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Abstract 
In this paper, we study the Ramanujan Sums (RS) transform by 
means of matrix multiplication. The RS are orthogonal in nature 
and therefore offer excellent energy conservation capability. The 
1D and 2D forward RS transforms are easy to calculate, but their 
inverse transforms are not defined in the literature for non-even 
function (mod M). We solved this problem by using matrix 
multiplication in this paper. 
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1. Introduction 

The Ramanujan Sums (RS) were proposed by S. Ramanujan 

in 1918 [1], and were applied to time-frequency analysis, 

signal processing, moment invariants, and shape recognition 

recently ([2]-[9]). The RS are orthogonal in nature and 

therefore offer excellent energy conservation, similar to the 

Fourier transform (FT). The RS are operated on integers and 

hence can obtain a reduced quantization error 

implementation. Even though the RS transform has so many 

important properties, it does not have the inverse RS 

transform for non-even function (mod M) signals.  

      In this paper, we analyse the RS transform by means of 
matrix multiplication, which can invert the RS transform 

easily. We derive both the forward and inverse RS 

transforms for 1D signals and 2D images. A few examples 

are also tested and our method can recover the 1D signals 

and 2D images perfectly without any errors. 

      The organization of this paper is as follows. Section 2 

presents a short review of the RS transform and proposes the 

matrix-based RS transforms for 1D signals and 2D images. 

The inverse RS transforms can recover the signals and 

images perfectly without any errors. Finally, Section 3 

concludes the paper and proposes future research directions 
about the RS transform. 

 

2. Matrix-based RS Transform 

The RS transform has been used as means of representing 

arithmetical functions by an infinite series expansion. The 

basis of this transform is the building block of number-

theoretic functions. The RS are sums of the nth powers of qth 

primitive roots of unity, defined as 
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where gcd(p,q) =1 means that the greatest common divisor 

(GCD) is unity, i.e., p and q are co-prime. An alternate 

computation of RS can be given as 
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qq  . The Möbius function (n) is equal to 0 

if n contains a square number; 1 if n=1; and (-1)k if n is a 

product of k distinct prime numbers. We tabulate )(ncq
with 

q[1,15] in Table 1 in this paper. 
     The RS have the following multiplicative property: 

)()()( '' ncncnc qqqq   if gcd(q,q’)=1.               (3) 

and the orthogonal property: 
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We can also derive )(ncq
by using Euler’s formula 

xixe ix sincos   and basic trigonometric identities.  
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The 1D forward RS transform of a signal x(m) is defined as 
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where M is the number of samples in the signal. However, 

there does not exist the inverse RS transform for the input 
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signal in the literature. Haukkanen [10] claimed that every 

MEx can be written uniquely as  
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where 
ME is the set of all even functions (mod M). A signal 

x is called even signal (mod M) if )),(gcd()( Mnxnx MM   

for any n. It is easy to show that every even function (mod 

M) is a periodic function, but the converse does not hold. 

This means that for an ordinary input signal, its forward 1D 

RS transform exists, but the inverse transform cannot be 

calculated by using the above formula (6).  
       In this paper, we represent the 1D and 2D forward and 

inverse RS transforms by means of matrix multiplication. Let 

us define the matrix    
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where ],1[, Mjq   and mod() means the modular 

operation. The input signal can be represented as 
TMxxxX ))(),...,2(),1(( , where the T means the 

transpose of the vector.  

      The forward 1D RS transform of a signal X can be 

realized as  

AXY  ,                                   (8) 

 where TMyyyY ))(),...,2(),1(( .  

      The inverse 1D RS transform can be obtained as  

YAX 1 ,                                 (9) 

where 1A means the inverse of matrix A. It has been proved 

in [11] that the determinant of the MM matrix C, whose q, j 

entry is the Ramanujan sum )( jcq
, is !)](det[ Mjcq  . 

Therefore,  
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This means that the Matrix A(q,j) in always non-singular. 

Further reading about the determinant of C can be found in 

[12] and [13]. In order to be stable numerically, we can use 

QR decomposition to decompose matrix A, i.e., A=QR. 

Therefore, 

YQRX T1 .                            (11) 

      We calculate the 1D forward and inverse RS transforms 

of three 1D signals that are used extensively in signal 

denoising literature. Fig. 1 shows the three input signals in 

the first row, their forward RS coefficients in the second row, 

their inverse RS transform signals in the third row, and the 

difference between the original signals and their 
reconstructed signals by using the method proposed in this 

paper in the last row. It can be seen that the error introduced 

in the transforms is nearly zero.  

      For 2D images, we can perform the forward RS 

transform as 
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This can be written in the matrix form 
TAXAY                                 (13) 

where A is defined as in equation (7) and )),(( nmxX   for 

],1[ Mm  and ],1[ Nn .   

      The inverse 2D RS transform can be given as 
TAYAX )( 11                          (14) 

As before, let A=QR. Then, 
TT RYQQRX )( 11  .                   (15) 

      We tested the Lena and Boat images of size 512512 
pixels for our 2D RS transform. Figs. 2 and 3 show the 

original Lena/Boat image, its RS coefficients, and the 

reconstructed image. For visual quality purpose, we only 

display a 5050 region of the RS coefficients. It can be seen 
that the 2D RS transform compresses the energy of the image 

into a small number of RS coefficients. Our inverse 2D RS 

transform can recover the input image perfectly without 

errors. 

      The computational complexity of our matrix-based RS 

transforms is as follows. For 1D signal, both the forward and 

backward 1D RS transforms need )( 2MO flops of 

operations, where M is the signal length. For 2D images, the 

forward 2D RS transform needs )( 22 MNNMO   flops of 

operations. The inverse 2D RS transform also requires 

)( 22 MNNMO   flops of operations. 

 

3. Conclusions  

In this paper, we have studied the 1D and 2D forward and 

inverse RS transforms by means of matrix multiplication. 

Our method can find the 1D and 2D inverse RS transforms 

for any kinds of signals and images. Currently, there is no 

existing inverse RS transform in the literature for non-even 

functions (mod M). This paper fills in this gap by using the 

matrix notation. 

       Future research directions about the RS transform are 

given below. We would like to apply the 1D and 2D RS 

transforms to signal, image, or video compression. This is 
because the RS transform has very good property to 

compress the energy of the input signals, images, or videos 

into a few number of RS coefficients. We would also extend 

the RS transform to 3D data cube. This may have important 

applications in hyperspectral imagery analysis.      
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Table 1. The RS basis )(ncq
for q[1,15]. 

q                

1 1               

2 -1 1              

3 -1 -1 2             

4 0 -2 0 2            

5 -1 -1 -1 -1 4           

6 1 -1 -2 -1 1 2          

7 −1 −1 −1 −1 −1 −1 6         

8 0 0 0 −4 0 0 0 4        

9 0 0 −3 0 0 −3 0 0 6       

10 1 −1 1 −1 −4 −1 1 −1 1 4      

11 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 10     

12 0 2 0 −2 0 −4 0 −2 0 2 0 4    

13 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 12   

14 1 −1 1 −1 1 −1 −6 −1 1 −1 1 −1 1 6  

15 1 1 −2 1 −4 −2 1 1 −2 −4 1 −2 1 1 8 
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      Figure 1. The forward and inverse RS transforms for three signals. It can be seen that the errors introduced is nearly zeros.  

 

 
      Figure 2. The forward and inverse 2D RS transforms for the Lena image.  

 

 
      Figure 3. The forward and inverse 2D RS transforms for the Boat image.  

 


