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ABSTRACT 

 

Experimental investigation of the passive earth pressure on retaining 

wall when the backfill is collapsible soil 

 

    Anamaria Mihaela Poterasu 

 

Collapsible soil is one of the problematic soils in geotechnical engineering. They 

are known for their strength when they are dry and their sudden and excessive loss of 

volume when they are inundated. 

The present study presents the results of experimental investigations on passive 

earth pressure acting on walls retaining dry and wet collapsible soils. The objective of 

these investigations was to study the effect of inundation due to the rise of the ground 

water table on the earth pressure. Lab Tests were carried out on a prototype set-up 

which was developed to simulate the movement of a retaining wall towards the 

collapsible backfill, meaning the passive pressure state. The experiments were 

conducted on collapsible soil with various collapse potentials to study this variation effect 

on the results.  

The results of the experimental investigation were used to validate the results of 

the numerical model developed in this investigation. The numerical model was used to 

generate results for a wide range of parameters, which believe to govern this complex 

soil. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 General 

Retaining walls are structures for which the main load is represented by the earth 

pressure. The aim of these structures is to support the side of an excavation or a fill or to 

support the pressure of water in the case of cofferdams.  

Retaining walls are permanent retaining structures that support the soil placed 

behind them. The design of a retaining wall depends on its type, movement and also on 

the properties of the soil backfill. 

In the literature, several theoretical and experimental studies have been 

presented. However, these attempts have been limited for cases of backfills of normally 

and overconsolidated sands or clay.  None of the cases considered the presence of 

collapsible soil as the backfill of the retaining wall which arises as a challenge in 

geotechnical engineering according to difficulties engineers face when dealing with this 

problematic soil.  

 

1.2 Research Objectives  

 The objective of this research was to study the effect of soil collapse on the 

passive earth pressure developed behind a retaining structure. For this purpose, a 

prototype experimental set-up was developed to measure the wall movement after the 

collapse of the soil caused by inundation. The retaining wall used in the experimental 

investigation was a frictionless wall. For this type of retaining wall the friction between 

the soil and the wall is neglected. 
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  The results from the experimental investigation were used to validate the 

numerical model constructed. The finite element models were constructed for different 

soil mixtures that presented various collapse potentials. In order to observe the change 

in pressure after collapse, the coefficient of passive earth pressure was calculated for all 

of the mixtures. 

The scope of this research was to investigate the decrease in passive earth 

pressure after collapse of the soil. This loss in passive resistance of the soil after 

inundation may cause severe problems to the retaining walls. Hence special 

considerations must be taken when designing structures retaining collapsible soils.  For 

this purpose a formula was developed to predict the coefficient of passive earth pressure 

after collapse function of the collapse potential of the soil. The formula can be used for 

collapse potentials that are between 4.2% and 14%. This range covers a wide variety of 

collapsible soils that can cause different problems for the retaining walls. 
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CHAPTER 2 

 LITERATURE REVIEW 

 

2.1 General 

 

 With the civilization rapidly increasing the construction domain has adapted and 

many metropolitan and large structures have been erected in areas of collapsible soils. 

The human activities require the use of water for industrialization, agriculture and 

domestic purposes which can cause damage to structures founded on collapsible soils.  

Collapsible soils are known as problematic soils, which possess considerable 

strength when dry and lose their strength when inundated experiencing excessive 

settlements.  

 The soil response to inundation (i.e. landslides or significant soil settlements) 

could not be predicted beforehand. The irrecoverable volume reduction of collapsible 

soils takes place fast and sudden and no measurements can be taken to stop the 

problem once it initiates. 

  The passive earth pressure is the resisting force on which the design theories of 

structures is based. The calculation of the passive earth pressure for this type of 

problematic soils is still one of the challenges in the field of soil mechanics. 

 In this chapter, the literature will be reviewed under the following headings: 

1. Literature pertinent to collapsible soils 

2. Literature pertinent to passive earth pressure. 
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2.2 Literature Review Pertinent To Collapsible Soils  

 Collapsible soils are defined as “an unsaturated soil that goes through a radical 

rearrangement of particles and great loss of volume upon wetting with or without 

additional loading” (Bara, 1976). 

(Dudley, 1970) suggested the term “collapse” to describe the volume reduction 

that causes the lowering of the ground surface. On the other hand, the additional 

settlement of the foundation due to the wetting of a partly saturated soil, normally without 

any increase of applied pressure, was termed as “collapse” by Jennings and Knight 

(Jennings, 1975). 

 

Deposit mechanisms  

 Since collapsible soils are usually “loose”, they are generally created by 

deposition mechanisms that yield loose deposits.  

 The mechanisms that account for almost all naturally occurring collapsible soil 

deposits are debris flows and alluvial depositions, and also depositions of wind-blown 

materials. (Beckwith, 1995) (Derbyshire, 1995) 

 According to Jennings and Knight (1975), the soil deposits most likely to collapse 

are: 

a) loose fills 

b) altered windblown sands 

c) hill wash of loose consistency 

d) decomposed granite and other acid igneous rocks 

 Collapsible soils are generally characterized by their loose structure of bulky 

shaped grains; often silt to fine sand size with small amounts of clay. There may be only 

slight cementing agents such as calcium carbonate, salts and dried clay, with 

combinations being common. 
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Bell (1997) reported that the majority of naturally occurring collapsible soils are 

aeolian deposits. Aeolian deposits such as loess, dunes and other windblown deposits 

are encountered in different parts of the world. Clemence (1981) presented that loess 

covers about 17% of the United States, about 17% of Europe, 15% of Russia and 

Siberia, and large areas of China. Loess is also encountered in South America and 

Southern Africa. 

 Aeolian soils have a loose open, metastructure bonded by cementing agents, 

which upon wetting, become weak and may dissolve causing collapse. These soils are 

composed primarily of quartz along with feldspar and clay minerals. Bell (1997) reported 

that increasing the clay mineral content decreases the likelihood of collapse. Khelifa 

(2007) concluded that the soil is not susceptible to collapse if the clay content of the soil 

is greater than 30%. 

 Water deposits include alluvial fans, mud flows and flash flood deposits. These 

deposits are laid down by water in saturated state. They become hard and as they dry, 

they become less compressible with relatively low density. The structure is usually open 

and porous, and soil grains are bonded together by cementing agents during deposition. 

If these deposits are subsequently exposed to water accompanied with or without 

additional loading, they may collapse, thereby causing large settlements.  

 Residual soils cover a wide range of sizes, from clay size up to the gravel range. 

The collapsible structure is developed as a result of the leaching of the soluble and 

colloidal matter from the residual soil. This leaching of the soluble and fine materials 

results in a porous and unstable structure. 
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Types of bonds in collapsing soils 

 Practically the open and unstable (meta-stable) structure makes collapsible soil 

susceptible to immediate collapse during inundation. The basic concept is of an open 

structure, often of bulky shaped grains, held together by some bonding material of force. 

 Types of bonds: 

a) Capillary tension which provides strength in partially saturated fine-grained 

cohesionless soils such as illustrated in Figure 2.1.a. (Clemence, 1981) 

 

Fig.2.1.a Typical collapsible soil structures - Capillary tension (after Clemence and Finbarr, 1981)  

 The effect of the capillary stresses is to provide a tension force on soil grains, 

which provides considerable strength and stiffness for the soil mass, and is known as 

soil suction. (Vitton, 1997).  

 Capillary action within unsaturated soil matrix causes the development of 

negative pore water pressure as the moisture content exists within the micro-pores only, 

rather than the large macro-pores between the large flocs and/or coarse grains. 

Negative pore water pressure, with respect to atmospheric pressure, is termed as matric 

suction in unsaturated soil mechanics. Typically, the pore air pressure in collapsible soils 

is in atmospheric pressure condition. The higher the matric suction is, the higher the 

additional bond strength (due to capillary force.). Therefore, if the soil moisture content 
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remains constant at its initial (unsaturated) value, the original porous structure of 

collapsible soils can be maintained under heavy external loads.  

 The bond strength due to capillary action (matric suction) is available only when 

negative pore water pressure exists with the soil matrix. Inundation causes reduction in 

matric suction (or negative pore water pressure) due to the increase of water (or water 

pressure) in the pore. During inundation of any unsaturated soil, matric suction 

diminishes continually and becomes zero when the soil attained full saturation. As a 

result, collapsible soil experiences immediate volume reduction during inundation, as 

this bond strength is lost due to matric suction reduction. 

 

b) In cases where the soil consists of sand with fine silt binder is illustrated in the 

Figure 2.1.b. It is assumed that simple capillary forces provide the silt-silt and silt-

sand bonds in capillary voids (Barden, 1973) 

  

 

Fig.2.1.b Typical collapsible soil structures – Silt Bond (after Clemence and Finbarr, 1981) 

 

c) The majority of collapsing soils involve the action of clay plates in the bonds 

between the bulky sand and silt grains. The structural arrangements will depend on 

the geologic origins and history of the soil as for example:  

If the clay was formed in place by sedimentation it could form a parallel plate onion-

skin effect around the quartz particles as illustrated in the Figure 2.1.c. 
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Fig.2.1.c Typical collapsible soil structures – Aggregated clay bond (after Clemence and 

Finbarr, 1981) 

 

If the clay was originally in suspension in the pore water, then the gradual 

evaporation would cause the clay plates to retreat with the water into the menisci at the 

interparticle contacts. (Knight, 1960) indicates that under such conditions the clay would 

form a random flocculated structure as illustrated in the Fig.2.1.d.  

 

 

Fig.2.1.d Typical collapsible soil structures – Flocculated clay bond (after Clemence and 

Finbarr, 1981) 

 

The addition of water in this case would cause the clay grains to separate and thus 

producing a loss of strength. 
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d) There are other cementing agents include silt bonds, clay bonds, and clay or 

calcium carbonate bridges as illustrated in Figures 2.1.e and 2.1.f.  

 

Fig.2.1.e, f Typical collapsible soil structures (after Clemence and Finbarr, 1981) 

 

These materials restrain the bulky grains from rotating so that a more dense 

arrangement could be gained. Wetting destroys capillary bonds, softens clay bonds and 

bridges in an open structure. Increased saturation under an applied load can result in 

gradual settlement or a sudden collapse as the soil bonds are weakened. 

 It is seen that bonding between the bulky grains in the open structure of 

collapsing soils can involve either simple capillary suctions, clay buttresses or chemical 

cementing. In certain cases one type may dominate but in other cases there will be a 

complex interaction. However, whatever the physical basis of the bond strength, all 

types are weakened by the addition of water.  

 In the case of capillary suction the drop in strength will be immediate, in the case 

of clay buttresses rather slower, and in the case of chemical cementing it might be very 

slow (Barden, 1973). 
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Mechanism of collapse 

 The loose, bulky structural arrangement of the soil particles is a key element in 

the collapse mechanism.  

 (Casagrande, 1932) has demonstrated that a portion of the fine-grained fraction 

of the soil exists as bonding material for the larger grained particles. These bonds 

undergo local compression in the small gaps between adjacent grains resulting in the 

development of strength. 

 At natural moisture content, the structure of the soil is in equilibrium under the 

action of overburden pressures. As long as the soil remains dry, the structure remains 

highly voided without any large relative movement of the soil grains as shown in Figure 

2.2 a.  

When the soil is wetted  and the critical moisture content is exceeded, the clay 

silt or salt binder that provide the cementation of the particles will soften, weaken and/or 

dissolve to some extent. Eventually these binders reach a stage where they no longer 

resist deformation forces and the structure collapses s shown in Figure 2.2.b. 

 

 

       a. Loaded soil structure         b. Loaded soil structure  
   before inundation         after inundation 

      Figure 2.2. Loaded structure before and after inundation (after Casagrande 1932) 
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 (Aitchinson, 1956) reported that for uniform spherical grains in an open cubical 

packing, the maximum added pressure due to capillary effect occurs at moisture content 

about 32%.  

For the densest packing of uniform spherical grains, the maximum tension occurs 

at 10% moisture content. Investigations conducted with various collapsible soils showed 

that the peak effective stress values occur at moisture contents less that saturation and 

above 10% water content (Clemence and Finbarr 1981).  

 (Holtz, 1961) describes the collapse mechanism as the result of capillary 

pressures approaching zero and the degree of saturation increasing to 100%.  

(Burland, 1965) described the collapse mechanism in terms of the stability at the 

interparticle contact points. Due to wetting the negative pore water pressure at the points 

decrease, causing grain slippage and distortion.  

(Dudley, 1970) explained that as the soil dries below the shrinkage limit, the 

remaining water at the grains contact points is placed under tension. Thus the excess 

water pressure becomes negative and therefore, the actual effective stress becomes 

larger than the total stress applied by the load. This increases the apparent strength of 

the soil. 

 Mathewson (1981) believes that the soil structure in partly saturated soils is 

maintained by the surface tension of water held at the contacts of the grains and that the 

saturation of the soil fills the voids and reduces the surface tension to zero.  
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      (1)Dry state  (2) Partially saturated (3) After saturation 

  Figure 2.3. Mechanism of collapsing soil (after Mathewson, 1981) 

 

In dry soils, the bonding agent is believed to be an oriented layer of clay minerals 

that was drawn into the fine pores as the soil dried out and that collapse occurs as the 

clay layer is re-suspended in the voids upon saturation as illustrated in Figure 2.3. 

(Dudley, 1970), (Barden, 1973) and (Mitchell, 1993) explained the collapse 

phenomenon in terms of the cementing agents at the contact points of the soil grains.  

They identified four conditions required for the collapse to occur: 

1. An open, partially unstable, partially saturated fabric. 

2. A high enough total stress so that the structure is metastable. 

3. A strong enough clay binder or other cementing agent to stabilize the structure 

when dry. 

4. The addition of water to the soil which reduces the soil suctions (the negative 

pore water pressure) and thus produces collapse. 
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 (Collins, 1978) explained that an open fabric, which is a prerequisite for collapse, 

may be comprised of: 

a) clothed grain-grain contacts; 

b) grain bridges or buttresses comprised of either clay or silt plus possibly 

cementations material such as iron oxide or carbonates 

c) clay aggregates. 

 The rate of collapse depends on the type of bonding and this was indicated by 

(Tadepalli, 1992) who reported that the collapse phenomenon is primarily related to the 

reduction of the matric suction during inundation. 

 

Identification of collapsible soils (simple methods) 

a) Dispersion test 

 (Benites, 1968) proposed a laboratory dispersion test in which a two-gram soil is 

dropped at its natural water content, into a beaker of water and the time to disperse 

completely is recorded. For collapsible soils, dispersion time is less than 30 seconds. 

This test is may not be suitable for non-cohesive or granular collapsing soils. 

 

b) Color test 

 (Arman, 1972), developed a color test, in which 100 grams of silt is placed in a 

500 ml beaker containing 9 grams of sodium metahexaphosphate and 300ml of distilled 

water. The sample is allowed to settle overnight. A black color of the liquid indicates that 

the soil may be susceptible to collapse. 

 The disadvantage of this test is that it may be misleading for soil containing some 

mineral components which give the black color without being susceptible to collapse. 
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c) Visual identification test 

 (Jennings, 1975) described a very simple test called the “Sausage” test. A hand-

size sample of the soil is broken into pieces, and each is trimmed until the two pieces 

are approximately equal in volume. One of the pieces of soil is then wetted and molded 

in the hand to form a damp ball. The volumes of the remaining dry piece and the damp 

ball are then compacted. If the wetted ball is obviously smaller, collapse potential may 

be suspected. 

 

Prediction methods based the soil parameters 

 (Hanna, 2009) stated that the methods available in the literature can be divided 

into four categories: 

1. Methods based on void ratio, density and water content relationship; 

2. Methods based on water content and Atterberg limits relationship; 

3. Methods based on density and Atterberg limits; 

4. Methods based on particle size distribution of soils. 

 

1. Methods based on void ratio, density and water content relationship 

a) (Denisov, 1951) indicated that collapse will occur upon wetting if the naturally void 

ratio is smaller than the void ratio at liquid limit. He also proposed a coefficient of 

collapse as:      
  

  
        

where  

  = natural void ratio and   = void ratio at liquid limit 

He suggested the following value for the prediction of collapse: 

K (value) Possibility of collapse 

0.5-0.75 highly collapsible 

≥1.00 non collapsible 



15 
 

  

b) (Clevenger, 1956) stated that if:  

     <1.28 g/cm3 , then the settlement produced will be large   

     >1.44 g/cm3, then the settlement produced will be small    

where     is the in situ dry density 

c) (Gibbs, 1962)proposed the use of the natural dry density and liquid limit as criteria 

for predicting collapse. This method is based on the assumption that a soil which has 

sufficient voids to hold its liquid limit at saturation is susceptible to collapse upon 

wetting. 

d) In Russian literature (Markin, 1969)considered that a soil is susceptible to collapse 

upon wetting if the in-situ degree of saturation (S) is less than 60% and 

 
     

    
 >-0.1 

He stated as well that if: 

      
   

   
 

where: 

    = in situ dry density 

   = the dry density of the soil at liquid limit 

e) (Bara, 1967) considered the soil to be collapsible when 

   

   
 <1.0      

where, 

    = in situ dry density 

    = the dry density of the soil at liquid limit. 

 

α > 1.3 Prone to swelling 

α < 1.1 Prone to collapse 
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f) (Zur, 1973) stated other criteria to identify soil collapse.  

If     
   

   
 <1.0  then the soil will collapse.   

In the above equation:  

    = in situ dry density 

   = the dry density of the soil at liquid limit. 

g) (Milivic, 1981) stated that the coefficient of collapse is expressed by   

      
     

    
        

where:  

   = void ratio before flooding at vertical pressure 

   = void ratio at the end of collapse at the same pressure 

 i   = is greater for lower values of initial dry densities, and for lower values of initial 

water content, and higher values of wetting pressure. 

 

2. Methods based on water content and Atterberg limits relationship 

a) (Freda, 1964)proposed the following collapse index: 

      

 

  
      

  
     

where:  

m   = natural moisture content 

    = degree of saturation 

PL   = plastic limit 

PI   = plasticity index 

 He suggested that if the collapse index    >0.85 then is an indicative of a 

collapsible soil. 
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3. Methods based on density and Atterberg limits 

a) (Bara, 1977) suggested that the estimate of the susceptibility of soil to collapse 

includes naturally dry density, natural moisture contents, liquid limit and the 

compared moisture content required for saturation at each natural density. 

  The soil is considered to collapse under three conditions:   

 when the natural moisture is less than the liquid limit  

 the liquid limit is less than the saturation moisture 

 the less the density of the soil, the greater the amount of collapse 

b) (Beckwith, 1979) suggested the use of typical index properties to identify collapsible 

soils. He suggested that collapsible soils might be indicated by a plasticity index 

value PI<10, a value of the unit weight γd<14.9 kN/m3 and moisture content < 4% to 

8%. 

 

4. Methods based on particle size distribution of soils 

a) (Jennings, 1975) introduced the concept of the critical value of degree of saturation 

(Sr), below which the collapse will occur. 

 The value depends on the grain size distribution: 

Type of soil (Sr) critical 

Fine gravel (1-6mm) 6-10 % 

Fine silty sands (150-2μ) 50-60 % 

Clayey silts (150-0.2μ) 90-95 % 

  Table.2.1 Critical values of degree of saturation 

Some of the existing methods in the literature have been summarized by T. Ayadat and 

A.M. Hanna (2011) in the following tables: 
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Fig.2.4 After T. Ayadat and A.M. Hanna “Assessment Of Soil Collapse Prediction Methods” 

(2009)  



19 
 

 In order to predict the susceptibility of the soil to collapse directly by knowing its 

bulk and soil constituents unit weight they proposed the following expression: 

      <            

where:     = bulk unit weight of soil 

      = specific soil unit weight. 

 

 This expression can be presented in form of a chart: 

 

 Figure 2.5. T. Ayadat and A.M. Hanna “Assessment Of Soil Collapse 

Prediction Methods” (2009)  
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Prediction methods based on Laboratory tests - Single Odometer Test 

 Developed by Knight in 1963, the test method consists of placing a soil sample at 

natural water content in an odometer (consolidometer), applying vertical stresses 

progressively until a predetermined pressure stress (usually  of 200kPa) is reached. At 

the end of the loading the sample is flooded with water and left for 24 hours. The 

consolidation test is then continued to its maximum loading limit. 

 The collapse potential is defined as: 

   
   

    
  or     

   

  
  

where: 

      = change in void ratio upon wetting 

        = initial void ratio  

       = change in the height upon wetting 

        = initial height   

Jennings and Knight (1975) have suggested the following values for collapse potential: 

Collapse potential % Severity problem 

0-1 No problem 

1-5 Moderate trouble 

5-10 Trouble 

10-20 Severe trouble 

>20 Very severe trouble 
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 Mitigation Methods 

 The appropriate method of choice depends on the depth of the collapsible soil, 

type of structure to be constructed and the cost and practicality of the method. Some of 

the mitigation methods are: 

 Soil replacement. If the depth of the collapsible soil layer is shallow, it can be 

excavated and the structure can be supported directly on the exposed non-

collapsible soil.  

 Prewetting. Prewetting means flooding or wetting the soil which is expected to 

exhibit collapse upon saturation before the structure is build, so that collapse will be 

minimized after the structure is built. (Houston, 1977) (Bara, 1967) 

 Controlled wetting. The method is similar to prewetting except that it is performed 

after the structure is in place. The quantities of water are approximated and added 

in increments. The same method can be used for buildings that exhibit tilt due to 

differential settlement.  

 Moisture control. This method implies the prevention of water into the ground. Some 

of the measures that can be taken include: controlling water irrigation, placing 

landscaping in watertight planter boxes, placing pavement or buried geomembranes 

around the perimeter of the structure and placing effective surface and buried 

drainage systems. 

 Compaction control. This is one of the most practical and effective methods of 

minimizing soil collapse. Compaction has been used for both shallow and deep 

collapsible soils. 

 

 



22 
 

 Chemical stabilization or grouting. The method develops cementation within the soil 

structure and thus it resists collapse when wetted. Penetration of chemical solution 

as sodium silicate and calcium chloride is generally costly and is used for small 

areas. 

 Heat treatment. Burning gas and fuel oil in pressurized boreholes that are closely 

spaced will stabilize a column with a diameter of 1.5-2 meters. 

 Differential settlement resistant foundations. It may be feasible to use spread footing 

if the collapsible soil deposit is thin. If the soil layer is thick, using deep foundations 

such as compaction piles to transfer the loads through the collapsible layers to the 

safe strata below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



23 
 

2.3 Literature Review Pertinent to Passive Earth Pressure 

General 

 Retaining structures, such as retaining walls and basement walls are 

encountered in foundation engineering, and they may support slopes of earth masses. 

The design of these structures requires the knowledge of the lateral forces that act 

between the earth and structure. 

 Since lateral forces applied to retaining structures are primarily directed so as to 

destabilize the structure (driving forces), determination of the magnitude and orientation 

of these forces are crucial to the development of a safe and economic design to resist 

those driving forces and also to incorporate an acceptable Factor of Safety into the 

overall design. 

 There are three cases of interaction between the wall and the soil: 

1. The wall is moving away from the soil behind. The soil tends to expand or dilate. 

The action exerted by the soil on the wall is called active earth pressure. The 

resultant of the active earth pressure on the face of the wall is the active thrust Pa. 

2. The wall is moving towards the soil behind which is compressed. For a certain 

displacement of the wall, a continuous failure surface develops, linking the base of 

the wall with the ground surface. The resistance opposed by the soil to the wall 

movement is called passive earth pressure or passive resistance. The resultant 

of the passive earth pressure on the face of the wall is the passive resistance Pp. 

3. When the earth pressures on both sides of the wall are identical there is no 

movement and no possibility of developing neither active nor passive pressures. 

This case is the at rest condition and corresponds to the elastic equilibrium in the 

soil mass. 
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Passive lateral earth pressure – Coulomb’s theory 

 The movement of a frictionless wall against the soil mass behind it produces an 

increase of the horizontal pressures acting on the wall and produces a compression of 

the soil. The basic assumptions for the earth pressure theories proposed by Coulomb 

are: 

1) Soil is isotropic and homogeneous and has both internal friction and cohesion. 

2) The rupture surface is a plane surface and the backfill surface is horizontal. 

3) The friction resistance is distributed uniformly along the rupture surface and soil to-soil 

friction coefficient is f = tanφ. 

4) The failure wedge is a rigid body undergoing translation. 

5) Friction forces are developed between the wall and the soil. 

6) Failure is a two-dimensional problem, namely a plane strain problem. 

 From all the planes that pass through the foot of the wall the one that has the 

smallest resistance must be found. This resistance is called passive resistance. The 

displacement needed for the passive condition is much larger than in the active state. 

 A trial failure plane BC is chosen (Figure 2.6a), at an angle  to the horizontal. 

The equilibrium of the soil wedge ABC is considered. The forces acting on the soil 

wedge and the force polygon is shown in the figure 2.6a. 

 The soil wedge ABC must be in equilibrium under the following forces: 

- its own weight (W); 

- the reaction (F) on the failure plane; at failure, when the shear strength of the soil 

has been fully mobilized, the direction of F is at an angle’ to the normal drawn to 

the plane BC. F being the resultant of the normal and shear forces on the failure 

plane; 
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- The reaction to the force, (Pp) between to soil and the wall. The reaction Pp acts 

at an angle’ to the normal drawn to the face of the wall. 

The triangle forces can be drawn as shown in figure 2.6b and the value of Pp 

determined. 

 

Figure 2.6 a Trial failure wedge (After Braja M. Das “Fundamentals of Geotechnical Engineering)  
             

 

Figure 2.6 b Force polygon (After Braja M. Das “Fundamentals of Geotechnical Engineering)  
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From the force triangle the resulting Coulomb passive earth pressure is defines as: 

    
 

 
          

Where    is Coulomb’s active earth pressure coefficient and is given by: 

   
          

                  √
   (     )           

    (    )          
  

  

 

Passive lateral earth pressure – Rankine’s theory 

 Rankine’s passive state on a frictionless wall that extends to an infinite depth is 

illustrated in the figure below. 

 

Figure 2.7 The vertical and horizontal effective principal stresses on a soil 
element at a depth z.  After Braja M. Das “Fundamentals of Geotechnical 
Engineering  
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 In Figure 2.8 the Mohr’s circle “a” represents the initial stresses condition of the 

soil element. Mohr’s circle “b” from the same figure represents the maximum stress 

condition of the soil element. This is achieved when the wall is gradually pushed into the 

soil mass and the effective principal stress     will increase to its failure value.  

 
Figure 2.8 Mohr’s circle for the passive limit state in case of cohesive soil 

Braja M. Das “Fundamentals of Geotechnical Engineering”  

 

The effective lateral earth pressure      which is the major principal stress is called 

Rankine’s passive earth pressure. 

For cohesive soil: 

-The vertical effective principal stress is: 

              

-The horizontal effective principal stress is: 

            (    
 

 
)              

 

 
   

-Rankine’s passive earth pressure coefficient: 

   
   

   
      (    

 

 
)    
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  To the passive state corresponds two families of slip planes orientated at 

    
 

 
  to the horizontal as indicated in the figure below. 

 

Figure 2.9 Failure plane of the wedge of soil in case of passive limit state 
Braja M. Das “Fundamentals of Geotechnical Engineering “ 
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Rankine’s passive earth pressure distribution against retaining walls  

a) Case for a cohesionless soil backfill with horizontal ground surface 

 
Figure 2.10 Pressure distribution against a retaining wall for cohesionless soil backfill with 
horizontal ground surface (After Braja M. Das “Fundamentals of Geotechnical Engineering)  
 

The soil properties are known: 

- Unit weight   

- Angle of friction   

- Cohesionless soil :      

For Rankine’s passive state, the earth pressure at any depth against the retaining wall 

can be given by the equation:                 (    
 

 
)         

The stress increases linearly with depth so at the bottom of the wall it will become:  

             

The total force,   , per unit length of the wall is equal to the area of the pressure 

diagram so:  
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b) Case for partially submerged cohesionless soil backfill that supports surcharge 

a) 

 
 

 
b)                      c)               d) 

Figure 2.11 Rankine’s passive earth pressure distribution against a retaining wall with 
partially submerged cohesionless soil backfill supporting surcharge  (After Braja M. Das 
“Fundamentals of Geotechnical Engineering)  
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 The Figure 2.11 shows a frictionless retaining wall of height H and a backfill of 

cohesionless soil. The ground water table is located at a depth of H1 below ground 

surface, and the backfill is supporting a surcharge pressure of q per unit area. 

 The effective passive earth pressure at any depth can be given by: 

                      

Where: 

      = the vertical effective principal stress  

      = the lateral effective principal stress  

At    : 

The vertical principal stress equals the surcharge:       
       

The horizontal principal stress will be:      
          

The pore water pressure:            

At     : 

The vertical principal stress equals the surcharge:       
             

The horizontal principal stress will be:      
               

The pore water pressure:             

At    : 

The vertical principal stress equals the surcharge:       
                 

The horizontal principal stress will be:      
                   

The pore water pressure:                
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The total lateral pressure (Figure 2.11 d),   , diagram is the sum of the pressure 

diagrams shown in Figure 2.11 b and c. The total active force per unit length of the wall 

is the area of the total pressure diagram. Thus: 

         
 

 
      

           
 

 
           

      

 

c) Case for cohesive soil backfill with horizontal ground surface 

 
Figure 2.12 Rankine’s passive earth pressure distribution against a retaining wall cohesive 
backfill. (After Braja M. Das “Fundamentals of Geotechnical Engineering)  

 

The passive pressure against the wall at any depth below the ground surface can 

be expressed as:               √     

 At    :              √      

At    :                   √     

The passive force per unit length of the wall can be found from the area of the pressure 

diagrams from Figure 2.12 as:     
 

 
           √    
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(Fellenius, 1927) assuming a circular rupture line was able to make a simple 

analysis for frictionless soil because the unknown stresses do not enter into the moment 

equation about the center of the circle.  

(Caquot, 1948) presented a solution for the passive earth pressure acting on the 

face of a wall, showing that the mobilized value of the wall frictional angle    depends on 

the type of the wall movement. They developed charts for the values of the passive earth 

pressure coefficient    using curved failure surface for granular soil (c=0) for the case 

of:    .  

 (Narain, 1969) investigated experimentally the determination of the rupture 

surface behind a retaining wall subjected to translation or rotation around its bottom or 

top for the case of loose or dense sand conditions. He reported that the magnitude of 

passive earth pressure reached the maximum values when the wall was rotated around 

its bottom and reached its minimum value when the wall was rotated about its top. 

 (James, 1970) studied the distribution of normal and shear stresses on a rough 

plane wall rotating about its toe into a mass of dry sand with a horizontal surface. They 

reported that the earth pressure reaches first its peak value near the top of the wall 

where the rupture surface is first observed. Furthermore, the magnitude of the passive 

earth pressures measured in the case of dense sand are much greater than those 

measured for loose sands. 

 (Kumar, 1997) developed charts based on an assumed failure surface consisted 

of a logarithmic spiral and a plane parts to determine the magnitudes of passive earth 

pressure coefficients. They found that the statically admissible inclination of the failure 

surface with the wall depends on the values of the angles of wall-soil ( ), angle of 

vertical inclination of the wall ( ) and the angle of shearing resistance ( ). They reported 
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that the angle of the failure surface with the horizontal would control the curvature of the 

failure surface. 

 They presented the passive earth pressure coefficient for the critical surface as: 

        
      

   

 

   

Where: 

   = resultant of passive earth pressure resistance 

   = Height of the wall 

   = unit weight of the soil 

(Terzaghi, 1920) preformed measurement of horizontal passive earth pressure 

using a two inch high wall. Passive earth pressure coefficients were observed to be 

greater than 10 for dense sand after smaller wall movements, and well in the excess of 

the value of 2 for loose sand at a wall movement equal to 15% of its height. Based on 

his experiments, Terzaghi had noticed that the translational movement of a retaining wall 

greatly influences the horizontal passive earth pressure against the wall. 

(Franzius, 1924) built a single wall 1m wide and 0.6 m high to determine the 

effects of wall friction on passive resistance. From these results, he concluded that the 

observed values were at least twice the values computed on the assumption of zero wall 

friction. 

(Hansen, 1953) studied the rupture planes under different types of wall 

movement in a small scale model with a wall 15cmx15cm. he indicated differences in the 

shape and size of the rupture wedges under different wall displacements and with 

different wall frictions. 

(Rowe, 1965) directly measured the passive earth pressure on a vertical wall 

movement by translation against a horizontal fill of dry sand. The test apparatus was 

constructed within part of a bin 14ftx9ft in a new 60 ton sand flume. The wall contact with 
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the sand is 6ft wide and 1.5ft  and consisted on three separate sections each 2ft wide. 

The central sections housed three columns of six earth pressure cells. This elaborate 

equipment allowed a control of the wall direction and of the consequent rate of 

mobilization of wall friction. From the test results, Rowe and Peaker observed that the 

distribution of the pressure on the translating wall was essentially linear in all the tests at 

each stage of deformation up to failure. They also discovered that the angle of wall 

friction changed in relation to the rate of displacement. Their test results show that the 

passive earth coefficient kp , the friction angle of the soil and the wall friction, increase 

initially with the increase of the wall’s translational movements and kept constant after 

they reached the peak values. 
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CHAPTER 3 

EXPERIMENTAL INVESTIGATION 

 

3.1 General 

 An experimental setup was designed and built to simulate the condition of a 

retaining wall subjected to passive earth pressure. In order to model the passive 

pressure in the soil mass, the retaining wall was designed to be pushed into the soil. The 

horizontal forces applied on the retaining wall, as well as the horizontal displacements 

were measured. 

The present investigation was performed using collapsible soil as backfill 

material. Then the soil was inundated from the bottom modeling the rise of the ground 

water table.  

 This chapter describes the design of the experimental setup and its components, 

the properties of the materials used and the laboratory preparation of the collapsible soil. 

Figure 3.1 presents a sketch of the setup used in this investigation, which 

consists of a testing tank, loading device supported by a steel frame and elevated water 

tank with constant water head that supplies the water to the soil in the testing tank 

through the water distribution system.  
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Fig.3.1 Sketch of experimental setup 
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Fig.3.2a. Testing tank front and top view
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3.2 Test setup 

 The experimental setup consisted of a testing tank, retaining wall, loading system 

and water distribution system. 

- Testing tank 

 The inner dimensions of the tank are 1080 mm, 195 mm and 406 mm length, 

width and depth respectively. Figure 3.2a shows a top and side view of the testing tank 

used in the present investigation. The longitudinal sides are manufactured from 10 mm 

Plexiglas sheets which were transparent in order to observe the movement of the soil 

behind the wall and, accordingly, the failure mechanism. The lateral sides of the tank 

were aluminum alloy channels. The tank was laterally braced using steel angles to 

prevent the deflection of the tank during loading. The bracing system job was to support 

the loading system in order to ensure the horizontal direction of the loading system. 

To simulate the rise of the ground water level, 12 thin- tubes were connected to the 

bottom of the tank. The tubes were receiving water from an elevated water tank and 

remained connected and open throughout the testing procedures. 

 

 Retaining wall and loading system 

 A metal plate was placed on the upper part of the tank to simulate a retaining 

wall. The dimensions of the plate were 195mm x 215mm x 19 mm width, depth and 

thickness, respectively. The retaining wall was allowed to move horizontally, but no 

rotation was permitted. In order to simulate the plane strain condition in the sand mass, 

the width of the plate was kept the same as the width of the testing tank. 

The plate was held vertically through a rod that passed through two sets of roller 

bearings Figure 3.2b. On the roller bearing that was inside the testing tank, a plastic seal 

was attached so that when soil was inundated, the water would not infiltrate into the 

bearing. Prior to testing the wall, the metal rod and the bearing were greased with thick 
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waterproof grease to prevent rust. The roller bearings allowed the loading rod that 

supports the retaining wall to have a horizontal movement but no rotation and no vertical 

displacements. The two roller bearings can be observed in Figure 3.2a and Figure 3.2 b. 

On the exterior of the testing thank the metal rod was connected to the loading 

system through a loading cell that was used to measure the horizontal component of the 

total passive earth pressure. The end side of the steel rod was fileted to fit the load cell. 

The other side of the load cell was connected to a large diameter screw that was part of 

the loading machine. The horizontal alignment of this connection was properly measured 

and fixed in order to avoid any inclination of the applied force. The load cell connections 

are presented in Figure 3.4. 

The wall movements were measured by an electrical sensor (Linear Variable 

Displacement Transducer LVDT). The LVDT was connected to the side of the testing 

tank and to the retaining wall. It was detached during inundation to avoid any water 

contact. After calibration the LVDT was connected to the Data acquisition system 

(D.A.S.) and the displacement was recorded in millimeters. 

 The loading system consisted of a gear box manufactured by Wykeham 

Farrance. The fixed gear box was used to generate horizontal force which in return 

produced a horizontal movement of the steel rod that was connected to the retaining 

wall. Figure 3.3 shows a picture of the gear box used. The forces generated by the gear 

box were measured by the Load Cell which was connected on one side to the horizontal 

retaining wall rod and on the other side to the horizontal rod of the gear box (Figure 3.4). 

After calibration the load cell was connected to the D.A.S.  to  register the force applied 

in Newton.   
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Fig.3.2b. Retaining wall

Loading Rod  

Roller Bearings 

Retaining wall  
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Fig.3.3. Gear box used      Fig.3.4. Load cell connections 
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 Water distribution system 

 In the present investigation collapsible soil was used as backfill material for the 

retaining wall. The collapse of the soil was achieved by inundation at the bottom of the 

testing tank. A water distribution system was built to simulate this condition. An elevated 

tank (Figure 3.5), made of Plexiglas, is connected to the testing tank by a plastic tube, 

which was branched into 12 tubes (Figure 3.6), through which the water was charged to 

the bottom of the test tank, simulating the rise of groundwater table. The water level in 

the water tank was kept constant during the inundation process, water was charged from 

a water source and an overflow pipe was fixed inside the water tank that kept the water 

at a constant level.  To achieve the constant water level in the water tank before 

inundating the soil, a valve was placed on the “Out to test” tube. During the time that the 

water was allowed to flow in the water tank, this connection valve was kept closed. After 

the level of water started to have a constant flow, the valve was opened so that the 

water can pass through 12 thin tubes at the bottom of the testing tank inundating the 

soil. 

 During the inundation process the transparent thin tubes were monitored to 

prevent the entry of air bubbles in the system. When the test was finished and after the 

soil had been taken out of the tank, the tubes were cleaned with water to prevent any 

clogging in the system.  

 For the inundated samples, a layer of slightly compacted silica sand was placed 

at the bottom of the testing tank to ensure an even distribution of the water throughout 

the collapsible soil. 
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Fig.3.5. Water tank         Fig.3.6 Water distribution system 
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Soil compaction was carried out prior to the loading of soil .The same compaction 

energy per unit volume E was maintained for each layer and throughout all the 

experiments to reach the desired soil properties, and accordingly the desired collapse 

potential. 

The compaction unit consists of a 4.5kg hammer that drops from a height of 45.7 cm 

on an aluminum compaction plate of 19.4mm by 35.5mm as seen in figure 3.7.  

The testing tank was divided into four equal layers. In order to achieve the desired 

height of the compacted sample, for the top layer a detachable wood frame was built to 

keep the soil from sliding during compaction figure 3.8. The wood frame was fixed to the 

steel frame of the system by screws and tightened with clamps. Prior to testing the frame 

was removed to allow the movement of the retaining wall. 

 Figure 3.7 Compaction plate and hammer 

 

 
Figure 3.8 Wood frame 
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3.3 Soil Mixture Preparation 

Three different mixtures of collapsible soil were prepared and used in the 

experiments, in order to reach different levels of collapse potential. The mixtures 

consisted of sand and Kaolin clay with different content values (6%,8% and 10%) and 

water content of 5% as shown in table 3.1. The different soil characteristics were 

determined through a series of soil properties test presented in this chapter. 

 Sieve analysis was carried out for the soil mixtures .The diameter corresponding 

to percentage of soil passing sieves     ,     and      was determined and the 

coefficient of curvature      and the uniformity coefficient    were calculated, where: 

    
   

 

       
   and     

   

   
 

  

Classification of soils according to USCS and AASHTO are presented in table 3.1. 

 After compaction and just before carrying out the experiments, a series of soil 

tests were carried out in order to determine the unit weight, dry unit weight and the water 

content of the soil for each of the three soil mixtures  and the results are summarized in 

table 3.1.  

 Standard Proctor test was carried out on the three soil mixtures to determine the 

maximum dry unit weight and the optimum moisture content. 

 In addition, direct shear test was performed for each of the mixtures to determine 

the shear strength parameters. For each soil mixture, four direct shear test were 

performed at different vertical stresses and Mohr-Coulomb criterion was used to 

determine the shear parameters of the soil. The results are presented in table 3.2. 
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Table 3.1 - Soil properties 

Parameter 
Soil type 

Mix 1 Mix 2 Mix 3 

Clay content (% Kaolin) 6 8 10 

Initial moist content    (%) 5 5 5 

Unit weight   (kN/m3) 16.28 16.25 16.2 

Dry unit weight    (kN/m3) 15.6 15.5 15.4 

Maximum dry unit weight        (kN/m3) 18.05 18.3 19.25 

Optimum water content      (%) 12.6 12.25 11.75 

Specific gravity     2.66 2.67 2.67 

Void ratio   0.67 0.69 0.70 

Degree of saturation S (%) 19.77 19.35 19.05 

Liquid limit (    - 9.2 15.9 

Plastic limit (    N.P. N.P. 13.35 

Plasticity index (PI) - - 2.55 

Coefficient of uniformity (    4 5.4 21.9 

Coefficient of curvature      1.27 1.65 6.47 

Soil Classification (Unified Soil 

Classification System USCS) 
SP-SC SP-SC SP-SC 

AASHTO A-3 A-3 A-2-4 

 

 

Table 3.2 - Summary of shear strength parameters for the soil mixtures 

Soil Type Clay content (%) 
Soil cohesion    

   (kPa) 

Angle of internal friction 

   (degrees) 

Mix 1 6 9 40 

Mix 2 8 12.5 38.5 

Mix 3 10 15.5 35 
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The clay content used for the three soil mixtures was chosen so that the three 

different mixtures would have different collapse potentials. (Mashhour, 2009) (Soliman, 

2010). 

 Odometer tests were carried out on the soil mixtures to determine the collapse 

potential Cp, following the procedure suggested by (Knight, 1963), where the soil 

specimen was being loaded up to a load of 200 kPa, then it was being flooded with 

water, while the load was maintained on the soil and the settlement upon wetting 

(collapse settlement) was measured. 

  The collapse potential is equal to the deformation of soil to the addition of water, 

divided by the initial height of the specimen, expressed in percentage as shown in the 

following equation: 

   
   

  
      

 Table 3.3 shows the collapse potential values obtained from the odometer test 

for each of the soil mixes and the severity of foundation problems as suggested by 

(Jennings, 1975). 

 

Table 3.3 –Collapse potential and severity problem for the soil mixtures (Mashhour, 

2009) (Soliman, 2010) 

Soil 

mixture 

Clay content 

(%) 

Collapse potential         

Cp (%) 

Severity of foundation problem 

(Jennings and Knight 1975) 

Mix 1 6 4.2 Moderate trouble 

Mix 2 8 9 Trouble 

Mix 3 10 12.5 Severe trouble 
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Soil compaction has a great influence on the collapse potential of the soil. Prior to 

testing the compaction was carefully carried out. The same compaction energy per unit 

volume E was maintained for each layer and throughout all the experiments to reach the 

desired soil properties, and accordingly the desired collapse potential. 

Energy of compaction was calculated using the equation: 

  
       

 
    

 Where: 

 E = energy per unit volume (g/cm/cm3) 

 N = no. of blows 

 W = weight (g) 

 H = height (cm) 

 L = no. of layers 

 V = volume of soil being compacted (cm3) 

 

Table 3.4 –Calculation of the compaction energy 

E 

(g.cm/cm3) 

N W (g) H (cm) L V (cm3) V (cm3) 

 

588.39 20 4500 45.7 4 19.4*35.5*40.6 27961.22 
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3.4 Test procedure  

1. For the inundated samples, a 2.5 cm layer of coarse silica sand was placed and 

slightly compacted at the bottom of the testing tank to allow even and uniform 

distribution of water throughout the collapsible soil during inundation. Figure 3.9 

   
Figure 3.9 Silica sand layer 

 

2. The laboratory prepared collapsible soil was prepared by dry mixing the sand and 

clay in a mixer Figure 3.10. The dry mixing procedure ensured that the Kaoline and 

sand are thoroughly mixed. Five percent water by weight was added to the mix and 

all are mixed together for an additional period of time. A sensitive balance was used 

to measure the quantities of materials used.  

 
Figure 3.10 Mixing of the samples 
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3. The mixed sample was placed in the tank in four layers and compacted, keeping the 

same compaction energy for each layer. The unit weight of the mixture in the tank 

was measured by means of density cans, which were placed in a staggered scheme 

in the vertical direction to avoid boundary effects. At the end of each test, these cans 

were carefully taken out and weighed. The unit weight of the mixture was taken as the 

average unit weight in these cans. 

 The procedure was repeated for each test so that the unit weight will be the same as 

the one given in table 3.1. The mixing, spreading and compacting procedure was 

repeated until the third layer. For the last layer the wood frame was attached to the 

tank and the sample was placed and compacted for the last layer. Prior to testing the 

wood frame was detached. Fig.3.11 

 
Figure 3.11 Wood frame for the compaction of the top layer 

 

4. The LVDTs that measured the horizontal displacement of the wall and the collapse 

settlement were placed and carefully retracted to reach the zero value. Figure 3.12. 

5.  For the tests with only 5% initial water content, the test was carried out recording the 

force and displacement of the wall. 
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6. For the inundated samples, the water was introduced in the tank until the soil was 

100% inundated. After saturation, the load on the retaining wall was applied at a 

constant loading rate. The constant loading rate was selected on the loading unit in 

terms of piston displacement of 0.5 millimeters per minute. The load applied on the 

retaining wall, measured by the load cell and the displacement of the wall measured 

by the LVDT was collected using the DAS program. 

7. During inundation three LVDT’s were placed along the tank to measure the collapse 

settlement of the sample (Figure 3.12). It was noticed that the LVDT’s do not record 

any values and collapse settlement was not visible. 

 
 Figure 3.12 LVDT assembly  

 

8. Prior to testing, all of the metal parts inside the tank were waterproofed by applying a 

thick water resisting grease.  

The following parameters were being monitored: 

 Collapse settlement (LVDT) 

 The load applied on the soil (load cell ) 

 Displacement of the retaining wall (LVDT) 
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3.5 Friction force 

 To account for the development of the friction force in the bearings of the 

mechanism, and between the wall and the sides of the tank two tests were performed on 

the empty tank and the load applied on the retaining wall as well as its displacement 

were recorded. As can be observed in figure.3.13, the two load-displacement curves of 

the tests had close values.  

 An average friction force has been calculated and subtracted from the load 

readings of all the tests. In the present experimental investigation the presented values 

of the loads for all the tests will represent the net value of the load. 

Table 3.5 - Test 1  

Displacement 
(mm) 

Load 
(N) 

 Displacement 
(mm) 

Load 
(N) 

 Displacement 
(mm) 

Load 
(N) 

0.000 0.000  12.744 45.368  27.721 18.836 

0.110 24.028  13.211 54.710  28.418 11.618 

0.369 25.857  13.858 38.700  29.095 22.022 

0.679 34.944  14.515 34.787  29.751 30.342 

1.032 63.659  15.193 27.096  30.397 31.128 

1.436 58.487  15.848 24.009    

1.915 38.641  16.491 32.918    

2.459 18.600  17.129 29.929    

3.007 8.982  17.767 32.721    

3.593 25.326  18.418 38.248    

4.186 33.056  19.097 38.189    

4.803 36.478  19.790 30.833    

5.453 33.292  20.462 43.401    

6.139 34.983  21.112 39.055    

6.818 38.622  21.751 37.638    

7.488 22.199  22.402 32.879    

8.141 47.669  23.066 31.797    

8.778 44.208  23.738 63.738    

9.426 42.339  24.405 50.718    

10.097 36.891  25.071 29.260    

10.775 38.799  25.713 36.262    

11.443 44.306  26.363 28.434    

12.105 34.138  27.033 30.814    
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Test 2 

Displacement 
(mm) 

Load 
(N) 

 Displacement 
(mm) 

Load 
(N) 

 Displacement 
(mm) 

Load 
(N) 

0.000 0.000  10.849 41.073  24.392 56.731 

0.023 45.991  11.212 42.155  24.754 65.111 

0.088 61.649  11.569 54.568  25.105 73.708 

0.228 68.200  11.921 64.266  25.464 71.819 

0.371 72.626  12.278 63.459  25.821 66.115 

0.522 74.082  12.636 59.033  26.186 67.098 

0.650 75.360  12.988 64.325  26.551 65.288 

0.842 73.708  13.340 75.065  26.926 62.102 

1.050 65.879  13.698 64.639  27.302 52.207 

1.218 55.768  14.064 52.423  27.679 40.975 

1.446 44.083  14.428 41.053  28.061 34.385 

1.703 40.030  14.827 39.027  28.435 27.027 

1.978 33.932  15.163 45.420  28.816 30.116 

2.258 33.677  15.519 51.991  29.174 36.411 

2.558 34.601  15.871 49.768  29.538 48.587 

2.861 42.686  16.226 51.125  29.896 44.437 

3.166 42.214  16.583 51.027  30.247 46.129 

3.482 39.263  16.934 46.994    

3.812 41.289  17.286 45.991    

4.142 48.548  17.644 44.909    

4.490 48.902  18.008 45.814    

4.834 52.325  18.373 49.040    

5.191 48.922  18.746 45.479    

5.558 46.896  19.115 47.289    

5.932 44.948  19.485 44.122    

6.210 38.594  19.856 45.460    

6.578 37.434  20.221 54.390    

6.944 32.870  20.585 50.456    

7.310 40.463  20.943 49.060    

7.670 43.591  21.298 49.178    

8.026 49.768  21.568 50.004    

8.385 45.007  21.928 45.755    

8.748 40.857  22.204 47.506    

9.109 38.909  22.567 47.938    

9.376 42.824  22.931 44.476    

9.742 45.814  23.301 40.168    

10.113 49.178  23.668 48.863    

10.476 46.738  24.027 54.155    
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Graph 3.13- Friction force load-displacement curves 
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3.6 Calibration of the setup  

 To ensure that the results of the tests are accurate, a test was performed on pure 

sand and the coefficient of passive earth pressure (kp) was calculated using Rankine’s 

passive earth theory. 

 Prior to testing, the angle of friction and the unit weight of the sand were 

calculated by performing a series of shear tests. The unit weight of the sand in the tank 

was measured by means of density cans which were placed in a staggered scheme in 

the vertical direction. At the end of each test, these cans were carefully taken out and 

weighed. The unit weight of the sand was taken as the average unit weight of the sand 

in these cans. The placing of sand in the tank was developed so that the average unit 

weight of the sand would be the same as the unit weight in the shear test. 

The wall was pushed toward the sand mass, and the loading system was turned 

on at a loading rate of 5 mm/ min. The DAS (Data Acquisition System) will record the 

load applied and the horizontal displacement of the wall. 

The wall movement continued until failure was reached, at which the sand mass 

behind the wall will separate from the rest of the sand in the testing tank through a failure 

surface. The sand movement was observed from the glass sides of the testing tank until 

the failure mechanism was fully developed behind the wall.  

The test was stopped when the sand started to overflow from the tank. The force 

applied on the wall recorded the maximum value when the failure mechanism was 

achieved and then the load will start decreasing. It was observed that after the soil has 

failed the load would start increasing again because under the movement of the wall, the 

soil would start to build up and overflow from the tank.  

The results of the tests performed on the loose sand are presented in table 3.6. 

The maximum load and horizontal displacement corresponding to the failure are 

underlined. The load-displacement curve of the loose and is presented in graph 3.14.  
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Table 3.6 – Test results for loose sand 

Displacement 
(mm) 

Load (N) 
 Displacement 

(mm) 
Load (N) 

0.000 0  7.762 474.274 

0.023 6.91806  8.037 489.866 

0.078 51.5317  8.331 492.673 

0.172 73.1555  8.612 500.913 

0.278 83.2611  8.892 507.755 

0.324 90.3772  9.175 508.834 

0.422 95.0743  9.455 513.869 

0.630 112.546  9.741 523.284 

0.801 134.707  10.018 534.035 

0.952 155.371  10.294 541.348 

1.110 173.75  10.577 559.693 

1.278 183.445  10.846 580.725 

1.452 200.625  11.128 592.282 

1.644 207.248  11.402 596.492 

1.836 217.885  11.673 603.24 

2.036 227.283  11.947 613.838 

2.245 247.843  12.226 619.595 

2.463 265.398  12.506 627.124 

2.686 273.071  12.785 628.752 

2.926 282.011  13.060 631.096 

3.166 293.102  13.337 641.414 

3.406 302.871  13.608 656.81 

3.659 315.629  13.881 666.242 

3.913 330.528  14.155 673.323 

4.176 343.874  14.426 679.22 

4.443 347.983  14.700 684.173 

4.709 359.862  14.974 692.331 

4.978 375.918  15.248 699.844 

5.247 384.864  15.522 701.728 

5.524 393.656  15.797 692.334 

5.801 399.963  16.075 694.723 

6.082 407.12  16.350 700.577 

6.356 423.355  16.628 710.299 

6.643 432.205  16.906 713.857 

6.911 444.906  17.179 716.178 

7.194 452.121  17.460 720.782 

7.477 459.04  17.735 728.13 
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  Graph 3.14 – Load - displacement curve for the test performed on loose sand
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From the load-displacement curve it can be observed that after reaching the 

failure, the load decreased for three readings of the DAS.  At 16.62 mm horizontal 

displacement, the load started to increase.  

The horizontal component of the maximum passive earth pressure acting on the 

wall (Ph) was determined at the failure point on the load-displacement curve. The value 

of Ph measured by the load cell was used to calculate the coefficient of passive earth 

pressure Kp as follows: 

   
  

    
 

i.e., 

   
 

 
       

i.e., 

   
    

    
 

where  

   = horizontal component if the passive earth pressure acting in the wall 

   = total passive earth pressure acting at an angle   with the horizontal 

  = unit weight of the sand 

  and   = width and height of the wall, respectively 

The value of Ph measured by the load cell in this test was 701.728 N at a 

horizontal displacement of 15.522 mm. The dimensions of the retaining wall were 

195mm x 215mm width and height respectively. The coefficient of passive earth 

pressure has been calculated as follows: 
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In order to validate the results given by the setup, the passive earth coefficient 

was calculated using Rankine's theory in case the soil is cohesionless as following: 

        (    
 

 
) 

 The angle of friction for the sand is determined by plotting a graph of the 

maximum or peak shear stresses versus the corresponding normal stresses. The Mohr –

Coulomb failure envelope was determined by drawing a straight line through the origin 

(cohesionless soil) and the points resulting from the experimental results. The slope of 

this line gives the peak friction angle of     . The coefficient of passive earth 

pressure is calculated as follows: 

        (    
 

 
)        

 As can be observed, the passive earth coefficient calculated using the angle of 

friction           has a close value to the one calculated using the maximum force 

recorded from the test performed on loose sand           . 

 The horizontal component of the passive earth pressure was first calculated 

using the passive earth coefficient          as follows: 

   
 

 
                 

The net value of Ph measured by the load cell in this test was 701.728 N.  

 Following the result given above the setup constructed to measure the horizontal 

component of the passive earth pressure is considered to be accurate.  

http://en.wikipedia.org/wiki/Rankine_theory
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CHAPTER 4 

TEST RESULTS AND ANALYSIS 

 

4.1 General 

 In this chapter the test results are presented in the form of tables and graphs 

showing the soil behavior under the movement of the retaining wall. Also a series of 

graphs have been developed to show the difference of the soil behavior under the same 

loading conditions. 

Table 4.1 shows a summary of the tests performed, in terms of the different soil 

mixtures at the initial condition and fully saturated condition. The first three tests have 

been performed at the initial condition of 5% water content. To show the loss of strength 

after inundation, tests 4, 5 and 6 are conducted on the fully saturated samples. 

 

Test 

No. 

Soil 

mix 

Collapse 

potential 

Cp 

Clay 

content 

(%) 

Water 

content 

% 

Load at 

failure   

(N) 

Wall 

displacement 

at failure 

(mm) 

Table 

number 

Test 1 Mix 1 4.2 6 5 1644.64 11.32 4.4 

Test 2 Mix 2 9.0 8 5 1920.03 12.7 4.5 

Test 3 Mix 3 12.5 10 5 2331.8 14.074 4.6 

Test 4 Mix 1 4.2 6 100 558.55 1.249 4.7 

Test 5 Mix 2 9.0 8 100 289.114 0.081 4.8 

Test 6 Mix 3 12.5 10 100 130.153 0.076 4.9 

Table 4.1- Summary of test results 
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4.2 Results of the tests performed on the collapsible soil mixtures 

Test no.1- Soil mix 1 

The test no.1 was performed on a soil mixture of sand and 6% Kaolin clay at an 

initial water content of 5% by weight. The results of the test are presented in table 4.2. 

The force recorded by the load cell at the failure point and the horizontal displacement of 

the wall are highlighted. The load-displacement diagram was constructed and presented 

in graph 4.1.  

Table 4.2 – Test results for Soil Mix 1 (6% Clay content at 5% initial water content) 

Displacement 
(mm) 

Load       
(N) 

 Displacement 
(mm) 

Load         
(N) 

0.000 0.0000  12.401 1630.6126 

0.051 107.0725  12.936 1633.7573 

0.255 545.8774  13.473 1633.6393 

0.531 742.5964  14.003 1635.6092 

0.871 879.8691  14.544 1601.1162 

1.256 992.1132  15.089 1574.4014 

1.721 1087.0870  15.634 1569.3904 

2.106 1160.8786  16.424 1581.4268 

2.524 1197.9819  16.970 1559.4731 

2.966 1233.8066  17.500 1562.4632 

3.426 1274.4292  18.038 1558.0397 

3.914 1316.3282  18.572 1562.8933 

4.403 1365.1782  19.111 1552.2784 

4.910 1400.8730  19.658 1563.9189 

5.433 1417.3802    

5.967 1452.1482    

6.505 1481.7913    

7.047 1505.5131    

7.587 1515.9117    

8.127 1534.9370    

8.652 1560.4843    

9.182 1587.6602    

9.707 1592.4065    

10.245 1605.5620    

11.050 1630.2700    

11.321 1644.6390    

11.689 1627.0694    
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  Graph 4.1 – Load - displacement curve for the test performed on Mix 1 (6% clay content at 5% initial water content)
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H = 11.321 mm 

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

L 
= 

Lo
ad

 (N
) 

H = Horizontal displacement (mm) 



64 
 

Test no.2- Soil mix 2 

Test no.2 was performed on a soil mixture of sand and 8% Kaolin clay at an 

initial water content of 5% by weight. The results of the test are presented in table 4.3. 

The horizontal displacement of the wall and the force recorded by the load cell at the soil 

failure are highlighted. The load-displacement diagram was constructed and presented 

in graph 4.2.  

Table 4.3 – Test results for Soil Mix 2 (8% Clay content at 5% initial water content) 

Displacement 
(mm) 

Load   
(N) 

 Displacement 
(mm) 

Load   
(N) 

0.000 0.000  10.275 1856.924 

0.002 416.970  10.821 1864.268 

0.080 735.207  11.357 1889.028 

0.191 874.338  11.896 1894.962 

0.319 973.052  12.434 1904.785 

0.462 1049.290  12.700 1920.03 

0.622 1117.241  13.241 1904.807 

0.787 1179.928  13.780 1938.710 

0.978 1228.224  14.305 1968.171 

1.178 1273.290  14.834 1990.525 

1.397 1313.394  15.356 1981.130 

1.626 1371.812  15.878 1986.876 

2.060 1426.034  16.402 1976.288 

2.479 1457.819  16.923 1993.554 

2.913 1495.134  17.191 1982.762 

3.376 1535.249  17.727 1988.311 

3.859 1571.264  18.264 1987.061 

4.357 1604.302  18.803 2010.073 

4.873 1617.147  19.351 2006.437 

5.401 1655.269  19.891 2022.475 

5.936 1688.819    

6.483 1712.226    

7.025 1728.305    

7.574 1749.913    

8.112 1776.458    

8.650 1805.167    

9.198 1821.809    

9.735 1839.596    
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Graph 4.2 – Load - displacement curve for the test performed on Mix 2 (8% clay content at 5% initial water content)

P = 1920.03 N  
H = 12.70 mm 
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Test no.3- Soil mix 3 

The results of the test no.3 are presented in table 4.4. The test was performed on 

a soil mixture of sand and 10% Kaolin clay at an initial water content of 5% by weight. 

The force recorded at the failure point of the soil and the horizontal displacement of the 

wall is highlighted. The load-displacement diagram was constructed and presented in 

graph 4.3.  

Table 4.4 – Test results for Soil Mix 3 (10% Clay content at 5% initial water content) 

Displacement 
(mm) 

Load 
(N) 

 Displacement 
(mm) 

Load 
(N) 

0.000 0.000  11.671 2243.11 

0.074 476.872  12.202 2255.91 

0.138 789.549  12.733 2285.88 

0.229 939.069  13.267 2304.68 

0.431 1121.95  14.074 2331.8 

0.682 1248.03  14.608 2328.9 

0.957 1341.54  15.144 2332.41 

1.267 1425.59  15.675 2340.18 

1.597 1503.46  16.208 2371.03 

1.963 1570.47  16.734 2384.38 

2.359 1636.83  17.269 2403.13 

2.786 1692.36  17.802 2412.02 

3.232 1752.88  18.336 2434.19 

3.706 1795.63  18.869 2436.23 

4.197 1830.8  19.409 2439.59 

4.709 1864.24  19.951 2456.83 

5.228 1911.61    

5.766 1951.99    

6.300 1994.4    

6.837 2017.82    

7.371 2053.46    

7.912 2074.4    

8.446 2102.49    

8.984 2119    

9.525 2154.77    

10.064 2169.36    

10.611 2192.49    

11.143 2209.43    
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Graph 4.3 – Load - displacement curve for the test performed on Mix 3 (10% clay content at 5% initial water content) 
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Test no.4- Soil mix 1 

The test number 4 was performed on a soil mixture of sand and 6% Kaolin clay 

at an initial water content of 5% by weight. The sample was inundated from the bottom 

until full saturation was achieved. The test was performed after inundation. The collapse 

potential Cp of the soil mix is 4.2% and the severity of foundation problems as suggested 

by (Jennings and Knight 1975) is “moderate trouble”. The results of the test are 

presented in table 4.5. The force recorded at the failure point of the soil and the 

horizontal displacement of the wall is highlighted. The load-displacement diagram was 

constructed and presented in graph 4.4.  

Table 4.5 – Test results for Soil Mix 1, Cp = 4.2% (6% Clay content at full saturation) 

 

 

 

 

 

 

 

 

 

 

 

Displacement 
(mm) 

Load (N) 
 Displacement 

(mm) 
Load (N) 

0.000 0.000  5.210 602.051 

0.057 385.102  5.572 599.872 

0.172 483.183  5.932 607.561 

0.310 503.732  6.290 604.234 

0.471 511.876  6.656 611.594 

0.639 521.023    

0.828 526.821    

1.035 545.037    

1.249 558.55    

1.483 557.348    

1.735 567.927    

1.999 567.576    

2.281 562.422    

2.568 564.863    

2.869 557.586    

3.183 566.435    

3.499 581.833    

3.824 604.567    

4.156 612.36    

4.496 614.58    

4.852 602.998    
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Graph 4.4 – Load - displacement curve for the test performed on Mix 1 (6% clay content full saturation) – collapse potential 4.2%

P = 558.55 N 
H = 1.249 mm 
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Test no.5- Soil mix 2 

The test number 5 was performed on a soil of 8% Kaolin clay at full saturation. 

The collapse potential Cp of the soil mix is 9% and the severity of foundation problems 

as suggested by (Jennings and Knight 1975) is “trouble”. The results of the test are 

presented in table 4.6. The force recorded at the failure point of the soil and the 

horizontal displacement of the wall is highlighted. The load-displacement diagram is 

constructed and presented in graph 4.5.  

 Table 4.6 – Test results for Soil Mix 2, Cp = 9% (8% Clay content at full saturation) 

Displacement 
(mm) 

Load 
(N) 

 Displacement 
(mm) 

Load 
(N) 

0.000 0.000  1.945 292.416 

0.015 131.905  2.068 287.286 

0.030 239.364  2.197 284.258 

0.081 289.114  2.337 291.688 

0.144 285.162  2.472 292.806 

0.209 284.139  2.608 292.297 

0.280 267.551  2.741 296.642 

0.355 242.925    

0.427 237.814    

0.507 235.809    

0.584 239.859    

0.667 248.980    

0.759 252.617    

0.849 253.637    

0.941 258.745    

1.036 254.990    

1.141 253.205    

1.264 259.296    

1.363 264.446    

1.476 276.377    

1.580 291.961    

1.707 291.827    

1.817 289.602    
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Graph 4.5 – Load - displacement curve for the test performed on Mix 2 (8% clay content full saturation) – collapse potential 9%

P = 289.114 N 
H = 0.081 mm 
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Test no.6 - Soil mix 3 

The test number 6 was performed on a soil containing 10% Kaolin clay. The 

sample was inundated from the bottom until full saturation was achieved. The test was 

performed after inundation. The collapse potential Cp of the soil mix is 12.5% and the 

severity of foundation problems as suggested by (Jennings and Knight 1975) is “severe 

trouble”. The results of the test are presented in table 4.7 and the constructed load-

displacement diagram is presented in graph 4.6. 

Table 4.7 – Test results for Soil Mix 3, Cp = 12.5% (10% Clay content at full saturation) 

Displacement 
(mm) 

Load 
(N) 

 Displacement 
(mm) 

Load 
(N) 

0.000 0.000  2.243 111.224 

0.001 114.813  2.417 112.104 

0.016 128.575  2.597 112.431 

0.076 130.153  2.788 114.583 

0.157 119.462  2.976 119.657 

0.247 113.854  3.167 122.378 

0.339 110.336  3.369 121.672 

0.439 109.615  3.570 121.274 

0.542 109.297  3.776 118.879 

0.655 110.213  3.982 118.353 

0.770 111.940    

0.893 113.429    

1.021 114.941    

1.152 114.226    

1.290 112.868    

1.442 111.874    

1.590 109.788    

1.744 109.417    

1.907 110.071    

2.071 111.383    
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  Graph 4.6 – Load - displacement curve for the test performed on Mix 3 (10% clay content full saturation) – collapse potential 12.5% 
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4.3 Reproducibility of the test data 

To ensure the reproducibility of the data one test from each series of tests was 

repeated. A set of test is represented by the water content of the samples tested. Based 

on this in the present investigation are presented two series of sets. The first set of 

repeated tests was conducted on samples at the initial 5% water content. The second 

sets of tests were performed on the inundated samples. To check the results of the tests 

performed on fully samples the test number on the Mix 1 was repeated.  

In table 4.8 are presented the results of two tests performed on the soil mixture of 

sand and 6% Kaolin clay at an initial water content of 5% by weight. The force recorded 

by the load cell at the failure point of the soil and the horizontal displacement of the 

retaining wall are highlighted in the table. Graph 4.7 shows the load-displacement 

relationship for these two tests. The two curves presented are almost identical, which 

means that the results obtained from the experimental setup were repeatable. 

Table 4.9 shows the results of two tests performed on the soil mixture of sand 

and 6% Kaolin clay at an initial water content of 5% by weight. This set of tests was 

performed on fully saturated samples that present loss of strength due to collapse of the 

soil. The collapse potential Cp of the soil mix is 4.2% and the severity of foundation 

problems as suggested by (Jennings and Knight 1975) is “moderate trouble”. The force 

recorded by the load cell at the failure point of the soil and the horizontal displacement of 

the retaining wall are highlighted in the table. The load-displacement curves for these 

tests are presented in Graph 4.8 The two curves are almost identical, which means that 

the results obtained from the experimental setup are repeatable. 

For the analysis of the results the tests that had a higher value of the failure force 

were kept.  
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Table 4.8 – Test results for Soil Mix 1 (6% Clay content at 5% initial water content)  

Test number 1: 

Displacement 
(mm) 

Load       
(N) 

 Displacement 
(mm) 

Load         
(N) 

0 0  14.544 1601.116 

0.051 107.072  15.089 1574.401 

0.255 545.877  15.634 1569.39 

0.531 742.596  16.424 1581.427 

0.871 879.869  16.97 1559.473 

1.256 992.113  17.5 1562.463 

1.721 1087.087  18.038 1558.04 

2.106 1160.878  18.572 1562.893 

2.524 1197.981  19.111 1552.278 

2.966 1233.807  19.658 1563.919 

3.426 1274.429    

3.914 1316.328    

4.403 1365.178    

4.91 1400.873    

5.433 1417.38    

5.967 1452.148    

6.505 1481.791    

7.047 1505.513    

7.587 1515.912    

8.127 1534.937    

8.652 1560.484    

9.182 1587.66    

9.707 1592.407    

10.245 1605.562    

11.05 1630.27    

11.321 1644.639    

11.689 1627.069    

12.401 1630.613    

12.936 1633.757    

13.473 1633.639    

14.003 1635.609    
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Table 4.8 – Test results for Soil Mix 1 (6% Clay content at 5% initial water content)  

Test number 2: 

 

Displacement 
(mm) 

Load       
(N) 

 Displacement 
(mm) 

Load       
(N) 

0.000 0  13.087 1634.49 

0.088 216.478  13.621 1635.13 

0.257 573.008  14.156 1644.89 

0.465 725.754  14.687 1608.6 

0.715 809.949  15.224 1584.88 

0.846 877.056  15.750 1575.1 

1.284 1010.06  16.282 1576.97 

1.619 1055.59  16.812 1556.08 

1.993 1125.21  17.350 1568.96 

2.392 1181.34  17.623 1572.22 

2.829 1215.04    

3.051 1269.84    

3.518 1308.82    

4.000 1347.55    

4.498 1389.84    

5.014 1414.22    

5.544 1452.37    

6.081 1469.04    

6.613 1502.35    

7.157 1519.59    

7.698 1543.74    

8.235 1553.49    

8.769 1582.94    

9.303 1592.65    

9.845 1616.39    

10.386 1617.74    

10.929 1622.36    

11.470 1641.1    

12.014 1628.54    

12.554 1632.61    
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  Graph 4.7 – Load - displacement curve for the repeated tests performed on Mix 1  
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Table 4.9 – Test results for Soil Mix 1, Cp = 4.2% (6% Clay content at full saturation) 

 

Test number 1  Test number 2 

Displacement 
(mm) 

Load       
(N) 

 Displacement 
(mm) 

Load       
(N) 

 
0 0 

 
0.000 0 

0.057 385.102 
 

0.030 339.364 

0.172 483.183 
 

0.144 435.162 

0.31 503.732 
 

0.280 487.551 

0.471 511.876 
 

0.427 507.814 

0.639 521.023 
 

0.584 519.859 

0.828 526.821 
 

0.759 522.617 

1.035 545.037 
 

0.941 538.745 

1.249 558.55 
 

1.141 549.205 

1.483 557.348 
 

1.363 557.446 

1.735 567.927 
 

1.580 556.961 

1.999 567.576 
 

1.817 567.602 

2.281 562.422 
 

2.068 567.286 

2.568 564.863 
 

2.337 563.688 

2.869 557.586 
 

2.608 565.297 

3.183 566.435 
 

2.889 561.926 

3.499 581.833 
 

3.176 567.785 

3.824 604.567 
 

3.482 582.833 

4.156 612.36 
 

3.793 591.506 

4.496 614.58 
 

4.112 611.841 

4.852 602.998 
 

4.434 615.402 

5.21 602.051 
 

4.759 602.531 

5.572 599.872 
 

5.087 602.786 

5.932 607.561 
 

5.425 588.881 

6.29 604.234 
 

5.751 599.505 

6.656 611.594 
 

6.089 606.75 

 
  

6.291 604.785 
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Graph 4.8 – Load - displacement curve for the repeated tests performed on Mix 1(Cp = 4.2%) at full saturation  

Test no. 1 
P = 558.55 N 

H = 1.249 mm 

Test no. 2 
P = 557.446 N 
H = 1.363 mm 

0

100

200

300

400

500

600

700

0 1 2 3 4 5 6 7

P
 =

 L
o

ad
 (

N
) 

H = Horizontal displacement (mm) 

Test no.1

Test no.2



80 
 

4.4 Comparison of results 

The experimental study was conducted on laboratory prepared collapsible soils by 

mixing Kaoline clay with sand at different percentages. In general the higher the clay 

content the higher the collapse potential. (Adnan, 1992) and (Miller, 1998)  concluded 

that the maximum collapse occurs at approximately 18% clay content. 

 (Lawton EC, 1992) indicated that the maximum collapse potential, for the natural 

soils studied, is obtained when the clay fraction is situated in the range 10% and 40%. 

(Abbeche Khelifa, 2007)  concluded that the soil is not susceptible to collapse it its clay 

fraction is greater than 30%. 

 The soil mix in the present investigation was chosen in different percentages of 

kaolin clay content of 6,8 and 10%  to achieve the collapse potentials of 4.2%, 9% and 

12.5% respectively. (Soliman, 2010) concluded that at a constant percentage of clay 

content and constant compaction energy the collapse potential decreased sharply due to 

increasing the water content, especially in the range of 5% to 7%.  (Abbeche Khelifa, 

2007) stated that the collapse potential decreases or even can be equal to zero above a 

certain value of the initial water content. 

 In the present investigation the first series of tests was performed on soil mixes 

on 6, 8, and 9% clay content at an initial water content of 5%. The tests measured the 

horizontal force applied on the retaining wall and the horizontal displacement of the wall. 

Graph 4.9 shows the load- displacement curves for the three mixtures used in the 

present investigation.  

Clay is the bonding agent that gives the soil mix its cohesive nature. As can be 

observed in graph 4.9 the failure force and wall displacement increased with the 

increase of the clay content. (Sheeler, 1968) stated that cohesive strength increases 

with increasing clay content. 
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(Bayoglu, 1995) made an experimental study on the effects of the fine particles 

on the shear strength and compressibility properties of the soil. Soil mixtures having 

wide range of grain size from sand to silt-clay mixtures were studied. He concluded that 

for a fine content less than 50% the angle of internal friction varied between 30-38 

degrees with small variations and only after 50% fine content the friction angle 

decreased significantly.  

The soil properties of the mixes used in this investigation are presented in Table 

3.3.2. It can be observed that the friction angles of the mixes decrease with the increase 

of clay content ranging between 40 to 35 degrees.  

Graph 4.9 presents the load- displacement curves for the samples tested at 5% 

initial moisture content. In order to show the different soil behavior of the three soil 

mixtures used in the experimental investigation, the load-displacement curves for the 

tests are presented in the same chart.  It can be observed that increasing the clay 

content of the mix leads to the increasing of the load that the soil can sustain. 
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Graph 4.9 – Load - displacement curve for the tests performed on Mix 1, Mix 2 and Mix 3 at 5% initial water content
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The horizontal force applied on the retaining wall at the soil failure for the 6% clay 

content soil mixture was 1644.64 N at a horizontal displacement of 11.321 mm. At 8% 

clay content, the failure force increased with 14%. By increasing the clay content from 

8% to 10%, the force increased with almost 18%. 

In the case of passive earth pressure on retaining wall with horizontal cohesive 

backfill Rankine presents the passive force per unit length of the wall as: 

   
 

 
            √   

   = total passive earth pressure  

  = unit weight of the soil 

   = cohesion 

  and   = width and height of the wall, respectively 

 In the present investigation the horizontal force of the earth pressure is measured 

by the load cell. Knowing the soil properties, the only unknown in Rankine’s equation 

remains the coefficient of passive earth pressure which can be taken out of the equation 

and be calculated. 

 The coefficient of passive earth pressure for the three mixtures is presented in 

Table. 4.10 

Mix Clay 
content (%) 

Collapse 
potential 
Cp (%) 

Force 
(N) 

Coefficient of passive earth 

pressure     (   ) 

Mix 1 6 4.2 1644.64 4.151 

Mix 2 8 9 1920.03 3.762 

Mix 3 10 12.5 2331.8 3.157 

 

It can be observed that by increasing the clay content, the coefficient of passive earth 

pressure decreased. 
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 The graph 4.10 shows the relation between the collapse potential and the 

coefficient of passive earth pressure. As can be observed the coefficient of passive 

earth pressure decreased with almost 10% from the 4.2% to 9% collapse potential. The 

decrease from 9% to 12.5% collapse potential is in the range of 16%. 

 

Graph 4.10 Relation between collapse potential and coefficient of passive 

earth pressure at 5% initial water content 

 

 In the present investigation, the soil mixes tested had the collapse potential 

increased from 4.2% to 12.5% which resulted in the decrease of the coefficient of 

passive earth pressure kp with almost 76%. This underlines that the passive pressure 

developed on the retaining wall decrease with the increase of the collapse potential of 

the soil mix.  
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 Tests performed on the soil mixes at full saturation 

 The collapsible soil is known to have a loss of strength when inundated. The 

second set of tests performed in this investigation was performed on the soil mixtures 

with 6, 8 and 9% clay content but under the condition that the ground water level kept 

being risen until the soil became fully saturated.  The increase of the moisture caused 

the clay bonds to weaken reducing the original soil strength. During the testing, the force 

applied on the retaining wall was measured as well as its horizontal displacement. Graph 

4.11 shows the load- displacement curves for the three mixtures used in the 

investigation. The force and displacement at the soil failure are highlighted on the chart. 

From the load-displacement curves presented in graph 4.11, it can be observed 

that by increasing the collapse potential of the soil mixture, the force required to push the 

retaining wall until reaching soil failure decreased. The soil mix 1 that with a collapse 

potential of 4.2% exhibited a value of the failure force of 48% higher than the soil mix 

with a 9% collapse potential and 78% higher than soil mix with 12.5% collapse potential. 

Soil mix 2 and 3 recorded a small value of the horizontal displacement of the wall 

showing that failure of the soil will occurred practically immediately because of the loss 

of strength after collapse. 

Comparing the values from the tests performed on the soil mixes of 5% initial 

water content and the fully saturated mixes, it can be observed that once the collapse of 

the soil is achieved the force required to push the retaining wall decreased considerably. 

This implies that due to the collapse, the soil lost its ability to sustain driving forces. In 

the following section a comparison between the samples with 5% initial water content 

and fully saturated samples is extended. 
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Graph 4.11 – Load - displacement curve for the tests performed on Mix 1, Mix 2 and Mix 3 at full saturation  
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 The collapse potential of the mixes, the failure force and the calculated 

coefficient of passive earth pressure for the three mixtures are presented in Table. 4.11 

Mix Clay 
content (%) 

Collapse 
potential 
Cp (%) 

Force 
(N) 

Coefficient of passive earth 

pressure     (   ) 

Mix 1 6 4.2 558.55 0.54 

Mix 2 8 9 289.114 0.075 

Mix 3 10 12.5 130.153 0.009 

Table. 4.11 – Collapse potential for soil mixes at 5% initial moisture content 

 The coefficient of passive earth pressure decreased as the collapse potential 

increased. (Graph 4.12) shows the relation between the collapse potential and the 

coefficient of passive earth pressure. 

 
Graph 4.12 Relation between collapse potential and coefficient  

of passive earth pressure at full saturation 

 

 As can be observed in the above table, the coefficient of passive earth pressure 

decreased significantly from Cp = 4.2% to Cp = 9%. The decrease in value is almost of 

86% between the two mixes. For Cp = 9% and Cp = 12.5%, the decrease in Kp value is 

almost in the same range of 88%. 
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 Comparison of the results of Test 1 and Test 4 performed on Soil Mix 1 

 Soil mix 1 contained 6% clay content and had a collapse potential of 4.2% being 

classified by (Jennings and Knight 1975) as “moderate trouble”. Test no.1 was 

performed on the soil mix at 5% initial water content and Test no.4 was performed after 

the soil was inundated from the bottom until full saturation was achieved.  

 In the dry state, the clay particles act as a cementing agent between the grains 

and are responsible for an inter-granular connection that can support high loads. 

However, the saturation, even without additional loading, causes the disintegration of the 

connections, giving a denser structure followed by a sudden collapse of the soil 

particles. 

 (Gibbs, 1960) reported that an increase in moisture content is often a more 

important contributor to collapse than loading. 

 For the test performed on the soil mix at 5% water content, it is observed that the 

force required to push the retaining wall until soil failure was almost  66% bigger than 

after the collapse of the soil. The collapse of the soil was not visible during the test, but 

could be observed clearly when comparing the difference in the horizontal loading and 

displacement of the retaining wall. 

 The coefficient of passive earth pressure Kp is calculated for both of the cases 

and the results given in table 4.12.  

Soil 
Mix 

Water 
content  

% 

Clay 
content 

(%) 

Collapse 
potential 
Cp (%) 

Horizontal 
Displacement 

(mm) 

Force 
(N) 

Coefficient of 
passive earth 

pressure     

(Kp) 

Mix 1 
5 

6 4.2 
11.321 1644.64 4.151 

100 1.249 558.55 0.54 

 Table.4.12 Coefficient of passive earth pressure for Soil Mix 1 
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 As can be observed, the coefficient of passive earth pressure decreased with 

almost 87% after the collapse of the soil.  This was due to the loss of strength of the soil 

after collapse.  

 Graph 4.13 shows the relation between the load applied on the retaining wall and 

the horizontal displacement of the wall for two cases of 5% initial water content and fully 

submerged. 

 The horizontal displacement corresponding to the failure force of 558.55N had a 

small value. This underlines the collapse of the soil influenced greatly the strength of the 

soil. The collapse was almost immediate. 
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Graph 4.13 – Load - displacement curve for the tests performed on Mix 1 at 5% initial water content and full saturation   
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 Comparison of the results of Test 2 and Test 5 performed on Soil Mix 2 

 Soil mix 2 contained 8% clay content and had a collapse potential of 9% being 

classified by (Jennings and Knight 1975) as “trouble”. Test no.2 was performed on the 

soil mix at 5% initial water content and Test no.5 was performed after the soil was 

inundated from the bottom until full saturation was achieved.  

 The force required to push the retaining wall towards the soil and the horizontal 

displacement of the wall were measured and the load- displacement curves are 

presented in graph 4.14. The failure force at soil failure is underlined on the graph. 

 For the test performed on the soil mix at 5% water content, it was observed that 

the force required to push the retaining wall until soil failure is almost  85% bigger than 

after the collapse of the soil. The small value of the horizontal displacement of the 

retaining wall underlined that the soil failed almost immediately after the load was 

applied on the wall. 

 The coefficient of passive earth pressure Kp is calculated for both of the cases 

and the results given in table 4.13: 

Soil 
Mix 

Water 
content  

% 

Clay 
content 

(%) 

Collapse 
potential 
Cp (%) 

Horizontal 
Displacement 

(mm) 

Force 
(N) 

Coefficient of 
passive earth 

pressure     

(Kp) 

Mix 2 
5 

8 9 
12.7 1920.03 3.762 

100 0.081 289.114 0.075 

 Table 4.13 Coefficient of passive earth pressure for Soil Mix 2 

 The coefficient of passive earth pressure decreases with 98% from the calculated 

value at 5% initial moisture content. The loss of strength of the collapsed soil influenced 

greatly the passive earth pressure which decreased significantly. 
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Graph 4.14 – Load - displacement curve for the tests performed on Mix 2 at 5% initial water content and full saturation
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 Comparison of the results of Test 3 and Test 6 performed on Soil Mix 3 

 Soil mix 3 contained 10% clay content and had a collapse potential of 12.5% 

being classified by (Jennings and Knight 1975) as “severe trouble”. Test no.3 was 

performed on the soil mix at 5% initial water content and Test no.6 was performed after 

the soil was inundated from the bottom until full saturation was achieved.  

 The force required to push the retaining wall towards the soil and the horizontal 

displacement of the wall were measured and the load- displacement curves are 

presented in graph 4.15. The failure force at soil failure is underlined in the graph. 

 The classification of the soil according to (Jennings and Knight 1975) is as 

severe trouble for foundation problems. This is underlined when comparing the force 

required to push the retaining wall until soil failure from test 3 which is 95% higher than 

after the collapse of the soil. From all the tests performed on the soil mixes at 5% initial 

moisture content, soil mix 3 that contained 10% clay presents the greatest failure force, 

but also the highest collapse potential of 12.5%. After collapse, the soil lost almost all its 

strength and it failed at small values of force applied on the retaining wall. The failure 

occurred immediately after loading at a very small value of the horizontal displacement. 

 The coefficient of passive earth pressure Kp is calculated for both of the cases 

and the results given in table 4.14: 

Soil 
Mix 

Water 
content  

% 

Clay 
content 

(%) 

Collapse 
potential 
Cp (%) 

Horizontal 
Displacement 

(mm) 

Force 
(N) 

Coefficient of 
passive earth 

pressure     (Kp) 

Mix 3 
5 

10 12.5 
14.074 2331.8 3.157 

100 0.076 130.153 0.00936 

 Table 4.14 Coefficient of passive earth pressure for Soil Mix 3 

The coefficient of passive earth pressure decreases with 99.7% from the 

calculated value at 5% initial moisture content. It can be clearly observed that after the 

collapse, the soil lost almost all its strength.
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Graph 4.15 – Load - displacement curve for the tests performed on Mix 3 at 5% initial water content and full saturation
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 Comparison of the results with the theoretical values 

 Rankine’s equations for passive earth pressure are presently used for design of 

earth structures due to its easy maneuverability. Table 4.15 shows the soil properties 

for all the mixes and the coefficient of passive earth pressure calculated using 

Rankine’s equation as follows: 

        (    
 

 
) 

   = passive earth coefficient  

  = angle of internal friction 

Soil Mix 

Clay 

content 

(%) 

Initial water 

content   

(%) 

Angle of 

internal friction 

   (degrees) 

Rankine’s Coefficient of 

passive earth pressure     

 (Kp) 
Mix 1 6 5 40 4.599 

Mix 2 8 5 38.5 4.298 

Mix 3 10 5 35 3.69 

Table 4.15 Rankine’s coefficient of passive earth pressure 

In the present investigation, the coefficient of passive earth coefficient was 

calculated using Rankine’s equation for the passive force per unit length of the wall as: 

   
 

 
            √   

   = total passive earth pressure  

  = unit weight of the soil 

   = soil cohesion 

  and   = width and height of the wall, respectively 

All of the coefficients in the above equation are known and the coefficient of 

passive earth pressure can be taken out and calculated for each of the mixtures at 5% 

initial water content and presented in table 4.16. 
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Test 

number 

Soil 

Mix 

Initial 

water 

content  

% 

Clay 

content 

(%) 

Soil 

cohesion    

   (kPa) 

Unit 

weight 

  

(kN/m3) 

Collapse 

potential 

Cp (%) 

Coefficient of 

passive earth 

pressure     

(Kp) 
Test 1 Mix 1 5 6 9 16.28 4.2 4.151 

Test 2 Mix 2 5 8 12.5 16.25 9 3.762 

Test 3 Mix 3 5 10 15.5 16.2 12.5 3.157 

Table 4.16 Coefficient of passive earth pressure for Soil Mixes at 5% initial water content 

 The comparison between the experimental and theoretical values of the passive 

earth coefficient is presented in table 4.17. 

Soil Mix 

Clay 

content 

(%) 

Water 

content  

(%) 

Experimental Coefficient 

of passive earth 

pressure   (Kp) 

Rankine’s  

Coefficient of passive earth 

pressure     (Kp) 
Mix 1 6 5 4.151 4.599 

Mix 2 8 5 3.762 4.298 

Mix 3 10 5 3.157 3.69 

Table 4.17 Comparison between Experimental and Rankine’s coefficient of passive 
earth pressure 
  

Based on the frictional resistance only (friction angle   ) the Rankine’s passive 

earth coefficient is slightly higher than the experimental values obtained. 

The coefficient of passive earth pressure for the soil mixes that were inundated 

from the bottom until full saturation is presented in table 4.18.  

Test 

number 

Soil 

Mix 

Water 

content  

% 

Clay 

content 

(%) 

Collapse 

potential 

Cp (%) 

Coefficient of 

passive earth 

pressure     (Kp) 
Test 1 Mix 1 100 6 4.2 0.54 

Test 2 Mix 2 100 8 9 0.075 

Test 3 Mix 3 100 10 12.5 0.00936 

Table 4.18 – Coefficient of passive earth pressure for the collapsed samples 

 

 

 

 



97 
 

 

CHAPTER 5 

FINITE ELEMENT MODEL 

 

5.1 General 

The finite element software known as Plaxis (Version 8.2) was used to perform 

the finite element studies presented in this report. The manner in which no deformable 

retaining wall was modeled, and the procedures were followed to calculate the 

displacements and stresses are presented in this chapter. 

 

5.2 Modeling the physical space 

 The generation of a two-dimensional finite element model in Plaxis is based on a 

geometry model. This model was created in the x-y plane of the global coordinate 

system, where the z direction was in the out-of-plane direction. 

 

Figure 5.1 Coordinate system and indication of positive stress components (Plaxis, 

2005)  

The graphical interface allows the Plaxis user to draw a cross-section of the 

physical space. In the present study the physical space has three main components: the 
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backfill, the containing tank and the retaining wall. An example of the cross-section is 

shown in figure 5.1. The geometry model will be composed of points, lines and plates. 

The material properties and the boundary conditions have been specified for all 

components. 

Before creating the geometry menu, the input menu of Plaxis requires the 

selection of the model type. Because the geometry of the model has a uniform                

cross-section and the loading scheme over a certain length was perpendicular to the 

cross-section in the present investigation the Plane strain model was selected. Plaxis 

program assumes displacements and strains in the z direction to be zero but the normal 

stresses on this direction are taken into account. 

The next input in the menu was the element type. For the present numerical 

model a 15 node triangular element was chosen. It provides a fourth order interpolation 

for displacements and the numerical integration involves 15 stress points. The mesh 

consisted of 15 node triangular elements performs better than the other option of 6 node 

triangular elements because it has a larger number of nodes.  During the finite element 

calculation displacements (ux and uy ) are calculated at the nodes. Stresses and strains 

are calculated at the stress points and not in the nodes. The distribution of the nodes 

and stress points of a 15 node element are shown in figure 5.2. 

 

Figure 5.2 Example of nodes and stress points for 15-node triangular elements 

(Plaxis, 2005) 
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The experimental setup was modeled by constructing the geometry model from 

points, lines and plates. The points and lines define the geometry contour. The plates 

are structural objects used to model slender structures in the ground. In the present case 

the plate was used to model the testing tank and the retaining wall. The material 

properties used for defining the plate elements are presented in table 5.2. The most 

important parameters are the flexural rigidity (EI) and the axial stiffness (EA). Knowing 

the dimensions of the testing tank and the retaining wall and the modulus of elasticity of 

aluminum the material properties of the plates were calculated. The retaining wall was 

selected to behave elastically. 

To model the interaction between the soil and the retaining wall an interface was 

placed on the face of the plate. During the experimental investigation the face of  the 

retaining wall that interacts with the soil was covered with a thick layer of heavy grease. 

This was done to eliminate the friction between the soil and the retaining wall. In Plaxis 

the roughness of the interaction between the soil and the retaining wall was done by 

entering a value for the coefficient Rinter. This factor relates the interface strength (wall 

friction and adhesion) to the soil strength (friction angle and cohesion). In order to keep 

the same conditions as the experimental testing the value of Rinter was kept as 0.1 for all 

the numerical models. 

Interfaces are composed of interface elements. Each element is connected to 

other elements or to a boundary. Triangular elements will share the nodes along each 

side of the triangle. When a triangle is connected to an interface element, they also 

share nodes. When using 15 node soil elements, the corresponding interface elements 

are defined by five pair of nodes as shown in Figure 5.5. 
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Figure 5.3 Locations of nodes and stress points when a 15-node triangular element is 

connected to a 5-node interface element (Plaxis, 2005) 

 

 The Plaxis Reference manual presents several cases when, in the corners of 

structures high peaks of stresses and strains develop as shown in Figure 5.6 

 

Figure 5.4 Stress peaks (Plaxis 2005) 

 

These inflexible points will cause poor quality stress results. To account for this in 

the present numerical modeling the interface has been extended beyond the bottom 

corner of the retaining wall. 

To model the confinement of the soil in the testing tank from the experimental 

investigation, to the plates in the geometry model from Plaxis total fixities are applied. 

Total fixities will prevent any movement in any direction (displacements ux=uy=0). 
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In the experimental setup the retaining wall was connected to the loading 

machine by a steel rod that passes through a series of bearing supports. The vertical 

movement of the wall was restricted by this connection. The retaining wall had the same 

width as the testing tank so the horizontal displacements will be null. The wall was 

connected to the loading steel rod by a series of plates and screws. This connection will 

restrict the rotation of the retaining wall. 

To ensure the same wall movement of the retaining wall from the experimental 

setup, the plate in the numerical model was fixed in the vertical direction but it was 

allowed to move horizontally. This was achieved by placing a vertical fixity from the 

Plaxis program.  To account for the zero rotation the top and bottom points of the wall 

were fixed using the rotation fixities for plates from the program.   

To model the loading of the retaining wall from the experimental setup, in the 

Plaxis model a concentrated force was applied on the plate. The point of application of 

the force was placed so that it coincided with the connection point of the retaining wall to 

the steel rod from the experimental setup. The values of the applied forces used in the 

numerical modeling were the forces recorded at soil failure from the experimental 

investigation. To maintain the sign convention from the program the values of the forces 

have been introduced with a negative sign. 

The plate used to model the structural elements of the model and their fixities, as 

well as the loading force applied on the retaining wall are presented in Figure 5.5. 
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Figure 5.5 Geometry and boundary conditions of the physical space in Plaxis
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In order to model the soil backfill a soil model had to be constructed in Plaxis. 

The soil behaviour was defined by Mohr-Coulomb (MC) constitutive law, which simulates 

the soil behaviour based on soil parameters known in most practical situations. In this 

model a yield surface is defined such that when the soil reaches or surpasses a 

predefined stress state, deformation is no longer completely recoverable. Five soil 

constitutive parameters are required for the Mohr-Coulomb model: Young’s Modulus (E), 

Poisson’s ratio (ν), angle of internal friction (φ’), cohesion (c’), and dilatancy angle (ψ). 

The soil properties used in the present numerical modelling are presented in table 5.1. 

In the experimental investigation in order to inundate the soil from the bottom, 12 

tubes were connected to the bottom of the testing tank. These tubes remained fixed and 

unblocked throughout all the tests. The loading rate of the gear box used was set at a 

slow rate. To model this conditions in Plaxis, in the soil properties input the drained soil 

behavior was chosen. 

When the geometry model was fully defined and the material properties were 

assigned to all clusters and structural objects, the geometry was divided into finite 

elements by generating the mesh.  

In Plaxis, the default element size used for generating the mesh is referred to as 

“coarse.” In the present numerical models the coarseness of the mesh was kept at 

default and the generated mesh contained around 100 elements. A typical mesh 

generated using the “coarse” mesh option in Plaxis is illustrated in Figure 5.6. 
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Figure 5.6 Typical mesh generated using the “coarse” mesh option in Plaxis 

 

Once the mesh was generated the finite element model was complete. Initial 

condition must be generated that comprise the initial groundwater conditions, the initial 

geometry configuration and the initial effective stress state. The initial soil effective 

stresses were automatically generated from the given general phreatic level and the 

input of the coefficient of earth pressure at rest (k0). The k0 procedure was used to 

generate the initial soil stresses using k0 to relate the initial horizontal effective stresses 

(’h,0) and the initial vertical effective stresses (’v,0) as follows: 

    
         

  

 In generating the initial effective stresses, no external load or the weights of the 

walls and the interfaces are taken into account. After the generation of the initial 

conditions the calculation program is active and can be performed.  

 For the calculation part of the model an elasto-plastic deformation analysis was 

considered. This is termed Plastic calculation in Plaxis program. The stiffness matrix in a 

normal plastic calculation is based on the original undeformed geometry. This type of 

calculation does not take into consideration the decay of the excess pore water pressure 
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during the time period considered. During all the calculation models used in all the 

numerical models the Updated mesh option was activated, which makes the calculations 

to be performed according to large deformation theory. 

 Each calculation was defined in separate phases of staged construction. Only 

one type of loading input can be activated in each calculation phase. The first phase was 

represented by the initial condition phase. In the next phase a point load was applied on 

the retaining wall. The phases defined above can simulate wall loading in soil at constant 

moisture content. The model was further extended to incorporate the effect of inundation 

later on. 

 

5.3 Numerical model for retaining wall pushing in the soil with 5% initial moisture 

content 

 The numerical model was used to simulate the case of the first experimental 

tests performed on the three soil mixtures with 6%, 8% and 10% kaolin content at initial 

water content of 5%. During the experimental setup, the model retaining wall was 

connected to the testing tank before the soil was placed in the tank. The installation of 

the retaining wall was ignored in the numerical model. Collapsible soils, used in the 

model tests, were found strong when dry, that is a characteristic property of unsaturated 

collapsible soil at initial moisture condition (5% water content). 

Collapsible soil behavior (at constant moisture content, representing either 

partially or fully saturated state) was defined as drained material and modeled by the 

Mohr-Coulomb (MC) constitutive law. Material parameters (including cohesion (c), angle 

of shearing resistance (υ), Poisson‘s ratio (υ), Young‘s modulus (E) and angle of 

dilatancy (ψ)) in the MC model, were given as input parameters, according to the soil 

constant soil moisture content state (corresponding to either the unsaturated or 
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saturated condition). The properties of the soil backfill modeled in all numerical models 

are presented in the following table: 

 

Soil 
Mix 

Cohesion 
 c (kPa) 

Angle of 
internal 

friction  
(degrees) 

Modulus of 
elasticity          
E (kPa) 

Dilatancy        

 
(degrees) 

Unsaturated 
unit weight 

usat (kN/m3) 

Saturated 
unit weight 

sat (kN/m3) 

Mix 1 9 40 30000 10 16.28 19.54 

Mix 2 12.5 38.5 30000 8.5 16.25 19.49 

Mix 3 15.5 35 30000 5 16.2 19.43 

Table 5.1 Soil properties used in the numerical analysis 

The testing tank and retaining wall were modeled as plate elements and the 

properties imputed in the program are the ones in the following table: 

Plate element Poisson’s ratio 

 

Modulus of 
elasticity 
E(kPa) 

Unit weight  

plate (kN/m3) 

Retaining wall 
0.3 6.89E07 27 

Tank walls 

   Table 5.2 Material Properties for the plates in the numerical analysis 
  

The boundary conditions and material properties were applied for all the clusters 

in the model as described in the previous sub-chapter. 

The initial conditions must be generated. For the first set of tests the general 

phreatic line was placed at the bottom of the geometry model. Hence the pore water 

pressure remains zero for the full depth of the homogeneous strata (figure 5.7). In 

generating the initial effective stresses, no external load or the weights of the walls and 

the interfaces are taken into account. Figure 5.8 shows the initial effective stresses 

developed in the numerical model. After generating the initial conditions of the soil the 

program will move to the calculation part.  

When defining the Staged construction of the second phase, the program allows 

us to return to the geometry model and activate the walls, interfaces and external load.  
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After the application of the force the calculation program and the plastic 

calculation was chosen. The points for the stress and displacement curves were 

selected. Several stress points were chosen along the height of the wall. The horizontal 

stress for each point was compared and the point with the maximum horizontal stress 

was used for calculations.  

Figure 5.9 shows that the maximum horizontal displacement of 11.29mm is close 

to the recorded experimental displacement of 11.321mm. 

For the point at the bottom of the wall, that presented the maximum horizontal 

stress, the curve of horizontal and vertical effective stress is plotted from Plaxis and it is 

presented in Figure 5.10. The horizontal effective stress from the curve presented is 

  
        

 

     and the corresponding vertical stress   
        

 

     . 

The stresses are used to find the coefficient of passive earth pressure using 

Rankine’s formula: 

  
    

       √   

Where:  

  
  = horizontal effective stress 

  
  = vertical effective stress  

   = coefficient of passive earth pressure 

   = cohesion of the soil  

 The comparison between the coefficient of passive earth pressure from the 

experimental results and Plaxis model are presented in table 5.3: 

 Coefficient of passive earth pressure    

Experimental investigation 
results 

4.151 

Rankine’s calculation 4.599 

Plaxis results 4.456 
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Figure 5.7 Initial pore water pressure 
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Figure 5.8 Initial effective stresses in the soil mass 
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Figure 5.9 Horizontal displacements for Mix 1 (6% clay content) at 5% moisture content 
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  Figure 5.10. Horizontal and vertical effective stress plotted from Plaxis (point F) for Mix 1 (6% clay content) at 5% moisture content 
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For the Plaxis geometric model of the soil mix 2 that contains 8% clay content the 

same procedure has been applied. 

The soil properties have been changed and the force applied on the wall was the 

maximum force recorded from the experimental results of 1920.03N. The program has 

been run under the Plastic calculation model.  

The displacement output of the program shows a maximum displacement of 

12.42 mm (Figure 5.11) which is close to the experimental displacement of 12.70 mm. 

Stress points have been selected along the height of the wall and the point of 

maximum horizontal stress has been found as being point C located at the bottom of the 

wall. For this point the horizontal and vertical stresses have been plotted as shown in 

Figure 5.12.  

Using these values the coefficient of passive earth pressure has been calculated 

using formula 5.1 where the horizontal effective stress of point C is   
        

 

     

and the corresponding vertical stress   
        

 

     . 

The calculated coefficient of passive earth pressure was calculated and 

compared with the experimental results in table 5.4. 

 Coefficient of passive earth pressure    

Experimental investigation 
results 

3.762 

Rankine’s calculation 4.298 

Plaxis results 3.99 

Table 5.4 Coefficient of passive earth pressure for Soil Mix 2 at 5% moisture 

As can be observed in the above table the coefficient of passive earth pressure 

has close values for all the different cases.
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  Figure 5.11 Horizontal displacements for Mix 2 (8% clay content) at 5% moisture content 
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 Figure 5.12. Horizontal and vertical effective stress plotted from Plaxis (point C) for Mix 2 (8% clay content) at 5% moisture content 
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To model the soil mix 3 that contains 10% clay content the soil properties have 

been changed and the Plaxis model procedure has been repeated. 

In the calculation part of the model the horizontal force applied on the retaining 

wall has been replaced by the maximum force recorded from the experiments of 

2331.8N. After the model has been run the maximum displacement given by the 

program presented in figure 5.13 is of 14.96 mm which is close to the horizontal 

displacement recorded during the experiment of 14.074mm. 

Before the program his run several stress points are taken along the height of the 

wall and the point of maximum horizontal stress has been selected for calculations. For 

this point C located at the bottom of the wall, the effective stresses presented in figure 

5.14 are considered for calculation of the coefficient of passive earth pressure using 

formula 5.1. The effective stresses of the point are as follows: the horizontal effective 

stress as    
        

 

     and the corresponding vertical stress   
        

 

     . 

The calculated coefficient of passive earth pressure is presented in table 5.5 

along with the one obtained from the experimental results and the one calculated using 

Rankine’s equation. 

 Coefficient of passive earth pressure    

Experimental investigation 
results 

3.157 

Rankine’s calculation 3.69 

Plaxis results 3.395 

Table5.5 Coefficient of passive earth pressure for Soil Mix 3 

Table 5.5 shows that the values of passive earth pressure are close for all the 

three different cases.
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 Figure 5.13 Horizontal displacements for Mix 3 (10% clay content) at 5% moisture content 
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 Figure 5.14 Horizontal and vertical effective stress plotted from Plaxis (point C) for Mix 3 (10% clay content) at 5% moisture content
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5.4 Numerical model for retaining wall pushing in the soil at full saturation 

In the present experimental investigation the simulation of the rise of the ground 

water table was made by inundating the soil from the bottom up, until full saturation was 

achieved. To model this condition in Plaxis before loading the retaining wall the ground 

water table was moved from the bottom of the tank to the upper part of the retaining tank 

as shown in Figure 5.15. 

 

 
Figure 5.15 – Ground water table for inundated samples 
  

In order to account for the loss of soil strength after the collapse of the soil, in the 

calculation part the “Phi-c reduction” calculation was used as second stage of calculation 

after the initial condition phase. In the Phi-c reduction approach the strength parameters 

tan and c are successively reduced until the all the additional steps are completed. In 

order to prevent the failure of the soil and achieve only reduction of the soil parameters 

the number of the additional steps is kept at 1. This will ensure the desired strength 

reduction but not failure. For the Phi-c reduction calculation in the multipliers menu of the 

program the      is defined as the quotient of the original strength parameters and the 
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reduced strength parameters and controls the reduction of tan and c at a given stage in 

the analysis. This increment was kept at the value of 0.1 which according to the Plaxis 

Reference manual was found to be a good starting value. 

The third phase of the calculation was a plastic calculation where the horizontal 

force   recorded at soil failure from the experimental part was applied on the retaining 

wall. The plastic calculation followed the same elasto-plastic deformation analysis. The 

Plastic phase started at the end of the Phi-s reduction phase so the soil will present 

reduced strength parameters. When using Phi-c reduction in combination with the 

Plastic calculation the model will behave as a standard Mohr-Coulomb model, since the 

stress-dependent stiffness behavior and hardening effects are excluded from the 

analysis. 

 After application of the horizontal force on the retaining wall in the Plastic 

calculation Phase, from the output part of Plaxis the horizontal displacement of the wall 

(Figure 5.16) was found as 1.88mm which is only slightly higher than the experimental 

displacement of 1.249mm.  

Before the start of the calculation along the height of the retaining wall several 

stress points have been selected in order to find the point that presents the maximum 

horizontal stress. This point has been found at the bottom of the wall, the same as for 

the other numerical models. The horizontal versus vertical stress diagram for this point is 

presented in Figure 5.17. 
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For this point C located at the bottom of the wall, the effective stresses presented 

in figure 5.17 were considered for calculation of the coefficient of passive earth pressure 

using formula 5.1. The effective stresses of the point are as follows: the horizontal 

effective stress as    
        

 

     and the corresponding vertical stress   
  

      
 

     . 

 

The calculated coefficient of passive earth pressure is presented in table 5.6 

along with the one obtained from the experimental results. 

 Coefficient of passive earth pressure    

Experimental investigation 
results 

0.54 

Plaxis results 0.572 

Table 5.6 Coefficient of passive earth pressure for collapsed Soil Mix 1 

Comparing the results in the above table it can be observed that the values of the 

coefficient of passive earth pressure calculated using the stresses from Plaxis is close to 

the coefficient of passive earth pressure calculated from the experimental investigation. 

This verifies the results from the numerical model analysis. 
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  Figure 5.16 Horizontal displacements for Mix 1 (6% clay content) at full saturation 
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Figure 5.17 Horizontal and vertical effective stress plotted from Plaxis (point C) for Mix 1 (6% clay content) at full saturation 
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 To model the soil mix 2 at full saturation in Plaxis the same procedure has been 

adopted. The soil properties have been changed in the Geometry of the model and the 

load applied on the retaining wall was changed to the horizontal force recorded at soil 

failure from the experimental investigation for this soil which has the value of 289.114N. 

 After the calculation was performed the horizontal displacement of the wall as 

can be observed in Figure 5.18 has a value of 0.181 mm which is slightly higher than the 

one presented after the experimental investigation. 

 For the several stress points selected along the height of the wall the one that 

presented the highest horizontal stress was used for calculation. The horizontal versus 

vertical stresses diagram for this point is presented in Figure 5.19. The horizontal 

effective stress of the point is    
         

 

     having the corresponding vertical 

stress   
           

 

     . 

The calculated coefficient of passive earth pressure is presented in table 5.7 

along with the one obtained from the experimental results and the one calculated using 

Rankine’s equation. 

 Coefficient of passive earth pressure    

Experimental investigation 
results 

0.075 

Plaxis results 0.093 

Table 5.7 Coefficient of passive earth pressure for collapsed Soil Mix 2 

 

In the above table we can observe that the values of the coefficient of passive 

earth pressure are close, which means that the experimental results verify the numerical 

model. 
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   Figure 5.18 Horizontal displacements for Mix 2 (8% clay content) at full saturation 
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 Figure 5.19 Horizontal and vertical effective stress plotted from Plaxis (point C) for Mix 2 (8% clay content) at full saturation
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To model the soil mix 3 that contains 10% clay content the soil properties have 

been changed and the Plaxis model procedure has been repeated. 

In the calculation part of the model the horizontal force applied on the retaining 

wall has been replaced by the maximum force recorded from the experiments of 

130.153N. After the model has been run the maximum displacement given by the 

program presented in Figure 5.20 is of 1.52 mm is only slightly higher than the horizontal 

displacement recorded during the experiment of 0.076mm. 

Before the program his run several stress points are taken along the height of the 

wall and the point of maximum horizontal stress has been selected for calculations. For 

this point C located at the bottom of the wall, the effective stresses presented in figure 

5.21 are considered for calculation of the coefficient of passive earth pressure using 

formula 5.1. The horizontal effective stress of the point is    
           

 

     and the 

corresponding vertical stress is   
           

 

     . 

The calculated coefficient of passive earth pressure is presented in table 5.8 

along with the one obtained from the experimental results.  

 Coefficient of passive earth pressure    

Experimental investigation 
results 

0.00936 

Plaxis results 0.015 

Table 5.8 Coefficient of passive earth pressure for collapsed Soil Mix 3 

 

 The coefficient of passive earth pressure calculated using the stresses obtained 

from Plaxis for the point at the bottom of the wall has a slightly higher value than the 

experimental calculated coefficient. The small difference between the values makes 

valid the verification of the numerical modeling with the experimental results. 
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 Figure 5.20 Horizontal displacements for Mix 3 (8% clay content) at full saturation 
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    Figure 5.21 Horizontal and vertical effective stress plotted from Plaxis (point C) for Mix 3 (10% clay content) at full saturation
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5.5 Numerical model for retaining wall pushing into the soil at full saturation for 

different soil mixtures 

The results of the experimental investigation were used to validate the results of 

the numerical model developed in this investigation. After the validation the numerical 

model was used to generate results for a new range of soil mixtures of 7.5, 9 and 11% 

clay content. In order to compare the parametric changes of the soil mixtures, the force 

applied on the retaining wall was kept the same as in the experimental investigation for 

the soil mix from the same severity classification according to (Jennings and Knight 

1975) presented in Table5.9.  

Soil 

mixture 

Clay content 

(%) 

Collapse potential         

Cp (%) 

Severity of foundation problem 

(Jennings and Knight 1975) 

Mix 1 6 4.2 Moderate trouble 

 7.5 6.5 

Trouble Mix 2 8 9 

 9 10.5 

Mix 3 10 12.5 
Severe trouble 

 11 14 

Table.5.9 Classification of soil mixtures of 7.5, 9 and 11 % clay content 

 The geometry model and the calculation procedure was the same as for the 

numerical model constructed for the inundated samples presented in the above chapter. 

From the output program for the new mixtures the maximum effective horizontal stress 

and the corresponding vertical stress were collected and used to calculate the coefficient 

of passive earth pressure for all the mixtures.  
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To model the soil mix that contains 7.5% clay content the soil properties have 

been changed and the Plaxis model procedure performed on the inundated Soil Mix 2 

was repeated. 

For point C located at the bottom of the wall, the effective stresses presented in 

figure 5.22 were considered for calculation of the coefficient of passive earth pressure 

using formula 5.1. The horizontal effective stress of the point is    
        

 

     and 

the corresponding vertical stress is   
           

 

     . 

The coefficient of passive earth pressure is presented in Table 5.10 along with 

the numerical model results for the 6% and 8% clay content mixtures. 

Clay content (%) 6% 7.5% 8% 

Coefficient of passive 

earth pressure    
0.572 0.243 0.093 

Table 5.10 Comparison between Kp for soil mixes of 6, 7.5 and 8% clay content 

The coefficient of passive earth pressure of the soil mix containing 7.5% clay 

decreases from the value calculated for the Soil Mix 1 but still remains higher than the 

one calculated for the Soil Mix 2.  The value for the new soil mix calculated is in the 

expected range. 
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Figure 5.22 Horizontal and vertical effective stress plotted from Plaxis (point C) for Mix with 7.5% clay content at full saturation
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The numerical model procedure performed on the Soil Mix 2 was repeated for 

the new mixture containing 8% clay content. 

From the curve resulted at the end of the finite element calculation performed for 

the soil mix of 8% clay content (Figure 5.23) the horizontal effective stress was found as  

  
          

 

     and the corresponding vertical stress was   
           

 

     .  

The values of the effective stresses collected are used to calculate the coefficient 

of passive earth pressure and the result is presented in table 5.11. 

Clay content (%) 8% 9% 10% 

Coefficient of passive 

earth pressure    
0.093 0.053 0.015 

Table 5.11 Comparison between Kp for soil mixes of 8, 9 and 10% clay content 

To ensure that the numerical model was properly constructed for the soil mixture 

of 9% clay content the coefficient of passive earth pressure is compared with the results 

of the Soil Mix 2 and 3. As expected the coefficient of passive earth pressure is between 

the values of the two mixtures. 

 

 

 

 

 

 

 

 

 



133 
 

 

Figure 5.23 Horizontal and vertical effective stress plotted from Plaxis (point C) for Mix with 9% clay content at full saturation 
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To model the soil mix containing 11% clay the soil properties have been modified 

in Plaxis and the calculation procedure performed on the inundated Soil Mix 3 was 

repeated. 

Based on the curve presented in Figure 5.24 the horizontal effective stress was 

found as    
           

 

     and the corresponding vertical stress was   
  

         
 

     .  The effective stresses are selected for the point that presented the 

highest effective horizontal stress on the height of the retaining wall. 

The values of the effective stresses collected are used to calculate the coefficient 

of passive earth pressure and the result is presented in table 5.12. 

Clay content (%) 10% 11% 

Coefficient of passive 

earth pressure    
0.015 0.0091 

Table 5.12 Comparison between soil mixes of 10 and 11% clay content 

 The calculated coefficient of passive earth pressure has a value that is smaller 

than the one calculated for the Soil Mix 3. This decrease is expected because of the 

increased clay content in the new soil mixture. This clay content will give the soil a 

higher collapse potential. 

 

 

 

 

 

 

 

 



135 
 

 

      Figure 5.24 Horizontal and vertical effective stress plotted from Plaxis (point C) for Mix with 11% clay content at full saturation 
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 Using the results from the numerical analysis the coefficient of passive earth 

pressure for all the inundated soil samples analyzed are presented in table 5.13.  

Clay content (%) 6% 7.5% 8% 9% 10% 11% 

Coefficient of passive 

earth pressure    
0.572 0.243 0.093 0.053 0.015 0.0091 

Table 5.13 – Coefficient of passive earth pressure for all collapsed samples 

 The decrease of the passive resistance of the soil depends greatly upon the 

collapse potential of the soil mixture. A graphical representation between the collapse 

potential and the coefficient of passive earth pressure is presented in graph 5.25. 

 
Graph 5.25 Collapse potential versus Coefficient of passive earth pressure 
 for all collapsed samples 

  

From the above chart it can be observed that the coefficient of passive earth 

pressure decreases with the increase of the collapse potential. The curve allows the 

construction of a two degree polynomial trendline. The equation of the trendline can be 

used to estimate the coefficient of passive earth pressure function of the collapse 

potential as:                
                  

y = 0.0084x2 - 0.2073x + 1.2907 
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CHAPTER 6 

CONCLUSION 

Based on the experimental and numerical investigations on passive earth 

pressure on walls retaining dry and wet collapsible soils, the following can be concluded: 

1. The collapse potential decreased due to the increase of the initial moisture content. 

2. Increasing the clay content of the dry soil mixtures increased the strength of the soil.  

3. The collapse potential increased with the increase in clay content of the soil mixture.  

4.  After collapse, the failure forces supported by the soil decreased with the increase of 

collapse potential. 

5. In case of dry soils, the coefficient of passive earth pressure decreased with the 

increase in clay content. 

6. After collapse, the coefficient of passive earth pressure decreased with the increase 

of collapse potential of the soil.  

7.  After the soil was inundated, the coefficient of passive earth pressure decreased with 

almost 90% from the values calculated at low initial water content.  

8. An empirical formula was developed to predict the coefficient of passive earth 

pressure after collapse as a function of the collapse potential.  

 

RECOMMENDATIONS FOR FUTURE WORK 

- Measure the distribution of the earth pressure on the retaining wall by means of 

pressure sensors must be applied on the face of the retaining wall. The pressure 

sensors have to be water resistant. 

- Model the collapsible soil behavior for the cases of active and at rest earth pressure.  
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