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Abstract

Most methods for interpolating unstructured point clouds handle densely sampled point sets quite well but get into trouble when
the point set contains regions with much sparser sampling, a situation often encountered in practice. In this paper, we present a new
method that provides a better interpolation of sparsely sampled features.

We pose the surface construction problem as finding the triangle mesh which minimizes the sum of all triangles’ longest edge.
Since searching for matching umbrellas among sparsely sampled points to yield a closed manifold shape is a difficult problem, we
introduce suitable heuristics. Our algorithm first connects the points by triangles chosen in order of their longest edge and with
the requirement that all edges must have at least 2 incident triangles. This yields a closed non-manifold shape which we call the
Boundary Complex. Then we transform it into a manifold triangulation using topological operations. We show that in practice,
runtime is linear to that of the Delaunay triangulation of the points. Source code is available online.

1. Introduction

Defining the piece-wise linear boundary shape for a solid
object in R3, for which only the surface point coordinates but
nothing of its connectivity is known, is a difficult problem. It
has been the subject of a lot of research over the last 3 decades.
Unorganized point sets are increasingly encountered resulting
from simulations of objects with connectivity changing over
time, or editing, e.g. with particles or sketches. Scanning tech-
niques may supply the connectivity partly though not reliably,
say in the form of estimated normals, contours, or overlaps from
different perspectives. However, Hoppe et al argue very well the
need for solving this problem as a generic one [1].

The generic problem we wish to solve is strict interpolation
of all the given points in a point set, a problem of theoretical
and practical interest. The point set is assumed to be reasonably
densely sampled in most regions but could still contain smaller
regions which are much more sparsely sampled. This situation
is quite common, since obtaining uniformly dense sampling is
difficult in practice. Figure 1 compares results from a few well
known methods using a sparsely sampled Stanford bunny. As
we wish to accurately interpolate such more sparsely sampled
regions also, we consider all given points, even in these regions,
as features and not as outliers or noise. For point sets with noise
such as those resulting from non-high fidelity sensing devices,
use of our method would require prior denoising with an appro-
priate noise model. Surface fitting, the alternative approach in
which densely sampled features are usually reconstructed, tends
to smooth over sharp features (see some examples in Figure 14
later), whereas retention of sharp corners and fine features is the
main concern of this work. Hence we shall limit the discussion
in this paper mainly to interpolating methods. We show nev-
ertheless that our method is quite robust in handling point data
which would normally be considered as noisy.

(a) Wrap (b) TightCocone

(c) Shrink (d) Our method

Figure 1: Comparing reconstruction of a sparsely sampled
Stanford bunny using different methods: a) Wrap, b) TightCo-
cone, c) Shrink, with d) Our method, which interpolates it with
a connected, oriented and water-tight boundary.
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Figure 2: The method in R2 [2] which we use as base. Left: The
hull of the BC is partially deflated (similar to an air mattress).
Center: Adding triangles from DT inflates BC into a polygonal
hull. Right: Removing triangles in DT sculptures that hull to
interpolate all points.

Detecting boundaries (holes) in surfaces, which are common-
place in range data, always requires specifying a threshold for
the non-uniformity of the sampling density. In the absence
of such specifications, a point set therefore represents an ori-
entable closed surface, which is the generic problem we address
in this paper. Detection and handling of boundaries is thus not
considered as being within the scope of this paper.

The problem of connecting unorganized points into a bound-
ary shape has been extensively addressed in R2 with the goal of
recognizing shapes. A recent method presented in [2] has suc-
cessfully addressed the reconstruction of a closed interpolated
boundary from extremely sparse samples. They exploit Gestalt
principles.

In R3 it is even more complex to find a shape in the form of an
interpolating oriented surface, bounding a volume. We extend
the approach in [2] (see Figure 2) into R3. Our experiments
show that the resulting water-tight surface is also aesthetically
pleasing which we attribute again to our objective of following
the Gestalt principles. The major claims in this paper are:

• We define a perception-inspired minimization objective
which enables us to connect, with an orientable closed sur-
face, more sparsely sampled point sets than earlier meth-
ods.

• We introduce the Boundary Complex, an extension of the
Minimum Spanning Tree into R3. As an application it pro-
vides us a good starting set to efficiently obtain a closed
interpolating surface for reasonably dense sampled point
sets.

• We propose topological operations, which transform the
boundary complex into a closed manifold triangulation.

• We present an extended algorithm, with suitable heuristics
which avoid exhaustive searching. It extracts an orientable
closed surface for point sets with small regions contain-
ing much sparser point sets, as commonly encountered in
practical examples.

Previous methods have given sampling conditions, based on
uniformity or local feature size [3]. These conditions as formu-

lated are quite restrictive, in order to permit a unique surface
to interpolate the points. This makes it hard to find real-world
data sets fulfilling them. However, the reconstruction methods
presented actually work for some point sets well outside these
conditions. This is made possible by employing suitable heuris-
tics or (potentially slow) searching. We therefore believe that it
is of greater relevance to empirically compare the output from
implementations, rather than just their guaranteed (but far more
restrictive) sampling conditions.

2. Related Work

Based on the three-dimensional Delaunay triangulation of
the points, the concept of α-shapes was introduced in the sem-
inal paper by Edelsbrunner and Mücke [4]. This formulation
requires a globally uniform parameter, which leads to a trade-
off between loss of detail and hole filling. This work is extended
in [5] with a γ-neighborhood graph that adapts locally to vari-
able point density, however the method is not robust.

An advancing-front algorithm based on α-shapes is intro-
duced in [6], but it also fails for non-uniformly spaced point
sets. The method was extended to locally non-uniform sam-
pling, but does not interpolate all points [7]. Further, since ad-
vancing front algorithms depend on seed triangles, their results
are not deterministic.

Boissonnat estimates at each given point a local tangent
plane using nearby points and then determines the local neigh-
borhood by projecting those points on that plane [8]. He assigns
points as neighbors based on an angle criterion. In [9] natu-
ral neighbors are derived from the Delaunay triangulation pro-
jected on such a plane. For both methods, a plane is fit using the
k-nearest neighbors. Using a single value for k globally has the
disadvantage that for many points this value will either be too
small or too large to give suitable local support. Where these
neighbors are distributed anisotropically, the resulting normal
will not be representative. The more recent method [10] based
on theoretical guarantees of [11] for uniformly sampled point
sets suffers from the same problem. They require prior extrac-
tion of a dense uniformly sampled point set whose quality de-
pends again on the estimation of the underlying surface.

The method in [12] creates umbrellas locally at the vertices
from the set of Gabriel triangles. It uses topological post-
processing to match these umbrellas and fill holes by solving a
system of integer linear inequalities, but this becomes very slow
with increase in the number of sparsely spaced points. This
method guarantees the surface to be water-tight, but does not
optimize any aspect of the surface. Further these inequalities
lead to undesired disconnection of some of the surface compo-
nents. Our use of heuristics to handle sparse regions certainly
presents a computation time advantage over their work. An-
other method in [13] creates umbrellas for a selected subset of
points and then re-inserts unprocessed points. This work does
not guarantee an orientable surface, contrary to our requirement
of a water-tight oriented surface.

Boissonnat introduced, in a second approach in that pa-
per [8], the technique of sculpturing. He mentions a proof
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that any polyhedron of genus 0 can be extracted from the con-
vex hull by removing tetrahedra in the Delaunay triangulation,
based on certain heuristic rules. Since this is also of combinato-
rial complexity, he proposed a greedy algorithm which removes
such tetrahedra sorted by an intrinsic criterion. However, the
method can end up quickly in local minima and may therefore
miss interpolating many of the given points. Further, the result-
ing shape is restricted to a genus of 0. The method in [14] con-
strains sculpturing such that Gabriel triangles are not removed
from the boundary. It detects and creates holes in the object
(genus > 0) where edges in the Euclidean Minimum Spanning
Tree span non-neighbor vertices on its boundary, but the object
can become hollowed out at under-sampled regions. Surface
tension is used as a criterion for a variant of sculpturing in [15].
While its results seem visually pleasing for surfaces permitting
boundaries, constraining it to output a water-tight surface yields
artifacts for more sparse sampling, such as connecting distant
parts of the surface or disconnecting parts of the boundary. In
our method we start the sculpturing process with an initial trian-
gle set, which already represents a water-tight boundary close
to the output surface. This leads to better results as we shall see
in the many examples discussed later.

Amenta et al [3] were the first to guarantee homeomorphic
surface reconstruction (their Crust algorithm), for an ε-dense
sampling in proportion to medial axis distance, where ε=0.1.
This sampling condition is extremely stringent, permitting only
very blunt dihedral angles (an averaged ≈ 166◦) at the edges, in
order to be able to fit a surface uniquely. This crust is extracted
by locally filtering the Delaunay complex, although it may con-
tain many slivers and needs post-processing to extract the ac-
tual surface triangles in order to produce the manifold. The
Power Crust algorithm is presented in [16] which reconstructs
under-sampled regions better, but introduces many additional
points. In [17] the original Crust is simplified to the Cocone
algorithm. Later in [18] it is extended to their TightCocone al-
gorithm which fills holes, provided the under-sampling is local.
While water-tightness is thus guaranteed, for more sparse sam-
pling, it often disconnects boundary parts, or discards them as
not contained on or interior to the boundary. In a follow-up pa-
per [19], in a method called RobustCocone, filtering of the re-
stricted Delaunay complex is proposed to remove noisy points,
which are not clearly oriented outside or inside its envelope, but
this results in loss of fine features.

Both [20] and [21] use flow to classify the critical points of
a distance function, in order to restrict the Delaunay complex.
While the flow complex is well established, and performs well in
reconstructing surfaces with boundaries, its given guarantees to
extract a closed manifold homeomorphic to the sampled surface
( [22], [23]) do not surpass previously given ones, or refer only
to the weaker homotopy [24]. Besides in [20] it is mentioned
that the computation of the flow complex is of (possibly much)
higher order than the Delaunay complex. In [25] the witness
complex is used to extract an interpolating surface from noisy
point sets. In relation to earlier methods, our focus is to guar-
antee water-tightness while trying to achieve strict interpolation
of the given points.

In one of the first attempts to use an optimization approach

Petitjean and Boyer use an initial set of Gabriel triangles and
then select triangles by minimal circumradius to extract a man-
ifold [26]. In [27] the problem is formulated as a graph cut by
weighting approximate visibility and minimizing the longest-
to-shortest ratio of edges in triangles, but they require carefully
optimized parameters to be specified for every point set. In [28]
a global algorithm which minimizes a criterion for the surface
and analyzes different heuristics is proposed. It extends the
edge length criterion from R2 to correspond to area or circum-
radius of triangles in R3. But the heuristic of inserting triangles
to fulfill the constraint of ≤ 2 triangles per edge, as well as its
proposed dual, get very easily stuck in local minima, yielding
sub-optimal results. In our approach, we also pursue the goal of
energy minimization but combine it successfully with a closely
approximating starting set, requiring heuristics only for more
sparsely sampled regions.

Our experiments show that TightCocone [18] and Shrink [15]
yield good results among other previous work for our specific
problem, namely, interpolating point sets representing sparsely
sampled surfaces with a guaranteed closed manifold. Wrap [21]
and also Shrink give good results if a closed manifold is not
required.

3. Overview of Our Proposed Approach

We propose first that there exists a surface, well-defined by
minimizing an energy functional, forming the boundary shape
for a given point set. We propose further that while we can-
not always guarantee its exact construction, we can approxi-
mate it well, depending on a time-budget. There may be point
sets which are much too sparse or highly non-uniformly spaced
for which humans also cannot easily see the boundary shape.
But we maintain that the class of point sets with not too sparse
or not too non-uniform sampling is still much larger than the
classes which previous methods can reconstruct. By assuming
such a surface, every given point set has a shape whose form is
bounded by the connectivity of that surface.

We can then construct that shape boundary, or for overly
sparse sampling, select an acceptable approximation (using
suitable heuristics), which is still a closed manifold surface, and
thus improve upon the results of earlier comparable methods.
For this, we introduce a generic hole-filling technique and ex-
tend the well-known technique of sculpturing with a dual called
inflating (see Figure 3).

The rest of the paper is organized as follows. In Section 4 we
define the minimum boundary of the shape, a closed interpolat-
ing manifold surface which minimizes an objective. Next, we
relax its topological constraint to define the minimum bound-
ary complex. In Section 5 we describe the basic algorithm,
which transforms the minimum boundary complex for suffi-
ciently dense sampling into a closed manifold boundary while
maintaining the minimization objective. In Section 6, we fol-
low this with an extension of the algorithm to handle locally
more sparsely sampled point sets. In Section 7 we present var-
ied examples of constructed surfaces and compare our results
with some of the earlier algorithms, together with run-times.
We present a brief discussion on some significant aspects of
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Converting to 
Manifold Hull Sculpturing

          u=0 or u=1
Manifold Hull: H(BC)

                   u=1
Interpolating Manifold: Bout

                u>=1
Boundary Complex: BC0

Figure 3: Our method in a nutshell. Left: Triangles in the BC which form artifacts are colored grey (slivers) or red (hull holes).
Center: Hole covering and inflating transforms the BC into a polyhedral hull. Right: Sculpturing exposes an interior polyhedron
which interpolates all points.

our method in Section 8 and follow it with our conclusions in
Section 9 along with the various potential extensions.

4. Minimum Boundary and a Fast Approximation

Let P in three-dimensional Euclidean space R3 denote the
given unorganized point set.

Let DT (P) (or DT for short) denote the Delaunay triangula-
tion of the point set P with all its elements in R3. We assume
with a small loss of generality that P is in general linear position
to avoid degenerate cases of DT .

We define a triangulation as manifold if each vertex not on
its boundary is also manifold, i.e. forms the center of exactly
one closed triangle fan, which we name an umbrella. Such a
manifold triangulation also has exactly two incident triangles
for each interior edge, making those manifold as well. Bound-
ary edges are those that have only one incident triangle. We
call a triangulation that has no boundary edges a polyhedron. A
polyhedron is, by definition, a closed manifold surface.

4.1. Minimum Boundary Surface (Bmin)

Let B denote a polyhedron that interpolates all p ∈ P. We
further impose the constraint B ⊆ DT , which ensures that trian-
gles do not self-intersect and also helps reducing computational
complexity. We call B the set of such closed sub-manifolds of
DT interpolating P. Then Bmin ∈ B is the one that minimizes
the intrinsic criterion of B that is discussed next.

In order to find Bmin, we need to minimize a criterion based
on its geometric primitives.

4.2. Choosing a Suitable Criterion

To be able to evaluate the criterion for a single primitive
(point, edge or triangle), we require it to be self-contained. An
example in R2 is edge length, and minimizing the total length
of the boundary shape has shown to yield good results [29]. We
therefore try to extend this to R3. Several triangle measures

(a) Circumradius (b) Aspect ratio (c) Area (d) Longest edge

Figure 4: Comparing surface minimization criteria self-
contained in a triangle. We chose d) Longest edge.

could be considered for this, including area, circumradius, in-
radius, longest side, perimeter, aspect ratio, etc. We have eval-
uated these measures (see Figure 4) by plugging them into Al-
gorithm 1 presented later in Sub-section 4.3.

Using area or inradius produces many long, thin triangles,
which tend to connect non-neighbor regions of the point set.
The circumradius gives good results in general, but replaces
even small triangles having two near-collinear vertices (since
circumradius tends to infinity) by such long, thin triangles. To
avoid these problems, we minimize the longest edge in a trian-
gle and, as we see later in Section 7, this yields excellent results.
One advantage is that this criterion is already reflected in the un-
derlying triangulation DT , through its property of maximizing
its minimum angle, thus leading to short edges.

Accordingly we define our measurable criterion for an indi-
vidual triangle t as:

λ(t) = max
e∈t
‖e‖ (1)

Now we give the complete definition for the minimum bound-
ary:

Bmin = argmin
B∈B

∑
t∈B

λ(t) (2)

In the above equation, we have chosen to minimize sum of
λ. An alternative is to minimize average λ. However, since
we never actually compute the minimum in our algorithm, but
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(a) u=1 (b) u=2 (c) u=1 (d) u=2

Figure 5: The u-valence is the number of umbrellas at a ver-
tex of the graph or triangulation: a, b) In R2 the inside of the
boundary is shaded yellow. c, d): R3.

only approximate it by ordering triangles by their λ, this is not
relevant for its final result.

4.3. Minimum Boundary Complex (BCmin)

A naive approach of determining Bmin would be to iterate
through all possible B ∈ B and choosing the one that minimizes
Equation (2). Enumerating all 2n combinations of triangles in a
DT with n triangles is NP-hard. Even determining a manifold
with local topological post-processing can become slow or in-
feasible for non-trivially sized point sets, as mentioned in [12].
Therefore, Bmin could only be constructed for trivial point sets.

In order to solve the corresponding problem in R2, the Mini-
mum Boundary Complex BCmin was introduced in [2], where a
vertex is allowed to have ≥ 2 incident edges (instead of exactly
2 as for Bmin in 2D), while also keeping the same minimization
objective. They then show its use for efficient construction of
Bmin or its close approximation.

We note that we can also define an umbrella in R2. It consists
of 2 edges incident to a vertex and then vertices with ≥ 2 inci-
dent edges have ≥ 1 umbrellas (see Figure 5). This permits us
to generalize BCmin in both R2 and R3 as relaxing the number
umbrellas from u = 1 (Bmin) to u ≥ 1.

Thus, we can formally define the Minimum Boundary Com-
plex (BCmin) in R3 as follows:

Definition 1. Let BC ⊆ DT be a connected set of triangles
spanning the point set P such that each vertex v ∈ BC has ≥
1 umbrellas in BC, and let BC be the set of all thus defined
triangle sets. Then, BCmin is defined as

BCmin = argmin
BC∈BC

∑
t∈BC

λ(t). (3)

4.4. Boundary Complex BC0

Unfortunately, as in R2, exact computation of BCmin is also
difficult in R3. Still, its relaxed connectivity constraint enables
us to construct a close approximation using the greedy Algo-
rithm 1 with run-time proportional to DT construction (see Ta-
ble 2). We call the output of this greedy construction algorithm
BC0, since it is not guaranteed to be minimal.

Algorithm 1 constructs BC0 ∈ BC by considering triangles
from DT sorted by ascending λ(ti). A triangle is added to BC0
under any of the following conditions:

(a) BC0 (b) Output surface Bout

Figure 6: Yellow triangles represent the large overlap between:
a) BC0 (artifacts shaded grey). b) Result of our method Bout.

• it is incident to a vertex not in BC0 (to span all points),

• it is incident to a boundary edge in BC0,

• it connects two connected components in BC0.

The algorithm produces a unique result, provided triangles
of equal λ(t) in DT are sorted lexicographically. Further, it is
also guaranteed not to contain any boundary edges, a property
which will prove useful in the topological operations defined
later.

Input: P,DT
Output: BC0
PQ := priority-queue of ti ∈ DT , sorted by λ(ti);
Remove first t0 from PQ;
BC0 := {t0};
while (BC0 is not a connected component) ∨
(∃(v ∈ P) < BC0) ∨ (∃ boundary edge ei ∈ BC0) do

Remove first ti from PQ;
if (ti connects unconnected triangles in BC0) ∨ (ti
connects to a boundary edge ei ∈ BC0) ∨
(∃(v ∈ ti) < BC0) then

Insert ti into BC0;
foreach boundary edge e j ∈ ti do

Insert all {t j|e j ∈ t j, t j ∈ DT, t j < BC0} into PQ;
end

end
end

Algorithm 1: Construction of BC0

Requiring at least two incident triangles per edge and con-
nectedness yields global closure. If we omit the last condition
of connectedness, then we only get local closure. This permits
multiple boundary components, e.g. for distant components.

BC0 is a very good shape approximation because its triangles
overlap largely with those in Bout (see Figure 6). This is due
to the fact that the only difference in definition is the slightly
relaxed topological constraint. This overlap BC0 ∩ Bout can be
identified easily: vertices in BC0 with u = 1 are very likely to
be interpolated by that same umbrella in Bout, since the triangles
in BC0 are selected by the same minimization criterion.

5



5. Making the Approximated Boundary Manifold

Our goal is to transform BC0 into a closed manifold boundary
Bout, while maintaining the same minimization objective.

Intuitively, points sampled on a smooth surface S can be con-
nected well to their neighbors if those have shorter Euclidean
distance than any samples on distant surface parts. The bound-
ary complex captures this well by filtering triangles with short
edges from DT .

The above intuition can be expressed formally by sufficiently
dense sampling with respect to local feature size, which for a
point x ∈ S is the Euclidean distance of x to its closest point
in the medial axis M [30]. The medial axis M for a smooth
surface S is the closure of all points in R3 with ≥ 2 closest
points in S [31].

It is well known that the DT of even arbitrarily dense sam-
pled point sets contain slivers, i.e., flat tetrahedra which are
elongated along the surface, since its four vertices are near-
coplanar (see examples in Figure 7). These slivers cause BC0
to exhibit two types of (offending) artifacts (detailed in the next
sub-section) which should not be present in Bout, the closed
manifold boundary. Our experiments have shown that most
practical models lack sufficiently dense sampling only in small
regions and that overall, the required sampling is not required
to be highly dense, as is demanded by many earlier proposed
methods.

We will show first in this section that under the assumption
of sufficiently dense sampling, the topological properties of BC
(the term which we will use generically, for BC0 and its sub-
sequent alterations) make transformation to a Bout quite simple.
Then in Section 6, we will extend this basic algorithm to handle
regions with extremely sparse sampling.

5.1. Overview
The two types of artifacts (see Figure 7) are:

• Sliver sets: BC contains all four triangles of a sliver tetra-
hedron, as two pairs of triangles, each pair connected with
an obtuse dihedral angle. Since its four vertices in BC are
not manifold, we have to remove one triangle pair. To gen-
eralize, we refer either to a single sliver or to a number of
slivers, if they share triangles in DT , as a sliver set.

• Hull holes: The greedy construction of BC may result in
its triangulation folding back onto itself, skipping triangles
with larger λ(t). This folding back causes holes in the hull
of BC. The hull is the connected set of outer triangles,
more precisely defined later in Section 5.2. Contrary to
what we do for sliver sets in BC, for this type of artifact
we have to add those skipped triangles. Hull holes are al-
ways bounded by (sets of) slivers adjacent to edges where
the triangles fold back. These edges make up the edge-
boundary of the hull-hole. On the other hand, a hole in a
non-zero genus manifold mesh, e.g. a donut, would not
have such an edge-boundary.

We apply the following four steps to fix these artifacts, thus
transforming BC into Bout:

hull-

hole

(a) Hull-hole (b) Covered hull-hole (c) Sculptured

(d) 2D cross-section (e) 2D cross-section (f) 2D cross-section

(g) Sliver set

Figure 7: Artifacts in BC: a) A hull-hole (shaded black),
bounded by four sliver tetrahedra in BC (shaded red), which
in turn are partitioned by an artifact boundary L (black lines)
from the remaining manifold triangulation (shaded yellow). b)
Hole-covering has added the lid (two triangles) in place of the
hull-hole to complete the disk triangulation bounded by L. c)
Sculpturing has removed redundant triangles from the slivers to
transform the artifact and merge it into a manifold boundary. d-
f) 2D cross-sections corresponding to figures in the upper row.
g) Sliver set: Two tetrahedra (shaded red) share the triangle bde.

hull
hole

(a) Artifacts

hull
hole

(b) L0 is genus 0

hull
hole

(c) L1 is genus 1

Figure 8: Hull hole detection: a) Hull-hole (in center) bounded
by slivers (shaded red) and a separate sliver (shaded grey), sep-
arated by edges with ≥ 2 incident triangles (dotted) from the
manifold triangulation (yellow). b) L0 bounds the single sepa-
rate sliver. c) L1 bounds the sliver set containing the hull hole.
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(a) H(BC) with deflated entities (b) Manifold H(BC)

Figure 9: 2D example illustration (representative for 3D) of
edges in DT (solid if also in BC, with its interior shaded yel-
low). H(BC) is determined as the subset of BC reachable from
the convex hull (outside edges) by traversing adjacent triangles
without passing through edges in BC. a) An oriented (cyclic)
traversal of H(BC) encounters some entities in BC (red) twice,
we name those deflated. b) H(BC) with no deflated entities.

• Locate artifact boundaries as oriented edges, so as to con-
tain all non-manifold entities (i.e., those incident to ver-
tices with u > 1) onto a specific side of that artifact bound-
ary. After the subsequent steps of artifact transformation,
only bounded manifold triangulations remain, which can
then be stitched together by those artifact boundaries.

• Detect hull holes in artifacts by checking if there does
not exist a triangulated disk in BC bounded by the edge-
boundary of the artifact and on its inside.

• Cover hull holes by adding triangle sets to BC so as to
convert these artifacts also into sliver sets. Since all edge-
boundaries of artifacts then bound a manifold triangulation
inside, after this step there will exist a Bout ⊆ BC.

• Remove slivers by applying an extension of the sculptur-
ing technique given in [8] to remove all slivers from BC,
resulting in a Bout.

We have observed that for sufficiently dense sampling, hull
holes are rare and both types of artifacts are locally contained
(see Figure 6). Below we discuss significant aspects of each
of the above four steps to make clear all the issues involved in
their implementation.

5.2. Locate Artifact Boundaries in BC

We first need to partition BC into triangle subsets which are
either artifacts or bounded manifold triangulations (see Fig-
ure 8). We require of such a partitioning edge-boundary that
it splits the BC into two disjoint subsets and define a sub-set of
BC which contains all of them, next.

A traversible hull of BC. Artifacts in BC may overlap where
slivers share triangles. But we are able to define an oriented
(cyclic) traversal on a set of triangles T ⊆ DT , which then form
its hull H(T ). H(T ) ⊆ T is the triangle set reachable from the
triangles on the convex hull of P by traversing adjacent tetrahe-
dra in DT without passing through triangles in T (see Figure 9
for a 2D illustration). H(BC) then refers to the hull of BC.

Edge-boundaries must split BC. Any edge-boundary which
partitions BC into two disjoint subsets of triangles must be an

orientable edge-chain and be contained in H(BC). Such an
edge-boundary is also contained in Bout, since it is only through
its edges that the triangle subsets can reach each other.

Determining artifact boundaries. Edges in H(BC) which
bound an artifact must have > 2 incident triangles since BC
by definition has no boundary edges nor can such an edge be
interior to a manifold triangulation. We extract all orientable
edge-chains L which consist of such edges with > 2 incident
triangles (with exactly 2 of those in H(BC) incident at its in-
side), as the artifact boundaries.

5.3. Detect Artifacts with Hull-Holes

Artifacts are polyhedra. For each artifact, the previous step
yields its artifact boundary L and its set of triangles T . Since
edges in L have 2 incident triangles in H(BC) on the inside of
the artifact with respect to L, H(T ) is a polyhedron and L forms
a loop in its hull.

Hull Holes are polyhedra of non-zero genus. If L parti-
tions H(T ) into two subsets such that they only share L, then
H(T ) is of genus zero and H(BC) contains two manifold trian-
gulations bounded by L, namely those two subsets. Otherwise
H(T ) is a polyhedron of non-zero genus, containing hull holes
(see Figure 8).

Determining non-zero genus. We start from an edge in L
and traverse edge-connected triangles in H(T ) once and until
an edge in L is encountered. If any edge in L is traversed twice,
the artifact is of non-zero genus.

5.4. Cover Hull-Holes with Lids

Many lids may exist. Now we have to find a set of triangles
to add to a non-zero genus artifact such that its hull becomes of
genus zero. As an example, a hull hole of genus one resembles
a donut, so we have to find a triangulated disk closing the hole,
which we call a lid. Many oriented edge loops may exist in
H(T ), each bounding one or more lids.

Instead of exhaustively searching the above-mentioned space
for a lid, we will determine a triangle set which is guaranteed to
contain all lids, as shown next. Then we merge it with BC and
leave it to the sculpturing step to extract the boundary triangles.

Determining the triangle set containing all lids. Let V be
the set of all vertices in T , the artifact triangle set. The boundary
complex computed for the point set V , namely BC(V), consists
of triangles with all their vertices in V . It follows that all disks
of triangles in DT , which are bounded by L and whose vertices
are contained in V , are contained in BC(V). Therefore, merging
BC(V) with BC converts the artifact into a sliver set. Doing this
for all artifacts with hull holes will make H(BC) manifold.

5.5. Remove Slivers by Sculpturing

Since the resulting hull H(BC) contains a bounded manifold
triangulation at each side for all artifact boundaries, it is a poly-
hedron and as such a Bout. However, BC, which may still con-
tain slivers and therefore is not a manifold, could contain a poly-
hedron even closer to our minimization objective, so we want
to extract that instead.

7



(a) Interior vertex (b) Exposed vertex (c) Flipped edge

Figure 10: Sculpturing [8] rules. a) Tetrahedron q0 with single
boundary triangle. b) Removal of q0 exposes its interior vertex
p. c) Removal of q1 flips edge e to e′.

Boissonnat [8] originally introduced the sculpturing algo-
rithm to extract a manifold boundary interpolating a point set
from its convex hull as follows:

Sculpturing rules. A tetrahedron q can be removed from
a manifold hull H ⊆ DT by toggling its triangles in H if it
satisfies either of the following (see Figure 10):

• 3 vertices, 3 edges and 1 triangle in H: exposes the vertex
of the tetrahedron which is interior to H (this case does not
occur for the results from our basic algorithm).

• 4 vertices, 5 edges and 2 triangles in H: flips an edge in H
to remove a sliver tetrahedron from H.

Disadvantages of the original sculpturing algorithm.
Since it starts from the convex hull it often runs into local min-
ima, particularly for sparse point sets. It also cannot produce
non-zero genus objects. Since H(BC) has a manifold boundary,
we can apply sculpturing to it. Further, from our experiments
we have found that removing tetrahedra only from outside of
the H(BC) tends to hollow it out. To retain the minimization
objective, we add an “inside equivalent” of the hull boundary to
be sculptured, with the same rules.

Sculpturing from in- and outside. Since P samples S suf-
ficiently densely and BC after the addition of lids only con-
tains slivers and no interior vertices, there exists an inside hull
I(BC) ⊆ BC, similar to its outside hull H(BC). We determine
the set of polyhedra inside H(BC) which do not contain trian-
gles of BC in their interior. I(BC) is then the largest of these
inside polyhedra (all others represent sliver sets). We use the
triangle set H(BC) ∪ I(BC) for sculpturing.

Hulls of BC are a better starting set. H(BC) and I(BC) are
both a much closer approximation to Bout than the convex hull
and also permit boundaries of genus > 0. The example in Fig-
ure 11 compares the results, which also holds for the examples
shown later.

6. Extended Algorithm for Increased Sparsity

We extend our basic algorithm (Figure 12) to handle prob-
lems caused by even more sparse sampling, which is common
in small regions of many point sets in practice. For that, we
need the following definition:

(a) From H(DT ) (b) From H(BC0) ∪ I(BC0)

Figure 11: Sculpturing with λ(t): a) Result by sculpturing di-
rectly from the convex hull boundary - a large hole in the bottom
leads to a hollowing-out of the object. b) Much improved result
by sculpturing from the manifold hull of the boundary complex
using our method.

Figure 12: The steps of our extended algorithm in order, pre-
ceded by sub-section numbers.

We call an entity (vertex, edge or triangle) in H(BC) deflated
if it is encountered more than once during a cyclic traversal of
H(BC) (see Figure 9). Intuitively, this happens when pinching
an inflatable object from two sides such that finger tips (vertex),
hand sides (edge) or flat hands (triangle) meet.

6.1. Orientable Artifacts

The first problem which can occur is that all artifact bound-
aries may not be orientable as is required by our basic algo-
rithm. For the artifacts to be orientable, BC must conform to
the following conditions:

• Each deflated edge must separate its connected triangles
in H(BC) by tetrahedra exterior to H(BC) in exactly two
sides, named inside and outside.

• Each deflated vertex must contain all its incident deflated
edges in a single umbrella in H(BC), which guarantees
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that connected deflated edges form a planar graph, so that
loops of deflated edges in H(BC) are orientable.

• Deflated vertices must be contained in deflated edges,
since our basic algorithm assumes artifact boundaries to
consist only of edges.

Note that there may exist deflated edges which are contained
in hull-hole artifacts and not in its boundary. Therefore deflated
edges do not generally form oriented edge-chains in H(BC) (see
Figure 8c), but those belonging to artifact boundaries can still
be found by simple traversal with back-tracking.

In our experiments, we found only a small number of enti-
ties (vertices and edges) not conforming to these conditions. To
transform those into conforming entities, we inflate selectively
(add tetrahedra), ordered by our minimization criterion. We re-
peat this process until all these entities (and any entities which
have become non-conforming by adding tetrahedra) become
conforming. The latter case happens only rarely, as we have
seen in our experiments, so the operation converges quickly to
yield a conforming BC.

6.2. Inflating

The second problem is that even after adding lids to hull-
holes, deflated entities may remain in H(BC), which is then not
manifold. This is because, with highly sparse sampling, BC0
may connect distant surface parts to each other, the way oppo-
site sides of any not fully inflated air mattress may touch. We
introduce a dual operation to sculpturing, inflating, which trans-
forms BC such that H(BC) becomes a closed manifold surface.
For this we add tetrahedra to it which are in DT and outside
of H(BC), as illustrated in R2 in Figure 2. The algorithm for
inflating is given below:

Inflating Algorithm. Let Vo denote the set of deflated ver-
tices in the hull H(BC). A tetrahedron q ∈ DT exterior to
H(BC) is a candidate for adding if it contains ≥ 1 vertices in
Vo and ≥ 1 triangles in H(BC).

Input: BC, Vo

Output: BC′ (has manifold hull)
PQ := priority-queue of candidates q, sorted by

∑
λ(t)

where t ∈ {t‖∃q, t ∈ q ∧ t ∈ H(BC)};
while PQ , {} do

Remove first tetrahedron qi from PQ;
BC:=BC ∪ qi;
foreach q j ∈ DT exterior to H(BC) sharing a vertex
with qi do

Determine if q j is a candidate and update PQ with
it;

end
end
BC′ := BC;

Algorithm 2: Inflating

6.3. Mitigation of Getting Trapped in Local Minima

The third problem is that for very sparse sampling, even in-
out sculpturing can get trapped in a local minimum. This hap-
pens when tetrahedra get removed for which their triangle with
smallest circumradius is located in the hull. To mitigate this,
we add a rule which prohibits removal of such tetrahedra. As a
consequence, BC may retain some sliver sets after sculpturing.
But we are still able to extract a manifold from these extreme
cases, which also interpolates all points, except possibly some
points in regions with very high sparsity.

7. Results

Name Vert DT Total Dey’s Shrink int curv
Torus 0.2k 0.02s 0.7s 0.04s 0.05s 0 1%
Bunny 0.5k 0.02s 0.14s 0.08s 0.02s 0 1%
Knot 1k 0.06s 0.27s 0.14s 0.04s 0 0%
Triceratops 3k 0.14s 1.07s 0.74s 0.21s 0 2%
Bowl 3k 0.17s 2.67s 0.62s 0.13s 3 3%
Mechpart 4k 0.18s 1.35s 1.1s 0.18s 0 4%
Mannequin 13k 0.45s 3.75s 3.36s 0.47s 0 3%
Pegasus 14k 1.71s 9.25s 6.08s 0.74s 564 3%
Dragon 54k 3.58s 19.29s 22.36s 3.44s 14 4%
Dinosaur 65k 3.88s 17.56s 22.64s 3.7s 0 4%
Armadillo 172k 10.45s 60.86s 71.2s 9.41s 0 5%

Table 1: Runtime for our entire surface reconstruction algo-
rithm (non-optimized implementation), with proportion of De-
launay triangulation construction, and compared to TightCo-
cone, on a single 2.67Ghz 64bit AMD CPU. Actual complexity
for our method seems to decrease with model size compared to
TightCocone but is not as fast as Shrink. The number of interior
(non-interpolated) vertices in B are also given, to see whether
a point set is in class Cu (int=0). TightCocone fails to interpo-
late far more points than our algorithm does. Post-processing
reduces absolute mean curvature by curv.

Name DT BC0 Inflate Hole Sculpt
Mannequin 12% 15% 38% 19% 15%
Pegasus 19% 6% 27% 16% 30%
Dragon 19% 15% 34% 19% 13%
Dinosaur 22% 13% 35% 17% 10%
Armadillo 17% 16% 33% 19% 12%

Table 2: Proportional timings for the steps of our algorithm, for
the larger models, in order: Delaunay triangulation construc-
tion, boundary complex, inflating, segmentation, hole-covering
and sculpturing.

Our algorithm is implemented in C++, using the CGAL li-
brary [32] for the construction of the Delaunay triangulation
and a Disjoint set library [33]. Source code is provided [34].

Improved quality. In Figure 13 we show examples with
some very sharp corners, like in the right-most sub-figure. In
Figure 14, taking a few more examples of somewhat more chal-
lenging point sets (since more sparse), we compare our method
with an approximating method, Poisson [35], and the follow-
ing interpolating methods: Wrap [21], which has no water-tight
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(a) Mannequin, 13k (b) Armadillo, 172k (c) Dinosaur, 65k (d) Mechpart, 4k (e) Torus, 0.2k (f) Basic

Figure 13: a-e): Example results of our reconstruction methods along with point set sizes. f): It should be noted that the three point
sets, regular tetrahedron, cube and polyhedron with 16 faces cannot be reconstructed by TightCocone.

guarantee, and TightCocone [18] and Shrink [15] which do have
that. We use default parameters for all methods.

From the above figures it is clear that Poisson as a fitting
method can not deal well with sharp corners. Wrap algorithm
manages to interpolate most of the points, but is only able to
generate flat, bounded triangulations for the sparsely sampled
regions, which may also result in holes. In such sparsely sam-
pled regions, TightCocone and Shrink disconnect components,
create undesired connections and TightCocone fails to interpo-
late many points. Our method is more robust, resulting in fewer
undesired connections (e.g. Bowl between bottom and stem in
Figure 14) or holes in thin structures (e.g. the Pegasus’ wings
in Figure 14), where sampling is extremely sparse.

Competitive runtime. We show in Table 1 that our algo-
rithm (non-optimized implementation) has nevertheless com-
petitive run-time compared with TightCocone [18], even if
slower than Shrink and that it is proportional to that of the De-
launay triangulation construction. Details of the time taken for
the steps of our method are listed in Table 2. Since these only
need to operate on subsets of the entire Delaunay triangulation,
we expect the run-time of an optimized implementation to be
smaller than its construction.

8. Discussion of Our Method

Guarantees for the output surface Bout:

• All points are guaranteed to be interpolated on or interior
to Bout, unlike TightCocone, since BC0 spans P and points
are never disconnected outside Bout. The majority of points
in the input point set are interpolated entirely (see Table 1).

• Bout is guaranteed to be a single connected component,
due to the component-connectedness condition of Algo-
rithm 1. If desired otherwise, this condition can simply be
dropped, then permitting multiply connected boundaries.

• Bout is always manifold and water-tight, as a result of the
hole-filling and inflating steps.

(a) Original (b) 0.1% per-
turbed

(c) 0.3% per-
turbed

(d) 1%
perturbed

(e) -14% (f) -19% (g) -38% (h) -70%

Figure 16: Row 1 demonstrates robustness to noise (and local
non-uniformity) of our method by perturbing the coordinates of
the points with uniform noise (percentage relative to z-extent of
point set). c) the noise level exceeds point distances in the fine
features such as the eyes. Row 2 reconstructs the surface with
RobustCocone [36]: Note that its smoothing, while approxi-
mating differential quantities like normals or curvature better,
results in dropping many points (percentages given below the
figures). Thus it removes not only outliers but also features, as
can be seen already in the original point set (mouth, eyes, ear).

10



no result

Figure 14: Comparing original point sets (row 1), Poisson (row 2), Wrap (row 3), TightCocone (row 4), Shrink (row 5) with our
method (row 6), for varied point sets with extremely non-dense or non-uniform subsets; note the poor results of the other methods
for thin structures. The results of TightCocone and our method are water-tight, whereas the results of Poisson and Wrap are not.

11



(a) Stanford Bunny (b) 23% sub-sampled (c) 5% sub-sampled (d) 1% sub-sampled (e) 0.3% sub-sampled (f) 0.1% sub-sampled

Figure 15: Robustness to non-dense point sets is demonstrated by the Stanford bunny keeping its shape well, when down-sampling
from the original 36k to just 33 points.

(a) Failure case (b) 2D cross-section (c) Inflating failure

Figure 17: a) The hull hole boundary (around non-scanned bot-
tom) is twisted such that there does not exist a single disk in DT
covering it. Inflating to obtain a water-tight boundary would
then add those undesired triangles. b) 2D cross-section show-
ing the split disk (dotted lines). c) Same with inflated result.

• Based on a proof for 2D in [2], which we believe is exten-
sible into R3, we conjecture that sufficiently dense sam-
pling required for our basic algorithm is ε < 0.5, sig-
nificantly higher than the best currently known result of
ε < 0.1 in [3].

Limitations:

• Twisted holes: Our method cannot cover a hull hole, for
which no lid entirely made up by vertices of the slivers
inside its artifact boundary exists, e.g. if a distant part
of the surface penetrates the hole (a possible case for ex-
tremely sparse sampling). As a consequence, the inflating
step will fall into a local minimum. However, we believe
that labeling triangles in BC outside the artifact boundary
as in- or outside would permit similar hole filling as de-
scribed in [18]. In practice, we have observed this only
in scans which completely omitted the bottoms, as seen in
Figure 17.

Advantages:

• Robustness to down-sampling: That shapes for non-dense
point sets are robustly constructed by our method is well
illustrated in Figure 15. All of the other above-mentioned
methods fare poorly for this extremely sparse point set
(Stanford bunny down-sampled, up to a factor of 1000).

• Tolerance to noise: The tolerance of our method for con-
struction from noisy point sets is demonstrated in Fig-
ure 16, for point coordinates perturbed with random uni-
form noise of up to 10 times the feature size (average point
distance). It retains the fine features and interpolates most
points, while RobustCocone [36] smooths over those fea-
tures uniformly, dropping many points.

• Close to minimum absolute mean curvature: We found
that a post-processing step, which flips edges to locally
minimize absolute mean curvature, will only change it by
very little (see Table 1), showing that λ(t) correlates well
with it.

• Easy shape visualization: The boundary complex BC0 is
non-manifold, but closely approximates the final shape.
This enables us to display the shape boundary for visu-
alization purposes by just rendering the result of the sim-
ple Algorithm 1. As the starting set for the reconstruction
method, it also handles sparse and noisy point sets very
well.

• Dense sampling should yield Bout = Bmin: We conjecture
that for sufficiently dense sampling such that no edges in
BC0 intersect the medial axis of the smooth surface S , the
basic algorithm produces Bmin. Because Bmin minimizes
λ(t), any triangles removed by edge-flipping would have
larger λ(t), since they connect to further neighbors.

9. Conclusion and Future Work

The strength of our method is its ability to extract water-
tight surfaces from much sparser sampling than earlier meth-
ods. This is made possible by (i) our imposition of the closure
property, which as we know is true for physical objects, i.e.
its (triangulated) surface has no boundaries, and (ii) our for-
mulation of the minimum boundary complex, which provides
us with a really good initial shape approximation, based on the
longest-edge-in-triangle criterion.

We felt it was more important to show that the proposed mini-
mization solution adequately fulfills the reconstruction goal and
further that this minimum is approximated well. Fortunately,
our results also show that this combinatorial search space is still
quite manageable where sampling quality is such that humans
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can still recognize the shape boundary well. Proving a better
sampling condition would, as in previous methods, be of more
theoretical interest.

The fundamental contributions in our work permit to expand
it in various directions, of which we list a few:

Surfaces with boundaries. By specifying a parameter for
a local non-uniformity threshold, hull hole artifacts could be
marked and their surface boundary extracted through sculptur-
ing rather than covering it.

Optimal topological mesh repair. Self-inter-secting trian-
gles can be removed as not in DT and completing the BC0
removes boundary edges not belonging to a mesh boundary.
Continuing our method then would generically remove all topo-
logical artifacts, without requiring to handle specific cases and
would produce a water-tight triangulation, minimizing our ob-
jective.

Neighborhood computation. The edges in BC0 incident to a
vertex represent well its nearest neighbors since the artifacts do
not affect edge connectivity. Contrary to k-nearest neighbors, it
does not require a global parameter and may yield more faithful
normals.

Real-time visualization. Although DT -based methods are
relatively slow, ours could be employed for visualizing point
clouds as meshing-on-demand in the view frustum, by doing de-
terministic local umbrella matching for densely sampled points
in parallel.

Resampling. If we resample a given surface sufficiently
dense to conform to our basic algorithm, not only this may re-
duce the number of points required to represent it, but allows
to drop the connectivity entirely. This has applications in com-
pression or shape retrieval. Since the resampling operator is
local, it can also be adapted to out-of-core construction.
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