Login | Register

Matrix-Based Ramanujan-Sums Transforms

Title:

Matrix-Based Ramanujan-Sums Transforms

Chen, Guangyi, Krishnan, Sridhar and Bui, Tien D. (2013) Matrix-Based Ramanujan-Sums Transforms. IEEE Signal Processing Letters, 20 (10). pp. 941-944. ISSN 1070-9908

[img]
Preview
Text (application/pdf)
bui2013.pdf - Accepted Version
314kB

Official URL: http://dx.doi.org/10.1109/LSP.2013.2273973

Abstract

In this letter, we study the Ramanujan Sums (RS) transform by means of matrix multiplication. The RS are orthogonal in nature and therefore offer excellent energy conservation capability. The 1-D and 2-D forward RS transforms are easy to calculate, but their inverse transforms are not defined in the literature for non-even function $ ({rm mod}~ {rm M}) $. We solved this problem by using matrix multiplication in this letter.

Divisions:Concordia University > Gina Cody School of Engineering and Computer Science > Computer Science and Software Engineering
Item Type:Article
Refereed:Yes
Authors:Chen, Guangyi and Krishnan, Sridhar and Bui, Tien D.
Journal or Publication:IEEE Signal Processing Letters
Date:2013
Digital Object Identifier (DOI):10.1109/LSP.2013.2273973
Keywords:Fourier transform (FT) Gaussian white noise Ramanujan Sums (RS)
ID Code:977893
Deposited By: DANIELLE DENNIE
Deposited On:01 Oct 2013 19:39
Last Modified:18 Jan 2018 17:45

References:

1. S. Ramanujan "On certain trigonometric sums and their applications", Trans. Cambridge Philos. Soc., vol. 22, pp.259 -276 1918

2. L. Sugavaneswaran , S. Xie , K. Umapathy and S. Krishnan "Time-frequency analysis via Ramanujan sums", IEEE Signal Process. Lett., vol. 19, no. 6, pp.352 -355 2012

3. M. Planat "Ramanujan sums for signal processing of low frequency noise", Phys. Rev. E., vol. 66, 2002

4. S. Samadi , M. O. Ahmad and M. N. S. Swamy "Ramanujan sums and discrete Fourier transform", IEEE Signal Process. Lett., vol. 12, no. 4, pp.293 -296 2005

5. L. T. Mainardi , L. Pattini and S. Cerutti "Application of the Ramanujan Fourier transform for the analysis of secondary structure content in amino acid sequences", Meth. Inf. Med., vol. 46, no. 2, pp.126 -129 2007

6. L. T. Mainardi , M. Bertinelli and R. Sassi "Analysis of T-wave alternans using the Ramanujan Sums", Comput. Cardiol., vol. 35, pp.605 -608 2008

7. G. Y. Chen , S. Krishnan and T. D. Bui "Ramanujan sums for image pattern analysis", Int. J. Wavelets, Multires. Inf. Process.,

8. G. Y. Chen , S. Krishnan , W. Liu and W. F. Xie "Ramanujan sums for sparse signal analysis", Proc. Ninth Int. Conf. Intelligent Computing (ICIC), 2013

9. G. Y. Chen , S. Krishnan and W. F. Xie "Ramanujan Sums-wavelet transform for signal analysis", Proc. Int. Conf. on Wavelet Anal. and Pattern Recognition (ICWAPR), 2013

10. P. Haukkanen "Discrete Ramanujan-Fourier transform of even functions $ ({\rm mod}~{\rm r}) $", Indian J. Math. Math. Sci., vol. 3, no. 1, pp.75 -80 2007

11. T. M. Apostol "Arithmetical properties of generalized Ramanujan sums", Pacific J. of Mathematics, vol. 41, no. 2, 1972

12. I. Korkee and P. Haukkanen "On a general form of meet matrices associated with incidence functions", Linear and Multilinear Algebra, vol. 53, no. 5, pp.309 -321 2005

13. P. J. McCarthy "A generalization of Smith\'s determinant", Canad. Math. Bull., vol. 29, no. 1, pp.109 -113 1986
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Back to top Back to top