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Abstract There has been major progress in recent
years in statistical model-based pattern recognition, data
mining and knowledge discovery. In particular, genera-
tive models are widely used and are very reliable in terms
of overall performance. Success of these models hinges on
their ability to construct a representation which captures
the underlying statistical distribution of data. In this ar-
ticle we focus on count data modeling. Indeed, this kind
of data is naturally generated in many contexts and in
different application domains. Usually, models based on
the multinomial assumption are used in this case which
may have several shortcomings especially in the case of
high-dimensional sparse data. We propose then a princi-
pled approach to smooth multinomials using a mixture
of Beta-Liouville distributions which is learned to re-
flect and model prior beliefs about multinomial parame-
ters. Via both theoretical interpretations and experimen-
tal validations, we argue that the proposed smoothing
model is general and flexible enough to allow accurate
representation of count data.

Key words Liouville family of distributions, mixture
models, smoothing, count data, generative discrimina-
tive learning, SVM, texture classification, object recog-
nition.

1 Introduction

Many pattern recognition, computer vision and data min-
ing problems can be formalized as data classification
problems. Given a set of observations composed of in-
put (for instance, the features representing a given im-
age or text) and output variables (i.e. the class label),
the main goal is to learn the relationship between the in-
puts and outputs in order to assign new observations into
one of the data classes. Many classification approaches
have been proposed in the past. Be it pattern recog-
nition, image processing, computer vision or any other

area, approaches to classification depend heavily on the
type (ex. discrete, continuous, mixed, sequence, etc.) of
the generated data that we would like to analyze [1–
3]. Compared to count (or frequency) data, continuous
data have received more attention by the pattern recog-
nition community. Count data appear naturally, how-
ever, in many applications such as statistical natural
language processing where the goal is generally to de-
termine the likelihood of word combination from its fre-
quency in a given training corpus [4], text classification
which is mainly based on the frequency of words (i.e.
bag of words representation) [5], images representation
via visual words [6], texture classification using textons
[7] or cooccurrence matrices [8], and protein classifica-
tion [9]. The dominant approaches in these cases have
been based on the multinomial assumption which may
cause severe practical problems and unreliable model’s
parameters estimates especially when the data is sparse
1.
The main approach generally used to resolve these prob-
lems is to smooth (i.e. adjust) the multinomial estimates.
Different authors have proposed different smoothing ap-
proaches in the past (see, for instance, [11–13]). The
most popular approach, widely used by pattern recog-
nition and machine learning researchers, consists of con-
sidering the Dirichlet distribution as prior to the multi-
nomial parameters in order to exploit the conjugateness
of the family of Dirichlet distributions to the multino-
mial. However, this approach has also its own drawbacks.
Indeed, effective use of this smoothing method requires
the choice of the smoothing parameters. When insuffi-
cient smoothing is done, the resulting parameters esti-
mate can be too rough. On the other hand, excessive
smoothing can compromise the modeling of the data.
The choice of the smoothing parameters is generally left
to the expert experience or prior opinion. A better ap-
proach is to be able to choose the amount of smoothing

1 The problem of data sparseness is also known as the zero-
frequency problem [10].
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automatically from the data by letting the data speak
for itself as shown in our previous works [14] where the
prior knowledge, modeled via Dirichlet mixtures, and the
statistical data are combined to estimate the smoothing
parameters. Despite the fact that the consideration of
the Dirichlet as a prior to the multinomial has domi-
nated the research literature, recent studies have shown
that this choice is inappropriate in several applications.
Indeed, the Dirichlet has the unfortunate property that
its covariance matrix is always negative [15–17] which
may compromise the modeling capabilities in practical
situations.
In this paper, we propose and discuss a new method to
overcome the Dirichlet assumption’s shortcomings. Our
approach is based on the consideration of the Liouville
family of distributions, which includes the Dirichlet as a
special case, and from which we select the Beta-Liouville
distribution. Like the Dirichlet, the Beta-Liouville is con-
jugate to the multinomial. But, it has a more general
covariance structure than the Dirichlet which makes it
more useful in real life applications. A mixture of Beta-
Liouville distributions is taken then to describe our prior
beliefs about the multinomial parameters with the ulti-
mate goal to smooth the final estimates and to achieve
good generalization. The choice of mixtures is justified
by the fact that these models are a powerful probabilistic
representation and their merits have been firmly estab-
lished via intense research activity [18]. However, there
are a certain number of problems to resolve when using
them namely the accurate estimation of the parameters
and the selection of the appropriate number of mixture
components. Given our multinomial model and the Beta-
Liouville mixture prior, we learn the model following an
empirical Bayes approach by integrating out the multi-
nomial parameters. Then, the prior hyperparameters are
computed via a generalized expectation maximization
(EM) algorithm which includes a gradient descent step.
The selection of the optimal number of components is
performed using the minimum description length (MDL)
criterion.
We had several goals in carrying out this research. The
first was to investigate the Liouville family of distribu-
tions as a prior to the multinomial family as explained
above. In this work we additionally investigate the prob-
lem of count vectors classification via support vector ma-
chines (SVM). In this case classic kernels cannot be ap-
plied and the common recent practice is to consider the
so-called hybrid generative discriminative approaches by
generating SVM kernels from the generative model at
hand. These approaches are attractive for allowing for in-
tegrating problem-specific background knowledge about
the particularity of count data feature space and for effi-
ciently combining the advantages of both discriminative
and generative approaches and then getting the best of
both worlds.
The rest of this paper is organized as follows. Section
2 describes the background for this work, briefly sur-

veying the most widely used smoothing approaches and
presents in sufficient details a new smoothing technique
based on Beta-Liouville mixture models. In Section 3 we
propose an approach to learn the smoothing parameters
related to our mixture model. Section 4 is devoted to
the experimental evaluation through a set of challeng-
ing applications namely texture classification and object
recognition. Section 5 draws some conclusions and dis-
cusses issues for further research.

2 The Model

In this section, we shall discuss the problem of multi-
nomial estimates smoothing within a unified framework
and we shall propose a new smoothing approach based
on Liouville mixture models.

2.1 Background

Let X = {X1, . . . ,XN} be a set of of frequency (or
count) vectors representing N textual (or visual) doc-
uments where Xn = (Xn1, . . . , XnV ), Xnv denotes the
frequency of feature (ex. word, visual word, etc) wv oc-
currence in document n among the set of features (ex.
vocabulary) V =< w1, . . . , wV >. V denotes the total
number of features (ex. total number of words in the
vocabulary). A given vector X ∈ X is generally consid-
ered to have a multinomial distribution with parameters
π = (π1, . . . , πV−1):

p(X|π) ∝
V∏

v=1

πXv
v (1)

where πv > 0 denotes the probability of observing the
particular vth feature wv in the document represented
by X, and πV = 1 − ∑V−1

v=1 πv. It is noteworthy that
Eq. 1 is based actually on the well-known naive Bayes
assumption for which a lot of work has been done in
the past (see, for instance, [19,20]). The usual estimator
of (π1, . . . , πV ), commonly called the vector of observed
proportions, is given by

π̂v =
Xv∑V

v=1 Xv

v = 1, . . . , V (2)

Many studies, however, have shown that this estimator
is “poor” especially in the case of large sparse data where
the number of features is high. In this case the frequen-
cies can be small 2 and then the observed proportions
will tend to zero. The usual approach to tackle this prob-
lem is to smooth the estimates by adding a certain value
to the different frequencies in the vector X. For instance,
the author in [21,22] suggests adding a 1

2 count to ev-
ery frequency. In an earlier work, he suggested adding

2 It is easy to note from Eq. 1 that the presence of zero
counts creates serious numerical problems.
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a count of one to every frequency [23]. The same sug-
gestions can be found in [24]. The authors in [25] have
increased the counts by 1

V , where V is the dimensionality
of the vector. These heuristics can be viewed as special
cases of a widely used general approach which consists
on using prior information by assuming that π follows
the conjugate Dirichlet distribution:

p(π|α) =
Γ (

∑V
v=1 αv)∏V

v=1 Γ (αv)

V∏
v=1

παv−1
v (3)

where α = (α1, . . . , αV ) is the vector of hyperparame-
ters. Using this prior it is reasonably straightforward to
show that [26,27,14]

π̂v =
Xv + αv∑V

v=1(Xv + αv)
= r

Xv∑V
v=1 Xv

+ (1− r)
αv∑V

v=1 αv

(4)

where r =
∑V

v=1 Xv∑V
v=1(Xv+αv)

and
∑V

v=1 αv is generally called

the “flattening constant” [28] 3. We can see that Eq. 4
is reduced to Eq. 2 if αv = 0. Generally the Dirichlet is
chosen to be symmetric (i.e. α1 = . . . = αV = α) (see,
for instance, [28,29]) and several choices of α have been
proposed and used. Examples of choices include α = 1,
called Laplace prior [30], α = 1

2 , called Jeffreys prior [31],
and α = 1

V proposed by Perks in [32]. It is noteworthy
that these priors coincide with the heuristics used in [23],
[22] and [25], respectively.
Smoothing approaches based on Dirichlet priors have
several main weaknesses. First, in spite of its flexibility
and the fact that it is conjugate to the multinomial, the
Dirichlet has a very restrictive negative covariance ma-
trix which violates generally experimental observations
[33]. Another restriction of the Dirichlet is that the vari-
ables with the same mean must have the same variance
as shown in [34,35]. Third, generally the hyperparam-
eters are taken independently from the sample accord-
ing to a certain expert’s knowledge. Finally, in most of
the cases only one distribution is taken as a prior which
may not be flexible enough for statistical modeling pur-
poses. Hence, one would expect to be able to improve
the smoothing of multinomial estimates by overcoming
these shortcomings. In the following, we propose a novel
smoothing approach that depends on the sample itself
which is obviously more appropriate. The new approach
is based on finite Liouville mixture model that is shown
to be an appropriate choice as prior to the multinomial.

2.2 Liouville Mixture-Based Smoothing

2.2.1 Liouville Family of Distributions If a vector π =
(π1, . . . , πV−1) has a (V − 1)-variate Liouville distribu-

3 Geometric interpretation of
∑V

v=1 αv has been proposed
in [29].

tion with positive parameters (α1, . . . , αV−1) and den-
sity generator g(·), then [36]

p(π|α1, . . . , αV−1) = g(u)
V−1∏
v=1

παv−1
v

Γ (αv)
(5)

where u =
∑V−1

v=1 πv < 1, πv > 0, v = 1, . . . , V − 1. The
general moment function of a Liouville distribution is
given by [36]

E(πr1
1 πr2

2 . . . π
rV−1
V−1 ) = E(Ur)

∏V−1
v=1 Γ (αv + rv)Γ (

∑V−1
v=1 αv)∏V−1

v=1 Γ (αv)Γ (
∑V−1

v=1 αv + r)
(6)

And the mean, the variance and the covariance are given
by

E(πv) = E(U)
αv∑V−1

v=1 αv

(7)

V ar(πv) = E(U2)
αv(αv + 1)∑V−1

v=1 αv(
∑V−1

v=1 αv + 1)

− E(πv)2
α2

v

(
∑V−1

v=1 αv)2
(8)

Cov(πl, πk) =
αlαk∑V−1
v=1 αv

(
E(U2)∑V−1

v=1 αv + 1
− E(U)2∑V−1

v=1 αv

)

(9)
where r = r1 + . . . + rd and E(Ur) is the rth moment of
a random variable U ∈ [0, 1] which follows a probability
density function f(·) generally called generating density
and related to the density generator g(·) by the following

g(u) =
Γ (

∑V−1
v=1 αv)

u
∑V−1

v=1 αv−1
f(u) (10)

using this previous relation, the Liouville distribution of
the second kind can be written also as follows

p(π|α1, . . . , αV−1) =
Γ (

∑V−1
v=1 αv)

u
∑V−1

v=1 αv−1
f(u)

V−1∏
v=1

παv−1
v

Γ (αv)
(11)

Note that, in contrast to the Dirichlet distribution [33,
37], the covariance of the Liouville can be positive or
negative. A convenient choice as a distribution for u is
the Beta distribution, which shapes are variable enough
to allow for an approximation of almost any arbitrary
distribution [38], with parameters α and β

f(u|α, β) =
Γ (α + β)
Γ (α)Γ (β)

uα−1(1− u)β−1 (12)

and then

E(u) =
α

α + β
E(u2) =

α(α + 1)
(α + β)(α + β + 1)

(13)

V ar(u) =
αβ

(α + β)2(α + β + 1)
(14)
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replacing Eq. 12 into Eq. 11, gives us the following

p(π|α1, . . . , αV−1, α, β) =
Γ (

∑V−1
v=1 αv)Γ (α + β)
Γ (α)Γ (β)

×
V−1∏
v=1

παv−1
v

Γ (αv)
(
V−1∑
v=1

πv)α−∑V−1
v=1 αv (1−

V−1∑
v=1

πv)β−1 (15)

which is called the Beta-Liouville distribution [36]. Us-
ing Eq. 13 and Eqs. 7, 8, and 9, we obtain the mean, the
variance and the covariance of the Beta-Liouville distri-
bution

E(πv) =
α

α + β

αv∑V−1
v=1 αv

(16)

V ar(πv) =
α(α + 1)

(α + β)(α + β + 1)
αv(αv + 1)∑V−1

v=1 αv(
∑V−1

v=1 αv + 1)

− α2

(α + β)2
α4

v

(
∑V−1

v=1 αv)4
(17)

Cov(πl, πk) =
αlαk∑V−1
v=1 αv

(
− α2

(α + β)2
∑V−1

v=1 αv

(18)

+
α(α + 1)

(α + β)(α + β + 1)(
∑V−1

v=1 αv + 1)

)

Note that when the density generator has a Beta distri-
bution with parameters

∑V−1
v=1 αv and αV :

f(u) =
Γ (αV +

∑V−1
v=1 αv)

Γ (αV )Γ (
∑V−1

v=1 αv)
u

∑V−1
v=1 αv−1(1− u)αV (19)

Eq. 11 is reduced to the Dirichlet distribution with pa-
rameters α1, . . . , αV . Thus, Liouville distribution includes
the Dirichlet distribution as a special case.

2.2.2 Finite Beta-Liouville Mixture Model as a Multino-
mial Prior Let us assume that π follows a finite Beta-
Liouville mixture:

p(π|Θ) =
M∑

j=1

pjp(π|θj) (20)

where p(π|θj) is a Beta-Liouville distribution with pa-
rameters θj = (αj1, . . . , αjV−1, αj , βj), {pj} is the set of
mixing parameters which are positive and sum to one,
and Θ = {{pj}, {θj}}. Having this mixture as a prior,
the joint distribution of X and π is

p(X,π|Θ) ∝
M∑

j=1

pj
Γ (

∑V−1
v=1 αjv)Γ (αj + βj)
Γ (αj)Γ (βj)

(21)

×
V−1∏
v=1

π
αjv+Xv−1
v

Γ (αjv)
(
V−1∑
v=1

πv)αj−
∑V−1

v=1 αjv

× (1−
V−1∑
v=1

πv)βj+XV −1

then, it is easy to show that the marginal is

p(X|Θ) ∝
M∑

j=1

pj
Γ (

∑V−1
v=1 αjv)Γ (αj + βj)

Γ (αj)Γ (βj)
∏V−1

v=1 Γ (αjv)
(22)

×
∫

π

[ V−1∏
v=1

παjv+Xv−1
v (

V−1∑
v=1

πv)α′j−
∑V−1

v=1 α′jv

(1−
V−1∑
v=1

πv)β′j

]
dπ

=
M∑

j=1

pj

[
Γ (

∑V−1
v=1 αjv)Γ (αj + βj)

Γ (αj)Γ (βj)
∏V−1

v=1 Γ (αjv)

× Γ (α′j)Γ (β′j)
∏V−1

v=1 Γ (α′jv)

Γ (
∑V−1

v=1 α′jv)Γ (α′j + β′j)

]

where α′jv = αjv + Xv, α′j = αj +
∑V−1

v=1 Xv and β′j =
βj + XV . Having the joint and marginal distributions in
hand, we can show that πv can be estimated as follows
(See Appendix 1):

π̂v =
M∑

j=1

p(j|X)
α′j

α′j + β′j

α′jv∑V−1
v=1 α′jv

v = 1, . . . , V − 1

(23)

π̂V = 1−
V−1∑
v=1

π̂v

where

p(j|X) (24)

=
pj

Γ (
∑V−1

v=1 αjv)Γ (αj+βj)

Γ (αj)Γ (βj)
∏V−1

v=1 Γ (αjv)

Γ (α′j)Γ (β′j)
∏V−1

v=1 Γ (α′jv)

Γ (
∑V−1

v=1 α′jv)Γ (α′j+β′j)

∑M
j=1 pj

Γ (
∑V−1

v=1 αjv)Γ (αj+βj)

Γ (αj)Γ (βj)
∏V−1

v=1 Γ (αjv)

Γ (α′j)Γ (β′j)
∏V−1

v=1 Γ (α′jv)

Γ (
∑V−1

v=1 α′jv)Γ (α′j+β′j)

and can be viewed as the posterior probability that the
vector X will be assigned to cluster j when the marginal
distribution p(X|Θ) in Eq. 22 is taken as the parent dis-
tribution to model the data. Note that when M = 1,
Eq. 23 is reduced to

π̂v =
α′

α′ + β′
α′v∑V−1

v=1 α′v
(25)

which is actually the mean of a Beta-Liouville distribu-
tion with parameters (α1, . . . , αV−1, α, β) according to
Eq. 16. Finally, it is noteworthy that Eq. 25 is itself re-
duced to Eq. 4 if we take α =

∑V−1
v=1 αv and β = αV .

3 Model Learning

3.1 Parameters Estimation

According to Eq. 23 the smoothing of the multinomial
parameters requires the estimation of p(j|X), αj , βj and
αjv. In this section, we propose an approach to estimate
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these quantities via the learning of the marginal distri-
bution in Eq. 22 which is actually a mixture of distri-
butions. It is noteworthy that we are making here an
inferential statement (i.e. point estimation) about the
hyperparameters of our mixture prior on the basis of
data which is it is actually an empirical Bayes approach
so named and developed in [39] and [40], respectively.
The reader interested in the general empirical Bayesian
theory is referred to accessible expositions in [41,42]4.
Traditionally, the estimation of finite mixture models has
been based on the maximum likelihood approach:

max
Θ

{
p(X|Θ) =

N∏
n=1

p(Xi|Θ)
}

(26)

In some situations, however, maximizing the likelihood
is not straightforward or appropriate. In our case, for
instance, the maximization of the likelihood leads to the
following estimate for the pj parameters:

pj =
1
N

N∑
n=1

p(j|XN ) (27)

The maximization with respect to the αj , βj and αjv

parameters, however, involves the Gamma special func-
tion, Γ (.), and by computing its derivatives other spe-
cial functions such as the digamma (or the psi function)
Ψ(α) = ∂ log Γ (α)

∂α and trigamma Ψ ′(α) = ∂Ψ(α)
∂α occur

which makes the parameters estimation intractable. A
possible approach to overcome this problem is to opti-
mize the following function

f(X|Θ) =
N∏

n=1

V∏
v=1

π̂Xnv
v (28)

=
N∏

n=1

[( V−1∏
v=1

( M∑

j=1

p(j|Xn)
α′j

α′j + β′j

α′jv∑V−1
v=1 α′jv

)Xnv
)

×
(

1−
V−1∑
v=1

M∑

j=1

p(j|Xn)
α′j

α′j + β′j

α′jv∑V−1
v=1 α′jv

)XnV
]

that we obtain by substituting the estimates in Eq. 23 in
Eq. 1 for all the Xn. In order to estimate the αj , βj and
αjv parameters, we use a gradient descent method based
on the first derivatives of log f(X|Θ) since the logarithm
is a monotonic function. We will therefore compute these
derivatives. By computing the first derivatives, we obtain
(see Appendix 2)

∂ log f(X|Θ)
∂αj

=
N∑

n=1

[
Xnv

( V−1∑
v=1

Fnjv(
1
α′j

− 1
α′j + β′j

)
)

− XnV FnjV

∑V−1
v=1 p(j|Xn) β′j

(α′j+β′j)
2

α′jv∑V−1
v=1 α′jv∑V−1

v=1 p(j|Xn)
α′j

α′j+β′j

α′jv∑V−1
v=1 α′jv

]
(29)

4 In particular the authors in [41] provide interesting dis-
cussions about the difference between Bayesian and empirical
Bayesian approaches.

∂ log f(X|Θ)
∂βj

=
N∑

n=1

[
Xnv

( V−1∑
v=1

Fnjv(− 1
α′j + β′j

)
)

+ XnV FnjV

∑V−1
v=1 p(j|Xn) α′j

(α′j+β′j)
2

α′jv∑V−1
v=1 α′jv∑V−1

v=1 p(j|Xn)
α′j

α′j+β′j

α′jv∑V−1
v=1 α′jv

]
(30)

∂ log f(X|Θ)
∂αjv

=
N∑

n=1

[
Xnv

(
Fnjv(

1
α′jv

− 1∑V−1
v=1 α′jv

)
)

− XnV FnjV

p(j|Xn) α′j
α′j+β′j

(
∑V−1

v=1 α′jv)−α′jv

(
∑V−1

v=1 α′jv)2

∑V−1
v=1 p(j|Xn)

α′j
α′j+β′j

α′jv∑V−1
v=1 α′jv

]
(31)

where

Fnjv =
p(j|Xn) α′j

α′j+β′j

α′jv∑V−1
v=1 α′jv∑M

j=1 p(j|Xn)
α′j

α′j+β′j

α′jv∑V−1
v=1 α′jv

v = 1, . . . , V − 1

(32)

FnjV =

∑V−1
v=1 p(j|Xn) α′j

α′j+β′j

α′jv∑V−1
v=1 α′jv

1−∑V−1
v=1

∑M
j=1 p(j|Xn)

α′j
α′j+β′j

α′jv∑V−1
v=1 α′jv

(33)

Having our derivatives in hand, the parameters are up-
dated as follows

θnew
j = θold

j − γ
∂ log f(X|Θ)

∂θj
(34)

where γ is a small number.

3.2 Complete Algorithm

The EM algorithm plays a uniquely important role in the
estimation of mixture’s parameters and has been widely
studied in the past [43,44]. Thus, we shall consider it
here. Two important problems when applying the EM
framework for mixture models learning are the determi-
nation of the number of mixture components and the
initialization of the parameters. Many proposals for the
automatic selection of the number of clusters have been
made over the years. Some of them are widely discussed
in [18,45]. Here, we use the MDL criterion given by [46]

MDL(M) = − log(p(X|Θ)) +
1
2
Np log(N) (35)

where Np = M(D + 3)− 1 is the number of free param-
eters in the mixture model. Concerning the initializa-
tion, we use of the spherical K-means [47], rather than
the well-known K-means with Euclidean distance. This
choice is justified by the fact that count data lack a
Euclidean structure since they are represented in terms
of multinomial models for which the associated geom-
etry is well-known to be spherical [48]. The spherical
K-means is applied in conjunction with the method of
moments based on the first and second moments of the
Beta-Liouville distribution given by Eqs. 16 and 17:
Initialization Algorithm
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1. INPUT: Count vectors Xn, n = 1, . . . , N and number
of clusters M.

2. Apply the spherical K-Means [47] algorithm to obtain
the elements of each component.

3. Apply the method of moments based on Eqs. 16 and
17 for each component j.

4. Assign the data to clusters, assuming that the current
model is correct.

5. If the current model and the new model are suffi-
ciently close to each other, terminate, else go to step
2.

Having the initialization algorithm and the MDL crite-
rion in hand, the complete smoothing parameters learn-
ing algorithm can be summarized as the following
Algorithm
For each candidate value of M ∈ [Mmin,Mmax]:

1. Apply the initialization algorithm.
2. E-Step: Compute the posterior probabilities p(j|Xn)

using Eq. 24.
3. M-Step:

(a) Update the pj using Eq. 27.
(b) Update the θj using Eq. 34.

4. Calculate the associated criterion MDL(M) using Eq. 35.
5. Select the optimal model M∗ such that:

M∗ = arg max
M

MDL(M)

4 Experimental Results

4.1 Design of Experiments

The primary purpose of this section is to compare the
proposed smoothing approach and outline its effective-
ness when compared to previously proposed techniques
namely Laplace smoothing, Jefferys smoothing, Perks
smoothing and smoothing with Dirichlet mixtures. We
empirically test our approach on several applications in
order to show its general capability and to test its effec-
tiveness in different situations. Our experiments are con-
ducted within hybrid generative discriminative frame-
works which have emerged as an efficient data represen-
tation and classification engine and have recently been
studied by many researchers with great interest mainly
as a way of exploiting the main advantages of both gener-
ative and discriminative approaches. In our frameworks
the generative part consists of the multinomial model
and the discriminative one is conducted via SVM by
handling the count vectors as points on the multinomial
manifold. Details of the SVM are well documented in
[49], for instance, and will be omitted in the interests of
brevity. The Achilles’ heel of SVM is the need to choose
an efficient kernel function to introduce non-linearity.
Classic widely used SVM standard kernels, such as lin-
ear, polynomial, Gaussian and sigmoid, do not make
use of explicit representations of domain-specific prior

knowledge and ignore the geometric structure, defined
by the Riemannian multinomial manifold of count data
[50]. The main desire of hybrid models is to overcome
some of the disadvantages associated with purely gener-
ative and discriminative methods. A natural way is to
use the generative models (i.e. the multinomial in our
case) to generate kernels. The main idea is to replace
the kernel computation in the original data space by
computation in the probability density functions space
(i.e. the kernel becomes a measure of similarity between
probability distributions) as the following K(X,X′) ⇒
K(

p(X|π), p′(X′|π′)). Examples of generated kernels that
have been proposed to take into account the intrinsic
geometric structure of count data include the negative
Geodesic distance kernel (NGD) defined by [50]:

KNGD(π,π′) = −2 arccos
( V∑

v=1

√
πvπ′v

)
(36)

Another approach is the Bhattacharyya kernel given by
the following in the case of the multinomial [51]:

KB(π, π′) =
V∑

v=1

√
πvπ′v (37)

It is noteworthy that KB(π,π′) = cos(− 1
2KNGD(π, π′)).

Another notable work is the divergence kernel which has
been proposed in [52] and given by the following in the
case of the multinomial:

KD(π, π′) = exp
[
− aJ

(
π,π′

)]
(38)

where and a > 0 is a kernel parameter included for nu-
merical stability, and

J
(
π,π′

)
= KL(π, π′) + KL(π′, π) (39)

=
V∑

v=1

(
πv log(

πv

π′v
) + π′v log(

π′v
πv

)
)

is the symmetric Kullback-Leibler (KL) divergence be-
tween the two multinomials p(X|π) and p(X|π′). An al-
ternative distance to the KL divergence, called the ca-
pacitory discriminant, has been proposed in [53] and is
given by:

C(π,π′) = KL(π,
1
2
(π+π′))+KL(π′,

1
2
(π+π′)) (40)

Thus, we will investigate its use as a kernel in the same
way as the KL divergence was used in [52]

KC(π, π′) = exp
[
− aC(π, π′)

]
(41)

The capacitory discriminant is related to the χ2 distance
by the following [53]

1
2
χ2(π, π′) ≤ C(π, π′) ≤ log 2χ2(π, π′) (42)
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and limπ→π′ C(π,π′) = 1
2χ2(π, π′). It is noteworthy

that the χ2 has been used itself as an SVM kernel in
[54]:

Kχ2(π,π′) =
V∑

v=1

(π − π′)2

π + π′
(43)

In our experiments, we have employed the “one-vs-one”
method for multi-class classification via the LIBSVM 5

implementation of SVM. In each of the applications that
we will discuss in this section the used data sets were
split into two groups: one for training and the other
for testing. Then, the kernel parameters were selected
by performing 10-fold cross-validation. After finding the
best parameters, the SVM was trained using all the train-
ing data. For the smoothing parameters estimation using
the algorithm in section 3.2, we set γ to 10−3. In the fol-
lowing, we present our experimental results which con-
cern statistical texture modeling and classification and
object recognition and which main goal is to validate the
proposed smoothing approach.

4.2 Statistical Texture Modeling and Classification

Texture modeling and classification plays an important
role in remote sensing, computer vision, graphics and
image processing and is a challenging task especially
when the images representing textured materials are ob-
tained under unknown viewing, camera pose and illu-
mination conditions [55]. Several approaches have been
proposed in the past to deal with this problem (see, for
instance, [56]). Some techniques have been based on the
characterization of the statistical nature of textures by
the distribution of filter responses [57]. Recent studies
have shown, however, that the use of filter banks is not
necessary and that textures can be classified more accu-
rately using only the joint distribution of intensity values
over very compact neighborhoods [58]. For instance, the
authors in [58] have used n× n pixel compact neighbor-
hoods as image descriptors. Using this approach each
texture pixel is described by an n2-dimensional vector
which represents the pixel intensities of its n× n square
neighborhood. Then, a global vocabulary of V textons
is constructed via the clustering of these n2-dimensional
descriptors, extracted from a texture training set, into V
clusters (i.e. each cluster center is treated as a texton).
Having this vocabulary in hand, each texture image can
be represented as a V -dimensional vector of counts (i.e.
the signature of the texture) containing the frequency
of each texton in that image and then can be modeled
by a multinomial distribution which parameters can be
estimated and smoothed using our proposed approach.
In our experiments, we use the Columbia-Utrecht [59]

5 C-C. Chang and C-J. Lin, LIBSVM: A Li-
brary for Support Vector Machines. Available at
http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

data set previously considered in [58] and which is com-
posed of 61 classes, with 205 images per class, which
capture variation in illumination and pose of 61 differ-
ent materials. We use a subset from this data set, as
considered in [55], containing all the 61 classes with 92
images for each class. Figure 1 shows examples of im-
ages from the different classes in this data set. We con-
sider also a second data set, called UIUCTex [60], which
is composed of 25 texture classes with 40 images per
class. The images in this data set are viewed under sig-
nificant scale and viewpoint changes and include illumi-
nation changes, viewpoint-dependent appearance vari-
ations and non-rigid deformations. Figure 2 shows ex-
amples of images from the different classes in this data
set. For each texture class, we select randomly 10 images
from which we extract 7×7 pixel compact neighborhoods
used as image descriptors (i.e. 49-dimensional vectors)
and then clustered using the K-Means algorithm by con-
sidering 10 clusters (i.e. each class provides 10 textons).
For the two data sets, we randomly select, 50 times, part
of the images (20 and 46 images per class for the UIUC-
Tex and CUReT data sets, respectively) for training and
the rest for testing.
We perform our experiments using different kernels and
smoothing approaches. Tables 1 and 2 show the aver-
age classification results for the CUReT and UIUCTex
data sets, respectively. According to these tables we can
see clearly that Beta-Liouville-based smoothing outper-
forms significantly (the differences are statistically sig-
nificant according to a paired Student’s t-test with 95%
confidence; p-values between 0.001 and 0.024) the other
approaches. We can see also that the classification ac-
curacies when using different kernels are very close and
that KNGD performs slightly better. Figures 3 displays
the average classification results as a function of the size
of the neighborhood n and the size of the textons dictio-
nary V for the CUReT set. According to this figure, we
can see clearly that the best results were obtained for V
ranging from 549 (i.e. 9 textons per class) to 671 (i.e. 11
textons per class) and for n ranging from 5 to 9.

4.3 Object Recognition Using Image Patches

A major goal in computer vision is the recognition of
objects based on their visual appearance. This prob-
lem is challenging since the appearance of objects may
change from one image to another due to many factors
such as occlusion, noise and lighting conditions. Several
approaches have been proposed in the past using both
global and local visual features [61]. Recognition based
on global features (e.g. texture, color) tends to suffer
from partial occlusions or object deformation. Recogni-
tion based on local descriptors is known to be robust to
appearance changes caused by imaging conditions and
viewpoints. Examples of approaches based on local de-
scriptors include [62–66]. In particular, an interesting ap-
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Fig. 1 Examples of images from the 61 different classes in the CUReT data set. Note that all images have been converted to
monochrome in our experiments.

T01 (bark) T02 (bark) T03 (bark) T04 (wood) T05 (wood) T06 (wood)

T07 (water) T08 (granite) T09 (marble) T10 (stone) T11 (stone) T12 (gravel)

T13 (wall) T14 (brick) T15 (brick) T16 (glass) T17 (glass) T18 (carpet)

T19 (carpet) T20 (fabric) T21 (paper) T22 (fur) T23 (fabric) T24 (fabric) T25 (fabric)

Fig. 2 Examples of images from the 25 different classes in the UIUCTex data set.

proach based on image patches, extracted at points of in-
terest, has been proposed in [66]. This approach that we
will consider here can be summarized as follows. First,
up to 1000 square image patches are taken as image fea-
tures and are extracted around interest points obtained
using the approach described in [67]. The main idea of
[67] is to extract salient points, where variations occur,

regardless if they are corner-like or not. The extraction
is based on Haar wavelet transform which is able to de-
tect both local and global variations (i.e. a high wavelet
coefficient in absolute value corresponds to a high varia-
tions). Moreover, 300 patches are added from a uniform
grid of 15 × 20 cells that is projected onto the image.
The main goal of these added patches is to take into
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Table 1 Classification accuracies (%) for the CUReT data set using different methods.

Method KNGD KB KD KC Kχ2

Laplace 92.78 ± 0.61 92.71 ± 0.63 92.75 ± 0.72 92.76 ± 0.71 92.45 ± 0.74
Jefferys 92.66 ± 0.63 92.57 ± 0.60 92.59 ± 0.63 92.61 ± 0.55 92.58 ± 0.70
Perks 91.88 ± 0.81 91.79 ± 0.79 91.81 ± 0.75 91.84 ± 0.71 91.15 ± 0.67

Dirichlet 95.09 ± 0.91 94.98 ± 0.84 94.88 ± 0.80 94.90 ± 0.79 94.78 ± 0.64
Beta-Liouville 96.13 ± 0.87 96.07 ± 0.79 96.01 ± 0.81 96.10 ± 0.78 95.93 ± 0.64

Table 2 Classification accuracies (%) for the UIUCTex data set using different methods.

Method KNGD KB KD KC Kχ2

Laplace 93.05 ± 0.75 93.11 ± 0.77 93.09 ± 0.79 93.13 ± 0.80 92.95 ± 0.69
Jefferys 92.93 ± 0.72 92.94 ± 0.78 92.96 ± 0.80 92.98 ± 0.92 92.67 ± 0.62
Perks 91.90 ± 0.91 91.89 ± 0.88 91.74± 0.82 91.78 ± 0.87 91.59 ± 0.71

Dirichlet 95.31 ± 0.89 95.06 ± 0.71 95.10 ± 0.69 95.13 ± 0.70 94.91 ± 0.68
Beta-Liouville 96.27 ± 0.87 96.08 ± 0.82 96.11 ± 0.79 96.14 ± 0.78 95.97 ± 0.77

Table 3 Recognition rates (%) for the COIL-20 database using different methods.

Method KNGD KB KD KC Kχ2

Laplace 93.11 ± 0.74 93.06 ± 0.69 92.89 ± 0.61 92.73 ± 0.60 91.98 ± 0.57
Jefferys 93.03 ± 0.76 92.99 ± 0.88 92.90 ± 0.87 92.78 ± 0.79 91.77 ± 0.64
Perks 93.79 ± 0.82 93.68 ± 0.74 93.54± 0.91 93.37 ± 0.77 91.97 ± 0.86

Dirichlet 96.83 ± 0.77 96.58 ± 0.83 96.42 ± 0.86 96.17 ± 0.78 95.99 ± 0.71
Beta-Liouville 98.94± 1.03 98.38 ± 0.98 98.11 ± 0.95 97.94 ± 0.89 97.78 ± 0.87

Table 4 Recognition rates (%) for the COIL-100 database using different methods.

Method KNGD KB KD KC Kχ2

Laplace 89.90 ± 0.85 89.80 ± 0.87 89.71 ± 0.73 89.43 ± 0.86 89.05 ± 0.78
Jefferys 89.85 ± 0.82 89.74 ± 0.81 89.66 ± 0.78 89.45 ± 0.95 89.14 ± 0.72
Perks 90.99 ± 1.01 90.83 ± 0.98 90.60± 0.77 90.58 ± 0.72 90.17 ± 0.80

Dirichlet 94.91 ± 0.90 94.86 ± 0.89 94.77 ± 0.79 94.83 ± 0.76 93.69 ± 0.88
Beta-Liouville 97.73± 0.66 97.68 ± 0.68 97.51 ± 0.66 97.04 ± 0.81 96.76 ± 0.67

Table 5 Recognition rates (%) for cars category using different methods.

Method KNGD KB KD KC Kχ2

Laplace 92.55 ± 0.70 92.51 ± 0.67 92.49 ± 0.69 92.43 ± 0.78 91.98 ± 0.79
Jefferys 92.13 ± 0.62 92.04 ± 0.68 92.06 ± 0.68 92.08 ± 0.71 91.89 ± 0.72
Perks 92.16 ± 0.66 92.13 ± 0.56 92.14± 0.71 92.09 ± 0.77 91.95 ± 0.74

Dirichlet 95.11 ± 0.87 94.96 ± 0.80 95.01 ± 0.79 95.03 ± 0.72 94.81 ± 0.78
Beta-Liouville 97.19± 0.91 97.18 ± 0.92 96.98 ± 0.85 97.01 ± 0.88 96.89 ± 0.81

Table 6 Recognition rates (%) for leaves category using different methods.

Method KNGD KB KD KC Kχ2

Laplace 86.85 ± 0.79 86.61 ± 0.75 86.49 ± 0.68 86.53 ± 0.78 86.05 ± 0.76
Jefferys 86.80 ± 0.81 86.74 ± 0.79 86.76 ± 0.74 86.68 ± 0.72 86.15 ± 0.70
Perks 86.95 ± 0.77 86.88 ± 0.68 86.81± 0.78 86.77 ± 0.87 86.27 ± 0.80

Dirichlet 91.02 ± 0.58 89.98 ± 0.67 89.91 ± 0.69 89.93 ± 0.68 89.02 ± 0.70
Beta-Liouville 93.59± 0.50 93.48 ± 0.52 93.51 ± 0.56 93.45 ± 0.58 93.08 ± 0.67

account the homogeneity of objects. Having the patches
in hand, a PCA dimensionality reduction is applied by
keeping only 40 coefficients. The resulting data are then

clustered with a Linde-Buzo-Gray algorithm [68] by con-
sidering the Euclidean distance. Thus, each image patch
is assigned to a cluster which allows to represent each
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Table 7 Recognition rates (%) for motorbikes category using different methods.

Method KNGD KB KD KC Kχ2

Laplace 89.96 ± 0.84 89.91 ± 0.86 89.89 ± 0.81 89.83 ± 0.82 98.99 ± 0.79
Jefferys 89.97 ± 0.87 89.86 ± 0.84 89.79 ± 0.81 89.55 ± 0.69 89.06 ± 0.76
Perks 90.01 ± 0.85 89.98 ± 0.83 89.84± 0.81 89.71 ± 0.68 89.05 ± 0.75

Dirichlet 93.03 ± 0.77 93.00 ± 0.72 93.02 ± 0.78 93.06 ± 0.79 92.89 ± 0.80
Beta-Liouville 95.44± 0.90 95.37 ± 0.84 95.31 ± 0.87 95.25 ± 0.83 95.09 ± 0.87

Table 8 Recognition rates (%) for faces category using different methods.

Method KNGD KB KD KC Kχ2

Laplace 89.95 ± 0.78 89.91 ± 0.67 89.90 ± 0.69 89.81 ± 0.58 89.09 ± 0.63
Jefferys 89.99 ± 0.79 89.95 ± 0.77 89.86 ± 0.82 89.88 ± 0.81 89.56 ± 0.71
Perks 90.09 ± 0.71 90.08 ± 0.78 90.03± 0.72 90.05 ± 0.78 89.90 ± 0.70

Dirichlet 93.88 ± 0.69 93.86 ± 0.61 93.81 ± 0.66 93.83 ± 0.71 93.51 ± 0.76
Beta-Liouville 96.03± 0.70 95.96 ± 0.72 95.91 ± 0.77 95.94 ± 0.74 95.29 ± 0.71

Fig. 3 Average classification accuracy, using Beta-Liouville
smoothing and KNGD, as a function of the size of the neigh-
borhood n and the size of the textons dictionary V for the
CUReT data set.

image by a histogram of cluster frequencies (i.e. each
entry in the histogram is created by counting how many
patches belong to its associated cluster). As each im-
age is now represented by a vector of counts, we can
obviously assume that it is generated by a multinomial
distribution which parameters can be estimated using
our developed algorithm. In the following experiments
we set the number of clusters to 512 (i.e. we use 512-
dimensional count vectors to represent the images) and
the results are averaged over 10 runs of the algorithm.
Two image databases are selected to evaluate our ap-
proach and are the Columbia Object libraries (COIL-
20 and COIL-100). COIL-20 contains 1440 images of 20
objects (72 images per object) [69]. Each object is rep-

resented in the database by 72 images obtained by the
rotation of the object through 360◦ in 5◦ steps. COIL-
100 complete the COIL-20 with additional 80 objects
(72 images per object) and consists then of 7200 im-
ages [70]. Figure 4 shows some of the 20 objects in the
COIL-20 and figure 5 shows examples of images from
the additional 80 objects. Both databases have been di-
vided into disjuncts sets of 50% training and 50% test
images. Tables 3 and 4 show the recognition rates for

Fig. 4 Examples of images from the COIL-20 data set.

Fig. 5 Examples of images from the COIL-100 data set.

the COIL-20 and COIL-100 databases, respectively.
In another set of experiments we use 4 object categories
which are cars, leaves, motorbikes and faces (see fig-
ure 6) from the Caltech database [71]. We use half of the
images for testing and the rest for training. Moreover,
following [71,64], we train the recognition against the
background class in the Caltech database. Tables 5, 6, 7
and 8 report the recognition results for the cars, leaves,
motorbikes and faces categories, respectively. Accord-
ing to our experimental results we can see clearly again
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Fig. 6 Examples of images from the cars, faces, motorbikes
and leaves categories in the Caltech database.

that Beta-Liouville-based smoothing outperforms signif-
icantly (the differences are statistically significant ac-
cording to a paired Student’s t-test with 95% confidence;
p-values between 0.011 and 0.023) the other smoothing
approaches.

5 Conclusion

Statistical analysis of count data plays a major role in
several pattern recognition, computer vision and data
mining applications. Many such approaches rely on the
multinomial distribution which parameters are estimated
and smoothed using ad hoc parameters or according
to the consideration of Dirichlet priors. In many appli-
cations, Dirichlet priors are not realistic because they
have a very restrictive negative covariance. In this pa-
per, we have introduced and investigated a new prior
to smooth multinomial estimates that is based on Li-
ouville mixture models which include the Dirichlet as a
special case. The advantage of our prior over the well-
established and widely used technique is that it can
be viewed as a more general smoothing technique. We
have illustrated our results with many concrete examples
and challenging applications namely texture classifica-
tion and object recognition where the proposed smooth-
ing technique is shown to offer improvement over widely
used other approaches. In particular, we have shown that
the use of the smoothed parameters to generate data-
based SVM kernels provides excellent classification re-
sults. The methods proposed in this article can be ap-
plied to other problems besides image processing and
computer vision since count data are naturally generated
in many other research areas such as Bioinformatics, nat-
ural language processing, text mining and information
retrieval. Promising future works could be devoted to
the consideration of a nonparametric Bayesian approach,
similar to the one proposed in [72], for the learning of
the proposed model or the integration of a feature se-
lection component, like the one proposed in [73], within
the proposed smoothing framework to improve further
the smoothing quality.
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Appendix 1: Proof of Equation 23

We start by computing the posterior distribution:

p(π|X, Θ) =
p(X,π|Θ)
p(X|Θ)

(44)

=
1

∑M
j=1 pj

Γ (
∑V−1

v=1 αjv)Γ (αj+βj)
Γ (αj)Γ (βj)

Γ (α′j)Γ (β′j)

Γ (
∑V−1

v=1 α′jv)Γ (α′j+β′j)

×
M∑

j=1

pj
Γ (

∑V−1
v=1 αjv)Γ (αj + βj)
Γ (αj)Γ (βj)

×
V−1∏
v=1

π
αjv+Xv−1
v

Γ (αjv)
(
V−1∑
v=1

πv)αj−
∑V−1

v=1 αjv

× (1−
V−1∑
v=1

πv)βj+XV −1

In order to find the estimate of a certain parameter the
πl, l = 1, . . . , V when a Beta-Liouville mixture is taken
as a prior, we have to compute the expectation πv ac-
cording to the previous posterior distribution:

π̂l =
∫

πl

πlp(π|X, Θ)dπl

=
1

∑M
j=1 pj

Γ (
∑V−1

v=1 αjv)Γ (αj+βj)

Γ (αj)Γ (βj)
∏V−1

v=1 Γ (αjv)

Γ (α′j)Γ (β′j)
∏V−1

v=1 Γ (α′jv)

Γ (
∑V−1

v=1 α′jv)Γ (α′j+β′j)

×
M∑

j=1

pj
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∫

πl
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παjv+δ(v=l)+Xv−1
v

(
V−1∑
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πv)αj−
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v=1 αjv (1−
V−1∑
v=1

πv)βj+XV −1dπl

]

=
1

∑M
j=1 pj

Γ (
∑V−1

v=1 αjv)Γ (αj+βj)

Γ (αj)Γ (βj)
∏V−1

v=1 Γ (αjv)

Γ (α′j)Γ (β′j)
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v=1 Γ (α′jv)

Γ (
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v=1 α′jv)Γ (α′j+β′j)

×
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v=1 α′jv + 1)Γ (α′j + β′j + 1)

where δ(v = l) = 1 if v = 1 and 0, otherwise. Since
Γ (x + 1) = xΓ (x), we obtain

π̂l =
M∑

j=1

p(j|X)
α′j

α′j + β′j

α′jl∑V−1
v=1 α′jv
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Appendix 2: Proof of Equations 29, 30 and 31

We have
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