 

assessment, making it possible to predict the spatial concentration distributions of air 

pollutants on larger scales with finer details. 

        The objectives of the work in this thesis include the development of GIS-based air 

quality modeling system to predict the spatial concentration distributions of ambient air 

pollutants (PM2.5, NO2, SO2, and CO), the development of satellite remote sensing 

approach to retrieve aerosol optical depth (AOD) and to derive ground-level pollutant 

concentrations (PM2.5 and NO2), and the development of fuzzy aggregation risk 

assessment approach to evaluate the health risks of multiple air pollutants. 

        A GIS-based multi-source and multi-box (GMSMB) air quality modeling approach 

is developed to predict the spatial concentration distribution of four air pollutants (PM2.5, 

NO2, SO2, and CO) for the state of California. A satellite remote sensing approach is 

investigated to derive the ground-level NO2 concentrations from the satellite Ozone 
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Monitoring Instrument (OMI) tropospheric NO2 column data for the same location and 

same period. The GMSMB modeling and satellite-derived results are cross-verified 

through comparing with each other and with the in-situ surface measurements. 

Furthermore, a fuzzy aggregation-ordered weighted averaging (OWA) risk assessment 

approach is developed to evaluate the integrated health risks of the four air pollutants. 

        An improved aerosol optical depth (AOD) retrieval algorithm is proposed for the 

MODIS satellite instrument at 1-km resolution. In order to estimate surface reflectances 

over variable cover types, including bright and dark surfaces, a modified minimum 

reflectance technique (MRT) is used. A new lookup table (LUT) is created using the 

Second Simulation of the Satellite Signal in the Solar Spectrum (6S) Radiative Transfer 

Code for the presumed aerosol types. The MODIS-retrieved AODs are used to derive 

the ground-level PM2.5 concentrations using the aerosol vertical profiles obtained from 

the GEOS-Chem simulation. The developed method has been examined to retrieve the 

AODs and evaluate the concentration distribution of PM2.5 over the city of Montreal, 

Canada in 2009. The satellite-derived PM2.5 concentrations are ranging from 1 to 14 

µg/m3 in Montreal, which are in good agreement with the in-situ surface measurements 

at all monitoring stations. This suggests that the method in this study can retrieve AODs 

at a higher spatial resolution than previously and can operate on an urban scale for PM2.5 

assessment. 

        Furthermore, the ground-level PM2.5 concentrations and corresponding health risks 

are investigated using the retrieved AOD from the satellite instruments of MODIS and 

MISR for the extended East Asia, including China, India, Japan, and South Korea. The 

results are validated with the monitoring values and literatures. Depending on the 

regression analysis, the GDP growth rates, population growth rates, and coal 

consumptions are the main reasons of the higher PM2.5 concentrations in Beijing. Some 

mitigating measurements are then proposed and the future trend is predicted. The 

developed method can be used to other regions for making cost-effective strategy to 

control and improve air pollution. 
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Chapter 1     Introduction 

 1.1 Background 

        Breathing is not optional. It is essential to a life, and air has to be used (Harrop, 

2002). However, serious air pollution has happened since the first industrial revolution 

(Vallero, 2008). Especially, an accelerating urban growth as a global phenomenon since 

1960s has elevated the air pollution to become a major environmental concern all over 

the world due to their potential adverse effects on human health and environment 

(Karnosky, 2003).  

        Air pollution can be defined as the presence of one or more pollutants, or 

combinations thereof in the external atmosphere, in such quantities and of such duration 

as may be or may cause injury to human health, plant, animal life, properties, or which 

unreasonably interfere with the comfortable enjoyment of life (Canter, 1996; USEPA, 

2007).  

        The World Health Organization (WHO) estimates that 1.5 billion people living in 

urban areas throughout the world are exposed to the dangerous levels of air pollution, 2 

million premature deaths occur annually, and a year of life expectancy by average is 

shortened as the results of air pollution (Krzyzanowski et al., 2005; Ayres et al., 2006). 

Air pollution has been ranked within the top 10 causes of worldwide death and disability 

(WHO, 2009). 

        In fact, for most developed and developing countries, motor traffic emissions now 

pose a principal threat to air quality, particularly in urban areas (Austin et al., 2002). 

Petrol and diesel engines emit a wide variety of pollutants, principally carbon monoxide 

(CO), nitrogen oxides (NOx), volatile organic compounds (VOCs) and particulates, 

which have an increasing impact on air quality (Harrop, 2002). Air pollution hovers at 

unhealthy levels in almost every major city, threatening people’s ability to breathe and 

placing lives at risk (Vallero, 2008). In the U.S., air pollution remains a real and urgent 

threat to public health, despite real progress since 1970. 70,000 premature deaths each 

year are tied to air pollution (Peled, 2011). In the UK, air pollution is estimated to reduce 
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the life expectancy of every person by an average of 7-8 months (Defra, 2007). In 

Canada, scientific evidence based on data from eight Canadian cities shows that 5,900 

deaths can be linked to air pollution every year (Environment Canada, 2012). 14,000 

citizens of Sweden die each year due to the exposure to environmental pollutants (WHO, 

2008). A report of WHO estimates that diseases triggered by indoor and outdoor air 

pollution kill 656,000 Chinese citizens each year (Platt, 2007). In addition, 

stratospheric ozone depletion due to air pollution has long been recognized as a threat to 

human health as well as to the Earth's ecosystems (WMO, 2010). Even with the growing 

“green movement,” air pollution in some parts of the world actually is worsening in the 

past several years. Therefore, it is emergent and paramount to protect and manage air 

quality for human health and environment. New efforts are essential to assess the current 

and future air quality for effective air pollution control and management planning. 

        Air quality modeling plays an important role in air pollution risk assessment and 

management as a useful tool to simulate the complex dispersion of air pollutants in the 

atmosphere and predict the long-term effects on ground and spatial levels. Many air 

quality models, such as Gaussian models, airshed models, box models and 

photochemical models have been developed in the past (Holmes and Morawska, 2006). 

For example, the Gaussian-type models have been developed to predict the air quality 

for decades (Owen et al., 2000; Kuhlwein et al., 2002; Tsuang et al., 2003). Two widely 

applied models, AERMOD and CALPUFF, use Gaussian models for steady-state 

conditions (Scire et al., 2000; Cimorelli et al., 2004). The Gaussian models are often 

limited to point sources on a local scale, usually less than 50 km with limited 

consideration of chemical and physical removal mechanisms in the atmosphere (British 

Columbia Ministry of Environment, 2008). The airshed models are developed based on 

extended analyses of the interrelationships among a number of factors that affect 

ambient air quality. However, their applicability could be affected by data availability 

and quality as well as the high computational requirements for the field calibration 

(Lashmar and Cope, 1995; Vivanco et al., 2009). The box model has been considered as 

a practical tool to handle the regional physical characteristics of air pollutants in the 

ambient atmospheric environment with relatively low requirements for meteorological 

data and computational efforts (Stein et al., 2007). However, box model itself is designed 

to examine the pollutant concentrations on regional rather than on local scale, which 

http://en.wikipedia.org/wiki/Stratosphere
http://en.wikipedia.org/wiki/Ozone_depletion
http://en.wikipedia.org/wiki/Ecosystems
http://en.wikipedia.org/wiki/Atmospheric_dispersion_modeling
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ignores the contributions from individual sources (Stein et al., 2007). Recent studies on 

box models extend the smallest grid size applied in such models to the order of 1 km or 

greater (Weijers et al., 2004; Isakov et al., 2007).  

        One potential improvement for the existing air quality models is to put forward a 

hybrid approach, namely, a regional scale model coupled with a local scale model, which 

allows taking into account the emissions from both point and area source, as well as 

complex meteorological conditions. Only few previous studies have reported this 

combination (Gillani and Godowitch, 2005; Stein et al., 2007).  

        Moreover, there are some significant effects resulting from the various 

geographical features, such as complicated surfaces (open water, land, forests, deserts, 

snow/ice, urban zones and coastal areas) and terrain features (mountains, valleys, hills, 

bowls and plains), when trying to use air quality models to simulate the air pollutant 

dispersion. These geophysical features cause complex flows and dispersion patterns and 

present many challenges for air quality modeling (British Columbia Ministry of 

Environment, 2008). Therefore, accurate land use information is important in 

meteorology for land surface exchanges, in emission modeling for emission spatial 

allocation, and in air quality modeling for chemical surface fluxes (Steyn et al., 2009). 

Since air quality modeling involves obvious spatial and geographic features, the 

Geographic Information System (GIS) is the effective tool for spatial analyst and 

environmental modeling (Goodchild, 2003; Ivanov and Zatyagalova, 2008). GIS 

provides an efficient way to store spatial data for use in air quality modeling and to 

spatially express the modeling results. The methods for integrating environmental 

models with GIS have been discussed by many researchers (Karimi and Houston, 1996; 

Matejicek et al., 2006). In general, GIS can be used to support environmental models 

through “low”, “medium” and “high” level integrations, which are generally referred to 

as loosely-coupled, closely-coupled and fully-coupled modes, respectively (Goodchild, 

2003). Though loosely- and closely-coupled mode may have issues on data exchange, 

compatibility and efficiency while utilizing GIS, the integration has extended traditional 

environmental simulation to GIS-based modeling with geo-referenced information 

(Matejicek et al., 2006; Elbir et al., 2010).  



4 

 

        The fully-coupled mode is known as an embedded-coupling, where the 

environmental models are developed within a GIS framework, so that all GIS functions 

and spatial database are accessed directly (Lakhan, 2003). Additionally it can improve 

the computational efficiency and accuracy by reducing data redundancy and data 

exchange errors in modeling process (Lakhan, 2003). However, most of the recent 

modeling efforts involving GIS are based on the loosely or closely coupled modes 

(Canepa et al., 2007; Elbir et al., 2010). Few studies have been reported on the fully-

coupled mode with GIS in air quality models (Gulliver and Briggs, 2011). 

        In addition, complete spatial coverage of ground-level pollutant measurements are 

needed for air quality assessment (Brook et al., 2007). However, the stations in the 

current pollutants monitoring network are sparse and unevenly spaced, which leads to 

an impaired air quality assessment by insufficient observations in clean versus polluted 

areas (Lamsal et al., 2008). Recent advances in satellite remote sensing (RS) technology 

coupled with experimental verification bring remote pollution measurements very close 

to a practical state. It can provide two important sources of information compared with 

surface and aircraft monitoring data: more complete spatial coverage and a vertically 

integrated measure of atmospheric components (Engel-Cox, et al., 2004; Edwards, 

2006). An increasing number of studies have reported the applications of RS for air 

quality prediction in the past two decades (Schaub et al., 2006; Uno et al., 2007; Sheel 

et al., 2010). The surface concentrations of pollutant obtained from RS have been an 

important complement to the existing ground-based monitoring networks by extending 

spatial coverage and by being specific to pollutants (Lamsal et al., 2008). However, there 

are inherent problems in derivation of ground-level pollutant concentrations using 

satellite remote sensing measurements. For example, cloud and surface albedo 

interferences, a priori profile shape, coarse resolution, and lower accuracy, make the 

applications of RS for air quality prediction only on global or regional scales (e.g. Liu 

et al., 2004; 2005; van Donkelaar et al., 2006; Lamsal et al., 2008; Hains et al., 2010; 

Lee et al., 2011; Halla et al., 2011). It is desirable to further explore the applications of 

RS at local scale with higher spatial resolution and accuracy. 

        Consequently, a fully integrated GIS-based multi-source and multi-box (GMSMB) 

air quality modeling approach is proposed in this study, where a spatial extended multi-
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box model coupled with a multi-source and multi-grid Gaussian model are built within 

the ArcGIS framework. Through the integration with GIS, it allows the spatial analyst 

on both regional and local scales with geo-referenced database. The physical and 

chemical processes are also taken into account with land use/land cover 

characterizations. In addition, the satellite remote sensing measurements from OMI, 

MODIS, and MISR are employed to derive the ground-level concentrations of air 

pollutants (NO2 and PM2.5) at local scale with higher spatial resolution and accuracy. 

The GMSMB modeling results, the satellite-derived ground-level pollutant 

concentrations, and the in-situ surface measurements are cross-verified by 

intercomparison. Based on the validated results, a fuzzy aggregation-ordered weighted 

averaging (OWA) analysis approach is developed to evaluate the integrated air pollution 

risk associated with multiple air pollution factors and evaluation criteria in a GIS-based 

air quality management system. The integrated air pollution risk assessment can be used 

to support decision making on air quality control and management planning.  

1.2 Objectives  

        The objectives of this thesis include the development of GIS-based air quality 

modeling system to predict the spatial concentration distributions of ambient air 

pollutants; the application of satellite remote sensing approach to derive the ground-level 

NO2 concentrations; the development of satellite remote sensing approach to retrieve 

aerosol optical depth (AOD) and to derive ground-level PM2.5 concentrations; and the 

development of fuzzy aggregation risk assessment approach to evaluate the health risks 

arising from multiple air pollutants. More specifically, this thesis includes the following 

tasks: 

(1) To develop a fully integrated GIS-based multi-source and multi-box (GMSMB) 

air quality modeling approach to predict the spatial concentration distribution of 

ambient air pollutants. Through the integration with GIS, it allows the spatial 

analyst on both regional and local scales with geo-referenced database. The 

physical and chemical processes are also taken into account with land use/land 

cover characterizations. The developed modeling approach is applied to predict 

the spatial concentration distributions of air pollutants in the state of California. 
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(2) To investigate a fuzzy aggregation-ordered weighted averaging (OWA) risk 

assessment approach to evaluate the integrated health risks arising from multiple 

air pollutants with aid of GIS. This approach is used to assess the integrated 

health risks based on the GMSMB modeling results in the state of California. 

(3) To derive the ground-level NO2 concentrations from the satellite Ozone 

Monitoring Instrument (OMI) tropospheric NO2 vertical column densities 

(VCDs) using the global three-dimensional chemical transport model GEOS-

Chem. A case study of North America, which focuses on the state of California 

is conducted. 

(4) To develop an improved aerosol optical depth (AOD) retrieval algorithm for the 

Moderate Resolution Imaging Spectroradiometer (MODIS) satellite instrument 

at 1-km resolution for urban area. A new lookup table (LUT) is created using the 

Second Simulation of the Satellite Signal in the Solar Spectrum (6S) radiative 

transfer code and the MODIS Sun-Sat geometry for the AOD retrieval. The 

retrieved AODs are used to derive the ground-level PM2.5 concentrations using 

the local scaling factors acquired from the GEOS-Chem simulation. The 

developed approach is employed to evaluate the ground-level PM2.5 

concentrations for the island of Montreal, Canada. 

(5) To estimate the ground-level PM2.5 concentrations and corresponding health 

risks using the combined AOD from the satellite instruments of MODIS and 

MISR (Multi-angle Imaging Spectroradiometer) for the extended East Asia, 

including China, India, Japan, and South Korea.  

1.3 Thesis Organization 

        This thesis is organized in nine chapters:  

        Chapter 1 introduces the research background, states the research problems, 

specifies the research objectives and significance, and introduces the research 

methodologies.  

        Chapter 2 provides an extensive review of the literatures on air quality modeling, 

GIS and RS application, and fuzzy aggregation risk assessment approach. 
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        Chapter 3 describes the theories and methodologies about developing the fully 

integrated GMSMB modeling approach, deriving the ground-level NO2 concentrations 

from OMI tropospheric NO2 column retrievals, developing the improved AOD retrieval 

algorithm for MODIS satellite instrument, estimating the ground-level PM2.5 

concentrations from satellite AOD retrievals, and developing the fuzzy aggregation - 

OWA risk assessment approach. 

        Chapter 4 presents a case study of applying the GMSMB modeling approach to 

predict the spatial concentration distributions of four criteria pollutants (PM2.5, NO2, SO2, 

and CO) in the state of California in 2008.  

        Chapter 5 depicts a case study of evaluating the integrated air pollution risk using 

the fuzzy aggregation- OWA risk assessment approach based on the modeling results in 

Chapter 4. 

        Chapter 6 presents a case study of deriving the ground-level NO2 concentrations 

from OMI tropospheric NO2 VCDs for the state of California in 2008. The OMI-derived, 

GMSMB modeling, and in-situ surface measurement results of the ground-level NO2 

concentrations are cross-verified through regression analysis.    

        Chapter 7 depicts a case study of retrieving AOD at 1-km resolution from MODIS 

aerosol measurements for the island of Montreal, Canada in 2009. 

        Chapter 8 provides a case study of deriving ground-level PM2.5 concentrations and 

assessing the health risk from the combined MODIS and MISR AOD retrievals for the 

extended East Asia in 2001-2011. 

        Chapter 9 presents the conclusions and contributions as well as the 

recommendations for further research. 
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Chapter 2     Literature Review 

        This chapter presents an overview of the air quality modeling, the application of 

GIS and satellite remote sensing (RS) in air quality modeling, and the fuzzy aggregation 

risk assessment approach. These modeling, spatial information techniques and risk 

assessment method are used in this research to estimate the air pollutant concentrations 

at ground-level and the corresponding health risk.  

2.1 Air Quality Modeling 

        Many air quality models, such as Gaussian model, airshed model, box model and 

photochemical model, have been reported to be used for the prediction of air quality in 

the past decades (Lashmar and Cope, 1995; Macdonald et al., 1996; Winkler and Chock, 

1996; Middleton, 1998; Barone et al., 2000; Muller et al., 2000; Jorquera, 2002a; 2002b; 

Arystanbekova, 2004; Holmes and Morawska, 2006; Defra, 2007; Vivanco et al., 2009).  

        For Gaussian-type models, Owen et al. (2000) calculated the concentrations of NOx 

in London by using an urban scale Gaussian dispersion model; Kuhlwein et al. (2002) 

developed a Gaussian multi-source model to calculate pollutant concentrations in the 

Augsburg area of southern Germany; Tsuang et al. (2003) applied a Gaussian trajectory 

transfer-coefficient model for the estimation of the source/receptor relationship; 

Arystanbekova (2004) proposed Gaussian model for diagnosis and prognosis of 

atmospheric pollution level at damage emissions. Even two widely applied models, 

AERMOD and CALPUFF, are also based on Gaussian models for steady-state 

conditions (Scire et al., 2000; Cimorelli et al., 2004). Generally, the Gaussian models 

are often limited to point sources on a local scale, usually less than 50 km with limited 

consideration of chemical interactions and physical removal mechanisms in the 

atmosphere (British Columbia Ministry of Environment, 2008). 

        For airshed models, Barone et al. (2000) developed the Parallel Naples Airshed 

Model (PNAM) for the numerical simulation of air pollution episodes in urban and 

regional scale domains; Baertsch-Ritter et al. (2003) applied the 3-D photochemical 

Urban Airshed Model (UAM) with variable grid to investigate the temporal and spatial 

http://en.wikipedia.org/wiki/Atmospheric_dispersion_modeling
http://en.wikipedia.org/wiki/Atmospheric_dispersion_modeling
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dynamics of the photo-oxidant production in the highly polluted Milan area of Italy; 

Oanh and Zhang (2004) applied the integrated variable-grid urban airshed model to 

investigate photochemical pollution in Thailand. The airshed models were developed 

based on detailed analyses of complicated interrelationships among a number of factors 

that affect ambient air quality. However, their applicability is often affected by 

limitations in data availability/quality and the costly processes of meteorological survey, 

as well as the high computational requirements for field calibration (Lashmar and Cope, 

1995; Vivanco et al., 2009). 

        For box models, Jorquera (2002a, 2002b) applied a box model to estimate the 

contributions of different economic activities to the air pollutant in Santiago of Chile; 

Aumont et al. (2003) applied a two-layer box model to examine the contribution of 

nitrous acid (HONO) photolysis to the primary production of OH radicals and the impact 

of HONO sources to the O3 and NOx budgets; Lin et al. (2004) proposed a Lagrangian 

box model to locate the influential pollution sources and estimate their contributions to 

pollutant concentrations observed at a receptor site  in southern Taiwan by taking into 

account the effects of source emissions, atmospheric dilution, and chemical 

transformation and deposition; Meszaros et al. (2004) examined the European carbon 

monoxide (CO) budget with the help of a box-model which allows the assessment of 

atmospheric CO concentration change caused by the CO emission and chemical 

production in Europe; Shon et al. (2005) employed a photochemical box model to 

estimate reactive gaseous mercury concentrations in the urban atmospheric boundary 

layer of Seoul in Korea. The box model has been considered as a practical tool to handle 

the regional physical characteristics of air pollutants in the ambient atmospheric 

environment with relatively low requirements for meteorological data and 

computational efforts (Middleton, 1998; Stein et al., 2007). However, box model itself 

is designed to examine the pollutant concentrations on regional rather than on local scale, 

which ignores the contributions from individual sources (Stein et al., 2007). Recent 

studies on box models extend the smallest grid size applied in such models on the order 

of 1 km or greater (Weijers et al., 2004; Isakov et al., 2007). For many pollutants, there 

were evidences of significant spatial variability at scales smaller than 1 km (Weijers et 

al., 2004). Even modeling assumptions regarding subgrid processes could affect the 

model outcomes (Miao et al., 2006). Such models have difficulties in effectively 
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simulating the effects of point source emissions, especially when the emission stacks are 

high. 

        To conclude, despite their usefulness, these existing air quality models are limited 

in their abilities to accurately predict the concentrations of air pollutants due to the 

simplistic assumptions, the high computational requirements and the faineancy of terrain 

and surface factors, etc. (Han, 2007; Menesguen et al., 2007; British Columbia Ministry 

of Environment, 2008; Ying, 2008; Liu, 2009). In general, the Gaussian models are often 

limited to point sources and their applications neglect the chemical interactions and 

physical removal mechanisms in the atmosphere. The airshed models are often affected 

by the limitations in data availability/quality and the costly processes, as well as the high 

computational requirements. The box models are considered to be easier to implement 

with the relatively low requirements for meteorological data and computational efforts. 

However, such models are designed to resolve pollutant concentrations on regional scale 

rather than on local scale. 

        It is evident that the incorporation of Gaussian model within box model framework 

would improve the simulation of the integrated impact from point- and area- sources, 

and better represent the details of spatial variations in source distributions and 

meteorological conditions. Only few previous studies have reported this combination. 

Gillani and Godowitch (2005) examined a plume-in-grid (PinG) method which included 

a Plume Dynamics Model (PDM) and a Lagrangian reactive plume code in a Community 

Multiscale Air Quality (CMAQ) modeling system. Stein et al. (2007) used the HYSPLIT, 

AERMOD, and CMAQ models in combination to calculate the high-resolution benzene 

concentrations in the Houston area.  

2.2 Application of GIS in Air Quality Modeling 

       Geography is seen as a key component in various decision-making, because there is 

almost always a spatial element to the decisions to be made and the data used to make 

them, as illustrated in Figure 2-1. A Geographic Information System (GIS) is a computer 

system capable of capturing, storing, analyzing, and displaying geographically 

referenced information; that is, data identified according to location 

(http://www.esri.com/). GIS has been proven successful in handling, integration, and 
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analysis of spatial data. It has been applied as a useful tool in various disciplines, 

organizations, and activities, since more than 80 % of all data has a spatial component, 

GIS allows an immediate determination of the relationships between maps and variables, 

and can create new maps of those relationships (Goodchild, 2003). 

 

 

 

 

 

 

 

 

 

Figure 2-1 Illustration of GIS integration in various decision-making (Buckley, 2006). 

       When trying to use air quality models to simulate the air pollutant dispersion, there 

are some significant effects resulting from the varied geographical features, such as 

complicated surfaces (open water, land, forests, deserts, snow/ice, urban zones and 

coastal areas) and terrain features (mountains, valleys, hills, bowls and plains). These 

geophysical features cause complex flows and dispersion patterns and present many 

challenges for air quality modeling (British Columbia Ministry of Environment, 2008). 

GIS is the most effective tool for spatial analyst and air quality modeling (Goodchild, 

2003; Ivanov and Zatyagalova, 2008). GIS provides a useful workspace for 

representation of the topological relationships and data integration due to the ability to 

synchronously process multiple models and communicate among them. Therefore, GIS 

has become essential for providing boundary conditions and visualization tools, 
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processing the terrain and surface data, managing multi-source data, spatial analyst and 

spatial overlay, and spatially expressing the results for air quality modeling (Goodchild 

et al., 1996). 

        However, the link between simulation modeling and GIS is quite new, offers 

tremendous possibilities for improved environmental modeling (Brimicombe, 2010). 

Applied work in GIS has been a persistent component of research activity in 

environmental science since early 1990’s. The methodologies for integrating 

environmental models with GIS have been discussed by many researchers (Goodchild 

et al., 1993; 1996; Batty and Xie, 1994; Karimi and Houston, 1996; Longley and Batty, 

1996; Maguire and Batty, 2005; Matejicek et al., 2006; Brimicombe, 2010). In general, 

GIS can be used to support environmental models through “low”, “medium” and “high” 

level integrations, which are generally referred to as loosely-coupled, closely-coupled 

and fully-coupled modes, respectively (Goodchild, 2003).  

        For the loosely-coupled mode, GIS and air quality modeling are two separate 

systems and have their own user interfaces. The data files are simply transferred from 

air quality modeling to GIS rather than using data structures in shared memory, while 

GIS provides input data for air quality modeling, and helps to display the output results 

after computing (Brandmeyer and Karimi, 2000). As the shortcomings of this mode, the 

powerful functions of GIS in spatial and attribute data integrated management, spatial 

analyst and geostatistical analyst are not effectively used; tending to produce data 

redundancy and data exchange errors (Lakhan, 2003). 

         A closely-coupled mode involves a closer integration of GIS and air quality 

modeling. In this mode, the air quality modeling is usually developed in the Dynamic 

Link Libraries (DLLs) using FORTRAN, C/C++ or other advanced programming 

languages and then linked to the GIS macro-language with its own data structures and 

exchange mechanisms (Fotheringham and Wegener, 2000). This mode can reduce the 

data redundancy and exchange errors by directly accessing the spatial database (Clarke, 

2002). But it implies significant requirements for programming and data management 

and also has portability limitations and difficulties in linking GIS macro-language and 

DLLs due to the mismatch of data formats or data structures (Skidmore and Prins, 2002; 

Goodchild, 2003). 

dict://key.0895DFE8DB67F9409DB285590D870EDD/data%20redundancy
dict://key.0895DFE8DB67F9409DB285590D870EDD/data%20redundancy
dict://key.0895DFE8DB67F9409DB285590D870EDD/data%20redundancy
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    The fully-coupled mode is known as an embedded-coupling, where the 

environmental models are developed within a GIS framework, so that all GIS functions 

and spatial database are accessed directly. This can improve the computational 

efficiency and accuracy by reducing data redundancy and data exchange errors in 

modeling process, and the longevity, stability and compatibility of the modeling system 

(Lakhan, 2003). It can also avoid reprogramming GIS functionality (Goodchild, 1996). 

Moreover, the end-users can make on-the-fly changes and further development of the 

powerful GIS functions.  

    Numerous applications of environmental model coupling with GIS have been 

developed over the past decades. However, most of the recent modeling efforts 

involving GIS are based on the loosely coupled modes (Canepa et al., 2007; Vienneau 

et al., 2009; Beelen et al., 2010; Elbir et al., 2010; Vlachokostas et al., 2010). Compared 

with the loosely-coupled mode, the closely-coupled mode is considered to be a more 

effective integration method due to accessing the spatial database directly and providing 

users with GIS spatial analyst functions (Huang and Jiang, 2002). Few studies have used 

the closely-coupled mode (e.g., Dai and Rocke, 2000; Hatefi Afshar and Delavar, 2007). 

Despite there are some issues on data exchange, compatibility and efficiency in the 

loosely- and closely-coupled mode, the integration has extended the traditional 

environmental simulation to the GIS-based modeling with geo-referenced information 

(Matejicek et al., 2006; Elbir et al., 2010).  

    Up to date, few studies have been reported on the fully-coupled mode with GIS in 

air quality modeling (Gulliver and Briggs, 2011). This is probably due to the fact that 

many well-developed models have been implemented without GIS (Wark and Warner, 

1997), and there are some technological difficulties in seamlessly integrating air quality 

models with GIS in the earlier GIS technology (Brimicombe, 2010). For example, GIS 

provides little support for dynamic modeling, i.e. integration across spatial scales and 

time series, so it is difficult to describe the continuous phenomena and express 

simultaneous changes in the reality. And also, it is hard to link external models to GIS 

(Fotheringham and Wegener, 2000; Goodchild, 2003). However, with the rapid 

development of GIS technologies, the technical provision has greatly matured in recent 

years, which has made GIS more widespread, sophisticated, and easier to use. Some 

dict://key.0895DFE8DB67F9409DB285590D870EDD/technical%20provision
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commercial GIS software, such as ArcGIS 9.3, are now ready to meet most of the 

demands of air quality modeling except some particular ones which need to be 

developed independently as external application programs (Brandmeyer, 2000, 

Skidmore and Prins, 2002). Therefore, it is possible to realize the fully-coupled mode in 

integrating air quality modeling with GIS now. 

2.3 Application of Satellite Remote Sensing in Air pollution 

Assessment 

        Current monitoring of ground-level pollutant concentrations is typically conducted 

through surface measurements with in-situ data. Unfortunately, the stations in current 

monitoring network are sparse and unevenly spaced which leads to air quality 

assessment impaired by insufficient observations (Lamsal et al., 2008). Recent advances 

in satellite remote sensing technology make remote air pollution measurements available. 

Remote sensing refers to the use of electromagnetic radiation to acquire information 

about an object or phenomenon without making physical contact with the object (Martin, 

2008). Satellite observations of chemical species in the atmosphere have become 

available as an integral and in many cases complementary development to existing 

ground-based and airborne measurements (Chance et al., 2000; Leue et al., 2001; Richter 

and Burrows, 2002; Richter et al., 2004, 2005; Martin et al., 2002, 2003, 2006; Boersma 

et al., 2004, 2007; Blond et al., 2007; Lee et al., 2009, Leitao et al., 2010). This thesis 

focuses on satellite remote sensing of the composition in the atmosphere.  

    Since late 1980s, NASA (National Aeronautics and Space Administration) has 

been developing the Earth Observing System (EOS), which is an integrated, multi-

satellite, long-term program designed for monitoring Earth’s land, ocean, and 

atmosphere as an integrated system (Asrar and Dozier, 1994; King, 1999). Since the 

Terra and Aqua satellites launched in December 1999 and May 2002, we have entered 

a new era of satellite remote sensing on earth science.  

     Satellite sensors record the reflected energy from the earth and the atmosphere in 

various wavelengths of the electromagnetic spectrum, as illustrated in Figure 2-2. 

Spectral reflectance, namely, the ratio of reflected energy to incident energy as a function 



15 

 

of wavelength can be obtained from the reflected-light spectroscopy. Reflectance varies 

with wavelength for most compositions because energy at certain wavelengths is 

scattered or absorbed to different degrees. The overall shape of a spectral curve and the 

position and strength of absorption bands in many cases can be used to identify and 

discriminate different compositions, such as several trace gases (O3, CO, NO2, HNO3, 

and HCHO) and together with aerosols and clouds. 

 

Figure 2-2 Illustration of satellite remote sensing for spectral reflectance. 

   The satellite measurements can be converted to the ground-level concentrations by 

a chemical transport model (CTM). CTMs solve coupled continuity equations for 

chemicals on global 3D Eulerian grid (Jacob, 1999):  

( ) ( )i
i i i

C
C P L

t


    


U C C  

where Ci is the chemical mixing ratios; U is the wind vector;  is the vector of partial 

derivatives; Pi is the local source of chemical i; and Li is the local sink. Compared to 

surface and aircraft monitoring data, satellite remote sensing data provide two important 

information sources: more complete spatial coverage and a vertically integrated measure 

of atmospheric components (Engel-Cox et al., 2004; Edwards, 2006), as illustrated in 

Figure 2-3. 
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Figure 2-3 Illustration of satellite remote sensing, surface and aircraft measurements. 

The satellite measurements can be converted to the ground-level concentrations by a 

chemical transport model (CTM) (Jacob, 1999). 

        There are several applications of satellite remote sensing for air quality assessment 

at present. Most researches are focused on the retrieval of tropospheric NO2 columns 

and derivation of ground-level NO2 concentrations, and the retrieval of aerosol optical 

depth (AOD) and derivation of ground-level PM2.5 concentrations. There are also some 

other applications, such as the derivation of ground-level O3 concentrations (Horowitz 

et al., 2003), evaluation of NOx (Martin et al., 2003), CO and SO2 emissions (Rix et al., 

2008), and long distance transport, which are not discussed in this thesis.  

2.3.1 Retrieval of tropospheric NO2 columns and derivation of ground-

level NO2 concentrations from satellite remote sensing data 

        Nitrogen dioxide (NO2) as one of the most important air pollutants directly affects 

human health and plays a major role in the formation of ground-level ozone (Seinfeld 

and Pandis, 2006). Significant correlation has been found between NO2 level and 

nonaccidental mortality in daily time series studies (Burnett et al., 2004; Samoli et al., 
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2006). NO2 is also one of the key greenhouse gases (GHGs) which is responsible for the 

global warming (Solomon et al., 1999). Therefore, it is important to evaluate NO2 

concentration in the atmosphere, especially the ground-level concentration. However, 

monitoring and prediction of NO2 in the atmosphere has been a challenging mission.  

        Satellite observation of tropospheric NO2 columns began in 1995 with the Global 

Ozone Monitoring Experiment (GOME-1) (Burrows et al., 1999) flying on ERS-2 (data 

available from 1996-2003), and is continued with the SCanning Imaging Absorption 

spectroMeter for Atmospheric CHartographY (SCIAMACHY) (Burrows et al., 1995; 

Bovensmann et al., 1999) on the ENVISAT platform (data available from 2002-today), 

Ozone Monitoring Instrument (OMI) (Levelt et al., 2006) on EOS-AURA (data 

available from 2004-today), and GOME-2 (Callies et al., 2000) launched on MetOp-A 

(data available from 2007-today). One common technique used in these instruments is 

the use of backscattered solar radiation from which information can be retrieved on the 

amounts of trace gases and aerosols in the atmosphere (Leitao et al., 2010). These 

instruments also provide information on aerosol optical depth (AOD) and aerosol size 

distribution albeit at low spatial resolution.  

        An increasing number of studies have been reported using satellite remote sensing 

to retrieve tropospheric NO2 columns in recent years. Velders et al. (2001) have 

compared the data products of GOME with the model calculations from two global three 

dimensional chemistry transport models which show similar spatial and seasonal 

patterns. Lauer et al. (2002) calculated the tropospheric NO2 columns by the chemistry-

climate model and compared the results with tropospheric NO2 columns retrieved from 

GOME. Martin et al. (2003) used the tropospheric NO2 columns from GOME to derive 

an optimized estimate of the global distribution of surface NOx emissions. Richter et al. 

(2005) retrieved the tropospheric column amounts of NO2 from two satellite instruments 

GOME and SCIAMACHY. Kim et al. (2006) assessed the change of regional NOx 

emissions in the eastern U.S. by comparing NO2 columns derived from the 

SCIAMACHY with three-dimensional regional scale chemical transport model results. 

Schaub et al. (2006) compared tropospheric NO2 vertical column densities (VCDs) 

retrieved from GOME to coincident ground-based tropospheric NO2 columns. van Noije 

et al. (2006) have performed a multi-model inter-comparison for NO2 retrievals from 



18 

 

GOME and also compared with results from 17 atmospheric chemistry models on a 

global scale. Uno et al. (2007) presented systematic analyses of inter-annual and 

seasonal variability of tropospheric NO2 vertical column densities based on GOME 

satellite observations and the regional scale CTM CMAQ (Community Multi-scale Air 

Quality) over Asia. Blond et al. (2007) reported a new tropospheric retrieval data set 

based on the SCIAMACHY and the results were used to evaluate the NO2 fields 

produced by a new version of the high-resolution regional-scale CHIMERE CTM over 

Western Europe. Ghude et al. (2009) have detected the increasing trends of NO2 column 

over polluted regions of India using data from GOME and SCIAMACHY. Sheel et al. 

(2010) took recourse to satellite data and compare tropospheric NO2 column abundances 

simulated by a chemical transport model, MOZART, with data from GOME. 

        However, most of previous studies were focused on the retrieval of tropospheric 

NO2 columns from GOME and SCIAMACHY. In comparison, few studies have 

reported the retrieval from OMI. Boersma et al. (2007) presented a new algorithm for 

the near-real time retrieval the tropospheric NO2 columns from OMI based on the 

combined retrieval-assimilation-modeling (RAM) approach. Bucsela et al. (2008) 

performed error-weighted linear regressions to compare OMI tropospheric NO2 columns 

from the near-real-time product and standard product with the integrated in-situ columns. 

Kramer et al. (2008) performed a comparison between tropospheric NO2 columns 

retrieved from OMI and those from the Concurrent Multiaxis Differential Optical 

Absorption Spectroscopy. Hains et al. (2010) made a sensitivity analysis of the 

tropospheric NO2 retrieval from OMI using the measurements from the Dutch Aerosol 

and Nitrogen Dioxide Experiments for Validation of OMI. Wang et al. (2011) presented 

the assimilation of satellite NO2 observations into a chemistry-transport model using 

NO2 columns from OMI in order to better forecast NO2 in Europe. All of above focused 

on the tropospheric NO2 column retrievals from satellite remote sensing measurements. 

Only Lamsal et al. (2008) described an approach to infer ground-level NO2 

concentrations by applying local scaling factors from a global three-dimensional model 

GEOS-Chem to tropospheric NO2 columns retrieved from OMI. 

    Due to the diversity of models and retrieval products, it is difficult to draw firm 

conclusions on whether and where models and retrievals agree or rather disagree beyond 
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their respective uncertainties (van Noije et al., 2006). However, most studies mentioned 

above have demonstrated the enormous potential of satellite NO2 data sets for model 

evaluation and emission estimates. To be sure, OMI has a better spatial resolution (13 

km × 24 km at nadir, larger at non-nadir viewing) than the earlier instruments of GOME 

and SCIAMACHY (320 km × 40 km and 60 km × 30 km, respectively), and a better 

temporal resolution (a daily global coverage) compared to GOME and SCIAMACHY 

(three and six days to achieve a global coverage, respectively) (Boersma et al., 2007). 

The OMI NO2 data has been validated against surface, in-situ, aircraft and other satellite 

observations (Boersma et al., 2008a, 2008b; Brinksma et al., 2008; Kramer et al., 2008; 

Lamasal et al., 2008) and shows good consistency with those observations. Therefore, 

the OMI NO2 data is used to validate the developed GMSMB modeling approach. 

2.3.2 Retrieval of aerosol optical depth and derivation of ground-level 

PM2.5 concentrations from MODIS and MISR 

       Particulate matter (PM) in ambient air is considered one of the most hazardous 

pollutants to human health. Especially, PM2.5 (particulate matter with aerodynamic 

diameter less than 2.5 µm) affects the health of most population, leading to a wide range 

of acute and chronic health problems and reductions in life expectancy (WHO, 2006a). 

Epidemiologic studies have illustrated a consistent positive association between ambient 

PM2.5 pollution levels and adverse health effects, such as increased mortality and 

morbidity, particularly among those with chronic respiratory and cardiovascular 

diseases (Pope and Dockery, 2006). When PM2.5 concentration reaches 35 µg/m3, the 

risk of mortality increases 15 % compared to 10 µg/m3 (WHO, 2006b). Therefore, it is 

desirable to evaluate ground-level PM2.5 concentrations, identify the speciation and 

sources, and to assess the health risks for making cost-effective strategy to control and 

improve PM2.5 air pollution.  

        However, most routine air quality monitoring systems generate data based on the 

measurements of PM10 (particulate matter with aerodynamic diameter less than 10 µm) 

as opposed to other particulate matter sizes at present (WHO, 2006b). Only a few areas, 

such as the United States, Canada and some cities in China, have the official PM2.5 

monitoring values. As a supplement, satellite remote sensing of atmospheric aerosol has 
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provided a rich data source about particulate matter concentrations and is increasingly 

being used for air quality assessment studies (van Donkelaar et al., 2011).  

        The launch of MODIS sensors aboard two of the NASA Earth Observing System 

(EOS) satellites (Terra in 1999 and Aqua in 2002) began a new era of aerosol remote 

sensing over land (Kaufman et al., 1997; King et al., 1999). The wide spectral range of 

MODIS channels, together with near-daily global coverage and enhanced spatial 

resolution, provides sufficient information for retrieving total column aerosol, water 

vapor, and ozone simultaneously (Remer et al., 2006). Other instruments such as MISR 

(Diner et al., 1998) also on Terra measuring with multi-angle viewing directions (data 

available from 1999-today), or MERIS (Bezy et al., 2000) on the ENVISAT platform 

(data available from 2002-today), are better suited for aerosol retrievals since they 

provide high spatial resolution and, in some cases, multiple viewing directions. More 

recently, the active Lidar system CALIOP (Winker et al., 2003) flying on the CALIPSO 

satellite (data available from 2006-2009), has become available which for the first time 

can resolve aerosol vertical distributions with high resolution. 

    The aerosol optical depth (AOD), a measure of the total extinction by aerosol of 

light passing through the atmospheric column, can be retrieved from satellite remote 

sensing of atmospheric aerosol. Retrieving AODs from the residual atmospheric 

reflectances requires independent estimation of the wavelength-dependent single 

scattering albedo (ω), and the scattering phase function (P). These aerosol optical 

properties depend on the aerosol chemical composition, size distribution, phase, and 

mixing state (Remer et al., 2006; Levy et al., 2007a).  

    The satellites-retrieved AOD from the MODIS and MISR satellite instruments are 

most commonly used to evaluate ground-level PM2.5 concentrations. The applicability 

of AOD to surface air quality depends on several factors, such as the vertical structure, 

composition, size distribution, and water content of atmospheric aerosol (van Donkelaar 

et al., 2010). Many studies have investigated the relationship between total columnar 

AOD and surface PM2.5 distributions. Liu et al. (2004) first estimated the surface-level 

PM2.5 from the MISR observations by using CTM output to represent the local AOD-

PM2.5 conversion factors. The empirical relationships between satellite remote sensing 

AOD and surface PM2.5 have been developed using both MODIS (Wang and 
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Christopher, 2003) and MISR (Liu et al., 2005). Statistical models have also been used 

to relate AOD to PM2.5 (Liu et al., 2007a; 2007b; Liu, 2009). van Donkelaar et al. (2006; 

2010) extended the approach used by Liu et al. (2004) to estimate PM2.5 from both 

MODIS and MISR observations and investigated the factors affecting the agreement 

between AOD and surface-level PM2.5 on a global scale. Local observations of PM2.5, 

vertical structure and relative humidity have all been used to improve the accuracy of 

remote sensing PM2.5 (Engel-Cox et al., 2006; Schaap et al., 2009; Di Nicolantonio et 

al., 2009). More recently, chemical transport models (CTMs), which calculate the four-

dimensional distribution of atmospheric aerosol mass, have been proven that can 

accurately relate AOD to ground-level PM2.5 without nearby ground-based observations 

(Drury et al., 2008; van Donkelaar et al., 2010; Wang et al., 2010).  

    Despite much progress made recently in AOD retrievals from satellite observations 

and PM2.5 estimation from satellite-retrieved AOD, several challenges exist. First of all, 

the operational MODIS AOD algorithm assigns fixed aerosol optical properties for 

individual continental regions and seasons in collection 4 (Kaufman et al., 1997; Remer 

et al., 2005) and collection 5 (Remer et al., 2006; Levy et al., 2007a). This set of aerosol 

optical properties is inconsistent with the corresponding set employed in the chemical 

transport models (CTMs) which varies with aerosol chemical composition in each 

model grid and time step in the model simulation. This inconsistency not only adds 

difficulty and confusion to resolving discrepancies between modeled and satellite-

retrieved AOD, but also makes CTM simulations constrained by satellite-based aerosol 

products unable to reproduce reflectance data that satellites actually measure. To 

overcome these issues, recent studies have started using satellite reflectance data to 

constrain the CTM simulations. The principle here is that the aerosol mass fields in a 

CTM are iteratively updated (retrieved) until the reflectance computed from the CTM 

agrees with the satellite-measured reflectance, while the single scattering properties of 

each aerosol species are kept as constants (Drury et al., 2008; Weaver et al., 2007).  

    Secondly, the aerosol retrieval over bright surfaces such as urban areas is a 

challenge for MODIS because the land surface and the atmospheric aerosol content both 

have high reflectance which is difficult to infer AOD. Hsu et al. (2006; 2004) developed 

the deep blue algorithm for aerosol retrieval over desert and urban areas for MODIS 
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images. Herman and Celarier (1997) and Koelemeijer et al. (2003) developed the 

minimum reflectance techniques (MRT) for TOMS and GOME, respectively, over 

variable cover types, including bright and dark surfaces. Both of them are at a coarse 

resolution (> 1◦). Furthermore, it is generally admitted that the approach used to estimate 

surface reflectances in the visible bands at the planetary scale, against which 

atmospheric AOD is retrieved, can lead significant errors in AOD retrieval over urban 

areas (Oo et al., 2010). Even if the exactness of the retrieved AOD is improved using 

approaches more adapted to urban areas, estimation of the PM2.5 concentrations from 

total columnar AOD may be erroneous due to the particularities of the aerosol vertical 

distribution at the moment of satellite passage. In fact, a high level of total AOD does 

not necessary means high concentrations of PM2.5 at the surface level and vice-versa. 

For instance, even if the aerosol loading in the troposphere is high (resulting in high total 

AOD), the concentrations of PM2.5 at surface level could be low due to a high planetary 

boundary layer.      

   In addition, the standard aerosol products are offered at coarse spatial resolutions 

(10 km × 10 km for MODIS, 17.6 km × 17.6 km for MISR), which are not appropriate 

for mapping PM2.5 concentrations at intraurban scales as usually needed in health studies 

(Jerret et al., 2005).  

2.4 Application of Fuzzy Set Theory for Air Pollution Risk 

Assessment 

       In most developed and developing countries, emissions from transportation and 

energy sectors pose a serious impact on air quality, particularly in urban areas. For 

example, petrol and diesel engines emit a wide variety of pollutants, principally carbon 

monoxide (CO), oxides of nitrogen (NOx), volatile organic compounds (VOCs) and 

particulates, creating the need for air pollution risk assessment (Harrop, 2002). 

       In recent years, air pollution risk assessment is evolving away from a focus on 

individual pollutant toward a multi-factor integrated risk assessment involving multiple 

pollutants that may cause different physical, chemical and toxic characteristics on 

humans, plants, animals, ecological systems and environment (USEPA, 1997). The 

assessment of effect of each pollutant on environment may be inaccurate or uncertain to 
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various degrees and should be considered when various factors and information are 

taken into account. That means there are some inherent complexities and uncertainties 

in the integrated risk assessment of air pollution. Therefore, it is extremely important to 

study an efficient approach to evaluate the multi-factor integrated risk of air pollution 

for decision making in air quality management and planning. 

       During the past decades, several stochastic methodologies were developed for 

assessing the risks of air pollution and health impacts. Kontos et al. (1999) employed a 

stochastic dynamic analysis approach for dealing with short term effects of air pollution 

on childhood respiratory illness. Bhattacharya et al. (2000) presented a probabilistic 

method for determining the cumulative effect of various elements in the air. 

Economopoulou and Economopoulos (2002) estimated the health risk of air pollution 

by deriving the air pollutant concentrations and percent increases in mortality. Oettl et 

al. (2003) used a Markov Chain–Monte Carlo model to assess air pollution caused by 

road traffic. Ishii et al. (2007) estimated the phytotoxic risk of ambient air pollution on 

agricultural crops using yield loss functions matching the monitored concentrations. 

Cangialosi et al. (2008) estimated the ground-level air pollutant concentrations using an 

atmospheric dispersion model and calculated the health risk values based on the 

probability of contracting cancer through exposure to site related chemicals. Carnevale 

et al. (2012) proposed a regional integrated assessment tool (RIAT) based on multi-

objective optimization methods to define effective air quality policies. These previous 

studies were mostly based on stochastic approaches. However, when the uncertain 

factors, such as pollutants’ physical, chemical and toxic characteristics, media 

conditions, receptor sensitivities, and dose–response effects, cannot be expressed as 

probability distributions, such stochastic methods of risk assessment are inapplicable.  

       Since the publication of a seminal paper by Lotfi A. Zadeh in 1965, fuzzy logic has 

been established as an ideal method for dealing with various kinds of uncertainty and 

vagueness (Zadeh, 1999). Many studies have reported the risk assessment associated 

with environmental problems based on fuzzy set theory. For example, Smith (1995) 

developed a fuzzy aggregation approach for environmental quality evaluation. Chen et 

al. (1998) developed an integrated fuzzy risk assessment approaches for evaluating 

environmental risks derived from petroleum-contaminated sites. Chen et al. (2003) also 
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proposed a hybrid fuzzy-stochastic risk assessment approach for examining 

uncertainties associated with both source/media conditions and evaluation criteria in a 

groundwater quality management system. Sasikala and Petrou (2001) assessed the risk 

of desertification after a forest fire using fuzzy logic aggregation operators. Iliadis (2005) 

developed a decision support system applying an integrated fuzzy model for long-term 

forest fire risk estimation. Sadiq and Husain (2005) developed a fuzzy-based 

methodology for an aggregative environmental risk assessment of drilling waste. Sadiq 

and Tesfamariam (2009) applied the intuitionistic fuzzy set to analytic hierarchy process 

(AHP) to handle both vagueness and ambiguity related uncertainties in environmental 

decision-making process.  

  Despite many published studies, only few studies have reported the application of 

fuzzy set theory to the risk assessment of air pollution. Fisher (2003) explained how 

concepts from fuzzy set theory might be applied to decision-making in air pollution, and 

to formulate the underlying uncertainty. Li et al. (2008) proposed an integrated fuzzy-

stochastic modeling approach for quantifying uncertainties associated with both 

source/medium conditions and evaluation criteria and assessing air pollution risks. 

Reshetin (2008) described the application of a formalism of fuzzy sets to model and to 

assess the risk of carcinogenesis and additional mortality associated with air-pollution. 

Kaya and Kahraman (2009) evaluated the air pollution’s level by using fuzzy 

specification limits and fuzzy standard deviation to obtain the process capability indices. 

Liu and Yu (2009) examined a case-based fuzzy reasoning method to quantify 

environmental risks. However, none of these studies was incorporated with multi-factor 

air pollution integrated risk assessment based on fuzzy aggregation approach and spatial 

air quality modeling. Therefore, it is desirable to extend fuzzy aggregation approach to 

multi-factor air pollution for effective evaluation and decision-making.      

2.5 Summary 

        In summary, every existing air quality model has limitations and only few models 

have been fully integrated with GIS and RS. It has been lack of studies which are 

desirable on: 1) spatial analyst for both regional and local scales (Stein et al., 2007); 2) 

improvement of the existing models to consider both point and area source (Isakov et 
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al., 2007) and complex meteorological and terrain conditions (Gillani and Godowitch, 

2005; Stein et al., 2007); 3) full integration with GIS and RS (Brandmeyer, 2000; Lakhan, 

2003); 4) challenges existing in aerosol retrieval from satellite data; 5) derivation of 

ground-level pollutant concentrations from satellite remote measurements; and 6) 

application of fuzzy aggregation approach to multi-factor air pollution risk assessment 

with spatial air quality modeling.    
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Chapter 3     Methodology 

3.1 Development of GIS-Based Multi-Source and Multi-Box 

Modeling Approach 

        The GIS-based multi-source and multi-box (GMSMB) air quality modeling 

approach is a hybrid approach, where a regional scale model (i.e. a spatially extended 

multi-box model) and a local scale model (i.e. a multi-source and multi-grid Gaussian 

model) are combined as an efficient way to simulate and predict the airborne pollutant 

concentrations. In this approach, the spatial multi-box model provides the pollutant 

concentrations due to area source emissions, while the multi-source and multi-grid 

Gaussian model predicts the pollutant concentrations due to point source emissions. The 

results of both model simulations are combined to generate the total ambient air pollutant 

concentrations.  

3.1.1 Spatial multi-box model 

        The spatial multi-box model is spatially extended and improved upon the 

conventional box models by allowing investigations of more details in spatial variations 

of emission sources and wind directions, as well as their impacts on the ambient air 

quality.  

        In this model, the study domain is spatially divided into a number of sub-boxes 

based on the area with a certain height in three dimensions, as shown in Figure 3-1. The 

following assumptions are made to accommodate data availability and computational 

requirements (Wark et al., 1997): 

 The impact of pollutant diffusion in the wind direction is negligible since the 

wind force dominates the movement of pollutants. 

 The impacts of pollutant diffusion are significant in both the vertical and 

transverse directions, leading to interactions among sub-boxes.  

 No pollutant leaves or enters the whole box system through top and the sides 

parallel to the wind direction. 
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 The pollutants will be evenly and completely mixed in each sub-box up to the 

mixing height and there is no mixing above this height. 

  

Figure 3-1 Spatial extended multi-box model. 

        By examining the interrelationships among the sub-boxes for each wind direction, 

the mass balance equation of airborne pollutant in each sub-box is established. For 

example, under the west wind as shown in Figure 3-1, the advection along the wind 

direction and the dispersion at the vertical and crosswind directions are considered for 

the pollutant. The physical and chemical removals are both taken into account and 

improved by land use/land cover characterizations. The mass balance equation is 

expressed as follows: 
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direction d (μg/m3); Cd
i,j,k is the average pollutant concentration in sub-box i,j,k under 

wind direction d (μg/m3); E is the diffusion coefficient at vertical direction (m2/sec); E’ 

is the diffusion coefficient at crosswind direction (m2/sec); hi,j,k is the height of sub-box 

i,j,k (m); L is the length of each sub-box (m); W is the width of each sub-box (m); Qi,j,k 

is the average pollutant emission rate into sub-box i,j,k (μg/m2·sec); Uk
d is the mean wind 

speed of layer k at wind direction d (m/sec); Rd
pi,j,k is the physical removal rate in sub-

box i,j,k at wind direction d (μg/sec); and Rd
ci,j,k is the chemical removal rate in sub-box 

i,j,k at wind direction d (μg/sec). 

        The physical removals of pollutants considered in this study include dry and wet 

depositions. The dry deposition rate of pollutant is given (Seinfeld and Pandis, 2006): 

, , , , , , 1

d d d

dpi j k i j k d i j k dR LWC v LWC v                                   (3-2) 

where Rd
dpi,j,k is the dry deposition rate in sub-box i,j,k under wind direction d (μg/sec); 

vd is the deposition velocity (m/sec).  

        For gases, vd is expressed as the inverse of a sum of aerodynamic resistance, 

deposition layer resistance, and vegetation layer resistance (Wesely and Hicks, 1977). 

The aerodynamic resistance is varied with meteorological conditions and receptor height, 

which is set a lower limit of 1000 s/m if the surface is wetted by dew (Wesely et al., 

2001). The vegetation layer resistance is associated with aerodynamic resistance in the 

vegetative canopy and leaf area index which depend on the land use/land cover types 

(Scire et al., 2000). The land use land cover types, and the leaf area index as a function 

of land use/land cover types, are collected from the geodatabase created in GIS based on 

the U.S. Geological Survey Land Use Classification System Level I (9-Category System) 

(Scire et al., 2000). The default values for typical dry deposition velocities for urban or 

built-up land are: 0.03 cm/sec for CO; 0.1 cm/sec for NO2 (Hauglustaine et al., 1994); 

and 0.5 cm/sec for SO2 (Voldner et al., 1986).  

        For particulates, the deposition velocity vd is described (Pleim et al., 1984): 

1
d g

a d a d g

v v
r r r r v

 
 

                                       (3-3) 
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where ra is the aerodynamic resistance (s/m); rd is the deposition layer resistance (s/m); 

and vg is the gravitational settling velocity for particles (m/s). However, this method is 

used when a significant fraction (greater than about 10 percent) of the total particulate 

mass has a diameter of 10 μm or larger. For PM2.5, the settling velocity is very small so 

that particles are not efficiently transported across the deposition layer by either the 

Brownian diffusion or the inertial impaction mechanism. As a result, these particles have 

the minimal deposition velocities. In this study, the deposition velocity for PM2.5 is given 

as the weighted average of the deposition velocity as follows: 

(1 )d df dcv fv f v                                                 (3-4) 

where f is the fraction of particulate substance smaller than 2.5 μm in diameter; vdf is the 

deposition velocity of fine particulates, calculated from Equation 3 with vg set to zero 

(m/s); vdc is the deposition velocity of coarse particulate substance (m/s), calculated from 

Equation 3 with vg set to 0.002 m/s. According to the study of Sehmel et al. (1978), the 

deposition velocity of 1cm/sec is used for PM2.5 in urban areas. 

         The wet deposition rate of pollutant is proportional to the scavenging ratio (Scire 

et al., 2000):  

0

P
P

      
 

                                                 (3-5) 

where Λ is the scavenging ratio (1/sec); λ is the wet scavenging coefficients (1/sec), 

which depends on the characteristics of the pollutant as well as the nature of precipitation. 

It is served as an empirical constant of 10−4/sec for PM2.5 (Chate et al., 2011), 3×10-5/sec 

for SO2, and 0.00/sec for NO2 and CO (Scire et al., 2000); P is the precipitation rate 

(mm/hr); and P0 is the reference precipitation rate (mm/hr), which is usually taken as 1 

mm/hr. So the wet deposition rate is calculated by: 

          , , , , , , , , , , 1

d d d

wpi j k i j k i j k i j k i j kR LWh C LWh C                            (3-6)  

where Rd
wpi,j,k is the wet deposition rate in sub-box i,j,k under wind direction d (μg/sec).  
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       The chemical removal described by a first-order reaction is commonly adopted in 

regional scale modeling (Seinfeld and Pandis, 2006). The chemical removal rate of air 

pollutants is estimated by:  

                             , , , , , , 1 exp /d d d d

ci j k i j k k i j k kR Lh U C kW U   
 

                                  (3-7) 

where the ratio of W/Uk
d represents the residence time of the compound in each sub-box 

in layer k at wind direction d (sec); k is the first order rate constant (1/sec), k = 0.693 / 

t1/2. t1/2 is the half-life of pollutants. In this study, the default value of k is set as 4.81 ×10-

5 /s for SO2 (USEPA, 2005); 6.42 × 10-5 /s for NO2 (Kelm and Yoshida, 1996); 4.7 × 10-

7 /s for CO (Viggiano et al., 2005). For PM2.5, the U.S. EPA’s Revision to the Guideline 

on Air Quality Models indicated that the ‘infinite half-life’ should be used for estimates 

of particle concentrations (USEPA, 2005), which means the first order rate constant of 

PM2.5 is 0. However, PM2.5 has a major multiplier from nitrate NO3
- and sulphate SO4

2- 

which exist as NH4NO3 and [NH4]2SO4. This multiplier is calculated with the predicted 

sulphate and nitrate concentrations multiplied by factors of 1.375 for sulphate and 1.290 

for nitrate (Malm, 2000). 

        Based on the mass balance equation for each sub-box under each wind direction, 

the pollutant concentration in sub-box i,j,k for all wind directions is calculated as follows: 

                                 , , , ,

d d

i j k i j kC f C                                                 (3-8) 

where Ci,j,k is the concentration of the pollutant in sub-box i,j,k (μg/m3); fd is the annual 

frequency of wind in direction d, which is the percentage of the time the wind is coming 

from a particular direction (%) (NRCS, 2009). 

3.1.2 Multi-source and multi-grid Gaussian model 

        For point sources, the pollutant dispersion is assumed to be Gaussian in both the 

vertical and horizontal directions. The Gaussian formula introduces the current state-of-

the-art air dispersion modeling concepts, which is applicable to rural and urban areas, 

flat and complex terrain, surface and multiple sources.  
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        In each sub-box, for stable and neutral conditions, the point source dispersion is 

considered to be Gaussian in both the vertical and horizontal directions with the 

concentration equation adapted from Hanna and Paine (1989): 

   
2 2

2 2

2 2
{ , , } exp exp

2 22

r e ieff r e ieff

r r r y

m z zz

z h mz z h mzQ
C x y z f

u   





       
         
    

    



       (3-9) 

where is the coordinate representation of a receptor (m), and zr is the height 

of a receptor defined relative to the stack base elevation (m); Q is the emission rate (

g/sec); u is the wind speed at stack top (m/s); zieff is the effective mechanical mixed layer 

height (m); σz is the total vertical dispersion (m); he is the effective plume height (i.e., 

stack height plus the plume rise) (m); and fy is the lateral distribution function with 

meander (m-1). fy is defined as: 

2
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1
exp

22
y

yy

y
f



 
    

 

                                          (3-10) 

where σy is the total lateral dispersion (m). In rural area,  and are calculated from 

the modified Pasquill-Gifford (P-G) stability categories and dispersion parameters, 

while in urban area,  and are calculated based on Briggs' formula (USEPA, 1992). 

       The effective plume height he equals to the stack physical height plus the plume rise 

height ∆h which is estimated as follows (Weil et al., 1988): 

11
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where 2

b s s
s

TF gw r
T

   
 

is the stack buoyant flux (m4/s3); 2 2

m s s
s

TF w r
T

   
 

is the 

stack momentum flux (m4/s2) (Briggs, 1984); g is the gravitational acceleration (m/s2); 

ws, rs and Ts are the stack exit velocity (m/s), radius (m) and temperature (K), 

respectively; ∆T = Ts - Ta where Ta is the ambient air temperature (K); up is the wind 
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speed used for calculating plume rise (m/s); and N is the Brunt-Vaisala frequency, which 

is based on the potential temperature gradient in the elevated stable layer (Cimorelli et 

al., 2004): 

1/2

{ } iz z

i

g
N

z z






 
  

 
                                           (3-12) 

where θ is the temperature at the height zi, 
iz z

z







 is the temperature gradient at height 

higher than zi; N’ = 0.7N. 

        The effective mechanical mixed layer height zieff is defined as the larger of 

mechanical mixed layer height zim and upper edge (e.g., plume height plus 2.15σz) 

(Hanna and Paine, 1989): 

  2.15 ;ieff e z e imz MAX h h z                                  (3-13) 

        The mechanical mixed layer height zim is estimated as (Venkatram, 1980): 

3
22300imz u                                                    (3-14) 

where the constant 2300 has units of (s3/2 m-1/2); u* is the surface friction velocity (m/s). 

        The physical and chemical removals are calculated using the methods described in 

the spatial multi-box model and removed from the results of eq. (3-9) by a post-

processing. Considering the terrain effect, the total pollutant concentration is calculated 

using a weighted average of concentration associated with two parts: a horizontal plume 

{ , , }r r pC x y z (terrain impacting) and a terrain-following plume, as shown in the 

following equation (Cimorelli et al., 2004):  

    { , , } { , , } (1 ) { , , }T r r r r r r r r pC x y z C x y z C x y z                           (3-15) 

where { , , }T r r rC x y z is the total concentration at receptor (μg/m3); { , , }r r rC x y z is the 

concentration contributed from the horizontal plume state (μg/m3); { , , }r r pC x y z is the 

concentration contributed from the terrain-following state (μg/m3); is the plume state 
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weighting function (dimensionless); zp = zr - zt is the height of a receptor above the local 

ground (m); and zt is the terrain height at a receptor referenced to the stack base elevation 

(m).  

        The terrain heights of sources and receptors are obtained from the Digital Elevation 

Model (DEM) in GIS geodatabase. The plume state weighting factor   is given as 

(Venkatram et al., 2001): 

                                0.5(1 )p                                                   (3-16) 

where p is the fraction of the plume mass below the dividing streamline height Hc (m) 

which  is defined as the minimum of the highest actual terrain and the terrain-following 

height at that receptor. p is computed by the following equation: 

                               0
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


                                        (3-17) 

where { , , }s r r rC x y z is the pollutant concentration in the absence of a hill for stable 

conditions (μg/m3). When the plume is entirely below the dividing streamline height Hc, 

p = 1 and λ = 1. Therefore, the pollutant concentration at an elevated receptor is 

determined only by the horizontal plume. When the plume is entirely above Hc or when 

the atmosphere is either neutral or convective, p = 0 and λ = 0.5, the pollutant 

concentration at an elevated receptor is simply the average of the contributions from the 

two plumes. 

        Using this model, the downwind ground-level pollutant concentration at a certain 

location is calculated. The prediction result of pollutant concentration at a certain 

ground-level location due to each single point source emission is then superimposed to 

obtain the pollutant concentration at that location due to multiple point source emissions. 

3.1.3 GIS-based modeling method 

        In this GIS-based modeling approach, there are three main components: 

geodatabase, air quality model, and result processing with visual representation (Figure 
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3-2). The GIS-based multi-source and multi-box (GMSMB) model consists of an array 

of horizontal sub-boxes at multiple vertical layers, which is developed within the 

ArcGIS framework using Visual Basic Application (VBA) and ArcObjects Components. 

There are a number of models and setup parameters to be established for air quality 

modeling.  

 

Figure 3-2 Framework of the GMSMB modeling system. 

        Creation of a geodatabase, which consists of various types of geographic datasets, 

is the basis of design and development of a spatial modeling system (ERSI, 2009). In 

this study, the geodatabase consists of three types of datasets: spatial dataset, air quality 

dataset and meteorological dataset. The spatial dataset includes digital map, land 
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use/land cover data and National Elevation Dataset (NED). The surface roughness 

length, surface albedo, and vegetation leaf area index are derived from terrain and land 

use/land cover data and processed into gridded surface within the modeling domain.  

        The air quality dataset includes the emission inventory data which is divided into 

area source and point source data depending on the emission source characteristics. 

Mobile sources are modeled as a series of area sources along the travel routes. Model 

parameters for area sources include emission rate, release height, lengths of sides of 

rectangular, areas or vertices for polygons. Model parameters for point sources include 

emission rate, stack height, stack diameter, stack exhaust temperature, and stack exhaust 

exit velocity.  

       The meteorological dataset consists of surface and upper air data. The surface data 

includes ambient temperature, wind speed and direction, cloud cover, surface pressure, 

relative humidity, precipitation, and monitoring height. The upper air data includes wind 

speed, wind direction, temperature, pressure, and elevation. All of these datasets are 

spatially allocated and stored into corresponding sub-box by GIS mapping and 

geodatabase creating and geocoding. Here, the computational efficiency and spatial 

representation are enhanced in a way that all datasets are managed through an embedded 

geodatabase with spatial coordinate locations.  

       For the integrated modeling based on GIS, recent GIS technique provides an object-

oriented developing environment for air quality modeling. The GMSMB model, which 

consists of the spatial multi-box model coupled with the multi-source and multi-grid 

dispersion model, is developed in the ArcGIS 9.3. The spatial multi-box model is used 

for the simulation of emissions from area and mobile sources, while the multi-source 

and multi-grid Gaussian model is used in each sub-box for the emissions from point 

sources. GIS is employed to handle the spatial location, terrain features, and land 

use/land cover characterizations for elevated airflow using digital map and National 

Elevation Dataset (NED), which allows the modeling approach to consider complex 

terrain. The ArcGIS extension functions, including Spatial Analyst, Geostatistical 

Analyst and 3D Analyst are employed for pre- and post- processing of the developed air 

quality model within the GIS environment. For example, the source location layer is 

created using the geocoding method; the terrain features and surface slope are calculated 

http://gisdata.usgs.gov/ned
http://gisdata.usgs.gov/ned
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using the 3D analyst function for modeling terrain process. For the sub-box without 

weather station, GIS spatial interpolation methods are examined to determine the 

meteorological parameters.  

       In the multi-source and multi-grid Gaussian model, each emission source is 

calculated in an individual coordinate system, which is also different from the coordinate 

system used in the spatial multi-box model. They must be transformed into a uniform 

coordinate system by coordinate transformation. In this study, we employ the Universal 

Traverse Mercator (UTM) as a uniform coordinate system.  

       For the third component of the developed GMSMB, the simulating results from two 

models are spatially overlayed at the center of each sub-box to produce the integrated 

modeling results, which are visually represented on the modeling domain map within 

GIS. The results correspond to the locations of discrete receptors including residences, 

natural areas, monitoring stations, and industrial sites can also be acquired from the 

modeling system by spatial overlay or spatial interpolation. This development enables 

the application of the GIS-based modeling approach to regional scale area with extended 

simulation of dynamic air quality and complex meteorological and terrain conditions. 

3.1.4 Evaluation of model performance   

       The performance of modeling approach is evaluated by comparing the modeling 

results with the monitoring values. The Normalized Mean Bias (NMB) is considered as 

a measure of the model performance, while the Normalized Mean Error (NME) and Root 

Mean Square Error (RMSE) are used to examine the model errors. RMSE provides an 

absolute while NMB and NME provide normalized (%) measures for validation of the 

modeling approach (Appel et al., 2007): 
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http://edcwww.cr.usgs.gov/glis/hyper/glossary/u_z#utm
http://edcwww.cr.usgs.gov/glis/hyper/glossary/u_z#utm
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where Cm and Co are the modeling and monitoring concentrations (the unit for PM2.5 is 

μg/m3, and for the rest are ppm), respectively.  

3.2 Derivation of Ground-level NO2 from OMI Analysis 

       To further validate the developed GMSMB modeling approach, the satellite remote 

sensing data analysis method is employed. Nitrogen oxides (NOx = NO + NO2) are 

released into the atmosphere by anthropogenic and natural sources. These species 

largely control the production of ozone in the global troposphere (Jacob, 2000), and also 

affect OH concentrations, thereby modifying the residence time of greenhouse gases and 

other pollutants (e.g. Shindell et al., 2009). The chemical decay product of NO2 is a key 

air pollutant with important implications for air quality and plays a major role in 

formation of ground-level ozone (Crutzen, 1970; Brewer et al., 1973; Noxon, 1975; 

Murphy et al., 1993). It is chosen as a case to be derived from the satellite OMI (Ozone 

Monitoring Instrument) data analysis and to be compared with the in-situ surface 

measures and the GMSMB modeling results. 

3.2.1 OMI overview 

        OMI is the first of a new generation of space borne spectrometers. It was launched 

on the NASA’s EOS-Aura satellite by the Netherlands and Finland in 2004. The Aura 

satellite passes over the equator in a sun-synchronous ascending polar orbit at 13:45 

local time and over North America around 13:00 local time. OMI measures the 

upwelling radiance in the ultraviolet and visible wavelength range between 270 nm and 

500 nm, and continuously provides a 2600 km wide spatial swath on the Earth’s surface 

(Levelt et al., 2006). The nadir spatial resolution of 13 km × 24 km allows finer 

http://aura.gsfc.nasa.gov/


38 

 

observation details and higher detection sensitivity for NO2 compared to other available 

satellite instruments (Boersma et al., 2007; Hains et al., 2010).  

3.2.2 Tropospheric NO2 vertical column densities retrieval from OMI 

        The tropospheric NO2 vertical column densities (VCDs) are retrieved from satellite 

OMI observations using the Differential Optical Absorption Spectroscopy (DOAS) and 

the Dutch OMI NO2 (DOMINO) Algorithm (Boersma et al., 2004). The DOMINO 

algorithm employs a retrieval-assimilation-modeling (RAM) approach developed by the 

Royal Netherlands Meteorological Institute (KNMI) and the National Aeronautics and 

Space Administration (NASA) (Boersma et al., 2007). It consists of three steps: 

1) Total OMI NO2 slant column density (SCD) is determined from a spectral fit to 

the Earth reflectance spectrum with the Differential Optical Absorption 

Spectroscopy (DOAS) technique (Boersma et al., 2002; Bucsela et al., 2006; 

Boersma et al., 2007); 

2) The stratospheric contribution to the total slant column is estimated by 

assimilating OMI slant column density SCD in a chemical transport model 

(CTM) TM4 and separating the stratospheric contribution from the total slant 

column density (Dentener et al., 2003; Eskes, 2003; Boersma et al., 2007); 

3) The residual tropospheric slant column density (SCDtrop) is converted into a 

tropospheric vertical column density (VCD) by a tropospheric air mass factor 

(AMFtrop) (Boersma et al., 2007; Blond et al., 2007). 

        The tropospheric NO2 VCDs retrieved from OMI are used to derive the ground-

level NO2 concentrations by applying the global three-dimensional chemical transport 

model GEOS-Chem. The procedure can be summarized in Figure 3-3. 

3.2.2.1 Retrieval of total NO2 slant column density (SCD) 

        The total NO2 slant column density (SCD) retrieved from OMI is based on the 

Differential Optical Absorption Spectroscopy (DOAS) technique. The DOAS technique 

is a widely used method to determine concentrations of atmospheric species (Platt, 1994). 

The DOAS analyses of broadband spectra in the UV and visible region (200-800 nm) 
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allows the determination of concentrations of atmospheric species, which leave their 

absorption fingerprints in the spectra.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3-4 Flow chart of derivation of ground-level NO2 from OMI. 

        The DOAS technique is based on a straightforward implementation of the Beer-

Lambert’s law, which describes the extinction of solar radiation in an absorbing 

atmosphere (van der A et al., 2010): 
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where I(λ) is the solar spectrum after absorption (earthshine radiance); I0(λ) is the  

extraterrestrial solar spectrum (solar irradiance); σi are the relevant cross sections of the 

absorbing species, with wavelength and temperature dependent structures; and ci are the 

unknown species column densities. 

        The logarithm of the ratio of the irradiance spectrum I0(λ) and the earthshine 

spectrum I(λ) is denoted by optical density (or optical thickness) (van der A et al., 2010): 
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    0log i i

i

I I c                                            (3-22) 

         The total optical density is obtained using a least-square procedure where the slant 

column density (SCD) of various species are the fitted parameters. For practical 

applications of DOAS, it is important that the trace gas under investigation has a small 

absorption optical thickness in the predefined spectral window. NO2 has a typical slant 

optical thickness of 0.005 (van der A et al., 2010). The total SCD of NO2 can be obtained 

from this step. 

3.2.2.2 Separation of stratospheric contribution from total SCD  

       The stratospheric part of the total SCD is determined by data assimilation of 

observed OMI slant column density in the chemistry-transport model TM4 proposed and 

described by Eskes (2003). TM4 is driven by high-quality meteorological fields, based 

on the latest emission inventories, atmospheric transport, photochemistry, lightning 

modeling and wet/dry removal processes. The values of the CTM stratosphere are made 

consistent with the observed slant columns over unpolluted areas. The advantage of this 

method is that dynamical features in the stratospheric NO2 – leading to a longitudinally 

inhomogeneous distribution of NO2 are taken into account. Subsequently, the estimated 

stratospheric slant column density is separated from the total SCD to yield the 

tropospheric slant column density (SCDtrop). 

3.2.2.3 Convert of SCDtrop to vertical column density (VCD)  

       The SCDtrop is converted into the vertical column density (VCD) by applying the 

tropospheric air mass factor (AMFtrop) (Boersma et al., 2007; Blond et al., 2007): 

trop

trop

SCD
VCD

AMF
                                                   (3-23) 

The AMFtrop depends on the a priori assumed NO2 and temperature profile shape, the 

cloud fraction, the cloud top height, the surface spectral reflectance (surface albedo) and 

the aerosol optical thickness profile, and also depends on other parameters, such as solar 

zenith and viewing zenith angle. 
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       The AMFtrop is obtained by multiplying the elements of the troposphere-only a 

priori NO2 profile xa derived from TM4 with the elements of altitude dependent 

AMFtrop as follows (Palmer, 2001; Boersma et al., 2004): 

,

,

( )l a l

l

a l

l

m b x

AMFtrop
x







                                          (3-24) 

where l is an index denoting the atmospheric layer, ml are the altitude dependent box air 

mass factors, xa is the a priori profile shape of NO2 (molecules/cm2), and b is the model 

parameters. 

        It is obvious that there are some uncertainties in the estimate of the AMFtrop. 

Actually, most studies pointed to AMFs as the source of most significant retrieval errors. 

The most important uncertainties associated with the computations of tropospheric AMF 

are cloud fraction, aerosol characterization, surface albedo, and profile shape (Martin et 

al., 2002; Boersma et al., 2004; Huijnen et al., 2010). The contributions to the error in 

tropospheric NO2 column densities are described in Boersma et al. (2004). The 

uncertainty due to cloud fraction (and aerosols) is estimated to be up to 30 % for polluted 

regions, and the uncertainties due the surface albedo is up to 25 %. Moreover, the height 

dependent sensitivity of the space-borne instrument to the tracer density results in a 

tracer profile dependence that may introduce large systematic errors in the retrieved 

columns.  

        The presence of clouds can increase the instrument’s sensitivity to monitor gases 

above the clouds because of light scattering and/or decrease its sensitivity to trace gases 

below the clouds due to shielding (Stammes et al., 2008). Therefore, the tropospheric 

NO2 columns (i.e. NO2 vertical column density (VCD)) have been retrieved and 

averaged monthly in-situations with a cloud radiance fraction < 50 %, corresponding to 

cloud fractions approximately < 20 % (Boersma et al., 2011). The DOMINO data 

products (version 2.0, available from 2004 - today) are publicly available from the 

European Space Agency (ESA) Tropospheric Emission Monitoring Internet Service 

(TEMIS) project website (http://www.temis.nl).  

http://www.temis.nl/
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3.2.3 GEOS-Chem model 

        The OMI tropospheric NO2 VCDs are applied to derive the ground-level NO2 

concentrations, which require local tropospheric NO2 profile information. For this 

purpose, the global three-dimensional chemical transport model GEOS-Chem (version 

9-01-02) is used to simulate the atmospheric composition. The GEOS-Chem model is 

driven by assimilated meteorological observation data available from the Goddard Earth 

Observing System (GEOS) of the NASA Global Modeling and Assimilation Office 

(GMAO) (Yantosca et al., 2011). The model includes a detailed simulation of the 

tropospheric ozone-NOx-hydrocarbon chemistry, as well as aerosols and their precursors 

(Bey et al., 2001; Park et al., 2004). The full chemical mechanism for the troposphere 

involves 111 species and over 300 reactions. It is applied by research groups around the 

world to a wide range of atmospheric composition problems (Park et al., 2003, 2006; 

Liu et al., 2006; van Donkelaar et al., 2006, 2010).  

3.2.4 Estimation of ground-level NO2 concentrations from OMI  

     The GEOS-Chem model solves for the temporal and spatial evolution of gaseous 

compounds and aerosol (sulfate, nitrate, ammonium, carbonaceous, mineral dust, and 

sea salt). The simulation involves meteorological data sets, emission inventories, and 

equations that represent the physics and chemistry of atmospheric constituents, as well 

as information on the simulated NO2 vertical profile. The local NO2 profile is obtained 

from the GEOS-Chem simulation. The ground-level NO2 mixing ratio (refers to the mole 

fraction of NO2 to the total amount of air species in a unit of ppb) S is derived from the 

GEOS-Chem simulation and the OMI-retrieved NO2 vertical column densities (VCDs) 

(Lamasal et al., 2008): 

 1

G

F

G G

S
S



 
 

   
                                        (3-25) 

where S represents the surface level NO2 mixing ratio (ppb); Ω represents the 

tropospheric NO2 vertical column density (1015 molecules/cm2); the subscript G denotes 

GEOS-Chem and the subscript O denotes OMI; the symbol ν represents the ratio of the 

local OMI NO2 column to the mean OMI NO2 column field over a GEOS-Chem grid 

http://gmao.gsfc.nasa.gov/
http://acmg.seas.harvard.edu/geos/geos_people.html
http://acmg.seas.harvard.edu/geos/geos_people.html
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(dimensionless); and 
F

G  is the simulated free-tropospheric NO2 vertical column 

density over a GEOS-Chem grid (1015 molecules/cm2), reflecting the longer NOx 

lifetime in the free troposphere. 

        The satellite-derived NO2 mixing ratio at the lowest vertical layer (100 m) 

represents the NO2 concentrations at ground-level (Lamasal et al., 2008). More details 

about the GEOS–Chem algorithms see Appendix C.         

3.3 Derivation of Ground-level PM2.5 from MODIS 

3.3.1 MODIS AOD retrieval at 1-km resolution 

        MODIS was launched aboard two polar orbiting satellites Terra and Aqua of the 

Earth Observing System’s (EOS) of National Aeronautics and Space Administration 

(NASA), in 1999 and 2002, respectively. Terra has a 10:30 am local equatorial overpass 

time, and Aqua has a 1:30 pm local equatorial overpass time. Both instruments have a 

swath width of 2300 km and measure a given location on the Earth at least once daily. 

MODIS measures the upwelling radiance from the Earth-atmosphere system at 36 

wavelength bands which range from 0.412 to 14.2 µm representing three spatial 

resolutions: 250 m (2 channels), 500 m (5 channels), and 1 km (29 channels). The aerosol 

retrieval makes use of seven of these wavelength bands (0.47–2.13 μm), and a number 

of other bands to identify cloud and other screening procedures (Ackerman et al., 1998; 

Gao et al., 2002; Martins et al., 2002; Li et al., 2005). 

        An individual MODIS image scene, called a granule, consists of a 5-min swath of 

data. MODIS data products are broadly categorized into five levels from level-0 to level-

4 (Vermote et al., 2011). Level 0 data is the initial dataset automatically converted from 

instrumental raw feeds. Level 1 data has been added geodetic position information, such 

as latitude, longitude, height, satellite zenith/azimuth and solar zenith/azimuth angles to 

each MODIS granule (called level 1A data), and calibrated radiance for all bands and 

surface reflectance values for selected bands (called level 1B data). Level 2 data has 

been atmospherically corrected to yield the surface reflectance product at the same 

resolution and location as level-1 data. Level 3 data has been gridded into a map 

projection, and usually has also been temporally composited or averaged (e.g., daily, 
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eight-day, and monthly). Level 4 data is generated through a variety of algorithms, 

models, and statistical methods with additional ancillary data. 

        MODIS data products are also organized by collections (collection 3 - collection 

6). Each collection indicates a complete set of MODIS files corresponding to a specific 

data updating or re-processing stage. The MODIS operational algorithm derives aerosol 

properties at 10 km × 10 km resolution (at nadir) based upon the 500 m pixels of 0.47 to 

2.13 µm and 250 m pixels of 0.66 µm bands. All channels are organized into nominal 

10 km boxes corresponding to 20 by 20, or 400 pixels for each box (the 250 m resolution 

0.66 µm channel to be degraded to 500 m in order to match the resolution of the other 

two channels). The details about MODIS aerosol optical depth (AOD) retrieval 

algorithm over land can be found in Kaufman et al. (1997) and the updates of the 

algorithm in Chu et al. (2003) and Remer et al. (2005).  

        The MODIS standard aerosol products (collection 5, level 2) are provided at 10 km 

× 10 km resolution (Levy et al., 2007), which are sufficient to study air quality at global 

and regional scale (van Donkelaar et al., 2010; Remer et al., 2005; Levy et al., 2007b). 

However, it is insufficient to depict aerosol variation on local or urban scales due to 

inherent aerosol variability and complex surface terrain (Li et al., 2005a). Thus, it is 

desired to retrieve the AODs at a higher resolution for local or urban applications.  

       The MODIS level 1B granule data consist of calibrated radiances or reflectances, 

which are corrected for water vapor, ozone, and carbon dioxide before the algorithm 

proceeds and provided at 250 m, 500 m and 1km resolutions, respectively, which can be 

used to retrieve the AOD at a higher resolution. In this thesis, an exploration to retrieve 

AOD at 1 km × 1 km resolution for urban scale application is performed. The 

Terra/MODIS level 1B 1 km calibrated reflectance (MOD021km), geolocation data 

(MOD03, including sun-sat Geometry and digital elevation model (DEM)), MODIS 

level 2 surface reflectance (MOD09), MODIS cloud mask (MOD35), atmospheric 

profile (MOD07), and ancillary data (such as water vapor profiles), comprise the set of 

inputs to the MODIS aerosol retrieval. All of these data are in HDF (Hierarchical Data 

Format) and downloaded from the NASA Goddard Space Flight Center Level 1 and 

Atmosphere Archive and Distribution System (LAADS) (NASA, 2012a).  
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         The AOD retrieval algorithm involves the following processes, as shown in Figure 

3-4. 

 

 

 

 

 

 

 

 

   

   

Figure 3-5 Flow chart of aerosol retrieval in this study. 

1) Selection of pixels 

        MODIS AOD retrieval employs primarily three spectral channels centered at 0.47, 

0.66, and 2.13 µm wavelengths. The cloud-free pixels (both “probably clear” – 95 % 

cloud free and “confident clear” – 99 % cloud free) are first selected using the MODIS 

cloud mask (MOD35) (Platnick et al. 2003; Martins et al., 2002; Gao et al., 2002). Then 

followed by the screening of water-body pixels using the normalized difference 

vegetation index (NDVI > 0.1) from the Canada Centre for Remote Sensing (CCRS, 

2010), and snow/ice pixels using Near Real-Time Ice and Snow Extent (NISE) data from 

the National Snow and Ice Data Center (NSIDC, 2010). For the remaining clear (cloud-

free, water-free, and snow-free) pixels, dark pixels are selected based only on their 

reflectance at 2.13 µm, i.e. 0.01 ≤ ρ2.13 ≤ 0.25. To minimize the residual cloud and odd 

surface contamination, the pixels remaining after masking and dark target selection are 
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sorted in terms of their visible reflectance ρ0.66. The darkest 20 % and brightest 50 % of 

ρ0.66 are discarded (Remer et al., 2005). This procedure is possible to derive aerosol 

properties when the 2.13 µm reflectance is brighter than 0.25, but it is expected to be 

less accurate (Remer et al., 2005). It cannot be used on bright surfaces such as deserts 

and urban areas (Levy et al., 2004, 2007). In order to estimate aerosols over variable 

cover types, including bright and dark surfaces, the minimum reflectance technique 

(MRT) was developed for TOMS (Herman and Celarier, 1997) and GOME 

(Koelemeijer et al., 2003) data at coarse resolution (> 1◦). In this study, a modified MRT 

method developed by Wong et al. (2010) is used for aerosol retrieval over urban areas 

at 1 km × 1 km resolution. The remaining pixels are used in the aerosol retrieval. 

2) Determination of Rayleigh path reflectance 

        The upward spectral ‘‘reflectance’’ (normalized solar radiance) observed by a 

satellite at the top of the atmosphere (TOA) is a function of successive orders of radiation 

interactions within the coupled surface-atmosphere system (Levy et al., 2007). The top-

of-atmosphere (TOA) reflectance 𝜌𝜆
∗ observed by MODIS can be expressed as the sum 

of the contributions due to the atmospheric reflectance, which includes the Rayleigh path 

reflectance 𝜌𝜆
𝑅𝑎𝑦

and the aerosol reflectance 𝜌𝜆
𝑎 , and the surface reflectance 𝜌𝜆

𝑠  . 

Assuming a Lambertian surface extended to infinity, the environment function is 

neglected so that to a good approximation, the TOA reflectance  𝜌𝜆
∗  is described by 

Kaufman et al. (1997): 

𝜌𝜆
∗ = 𝜌𝜆

𝑎 + 𝜌𝜆
𝑅𝑎𝑦

+
𝑇𝜆(𝜃0)∙𝑇𝜆(𝜃𝑠)∙𝜌𝜆

𝑠

1−𝑆𝜆∙𝜌𝜆
𝑠                               (3-26) 

where λ is the wavelength; 𝑆𝜆 is the spherical albedo of the atmosphere; 
0
and 

s
are 

the sun and satellite zenith angles; and 𝑇𝜆(𝜃0)and 𝑇𝜆(𝜃𝑠)  are the total atmospheric 

transmittances, containing both direct and diffuse transmissions for sun illumination and 

satellite viewing geometry. The total transmittances include Rayleigh scattering and 

aerosol extinction, which can be given as 𝑇𝜆 = 𝑇𝜆
𝑅𝑎𝑦

∙ 𝑇𝜆
𝑎. Details of the determination 

of total transmission and hemispheric reflectance can be found in von Hoyningen-Huene 

et al. (2007). In practice, 𝑇𝜆 is approximated based upon the Rayleigh optical thickness 

(Drury et al., 2008).  
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        The Rayleigh path reflectance is calculated based on the spectral dependence of the 

Rayleigh optical depth and phase function using the following equation (Wong et al., 

2010): 

0( ) ( )Ray Ray Ray

sp m m                                            (3-27)  

where 
Ray

 is the Rayleigh scattering optical thickness; 
Rayp is the phase function of 

Rayleigh scattering; 
0( )m   and ( )sm  are the air mass factors (AMFs) for the solar 

elevation and satellite elevation, respectively.  

        The Rayleigh scattering optical thickness is calculated using the analytic formula 

developed by Bucholtz (1995): 

 
 /

0

( )B C DRay p z
A

p

 

 
  

                                              (3-28) 

where λ is the wavelength; A, B, C, and D, are the constants of the total Rayleigh 

scattering cross section and the total Rayleigh volume scattering coefficient at standard 

atmosphere. A = 3.01577 × 10-28, B = 3.55212, C = 1.35579, and D = 0.11563 for the 

wavelength range 0.2–0.5 µm; and A = 4.01061 × 10-28, B = 3.99668, C = 1.10298 × 10-

3, and D = 2.71393 × 10-2 for wavelengths greater than 0.5 µm. z is the surface elevation 

in kilometers, which is obtained from the digital elevation model (DEM) in MOD03 

geolocation data. p0 is the standard pressure and p(z) is the pressure at the surface 

elevation z, which is determined by the parameterized barometric equation (von 

Hoyningen-Huene et al., 2003): 

  0

29.87 0.75
exp

8.315 ( 0.75 )surf

g z
p z p

T g z

    
   

     

                            (3-28-1)      

where g is the gravity acceleration (9.807m/s2) and Tsurf is the surface temperature (K). 

        The phase function of Rayleigh scattering 
Rayp is given as (Bucholtz, 1995): 
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where Θ is the scattering angle and 
Ray

 is the Rayleigh polarization factor (i.e., 0.0279). 

3) Determination of surface reflectance 

        When performing atmospheric retrievals from MODIS satellite, the major 

challenge is separating the total observed reflectance into atmospheric and surface 

contributions (Levy et al., 2007). The surface reflectances are determined in three 

wavelengths, 0.47

S  , 0.66

S  , and 2.13

S . Assuming the atmosphere is approximately 

transparent at 2.13 µm since fine-mode particles (urban/industrial and biomass-burning 

aerosols) allows direct observation of surface (Kaufman et al., 2002), the top-of-

atmosphere (TOA) reflectance at that wavelength can be equal to the surface reflectance, 

i.e., 𝜌2.13=
∗ 𝜌2.13

𝑠 . The surface reflectances at 0.47 and 0.66 µm (𝜌0.47
𝑠 , 𝜌0.66

𝑠 ) are first 

derived from the mean measured TOA reflectance at 2.13 µm (𝜌2.13
∗ ) using the empirical 

relationships (Kaufman et al., 1997):  

0.47 2.130.25s 
        and       0.66 2.130.50s 

                          (3-30) 

        The MODIS surface reflectance products (MOD09) at 1 km are applied to validate 

the surface reflectances derived from the empirical relationships. The surface 

reflectances at 0.47 and 0.66 µm (𝜌0.47
𝑠 , 𝜌0.66

𝑠 ) are iteratively scaled (updated) until the 

difference with the surface reflectances in MOD09 within error tolerances ε = ± 0.005 

at 0.47 µm and 0.001 at 0.66 µm (Drury et al., 2008).  

       In order to estimate the surface reflectances over variable cover types, including 

bright and dark surfaces, minimize the effects of bright surfaces, a modified minimum 

reflectance technique (MRT) (Wong et al., 2010) is used. Considering seasonal 

variations, the second minimum surface reflectance values are retrieved based on at least 

30 cloud-free images for each season and are averaged to the annual mean surface 

reflectance in the image, so that avoid un-normal low reflectance caused by noise or 

shadow (Wong et al., 2010).  
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       In addition, only nadir images with satellite viewing angle < 35◦ are considered in 

order to minimize the angular effects caused by the bidirectional reflectance distribution 

function (BRDF) effect in heterogeneous areas. The viewing angles are restricted in 

determining surface reflectance, but they are all considered during AOD calculation. 

4) Determination of aerosol reflectance 

       The aerosol reflectances 𝜌𝜆
𝑎  at 0.47 and 0.66 µm are decomposed from TOA 

reflectance, Rayleigh path reflectances and surface reflectances: 

𝜌𝜆
𝑎 = 𝜌𝜆

∗ − 𝜌𝜆
𝑅𝑎𝑦

−
𝑇𝜆(𝜃0)∙𝑇𝜆(𝜃𝑠)∙𝜌𝜆

𝑠

1−𝑆𝜆∙𝜌𝜆
𝑠                                  (3-31) 

5) Retrieval of aerosol optical depth 

       A new lookup table (LUT) describing relationship between the measured 

reflectances and the aerosol optical depth (𝜏𝜆) is created using the Second Simulation of 

the Satellite Signal in the Solar Spectrum (6S) Radiative Transfer Code which is also 

based on the Lambertian uniform target assumption (Vermote et al., 1997) and the sun-

satellite geometry in MOD03 at 1km (NASA, 2012a). This requires taking into account 

all factors which influence the radiative transfer in the atmosphere: i.e. solar elevation, 

illumination and observation geometry, Rayleigh scattering, surface reflectance for the 

different vegetation cover, the surface elevation with its surface pressure conditions, and 

the aerosol parameters: aerosol phase function, aerosol optical thickness, etc. The sun-

satellite geometry in MOD03 at 1 km (NASA, 2012) and seasonal variations of the 

atmosphere, i.e. mid-latitude summer and mid-latitude winter standard atmospheres are 

used. 

       The aerosol optical properties (𝜌𝜆
6𝑆𝑎 , 𝜏𝜆) are derived in the LUT for the presumed 

aerosol types using the urban model based upon the geolocation and season. The aerosol 

reflectances 𝜌𝜆
𝑎  decomposed from MODIS are compared with the LUT aerosol 

reflectances 𝜌𝜆
6𝑆𝑎 to find the ‘best’ (least-squares) fit. This best fit is the solution to the 

retrieval. An optimal spectral shape-fitting technique is executed to select the aerosol 

model with the smallest systematic errors (Kaufman and Tanré, 1998; Lee et al., 2007): 
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The error term of x2 is described as the residual of the aerosol reflectances derived from 

MODIS and the aerosol reflectances modeled by the 6S code, j is the number of 

wavelength. The aerosol optical properties modeled by the 6S code are iteratively 

updated until the error term of x2 is minimum (Drury et al., 2008).  

        The minimum residual of x2 is selected for each pixel. Then the appropriate aerosol 

model is allocated: 

  
  af

                                                (3-33)
 

       The AOD is determined by the LUT which gives the relationship between aerosol 

reflectance and AOD. The AOD values at 0.47 and 0.66 µm (τ0.47, τ0.66) are derived for   

each pixel. Since the MODIS collection 5 AOD end products are only at 0.55 µm, the 

AODs at 0.55 µm, τ0.55, are generated by linear interpolation using τ0.47, τ0.66, so as to 

compare with the MODIS collection 5 AOD end products.  

3.3.2 Estimation of ground-level PM2.5 from retrieved AODs  

       The MODIS aerosol measurements is advantageous due to the near-daily global 

coverage, while MISR instrument views each scene on the earth from nine different 

angles, even though at smaller spatial and spectral ranges. MISR is also on board Terra 

launched in 1999, observes the Earth in reflected sunlight at nine different view zenith 

angles and four spectral bands (0.446, 0.558, 0.672, and 0.866 µm) (Diner et al., 2005). 

The zonal overlap swath width is 380 km, which provides the global multi-angle 

coverage of entire Earth in 9 days at the equator, and 2 days near the poles. The view 

angle variation of contrast within each 17.6 km cloud-free region is mathematically 

captured by means of a principal component analysis, which produces empirical 

orthogonal functions (EOFs) used to describe the surface reflectance contribution to the 

radiance at the top-of-atmosphere with a resolution of 17.6 km × 17.6 km (Martonchik 

et al., 2009). The additional angular information allows the MISR AOD retrievals to 

reduce the algorithmic assumptions and retrieval bias, as well as obtain the information 
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about microphysical properties and plume heights in the aerosol source regions (Kahn 

et al., 2007a).  

        The MODIS and MISR AOD retrievals are expected to differ due to the factors 

such as processing methods, calibration and retrieval algorithms (Kahn et al., 2007b). In 

the most idealized field conditions, MISR AOD is slightly higher than MODIS over 

water, and MODIS AOD is consistently higher than MISR over land (Abdou et al., 2005). 

Both MISR and MODIS AOD values are highly significant for prediction of PM2.5 

concentrations (Liu et al., 2007b; van Donkelaar et al., 2010). Therefore, the AODs 

retrieved from MODIS and MISR are combined to derive the PM2.5 concentrations.  

        A GIS-based approach is developed to combine MODIS and MISR AODs into a 

single AOD value in each grid cell (10 km × 10 km). The combined AOD values are 

used to derive ground-level PM2.5 concentrations by the local scaling factors and the 

factor of dry aerosol mass to satellite retrieved AOD, both of them obtained from the 

GEOS-Chem atmospheric simulation. Figure 3-5 shows the flow chart of data process. 

 

 

 

 

 

 

 

Figure 3-6 Flow chart of derivation of ground-level PM2.5 concentrations. 

       The aerosol vertical profiles, which are used to calculate the local scaling factors of 

AOD in the lower atmosphere, are simulated by the global 3D chemical transport model 

GEOS-Chem (version 9-01-02) at 0.5º × 0.667º horizontal resolution and 47 vertical 

levels for the study area. The assimilated meteorology of GEOS-5 is used in the 
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simulation to compute the surface factor AOD (Liu et al., 2004). The aerosol mass 

concentrations are simulated for five aerosol types: (1) dust in five size classes, (2) 

sulfate‐nitrate‐ammonium (SNA), (3) black carbon (BC), (4) organic carbon (OC), and 

(5) fine and coarse mode sea salt (Drury et al., 2010). Detailed descriptions of the GEOS-

Chem aerosol emission inventories and simulation evaluations in North America are 

provided by Fairlie et al. (2007) for dust, Park et al. (2004) and Martin et al. (2004) for 

SNA, Bond et al. (2007) for EC and OC, Alexander et al. (2005) for sea salt, Park et al. 

(2003, 2004, 2006) for the other aerosol types. In this study, the anthropogenic emissions 

are overwritten in areas with the local inventory following the approach of van 

Donkelaar et al. (2008). All model outputs are saved at 3-hour intervals and interpolated 

to the satellite overpass time (10:30am and 1:30pm local time). The mass concentrations 

of five aerosol types are summed to generate the simulated aerosol mass concentrations 

for each vertical model layer.  

        The aerosol optical properties are calculated with a standard Mie scattering code 

(Mischenko et al., 1999) for each aerosol type by assuming that the aerosols have 

lognormal size distributions (Drury et al., 2010). All aerosol types are assumed 

externally mixed and summed to generate the AOD, the ensemble single scattering 

albedo, and the ensemble scattering phase function (Drury et al., 2008). The GEOS-

Chem simulated aerosol optical properties are spatially interpolated to the resolution of 

the retrieved AODs from satellite observation.  

        The methods developed by Liu et al. (2007a) is used to determine the surface factor 

AOD: 

         MODIS and MISR surface factor AOD=                                                           

GEOS-Chem surface factor AOD

GEOS-Chem columnar AOD
×MODIS and MISR columnar AOD 

       The mass concentrations of five aerosol types (including SO4
2-, NO3

-, NH4
+, EC, 

OC, sea salt, and mineral dust) simulated by GEOS-Chem are summed to generate the 

simulated dry aerosol mass concentrations for each vertical model layer and interpolated 

to the satellite overpass time (10:30 and 13:30 local time). The relationship between the 

(3-34-1) 

http://wiki.seas.harvard.edu/geos-chem/index.php/Carbonaceous_aerosols#EC_and_OC_emissions
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surface factor AOD and the dry aerosol mass is calculated, which is used to estimate the 

ground-level PM2.5 concentrations by van Donkelaar et al. (2010): 

PM2.5 = η × surface factor AOD                                  (3-34-2) 

where η is the factor that relates satellite-derived surface factor AOD to ground-level 

PM2.5 concentrations (μg/m3). It is determined from the ratio of simulated dry aerosol 

mass to simulated surface factor AOD at satellite overpass, which is a function of aerosol 

size, aerosol type, relative humidity, and the vertical structure of aerosol extinction (van 

Donkelaar et al., 2006). The values of η from 0.5º × 0.667º grid cells (the resolution of 

the GEOS-Chem simulation) are interpolated to the resolution which is consistent with 

the retrieved AODs from satellite observation to derive the ground-level PM2.5 

concentrations.  

3.4 GIS-Based Fuzzy Aggregation Risk Assessment  

3.4.1 Fuzzy set theory 

  Fuzzy set theory, an extension of classical set theory was first proposed by Lotfi 

Zadeh (1965). The theory provided a mathematical framework for handling categories 

that permitting partial membership (or membership in degree) to model complex 

systems that were difficult to model through conventional set theories. A fuzzy set is 

characterized by a membership function which represents numerically the degree to 

which an element belongs to the set (Zimmermann, 1992). According to Zadeh’s 

definition (Zadeh, 1965), if X is a collection of objects denoted generically by x, a fuzzy 

set A in X is then defined in terms of a set of ordered pairs of elements x and its 

membership function: 

   ,
A

A x x x X                                            (3-35) 

where µ(x) is the membership function of x in A. The mapping of the function is denoted 

by mx: X → [0, 1], allowing for values from the entire unit interval. The closer the value 

of µ(x) to unity, the more x belongs to A.  
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        A more convenient notation was proposed by Zadeh (1972). When X is a finite set 

{x1, x2, . . . , xn}, a fuzzy set on X is expressed as 

                 ii

n

i

AnnAAA xxxxxxxxA ////
1

2211 


                (3-36) 

  For fuzzy sets A and B, the classical operations, intersection, union and complement, 

are based on the minimum and maximum, i.e. 

               min ,A B A Bx x x                 x X                             (3-37) 

      max ,A B A Bx x x                x X                             (3-38) 

    1 AA
x x                         x X                            (3-39) 

       Functions that qualify as fuzzy intersections and fuzzy unions are usually referred 

in the literatures as t-norms and t-conorms, respectively (Klir and Yuan, 1995). 

Nowadays a large class of conjunctive and disjunctive functions, triangular norms and 

conorms, are used to model fuzzy set intersection and union (Michael and Verkuilen, 

2006).  

       There are three other operations on fuzzy sets that are important, namely, 

concentration, dilation, and aggregation. Concentration and dilation modify one set, 

similar to the complement, whereas aggregation is another connective between sets, 

similar to union and intersection (Beliakov et al., 2007). 

       Fuzzy aggregation operator combines several fuzzy sets in a desirable way to 

produce a single fuzzy set. The aggregation operation on n fuzzy sets where n ≥ 2 is 

formally defined by a function F: [0, 1]n→[0, 1], with the properties (Cornelis et al., 

2010): 

i)   00,0,0 



 
timesn

f  and    11,1,1 



 
timesn

f   

ii) A B   implies    f a f b  for all , [0,1]nA B  
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        There are many different aggregation operators. But there are at least four classes 

of aggregation operations may consider as being currently investigated (Beliakov et al., 

2007): 

 Averaging aggregation: an aggregation function f has averaging behavior (or is 

averaging) if for every x it is bounded by min(x) ≤ f(x) ≤ max(x). 

 Conjunctive aggregation: an aggregation function f has conjunctive behavior (or 

is conjunctive) if for every x it is bounded by f(x) ≤ min(x) = min(x1, x2, . . . , xn). 

 Disjunctive aggregation: an aggregation function f has disjunctive behavior (or 

is disjunctive) if for every x it is bounded by f(x) ≥ max(x) = max(x1, x2, . . . , xn). 

 Mixed aggregation: an aggregation function f is mixed if it does not belong to 

any of the above classes, i.e., it exhibits different types of behavior on different 

parts of the domain. 

3.4.2 Fuzzy relation analysis approach 

        Fuzzy relations generalize the concept of relations by admitting the notion of partial 

association between elements of universes. Given two universes X and Y, a fuzzy relation 

R is any fuzzy subset of the Cartesian product of X and Y (Zadeh, 1971). Equivalently, 

a fuzzy relation on X × Y is a mapping: R: X × Y → [0, 1].                                     

        The membership function of R for some pair (x, y), R(x, y) = 1, denotes that the two 

elements x and y are fully related. Conversely, R(x, y) = 0, means that these elements are 

unrelated. Whereas the values in-between, 0 < R(x, y) < 1, underline a partial association. 

The basic operations on fuzzy relations, say union, intersection, and complement, 

conceptually follow the corresponding operations on fuzzy sets once fuzzy relations are 

fuzzy sets formed on multidimensional spaces (Zadeh, 1975). 

        A mechanism to construct fuzzy relations is through the use of the concept of 

Cartesian product extended to fuzzy sets. The concept closely follows the one adopted 

for sets once they involve the pairs of points of the underlying universes, added with a 

membership degree (Pedrycz and Gomide, 2007).  

        If U: Z × X → [0, 1] and V: Z × Y → [0, 1] are fuzzy relations on finite universes, 

X = {x1, x2,…, xn}, Z = {z1, z2,…, zn}, and Y = {y1, y2,…, yn}, represented by (p × n) and 



56 

 

(p × m) fuzzy relational matrices [uki] and [vkj], respectively, and R = [rij] is the (m × n) 

fuzzy relational matrix associated with a fuzzy relation R: X × Y → [0,1], then the fuzzy 

relation becomes  

V = U • R                                                      (3-40) 

        Denote by Uk the kth row of U and by Vk the kth row of V, k = 1, 2, . . . , p. Let Rj 

be the jth column of R, j = 1, 2, . . . , m. Eq. (3-40) can be rewritten as follows: 

                     
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                  (3-41) 

where • can be a t-norm or t-conorm, referred as max-min or max-* composition (Zadeh, 

1971).  

3.4.3 Fuzzy aggregation - OWA approach 

         When fuzzy set theory is used to produce an aggregate fuzzy set by operating on 

the membership grades of fuzzy sets, there are two potential pitfalls, exaggeration and 

eclipsing that are very important in aggregation process (Ott, 1978). Exaggeration is a 

case where individual pollution factor possess lower values (i.e., in an acceptable range), 

yet the aggregate comes out unacceptably high. Eclipsing is the converse phenomenon, 

where one or more of the pollution factors are of relatively high value (i.e., in an 

unacceptable range), yet the aggregate comes out as unacceptably low. These 

phenomena are typically affected by the method of aggregation, thus the challenge is to 

determine the best aggregation method that can simultaneously reduce both 

exaggeration and eclipsing (Veiga, 1995).  

        For tackling this problem, an ordered weighted averaging (OWA) operator (Yager, 

1988), which is based on averaging aggregation, is employed. Yager (1988) defined the 

OWA operator: a mapping F: Rn → R (where R → [0, 1]) as an ordered weighted 

averaging operator of dimension n if it is associated with a weighting vector (w1, w2,…; 

wn)
T, so that  
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 0,1i   ,  
1

1
n

i

i




                                              (3-42) 

and                                           1 2

1

, ,...
n

n j j

j

F a a a b 


                                           (3-43) 

where bj is the jth largest element of (a1, a2, …,an). OWA operators are symmetric 

aggregation functions that allocate weights according to the input values. Thus OWA 

can emphasize largest, smallest or mid-range inputs. By using OWA operators, the 

exaggeration and eclipsing in aggregation function can be reduced. 

        Generally, triangular (TFN) or trapezoidal (ZFN) fuzzy numbers are used to 

represent fuzzy variables. In this study, the term risk designated by TFN, is defined by 

two distinct factors, grade and importance, which are synonymous to the membership 

grade (i.e. fuzzy relation) of a fuzzy set and weight coefficient. The membership grade 

is the degree of a pollution factor that belongs to each fuzzy air quality criteria. Whereas 

the weight coefficient denotes the relative importance of a pollution factor on air quality, 

which is used for identifying different scales of health impact between various pollution 

factors. The higher the weight is, the larger the impact.  

        Incorporating the OWA operators into the max-min or max-* composition (Zadeh, 

1971), we have two fuzzy aggregation-OWA models for air quality integrated risk 

assessment. 

        Max-min composition model: 

                
mjmjj

m

i

ijij rwrwrwrwfF ,min,,,min,,minmax 2211

1

  


 

                                                                                                    j=1, 2, …, n           (3-44) 

  Max-* composition model: 

          
mjmjj

m

i

ijij rwrwrwrwfF 


,,,max 2211

1

  

   j=1, 2, …, n            (3-45)  
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where F = (fj) represents the membership grade (possibility) for integrated risk level j to 

occur; wi is the degree of importance for pollutant i, and rij is the grade of membership 

for fuzzy relation between pollutant i and risk level j.  

       The above fuzzy aggregation-OWA approach is a generalized aggregation 

transformation that provides flexible aggregation ranging between the minimum and the 

maximum operators. It can quantify the different impact scales of various pollution 

factors on air quality and stress the maximum effect. For an air quality system containing 

several pollutants with high concentrations, the integrated risk level can be obtained 

through the above models. 

3.4.4 Integrated risk assessment  

       The fuzzy aggregation-OWA approach is implemented in ArcGIS and are combined 

with the GMSMB modeling system. The integrated risk caused by multiple air pollutants 

is assessed based on the gridded spatial concentration distributions predicted by the 

GMSMB modeling system. It involves five stages for the integrated risk assessment: (1) 

quantification of evaluation criterion using six fuzzy sets based on the U.S. Air Quality 

Index (AQI) (US EPA, 2009a); (2) construction of fuzzy membership functions; (3) 

calculation of relative importance (i.e. weighting coefficient wi for each pollution factor); 

(4) construction of fuzzy aggregation-OWA modeling; and (5) assessment of integrated 

risk based on the fuzzy aggregation-OWA modeling. An overview of system framework 

and five stages of integrated risk assessment (shaded boxes) are shown in Figure 3-6. 
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Figure 3-7 Framework of fuzzy aggregation-OWA approach. 

        The fuzzy aggregation-OWA approach is a generalized aggregation operator that 

provides flexible aggregation ranging from the minimum to the maximum operators for 

the integrated risk assessment, which can quantify the different effect scales of various 

pollution factors on air quality and stress the maximum effect. For an air quality system 

containing several pollutants with high concentrations, the integrated risk assessment 

can be obtained through the above modeling system. 

3.5 Summary  

       This chapter described the methodologies of the development of GMSMB modeling 

system, the application of satellite remote sensing approach to derive the ground-level 

NO2 concentrations, the development of satellite remote sensing approach to retrieve 

aerosol optical depth (AOD) and to derive ground-level PM2.5 concentrations, and the 

development of fuzzy aggregation risk assessment approach to evaluate the health risks 

arising from multiple air pollutants. Specifically, the methodologies used in this thesis 

are summarized as follows:  

(1) Developing the GMSMB air quality modeling system, which consists of a 

spatially extended multi-box model combined with a multi-source and multi-grid 

Construction of fuzzy membership 
functions 

Calculation of weighting coefficient wi  

Quantification of evaluation criterion 

Fuzzy risk assessment modeling 

system 
GMSMB

modeling system 

Pollutant 

concentrations 

Construction of fuzzy aggregation 

- OWA modeling 

Assessment of integrated risk  

GIS-based air quality management system 
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Gaussian model, is developed within the GIS framework to examine the 

contributions from both point- and area-source emissions. By using GIS, a 

sizeable amount of data including air quality, meteorological data, and spatial 

location information required for air quality modeling are brought into an 

integrated modeling environment. The spatial multi-box model is used for 

simulating the emissions from area and mobile sources, while the multi-source 

and multi-grid Gaussian model is used in each sub-box for simulating the 

emissions from point sources. GIS is employed to handle the spatial location, 

terrain features, and land use/land cover characterizations for elevated airflow 

using digital map and the National Elevation Dataset (NED), which allows the 

modeling approach to consider complex terrain. Through the integration with 

GIS, it allows the spatial analyst on both regional and local scales with geo-

referenced database. The physical and chemical processes are also taken into 

account with land use/land cover characterizations. Three measurements for 

evaluating the performance of modeling approach are also listed. 

(2) Constructing the fuzzy aggregation-OWA risk assessment approach to evaluate 

the integrated health risks arising from multiple air pollutants based on the 

gridded spatial concentration distributions predicted by the GMSMB modeling 

system. It involves five stages for the integrated risk assessment. 

(3) Deriving the ground-level NO2 concentrations from the satellite OMI 

tropospheric NO2 vertical column densities (VCDs) using the local NO2 profile 

obtained from the global three-dimensional chemical transport model GEOS-

Chem.  

(4) Developing the improved aerosol optical depth (AOD) retrieval algorithm for 

the MODIS satellite instrument at 1-km resolution for the application of urban 

scale. A new lookup table (LUT) is created with the 6S radiative transfer code 

which is used for the AOD retrieval by spectral shape-fitting technique. The 

retrieved AODs are used to derive the ground-level PM2.5 concentrations using 

the local scaling factors obtained from the GEOS-Chem simulation. 

 

 

http://gisdata.usgs.gov/ned
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Chapter 4     GMSMB Modeling Approach for 

Air Pollution Risk Assessment  

---A North American Case Study  

        In order to test and evaluate the developed GMSMB modeling approach (see 

Chapter 3), the state of California is chosen as the study area since there are a wide 

variety of climates, geographic features, meteorological factors and emission sources in 

this area, which make it difficult to evaluate the air quality. In this case study, the spatial 

concentration distributions of four criteria pollutants (PM2.5, SO2, NO2 and CO) in 2008 

are simulated using the developed modeling approach. The modeling results are 

validated with the in-situ surface measurements. 

4.1 Overview of the Study Area 

        The state of California is located on the West Coast of the United States, bounded 

by the Pacific Ocean and the States of Oregon, Nevada, Arizona, and the Baja (Mexico) 

(see Figure 4). The geographic coordinates is from 32°32’N to 42°N, and 114°8’W to 

124°26’W. With an area of 160,000 square miles (414,000 km2), it is the third-largest 

and the most populous state in the United States (U.S. Census Bureau, 2011). In the 

middle of the state lies the California Central Valley, bounded by the coastal mountain 

ranges in the west, the Sierra Nevada to the east, the Cascade Range in the north and the 

Tehachapi Mountains in the south (Friedemann, 2007). 

http://en.wikipedia.org/wiki/West_Coast_of_the_United_States
http://en.wikipedia.org/wiki/United_States
http://en.wikipedia.org/wiki/Pacific_Ocean
http://en.wikipedia.org/wiki/Oregon
http://en.wikipedia.org/wiki/Nevada
http://en.wikipedia.org/wiki/Arizona
http://en.wikipedia.org/wiki/Baja_California
http://en.wikipedia.org/wiki/List_of_U.S._states_by_area
http://en.wikipedia.org/wiki/List_of_U.S._states_by_area
http://en.wikipedia.org/wiki/U.S._Census_Bureau
http://en.wikipedia.org/wiki/California_Central_Valley
http://en.wikipedia.org/wiki/Pacific_Coast_Ranges
http://en.wikipedia.org/wiki/Pacific_Coast_Ranges
http://en.wikipedia.org/wiki/Sierra_Nevada_(U.S.)
http://en.wikipedia.org/wiki/Cascade_Range
http://en.wikipedia.org/wiki/Tehachapi_Mountains
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Figure 4-1 Study area  

        There are a wide variety of climates, geographic features, meteorological factors 

and emission sources in the state of California which make it difficult to assess the air 

quality in this area. For the purpose of managing air resources on a regional scale, the 

state of California is divided into 15 air basins by the California Air Resources Board 

(CARB)  based on the similar meteorological and geographic conditions, as well as the 

state political boundaries (CARB, 2009a), as shown in Figure 4-2.  

 

   

California 
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Figure 4-2 Air basins map of the state of California (CARB, 2009a). 

        To estimate the emission sources of air pollutants and quantities of the pollution 

levels, the CARB, in cooperation with the local air districts and industries, maintains an 

emission inventory for the state of California (Cox et al., 2009). The CARB also operates 

a statewide monitoring network with more than 250 monitoring sites for measuring the 

airborne pollutant concentrations (Cox et al., 2009). 

4.2 Data Preparation 

4.2.1 Spatial information data 

        The digital maps at 7.5-minute quadrangle, Land Use/Land Cover (LULC) data at 

1:250,000-scale, and the new generation DEM - National Elevation Dataset (NED) with 

a resolution of 1/3 arc-second (roughly 10 meters) are obtained from the U.S. Geological 

Survey (USGS) (USGS, 2010). Based on the spatial information data, the study area is 

horizontally divided into 10 km × 10 km grid cells. In vertical, a height of 750 m above 
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ground level is divided into equal layers of 250 m each. The raw terrain data and terrain 

elevations from the digital maps and NED are processed into each grid cell with major 

land features required in modeling process. The land use data is analyzed to produce 

land use category layers based on the USGS Land Use Classification System Level I (9-

Category system) (Scire et al., 2000). The surface properties, including albedo, 

roughness length, and leaf area index as functions of land use/land cover type are 

processed for each grid cell.  

4.2.2 Emission inventory data 

        The statewide emission inventory data during the year 2008 (annual average) is 

collected from the Air Emission Inventory Database of the CARB (CARB, 2009b), 

which focused on four pollutants (PM2.5, NO2, SO2, and CO) emitted from 13,327 

sources. The California emission inventory contains information on three air pollution 

sources: 1) stationary sources - approximately 13,000 individual facilities, namely point 

sources; 2) area-wide sources - approximately 80 source categories; and 3) mobile 

sources - all on-road vehicles (e.g., automobiles and trucks), off-road vehicles (e.g. trains, 

ships and aircraft) and farm equipment. The summary of California Statewide Emission 

Inventory for the year 2008 is presented in Table 4-1 (Cox et al., 2009).  

Table 4-1 A summary of California statewide emission inventory for the year 2008. 

Major Emission Category 
    Emission (Tons/Day, Annual Average) 

CO NO2 SO2 PM2.5 

Stationary Sources 317 368 109 95 

Fuel Combustion 245 262 39 31 

Waste Disposal 4 3 1 1 

Cleaning and Surface Coatings 0 0 0 1 

Petroleum Production 12 8 40 3 

Other Industrial Processes 56 94 30 58 

Area-Wide Sources 1968 95 6 448 

Solvent Evaporation 0 0 0 0 

Miscellaneous Processes 1968 95 6 448 
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Mobile Sources 9042 2747 166 133 

Light Duty Passenger Vehicles 2207 189 2 9 

Light and Medium Duty Trucks 2568 300 2 13 

Heavy Duty Trucks 796 1020 1 34 

Other On-Road 529 75 0 2 

Ocean Going Vessels & Commercial 

 Harbor Craft 

40 315 154 22 

Pleasure Crafts 740 40 0 7 

Recreational Vehicles 192 2 1 1 

Off-road Equipment 1546 503 0 27 

Other Off-Road 113 104 0 6 

Total Statewide - All Sources 11327 3209   281 677 

Notes: The data is from California Almanac of Emissions & Air Quality - 2009 Edition 

(Cox et al., 2009). 

4.2.3 Background concentrations 

        In the spatial multi-box model, the background concentration must be added to the 

modeling concentrations. In the absence of “pristine” monitoring sites for the four 

pollutants in the state of California, literature survey together with statistical analysis of 

available monitoring data provides an estimation of the magnitude and spatial variability 

of background concentrations across the region. As an example, for PM2.5, 2.0 μg/m3 is 

used in the coastal areas, and 6.5 μg/m3 in the urban, inland valleys and desert areas 

(Leonard, 2010); for CO, 2 ppm is used in the rural locations, and 3 ppm in the urban, 

inland valleys and desert areas (Shrouds, 2010); for NO2, 0.005 ppm is used in the rural 

locations, and 0.015 ppm in the urban, inland valleys and desert areas (Leonard, 2010); 

for SO2, 0 ppm is used in the rural locations, and 0.001 ppm in the urban, inland valleys 

and desert areas (Leonard, 2010).  

4.2.4 Meteorological data 
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        The surface meteorological data, including the ambient temperature, wind speed 

and direction with frequency distributions, humidity, precipitation and cloud cover 

measured from over 800 surface meteorological sites, are extracted from the CARB’s 

real-time Air Quality and Meteorological Information System (AQMIS 2) (CARB, 

2009c). The upper air meteorological data of monthly average at heights from 3 meter 

and up from the ground are obtained from the NOAA (National Oceanic and 

Atmospheric Administration) Upper-Air Data products (NOAA, 2010). The wind data 

are processed through interpolations between measurements for the intermediate height 

levels. Imported data include location, name ID, time zone and anemometer height, 

which are managed through GIS to determine the meteorological parameters for each 

sub-box.  

4.3 Results and Discussion 

        The spatial concentration distributions of the four pollutants at different layers are 

simulated using the developed modeling approach with the California emission 

inventory data for 2008 (annual average). The modeling results of first layer for the 

integrated assessment of air pollution levels based on the California air basins are shown 

in Figure 4-3. 
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Figure 4-3 Concentration distribution maps of four criteria pollutants for the state of 

California (2008 annual average): (a) PM2.5; (b) CO; (c) SO2; and (d) NO2. 1 - 15 are the 

numbers of California air basins. 

        Figure 4-3 (a) shows that the state of California is divided into four pollution impact 

level areas according to the predicted concentration distributions of PM2.5 in 2008. The 

highest level (at a range of 15.1-21.6 μg/m3, shown in dark red) is predicted in four 

regions: a) the South Coast; b) the San Joaquin Valley; c) the San Francisco Bay Area; 

and d) the Sacramento Valley. The maximum modeling concentration for these areas is 

21.6 μg/m3, which is 1.8 times higher than the California Ambient Air Quality Standards 

(CAAQS) (12 μg/m3) (CARB, 2009d, same as below), and the National Ambient Air 

Quality Standards (NAAQS) (12 μg/m3) (USEPA, 2012, same as below). The second 

highest PM2.5 pollution level (at a range of 10.1-15.0 μg/m3, shown in salmon color) is 

found in: a) the South Central Coast; b) Mojave Desert Kern; and c) San Diego. The 

maximum concentration for these areas is 15.0 μg/m3, which exceeds the NAAQS and 

the CAAQS by 1.25. The third highest PM2.5 pollution level (at a range of 5.1-10.0 μg/m3, 

shown in dark pink) is obtained in: a) the North Central Coast; b) Mountain Counties; 

and c) the North Coast; d) Salton Sea. The maximum concentration for these areas is 
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http://www.arb.ca.gov/ei/maps/basins/absfmap.htm
http://www.arb.ca.gov/ei/maps/basins/absvmap.htm
http://www.arb.ca.gov/ei/maps/basins/absccmap.htm
http://www.arb.ca.gov/ei/maps/basins/abmdmap.htm
http://www.arb.ca.gov/ei/maps/basins/absdmap.htm
http://www.arb.ca.gov/ei/maps/basins/absccmap.htm
http://www.arb.ca.gov/ei/maps/basins/abmcmap.htm
http://www.arb.ca.gov/ei/maps/basins/abssmap.htm
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10.0 μg/m3, which meets the NAAQS and the CAAQS. For the rest regions, the lowest 

PM2.5 pollution levels (0.0-5.0 μg/m3, shown in light pink) are predicted. 

        Figure 4-3 (b) presents the map of the modeling CO concentration distribution for 

the year 2008, which is marked with colors red to pink according to three impact levels. 

The maximum modeling result is 8.5 ppm occurring in the South Coast and San 

Francisco Bay Area, which meets the NAAQS and the CAAQS (8 hour value at 9 ppm).  

        Similarly, Figure 4-3 (c) and (d) present the maps of the predicted SO2 and NO2 

concentration distribution for the year 2008, marked in red to pink based on the pollution 

levels (level is defined by a specific concentration range being represented with a color 

on GIS map). The maximum SO2 concentration is 0.0066 ppm in the South Coast, San 

Francisco Bay Area and San Joaquin Valley, which is lower than the NAAQS (0.030 

ppm for certain areas). The highest NO2 concentrations also occur in the South Coast 

and San Joaquin Valley, with a maximum of 0.036 ppm, which is just over the CAAQS 

(0.030 ppm) and is lower than the NAAQS (0.053 ppm).   

        Correspondingly, the modeling results confirm with the following observations: 

i). The modeling results have shown the detailed spatial concentration gradients 

within the local areas, which are not predicted by the traditional box model 

without consideration of point dispersion sources. It indicates that the emissions 

from local sources at different locations are significant for the geographic 

distribution of air pollution levels in the region.   

ii). The highest concentrations of four contaminants all occur in the central and 

southern urbanized areas, due to the significant point emission sources, relatively 

higher ambient temperatures, and the effects of nearby mountains on the 

dispersion of air pollutants (Cox et al., 2009). For example, in the Los Angeles 

area, the Basin is surrounded by mountains on the north and east. Hence, 

pollutants tend to accumulate and remain within the area, and it is confirmed 

with the modeling results.  

iii). There are relatively higher pollutant concentrations in the inland valleys and 

desert regions as they are the receptors of pollutants transported from upwind 

areas (Cox et al., 2009). The State of California lies within the zone of prevailing 

http://www.arb.ca.gov/ei/maps/basins/absfmap.htm
http://www.arb.ca.gov/ei/maps/basins/absfmap.htm
http://www.arb.ca.gov/ei/maps/basins/absfmap.htm
http://www.arb.ca.gov/ei/maps/basins/absfmap.htm
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westerlies. Wind carries locally produced air pollutants away from the Bay area, 

but may lead to higher concentrations in the regions on south and east of the 

source area.  

iv). The North Coast, Northeast Plateau and Great Basin Valleys have better air 

quality because there are less air emission sources, a moderate climate and 

relatively cool temperature, as well as frequent changes of onshore/offshore 

airflow in these areas (Cox et al., 2009). 

4.4 Model Validation and Discussion 

4.4.1 Model validation 

       The developed GMSMB approach is evaluated by comparing the modeling results 

with the observed values under the same model configuration using 2008 data for the 

state of California. The traditional box model is also carried out to produce the prediction 

results with elevated area emission sources (point sources are converted to the area 

emission sources). The results from the traditional box model are included in the model 

verification analysis. 102, 36 and 96 monitoring results (annual average for the year 

2008) with monitoring station IDs and addresses are obtained from the U.S EPA Air 

Quality System (AQS) Database for NO2, SO2, and PM2.5, respectively (USEPA, 2010a). 

Since the annual average value for CO is not available, CO is not included in the model 

error analysis. The UTM coordinates of monitoring sites are obtained using geocoding 

function in ArcGIS. The modeling results of GMSMB and the traditional box model are 

then extracted corresponding to the UTM coordinates of the monitoring sites within the 

GIS environment. Two sets of modeling results and one set of monitoring values are 

matched with the same monitoring site locations and are compared in Table 4-2. 

 

 

 

http://www.arb.ca.gov/ei/maps/basins/abgbvmap.htm
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Table 4-2 Comparisons of modeling results and monitoring values of PM2.5, SO2, NO2 

for the year 2008.  

Polluted 

Zone 

UTM Coordinates 

Pollutant 

GMSMB 

Results 

Box 

Results 

Monitoring 

Values 

Dev. 1 

(%) 

Dev. 2 

(%) x(m) y(m) 

San 

Francisco 

Bay 

1632730 4255669 

PM2.5 (μg/m3) 12.20 14.87 10.45 16.7 42.3 

NO2 (ppm) 0.0290 0.0330 0.0240 18.2 50.0 

SO2 (ppm) 0.0023 0.0028 0.0020 15.0 40.0 

1663807 4214261 

PM2.5 (μg/m3) 12.61 13.93 10.70 17.8 30.2 

NO2 (ppm) 0.0140 0.0240 0.0170 -17.6 41.2 

SO2 (ppm) 0.0024 0.0028 0.0020 20.0 40.0 

South 

Coast 

2055809 3898492 

PM2.5 (μg/m3) 14.50 22.62 16.86 -14.0 34.2 

NO2 (ppm) 0.0250 0.0460 0.0300 -16.7 53.3 

SO2 (ppm) 0.0013 0.0015 0.0010 30.0 50.0 

2133920 3903568 

PM2.5 (μg/m3) 16.50 28.26 19.84 -16.8 42.4 

NO2 (ppm) 0.0160 0.0280 0.0200 -20.0 40.0 

SO2 (ppm) 0.0017 0.0030 0.0020 -15.0 50.0 

San 

Joaquin 

Valley 

1954359 4030903 

PM2.5 (μg/m3) 19.60 28.33 22.43 -12.6 26.3 

NO2 (ppm) 0.0190 0.0220 0.0150 26.7 46.7 

SO2 (ppm) 0.0060 0.0100 0.0070 -14.3 42.8 

San 

Diego 
2046477 3676258 

PM2.5 (μg/m3) 11.10 16.78 12.74 -12.9 31.7 

NO2 (ppm) 0.0130 0.0250 0.0180 -27.8 38.9 

SO2 (ppm) 0.0027 0.0042 0.0030 -10.0 40.0 

Note: [1] Only the areas with elevated concentrations are selected at UTM coordinate 

locations all based on annual mean values); [2] Deviation 1 is between GMSMB 

modeling results and monitoring values; and [3] Deviation 2 is between multi-box 

modeling results and monitoring values. 
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        Table 4-2 indicates that the modeling results from GMSMB are more consistent 

with the monitoring values compared with that from the traditional box model. The 

traditional box model generally overestimates the air pollutant concentrations, and its 

results are higher than the GMSMB results. Clearly it is because that the spatial 

dispersion of location-based point sources is not considered in the traditional box model. 

Consequently, the GMSMB modeling approach has better performance than traditional 

box model as shown in Table 4-2.  

       Figure 4-4 presents the comparisons of the GMSMB modeling results with 

monitoring values for PM2.5, NO2 and SO2. The correlations between modeling results 

and monitoring values are analyzed with R2 values, which are 0.89, 0.90 and 0.94, for 

PM2.5, NO2, and SO2 respectively (Figure 4-5). It is seen that the modeling results show 

satisfactory agreement with the monitoring values with slopes of 0.84, intercept of 2.25 

for PM2.5, slopes of 0.82, intercept of 0.003 for NO2, and slopes of 0.90, intercept of 

0.0002 for SO2. 
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Figure 4-4 Modeling results (dotted lines) and monitoring values (solid lines) (2008 

annual average) at the AQS monitoring sites. (a) PM2.5; (b) NO2; (c) SO2. 
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Figure 4-5 Correlations between modeling results and the monitoring data for: (a) PM2.5, 

correlation coefficient r = 0.98; (b) NO2, r = 0.93; (c) SO2, r = 0.97. The solid line is 

trendline and the dashed line is 1:1 line. 
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        Detailed error analysis is performed using the error equations of NMB, NME, and 

RMSE, and the summary is provided in Table 4-3. It can be seen that there are biases in 

the modeling results compared to the monitoring values with normalized mean bias 

(NMB) of 2.6 %, 2.5 % and 3.9 %, normalized mean error (NME) of 10.9 %, 13.4 % 

and 11.5 %, for PM2.5, NO2 and SO2, respectively. It is suggested a range of ± 5-15% as 

an acceptable guideline of model performance for the normalized bias; and a range of 

30-35% as an acceptable level of model performance for the mean normalized error 

(USEPA, 1991). Table 4-3 shows that GMSMB model performance meets the USEPA 

guideline for the field case study of the state of California. 

Table 4-3 Verification and statistical error analysis for the GMSMB modeling case study. 

Pollutant RMSE NMB (%) NME (%) USEPA 

Guideline PM2.5 1.50 μg/m3 2.6 10.9 

Bias: ± 5-15% 

Error: 30-35% 
NO2 0.0020 ppm 2.5 13.4 

SO2 0.0003 ppm 3.9 11.5 

4.4.2 Discussion 

        Despite the reasonable results obtained based on the new model development and 

satisfactory model validation at a large field scale, the following discussions are 

extended:  

(a) The comparisons also show that the modeling results slightly underestimate NO2 

and SO2 with slopes of 0.99 and 0.98 (intercepts set as zero) for NO2 and SO2, 

respectively. This might be due to the comparisons are between the grided 

modeling results and the point monitoring values at the monitoring station 

locations. In addition, the inherent uncertainties in the monitoring values which 

are associated with the interferences of local emission sources, data availability, 

meteorological conditions in the maritime region, assumption of first order 

reaction for the study pollutants, and the occurrence of radical compound species 

taking place during photolytic conversion are also possible contributors for the 

underprediction (Gerboles et al., 2003; Lamsal et al., 2008).  
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(b) For PM2.5, the modeling results show excellent agreement with monitoring 

values with a slope of 1.0 (intercept sets as zero). However, it tends to slightly 

underestimate in the areas with higher concentrations, such as the urban and 

suburban areas, while slightly overestimate in the areas with lower 

concentrations, like rural areas (see Figure 4-5a). Except the uncertainties as 

mentioned above, the complexities inherent in secondary particulate formation, 

pollutant transport, and time variability may also be reasons for the bias of 

modeling results. In addition, the distribution trends of PM2.5 are larger in urban 

and suburban areas and smaller in the rural areas (Perry et al., 2005).   

(c) It is argued that the above mentioned uncertainties would also affect the 

performance of fully numerical air dispersion model and atmospheric 

photochemical reaction model, which may produce accurate simulation results 

for localized field cases (Isakov and Venkatram, 2006; Vivanco et al., 2009). The 

GMSMB provides a practical air quality modeling tool with a seamless 

integration of an extended spatial multi-box and multi-source Gaussian model 

with spatial GIS analysis. It is intended to assess the air pollution levels together 

with a greater spatial representation of geo-referenced information, through a 

collective consideration of various emission sources. It is noted that developing 

fully-coupled GIS-based air quality modeling approach is technically 

straightforward based on analytical or semi-numerical analysis as presented in 

this study. 

4.5 Summary 

       The developed GMSMB modeling approach has been examined to predict the 

spatial concentration distribution of four air pollutants (CO, NO2, SO2 and PM2.5) for the 

state of California. The modeling results were compared with the monitoring values. 

Good agreement was acquired which demonstrated that the developed modeling 

approach could deliver an effective air pollution assessment on both regional and local 

scales to support decision making on air pollution control and management planning. 
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Chapter 5     Fuzzy Aggregation Approach for 

Integrated Air Pollution Risk Assessment 

       Based on the spatial concentration distributions of the four criteria pollutants (i.e. 

PM2.5, NO2, SO2, and CO) in the state of California predicted by the GMSMB modeling 

in chapter 4, the integrated risk caused by these four pollutants is estimated with the 

fuzzy aggregation-OWA approach, which involves five steps as presented in this chapter. 

The results are verified with the U.S. EPA Air Quality Index (AQI) Report.  

5.1 Fuzzy Aggregation Integrated Air Pollution Risk 

Assessment      

5.1.1 Quantification of fuzzy evaluation criterion 

        The first step is to quantify the fuzzy evaluation criterion. This is performed by 

determining the classifying representative values (ei) and the benchmarks (si). According 

to the AQI made by the U.S. EPA, air quality is divided into six levels with a yardstick 

that runs from 0 to 500 (USEPA, 2009a). The higher the AQI value is, the higher the 

risk level of air pollution and the greater the health concern. An AQI value of 50 

represents good air quality with little potential to affect public health, and an AQI value 

of 100 generally corresponds to the national air quality standard for the pollutant, which 

is the level the U.S. EPA has set to protect public health. While an AQI value over 300 

represents hazardous air quality (US EPA, 2009a). Using the AQI calculator developed 

by the U.S. EPA (USEPA, 2009b), the AQI values can be converted to the 

concentrations, as shown in Table 5-1.  
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Table 5-1 AQI values and corresponding concentration intervals of pollution factors 

(USEPA, 2009a). 

Pollution 

Factors 

AQI and Corresponding Concentrations Intervals 

0-50 50-100 101-150 151-200 201-300 301-500 

 PM2.5 (μg/m3) (0.0,15.4) (15.5,35.4) (35.5,65.4) (65.5,150.4) (150.5,250.4) (250.5,500.4) 

 NO2 (ppm) (0.0,0.059) (0.060,0.075) (0.076,0.095) (0.096,0.115) (0.116,0.374) (0.375,0.604) 

 SO2 (ppm) (0.0,0.034) (0.035,0.144) (0.145,0.224) (0.225,0.304) (0.305,0.604) (0.605,1.004) 

 CO (ppm) (0.0,4.4) (4.5,9.4) (9.5,12.4) (12.5,15.4) (15.5,30.4) (30.5,50.4) 

        Based on Table 5-1, the concentration intervals can be transformed into fuzzy sets, 

which are represented with classifying representative values (ei) and benchmarks (si). 

Six fuzzy sets, i.e. six risk levels are defined to represent air quality within ‘Good’, 

‘Moderate’, ‘Low unhealthy’, ‘Unhealthy’, ‘Very unhealthy’ and ‘Hazardous’. For the 

first risk level, the upper limit concentration values are taken as the classifying 

representative values (e1) since they are close to the annual mean values of national air 

quality standard for the pollutants (for CO, it’s half of 8-hour mean) (USEPA, 2012); 

while for the rest, the average concentration values of each interval are taken as the 

classifying representative values (ei). According to the AQI, the third risk level means 

“members of sensitive groups may experience health effects, while the general public is 

not likely to be affected” and the fourth risk level means “everyone may begin to 

experience health effects”. Thus, the third risk level is considered as the safe level limit 

and its upper limit concentration values are taken as the benchmarks (si), as shown in 

Table 5-2.  

Table 5-2 Fuzzy air quality evaluation criterion.  

Pollution 

Factors 

Classifying Representative Values (ei) Benchmarks (si) 

e1 e2 e3 e4 e5 e6 si 

  PM2.5 (μg/m3) 15.40 25.45 50.45 107.95 200.45 375.45 65.40 

  NO2 (ppm) 0.059 0.068 0.086 0.106 0.245 0.490 0.095 

  SO2 (ppm) 0.034 0.090 0.185 0.265 0.455 0.805 0.224 

  CO (ppm) 4.40 6.95 10.95 13.95 22.95 40.45 12.40 
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5.1.2 Construction of fuzzy membership functions 

        The membership function represents the degree of a specified concentration that 

belongs to the fuzzy evaluation criteria of air quality. Fuzzy set theory is used to 

determine the membership functions according to the characteristics of air quality 

evaluation criterion. The linear membership functions are shown as follows: 

       
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where m is the number of fuzzy set; e(m) denotes the classifying representative value of 

each fuzzy set; rm(x) denotes the membership grade of each pollution factor belongs to 

each classifying representative value. Following the membership functions, the fuzzy 

function curves for risk levels are created, as shown in Figure 5-1. 

 

Figure 5-1 Curves of the membership functions for risk levels of air quality criterion. 

5.1.3 Calculation of weighting coefficient 

(5-1) 
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       In this study, the relative importance, i.e. weighting coefficient wi of each pollution 

factor is measured by the corresponding benchmark (si) which is the safe level limit. 

When the concentration of pollutant is lower than the benchmark, this pollutant factor is 

considered to have a smaller impact on air quality meaning that it causes a smaller risk. 

Conversely, when the concentration of pollutant is higher than the benchmark, it is 

considered that this pollution factor has a larger impact on air quality and causes a greater 

risk. Therefore, the weighting coefficient wi can be calculated using the following 

formula:  

              
i

i

i

C
w

S
                                                               

where Ci is the predicted concentration of each pollutant; Si is the benchmark of fuzzy 

air quality criterion of each pollution factor. 

       In this case, the weight coefficient wi is more than 1 when the predicted 

concentration of pollutant is higher than the safety limit. Consequently, the definition of 

the aggregation function given by F: [0, 1]n → [0,1] should be extended to R: [0, rj·max 

(w1, w2,…, wn)], where rj is the jth largest membership grade of (r1, r2, …, rn). 

5.1.4 Construction of fuzzy aggregation-OWA modeling 

       This has been discussed in section 3.4.3. The two models (i.e. the Max-min 

composition model and the Max-* composition model) are used in the fuzzy 

aggregation-OWA modeling system. 

5.1.5 Assessment of integrated risk level  

       By loading the pollutant concentrations from the GMSMB modeling system, the 

integrated risk levels of air pollutants can be assessed in the fuzzy aggregation-OWA 

modeling system. The results from two models (eq. 3-44, 3-45) can cross-verify each 

other and the maximum integrated risk level is taken as the result of risk assessment. 

        An arbitrary grid in the study area is taken as an example to illustrate the details of 

computational process. The concentrations of four criteria pollutants, PM2.5, NO2, SO2 

(5-2) 
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and CO in this grid are 18.5 μg/m3, 0.063 ppm, 0.045 ppm, and 3.3 ppm, respectively. 

The procedure of integrated risk assessment is as following: 

         (1) Calculation of the membership grades (rij) of pollutant concentrations. The 

membership grade (rij) is the degree of predicted concentration of each pollution factor 

in the grid that belongs to each classifying representative value of the fuzzy air quality 

criterion (see Table 5-2). The membership grade matrix R is obtained using eq. (5-1): 

0.6900 0.3100 0 0 0 0

0.3750 0.6250 0 0 0 0

0.8000 0.2000 0 0 0 0

1 0 0 0 0 0

ijR r

 
 
      
 
 

 

         (2) Calculation of the weighting coefficient wi of each pollution factor. The vector 

of weighting coefficient W is determined by eq. (5-2): 

    0.2829,0.6737,0.2009,0.2661W   

         (3) Calculation of the integrated risk level from four pollution factors. Two 

integrated risk assessment results are obtained using the two fuzzy aggregation-OWA 

modeling (eq. (3-44), (3-45)): 

 1 0.3750,0.6250,0,0,0,0F   

 2 0.2661,0.4211,0,0,0,0F   

        The results are illustrated in Figure 5-2, which show the relationships between the 

integrated risk levels and the fuzzy air quality criterion.  
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Figure 5-2 Integrated risk assessment results using Max-min composition and Max-* 

composition models: (a) the solution from the Max-min composition model; and (b) the 

solution from the Max-* composition model. The shaded parts are the areas with higher 

membership grade. 

        Figure 5-2 (a) is the solution from the Max-min composition model, which 

indicates that the integrated risk level is between level 1 (membership grade is 0.3750) 

and level 2 (membership grade is 0.6250), with a maximum membership grade 

corresponding to the fuzzy criteria level 2. Figure 5-2 (b) is the solution from the Max-

* composition model, which also shows that the integrated risk level is between level 1 

(membership grade is 0.2661) and level 2 (membership grade is 0.4211). Both of them 

show the maximum membership grade corresponding to the fuzzy risk level 2, which 

cross-verifies that the air quality in this grid belongs to the fuzzy risk level 2. This means 

the air quality is moderate, i.e. the air quality is acceptable; however, there may be a 

moderate health concern for people who are more sensitive to air pollution.  

 5.2 Result and Validation 

        Using the GMSMB and fuzzy aggregation-OWA modeling system, the air quality 

integrated risk assessment result is achieved on 10 km × 10 km grid cells for the state of 

California in 2008, which is visually presented in ArcGIS, as shown in Figure 5-3 (a). 

(b) (a) 
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Figure 5-3 (a) Result of air quality integrated risk assessment for the state of California 

in 2008 from this study; (b) Integrated risk assessment according to the AQI values based 

on county (USEPA, 2010b). 

        In general, the air quality in most areas of the state of California belongs to the first 

level of fuzzy air quality criterion, namely, air quality is considered satisfactory, and air 

pollution poses little or no risk. Only a few areas (e.g. the South Coast, San Diego, San 

Joaquin Valley, Mojave Desert and the San Francisco Bay Areas) belong to level 2 

indicating moderate air quality and some health concerns for more sensitive people. 

There is no area that belongs to the rest of risk levels. 

        The integrated risk assessment results are compared with the U.S. EPA AQI Report 

created by county in 2008 (US EPA, 2010b). In the AQI report, the days are counted as 

five categories: “good”, “moderate”, “unhealthy for sensitive group”, “unhealthy”, and 

“very unhealthy” based on the AQI values. The report shows that the AQI values are 

ranging from 12 to 92, which indicate the days of “good” and “moderate” dominate the 

air quality in the state of California. Table 5-3 lists the counties with AQI values higher 

than 45. The air quality with 0 < AQI < 45 is thought as good, 45 < AQI < 50 is thought 

as potential moderate, and 50 < AQI < 100 is thought as moderate, as shown in Figure 

5-3 (b).  

http://www.arb.ca.gov/ei/maps/basins/abmdmap.htm
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Table 5-3 Air Quality Index statistics for the state of California in 2008 (US EPA, 2010b). 

County Days with AQI AQI 

Days due to pollutant 

CO NO2 SO2 PM2.5 

Fresno 366 71  8  167 

Kern 366 92  9  129 

Kings 366 67.5    130 

Los Angeles 366 76  94 1 116 

Orange 366 57  81  175 

Riverside 366 80.5  34  91 

San Bernardino 366 71  84  26 

San Diego 366 64  72  97 

Stanislaus 366 54  5  157 

Tulare 366 69  31  43 

Imperial 366 49 2 101  15 

Inyo 366 45.5    1 

Mariposa 366 46     

Merced 366 47  35  35 

Nevada 366 45  2  53 

Sacramento 366 47  81  31 

San Joaquin 366 45  59  84 

San Luis Obispo 366 47  3 1 9 

Ventura 366 46  25  24 

        Figure 5-3 shows that the air quality integrated risk assessment from this study 

(Figure 5-3 (a)) is quite consistent with the AQI statistical results (Figure 5-3 (b)) in 

most counties. The differences only occur in a few counties, such as the San Francisco 

Bay Areas, Imperial, Inyo, Mariposa, and San Luis Obispo. This is not surprised because 

different air pollutants are used in this study and the AQI statistics. In this study, four 



84 

 

criteria pollutants, i.e. PM2.5, NO2, SO2 and CO are used for the air quality integrated 

risk assessment. While in the AQI statistics, two more criteria pollutants, i.e. O3 and 

PM10 are also used (US EPA, 2010b). The differences are possibly caused by these two 

pollutants. From the results of this study (Figure 5-3 (a)), it can be seen that the 

integrated risk assessment results are more concordant with the PM2.5 concentration 

distribution than other pollutants (Figure 4-3 (a)), which implies the PM2.5 is the main 

factor of integrated risk level. From Table 5-3, it can also be seen that the PM2.5 is the 

dominant pollutant of AQI values among the four criteria pollutants (PM2.5, NO2, SO2 

and CO) except the counties with differences as mentioned above. This further suggests 

that the differences are caused by O3 and PM10 that don’t use in this study. 

       The integrated risk assessment results are also compared to the statistical analysis 

in the California Almanac of Emissions & Air Quality (Cox et al., 2009). From the 

statistical analysis, the main factors of air pollution in the state of California are PM2.5, 

NOx, and reactive organic gas (ROG). The emissions based on the air basins in 2008 are 

illustrated in Figure 5-4 (Cox et al., 2009).  

 

 

Figure 5-4 Main factors of air pollution in the state of California in 2008 (from the 

California Almanac of Emissions and Air Quality - 2009 Edition) (Cox et al., 2009). 

       Basically, the integrated risk assessment results are in accordance with the 

emissions, particularly, PM2.5 emissions (Figure 5-4 (a)), namely, the areas with higher 

(a) (b) (c) 
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PM2.5 emissions have higher integrated risk levels. This illustrates that the PM2.5 has 

more significant impact on the air pollution integrated risk level in the state of California, 

which is agreed with the California Almanac of Emissions & Air Quality (Cox et al., 

2009). This is also in line with the results from the comparison with AQI statistics that 

the PM2.5 is the most important pollution factor among the four criteria pollutants (PM2.5, 

NO2, SO2 and CO).  

       All of these verify that the fuzzy aggregation-OWA modeling system is useful and 

feasible for air pollution integrated risk assessment. Furthermore, the fuzzy aggregation-

OWA modeling system is based on the 10 km × 10 km grids, while the AQI statistics 

are based on the counties, and the statistical analysis in the California Almanac is based 

on the air basins, therefore the results from this study are more detailed and accurate 

than the AQI statistics and Almanac. 

5.3 Summary 

        A case study is conducted using the developed fuzzy aggregation - OWA approach 

based on the spatial concentration distributions of four criteria pollutants (i.e. PM2.5, NO2, 

SO2, and CO) in the state of California predicted by the GMSMB modeling in chapter 

4. The integrated risk caused by these four pollutants is estimated. The results are 

visually displayed in GIS and compared with the AQI report and literatures. Good 

agreement illustrated that the developed approach is useful for the evaluation of 

integrated risk resulting from multiple air pollution factors and may also be applied to 

other areas. 
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Chapter 6    Satellite-based Estimates of 

Ground-level NO2 from OMI 

        This case study still focuses on the state of California region (32º32 Ń to 42º00 Ń, 

114º08 Ẃ to 124º26 Ẃ). The annual mean ground-level NO2 concentrations are derived 

from the OMI tropospheric NO2 column retrievals, which are cross-verified by 

comparison analysis with the in-situ surface measurements and the GMSMB modeling 

results.   

6.1 Derivation of Ground-level NO2 from OMI 

        The regional monthly mean tropospheric NO2 vertical column densities (VCDs) 

from DOMINO (Dutch OMI NO2) (version 2.0) for North America in 2008 are obtained 

from the European Space Agency (ESA)’s Tropospheric Emission Monitoring Internet 

Service (TEMIS) project website (http://www.temis.nl). March, April, and May are 

treated as the spring months; June, July, and August as the summer months; September, 

October and November as the fall months; and December, January, and February as the 

winter months. As given in Boersma et al. (2011), only scenes with cloud fractions < 

20 % are selected, and scenes with snow or ice are not considered in this study. The 

seasonal mean tropospheric NO2 vertical column densities (VCDs) are presented in 

Figure 6-1. 

http://www.temis.nl/
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Figure 6-1 Seasonal average tropospheric NO2 vertical column densities (VCDs) 

retrieved from OMI (in 1015 molecules/cm2) for the state of California in 2008. The black 

dots with numbers are the representative locations of the monitoring stations for 

comparison. 

       The grey areas in Figure 6-1 indicate the locations with no valid satellite-derived 

data, probably due to the absence of sunlight (e.g., at high latitudes in winter, where 

there is persistent cloud cover) (Boersma et al., 2008a).  
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   The GEOS-Chem simulation is performed to obtain the local scale factors, see 

section 3. The GEOS-5 meteorological field is used in the simulation at 0.5° × 0.667° 

horizontal resolution for North America. The data for NO2 profiles at 47 vertical levels 

are established starting from the ground surface to a height of 0.01 hPa (approximately 

80 km). Among the 47 vertical levels, 35 are in the troposphere, including 14 levels 

below 2 km. The boundary conditions are created at a coarse resolution, i.e., to run a 2° 

× 2.5° global simulation first, and then recompile the GEOS-Chem model for the 0.5° × 

0.667° nested simulation. The U.S. EPA/NEI2005 emission inventory is used for this 

simulation (USEPA, 2011). The OMI-derived NO2 mixing ratio at the lowest vertical 

layer (100 m) represents the ground-level NO2 concentrations (Lamasal et al., 2008). 

    Figure 6-2 shows the seasonal average ground-level NO2 concentrations derived 

from the OMI tropospheric NO2 VCDs for the state of California in 2008. 

http://acmg.seas.harvard.edu/geos/doc/man/appendix_2.html#A2.6
http://acmg.seas.harvard.edu/geos/doc/man/appendix_2.html#A2.6.2
http://acmg.seas.harvard.edu/geos/doc/man/appendix_2.html#A2.3
http://acmg.seas.harvard.edu/geos/doc/man/appendix_2.html#A2.3
http://acmg.seas.harvard.edu/geos/doc/man/appendix_2.html#A2.6
http://acmg.seas.harvard.edu/geos/doc/man/appendix_2.html#A2.6
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Figure 6-2 Seasonal average ground-level NO2 concentrations derived from OMI for the 

state of California (ppb). The black dots with numbers are the locations of the monitoring 

stations.   

       The ground-level results in Figure 6-2 reveal relatively high NO2 concentrations in 

urban areas such as Los Angeles, San Francisco, and San Diego being consistent with 

the NO2 column retrievals (see Figure 6-1). This implies that the boundary NO2 

dominates the tropospheric NO2 VCDs (Lamasal et al., 2008). The seasonal pattern with 

low concentrations in summer season is attributed to the higher mixing height, 
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photolysis rate, and the shorter NO2 lifetime (Kramer et al., 2008). The mean OMI-

derived ground-level NO2 concentration in winter is higher than the corresponding 

values in spring, summer and fall by 31 %, 35 %, and 25 %, respectively.  

6.2 The GMSMB Modeling Results 

        To compare with the OMI-derived surface NO2 concentrations, the GMSMB 

modeling results for the ground-level NO2 concentrations are recalculated at the OMI 

overpass time period (12:00 to 14:00 local time) to match the OMI-derived ground-level 

NO2 concentrations. The horizontal resolution takes 10 km × 10 km grid cells and the 

mixing height is vertically divided into equal layers of 100 m. The NO2 concentrations 

at the grid centers of the lowest vertical layer are generated for the state of California in 

2008.  

6.3 In-situ Surface Measurements 

        Two sources of in-situ surface measurement data are used to validate the OMI-

derived ground-level NO2 concentrations and the GMSMB modeling results. One source 

is acquired from the U.S. EPA Air Quality System (AQS) database (USEPA, 2010a), 

and the other source is from the Interagency Monitoring of Protected Visual 

Environments (IMPROVE) monitoring network (IMPROVE, 2010). There are 102 

monitoring stations found from the AQS database for the state of California in 2008. 

The annual mean of monitoring values are ranging from 1- 29 ppb, which meet the 

California Ambient Air Quality Standard (CAAQS) annual arithmetic mean value (30 

ppb) (CARB, 2009d) and the National Ambient Air Quality Standards (NAAQS) annual 

arithmetic mean value (53 ppb) (USEPA, 2012). All of them are available and can be 

used in the comparison. In addition, there are 25 monitoring stations found from the 

IMPROVE monitoring network for the state of California. Unfortunately, the 

monitoring data of the monitoring stations in this network are Intermittent. Only 4 

monitoring stations have complete data in 2008 which can be used. Therefore, a total of 

106 data sets from 106 monitoring stations are used in this study. A brief review of the 

collected data indicates that the majority of monitoring data are lower than the California 

Ambient Air Quality Standard and the National Ambient Air Quality Standards (CARB, 

http://acmg.seas.harvard.edu/geos/
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2007). The hourly average NO2 monitoring data during 12:00 to 14:00 local time are 

extracted from these monitoring stations and are averaged for four seasons to obtain 

annual average values for comparison.  

        To reduce the interferences in ground-level NO2 measurements caused by the 

sampler with a molybdenum converter and by calculating NO2 from the NO and O3 

measurements (Dunlea et al., 2007), a correction factor (CF) is introduced (Lamasal et 

al., 2008):  

2

2 3

NO
CF

NO ΣAN (0.95PAN) (0.35HNO )


  
 

where ΣAN is the sum of all alkyl nitrates (ppb), and PAN is the peroxyacyl nitrates 

(ppb). The NO2 mixing ratio, all alkyl nitrates, PAN, and HNO3 are obtained from the 

GEOS-Chem model simulation. The two-hour (12:00 to 14:00 local time) average 

correction factor is calculated with a range varying from 0.45 to 0.92 which are in line 

with the estimates of Lamsal et al. (2010) (modeled correct factor ranges 0.4 - 0.9) and 

applied to all in-situ surface measurements. Other nitrogen-containing species of NOy, 

such as NO3, N2O5, HONO and ClNO2 are not considered here, since these species are 

photolabile and have very low atmospheric concentrations during the day (Parrish et al., 

1990; Ryerson et al., 2000).  

6.4 Comparison between Seasonal Mean OMI Tropospheric 

NO2 VCDs and In-situ Surface Measurements 

        Recent studies have shown that OMI-retrieved tropospheric NO2 VCDs correlate 

temporally and spatially with the near-surface NO2 concentrations under cloud-free 

conditions (e.g., Boersma et al., 2009; Geddes et al., 2012). A correlation analysis is then 

performed for the seasonal average OMI-retrieved tropospheric NO2 VCDs and the in-

situ surface measurements for the state of California. For the spring and summer seasons, 

the high correlation coefficients (r = 0.89 and 0.90, respectively) are found, and it may 

indicate that most of the variability of ground-level NO2 concentrations can be explained 

by the OMI-retrieved tropospheric NO2 VCDs under cloud-free conditions (cloud 

fractions < 20 %) (Boersma et al., 2011). For the fall and winter seasons, the correlation 

(6-1) 
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coefficients are found to be relatively lower (r = 0.74 and 0.68, respectively). These 

imply that there is a seasonal bias in the OMI-retrieved tropospheric NO2 VCDs. There 

are several possible explanations for the seasonal bias: (i) using annual average instead 

of seasonal average the a-priori NO2 profile in the OMI air mass factor calculation may 

yield lower tropospheric column retrievals during the wintertime (Eskes and Boersma, 

2003); (ii) low temperatures and stagnant air masses in the later fall and wintertime result 

in an overestimation in the cloud fraction and a lower cloud height, which tends to 

increase the light path through the troposphere. In turn, they lead to overestimation of 

the tropospheric air mass factor and underestimation of the column retrievals than in 

reality (Boersma et al., 2004; Kramer et al., 2008); (iii) cloud-free condition (cloud 

fractions < 0.2) in retrieval of tropospheric NO2 VCDs influences the results. Especially 

in the later fall and wintertime, more cloudy days (cloud fractions > 0.2) are omitted 

than in summer, resulting in a larger underestimate in retrieved NO2 columns (Geddes 

et al., 2012); (iv) seasonal variation in surface albedo could also contribute to the 

seasonal bias (Lamsal et al., 2008).  

6.5 OMI-Derived and Observed Seasonal Average Ground-

level NO2 Concentrations 

       The seasonal average ground-level NO2 concentrations are validated by comparing 

them with the in-situ surface measurements (total of 106 values used for each season), 

as shown in Figure 6-3. The x-axis measurements are corrected using the correction 

factor (CF) in eq. (6-1) to make sure the values are only for NO2 without other nitrogen-

containing species, such as alkyl nitrates, PAN, and HNO3. The regression analysis 

exhibits the strong correlations and good agreement in spring (r = 0.87, slope = 0.75 ± 

0.04, intercept = 1.42 ± 0.60) and summer (r = 0.88, slope = 0.81 ± 0.04, intercept = 

0.59 ± 0.57), as shown in Figure 6-3 (a) and (b). Despite that the correlations are still 

strong in fall and winter (r = 0.87 and 0.85, respectively), the slopes decline to 0.70 ± 

0.04 with an intercept of 0.47 ± 0.30 in fall and 0.64 ± 0.03 with an intercept of 1.71 ± 

0.70 in winter, as shown in Figure 6-3 (c) and (d). The hereinafter referred uncertainties 

incorporating slope and intercept are standard errors, which are determined following 

the approach described in Celarier et al. (2008). The error analysis shows that the biases 
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(defined by 
OMI-measurement

×100%
measurement

) between the OMI-derived ground-level NO2 

concentrations and the in-situ surface measurements range: from 35.75 % to – 42.28 %, 

with a mean bias of - 13.03 % for spring; from 32.11 % to – 40.89 %, with a mean bias 

of -12.88 % for summer; from 20.42 % to – 47.87 %, with a mean bias of - 25.88 % for 

fall; and from 7.94 % to – 51.33 %, with a mean bias of - 26.99 % for winter. These 

results illustrate that the OMI derived ground-level NO2 concentrations are 

underestimated compared to the measurements by 13 – 27 % on average with a more 

negative bias in winter. More details are discussed in the section 6.7.  

 

Figure 6-3 A comparison of the seasonal average OMI-derived ground-level NO2 

concentrations with the in-situ surface measurements for the year 2008. (a) Spring; (b) 
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Summer; (c) Fall; (d) Winter. The dashed line is the 1:1 line. The bold solid line is the 

regression line. 

       The correlation between the seasonal average OMI-retrieved tropospheric NO2 

VCDs and the seasonal average OMI-derived ground-level NO2 concentrations are also 

analyzed to illustrate how influential the GEOS-Chem adjustment is. The strong 

correlations are found with correlation coefficient of 0.92 for spring, 0.95 for summer, 

0.88 for fall and 0.84 for winter, which exhibit  that the GEOS-Chem simulation is very 

efficient for deriving the ground–level NO2 concentrations from OMI tropospheric NO2 

VCDs, and it is more effective for spring and summer seasons than fall and winter 

seasons. 

6.6 GMSMB Modeling and OMI-Derived Ground-level 

Yearly NO2 Concentrations 

        The yearly spatial concentration distributions of NO2 in three dimensions at 

different layers are simulated using the GMSMB modeling approach for the state of 

California at the OMI overpass time (12:00 to 14:00 local time) in 2008. The modeling 

results of the first layer (i.e., the first 100 m from the ground) are shown in Figure 6-4 

(a).  

        The modeling results show that the highest NO2 concentrations occur in the South 

Coast, the San Joaquin Valley, the San Francisco Bay Area and San Diego, with a 

maximum of 27 ppb. In those areas, the relatively high concentrations are due to the 

local major point emission sources, the ambient temperatures, and the trapping effects 

of nearby mountains on the dispersion of air pollutants. The air quality in the North 

Coast, Northeast Plateau and Great Basin Valleys is better because of fewer air emission 

sources, a moderate climate, and sea breeze effects (Cox et al., 2009). 

        The annual average OMI-derived ground-level NO2 concentrations are obtained 

from the OMI tropospheric NO2 VCDs based on the GEOS-Chem simulation. The 

results are re-gridded and interpolated to have grid size of 0.1º × 0.1º (approximately 10 

km × 10 km at midlatitudes), as shown in Figure 6-4 (b), to compare with the GMSMB 

modeling results at the same grid size.  

http://www.arb.ca.gov/ei/maps/basins/absfmap.htm
http://www.arb.ca.gov/ei/maps/basins/abgbvmap.htm
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Figure 6-4 (a) GMSMB modeling results of annual average NO2 concentration 

distribution at the OMI overpass time (12:00 to 14:00 local time) and (b) OMI-derived 

annual average ground-level NO2 concentrations over the state of California in 2008. 

The grey spaces indicate locations where no value is available. 

       The OMI-derived yearly ground-level NO2 results show higher NO2 concentrations 

in the San Francisco Bay area, the South Coast, and San Diego, which are consistent 

with the GMSMB modeling results in Figure 6-4 (a). These results are also in accordance 

with the seasonal results. The OMI-derived ground-level NO2 concentrations are 

compared with the GMSMB modeling results and the corrected in-situ surface 

measurements on an annual basis. Total 106 measurements from the AQS and 

IMPROVE are used in the comparison. The OMI-derived and GMSMB modeling results 

are averaged for 10 km × 10 km grids, and the in-situ surface measurements are point 

values at monitoring stations frequently located close to sources. Therefore, it is 

expected that the in-situ surface measurements will have higher values than the OMI-

derived and GMSMB modeling results.  

    The error analysis illustrates that the biases between the OMI-derived ground-level 

NO2 concentrations and the corrected in-situ surface measurements are varying from + 
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14.4 % to – 47.7 %, with a mean bias of – 25.0 % on an annual basis. The scatter plots 

and correlation analysis between them is given in Figure 6-5 (a), which shows a slope 

of 0.75 ± 0.05 with an intercept of 0.004 ± 0.75. The correlation coefficient is 0.84.  

    Similarly, the biases between the GMSMB modeling results and the corrected in-

situ surface measurements are varying from + 22.2 % to – 39.3 %, with a mean bias of 

– 15.1 %. Figure 6-5 (b) shows a better slope of 0.82 ± 0.04, an intercept of 0.40 ± 0.65, 

and a stronger correlation of 0.88 compared to the OMI-derived ground-level NO2 

concentrations. 

     The biases between the OMI-derived ground-level NO2 concentrations and the 

GMSMB modeling results are varying from + 22.4 % to – 46.0 %, and the mean bias is 

– 11.2 %. Figure 6-5 (c) shows two data sets in a good consistency with a slope of 0.87 

± 0.04 and an intercept of 0.20 ± 0.56 at the OMI overpass time (12:00-14:00 local time). 

The comparison analysis attests the accuracy of the OMI-derived ground-level NO2 

concentrations and the GMSMB modeling results. 
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Figure 6-5 Scatter plots of (a) the OMI-derived ground-level NO2 concentrations and 

the in-situ surface measurements; (b) the GMSMB modeling results and the in-situ 

surface measurements; (c) the OMI-derived ground-level NO2 concentrations and the 

GMSMB modeling results. The dashed lines are the 1:1 line. The solid line is the 

regression line.  

6.7 Discussion 

6.7.1 Intercomparison analysis 

       As shown in Figure 6-3 and Figure 6-5, general agreement and strong correlations 

are attained among the OMI-derived, GMSMB model, and in-situ surface measurement 

results. The observed discrepancies are possibly caused by the spatial mismatch between 

the 10 km × 10 km grid cell values (i.e., the OMI-derived and GMSMB model) or the 

OMI tropospheric column retrievals (13 km × 24 km) and the in-situ surface point 
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measurements (i.e., at monitoring stations) (Brinksma et al., 2008; Lamsal et al., 2008; 

2010; Lee et al., 2011), and also other uncertainties which are analyzed as following.  

(A) The uncertainties in the seasonal mean OMI tropospheric NO2 column retrievals  

         A strong correlation is found between the seasonal mean OMI-retrieved 

tropospheric NO2 VCDs and the in-situ surface measurements with an average 

correlation coefficient of 0.80. This implies that the boundary layer NO2 makes a larger 

contribution to the tropospheric columns in the state of California, which is in line with 

the conclusions from literatures (Boersma et al., 2004; 2007; Lamsal et al., 2008). It 

demonstrates that the retrieved tropospheric NO2 VCDs can be used to derive the 

ground-level pollutant concentration distributions under cloud-free conditions (cloud 

fractions < 20 %). However, there are inherent uncertainties leading to the errors in OMI-

retrieved NO2 VCDs, which could include the following:  

 The most critical source of error is the tropospheric air mass factor, which is 

dominated by the uncertainties associated with the cloud fraction, the aerosol 

characterization, the surface albedo, and the a priori NO2 profile (Martin et al., 

2002; Boersma et al., 2007). The uncertainties in the air mass factor may account 

for 20 - 45 % of errors in the tropospheric NO2 column retrievals for polluted 

regions with small cloud fractions (Boersma et al., 2004).  

 The retrieval of tropospheric NO2 depends on a priori assumptions on the vertical 

NO2 profiles in the troposphere. Systematic errors in the a priori profile shape 

can cause a 5 - 15 % error in the retrieved columns (Boersma et al., 2004). 

Additionally, using the annual average instead of the seasonal average NO2 

profile in the OMI air mass factor calculation may yield lower tropospheric 

column retrievals (Eskes, 2003).  

 Low temperatures and stagnant air masses in the wintertime result in an 

overestimation in the cloud fraction and a lower cloud height, which lead to an 

increase in the tropospheric air mass factor and lower column retrievals (Kramer 

et al., 2008).  

 The seasonal variation in mixing height and surface albedo could also contribute 

to the errors (Lamsal et al., 2008).  
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        All of these factors may contribute to the underestimates and seasonal biases in 

tropospheric NO2 column retrievals.  

(B) The difference between the OMI-derived ground-level NO2 concentrations and the 

in-situ measurements  

        On a seasonal mean basis, the error analysis shows that the OMI-derived ground-

level NO2 concentrations are underestimated compared to the in-situ measurements by 

13 - 27 % (relative errors) with a more negative bias in winter. The underestimation, in 

addition to the point-to-cell comparison, may be attributed to the uncertainties associated 

with the OMI tropospheric NO2 column retrievals (Boersma et al., 2004; 2007; 2008; 

Bucsela et al., 2008; Celarier et al., 2008), the GEOS-Chem NO2 profile (Lamsal et al., 

2008; 2010), and the in-situ surface measurements (Dunlea et al., 2007; Lamsal et al., 

2008; 2010). The examinations into these biases by Celarier et al. (2008) and Lamsal et 

al. (2008), reveal that the key contributors were seasonal variations in (i) the mixing 

height, (ii) the NO2 profile, (iii) the surface albedo, and (v) the spatial and temporal 

inhomogeneity of the boundary layer NO2.  

        On an annual mean basis, Figure 6-3 (a) compares the OMI-derived ground-level 

NO2 concentrations with the corrected in-situ surface measurements. The figure shows 

a slope of 0.75 ± 0.05 with an intercept of 0.004 ± 0.75. The linear regression, 

constrained to pass through the origin, gives a slope of 0.75 ± 0.01. This suggests that, 

on a yearly basis, the OMI-derived ground-level NO2 concentrations are underestimated 

by 25 ± 1 %. In addition to the reasons mentioned in the seasonal average analysis, the 

possible explanations also include the following (Blond et al., 2007; Zhou et al. 2009): 

 The air mass factor sensitivity is much more significant for polluted areas than 

for unpolluted areas at surface albedos < 0.2 (Boersma et al., 2004), which results 

in an underestimate in tropospheric NO2 column retrievals in urban and suburban 

areas;  

 The ground-level NO2 gradients are sharp around cities (Blond et al., 2007), 

which may lead to an underestimate in the OMI-derived ground-level NO2 

concentrations compared to the surface measurements.  

 (C) The difference between the GMSMB modeling results and the in-situ measurements 
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    Figure 6-5 (b) compares the GMSMB modeling results with the corrected in-situ 

surface measurements on an annual average basis. The higher slope of 0.82 ± 0.04, the 

intercept of 0.40 ± 0.65, and the higher correlation coefficient of 0.88 show that the 

GMSMB modeling results are more consistent with the in-situ surface measurements 

than the OMI-derived ground-level NO2 concentrations. This is probably due to the 

better spatial resolution (10 km × 10 km) than the GEOS-Chem simulation (0.5° × 

0.667°, approximately 50 km × 67 km) and better GMSMB modeling results using the 

updated 2008 National Emissions Inventory (NEI, version 2) (US EPA, 2012). The slope 

is changed to 0.84 ± 0.01 when the intercept is set to zero. This indicates that the 

modeling results are generally underestimated compared to the in-situ surface 

measurement data by 16 ± 1 %. This bias is possibly due to the comparison between the 

grid average cell-area values and the point measurements.   

(D) The difference between the OMI-derived ground-level NO2 concentrations and the 

GMSMB modeling results 

     Figure 6-5 (c) compares the OMI-derived ground-level NO2 concentrations with 

the GMSMB modeling results on an annual average basis. The figure shows the slope 

of 0.87 ± 0.04 and the intercept of 0.20 ± 0.56. The slope becomes to 0.90 ± 0.00 with 

the intercept at zero, and this indicates that the OMI-derived NO2 concentrations are 

slightly underestimated with respect to the GMSMB modeling results by 10 %. The 

strong correlation (r = 0.90) shows that the GMSMB modeling results and the OMI-

derived ground-level NO2 concentrations are positively correlated on a yearly basis. The 

differences between them can be attributed to the errors from the OMI data analysis as 

discussed previously. In addition, there are some uncertainties in the GMSMB modeling 

results caused by the unconsidered NO2 reactions in the atmosphere and the limited 

accuracy of the emission inventory data.  

6.7.2. Exposures assessment and air quality management 

   Figure 6-6 gives the population-weighted results of the annual average NO2 

exposure concentrations at the OMI overpass time (12:00 to 14:00 local time) for the 

state of California in 2008. The results are calculated for the categorized air basins in 

California based on the OMI-derived ground-level NO2 concentrations (Figure 6-4(b)) 
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and are weighted by the local population density distributions achieved from the U.S. 

Census Bureau (2011). The figure shows that the south coast area has the highest NO2 

exposure concentration (20.05 ppb). The San Francisco Bay Area, San Diego, and the 

San Joaquin Valley have medium level NO2 exposure concentrations (13.85 ppb, 12.32 

ppb, and 10.86 ppb, respectively). The remaining areas have lower NO2 exposure 

concentrations (< 10 ppb). The assessment results are in agreement with findings in 

Wang and Chen (2013). 

 

Figure 6-6 Annual average population-weighted NO2 exposure concentrations at OMI 

overpass time (12:00 to 14:00 local time) map for the state of California in 2008.  

    Lastly, satellite remote sensing technology and new environmental sensors such as 

OMI provide a novel method to monitor NO2 in the atmosphere. The on-going evolution 

of satellite remote sensing technology is expected to further improve the spatial and 

temporal coverage (i.e., monitoring on cloudy days in winter time as the no-data grey 

areas indicated in Figure 6-1 and Figure 6-2) as well as the accuracy of NO2 monitoring 

to support air quality management (e.g., Kassianov and Ovtchinnikov, 2008).   

6.8 Summary 
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     This study explores the ground-level NO2 concentration derived from the satellite 

OMI tropospheric NO2 vertical column densities based on the global 3-D chemical 

transport model GEOS-Chem for the state of California. The results are cross-verified 

by a GMSMB modeling approach and the local in-situ surface measurements.   

        The OMI tropospheric NO2 VCDs and the OMI-derived ground-level NO2 

concentrations correlate well with the surface measurements spatially and temporally 

for location coverage and seasonal variations, which demonstrates that most of the 

variability of ground-level NO2 concentrations can be explained by the OMI-retrieved 

tropospheric NO2 VCDs under cloud-free conditions (cloud fractions < 20 %). The 

correlation coefficients between the seasonal average OMI tropospheric NO2 VCDs and 

the OMI-derived ground-level NO2 concentrations are greater than 0.84 for the four 

seasons, which exhibit that the GEOS-Chem simulation is very efficient for deriving the 

ground–level NO2 concentrations from OMI tropospheric NO2 VCDs. The comparison 

between the seasonal average OMI-derived NO2 concentrations and the corrected 

surface measurements illustrates that the OMI derived ground-level NO2 concentrations 

are underestimated compared to the measurements by 13 – 27 % on average with a more 

negative bias in winter.  

        The intercomparison among the OMI-derived, the GMSMB modeling and the 

corrected surface measurement results shows that the OMI derived ground-level NO2 

concentrations are underestimated compared to the corrected measurements by 25 ± 1 %, 

to the GMSMB modeling results by 10 % on a yearly basis. While the GMSMB 

modeling results are generally underestimated compared to the corrected measurement 

data by 16 ± 1 %. Despite the proportionate bias in the OMI-derived and the GMSMB 

modeling results, the presented results demonstrate that the satellite derived data could 

make up for the limited monitoring stations on the ground, quantitatively monitor the 

regional transport and fate of NO2, and validate the effective air quality models. This 

study also reveals that a multi-disciplinary consideration of the dynamic satellite data 

analysis, meteorology, pollutants’ fate and transport, air quality modeling, and in-situ 

measurements provides the best results of the exposure assessment and effectively 

supports the regional air pollution control management.  
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   The related uncertainties have been analyzed in this study including results 

variations among different methods and regional and seasonal biases in tropospheric 

NO2 column retrievals. It points out that the OMI tropospheric NO2 column retrievals 

for monitoring ground level NO2 can be improved, suggesting further studies on the 

tropospheric air mass factor, the local NO2 profile, and the high-resolution cloud fraction 

and surface albedo maps. 
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Chapter 7    Satellite-derived Concentration 

Distribution of Ground-level PM2.5  

 ---A Case Study for Montreal, Canada 

        This chapter presents a case study to evaluate the improved aerosol optical depth 

(AOD) retrieval algorithm (see Chapter 3) for the MODIS satellite instrument at 1-km 

resolution over the city of Montreal, Canada in the year of 2009. The satellite-retrieved 

AODs at 1-km resolution are used to derive the ground-level PM2.5 concentrations using 

the aerosol vertical profiles obtained from the GEOS-Chem simulation.   

7.1 Overview of the Study Area 

        Montreal is the largest city in the Quebec province of Canada, which is also 

the second-largest city in Canada and the fifteenth-largest city in North America. This 

study focuses on the most populous area – the island of Montreal (45°30′N, 73°35′W). 

The city of Montreal is situated on the island of Montreal on the Saint Lawrence River 

with a population of 1,649,519 as of the 2011 census (Statistics Canada, 2012). The land 

area is about 365.13 km2 with a population density of 4,517.6 persons / km2 (Statistics 

Canada, 2012).  

       There are 17 monitoring stations located throughout the island of Montreal, as 

shown in Figure 7-1, which are part of the Réseau de surveillance de la qualité de l’air 

(RSQA) (Boulet and Melancon, 2009) and are integrated into the National Air Pollution 

Surveillance Network (NAPS) (Environment Canada, 2010). Among these monitoring 

stations, only 11 monitoring stations have PM2.5 measurements. Data collected in these 

monitoring networks in 2009 showed that there were 68 days with air quality rating of 

“poor”, fine particles alone accounted for 67 of the poor air quality days (Boulet and 

Melancon, 2009).  

http://en.wikipedia.org/wiki/Quebec
http://en.wikipedia.org/wiki/Provinces_and_territories_of_Canada
http://en.wikipedia.org/wiki/Canada
http://en.wikipedia.org/wiki/List_of_largest_cities_and_second_largest_cities_by_country
http://en.wikipedia.org/wiki/List_of_the_largest_urban_agglomerations_in_North_America
http://en.wikipedia.org/wiki/North_America
http://en.wikipedia.org/wiki/1_E%2B8_m%C2%B2
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Figure 7-1 RSQA monitoring stations on the island of Montreal (Boulet and Melancon, 

2009). 

7.2 MODIS AOD Retrieval at 1-km Resolution 

        The new algorithm described in section 3.3 is used to retrieve AOD at 1 km × 1 km 

resolution over the city of Montreal, Canada in 2009. The 1 km resolution Terra/MODIS 

level 1B calibrated reflectances (MOD021km), MODIS geolocation data (MOD03, 

including a DEM and Sun-Sat geometry), MODIS level 2 1 km surface reflectance 

products (MOD09), MODIS cloud mask products (MOD35), and MODIS level 2 

aerosol products (MOD04) of the year 2009 in collection 5, are downloaded from the 

NASA Goddard Space Flight Center Level 1 and Atmosphere Archive and Distribution 

System (LAADS) (NASA, 2012a).  

         The pixels are first selected by cloud and water masks as described in section 3.3. 

Then the Rayleigh path reflectance is calculated based on the spectral dependence of the 

Rayleigh optical depth and phase function (Wong et al., 2010). The surface reflectances 

at 0.47 and 0.66 µm (𝜌0.47
𝑠 , 𝜌0.66

𝑠 ) are first derived from the top-of-atmosphere (TOA) 

reflectance at 2.13 µm (𝜌2.13
∗ ) in the MODIS L1B 1 km calibrated data using the 

empirical relationships, and then validated with MODIS surface reflectance products 

(MOD09) at 1 km. Finally, the aerosol reflectances 𝜌𝜆
𝑎  at 0.47 and 0.66 µm are 
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decomposed from TOA reflectance, Rayleigh path reflectances and surface reflectances 

and fitted with the LUT created by the 6S Radiative Transfer Code. The aerosol optical 

properties modeled by the 6S code are iteratively updated until the error term of x2 is 

minimum (Drury et al., 2008). The aerosol optical depths at 0.47 µm and 0.66 µm (
0.47 ,

0.66 ) are obtained from the LUT and are interpolated to 0.55 µm AOD ( 0.55 ). 

7.3 Estimating Ground-level PM2.5 from 1 km × 1 km AOD 

Retrievals 

       The satellite-retrieved AODs are used to derive the ground-level PM2.5 

concentrations using the local scaling factors obtained from the GEOS-Chem aerosol 

simulation. The local scaling factors η from 0.5° × 0.667° grid cells (the resolution of 

the GEOS-Chem simulation), are interpolated to 0.01° × 0.01° (approximately 1 km × 1 

km) to derive the ground-level PM2.5 concentrations from the retrieved AOD values at 

the satellite overpass time (10:30 local time). 

7.4 Results and Validation 

7.4.1. Validation of retrieved aerosol optical depth 

        The annual mean AODs at 1 km × 1 km resolution are retrieved from the 1-km 

resolution Terra/MODIS level 1B calibrated reflectance (MOD021km) for Montreal, as 

shown in Figure 7-2(a). Since there is no aerosol measurement in Montreal, the annual 

mean MODIS level 2 aerosol products (MOD04) at 10 km × 10 km, which are 

interpolated to 1 km × 1 km, as shown in Figure 7-2(b), are used to validate the AOD 

retrievals in this study. The main road network is overlayed on the annual mean AODs 

to illustrate the geographic information. 
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Figure 7-2 Annual mean aerosol optical depth at 0.55 µm for Montreal in 2009. (a) 

AODs retrieved at 1-km resolution in this study. (b) AODs from MODIS level 2 aerosol 

products (MOD04) interpolated to 1 km × 1 km. The white areas are water bodies. 

       Figure 7-2 shows there are generally agreement between the retrieved AODs from 

this study and the MODIS standard products level 2 of AODs in collection 5. Both of 

them illustrate that the higher AOD values mainly occur in the island of Montreal, 

especially in downtown (around rue Sherbrooke and Ville-Marie), the airport of Dorval, 

and some industrial resources, such as gas and oil facilities, mining pit and waste 

treatment plant. There are relatively lower AOD values in the areas around the island of 

Montreal. This is reasonable since the island of Montreal has the most dense population 

and commercial activities than the surrounding areas. The higher AOD values also occur 

along the main roads and highways, for example, the rue Sherbrooke, highway 15 and 

40, which imply that the traffic emissions are also main reason for the higher AODs in 

Montreal. The error analysis for the sampling locations shows an average bias (relative 

error) of 10 %. All of these tend to confirm that the results in this study are at least 

equivalent to the standard MODIS product with a spatial resolution 100 times higher.  

        However, there are some differences between the AODs retrieved from this study 

and the MODIS collection 5 AODs. The AOD values in this study are ranging from 0.01 

to 0.19, while in MODIS collection 5 are ranging from 0.01 to 0.17. The retrieved AODs 

from this study are slightly higher than the MODIS collection 5 AODs. This is possibly 

due to the different grid sizes used in the retrieval. In MODIS collection 5 aerosol 

products, the coarser resolution (10 km × 10 km) is used which not only results less 

app:ds:surrounding
app:ds:area
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accurate in the products, but also visually and spatially inferior. The AOD values have 

to be interpolated to the same size (1 km × 1 km) as the AOD retrievals from this study. 

It is also ineffective for aerosol mapping in urban areas since their high reflectance 

values cannot meet the criteria in the operational algorithm. While the method developed 

in this study can retrieve AODs at a higher spatial resolution than previously and can 

operate over both bright and dark surfaces. This also demonstrates that there are 

significant improvements in the retrieved AODs from this study than the MODIS 

collection 5 level 2 aerosol products. However, there are also some limitations in our 

retrieval algorithm. One is the Lambertian approximation which results errors from 

incomplete removal of atmospheric scattering effects, and largely simplifies the 

radiative transfer model. The other one is the aerosol model set in the 6S code which is 

fixed to the urban case. It is possible to prescribe the model of aerosol as it is suggested 

by Kaufman et al. (1997), depending on the geographic location. However, the actual 

model may differ significantly from the actual aerosol (Vermote and Kotchenova, 2008). 

The choice of the aerosol model is critical to improve the AOD retrieval accuracy. 

7.4.2 Validation of ground-level PM2.5  

       The satellite-derived annual mean PM2.5 concentrations at the satellite overpass time 

(10:30 local time) for Montreal in 2009 is shown in Figure 7-3(a). The satellite-derived 

PM2.5 concentrations are compared with the in-situ surface measurements at the satellite 

overpass time from the National Air Pollution Surveillance (NAPS) Network 

(Environment Canada, 2010). There are 10 surface monitoring stations available for 

PM2.5 measurement in Montreal, as shown in Figure 7-3(b).  

        Figure 7-3 (a) shows the satellite-derived ground-level PM2.5 concentrations are 

ranging from 1 to 14 µg/m3. The upper bound slightly exceeds the U.S EPA National 

Ambient Air Quality Standard (NAAQS) (annual mean 12 μg/m3) (USEPA, 2012), and 

the World Health Organization (WHO) guideline (10 μg/m3) (WHO, 2009). In Canada, 

the National Ambient Air Quality Objectives (NAAQO) only set a limit for total 

suspended particulates, but not PM2.5 (Environment Canada, 2012). The higher PM2.5 

concentrations occur in downtown, the airport and industrial areas since there are more 

local emissions, such as the wood heating of restaurants, superimposed upon the regional 

background resulting in a deterioration of air quality in its immediate surroundings 
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(Boulet and Melancon, 2009). The higher PM2.5 concentrations also occur along the 

main roads and highways, which imply that traffic emissions are the major sources of 

PM2.5 in Montreal. This is consistent with the retrieved AODs from this study (Figure 7-

2 (a)).       

 

Figure 7-3 Comparison between satellite-derived annual mean ground-level PM2.5 and 

in-situ surface measurements. (a) satellite-derived annual mean ground-level PM2.5 

concentrations (µg/m3) at 1 km × 1 km resolution from this study for Montreal in 2009; 

(b) in-situ surface measurement stations in the NAPS Network (Environment Canada, 

2010). The numbers are the station codes and the colors illustrate the annual mean 

measurement values at the satellite overpass time (10:30 local time).  

         Figure 7-3 (b) shows the in-situ surface measurement stations in the NAPS 

Network (Environment Canada, 2010), with the colors to illustrate the annual mean 

measurement values at the satellite overpass time (10:30 local time). It can be seen that 

the satellite-derived annual mean ground-level PM2.5 concentrations from this study are 

quiet consistent with the in-situ surface measurements at the monitoring stations. 

        To further evaluate the satellite-derived annual mean ground-level PM2.5 

concentrations and indirectly validate our retrieval algorithm, the ground-level PM2.5 

concentrations are also derived from the MODIS level 2 aerosol products which is at 10 

km × 10 km resolution, using the same method as used in the 1 km × 1 km aerosol 

retrievals from this study. The local scale factors are obtained from the GEOS-Chem 

simulation. Both of the satellite-derived annual mean ground-level PM2.5 concentrations 
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(from 1-km and 10-km resolution AOD) at the NAPS measurement stations are list in 

Table 7-1, and compared with the in-situ measurements.  

Table 7-1  Comparison among the annual average PM2.5 concentrations derived from the 

AODs at 1-km resolution, derived from the MODIS level 2 aerosol products at 10-km 

resolution, and the NAPS in-situ measurements (Environment Canada, 2010). 

NAPS 

Station 

1-km 

resolution 

(μg/m3) 

10-km 

resolution 

(μg/m3) 

NAPS 

measurements 

(μg/m3) 

Dev. 1 

(%) 

Dev. 2 

(%) 

50103 10.12 10.81 11.36 -11.09 -4.93 

50105 12.83 11.82 13.31 -3.83 -11.34 

50109  11.31 10.35 12.46 -9.31 -17.34 

50110 9.83 9.41 11.31 -13.35 -16.89 

50126 9.15 9.52 9.36 -2.78 1.50 

50128 11.23 9.71 11.70 -4.27 -17.09 

50129 9.72 8.94 10.03 -3.29 -11.27 

50131 12.63 11.52 12.54 0.48 -8.29 

50133 11.91 10.64 11.76 1.19 -9.86 

50134 10.82 10.21 11.40 -5.26 -10.53 

Mean    -5.15 -10.60 

Note: Dev 1 is the deviation between the annual average PM2.5 concentrations derived from the AODs 

retrieved in this study at 1-km resolution and the NAPS in-situ measurements;  

Dev 2 is the deviation between the annual average PM2.5 concentrations derived from the MODIS level 2 

aerosol products at 10-km resolution and the NAPS in-situ measurements. 

       From Table 7-1, it can be seen that the biases (relative error) of ground-level PM2.5 

concentrations derived from the AODs retrieved in this study are ranging from 1.19 % 

to -13.35 %, with a mean bias of -5.15 %. The biases of ground-level PM2.5 

concentrations derived from the MODIS level 2 aerosol products at 10-km resolution 

are ranging from 1.5 % to -17.34 %, with a mean bias of -10.60 %. It is evident that the 

ground-level PM2.5 concentrations derived from the AODs retrieved in this study are 

better than that derived from the MODIS level 2 aerosol products at 10-km resolution. 

This indirectly validates the AOD retrieval algorithm developed in this study.  

7.4.3 Discussion 
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       The regression analysis shows the same conclusion as the error analysis, as shown 

in Figure 7-4. 

 

Figure 7-4 Scatter plot of satellite-derived annual mean ground-level PM2.5 

concentrations (µg/m3) compared with the in-situ measurements from the NAPS 

Network (Environment Canada, 2009): (a) derived from the AODs retrieved at 1 km × 

1 km resolution in this study; (b) derived from the MODIS level 2 aerosol products at 

10 km × 10 km resolution. The dashed line is the 1:1 line and the solid line is the trend 

line. 

        Figure 7-4 (a) shows a good agreement (r = 0.90, slope = 0.9724 ± 0.0035, intercept 

= 0.2747 ± 0.0012) between the satellite-derived annual average PM2.5 concentrations 

and the in-situ surface measurements at all monitoring stations. The hereinafter referred 

uncertainties incorporating slope and intercept are standard errors, which are 

determined following the approach described in Celarier et al. (2008). This validates the 

satellite-derived annual mean PM2.5 concentrations and indirectly validates the AOD 

retrieval algorithm developed in this study. However, the satellite-derived annual 

average PM2.5 concentrations are slightly underestimated compared to the in-situ 

measurements. This is probably due to the comparison between the point values (in-situ 

measurements) to grid values (satellite-derived), as discussed in Wang and Chen (2013). 

All monitoring stations are located at the downtown, intersections of main roads or 

highways where there are the highest PM2.5 concentrations in Montreal. This is likely 

another reason. In addition, the PM2.5 measurement methods in Canada lead to a 

significant error in the determination of annual average PM2.5 concentrations (Brook et 
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al., 2007). Therefore, the underestimates is not a sign of errors in the satellite-derived 

PM2.5 concentrations, while probably due to the shortcoming in the in-situ measurements. 

On the other hand, it is true that the AOD retrievals may be affected by the uncertainties 

on ancillary data, such as pressure, ozone amount, and water vapor amount. 

        Figure 7-4 (b) shows the comparison between the PM2.5 concentrations derived 

from the MODIS level 2 aerosol products at 10 km × 10 km resolution and the in-situ 

measurements at all monitoring stations. The agreement decreases to a lower level (r = 

0.80, slope = 0.6407 ± 0.0003, intercept = 2.8871 ± 0.0065). This illustrates that the 1 

km × 1 km aerosol retrievals from this study have significant improvements than the 

MODIS standard aerosol products. 

        Besides the in-situ surface measurements, some results for PM2.5 in Montreal are 

found from other studies. One is from the study of van Donkelaar et al. (2010). They 

mapped global ground-level PM2.5 concentrations using total column AOD from the 

MODIS and MISR satellite instruments and coincident aerosol vertical profiles from the 

GEOS-Chem model. The mean PM2.5 concentrations in Montreal between 2001 and 

2006 are ranging from 1 to 13 μg/m3, which is in line with our results (1 - 14 μg/m3). 

The other one is from the study of Martin (2011). He used various statistical analysis 

methods to forecast the PM2.5 concentrations in the island of Montreal from 2004 - 2007. 

According to his study, at the Maisonneuve station, the annual average PM2.5 

concentration is 7.9 μg/m3, and at the Airport Station, the PM2.5 concentration is 8.2 

μg/m3. These results are lower than both our results and the in-situ measurements from 

the NAPS Network (Environment Canada, 2010). This is possibly due to the different 

periods used in the studies and the biases in the statistical analysis methods. 

7.5 Summary 

        This chapter presents a case study of aerosol optical depth (AOD) retrieval using 

the developed algorithm for the MODIS satellite instrument at 1-km resolution over the 

island of Montreal, Canada in the year of 2009. The AOD retrievals from this study are 

spatially consistent with the MODIS collection 5 level 2 aerosol products with a much 

better resolution (1 km × 1 km vs. 10 km × 10 km). The satellite-retrieved AODs at 1-

km resolution are used to derive the ground-level PM2.5 concentrations using the local 
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scaling factors obtained from the GEOS-Chem aerosol simulation. The satellite-derived 

ground-level PM2.5 concentrations are ranging from 1 to 14 µg/m3 which are in line with 

the results from other literatures. The estimates are in good agreement (r = 0.90, slope = 

0.9724 ± 0.0035, intercept = 0.2747 ± 0.0012) with the in-situ surface measurements at 

all monitoring stations, which are much better than the PM2.5 concentrations derived 

from the standard MODIS 10-km AOD products compared with the in-situ 

measurements level (r = 0.80, slope = 0.6407 ± 0.0003, intercept = 2.8871 ± 0.0065). 

All of these validate the PM2.5 results derived from the AODs retrieved at 1-km 

resolution in this study. This also indirectly validates the developed AOD retrieval 

algorithm. It is suggested that the method in this study can retrieve AODs at a higher 

spatial resolution than previously and can operate on an urban scale for PM2.5 assessment.  
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Chapter 8    Ground-level PM2.5 Investigation 

and Health Risk Assessment in the Extended 

East Asia 

        An environmental performance index (EPI) developed by the Yale Center for 

Environmental Law and Policy and Columbia’s Center for International Earth 

Information Science Network (CIESIN) has ranked 132 countries based on 25 

performance indicators (including PM2.5, SO2 and CO2 emission per unit GDP, air 

effects on human health, Mortality, etc.) (Yale University, 2012). These indicators 

provide a gauge of how environmental performance at a national scale. According to the 

2012 EPI and pilot trend results, China, South Korea and Japan (belong to the East Asia) 

are ranked at 116, 43, and 23, respectively; India (belongs to the South Asia) is ranked 

at 125 among 132 countries (Yale University, 2012). These four countries represent the 

general environmental situations in developing and developed countries. It is highly 

significant to study the air quality in these areas. However, none has presented year-by-

year trends with up-to-date activity rates and regression analysis with influential factors 

for the East Asia and India, even the highest PM2.5 concentrations in the world have been 

identified in these areas (van Donkelaar et al., 2006; 2010). Therefore, this case study 

investigates the ground-level PM2.5 concentrations for the extended East Asia by 

applying the local scaling factors obtained from the global atmospheric chemical 

transport model (GEOS-Chem) to MODIS and MISR columnar AODs.  

8.1 Derivation of Ground-level PM2.5 Concentration from 

Satellite-based AOD 

        This study focuses on the East Asia extended to India (18°N to 54°N, 70°E to 

142°E) which includes China, India, Japan, and South Korea for the period of 2001 to 

2011. The MODIS Terra Level-2 aerosol data (collection 5) covering the East Asia and 

India are downloaded from the Earth Observing System Data Gateway at the NASA 

Goddard Space Flight Center (NASA, 2012a). The MISR Level-2 data (Version 17) 

covering the same areas are obtained from the Atmospheric Sciences Data Center at the 

http://epi.yale.edu/
http://yale.edu/envirocenter
http://yale.edu/envirocenter
http://ciesin.columbia.edu/
http://ciesin.columbia.edu/
http://ciesin.columbia.edu/
http://ciesin.columbia.edu/
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NASA Langley Research Center (NASA, 2012b). The aerosol vertical profiles, which 

are used to calculate the local scaling factors of AOD in the lower atmosphere, are 

simulated by the GEOS-Chem model at 0.5º × 0.667º horizontal resolution and 47 

vertical levels for the extended East Asia. The assimilated meteorology of GEOS-5 is 

used in the simulation to compute the surface factor AOD. Anthropogenic emissions are 

replaced by the NASA’s 2006 Intercontinental Chemical Transport Experiment-Phase 

B (INTEX-B) emission inventory (Zhang et al., 2009).       

       The methods developed by Liu et al. (2007) and van Donkelaar et al. (2010) are 

combined to derive the ground-level PM2.5 concentrations (see Chapter 3.3.2). The factor 

that relates satellite-derived surface factor AOD to ground-level PM2.5 concentrations, η, 

determined from the ratio of simulated dry aerosol mass to simulated surface factor AOD 

at satellite overpass (van Donkelaar et al., 2006). In this study, η is estimated at 50 % 

relative humidity for the extended East Asia (which is in agreement with the European 

ground-based measurements). The values of η from 0.5º × 0.667º grid cells (the 

resolution of the GEOS-Chem simulation) are interpolated to 0.1° × 0.1° (approximately 

10 km × 10 km, which is consistent with MODIS resolution) for applying to satellite-

derived surface factor AOD.  

8.2 Regression Analysis 

        Take Beijing as an example, the ground-level PM2.5 concentrations are associated 

with many factors, such as economic growth, population, coal consumption, soot and 

dust discharge, gas emission, and meteorological conditions. The general linear 

regression model (GLM) in the SPSS (Statistical Package for the Social Science) (IBM, 

2012) is used to build the regression equation between PM2.5 concentrations and 

influential factors. The adjusted R2 value serves as the primary measure of model 

performance and selection criterion. The physical interpretations of parameter estimates 

also serve as an important model selection criterion. At the comparable adjusted R2 

levels, the model with positive regression coefficients for economic growth, population, 

coal consumption, soot and dust discharge, gas emission, and negative regression 

coefficient for precipitation is selected as the final model because it is physically 
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meaningful. Based on the regression equation, the future trend of PM2.5 for the next 4 

years (2012 - 2015) is predicted for Beijing.   

8.3 Results and Analysis 

8.3.1 Validation with surface truth and literatures 

        The annual average ground-level PM2.5 concentrations are derived from the satellite 

AOD for the extended East Asia during 2001-2011. The results are evaluated by the in-

situ surface measurements or literatures in six major cities: Beijing, Hong Kong, New 

Delhi, Kolkata, Tokyo, and Seoul. 

        In Beijing, there is no official PM2.5 monitoring values available during 2001 to 

2011. Thereby, the published results from literatures (He et al., 2001; Duan et al., 2006; 

Zhao et al., 2009; Yang et al., 2011; U.S. Embassy, 2012) and PM10 monitoring values 

(Beijing Municipal Environmental Protection Bureau, 2001 - 2011) are used to evaluate 

the satellite-derived annual average ground-level PM2.5 concentrations. In Hong Kong, 

the PM2.5 and PM10 monitoring values are obtained from the Environmental Protection 

Department of the Government of the Hong Kong Special Administrative Region 

(Environmental Protection Department of Hong Kong, 2001 - 2011). In India, the 

Respirable Suspended Particulate Matter (RSPM), i.e. PM10 monitoring values are 

obtained from the Ministry of Environment & Forests Government of India (Ministry of 

Environment & Forests Government of India, 2009). It has been reported that the 

average ratio of PM2.5 to PM10 is 0.61 to 0.91 in India by Kumar and Joseph (2006). The 

PM2.5 monitoring values are achieved by a factor of 0.7 with PM10 monitoring values. 

For Tokyo, the monitoring values of PM10 are obtained from the Environment of Tokyo 

(Environment of Tokyo, 2011). A PM2.5/PM10 ratio of 0.5 - 0.8 is the typical range found 

in developed country urban areas (WHO, 2006b). Thus, the ratio of 0.7 is taken as the 

factor to convert the PM10 monitoring values to PM2.5. For Seoul, the monitoring values 

of PM10 are obtained from the Ministry of Environment of Korea (Ministry of 

Environment of Korea, 2011), and are converted to PM2.5 using the same factor as Tokyo. 

Figure 8-1 presents the comparisons of satellite-derived annual average ground-level 

PM2.5 concentrations with the monitoring values or literatures for major cities in the East 

Asia and India.  
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        WHO has set 10 µg/m3 as the guideline value for annual average PM2.5 

concentration. Besides the guideline value, three interim targets (IT) are defined for 

PM2.5. The first target level (IT-1) is set as 35 µg/m3, the second level (IT-2) is set as 25 

µg/m3, and third target level (IT-3) is set as 15 µg/m3 (WHO, 2006b). The first target 

level (IT-1) is also marked in Figure 8-1 because this level has been shown to be 

associated with significant mortality in the world (WHO, 2006b). 

       Figure 8-1 (a) shows the comparison between the satellite-derived annual average 

ground-level PM2.5 concentrations and the published results or the monitoring values 

converted from PM10 monitoring values for Beijing (He et al., 2001; Duan et al., 2006; 

Zhao et al., 2009; Yang et al., 2011; U.S. Embassy, 2010). The differences vary from -

1.4 µg/m3 to -8.0 µg/m3. The linear regression analysis illustrates that the satellite-

derived annual average ground-level PM2.5 concentrations are quite consistent with the 

published results (r = 0.96, slope = 0.87, intercept = 4.86). It also can be seen that the 

annual average ground-level PM2.5 concentrations are three times higher than the WHO 

IT-1 level (35 µg/m3) in Beijing.  

        Figure 8-1 (b) shows the comparison between the satellite-derived annual average 

ground-level PM2.5 concentrations and the monitoring values in Hong Kong. The 

differences vary from -1.1 µg/m3 to 3.6 µg/m3. The linear regression between satellite-

derived and monitored PM2.5 concentrations shows good agreement (r = 0.86, slope = 

0.93, intercept = 2.83). 

        Figure 8-1 (c) and (d) show the comparisons between the satellite-derived annual 

average ground-level PM2.5 concentrations and the converted PM2.5 from PM10 

monitoring values in India. Only 2001-2008 PM10 monitoring values are found. The 

differences for New Delhi and Kolkata vary from -10.1 µg/m3 to 2.6 µg/m3 and -3.2 

µg/m3 to -6.4 µg/m3. The linear regression yields r = 0.90, slope = 1.02, intercept = 3.12 

for New Delhi, and r = 0.96, slope = 1.19, intercept = 2.01 for Kolkata.      

        Figure 8-1 (e) shows the comparison between the satellite-derived annual average 

ground-level PM2.5 concentrations and the monitoring values in Tokyo. The differences 

vary from 0.6 µg/m3 to 3.1 µg/m3. The linear regression shows good agreement (r = 0.98, 

slope = 0.91, intercept = 0.32).  
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        Figure 8-1 (f) shows the comparison between the satellite-derived annual average 

ground-level PM2.5 concentrations and the monitoring values in Seoul. The differences 

vary from -4.7 µg/m3 to 1.4 µg/m3. The linear regression shows r = 0.97, slope = 1.14, 

intercept = 1.82. 

    

    

      

Figure 8-1 Comparisons between satellite-derived annual average ground-level PM2.5 

concentrations and monitoring values or literatures. The black solid line is the WHO IT-

1 level (35 µg/m3) (WHO, 2006b).   
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       In general, the satellite-derived ground-level PM2.5 concentrations tend to be slightly 

lower than the monitoring values in the cities with higher PM2.5 concentrations, such as 

Beijing, New Delhi, Kolkata, Hong Kong and Seoul, while tend to be slightly higher 

than the monitoring values in the cities with lower PM2.5 concentrations, such as Tokyo. 

This is in line with the conclusions from other literatures that satellite data underestimate 

the ground-level pollutant concentrations in highly polluted areas and overestimate the 

ground-level pollutant concentrations in less polluted areas (Suutari et al., 2001; Vautard 

et al., 2003). This is probably due to that the monitoring sites are primarily clustered in 

populated and more polluted areas while the satellite-derived values provide more 

complete coverage of hundred square kilometers.  

8.3.2 Annual average ground-level PM2.5 concentrations  

       The annual average ground-level PM2.5 concentrations derived from the satellite 

data in eight representative cities: Beijing, Shanghai, Guangzhou, Hong Kong, New 

Delhi, Kolkata, Tokyo, and Seoul, are presented in Table 8-1. 

Table 8-1 Satellite-derived annual average ground-level PM2.5 concentrations for eight 

representative cities in the extended East Asia (unit: µg/m3). 

Year Beijing Shanghai Guangzhou 
Hong 

Kong 

New 

Delhi 
Kolkata Tokyo Seoul 

2001 107.4 103.3 70.6 36.1 90.7 80.4 28.6 45.7 

2002 102.7 98.2 73.4 35.6 110.5 90.2 26.2 48.5 

2003 105.8 101.8 86.5 41.2 102.6 83.5 25.5 44.2 

2004 94.3 90.1 92.8 45.5 105.4 85.6 22.8 39.3 

2005 105.6 98.6 92.3 44.7 90.3 81.8 21.2 36.4 

2006 125.2 113.7 93.6 43.3 105.7 82.7 22.6 38.3 

2007 120.5 108.4 88.2 38.9 101.9 80.3 20.3 38.8 

2008 109.4 105.5 90.7 39.8 109.3 88.6 18.2 36.4 

2009 89.7 97.3 76.5 38.7 97.8 85.5 18.4 36.3 

2010 101.6 94.5 74.1 37.4 100.2 82.4 16.7 35.7 

2011 95.5 103.4 78.4 35.6 104.5 89.3 15.4 34.5 

Average 105.3 101.4 83.4 39.7 101.7 84.6 21.5 39.5 
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        From Table 8-1, it can be seen that, in most cities except Tokyo, the annual average 

PM2.5 concentrations all exceed the WHO IT-1 level (35 µg/m3). Figure 8-2 illustrates 

the areas with PM2.5 concentrations exceeding the WHO three interim targets (35 µg/m3, 

25 µg/m3, and 15 µg/m3) (WHO, 2006b) in 2002, 2006, 2008, and 2010, respectively. 

 

Figure 8-2 Areas with annual average ground-level PM2.5 concentrations derived from 

the satellite data exceeding: (a) - (d) the WHO IT-1 level (35 µg/m3) in 2002, 2006, 2008, 

and 2010, respectively; (e) the WHO IT-2 level (25 µg/m3) in 2010; and (f) the WHO 

IT-3 level (15 µg/m3) in 2010.  



121 

 

       Figure 8-2 (a) - (d) show that the areas with PM2.5 concentrations exceeding the 

WHO IT-1 level (35 µg/m3) are most located in the developing countries China and 

India. In China, the higher PM2.5 concentrations focus on the northern and southern large 

cities, such as Beijing, Shanghai, Chongqing, Wuhan, and Guangzhou, where there are 

large populations and fast economic growth. The highest PM2.5 concentration (125.2 

µg/m3) is found in Beijing in 2006, which is higher than the WHOIT-1 level by 3.6 times. 

Hong Kong lightly exceeds the WHO IT-1 level due to suffering from cross-boundary 

pollutants which are emitted from the industries in Pearl River Delta Region (Yang et 

al., 2011). The western Taklamakan Desert, which is the largest desert in China, second 

largest desert in the world, also has higher PM2.5 concentrations due to the industries in 

surrounding cities and dry and cold climate (Yang et al., 2011). In India, the higher PM2.5 

concentrations occur along the northern and eastern urban areas, such as New Delhi and 

Kolkata. The highest PM2.5 concentration (110.5 µg/m3) is found in New Delhi in 2002, 

which is 3.2 times higher than the WHO IT-1 level. There are relative lower PM2.5 

concentrations in the developed countries Japan and Korea. There is no area exceeds the 

WHO IT-1 level except Seoul in these countries.  

        Figure 8-2 (e) shows that the areas with PM2.5 concentrations exceeding the 

WHOIT-2 level (25 µg/m3) are also most located in the developing countries China and 

India and extended to Seoul. Figure 8-2 (f) shows that the areas with PM2.5 

concentrations exceeding the WHOIT-3 level (15 µg/m3) are most located in China, 

India and extended to Seoul and Tokyo.  

        Figure 8-3 shows the change trends in 8 representative cities. In general, there are 

increasing trends in most cities during 2001-2006, and there are slightly decreasing 

trends since then. Especially in Beijing, Shanghai, Guangzhou, and Hong Kong, there 

are obvious decreasing trends on PM2.5 concentrations in these cities. While there are 

slightly increasing trends in New Delhi and Kolkata. 
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Figure 8-3 PM2.5 change trends in eight representative cities: Beijing, Shanghai, 

Guangzhou, Hong Kong, New Delhi, Kolkata, Tokyo, and Seoul during 2001-2011. 

8.3.3 11-year average ground-level PM2.5 concentrations 

        Figure 8-4 shows the 11-year average ground-level PM2.5 concentrations derived 

from satellite data during 2001 - 2011. The mean PM2.5 concentrations vary spatially by 

more than an order of magnitude. A large-scale PM2.5 enhancement is apparent over the 

northern and southern urban areas and the western desert regions in China, and the 

northern and eastern urban areas in India. The eastern and northern parts of the East Asia 

are generally characterized by low PM2.5 concentrations, with a few exceptions. 
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Figure 8-4 11-year average satellite-derived ground-level PM2.5 concentrations during 

2001-2011. White parts are the areas with values lower than 2 µg/m3. 

        The 11-year average PM2.5 concentrations are lower than 20 µg/m3 for the large 

regions of the East Asia. In contrast, the values are 21.45 µg/m3 (monitoring values is 

19.74 µg/m3) in Tokyo, 39.46 µg/m3 (monitoring values is 42.98 µg/m3) in Seoul (Table 

8-1). The PM2.5 concentrations of 60 - 100 µg/m3 are found over the northern and 

southern China. The values higher than 100 µg/m3 occur in the major industrial regions 

and the western desert areas. Especially, in Beijing, the 11-year average PM2.5 

concentration is 105.25 µg/m3 (monitoring values is 110.47 µg/m3). In India, the highest 

PM2.5 concentrations occur in the areas from New Delhi east-ward to Kolkata, with 

values of 60 - 110 µg/m3.  

        Figure 8-5 shows the changes of 11-year average ground-level PM2.5 concentrations 

since 2001. Four representative cities, Guangzhou, Hong Kong, New Delhi, and Kolkata, 

have increased 18 %, 10 %, 12 %, and 5 %, respectively. Guangzhou and New Delhi 

have the largest increases during the period of 2001 - 2011. The other four cities, Beijing, 

Shanghai, Tokyo and Seoul, have decreased 2 %, 2 %, 25 %, and 13 %, respectively. 
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Figure 8-5 General changes of 11-year average ground-level PM2.5 concentrations 

during 2001 - 2011 compared to 2001. 

8.3.4 Comparison with literatures 

        The satellite-derived 11-year average ground-level PM2.5 concentrations during 

2001 - 2011 are compared with the results of van Donkelaar et al. (2010) over 2001 - 

2006. In the study of van Donkelaar et al. (2010), PM2.5 concentrations of 60 - 90 µg/m3 

are found over the eastern China, with values > 100 µg/m3 for the major industrial 

regions. The Indo-Gangetic plain, from New Delhi east-ward contains the highest PM2.5 

concentrations in India, with values of 80 - 100 µg/m3. In this study, the satellite-derived 

11-year average ground-level PM2.5 concentration (2001 - 2011) for Beijing is 105.25 

µg/m3, Shanghai is 101.35 µg/m3, Guangzhou is 83.37 µg/m3, New Delhi is 101.72 

µg/m3, and Kolkata is 84.57 µg/m3, which are in good agreement with the study of van 

Donkelaar et al. (2010). In addition, the van Donkelaar et al. (2010)’s study just provided 

the global 6-year average PM2.5 concentrations. The results in this study provide more 

spatial and temporal details and change trends on PM2.5 concentrations in the East Asia 

and India.  

        The results illustrate that there are much higher PM2.5 concentrations in the East 

Asia and India than other areas in the world. For example, van Donkelaar et al. (2010) 

derived PM2.5 values are < 10 µg/m3 for large regions of the earth. The geographic 
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average PM2.5 concentrations over the eastern and western North America are 6.9 µg/m3 

and 6.2 µg/m3, respectively. Liu et al. (2005) estimated the PM2.5 concentrations ranged 

between 10 and 15 µg/m3 in the majority of the eastern United States in 2001. From this 

study, the PM2.5 concentrations in the major cities in the East Asia and India are almost 

10 times higher than that in the North America based on the satellite-derived ground-

level PM2.5 results for the period 2001 - 2011. This situation can be worsened during the 

poor dispersion conditions, such as low wind speed and cool temperature during winter. 

For example, the heavy haze occurred in China in January 2013, and extremely high 

PM2.5 concentrations were measured with the maximum 993 µg/m3 in Beijing. This 

event was mainly caused by the coal combustion from power plants, boilers and 

residents and affected 17 provinces (cities), six hundred million people 

(http://news.xinhuanet.com/). 

8.4 Health Impact Assessment  

         PM2.5 is considered as the most hazardous air pollutant to human health because it 

is more prone to carry a variety of toxic heavy metals, PAHs (Polycyclic Aromatic 

Hydrocarbons) and other chemicals, as well as microorganisms such as bacteria and 

viruses in the air. It can carry these toxic pollutants to enter and deposit in human alveoli, 

causing respiratory inflammation and lung cancer. It can also enter the human blood 

circulation and affect the normal functions of human cardiovascular system, leading to 

significantly increased mortality due to cardiovascular, cerebrovascular diseases 

(Environmental organization Greenpeace, 2012).  

         Since 1985, lung cancer has been ranked the highest incidence and mortality rates 

among various theriomas. Many studies have reported the positive associations between 

PM2.5 and lung cancer mortality. For example, Pope et al. (2002) found that each 10 

µg/m3 increase in long-term average PM2.5 concentrations was associated with 

approximately a 4 % increased risk of death from all natural causes, a 6 % increased risk 

of death from cardiopulmonary disease, and an 8 % increased risk of death from lung 

cancer. Laden et al. (2006) reported a relative risk for lung cancer mortality of 1.27 (95 % 

CI 0.96, 1.69) per 10 µg/m3 increase of PM2.5 in the Harvard Six Cities. Turner et al. 

(2011) also reported that each 10 μg/m3 increase in PM2.5 concentrations was associated 

http://news.xinhuanet.com/tech/2013-02/07/c_124331293.htm
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with a 15 - 27 % increase in lung cancer mortality. While the latest research conducted 

by Lepeule et al. (2012) reported that each 10 µg/m3 increase in PM2.5 was associated 

with a 14 % increased risk of all cause death, a 26 % increase in cardiovascular death, 

and a 37 % increase in lung cancer death. However, few studies have examined the 

association between PM2.5 exposure and lung cancer incidence. One study conducted in 

Europe reported no association between PM2.5 and lung cancer incidence (Vineis et al., 

2006). The other study conducted by the U.S. EPA found the positive trend between the 

PM2.5 concentrations and the lung cancer incidence and mortality rates in North Carolina 

although variability was high (Vinikoor-Imler et al., 2011).  

        The high PM2.5 concentrations have caused severe health impacts in the industrial 

areas and megacities in China. Zhao et al. (2013) analyzed the PM2.5 concentrations and 

chemical compositions in the regions of Beijing, Tianjin, and Hebei (BTH), China. The 

annual average concentrations of PM2.5 were 71.8 - 191.2 µg/m3 with exceeding 100 

µg/m3 at Beijing, Tianjin, and Shijiazhuang. Nineteen elements (Al, As, Ba, Ca, Cd, Co, 

Cr, Cu, Fe, K, Mg, Mn, Ni, P, Pb, Sr, Ti, V, and Zn), eight water-soluble ions (Na+, 

NH4
+, K+, Mg2+, Ca2+, Cl−, NO3

− , and SO4
2−), carbon fractions (OC and EC) and PAHs 

were found in the PM2.5 mass. The concentrations of heavy metals, such as Zn, Pb, Mn, 

Cu and Cr, were also at higher levels in PM2.5 in the BTH area. The most abundant heavy 

metals were Pb and Zn, which had always been found together from minerals to 

industrial productions and processes. It can be concluded that the PM2.5 in the BTH area 

is more hazardous to human health compared to the other areas, such as the western 

desert area where the PM2.5 is mainly caused by natural dust fall.  

        The environmental organization Greenpeace projected that poor air quality caused 

premature deaths of nearly 8,600 people in the Chinese cities of Beijing, Shanghai, 

Guangzhou, and Xi’an in 2012 (Environmental organization Greenpeace, 2012). The 

Beijing Municipal Health Bureau has announced that there were 4729 lung cancer 

mortality in 2007, which were 56 % increase compared to 2000, but the amount of 

smokers wasn’t increased (Beijing Municipal Health Bureau, 2012). The statistic data 

from the Beijing Cancer Hospital shows that the lung cancer incidence rates have been 

dramatically increased since 2001, as shown in Figure 8-6 (a) (blue part), and it has been 

ranked the first for man and second for woman among various theriomas incidence rates 
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in Beijing (Beijing Cancer Hospital, 2012). From this study, we found that the ground-

level PM2.5 concentrations were kept at a high level (three times higher than the WHO 

IT-1 level) during the same period in Beijing, also as shown in Figure 8-6 (a) (pink part). 

The monitoring values from literatures are also presented in this figure (green part).  

  

 

Figure 8-6 PM2.5 concentrations and lung cancer incidence rates in Beijing. (a) satellite-

derived annual average ground-level PM2.5 concentrations, monitoring values from 
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literatures (µg/m3) and lung cancer incidence rates (/100,000) from 2001-2009 in Beijing 

(Beijing Cancer Hospital, 2012); (b) Satellite-derived PM2.5 concentrations and lung 

cancer incidence rates in 18 counties (or cities) of Beijing in 2009 (Beijing Cancer 

Hospital, 2012). 

        We use linear regression to examine the association between satellite-derived PM2.5 

concentrations and lung cancer incidence rates in Beijing from 2001-2009. The 

correlation coefficient is 0.37 (also shown in Figure 8-7 (a)) and the unadjusted slope 

for the linear trend between satellite-derived PM2.5 concentrations and lung cancer 

incidence rates is 0.83 (95 % CI 0.21, 1.45, ρ-value 0.01) per 1 µg/m3 PM2.5. We also 

perform a linear regression analysis for 18 counties (or cities) in Beijing in 2009 (Beijing 

Cancer Hospital, 2012) to further examine the association between PM2.5 concentrations 

and lung cancer incidence rates on spatial scale, as shown in Figure 8-8 (b). The 

correlation coefficient is 0.32 and the unadjusted slope for the linear trend between PM2.5 

concentrations and lung cancer incidence rates is 0.76 (95 % CI 0.19, 1.33, ρ-value 0.01) 

per 1 µg/m3 PM2.5. 

        The regression analysis shows that there are positive associations between the 

PM2.5 concentrations and the lung cancer incidences on both temporal and spatial scales. 

The low correlation coefficients (r = 0.37 and 0.32, respectively) imply that there are 

multi-factors contribute to the lung cancer incidences and PM2.5 is not the only agent 

responsible for the increased lung cancer incidence rates. Even so, the results still 

provide limited evidences to support the association between PM2.5 and lung cancer 

incidences, which is consistent with previous studies (Vinikoor-Imler et al., 2011). 

8.5 Regression Analysis - Beijing 

8.5.1 Descriptive statistics 

       The results in this study indicate that there are very severe PM2.5 pollution in the 

major cities in China and India (more than three times higher than the WHO IT-1 level 

and ten times higher than that in North America). It is essential to understand the 

speciation and sources of PM2.5 for making cost-effective strategy to control and improve 

this situation. However, there are different speciation and sources of PM2.5 in different 
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countries and cities due to the different conditions. Therefore, we take Beijing as an 

example, use the satellite-derived ground-level PM2.5 concentrations to find out the main 

factors associated with PM2.5 by regression analysis, and explore the mitigation 

measures in this city. 

        There are many reasons for the high PM2.5 concentrations in Beijing. Numerous 

research findings have indicated that the fast economic growth and urbanization is one 

of the main reasons. The GDP growth rates which were associated with the industrial 

productions and economic activities were maintained greater than 8 % during the period 

2001-2011 in Beijing, as shown in Figure 8-2. These GDP growth rates were much 

higher than the other countries in the world, especially, the developed countries, such as 

the United States (mean GDP growth rate 1.58 % during the same period), Canada (mean 

GDP growth rate 1.93 %), and Japan (mean GDP growth rate 0.65 %) (Knoema, 2012). 

Thus, the GDP growth rate is expected as one of the major factors associated with PM2.5 

in Beijing. The statistic shows that the amount of motor vehicles has been increased 

from three millions to five millions in four years (2008 - 2012). According to the 

statistical analysis of Beijing Environmental Protection Bureau, the most major source 

of PM2.5 is traffic emission, which accounts for 22 % of PM2.5 in Beijing due to the 

reduction of coal consumption and sharply increasing of cars in recent years (Beijing 

Environmental Protection Bureau, 2012). The second largest source of PM2.5 in Beijing 

is coal combustion which accounts for 19 % of PM2.5 in Beijing (Environmental 

organization Greenpeace, 2012). There are still 78 % energy come from coal electricity 

in China at present. Coal combustion contributes to 80 % of total sulfur dioxide 

emissions and 70 % of total nitrogen oxide emissions which are the major sources of 

secondary PM2.5. Despite the Beijing Municipal Government has shut down or moved 

out the heavily polluting section eliminating the large pollution sources, the surrounding 

areas, such as Tianjin, Hebei, Inner Mongolia, and Shanxi are continued to emit a large 

amount of air pollutants, which are transferred to Beijing by wind. The regional 

transportation and dust fall account for 18 % of PM2.5 in Beijing due to the topgraphic 

feature surrounded by mountains (Environmental organization Greenpeace, 2012).  

        Due to a lack of available data, the emissions from motor vehicles are represented 

by the population for the regression analysis. Since the emissions of sulfur dioxide and 
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nitrogen oxide and industrial soot and dust discharge mainly come from the coal 

consumptions in Beijing (Ohara et al., 2007; Hao et al., 2007), they are represented by 

the coal consumptions. Consequently, the GDP growth rate, population growth rate, coal 

consumption, dust fall and precipitation are selected as the major factors associated with 

PM2.5 in this case study. The data from 2001 to 2011 for Beijing are list in Table 8-2. 

The PM10 monitoring values in the same period are also list in Table 8-2. 

Table 8-2 Major factors associated with PM2.5 in Beijing. 

Year 

GDP growth 

ratea  

(%) 

Population 

growth ratea  

(%) 

Coalb  

(million ton) 

Dust fallc 

(ton/km2• 

month) 

Precipitationc 

(mm) 

PM10
c 

(ug/m3) 

2001 11.7 0.60 26.75 15.20 338.90 165.00 

2002 11.5 4.28 25.31 13.20 370.40 166.00 

2003 11.0 2.33 26.77 12.00 444.50 141.00 

2004 13.2 2.49 28.00 12.30 483.50 149.00 

2005 11.8 3.03 30.69 12.50 467.00 142.00 

2006 12.8 2.80 30.56 12.80 448.00 161.00 

2007 12.3 3.29 29.85 14.70 483.90 148.00 

2008 9.0 3.80 27.48 13.40 626.30 122.00 

2009 10.1 3.54 26.65 11.60 480.60 121.00 

2010 10.2 11.74 27.00 14.20 533.80 121.00 

2011 8.1 1.99  11.30 721.10 114.00 

  a. Beijing Statistical Yearbook 2011 (Beijing Municipal Bureau of Statistics, 2001 - 2011).   

  b. Beijing coal production and consumption and demand outlook (Li et al., 2011). 

  c. Beijing Environmental Statement (2001 - 2011) (Beijing Municipal Environmental Protection Bureau, 

2001 - 2011). 

        From Table 8-2, we can see that the GDP growth rates range from 8.1 % to 13.2 % 

with an average of 11.1 % in Beijing during 2001 - 2011. The population growth rates 

change from 0.6 to 11.74 with an average of 3.6 %. The coal consumptions reached to 

the peak in 2005 and 2006, which were corresponding to the highest annual average 

PM2.5 concentration (125. 2 µg/m3) in Beijing. The dust fall and precipitation were 

randomly changed by year with a relative small precipitation (448 mm) in 2006. All of 

these resulted in a higher PM10 monitoring value (161.0 µg/m3) and a PM2.5 peak in 2006. 

The relative lower PM2.5 concentrations were found in 2004 (94.3 µg/m3) and 2009 (89.7 
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µg/m3). Especially in 2009, the lowest PM2.5 concentration occurred when the coal 

consumption and dust fall were lower than other years. From the above analysis, it can 

be expected that there are significant correlations among the ground-level PM2.5 

concentrations and the GDP growth rates, coal consumptions, and dust fall in Beijing.  

    Figure 8-7 shows the comparison of variations among the GDP growth rates, coal 

consumptions, and ground-level PM2.5 concentrations in Beijing from 2001 to 2011. 

Figure 8-7 (a) and (b) present the variations of GDP growth rates and coal consumptions, 

respectively. Figure 8-7 (c) shows the variations of satellite-derived annual average 

ground-level PM2.5 concentrations and the monitoring values from literatures (He et al., 

2001; Duan et al., 2006; Zhao et al., 2009; Yang et al., 2011; U.S. Embassy, 2012). The 

satellite-derived annual average ground-level PM2.5 concentrations from two grids are 

also presented for the comparison. Grid 1 is located at the center of Beijing where is 

occupied by 62 % of the population and includes most of the commercial and industrial 

activities, but its area is only 8 % of the city (Wang et al., 2010b). This area includes the 

more urbanized districts and several large economic-technological and industrial 

development zones where the highest PM2.5 concentrations mostly occur around here, as 

shown in Figure 8-8. On the contrary, the PM2.5 concentrations decrease progressively 

with the distance away from the central part. In the mountain and rural areas with less 

residential or industrial activities, the PM2.5 concentrations become much lower. Grid 2 

is located at Shunyi (Figure 8-8) where there are several industrial and economic 

development zones associated with automobile, electron, plastic, leather industries 

(Beijing Municipal Commission of Economy and Information Technology, 2010a). The 

PM2.5 concentration is lower than the center urban but higher than the mountain and rural 

areas.  
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Note: (1) the annual average PM2.5 concentrations decreased with the coal consumptions declined due to 

the implement of government policy – Beijing Environmental Control Target and Measures (1999 - 2002) 

(Beijing Municipal Environmental Protection Bureau, 2002); (2) the PM2.5 concentrations in grid 1 and 2 

increased due to the GDP growth rates and coal consumptions increased, whereas the mean value and 

monitoring value decreased due to the surrounding decreased; (3) the PM2.5 concentrations decreased due 

to the measures of air quality control for the 2008 Olympics; (4) the PM2.5 concentrations increased due to 

a number of new industrial projects carried out, especially in Shunyi (grid 2), five new projects including 

manufacture and power plant were implemented in 2010 (Beijing Municipal Commission of Economy 

and Information Technology, 2010b).  

Figure 8-7 Comparison of variations among the GDP growth rates, coal consumptions 

and the ground-level PM2.5 concentrations in Beijing from 2001 to 2011. (a) and (b) 

show the variations of GDP growth rates and coal consumptions, respectively. (c) shows 

the variations of satellite-derived mean ground-level PM2.5 concentrations (solid line), 

the monitoring values from literatures (dot line), and the PM2.5 concentrations in two 

grids (dash lines). 

 

Figure 8-8 Beijing map with 10 km × 10 km grid cells. Grid 1 and grid 2 are the locations 

for the comparison in Figure 8-7. 
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        From Figure 8-7, we can see that the variations of PM2.5 concentrations in grid 1 

are quite similar with the GDP growth rates, implies that the commercial activities are 

the main reasons for the high PM2.5 concentrations in the center urban. The variations in 

grid 2 are more consistent with the coal consumptions, reveals that the coal 

consumptions are the major reason except commercial activities for the PM2.5 

concentrations in this area. The widespread installations of fuel-gas desulfurization 

(FGD) devices in coal-fired boilers decline the SO2 emissions, but cannot help the 

organic carbon emissions which are also a major source of the PM2.5 in Beijing (Yang 

et al., 2011). The variations of mean and monitoring values are generally similar with 

the variations of GDP growth rates. This illustrates that the commercial and industrial 

activities are the main reasons for the PM2.5 concentrations in Beijing. However, there 

are some differences between the PM2.5 concentrations and the GDP growth rates in 

recent years (after 2009). This is probably due to the rapid increase in population and 

the number of motor vehicles resulting in the sharp increase of NOx emissions from 

vehicle exhausts which is another source of PM2.5 (Yang et al., 2011). 

        From the satellite-derived annual average ground-level PM2.5 concentrations in 

Table 8-1 and PM10 monitoring values in Table 8-2, the range of ratio between PM10 and 

PM2.5 are calculated as 0.65 - 0.90 (average is 0.75), which is in line with the conclusions 

from publications (0.61 – 0.91 in Mumbai) by WHO (2006a) and Kumar and Joseph 

(2006). This shows that the PM2.5 fraction comprises the majority of PM10 in Beijing.  

8.5.2 Regression analysis 

        To further examine the association between the ground-level PM2.5 concentration 

and the influential factors, a regression analysis is conducted using the SPSS (Statistical 

Package for the Social Science) (IBM, 2012) and data in Table 8-1. First, a correlation 

analysis is performed. The stronger correlations are found among the PM2.5 

concentrations and the GDP growth rates (Pearson correlation coefficient r = 0.58), 

population growth rates (r = 0.42), coal consumptions (r = 0.62), There are weaker 

correlations among the PM2.5 concentrations and the dust fall (r = 0.14) and precipitation 

(r = - 0.18). As expected, most of the influential factors have positive impacts on the 

ground-level PM2.5 concentrations except the precipitation has a negative impact.  
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        Then the general linear regression model (GLM) with power law functional forms, 

accounting for the nonlinear relationships between PM2.5 concentrations and influential 

factors, is used to build the regression equation. The satellite-derived annual average 

ground-level PM2.5 concentration is set as the dependent variable. The predictor 

variables include the GDP growth rate, population growth rate, and coal consumption, 

which are set as primary predictors, the dust fall and precipitation are set as secondary 

predictors. The regression equation shows a well goodness fit (R2 = 0.82). 

        The sensitivity analysis based on the regression equation indicates that the fast 

economic growth (average GDP growth rate is 11 % in 2001 - 2011) is a major factor 

for the high PM2.5 concentrations in Beijing. The coal consumption has been the second 

source of PM2.5. The fast population growth is also responsible for a large part of the 

PM2.5. By contrast, the dust fall takes charge of relatively smaller scale of the PM2.5. The 

precipitation has good effects on the PM2.5. Unfortunately, there are smaller 

precipitations (average 490.73 mm in 2001 - 2011) in Beijing compared to Shanghai 

(average 1169.65 mm in 2001 - 2011).  

        It can be concluded that the deteriorating urban air quality in Beijing is closely 

related to the China’s fast economic growth and the over-reliance on coal consumptions. 

Managing PM2.5 pollution must begin with properly controlling GDP and population 

growth rates, controlling the emissions from traffic and coal combustions, replacing 

urban coal consumptions with clean alternative energy sources. The low-carbon energy 

policy (i.e. improved energy efficiency; using clean energy sources, such as natural gas, 

wind electricity, etc.) and green development should be a good way to reduce the PM2.5 

pollution in Beijing. 

8.5.3 Future trend prediction 

        Fortunately, Beijing government has recognized the fast economic growth and 

enormous coal consumption have made the people live in Beijing pay great costs on the 

severe environment. They have made some decisions to slow the economic growth and 

decrease the coal consumption. It has been reported that the GDP growth rate is 7.2 % 

during the first half of the year 2012, which is the first time breaking 8 %. Assuming 

that the GDP growth rate decreases 0.5 % every year from 2011 to 2015, it would decline 
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to 6.1 % by 2015. Beijing government also issued a coal consumption amount control 

plan which proposed the coal consumption should be reduced to 20 million ton by 2015 

(Beijing government, 2011). This means the coal consumption will be decreased 7 

million ton from 2010 to 2015 in Beijing. In addition, according to the Beijing 

Environmental Protection and Construction Plan in 12th Five-Year Period, the SO2 

emission will be decreased 13.3 % by 2015 compared to 2010 (Beijing Municipal 

Environmental Protection Bureau, Beijing Municipal Development and Reform 

Commission, 2011).  

       In February 2012, Ministry of Environmental Protection renewed the ambient air 

quality standards, first set a limit of 35 µg/m3 for annual average PM2.5 in China. It will 

be implemented on January 1st, 2016. These control measures and large reduction 

represent a human-perturbation experiment of unprecedented scale, and provide a rare 

opportunity to study the future trend of PM2.5 in Beijing.   

        Assuming all targets mentioned above will be reached, using the regression 

equation we created and considering other possibilities, the ground-level PM2.5 

concentration are predicted for 2012 - 2015. It would be 85.3 µg/m3 in 2012, 74.7 µg/m3 

in 2013, 63.5 µg/m3 in 2014, and 52.1 µg/m3 in 2015. It is difficult to reach the limit (35 

µg/m3) in 2016 when the new ambient air quality standards are implemented.  

8.6 Discussion 

        A number of interesting conclusions can be drawn from the satellite-derived annual 

average ground-level PM2.5 concentration results, the regression analysis, the future 

trend prediction and health impact assessment. 

8.6.1 Implications of the study results      

       The validation of the satellite-derived annual average ground-level PM2.5 

concentration results (Figure 8-1) demonstrate that the satellite remote sensing can 

provide a long-term dataset with complete spatial coverage for predicting ground-level 

PM2.5. This capability is particularly useful in the areas without existing ground-level 

monitoring capabilities (Liu et al., 2005). The use of satellite-based air pollution 
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information may also help in reconfiguring and refining existing ground monitoring 

networks. It could serve as an important extension of ground measurement networks by 

providing an independent and supplemental data source to in-situ monitoring. However, 

the satellite remote sensing cannot be used to replace the compliance monitoring 

network since the coverage is not guaranteed due to the cloud cover and a narrow 

observation time window. By examining the trajectory over which air packets travel on 

days when the source strength is high for a given source category, it is possible to find 

potential locations of sources. Whereas source apportionment can effectively identify 

the source type of air pollutants (e.g., coal burning, biomass burning, or crustal sources), 

and back trajectory analysis can point to the direction where the pollutants come from. 

Since additional geospatial data are required, the source location identify is not included 

in this study.  

        Figure 8-1 (a) shows an undulation on PM2.5 concentrations in Beijing. There is a 

slight decrease from 2001 to 2004, then a dramatic increase to the peak in 2006. After 

that, there is a decrease again from 2006 to 2009, and then a slight increase again. This 

can be explained by economic growth and industry emission in China. With the 

economic boom after 2000, emissions from industry increased dramatically. Black 

carbon (BC) and organic carbon (OC) emissions increased by 46 % and 33 % to 1.85 Tg 

and 4.03 Tg in 2010. SO2 emissions first increased by 61 % to 34.0 Tg in 2006, and then 

decreased by 9.2 % to 30.8 Tg in 2010 due to the control measures, such as wide 

application of flue-gas desulfurization (FGD) equipment in power plants. The annual 

average SO2 emission is 22.58 Tg during 2005 – 2011, which is 85 % contribution from 

industry emission (The World Bank, 2012). Since 2005, when a “Resource Efficient and 

Environment-Friendly (REEF) Society” concept was first integrated into China’s 

development strategy in the Eleventh Five Year Plan for National Economic and Social 

Development (2006 - 2010), the Chinese government has achieved a 19.1 % reduction 

in countrywide energy-use intensity from 2005 levels (NDRC, 2011). This change is 

general consistent with the PM2.5 concentration changes in Beijing. 

        Figure 8-1 (b) shows an increase from 2001 to 2004, then a monotonous decrease 

from 2004 to 2011 in Hong Kong. This is consistent with the change in Guangzhou 
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(Table 8-1), which implies the transport PM2.5 from Guangzhou dominates the PM2.5 

concentrations in Hong Kong.   

        Figure 8-1 (c) and (d) shows irregular changes on PM2.5 concentrations in New 

Delhi and Kolkata, which reveals the economic growth is not stable in India. Driven by 

the remarkable energy consumption growth and relatively lax emission controls, 

emissions increased by 70 %, 41 %, and 35 % to 8.81 Tg, 1.02 Tg, and 2.74 Tg in 2010 

for SO2, BC, and OC, respectively (The World Bank, 2012).  

        Figure 8-1 (e) shows the lower and stable PM2.5 concentrations in Tokyo. Japan was 

the first Asian country to industrialize, and thus it was also the first to face air quality 

problems serious enough to encourage the formulation and implementation of policies 

to address the situation. In Japan, the annual average SO2 emission is only 0.50 Tg during 

the same period. Strict control measures are the main reason of lower PM2.5 

concentration in Tokyo (The World Bank, 2012). 

        Figure 8-1 (f) shows an obvious decrease of PM2.5 concentrations in Seoul. Newly 

industrialized country, the South Korea, is at a stage of development which is also 

beginning to reduce the ground-level PM2.5 concentration since 2004. The Five-Year 

Plan for Green Growth with an investment component representing 2 % of the annual 

GDP is announced in 2009 (ESCAP and KOICA, 2012). This may explain the decrease 

trend of PM2.5 concentration in Seoul.  

8.6.2 Implications of health impact assessment 

        Despite the low R2 values are found, an overall trend is observed, with years and 

counties (or cities) that have higher levels of PM2.5 concentration also having higher lung 

cancer incidence rates. The associations between PM2.5 concentration and lung cancer 

incidence rates provide limited evidence that PM2.5 exposure potentially contributes to 

lung cancer incidence and are consistent with previous studies that have reported an 

association between PM2.5 exposure and lung cancer mortality (Pope et al., 2002; Jerrett 

et al., 2005; Laden et al., 2006; Naess et al., 2007; Nawrot et al., 2007; Krewski et al., 

2009).  
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        The low R2 values represent the multifaceted factors that contribute to lung cancer 

incidence. PM2.5 is not likely to be the sole etiologic agent responsible for increased lung 

cancer incidence rates. The high variability demonstrates that tobacco smoking and other 

factors are also contributing to lung cancer incidence rates. However, the results 

presented above support an association between PM2.5 and lung cancer incidence. This 

study is an important contribution to the limited literature available on the association 

between PM2.5 concentration and lung cancer incidence. 

8.6.3 Regression analysis and discussion 

        The regression analysis reveals a significant relationship between the ground-level 

PM2.5 concentration and economic growth. This explains the high ground-level PM2.5 

concentrations in developing countries, such as China (11-year average GDP growth 

rate 10.37 %) and India (11-year average GDP growth rate 7.46 %), and lower PM2.5 

concentrations in developed countries, such as Japan (11-year average GDP growth rate 

0.65 %) and South Korea (11-year average GDP growth rate 4.13 %) (The World Bank, 

2012). The weighted average economic growth rates of emerging economies represented 

by China and India in 2001 - 2011 were about two times of the world average (The 

World Bank, 2012). Especially, China has become the second largest economy in the 

world in the past decade. The rising China and India have been facing more development 

issues. One of them is the severe air pollution. As demonstrated in this study, the ground-

level PM2.5 concentrations in major cities of China and India exceed the WHO IT-1 level 

by 2.4 - 3 times. In contrast, Japan has a lower PM2.5 concentration due to the formulation 

and implementation, the ground-level PM2.5 concentration in Tokyo is well within the 

guideline suggested by the WHO. Same as the South Korea, the concept on Low Carbon, 

Green Growth was first proposed in 2008 and the Framework Act was enacted in 2010. 

Based on this act, the Government set a 30 % carbon emissions reduction target by 2020. 

        In response to the economic growth and the rapid expansion in industrial production, 

the energy consumptions have been increased. The share of energy use in China and 

India to the total world energy consumption increased from about 10 % in 1990 to 21 % 

in 2008 (IEA, 2010). Especially coal consumption, in China, the annual average coal 

consumption is 2.46 billion short ton during 2001 - 2010, which accounts for 37 % of 

the annual average coal consumption in the world. The annual average soot and dust 
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discharge is 10.05 Tg during 2005 - 2011, which is accounted for 80 % by industry 

discharge (Ministry of Environmental Protection of PRC, 2012b). The second larger 

annual average coal consumption is 0.54 billion short ton in India. In contrast, the annual 

average coal consumptions are 0.19 billion short ton in Japan, and 0.10 billion short ton 

in South Korea during 2001 - 2010 (The World Bank, 2012). The annual average soot 

and dust discharge is 0.05 Tg in Japan (Ministry of the Environment of Japan, 2012), 

which is 200 times lower than China. These data probably explain the higher PM2.5 

concentration in China and India, whereas lower PM2.5 concentration in Japan and Korea, 

as see in Figure 8-2 to Figure 8-4. 

        Clearly, there are some other factors, such as transported pollutant from 

surrounding areas and meteorological condition, are also associated with the ground-

level PM2.5 concentration. They are not discussed in this paper. 

8.6.4 Future trend prediction 

        Figure 8-3 shows that there are obvious decreasing trend since 2007 in Beijing and 

Figure 8-5 shows that Beijing has a decrease of 2 % since 2001. China’s Twelfth Five 

Year Plan for National Economic and Social Development (2011 - 2015) built on the 

Eleven Five Year Plan’ success by prioritizing new achievements in environmental 

protection and clean energy technology development. It also establishes landmark 

energy efficiency goals, striving to decrease China’s energy-use intensity by 16 percent 

and carbon-emission per GDP by 17 percent from 2005 levels by 2015 (NDRC, 2012). 

All of these imply a definite decrease on PM2.5 concentration in China in the future. This 

is agreement with the future trend prediction. 

8.7 Summary  

        This chapter provided a case study of investigation of the ground-level PM2.5 

concentrations from the aerosol optical depths (AODs) retrieved by the MODIS and 

MISR satellite instrument in the extended East Asia. The GEOS-Chem model is used to 

relate AOD to ground-level PM2.5 concentrations. The annual and 11-year (2001 - 2011) 

average ground-level PM2.5 concentrations are evaluated for the extended East Asia. 

Good agreement is achieved when the satellite-derived annual average PM2.5 
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concentrations are compared with the monitoring values or literatures in six major cities: 

Beijing, Hong Kong, New Delhi, Kolkata, Tokyo, and Seoul. 

        A number of interesting conclusions are found from the satellite-derived ground-

level PM2.5 concentration results, the health impact assessment, the regression analysis, 

and the future trend prediction.  

i). The areas with PM2.5 concentration exceeding the WHO IT-1 level (35 µg/m3) 

are mostly located in the developing countries, such as China and India. The 

values higher than 100 µg/m3 occur in the major industrial regions and the 

western desert area in China. In India, the highest PM2.5 concentrations occur in 

the areas from New Delhi east-ward to Kolkata, with values of 60 - 110 µg/m3. 

There are relatively lower PM2.5 concentration in the developed countries, Japan 

and Korea.  

ii). A correlation analysis is performed between the satellite-derived annual average 

PM2.5 concentrations and lung cancer incidence rates in Beijing from 2001-2009. 

The positive association is found, which implies that the high PM2.5 

concentration is a reason for the high cancer incidence rates. 

iii). The regression analysis reveals that there are significant correlations among the 

ground-level PM2.5 concentration and the GDP growth rate, population growth 

rate and coal consumption in Beijing. By contrast, dust fall takes charge of 

relatively smaller scale of PM2.5. The precipitation has a good effect on PM2.5. 

Based on the regression equation, a sensitivity analysis is carried out and some 

mitigating measurements are proposed for Beijing. 

iv). The future trend (2012 - 2015) prediction based on the regression equation and 

the considerations of various control measurements and possibilities concludes 

that it is difficult to reach the limit (35 µg/m3) in 2016 when the new ambient air 

quality standards are implemented in Beijing.  
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Chapter 9   Conclusions and Recommendations 

9.1 Conclusions 

        This thesis was dedicated to explore the new spatial information technology for air 

pollution risk assessment. GIS, satellite remote sensing (RS) and air quality modeling 

are the main research objectives, and fuzzy aggregation is extended to assess the air 

pollution risk. A series of research works are implemented, which are summarized as 

follows: 

(a) A spatial GIS-based multi-source and multi-box (GMSMB) air quality modeling 

approach has been developed through a novel integration of an improved spatial 

multi-box model with a multi-source and multi-grid Gaussian model. It extends 

the traditional box model to consider point and mobile sources for regional air 

quality prediction with local characteristics. The main chemical interactions and 

physical removal mechanisms of pollutants in the atmosphere are taken into 

account in GMSMB. Particularly, GMSMB is developed within the GIS 

environment through a fully-coupled mode which allows the spatial analysis on 

both regional and local scales, and enhances the spatial representation as all GIS 

functions and spatial database can be directly accessed. The developed modeling 

approach, through an integrated and object-oriented simulation environment, 

allows more detailed investigations of the spatial variations of emission sources, 

meteorological conditions, complex terrain, as well as their impacts on the 

ambient air quality. A case study for the state of California is performed to 

evaluate the developed modeling approach. The concentration distributions of 

four criteria pollutants (CO, NO2, SO2 and PM2.5) in the study area are predicted 

using GMSMB and traditional box model. The results from both GMSMB and 

traditional box model are compared with the monitoring data. The results show 

that the modeling results from GMSMB are more consistent with the monitoring 

values and other local observations compared to that from the traditional box 

model. It confirms that the traditional box model has limitation on assessing 

point and mobile emission sources. Further error analysis shows the GMSMB 

modeling results meet the field scale model performance guideline. This case 
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study illustrates the developed modeling approach GMSMB is an exploration 

that technically combines the point source dispersion model with the multi-box 

based spatial modeling system in GIS framework. The case study demonstrates 

that GMSMB has a sound performance for predicting airborne pollutant 

concentration distributions though quantifying the complex interactions between 

sources and receptors with spatial geo-referenced data. The modeling results 

from GMSMB can deliver an effective air pollution assessment to support 

decision making on air pollution control and management planning.  

(b) Based on the validation of the GMSMB modeling results, a fuzzy aggregation-

ordered weighted averaging (OWA) risk assessment approach is developed and 

applied to the case study for the state of California. This approach is used to 

quantify the integrated risk associated with multiple pollution factors based on 

the spatially gridded four criteria pollutant concentrations predicted by GMSMB. 

The comparisons with the AQI statistic report and other statistical analysis have 

illustrated the developed fuzzy aggregation-OWA method has advantages on 

quantifying the uncertainties of integrative impact associated with multiple 

pollution factors. The fuzzy aggregation-OWA approach has provided an 

effective, systematic and more realistic way for combining and comparing fuzzy 

quantities to achieve reliable integrated risk assessment results. 

(c) To further evaluate the GMSMB modeling approach, a satellite remote sensing 

data analysis method is explored. The ground-level NO2 concentrations are 

derived from the satellite OMI tropospheric NO2 vertical column densities 

(VCDs) based on the global 3-D chemical transport model GEOS-Chem for the 

state of California. The results are cross-verified by an intercomparison with the 

GMSMB modeling results and the local in-situ surface measurements. The OMI 

tropospheric NO2 vertical column densities and the OMI-derived ground-level 

NO2 concentrations correlate well with the in-situ surface measurements 

spatially and temporally for location coverage and seasonal variations. It 

indicates that the satellite derived data could make up for the limited monitoring 

stations on the ground and quantitatively monitor the regional transport and fate 

of NO2. The OMI-derived ground-level NO2 concentrations are also in line with 

the GMSMB modeling results, suggesting that it is possible to apply satellite 

derived data in effective air quality model validations. 
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(d) To further explore satellite remote sensing technology for air quality assessment, 

an improved aerosol optical depth (AOD) retrieval algorithm is developed for 

the MODIS satellite instrument at 1-km resolution over the city of Montreal, 

Canada in 2009. The satellite-derived annual mean ground-level PM2.5 

concentrations are ranging from 1 to 14 µg/m3 in Montreal which are in line with 

the results from literatures. The estimates are in good agreement (r = 0.90, slope 

= 0.9724 ± 0.0035, intercept = 0.2747 ± 0.0012) with the in-situ surface 

measurements at all monitoring stations, which are much better than the PM2.5 

concentrations derived from the standard MODIS 10-km AOD products 

compared with the in-situ surface measurements (r = 0.80, slope = 0.6407 ± 

0.0003, intercept = 2.8871 ± 0.0065). All of these validate the PM2.5 results 

derived from the AODs retrieved in this study at 1-km resolution. This also 

indirectly validates the developed AOD retrieval algorithm. 

(e) Since the highest PM2.5 concentrations in the world have been identified in the 

East Asia and India, a case study of investigating the ground-level PM2.5 

concentrations is also performed for the extended East Asia by applying the local 

scaling factors obtained from the GEOS-Chem model to the MODIS and MISR 

combined columnar AODs. The annual and 11-year mean ground-level PM2.5 

concentrations are evaluated for the period of 2001-2011. Good agreement is 

achieved when the satellite-derived annual mean PM2.5 concentrations are 

compared with the monitoring values or literatures in six major cities: Beijing, 

Hong Kong, New Delhi, Kolkata, Tokyo, and Seoul. A number of interesting 

conclusions are found from the health impact assessment, regression analysis, 

and the future trend prediction, which are useful for understanding the air 

pollution situations and their health impact in these areas. The mitigating 

measurements and future trend prediction based on the regression analysis have 

some guiding significances for the air quality management in these areas. 

     In conclusion, the research works presented in this thesis have demonstrated that it 

is possible to apply the new spatial information technology in effective air quality 

assessment and management. A number of results indicate that a multi-disciplinary 

consideration of the GIS, dynamic satellite data analysis, air quality modeling, and in-
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situ measurements provides the best solutions for air pollution exposure assessment and 

effectively supports the regional air pollution control management.  

9.2 Contributions 

    This thesis explored the applications of new spatial information technology for air 

pollution assessment. Several specific contributions in this thesis are summarized as 

follows: 

i). Developed a spatial GIS-based multi-source and multi-box (GMSMB) air 

quality modeling approach through a novel integration of an improved spatial 

multi-box model with a multi-source and multi-grid Gaussian model. It extends 

the traditional box model to consider point and mobile sources for regional air 

quality prediction with local characteristics. Particularly, GMSMB is developed 

within the GIS environment through a fully-coupled mode which is an important 

contribution to the limited literature available on the integrating air quality 

modeling with GIS. 

ii). Developed a fuzzy aggregation-OWA approach for air pollution risk assessment. 

A degree of fuzziness is incorporated into the assessment criterion by using fuzzy 

sets and thereby avoiding absolute criterion. The integrated impact and relative 

importance of various pollution factors are aggregated with the considerations of 

uncertainties in evaluation criterion and multiple pollutant impacts. The fuzzy 

aggregation-OWA approach has provided an effective, systematic and more 

realistic way for combining and comparing fuzzy quantities to achieve reliable 

integrated risk assessment results to support decision making on air quality 

control and management planning.  

iii). Explored the OMI tropospheric NO2 column retrievals for monitoring ground 

level NO2, with related uncertainties analysis including results variations among 

different methods and regional and seasonal biases in tropospheric NO2 column 

retrievals. The intercomparison study reveals that a multi-disciplinary 

consideration of dynamic satellite data analysis, meteorology, pollutants’ fate 

and transport, air quality modeling, and in-situ measurements provides more 

insights and better solutions for air pollution exposure assessment.  
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iv). Developed an improved aerosol optical depth (AOD) retrieval algorithm for the 

MODIS satellite instrument at 1-km resolution. The results are much better than 

the standard MODIS 10-km AOD products on spatial resolution and accuracy, 

which reveals that the method developed in this thesis can retrieve satellite-

observed AODs at a higher spatial resolution than previously and can operate on 

an urban scale for PM2.5 assessment. This extends the applications of MODIS 

AOD data from global or regional scales to local even urban scale. 

v). Investigated the ground-level PM2.5 concentrations using satellite-retrieved 

AODs for the extended East Asia. The corresponding health impact is analyzed 

which is an important contribution to the limited literature available on the 

association between PM2.5 concentration and lung cancer incidence. A first 

research of year-by-year trends with up-to-date activity rates and regression 

analysis with influential factors is performed for the East Asia and India, which 

could be a guide for regional air pollution control management.  

9.3 Recommendations for Future Work 

       The further studies will focus on the exploration of new technologies of satellite 

data analysis for regional and local air quality assessment. The related uncertainties in 

retrievals of satellite observations will be further investigated to improve the accuracy 

in tropospheric NO2 column density and aerosol optical depth (AOD). This will 

specifically focus on the tropospheric air mass factor (AMF), the local NO2 profile, and 

the aerosol optical depth (AOD) retrieval algorithm. The high-resolution cloud fraction 

and surface albedo maps, the snow-detection algorithm to differentiate cloudy from 

cloud-free pixels will be helpful (Deneke et al., 2008). More case studies are needed to 

improve and extend the developed approach in this study. 

        In addition, the developed GMSMB modeling system, the ground-level NO2 

assessment from satellite tropospheric NO2 column density, the PM2.5 assessment from 

the satellite aerosol optical depth (AOD) and the fuzzy aggregation risk assessment 

approach can be integrated into a unified air quality assessment system with a user-

friendly graphics interface. 
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APPENDIX A Comparisons of annual mean NO2 ground-level concentrations among OMI-derived, monitoring 

values and GMSMB modeling results in 2008 (only the areas with elevated concentrations are listed).   

 Geographical coordinates  OMI 

Retrievals 

OMI 

Derived 

Monitoring 

Values 

GMSMB 

Results 

D1* D2o D3‡ 

Longitude Latitude (molecs./cm2) ppb ppb ppb % % % 

San Diego -116.97 33.46 5.04E+15 27.13 28.15 27.33 -3.6 -0.7 -2.9 

116.32 33.10 7.15E+15 20.50 29.46 27.85 -30.4 -26.4 -5.5 

116.74 33.32 7.34E+15 26.23 29.13 26.31 -10.0 -0.3 -9.7 

117.05 33.57 5.05E+15 24.72 25.73 26.11 -3.9 -5.3 1.5 

117.05 33.26 3.56E+15 13.69 19.65 13.66 -30.3 0.2 -30.5 

117.00 34.05 2.37E+15 15.53 17.32 16.48 -10.3 -5.8 -4.8 

117.67 33.79 2.85E+15 18.56 22.58 19.32 -17.8 -3.9 -14.4 

South 

Coast 

-118.03 34.3 2.66E+15 20.38 20.64 20.78 -1.3 -1.9 0.7 

-117.42 34 3.45E+15 14.27 27.25 16.68 -47.6 -14.4 -38.8 

118.61 34.12 2.49E+15 11.58 22.15 21.46 -47.7 -46.0 -3.1 

119.07 34.10 2.81E+15 17.31 19.36 18.73 -10.6 -7.6 -3.3 

116.04 34.27 2.54E+15 13.45 16.41 16.54 -18.0 -18.7 0.8 

118.21 34.08 2.19E+15 17.96 15.70 15.37 14.4 16.9 -2.1 

118.35 34.37 3.27E+15 20.03 18.20 17.41 10.1 15.0 -4.3 
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118.19 34.45 7.45E+15 18.60 29.53 24.68 -37.0 -24.6 -16.4 

119.12 34.54 1.32E+15 9.19 10.94 11.84 -16.0 -22.4 8.2 

Mojave 

Desert 

-116.91 34.19 2.27E+15 14.23 16.28 13.57 -12.6 4.9 -16.6 

-119.15 37.22 2.06E+15 8.97 13.26 11.66 -32.4 -23.1 -12.1 

-116.39 34.07 1.86E+15 9.89 13.15 11.24 -24.8 -12.0 -14.5 

117.28 34.69 2.53E+15 12.73 14.30 13.46 -11.0 -5.4 -5.9 

117.15 34.80 1.84E+15 11.23 14.90 11.63 -24.6 -3.4 -21.9 

117.45 34.82 2.20E+15 14.88 14.93 12.16 -0.3 22.4 -18.6 

116.28 35.21 1.86E+15 14.32 15.36 13.26 -6.8 8.0 -13.7 

115.59 35.05 2.75E+15 16.92 17.23 14.82 -1.8 14.2 -14.0 

South 

Center 

Coast 

-120.01 34.73 2.38E+15 11.23 13.16 12.87 -14.7 -12.7 -2.2 

119.94 35.18 2.38E+15 10.58 16.78 13.35 -36.9 -20.7 -20.4 

120.44 34.84 2.46E+15 13.06 17.42 15.52 -25.0 -15.9 -10.9 

120.58 35.34 2.08E+15 10.00 14.23 16.27 -29.7 -38.5 14.3 

120.79 35.66 1.98E+15 7.62 13.67 13.81 -44.3 -44.8 1.0 

San 

Joaquin 

Valley 

118.91 35.74 2.97E+15 11.42 17.52 15.47 -34.8 -26.2 -11.7 

119.27 35.36 1.21E+15 5.60 9.75 9.86 -42.6 -43.2 1.1 

-119.77 36.78 2.59E+15 9.96 16.90 13.25 -41.1 -24.8 -21.6 

-118.83 36.49 1.56E+15 8.00 13.45 9.67 -40.5 -17.3 -28.1 

117.90 35.12 2.03E+15 7.82 11.51 8.35 -32.0 -6.3 -27.5 
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San 

Francisco 

Bay 

-122.91 38 2.91E+15 11.19 15.80 11.24 -29.2 -0.4 -28.9 

-122.62 38.25 2.27E+15 8.73 12.15 13.13 -28.1 -33.5 8.1 

-122.29 38.36 1.18E+15 9.20 9.43 8.78 -2.4 4.8 -6.9 

-122.91 38.12 1.74E+15 6.69 10.35 7.75 -35.3 -13.6 -25.1 

* The column D1 gives the differences between the OMI-derived ground-level NO2 concentrations and the GMSMB modeling results. The 

mean difference is -16.6 %. 

o The column D2 gives the differences between the OMI-derived ground-level NO2 concentrations and the in-situ surface measurements. 

The mean difference is -25.3 %. 

‡ The column D3 gives the differences between the GMSMB modeling results and the in-situ surface measurements. The mean difference 

is -11.5 %. 
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APPENDIX B GEOS-Chem model 

      GEOS-Chem model is a tropospheric chemistry model which simulates the chemical 

composition of the atmosphere using a set of coupled non-linear partial differential 

equations of the type (Bey et al., 2001): 

                                              (1) 

where Ci (x, t) represents the spatio-temporal evolution of the concentration of species I, 

u(x,t) is the wind velocity, Pi = Pi ({Cj}, x, t) is the ensemble of atmospheric sources, and 

Li = Li ({Cj}, x, t) is the ensemble of atmospheric sinks. The species coupling shows up 

locally in Pi and Li, through the group of chemical species {Cj} that produce or react with 

species i. Pi and Li are also functions of the local radiative and meteorological environment. 

The number of species N is typically over 100. 

      In the simulation including detailed oxidant chemistry, the solution of the stiff system 

of ordinary differential equations (ODE): 

                                          (2) 

      Re-write the chemistry operator as 

                                                        (3) 

since generally (though not always) the loss terms Li have first-order dependence on the 

species concentration Ci. Here ki is anHere ki is an effective loss rate constant. 

       At every grid box and time step tn, calculate their concentrations {Ci
n+1 = Ci (tn + 1)} at 

the next time step, tn+1 = tn + Δt, in a coupled fashion using an efficient implicit ODE solver 

for stiff systems, to obtain the formula for the analytical solution: 

                                                （4） 
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Ci is in the unit of molecules/cm2, Pi is in the unit of molecules/cm2•s, ki is in the unit of /s. 

       The input for the GEOS-Chem model includes meteorological data which is from the 

Goddard Earth Observing System (GEOS) and emission data and tropospheric column 

retrievals. Table 1 lists the GEOS variables used as input to the model. 

 

      Advection is computed every 15 min (2° × 2.5° horizontal resolution) or 30 min (4° × 

5° horizontal  resolution) with a flux-form semi-Lagrangian method. 
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