
ASPECT-ORIENTED MODELING FOR REPRESENTING

AND INTEGRATING SECURITY ASPECTS IN UML

MODELS

SRIVAS VENKATESH

A THESIS

IN

THE DEPARTMENT

OF

CONCORDIA INSTITUTE FOR INFORMATION SYSTEMS ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF MASTER OF APPLIED SCIENCE IN INFORMATION SYSTEM

SECURITY

CONCORDIA UNIVERSITY

MONTRÉAL, QUÉBEC, CANADA

JULY 2013

©SRIVAS VENKATESH

Dr. Amr Youssef (CIISE) Chair

Dr. Thiruvengadam Radhakrishnan (CSE)

External
Examiner

Dr. Chung Wang (CIISE)

Internal
Examiner

Dr. Mourad Debabbi (CIISE) Supervisor

Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By Srivas Venkatesh

Entitled

Aspect Oriented Modeling For Representing and Integrating Security Aspects in

UML Models

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science in Information System Security

complies with the regulations of this University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:

Approved
Chair of Department or Graduate Program Director

 20

Dr. Christopher Truman,
Dean Faculty of Engineering and Computer Science

iii

Abstract

Aspect-Oriented Modeling for Representing and Integrating Security
Aspects in UML Models

Srivas Venkatesh

Security is a challenging task in software engineering. Traditionally, addressing security

concerns are considered as an afterthought to the development process and security

mechanisms are fitted into pre-existing software without considering the consequences

on the main functionality of the software. Enforcing security policies should be taken

care of during early phases of the software development life cycle; this benefits the

development costs and reduces the maintenance time. In addition to cost saving, this

encourages development of reliable software. Since security related concepts will be

considered in each step of the design, the implications of inserting such concepts into

the existing system requirements will help mitigate the defects and vulnerabilities

present in the system. Although integrating security solutions into every stage of the

software development cycle, results in scattering and tangling of security features

across the entire design. The traditional security hardening approaches are tedious and

prone to many errors as they involve manual modifications. In this context, the need for

a systematic way to integrate security aspects/mechanisms into the design phase of the

development cycle should be considered.

file:///C:/Users/kumar/Documents/Thesis/Abstract.docx

iv

In this work, an aspect-oriented modeling approach for specifying and integrating

security aspects in to Unified Modeling Language (UML) design model is presented. This

approach allows the security experts to specify generic security aspects and weave them

into target software base model early in the software development phase. In contrast to

traditional approaches, model-to-model transformation mechanisms discussed in this

approach are designed to have an efficient and a fully automatic weaving process. This

work further discusses additional components that are introduced into the weaving

process. These newly introduced components allow the security experts to provide

more appropriate security hardening concepts. Furthermore, the additional

components are designed based on object-oriented principles and allow the security

experts to exercise these principles in the model-to-model transformation. The

additions to the weaver application are tested using the Session Initiation Protocol (SIP)

communicator as a base model. The description of the additional components and the

results of testing of the weaving process are discussed further in this thesis.

v

Acknowledgments

It is my pleasure to thank all those who made this thesis possible. First and foremost I

thank God for granting me the chance to pursue my studies and for guiding me all

through the way.

I owe my deepest gratitude to my supervisors and mentors, Dr. Mourad Debbabi, and

Dr. Makan Pourzandi for introducing me to the field of academic research and providing

me with the opportunity to conduct this research. Their constant guidance, support, and

encouragement played the major role in making this research possible.

I would also like to thank all my colleagues in the Model-Based Engineering of Secure

Software and Systems (MOBS2) project for their participation in this research and for

making it a joyful experience. I would like to extend a special gratitude to Dr Djidjiga

Mouheb, Ms. Raha Ziarati, Dr. Dima Ahladidi and Ms. Mariam Nouh with whom I closely

collaborated in my research.

All my colleagues have greatly supported me during my first months in the lab, they

provided invaluable assistance and above all they were great mentors and dear friends.

My special thanks to Dr. T. Radhakrishan for motivating me to pursue my higher studies

at Concordia University. My heartfelt thanks go to my family and my closest friends for

their constant support throughout the journey which was invaluable.

vi

Table of Contents
List of Figures viii

List of Tables ix

List of Algorithms x

Chapter 1 Introduction 1

1.1. Objectives 8

1.2. Contributions 9

1.3. Framework 10

1.4. Structure of the Thesis 11

Chapter 2 Literature Survey 12

2.1. Software Security 12

2.2. Unified Modeling Language (UML) 14

2.2. Aspect-Oriented Paradigm 21

2.3. Aspect-Oriented Modeling with UML 28

2.4. Query/View/Transformation (QVT): The Standard Language 33

2.5. Related Work on Weaving and UML Secure Design 33

2.5.1. Weavers 33

2.5.2. UML Secure Design and AOM Relevant work 36

Chapter 3 A Framework for Model-based Secure Software and System
Engineering (MOBS2) 39

3.1. Requirements of the tool suite 39

3.2. Pointcut Definition 41

3.3. UML Profiles for AOM 42

3.4. Join Points 44

3.5. Transformation Tool & Weaving 45

3.6. Summary 46

Chapter 4 Additions of New Pointcuts and Advices 48

4.1. Additions to the Parser 52

4.1.1. Structural Components Enhancement 54

4.1.2. Behavioral Component Enhancement 58

vii

4.1.3. Summary 61

4.2. Enhancements of the Weaver Application 62

4.2.1. Structural Enhancements 63

4.2.2. Behavior Enhancements 68

4.3. Summary 72

Chapter 5 Case Study: Session Initiation Protocol (SIP) Communicator 74

5.1. Secure Socket Layer (SSL) Aspect 77

5.1.1. Aspect Customization 80

5.1.2. Weaving SSL Aspect 80

5.2. Role-Based Access Control (RBAC) Aspect 83

5.2.1. RBAC Aspect Customization 85

5.2.2. Weaving RBAC Aspect 86

5.3. Summary 89

Conclusion 90

Bibliography 94

viii

List of Figures

Figure 1 – Application and operating system vulnerability as described in Microsoft

Security Intelligence Report [1] 3

Figure 2 - Software Life Cycle and error Introduction, Detection and Repair Costs [4] 5

Figure 3 – MOBS2 Framework Overview [55] 10

Figure 4 - Different UML Views [12] 16

Figure 5 - UML Diagrams [12] 17

Figure 6 – Simple Banking Module [17] 24

Figure 7 – Banking Example with a Security Module [17] 25

Figure 8 – Weaver Overview [35] [36] 34

Figure 9 – MOBS2 Framework Overview [36] 41

Figure 10 – AOM Profiles in MOBS2 Framework [36] 43

Figure 11 – MOBS2 Complete Framework [36] [42] 47

Figure 12 – Bank ATM Cross-section Base Model 48

Figure 13 - Role Based Access Control Template [37] 50

Figure 14 – RBAC, Security Aspect Model 51

Figure 15 – Balance Sheet Sequence Diagram Example 68

Figure 16 – SIP Communicator Factory Package [45] 74

Figure 18 – Create New Message Sequence Diagram [45] 76

Figure 18 – Secure Socket Layer Aspect 79

Figure 19 – Woven SIP Communicator Model with SSL Aspect 82

Figure 20 – Woven Behavior SIP Communicator 83

Figure 22 – RBAC security model 84

Figure 22 – Woven SIP Communicator Model with RBAC Aspect 87

Figure 23 – Woven SIP Communicator Behavior 88

file:///C:/Users/kumar/Documents/Thesis/Final_Version_Thesis2.0.docx%23_Toc363130466
file:///C:/Users/kumar/Documents/Thesis/Final_Version_Thesis2.0.docx%23_Toc363130468

ix

List of Tables

Table 1– Cost of Fixing Vulnerabilities Later v/s Fixing Vulnerabilities Early as described

by Cigital Labs [2] 4

Table 2 - UML Diagrams [13] [14] 19

Table 3 – SIP Communicator Security Issues [44] 77

x

List of Algorithms

Algorithm 1 – Join Point Matching [37] ..44

Algorithm 2– Class Pointcut Expression ..53

Algorithm 3– Argument Pointcut Algorithm ...55

Algorithm 4- Attribute Pointcut...57

Algorithm 5 – Lifeline Pointcut ...59

Algorithm 6 – Message Pointcut ..60

Algorithm 7 – Operation Join Point Matching ..64

Algorithm 8 – Argument Join Point Algorithm ..65

Algorithm 9 – Attribute Join Point Matching ...67

Algorithm 10 – Lifeline Join Point Matching ...69

Algorithm 11- Message Join Point Matching ..71

file:///E:/ibmlaptop/Srivas/concordia/thesis/final/withcomments/fvkv5.docx%23_Toc367742419
file:///E:/ibmlaptop/Srivas/concordia/thesis/final/withcomments/fvkv5.docx%23_Toc367742420
file:///E:/ibmlaptop/Srivas/concordia/thesis/final/withcomments/fvkv5.docx%23_Toc367742421
file:///E:/ibmlaptop/Srivas/concordia/thesis/final/withcomments/fvkv5.docx%23_Toc367742422
file:///E:/ibmlaptop/Srivas/concordia/thesis/final/withcomments/fvkv5.docx%23_Toc367742423
file:///E:/ibmlaptop/Srivas/concordia/thesis/final/withcomments/fvkv5.docx%23_Toc367742424
file:///E:/ibmlaptop/Srivas/concordia/thesis/final/withcomments/fvkv5.docx%23_Toc367742425
file:///E:/ibmlaptop/Srivas/concordia/thesis/final/withcomments/fvkv5.docx%23_Toc367742426
file:///E:/ibmlaptop/Srivas/concordia/thesis/final/withcomments/fvkv5.docx%23_Toc367742427
file:///E:/ibmlaptop/Srivas/concordia/thesis/final/withcomments/fvkv5.docx%23_Toc367742428
file:///E:/ibmlaptop/Srivas/concordia/thesis/final/withcomments/fvkv5.docx%23_Toc367742429

`

1

Chapter 1 Introduction

Today, computers have impacted all aspects of our lives and have improved the quality

of life significantly. Computers have emerged into different aspects of our lives.

Education, telecommunication, health care, transportation, military, and many other

domains of our society depend heavily on computers and their applications. These

spectrums of smart devices from simple gadgets like microwave ovens to complex

satellites have made a profound influence on the lives of people. These technological

innovations have made us more productive by keeping us connected even on the move:

providing audio, video, and data connectivity. , We have computers working in the

background unobtrusively aiding us in acquiring, storing, analyzing, understanding large

amounts of data and appropriately exercising control so as to perform variety tasks be

it: health monitoring, traffic control, financial transactions, personal entertainment; in a

timely and efficient manner.

As these devices become smarter and more powerful the software controlling them also

has grown in its complexity. Competition and market pressures often push out these

complex systems without thoroughly verifying and validating them. Consequently, they

have become susceptible to defects and vulnerabilities. Such high dependency on

computers and software systems has facilitated the fact that huge amounts of critical

information are now contained within these systems. A lot of personal and very

sensitive information is available and is being transferred on data networks between

servers and clients for example the software system in a military environment could be

`

2

dealing with top secret information, a health care package could contain private

information, social media could contain tons of personal information. In all of these

scenarios the common man has implicitly started trusting the systems. It becomes

imperative to maintain and enhance the trust as more and more applications, which

handles sensitive data are becoming operational every day. Software Engineering must

now play a predominant role in the process of building secure and reliable software.

In today’s computing world, security takes an increasingly predominant role. The

awareness of security issues has increased among researchers in the software

engineering community, which has led them to the understanding that although it is

important to assure that software systems are developed to meet the users'

requirements, it is also important to assure that these systems are equally secure. The

industry is facing challenges in public confidence at the discovery of vulnerabilities, and

customers are expecting security to be delivered out of the box, even on programs that

were not designed with security in mind.

One of the primary reasons as to why the current approaches are unsatisfactory is,

Software developers rely heavily on knowledge and experience. The construction of

such complex software-related systems includes, in brief, requirements engineering,

design, code implementation and testing, and in all these phase of the software design

cycle, software engineers do not consider security as a major issue. Security being

relatively new, the number of software security experts with the required level of

knowledge who have dealt with a variety of security issues is still limited compared to

`

3

the existing number of software developers. Non security experts find it a challenging

task to define the needed semantics and properties of its requirements.

Microsoft Security Intelligence Report for 2012 illustrates the vulnerabilities on

applications that are uncovered since 2002. The report shows software vulnerabilities

consisting of those that affect Operating systems, Applications, or both. It is difficult to

draw a distinct line between operating systems and applications vulnerabilities. In

Figure 1, vulnerabilities that affect both operating systems and applications are shown

in red. In this setting, the security engineering of such software-intensive systems has

become a major concern. This is emphasized by the fact that, in spite of significant

efforts on software security from academia and industry, the scale and severity of

security breaches have been increasing with no complete victory against attacks.

7000

6000

5000

Application

4000

3000

2000

Application and Operating
System

Operating System

1000

0

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

Figure 1 – Application and Operating System Vulnerability as Described in Microsoft Security Intelligence Report [1]

Security has been designed and implemented by non-security experts, conventionally;

security concerns are addressed as an afterthought to the software being developed.

`

4

They are usually retrofitted into pre-existing designs without the consideration of

whether this would jeopardize the main functionality of the software and produce

additional vulnerabilities. The general practice for addressing security concerns is that

the developers sprinkle the security mechanisms all over the original application. This

often causes difficulties in tracking the changes and testing the application for

vulnerabilities and defects.

It has been shown in recent research [2] that considering the requirements of Security

during the early stages of software development results in more secure and cost

effective solutions. It has been shown in Table 1 that costs of repairing a software flaw

during maintenance is approximately 500 times higher than fixing it earlier in the design

phase itself. For example, research conducted by Cigital shows an average cost savings

of over $2.1 million (on a code base of 2 million LOC) when vulnerabilities are identified

during development, where source code analysis is most often leveraged [3] as

illustrated in Table 1.

Fixing Bugs Later Fixing Bugs Earlier

Stage Critical Bugs
Identification

Cost of
Fixing 1

Bug

Cost of
Fixing all

Bugs

 Stage Critical Bugs
Identification

Cost of
Fixing 1

Bug

Cost of
Fixing all

Bugs

Requirements $139 Requirements $139

Design $455 Design $455

Coding $977 Coding 200 $977 $195,400

Testing 50 $7,136 $356,800 Testing $7,136

Maintenance 150 $14,102 $21,115 Maintenance $14,102

Total 200 $22,809 $377,915 Total 200 $22,809 $195,400

Table 1– Cost of Fixing Vulnerabilities Later v/s Fixing Vulnerabilities Early as Described by Cigital Labs [2]

`

5

50%

Analysis
Conceptual

Design

Programming

Unit Testing

System testing

Operation

12.5

40%
Introduced

Errors (in %)
Detected Errors

(in %)
Cost of

Correction 10
per Error (in
1,000 US $)

30%

7.5

20% 5

10% 2.5

0% 0

Time (nonlinear)

Figure 2 – Software Life Cycle and Error Introduction, Detection and Repair Costs [4]

Figure 2, concisely presents the manner in which the quanta of introduction of errors,

detection of errors, and the cost incurred for repair (per error), and varies during the

software development lifecycle of a typical application. By analyzing the graph we can

conclude that higher the percentage of errors addressed during the design phase the

cost of fixing remnant bugs that are uncovered in later stages decreases very rapidly.

We can gather from Figure 2 that the percentage of detected errors during the design

phase of the lifecycle is approximately 15% and the cost of fixing these flaws and

vulnerabilities at this stage is very low compared to fixing these flaws during the testing

phase.

Nowadays, the challenge is even greater when legacy systems must be adapted to fit

into high-risk environments. Software maintainers must face the challenge to improve

security of the program but are often underequipped to do so. In some cases, little can

`

6

be done to improve the situation, especially for Commercial-Off-The-Shelf (COTS)

software products that are no longer supported, or their source code is lost. However,

whenever the source code is available, as it is the case for Free and Open-Source

Software (FOSS), a wide range of security improvements could be applied once a focus

on security is decided. As a result, integrating security into software is becoming a very

challenging and interesting domain of research.

In this thesis, we introduce an approach to tackle correcting the security flaws in the

earlier stages of the design. In order to address security concerns throughout the

development life cycle, we have adopted the use of “Security hardening”. As the term

suggests, we already have a working system and known security issues that have to be

strengthened. To do the “security hardening” right, it should be conceptualized in the

beginning of the system development process itself. Therefore, we use the prevalent

concepts of Model Driven Architecture (MDA) [5] paradigm and the Unified Modeling

Language (UML) [6].

MDA is an architecture using object technology, to distribute application integration, by

guaranteeing reusability of components, interoperability & portability, basis in

commercially available software [5]. Model-driven architecture is developed by the

Object Modeling Group (OMG) to produce code from abstract models. These Models

are designed to elaborate the system structurally and behaviorally using the OMG

standardized modeling language such as UML.

UML is a standardized general-purpose modeling language in object-oriented software

engineering used to specify, visualize, modify, construct and document the artifacts of

`

7

an object-oriented software-intensive system under development [6]. Systems Modeling

Language (SysML) is a subset of UML, which is a general-purpose modeling language for

systems engineering applications.

UML profiles are a specialized set of rules. These profiles are used when there is a need

to define a new language to model a system that either restricts the number of UML

elements or adds some constraints or modifies them while respecting the original

semantics. UML elements can easily be customized by using extensions provided by

UML [7].

Utilizing these concepts towards integrating security solutions at the software modeling

level may result in the scattering and tangling of security features throughout the entire

software models. To address these issues, Aspect-Oriented Modeling (AOM)

[8]paradigm emerges as an appropriate approach for security hardening at the software

modeling level by using these aspects at different stages of software development. The

concept of AOM is to merge the existing concepts of aspect-oriented paradigm to find

and define essential characteristics of crosscutting concerns in UML models,

composition of such models that have common oriented aspects from a more abstract

level. Using AOM we can assist security experts in designing security mechanisms in

isolation without altering the logic of the application. Besides, using AOM, developers

with limited security knowledge can systematically integrate those security mechanisms

into their software models.

Aspect Oriented Programming (AOP) paradigm defines concepts like pointcuts, join

points, advices and weaving. A pointcut is an expression that allows the selection of a

`

8

set of points in the application flow to inject advices. The selected points that are

matched for the targeted application are called join points. An advice is a piece of code,

or behavior, that is injected into the target application when the application reaches the

given join point during execution. Additionally, the process of injecting the advice into

the application is commonly called weaving. Furthermore, other than advices, aspects

contain a set of pointcuts and introductions.

This thesis is part of the research initiative supported by Ericsson Canada Software

Research. This cooperation program aims at developing a Model-Based Framework for

Engineering Secure Software and System (MOBS2). The targeted security concerns are:

capturing security requirements, specification and design of security mechanisms,

verification and validation of security properties/policies, and automatic generation of

secure code. In the following section, we enumerate the objectives of this research work

along with the proposed approach to achieve these goals.

1.1. Objectives

The main objective of this thesis consists of elaborating an approach for systematic

integration of security requirements by defining new join points and advices and adding

them into the MOBS2 framework in order to apply them during the design phase. This is

achieved by expanding the specified UML profile by designing new aspects for security

hardening. We also expand the weaving framework for the injection of security aspects

into the UML design models. In particular, this thesis aims at:

`

9

 Elaborating a framework for specifying new security aspects and their systematic

integration into UML models.

 Designing and implementing the proposed aspects.

 Validating the implemented aspects through various case studies.

In addition, the integrating procedures need to be transparent to the developer; this

means that the proposed approach should be automated as much as possible in order

to hide the complexity and enable a smooth learning curve of our approach.

1.2. Contributions

This section lists the main contributions of this thesis in relation to the objectives stated

above. The main contributions of this thesis are:

 Expanding UML profile to specify new security requirements as aspects over

design models.

 Elaborating the model transformation rules that allow for weaving the proposed

security aspects into UML design models.

 Designing and implementing the proposed security aspects over UML models

within Rational Software Architect environment.

 Conducting a variety of case studies to demonstrate the feasibility of the

proposed aspects.

`

10

1.3. Framework

In this section we briefly describe the framework used in this thesis. The framework

required an environment with a powerful UML modeler to aid the developer to create

UML design models. For this purpose the environment employed is IBM Rational

Base UML

Design
Model

M2M Transformation

Secure UML

Model

UML
Security

Weaver Interface
Joint-Point &

Aspects Developer Advices

Security

Figure 3 – MOBS2 Framework Overview [49]

Software Architect (RSA). The main components of the framework are illustrated in

Figure 3. The framework comprises of three major components: The first one is the

UML security aspects tailored by the security experts armed with a detailed list of all

security requirements. Additionally, these experts design appropriate aspects into

security aspect libraries in terms of UML concepts. This component is responsible to

translate the security requirements into models and properties. The Developers utilize

the second component to construct the rules for the weaving interface to create the

joint-points and the advices that are required to incorporate the proposed security

aspects into the base UML models. Also this component is utilized by the developer to

design the pointcuts into the weaving interface using the Object Constraint Language

(OCL) and the Query View Transformation (QVT) language. The third component is the

model-to-model (M2M) transformation unit. This unit aids the developer in

`

11

transforming the unsecure UML models by adding security features into the UML

models, and generating the secure UML model. This unit comes as part of the IBM RSA

and its elements are accessed using the eclipse plug-ins.

1.4. Structure of the Thesis

The remainder of the thesis is organized as follows:

 Chapter 2 reviews the theoretical background literature of the concepts of modeling

languages, aspect–oriented modeling, and the unified modeling language.

 Chapter 3 describes in detail the MOBS2 Framework and the various components. It

also describes several UML artifacts and tools utilized to support the framework.

 Chapter 4 presents the design of new security aspects for both structural and

behavioral UML models. The chapter also describes the semantics of these newly

designed aspects and their outcome on the UML base models.

 Chapter 5 describes the impact of the aspects fabricated in this thesis. The case

studies includes Role-Based Access Control (RBAC) for the security model, a cross-

section of Session Initiation Protocol (SIP) Communicator base model

 Chapter 6 presents the summarizing conclusion of the thesis.

`

12

Chapter 2 Literature Survey

In this chapter, the primary concepts utilized are briefly explained and relevant work in

this area is described. The core idea of the work is to support the incorporation of

security concepts at the highest level that is the model level. The modeling language

used in this thesis is UML as it is very popular and has been extensively adopted by the

industry. The philosophy of the whole work is to let the security experts do their part of

the hardening activity without requiring to have too much of in-depth knowledge of the

functionality of the software. This naturally allows us to adopt the Aspect-Oriented

paradigm. Security and functionalities can be modeled independently and then stitched

together. In this context the chapter begins by discussing the concepts of software

security. Then, we discuss UML modeling and its concepts. Afterwards we discuss the

aspect-oriented paradigm concepts and how these concepts can be combined.

2.1. Software Security

Software security encompasses measures taken throughout the software's life-cycle to

prevent breach of the security through flaws found in the design, development,

deployment or maintenance phases of the software. The prerequisites for software

artifacts to exhibit secure properties [9] are:

a. Transparency: Disclosure of all functions of the software to the user. i.e. there is

no hidden agenda.

b. Obedience: The software follows only the directions given by its controlling

entities and does nothing more than what is required to be done.

`

13

c. Purity: The software performs only the actions that it has advertised to the user

and performs no unrelated functions.

d. Loyalty: The software serves only the interests of the authorized controlling

entities and cannot be subverted to perform functions for some other entity.

Once it is ascertained that the software entity is “well-behaved”, the security features

can be incorporated into the software [10]. Typical attributes of secure software that

are visible to the user are [10]:

a. Authentication – Ensure that the user of the software (either machine or human

user) is the entity it claims to be.

b. Authorization – Ensure that the authenticated user has sufficient privilege to

perform the intended function.

c. Audit – Be able to trace every action performed by the software entity by

maintaining appropriate logs of all transactions (possibly critical ones only).

d. Confidentiality – Disclose the sensitive information only to the authorized

entities.

e. Integrity – Prevent unauthorized or improper modification of systems and

information.

f. Dependability :

i. Reliability – The software performs its assigned tasks without any failure

and provides the same results for the same set of inputs all the time.

ii. Availability – The software is available all the time to do its intended

function.

`

14

g. Non-Repudiation: Maintaining irrefutable proof of a transaction for both parties

that have participated in the transaction. This requires audit trails to be

maintained [11].

2.2. Unified Modeling Language (UML)

The development of any large non-trivial system is a very complex task. Typically, large

systems will use diverse sets of agents for completing their tasks. To satisfy these tasks

the system has to be utilized effectively. At the beginning of the project, the

requirements of each stakeholder will have to be captured and documented. At this

stage, in order to ensure that requirements have been captured accurately and even

during the design and implementation phase, it is a commonly accepted engineering

practice to build models. These could be either hard models like small scale versions of

planes or soft models like building plans etc. These models are created to study and

analyze various characteristics of the target system in order to ensure that all critical

requirements can be satisfied once the system is realized. Various types of models of

the system can be created each highlighting a set of aspects of its proposed behavior.

These can then be vetted by the stakeholders and would serve as an appropriate launch

point for the detailed development phase. With the advent of high performance

computer-based tools and their easy availability, it has become practical to develop high

fidelity models and even simulate them in order to understand and capture the critical

performance parameters. Building large Software systems is no different. The concept

of modeling the intended system behavior has come into wide spread use after the

`

15

OMG standardized and promulgated a modeling language; known as the Unified

Modeling Language (UML) in 1997.

It was called the unified modeling language as predated to it there were different

modeling languages being used by different research groups; most active proponents of

this were Jim Raumbaug, Grady Booch and Ivan Jacobson [12] who had evolved their

own modeling notations named OOSE, Booch, and OMT [12], respectively. UML is a

standard language for specifying, visualizing, building the software artifacts that

constitutes the system being developed. It also serves as a good documentation

mechanism. Due to the existence of this standard, it has now been adopted as the ideal

vehicle for technical exchange of design information by groups/teams of software

developers. UML however, neither is a methodology, nor does it prescribe any particular

process, nor is it a programming language.

To understand UML, a conceptual model has to be formed that portrays the basic

elements. These elements are known as UML basic building blocks. The building blocks

of UML are: Things which are the abstractions that are the objects in a model. Objects

are the basic building blocks used to create a well-formed model of the application;

relationships tie these objects together. Relationships are the basic relational building

blocks of UML, and lastly diagrams group the interesting collections of the objects.

Diagrams are the graphical representations of these elements mostly rendered in a

graph where the vertices are the objects and the arcs are the relationships [12].

A system’s architecture is the most important artifact that can be used to manage the

different agendas from several stakeholders, and so to control the iterative and

`

16

incremental development of a system throughout the software development life cycle.

The UML architecture should portray the organization of a software system, a proper

selection of elements and their interfaces to compose the system along with the

behavior in collaboration and finally the architectural style that guide the organization.

Figure 4 illustrates the views that best describe the architecture of a software-intensive

system each of these views is a projection into the organization and structure of the

system, focused on a particular aspect of that system.

Vocabulary
Functionality

Design View

Implementation
View

System
Assembly
Configuration
Management

Behavior

Performance
Scalability
Throughput

Use Case
View

Process View

Deployment
View

System
Topology
Distribution
Delivery
Installation

Figure 4 - Different UML Views [12]

As illustrated in Figure 4, the use case view of a system describes its behavior as seen by

the different users. With UML, the static aspects of this view are captured in use case

diagrams, class diagrams, package diagrams, object diagrams and many other diagrams;

the dynamic aspects of this view are captured in the interaction diagrams, state chart

diagrams and activity diagram. The design view of a system encompasses the functional

requirements of the system objects that form the vocabulary of the system. The design

views are captured in class diagrams and object diagrams. The process view of a system

encompasses the process that forms the system’s parallel and synchronization

mechanisms. The implementation view focuses on the components and files that are

`

17

used for the purpose of configuration and assembling the system and is depicted in the

component diagrams. The deployment view focuses on the system topology on which

the built system has to run. This view is depicted by deployment diagrams. Each of these

views can stand alone and show different perspective to different stakeholders. With

these separate views the stakeholders can focus on the issues that concern them.

Diagrams

Structure
Diagrams

Class

Component

Composite Structure

Behavior
Diagrams

Package Deployment Object Profile

Interaction
Diagrams

Activity Use Case State Machine

Sequence Communication Interaction
Overview

Timing

Figure 5 - UML Diagrams [12]

Figure 5 shows the different UML diagrams that are used by these stakeholders.

As illustrated in Figure 5 , UML Diagrams are of several different types they are [12]:

 Use case diagram captures system functionality as seen by users. It is built in early

stages of development by system analysts and domain experts interactively with the

users. Its purpose is to specify the context of a system; capture the requirements of

a system; validate a system’s architecture, drive implementation, and generate test

cases.

 Class diagram captures the vocabulary of the system. It depicts the model elements

and their dependencies. This is built by analysts, designers, and implementers. The

`

18

main purpose is to gather the required concepts and associate unique names for

these entities; depict the collaborations that are required between the various

entities and the constraints imposed on these entities, and finally group the entities

that together will form the logical database schema for the system.

 Object diagram captures the instances of the various data entities and inter-relating

links. This is built by the analysts, designers and implementers. Its purpose is to

depict the structure of the various objects and data entities in the system and

capture the instances of the interaction between the various entities as snapshots.

 Component Diagram is developed by architects to provide information/specification

to the programmers. It maps the logical structure to the physical structures that

have to be implemented. The main purpose is to specify the physical database and

construct the executables.

 State Machine diagram captures the “states” of the various objects/components of

the system. It is also built by the architects and specified to the programmers. The

main purpose is to define the various operating modes i.e. the dynamic behavior of

the system entities; define the data/events that effect transition between the

various states/modes of the object and also define the start state of each object and

hence the system.

 Sequence diagram captures the interactions between the entities in a chronological

order and also depicts the dependencies between the various events. It also

captures the dynamic behavior of the various system entities. It is usually created by

the architect and specified to the programmer.

`

19

 Activity diagram depicts the whole system as a composition of activities and shows

the flow/sequence of these activities that will be pursued in order to achieve the

functionality.

 Deployment diagram maps the complete software system onto the physical

hardware structure. It captures the various physical nodes and their

interconnections that work collaboratively in order to perform the tasks.

Table 2 provides a brief description of all these diagrams. One can note that each

diagram has a different purpose and a precise strength for performing particular tasks

inside the software development process. Choosing the right set of diagrams to model a

system is very important to make the design understandable and approachable.

UML Diagrams Represents

Use-Case System functionality from the user's viewpoint

Activity A sequence of actions of a flow within the system

Class Class, entities, business domain, database

Sequence Interactions between objects

Interaction Overview Interactions at a general high level

Communication Interactions between objects

Objects Objects and their links

State Machine The run time life cycle of an object

Composite Structure Component of object behavior at run time

Component Executables linkable libraries

Deployment Hardware nodes and processor

Package Subsystems, organization units

Table 2 - UML Diagrams [13] [14]

`

20

UML is defined as an open-ended modeling language, which could be extended with

new entities i.e. building blocks, new properties, and semantics so as to customize it to

various problem domains. The extensibility mechanisms defined for UML are:

stereotypes, tagged values and constraints [13] [15], and they can be described as

follows:

 Stereotypes: These define an extension mechanism based on which one can derive a

new model element in the lines of an existing one. It can inherit some properties of

the parent element and also have some very specific properties meaningful for the

particular problem domain. With these primitives and basic modeling elements the

problem domain can be better captured and visualized. This forms the basis for

creating various profiles of the system. For example, exceptions in Java can be cast

as a stereotype that can then be customized to the behavior that is meaningful in

the particular problem domain instead of “one solution suits all” kind of handling of

exceptions.

 Tagged Value: This specifies attributes of the model element and also values

associated with them. This could be associated with stereotypes so that the

extension based on the stereotype can also inherit these values. This should be

treated more as metadata as it is not instance dependent. Examples are association

of say a particular language compiler with the object or versioning of the element,

which does not depend on a particular instantiation of the object.

 Constraints: These are properties, which define assertions that have to be true at all

instants of time with respect to a particular modeling element. The UML building

`

21

blocks can be enhanced with new rules or modification of existing rules with this

feature. This, for instance, could be a method of capturing timing constraints or

deadlines for various tasks in a hard real-time system. OMG has defined the Object

Constraint language (OCL) to express these constraints on models elements.

2.2. Aspect-Oriented Paradigm

The idea of Separation of Concerns (SoC) has its origin in the evolution of the ideas of

encapsulation so that visibility is limited to the interfaces required for manipulating the

information without worrying about the internal architecture of the particular entity

[16]. The aspect-oriented paradigms and specifically the Aspect-Oriented Software

Development (AOSD) methodology enhances these concepts and presents

modularization in ways which ease the task of cross-cutting concerns. A concern in this

context is basically a property that is critical or important for a particular stakeholder. A

particular system will have different stakeholders and each of them will have certain

concerns. Core concerns of a module can be usually realized using standard OOP

techniques [17] where this concern can be implemented in a single module with

adequate encapsulation. However, there are certain functionalities of the system such

as performance monitoring, concurrency control, transaction management, and security

that cannot be captured or localized in just one module and will have to be

implemented in various modules of the system. This concern therefore is a cross-cutting

concern that spans quite a few modules and gets implemented in a distributed manner.

Conventional way of implementing it would have a sprinkling of the code all over the

modules and leads to tangling of the code if a number of cross-cutting concerns have to

`

22

be addressed. The concept of aspect-oriented programming evolved to address such

cross-cutting concerns. Here, each of these cross-cutting concerns can be viewed

independently of the actual functionality of the system and appropriate design and

implementation can be evolved to satisfy this concern. A language, which has constructs

for specifying the core concerns as well as the cross-cutting concerns of the system is

necessary for supporting this design methodology. The language should also be

implemented so that the code that will be generated to address the above concerns will

adhere to the language specification and will translate to code, which will execute as

desired. The idea is that the concerns are specified and then each of these implemented

concerns will have to be weaved along with the modules that implement the core

concerns to realize the final system. This requires that a set of weaving rules be defined

based on which the modules can be stitched together. The core and the cross-cutting

concerns are normally implemented using standard object-oriented languages like C++

and Java. The weaving rules will have to specify “where and what” has to be weaved

into the particular section of the code so as to achieve the desired functionality. The

system exposes certain points in its execution such as execution of methods,

communication between tasks, exceptions, creation of objects or destruction of objects,

etc. These identifiable points are defined as join points. Next, support is required for

selecting the particular join-point into which the code corresponding to the cross-

cutting concerns will have to be weaved. Such specification is called pointcuts. Once the

join point has been identified then the particular code, which modifies the behavior of

the code to take care of the cross-cutting concern, called the advice, will have to be

`

23

specified. This advice can be invoked before the execution of the code at the join-point

or after or instead of it. Such power of expressiveness allows fairly complex behavioral

modifications to be implemented in the system. The advice that needs to be stitched

together with the main code will itself be captured in an entity called the aspect. To

summarize, the implementation of the cross-cutting concerns are captured as advices in

modules called aspects, the points in the code where the advice has to be weaved are

specified as pointcuts and the places where the system is amenable to behavioral

modification are the join-points of the system. The primary driving factor for adopting

AOP for developing secure software is that security is normally a cross-cutting concern.

An introduction of information access control may have to be enforced wherever the

information is being accessed in the application .For example, in a banking system

shown in Figure 6. A simple banking application showing the working of an ATM module,

connecting to a bank module to the provide account holder information. The

accounting, ATM and database modules may have to utilize the services of the security

module in a number of places. With the result though the particular interface to the

security module might be defined by an API, the calls to this Security API is sprinkled all

over the application in various modules. This leads to tangling of the code. Also

modifications to the APIs may result in modifications to a number of modules in the

entire application.

`

24

Bank

1..* 1

ATM

1 1

-memberName
-Name: String
-Location: String

-AccNum: String

+Connect (): boolean
+Action (String): void +AccountDetails (): void

SavingsAccount

+CalcInterest ():float

CheckingAccount

+Servicecharge (): float

User

1

*

Account

-Value: float
- Pin : int

+Withdraw (float): void
+Deposit (float): void

Figure 6 – Simple Banking Module [17]

Adoption of AOP would be very natural in such a situation. In this case the functionality

to satisfy the cross-cutting concerns will be in one module called security module that

logically interacts with the other modules shown in Figure 7.

The join points in each of these modules will be specified and when encountered, based

on the pointcut criteria, the corresponding advices contained in the security aspect will

be woven into the modules. All interactions with the security module per-se are

contained in the particular security aspect. Any changes done to the security module

will only result in the modification of the security aspect, but not the other modules.

In spite of the inherent advantages of the AOP methodology for addressing security

concerns, there are certain drawbacks [19] that are present in the system namely

isolation of faults is difficult as the fault could be in either the source code of the main

functions, the aspect or the woven code.

`

25

 1.. *

1

ATM

1 1

SecurityModule

-Name: String
-AccNum: String

-Name: String
-PIN: String

+Connect (): boolean
+Action (String): void

+Authenticate (): void
+Tra nsaction (): void

 1

1

Bank

-Name: String
-Loca tion: String

+AccountD etails (): void

SavingsAccount

+Cal cI nterest ():floa t

CheckingAccount

+Servicecha rg e (): floa t

User

1

*

Account

-Value: floa t
- Pin : int

+Withdraw (floa t): void
+Deposit (floa t): void

Figure 7 – Banking Example with a Security Module [18]

Another issue is when there are many to many relationships between aspects and the

primary modules then understandability becomes difficult as all interactions will have to

be understood by each of the implementers of the module. In spite of these

deficiencies, the AOP methodology has come to be widely accepted in the recent past.

Keshnee et al. [19] have established various categories of aspect-oriented security

research.

The major categories identified are: access control and authentication, cryptographic

controls, information flow controls, protection from intrusions, security kernels,

`

26

verification and security software engineering. In the following, we briefly discuss each

category:

 Access Control and Authentication: Access policies have to be enunciated and

implemented so that every access to the “secured entity” will be controlled using

these policies. Various types of architectures for implementing this are proposed

[20] defining an “Enforcement Agent” who will be approached for mediation when

an access to the “secured entity” is attempted. Another proposed approach is to

specify the “secured entity” in a container and manage access to the container using

the predefined policies. Research in this area has also focused on discretionary

access controls [21], role-based access control [22] and mandatory access control

[23].

 Cryptographic Controls: In this category, the information that has to be accessed,

modified or transferred is kept in an encrypted form. This ensures that the data is

visible only for the people with appropriate access rights as they alone will have the

method of decrypting the code, thus maintaining its confidentiality. Assurance can

be given about the authenticity of the information, and its integrity too. The AOP

methodology enables the data-items to be securely hardened using appropriate

encryption aspect accessing a security module. Without having to modify the

application module, security measures can be enforced [19].

 Information Flow Controls: These will basically ensure that information will be

available only to the authentic software objects. The information flow can be

between objects in the same node or objects resident on different nodes. AOP

`

27

defined point-cuts can specify appropriate join points before or after data transfer.

Advices at these join points can verify the authenticity of the destination or source

of information as the case may be and also perform sanity checks in order to ensure

that information meets the constraints that might be imposed on these data

transfers.

 Protection from Invasive Software: AOP has been adopted in performing this

function where an advice when invoked will perform self-checks so as to ensure that

the target module has not been modified. This could be done using verification

techniques, which may depend on the various types and instances of invasion

against which the software has to be hardened.

 Security Kernels: A security kernel is defined to be the hardware/software

component that implements the concept of a reference monitor. The objective of

the security kernel is to integrate the security mechanisms into a part of the

operating system [24]. Using the concept of AOP, it is possible to upgrade or modify

the security enforcing mechanisms dynamically as needed to ensure the security of

the system [25] [19].

 Verification: AOP techniques have been used in the process of verification where it

has to be ensured that the data entities generated by the system obey the

constraints imposed on them. This could be implemented by creating specific

validation agents who verify the compliance. These validation agents can be

introduced using the AOP paradigm and then can be modified in order to enforce

other constraints or policies without any effect on the application modules [19].

`

28

 Security Software Engineering: This deals with all phases of the lifecycle of software

development straight from the elucidation of requirements to the implementation

and deployment [19]. AOP has been found very useful because using this

methodology; the application modules are divorced from the security module as

there is a strong separation of concerns. The security module implements all the

security mechanisms and the security aspect module contains all the advices that

are weaved into the application module appropriately. Since the security issues are

not handled in multiple modules, it will be easy to reason about the correctness of

the security system during all phases of the development lifecycle.

2.3. Aspect-Oriented Modeling with UML

Over the last decade, AOM is moving from being a work of curiosity to actual usage

where a number of diverse stakeholders have to contribute in building the system. The

adoption of AO principles early in the development process chain will allow subject

experts to function fairly independently from the beginning. They can independently

conceptualize and easily prove correctness even at higher levels of abstraction. UML,

being a widely accepted high-level object-oriented modeling language, becomes a

natural choice for supporting the AOM methodology. In the following, some of the

important contributions in the area of AOM using UML are reviewed.

Theme [26] is one of the approaches, which proposes the adoption of AOM straight

from the Requirement analysis phase. Theme has two components: Theme/Doc and

Theme/UML. Theme/Doc supports visualizing requirements specifications and their

inter-relationships. It enables the refinement of views of requirements so that cross-

`

29

cutting functionalities can be defined and the point-cuts identified. The main focus has

been to discover ‘aspects’ from requirements. The requirement specification is analyzed

and the actions and their interconnections are extracted from it. The requirements and

actions are usually many-to-many relationships. The shared requirements are the

aspects. Once all the requirements are analyzed and mapped, they are split into groups.

Groups that are self-contained constitute the base, while the groups that have links with

other groups show the cross-cutting concerns. Theme/UML models features and aspects

of the system along with the scheme of combining them. The main achievement is that

traceability from requirements to views of requirements (Theme/DOC) to UML models

(Theme/UML) is supported. Fuentes et al. [27] have proposed certain generic UML2

meta-models. Each meta-model is a composition of four core packages namely, entities

for defining aspects, join points for identification of execution points at which

interception can happen, AO-behavior for specifying the behavior that needs to be

introduced at the join points, and aspect composition rules, which define the

relationship between the join points and the aspects. Extra packages can be added in

order to model for instance the introduction of new methods to classes, and adding

interfaces to classes etc. These can supplement the core packages to better model the

system. They have also mapped the UML-2 elements into these essential entities of

AOP. The containers and components can be used for modeling aspects. Stereotypes or

classifiers can be used to model the behavioral and structural features of aspects. The

relationship between aspects and the base model can be depicted using association and

dependencies. The concept of ports can be used to model the relationship between

`

30

aspects and the classes. Hooks can be used for defining join points. These define some

possible mappings between the UML2 constructs and those that are needed to

implement AO in the software design phase. However, neither implementation of these

concepts, nor a suitable development environment has been reported. Similarly, Gupta

et al. [28] have proposed extensions to UML based on the meta-model concept for

providing support for aspects and modularization of cross-cutting concerns by adding

elements to UML to represent point-cuts, join-points, advices, classes and aspects.

However, their work is limited to a few of the UML artifacts and they do not provide any

integrated environment for their work. They have however demonstrated the efficacy of

their approach using a case study. Cottenier et al. [29] have studied the problem of

cross cutting concerns in the context of distributed and embedded systems. They also

promote the concept of meta-model to represent composition semantics. They have

defined a model weaver, called SDL, for state-charts, which serves primarily to simulate

and validate the design of state-charts. The work presented in [29] is confined to only

few artifacts of UML. Aldawud et al. [14] define generic profiles in UML to support

AOSD. Profiles are basically predefined set of extension mechanisms for a particular

domain, technology or methodology. The typical extension mechanisms of stereotypes,

tagged values, and constraints have been utilized to evolve profiles specifically for

satisfying the needs of AOSD. They classify aspects as synchronous and asynchronous.

Synchronous aspects are those for which the associated advice modifies the behavior of

the core class. The asynchronous ones are basically self-contained functions which are

triggered by a particular event during the execution of the core class. Relationships are

`

31

defined as dependencies and associations. They have also defined profiles for

collaboration diagrams and state-charts. They have used constructs of AspectJ [30] for

realization of these concepts. The authors have stated that these profiles have enabled

bridging the gap between OO and AO. However, standardization requires a lot more

effort. Bustos et al. [31] propose class diagrams and sequence diagrams to represent

the static and dynamic views. State diagrams are used to represent the advice. They

propose this to build formalism into the process so that proving correctness gets

simplified. They propose to introduce these formalisms into the early stages of the

software development cycle itself. Similarly, Pawlak et al. [32] defines point-cuts as

relations to pointcuts, and aspect classes. The aspect classes would contain the advice

that needs to be incorporated at the appropriate point-cut. The point-cut relationship

establishes the mapping between the base class and the advice. They have defined the

concepts at a high level and are planning to support the full AO model lifecycle in future.

Basch et Al. [33] propose a scheme where aspects and components are separated using

encapsulation into different packages. Each aspect package is self-contained and has its

own class. They also proposed an additional modeling element for depicting the join

points in the main application model. These were recommended for incorporation into

the standard. The concepts have been explained using graphical representations but this

process of actually implementing them into a tool has not been dealt with in the paper.

The paper also does not report any activity towards the development of a complete

development environment using these concepts. Kande et al. [34] argue the case for

viewing the cross-cutting concerns as ‘first class citizens’ and introducing models for

`

32

capturing ‘aspects’ at the UML-level. They examine suitability of UML for the purpose of

software system modeling. UML supports model refinement with features like

stereotypes, tagged values, and constraints. Constraints are expressed using OCL.

Suitability of UML for AOP concepts is examined by drawing parallels between AOP and

UML constructs. This has been examined in the context of ASpectJ and its constructs.

Method calls are the most convenient and intuitive join points. Introduction of

interceptor classes can help in injecting advices at the appropriate points. Mediation is

done at connection points into which the advices can be weaved during weaving. This

will modularize even at higher levels of abstraction. They propose definition of new

stereotypes of UML to enable new aspect classifiers.

Khan et al. [35] have comprehensively surveyed important research work performed in

this domain of providing extensions of UML for modeling AOS recently. They have

defined certain evaluation criteria for determining the suitability of the various methods

to provide all the desirable features. These are: Coverage- the extent to which AOP

techniques are covered by the constructs; Supported AOP constructs; UML Artifacts- a

list of artifacts that are extended to model the AOP SW; Case study- whether certain

case studies have been implemented using the techniques; Adherence to UML

standards; Modeling of the weaving process and supporting language. The authors have

studied the existing approaches and classified them based on the above criteria. They

have come to a conclusion that none of the proposals meet all the above listed criteria

in their entirety.

`

33

2.4. Query/View/Transformation (QVT)

QVT (Query/View/Transformation) is the standard defined by OMG for model

transformation. It consists of three components: two declarative (relations and core)

and one imperative (operational mappings). The relations language implements the

transformation by providing links that identify relations between elements in the source

model to elements in the target model. The core language is also a declarative language;

it is simpler than the relations language. It is actually used to specify the semantics of

the relations language. These two languages are good for simple transformations where

the source model and the target model have a similar structure. However, when it

comes to more complicated and sophisticated transformations where elements in the

target model are being built with no direct correspondence with elements in the source

model, declarative languages can be a limitation. Thus, the need for an imperative

language becomes a must. Therefore, QVT proposed the third language, which is the

operational QVT.

2.5. Related Work on Weaving and UML Secure Design

In this section we review the work closely related to secure design. We begin the section

by discussing the current weaver tools that are developed. Then further on, we discuss

the work related to UML Secure Design and AOM.

2.5.1. Weavers

Various approaches have been proposed for weaving aspects into UML design models.

Weaving is the process of injecting the advice specified at the identified join points

`

34

selected by pointcuts. In Figure 8, an overview of a weaver tool is illustrated. Commonly,

the weaver tool has the base models, aspect models, and the identified joint points as

inputs. The combined output, which is the woven model, is produced for further

analysis in the software development lifecycle.

Wea ver Tool

Ba se Models

Woven Model

Aspect Model

Join-Point M atching Mecha nisms

Figure 8 – Weaver Overview [36] [37]

In this section, we present the relevant work done on the weaver tool. Zhang et al [38]

present Motorola WEAVR; an AOM plug-in for weaving aspects into executable UML

state machine models. The weaving process involves two phases: advice instantiation

and advice instance binding. During the first phase, advices are instantiated based on

the pointcuts defined. Then, the matched join points are linked to their corresponding

advices. During phase two, the aspects are woven into the base models. Motorola

WEAVR supports two types of join points that are action and transition join points.

Aspect interference is handled by allowing precedence relationships to be specified at

the modeling level. This weaver is tool-dependent, not portable and lacks graphical

representation of the woven models. Fuentes and Sanchez [36] proposed a weaving

process implemented as a set of XMI (XML Metadata Interchange) representations of

`

35

the models. Using XPATH (for join points selection) and XSLT (for advices injection), a

XMI representation is generated from the output model. This weaver does not support

graphical representation of the woven model. However, this approach targets only

executable UML models.

Morin et al. present the GeKo [39], a generic model weaver. GeKo supports weaving of

class diagrams, state machine diagrams, and sequence diagrams. The weaving is

implemented as model transformations using Kermeta language [83]. The GeKo

approach is based on the definition of mappings between the different views of an

aspect, based on graphical syntax associated to the domain specific frameworks. The

tool uses Prolog-based patterns matching to automatically identify the join-points.

GeKo, which is still under development, keeps the graphical representation of the

weaving between an aspect model and the base model.

Groher and Voelter [40] present the XWeave; a weaver that supports the weaving of

models and meta-models. The weaver is implemented as a model-to-model

transformation using OpenArchitectureWare and it is based on the Eclipse Modeling

Framework (EMF) [40]. The tool selects the join points by: matching the name of the

element in the aspect model with the element in the base model or by explicit pointcut

expression specified in the OAW to select elements of the base model. XWeave is

limited only to the addition of new model elements to the base model. It does not

support removing or replacing existing base model elements. In summary, most of

existing work on model weaving is either tool-dependent, based on the XMI

representation of the models, limited in terms of the supported diagrams, limited in

`

36

terms of the supported aspect adaptations, or consider only a restricted join point

model.

2.5.2. UML Secure Design and AOM Relevant work

One of the important set of applications that is driving the AOM methodology is

designing and implementing secure software. In this section, we review some of the

relevant work in this area. Harikrishna et al. [41] have proposed a complete framework

for building secure software using the AOM approach, using SAM (Software Architecture

Model) for specifying the base model and the aspects. Software architecture model use

Petri-nets for modeling combined temporal logic. It also supports hierarchical models,

which allows the modeler to change the level of abstractions. Join points are mapped to

“connectors” in the SAM model. The work is still at a very conceptual stage and the

adoption of modeling scheme, which is not very familiar to SW practitioners, might

become a severe bottleneck.

Matheson et al. [42] define patterns for expressing security concerns like

authentication, authorization, and data privacy. Security concerns are not

homogeneous. Different levels of security may have to be enforced for guarding

different assets and sometimes for the same asset as well. Each concern is associated

with a design pattern, which is represented using the class and interaction diagrams. It is

possible to have alternate design patterns to address a particular concern. Catalog of

design patterns are maintained. The order of composition of these patterns is very

critical for proper functionality of the software. The concepts have all been proposed at

a high-level of abstraction and have mostly been proposed in the context of access

`

37

control. However, these concepts have not yet been mapped onto any particular

technology for addressing the implementation aspects. Matheson et al. [42] address the

issue of multiple independent aspects combined to form the application. One of the

main issue addressed is the conflict of various aspects interacting with the main model.

Process guidelines that are applicable in general to any AOM have been provided. These

concepts can be adopted in various frameworks.

Win et al. [21] have successfully defined necessary requirements for a good AOP

environment: Definition of an easy and optimal design process, ability to monitor the

performance of the various application modules even in integrated systems, support for

testing and debugging, which is complicated due to integration of the aspects into the

application code, ensure no security holes in the process. AspectJ has been used for the

development of AOP techniques.

Doan et al. [25] describe the evolution of a formal framework for modeling design

states. The authors propose a checker component to ensure that design state instance

meet the constraints. They also extend the UML design framework with MAC, lifetime

and RBAC constraints. Moreover, they developed a security satisfaction design program,

which basically acts like a watchdog during the development process and gives

information on the security requirements that are being complied with in the current

design state. The same can be used in post-development in order to check compliance

with a particular set of requirements. Such tools are very helpful when developing

complex systems and different versions have to be released. The total integration of

`

38

these into a tool framework has not yet been implemented. This also does not

incorporate the ideas of AOM.

`

39

Chapter 3 A Framework for Model-based Secure

Software and System Engineering (MOBS2)

The concept of AOM and its applicability or suitability to separate the cross-cutting

concerns from the actual function in the context of security hardening has been

introduced. A survey of the literature also revealed that there was no comprehensive

tool, which could support all phases involved in the practical implementation of the

above methodology [37] [43]. The MOBS2 programming environment was

conceptualized to satisfy the above requirement of a comprehensive tool. In the

following sections, the features of the MOBS2 tool suite are related to the phases of the

proposed methodology. The MOBS2 project was a joint research project pursued by

Concordia’s Information Systems department with Ericsson as the Industrial partner.

3.1. Requirements of the tool suite

In this section, the various phases of the development methodology are outlined and

the required tool support for each of these phases is identified. As stated in chapters 1

& 2, the key idea is the separation of concerns for the various non-functional

requirements. Though the non-functional requirements are more add-ons they are no

less important. Their deterministic and reliable operation would actually enhance the

acceptability and usability of the functional package.

In short, the requirement of the tool will be to support the AOM at a very high level. The

tool was envisaged to provide the required support for various models of the system as

specified in UML. Typically, both the structural and behavioral UML models are used to

`

40

define the system. The most used and preferred model among the structural models is

the “Class diagram”, while the preferred behavioral models are the Activity diagram,

communication diagram and the state machines.

The mechanisms that will be provided in the tool are general enough to be applicable

across the various models. In order to support the methodology at a minimum the

following are required:

 An unambiguous specification of conditions to define the pointcuts.

 A method for identifying the positions, possibly multiple, in the base model where

the conditions defined in the point cut are satisfied. This may need to be dynamically

evaluated. The positions that satisfy the point cut conditions are defined as ‘join

points’.

 The additional/alternate functions that need to be executed at the join points, which

are called “adaptations” to the base model.

 Merging the “adaptation” models with the base model. This is called “weaving”.

The MOBS2 framework described above is shown in a high level diagram in Figure 9

`

41

Aspect Aspect

Adaptatio n Adaptatio n

Textual
Pointcut

CUP Parser
OCL

Pointcut

QVT Transformation Engine

Adaptation

Parser

Join Point Matching

Join Point

QVT Mapping Rules

Base Model

Woven Model

Figure 9 – MOBS2 Framework Overview [37]

3.2. Pointcut Definition

The requirements unambiguously and precisely state the conditions that define the

pointcut. This will make use of the phrases meaningful to the model space. However,

another important point to note is that the security expert should not be burdened with

the necessity of learning a new language for defining the pointcuts.

The legal sentential forms are required to conform to a grammar. The legal sentential

forms are then translated to generate an expression that conforms to the OCL

specifications. A Java-based parser generator “CUP” is used to generate a parser for the

defined grammar. This CUP parser generator takes the input as the grammar defined for

the customized ‘pointcut’ specification language and outputs a parser. Then the

`

42

sentential forms defining the pointcuts are converted by the parser to an OCL

expression.

In this context, the MOBS2 tool uses the pointcuts that are defined by using “text

string”, meaningful to the model, linked with each other using conditionals and logical

operatives. The pointcut language used in the framework designates the UML elements

in software design. For example, consider the pointcut expression to designate a

package ‘p1’ containing a class ‘c1’ as shown in Equation 1

() ()

Equation 1

The OCL Expression equivalent to the textual expression is generated using the Java CUP

parser. The CUP parser uses a well-defined grammar that helps translating the textual

pointcut into the OCL expression that is required by the weaver. The generated

expression is as shown in the following Equation 2.

()

()

(())

3.3. UML Profiles for AOM

Equation 2

The software system that is to be developed would be represented by a combination of

structural and behavioral models of UML. The structural models mostly used by

designers are the ‘class diagrams’ and the behavioral models mostly used are the ‘state-

machines’ and ‘activity diagrams’. This section represents the AOM profiles that extend

UML concepts. It contains a set of adaptations and pointcuts. An adaptation specifies

`

43

<<stereotype>>
Sequence

Adaptation [Class]

 <<stereotype>>
Activity

Adaptation [Class]

<<stereotype>>
State Machine

Adaptation [Class]

the modifications on the base model done by the aspects. In the MOBS2 framework, the

AOM profiles are represented as stereotype packages as shown in Figure 10. Profiles

have been created for the various UML models in the MOBS2 framework. The security

expert will customizes these UML profiles to implement security philosophies specific to

the application.

<<stereotype>>
Adaptation [Class]

<<stereotype>>
Adaptation
[Package]

<<stereotype>>
Structural

Adaptation [Class]

<<stereotype>>
Behavioral

Adaptation [Class]

<<stereotype>>
Class Adaptation

[Class]

Figure 10 – AOM Profiles in MOBS2 Framework [37]

As illustrated in Figure 10, the security profiles have been created in the MOBS2

environment, which will aid the security architect to concentrate on the ‘secure’

features that need to be designed into the application. The security profiles are

generalized meta-models and are specified as stereotypes with tagged values and

constraints. This enables the security expert to easily adapt the profiles to the particular

application domain. The MOBS2 framework supports all the above model

representations. Graphical representation and manipulation of all these models are

supported in the eclipse development environment.

`

44

3.4. Join Points

The positions in the model instance under consideration, which satisfy the conditions

defined as a pointcut is to be identified. A matching algorithm is adopted to define the

positions in the base model to insert pointcuts. The algorithm takes in an “OCL

expression”, which defines the pointcut as an input and scans through the model to

identify the likely candidate points. The whole concept and the matching algorithm are

quite general in nature and can be easily implemented to handle the various types of

model diagrams. The matching algorithm that is implemented is as given in Algorithm 1.

()

()

()

()

Algorithm 1 – Join Point Matching [37]

Algorithm 1 shows a general implementation of how the process is repeated for each

pointcuts specified in the aspect. On a larger system, each of the pointcut elements

belongs to a specific adaptation, so specifying the adaptation by passing the specific

`

45

base model elements. Including this filtering mechanism in Algorithm 1 improves the

performance of join point matching in larger systems.

3.5. Transformation Tool & Weaving

Figure 11 illustrates the detailed process of the framework. The adaptations will have to

be invoked at specific points in the base model. The adaptation will be associated with

pointcut definitions. A two phase process of identifying the join points in the base model

(matching) and integrating the adaptations into the base model (weaving) is supported

by MOBS2. The point-cut as indicated earlier will be specified using a “text” string. This

string would be converted into an OCL expression. This OCL expression will then be used

as the match string for the pattern matcher which scans the input model and identifies

the join points.

The transformation tool holds a set of transformation definitions targeting a particular

UML diagram, and contains a set of mapping rules which defines the transformation of

each element in the corresponding diagram. The transformation tool’s architecture

facilitates extensions to cater to a wide range of UML diagrams by plugging in without

modifying the existing architecture. The transformation tool uses the base model as an

input, and defines appropriate mapping rules for specific diagrams using the underlying

QVT engine. QVTO (Query, View, transform operational) is an OMG standardized set of

rules and functions. This defines the way the base model will be modified and the

appropriate adaptation is merged with the base model by transforming the base model,

i.e. the adaptation will be weaved into the base model.

`

46

3.6. Summary

To use the MOBS2 tool, there are few steps to follow in order to use the weaving

capabilities. The weaving process is organized into four steps: (a) Aspect specialization,

where the application-independent aspect provided from the security aspect library is

going to be instantiated and will produce an application-dependent aspect. (b) Pointcut

translation where each textual pointcut defined in the aspect is translated into an

equivalent OCL expression. The previous two steps can be considered preliminary steps

before the actual weaving begins. (c) Join point matching, where the generated OCL

expression is evaluated on the base model to identify the locations where weaving is to

be performed. (d) QVT transformation rules generation phase, which takes as input the

set of identified locations from the previous step along with the set of adaptations

specified in the aspect. It then selects the appropriate transformation rules to be

executed on the base model. Finally, the woven model is produced as the output.

`

47

Application
Independent Aspect

Aspect
Specialization

Adaptatio n

Textual

Pointcut

Security Aspect Library

Application
Specific
Aspect

Adaptatio n

Textual
Pointcut

Pointcut Translation

(CUP Parser)

Adaptatio n

OCL

Pointcut

Application
Specific
Aspect

Weaver

QVT Transformation

Rules Generation

Join Point Matching

Transformation Engine

Join Points

QVT Transformation

Rules

Base Model

Woven Model

Figure 11 – MOBS2 Complete Framework [37] [43]

`

48

Chapter 4 Additions of New Pointcuts and Advices

This chapter elaborates on the steps taken to design new Join Points. The Join Points are

designed for both structural and behavioral diagrams of the UML models. The new

specifications as aspects help to further harden the base model to meet the

requirements of the system. To precisely describe the additions and their implications,

two example models common to the entire chapter are adopted. The models that are

used are as listed hereafter.

Bank ATM Base Model: The ‘Bank ATM’ cross section is the first model used as the base

model for the whole chapter. The common example used to describe the additions

made in the application and the implications of these additions. Figure 12 illustrates the

base model used in the chapter.

Figure 12 – Bank ATM Cross-section Base Model

`

49

The base model contains 3 classes :

 User Class – The class contains the information pertaining to the user of the

system

 ATM – The machine that contains the system at the background.

 Bank – The ATM and the user use the bank interface to perform transactions and

then commit the changes to the appropriate user account.

In the class diagrams just enough methods have been shown which when executed in

the right sequence will enable the user to complete a transaction on the ATM.

RBAC Security Aspect Model: The Second model adopted for this chapter is the Role-

Based Access Control (RBAC) template as the security aspect model. The RBAC common

template enforces access control based on user roles and permissions. It involves five

key concepts – user, role, session, operation, and object [44]. Role represents a job

function with certain authority and responsibility in an organization. A role is

represented as a relation between users and permissions, and a user assigned to a role

acquires the permissions given to the role. Session represents an instance of a user’s

dialogue with the system. A user can create or delete a session, and activate or

deactivate a role in a session. A session may be defined as a mapping of a user to the set

of roles that are activated by the user. An object represents any information resource

(e.g., files, databases) to be protected in the system. Operation is an access request to

an object invoked in a session. Permission represents an authorization to perform an

operation on an object and can be represented as a relation between an operation and

`

50

an object. Roles may be structured in a hierarchy to reflect an organization’s lines of

authority and responsibility. Figure 13 illustrates the RBAC template.

User

Name: String

Role

UserId: String

createS ess ion(s : Session)

deleteS ess ion(s : Session)

as signRole(r :Role)

Authorize (r : Role)

UserAssignment GrantPermission(p: Permission)
RevokePermi ssion(p: Permission)

CheckAccess(obj: Object, op:Operation) : Boolean

Add (r: Role)

Delete (r:Role)

Assign(u: User , r: Role) :set(User)

UserSessions

Session Roles

Assignments

Session

addActive Role (r : Role)

dropActiveRol e(r : Role)

checkAccess(obj : Object, op : Operation) : Boolean

invokeOperation (obj: Object, op :Operation)

Permission

checkAccess(obj : Object, op : Operation) : Boolean

Execute
Object Operation

Figure 13 - Role Based Access Control Template [37]

In our approach we use Flat RBAC model as the security aspect. A Flat RBAC is the core

model that embodies the essential concepts of RBAC: users, roles, and permissions. It

specifies the assignment of users to roles and the assignment of permissions to roles. In

order to enforce RBAC access control mechanisms on the different resources of our

application, we need to introduce the primary concepts of RBAC to our application. In

our approach, Flat RBAC template that depicts the essential structure and concepts of

RBAC has been adopted. The security aspect model uses the AOM profiles defined for

the weaver application. The AOM profiles define the model’s properties and depict the

role that the model will play in the weaving process. Figure 14 shows the use of AOM

profile in RBAC designed for this application.

`

51

Figure 14 – RBAC, Security Aspect Model

As illustrated in Figure 14, the AOM profile defines the RBAC templates as an

‘<<aspect>>’ stereotype. The stereotype forges the RBAC template to function as an

aspect model to the weaving process. In a similar fashion, the RBAC template further

incorporates stereotypes like ‘<<classAdaptation>>’ ,’<<sequenceAdaptation>>’ and

many more to specify the roles the classes play in the weaving process. These

stereotypes provide the necessary property specification to the weaver application to

perform the specific weaving to the base model. For example the ‘<<classAdaptation>>’

performs only weaving on the structural aspects of the base model and weaves the

specific security components in the system; Similarly, ’<<sequenceAdaptation>>’

performs weaving into the behavioral aspects of the base models.

There are also stereotypes such as ‘<<add>>’,’<<pointcut>>’ and ’<<remove>>’ which

provide information such as: advise to add, at what position, and if that advise needs to

`

52

be removed from the specified position. These stereotypes provide the appropriate

property specification to the weaver application and allow the weaver to perform the

directed weaving. The chapter is dived into 2 main sections. First section describes the

additions made to the parser in order to generate the required OCL expressions that are

used in the weaver application. The second section describes how the generated OCL

expression used in the weaver application as inputs and how the additions affect the

system.

4.1. Additions to the Parser

This section describes the additions and their implications on the parser. The Java-based

CUP parser generates the OCL expression with a valid textual model as the input. The

textual model is tokenized to pick the elements for the OCL expression. The expression

built by the CUP parser is adopted as inputs by the weaver. To generate the OCL

expression from the textual model a set of tokens comprised of the terminals and non -

terminals in the model are defined. The definitions for such textual models follow

Example 1

() ()

Example 1

As illustrated in Example 1, the textual model contains two tokens namely: ‘class’ and

’inside_package’. The tokens are circulated through the parser to create the OCL

expression. Algorithm 2 depicts the generation of the OCL expression by the CUP parser.

The parser searches for the tokens and builds the OCL expressions. The tokens namely,

`

53

‘class’ and ‘inside_package’ are extracted from the string. These tokenized strings are

then matched with the appropriate productions in the grammar in order to create the

OCL expression. The resultant expression is utilized as the pointcut expression and in the

weaver application.

Input: PointcutExpr::= set (ClassPointcutExpr)

Loop while (length (PointcutExpr))

if (PointcutExpr = Class) then

Result = newExpr String “self.oclIsTypeOf (Class)” + “self.name “

end if

if (PointcutExpr = InsidePackage) then

Result = newExpr String “self._package.name =” + “self.name”

end if

end Loop

Algorithm 2– Class Pointcut Expression

The OCL expression [1] generated by the CUP parser through Algorithm 2

()

[1]
The details of the additions are explained in the following sections. The parser presently

caters for some Structural and Behavioral components of the model. However, in order

to be able to express the new discriminants we need to update the parser to handle

these newly defined structural and behavioral components. The components are

modified at the parser level to incorporate the new aspects designed for the weaver

`

54

system. The following section explains the additions made on the structural

components.

4.1.1. Structural Components Enhancement

This section describes the additions made to the set of structural components that the

CUP parser handles. The structural components are comprised of the following: Class

Diagrams, Objects diagrams, Deployment diagrams, Package diagrams, Composite

structure diagrams and Component diagrams.

The additions to the parser are illustrated using the new class diagram components that

we are introducing. These additions affect the class/package section of the system

structure. However, as these are only structural additions, the functioning of the system

is not affected in any way. The additions are as follows:

a. Arguments (ARGS) Pointcut

Arguments are items present in an operation as parameters. These arguments are used

by the various classes to pass information (values) to the operations. To generate the

appropriate OCL pointcut expression, the textual model expression should contain the

token ‘arguments’, the addition of ‘ARGS’ along with the operation pointcut definition

allows the parser to generate the OCL expression. To accurately describe ‘ARGS’ the

following example is used.

() ()

(() ())

Example 2

`

55

In Example 2, the textual model expression contains a class ‘ATM’ inside the package

‘BankCrossSection’ that contains an operation ‘LogIn’, which contains arguments ‘iPin’.

The parser examines the textual model expression and finds the ‘iPin’ argument. The

token ‘cotains_args’ is adopted by the parser to generate the appropriate OCL pointcut

expression. The parser implements Algorithm 3 to generate the desired OCL equivalent

‘self.ownedArgument’ of arguments.

()

(())

()

()

Algorithm 3– Argument Pointcut Algorithm

As depicted in Algorithm 3, the parser checks the expression for the token

’contain_args’ in the class and the operation specified in the expression containing the

required specific argument. The textual model expression must include a valid argument

name specific to that operation. For the expression of Example 2 the generated OCL

pointcut expression is as follows:

()

(

()

())

[2]

`

56

The OCL expression [2] illustrates the generated expression which will be used as the

pointcut expression in the weaver application for the item ‘ARGS’. The expression

contains a class ‘ATM’ inside a package ‘BankCrossSection’ which contains an operation

‘LogIn’ and a specific argument ‘iPin’. This generated pointcut expression is used as the

input the weaver application to identify and add a Join Point in to the base model.

a. Attributes (ATTR_TYPE) Pointcut

Attributes are logical data values of an object. The parser searches for attribute tokens

based on the attribute name in the textual model expression. The ‘ATTR_TYPE’ token

allows the parser to search attributes based on the UML Property Types (data type) of

the attribute, currently. The parser supports two UML property types: ‘Integer’ and

‘String’. The data type in the textual model expression has to contain either

‘DT_INTEGER’or‘DT_STRING’ to specify the type of the attribute. Using an example to

described prominently the ‘ATTR_TYPE’ item.

() ()

(() ())

Example 3

In Example 3, the attribute ‘AccNo’ is of type ‘Integer’, the parser will use the textual

model expression and generate the OCL expression; Using Algorithm 4 the parser

generates the OCL expression for the text sting with ‘ATTR_TYPE” specifier.

As depicted in Algorithm 4, the parser checks the expression for ‘attr_type’ token

specified in the class and the specific data type. The textual model expression must

include a valid data type.

`

57

()

(())

()

()

Algorithm 4- Attribute Pointcut

For the Example-3 mentioned earlier, the generated OCL point cut expression [3] is as

shown below.

()

(

())

[3]

The OCL expression [3] illustrates the generated expression which will be adopted as the

pointcut expression in the weaver application for the item ‘ATTR_TYPE’. The expression

contains a class ‘ATM’ inside a package ‘BankCrossSection’, which contains an attribute

‘AccNo’ of type ‘Integer’. This generated pointcut is used as the input expression in the

weaver application to add a Join Point into the base model.

These were the additions on the structural part of the CUP parser. To summarize the

additions to the structural component set of the parser expands the pointcut

expressions that the Parser can generate in order to handle the new discriminants. The

discussion on the pointcut expressions will be further illustrated in the weaver section of

`

58

this chapter. The next section discusses the additions to the set of behavioral

components that are currently handled by the parser.

4.1.2. Behavioral Component Enhancement

The following section describes the additions to the set of behavioral components

handled by the parser. The behavioral components comprise the following: Activity

Diagrams, State Diagram, Use Case Diagram, Sequence Diagram and Timing diagrams.

The additions to the parser are illustrated using a sequence diagram. These additions

affect the overall working of the application. A sequence diagram shows object

interactions arranged in time sequence. It depicts the objects involved in the sequence

of messages exchanged between the objects needed to carry out the function. The

additions are as follows:

a. Lifeline Pointcut

The lifeline is an instance of an object, it demonstrates the roles of different processes

or objects that live simultaneously. Modification performed by the parser on the lifeline

brings out changes in the behavior of the model. As mentioned earlier, the lifeline

shows the instances of the classes that are involved in the interaction as objects. The

textual model expression should contain ‘LifeLine’ artifact. For example, the developer

specifies in textual model expression the definition of a new lifeline representing the

role of the User. The appropriate pointcut expression is generated.

()

Example 4

`

59

As illustrated in Example 4, the textual model expression contains ‘lifeline’ token. The

parser will search for the token and then will generate the appropriate OCL equivalent.

To do so, the parser uses the following Algorithm 5 :

()

(())

()

()

Algorithm 5 – Lifeline Pointcut

Depicted in Algorithm 5, the parser searches for the ‘Lifeline’ token from the textual

model expression and generates the OCL expression. For the mentioned, the generated

OCL pointcut expression is shown below in expression [4], is input to the weaver

application.

()

[4]

b. Message Pointcut

A message conveys information from one instance, which is represented by a lifeline, to

another instance in an interaction. This allows the specification of runtime scenarios in a

graphical manner. The parser searches for ‘Message’ token and generates the OCL

`

60

expression. The parser follows Algorithm 6. To clearly describe the algorithm, an

example is used to portray the OCL expression generation.

()

Example 5

As illustrated in Example 5, the textual model expression contains ‘Message_Call’ token.

The parser will search for the token and generate the appropriate OCL equivalent

expression. The parser also adds the information on the type of the message call. A

message call can be one of two types: synchronous or asynchronous. Synchronous calls,

which are associated with an operation, have a send and a receive message. A message

is sent from the source lifeline to the target lifeline. The source lifeline is blocked from

performing other operations until it receives a response from the target lifeline. The

parser uses the following Algorithm 6 to generate the OCL expression.

()

(())

()

()

Algorithm 6 – Message Pointcut

`

61

As depicted in Algorithm 6, the parser searches for the ‘Message_Call’ token from the

textual model expression and generates the equivalent OCL expression. For the above

mentioned example the generated OCL pointcut expression is shown below

() ()

(

)

[5]

OCL Expression [5] listed above is adopted as an input to the weaver application with a

message named ‘LogIn’.

4.1.3. Summary

This section captured the effect of the modifications on the target application. However,

at a low level structural and behavior changes only generate half the output. The parser

is not responsible for weaving the aspects into the base model; these operations are

completed by the weaver application. The parser generates only the necessary pointcut

expressions in OCL, which are input into the weaver application. The modifications to

the weaver are made at the application level. The next section describes the

modification performed to the weaver application to equip the application to handle the

enhancements.

`

62

4.2. Enhancements of the Weaver Application

The weaver application is responsible of performing the weaving of the aspects into the

base model. The application includes two main components: Join Points Matching

Module and Transformation Rules Engine. The join points matching module is

responsible for querying the base model using the generated OCL expressions, and

returning the appropriate set of elements that are validated. The process of weaving

aspects into UML models is considered as a transformation process, the base model is

being transformed into a new model enhanced with new (security aspect) features. The

language used in the weaver application is the OMG standard application Query View

Transformation (QVT).

Transformation rules engine is executed on well-defined join points. A well-defined join-

point constitutes a valid pointcut expression along with an ‘add’ or a ‘remove’ and a

‘pointcut’ stereotype. The rules are implemented using the Eclipse Model-to-Model

(M2M) plug-in, in the Rational Software Architect environment. The QVT black box

mechanism allows the use of external functions along with the QVT language. As

discussed in chapter 3, the OCL expression generated by the parser is passed into the

Join Point Matching Module, which validates the base UML model against the OCL

expression. In an effort to increase scalability, the additions are performed to the

application in both structural and behavioral sections. These additions help in increasing

the security hardening process of the base models.

The modifications on the application are divided into two sections; firstly the structural

modification that directs the security model to achieve structural transformations (class

`

63

and package diagrams) of the base model. Secondly the behavioral modification that

directs the security model to achieve workflow transformations (interaction and activity

diagrams) on the base models. As mentioned earlier at the beginning of the chapter,

two sample models, namely “BankCrossSection” and “RBAC”, are used to depict the

process of performing security hardening using the new pointcuts and advices woven

into the base model.

4.2.1. Structural Enhancements

This section describes the additions and their effects on the structure of the base model.

The structural components in the weaver application comprises of the following: class

diagrams, objects diagrams, deployment diagrams, package diagrams, composite

structure diagram and component diagram. The additions to the application are

illustrated using class diagram components.

These additional components increase the capability of the developer to perform

stronger security hardening on base models. However, these additions will not modify

the workflow of the model. The following are some of the new ly added join points for

structural modification, designed in an effort to increase the degree of security

hardening on the base model.

a. Arguments Advice Weaving

The operation join point designed in QVT performs an addition of an operation in the

base model based on the specifications mentioned by the pointcut expression. The Join

`

64

Point matching algorithm for selecting the operation specified in the pointcut

expression is presented in Algorithm 7

()

((()))

()

()

Algorithm 7 – Operation Join Point Matching

Algorithm 7 illustrates the process of weaving a new operation into the base model.

The application begins my matching the join points with the base model according to

the specified pointcut expression. If the specified join point is present, the application

appends the operation into the base model as ’newElem’. The algorithm is designed to

add new operations to the base model based on valid ‘class’ and ‘package’ elements of

the base models. The algorithm is modified to accommodate the addition of arguments

in the operation. The join point matching algorithm is designed to work around the QVT

language restrictions. Essentially, ‘Operations’ and ‘Arguments’ are two mutually

exclusive entities in UML models. The solution to work around constraint of QVT is to

split the pointcut expression into two separate expressions. The first expression

contains the class and package specifications and the second expression contains the

specific operation and the arguments. The algorithm is modified in order to overcome

the QVT restrictions the solution to the restrictions of QVT.

`

65

()

(((())))

(((()))

()

()

Algorithm 8 – Argument Join Point Algorithm

Algorithm 8 is the modified version of Algorithm 7, which allows the two mutually

exclusive UML entities ‘arguments‘ and ‘operations’ to be used together to perform the

join point matching with a given pointcut expression. The join point matching algorithm

will validate the pointcut expression and weave a new operation into the base model.

The algorithm can be appropriately described with an example. Using Algorithm 8,

generated pointcut expression for the arguments in an operation. The pointcut

expression is divided into two separate expressions. The first part of the expression

contains the class and package specification where the join point matching algorithm

has to select the position to insert the aspect. The first part of the expression is shown

below as Part 1

()

Part 1

`

66

The first part of the expression as shown contains the class ‘ATM’ and the package

‘BankCrossSection’ specifications. Algorithm 8 uses this first part of the expression to

select the class and package from the base model. The second part of the expression

Part 2 is used by Algorithm 8 to select the operation with the appropriate argument.

()

()

Part 2

The separated pointcut expressions are validated. The validated expression creates a

new operation that is to be woven into the base model. The modification on the

operation allows the security developer to weave multiple operations with different

arguments. The addition of arguments with operations supports polymorphism

techniques in AOM and allows the developers to create complex designs.

b. Attribute Advice Weaving

The parser generates a pointcut expression with attributes along with the UML primitive

type (data type). The attribute can be of type either ’Integer’ or ‘String’. The weaver

application allows the developer to weave attributes with a specific data type to the

base models. The use of this addition to the weaver application can be precisely

described with an example.

()

(

())

Example 6

`

67

Example 6, a generated pointcut expression adopted by the weaver application,

contains the class, package and attributes specification with an ‘Integer’ data type

specification.

()

(((())))

()

()

Algorithm 9 – Attribute Join Point Matching

Algorithm 9, describes the attribute join point matching performed on the pointcut

expression. The Joint point matching module validates the expression and weaves the

newly created attribute into the base model at the specified position. The attribute can

further be specified as a static attribute by the weaver. A static attribute is a statically

allocated variable whose lifetime extending across the entire application remains

constant. The static attribute contains the name and the data type of the variables.

Weaving the static property into the base model allows the allocation of constant values

that can be used throughout the application. The addition of attributes with data type

and property allows the developers to incorporate static attributes into the base models

that extend lifetime throughout the system. In highly complex and large models, usage

of abstract classes is common. The addition of static attributes allows the use of

inheritance properties in UML models, with different classes and packages inheriting

these attribute values from abstract classes or packages.

`

68

4.2.2. Behavior Enhancements

This section describes the components added in the behavior section of the weaver

application and their effects on weaving process of the behavioral components of the

base model. The additional components alter the working of the base models and add

the desired control flow into the existing one. For the following section, we use a

common sequence diagram as an example to describe the effects of the behavioral

weaving. Figure 15 depicts a sequence diagram that illustrates the communication

involved between ‘ATM’ and ‘Bank’ classes. A sequence diagram shows the interactions

between the instances of objects depicted as lifeline and the interaction between these

objects known as messages. A sequence diagram shows object interactions arranged in

time sequence. It depicts the objects involved in the scenario and the sequence of

messages exchanged between the objects needed to carry out the functionality of the

scenario.

atm:ATM bank:Bank

1: connectATM

2: serverConnect

3: userDetails

4: balanceSheet

Figure 15 – Balance Sheet Sequence Diagram Example

`

69

The following are some of the additional behavioral components that are designed and

added to the weaver application in an effort to modify the control flow of the existing

base model. A sequence diagram depicts the control flow of the application.

a. Lifeline Advice Weaving

A lifeline of an object demonstrates a role it plays in the control of the model. The

object generates the actions and provides an in-depth analysis of the objects and their

functions depicted in the model. The adaption is a part of a sequence diagram; we are

adding a lifeline as an object that changes the workflow of the base model. The weaver

implements Algorithm 10 to weave the matching join point to the base model.

Example 7 is used to describe the algorithm.

()

Example 7

The pointcut expression directs the weaver application to add ‘User’, a new lifeline

object, into the base model.

()

(((())))

()

()

Algorithm 10 – Lifeline Join Point Matching

The expression is matched with the sequence diagram of the system by the join point

matching module against the existing base model. The new object ‘User’ lifeline

`

70

element is woven to the sequence diagram and the new object entry is added into the

base model. The enhancements to the models add a layer of security hardening by

defining a new role for the object. The addition of lifeline allows the developer to weave

a security aspect as the new lifeline object that can change the behavior of the system.

The addition of lifeline adds a structural advantage to the base model.

b. Message Advice Weaving

A message depicts the method calls between lifeline objects in a model. Messages are

used for communication between lifeline instances in an interaction. The weaver

application inserts new message into the base model. To explain the working of the

weaving process involved in adding new message calls into the base models Example 8

is used.

() ()

(

)

Example 8

The message call ‘LogIn ()’ in the pointcut has to be inserted between interactions of the

‘ATM’ class and ‘Bank’ class depicted in Figure 15 of the ‘BankCrossSection’ system. The

weaver application implements Algorithm 11, to perform the weaving of message calls

into the base model. As Illustrated in Algorithm 11, the join point matching module uses

the pointcut expression fed into the application and selects the explicitly specified

source and target lifelines within which the message will be woven.

`

71

()

(())

(()

((()

()

()

()

(()

((()

()

()

Algorithm 11- Message Join Point Matching

The weaver application first determines the type of message call to be inserted, either

‘Synchronous’ or ‘Asynchronous’ message call. If the pointcut expression specifies a

synchronous message, the weaver creates a `send’ and a `receive’ message call pair and

inserts both of them into the base model. If the pointcut expression specifies an

asynchronous message call, the application inserts a single message into the interaction

`

72

and appends the new message into the base model. The message pointcut expression is

fragmented into two expressions that separately define the source and the target, along

with the name of the method that specifies the object usage. The message advice

adaptation adds method to specialize the roles the objects perform in the model. The

message advice addition can be explained with pointcut expression Example 8. The

expression contains an asynchronous call ‘LogIn()’ , the message call is woven between

‘ATM’ and ‘Bank’ classes as depicted in the interaction diagram of Figure 15. The weaver

application weaves the message call specified into the base model by adopting

Algorithm 11. The addition of message call advice to the weaver application allows the

developer to insert multiple secure message aspect components into the base model.

This addition alters the workflow of the system, so that the developer has the ability to

increase system reliability by weaving security aspects and harden the base model.

4.3. Summary

We conclude this chapter describing the additions made to the parser and weaver

application to perform weaving on the base model. These additional components

provide the developers the ability to specify discriminants by allowing them to

precisely change the structure and the behavior of the base model thus presenting him

additional capability for designing and implementing algorithms which will offer

higher degree of security to the application. Developers are allowed to use techniques

like polymorphism, inheritance, and abstraction. The developers can incorporate these

techniques that are present in Object Oriented Paradigms (OOP) and Aspect Oriented

Paradigms (AOP) to modeling languages and apply secure aspects to the base models.

`

73

The system hardened by the enhanced set of security aspects at the design level itself

increases the scalability and reliability of target systems. The implications of these

additions to the application will be described in the next chapter that explains these

enhancements with the Session Initiation Protocol (SIP) communicator used as a case

study. SIP [45] is a signaling communications protocol widely used for controlling

multimedia communication sessions. The protocol defines messages that are sent

between peers, which govern the initiation, establishment, termination, and other

essential elements of a call (communication session). SIP can be used for creating,

modifying, and terminating two-party (unicast) or multiparty

(multicast) sessions consisting of one or several media streams. Other SIP applications

include video conferencing, streaming multimedia distribution, instant messaging,

presence information, file transfer, and online games. The following chapter discusses

the implications of the enhanced component set to the weaver application.

`

74

Chapter 5 Case Study: Session Initiation Protocol
(SIP) Communicator

This chapter illustrates the suitability and the effects of components added to the

weaver application to perform security hardening on the base models. We show how

security aspects can be integrated into a SIP communicator base model. Figure 16,

illustrates the SIP communicator factory package that allows a multimedia application to

use the SIP communicator protocol for multimedia communication sessions such as text,

voice and video over IP networks.

Figure 16 – SIP Communicator Factory Package [46]

The Session Initiation Protocol (SIP) is a signaling protocol used for establishing and

maintaining communication sessions involving two or more participants. SIP was initially

`

75

designed for voice over IP and multimedia conferencing, and then was extended to

provide support for other services such as instant messaging and presence management

[47]. Today, SIP is also adopted for usage in 3G wireless networks, thus it becomes an

integral protocol for ubiquitous environment. The SIP protocol defines the messages

that are sent between peers. As stated earlier SIP can be used for creating, modifying,

and terminating two-party or multiparty sessions consisting of one or more media

streams. In this scenario, the SIP communicator defines a Factory package that allows an

open source multimedia application to use the SIP protocol to create, modify, and

terminate peers for the required sessions [46]. The depicted base model contains the

following design patterns:

 Peer provider pattern – This pattern defines a platform-specific implementation of

the SIP protocol and provides the corresponding peer information specifics for the

multimedia application.

 Factory pattern – A factory is an intermediary pattern that encapsulates the method

for accessing the SIP peer, and allows the application to obtain instances of the peer

implementation classes.

 Event Listener pattern – When the SIP stack receives SIP messages (requests and

responses) from the network, the SipProvider passes them as events on to the event

listener, which is called SipListener.

In this scenario, the multimedia application starts the instance by preparing the sessions

(text, voice, and video) between the peers using the peer provider pattern. Then, the

application employs the factory pattern to provide the implementations of the peers .

`

76

Lastly, the application employs the event listener pattern to provide the SIP message to

the designated peer. The application will use the package created by the SIP

implementation package to initiate a request and send the request to the designated

peer to avail a responding message from the peer. Figure 17 illustrates a cross section of

the new message created by the multimedia application to initiate a request using the

SIP implementation.

Figure 17 – Create New Message Sequence Diagram [46]

As illustrated in Figure 17, the multimedia application employs the ‘SIPFactory’ existing

in the SIP implementation package to create a new message. The SIP implementation

package creates a new message employing the interfaces: MessageFactory,

AddressFactory, and HeaderFactory (not shown in the figure). The ‘sIPStack’ provides the

properties of the session and the network. The ‘listeningPoint’ will use the properties

provided by the ‘sIPStack’ to generate a new listening port for generate a new listening

port for the messages over the IP network the message over the IP network. The SIP

`

77

communicator is susceptible to threats over the IP network. . Table 3 illustrates the

possible threats the SIP communicator is exposed to.

Issues Solutions

Eavesdropping – Unauthorized interception
of voice packets, real-time media streaming
and decoding hijacked messages

Encrypting the transmitted data over a
Secure Socket Layer with various
encryption mechanisms

Packet Spoofing – Impersonation of
legitimate users while transmitting data

Send address authentication between
peers

Replay – Retransmission of a genuine
message so that the device receiving the
message reprocesses it

Encrypt and sequence messages.

Message Integrity – Ensuring that the
message received is the same as the
message that was sent

Authenticate messages

Table 3 – SIP Communicator Security Issues [45]

In the following sections, we present our enhancements to the weaver application for

weaving two security aspects into the SIP communicator base model: Secure Socket

Layer (SSL), and Role Based Access Controller (RBAC).

5.1. Secure Socket Layer (SSL) Aspect

In this section, we show how the additional components designed for the weaver

application allow weaving of Secure Socket Layer (SSL) aspect, and the Session Initiation

Protocol (SIP) communicator base model. SSL is one of the most important components

for online transactions, creating a trusted environment between the peers for

communicating. The multimedia application employing a SIP implementation package

must use the SSL mechanism to secure the communication environment for the peers.

The SSL aspect employs encryption, decryption and certification mechanism to mitigate

`

78

the threats shown in Table 3 in the multimedia application employing SIP implementing

package.

Before illustrating the effects of the weaving into the base model, we provide a brief

description of the SSL aspect model. The Secure Socket Layer (SSL) is designed to make

use of the TCP/IP network to provide a reliable end-to-end secure service. Figure 18

illustrates the SSL aspect used in our approach. The SSL aspect includes:

 SSLEngine: The SSLEngine includes encryption, decryption, and the handshake

protocol mechanism. The SSLEngine is responsible of encrypting the transmitted

data to mitigate eavesdropping and replay attacks.

 CertificationManger: SSL uses the handshake mechanism to validate the

certificates between the server and the client. These certificates allow all

browsers to interact with secured web servers using the SSL protocol. However,

the client browser and the server need certificates to be able to establish a

secure connection. Allowing the use of certificates mitigates packet spoofing

threat in the communication.

 SSLSocketFactory: The socket factory is responsible for creating and terminating

requests and responses between clients and servers. The SSLSocketFactory has

two distinct entities: server and client. The client entity initiates the transaction,

whereas the server entity responds to the client and negotiates to determine the

SSLEngine that is to be used for encryption of the information in the session

Figure 18 Illustrates the specification of the SSL aspect using the AOM profile presented

in Chapter 3. The SSL aspect contains two kinds of adaptations: Class Adaptation and

file:///D:/Documents/Thesis/My%20Thesis/Chapter3.docx

`

79

Sequence Adaptation. The class adaptation adds a class named SSLEngine to the SIP

communicator base model. In addition, it enforces the SSL concepts, of certification

management, encryption and key management. Furthermore, the class adaptation adds

two new operations, addAuthentication and addClientCertificate, to assign different

encryption mechanisms and append various certificates used in the SIP-based

communication sequence. The sequence adaptation in the SSL aspect adds

protocolcheck behavior ahead of any attempt to call sensitive methods. The

protocolcheck behavior is responsible for checking and securing the communication

session between the peers and determining whether the user is trying to send

messages, or make voice/video call to other peers over the multimedia application using

the SIP communicator, and pass this information to the higher layers for managing the

communication appropriately.

Figure 18 – Secure Socket Layer Aspect

`

80

5.1.1. Aspect Customization

After importing the SSL security aspects library specified above into the weaver

application, the developer needs to customize the generic SSL aspects to suit the target

application. This is done by mapping the abstract elements in the aspect into the actual

elements in the developer's model; to achieve the mapping, the developer can use the

Weaver Interface present in the MOBS2 framework. In this case, the developer will

explicitly define the advices that are depicted in the weaving interface for weaving

purposes. The additional components added to the weaver application allow developers

to use polymorphism, abstraction, inheritance principles and weave them into the base

models. The class adaptation in the SSL aspect weaves addSSLEncrypt operation, which

is an operation with a specified parameter and weaves it into the SIP communicator

model to perform secure message transmission between the peers.

5.1.2. Weaving SSL Aspect

Having customized the aspects to actual elements from the application, the developer

selects the instantiated aspect and the application model in order to perform the

weaving. During the weaving, each pointcut element is automatically translated into its

equivalent OCL expression using the pointcut parser component. This expression is then

evaluated on the elements of the base model, and the matched elements are selected

as join points. After identifying all the existing join points, the next step is to inject the

various adaptations into the exact locations in the base model. This is done by executing

the QVT mapping rules that correspond to the adaptation rules specified by the security

`

81

expert. These mapping rules are then interpreted by the QVT transformation engine

that transforms the base model into a woven model. Figure 19 and Figure 20 show the

final result after weaving the SSL aspect into the service provider application base

models. SSL aspect weaves class adaptation (SSLStructre) into the base model and alters

the structure of the base model as shown below in Figure 19. The modifications on the

base model are as follows:

 addAuthentication: Weaves a class SSLEngine into the base model to include the

encryption, decryption, and handshake mechanisms into the SIP communicator

base model.

 addSSLEncrypt: Defines an operation with a specified parameter and weaves it

into the SIP communicator model to perform secure message transmission

between the peers.

 addKeyAttribute: Weaves the key pairs as an static attribute along with the

specified data type into the SIP communicator.

`

82

Figure 19 – Woven SIP Communicator Model with SSL Aspect

SSL aspect sequence adaptation (SSLBehavior) weaves many properties into the base

model and alters the control flow of the base model as shown below in Figure 20:

 addExchangeManager: This aspect weaves a lifeline object ExchangeManger.

The ExchangeManager is responsible for the exchange of the keys and

certificates between the peers, and monitoring the secure environment over the

communication in the SIP based communication.

 protocolCheck: This aspect weaves the protocolCheck behavior message into the

base model. This message is responsible for securing the environment before the

peers are allowed to transmit and receive data over the IP network. This

message call is made before the rest of the sequence takes place.

`

83

Figure 20 – Woven Behavior SIP Communicator

5.2. Role-Based Access Control (RBAC) Aspect

In this section, we illustrate an access control over SIP based communications. The

usage of access control (UCON) [47] over SIP based communication will enable the

prescribers to control the identification of their locations and approve or disapprove

their subsequent connections, and to also set some parameters to determine whether a

certain communication can continue or should terminate [47]. UCON can solve this

issue by specifying policies that monitor the SIP communications before and during the

call, message transmission, and video streaming. Moreover, it mandates and enforces

continuous compliance to access conditions. In the case of noncompliance to these

conditions, UCON provides mechanisms for revoking the access. Monitoring and

enforcement mechanisms are now collocated and distributed within the SIP

communicator.

`

84

Access control is the means by which the ability to access a specific computer resource

is explicitly enabled or restricted in some way (usually through physical and system-

based controls). With role-based access control, access decisions are based on the roles

that individual users perform as part of an organization. In this section, a method of

enforcing access control on the SIP communicator base model will be described. The

access control that is used is the RBAC model. In this thesis, RBAC [48] model is used. In

order to enforce RBAC access control mechanisms on the different resources of our

application, we need to introduce the primary concepts of RBAC to our application.

Figure 21 – RBAC security model

Figure 21 depicts the RBAC aspect model with AOM profiles that describe the

adaptations that are used in the weaving process. The RBAC aspect model contains two

kinds of adaptations; Class Adaptation and Sequence Adaptation. The class adaptation

adds two classes, Role and Permission to SIP communicator base model. In addition, it

`

85

enforces the RBAC concepts, user-role assignment and role-permission assignment, by

adding two associations between the classes (user, role) and (role, permission) ,

respectively. Furthermore, the class adaptation adds two new operations, assignRole

and getPermissions, to assign different roles to users and to get their permissions. The

sequence adaptation in the RBAC aspect adds the behavior message that checks access

ahead of any call to a sensitive method. The check access behavior is responsible of

checking whether or not the user who is trying to access a given resource has the

appropriate privileges. The RBAC also adds the Action class to create specific actions to

the application, which carry out the actions depending on the Roles specified by the SIP

Communicator base model.

5.2.1. RBAC Aspect Customization

The RBAC security aspects library is imported into the weaver application, the library

can be customized by the developer to suit the target application. Mapping the abstract

elements in the aspect to actual elements in the developer's model; to achieve the

mapping the developer can use the Weaver Interface present in the MOBS2 framework.

In this case, the developer will explicitly define the advices that are depicted in the

weaving interface, for the purpose of weaving. The additional components added to the

weaver application allow developers to use polymorphism, abstraction, inheritance

principles and weave them into the base models. For Example, RBACStructure class

weaves addCheckPermission operation, which is an operation with a specified

parameter and weaves it into the SIP communicator model to create specific access

privileges to perform message transmission between the peers.

`

86

5.2.2. Weaving RBAC Aspect

The developers customize the aspects to actual elements in the model and the

instantiated aspect and the application model are selected to perform the weaving. The

weaving application automatically translates each pointcut expression to an equivalent

OCL expression using the pointcut parser component. This expression is then evaluated

on the elements of the base model, and the matched elements are selected as join

points. The QVT transformation engine will interpret the QVT mapping rules specified by

the security experts in order to incorporate the adaptations at the selected join points.

The transformation engine transforms the base model by adding the selected join points

to generate the woven model.

Figure 22 and Figure 23; show the final result after weaving the RBAC aspect into the

service provider application base models. RBAC aspect class adaptation (RBACStructure)

weaves a variety of components into the base model and alters the structure of the

base model as shown in Figure 22. The woven components on the base model are as

follows:

 addRole: Weaves a class ‘Role’ into the base model to include methods for

performing assignment of roles , granting access, and revoking access into the

SIP communicator base model.

 addPermissions: Weaves a class ‘Permissions’ into the base model to include the

various permission granting and control mechanisms into the SIP communicator

model to enforce specific access control between the peers.

`

87

 addAccessController: Weaves a class AccessController into the SIP

communicator to enforce the access control mechanisms in the structure of the

application using the SIP-based communication.

 addAssignRoles, addDeassignRole, addGetRole,addGetPermission,: Weaves

operations into the SIP communicator base model to invoke specific method

calls to create appropriate access controls to the specified roles along with the

specified permissions between the peers and allow associated messages to the

assigned peers.

 addUserAgreement: Weaves an association into the SIP communicator base

model to enforce user-role assignment and role-permission assignments to

structure and allow the role assignments to create a Usage access control

(UCON) [47] in the base model.

Figure 22 – Woven SIP Communicator Model with RBAC Aspect

`

88

RBAC aspect sequence adaptation (RBACBehavior) weaves properties into the base

model and alters the control flow of the base model as shown below in Figure 23:

 addCheckPermission: The aspect weaves a lifeline object ‘Access Control List

(ACL)’. The ACL is responsible for enforcing the access control in the SIP

communicator by checking the permission to transmit data between the peers.

The ACL also is responsible for granting or revoking access to the multimedia

application employing the SIP communicator model.

 addKillAction: Weaves the ‘destroy’ behavior message into the base model. This

behavior message enforces the kill action concept of the RBAC to reject the

access control before the peers are allowed to transmit and receive data over

the IP network. This message call is made to ensure the role base access control

behavior in the multimedia application.

Figure 23 – Woven SIP Communicator Behavior

`

89

5.3. Summary

In this chapter, we presented the case study of SIP communicator to illustrate the

feasibility and the effects of the new components added to the weaver application. In

this case study, we demonstrated as to how our approach can be used to integrate the

secure socket layer (SSL) protocol and access control mechanisms using role-based

access control (RBAC) aspect into the application. These will help to secure the

application from various attacks that tend to instrument user input in order to gain

control over it.

`

90

Conclusion

The synergetic and rapid growth of computers and communications has led to

connecting people and systems of the world with high-bandwidth digital data networks.

The availability of inexpensive and highly performing computing elements has led to

development of a plethora of products meant to improve the quality of life, which

gather, communicate, and share a lot of information to achieve the desired ends. As the

exploitation of these increases, not only will they be used in applications that control

critical assets but will also gather and transfer valuable information. Application

software, which control these gadgets and networks are being developed at a very fast

pace. Often, the race to market the product leads to offerings which have serious

shortcomings especially in the non-core functions, which are little appreciated by the

general user.

Security is a major concern in a lot of these applications, and measures are often

brought in the final stages of the development, which leads to scattering of the security

related functions all over the application code. This afterthought practice makes it very

difficult not only to validate and verify their functionality and efficacy but also to

maintain the code. In this thesis, we have highlighted this problem. We have proposed

a methodology and have developed the tools to facilitate systematic introduction of

security measures into the application.

The sheer volume of application programs required to be developed, has driven

developers to embrace model-centric development instead of the traditional code-

centric methodology in order to improve productivity. UML with its rich set of models

`

91

has been widely accepted. Aspect oriented methodology provides well-proven and neat

methods of separation of functional and non-functional concerns in the development

process. In the introductory chapter of this thesis, we have elaborated on the features

of aspect oriented modeling, listed the UML models widely used by software developers

and also explored their application domains. We have shown how adopting AOM

techniques and applying them to the various UML models naturally defines a

methodology, which lends to easily addressing crosscutting concerns like security. The

major advantage is that this can be done without the need of having an in-depth

knowledge of the application itself. The need for providing high-level and

comprehensive tools that enable security experts to operate in the model domain and

focus on security measures without worrying about the low-level implementation issues

has been discussed.

A comprehensive study was done on the topic of the adoption of AOM techniques with

UML models for addressing the security concerns and they have been cited in the

chapter on literature survey. It was found that there is no comprehensive tool available

for providing this high-level support in its entirety to the security expert.

Definition and development of a model-based framework for engineering secure

software (MOBS2) was initiated in collaboration with Ericsson Canada. The main focus

of this thesis work has been to provide support in MOBS2 for definition of certain

specific types of pointcuts, identify corresponding join points and incorporate the

required advices at these points in the selected UML models: Class diagrams, Lifelines

and sequence diagrams. In addition, mapping functions were defined using QVTO to

`

92

transform the base UML model to one with the advice weaved in it. The efficacy and

usefulness of these new security constructs were illustrated using two sample

applications namely the SIP Communicator and RBAC.

The key contributions of this research are 1) demonstrating how to build on and expand

UML profiles to specify new security requirements as aspects over design models rather

than as an after-thought; 2) offering guidelines to elaborate the model transformation

rules that allow for weaving security aspects into UML design models at the very early

stages of as well as throughout the various phases of the development life cycle; 3)

illustrating how to design and implement the security aspects to UML models within

Rational Software Architect environment; and 4) validating the feasibility of our

approach in the context of a variety of case studies, including in a banking transaction as

well as in multimedia communication environments to contend with and resolve a

variety of security challenges.

Specifically, in this research work, we introduced new components to the weaver

application for specifying improved security hardening concepts to aid the integration of

cross-cutting concerns, and security aspects into UML design models. We presented a

detailed comparative study of the various techniques in security hardening of software

design models. We highlighted that there is a clear need to provide security experts with

a more expressive and generic AOM language for the specification of security hardening

solutions on both structural and behavioral UML diagrams given a glaring lack of such

capability at this time. As a result, we elaborated UML profiles, which allow the

specification of aspects for adaptation in the weaver. We also discussed in detail the

`

93

MOBS2 framework that currently employs the model-to-model transformation concept

to efficiently automate the weaving process. In addition, we discussed UML-specific

pointcut language to designate the main UML join points.

The premise of this thesis work revolved around the need, motivation, and capability for

designing additional components based on object-oriented principles. These principles

allow the security experts to use along with their traditional modeling methodoly that

results in an extension of the weaving process and allows the security expert to employ

improved security hardening concepts. As noted above, we conducted case studies to

demonstrate the effectiveness of incorporating the additional components to the

weaver application. Demonstrating the effectiveness of the additional components to

the SIP communicator base model showed the improvement in security hardening

concepts in both structure as well behavior of the SIP model. Using this research as a

springboard, future research can examine how the framework and applications

presented here can be further extended to accommodate more components that allow

security experts to create a more secure, functional and reduced vulnerable systems

environment.

`

94

Bibliography

[1] Microsoft Security Intelligence Report, "The evolution of malware and the threat

landscape – a 10-year review," www.microsoft.com/sir, 2012.

[2]

www.fortify.com, "The Case for Application Security," Cigital Labs - Fortify Software

Inc., San Mateo CA, 2008.

[3]

Fortify, "The Case for Application Security," Fortify Software, San Mateo, CA, 2008.

[4]

J.-P. K. Christel Baier, Principle Of Model Checking, Cambridge , MA: MIT Press,

2008.

[5]

Soley, Richard; OMG Staff Strategy Group, "Model Driven Architecture," Object

Management Group, Needham, MA , 2000.

[6]

Object Management Group, Inc. , "Introduction to OMG's UML- Unified Modeling

Language," OMG, 1997-2013. [Online]. Available:

http://www.omg.org/gettingstarted/what_is_uml.htm. [Accessed 14 Febuary

2013].

[7]

R. Fernández , F. L. Nicolet and R. Carniel, "UML and Model Engineering," The

European Journal for the Informatics Professionals, vol. 5, no. 2, 2004.

[8]

M. M. Kandé, J. Kienzle and A. Strohmeier, "From AOP to UML: Towards an Aspect-

Oriented Architectural Modeling Approach," Software Engineering Laboratory ,

Swiss Federal Institute of Technology , Lausanne, 2002.

http://www.microsoft.com/sir
http://www.fortify.com/
http://www.omg.org/gettingstarted/what_is_uml.htm

`

95

[9] P. Meunier, "Software Properties and Behaviors," CERIAS, Purdue University, 2008.

[10] I. Traor´e and Y. M. Liu, "Properties for Security Measures of Software Products,"

Dixie W publishing Corporation, 2007.

[11]

D. Wu, "Security Fuctional Requirements Analysis for Development," ProQuest

Information and Learning Company, Ann Arbor, MI, May 2007.

[12]

G. Booch, J. Rumbaugh and I. Jacobson, "Unified Modeling Language," in The

Unified Modeling Language User Guide, India, Dorling Kindersley, 2006, pp. 44-58.

[13]

B. Unhelkar, Verification and Validation of Quality of UML 2.0 Models, Wiley-

Interscience, 2005.

[14]

A. Bader, T. Elrad and O. Aldawud, "A UML Profile for Aspect Oriented Modeling,"

Illinois Institute of Technology & Lucent Technologies, Chicago, 2002.

[15]

J. Farhad, "The UML Extension Mechanisms," University College London, London,

2002.

[16]

A. Schauerhuber, W. Schwinger, E. Kapsammer, W. Retschitzegger, M. Wimmer and

K. G, "A Survey on Aspect-Oriented Modeling," WIT Women's Postgraduate College

for Internet Technologies, Veinna, 2006.

[17]

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm and W. G. Griswold, "An

Overview of AspectJ," Xerox Palo Alto Research Center, La Jolla, CA, 2001.

[18]

Graz University Of Technology, "Software Paradigms (Lesson 9) - Universal

Modeling Language (UML)," AG Networked Learning, 2010. [Online]. Available:

`

96

http://coronet.iicm.tugraz.at/sa/scripts/lesson09.htm. [Accessed 1 March 2013].

[19]

K. Padayachee and N. Wakaba, "A Taxonomy Of Aspect-Oriented Security," Review

of Business Information Systems – First Quarter 2008, p. Volume 12, 2008.

[20]

P. Charles P, Security in Computing, New Jersy: Pearson Education Inc., 2003.

[21]

B. D. Win, W. Joosen and F. Piessens, "Developing Secure Applications through,"

Department of Computer Science, Leuven, Belgium, October 31, 2002.

[22]

J. Pavlich-Mariscal, L. Michel and S. Demurjian, "Enhancing UML to Model Custom

Security," Department of Computer Science & Engineering, The University of

Connecticut, Connecticut, 2007.

[23]

J. Ramachandran, Designing Security Architecture Solutions, New York: Wiley

Computer Publishing,Robert Ipsen, 2002.

[24]

J. P. Anderson, "Computer Security Technology Planning Study," USAF,

Massachusetts, October 1997.

[25]

M. Engel, "Advancing Operating Systems via Aspect-Oriented Programming,"

Philipps-Universität, Marburg, 2005.

[26]

S. Clarke and E. Baniassad, "Theme: An Approach for Aspect-Oriented Analysis and

Design," Trinity College, Dublin, 2004.

[27]

L. Fuentes and P. S´anchez, "Elaborating UML 2.0 Profiles for AO Design," University

of M´alaga, Spain, 2007.

[28]

P. Gupta, S. Garg and K. Khalon, "Designing Aspects Using Various UML Diagrams in

http://coronet.iicm.tugraz.at/sa/scripts/lesson09.htm

`

97

Resource-Pool Management," Advanced Engineering Science and Technologies, vol.

7, no. 2, pp. 228 - 233, 2011.

[29]

T. Cottenier, A. Van Den Berg and T. Elrad, "Modeling Aspect-Oriented

Compositions," CISE NSF & Motorola Labs., 2006.

[30]

A. Schmidmeier, S. Hanenberg and R. Unland, "Implementing Known Concepts in

AspectJ," Institute for Computer Science, Herbruck, German.

[31]

A. Bustos and Y. Eterovic, "Modeling Aspects with UML's Class, Sequence, and

State-Diagrams in an Industrial Setting," Pontificia Universidad Católica de Chile,

Santiago,Chile, 2007.

[32]

R. Pawlak, L. Duchien, G. Florin, F. Legond-Aubry, L. Seinturier and L. Martelli, "A

UML Notation for Aspect-Oriented Software Design," Laboratoire LIFL, Paris,

France, March 4, 2002.

[33]

M. Basch and A. Sanchez, "Incorporating Aspects into the UML," Department of

Computer and Information Sciences, Jacksonville,FL, December, 2002.

[34]

M. M. Kandé, J. Kienzle and A. Strohmeier, "From AOP to UML - A Bottom-Up

Approach," Software Engineering Laboratory ,Swiss Federal Institute of Technology,

Lausanne, Switzerland, 2002.

[35]

S. A. Khan and A. Nadeem, "UML Extensions for Modeling of Aspect Oriented

Software: A Survey," Center for Software Dependability,MAJU, Islamabad, Pakistan,

2010.

[36]

L. Fuentes and P. S´anchez:, "Designing and Weaving Aspect-Oriented Executable

`

98

UML Models," Journal of Object Technology, vol. 6, no. 7, pp. 109-136, August,

2007.

[37]

M. Nouh, "Model-To-Model Transformation Approach For Systematic Integration

Of Security Aspects into UML2.0 Design Models," Concordia University, Montreal,

Quebec, Canada, July 2010.

[38]

J. Zhang, T. Cottenier, A. van den Berg and J. Gray, "Journal of Objet Technology,"

Aspect Composition in the Motorola Aspect-Oriented Modeling Weaver, vol. 6, no.

7, pp. 89 - 108, August, 2007.

[39]

B. Morin, J. Klein, O. Barias and J.-M. Jézéquel, "A Generic Weaver for Supporting

Product Lines," in "International Workshop on Early Aspects at ICSE'08, Leipzig,

Germany, May 12, 2008.

[40]

I. Groher and M. Voelter, "XWeave: Models and Aspects in Concert," ACM,

Vancouver, BC, 2007.

[41]

P. H. Krishna, A. Ngaraju and D. Kumar, "Secure Software Architectures Using

Aspect Oriented Model," International Transactions in Mathematical Sciences and

Computer, vol. 3, no. 1, pp. 67-72, 2010.

[42]

D. Matheson, "Security Concerns in an Aspect-Oriented Modeling Approach,"

Computer Science Department Colorado State University, Fort Collins, Colorado, 6.

March 2005.

`

99

[43] V. N. De Lima, "Framework for Automatic Verification of UML Design Models:

Application to UML 2.0 Interactions," Information Systems Engineering, Concordia

University, Montreal, QC, 2010.

[44]

I. Ray, R. France, N. Li and G. Georg, "An aspect-based approach to modeling access

control concerns," Information and Software Technology, no. 46, pp. 575-587, 25

April 2003.

[45]

Cisco Systems, Inc, "Security in SIP-Based Networks - White Paper," Cisco Systems,

2002. [Online]. Available:

http://www.cisco.com/warp/public/cc/techno/tyvdve/sip/prodlit/sipsc_wp.pdf.

[46]

M. Ranganathan, P. O'Doherty, J. v. Bemmel, S. Gallanos and B. Evans,

"jsip.java.net," December 2010. [Online]. Available: https://java.net/projects/jsip ,

http://www.eetimes.com/design/embedded-internet-design/4209253/Internet-

multimedia-communications-using-SIP---Part-1--The-JAIN-SIP-API?pageNumber=2.

[47]

A. Lakas and E. Barka, "Integrating Usage Control woth SIP-Based Commuications,"

College of Information Technology, UAE, 2008.

[48]

E. J. Khayat and A. E. Abdallah, "A Formal Model for Flat Role-Based Access

Control," Centre for Applied Formal Methods, London, South Bank University.

[49]

D. Mouheb, "Model-Driven Aspect-Oriented Software Security Hardening,"

Computer Security Laboratory / Concordia Institute for Information Systems

Engineering, Montreal, QC, 2010.

http://www.cisco.com/warp/public/cc/techno/tyvdve/sip/prodlit/sipsc_wp.pdf
http://www.eetimes.com/design/embedded-internet-design/4209253/Internet-

`

100

[50] K. Sohr, G.-J. Ahn* and L. Migge, "Articulating and Enforcing Authorisation Policies

with UML and OCL," ACM, St. Louis, Missouri, USA, 7. July,2005.

[51]

D. Basin, M. Cavel and M. Egea, "A Decade of Model-Driven Security," ACM 978-1-

4503-0688-1/11/06, Innsbruck, Australia, 2006.

[52]

R. M. Perea, "Internet Multimedia Communications Using SIP : A Mordern

Approach Including Java Practices," Burlington, Morgan Kaufmann, 2008, pp. 150 -

312.

[53]

K. Wang and R. Liscano, "A SIP-based Architecture model for Contextual Coalition

Access Control for," School of Information Technology and Engineering, University

of Ottawa, Ottawa, 2005.

[54]

R. Telang, D. Hall, A. Arora, C. Piato and A. Ramsey, "Measuring Risk-Based Value of

IT Security Solutions," IT Professional, Nov - Dec 2004.

[55]

K. Soo Hoo, A. W. Sudbury and A. R. Jaquith, "Return on Security Investments,"

Secure Business Quarterly, 2002.

[56]

B. W. Boehm, J. R. Brown and M. Lipow, "Quantitative evaluation of software

quality," in International Conference on Software Engineering - ICSE, Zurich,

Switzerland, 1976.

[57]

N. Xie and N. R. Mead, "SQUARE Project: Cost/Benefit Analysis Framework for

Information Security Improvement Projects in Small Companies," Carnegie Mellon

University (CMU/SEI-2004-TN-045), Pittsburgh, Pennsylvania, November 2004.

`

101

[58] C. Baier, J.-P. Katoen and . K. Guldstrand, Principles of model checking, 55 Hayward

Street, Cambridge, MA: The MIT Press, 2008.

[59]

E. Colbert, D. Wu and Y. Chen, "Costing the Development of Secure Systems," 18th

Annual COCOMO II, Software Costing Forum & 8th Annual PSM Users' Group

Conference, pp. 26-30, July 2004.

