Towards a Formal Reactive Autonomic
Systems Framework using Category Theory

Heng Kuang

A Thesis
in
The Department
of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy (Computer Science)
at
Concordia University
Montreal, Quebec, Canada

August, 2013

© Heng Kuang, 2013

CONCORDIA UNIVERSITY

SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By: Heng Kuang
Entitled: Towards a Formal Reactive Autonomic Systems Framework using
Category Theory

and submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY (Computer Science)

complies with the regulations of the University and meets the accepted standards with respect to
originality and quality.

Signed by the final examining committee:

Chair

Dr. M. Nokken

External Examiner

Dr. P. Panangaden

External to Program
Dr. A. Hamou-Lhadj

Examiner

Dr. V. Haarslev

Examiner

Dr. J. Paquet

Thesis Co-Supervisor

Dr. O. Ormandjieva

Thesis Co-Supervisor

Dr. J. Bentahar

Approved by
Dr. V. Haarslev, Graduate Program Director

August 12,2013

Dr. C. Trueman, Interim Dean
Faculty of Engineering & Computer Science

Abstract
Towards a Formal Reactive Autonomic Systems Framework using
Category Theory

Heng Kuang, Ph.D.

Concordia University, 2013

Software complexity crisis is the main obstacle to further progress in IT industry, as
the difficulty of managing complex and massive computing systems goes well beyond IT
administrators’ capabilities. One of the remaining options is autonomic computing, which
helps to address complexity by using technology to manage technology in terms of hiding
and removing low level complexities from end users.

Real-time reactive systems are some of the most complex systems that have become
increasingly heterogeneous and intelligent. Thus, we want to add autonomic features to
real-time reactive systems by building a formal framework, Reactive Autonomic Systems
Framework (RASF), which can leverage specification, modeling and development of
Reactive Autonomic Systems (RAS). With autonomic behavior, the real-time reactive
systems are more self-managed to themselves and more adaptive to their environment.

Formal methods are proven approaches to ensure the correct operation of complex
interacting systems. However, many current formal approaches do not have appropriate
mechanisms to specify RAS and have not addressed well on verifying self-management

behavior, which is one of the most important features of the RAS. The management of

evolving specifications and analysis of changes require a specification structure, which
can isolate those changes in a small number of components and analyze the impacts of a
change on interconnected components. Category theory has been proposed as a
framework to offer that structure; it has a rich body of theory to reason about objects and
their relations. Furthermore, category theory adopts a correct by construction approach
by which components can be specified, proved and composed in the way of preserving
their properties.

In the multi-agent community, agent-based approach is considered as a natural way to
model and implement autonomic systems, as the ability of an autonomous agent can be
easily mapped to the self-management behaviors in autonomic systems. Thus, many ideas
from the Multi-Agent Systems (MAS) community can be adapted to implement the
autonomic systems, such as the self-management behavior, automatic group formation,
interfacing and evolution.

Therefore, in terms of achieving our research goal, we need to 1) build an architecture
and corresponding communication mechanism for modeling both reactive and autonomic
behavior of the RAS, ii) formally specify the architecture, communication and behavior
above using category theory, ii1) design and implement the architecture, communication
as well as behavior of the RAS model by the MAS approach with its implementation and

iv) illustrate our RASF methodology and approach with case studies.

v

To my grandfather.

Acknowledgments

Firstly, I would like to express profound thanks to my esteemed supervisors, Dr. Olga
Ormandjieva and Dr. Jamal Bentahar, for their insight as well as thoughtful guidance,
help and constant encouragement through the stage of my thesis work and graduate study.
Their good technical and financial support motivates me to work hard and produce a high
quality result. This thesis would not have been possible without their support and help.
Secondly, I would like to express the deepest gratitude and respect to Dr. Stan Klasa,
who gave me a lot of valuable advice and insight on category theory. I am also heartily
thankful to all other members of our research group, who are Nassir Shafiei-Dizaji, Jinzi
Huang and Noorulain Khurshid, for their devoted and hard work on our research project.
Thirdly, a warm thank you goes to all my examiners for their precious time to review
my research proposal, doctoral seminar, thesis work and gave me a lot of helpful advice.
A special thank goes to Dr. Joey Paquet and his student Emil Vassev for their suggestions
on earlier stage of this research. Another special thank goes to Dr. Volker Haarslev as
well as his student Araash Shaban-Nejad for the inspiration of using category theory. Dr.
Abdelwahab Hamou-Lhadj, thank you for your valuable suggestions at my seminar.
Fourthly, I would like to thank Concordia University and Faculty of Engineering &
Computer Science for offering me the precious opportunity as well as excellent academic
environment to achieve my graduate studies and this thesis work.
Finally, I really appreciate my family members for their never ending understanding,

encouragement and support. I could not have made it here without them.

vi

Table of Content

LISt OF FIGUIES ...eieiiie ettt ettt e e e e e e e staeeeaa e e ssbaeeesnseeensaeeenneeas Xvi
LSt Of ADDIEVIALIONS.ceiutiiiieiie ittt st e XXX11
Chapter 1: INtrodUCTIONveeiiiieciie ettt e e e e e re e s e e sbeeesaeessnaeeennns 1
1.1 ReSEATCHh MOLIVALION.coueiiiiiiitiiiieiietete ettt ettt ettt et s ebeens 1

1.2 ReSEATCh ProDIEIMScueiiiiiiiiiiiiiciee ettt 2

1.3 Research Goal and ODJECtIVES........eecvieiieiiiiieieeie ettt ettt te e e e e e sieebeebeeseenee 5

1.4 ReSEarCh APPIOACH.oiiuiiieiieiieiieeee ettt ettt ebe e e aeens 7

1.5 Organization Of the THESIS......cveciiiiieiiiiiirieee ettt beebeebeeseenees 9
Chapter 2: Autonomic Systems and Multi-Agent SyStems.........ccceeveveeerieeeiieeesireeeneeenne 11
2.1 Definition of AULONOMIC SYSTEIMSveevirieiieiiertieniietieete e ereseeseresteesteessaeeaesenessnessnens 12

2.2 Characteristics Of AUtONOMIC SYSTEMSccvevvirerereiertieriieriieeteeie e sresteeseesteensaeenseseneees 14
22,1 Self-ConfiGUIationcccccueeierierierierieeie et eee sttt esbe e tesreesseeseeesteenseenseenseennes 15

2.2.2 SElf-HEAINGccueieiieeiieciieeteeeee ettt sttt ettt e eaeeeaeens 15

2.2.3 Self-OptimiZatiOn......c.cccverierrierieriierieeeieeieeteste st e st esteesteesaessaesseesseesseenseenseenseenses 15

2.2.4 SElf-PIOTECHION ...ouvitiiieiiieiiiiesieeieeit ettt sttt ettt sttt st ne 15

2.3 Architecture of AUtONOMIC SYSIEMS......eecviriiriieieeierieesieeteete et ereeeeeeesaeseeeaeeseeneeas 16
2.3.1 Manageability ENdPOint..........ccccvevuieiiiiiiiiiiiiieiieeeeeie et 17

2.3.2 AUtONOMIC MANAGETccueeiieiieiieieeieeieeritesteesteeteeaeeaeebeeaessseenseenseenseenseenseensennns 17

2.3.3 KNOWICAZE SOUICEeiiuieieieiieciieiteieeie ettt ettt s s sae et e beeaeenbeenes 18

vii

24

2.5

2.6

2.3.4 Manual ManQ@erc.eccveeieriieniieniieiie e eteetestte st e et eaeebaesseessaesseesaeenseeseenseensaennes 19

Development of AULONOMIC SYSTEIMS ...eeuvirrieieeierierieneeerteesteereeresreeaeseaessneeseeseesens 19
2.4.1 Policy DeterMinationc.cecueeeueeierienieesiiesitenieesieesieesieeaeeaeesseesseesseesseenseensesnsesnns 19
2.4.2 Solution KNOWIEAZE........ccoveruieriiriiiiieiieee ettt 20
243 Common System AdmMIniStrationcceeverierieneereeeiesiesiesieeseesieesieeeeeseeseeeeas 21
2.4.4 Problem Determinationc.cceeeierieriererienineeieienie ettt st 21
2.4.5 AutonomiC MONITOTINGcc.eerueeruieriieieeieeieesitenteesteeteenseeaeetesaeesseesseenseesseensesnseenns 21
2.4.6 COMPIEX ANALYSIS .eevuveieieeiieeiieeiieciieiee ettt ettt te e e e aesseesaeesteesteebeenbeenseeens 22
2.4.7 Transaction MEASUICIMENLcceeteruirierierieiesieetente st eieeatente st sbe e st sbesieeaeeneesbesnes 22

MUIE-AGENE SYSTEIMIS.....ieuiiieieeiieeiieeiieetesiit et et e te et et eeaesttestbeebeenseenseessesssesssesssessseensens 23
2.5.1 AUtONOMOUS AZENEeiiuiiiiiiiiiiiitie ettt ettt ettt et e e rtt e e st e e bt e e bt e e sbeeesaseesaeeenane 23
2.5.2 Definition of Multi-Agent SYSteIMS.........cccuevvierierierieiie et 24
2.53 ANt INTETACTIONS .eevuveeeieeeieeiieciiesiteiee et ete et e st et ete e e e esaessaesseesseesseeseenseenseennns 26
2.5.4 Agent Communication Languages.........cccceevverierieniienieeieeieseeseesieeie e 27
2.5.5 AGENTATCHILECIUICeevieeiieeiieciieeiteie ettt ettt et e srae st esaeesteebeebeenseenes 28
2.5.6 Agent Oriented Programming...........ccoeceerierienieniveeienieneeseesieesieesieeseeseeseeesseenes 31
2.5.7 Formal Methods for Multi-Agent SYSEMSccceerieerieerieerieeiienieneeneesie e enne 34

Related WOTKcouiiiiiiiiiie e st 35
2.6.1 Self-Management PrOPETties.........cvevuieriieriieiieeieerierieesie et esieeie e eaeesreesseeseeesaeenes 35
2.6.2 Autonomic Systems MOdeliNg..........cceeceeriirieniieiiieieeie ettt 38
2.6.3 Real-Time Reactive SYSIEMSc.eccuiervieiiieiieieeieeciteritesie et eieeseeie e seeeseesseesaeenee 44

2.6.4 MUIti-AZENE SYSLEIMS ..eeuvieurieiiieiieieeieeieesitesttesteeteeteebeebeeteesseenseenseenseenseensesnsesnes 45

2.6.5 Formal Methodscoceeiiiiniiiiiiiiiiiceee et e 48

2.7 SUMIMATY ettt ettt e b ettt e ettt e sttt e e at e e sabeesabeeeabeeeabeeeeabeesabeesabeeebeeenees 52
Chapter 3: Background: Category TheOoTYcceviiieiiieiiieciie et 54
3.1 Definition of Cate@OTY [6]eecveeierieeieeiesieriie et ete e eeeeteestee st estbesaeeeressaessnesseesseenseens 55

32 Constructions 0N CateZOTY [6]...cveeuerierierienieeieeiie e etesee st e e esteebeereseeseeesseesseeneeenee 56

33 Abstract Structures in CateZOTY [0] ...cecveevieriieiiieieeierieerieeiteere et eee e eeeseeeeeeseeseenseas 58

34 Duality in Cate@OTY [6]...eveeieeieeieeieeierieecteete ettt ettt et e s bt ebeebeebesnseessesssesssesseen 59

3.5 Limits and COIMItS [6]couvieeuiiiiiiiiiiiiciie ettt ettt eete ettt etve e et e e e eeveeeeveeebeeeteeersee s 60

3.6 Functors and Naturality [6]ccoeeveeeieeienieiienie ettt sve e seaessaeseaeseeeseeens 64

3.7 Related WOTKcoiiiiiiiiiiee et et 65

3.8 SUMIMATY ettt ettt rb ettt et e e sat e e s ab e e sabeesabeeeabeeeabeeeeabeesabeeebeeebeeenees 68
Chapter 4: Background: Case StUIS.........cecuieerireeiiiecieie et eeiee e e eiee e eveeesvee e 69
4.1 IMATS-WOTTA ...ttt ettt ettt sb e ebe bt e ebes 69

4.2 Prospecting ASteroid MISSION........cccuevieiierierieniieeie e ete et ettestee st esieeeaeseaessaesenessneseeens 71

43 End-to-End 1FiX TOOL....cc.eiiiiiiiiiiiiieeieeteesesese ettt s 74

4.4 Related WOTKooiiiiiiiiiiee ettt et 76

4.5 SUMIMATY ettt ettt e rb e a e a e e e ettt e s ab e e sabeesabeeeabeeeabeeeeabeesabeeebeeenbeeeneee 77
Chapter 5: Methodology of RASF ..o 78
5.1 RAS Model in RASF ...ttt 78
ST RAO ettt ettt sttt ae s 79

ix

5.1.3 0 RACG ettt ettt ettt b e e nes 81

S L4 R A S ettt b ettt a bbbt aens 82

52 Autonomic Behavior in RASEcooiiiiiiiiiiceee e 82
5201 MIONIEOT .ttt ettt ettt s b e bbb sb e ebe e bt ebe bt enbenbeebes 83
I N 1 F:1)/ <P 83
5.2.3 Pl ettt ettt a e aens 85
5204 EXECULE...eouiiiiiiiiiiiiteitt ettt ettt ettt ettt st st ettt et 85
5.2.5 Exception Handling..........c.ccceeeuiriiiriiniieniieeeieeieeie ettt e 86

53 Mapping RAS Model to0 MAS Modelccoeiiriiiiiiiiiie et e 87
54 Model Transformation from RAS to MAS Implementation............ccceceevveecuenvensueenneennen. 91
54.1 RAS GIamImMar ...cocooeiiiiiiieiiinienee ettt e e sttt esbee e 91
5.4.2 Input Model of Transformation............ceecviecieecieeiieeiienieseee e 92
543 OUPUL MOAEL ..ottt sttt 94
544 Transformation RUIES........ccceoiiiiiiiiiinit ittt 95

5.5 RASF Process MOELcc.couiriiiiiiiiiiiiieieesieseeeetee sttt 95
5.6 RASF TOOINZ SUPPOTL..eviiiiieiieiieeiieeieeiteete ettt ete e teetestaessseebeebeessesnsesssesssesssesnsean 98
5.7 SUMIMATY ettt ettt e rb e a e a e e e ettt e s ab e e sabeesabeeeabeeeabeeeeabeesabeeebeeenbeeeneee 99
Chapter 6: Categorical Specifications of RASF ..o 101
6.1 Categorical Model of Structure in RASFccoooiiiiiieieeeeeeeee e 102
6.2 Categorical Model of Behavior in RASF ..ottt 114

6.3 Representation of Categorical Models in RASFcccooviiiiiiieiiii e 148
6.3.1 Representation for Categorical Model of Constructors...........cceecververververcvennenns 148
6.3.2 Representation for Categorical Model of Behaviorc.cccoecvvvienienieiciieieens 149

6.4 Graphical Illustration of Categorical Models in RASFcccccoviiviiiiiniiieceeeee, 149
6.4.1 Categorical Modeling Language (CML)........cccceevveriinieniieniieeieeieceeeeeee e 149
6.4.2 Graphical TITustration TOOLcccueviirierieiieiie e 151

6.5 Categorical Specification of MAS Model in RASFccooiiiiiiiiiiieeeeeeeeee, 153
0.5 1 PLANS ittt ettt ettt b 154
0.5.2 GOAIS ..ttt 155
0.5.3 BeLETS .ottt 156
0.5.4 AGENLS ..ottt ettt et e bt e e bt e e bt e e sbeesbeeebeeens 157
6.5.5 REPOSIEOTY AGENL ..eoruiieiiiieiieiieeiieciieetee ettt eteete et et e st e steesaeesaessaessaesseesseesseesseeans 158

6.6 Representation of Categorical MAS Models in RASF.......cccooiviieiiiiieiieeeee 158

6.7 SUMIMATY ettt et e b et ettt e sbe e e e bteesbteesbaeesabeesabeeeabeeeembeesabeesabeesnbeeans 159

Chapter 7: Categorical Specifications of Self-Healing in RASF...........ccccoevvviinnnnnnn. 161

7.1 Scenariol: Crashed RAO ..ottt s 163

7.2 Categorical [llustration of SCeNariol]ccceecvieriiriiieiiieiieeeeeee e 166

7.3 Scenario2: Crashed RAOLccooiiiiiiiiniiniiieieneeetee ettt 171

7.4 Categorical [llustration of SCENAIIO2.........ccvecvieiiieiiieiieiierteeee e 173

7.5 Scenario3: Crashed RACS ...ttt 178

7.6 Categorical [llustration of SCeNariodcceecuieiirriieiiieiierieee e 181

xi

7.7 Categorical Specifications of Self-Healingcccoevieviieiieiiienienieeeeeceeee e 186
7.8 Representation of Categorical Specification for Self-Healingccoecvevverivenieennnnne. 190
7.9 SUMIMATY ettt ettt ettt ettt e bt e e ettt e bt e e sbaeesabeesabeeeabeeeeateesabeesabeesnbeeans 191
Chapter 8: Categorical Specification of Self-Configuration.............cccceeevveevveeeciveeennnenn. 192
8.1 FOrming a RASottt sttt et e nae e 192
8.2 Categorical Illustration of Forming a RAS........cccooiieiieiieiiee ettt 199
8.3 FOrming @ RACGcooiiiieeieeeeeee ettt ettt sttt ettt e e e nns 205
8.4 Categorical Illustration of Forming a RACGcccoevieiiieiieiiieie et 212
8.5 FOrming @ RACoouiiieeeeceeee ettt ettt sttt ettt et e s nee e 218
8.6 Categorical Illustration of Forming a RACcccooieiiieiiieiieieeceeeecee e 225
8.7 Categorical Specifications of Self-Configuration...........cceceeeveeierieriienienieieeieeieeene. 231
8.8 Representation of Categorical Specification of Self-Configuration............ccccveveennenne. 234
8.9 SUMIMATY .ttt ettt e sttt e bt e e sbe e e e bteesbteeebaeesabeesateeeabeeeeabeesabeesabeesnbeeans 235
Chapter 9: RASF Integration ToOL.........cccvieiiiiiiiieciie et 236
9.1 Architecture Of RASFEITcoouiiiiiiiiiiiiie ettt 236
9.1.1 Eclipse Plug-in Module..........cccoeriiriiiiiiiieie ettt 237
9.1.2 EAMOGUIEcuitiieiiititee ettt sttt sttt enen 238
9.1.3 JadeX MOQUIEcoueiiiiiiiiiiieteettee e st 243
9.1.4 Model Transformation Modulecceoeririniiieninieiineneeeeeeee s 244
9.1.5 CATCanvas MoOdUIE........c.coiririeieniinieiienenee ettt 244

9.2 Installation and Configuration of RASFITcccooviiiiiiiinieeecteeeeeeeeee e 245

xii

9.3 Applying RASF Methodology with RASFIT.......c.cccoiiiiiiiiieeeceeeeeeeee e 246

9.3.1 Creation Of RASFE PrOJECE ..ccviiiiiieciectecteeeee ettt 246
9.3.2 Modeling in RASF Project......cccecciiiieiiiiieiieiieeeeeteceesteseee et 246
9.3.3 XML File and Code Template Generation in RASF Project........c.cccceeevevvenvennnns 247
9.3.4 Model Transformation and Application Deployment...........c.cccoevvervenienirecrennens 248

9.4 SUMIMATY ettt ettt ettt et e bt e e ettt e e bteesbteeebaeesubeesateeaabeeeeabeesabeesabeesnbeeans 249
Chapter 10: RASF Case StUdIeSscccvieiiieeiiieeieeciee ettt see e ere e eveeesvee e 250
T0.1 MArs-WOTLd ..coeiiiiiiiei ettt sttt 250
10.1.1 Architecture Model of Mars-World...........c..coceeveevieniniinnininineeneeeeee e 250
10.1.2 Self-Healing in Mars-World.............cccoeciirierieniieiieieeie et 253
10.1.3 Self-Configuration in Mars-World............ccceceveiiriiriiennieiieiieeeeee e 259
10.1.4 Categorical Model of Structure in Mars-World...........ccccoocvvviiniiiniieiiiiiieieereeee 266
10.1.5 Categorical Model of Behavior in Mars-Worldccoccvviiniinieniieciieieeeeee 268
10.1.6 Categorical Model of Self-Healing in Mars-World...........c.ccccevviiriincieniienieeenen. 276
10.1.7 Categorical Model of Self-Configuration in Mars-World...........c.ccecvevveriennrennen. 283
10.1.8 Transform RAS Model of Mars-world to MAS Model..........cccceceninininicncncnnne. 289
10.1.9 Transform MAS Model of Mars-world to Categorical Model..............cccccveeurennen. 292
10.1.10 Transform MAS Model of Mars-world to Implementationcccccecueeverurenneen. 295

10.2 Prospecting ASteroid MISSION.........ccuerierierieriiesiieeieeteetesteesieesteenteesaesseesseeseeesseenseenns 298
10.2.1 CML Model for Sub-swarm Organization in PAM...........ccceccevviriiinieniienieeenn 300
10.2.2 Self-Configuration in PAMccccoviiiiiiienieiieeieee ettt 301

10.2.3 Self-Protection N PAMcooiomiiiiiiie ettt 304

10.3 End-to-End iFix TOOL...c..coiiiiiiiiiiiiiiecetcee st 305
10.3.1 Self-Healing in E2Ec.cociiiiiiiiiecieeeee ettt s 307

10.3.2 Self-Configuration in E2Eccccciiiiiiiiiiieeceeeeece et 308

LO.4 SUITIMATY ..ottt et ettt e be e e ea bt e e bt e e bt e e e bb e e sabeesabeesabeeenabeesabeesabeesaneas 308
Chapter 11: Conclusion and Future Work...........ccccoeviieiiiieniiiecieeceecee e 310
11.1 Significance of RASF APPIOachc.cccivviiiiiiiiniieiiecie ettt 310

T1.2 CONIIDULIONS ..utetiieeiieiieniestceteete sttt sttt b et e st bbbt et e st e b sbe b eaee 312

11.3 Challenges of RASF APPIOaChcociviiiiiiiiiiieieee et 314

T1.4 FULUIE WOTK ..ottt sttt sttt be b 314
RETEIENICES ...ttt ettt e e 316
Appendix A: Representation for Categorical Model of Constructors............cceeeuveennee. 344
Appendix B: Representation for Categorical Model of Behaviorcccceevvveennennen. 348
Appendix C: Representation of Categorical MAS Models in RASFccccovvvieenneen. 359
Appendix D: Representation of Categorical Self-Healing............cccoeevvveevieeeniieenieeennee. 371
Appendix E: Representation of Categorical Self-Configurationcccceeeveeeureennne. 377
Appendix F: Screen Shots of RASFIToooiiiiiiiieeeeeeeeee e e 387
Appendix G: Installation and Configuration of RASFITcccccooviiiiiiiiiiiieeeeee 389
Appendix H: Applying RASF Methodology with RASFITcccooeoiiiiiiieiieeeieeee 390
Appendix I: Representation of Categorical Model in Mars-world............ccccceveeevreennen. 412

Xiv

XV

List of Figures

Figure 1: Comparison of Formal Methods for Emergent Behavior Analysis [51] 3
Figure 2: RASF APPIoachc.ooi ittt saae e 6
Figure 3: Road Map of Research ACHVITIEScccviieiiiiieiiieeciie et 8
Figure 4: Quality Factors of Autonomic Computing [101]ccccoevvvieriiieniiieeiie e 14
Figure 5: Quality Metrics Framework for Autonomic Computing [101]ccccvveenneenne 14
Figure 6: Autonomic Computing Reference Architecture [63]........cccvveevvieeviieeciieeennnenn. 16
Figure 7: Intelligent Control Loop [63] ..cccvieeeiieeiieeiie ettt 18
Figure 8: Policy Management in an Autonomic Element [26]cccccevvvieeviieecieeennnnn. 20
Figure 9: FIPA Standard: Components of Communication Model [181]ccccccuuee. 28
Figure 10: FIPA Message Structure [181]......ccuiieiiieeiiieeeiie et 28
Figure 11: IBM Tivoli Management Suite across IBM Overall Architecture [118]......... 39
Figure 12: Tivoli Autonomic Software Products [118]........cccceeviiiiiiiiiniieeeiieeeeeeieens 39
Figure 13: Sun N1 Autonomic Characteristics [158]......cccvvvriiiiiiiieniiieriieeiee e 41
Figure 14: Microsoft DSI Autonomic Characteristics [114]......ccccovvevviieniiieeniieeeiieeeen 42
Figure 15: A sample scenario of Mars-world............cccceeeviiieriieeiiiiecieeeee e 70
Figure 16: A Sample PAM Scenario [174].....ccuieeiieeieeeiee ettt 72
Figure 17: A Perspective Of E2Eoooiiiiiiieeeeeee e 75
Figure 18: RASF Architecture Model...........cocviiiiiieiiieeciieeeeeee e 79
Figure 19: Specification of the RACccoiiiiiiiee e 80

Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:

Figure 40:

Specification 0of the RACG.........cocviiiiiiiiiiice et 82
Specification of the RAS ..o 82
An Example of Intelligent Control LOOP.......cccvveervieeiieeiiieeeciie e 83
Specification of @ TranSItioN........cccueeeeuereriieeiieeeeie et eeeeeiee e e eeeeaee e 84
Sub-states of the Monitor Statecoccoevieiiiiiiiiiieee e 87
Mapping from RAS t0 MAS [62]..cccuveeeiiieeiieeiieeiee ettt 89
MAS Representation after the Mapping from RAS [62]c.coevvevivieinnnnnnen. 89
Agent Hierarchy in RASF [62]....cccviioiiiiiieeeeeeeeee et 90
Model Transformation Process from RAS to MAS Implementation [148].... 91
Grammar of the RAS Architecture Model [148]......cccuvviieiiiiiieiiiieeeiieees 92
Grammar of the RAO Behavior [148]........oooiiiiiiee e 92
Grammar of the RAC Behavior [148]ooiiiiiiiieee e 92
RAO Specification Template in XML Format [148].......cccccveevviieeiiieeiieeenee, 93
RAC Specification Template in XML Format [148].......cccooveeviiieeciieeiieeenee, 94
RACG Specification Template in XML Format [148].......cccceevvivieeiieecireenee. 94
An Example of Type CategOTycccuveeivreeiiiieeiieeciiee e eiee e eeeeeeneee e 102
An Example of Null Object in Categoryccceeveveeevieeeiieeeeiieeieeeiee e 103
An Example of PATH Categorycecvueeeiiieiiieeciie et 104
Template for Categorical Specification of RACccccoveeviiieiiieeiiieee. 147
Template for Categorical Specification of RACG.........cccceeevvieviiecciieeene. 147
Template for Categorical Specification of RAS...........ccccvieiiiieiiieieee 148

XVii

Figure 41:
Figure 42:
Figure 43:
Figure 44:
Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:
Figure 59:
Figure 60:

Figure 61:

XML Specification of Index Category RAE-Type..........ccccoovvvviivieninennns 148
XML Specification of Index Category Function-Pair-Type 149
A Sample of the XML File Exported from the Graphical Model [81].......... 152
An Example of Using CATCanvas and Exporting to a XML File [81]......... 153
XML Specification of Type Category Plan-Type............cccovveeiiiiieninennns 159
Example of RAS Application Model...........cceovviieiiiiniiiiiieceeceeeee e 162
Specification of RACT Structure...........coccveeeviieeiieeciieeieecee e 163
Specification of RACGT StruCture........coeeveeeeieeeiieeeieie e 163
Specification of RAST Structureccoocveeeiiieeiiiecieeeeeee e 163
Substitution Work Flow in RACT ..o, 164
Take-Over Work Flow in RACT ..o 164
Intelligent Control Loop in RAOL1 for Self-Healing...........ccccoeevvveennnnnne. 165
Categorical Constructs in RACI Representationccccceeeeveeeenveeneveeennne. 167
Evolution for Self-Healing in RACToccvviiiiiiiiieeeeeeeeeeee e 169
Natural Transformation for Self-Healing in RACTcccooeeveiviieecieeee. 169
Natural Transformation from Restart to Substitute in RACl 170
Natural Transformation from Substitute to Take-over in RACI 170
Natural Transformation from Restart to Take-over in RACl 170
Substitution Work Flow in RACGTcocooiiiiiiiiiieeeeee 171
Take-Over Work FIow in RACG ..o 172
Intelligent Control Loop in RACS1 for Self-Healingcccceeevveennennne. 172

XViii

Figure 62: Categorical Constructs in RACG1 Representationccceeeveeeeveenveeeennee. 175

Figure 63: Evolution for Self-Healing in RACGIccccvvevviiiiiiieiiie e 176
Figure 64: Natural Transformation for Self-Healing in RACGIcccovvveevieenieennne. 176
Figure 65: Natural Transformation from Restart to Substitute in RACGI 177
Figure 66: Natural Transformation from Substitute to Take-over in RACGI................. 177
Figure 67: Natural Transformation from Restart to Take-over in RACGI 178
Figure 68: Substitution Work FIow in RASTcccoiiiiiiiiieeeeee e 179
Figure 69: Take-Over Work Flow in RASToooiiiiiiieee e 179
Figure 70: Intelligent Control Loop in RACGM1 for Self-Healing............cccoeeeuvenneee. 180
Figure 71: Categorical Illustration of RASTcccviiiiiiiiiieeeeeeeee e 182
Figure 72: Evolution for Self-Healing in RASTcccooviiiiiiiiee e, 184
Figure 73: Natural Transformation for Self-Healing in RASTccceeviiiiiiinenenne, 184
Figure 74: Natural Transformation from Restart to Substitute in RAS1 185
Figure 75: Natural Transformation from Substitute to Take-over in RASI 185
Figure 76: Natural Transformation from Restart to Take-over in RASI 185
Figure 77: Work Flow of Formatting a RASccciiiiiiiieeeeeeee e 188
Figure 78: XML Specification of Category Substitution-Flow-Self-Healing 191
Figure 79: Example of Forming RAS from RAS-Formation............c...cc.ccccoovinennnnne. 193
Figure 80: Object and Morphism Mapping of Functor RAS-Formingl.......................... 194
Figure 81: Object and Morphism Mapping of Functor RAS-Forming?2......................... 194
Figure 82: Formation Work Flow in RASTcoooiiiiiiiee e 194

Figure 83: Self-Configuration Work Flow in RASTooooviiiiiiiieeeeee e, 195

Figure 84: Self-Configuration Work Flow of Substitution in RASTcccccviiieenneen. 195
Figure 85: Self-Configuration Work Flow of Take-over in RAST..........ccccoevvvieennnnnnnen. 195
Figure 86: Intelligent Control Loop in RACGM1 for Self-Configuration..................... 196
Figure 87: ICL in RACGMI1 for Communication Self-Configurationc.c........ 196
Figure 88: Evolution for Self-Configuration in RASTccoooiiiiiiiiiiieeee e, 201
Figure 89: Natural Transformation for Self-Configuration in RASI...........ccooerneenneen. 201
Figure 90: Natural Transformation RestartRACS -> SubstituteRACS in RASI 202

Figure 91: Natural Transformation SubstituteRACS -> Take-over-RACS in RASI 202
Figure 92: Natural Transformation RestartRACS -> Take-over-RACS in RASI 202
Figure 93: Evolution for Communication Self-Configuration in RASI......................... 204
Figure 94: Natural Transformation for Communication Self-Configuration in RASI... 204
Figure 95: Natural Transformation RestartRACGM -> SubstituteRACGM in RASI 205
Figure 96: Natural Transformation SubstituteRACGM->Take-over-RACGM in RASI . 205

Figure 97: Natural Transformation RestartRACGM -> Take-over-RACGM in RAS1.... 205

Figure 98: Example of Forming RACG from RACG-Formationcccccee.. 206
Figure 99: Object and Morphism Mapping of Functor RACG-Formingl 207
Figure 100: Object and Morphism Mapping of Functor RACG-Forming?2 207
Figure 101: RACG Formation Work FIOWcccoviiiiiiiiiiiceee e 208
Figure 102: RACG Self-Configuration Work FIOW..........ccccoovviiiiiiiiiiiiiiiecieecee e, 208

Figure 103: RACG Self-Configuration Work Flow by Substitutionccccceuvenneee. 209

XX

Figure 104:
Figure 105:
Figure 106:
Figure 107:
Figure 108:
Figure 109:
Figure 110:
Figure 111:
Figure 112:
Figure 113:
Figure 114:
Figure 115:
Figure 116:
Figure 117:
Figure 118:
Figure 119:
Figure 120:
Figure 121:
Figure 122:
Figure 123:

Figure 124:

RACG Self-Configuration Work Flow by Take-over..........c.cccecveevuveennnnen.. 209

Intelligent Control Loop in RACS1 for Self-Configuration 209
ICL in RACS1 for Communication Self-Configurationcceeeuveennee. 210
Evolution for Self-Configuration in RACGIcccovveeivieviieeiee e, 214
Natural Transformation for Self-Configuration in RACGI 214

Natural Transformation RestartRAOL -> SubstituteRAOL in RACGI 215
Natural Transformation SubstituteRAOL -> Take-over-RAOL in RACG1.. 215
Natural Transformation RestartRAOL -> Take-over-RAOL in RACGI 215
Evolution for Communication Self-Configuration in RACGI 217
Natural Transformation of Communication Self-Configuration in RACG1217
Natural Transformation RestartRACS -> SubstituteRACS in RACGI 218
Natural Transformation SubstituteRACS -> Take-over-RACS in RACGI... 218

Natural Transformation RestartRACS -> Take-over-RACS in RACG1 218

Example of Forming RAC from RAC-Formation..............c..ccccocenennnne. 219
Object and Morphism Mapping of Functor RAC-Formingl 220
Object and Morphism Mapping of Functor RAC-Forming2 220
RAC Formation Work FIOWccoooiiiiiiiiiiieee e, 221
RAC Self-Configuration Work FIOW...........cccovvviiiiiiiniiiiieceeeee e 221
RAC Self-Configuration Work Flow by Substitutionccccceeeeuvvennnenn. 222
RAC Self-Configuration Work Flow by Take-overccccceevevveecveennnnenn. 222
Intelligent Control Loop in RACI1 for Self-Configuration.......................... 222

XXi

Figure 125:
Figure 126:
Figure 127:
Figure 128:
Figure 129:
Figure 130:
Figure 131:
Figure 132:
Figure 133:
Figure 134:
Figure 135:
Figure 136:
Figure 137:
Figure 138:
Figure 139:
Figure 140:
Figure 141:
Figure 142:
Figure 143:
Figure 144:

Figure 145:

ICL in RAC1 for Communication Self-Configuration............c.ccccveeruvennee. 223

Evolution for Self-Configuration in RACTccccociieeiieeiiieeieeeee e 227
Natural Transformation for Self-Configuration in RAC1cccccnee. 227
Natural Transformation RestartRAO -> SubstituteRAO in RAC1 228
Natural Transformation SubstituteRAO -> Take-over-RAO in RACI 228
Natural Transformation RestartRAO -> Take-over-RAO in RACI 228
Evolution for Communication Self-Configuration in RACI 230

Natural Transformation of Communication Self-Configuration in RAC1.. 230
Natural Transformation RestartRAOL -> SubstituteRAOL in RAC1 231
Natural Transformation SubstituteRAOL -> Take-over-RAOL in RACI1 231

Natural Transformation RestartRAOL -> Take-over-RAOL in RAC1.......... 231

XML Specification of Category Formation-Work-Flow-in-RAS 235
Architecture of RASF Integration Tool.........ccccevviieiciiiniieieee e 236
Toolbar Area for RASFITcooiiiiiie e 237
Partl of the Eclipse Plug-in Moduleccoovviieiiiiiiiiiieeeeeeeeee 238
Part2 of the Eclipse Plug-in Modulecccooviieiiiiiiiiiieeeecee 238
Part of the EAmodulecooooiiiiiiee e, 239
Project of RASF Modeling Profile.........ccccocvieiiiieiiiiiiieeeeeeee e 240
Design and Model of RASF Modeling Profile..........ccccovveviieeiiieniieene. 240
Meta-model of the RASF Elements and Interactions............ccccceeeenieenenne 241
Meta-model of the RASF Diagrams..........cccceevevieeiiiiniiiiiiiieeieecee e 242

XXii

Figure 146:
Figure 147:
Figure 148:
Figure 149:
Figure 150:
Figure 151:
Figure 152:
Figure 153:
Figure 154:
Figure 155:
Figure 156:
Figure 157:
Figure 158:
Figure 159:
Figure 160:
Figure 161:
Figure 162:
Figure 163:
Figure 164:
Figure 165:

Figure 166:

Meta-model of the RASF Toolbox "Logical"ccceoevvveeviiieiieeeiieeen 242

Part of the Jadex Module...........cccooiiiiiiiiiiiiiee e, 243
Part of the Model Transformation Module..............cooceiiiiiiiniiininie, 244
Example of Mars-world Modeled using RASF...........ccooiiiiniiiiee. 250
Specification of Production RObOtccceevviiiiciiiiiiiiieiieceecee e 251
Specification of Exploration Groupcccceeeevieeciieerciiee e 252
Specification of Mars Worldcocviiiiiiiiiiieeee e 252
Class Diagram of Sentry RoObot]ccceeviiiiiiiiiiiie e 252
Component Diagram of Exploration Grouplccccoveeeiiieeiiiesicieenieeens 253
Package Diagram of Mars-worldcccceeeuveiiiieniiie e 253
Sensor Substitution Work Flow in Production Robotcccccceceinne. 255
Sensor Take-over Work Flow in Production Robot.............cccceviiinnnnn 255
Intelligent Control Loop of Control Unit in Production Robot................... 256
Control Unit Substitution Work Flow in Sentry Robot...........c.ccccvvennennnne. 257
Control Unit Take-over Work Flow in Sentry Robotccccceeeviveeninnns 257
Intelligent Control Loop of Control Unit in Supervisor Robot................... 257
Carry Robot Substitution Work Flow in Exploration Group....................... 258
User Intervention Request Work Flow in Exploration Group..................... 258
Intelligent Control Loop of Control Unit in Manager Robot 259
Example of Forming Mars-world from Mars-world-Formation 260
Object and Morphism Mapping of Functor Mars-world-Forming.............. 261

XXiii

Figure 167:
Figure 168:
Figure 169:
Figure 170:
Figure 171:
Figure 172:
Figure 173:
Figure 174:
Figure 175:
Figure 176:
Figure 177:
Figure 178:
Figure 179:
Figure 180:
Figure 181:
Figure 182:
Figure 183:
Figure 184:
Figure 185:
Figure 186:

Figure 187:

Formation Work Flow in Mars-worldcoooeeeeeeeeeeeeeeeeeeeeee e 261

Self-Configuration Work Flow in Mars-world...........ccccecveeviiieniee e, 262
Self-Configuration Work Flow of Substitution in Mars-world.................... 262
Self-Configuration Work Flow of Take-over in Mars-world 262

Intelligent Control Loop in Manager Robot1 for Self-Configuration......... 264

ICL in Manager Robotl for Communication Self-Configuration............... 265
XML Specification of Index Category Robot-Formation......................... 268
XML Specification of Category Robot-Part-Behavior 269
XML Specification of Synchronous Communication in Robot 269
XML Specification of Asynchronous Communication in Robot 270

XML Specification of Pushout Next Communication Relay in Robot 270

XML Specification of Pullback Previous Communication Relay in Robot 271

XML Specification of Category Robot-Behavior-Designated.................. 272
XML Specification of Limit Limit-of-Robot-Behavior-Designated............ 272
XML Specification of Category Robot-Behavior-Achieved..................... 274

XML Specification of Colimit Colimit-of-Robot-Behavior-Achieved 274

XML Specification of Slice Category Production-Robotl/CUI............... 275
XML Specification of Coslice Category CUI/Production-Robotl........... 276
Categorical Specification of Production Robot............ccccccvveviieeciiieninnns 277
Evolution for Self-Healing in Production Robot...........c.cccccveeviieniinnennnn. 278
Natural Transformation for Self-Healing in Production Robotl 279

XXiv

Figure 188:
Figure 189:
Figure 190:
Figure 191:
Figure 192:
Figure 193:
Figure 194:
Figure 195:
Figure 196:
Figure 197:
Figure 198:
Figure 199:
Figure 200:
Figure 201:
Figure 202:
Figure 203:
Figure 204:
Figure 205:
Figure 206:
Figure 207:

Figure 208:

Natural Transformation from Restart to Substitute in PR1oouvueeeeeei.. 279

Natural Transformation from Substitute to Take-over in PR1..................... 279
Natural Transformation from Restart to Take-over in PR1 279
XML Specification of Functor PRI-Self-Healing-Restart 280
XML Specification of Functor PRI-Self-Healing-Substitute...................... 281
XML Specification of Functor PRI-Self-Healing-Take-Over 282

XML Specification of Natural Transformation PR-Evolution-Relation 282

XML Specification of Functor Category PR-Evolution-Relation-Set...... 283

Evolution for Self-Configuration in Mars-worldlcccceevvieiiieennnnnn. 285
Natural Transformation for Self-Configuration in Mars-world1 285
Natural Transformation RestartSR -> SubstituteSR in Mars-worldl........... 286

Natural Transformation SubstituteSR -> Take-over-SR in Mars-worldl 286
Natural Transformation RestartSR -> Take-over-SR in Mars-worldl 286
XML Specification of Category Formation-Work-Flow-in-Mars-world 287

XML Specification of Natural Transformation SR-Self-Configuration 288

XML Specification of Functor Category SR-Self-Configuration 288
XML Specification of Category Robot-Configuration............................. 289
Sequence Diagram of Shutdown [148]c.cooviieiiiieiiieee e 290
Sequence Diagram of Carry Recovery [148]ccovveiiiieiiieniieeiieeeeeeee 291
Carry Aent TYPE [02]...uuveeeeeiiiiee ettt e e eeee e e saeee e 292
Carry] AZENt [02] et 292

Figure 209:
Figure 210:
Figure 211:
Figure 212:
Figure 213:
Figure 214:
Figure 215:
Figure 216:
Figure 217:
Figure 218:
Figure 219:
Figure 220:
Figure 221:
Figure 222:
Figure 223:
Figure 224:
Figure 225:
Figure 226:
Figure 227:
Figure 228:

Figure 229:

Category Repository Type in Mars-world [62]......c..ccceviiviniininiciniennne 293
Fault-tolerance Property — Restart in Agent A [62].....ccccveevevveevieeevveennnnn. 293
Include in Action of Mars-world [62]cccovviiiiiiiiiiiieeeeeeeeeee e, 294
Include in Plan of Mars-world [62]........cccoveiiiiiiiiieiiiieeeeecee e 294
Include in PLAN of Mars-world [62].......cc.ooooiiiiiiiiiieeeeceee e 294
Include in GOAL of Mars-world...........coooeiiiiiiiniiiiiieeceeeeeee 295
Fault-tolerance Property — Take-over by Inclusion Agent [62]................... 295
Include in BELIEF of Mars-world ..o 295
Example of PAM Modeled using RASFcoooiiiiiiiieeee 299
Substitution Work Flow of Imaging Workerccccooeevienciieiciiieeieeee, 300
CML Specification Model of a PAM Swarm Scenario [81]........cccceeeunenee. 301
CML Graphical Model of a PAM Swarm Scenario [81].......ccceeeevveernennne. 301
CML Model for Team Relocation Scenario [81]........ccccoeevviiieiiiieeecicnnnnnen. 303
CML Graphical Model for Team Relocation Scenario [81].......ccccveeeunnnnee. 303
CML Model for PAM Self-Protection [81]cccccecoeiiiieeeiiiieeeeiieeeeeiee, 304
CML Graphical Model for PAM Self-Protection [81]cccceevveevcvveenneennne. 305
RAS Architecture Model for E2E ..., 306
Example of E2E Modeled using RASF ..o 307
XML Specification of Category RAE-Type-Instance..................ccccoc..... 344
XML Specification of Category RACcccoooiieiiiiiiiiiieeiieieeeeeeeee 344
XML Specification of Functor RAC-Evolutioncccoueeeceveecvveennnenn. 345

XXVi

Figure 230:
Figure 231:
Figure 232:
Figure 233:
Figure 234:
Figure 235:
Figure 236:
Figure 237:
Figure 238:
Figure 239:
Figure 240:
Figure 241:
Figure 242:
Figure 243:
Figure 244:
Figure 245:
Figure 246:
Figure 247:
Figure 248:
Figure 249:

Figure 250:

XML Specification of Natural Transformation Relation............................ 345

XML Specification of Functor Category Relation-Set............................... 345
XML Specification of Category RACGcccceeiieviiiiiiiiieieeieeieee 346
XML Specification of Functor RACG-Evolutioncoceeeeuveeevneennnenn. 346
XML Specification of Category RAScccooiiiiiiiiiiiie e 346
XML Specification of Functor RAS-Evolution...............cccccceueeeceveeecuveennnnn. 347
XML Specification of Category RAE-Behavior-............c..cccoooniininnnnn. 348
XML Specification of Category Discrete-Time...............cccoceevvevieneennennn. 348
XML Specification of Index Category State-Type..........c.cccoevvevieenerenen. 349
XML Specification of Category STATE..........ccccoooieviiiiiiiiiieieeieeieeee 349
XML Specification of Functor Time-Constraint-for-State 349

XML Specification of Product Synchronous Communication of RAE 350
XML Specification of Coproduct Asynchronous Communication of RAE . 350
XML Specification of Pushout Next Communication Relay of RAE 350

XML Specification of Pullback Previous Communication Relay of RAE... 350

XML Specification of Category RAE-Behavior-Designated.................... 351
XML Specification of Limit RAC-Behavior-Designated-Limit 351
XML Specification of Category RAE-Behavior-Achieved....................... 351
XML Specification of Colimit RAC-Behavior-Achieved-Colimit............... 351
XML Specification of Slice Category RAC/RAOLccooeeveecueeveeannen. 352
XML Specification of Coslice Category RAOL/RACcccoevveeueennnn. 352

XXvil

Figure 251:
Figure 252:
Figure 253:
Figure 254:
Figure 255:
Figure 256:
Figure 257:
Figure 258:
Figure 259:
Figure 260:
Figure 261:
Figure 262:
Figure 263:
Figure 264:
Figure 265:
Figure 266:
Figure 267:
Figure 268:
Figure 269:
Figure 270:

Figure 271:

XML Specification of Limit RACG-Behavior-Designated-Limit 353

XML Specification of Colimit RACG-Behavior-Achieved-Colimit............ 353
XML Specification of Limit RAS-Behavior-Designated-Limit................... 353
XML Specification of Colimit RAS-Behavior-Achieved-Colimit 353
XML Specification of Index Category Transition-Type.............c.ccoc....... 354
XML Specification of Category Transitionccccoceeviriienienienennnn. 354
XML Specification of Functor Time-Constraint-for-Transition 354
XML Specification of Category TRANSITION...........ccceeviieviieniieiieenen. 355
XML Specification of Index Category Action-Type...........cccccvevvrenirennen.. 355
XML Specification of Category ACtion.............cceecveevieriiiiiieenienieeieeiens 355
XML Specification of Functor Time-Constraint-for-Action 356
XML Specification of Category INTERACTIONcccccoceeviiniinennennen. 356
XML Specification of Category RAE-Social-Life................ccccoceninne. 357
XML Specification of Index Category Evolution-Type.............ccccennee. 357
XML Specification of Category Evolutioncccooooeviiiiiinniennnnnn. 357
XML Specification of Functor Time-Constraint-for-Evolution 358
XML Specification of Category EVOLUTION............ccceoviiiiiiniiiiienen. 358
XML Specification of Category Plamcocceeeiieniiiiiiiiiiiieieeeeee 359
XML Specification of Category PLANccccccieiiiiniiiiieieeieeie e 359
XML Specification of Functor Refined-by-Plancccceeeeuveeeveeennnen.. 360
XML Specification of Functor Timing-Planccoceeeeeveevcveeeecveennnnn. 360

XXViii

Figure 272:
Figure 273:
Figure 274:
Figure 275:
Figure 276:
Figure 277:
Figure 278:
Figure 279:
Figure 280:
Figure 281:
Figure 282:
Figure 283:
Figure 284:
Figure 285:
Figure 286:
Figure 287:
Figure 288:
Figure 289:
Figure 290:
Figure 291:

Figure 292:

XML Specification of Type Category Goal-Typecccccvevievireninennnen. 360

XML Specification of Category Goal-Type-Instancecccceene. 361
XML Specification of Category GOALcccccoecuieriiiiieniiieieeieeieeiene 361
XML Specification of Type Category Priority-Type.........ccccocvvvvveninennenn. 361
XML Specification of Category Priority-Type-Instance.......................... 362
XML Specification of Category Dependencyccccoeevvreiienreennennen. 362
XML Specification of Functor Assigned-Dependency............ccccceueeeunnn. 363
XML Specification of Type Category Fact-Type.........cccccocvvvieniirnnnennen. 363
XML Specification of Discrete Category FactSet.............cccoevieriinnnenen. 363
XML Specification of Discrete Category FactSetnuir......cceeevverveerieenieennn. 364
XML Specification of Discrete Category FactSetpase......coeovverveerveenieennnn. 364
XML Specification of Category BELIEFcccoccoviiiiiiiiiiiiieiee. 365
XML Specification of Functor Plan-Goalcccccoueeecuveeecveencreeannnn. 365
XML Specification of Functor Plan-Beliefccooueevveevcvveeciieeerieennennn 366
XML Specification of Functor Goal-Belief.............cccooevveevceveecirienrieennnn. 366
XML Specification of Category AGENTcccccooeviiiiiiiiiiiieeieeeee 367
XML Specification of Type Category Agent-Typecccceevuvercreenreennnen. 367
XML Specification of Category Agent-Type-Instance 368
XML Specification of Category MASccccoeviiiiiienieiieeceeeeeee e 368
XML Specification of Type Category Repository-Type...........cccoccveenee. 368
XML Specification of Category Repository-Type-Instance..................... 369

XXIX

Figure 293:
Figure 294:
Figure 295:
Figure 296:
Figure 297:
Figure 298:
Figure 299:
Figure 300:
Figure 301:
Figure 302:
Figure 303:
Figure 304:
Figure 305:
Figure 306:
Figure 307:
Figure 308:
Figure 309:
Figure 310:
Figure 311:
Figure 312:

Figure 313:

XML Specification of Functor Repository-Accesscccccvueeevveeeveenennenn. 369

XML Specification of Type Category MAS-Type......c.ccccvevvvrerienreenieeenen. 370
XML Specification of Category MAS-Type-Instance................ccceeuene. 370
XML Specification of Category Take-Over-Flow-Self-Healing............... 371
XML Specification of Category ICL-Time-Self-Healing 372
XML Specification of Category Time-Constraint-Self-Healing 373
XML Specification of Functor RACG-Self-Healing-Restart 374
XML Specification of Functor RACG-Self-Healing-Substitute 374
XML Specification of Functor RACG-Self-Healing-Take-Over 375

XML Specification of Natural Transformation RACG-Evolution-Relation 375
XML Specification of Functor Category RACG-Evolution-Relation-Set 376
XML Specification of Category Self-Configuration-Work-Flow 378
XML Specification of Category Substitution-Flow-Self-Configuration . 379
XML Specification of Category Take-over-Flow-Self-Configuration..... 380
XML Specification of Category ICL-Time-Self-Configuration............... 381
XML Specification of Category Time-Constraint-Self-Configuration ... 381
XML Specification of Functor RAC-Self-Configuration-RestartRAOL...... 382
XML Specification of Functor RAC-Self-Configuration-SubstituteRAOL . 383
XML Specification of Functor RAC-Self-Configuration-Take-over-RAOL 384
XML Specification of Natural Transformation RAC-Self-Configuration ... 385

XML Specification of Functor Category RAC-Self-Configuration.......... 385

XXX

Figure 314:
Figure 315:
Figure 316:
Figure 317:
Figure 318:
Figure 319:
Figure 320:
Figure 321:
Figure 322:

Figure 323:

XML Specification of Category RAC-Configuration.................ccccccc.. 386

XML Specification of Category RACG-Configuration............................ 386
Menu Area for RASFIT ... 387
Toolbox Area for Drawing UML Diagrams in RASFITcccovvevieenneen. 387
Canvas for Drawing UML Diagrams in RASFITcccoovvviiiiiiieiinens 388
Project Browser for Drawing UML Diagrams in RASFITc............ 388
XML Specification of Category Production-Robotl 412
XML Specification of Category Robot-Group-Formation....................... 414
XML Specification of Category Exploration-Groupl 415
XML Specification of Category Mars-World-Formation 416

XXX

List of Abbreviations

RA S et e Reactive Autonomic System
RASF ... Reactive Autonomic System Framework
IMASS et ettt e et e et e e et e e et e e e taeeesaeeereaeens Multi-Agent System
RAE e Reactive Autonomic Element
RAO e e Reactive Autonomic Object
RAOL ...ttt Reactive Autonomic Object Leader
RAC o e Reactive Autonomic Component
RACG ..ot Reactive Autonomic Component Group
RACS ... Reactive Autonomic Component Supervisor
RACGM.....ccoviiieeieeee e, Reactive Autonomic Component Group Manager
TCL e et Intelligent Control Loop
CAT ..ttt s e e e e e ta e e s bt e e saeeeateeenseeeennseeennes Category Theory
BT e Belief-Desire-Intention
ADF .ot e e aaee s Agent Definition File
D €1, USSR Extensible Markup Language

XXXil

Chapter 1: Introduction

This thesis presents the result of the research and practical work made towards the nature,
specification, modeling, formalization and illustration of Reactive Autonomic Systems
Framework (RASF). The thesis lays a ground for the RASF project that provides rigorous
development of Reactive Autonomic Systems (RAS).

1.1 Research Motivation

Software complexity is the main obstacle to further progress in IT industry, as the
difficulty of managing complex and massive computing systems goes well beyond IT
administrators’ capabilities. Although current software engineering methodologies and
programming language innovations have extended the size as well as complexity of
computing systems, only depending on those will not get IT industry through the present
software complexity problem. One of the remaining options is autonomic computing,
which helps to address complexity by using technology to manage technology in terms of
hiding and removing low level complexities from end users [80, 38].

The term autonomic is derived from human autonomic nervous system that monitors
heartbeat, blood pressure and body temperature without any conscious thought. This
self-regulation and separation provides the ability for human beings to concentrate on
high level objectives without managing specific details [58]. In a similar way, an
autonomic computing system is able to manage itself by anticipating requirements and
resolving problems with minimum human intervention. Thus, IT professionals can focus

on business-oriented objectives instead of computing level tasks with implementation,

configuration and maintenance details [63].

We need to select a target system that can get benefit from applying the autonomic
computing paradigm. Real-time reactive systems are some of the most complex systems;
the complexity involved comes from their real-time as well as reactive characteristics: 1)
involves concurrency; 2) have strict timing requirements; 3) must be reliable; 4) involves
software and hardware components; 5) have become increasingly heterogeneous. Thus,
we want to add autonomic features to real-time reactive systems by building a framework
(RASF) that can leverage specification, modeling and development of the RAS. With
autonomic behavior, real-time reactive systems are more self-managed to themselves and
more adaptive to their environment; the RAS can simplify and enhance the experience of
end-users through anticipating their needs in a complex, dynamic and uncertain
environment.

1.2 Research Problems

As real-time reactive systems become more complex, testing and error-finding also
become more difficult, especially for the autonomic behavior with self-management and
self-evolving capabilities added. Race conditions in those systems are very difficult to be
found by inputting sample data and checking if results are correct, as certain errors are
time-based and only occur when processes send or receive data at particular time, in
particular sequence or after learning. In order to find those errors by testing, all possible
state combinations of the processes have to be executed, which are exponential in the

number of states.

Formal methods are proven approaches to ensure correct operation of complex
interacting systems, since a formal specification can be used to prove the properties of a
system, check for particular types of errors, and it also can be used as an input for model
checking. However, most of current formal approaches do not have an appropriate
mechanism to specify RAS and have not addressed well on verifying emergent behavior
(an emergent behavior can appear when a number of simple entities operate in an
environment, forming more complex behaviors as a collective), which is one of the most
important characteristics of the RAS. Figure 1 compares current formal methods for the
specification of emergent behavior and more details about those formal methods and their
comparison can be found in [51]. The management of analysis for changes requires a
specification structure, which is able to isolate those changes within a small number of

components and analyze the impacts of a change on interconnected components [185].

csp v x x v v x
WSCCS v X X x v v
Temporal Logic v x x X v x
X-Machines Ve v v x v v
Unity Logic v x X x v x
ASSL v X v v v X
PTN v x X v X
DESML X v v v v v

Figure 1: Comparison of Formal Methods for Emergent Behavior Analysis [51]

3

The following describes some specification techniques which have been used to

specify social, swarm, as well as emergent behavior [51]:

WSCCS: it is a process algebra used to model social insects [170] and analyze
non-linear aspects of social insects [156].

X-Machines: they have been used to model cell biology [55, 56]; their modifications,
such as Communicating Stream X-Machines [57], also have potential to specify
swarms.

Dynamic Emergent System Modeling Language (DESML) [82]: a variant of the
UML that can be used to model emergent systems.

Cellular Automata [119]: they have been used to model systems which exhibit
emergent behavior.

Artificial Physics [153]: it uses physics-based modeling to gauge emergent behavior
and ensure formation flying as well as other constraints on swarms.

Category theory has been proposed as a framework to offer that structure; it also has

been successfully used to provide composition primitives in both algebraic [189] and

temporal logic [35] specification languages. Category theory has a rich body of theory to

reason about objects and their relations (specifications as well as their interactions), and it

is abstract enough for a wide range of different specification languages. Moreover,

automation may be achieved in category theory, for example, the composition of two

specifications can be derived automatically and the category of specifications follows

some properties, such as co-completeness. Category theory for software specification has

4

adopted a correct by construction approach by which components are specified, proved,
and composed in the way of preserving their properties [185].

Thus, the research problems targeted in this thesis are not only how to model reactive
autonomic systems, but also how to formalize the RAS models using category theory
constructs in terms of verifying autonomic properties and validating self-management
behavior.

1.3 Research Goal and Objectives

According to the research problems we defined above, our research goal is to build a
formal framework (RASF) which can leverage modeling, formal specification as well as
development of the RAS. In order to achieve the research goal, we need to: a) Build an
architecture and corresponding communication mechanism for modeling both reactive
and autonomic behavior of the RAS; b) Formally specify the architecture, communication
and behavior above using category theory as a formal method.

After having the RAS model and its formal specification, we should elaborate it to an
instance model and implement it through a case study to support the value and feasibility
of our research. In the multi-agent community, agent-based approach is considered as a
natural way to model and implement autonomic systems, as the ability of an autonomous
agent can be easily mapped to the self-management behaviors in autonomic systems.
Moreover, the ability of Multi-Agent Systems (MAS) to make interactions among
components explicit and control them in a flexible way supports a more distributed way

[167]. Many ideas from the MAS community can be adapted to implement autonomic

5

systems, such as self-management behavior, automatic group formation, knowledge

mining, agent coordination, agent adaptation, interfacing and evolution [190].

FASE Approach

. l_]]]l‘v'iauulizulitm of |
Re l:if:“’:m :D 3) RAS Model jD) C"";:L“"“' of :l‘D the CAT Model for |
a ' | RAS |
_ ' -—— ==

6 Venfy Validate
N _ _ _ __& __
I_ I__I‘\ I_H]'f.' AT Model f l I_Iﬁ} Visualization of |
| masModel [Ti2 Y L B |:I'=D the CAT Model far |

B ;
|+ |

| ‘I MAS |
——aT-- ————- ————-
,...s'.f. Verify Validate
I_ N RETSTRPPPRS f 3”]"}} Vil 5
| 9VAS g 1) CAT Model for oot the CAT Model for
implementation 1-+10.4 MAS i BT T vas
| mplementation 1 lmplementation " ! -

—— — — 00 BAASEESAREESAIEEEAEEEREE BEAAEREERA G B KGR REEAEREEEE

Bold solid rectangles and arrows: My full contribution

| Bold dashed rectangles and arrows: my partial contribution invalving co-supervision and participation

Bold dotted rectangles and arrows: Future Work

Figure 2: RASF Approach
Therefore, in terms of achieving our research goal, we also need to: c¢) design and
implement the architecture, communication and behavior of the RAS model by a MAS
approach; d) illustrate our methodology with a case study. Figure 2 depicts a perspective
of our research methodology: 1) Build a RAS model based on the RAS requirements and
properties; 2) Transfer the RAS model to its CAT (category theory) model using the

category constructs; 3) Transfer the RAS model to its MAS model using the agent

6

constructs; 4) Transfer the MAS model to its CAT model; 5) Implement the MAS model
using the Jadex framework, which allows for programming software agent in XML, Java
and can be deployed on different kinds of middleware such as JADE; 6) Visualize the
CAT mode of RAS model to its graphical representation in terms of the validation
between categorical models; 7) Visualize the CAT model of MAS model to its graphical
representation; 8) Transfer the MAS implementation to its CAT model; 9) Visualize the
CAT model of MAS implementation to its graphical representation; 10) Apply the RASF
approach to industrial projects in terms of supporting its feasibility.

1.4 Research Approach

As we started our research from scratch and it involves multiple fields (autonomic
computing, multi-agent systems, category theory and real-time reactive systems), I did a
comprehensive literature review on those fields before I started to develop our RASF
approach. Figure 3 shows a road map of my research activities in order to achieve my
contribution on the processes of 2, 4, 6, 10, 14 as well as corresponding outcome 1, 3, 5
illustrated in Figure 2. I also co-supervised and participated in the related processes of §,
12 and corresponding outcome 7, 9, 11, 13, 15 that were conducted by the other three

master students.

1} Literature review on

Autanomic Computing

{2007.01 - 2007 06)
Publication: ICSOFT2007

2} Literature review on
Real-time Reactive Systems
(2007.07 - 2007.9)

:; Publication; Tnternational

Transactions on Systems
Secience and Applications

3} Literature review on
Multi-Agent Systems
(200710 = 2007.12)

4) Literature review and
selection of Case Study
(200801 = 2008.03)

l

8) Prototype design of
Cateporical RASF Model
(2000.02 = 2009.04)
Publication: Studies in
Computational Intelligence

7} Prototype design of
RASF Mulel
(200811 = 2009.01)

6 Literature review on
Category Theory
(200807 - 2008.10)

3} Literature review on
Formal Methods
(2008.04 = 2008.06)
Publication: ICCGI2008

|

49) Prototype design of
Case Study using RASF
(200805 - 2009.07)
Publication: ICSOFT2009

107 Prototype design of
Self-Healing in RASF
(2009.08 - 2009.10)
Publication: Fault-
Tolerance through
Message-logging and
Check-pointing

11} Pratotype design of
Categorical Specification for
Self-Healing in RASF
(2009.11 - 2010.01)
Publication: ASAP2OIH

12) Prototype design of
Self-Healing in Case Study
using RASF
(2010.02 = 2010.04)
Publication; Frontiers in
Arrificial Intelligence and
Applications

l

15) Prototype design of
Self-Configuration in RASF
(2010107 = 20011.08)

14) Tntegrating the MAS
implementation of Case
Sy o RASF taal

(2011.04 = 2011.06)

13} Implementation of the
RASF tool as a plug-in of
Eclipse to model RAS
(201101 - 2011.03)
Publication: Archirecture
for Reactive Autonomic
Systems

Leave of Absence hecause
of my research intermnship at
Siemens CGermany
(2010.05 = 2010.12)

JL

Leave of Absence because
of my research internship at
TBM Canada
(2001100 - 2011.12)

16} Prototype design of
Categorical Specification for

:D Self-Configuration in RASF |—"

(2012.01 = 2012.02)

17) Pratotype design of
Sell~Configuration in Case
Study using RASF
(2012.03 - 2012.04)
Prepared publication:
Information and Software
Technaology

18} Transformation from the
categorical RAS madel to
the: XML specification
{2012.05 - 2012.06)

|

22) Writing Thesis
(20013.01 - 2013.05)
Prepared publication:
Journal of Systems and

Software

21} Transformation from the
categorical self-
configuration property 1o the
XML specification
(201211 - 2012.12)

207 Transformation from the
categarical self-healing
property 1o the XML
specification
(2012.09 - 2012.10)

(—

149} Transformation from the
categorical MAS model to
the XML specification
(2012.07 - 2012.08)

Figure 3: Road Map of Research Activities

1.5 Organization of the Thesis
This thesis is organized as follows:

Chapter 2 introduces the background as well as conceptual view of the autonomic
computing paradigm. This chapter indicates some possible architecture perspectives and
corresponding requirement specification for the RASF. We also introduced the agent-
based computing technology that can be used to design and implement autonomic as well
as reactive behavior for the RAS modeled by the RASF.

Chapter 3 presents the definitions, propositions and theorems of the category theory,
which may be applied to specify reactive and autonomic behavior for the RAS, such as
categories, morphisms, functors, limits, duality and naturality.

Chapter 4 gives an introduction to three case studies in terms of illustrating our
research methodology and approach, which include Mars-world, Prospecting Asteroid
Mission and an industrial project End-to-End iFix Tool.

Chapter 5 provides a comprehensive conceptual view of RASF. This chapter intends
to capture and convey the significant architectural decisions for further design as well as
implementation of the RASF.

Chapter 6 describes the prototype design of categorical RASF model, transformation
from the categorical RAS model to its XML specification as well as transformation from
categorical MAS model to its XML specification.

Chapter 7 presents the prototype design of self-healing property, prototype design of

the categorical specification for self-healing and transformation from the categorical self-

9

healing property to its XML specification.

Chapter 8 illustrates the prototype design of self-configuration property, prototype
design of categorical specification for the self-configuration and transformation from the
categorical self-configuration property to its XML specification.

Chapter 9 gives an introduction to the implementation of RASF Integration Tool
(RASFIT) and the integration of the MAS implementation to RASFIT, which includes the
Eclipse plug-in module, Enterprise Architect module, Jadex module, CATCanvas module
and model transformation module.

Chapter 10 describes the prototype design of self-healing and self-configuration in
case studies using the RASF.

Chapter 11 presents conclusions to be drawn from this thesis work and offers the

directions of future work on the RASF.

10

Chapter 2: Autonomic Systems and Multi-Agent Systems

This chapter states the research activities 1), 2), 3), 5) in Figure 3, which are literature

review on autonomic computing, real-time reactive systems, multi-agent systems as well

as formal methods. I had three publications [124, 88 & 176] related to that review.

Software complexity is the main obstacle to the further progress in IT industry, as the

difficulty of managing complex and massive computing systems goes well beyond IT

administrators’ capabilities. This complexity is derived from the following aspects:

® The need to integrate heterogeneous software environments into one cooperated
computing system, and to extend that billions computing devices connected to the

Internet.
® The rapid stream of changing and conflicting requirements at runtime requires timely

and decisive responses.
® As the growing uncertainty of software environments due to unpredictable, diverse

and interconnected computing systems, it is very difficult to anticipate and design
interactions among the elements of those systems.

Although current software engineering methodologies (such as spiral development,
incremental development, rapid application development and extreme programming) as
well as programming language innovations have extended the size as well as complexity
of computing systems, only depending on those two solutions will not get IT industry
through the present software complexity crisis due to those three aspects above. Thus,

one of the remaining options is autonomic computing, which helps to address complexity

11

by using technology to manage technology, in terms of hiding and removing low level
complexities from end users [80, 38].

2.1 Definition of Autonomic Systems

The term autonomic is derived from human autonomic nervous system that monitors
heartbeat, blood pressure and body temperature without any conscious thought. This
self-regulation and separation provides the ability for human beings to concentrate on
high level objectives without managing specific details [58]. In a similar way, an
autonomic computing system can manage itself by resolving problems with minimum
human intervention. Thus, IT professionals can focus on business-oriented objectives
instead of computing level tasks with implementation, configuration and maintenance
details [63].

Autonomic computing is not a totally new technology, but a goal-oriented and
holistic computing paradigm to develop computer systems. Thus, autonomic computing
is not a conventional computer systems paradigm, but a visionary approach which groups
existing technologies together to achieve a common goal [155, 109]. The main goal of
autonomic computing is similar to that of pervasive computing, which is a computing
paradigm to create embedded, fitting and natural systems in terms of using them without
managing them [183, 101]. The holistic approach means that autonomic computing does
not specify that technology will be used to achieve those goals, and any existing
technology that presents the pervasiveness and self-management behavior can be

considered as autonomic computing, such as grid computing [3, 19], middleware [23, 172,

12

40], databases [69, 100], networking [133, 12, 144] and peer to peer applications [103].

Several researchers have proposed definitions for autonomic computing since 2001
according to its original vision from Horn [58]. Kephart and Chess defines the primary
goal of autonomic computing as self-management, which can be further decomposed into
self-configuration, self-healing, self-optimization and self-protection [80]. In addition,
self-adaptive [2], self-organization [33] as well as self-knowledge [169] have also been
proposed to define autonomic computing.

In terms of establishing a standardized definition for autonomic computing, Lin,
MacArthur as well as Leaney [101] propose an application of software engineering
methodology (IEEE standard for a Software Quality Metrics Methodology [68]) to
address the lack of commonly accepted and quantifiable definition. This methodology
provides a systematic way to define software projects by analyzing and identifying their
quality requirements, which can be verified, applied and validated at each stage of
development lifecycle. Figure 4 shows a list of quality factors with their definitions, and
the Quality Metrics Framework [68] for autonomic computing is depicted in Figure 5; the
more details about the openness, anticipatory, self-awareness and context-awareness in

that figure can be found in [101].

13

Cuality Factor Definiticn
Anticipatory The autcnomic computing systems must have a projection of
the user needs and actions in the future
Context-aw areness | The autonomic computing systems must find and generate
rules for how best to interact with neighboring systems.

COpenness The autonomic computing systermns must function i oa
heterogeneous world and implement open standards.

Self-awareness The autonomic computing systems must be aware of its
internal state.

Self-configurmg The autonomic computing systermns must adapt automatically to
the dynamically changmg environments.

Self-healing The autonormic computmng systerns must detect, diagnose, and

recover from any damage that occurs.

Belf-management | The autonomic computing systems must free system
administraters from the details of system operation and
maintenance.

Self-optimizing The autonomic computing svsterns must monitor and tune
resources automatically.

Self-protection The autonomic computing systerns must detect and guard itself
against damage firom accidents, equipment failure, or outside
attacks by hackers and viruses.

Figure 4: Quality Factors of Autonomic Computing [101]

Autonomic Computing

Openness Anticipatory
Self-Awareness Context-Awareness Self-Management
| | | |
Self-Configuration Self-Healing Self-Optimisation Self-Protection

Figure 5: Quality Metrics Framework for Autonomic Computing [101]

2.2 Characteristics of Autonomic Systems
The essence of autonomic computing systems is self-management that can be achieved

by realizing self-configuration, self-healing, self-optimization and self-protection.

14

2.2.1 Self-Configuration

Autonomic computing systems are able to configure themselves automatically according
to high level policies (business level objectives), which specify what is required instead
of how they are implemented. For instance, after a new element joins, it automatically
learns composition as well as configuration of the system and registers itself in terms of
being used by other elements [80].

2.2.2 Self-Healing

Autonomic computing systems can detect, diagnose and repair bugs or failures in
software as well as hardware. For example, a problem diagnosis element analyzes
information from log files or monitors by using system knowledge, and then compares
the diagnosis against system patches or alerts IT professionals. Finally, the system installs
the appropriate patches followed by a regression test [80].

2.2.3 Self-Optimization

Autonomic computing systems are able to improve their operations and make themselves
more efficient in performance or cost. For example, they can monitor, test and tune their
parameters; they also can proactively upgrade their functions through finding, verifying,
applying and validating the latest updates [80].

2.2.4 Self-Protection

Autonomic computing systems can defend the whole system against malicious attacks or
cascading failures uncorrected by self-healing; they are also able to anticipate problems

according to early reports from sensors and react to avoid or mitigate them [80].

15

2.3 Architecture of Autonomic Systems

The architecture for autonomic computing must reach the following requirements [63]:

® [t should indicate external interfaces and behaviors of individual system elements.

® [t must state how to integrate those elements so that they can cooperate toward

system-wide self-management.

® [t has to describe how to build systems by those elements in a manner that the system

is autonomic as a whole.

The blueprint [63] organizes an autonomic computing system into building blocks

connected by enterprise service bus patterns, which allow the elements to collaborate

through standard mechanism, such as Web services. Figure 6 shows one example of

composing those building blocks.

The lowest layer consists of managed resources that make up the IT infrastructure.

Those resources can be hardware or software and may have embedded self-management

features. More details can be found in [63].

Manual Managers

Integrated Solution Console

Orchestrating Self- Selt-
Autonomic Managers |Configuring Configurin

Touchpoint Autonomic Self- ':.elf
Managers Configuring II&ﬂllnL

Selt-
Optimizing

Selt-
Healing

Sell-
Optimizing

Sel
F‘mlechng

Manageability
Interfaces { Touchpoint)

Sensor| [Elfector] [Sensor| [Effector] [Sensor| [Effecior]

Managed Resources

COEDED

Knowledge
Sources

Figure 6: Autonomic Computing Reference Architecture [63]

16

Layer 2 contains standard manageability interfaces for accessing and controlling the
managed resources in Layer 1 by the manageability endpoints.

Layer 3 and Layer 4 automate IT management processes by autonomic managers. A
resource may have one or more managers in Layer 3, and each manager implements
corresponding intelligent control loop (self-configuring, self-healing, self-optimizing as
well as self-protecting).

Layer 4 consists of autonomic managers that orchestrate other managers in terms of
delivering system-wide autonomic behavior by incorporating intelligent control loops
with the perspective of overall IT infrastructure.

The top layer indicates a manual manager which provides a common system
management interface for IT professional through an integrated solution console. The
manual layer as well as autonomic manager layers obtain and share knowledge from
knowledge sources. Therefore, resources and managers can collaborate to offer services
and implement business processes.

2.3.1 Manageability Endpoint

Manageability Endpoint [63] is the component exposing states and management
operations for a managed resource. It can communicate with an autonomic manager
through the manageability interface. A manageability endpoint consists of a sensor for
getting data from the resource and an effector for executing operations on the resource.
2.3.2 Autonomic Manager

Autonomic Manager [63] is the component which implements an intelligent control loop

17

as Figure 7 shows. Monitor is responsible for collecting information from a managed
resource, such as status and metrics; analyze correlates those data aggregated in monitor
and help the autonomic manager to learn IT environment and predicate future situations;
plan provides the mechanisms for constructing actions to achieve desired goals based on
policy information; execute controls the plan execution under the concern of dynamic

environment. More details can be found in [63].

| Sensors | | Effectors
Autonomic Elment

Analyvse

Monitor Execcute

Knowledge

| Sensors = Effectors |

Q Element /\/»

Figure 7: Intelligent Control Loop [63]

However, an IT administrator might delegate only certain parts of the intelligent
control loop to an autonomic manager. Moreover, each autonomic manager also has a
sensor and an effector as its interface to communicate with other autonomic managers.
2.3.3 Knowledge Source
Knowledge Source [63] is an implementation of the repository providing access to the
knowledge, which consists of the management data with syntax and semantics, such as
symptoms, policies, and plans.

The knowledge can be shared among autonomic managers through their sensors and

effectors, and every autonomic manager is able to access the knowledge from one or

18

more knowledge sources. Moreover, the data used by the intelligent control loop, such as

topology information, historical logs, and metrics also can be stored as knowledge.

2.3.4 Manual Manager

Manual Manager [63] is an implementation of the user interface which provides a

mechanism for an IT professional to manually perform some management operations.
The manual manager collaborates with autonomic managers or other manual

managers, and it involves a management console for the IT professional to delegate

management operations to autonomic managers, such as configuration, monitoring and

control.

2.4 Development of Autonomic Systems

There are presently seven core capabilities available for autonomic manager development

[65]: 1) policy determination; 2) solution knowledge; 3) common system administration;

4) problem determination; 5) autonomic monitoring; 6) complex analysis; 7) transaction

measurement.

2.4.1 Policy Determination

Policies are key part of the knowledge used by an autonomic manager to make decisions,

since they contain the criteria for achieving goals or determining actions. Moreover,

policies can control the planning components of an autonomic manager. Figure 8 shows

the policy management in an autonomic component.

19

1. External policies
are delivered through
effectors

6. Supply data based
on policies

3. Analyze

(1) analyze an system
based on paolicies

(2) create reports based
on policies

4. Plan

(1) Assigns lasks based on
policies
L (2) Assigns resources based

U

2. Palicies are stored as
Knowledge

“Sensors i EWU/ on policies
(3) Enables sensors

AUTonomcEIment (4) Addsimodifies/deletes
policies.

Exemite

5. Enabled/Disabled based
on palicies.

Enowledge

Sensors H Effcctrs |_|

< Element b

Figure 8: Policy Management in an Autonomic Element [26]

By defining policies in a standard way, they can be shared between autonomic

mangers so that multiple subsystems can be managed in a similar manner.

2.4.2 Solution Knowledge

It contains many types of data coming from multiple points, such as operating systems,

application languages, system utility and performance data. Common solution knowledge

removes the complexity introduced by different formats and installation tools.

Moreover, the knowledge acquired in a consistent way can be used by autonomic

managers in the contexts other than configuration, such as problem determination or

optimization. In particular, solutions are combinations of platform capabilities (operating

systems and middleware) as well as application elements. The idea is to acquire that

information to support installation, configuration and maintenance at the solution level.

20

2.4.3 Common System Administration

It can be achieved by using a common console approach and consists of a framework for

reuse as well as a consistent presentation of autonomic complex systems’ properties.
According to the paper [67], the primary goal of a common console is to provide a

single platform which can host all administrative operations of servers, software, and

databases in a manner that allow users to manage solutions rather than managing

individual systems or products. By increasing consistency of presentation and behavior

across those administrative operations, the common console develops a familiar user

interface which promotes reusing learned interaction skills instead of learning new and

proprietary user interfaces.

2.4.4 Problem Determination

Autonomic managers take actions based on problems they find in managed elements. The

first basic capability of an autonomic manager is to extract high quality data in terms of

determining if a problem really exists, and the second one is to classify that problem.

2.4.5 Autonomic Monitoring

It enables an autonomic manager to filter, aggregate, and perform a complete analysis

based on collected data in terms of detecting problems in systems when they happen. This

capability includes [65]:

® A tool to gather information from sensors.

® A built-in data filtering mechanism.

® Pre-defined resource models and mechanisms for creating new models which enable

21

the description of a logical resource state.
® A tool to add policy knowledge.
® Analysis engines for basic cause analysis, server-level correlations across multiple

complex systems, events and automate problem resolution.

2.4.6 Complex Analysis

Autonomic managers should be able to perform complex data analysis and reason based
on large amount of data collected from managed resources by sensors. This data includes
information about resource configuration, status, workload and throughput that is static or
dynamic.

The tasks of common complex data analysis include classification, clustering data to
characterize complex states and detect similar situations, prediction of workload and
throughout based on past experience, reasoning for causal analysis as well as problem
determination and optimization of resource configurations.

2.4.7 Transaction Measurement

It represents information based on the flow of interactions over an autonomic architecture.
Autonomic managers need the transaction measurement capability which spans system
boundaries to understand how the resources of heterogeneous systems combine into a
distributed transaction environment. By monitoring that measurement, an autonomic
manager can analyze and plan to change resource allocation for optimizing performance
across those multiple systems based on policies; it can also determine some potential

bottlenecks in the systems [65].

22

2.5 Multi-Agent Systems

This section states the research activity 3) in Figure 3. In the multi-agent community,
agent-based approach is considered as a natural way to model autonomic systems, since
the ability of an autonomous agent can be easily mapped to self-management behaviors
in autonomic systems. In addition, the ability of a Multi-Agent System (MAS) to make
interactions between components explicitly and control them in a flexible way supports a
more distributed complexity [167].

Therefore, the MAS approach is well-suited for autonomic computing systems, and
many ideas from the MAS community can be adapted to implement autonomic systems,
such as self-management behavior, automatic group formation, agent coordination,
evolution, agent adaptation, knowledge mining and interfacing [190].

2.5.1 Autonomous Agent

An agent is defined as a computer system which is capable of independent action on
behalf of its user or owner, situated in a certain environment, and capable of autonomous
actions in that environment to achieve its design objectives [191].

Agents have stronger notion of autonomy than objects in object-oriented paradigm,
and they make decision for themselves whether they need to perform actions requested
by another agent. Moreover, agents are able to control their internal states and own
behavior; they experience environment through their sensors and act by effectors [191].

Agents also can communicate with other agents or users through certain agent

communication languages. An agent is an agent with following properties [73]:

23

® Reactive: the agent should perceive its environment and respond in a timely way to
the changes that occur in the environment;
® Proactive: the agent should not simply respond to its environment but be capable to
show opportunistic along with goal-directed behavior and take the initiative where
appropriate;
® Social: the agent can interact with other agents or users when appropriate to complete
its problem solving and help others with their activities.
2.5.2 Definition of Multi-Agent Systems
A Multi-Agent System (MAS) is a software system possessing a number of autonomous
agents which interact with one another and exchange messages through certain agent
communication languages [191]. Therefore, those agents require the ability to cooperate,
coordinate and negotiate with others in terms of successful interactions. The agents act on
behalf of users with different goals as well as motivations, and the MAS can achieve its
goals that are difficult to be reached by each individual agent. The characteristics of the
MAS are [76]: 1) each agent has incomplete information or capabilities for solving
problems; 2) there is no global system control; 3) data is decentralized; 3) computation is
either asynchronous or synchronous.
The motivation for increasing interest in MAS research is due to their abilities such
as the following [73, 159]:
® Solving problems that are too large for a centralized agent to solve because of

resource limitations, performance bottlenecks or single-point of failures.

24

Allowing for interconnection and interoperation of multiple existing legacy systems.
Solving problems where data, expertise or control is distributed.

Solving problems which can be naturally regarded as a society of autonomously
interacting components or agents.

Thus, the system performance can be improved along the dimensions below [159]:
Computational efficiency: concurrency of computation is exploited as long as
communication is kept minimal, such as transmitting high level information instead
of low level data.

Reliability: by graceful recovery of component failures since agents with redundant
capabilities or appropriate inter-agent coordination can be found dynamically, such
as taking over the responsibilities of failed agents.

Extensibility: the number and capabilities of the agents working on a problem can be
changed.

Robustness: by the system’s ability to tolerate uncertainty.

Maintainability: the modularity by composing a system with multiple agents.
Responsiveness: the modularity can handle exceptions locally instead of spreading
them to the whole system.

Flexibility: agents with different capabilities can adaptively organize to solve
problems.

Usability: because functionally specific agents can be reused in different agent teams

to solve various problems.

25

2.5.3 Agent Interactions

For designing the MAS, we need to implement micro and macro designs that are agent
design as well as society design respectively [191]. In the agent design, the focus is to
build agents which are capable of independent and autonomous actions; in the society
design, the task is to establish interaction capabilities of those agents, such as cooperation,
coordination and negotiation, particularly when certain conflicts arise between them [73].

Agent interactions are guided by cooperation strategies to improve their collective
performance. The early work on distributed planning took the approach of complete
planning before actions, so the agents must be able to recognize sub-goal interactions and
either avoid them or resolve them [73]. For example, the authors in [39] propose a
synchronizer agent to recognize and resolve those interactions; other agents send their
plans to the synchronizer who examines the plans for critical aspects.

The notion of the interactions between self-interested agents has been focused on
negotiation, which is the presence of some conflict forms that must be resolved in a
decentralized manner by the self-interested agents through bounded rationality and
incomplete information. In addition, those agents communicate and iteratively exchange
proposals as well as counter-proposals [73].

The negotiation is considered as a method for coordination and conflict resolution,
such as resolving goal inconsistencies while planning, resolving conflicts in resource
allocation and resolving task disparities when determining organizational structures [73].

Another important aspect of successful interaction for self-interested agents is the

26

capability to adapt their behavior in terms of changing environment. The authors in [61]

describe an agent’s belief process for conjectures about the effect of their actions. A

conjectural equilibrium is defined where all agents’ expectations are realized, and each

agent responds to its expectations optimally. The authors also present a multi-agent

system in which an agent builds a model of other agents’ response [73].

2.5.4 Agent Communication Languages

Agent Communication Language (ACL) is one of proposed languages for communicating

agents, and most of ACL are based on the speech-act theory that is expressed by standard

keywords known as performatives [179]. There are two main ACL:

® Knowledge Query and Manipulation Language (KQML): proposed by DARPA
Knowledge Sharing Effort (KSE). KQML is the notion of performative keywords
such as ask-if, tell, and ask-one.

® Foundation for Intelligent Physical Agents’ Agent Communication Language (FIPA-
ACL): FIPA-ACL message structures are defined by FIPA Agent Communication

Standards as Figure 9 shows.

27

A

ACLEncodingScheme = - = m—mmm e x

Messane

LY
\\Cnntains
CLEncodingSchems re—m—————————— a

N, .
sContains
“

EnvelopeEncodingScheme === e e e e e e e e e e e = I

Ervelope p—-——=————— |

isTransmittedCw er

TransportProtocal

isExpressedin

ACL

Content p=—=——————

InteractionProtocol

T

ContentLanguage

“
\)
\Cnntams
LY

) BelongsTo
oymbol e ———- Ontology

Figure 9: FIPA Standard: Components of Communication Model [181]

A FIPA-compliant message is the fundamental form of communication among agents

that consists of Envelope, Payload, Message, and Content as Figure 10 shows.

Figure 10: FIPA Message Structure [181]

2.5.5 Agent Architecture

According to the paper [108], agent architecture specifies how the agent can be

decomposed into a set of component modules and how these modules communicate with

28

Transport
Envelope |)
P - Infarmation
Encoded
Payload T Message
Message Message
a Farameters
Content
o Message
- Content

each other. Typically, the author in [191] identifies three categories for single agent

architectures as the following:

Deliberative agent architecture: an agent contains an explicitly represented symbolic
model of its environment, and it makes decisions through symbolic reasoning. There
are three types of reasoning agents: symbolic reasoning agents, deductive reasoning
agents and practical reasoning agents. Belief-Desire-Intention (BDI) architecture is
one of the main deliberative agent architectures.

Reactive agent architecture: an agent acts based on stimulus-response rules and it
does not symbolically represent its environment. In this architecture, agents are able
to maintain ongoing interactions with their environment and respond to the changes
in it [192]. The architecture in [22] is a good example of reactive agent architecture
that considers agent properties, capabilities, and environment.

Hybrid agent architecture: an agent can act both deliberatively and reactively. In this
architecture, agent designers can build an agent out of two or more subsystems: one
is the deliberative agent containing a symbolic model that can develop plans and
make decisions in the way proposed by symbolic agents; another one is the reactive
agent which is capable of reacting to events without complex reasoning.

The BDI architecture is a philosophical model for describing rational agents [136],

and it contains specific denotation of Beliefs, Desires as well as Intentions [17]. The

architecture addresses how those Beliefs, Desires and Intentions are represented, updated

and processed. In the BDI architecture, agents with particular mental attitudes can choose

29

appropriate actions based on their capabilities and internal structures.

Beliefs indicate how agents know their surroundings that include themselves and
other agents. The Beliefs also include inference rules which allow forward chaining to
new beliefs, and the information is stored in a database called belief base. Unlike
knowledge, the Beliefs may be not true [181].

Desires are goals that agents would like to achieve [149], such as finding the best
price or becoming rich, and they are the motivational state of those agents. The difference
between desires and goals is that a set of goals must be consistent, but desires may be
inconsistent.

Intentions are the targets of agents, and they indicate what the agents have chosen to
do, which represent the deliberative state of those agents. In an implemented system, the
Intentions describe an executing plan that is a sequence of actions performed by an agent
to achieve one or more intentions. Plans are only partially with details being added during
their process [181]. The BDI approach consists of the following components [193]:
® A philosophical component for the theory of human rational actions.
® A software architecture component used in a number of complex applications.
® A logical component for the BDI logics.

When new information arrives, agents can update their beliefs or desires. The new
beliefs or desires can trigger certain actions, but only one intended action is selected and
activated. After executing that action, the intentions of those agents are updated, and the

new beliefs or desires are stored. Finally, a new cycle of the BDI model execution starts.

30

2.5.6 Agent Oriented Programming

Agent oriented programming has revealed a great potential to develop complex computer
applications by agent technologies. There are a number of approaches and methodologies
for agent-based programming, such as Jason [117], 3APL [54], JADE [8], and Jadex
[131].

Java Agent Development Framework (JADE) is one of the most widely used agent
oriented middleware today, and it provides a FIPA-compliant agent platform as well as a
package for developing Java agents. The JADE is the open-source software which has
been under development since 1999 by Telecom Italia Labs. The internal architecture of
the JADE fully complies with FIPA standard, and it provides a basic set of functionalities
that are considered as essential for autonomous agents [181].

Jadex is also a Java-based and FIPA-compliant agent environment, but it allows
modeling goal-oriented agents according to the BDI architecture. In the abstract Jadex
architecture [131], an agent can receive and send messages. The received messages or
goal events can trigger the internal reaction and deliberation mechanism of the agent,
which dispatches those events to the plans selected from a plan base. Running plans may
access and modify a belief base, exchange messages with other agents, create new goals
and trigger internal events again [181].

Belief base: stores a set of beliefs that make up the knowledge of an agent. Unlike
other BDI-based multi-agent systems, which beliefs are represented by certain kind of

first-order predicate logic or relational models, the beliefs in Jadex is a storage of

31

knowledge as a database for an agent. Those beliefs cannot support any inference
mechanism, and there are several advanced features on top of the belief representation.
Jadex uses an Object Query Language (OQL), which is a kind of query language adopted
from object-relational database world, to search the conditions that can trigger plans or
goals when certain beliefs change. In addition, the beliefs also can be stored as
expressions and evaluated dynamically on demand [181].

Goal structure: goals in Jadex are not just a special kind of event as those in pure
BDI-based multi-agent systems but a central concept. An agent can engage into some
actions for its goals until they have been achieved, unreachable or undesired. A goal
lifecycle consists of the following states [131]: option, active and suspended, which can
distinguish between just adopted and actively pursued goals. When a goal is adopted, it
becomes an option added to the desire structure of the agent, and application specific goal
deliberation mechanisms are responsible for managing the state transitions of all adopted
goals. There are four types of goals that extend the general lifecycle and exhibit different
behavior regarding to their processing as the following [181]:
® Achieve goal: defining a desired target state without specifying how to reach it.
® Maintain goal: specifying a state which should be kept once it is achieved.
® Perform goal: stating that something should be done but may not necessarily lead to

any specific result.
® Query goal: representing a need for information.

Plan specification: plans are used to specify agents’ actions to achieve their goals,

32

and Jadex uses a plan-library approach to represent the agents’ plans, which are written in
Java and predefined by developers. Those plans are instantiated in terms of handling
events, achieving goals, building action libraries for the agents as well as providing all
flexibilities of the Java programming language. The plans consist of two parts that are a
plan head and a plan body; the plan head defines the circumstances under which the plan
body is instantiated and executed. Based on the current circumstance, plans are selected
automatically in response to occurring events or goals by the system [181].

Agent definition: the complete definition of an agent is captured in a XML file
called Agent Definition File (ADF). The ADF consists of beliefs, goals, events, plans and
other agent elements; it can be regarded as a type specification for a class of instantiated
agents. Plans are declared by specifying how to instantiate them from the Java class. In
addition, the initial state of an agent can be determined in a configuration tag that defines
initial beliefs, goals and plans. In Jadex, the ADF is loaded first to start an agent; that
agent can be initialized by the configuration tag [181].

Execution model: before incoming messages in a message queue can be forwarded
to the system, it has to be assigned a capability of handling those messages. If a message
belongs to an ongoing conversation, an event for the incoming message is created in the
capability of executing that conversation, and the created event can be added to the global
event list of an agent; otherwise, an appropriate capability has to be found. Moreover,
there is a dispatcher in the execution model that is responsible for selecting applicable

plans for those events from the event list. Jadex can provide flexible settings to influence

33

the event processing based on the different event types and instances. The messages are
posted to one plan, and many plans are executed for one goal. After the plans have been
selected, they are placed in a ready list and wait for execution which is performed by a
scheduler [181].

2.5.7 Formal Methods for Multi-Agent Systems

When there is critical safety as well as security issues involved, informal analysis is not
adequate to ensure software qualities. Instead of using natural language with inherent
vagueness and ambiguity, formal notations can provide a means for precise specification,
which has been concerned with the description of a software design and its properties in a
mathematical logic or other formal notations [104]. In order to understand properties of
the systems containing multiple actors, powerful modeling and reasoning techniques are
necessary to capture potential evolutions of the systems, especially when agents or agent
systems are to be modeled and analyzed computationally [105].

Formal methods for agent systems attempt to represent and understand properties of
the systems by using logical formalisms to describe both mental states of the agents and
possible interactions in systems. Those logics of beliefs and temporal modalities require
efficient as well as rigorous theorem-proving or model-checking algorithms, which can
test, debug and verify the properties of multi-agent systems before their implementation
phase [105].

For the design of self-*, a programming paradigm that can support automated

checking of both functional and non-functional system properties may be needed. This

34

would lead to certify agent components for correctness in terms of their specifications.
Moreover, techniques are needed to ensure that the systems execute in an acceptable and
safe manner during the adaptation processes, such as using high level contracts,
invariants or dependency analysis to monitor system correctness before, during and after
adaptations [105].

2.6 Related Work

2.6.1 Self-Management Properties

This subsection states the research activity 1) in Figure 3. The difficulties of dynamic
software reconfiguration are examined in [184]. The authors concluded that both static
structure and run time behavior must be captured in terms of defining the workable
reconfiguration model.

An autonomic approach to network service deployment that scales to large and
heterogeneous networks is explored in [47]. The paper introduces a two-phase intelligent
network service deployment: 1) a macro-level operating in a hierarchical distributed way
to query and collect the capabilities of the nodes in network; 2) a micro-level refining
installation based on custom capabilities of each network component.

The authors in [16] claims that cooperative negotiation using incremental elicitation
is required to perform resource allocation in a distributed autonomic system. The paper
presents algorithms for computing mini-max regret and two elicitation strategies. They
use an automated resource manager which can allocate resources for workload managers

in order to maximize total organizational utility and then solve the resource allocation

35

problem.

Self-configuration is concerned with physical design, deployment and their static
aspects in [129]. The project called LAMDA (Lights-out, Automated Management of
Distributed Applications) is based on an adaptation of the Hierarchical Queuing Petri
Nets to model the environment.

The authors in [48] present an architecture for process execution that has an
autonomic controller. The controller provides self-tuning, self-configuration as well as
self-healing capabilities in order to automatically configure a distributed service
composition engine. The system has been designed so that its components can be
dynamically replicated on several nodes of a cluster. In addition, through the controller,
the engine can react to variations in workload through altering its configuration to
achieve better performance. The controller can also heal the system in case of failures.

The authors in [64] describe a problem determination methodology and architecture
that can standardize log format, content as well as organization. Moreover, the autonomic
systems which implement self-healing are based on the common problem determination
architecture to identify problems and implement solutions.

The authors in [92] propose an approach to implement self-healing according to the
“resource model” concept and System Management Ontology for representing Common
Information Model constructs.

The authors in [178] present a self-healing method which automates the mirroring

and replications in a network of servers. Moreover, the paper describes a design based on

36

a self-configuration mesh of computers and a communication mechanism between those
nodes that operate on a rooted spanning tree.

The authors in [197] describe adaptive components as a framework for component-
based development. An adaptive component has multiple implementations, and each one
is optimized for a particular request workload. The paper also claims that the dynamic
switching between implementations at run-time will become a useful self-optimization
tool for autonomic computing.

Statistical modeling, tracking as well as forecasting techniques borrowed from
econometrics are explored in [143] to yield a predictive autonomic system that regulates
its behavior in the anticipation of its needs. Moreover, the paper claims that the systems
using Clockwork method can detect and forecast cyclic variations on future performance;
they can use data to reconfigure themselves by anticipating their needs.

The authors in [1] describe a model-based control and optimization framework to
design autonomic systems which continually optimize their performance by changing
workload demands and operating conditions. The performance management problems of
interest are posed as one of sequential optimization under uncertainty, and a look-ahead
control approach is used to optimize the forecast system behavior over a limited
prediction horizon. The basic control concepts are then extended to tackle distributed
systems where multiple controllers must interact with each other to ensure overall
performance goals.

The authors in [154] present a general architecture to build self-optimization services.

37

Their framework can support both dynamic composition of service configurations and
runtime adaptation of configuration according to changes in a system or requirements.
The authors design a recipe representation which can be used by developers to capture
their service-specific knowledge. The recipe is used by a generic runtime infrastructure to
realize initial service configuration and adaptation. The runtime infrastructure includes a
synthesizer that constructs an abstract service configuration and maps it to physical nodes,
an adaptation manager which monitors the service and applies adaptation strategies, and
an adaptation coordinator that resolves conflicts among those strategies.

2.6.2 Autonomic Systems Modeling

IBM Tivoli Management Suite provides a jump-start toward fulfilling the ultimate goal of
a fully autonomic system. Figure 11 shows the coverage of IBM Tivoli Management
Suite across the IBM portfolio of products and services.

Self-Configuration: Configuration Manager can be noticed when the software on a
machine is not synchronized with a reference model, and it also creates a customized
deployment plan for each machine in a cluster. Identity Manager automates user life
cycles with native repositories. It communicates directly with access-system to create
accounts, passwords and privileges. Storage Manager can automatically identify and load

drivers for the storage devices connected to servers.

38

[Intelligent Business Systems Management

T— Configuration & Performance &
Securtty Tt Availability Storage
WEB
Sphere IBM Storage Manager for Application Servers, IBM Tivoli Web Site Analyzer
L1 || | |
DB2 IBM Tivoli Monitoring for Databases
L1 || | |
MQ IBM Tivoli for Business Integration
[| ||
Lotus IBM Tivoli Monitoring for Messaging and Collaboration
IBM . - o . _ _
Servers IBM Tivoli Net View for /OS5, IBM Tivoli Business System Manager
|| || ||
Storage IBM Tivoli Storage Management Solutions
| | | |

[Component Services

Figure 11: IBM Tivoli Management Suite across IBM Overall Architecture [118]

Tivoli Enterprise Console
Tivoli Switch Analyzer
Tivoli Risk Manager
Tivoli Net View

Tivoli Monitoring

Tivoli Storage Manager

Tivoli Configuration Manager
Tivoli Identity Manager
Tivoli Storage Manager

IELT
Tiwvoli

voli Servi | Advisor Tivoli Storage Manager
Tivol1 Service Level Advisor Tivoli Access Manager

Tivoli Workload Scheduler for Applications Tivoli Identity Manager
Tivoli Bus System Manager Tivoli Risk Manager
Tivoli Storage Manager

Tivoli Analyzer for Lotus Domino
Tivoli Monitoring

Tivoli Privacy Manager

Figure 12: Tivoli Autonomic Software Products [118]

39

Self-Healing: Enterprise Console automatically inspects error logs, derives problem
causes and initiates necessary actions. Switch Analyzer correlates network device errors
to rot cases without human intervention. NetView is able to display network topologies,
discover TCP/IP networks, correlate events, monitor network health and gather data. It
has the router fault isolation which identifies causes of errors and consequently initiates
corresponding actions. Monitoring for applications, databases as well as middleware can
automatically discover, diagnose and initiate problem resolution. Risk Manager contains
the self-healing technology which assesses security threats and automates responses for
server reconfiguration, patch deployment as well as account revocation. Storage Resource
Manager automatically notices storage problems and executes policy-based actions to
solve those problems.

Self-Optimization: Service Level Advisor can perform trend analysis according to
historical performance data and make predications on critical thresholds in the form of
events sent to Enterprise Console. Workload Scheduler for Applications is able to monitor
and automate workload executions. Monitoring for Transaction Performance enables the
monitoring of performance and availability of transactions. Storage Manager supports
adaptive differencing technology that can optimize resource usage for backup.

Self-Protection: Access Manager is able to prevent unauthorized access and control
resources for authenticated users. Identity Manager centralizes identity management and
integrates automated workflow of business processes. Risk Manager can provide system

wide self-protection by assessing potential threats and automating responses.

40

N1 is the Sun Microsystems product for grid computing [157, 158]. It provides
services to manage heterogeneous environment and removes information technology
complexity by technical means. Sun Management Center in N1 grid cluster architecture
is based on an intelligent agent reference model, where a manager can monitor and
control managed entities by sending requests to agents residing on managed nodes, and
those agents can collect management data on the behalf of the manager. Thus,
Management Center uses autonomous agent technology to implement its autonomic
capabilities, which includes powerful system administration tools, test and verification

tools, as well as automated installation and deployment tools [158].

Solaris Live Upgrade) _ i
Welb Start Flash Accounting and Reporting Console
Sun Validtion Test Suite Sun Management Center

Sun M1

Technical Computing Portal

Sun Grid Engine D

Figure 13: Sun N1 Autonomic Characteristics [158]
Self-Configuration: Solaris Live Upgrade and Web Start Flash provide automated
installation and deployment technologies with which systems can be upgraded while they
are running.
Self-Healing: Sun Management Center which is based on agent technologies can
provide self-healing capability. Account and Reporting Console uses a comprehensive

way to collect and analyzed detailed statics of usage on the Grid.

41

Self-Optimization: Sun Grid Engine distributed resource management software can
optimize the utilization of both software and hardware resources within a heterogeneous
networked environment.

Self-Protection: Technical Computing Portal provides a high-performance technical
computing with a secure anytime and anywhere access to a single Web based point of
delivery for services, content as well as complex applications through a standard Internet
browser and a simple user interface.

Dynamic System Initiative is a Microsoft effort to incorporate into the Microsoft
Windows platform a number of solutions which will ultimately implement autonomic
characteristics [114]. Microsoft autonomic computing architecture is based on System
Definition Model (SDM), which is used to create definitions for distributed systems, such
as the definitions of resources, endpoints, relationships and subsystems. Moreover, the
SDM contains deployment information, installation processes, as well as schemas for

configuration, events, automation tasks, health models and operational policies.

System Management Server Microsoft Operations Manageiment
Virtual Disk Services Corporate Error Reporting
Automated Deployment Services Internet Information Services
Windows Management Instrumentation System Center
Software Update Services Dynamic Data Center
DEI

Ivlic msoft
Network Load Balancing Integrated Support for.NET
Widows Server Clustering Integrated Support for ASP.NET
Windows System Resource Manager

Figure 14: Microsoft DSI Autonomic Characteristics [114]

42

Self-Configuration: Virtual Disk Service provides a vendor independent interface to
identify and configure storage devices from multiple vendors. Windows Management
Instrumentation can provide direct and unified management tools locally or remotely for
administrators. Software Update Services automatically deliver critical patches to target
computers from a single Intranet. System Management Server can provide WAN-aware
capability to reliable deployment of applications for thousands of workstations.

Self-Healing: Microsoft Operation Management incorporates event management,
proactive monitoring and altering, reporting and trend analysis as well as system and
application specific knowledge to improve manageability. Corporate Error Reporting can
provide information about the problems in applications for vendors and developers.
Internet Information Services is a Web server with self-healing that is supported by a new
fault tolerant process model.

Self-Optimization: Network Load Balancing enhances scalability and availability of
mission-critical, TCP/IP-based services, such as Web, Terminal Services, virtual private
networking and streaming media servers. Windows System Resource Manager can help
administrators to control how CPU resources are allocated to applications, servers and
processes. It improves system performance, reduces interference among resources and
creates a more predictable experience for users.

Self-Protection: Integrated Support for .NET as well as ASP.NET leverage a fully

managed and protected application environment of Web along with XML services.

43

2.6.3 Real-Time Reactive Systems

This subsection states the research activity 2) in Figure 3. The authors in [147] present a
formal framework for automatically recovering a class of reactive systems from run-time
failures. That class of systems comprises the executions which can be divided into rounds
so that each round performs a new unit of work. The paper also shows how the system
recovery and repair problems can be modeled as an instance of online learning problems.
The framework leverages parallelism to proactively explore the space of repairs before a
failure is occurred.

The authors in [151] introduce the real-time reference architecture for autonomic
computing where components implementing functions of real-time system elements or
blocks, such as transducers, controllers and actuators are designed. Based on the design
and implementation of that reference architecture, a self-adapting loop according to
system-specific adaptation knowledge that includes the types and properties of autonomic
components, behavior constraints as well as strategies for adaptation is proposed in [152].
The proposed system is an integral part of a real-time system which controls the behavior
of computing environment and evaluating its global behavior through a mathematical
description of time variation on the number of users in that system. According to the
evaluation, the adaptive system can change the control structure of autonomic computing
environment by replacing its controller with the one that matches corresponding user time
variation law. Moreover, the elements of the self-adapting loop as well as the trade-off

between additional overhead and autonomic computing processes are discussed in [152].

44

2.6.4 Multi-Agent Systems

This subsection states the research activity 3) in Figure 3. The authors in [167] present
Unity, a decentralized architecture for autonomic computing based on multiple interacting
agents called autonomic elements. The paper also illustrates how the Unity architecture
achieves autonomic behavior, such as goal-driven self-healing and real-time self-
optimization. In addition, they present a realistic prototype implementation that shows
how a collection of Unity elements self-assembles, recovers from certain classes of faults
and manages computational resources in a dynamic multi-application environment.

The authors in [98] introduce a peer-to-peer agent framework to support autonomic
applications in a decentralized distributed environment and provide those agents to
discover, compose, control elements. The framework also defines agent interaction and
negotiation protocols for enabling appropriate application behavior to be dynamically
negotiated and enacted. The defined protocols and agent activities are supported by a
scalable decentralized and shared-space based substrate.

The authors in [122] propose a multi-agent flexible and scalable autonomic service
and network management architecture. The proposed architecture is expected to reduce
the time for new services and minimize the cost of operations, development as well as
deployment of services in a scalable, flexible and autonomic way. The cost model show
that only instantiation cost of activated services is included, which means the cost might
be reduced to its minimum.

The authors in [15] describe an agent-based semantic platform where autonomic

45

computing principles can be applied to ensure the constant update of platform knowledge
base. Self-optimization and self-management techniques are proved to be very effective
for population as well as update of a semantic annotation repository. In addition, low
computational requirements and a built-in along with naturally distributed architecture
allow an easy deployment of the proposed platform on current Web.

The authors in [171] introduce an extension to UML 2.0 called Agent Modeling
Language (AML) that addresses specific needs, such as modeling autonomy, proactivity
and role-based behavior. In addition, the AML can be directly used by the designers of
autonomic computing systems to visually model their architectures and behaviors.

The authors in [99] present the architecture and operation of Rudder, a rule-based
adaptive multi-agent infrastructure for supporting autonomic applications in a pervasive
Grid environment. Rudder enables dynamic composition and coordination of autonomic
components to manage changing application requirements as well as system context.

The authors in [45] propose a self-organized model of agent-enabling autonomic
computing for the Grid environment. The model adopts intelligent agents as autonomic
elements and enables those agent-based elements to dynamically organize the system
management without a centralized control. At the element level, each agent possesses
certain capabilities as well as interests according to its managed resources and governs
internal affairs to achieve elementary autonomy. At the system level, agents contribute to
system management and cooperate to implement advanced autonomic behavior. That

cooperation is organized by dynamically associated relationship among those autonomic

46

elements (agents), including acquaintance, collaboration and notification.

The authors in [14] describe a toolkit for building multi-agent autonomic systems
called Agent Building and Learning Environment (ABLE), which provides a lightweight
Java agent framework, a comprehensive JavaBeans library of the intelligent software
components, a set of development and test tools as well as an agent platform. The paper
illustrates a series of agents built by ABLE components and presents three case studies
using ABLE toolkit. By using the ABLE component library to build agents running on an
ABLE distributed agent platform, the authors discuss how they can incrementally add
new behaviors and capabilities to autonomic systems.

The authors in [127] adopt the multi-agent approach for developing Autonomic
Information System (AIS), which can adjust its processing algorithms and data sources to
provide necessary information at various levels of efficiency and effectiveness. The
approach is based on Organization Model for Adaptive Computational Systems.

The authors in [95] present a model of adaptive agent built from the fine-grained
reusable components which can implement non-functional mechanisms, such as mobility,
adaptation skills and communication. Every agent can dynamically and autonomously
change its components to adapt runtime context, which improves safety and performance
for open, pervasive as well as large-scale distributed applications.

The authors in [59] indicates an autonomic computing infrastructure called MAACE
that can provide dynamically programmable control and management services to support

development along with deployment of intelligent applications. Moreover, the MAACE

47

can provide an environment to manage and control software systems through multi-agent
system cooperation, which has agent federation systems, agent mediate service systems
and agent monitoring systems.

The authors in [132] explore a multi-agent approach for developing an autonomic
architecture for telehealth systems, which involves remotely monitoring health conditions
of patients in post-surgery and patients with chronic diseases or life-threatening health
problems who require continuous monitoring.

The authors in [79] present the use of autonomic concepts for reflex autonomy in the
development of a multi-agent system. In addition, findings are discussed with reference
to the use of JADE agent platform.

The authors in [107] propose a multi-agent autonomic as well as bio-inspired based
framework with the self-managing capabilities to solve complex scheduling problems by
cooperative negotiation.

The authors in [173] describe two prototype agent-based systems, Lights-out Ground
Operations System as well as Agent Concept Testbed, and their autonomic properties that
were developed at NASA Goddard Space Flight Center to demonstrate autonomous
operations of future space flight missions.

2.6.5 Formal Methods
This subsection states the research activity 5) in Figure 3. The authors in [104] use Z to
construct a formal specification that can provide clear and precise definitions for objects,

agents as well as autonomous agents; the definitions allow a better understanding of the

48

functionalities from different systems.

The authors in [137] provide an abstract agent architecture which can serve as an
idealization of an implemented system and as a means for investigating theoretical
properties first, then the paper [138] describes an alternative formalization by starting
with that implemented system and formalizing semantics by an agent language, which
can be viewed as an abstraction of the implemented system and allows agent programs to
be written and interpreted.

The authors in [49] present a formal approach to the MAS by prototyping and
simulation oriented processes. The authors use a multi-formalism approach which is the
composition of Object-Z and state charts; this formalism enables the specification for
both reactive and transformational aspects of the MAS as well as their prototyping by
simulation. In addition, the authors use an organizational model that considers roles,
interactions and organizations from requirements to detailed design.

The authors in paper [29] introduce an agent-oriented modeling technique based on
Unified Modeling Language (UML) notation; graph transformation is used both on the
level of modeling to capture agent-specific aspects and the underlying formal semantics.
The authors also state a concurrency theory of graph transformation systems following a
double-pushout approach in terms of formalizing the relation among global requirement
specifications by sequence diagrams, and the implementation-oriented design models in
which graph transformation rules specify the local operations of agents.

The authors in [196] propose a model-based approach to design and implement

49

intelligent agents for the MAS. They use formal methods at the design phase of the agent
development life cycle instead of specifying agent behavior. The authors choose agent
oriented G-net model based on G-net formalism, which is a type of high-level Petri net,
to serve as a high-level design for intelligent agents. According to that high-level design,
they further derive the agent architecture and detailed design for agent implementation; a
toolkit called Agent Development Kit is developed to support the rapid development of
intelligent agents for the MAS.

The authors in [37] propose a temporal logic to represent dynamic agent behavior,
which is more powerful than corresponding classic logic and is useful for the description
of dynamic behavior in reactive systems. The authors consider a multi-agent system as a
system consisting of concurrently executing objects.

The authors in [195] use Predicate/Transition (PrT) nets, a high-level formalism of
Petri net, to model and verify multi-agent behaviors. According to the PrT model, certain
properties like parallel execution of multi-plans and their guarantee for the achievement
of goals, can be verified by analyzing the dependency relations between transitions.

The authors in [200] provide a formal Specification Language for Agent-Based
Systems (SLABS) to specify agent behaviors, which enable software engineers to analyze
agent-based systems before their implementation.

The authors in [106] describe a Constraint-Based Agent (CBA) design approach that
includes two formal models: 1) Constraint Nets; 2) Timed V -automata. A constraint net

can model agents and their environment symmetrically as dynamical systems; a timed

50

V -automata can specify desired real-time dynamic behaviors of those situated agents.

The authors in [77] study the adaptation of multi-agent systems from system level
and describe a formal framework for the multi-agent systems with adaptation capabilities.
The framework uses the polyadic pi-calculus that is suitable for specifying the software
with dynamic configurations.

The authors in [128] develop a formal multi-agent system based on a modal algebra
to preserve essential characteristics of its autonomous software agents; it can also explore
the formal properties and management of cooperation (non-hierarchical or flat structures)
as well as the coordination (hierarchical structures) between those agents, which can be
constructed by the operations of the model.

The authors in [32] introduce a formal-language model to explicitly formalize
agent-environment interaction in a multi-agent systems framework called Conversational
Grammar Systems (CGS). The CGS provides a model with a high degree of flexibility,
since it can accept new concepts and modify rules, protocols as well as settings during
computation. The formal model used in this paper is based on eco-grammar systems,
which can be defined as an evolutionary multi-agent system where different components
interact with a special component called environment. Therefore, there are two types of
components that are agents and the environment in an eco-grammar system; both of them
can be represented by a string of symbols that identifies current state of the components.
Those strings can change based on the sets of evolution rules (L systems); the interactions

between agents and the environment are executed by agents’ actions on the environment

51

state through certain productions from the sets of action rules.

The authors in [34] present a formal analysis of social interactions in multi-agent
systems. The fundamental building blocks are social agents which may be individuals or
group of agents whose structures can be formally characterized in terms of roles and
relationships among them. The work presented in this paper is formulated under the BDI
paradigm. A logical language L includes three modal operators B, D and [to express
beliefs, desires as well as intentions respectively.

The authors in [139] propose a formal approach that adopts a formal specification
language Temporal Z to cover the individual agent aspects and collective aspects of a
multi-agent application in terms of coordination protocols, organization structures and
planning activities. This paper also presents a methodology according to the stepwise
refinements that allow developing a design specification from an abstract requirement
specification.

2.7 Summary
In this chapter, we have briefly reviewed some concepts of the autonomic computing
technology that can be applied to the RASF.

An autonomic system has the characteristics of self-configuration, self-healing,
self-optimization and self-protection; the autonomic computing control loop makes a
foundation of autonomic systems. In order to implement those characteristics, autonomic
managers should have the following capabilities: 1) policy determination; 2) solution

knowledge; 3) common system administration; 4) problem determination; 5) autonomic

52

monitoring; 6) complex analysis; 7) transaction measurement.

We also described the architectures, open standards, development and related work
of the autonomic computing by which we can conclude that agent-based approach is a
natural way to model autonomic systems, so many ideas from the MAS community can
be adapted to implement autonomic systems. Thus, we gave an introduction of agent-
based computing technology, which included the definitions, interactions, communication
language, architecture, programming and formal methods of multi-agent systems.

Finally, we discussed the related work on autonomic systems modeling, real-time
reactive systems, multi-agent systems and potential formal methods used for specifying
reactive autonomic systems. We concluded that most of current formal approaches do not
have appropriate mechanisms to specify RAS and have not addressed well on verifying
emergent behavior (see Page 3 and Figure 1). Thus, we will give an introduction of
category theory in the next chapter as a formal framework to specify autonomic and

reactive behavior of the RAS modeled by RASF.

53

Chapter 3: Background: Category Theory

This chapter states the research activity 6) in Figure 3, which is the literature review on
Category Theory. Structure is crucial in large specifications and programs. A well-chosen
structure may greatly improve understanding, validation as well as modification of a
specification. In the RAS where self-management behavior is one of the most important
characteristics, the management of evolving specifications and analysis of changes
require a specification structure, which can isolate those changes in a small number of
components and analyze the impacts of a change on interconnected components [185].

Category theory has been proposed as a framework to offer that structure; it also has
been successfully used to provide composition primitives in both algebraic [189] and
temporal logic [35] specification languages. Category theory has a rich body of theory to
reason about objects and their relations (specifications as well as their interactions); it is
abstract enough for a wide range of different specification languages. Furthermore,
category theory for software specification has adopted a correct by construction approach
by which components are specified, proved and composed in the way of preserving their
properties [185].

Complex systems may be identified with diagrams (semi-formal), in which system
components along with connectors and their interconnections represent nodes as well as
edges respectively. However, the word diagram in category theory has a formal meaning
and carries all the intuitions that come from practice. Comparing to other formalization of

the software architecture concept, category theory is semantic framework to formalize

54

interconnection, configuration, instantiation and composition which are important aspects
of modeling the RAS with both autonomous and autonomic behavior. This can be
achieved at a very abstract level, since category theory proposes a toolbox applied to
whatever formalism for capturing components’ behavior, as long as that formalism
satisfies certain structure properties [36].

Category theory focuses on the relationships (morphisms) between objects instead of
their representations; the morphisms can determine the nature of interactions established
between the objects. Thus, a particular category may reflect a corresponding architectural
style. In addition, category theory provides techniques to manipulate and reason about
diagrams for building hierarchies of the system complexity, allowing systems to be used
as components of more complex systems, and inferring the properties of systems from
their configurations [36].

3.1 Definition of Category [6]

Definition 3.1.1: A category consists of the following data:

® Objects: A, B, C, etc.

® Arrows (Morphisms): f, g, h, etc.

® For each arrow f, there are given objects: dom(f), cod(f) called domain as well as
codomain of f, and f: A — B indicates that 4 = dom(f), B = cod(f).

® Given arrows f: A — B and g : B — C with cod(f) = dom(g), there is an given arrow:

ge°f:A— C called composite of fand g.

55

® For each object 4, there is an given arrow: 1,: 4 — A called identity arrow of A.

These data need to satisfy the following laws:
® Associativity: heo (gef)=(heg)efforallf:4A—>B,g:B—C,h:C— D.
® Unit: fol,=f=1,°fforallf: 4 — B.

Definition 3.1.2: A functor F: C — D between categories C and D is a mapping of
objects to objects and arrows to arrows in the way of: 1) F(f: A — B) = F(f) : F(4) —
F(B); 2) F(g°) = F(g) ° F(f); 3) F(1,) =1z, .

Definition 3.1.3: in any category C, an arrow f: 4 — B is called an isomorphism if
there is an arrow g : B — 4 in C such that g > f=1, and f > g =1,. Since identities are
unique, g = . A is isomorphic to B: A= B if there exists an isomorphism between them.

Definition 3.1.4: in any category C, an object is called initial object I if for any
object X in C, there is a unique morphism / — X; an object is called terminal object T if
for any object X in C, there is a unique morphism X — 7.

Definition 3.1.5: discrete category is a category where all morphisms are identity
morphisms.

Definition 3.1.6: category of sets is the category in which objects are sets. The
morphism between sets 4 and B are all functions from 4 to B.

3.2 Constructions on Category [6]
Definition 3.2.1: The product of two categories C and D: CxD has objects of the form

(C, D) for CeC, DeD and arrows of the form (f, g) : (C, D) — (C,D) for f: C

56

—C eCand g : D —D eD. Composition and units are defined as: (f,g) ° (f, g) =

(fofig e, 1cp =(l,1,); there are two projection functors: C «“— CxD—=—-D

defined by 7,(C,D)=C, = (f,g) =fand similarly for r=,.

Definition 3.2.2: the opposite or dual category C* of a category C has the same
objects as C, and an arrow f: C — D in C® is an arrow f: D — Cin C. Thus, C” is
just C with all of the arrows being formally inversed. It is convenient to have a notation
for distinguishing objects and arrows in C (f : C — D) from the same ones in C*
(f:D—C). With this notation, the composition and units in C® can be defined in
terms of corresponding operations in C as 1, ZTC and fog=g3f

Definition 3.2.3: the arrow category C~ of a category C has the arrow of C as
objects, and an arrow g from f: 4 — Bto f:A—B in C~ is a commutative square
as the following diagram, where g, and g, are arrows in C. Such an arrow is a pair of

arrows g = (g,,g,)in C that g,°f= f °g,, and the identity of arrow 1, on an object

f: A — B is the pair (1,,1;). The composition of arrows is (4,h,) ° (g,,g,) =

(h°g ,h°g,), and there are two functors: C <2 — C> — 5 D.

A L} ‘4;
v I
B— - B
g2

Definition 3.2.4: the slice category C/C of a category C over an object Ce C has:

® objects: all arrows fe C such that cod(f) = C.

57

has:

arrows: g fromf: X — Cto f:X — Cisanarrow g: X — X in C such that f °

g = f as the following diagram shows:

Definition 3.2.5: the co-slice category C/C of a category C under an object CeC

objects: all arrows fe C such that dom(f) = C.

arrows: A fromf: C — Xto f:C—X isanarrowh:X—X suchthathof=f

3.3 Abstract Structures in Category [6]

Definition 3.3.1: in any category C, an arrow f: A — B is called a:

monomorphism if given any g, h : C — A, f° g = f° h implies g = h; it can be

representedas [A — B

g -
C?—Ef"‘q#;B

)

epimorphism if given any i, j : B — D, i ° f=j ° fimplies i =j; it can be represented

as ffl—»B

Definition 3.3.2: in any category C, an object: 1) 0 is initial if for any object C, there

is a unique morphism 0 — C; 2) 1 is terminal if for any object C, there is a unique

morphism C — 1. A terminal object in C is exactly an initial object in C™.

Definition 3.3.3: a sp/it monomorphism (epimorphism) is an arrow with a left (right)

58

inverse. Given arrows e : X — 4 and s : 4 — X such that e = s =1, then s is called a
section or splitting of e; e is called a retraction of s; A is called a retract of X.
Definition 3.3.4: in any category C, a product diagram for the object 4 and B

consists of an object P and arrows A «2— P—2— B satisfying: given any diagram of

the form 4 «—— X—=— B, there exists a unique u : X — P making the following

diagram commute, and a pair of objects may have many different products in a category.

X
/ Hx
&
A = P = 2
P Pz

3.4 Duality in Category [6]

Proposition 3.4.1: for any statement) about categories, if Y, holds for all categories,
then so does the dual statement Y. : Y impliesY. .

Definition 3.4.2: a diagram 4 —%— Q<«%2— B is a coproduct of 4, B if for any Z

and 4 —— Z«—=—B, there is a unique u : Q — Z withu °g,=z, as indicated in:

=
A =~) = B
g1 9=

The coproduct is usually represented as 4—2—>A4 + B<2—B, and [f, g] represents

uniquely determined arrow u : 4 + B — Z. The coprojection i;: 4 — A+ Band i,: B—
A + B are usually called injections, and a coproduct of two objects is exactly their product

in the opposite category.

59

f
A > B
Definition 3.4.3: in any category C, given parallel arrows 9 , an equalizer of

fand g consists of £ and e : E — A such that: fo e = g ° e, which means givenz : Z — A4
with fo z =g ° z there is a unique u : Z — E with e °© u = z as indicated in the following

diagram:

A

Definition 3.4.4: for any parallel arrows f, g : A — B in a category C, a coequalizer

consists of Q and g : B — Q with the property g ° f= g ° g as indicated in the following

diagram:
N -
A =z o =~ 2
g :
o
&
=

That is, givenany Zand z : B — Z, if z o f=z ° g, then exists a unique u : Q — Z such that
ucq=rz.
3.5 Limits and Colimits [6]

Definition 3.5.1: in any category C, a pullback of arrows f, g with cod(f) = cod (g):
V=
o

A ~
v

consists of the following arrows such that o p,=g - p,.

60

For example, given any z,: Z — 4 and z,: Z — B with f ez = g °z,, there exists a

unique u : Z — P with z,=p,cuand z,=p,°u.

B =

= =
P2
J/pl lg
=
I

A

Lemma 3.5.2: consider the commutative diagram in a category with pullbacks:

® [f the two squares are pullbacks, so is the outer rectangle: Ax,(Bx.D)=Ax.D

® [f the right square and the outer rectangle are pullbacks, so is the left square

F = I
h!! J/ J/ h
A =

Corollary 3.5.3: the pullback of a commutative triangle is a commutative triangle.

i - = 9’
J"”
S

x g

Specially, given a commutative triangle as on the right end of the prism diagram below,

61

for any & :C' — C if one can form the pullbacks « and B as on the left end, then
there exists a unique » making the left end a commutative triangle as well as the upper

a commutative rectangle.

A = A4
. "rlct
IS . f_f” " \
Bt = 3
Fos
"’ 7 = '

Definition 3.5.4: Dualize the definition f a pullback o define the “copullback”
(usually called the “pushout™) of two arrows with common domain.
Definition 3.5.5: let J and C be categories. A diagram of type J in C is a functor D :

J — C. The objects in the index category J are represented as i, j, ... and the values of the

functor D : J — C are in the form D,, D, A conetoa diagram D consists of an

object C and a family of arrows in C, ¢;: C — D, for each object j € J such that for each

arrow o : i — j in J, the following triangle commutes.

a < — I,

o,

A morphism of cones v : (C,c;) — (C',c_l.') is an arrow o in C making each triangle

commute.
« i —
P
\ J/ >
i

62

Definition 3.5.6: a /imit for a diagram D : J — C is a terminal object in the category

Cone(D) represented as p,:lim D, — D,. A finite limit is a limit for a diagram on finite

J

index category J. Given any cone (C,c¢;) to D, there is a unique arrow u : C —lim D,

j

such that for allj, p,cu=c,.

J

Definition 3.5.7: a functor F': C — D is said to preserve limits of type J if whenever
p;: L —D; is alimit for a diagram D : J — C, the cone Fp;: FL — FD, is then a
limit for diagram FD : J — D, F(liln D)= liln F(D;). A functor that preserves all limits
is said to be continuous.

Definition 3.5.8: a functor of the form F :C® — D is called a contravariant functor
on C, which takes f: 4 — B to F(f) : F(B) — F(A) and F(g ° f) = F(f) ° F(g).

Definition 3.5.9: a colimit for a diagram D : J — C is an initial object in the category
of cocones from the base D, which consists of an object C (the vertex) and arrow
¢;:D;— C for each jeJ, such that forall a : i — j in J, ¢;° D(a) =c,. A morphism of
cocones /2 (C, (¢;)) = (C, (¢;)) is an arrow f: C —C in C such that fo ¢,=¢; for

all j € J; an initial cocone maps uniquely to any other cocone from D, and a colimit can be

represented as lim D, .

.‘)
Jjed

Definition 3.5.10: a functor ¥ : C — D is said to create limits of type J if for every
diagram C: J — Cand limit p;: L — FC, in D, there is a unique cone p_j:Z—>C]. n
C with F1 (p_].) =p, and F (Z) = L which is a limit for C; every limit in D is the image of

a unique cone in C. The notation of creating colimits is defined analogously.

63

3.6 Functors and Naturality [6]

Definition 3.6.1: a functor F': C — D is said to be:

® injective on objects if the object part F:C,— D, is injective, and it is surjective on
objects if F, 1is surjective.

® injective on arrows if the arrow part F,:C,— D, is injective, and it is surjective on
arrows if F, 1is surjective.
Proposition 3.6.2: a full subcategory U— C consists of some objects in C and all

the arrows between them, thus satisfying the closure conditions for a subcategory.

Definition 3.6.3: for categories C, D as well as functors F, G : C — D, a natural

transformation (v : F' — G) is a family of arrows in D, (v, FC— GC . , such that
for any f: C — C in C, there exists v - F(f) = G(f) °v. as indicated in the following
diagram. Given such a natural transformation v : /' — G, the D-arrow v.: FC — GC'is

called the component of v at C.

o L CICT
FfJ/ J/C;f
Fa — =
P

Definition 3.6.4: the functor category Fun(C, D) has: 1) objects: functors F : C — D;

2) arrows: natural transformations v : ' — G. For each object F, (1.).=1,.: FC — FC
and the components of F—*— G—%— H has components (Yov .=d.°v,..
Definition 3.6.5: a natural isomorphism is a natural transformation » : F — G which

is an isomorphism in the functor category Fun(C, D).

64

Lemma 3.6.6: a natural transformation v : ¥ — G is a natural isomorphism if each
component v, : FC — GC is an isomorphism.

Definition 3.6.7: an equivalence of categories consists of functors £: C — D, F: D
— C and natural isomorphisms o :1. ~F° Ein C%, f:1, ~E° Fin D"; the functor F
is called a pseudo-inverse of E; the categories C and D are said to be equivalent: C=D.
The equivalence of categories is a generation of isomorphism, and two categories C, D
are isomorphic if there are functors £: C — D, F': D — C such that 1.= GF, 1,=FG.
In the case of equivalence C=D, the identity natural transformations are replaced by
natural isomorphisms; the equivalence of categories may be considered as isomorphism
up to isomorphism.

Property 3.6.8: If C is a full subcategory of D and every ¥ € D is isomorphic to
some object X in C, then the inclusion functor F: C — D is an equivalence of categories.
3.7 Related Work
There has been an increasing interest on applying category theory to various areas of
computer science. Particularly, it has been used to: 1) study different approaches for the
mathematical semantics of programming languages; 2) define semantics for parallelism
and synchronization; 3) provide a generalized concept of automata; 4) specify problems,
clarify concepts, formulate consistent definitions, analyze and help in understanding
computational phenomenon [94].

Category theory has played a role in studying initial algebra [41] and many sorted

algebraic theories [42] have formed a basis for current algebraic semantics of abstract

65

data types. Category theory has also been applied to relate different theories. For example,
the author in [186, 187, 188] describes an application of category theory on the Petri-Net
Model for parallel computation and relates it to models, such as trees, state machines,
event structures and nets.

The authors in [163, 164] apply a category theory framework to general systems. A
symbolic category method is introduced to categorize various system classes and their
concepts. The authors also indicate how the concept of states as well as their space
representation can be derived in the framework of category theory.

The authors in [43] apply the category theory as a conceptual tool to model general
systems through the abstract representation of systems, which take objects, systems,
interconnection and behavior as a basis. The authors present a Behavioral Theorem,
stating that the behavior of an interconnection between objects can be considered as the
behavior of individual objects; they also indicate that the notion of autonomy, interaction,
cooperation and self-organization are relevant to their study.

The author in [46] presents a unifying framework based on category theory for the
component dependencies modeling techniques. The authors in [91] provide a universal
categorical model of synchronization between computing processes. The authors in [146]
define the synchronization on a formula of two consequence systems and provide the
categorical characterization for construction.

The authors in [71] present the modular composition of a transaction processing

protocol, namely three-phase commit (3PC) protocol utilizing some concepts of category

66

theory; they illustrate how the overall global properties of the protocol can be proved by
utilizing constructs for local sub-properties from the inherent building blocks in the 3PC
protocol.

The authors in [5] state a general definition of machines in an arbitrary category,
which unifies the theories of sequential machines, linear control systems, tree automata
and stochastic automata.

The authors in [60] provide a precise semantics for both components structuring and
models mapping by using category theory. In this paper, morphism composition is used to
trace the interconnections and mapping relations among component-based models, while
consistency between the sorts/operations of those models at different abstract levels is
maintained by functors.

The authors in [168] abstract and describe the process of multi-sensor data fusion as
well as its taxonomy by a language of category theory. Categories are developed for
sensors, data sets, processors, feature sets, classifiers as well as label sets. Fusion rules
are defined and shown to hold a unique role in various categories; fusion processes can
be described as an optimization of fusion rules in an appropriate category.

The author in [50] provides the architecture for system configuration, which is
independent of various approaches for the specification, design and coding of systems.
The key idea is to focus on configuring those systems from reusable modules at any stage
during system development. The module is precisely defined as an instance of a textual

specification; the configuration takes place in a mathematical framework that is based on

67

the category theory.

The authors in [182] report on the application of category theory to design a
simulated robot control system, where a neural network controller is constructed based on
a desired conceptual ontology.

3.8 Summary

In this chapter, we have presented some definitions, propositions and theorems of the
category theory, which may be applied to specify autonomic and reactive behavior of the
RAS modeled by RASF in Chapter 6.

Category theory has a rich body of theory to reason about objects as well as their
relations, and it is abstract enough for a wide range of different specification languages.
Category theory for the software specification has adopted a correct by construction
approach by which components are specified, proved and composed in the way of
preserving their properties. Moreover, category theory can provide techniques to
manipulate and reason diagrams for building hierarchies of system complexity, allowing
systems to be used as components of more complex systems and inferring properties of
the systems from their configurations.

Finally, we have introduced the concept of constructions, duality, limits, naturality
and adjoints in the category theory. We will start to describe our case studies in terms of

illustrating the RASF approach in the next chapter.

68

Chapter 4: Background: Case Studies

This chapter states the research activity 4) in Figure 3, which is the literature review on
case studies. I had one publication [126] during this stage.
4.1 Mars-World
The Mars-world case study [201] is mainly used in the rest of this thesis to illustrate our
approach. In this case study, a group of robots accomplish ore exploitation on the planet
Mars. To achieve this goal, these robots must locate ore resources (the squares in Figure
15) in the area, mine them, and transport produced the ore to a base (the pentagon in
Figure 15) in terms of storage. This process is completed by three types of robots, and all
the robots have a sensor range to detect presence of ore. There is a sentry robot whose
responsibility is to analyze suspicious spots to evaluate if there is enough ore to be mined.
This type of robot has a wider sensor range to better verify candidate locations. When the
sentry robot evaluates a mine to be exploited, it sends its location to a second robot type
known as production robot. This robot has devices to dig and mine ore. After finishing its
job, the production robot calls a carry robot to transport the produced ore to the home
base. The carry robot has necessary equipments to carry ore and ability to move faster
than the other types of robots.

To better illustrate our approach, we have added two more types of robots to this case
study. These two robots are more involved in administration and coordination tasks at the
autonomic group as well as system levels. A group supervisor robot can form a group of

robots to find and exploit ore in the areas requested by a system manager robot. It can

69

register specialist robots, supervise them and resolve conflicts between them. A system
manager robot may receive requests from the ground station on Earth and transfer
required data back. It can manage group supervisor robots, assign tasks to them and
collect requested data from them. Moreover, each supervisor robot and manager robot
has its backup robots used to ensure fault-tolerance, since they serve as critical roles and
store important data, such as repositories and work outcomes.

Figure 15 depicts a sample scenario of the Mars-world. When the group supervisor
robot receives an order with the subarea coordinate of the ole, it forms an exploration
group with sentry robots, production robots and carry robots. The size and composition
of the group is dynamic based on how much ore is found and left in its subarea. For
instance, the supervisor robot in subareal can ask the supervisor robot in subarea2 or any
other supervisor robot for more production robots and carry robots because of new
detected ore. The amount of remaining ore of each spot is indicated as a percentage

number and reported to the supervisor robot by the sentry robots.

Subsareal Subareal
E FProglaction FProwluction
Reakbwat Hm"m-'
- Cervry O Cervry
Sentrw Rebok R”'II”I Sewey
2ok i 1,

bt el iar II.-_,“J{!”‘__ licr Freatwns
Rewbaat Forbat
Leloal]
H Carry H .

Rrwhuat

_'1'r'rJ.'.':| Proadictions T 1
Rendug Roatwert Hr.—hu
Kerpervisar O SupEtvis o O Kepervisar O Supervisor O
Fobar Rabo-Backup Rabo Rabor-Backup

-1..|'.-.'r.-.:.';:|.'J'O AManagrer O
Rerbaont Robot-Backup Exploration MArea

Figure 15: A sample scenario of Mars-world

70

4.2 Prospecting Asteroid Mission

In order to support the versatility and flexibility of applying our research outcome, we
also select the Prospecting Asteroid Mission (PAM) case study as another application
modeled by the RASF.

The PAM is an application of Autonomous Nano Technology Swarm (ANTS) mission
architecture from NASA. The PAM consists of 1000 pico-spacecraft organized into 10
specialist classes with highly maneuverable as well as configurable solar sails. The basic
design elements are low-power, low-weight components and individual systems that are
capable of operating as fully autonomous and adaptable units for swarm demands as well
as environmental needs. Through 10 to 20 sub-swarms operating simultaneously,
hundreds of asteroids could be explored during a mission traverse for an asteroid belt
[25].

The PAM must fulfill the following asteroid survey requirements: 1) optimal science
operations at every asteroid such as the search of appropriate spacecraft trajectories that
can enable efficient operation of workers’ instruments and concurrent operations between
multiple asteroids such as asteroid detection and tracking; 2) ongoing evolution of
strategies as a function of asteroid characteristics; 3) no single point failure and
robustness with respect to minor or critical loss; 4) a high level of autonomy as a group of
specialized workers. The PAM is designed for a systematic study of an entire population
of elements and involves not only a smart spacecraft, but also an autonomic and

distributed network of sensors or spacecraft with the specialized device capabilities, for

71

instance, computing, imaging and spectrometry, as well as adaptable and evolvable
heuristic systems. Furthermore, the sub-swarms of spacecraft can operate autonomously
to enable the optimal gathering of complementary measurements for selected targets and
can also simultaneously operate in a broadly defined framework of goals to select targets

from candidate asteroids [25].

-~ 2
Asteroid belt ™ 1
3 - - :
i Rulars I_.'Elg rangian point
Asteroid(s) o habitat
VWorkers <o-de-Messengers
.} £
[L]
- Waorkers Workears 3
j Earth
Ke-ray waorker S5

- pMessenger
'
. =
Mag worker

Figure 16: A Sample PAM Scenario [174]

The PAM spacecraft explore a selected asteroid through offering the highest quality
and coverage of measurement by particular classes of measurers that are called virtual
teams. A virtual instrument team consists of members from each spacecraft type to
optimize data collection. Another strategy involves providing the comprehensive
measurement to solve particular scientific problems by forming virtual experiment teams
made up of members of multiple specialist spacecraft. The social structure of the PAM

swarm can be determined by a particular set of scientific and mission requirements, as

72

well as representative system elements may include [27]: 1) a general, for distributed
intelligence operations, resource management, mission conflict resolution, navigation,
mission objectives and collision avoidance; 2) rulers, for heuristic operation planning,
local conflict resolution, local resource management, scientific discovery data sharing
and task assignment; 3) workers, for local heuristic operation planning and scientific data
collection [27].

The PAM can therefore be regarded as an RAS with autonomic properties [174]. The
resources can be configured and reconfigured to support parallel operations at hundreds
of asteroids over a given period (self-configuration). For example, a sub-swarm may be
organized for scientific operations at an asteroid, and this sub-swarm can be reorganized
at another asteroid. The rulers may maintain data on different types of asteroids and
determine their characteristics over time. Therefore, the whole system can be optimized
because time will not be wasted on the asteroids that are not of interest or are difficult to
observe (self-optimization). The messengers provide communication between the rulers,
workers and Earth, so they can adjust their positions to balance the communication (self-
adaptation). The PAM individuals should be capable of coordinating their orbits and
trajectories to avoid collisions with other individuals in a reactive way. Moreover, the
plans of the rulers should incorporate the constraints necessary for acceptable collision
risk between the spacecraft when they perform observation tasks (self-protection and
reactive). The rulers capable of sensing solar storms should invoke the goal of protecting

their missions when they recognize a threat of such storms. In addition, the rulers can

73

inform the workers of the potential for these events to occur, so that they can orient their
solar panels and sails to minimize the impact of solar wind. The rulers can also power
down the workers’ subsystems to minimize the disruption from charged particles (self-
protection and self-adaptation).

4.3 End-to-End iFix Tool

In order to support the feasibility of applying our research outcome on industrial projects,
I select the End-to-End iFix Tool (E2E) case study as an industrial application modeled
by the RASF during my research internship at IBM Canada.

The E2E is a fully automated fix (patch) generation tool for the IBM WebSphere
Application Server (WAS). It is a web-based application to process official fix creation
requests from the IBM support teams. The tool implements an automated and autonomic
process to build and test iFixes with minimal user input as well as intervention based on
source code for a fix being available and identifiable in a source code repository system.
The tool consists of three main components: 1) Web-based GUI front-end; 2) Fix creation
engine; 3) Fix validation engine. The information obtained from the front-end is used to
obtain an installable iFix from the creation engine; the validation engine is then used to
install, test and uninstall the iFix to validate correctness as well as completeness. The
E2E interacts with a repository tool to store source code and a build tool to compile the
source code into object code and a packaging tool to package the object code into an

installable fix.

74

EZE

Source code
repository]
Source code compile
tool
Object code
packaging tool

<~

Web-based
front-end GUI

«

@I—Lnd user i

Fix creation
engine

“

DNIRVALV¢

]

Fix conversion tool

Fix validation
engine

AN

{equests from end users

Email Notification
Automated FVT test
bucket

VT component test
suiie

Figure 17: A Perspective of E2E

The fix creation engine leverage source code repository, source code compile tool and
object code packaging tool to create an ifix. The actions below are executed based on the
user input: 1) defect information is extracted from the source code repository; that
information is then displayed to the end users for confirmation and modifications, which
can be checked for consistency with the source code repository; 2) the engine then wraps
up the information and forwards a build request to the source code compile tool in terms

of generating binary classes, which can be packaged by the object code packaging tool,

validate by the FVT test bucket and uploaded to the iFix repository.

75

The fix validation engine provides a mechanism to verify the integrity (correctness,
completeness, installability and uninstallability) of an iFix reactively in the run time,
which leverages two services: 1) GIT automation framework to validate iFix installation;
2) FAT bucket hosted by the Continuous Testing Framework server. If both testing results
are positive, the iFix will then be uploaded to public iFix repository and an email
notification will be sent the end users with the deliverable iFix.

4.4 Related Work

The authors in [53] present a model-driven autonomic computing technology for the
ANTS missions. Comparing to other models, the new hierarchical model can overcome
challenges of largeness, complexity, dynamicity and unexpectedness in the ANTS system.
The paper also describes the structure and functions of virtual neuron, which is a basic
unit together with the model for the model-driven autonomic technology in the ANTS
missions.

The authors in [18] introduce an Agent Modeling Language (AML) and demonstrate
how AML can be applied to efficiently, accurately and comprehensively model the PAM
system. A selection of the AML models that specify the PAM domain, goals, architecture
as well as behaviors are also presented in this paper.

The authors in [175] describe a formal task-scheduling approach and model a self-
scheduling behavior of the ANTS by an autonomic system specification language, where
both group and individual tasks are structured in the form of time aware fault-tolerant

which applies tolerance to timing violations.

76

4.5 Summary
In this chapter, we have described three case studies in terms of illustrating the RASF
approach, which includes Mars-world, PAM and End-to-End iFix Tool.

In Mars-world, the objective for a group of robots is to mine ore; the mining process
is composed of locating the ore, mining it, and transporting the mined ore to a home base.
The sensed occurrences of ore are reported to a sentry robot that has a wider sensor range
in terms of verifying whether a suspicious spot actually has ore. When ore is found, the
location is sent to a randomly selected production robot with the mining device. After
mining is finished, a group of carry robots is requested to transport ore to the home base.

The PAM spacecraft study a selected target by particular classes of measurers called
virtual teams. For example, an experiment team consists of the specialist classes to solve
particular scientific problems, such as Petrologist team. The system elements include
generals, rulers, workers, and messengers.

The E2E is a web-based application to process official fix creation requests from the
IBM support teams. The tool implements an automated and autonomic process to build
and test iFixes with minimal user input as well as intervention based on source code for a
fix being available and identifiable in a source code repository system.

After introducing all necessary background on autonomic computing, multi-agent
systems, real-time reactive systems, formal methods, category theory and case studies,

we will illustrate the RASF methodology in the next chapter.

71

Chapter 5: Methodology of RASF

This chapter states the research activity 7) in Figure 3, which is the prototype design of
the RASF model, and describes the contribution of the author (Section 5.1 & 5.2) as well
as the collaboration and supervision to the master students involved in the RASF project
(Section 5.3 & 5.4).

Real-time reactive systems are some of the most complex systems, and they have
become increasingly heterogeneous and intelligent. However, current formal approaches
do not have an appropriate mechanism to specify autonomic reactive systems, which are
able to simplify and enhance the experience of end-users by anticipating their needs in a
complex, dynamic and uncertain environment. With autonomic behavior, the real-time
reactive systems can be more self-managed to themselves and more adaptive to their
environment. Therefore, our goal is to build a formal framework, the RASF, which can
leverage modeling, specification and development of the RAS.

5.1 RAS Model in RASF

The RAS architecture model (see Figure 18) is a four-layer architecture that consists of
Reactive Autonomic Objects (RAO), Reactive Autonomic Components (RAC), Reactive
Autonomic Component Groups (RACG) as well as the RAS. The autonomic features are
implemented by RAO Leaders (RAOL), RAC Supervisors (RACS) and RACG Managers
(RACGM) at the RAC, RACG as well as RAS layer respectively [90]. In this layered

architecture model, each tier communicates only with the tier immediately above or

78

below it. Thus, the independence of those tiers makes their modularity, encapsulation,

hierarchical decomposition and reuse possible.

Reactive Avutonomic Systems (RAS) |

JC

| Reactive Autonomic Component Groups { RACC) |

s

Feactive Autonomic Components (EAC) |

s

| Reactive Autonomic Objects (RAD) |

Figure 18: RASF Architecture Model

5.1.1 RAO
The reactive behavior of RAO is modeled as a labeled transition system augmented with
ports, resources, attributes and the logical assertion on those attributes as well as time
constraints [123]. More specifically, it is modeled as a 9-tuple (P.£6.X,L ¢ AY.R)
where P.E.8.X.L. 2,11 are specified as in [134]:

e Pis a finite set of ports associated with each port-type and the null-type B, whose

only port is the null port p,.

e ¢is a finite set of events and includes the silent-event tick.

e 0 is a finite set of states where 6,: 8, is the initial state; there is no final state.

e x is a finite set of typed attributes: abstract data types and port reference types.

e £ is a finite set of Larch traits for the abstract data type used in .

e @ is a function-vector (@, ®,) which @ associates with each state # a set of sub

states and @, associates with each state # a set of attributes.

79

e /is a finite set of transition specifications between the states.

e T is a finite set of time-constraints over the transitions.

e R models the set of resources available locally for the object to support its

functionality.

5.1.2 RAC
RAC is a homogenous set of communicating RAO, where one of the RAO is assigned as
a leader (RAOL) of the rest (workers). The workers are responsible for reactive tasks,
while the RAOL works on autonomic tasks such as coordinating the self-monitoring at
component level. Thus, the RAOL has a different set of states from the workers, which
states are autonomic behavior related besides the reactive behavior. The reactive and
autonomic natures of formal specifications for the RAOL enable them to implement
autonomic functionalities in a real-time reactive system. In order to coordinate the work
as well as communication between the RAO, a RAC specification consists of Members,
Configure, Leader, Supervisor, Neighbors and Repository (see Figure 19). The RAC is
the minimum centralized Reactive Autonomic Element (RAE) that has the ability of

self-management in RASF [84].

EAC <name>
Members: <list of the B.AC’s names in the RAC?
Canfigire: <list ofthe pairs of communicating members in the RAC
Leader: <name of the FA O modeled as a leader for the RAC>
Stpervisor: <name ofthe EACGE s supervisor to which the EAC belongs>
Neighbaors: <list of the BAC s names that belong to the same EACG:
Repasitary: <path of the RACs knowledge base>

End RAC

Figure 19: Specification of the RAC

80

Similarly to the RAO, the reactive behavior of a RAC that consists of n collaborating
RAO is specified as a 9-tuple (P=¥®, £5v7, @7 X570, L5708, Q¥R \S¥R Y sym Ramy [123]:

e P is a set of port-types allowing for a synchronous communication between the
RAO.

e ¥ isaunion ofall &

e =%" is a finite set of reachable and valid Synchronous Production Machine (SPM)
states.

e ¥¥" is aunion of the finite sets ¥*", ... X"

e £ is a union of the finite sets of Larch Specification Language (LSL) traits for
Abstract Data Type (ADT) used in the RAO.

o %" is a function-vector (#57". &1", #;¥™) that #2™"associates with each SPM state
6" a set of sub states; #;}" associates with each SPM state %" the union of the
set of attributes a set of attributes @_.,(8"")..... &, . (87"):

e A%" is a finite set of transition specifications between the states.

e 17" is a finite set of time-constraints over the transitions.

e RY" i5 a set of resources available in the RAOQO; it is defined as a union of all
Rili wnl].

5.1.3 RACG
RACG is a set of RAC that cooperate in fulfillment of group tasks by synchronous

communications. The autonomic behavior at group level is coordinated by a supervisor

(RACS). Figure 20 shows a RACG specification.

81

E& CG <name>
Members: <list of the A C'snames in the RACG>
Carfigine: <list of the pairs of communicating members in the RACG>
Supervisar: <name ofthe EAC modeled as a supervisor for the EACG>
Manager: <name of the RAS s manager to which the RACG belongs=
Neighbars: <list of the RACGS names that belong to the same RAS>
Repository: <path of the RACE sknowledge base>

End RACG

Figure 20: Specification of the RACG
5.1.4 RAS
RAS is made up of RACG with corresponding communication. It provides an integrated
interface for users to delegate tasks and monitor systems. A manager (RACGM) is
responsible for coordinating autonomic behavior at system level. Figure 21 illustrates a

RAS specification.

EAS <name>
Members: <list of the RAC3 s names inthe RAS>
Manager: <name of the RAC modeled as amanager for the RAZ >
Repasitary: <path of the RAS s knowledge bases

End RAS

Figure 21: Specification of the RAS
5.2 Autonomic Behavior in RASF
In RASF, the autonomic behaviors of RAOL, RACS and RACGM are modeled as the
intelligent control loops specified as labeled transition systems (Figure 22), where states
specify tasks (Monitor, Analyze, Plan, Execute, HandleException); events specify
triggers from one state to another; transitions specify state sequences under time

constraints [85].

82

NoChange [HasChange/initialize(TCvar) |

[NoAction/reset(TCvar) |

Monitor Analyze

HandledMonitor | [Handled Analyze

[MonitorException AnalyzeException]

[ActionDone[TCvar<=t3]] [HandleException] [HasAction[TCvar<=t1]]

[ExecuteException [PlanException]

ActionFailed NoRlan

Plan

andledExecute] [HandledPlan

Execute [HasPlan[TCvar<=t2]]

i

Figure 22: An Example of Intelligent Control Loop

5.2.1 Monitor

Monitor is the first state and it has three internal events which are NoChange, HasChange
and MonitorException depending on the evaluated current states of the RAE being
monitored. If those states keep the same evaluation as previously, NoChange event occurs
and the control loop goes back to Monitor; otherwise, HasChange event occurs and the
control loop transits to Analyze. The evaluation can be realized with heart-beating
messages sent by those RAE which are connected by ports. The configuration changes

caused by those RAE’s new composition at runtime can also be monitored in a similar

way as the state changes [126].

5.2.2 Analyze

The intelligent control loop transits from Monitor to Analyze triggered by HasChange

event [176]. Figure 23 depicts the graphical notation of a transition.

83

Eventi1[port-condition && enabling-condition
& & time-constraint-condition] 7
post-condition && time-initialization

[state1 \| r state2 h
|

Figure 23: Specification of a Transition
® Port condition: a logical assertion on attributes and a port ID pid. If an assertion is
true, then the pid can be bound to any port belonging to the port type of the event
associated with a transition.
® FEnabling condition: a logical assertion on attributes specifying necessary condition
for a transition to take place.
® Post-condition: a logical assertion on attributes, and a port ID pid. The post-condition
gives a data computation associated with a transition.
® Time constraint condition: a lower bound, an upper bound and an integer named
TCvarN (N is a number) that should be initialized to 0 on the transition of a
constraining event as the second Action. The upper bound must be specified and the
lower bound is assumed to be 0 unless otherwise indicated. A constrained event may
have zero, one or more disabling states where it cannot be fired. The time constraint
condition does not apply to transitions that are not constrained events.
® Action: occurs when the control loop enters a state and has a format of post-condition
&& time constraint initialization. If it is empty, the post-condition is true. The time
constraint initialization does not apply to transitions that are not constraining events.

When the intelligent control loop enters Analyze state, certain evaluation is processed.

For instance, functionality compliance is assessed by verifying the behavioral correctness

84

of the RAE being analyzed and comparing their current states (collected in Monitor state)
with their state machines. If this evaluation is positive, meaning that those RAE’s
behaviors follow their specifications as well as system policies, then no action is needed
and the control loop is back to Monitor state triggered by NoAction event. However, if the
result is negative, the defective RAE is detected and the control loop transits to Plan state
triggered by HasAction event. Similarly, the reliability verification is performed in
Analyze state by comparing current reliability value with required level when the RAE
composition changes at runtime [124].

5.2.3 Plan

After the intelligent control loop enters Plan state, a problem solving process is activated
and the control loop transits to Execute state triggered by HasPlan event. For example, if
a defective RAE is found after analyzing its functional compliance, there are two options
for the control loop. The first option is to provide either switching or repairing plans for
users’ consideration, which are made up of basic steps represented as knowledge in
repositories. The second option is to develop those plans and execute them without users’
intervention in Execute state when the RAS has enough autonomy and authorization from
the users. Similarly for the reliability verification, if an assessment reaches a required
level, a changing plan is developed; otherwise, a rejection to the RAE changes with
explanation and suggestion is created.

5.2.4 Execute

Execute is the last state of the intelligent control loop. The plans proposed in Plan state

85

are scheduled, executed and validated. Finally, the control loop goes back to Monitor
state triggered by ActionDone event. For instance, in order to replace a defective RAE, a
rigorous schedule is needed to state right timing to perform every step of a switching plan,
since the control loop stays in a real-time reactive environment and supports hot plugging
for the cooperated RAE. After the implementation of that switching plan, a validation
between the outcome and plan is processed. If the outcome passes its validation, the
control loop enters the Monitor state; otherwise, an exception handling mechanism is
activated and the control loop transits to HandleException state.
5.2.5 Exception Handling
In addition to the states of Monitor, Analyze, Plan and Execute, we have modeled
HandleException state for fault-tolerance of the intelligent control loop. All exceptions to
those four states will trigger a HasException event and transition to HandleException
state, which has the benefit of exposing accurate behavior of the control loop when
exceptions occur and having a centralized exception handling mechanism. The control
loop goes back to one of those four states triggered by ExceptionHandled event when
exceptions are processed.

Each state of the intelligent control loop can also have its sub-states for more specific

behaviors in that state (see Figure 24 as an example for the sub-states of Monitor state).

86

MMonitor

ﬁcﬂl of RA Etrlcg
of RAO
(Idle) ((?ouechetncs)
= ﬂfﬁj RAC

collect Metrics "ollect Retrics
of RAS : C of RACG

Figure 24: Sub-states of the Monitor State

5.3 Mapping RAS Model to MAS Model

This section states the collaboration and supervision to the master students involved in
the RASF project for the research work 7) in Figure 2 [62]. In multi-agent community,
agent-based approach is considered as a natural way to model autonomic systems, since
the ability of an autonomous agent can be easily mapped to the self-management
behaviors in autonomic systems. The ability of MAS to make the interactions between
components explicitly and control them in a flexible way supports a more distributed
complexity [167].

Therefore, the MAS approach is well-suited for autonomic computing systems, and
many ideas from the MAS community can be adapted to implement autonomic systems,
such as self-management behavior, automatic group formation, agent coordination,
evolution, agent adaptation, knowledge mining and interfacing [190].

By applying the MAS approach to implement RAS, the following characteristics of
the RAS can be realized [88]:
® Reactivity: agents are reactive.

® Autonomy: agents are autonomous.

87

® Computational efficiency: a composite computation task can be disassembled to a set
of subtasks, which are implemented by several agents in a parallel and distributed
way.

® [Extendibility: new agents can be easily created and enrolled in the RAS according to
dynamic and unpredictable running environment.

® Flexibility: the variety of agents and growing repositories make the RAS adapt to
diverse legacy systems.

® Robustness: redundant agents for the same task and their ability of hot swapping
greatly improve the RAS fault-tolerance as well as recoverability.

Figure 25 shows a general mapping from RAS to MAS. The elements in MAS are
layered too; RAS is mapped to MAS; RACG is mapped to sub-MAS, which is a sub group
of agents; RAC are mapped to agents; RAO are mapped to agents’ plans, goals and beliefs.
The MAS comprises centralized or distributed sub-MAS, which are differentiated by their
responsibilities, goals or tasks. The sub-MAS contain agent(s), and the agents are grouped
by common goals that are differentiated by their individual roles. An agent includes
various plans based on agents’ beliefs, goals and events. Figure 26 depicts a package
diagram of MAS which reflects the RAS hierarchy. It exhibits a static global view of the
overall system. The basic components for the system are system manager agent,

supervisor agent and regular agent [62].

88

RAS » MAS
RACG » Sub-MAS
RAC > Agents
RAO » | Goals, Plans, Beliefs

Figure 25: Mapping from RAS to MAS [62]

MAS

System Manager

Sub-MAS \
Agent

Supervisor Agent ‘

1

1
’ Goals ‘ Plans Beliefs

Regular Agents ‘

Goals ‘ Plans ‘ Beliefs

Figure 26: MAS Representation after the Mapping from RAS [62]

System manager agent is the most essential part that acts as a brain for the overall
system. It governs and manages the entire system. Supervisor agent exists in each
multi-agent group (Sub-MAS). It is the group leader that supervises the group. It plays a
similar role as the system manager agent but with limited power and localized view of the
entire system. Regular agent is the worker in the multi-agent society. Each agent in the
package has goals, beliefs and plans components [62].

Those agents communicate with each other in order to work together for performing
various tasks and they are hierarchical (Figure 27). Regular agents are on the bottom

level; system manager agent is on the top level. All agents can only communicate with

&9

the agents in the same level or the level directly below or above. In this case, system
manager agent can only converse with supervisor agents; regular agents are only able to
communicate with supervisor agents; supervisor agents have the ability to send messages
to both system manager agent and regular agents. This design strategy reduces the
coupling of agents’ communication and assigns system with modularity, encapsulation,

hierarchical decomposition as well as reusability [62].

Supervisor Agents

Regular A gents

Figure 27: Agent Hierarchy in RASF [62]

There are two communication types in our MAS model: local communication and
global communication. Local communication happens only in the group level
(Sub-MAS). In a group, regular agents communicate with each other to cooperate. If
communication issues happen between regular agents, error report messages will be sent
to supervisor agent by concerned regular agents. Based on its beliefs, the supervisor
agent will make a decision and send messages back to the regular agents. The second
type is the global communication that happens between Sub-MAS. Regular agents cannot
communicate with the agents in other groups. Supervisor agents can communicate with
other supervisor agents and system manager agent, but they are not allowed to have

contacts with the regular agents in other groups. The system manager agent has the ability

90

to get in touch only with supervisor agents. More details can be found in [62].

5.4 Model Transformation from RAS to MAS Implementation

This section states the collaboration and supervision to the master students involved in
RASF project for the research work 8) in Figure 2 [148]. The input of the model
transformation process is created using a grammar defined from the RAS model. The
outcome of applying that grammar definition is an XML file which represents each type
of RAE. A set of transformation rules are applied on that XML file to create the output of
the model transformation in Jadex, which is a Java-based MAS-BDI compatible agent
programming tool. The output model in Jadex consists of Agent Definition Files (ADF)
in XML format, which defines beliefs, goals, message events, plan headers and the plan
files in Java code that contain the body of executable plans [148]. Figure 28 illustrates the

transformation process.

The MAS model in JADEX
The RAS o
?E)Cer}:ﬁ;;ug Used to The RAS | Used to The RA;: model Transformation XML
and define grammar | specify XML format rules
diagrams) Plan | | Plan Plan
java java | =+ | java

Figure 28: Model Transformation Process from RAS to MAS Implementation [148]

5.4.1 RAS Grammar
The RAS grammar defines the RAE in RASF based on Extended BNF ISO 14977 [70].
Figure 29 shows the grammar of the RAS architecture model. The behavior of RAO and

RAC are illustrated by the RAS grammar shown in Figures 30 and 31. More details and

91

explanation of those figures can be found in [148].

RAOL = RAO, repository;
repository = {property}-;

property = name, type, {value}-;
RAC =RAOL, {RAO}-;

RACGM =RAC, RAS repository;
RACS =RAC, RACG _repository;
RACG =RACS, {RAC}-;

RAS =RACGM, {RACG}-;

Figure 29: Grammar of the RAS Architecture Model [148]

RAO-behavior = {reactive-atomic}-;

reactive-atomic = reactive-trigger, message;

reactive-trigger = sender, event, receiver;

message = sender, event, receiver;

sender, receiver = RAO | RAOL | RACS | RACGM | ENVIRONMENT;
event = EO | EI | IN | timeout;

timeout = integer;

Figure 30: Grammar of the RAO Behavior [148]

RAC-behavior = {reactive | self-properties}-;

reactive = {ex-path}-;

ex-path = reactive-trigger | proactive-trigger, {message};

sender, receiver = RAO | RAOL | RACS | RACGM | ENVIRONMENT;
proactive-trigger = sender, IN, receiver;

reactive-trigger = sender, event, receiver;

message = sender, event, receiver;

self-properties = {goal}-;

goal = name, ex-path;

Figure 31: Grammar of the RAC Behavior [148]
5.4.2 Input Model of Transformation
The input model for the transformation is the RAS architecture model captured and
represented in a XML format. RAO is the atomic element in RASF. Figure 32 depicts the

XML specification of the RAO. There is no architectural definition for the RAO because

92

it is an atomic element, and its reactive behavior is specified by the trigger-response pairs
that capture its atomic behavior. RAC is the principal element in RASF and consists of
atomic elements RAO with autonomic behavior. The XML specification of RAC consists
of tags that define its static structure and other fags that determine its behavior (see

Figure 33). More details and explanation of those figures can be found in [148].

<RAO name = “rao-name”>
<REACTIVE-ATOMIC>
<TRIGGER name= “trigger-name”/>
<PLAN name= “plan-name”/>
<RESPONSE name= “response-name’/>
</REACTIVE-ATOMIC>
</RAO>

Figure 32: RAO Specification Template in XML Format [148]

<RAC name = “rac-name>
<MEMBERS>
<MEMBER name = “rao-name”/>
</MEMBERS>
<INTERACTIONS>
<INTERACTION source = “source-rao” name = “event-name” target =
“target-rao”/>
</INTERACTIONS>
<REACTIVE-BEH>
<LIST-EX-PATH>
<EX-PATH name = “ex-path-name”>
<TRIGGER>
<SENDER name = “environment”/>
<EVENT name = “trigger-name’/>
<RECEIVER name = “receiver-name”/>
</TRIGGER>
<MESSAGE>
<SENDER name = “sender-name”/>
<EVENT name = “event-name” type= “event-type”>
<TIMEOUT min= integer max = integer/>
</EVENT>
<RECEIVER name = “receiver-name”/>

93

</MESSAGE>
</EX-PATH>
</LIST-EX-PATH>
</REACTIVE-BEH>
<SELF-PROP>
<GOAL name = “goal-name” path = “ex-path-name”>
<EX-PATH>
</EX-PATH>
</GOAL>
</SELF-PROP>
<LEADER name = “raol-name”/>
<REPOSITORY>
<PROPERTY name="property-name”
type="property-type”’>value</PROPERTY>
</ REPOSITORY>
</RAC>

Figure 33: RAC Specification Template in XML Format [148]

<RACG name = “racg-name”™>
<MEMBERS>
<MEMBER name = “rac-name”/>
</MEMBERS>
<INTERACTIONS>
<INTERACTION source = “source-rac” name = “event-name” target =
“target-rac”/>
</INTERACTIONS>
<LEADER name = “supervisor-name”/>
<REPOSITORY>
<PROPERTY name="property-name”
type="property-type”’>value</PROPERTY>
</ REPOSITORY>
</RACG>

Figure 34: RACG Specification Template in XML Format [148]
5.4.3 Output Model
The output model for the transformation is the MAS framework in a BDI architecture

defined and implemented in Jadex, a Java-based multi agent platform where the agents

94

are defined by two file formats. The definition of an agent in XML format is stored in an
Agent Definition File (ADF); the body of plans in Java language format is stored in a
Java source code file. The ADF file consists of different tags to implement various
concepts of the BDI model.
5.4.4 Transformation Rules
After having the input and output of the model transformation, a set of mapping rules for
the XML format of RAS model and MAS model are defined as: 1) <RAC> to <package>;
2) <MEMBERS> to <package>; 3) <RAO> to <agent>; 4) <INTERACTION> to
<messageevent>; 5) <LEADER> to <beliefs>; 6) <REPOSITORY> to <beliefs>; 7)
<PROPERTY> to <belief>/<beliefset>; 8) <EX-PATH> to <plan>; 9) <MESSAGE> to
<plan>; 10) Asynchronous message event rule; 11) Synchronous message event without
timeout rule; 12) Synchronous message event with timeout rule; 13) Empty message
event rule; 14) <REACTIVE-BEHAVIOR> vs. <SELF-PROPERTY>; 15) <GOAL> to
<achievegoal> [148].
5.5 RASF Process Model
In order to develop a reactive autonomic system using RASF, we can follow the RASF
process model indicated below based on the Figure 2 in Section 1.3.

Phase 1 (arrow 2): Build a RAS model (box 3) based on the RAS requirements (box
1). This model includes: i) RAS architecture model (Figure 21), ii) reactive behavior of
RAE (Section 5.1.1 & 5.1.2), iii) the specification of RAE (Figure 23 & 24) and iv)

specification of the self-* properties self-healing (Section 7.1, 7.3 & 7.5) as well as

95

self-configuration (Section 8.1, 8.3 & 8.5), that includes autonomic behavior (intelligent
control loop) of the RAE (Section 5.2).

Phase 2 (arrow 4): Transform the RAS model in Phase 1 to its categorical model (box
5) using the category theory. This transformation includes the categorical models of the
structure (Section 6.1), the behavior (Section 6.2) and the self-* properties self-healing
(Section 7.2, 7.4, 7.6 & 7.7) as well as self-configuration (Section 8.2, 8.4, 8.6 & 8.7) in
the RAS model together with corresponding XML representation (Section 7.8 & 8.8).

Phase 3 (arrow 6): Transform the RAS model in Phase 1 to its MAS model (box 7).
This transformation includes the mapping from the RAS architecture model to the MAS
architecture model (Figure 28), from RAS specification to MAS specification (Figure 29)
and from the RAS behavior to the MAS behavior (Section 5.3).

Phase 4 (arrow 12): Transform MAS model in Phase 3 to its categorical model (box
13) using category theory. This transformation includes the categorical models of plans
(Section 6.5.1), goals (Section 6.5.2), beliefs (Section 6.5.3), agents (Section 6.5.4) as
well as repository (Section 6.5.5) in the MAS model together with corresponding XML
representation (Section 6.6).

Phase 5 (arrow 10): Visualize the categorical RAS model in Phase 2 to its graphical
representation (box 11) by importing its XML representation in Phase 2 to our graphical
illustration tool CATCanvas (Section 6.4.2).

Phase 6 (arrow 14): Visualize the categorical MAS model in Phase 4 to its graphical

representation (box 15) by importing its XML representation in Phase 4 to our graphical

96

illustration tool CATCanvas (Section 6.4.2).

Phase 7 (verification line between box 5 and box 13): Verify if the categorical MAS
model in Phase 4 conforms to the categorical RAS model in Phase 2. This verification is
achieved through comparing their XML representations generated in Phase 4 and Phase 2
against their mapping rules extended from Phase 3 with category theory. This phase is
one of our future work directions.

Phase 8 (the validation line between box 11 and box 15): Validate if the graphical
illustration of categorical MAS model in Phase 6 conforms to the graphical illustration of
categorical RAS model in Phase 5. This validation can be achieved by comparing the
XML representations exported from the CATCanvas in Phase 6 and Phase 5 against their
mapping rules extended from Phase 3 with CML (Section 6.4.1). This phase is one of our
future work directions.

Phase 9 (arrow 8): Transform the MAS model in Phase 3 above to its implementation
(box 9) using the Jadex framework. This transformation (Figure 31) includes the RAS
grammar (Section 5.4.1), input model (Section 5.4.2), output model (Section 5.4.3) and
transformation rules (Section 5.4.4).

Phase 10 (arrow 16): Transform the MAS implementation in Phase 9 to categorical
model (box 17) using category theory. This phase is one of our future work directions.

Phase 11 (arrow 18): Visualize the categorical MAS implementation in Phase 10 to
its graphical representation (box 19) by importing its XML representation in Phase 10 to

our graphical illustration tool CATCanvas (Section 6.4.2). This phase is one of our future

97

work directions.

Phase 12 (the verification line between box 13 and box 17): Verify if the categorical
MAS implementation in Phase 10 conforms to the categorical MAS model in Phase 4.
This verification is achieved by comparing their XML representations generated in Phase
10 and Phase 4 against their mapping rules extended from Phase 9 with category theory.
This phase is one of our future work directions.

Phase 13 (the validation line between box 15 and box 19): Validate if the graphical
illustration of the categorical MAS implementation in Phase 11 conforms to the graphical
illustration of the categorical MAS model in Phase 6. This validation can be achieved
through comparing the XML representations exported from the CATCanvas in Phase 11
and Phase 6 against their mapping rules extended from Phase 9 with CML (Section 6.4.1).
This phase is one of our future work directions.

5.6 RASF Tooling Support

After having the RASF process model, we developed a tool named RASF Integration
Tool (RASFIT) to support the models, specifications, transformations, verifications and
validations in the RASF process model we introduced earlier in Section 5.5.

RASFIT is an Eclipse [202] plug-in based solution that extends the Eclipse IDE with
1) a UML design tool (Enterprise Architect [203]), ii) a framework in terms of building
the multi-agent applications named Jadex [204], ii1) a model transformation framework
[148] to produce the multi-agent templates representing the RAS components that satisfy

both reactive and autonomic properties and iv) a graphical tool for illustrating categorical

98

models [81].

The architecture of RASFIT (Figure 227) consists of 1) an Eclipse plug-in module
(Section 9.1.1) that is responsible for the interactions from end users through the Eclipse
IDE by using the Eclipse API, ii) an Enterprise Architecture (EA) module (Section 9.1.2)
which is responsible for modeling RAE through the integrated EA IDE in the Eclipse IDE
by using the EA API, iii) a Jadex module (Section 9.1.3) that is responsible for modeling
the MAS implementation from the RAS model through the integrated Jadex IDE in the
Eclipse IDE by using the Jadex API, iv) a model transformation module (Section 9.1.4)
which is responsible for transforming the RAS model represented in a XML format to the
MAS implementation represented in the format of agent definition files, defining beliefs,
goals, message events, plan headers and related plan files in Java code that contain the
body of executable plans [148], and v) a CATCanvas module (Section 9.1.5) that is for
graphically illustrating a RAS model represented in a XML format by importing its XML
file [81].

5.7 Summary
In this chapter, we have given a conceptual view of the RASF and conveyed architectural
decisions for further design as well as implementation of the RASF.

The 4-tier architecture for the RASF consists of the RAO, RAC, RACG and RAS;
the autonomic behavior, such as self-monitoring or self-analyzing, is implemented by the
component leaders (RAOL), group supervisors (RACS) and system managers (RACGM)

at the RAC, RACG as well as RAS tier respectively. The RAO is modeled as a labeled

99

transition system augmented with ports, attributes, logical assertion on the attributes, time
constraints and resource specification; the RAC is a set of synchronously communicating
RAO, where one of the RAO is assigned as a leader of the rest (workers); the RACG is a
set of centralized or distributed RAC which cooperate in fulfillment of group tasks by
asynchronous communication; the RAS is made up of centralized or distributed RACG
with their asynchronous communication.

Finally, we have presented the autonomic behavior (intelligent control loop) in RASF,
mapping from RAS model to MAS model, model transformation from RAS to the MAS
implementation and the introduction of RASF process model as well as tooling support.
We will explain the categorical specification of RASF in next chapter according to the
RAS model, MAS model and category theory we described in this chapter and Chapter 3

respectively.

100

Chapter 6: Categorical Specifications of RASF

This chapter states the research activity 8), 18), 19) in Figure 3, which are prototype
design of categorical RASF model, transformation from categorical RAS model to its
XML specification as well as transformation from categorical MAS model to its XML
specification, and describes the contribution of the author (Section 6.1, 6.2, 6.3 and 6.6)
as well as the collaboration and supervision to the master students involved in the RASF
project (6.4 & 6.5). I had one publication [90] and one in preparation for this chapter.

Category theory can provide abstract hierarchical types which are useful to build
complex data types for RAS. This will allow them to be modeled in isolation thus a
modular treatment is possible. Moreover, their hierarchical nature allows the axioms of a
subcategory to be inherited from its category, which gives a consistent approach to data
abstraction [115] at each stage during the development and usage of RASF, such as
requirement specifications, RAS modeling, MAS modeling, model transformation and
implementation.

The RAE in the RAS can change state, be manipulated, or connected to other RAE;
the categorical invariant properties, such as limit and colimit (see Definition 3.5.6 &
3.5.9), are used to characterize those RAE and their behavior. The basic building blocks
for the RAS description are provided by the categorical notions of objects, morphisms,
categories, functors and natural transformations; deriving and composing structures are
achieved through canonical constructors, universal constructors as well as categorical

invariant properties (see Section 3.5).

101

6.1 Categorical Model of Structure in RASF

This section states the research activity 8) in Figure 3. Based on the architecture model in
RASEF, the internal structure of a RAS is both hierarchical (composition of its RAE) and
recursive (tiered interconnectivity of its RAE). Therefore, the behavior of a RAS can be
characterized by its RAE and their interactions. A categorical framework for that
behavior can be freely generated below.

Property 6.0.1: Type is a category where objects represent the object types denoted
by ObjType(Type) and morphisms represent the morphism types as MorType(Type). For
example, MyCategory is a category where objects are denoted by Obj(MyCategory) and
morphisms denoted by Mor(MyCategory). There is a functor F from MyCategory to Type
which maps each object of MyCategory to a type (an object of Type): F(Obj(MyCategory))
= ObjType(Type) and maps each morphism of MyCategory to a type (a morphism of

Type): F(Mor(MyCategory)) = MorType(Type).

MyCategory TypeCategory
B A - e - V
S u F a Typei <
B - v d’ b
| N \ w : Typez - c
X o C) D T v Types
-y -

Figure 35: An Example of Type Category
In Figure 35, a type category called TypeCategory contains objects: type;, type; and

types; type m morphisms: ¢ and d; type n morphisms: @, b and e. MyCategory contains

102

objects: 4, B, C and D; morphisms: u, v, w, x and y. Functor F maps MyCategory objects
and morphisms to types in TypeCategory: F(4) = Type;, F(B) = Type,;, F(C) = Types, F(D)
= Types, F(u) = e (type n), F(v) = b (type m), F(w) = d (type m), F(x) = a (type n) and
F(y) = c (type m).

Property 6.0.2: the null object Objecty,; in a category does not have any real
meaning or content and it does not have any relationship with other objects. Objecty,;
and its identity morphism are useful for catching “non-useful” or “non-related” objects as

well as morphisms from other categories by defined functors (relations).

MyCategory A MyCategory B

A A
ﬁ \A H a \A
li B
\ < “ Objéctuan
b @y% 1;\1\)}_/4

Figure 36: An Example of Null Object in Category

Objectnun

Figure 36 is an example of using Objecty,. MyCategory A contains objects: 4, B, C,
D and Objecty,; morphisms: a, b, ¢, d and e. MyCategory B has objects: A, B, C and
Objecty,; morphisms: a, b and c. Functor H maps MyCategory A objects and morphisms
to MyCategory B: H (A) = A, H (B) = B, H (C) = C, H (D) = Objecty,, H (Objecty,y) =
Objectyu, H (a) = a, H (b) = b, H (c) = ¢, H (d) = id objecenun and H (e) = id opjectnuit.
From this example, we can see MyCategory B contains all the objects and morphisms in
MpyCategory A except for object D and its related morphisms d and e.

Property 6.0.3: A directed graph G is a set O of objects called vertices or nodes, and

103

a set 4 of ordered pairs of vertices are called arrows or directed edges [93]. Every arrow
diagram or directed graph can be specified as a category named PATH where morphisms
are sequences (paths) of arrows. One can create a directed graph by drawing an arrow
from x to y where x, y € the same set X, which can be associated with the category
denoted by PATH (X) or PATH [130]. The objects are elements in X and the morphisms
are all sequences (paths) of the adjacent arrows. This naturally defines a composition of
arrows. This viewpoint leads to a general categorical semantics for the relational
structures. Vice versa, every category is a graphical structure.

\«

Y g z
\\»
k

«

Figure 37: An Example of PATH Category

Figure 37 is an example of PATH. For morphisms (arrows) f> x — y, g: y — z and
morphism k: x — z, if f, g and k are of the same type, then £ is not considered as a direct
arrow since k equals to the sequence (path) of the consecutive arrows (f and g). By the
definition of PATH, the lengths of the sequences f and g are one, and the length of & is
two. The existence of the identity arrow for each object will always be assumed by
definition, and it can be interpreted as sequences of length zero.

Property 6.1.1: RAE-Type is an instance category of the Type category (see
Property 6.0.1) in which objects represent the RAE types denoted by ObjType(RAE-

Type) and morphisms represent the morphism types denoted by MorType(RAE-Type).

104

For example, RAE-Type-Instance is the category in which objects are denoted by
Obj(RAE-Type-Instance) and morphisms denoted by Mor(RAE-Type-Instance). There
is a functor F' from RAE-Type-Instance to RAE-Type, a structure-preserving mapping
of the objects of RAE-Type-Instance to objects of RAE-Type: F(ObjType(RAE-Type-
Instance)) = Obj(RAE-Type), and of the morphisms of RAE-Type-Instance to the
morphisms of RAE-Type: F(MorType(RAE-Type-Instance)) = Mor(RAE-Type) as the
Definition 3.1.2 (see the figure below).

F{Communication{)

RAFE<I ype-Instance

[rrrrr.lJJE}qfr'rm'rrr.'."

FrRAET) FIRAEZ)
Property 6.1.2: RAC can be specified as a category RAC with a set of objects |RAC]|

and morphisms so that for each RAO,,RAO; e|RAC], there is a set of morphisms f:
RAC(RAO,,RAO;) mapping the RAO, to RAO; which indicate the communication
between them as /1 R4O,— RAO, (see Definition 3.1.1).

Proof. All what we need is to prove: i) the existence of composition and identity
morphism, and ii) prove associativity. Let RAO;, RAO; and RAO; be three RAO such that
RAO; can interact with RAO,, which can interact with RAO;. Then RAO; can interact
with RAO; (indirectly through RAQO;), which means the existence of a composition of

morphisms between RAO; and RAQ;. The identity morphism does exist as a natural

105

representation of internal interactions. Let f, g and h be the morphisms such that f: RAO,

— RAO;, g: RA0; — RAO; and h: RAO3; — RAO,. It is clear that ho (g°f)=(h°g)°fm

Id1 _ 1d2
f Iy

FY .

RAC] ———>» RAO?2
g°f
hoeg

RAO4 <——— RAO3
v h VP
1d3 1d3

g

Every category C has an identity functor 1¢: C — C. We can then easily demonstrate
the following property.

Property 6.1.3: The evolutions of a RAC, because of self-adaptation as well as self-
organization (original behavior is preserved) are modeled with functors. For instance, an
evolution from RAC to RAC’ is specified as a functor F, a structure-preserving mapping
of the objects (R40) in RAC to the objects (RA0) in RAC' (F: [RAC| — [RAC')), and of
the morphisms in RAC to morphisms in RAC (F: RAC(RAO;, RAO)) — RAC'(F(RAO,),

F(RAO)))) as the Definition 3.1.2 (see the figure below).

In category theory, the natural transformation provides a way of transforming one
functor into another while respecting the internal structure (i.e. the composition of

morphisms) of the categories involved (see Definition 3.6.3).

106

Property 6.1.4: Because the evolutions of RAC are specified as functors from the
category RAC to RAC', the mapping of those evolutions can be represented by the
natural transformation: v : Evolution] — Evolution2 is a family of the arrows in RAC":
vrao: Evolution(RAO) — Evolution2(RAO), such that for any f': RAO — RAO in RAC,
there exists vr4o © Evolutionl(f) = Evolution2(f) ° vg40 as indicated in the figures below,
and vg4o 1s the component of the natural transformation » (see Definition 3.6.3). In
addition, both RAC and RAC' should have the functor Conform to their index (type)

category RAO-Type in terms of structure-preserving mapping.

NT. Vipaer
Evalution I{RAC) ———— Evolution2(RAC)
Everluticonm I(f) Evelution2(f)
J'I.I'n'rT. Va2 "

Evolution [(RACQ) ———> Evolution2{(RAC)

RAO-Ty
_— ype «—

Conform Conform
K/E-u-'-u;"fr.'f.un !)
RAC ',Z \R?du(:‘ ’

E‘-‘HEEFU.I"EH.I'_EJJIE

Property 6.1.5: All possible evolutions (functors) and their relationships (natural
transformations) for the RAE can be specified as a functor category Fun(RAE, RAE),
where objects are functors Evolution : RAE — RAE' and morphisms are their natural
transformations v : Evolution; — Evolution; (see Definition 3.6.4).

If we regard RAE and RAE' as objects instead of categories by ignoring the object

details inside RAE and RAE', all possible evolutions for the RAE can be specified as a

107

category RAE-Evolution where objects are RAE, RAE', RAE", etc., and morphisms are
those evolutions, such as Evolutionl, Evolution2, etc.

Proof. All what we need is to prove: i) the existence of composition and identity
morphism, and ii) prove associativity. Let RAE and RAE" be two evolutions for the RAE
such that RAE can evolve to RAE which can evolve to RAE . Then RAE can evolve to
RAE" (indirectly through RAE), which means the existence of a composition of the
morphisms between RAE and RAE'. The identity morphism does exist as a natural
representation of internal evolutions. Let f, g and h be the morphisms such that f: RAE —

RAE, g: RAE — RAE" and h: RAE" — RAE". It is clear that h > (g°f)=(h° g)° fm

ldl _ Id*
RAE E::::> ch

g-f
h*gi?gﬁzztn ¢
345 -¢::::: RAE”
Id? ld”

Property 6.1.6: RACG can be specified as a category RACG with a set of full
subcategories and products such that for each RAC, ,RAC, cRACG, there is a set of
products P : RAC, x RAC, has objects of the form (RAO,, RAO,) for RAO, e
IRAC, |, RAO, €|RAC, | and arrows of the form (f, g) : (RAO,, RAO,) — (RAO, ,
RAO,) for f : RAO, — RAO, €|RAC, | and g : RAO, — RAO, € |RAC, | (see
Definition 3.2.1 & Proposition 3.6.2).

Property 6.1.7: The RACG may also be specified as a category RACG with a set of

108

objects [RACG]| and morphisms such that for each RAC, ,RAC, €|RACG], there is a set
of morphisms /: RACG(RAC, ,RAC,) mapping the RAC, tothe RAC, that indicate
the communication between them as f: RAC,, — RAC, (see Definition 3.1.1).

Proof. All what we need is to prove: i) the existence of composition and identity
morphism, and ii) prove associativity. Let RAC;, RAC; and RACj; be three RAC such that
RAC; can interact with RAC,, which can interact with RAC;. Then RAC; can interact
with RAC; (indirectly through RAC,), which means the existence of a composition of
morphisms between RAC; and RAC;. The identity morphism does exist as a natural

representation of internal interactions. Let f, g and h be the morphisms such that f: RAC|

— RAC,, g: RAC, — RAC; and h: RAC; — RAC,. It is clear that ho (g° f)=(h°g)° fm

Id1 _ Id2
P S ;A
RACT RAC2
g=f

f1 o5 £
RACY <——— RAC3
Vo h VP
1d3 1d3

Property 6.1.8: The evolutions of a RACG, because of self-adaptation as well as self-
organization (original behavior is preserved) are modeled with functors. For instance, an
evolution from RACG to RACG is specified as a functor F, a structure-preserving
mapping of the objects (RAC) in RACG to the objects (RAC) in RACG' (F: [RACG| —
IRACG)), and of the morphisms in RACG to the morphisms in RACG' (F: RACG
(RAC;, RAC)) — RACG'(F(RAC,-), F(RAC)))) as the Definition 3.1.2 (see the figure

below).

109

Property 6.1.9: Because the evolutions of RACG are specified as functors from the
category RACG to RACG, the mapping of those evolutions can be represented by the
natural transformation: v : Evolution] — Evolution?2 is a family of the arrows in RACG '
vrac: Evolution](RAC) — Evolution2(RAC), such that for any f: RAC — RAC in RACG,
there exists vr4c © Evolutionl(f) = Evolution2(f) ° vg4c as indicated in the figures below,
and vgqc 1s the component of the natural transformation o (see Definition 3.6.3). In
addition, both RACG and RACG' should have the functor Conform to their index (type)

category RAC-Type in terms of structure-preserving mapping.

J'.I'lu'r?-'. YeRae
Evalution f{RAC) — Evolution2(RAC
Evolution () EvalutionZ(f}
1""1.'rT_ Ve 40 ©

FEvolution{RACY ————> Evelution2{RAC"

RAC-Ty
_— yPe e

Conform Conform

K//Euuf wtionf \)

RACG RACG’

“"'-‘_‘_____H_-_ _._-—-"'ﬁ

Evolution?

Property 6.1.10: RAS can be specified as a category RAS with a set of full

subcategories and products such that for each RACG, ,RACG, c RAS, there is a set of

110

products P : RACG, x RACG, has objects of the form (RAC,, RAC,) for RAC, e
|IRACG,,|, RAC, €| RACG, | and arrows of the form (f, g) : (RAC,, RAC,)) —
(RAC, , RAC,) for f: RAC,— RAC, €|RACG, | and g : RAC,— RAC, € |RACG, |
(see Definition 3.2.1 & Proposition 3.6.2).

Property 6.1.11: The RAS may also be specified as a category RAS with a set of

objects [RAS| and morphisms such that for each RACG,_,RACG, € |RAS]|, there is a set
of morphisms f : RAS(RACG,,RACG) mapping the RACG, to the RACG, that
indicate their interactions as /: RACG, — RACG, (see Definition 3.1.1).

Proof. All what we need is to prove: i) the existence of composition and identity
morphism, and ii) prove associativity. Let RACG;, RACG, and RACG; be three RACG
such that RACG; can interact with RACG,, which can interact with RACGS3. Then RACG,
can interact with RACG; (indirectly through RACG;), which means the existence of a
composition of morphisms between RACG; and RACGs3. The identity morphism does exist
as a natural representation of internal interactions. Let f, g and h be the morphisms such

that f: RACG; — RACG,, g: RACG, — RACG; and h: RACG; — RACG,. It is clear that

he(@ef)=(h-g)fm

1d 1 _ 1d2
/A 7 Fy
RACG] —— > RACG2
g=f
e g £
RACG4 <———RACG3
v h v
Id3 1d3

Property 6.1.12: The evolutions of a RAS, because of self-adaptation as well as self-

111

organization (original behavior is preserved) are modeled with functors. For instance, an
evolution from RAS to RAS’ is specified as a functor F, a structure-preserving mapping
of the objects (RACG) in RAS to the objects (RACG) in RAS' (F: [RAS| — [RAS)), and
of the morphisms in RAS to the morphisms in RAS' (F: RAS(RACG;, RACG)) —

RAS (F(RACG;), F(RA CG)))) as the Definition 3.1.2 (see the figure below).

[T 'mrr.l?hi__y‘f-;':.l ticried) _
FiRACG,) FIRA C_..-J

G,

o £

Property 6.1.13: Because the evolutions of RAS are specified as functors from the
category RAS to RAS', the mapping of those evolutions can be represented by the natural
transformation: v : Evolution] — Evolution2 is a family of the arrows in RAS": vgscq:
Evolutionl(RACG) — Evolution2(RACG), such that for any f: RACG — RACG in RAS,
there exists vgycc © EvolutionI(f) = Evolution2(f) ° vrace as indicated in the figures below,
and vg4c 1s the component of the natural transformation o (see Definition 3.6.3). In
addition, both RAS and RAS' should have the functor Conform to their index (type)

category RACG-Type in terms of structure-preserving mapping.

Nl vigace
Evolution { RACG) ——— Evolution2{ RACG)
EvolutionI(f) Evelution2(f)
J'I.I\'r?-\: Viac s "

Evolutionl (RACGy ———> Evolution2{iRACG)

112

/_; RACG-Type s._.\\\

Conform Conform

K/Euuﬁr."fun 7 \ /

RAS RAS’

Evalution?

Property 6.1.14: The constraints on constructing a RAC type from a group of RAO
types can be specified as a functor Construct from the category RAO-Type to category
RAC-Type, a structure-preserving mapping of the objects (R40-Type) in RAO-Type to
the objects (RAC-Type) in RAC-Type (F: |[RAO-Type] — |[RAC-Type|), and of the
morphisms in RAO-Type to the identity morphisms in RAC-Type (F: RAO-Type(RAO-
Type;, RAO-Type;) — RAC-Type(RAC-Typen, RAC-Type,)) as Definition 3.1.2 (see the

figure below).

Construct{ Communication-Tvpe,)

RAC-Type

-||r ':-!rn'l

Communicoon-Tvpe,
RAC T vpe, RAO-Type;

Cevmmunication-Tvpe;

- Type, RAC-Type,

ConstructfRAO-Type;) Construct{iRAO-Type;)

Property 6.1.15: The constraints on constructing a RACG type from a group of RAC
types can be specified as a functor Construct from the category RAC-Type to category
RACG-Type, a structure-preserving mapping of the objects (RAC-Type) in RAC-Type to
the objects (RACG-Type) in RACG-Type (F: [RAC-Type| — |[RACG-Type|), and of the
morphisms in RAC-Type to the identity morphisms in RACG-Type (F: RAC-Type

(RAC-Type;, RAC-Type;)) — RACG-Type(RACG-Typen, RACG-Type,)) as Definition

113

3.1.2 (see the figure below).

Construct{Communication-Tvpe,)

RA CG-rl'}'pt

Id,,

Cormmunication-Tyvpe;

—]"__'v,rjem RACG-Type,

Constructi RAC-Typey) Construct{RAC-Typey)

Property 6.1.16: The constraints on constructing a RAS type from a group of RACG
types can be specified as a functor Construct from the category RACG-Type to category
RAS-Type, a structure-preserving mapping of the objects (RACG-Type) in RACG-Type
to the objects (RAS-Type) in RAS-Type (F: |RACG-Type| — |RAS-Type|), and of the
morphisms in RACG-Type to the identity morphisms in RAS-Type (F: RACG-Type
(RACG-Type;, RACG-Type;) — RAS-Type(RAS-Typen, RAS-Type,,)) as Definition 3.1.2

(see the figure below).

Construct{Communication-Tvpe,)

RAS-Type

Id,,

Commmunicaiion-Tvpep

— Type., RAS-Type,

Construct{f RACG-Type) Construct{RACG-Typey)
6.2 Categorical Model of Behavior in RASF

This section states the research activity 8) in Figure 3.
Definition 6.2.1: A monoid (sometimes called semi-group with unit) is a set M

equipped with a binary operation - : M x M — M and a distinguished “unit” element

114

ue M such that for all x, y, ze M, x - (y - z) =(x - y) - zand u - x =x = x - u. Equivalently, a
monoid is a category with just one object. The arrows of the category are the elements of
the monoid. In particular, the identity arrow is the unit element u. Composition of arrows
is the binary operation m - n of the monoid [6].

Property 6.2.2: The behavior of a RAE can be specified as an automation that
consists of an input set Event, a state set State, an output set Action, a transition function
f: Eventx State — State, an initial state State) € State, and an output function g : State
— Action. The behavior of that automata is a function b : Event — Action (from the
monoid Event to Action). A category RAE-Behavior of that behavior has the objects as
pairs (Event, b : Event — Action) and the morphisms from (Event, b : Event — Action)
to (Event, b : Event. — Action) as pairs (h, j), where h : Event — Event’ and j :

Action— Action such that the following diagram commutes.

o]

Eveny —————> Acticn

h ;

b
[. .
et Action

Proof. The composition law of automata is defined to be that of functions between
sets. For example, composition applies internally to each component of the morphsims (X,
b : X — Y). Similarly, the identity of an automation is defined to be the pairs that
consists of the two identity functions over X and function b : X — Y. The proof of

RAE-Behavior is indeed obtained because the associativity of the composition law and

115

the property of the identity are automatically inherited from the corresponding properties
of functions.

Property 6.2.3: Discrete-Time is a category in which objects are abstracting time
unit represented as integers, and morphisms are of type “before” denoted as “<”.

Proof. All what we need is to prove: i) the existence of composition and identity
morphism, and ii) prove associativity. Let Unit;, Unit, and Unit; be three time units such
that Unit; is before Unit,, which is before Unit;. Then Unit; is before Unit; (indirectly
through Unit,), which means the existence of a composition of morphisms between Unit
and Unit;. The identity morphism does exist as a natural representation of interactions
with atomic time unit. Let f, g and h be the morphisms such that f: Unit;— Unit,, g: Unit,

— Unit; and h: Unit; — Unity. It is clear that h° (g°f)=(h°g)° fm

Idl) ld"‘
L.ru.f.n’ ':D -Lir.'.r..?

K |

L .r::e"?' CJZI -l’_,u{.r_'r
ldf' Id3

Property 6.2.4: STATE is a category in which objects are states denoted by State;,
State,..., and morphisms are transitions denoted by Transition,, Transition,....

Proof. All what we need is to prove: i) the existence of composition and identity
morphism, and ii) prove associativity. Let State;, State; and State; be three states such
that State; transits to State,, which transits to State;. Then State; can transit to State;

(indirectly through State;), which means the existence of a composition of morphisms

116

between State; and State;. The identity morphism does exist as a natural representation of
internal transitions. Let f, g and h be the morphisms such that f: State,;— State,, g: State;

— State; and h: State; — Statey. It is clear that h~ (g°f)=(h°g)° fm

Id1l i Id=
Fe I [
State] ———— State?

g
fr = g £
Stated <———— State3
S it L
Id3 Id3

Property 6.2.5: The time constraints on the state transitions of the RAE is specified
as a functor from STATE to Discrete-Time (see Property 6.2.3), a structure-preserving
mapping of the objects (states) of STATE to the objects (time unit expressed as integers)
of Discrete-Time, and of the morphisms of STATE (transition) to morphisms (before) of

Discrete-Time (see Definition 3.1.2 and the figure below).

I'CiTransitionl}

Discrete-Tipfe

TC{Statel) T'CiStare?)
Property 6.2.6: The synchronous communication between the RAE can be specified

as their product denoted by RAE; x RAE; consisting of an object P as well as arrows

RAE; «2— P—2— RAE; satisfying: any diagram of a form RAE;«—— X—=2— RAE;,

there exists a unique u : X — P making the following diagram commute (see Definition

117

3.3.4).

RALE, 3 — v RAT,

Property 6.2.7: The asynchronous communication among the RAE can be specified

by their coproduct denoted by RAE; + RAE; consisting of an object O and arrows RAE;

14— Q«*L— RAE; satisfying: any diagram of the form RAE, —— Z<—=—RAE,,
there exists a unique u : 0 — Z making the following diagram commute (see Definition

3.4.2).

g ¥

RAFE, 520 Ny 1 RAE,

Property 6.2.8: The next relay of the outgoing communication from the same source
object RAE to the same destination object RAE can be specified as the pushout: RAE =
RAE; +rar RAE;, such that given any z,: RAE; — Z andz,: RAE; — Z withz,° f=z,° g,

there exists a unique u : RAE' — Z, u © p, = ziandu°p, =z, (see Definition 3.5.4).

118

Property 6.2.9: The previous relay of the incoming communication toward the same
destination RAE from the same source object RAE can be specified as the pullback: RAE’
= RAE; Xg4r RAE}, such that given any z,: Z — RAE; and z,: Z — RAE; withfez =g °z,,

there exists a unique u : Z — RAE with z,=p,cuand z,=p,e° u (see Definition 3.5.3).

Property 6.2.10: If we start with a diagram of RAO, a kind of universal communicator
may be introduced, and this is a higher-level object with arrow connections to each object
in a base diagram. Therefore, we can model that object (limit or colimit object) and those
arrow connections as a limit or colimit of the base diagram. Graphically speaking, the
limit is a domain of all the arrows going to the RAO in the base diagram, and the colimit
is a codomain of all the arrows coming from the RAO in the base diagram. Having the
limit or colimit allows for the modeling of each specific interaction among the RAO
(group behavior) by the communication path between the limit (colimit) object and those
RAO. According to the definition of the limit (colimit) object, no other object in the
diagram can improve the communication capability comparing to the limit (colimit)
object due to the commutativity constraint in the universal properties of a limit (colimit).

As the behavior of a RAC is aggregated from the behavior of its RAO (RAC is

119

aggregated from its RAO), a limit for the category (diagram) RAC can represent its
designated group behavior. Let RAO-Type and RAO-Type-Instance be categories (see
Property 6.1.1). A diagram of type RAO-Type in RAO-Type-Instance is the functor
Construct : RAO-Type — RAO-Type-Instance. The objects in the index category
RAO-Type are represented as RAO-Type;, RAO-Type;, ... and the values of the functor
Construct are in the form of Construct(RAO-Type;), Construct(RAO-Type;), A cone to
the diagram Construct consists of an object R40 as well as a family of morphisms in
RAO-Type-Instance, Communication(RAO-Type;): RAO — Construct(RAO-Type;) for
each object RAO-Type; € RAO-Type such that for each morphism Communication :

RAO-Type; — RAO-Type; in RAO-Type, the following triangle commutes.

Communication{ R4 O-Type;)
RAO > Construct(RAO-Tyvpe,)

(‘ad{ -0y 3y JUOBEIIUNIWILO)

vy
ConstructfRAO-Tvpe;)

A morphism of cones Communication : (RAO, Communication(RAO-Type;)) — (RAO,
Communication (RAO-Type;)) is a morphism Communication in RAO-Type-Instance
making each triangle commute: Communication (RAO-Type;) = Communication(RAO-

Typej)’ o Communication for all RAO-Type;e RAO-Type. Therefore we have a category

120

RAC-Behavior(Construct) of cones to Construct (see the figure below).

Communication

b RAO

(add[-OFy) tonpIUNUIO")

T
Construct{RAO-Tyvpe;)

We consider the diagram Construct as a view of RAO-Type in RAO-Type-Instance.
A cone to such a diagram Construct is imaged as a many-sided pyramid over the base
Construct, and a morphism of cones is an arrow between the apexes of such pyramids.

A limit for the diagram Construct : RAO-Type — RAO-Type-Instance is a terminal
object in the category RAC-Behavior(Construct) represented as RAOL (limit object)
along with the communication from RAOL to RAQO. A finite limit is a limit for a diagram
on a finite index category RAO-Type. As a result, the grid-like communication among
the RAO can be regarded as a cone-like incoming communication between those RAO
and their RAOL, through converting their relationship of many-to-many to one-to-many
by a categorical computation. Such model facilitates the specification of the designated

behavior of those R40 by hiding the many-to-many relationship details (see Definition

3.5.6 and the figure below).

121

RAO-Type

Communicalion-Tvpe,

Construct Construct Construct

RAO-Type-Instance

The validity of the category RAO-Type-Instance in the figure above is guaranteed

by the functor from RAO-Type-Instance to RAO-Type (see Property 6.1.1).

Property 6.2.11: Similarly to Property 6.2.10, a colimit for the diagram Construct:
RAO-Type — RAO-Type-Instance is an initial object in the category of cocones from
the base Construct represented as RAOL (colimit object) along with the communication
from RAO to RAOL. Each cocone consists of an object RAO (the vertex) and morphisms
Communication(RAO-Type;) : Construct(RAO-Type;)) — RAO for every RAO-Type; €
RAO-Type, such that for all the Communication : RAO-Type;/—RAO-Type; in RAO-Type,
the triangle below commutes: Communication(RAO-Type;) ° Construct(Communication)

= Communication(RAO-Type;) as the definition 3.5.9 (see the figure below).

122

Communication{RAO-Type;)
RAQ ¢ y ConstructiRAO-Tyvpe;)
£ '

(*adty -0y py Juoneaunumoy

Construct(RAO-Type,)

A morphism of the cocones Communication : (RAO', Communication(RAO—Type])') —
(RAO, Communication(RAO-Type;)) 1s a morphism Communication: RAO — RAO in
RAO-Type-Instance, the triangle below commutes: Communication > Communication
(RAO-Type])' = Communication(RAO-Type;) for all RAO-Type; € RAO-Type (see the

figure below).

e LR fT ot _
RAC < 1 RAC

y

(2d([-py) uonpammumio’)

Construct{ RAO- Tvpe)

As a result, the grid-like communication among the RAO can be regarded as a
cone-like outgoing communication between those RAO and their RAOL, by converting

their relationship of many-to-many to many-to-one through a categorical computation.

123

Such model facilitates the specification of the achieved behavior of those RAO by hiding

the many-to-many relationship details (see the figure below).

RAO-Type

Communication-Tvpe,

Construct Construct Construct

RAO-Type-Instance

The validity of the category RAO-Type-Instance in the figure above is guaranteed
by the functor from RAO-Type-Instance to RAO-Type (see Property 6.1.1).

Property 6.2.12: The outgoing communication from the RAO to its RAOL in a RAC
can be specified by a slice category as RAC/RAOL, where each object is the outgoing
communication (f; /) and the morphism is the arrow g from £ RAO; — RAOL to f:

RAO;— RAOL such that f ° g =f(see Definition 3.2.4).

RAO; S RAO,

RACH.

124

Property 6.2.13: The incoming communication from the RAOL to its RAO in a
RAC can be specified by a coslice category as RAOL/RAC, where objects are incoming
communication (f; /) and the morphism is an arrow g from f# RAOL — RAO; to f:

RAOL— RAO; such that g o f=f (see Definition 3.2.5).

k2

RACH NRAC,

RACH.

Property 6.2.14: As the behavior of a RACG is aggregated from the behavior of its
RAC (RACG is aggregated from its RAC), a limit for the category (diagram) RACG can
represent its designated group behavior. Let RAC-Type and RAC-Type-Instance be
categories (see Property 6.1.1). A diagram of type RAC-Type in RAC-Type-Instance is
the functor Construct : RAC-Type — RAC-Type-Instance. The objects in the index
category RAC-Type are represented as RAC-Type;, RAC-Type;, ... and the values of
functor Construct are in the form of Construct (RAC-Type;), Construct(RAC-Typej), A
cone to diagram Construct consists of an object RAC and a family of morphisms in
RAC-Type-Instance, Communication (RAC-Type;): RAC — Construct(RAC-Type;) for
each object RAC-Type; € RAC-Type such that for each morphism Communication :

RAC-Type; — RAC-Type; in RAC-Type, the following triangle commutes.

125

Communication(RAC-Tvpe;)
RAC N Construct(RAC-Type;)

(‘adA{] =Py JuonEI WO)

Tt
ConstructfRAC-Type)

A morphism of cones Communication : (RAC, Communication(RAC-Type;)) — (RAC,
Communication (RAC-Type))) is a morphism Communication in RAC-Type-Instance
making each triangle commute: Communication(RAC-Type;) = Communication(RAC-
Type])’ o Communication for all RAC-Typeje RAC-Type. Therefore, we have a category

RACG-Behavior(Construct) of cones to Construct (see the figure below).

Communication

N RAC

(‘ad{ -7 yy) wonpomuo)

S
Construct(RAC-Tvpe,)

A limit for the diagram Construct : RAC-Type — RAC-Type-Instance is a terminal

object in the category RACG-Behavior(Construct) represented as RACS (limit object)

126

along with the communication from RACS to RAC. A finite limit is a limit for a diagram
on a finite index category RAC-Type. As a result, the grid-like communication among
the RAC can be regarded as a cone-like incoming communication between those RAC
and their RACS, through converting their relationship of many-to-many to one-to-many
by a categorical computation. Such model facilitates the specification of the designated
behavior of those RAC by hiding the many-to-many relationship details (see Definition

3.5.6 and the figure below).

RAC-Type

Communicalion-Tvpe,

Construct Construct Construct

RAC-Type-Instance

The validity of the category RAC-Type-Instance in the figure above is guaranteed

by the functor from RAC-Type-Instance to RAC-Type (see Property 6.1.1).
Property 6.2.15: Similarly to Property 6.2.14, a colimit for the diagram Construct:

RAC-Type — RAC-Type-Instance is an initial object in the category of cocones from

127

the base Construct represented as RACS (colimit object) along with the communication
from RAC to RACS. Each cocone consists of an object RAC (the vertex) and morphisms
Communication(RAC-Type;) : Construct(RAC-Type;)) — RAC for every RAC-Type;e
RAC-Type, such that for all the Communication : RAC-Type;—RAC-Type; in RAC-Type,
the triangle below commutes: Communication(RAC-Type;) ° Construct(Communication)

= Communication (RAC-Type;) as the definition 3.5.9 (see the figure below).

Communication(RAC-Type;)

y Construct(RAC-Tvpe;)

e
>
2N

(‘ad{[-)y JuonEaTunWWo)

[u.v:r:.'n'm';.r’ RAC-Type)

A morphism of the cocones Communication : (RAC', Communication(RAC—Typej)') —
(RAC, Communication(RAC-Type;)) is a morphism Communication: RAC' — RAC in
RAC-Type-Instance, the triangle below commutes: Communication > Communication
(RAC—Typej)' = Communication(RAC-Type;) for all RAC-Type;e RAC-Type (see the

figure below).

128

Clormmunicalion _
RAC < s RAC

=N

(adt[-)yy) uonpaumume)

Construct{iRAC- Tvpe)

As a result, the grid-like communication among the RAC can be regarded as a
cone-like outgoing communication between those RAC and their RACS, by converting
their relationship of many-to-many to many-to-one through a categorical computation.
Such model facilitates the specification of the achieved behavior of those RAC by hiding

the many-to-many relationship details (see the figure below).

RAC-Type

Communicalion-Tvpe,

Construct Consiruct

Construct

RAC-Type-Instance

129

The validity of the category RAC-Type-Instance in the figure above is guaranteed
by the functor from RAC-Type-Instance to RAC-Type (see Property 6.1.1).

Property 6.2.16: The outgoing communication from the RAC to its RACS in a
RACG can be specified by a slice category as RACG/RACS, where each object is the
outgoing communication (f, /) and the morphism is the arrow g from £ RAC; — RACS to

VE RAC; — RACS such that f © g = f(see Definition 3.2.4).

=

RAC, ¢ N RAC,

RACK
Property 6.2.17: The incoming communication from the RACS to its RAC in a
RACG can be specified by a coslice category as RACS/RACG, where each object is the
incoming communication (7, /) and the morphism is an arrow g from £ RACS — RAC; to
f:RACS— RAC; such that g o f=f (see Definition 3.2.5).

B

RAC,¢ N RAC

RACS

Property 6.2.18: As the behavior of a RAS is aggregated from the behavior of its
RACG (RAS is aggregated from its RACG), a limit for the category (diagram) RAS can
represent its designated group behavior. Let RACG-Type and RACG-Type-Instance be

categories (see Property 6.1.1). A diagram of the type RACG-Type in RACG-Type-

130

Instance is a functor Construct : RACG-Type — RACG-Type-Instance. The objects in
the index category RACG-Type can be represented as RACG-Type;, RACG-Type;, ... and
the values of functor Construct are in the form of Construct(RACG-Type;), Construct
(RACG-Type)), A cone to the diagram Construct consists of an object RACG and a
family of morphisms in RACG-Type-Instance, Communication(RACG-Type;j): RACG —
Construct (RACG-Type;) for each object RACG-Typeje RACG-Type such that for each
morphism Communication : RACG-Type; — RACG-Type; in RACG-Type, the following

triangle commutes.

Communication{ RACG-Tvpe;)
RACG NConstructfRACG-Tvpe;)

(faddf-0 Dy uoneIUNUIO)

~
Construct{RACG-Type,)

A morphism of cones Communication : (RACG, Communication(RACG-Type;)) —
(RACG , Communication(RACG-Type;)) is a morphism Communication in RACG-Type-
Instance making each triangle commute: Communication(RACG-Type;) =Communication
(RACG-TypeJ)’ o Communication for all RACG-Type;e RACG-Type. Therefore, we have

a category RAS-Behavior(Construct) of cones to Construct.

131

Communicaition _
RACCE ¢ >RA5_"(}'

(‘addf-nypy) woynanunuoy

oy
ConstructfRACG-Type)

A limit for the diagram Construct : RACG-Type — RACG-Type-Instance is a
terminal object in the category RAS-Behavior(Construct) represented as RACGM (limit
object) along with the communication from RACGM to RACG. A finite limit is a limit for
a diagram on a finite index category RACG-Type. Thus, the grid-like communication
among the RACG can be regarded as a cone-like outgoing communication between those
RACG and their RACGM, through converting their relationship of many-to-many to
many-to-one by a categorical computation. Such model facilitates the specification of the
designated behavior of those RACG by hiding the many-to-many relationship details (see

Definition 3.5.6 and the figure below).

132

RACG-Type

Communicalion-Tvpe,

RACG-Type,

Construct Construct Construct

RACG-Type-Instance

RACGM
The validity of the category RACG-Type-Instance in the figure above is guaranteed
by the functor from RACG-Type-Instance to RACG-Type (see Property 6.1.1).
Property 6.2.19: Similarly to Property 6.2.18, a colimit for the diagram Construct:
RACG-Type — RACG-Type-Instance is an initial object in the category of cocones
from the base Construct specified as RACGM (colimit object) with the communication
from RACG to RACGM. Each cocone consists of an object RACG (the vertex) and
morphisms Communication(RACG-Type;) : Construct(RACG-Type;)) — RACG for every
RACG-Type;e RACG-Type, such that for all the Communication : RACG-Type;—~RACG-
Type; in RACG-Type, the following triangle commutes: Communication(RACG-Type;) °

Construct(Communication) = Communication(RACG-Type;).

133

Communication(RACG-Type;)

RACG < — Constructf RACG-Tvpe;)
£

("add [-0y uonearunwo)

C m:sfrncff RACG-Tyvpe,)

A morphism of the cocones Communication : (RACG, Communication(RACG—Type])')
—(RACG, Communication(RACG-Type;)) is a morphism Communication: RACG —
RACG in RACG-Type-Instance such that the triangle below commutes: Communication
o Communication(RACG-Type;))' = Communication(RACG-Type;) for all RACG-Type;e
RACG-Type as the definition 3.5.9.

Cammunication

 RACEG

v

(lad{[-nHyy) uonpommuio)

ConstructiRACG- Tvpe
Thus, the grid-like communication among the RACG can be regarded as a cone-like

outgoing communication between those RACG and their RACGM, through converting

134

their relationship of many-to-many to many-to-one by a categorical computation. Such
model facilitates the specification of the achieved behavior of those RACG by hiding the

many-to-many relationship details.

RACG-Type

Communicalion-Tvpe,

RACG-Type; RACG-Type;

Construct Construct

Consiruct

RACG-Type-Instance

Construct Communication- §vpe,)

ConstructiRACG-Tvpe,) 1t ConstructiRACG-Type,)

RACG

RACGM
The validity of the category RACG-Type-Instance in the figure above is guaranteed
by the functor from RACG-Type-Instance to RACG-Type (see Property 6.1.1).
Property 6.2.20: The outgoing communication from the RACG to its RACGM in a
RAS can be specified by a slice category as RAS/RACGM, where each object is the
outgoing communication (£, /) and the morphism is the arrow g from f RACG; —

RACGM to f: RACG; — RACGM such that f ° g = f(see Definition 3.2.4).

135

RACG, S RACG,

RACGM
Property 6.2.21: The incoming communication from the RACGM to its RACG in a
RAS can be specified by a coslice category as RACGM/RAS, where objects are incoming
communications (f, /) and the morphism is an arrow g from ff RACGM — RACG; to f:

RACGM — RACG; such that g ° f=f (see Definition 3.2.5).

RACG, ", RACG,

RACGM

Property 6.2.22: Transition-Type is an instance category of the Type category (see
Property 6.0.1) in which objects represent the transition types denoted by ObjType
(Transition-Type) and morphisms represent the morphism types denoted by MorType
(Transition-Type). For example, Transition-Type-Instance is a category where objects
are denoted by Obj(Transition-Type-Instance) and morphisms are denoted by Mor
(Transition-Type-Instance). There is a functor F' from Transition-Type-Instance to
Transition-Type, a structure-preserving mapping of the objects of the Transition-Type-
Instance to the objects of Transition-Type: F(ObjType(Transition-Type-Instance)) =
Obj(Transition-Type), and of the morphisms of the Transition-Type-Instance to the

morphisms of Transition-Type denoted as F(MorType(Transition-Type-Instance)) =

136

Mor (Transition-Type) Definition 3.1.2 (see the figure below).

He _,i‘l:a’&

sition-

FyTransitionl) FiTransition2)

Property 6.2.23: The transitions between the states in Property 6.2.4 can be specified
as a category Transition where objects are transitions: Transition;, Transition;...., and
morphisms are their preorder relationship "before" (see Definition 3.1.1). Every transition
is modeled by the triple (state, event, state) indicating the source state, trigger event, and
destination state of the corresponding transition.

Proof. All what we need is to prove: i) the existence of composition and identity
morphism, and ii) prove associativity. Let Transition;, Transition, and Transition; be
three tranmsitions such that Transition; occurs before Transition,, which occurs before
Transition;. Then Transition; occurs before Transitions (indirectly through Transition;),
which means the existence of a composition of morphisms from Transition; to Transition;.
The identity morphism does exist as a natural representation of internal transitions. Let f,
g and h be morphisms so that f: Transition;— Transition,, g: Transition, — Transition;

and h: Transition; — Transitiony. It is clear that ho (g°f)=(h°g)° fm

137

Idl ld"'
T ufr'.u.rf.ru.r:rf ':D‘ T-' r.'.l'n-.n'.".r-r_Jn'r2l

e |

T a:.muf:n.uéf <::' T.F'r:un:e':r}u_}
-:'IF.
ld" Id3

Property 6.2.24: The time constraints on the transitions above can be specified as a
functor from Transition to Discrete-Time (see Property 6.2.3), a structure-preserving
mapping of the objects (transitions) of Transition to the objects (time unit expressed as
integers) of Discrete-Time, and of the morphisms of the Transition (before) to the

morphisms (before) of Discrete-Time (see Definition 3.1.2 and the figure below).

I'CiBefore)

Discrete-Tipfe ransition

TCr Transitionl) I'CiTransition2)

Property 6.2.25: Two transition sequences are considered equivalent (or isomorphic)
denoted as TransSeq; ~ TransSeq; iff their first transitions 7rans; and Trans; have the
same source state; their last transitions have the same destination state; and the event of
Trans; is exactly the event of Trans,.

For instance, TransSeq; = <(Monitor, HasChange, Analyze)> is equivalent to the
composite transition TransSeq, = < (Monitor, HasChange, Analyze), (Analyze, Analyze-

Exception, HandleException), (HandleException, Handled-Analyze, Analyze)>.

138

Property 6.2.26: The sequences of the transitions in Property 6.2.2 can be specified
as a category TRANSITION where objects are sequences of transitions denoted by
Sequence;, Sequence,..., and morphsims are the equivalence relationship between those
sequences (see Definition 3.1.1).

Proof. All what we need is to prove: i) the existence of composition and identity
morphism, and ii) prove associativity. Let Sequence;, Sequence, and Sequence; be three
sequences so that Sequence; is equivalent to Sequence;, which is equivalent to Sequences;.
Then Sequence; is equivalent to Sequence; (indirectly through Sequence;), which means
the existence of a composition of morphisms from Sequence; to Sequence;. The identity
morphism does exist as a natural representation of internal equivalence. Let f, g and h be
morphisms such that f: Sequence; — Sequence, g: Sequence, — Sequence; and h:

Sequence; — Sequencey. It is clear that h° (g° f)=(h°g)° fm

I-rJl . IdE
A

‘S:.*q.!u_ﬂ.rz: e f ':{) S’egueu{ el

H'C
f1° 8

.‘S'quu_f.rzr_ﬁ'éjf 'C::' "?.-cﬂgrucﬁ.m:e
I{:l" Id'ﬁ

Property 6.2.27: Action-Type is an instance category of the Type category (see
Property 6.0.1) where objects represent the action types denoted by ObjType(Action-
Type) and morphisms represent the morphism types denoted by MorType (Action-Type).
For example, Action-Type-Instance is a category in which objects are denoted by Obj

(Action-Type-Instance) and morphisms are denoted by Mor(Action-Type-Instance).

139

There is a functor F from Action-Type-Instance to Action-Type, a structure-preserving
mapping of the objects of Action-Type-Instance to objects of Action-Type: F(ObjType
(Action-Type-Instance)) = Obj(Action-Type) and of the morphisms of Action-Type-
Instance to the morphisms of Action-Type: F(MorType (Action-Type-Instance)) = Mor

(Action-Type) as Definition 3.1.2 (see the figure below).

(Before)

Action-Typ<

Frdctionl) FiAction2)

Property 6.2.28: The actions in Property 6.2.2 is a category Action where objects
are actions: Action;, Action;...., and morphisms are their preorder relationship "before".
(see Definition 3.1.1) Every action is specified as the quadruple (sender, trigger-event,
last-event, receiver) stating the sender of trigger-event, the trigger-event triggering an
action, the /ast-event outputted from the action, and the receiver of trigger-event.

Proof. All what we need is to prove: i) the existence of composition and identity
morphism, and ii) prove associativity. Let Action;, Action, and Action; be three actions
such that Action; occurs before Action,, which occurs before Action;. Then Action; occurs
before Action; (indirectly through Action;), which means the existence of a composition of

the morphisms from Action; to Actions;. The identity morphism does exist as a natural

representation of internal actions. Let f, g and h be morphisms so that f: Action; —

140

Actiony, g: Action, — Actionz and h: Action; — Actiony. It is clear that ho (g° f)=(h° g)

o fm
Idi . 1d2
I A I I
Action] ———> Action?
g=i
fr = g =
Actiond <G——— Action3
v fr o
Id3 1d3

Property 6.2.29: The time constraints on the actions above is specified as a functor
from Action to Discrete-Time (see Property 6.2.3), a structure-preserving mapping of the
objects (actions) of Action to objects (time unit expressed as integers) of Discrete-Time,
and of the morphisms of Action (before) to the morphisms (before) of Discrete-Time

(see Definition 3.1.2 and the figure below).

I'CiBefore)

Discrete-Tipre

Action!

TCiActionl) TCfAction2)
Property 6.2.30: Two sequences of actions are equivalent (or isomorphic) denoted as

ActSeq; ~ ActSeq, iff the first actions in both sequences have the same sender and

trigger- event, the last actions in both sequences have the same receiver and last-event.

For example, ActSeq; = <(RACS, StartRAC, HeartbeatRAC, RACS)> is equivalent to

ActSeq; = < (RACS, StartRAC, NoHeartbeatRAC, RACS), (RACS, RestartRAC, Heartbeat

141

-RAC, RACS)>.

Property 6.2.31: The sequence of actions is a category INTERACTION in which
objects are sequences consisting of actions that capture the interchanged external events
as well as communication parties, and morphisms are equivalence relationship between
those sequences (see Definition 3.1.1).

Proof. All what we need is to prove: i) the existence of composition and identity
morphism, and ii) prove associativity. Let Sequence;, Sequence, and Sequence; be three
sequences so that Sequence; is equivalent to Sequence;, which is equivalent to Sequences;.
Then Sequence; is equivalent to Sequence; (indirectly through Sequence;), which means
the existence of a composition of morphisms from Sequence; to Sequence;. The identity
morphism does exist as a natural representation of internal equivalence. Let f, g and h be
morphisms such that f: Sequence; — Sequence, g: Sequence, — Sequence; and h:
Sequence; — Sequencey. It is clear that h° (g° f)=(h°g)° fm

Idl . ld2

'Ex_fq.!u_ﬂ.ru e .|" S’equeu{ el

o s
fr o g ﬂ
SE.cji'uE.rzc f4 {1,:' 'i-cﬂgr:.rcﬂ.rn:c 3
I{:l" Icl"!i

Property 6.2.32: The social life of any RAE in the category RAS is a subcategory of
RAS denoted as SOCIAL(RAE), where the objects are RAE and all other RAE € |RAS|
that have the morphisms with R4E, and the morphisms are social connections between

RAE and RAE as RAS(RAE, RAE) or RAS(RAE , RAE) as the Definition 3.1.1.

142

Proof. All what we need is to prove: i) the existence of composition and identity
morphism, and ii) prove associativity. Let RAE;, RAE, and RAE; be three RAE such that
RAE| connects to RAE>, which connects to RAE;. Then RAE; connects to RAE; (indirectly
through RAE>), which means the existence of a composition of morphisms between RAE
and RAE;. The identity morphism does exist as a natural representation of internal
connections. Let f, g and h be the morphisms such that f: RAE; — RAE,, g: RAE; —

RAE; and h: RAE; — RAE,. It is clear that h~ (g° f)=(h°g)° fm

Id1 _ Id2
;oA ¥ ;oA
RAFE] ———>» RAFEZ

g = f

fi = o £
RAE4 <———— RAES3
v fr -
1d3 Id3

Property 6.2.33 The social life of RAE is equivalent to the social life of RAE Ciff
SOCIAL(RAE) ~ SOCIAL(RAE) as the Property 3.6.8.

Property 6.2.34: Evolution-Type is an instance category of the Type category (see
Property 6.0.1) in which objects represent the evolution types denoted by ObjType
(Evolution-Type) and morphisms represent the morphism types denoted by MorType
(Evolution-Type). For example, Evolution-Type-Instance is the category where objects
are denoted by Obj(Evolution-Type-Instance) as well as morphisms denoted by Mor
(Evolution-Type-Instance). There is a functor F' from the Evolution-Type-Instance to
the Evolution-Type, a structure-preserving mapping of the objects of Evolution-Type-

Instance to the objects of Evolution-Type: F(ObjType(Evolution-Type-Instance)) =

143

Obj(Evolution-Type), and of the morphisms of the Evolution-Type-Instance to the
morphisms of the Evolution-Type as the F(MorType(Evolution-Type-Instance)) = Mor

(Evolution-Type) as the Definition 3.1.2 and the figure below.

(Before)

gn-Type-Instance

“velution !

FiEvolutionl) FirEvolution?)

Property 6.2.35: The evolutions of the RAE in RASF is a category Evolution where
the objects are evolutions: Evolution;, Evolution;...., and morphisms are their preorder
relationship "before" (see Definition 3.1.1).

Proof. All what we need is to prove: i) the existence of composition and identity
morphism, and ii) prove associativity. Let Evolution;, Evolution; and Evolutions; be three
evolutions such that Evolution; occurs before Evolution,, which occurs before Evolutions;.
Then Evolution; occurs before Evolution; (indirectly through Evolution;), which means
the existence of a composition of the morphisms from the Evolution; to Evolution;. The
identity morphism does exist as a natural representation of internal evolutions. Let f, g
and h be morphisms so that f: Evolution; — Evolution,, g: Evolution, — Evolutions; and

h: Evolution; — Evolutiony. It is clear that h° (g°f)=(h°g)° fm

144

Idl . Id2
d f d

! ! a
Evalution] ————> Evolution?
g=r

o

hoeg =

Fvolutiond ‘Qh:' Evolution3
o™ L
Id3 Id3

Property 6.2.36: The time constraints on the evolutions above can be specified as a
functor from Evolution to Discrete-Time (see Property 6.2.3), a structure-preserving
mapping of the objects (evolutions) of Evolution to the objects (time unit expressed as
integers) of Discrete-Time, and of the morphisms of the Evolution (before) to the

morphisms (before) of the Discrete-Time (see Definition 3.1.2 and the figure below).

I'CiBefore)

Discrete-Tipfe volution

TCrEvelutionl) TCiEvalution2)

Property 6.2.37: Two evolutions (Evolutionl: RAE -> RAE; Evolutionl: RAE ->
RAE") are equivalent or isomorphic denoted as Evolution; ~ Evolution; iff the starting
RAE of those two evolutions are the same (RAE = RAE) and the social lives of the ending
RAE are equivalent/isomorphic (SOCIAL(RAE) ~ SOCIAL(RAE ’)) as Property 6.2.33.

Property 6.2.38: Two sequences of evolutions are equivalent (or isomorphic) denoted
as EvoSeq; ~ EvoSeq; iff both the first and the last evolutions in those two sequences are

equivalent (or isomorphic) respectively. For example, EvoSeq; = <Restart, Substitute,

145

Take-over> is equivalent to EvoSeq, = < Restart, Take-over>.

Property 6.2.39: The sequence of the RAE evolutions is a category EVOLUTION
where objects are sequences of the RAE evolutions, and morphisms are the equivalence
relationship between those sequences (see Definition 3.1.1).

Proof. All what we need is to prove: i) the existence of composition and identity
morphism, and ii) prove associativity. Let Sequence;, Sequence, and Sequence; be three
sequences so that Sequence; is equivalent to Sequence;, which is equivalent to Sequences;.
Then Sequence; is equivalent to Sequence; (indirectly through Sequence;), which means
the existence of a composition of morphisms from Sequence; to Sequence;. The identity
morphism does exist as a natural representation of internal equivalence. Let f, g and h be
morphisms such that f: Sequence; — Sequence, g: Sequence, — Sequence; and h:

Sequence; — Sequencey. It is clear that h° (g° f)=(h°g)° fm

Id1 . IdZ
LY

Seguencel ':D ‘}'fq:.r::-'u{ e

gc
e g

.‘S'eu:]i'ur_f.rz.:r_f{i" ‘C]:' ’i{ﬂqucﬂucc
Idf' Icl3

Based on the categorical constructors and behavior we presented above, Figures 38,
39 and 40 below illustrate the templates for the categorical specification of RAC, RACG

as well as RAS respectively, which can be expressed in a XML format later.

CAT-RAC <name>
Objects: <collection of objects specifying a set of RAO in RAC>

Morphisms: <collection of morphisms specifying the interactions between RAO>

146

Limit Object: < a limit specifying designated behavior model of those RAO>
Colimit Object: < a colimit specifying actual behavior model of those RAO>
Product Objects: <collection of product objects specifying synchronous communication between RAO>
Coproduct Objects: <collection of coproduct objects for asynchronous communication between RAO>
Pushout Objects: <collection of pushout objects for next relays of outgoing communication from RAO>
Pullback Objects: <collection of pullback objects for previous relays of incoming communication to RAO>
Slice Category: <a category specifying outgoing communication and their relations from RAO to RAOL>
Coslice Category: <a category specifying incoming communication and their relations from RAOL to RAO>
Functors: <collection of functors specifying the evolutions of a RAC>
Natural Transformations: <collection of natural transformations for the relations of those evolutions in RAC>
Functor Category: <a category specifying all possible evolutions and their relations in RAC>

End CAT-RAC

Figure 38: Template for Categorical Specification of RAC

CAT-RACG <name>
Objects: <collection of objects specifying a set of RAC in RACG>
Morphisms: <collection of morphisms specifying the interactions between RAC>
Limit: <a limit specifying designated behavior model of those RAC>
Colimit: <a colimit specifying actual behavior model of those RAC>
Product Objects: <collection of product objects specifying synchronous communication between RAC>
Coproduct Objects: <collection of coproduct objects for asynchronous communication between RAC>
Pushout Objects: <collection of pushout objects specifying next communication relays between RAC>
Pullback Objects: <collection of pullback objects specifying previous communication relays between RAC>
Slice Category: <a category specifying outgoing communication and their relations between RAC>
Coslice Category: <a category specifying incoming communication and their relations between RAC>
Subcategories: <collection of subcategories specifying a set of RAO in RAC>
Product Categories: <collection of product categories specifying interactions between RAC>
Functors: <collection of functors specifying the evolutions of a RACG>
Natural Transformations: <collection of natural transformations specifying the relations of those evolutions>
Functor Category: <a category specifying all possible evolutions and their relations in the RACG>

End CAT-RACG

Figure 39: Template for Categorical Specification of RACG

CAT-RAS <name>
Objects: <collection of limit or colimit objects specifying a set of RACS in RAS>
Morphisms: <collection of morphisms specifying the interactions between RACS>
Limit Object: <limit object of RACS specifying RACGM based on interactions from RACGM to RACS>
Colimit Object: <colimit object of RACS specifying RACGM based on interactions from RACS to RACGM>
Product Objects: <collection of product objects specifying synchronous communication between RACS>
Coproduct Objects: <collection of coproduct objects for asynchronous communication between RACS>

Pushout Objects: <collection of pushout objects for next relays of outgoing communication from RACS>

147

Pullback Objects: <collection of pullback objects for previous relays of incoming communication to RACS>
Slice Category: <a category specifying outgoing communication and their relations from RACS to RACGM>
Coslice Category: <a category for incoming communication and their relations from RACGM to RACS>
Subcategories: <collection of subcategories specifying a set of RACG in RAS>
Product Categories: <collection of product categories specifying interactions between RACG in RAS>
Functors: <collection of functors specifying the evolutions of a RAS>
Natural Transformations: <collection of natural transformations for the relations of evolutions in RAS>
Functor Category: <a category specifying all possible evolutions and their relations in RAS>

End CAT-RAS

Figure 40: Template for Categorical Specification of RAS
6.3 Representation of Categorical Models in RASF
This section states the research activity 18) in Figure 3. After having the categorical
models in RASF, we need to express them using XML in terms of feeding them to our
graphical illustration tool.
6.3.1 Representation for Categorical Model of Constructors
The figure below depicts an example of the representation for the categorical model of
constructors (defined in Section 6.1) in a XML format, and more XML representation can

be found in Appendix A.

<CATEGORY name = “RAE-Type”>
<OBJECT>
<OBJECT name = “RAE-Type;”/>
<OBJECT name = “RAE-Type;”/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Communication-Type,”/>
<FROM-OBJECT name = “RAE-Type;”’/>
<TO-OBJECT name = “RAE-Type;”/>
</MORPHISM>
</MORPHISM>
</CATEGORY>

Figure 41: XML Specification of Index Category RAE-Type

148

6.3.2 Representation for Categorical Model of Behavior
The following figure depicts an example of the representation for the categorical model
of behavior (defined in Section 6.2) in a XML format, and more XML representation can

be found in Appendix B.

<CATEGORY name = “Function-Pair-Type”>
<OBJECT>
<OBJECT name = “Function-Pair-Type;”/>
<OBJECT name = “Function-pair-Type;”/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Interaction-Type,”/>
<FROM-OBJECT name = “Function-Pair-Type;”/>
<TO-OBJECT name = “Function-Pair-Type;”/>
<MORPHISM>
</MORPHISM>
</CATEGORY>

Figure 42: XML Specification of Index Category Function-Pair-Type

6.4 Graphical Illustration of Categorical Models in RASF

This section states the collaboration and supervision to the master students involved in
the RASF project for the research work 11) in Figure 2.

6.4.1 Categorical Modeling Language (CML)

CML is a powerful modeling language with a formal basis from the category theory and
graphical modeling notations. The convention of the graphical model is an adaptation of
the category theory convention where a circle represents an object in a category and a
directed arrow represents a morphism. The CML specification is constructed using the

CML formal grammar. The grammar also serves as a basis for generating the XML file

149

for the CML models constructed using a categorical modeling tool [81].

CML uses Extended Backus-Naur Form (EBNF) for the grammar notation. The
grammar can be used to determine the exact syntax for any category construct. An EBNF
based grammar consists of “non-terminals” and “terminals”. Non-terminals are symbols
within a BNF definition, also defined in the grammar. Terminals are endpoints in BNF
definition, consisting of category theory keywords; all non-terminals appear in brackets
<> and all terminals appear without brackets. The start symbol in the CML grammar
corresponds to a list of non-terminals, each of which translates to a model in the CML as
the following. More details about the grammar for the typed-category, functor, natural
transformation, diagram, cone, cocone, limit, colimit and product in [81].

o <Typed Category> consists of a keyword TYPED-CATEGORY followed by the
non-terminals for the name and Id of the category. The keyword Types of Objects
serves as a heading for a list of object types. The keyword Objects with a notation
for a set of objects in the category is followed by a list of objects in that category.

e <Object Type> consists of a list of the type names and Ids for each type and a list
of object type instances with name and Id for each instance.

e <Object> consists of the object type name and Id followed by the instance objects
for that type.

e <Morphism_Type> consists of a name of the morphism type followed by a list of
morphisms for that type.

e <Morphism> is <Mor_ Instance> that is a list of morphism instances for each

150

morphism type followed by <Mor Identity>.
e <Mor Identity> is the list of Identity morphisms for each object instance in
<Object>.
e <Axiom> consists of all properties that must hold true to prove the correctness of
the models according to the category theory. It primarily consists of <Property>
that is <Identity> and <Associativity>.
e <Id> is a symbol for construction of the names and Ids in CML. It consists of one
or more characters.
e The non-terminal <Character> consists of all alphabets and digits from 0 to 9.
o <Empty> facilitates the termination of a name or Id with an empty space.
6.4.2 Graphical Illustration Tool

The name of our graphical illustration tool is CATCanvas, which is inspired from the
visual models of category theory constructed on a drawing canvas. So far there are two
categorical constructs have been implemented in CATCanvas: Category and Functor. For
each construct there is a separate view and drawing canvases. A categorical model can be
either drawn manually or imported from a XML file to the canvas. Similarly the model
may also be exported to a XML file or saved as an image file. CATCanvas is a
Web-based application running in a Flash player, and its Ul is a Flex-based Web UI built
by the MXML controls [81]. There is a “Rules Engine” in CATCanvas that is responsible
for the construction of categorically correct models. The engine plays an active role when

performing functor mapping. For the constructed diagrams (models), the XML generator

151

can build the XML specifications and send them to the Web UI in terms of exporting
them to files. The XML parser can extract the XML files and send the parsed data to the
Ul in terms of rendering the graphical models. Figure 44 depicts an example of using
CATCanvas and exporting to a XML file, which is illustrated in Figure 43. More details
about our graphical tool can be found in [81].

<?xml version="1.0" encoding="utf-8" 7>
- <category name="PAM Team">

<object name="TM" type="Messenger" />
<object name="WIM" type="Worker" />
<object name="L" type="Leader" />
<object name="WIR" type="Worker" />
<object name="WAL" type="Worker" />
<morphism name="Id(L)" type="Identity" fromObject="L" toObject="L" />
<morphism name="Id(WIR)" type="Identity" fromObject="WIR" toObject="WIR" />
<morphism name="Id(WAL)" type="Identity" fromObject="WAL" toObject="WAL" />
<morphism name="Id(WIM)" type="Identity" fromObject="WIM" toObject="WIM" />
<morphism name="Id(TM)" type="Identity" fromObject="TM" toObject="TM" />
<morphism name="c1" type="Cooperate" fromObject="TM" toObject="WIM" />
<morphism name="c2" type="Cooperate" fromObject="TM" toObject="WIR" />
<morphism name="c3" type="Cooperate" fromObject="TM" toObject="WAL" />
<morphism name="m3" type="Manage" fromObject="L" toObject="WIM" />
<morphism name="m2" type="Manage" fromObject="L" toObject="WIR" />
<morphism name="m1" type="Manage" fromObject="L" toObject="WAL" />
<morphism name="c4" type="Cooperate" fromObject="WIM" toObject="WIR" />
<morphism name="cd" type="Cooperate" fromObject="WIR" toObject="WAL" />
<morphism name="u" type="Unique" fromObject="L" toObject="TM" />

</category>

Figure 43: A Sample of the XML File Exported from the Graphical Model [81]

152

Esouens s

o
O'_} |- Desktop » hd | 4'-¢| | Search Desktop el |
File name: -

e .

* Browse Folders Save l ’ Cancel

et

' :
| @ m3

Figure 44: An Example of Using CATCanvas and Exporting to a XML File [81]

6.5 Categorical Specification of MAS Model in RASF

This section states the collaboration and supervision to the master students involved in
the RASF project for the research work 13) in Figure 2. In Section 5.3, we stated a
mapping from the RAS model to MAS model in the RASF, and we will introduce the
categorical specification of the MAS model in this section, such as plans, goals, beliefs

and their relationships.

153

6.5.1 Plans

Plans represent the agent’s means to act on the requests initiated by other agents or from
its environment, and one single plan is abstracted as a sequence of actions. Thus, plans of
an agent are collections of sequences of actions, which are performed in a discrete time.

Definition 6.5.1: Action is a discrete category (see Definition 3.1.5) whose objects
are actions in the intelligent control loop, denoted by Act;, Act,..., and the only
morphisms are identity morphisms of those objects [62].

Definition 6.5.2: Plan is a category that represents one plan whose objects are actions
denoted by Act;, Act,... and morphisms are before that model the partial order between
the actions. A sequence of actions can be understood as a path in category theory (see
Property 6.0.3), and only paths of length equal or less than one are considered as
morphisms. Inside Plan, we define a special object denoted as Acty,; (null action), and it
doesn’t have any morphism from or to other actions; it is used to catch exceptions [62].

Definition 6.5.3: PLAN is a category whose objects are plans denoted by Plan,,
Plan;... and morphisms are before that model the partial order between the plans. This
partial order can be understood as a path in category theory [see Property 6.0.3], and only
paths of length equal or less than one are considered as validated morphisms. Inside
PLAN, we define a special object, called Plany,; (null object), and it doesn’t have any
morphism from or to other plans; it is used to catch exceptions [62].

Definition 6.5.4: sequence action is a functor from Action to Plan. It provides a

rule mapping all the actions in Action to actions in Plan, and all the identity morphisms

154

in Action to identity morphisms in Plan [62].

Definition 6.5.5: refined by plan is a functor from Plan to PLAN. It means that the
actions in Plan are used to complete or build plans in PLAN; it also provides a rule that
maps all the actions in Plan to plans in PLAN, and all the morphisms in Plan to identity
morphisms in PLAN [62].

Definition 6.5.6: timing action is a functor from the Plan to Discrete-Time (see
Property 6.2.3), which maps actions in Plan to time units in Discrete-Time, and maps
before in Plan to before in Discrete-Time [62].

Definition 6.5.7: fiming plan is a functor from PLAN to Discrete-Time (see
Property 6.2.3), which maps plans in PLAN to time units in Discrete-Time, and maps
before in Plan to before in Discrete-Time [62].

6.5.2 Goals

Goals make up the agent’s motivational stance and are the driving forces for its actions.
Therefore, the representation and handing of goals is one of the main features of agents.
In fact, each agent has a set of goals which are dispatched by plans.

Definition 6.5.8: GOAL is a category whose objects are goals and morphisms are
depends. The definition of depends can be the domain of this morphism having a higher
or the same priority level than its co-domain. Inside GOAL, there is a special goal
denoted by Goaly,; that stands for an empty object with no morphism from or to other
goals; it is used to catch exceptions [62].

Definition 6.5.9: Dependency is a category whose objects are integers such as 7, 0,

155

-1 or unsigned, and morphisms are more-than denoted as “>". The object unsigned
doesn’t have any relations (morphisms) with other objects. It is used to set up the order of
importance or urgency of different goals [62].

Definition 6.5.10: assigned dependency is a functor from GOAL to Dependency. It
models the fact that goals in GOAL can be assigned to related order in Dependency;
depends in GOAL can be mapped to more-than in Dependency [62].

6.5.3 Beliefs

Beliefs represent agent’s knowledge or information about environment and itself. Beliefs
are built from different information called facts, which are organized into different sets
denoted as fact sets.

Definition 6.5.11: FactSet is a discrete category where objects are facts and the only
morphisms are identity morphisms. The facts are information or knowledge about the
agent’s environments and system. Based on the different usage, facts are classified into
different categories FactSet. Two special categories of FactSet need to be introduced:
FactSetg,se and FactSetny. FactSetg, includes all the facts every other FactSet has,
and FactSety, contains no facts at all or it’s an empty set. Inside FactSet (includes
FactSetg,se, except FactSetny), we define a special object denoted as Factyy; (a null fact)
which doesn’t have morphisms. It is used to catch exceptions [62].

Definition 6.5.12: BELIEF is a category of Sets (see Definition 3.1.6), whose objects
are categories FactSets (one FactSetp,, as well as one FactSetyy are included as

default), and the morphisms are subset of. Any FactSet is a subset of FactSetg,se, and

156

more formally, every fact within FactSet can be found in FactSetp,s. Similarly,
FactSetnyy has subset _of relations to every FactSet [62].

6.5.4 Agents

Goals represent the concrete motivations that influence an agent’s behavior. The concrete
actions an agent may carry out to reach its goals are described in plans. A plan is a
procedural recipe describing the actions to take in order to achieve a goal. In BDI systems,
each plan must dispatch a goal, but the goal can be a null object. Basically, in an agent,
the plans have to dispatch relevant goals.

Definition 6.5.13: plan goal is a functor from PLAN to GOAL. It captures the fact
that every Plan from PLAN dispatches a goal from GOAL. Every Plan in PLAN can be
mapped to one Goal in GOAL, and morphisms before in PLAN can be mapped to
morphisms depends in GOAL. The functor grantees that: one plan can only dispatch one
corresponding goal, but different plans can dispatch a same goal [62].

Definition 6.5.14: plan belief is a functor from PLAN to BELIEF. It means that
agent plans have access to read or write facts from agent’s beliefs. Every plan in PLAN
can be mapped to one FactSet (either FactSetp,s. or FactSety,;) in BELIEF, and all the
morphisms in PLAN are mapped to the identity morphism of FactSety,; in BELIEF. The
functor formalizes the communication from plans to beliefs. [62].

Definition 6.5.15: goal belief is a functor from GOAL to BELIEF. It means every
goal has an access to read facts or knowledge from agent beliefs. Every Goal in GOAL is

mapped to one FactSet in BELIEF, and morphisms depends in GOAL are mapped to the

157

identity morphism of FactSety,; in BELIEF. The functor formalizes the communication
from goals to beliefs. By this functor, goals are able to read data from beliefs and justify
if they can be accomplished [62].

Definition 6.5.16: An agent can be represented by categories: Action, Plan, PLAN,
GOAL, BELIEF and FactSet with functors: plan goal, plan belief, goal belief,
refined by plan and sequence action [62].

Definition 6.5.17: MAS is a category whose objects are agents and morphisms are
communication which represents that one agent has activities of conveying information to
another agent; communication can be differentiated by types [62].

6.5.5 Repository Agent

Definition 6.5.18: Repository-Type is a type category (see Property 6.0.1) whose objects
represent the types of agents, and morphisms represent the types of connections between
those repository types. Repository-Type-Instance is a category whose objects represent
repositories, and morphisms represent connections between those repositories.

Definition 6.5.19: Repository-Access that maps agents in MAS to repositories in
Repository-Type-Instance, and maps every communication in MAS to each connection
in Repository-Type-Instance.

6.6 Representation of Categorical MAS Models in RASF
This section states the research activity 19) in Figure 3. After having the categorical MAS
models in RASF, we need to express them using XML in terms of feeding them to our

graphical illustration tool as the following example, and more XML representation can be

158

found in Appendix C.

<CATEGORY name = “Plan-Type”>
<OBJECT>
<OBJECT name = “Plan-Type;”/>
<OBJECT name = “Plan-Type;”/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Partial-Order”/>
<FROM-OBJECT name = “Plan-Type;”/>
<TO-OBJECT name = “Plan-Type;”/>
</MORPHISM>
</MORPHISM>
</CATEGORY>

Figure 45: XML Specification of Type Category Plan-Type
6.7 Summary
In this chapter, we described the categorical RASF model, transformation from the
categorical RAS model to its XML specification as well as transformation from
categorical MAS model to its XML specification.

Based on the architecture model in RASF we presented in Chapter 5, the internal
structure of a RAS is both hierarchical (composition of its RAE) and recursive (tiered
interconnectivity of its RAE). Therefore, the behavior of a RAS can be characterized by
its RAE and their interactions. The categorical models for the structure and behavior in
RASF were generated in Section 6.1 & 6.2 respectively.

After having the categorical models in RASF, we expressed them using XML in
Section 6.3 for feeding them to our graphical illustration tool CATCanvas, which was

introduced in Section 6.4.

159

Finally, the categorical specifications of the MAS model (plans, goals, beliefs and
their relations) together with their XML representations were introduced in Section 6.5 &
6.6. We will introduce the categorical specifications of the self-healing property for the

RASF in next chapter.

160

Chapter 7: Categorical Specifications of Self-Healing in RASF

This chapter states the research activities 10), 11) and 20) in Figure 3 that are prototype
design of self-healing, prototype design of categorical specification for self-healing and
transformation from the categorical self-healing property to its XML specification. I had
two publications [177 & 87] for this chapter. After having described the categorical
specification of the RAS model, MAS model with their representation and graphical
illustration, a categorical specification of self-healing is explained in this chapter.

In order to simplify our description, we use the Reactive Autonomic Elements (RAE)
to represent RAO, RAOL, RAC, RACS, RACG and RACGM. The interactive behavior
between RAE in the RAS model can be specified as external event sequences.

If we consider each RAE as a black box with corresponding internal reactive or
autonomic behavior, only the external events crossing the RAE boundary are observable,
so the interactions between RAE to achieve a usage goal are performed by interchanging
their external events that are of two types: 1) input (from destination RAE to source RAE);
2) output (from source RAE to destination RAE). Moreover, the timing requirements can
be modeled as global clock events: a Tick abstracting one time unit and a NTR abstracting
No Timing Requirement. Incorporating the Ticks into interaction patterns allows for the
performance analysis of the minimum and maximum delay time for each RAE usage
during design validation and testing phase.

We extract the event sequencing and the timing constraints in the form of rules that

relate to: 1) Input Events (IE) to IE; 2) IE to Output Events (OE); 3) OF to OFE; 4) OE to

161

IE; 5) Trigger Events (TE) to Last Events (LE), where LE is an event finalizing the usage
of a RAE started by TE. The above knowledge is sufficient to produce generic interaction
patterns between RAE. The first event in such an interaction pattern is always a TE from
source RAE, and the order between events in one pattern must satisfy sequencing rules for
the partial order between RAE. We call such a pattern a legal sequence. More details
about the algorithm for generating exhaustive set of legal sequences from a given set of
requirements can be found in [125].

Figure 47, 48 and 49 show the specification of a sample RAE depicted in Figure 46

by which we can illustrate the self-healing property in RASF.

/S
|

_— — — — — — — — — — — — —

Figure 46: Example of RAS Application Model

162

FAT <RAC1 =

dfenbers: <RA01, A0, RA001 =

Corifigiee: <(FRA01, R&SOZ, (RAOL, BEADLL, (FA02, &S00,
(Ea0], RAOLD, (R&AD2 RAQLI=

Leader: <FADL1 =

Stperwmsor: TRACEL-

M ghabces: TRAC2, RACE-

Reposiforyp: <local repositorsy=

End FAC

Figure 47: Specification of RACI1 Structure

RAC G <RACGL=

Idembers: <RACL], RAOLZ BAOLSE RACIEL=

Comfigee: <RADLL, RACSL), (BAOQLZ, FACEL), (FAOLS, RATSEL,
(FA0L1, RAQLZ), (FA0L1, RAOLEY), (RAOLZ, RAOLE =

Srgperwsor: CRACE1=

Ndepiager <RACGML =

Mt ghabice s <rpall=

Feposifiory: <local repositorsd=

End Fac G

Figure 48: Specification of RACGI Structure

Faz <RAS1=

Menbers: TRACE]1, RACGRL =
Corpfignee: <(RACS] BAT G =
Mepaager: <BACGR =

User Corisole: < Consolel =

Mz ghboes: <rmall=

Reposifory: <local repositors?
End RAS

Figure 49: Specification of RAS1 Structure

7.1 Scenariol: Crashed RAO
After RAOI is started by RAOLI, it begins to send its heartbeat messages to RAOLI

every t ticks [177], while RAOLI 1is in the first state of its intelligent control loop,

163

monitoring the status of RAOI. If RAOLI receives the heartbeat messages from RAOI,
NoChange event keeps it in Monitor state; otherwise, RAOI-Crashed event is triggered
and then RAOLI transits to Analyze state, while a time constraint variable (7Cvarl) is
initialized to work as a local clock in terms of time constraints on each transition of the
intelligent control loop. The value of TCvarl is t0, t1, t2, t3... where t0 < t1 < t2 < 3.
After RAOLI enters Analyze state, it sends a Restart message to RAOI in ¢0 ticks. If
RAOI is recoverable, NoAction event occurs and RACSI goes back to Monitor state,
while the TCvarl is reset; otherwise, RAOLI transits to Plan state triggered by HasAction

event in ¢/ ticks (see Figure 52).

A [e | B Cpl | oAl |
1 | | Restart |
I | | }J
: | RequestRAgy | Nelleartbeat ™

< e € ————
: Fequest I | I
L{ | | |
I . ! | |

Contirnmeed
' T E’I |
I Re 1:L5te-r | I
le = | I
I~ He-arltb-e-at I I
e — — = e e e S |
| | | |
Figure 50: Substitution Work Flow in RACI1

| L FAlS] A] Bl]
|r 1| i Restart i
I I I =
I I RequestiR AL I MMaolHeartbhaat I
I = L — e — — — —]
| | MotFouwnd 1 1
[pf—— — — — — |
| Take-ower | 1
= 1 i |
| Confirmeed | |
———_——————— —————_——_—— — 1

|

Figure 51: Take-Over Work Flow in RACI

164

[es]
Mo e

[

[Yes]

Ml canhibaonr

i

Restart Ay
[T war I ==u{¥]

Z ™

MexAciion

‘/{:f_-:aet TCvarl) |

™ [MNa]

Analy ee

A&

RACY T s el

[Yes]
Acrioniloen
| TCwvarl-==13]

(Tratialize TOwvarl)

[es]

Exacute

[MNo]
HeevAcsivaen
[TCwarl==il]

Srebsrirnre
"‘f[TCvarl <-12]~_|

[Mo] o
— Tke-over

FPlan

[No]
AeticnFailed

[TCwvarl==t2]

NeaP e

Figure 52: Intelligent Control Loop in RAOL1 for Self-Healing

When RAOLI is in Plan state, it sends the RequestRAOI message with the type
information of RAOI to RACSI, and the latter tries to replace RAO1 by an available RAO
which is isomorphic to RA01 in RAS1, such as RAO3, since isomorphic objects behave
in the same way. If RACS! finds RAO3 successfully, RAOLI chooses the plan Substitute
and transits to Execute state triggered by Substitute event in t2 ticks; otherwise, it selects
the plan Take-over and enters Execute state triggered by Take-over event in t2 ticks. In

this plan, RAO? takes the responsibilities of RAOI and works as the product object of

original RAO1 and RAO2, since they behave as a synchronous product machine.

When RAOLI is in Execute state and the plan Substitute is applicable, RAOLI sends
a register message to RA0O3 and then initializes it to the status of RAO! according to the

checkpoint made before. When the plan fake-over is applicable, RAOLI sends a take-over

165

message to RAO2 and update it to the status of the synchronous product machine of
RAOI and RAO?2 based on the checkpoint. After the plan execution, RAOL I validates the
behavior of RAC1 and its evolution (see Property 6.1.3) RAC1 based on categorical
specifications. If RAC1 has equivalent behavior with RAC1, ActionDone event occurs
and RAOL1 transits to Monitor state in 3 ticks; otherwise, ActionFuailed event keeps it in
Execute state for the user intervention from User Console by RACSI and RACGM]1.

7.2 Categorical Illustration of Scenariol

The actions in the substitution work flow and take-over work flow of RAC1 can be
specified as the categories where objects are those actions (Restart, RequestRAOI,
Register, etc.), and morphisms are their preorder relationship before. Each object (action)
in those categories is a quadruple (see Property 6.2.28). For example, RequestRAO =
(RAOL1, NoHeartbeat-AfterRestart, SearchRAO, RACSI). Moreover, the sequences of
those actions can be specified as the categories in which objects are those sequences
(<Restart, NoHeartbeat, RequestRAO, Request>, <RequestRAO, Request, Confirmed,
Register, Heartbeat>), and morphisms are equivalence relationship between those
sequences (see Property 6.2.31).

The transitions in the intelligent control loop of RAOL1 for self-healing can be
specified as a category in which objects are those transitions (NoChange, RAO1-Crashed,
RestartRAOI, etc.), and morphisms are their preorder relations before. Each object
(transition) in that category is a triple (see Property 6.2.23). For example, RAOI-Crashed

= (Monitor, NoHeartbeat, Analyze). Moreover, the sequences of those transitions can be

166

specified as a category in which objects are those sequences (<No- Change,
RAOI-Crashed, RestartRAOI, NoAction>, <RestartRAOI, HasAction, Take- over,
ActionDone>), and morphisms are equivalence relation between those sequences (see

Property 6.2.26).

CAT-RAC<RACI1=>
Objects: <RAO1,RAO2, RAOL 1>
Morphisms: <Work (RAO1, RAO2), Work2(RAO2, RAO1), Report](RAO1,RAOL1),
Order] (RAOL1,RAO1), Report2(RAO2, RAOL1), Order2(RAOL1, RAQ2)>
Limit Object: <RAOL1>
Colimit Object: <RAOL1>
Product Objects: <SPM1(RAO1,RA02), SPM2(RAO1,RAOL1), SPM3(RAO2Z,RAOL1)=
Coproduct Objects: <null=
Pushout Objects: <NR1(Orderl, Order2). NR2((RAOL2, RAO1). (RAOL2, RAO2))>
Pullback Objects: <PR1((RAO1.RAOL2), (RAO2. RAOL2)). PR2(Reportl. Report2 >
Slice Category: <(Reportl, Report2), Workl>
Coslice Category: <(Orderl, Order2), Work2>
Functors: <Restart(RAC1-1,RAC1-0), Substitute(RAC1-2, RAC1-0), Take-over(RAC1-3, RACI1-0)>
Natural Transformations: <NT1(Restart, Substitute), NT2(Substitute, Take-over), NT3(Restart, Take-over)>
Functor Category: <(Restart, Substitute, Take-over), NT1_ NT2, NT3>
End CAT-RAC]

Figure 53: Categorical Constructs in RAC1 Representation
Figure 53 depicts the categorical representation of RAC1 before RAO! is crashed.
The category RAC1 consists of three objects RAOI, RAO2 and RAOLI. The bidirectional
communications among those objects are six morphisms to specify working collaboration
between RAOI and RAO2, as well as the leadership from RAOLI to RAOI and RAO2
(see Property 6.1.2). The SPM (Synchronous Product Machines) for the synchronous
communication between two objects in RAC1 can be represented by SPM1, SPM2 and

SPM3 (see Property 6.2.6). Slice category models Report actions (Reportl and Report2)

167

with their relations (Workl) from RAOI and RAO2 to RAOLI (see Property 6.2.12);
coslice category may interpret Order actions (Orderl and Order2) with their relations
(Work2) from RAOLI to RAOI and RAO? (see Property 6.2.13).

Let RAC1 be a subcategory (consisting of objects RAOL1, RAO1, RAO2 and the
morphisms among them) of RAC1-0 (a category consisting of all potential RAE for the
self-healing in RAC1). If RACI1 is recovered by restarting crashed R4O1, it evolves to
RACI1-1 (consisting of objects RAOLI, RAOI-1, RAO2 and the morphisms among them
in RAC1-0), which has the same categorical structure as RAC1 except for the different
initial status of RAOI. This evolution is represented by the Restart functor (a
structure-preserving mapping) from RAC1-1 to RAC1-0. If RAC1 is recovered by
substituting RAO1 by its isomorphic object RAO3 (see Definition 3.1.3), it will evolve to
RACI1-2 (consisting of objects RAOL1, RAO3, RAO2 along with the morphisms among
them in RAC1-0), which has the same categorical structure as RAC1 but replacing RAO!
with RAO3. The above is specified by the Substitute functor, a structure-preserving
mapping (see Figure 54).

However, if RAC1 is recovered by asking R402 to take over the responsibilities of
RAOI, it will evolve to RAC1-3 (consisting of objects RAOL1-1, SPM1 along with the
morphisms among them in RAC1-0), which has different categorical structure, but both
of them have the equivalent social lives (see Property 6.2.33). The mapping among those
evolutions Restart, Substitute and Take-over of the RAC1 can be interpreted as natural

transformations (see Property 6.1.4). The functor category having those functors as

168

objects and their natural transformations as morphisms illustrate all possible evolutions
with their relations. In addition, the natural transformation3 is a composition of natural
transformationl and natural transformation2, which may be interpreted as the following:
the result of the evolution Restart -> Substitute -> Take-over is equivalent to the evolution
Restart -> Take-over. Figure 56, 57 and 58 depict those natural transformations and their

composition respectively.
[RaC13
| RAOLI-I

e — —

| SPMI
—_

Matural Transforamtion3 Matural Transforamtion?

[Rac1-o RAOLI RAOLI-I :

rR.-E]-]

| RAOL]
| @)

| RAQI-] R.-‘tf.‘.lll

I-I{AL']-Z]
FAOLI |

|

|

SPudl
Substitute_|

£

I RAOZ RAD2

FA02

RAC]-] AN

Matural Transforamtion |

Figure 54: Evolution for Self-Healing in RACI1

N

Restart
| 7
NTT
v
RAC [Subsiitufie > RAC1-0

|
J.l|,"lr T 2 Jﬂ'i'r T_?

Leake—ea 1.::?‘ * L[>

Figure 55: Natural Transformation for Self-Healing in RAC1

169

NTI paon
Restartt RAOLTY = RAOL] ———) Substitute(RAOLI) = RAOLI

Restart{ Command) = Command -1 Substitutel Command 1) = Command 3
NTI gaor
RestartiRAOTNY = RAQT-1 — Substitute(RAOT) = RAO3

Figure 56: Natural Transformation from Restart to Substitute in RAC1

NT2. paons
Substitute(RAOLIY= RAOLI ———> Tuke-over{RAOLI) = RAOLI-]

Substitute{ Commandl) = Command3 Take-over Commuand 1y = Command4
NT2. paor
Substitute(RAOT) = RAO3 =—=p Take-over(RAOI) = SPM]

Figure 57: Natural Transformation from Substitute to Take-over in RAC1

NT3. pa01s
RestartiRAOLTY = RAOL 1 ——) Take-over{RAOLI) = RAOLI-1
Restart{l Command) = Command -1 Take-overl Commandi) = Commandd
NT3. raor

Restart(RAOI) = RAQI-1 =——= Take-over(RAOI) = SPM]

Figure 58: Natural Transformation from Restart to Take-over in RACI1

When both RAOI and RAO?2 are crashed at the same time, RAOLI tries to restart
them first. If neither of them can be restarted, RAOLI will send a message to RACS1 for
requesting the isomorphic objects (RA03 and RAO4) of RAOI and RAO2; otherwise, the
remaining process is the same as the illustration above. When RACS! cannot find RAO3
and RAO4, RAOLI will take over the responsibilities of RAOI and RAO2, working as a
product object of them, such as SPM1; otherwise, the description above may indicate the
remaining process. If a RAC consists of more than two RAOL, the similar categorical
representation can be generated as we explained previously.

In this scenario, we proposed three solutions (restart, substitute and take-over) for

170

the fault-tolerance in case of the crashed RAO, which cover all possible situations in
terms of self-healing from the practical usage.

7.3 Scenario2: Crashed RAOL

After RAOLI is started by RACS]I, it begins to send its heartbeat messages to RACSI
every ¢ ticks, while RACS1 is in the first state of its intelligent control loop, monitoring
the status of RAOLI. If RACS] receives the heartbeat messages from RAOL1, NoChange
event keeps it in Monitor state; otherwise, RAOLI-Crashed event is triggered and then
RACS] transits to Analyze state, while a time constraint variable (7Cvar?2) is initialized to
work as a local clock in terms of time constraints on each transition of the intelligent
control loop. The value of TCvarl is t0, t1, t2, t3... where t0 < tl < (2 < (3. After RACS1
enters Analyze state, it sends a Restart message to RAOLI in t0 ticks. If RAOLI is
recoverable, NoAction event occurs and RACSI goes back to Monitor state, while the

TCvar?2 is reset; otherwise, RACSI transits to Plan state triggered by HasAction event in

t4 ticks (see Figure 61).

BLACK2 BAC] | ‘ BEAOL3 BACGMI ‘ ‘ BEACS] BEACLI
| | |] | Restart I
| | | | [-
| i | i
| | | L RequestRAOL | | MoHeartbeat J]I
| | | I~ [T T T
| | | Request | I |
| | | e i | [|
[l | _ Confirmed [[
: : : I Found R AOL3 : :

P g
: : : Rc‘gisrcr : :
1
: : Connect : Hcm'_rhc at : :
| | [_I ______ %I |
| | Heartbeat | I I |
I P T — | [I
| Connect | | [|
| ! | | [|
| Heartheat | I I |
[— | [I

Figure 59: Substitution Work Flow in RACGI1

171

BEAGE EAC] ‘ | RACLZE BACGMI | ‘ BACS] EACLI

Restart

] I
I A
: MoHeartheat '1

_><____

— = — —
N

I |

| |

| |

| |

I | 1
I I MotFound I
I | f—————- —3 I
I I Take-over I I

T
: : Connect Confirmed : :
[£ |— -~ B At — I
| | Heartbeat I I I I
| r————-- I I |
I Connect | | | |
s T] | | |
I Heartbeat [| | |
|——————— B A — | [|
| | | | | |
Figure 60: Take-Over Work Flow in RACG1
[*es] RestariRAOL,
Mol rerergre [T wvar2-<=i{l]
J'III 1 [res] ,f"/ \h
Ml arfitor Mer A ciicn Analyze

/{re.‘:;et 'I'f_'u'ﬁrz}%""‘-.__‘__
o A<

RACE - Crasfred
i Inmialize TCwvar2) |
[MN]
HoasAcrion
[TCvard<—id]

[Yes]
AcEfoseedhererer
[T warZ-==na]
| [Yes]
Exccute P Srebstifte FPlan

E [TCvarZ==t5]™—_|
. k"—-—-..____ [Mi]]
™. F

Torke—ormver
[TCvarZ=—=t5]

[Plux]
ActionFaifed

NaPfoan

Figure 61: Intelligent Control Loop in RACS1 for Self-Healing
When RACS] is in Plan state, it sends the RequestRAOLI message with the type
information of RAOLI to RACGM1, and the latter tries to replace RAOLI by an available
RAOL which is isomorphic to RAOLI in RAS1, such as RAOL3, since isomorphic objects

behave in the same way. If RACGM1 finds RAOL3 successfully, RACS1 chooses the plan

172

Substitute and transits to Execute state triggered by Substitute event in ¢35 ticks; otherwise,
it selects the plan Take-over and enters Execute state triggered by Take-over event in t5
ticks. In this plan, RAOL?2 takes the responsibilities of RAOLI and works as the product
object of the original RAOLI and RAOL?2, since they behave as a synchronous product
machine.

When RACS] is in Execute state and the plan Substitute is applicable, RACSI sends a
register message to RAOL3 and then initializes it to the status of RAOLI according to the
checkpoint made before. When the plan take-over is applicable, RACS1 sends a take-over
message to RAOL2 and update it to the status of the synchronous product machine of
RAOLI and RAOL?2 based on the checkpoint. After the plan execution, RACS/ validates
the behavior of RACG1 and its evolution (see Property 6.1.3) RACG1 according to
their categorical specifications. If RACG1 has equivalent behavior with RACGI,
ActionDone event occurs and RACS]I transits to Monitor state in t6 ticks; otherwise,
ActionFailed event keeps it in Execute state for the user intervention from User Console
by RACGM1.

7.4 Categorical Illustration of Scenario2

The actions in the substitution work flow and take-over work flow of RACGI can be
specified as the categories where objects are those actions (Restart, RequestRAOLI,
Register, etc.), and morphisms are their preorder relation before. Each object (action) in
those categories is a quadruple (see Property 6.2.28). For example, Register = (RACSI,

RAOL3IsAvailable, RAOL3IsRegistered, RAOL3). Furthermore, the sequences of those

173

actions can be specified as the categories where objects are those sequences (<Register,
Heartbeat, Connect>, <Connect, Heartbeat, Connect, Heartbeat>), and morphisms are
the equivalence relationship between those sequences (see Property 6.2.31).

The transitions in the intelligent control loop of RACS1 for self-healing can be
specified as a category in which objects are those transitions (HasAction, Substitute,
ActionDone, etc.), and morphisms are their preorder relations before. Each object
(transition) in a category is a triple (see Property 6.2.23). For example, HasAction =
(Analyze, NoHeartBeatAfterRestart, Plan). Moreover, the sequences of the transitions can
be specified as a category where objects are those sequences (<HasAction, Substitute,
ActionFailed>, <HasAction, NoPlan, Take-over, ActionDone>), and morphisms are the
equivalence relation between those sequences (see Property 6.2.26).

Figure 62 depicts a categorical representation of RACG1 before RAOLI is crashed.
The category RACG1 consists of the objects RAOLI, RAOL2, RAOL3 and RACSI. The
bidirectional communications among those objects are morphisms to specify the working
collaboration among RAOLI, RAOL2, RAOL3, as well as the leadership from RACS! to
RAOLI, RAOL2 and RAOL3 (see Property 6.1.2). The SPM for the synchronous
communication between two objects in RACG1 can be represented by SPMS5, SPM6 and
SPM7 (see Property 6.2.6). Slice category models Report actions (Reportl, Report2 and
Report3) with their relations (Workl, Work3 and Work5) from RAOLI, RAOL2 and
RAOL3 to RACS1 (see Property 6.2.12); coslice category may interpret Order actions

(Orderl, Order2 and Order3) with their relations (Work2, Work4 and Work6) from

174

RACSI to RAOLI, RAOL2 and RAOL3 (see Property 6.2.13).

CAT-RACG<RACGI1=>

Objects: <RAOL1, RAOL2, RAOL3, RACS1>

Morphisms: <Workl(RAOL1, RAOL2), Work2(RAOL2, RAOL1), Work3(RAOL1, RAQL3),
Work4(RAOL3, RAOL1), Work5(RAOL2, RAOL3), Work6(RAOL3, RAOL2),
Report](RAOL1, RACS1), Report2(RAOL2, RACS1), Report3(RAOL3, RACS1),
Orderl1(RACS1,RAOL1), Order2(RACS1,RAOL2), Order3(RACS1, RAOL3)=

Limit Object: <RACS1>

Colimit Object: <RACS1>

Product Objects: <SPM5(RAOL1, RAOL2), SPM6(RAOL1, RAOL3), SPM7(RAOL2, RAOL3)>

Coproduct Objects: <MQ1(RAOLI, RACS1), MQ2(RAOL2, RACS1), MQ3(RAOL3, RACS1)>

Pushout Objects: <NR3(Orderl, Order2), NR4(Work4, Worké)=

Pullback Objects: <PR3(Reportl, Report2), PR4(Work3, Work5)=

Slice Category: <(Reportl, Report2, Report3), Work1, Work3, Work5>

Coslice Category: <(Orderl, Order2, Order3), Work2, Work4, Work6=

Subcategories: <RAC1, RAC2,RAC3>

Product Categories: <Interactl(RAC1,RAC2), Interact2(RAC1,RAC3), Interact3(RAC2,RAC3)>

Functors: <Restart(RACS1-1, RACS1-0), Substitute(RACS1-2, RACS1-0), Take-over(RACS1-3, RACS1-0)=

Natural Transformations: <NT1(Restart, Substitute), NT2(Substitute, Take-over), NT3 (Restart, Take-over)>

Functor Category: <(Restart, Substitute, Take-over), NT1,NT2, NT3>

End CAT-RACG

Figure 62: Categorical Constructs in RACG1 Representation

Let RACGT1 be a subcategory (consisting of objects RACS1, RAOL1, RAOL2 and
the morphisms among them) of RACG1-0 (a category consisting of all potential RAE for
the self-healing in RACG1). If RACGI is recovered by restarting crashed RAOLI, it
evolves to RACG1-1 (consisting of objects RACS1, RAOLI1-1, RAOL2 along with the
morphisms among them in RACG1-0), which has the same categorical structure as the
RACGT1 except for different initial status of RAOLI. This evolution is represented by the
Restart functor (a structure-preserving mapping) from the RACGI1-1 to RACG1-0. If

RACGT1 is recovered by substituting RAOLI by its isomorphic object RAOL3 (see

175

Definition 3.1.3), it will evolve to RACG1-2 (consisting of objects RACS1, RAOL3,
RAOL2 and the morphisms among them in RAC1-0) with the same categorical structure
as RACGT1 but replacing RAOLI with RAOL3. The above is specified by the Substitute

functor, a structure-preserving mapping (see Figure 63).
[RacG13
| RACSI-1

SPn2
—_

e — —

Matural Transformation3 Matural Transformation?

[RacG10 RACS] RACSI-] :

I-I{AL‘G 1-2]
BACS] |

|

|

TR

[Raccr lRaoLI

a2

| RAGLI-1 RAOGL2

SPn2
Substitute_|

£

RAOL2 |

RAQLI-1 RACLY

Matural Transformation |

Figure 63: Evolution for Self-Healing in RACGI1

N

Restart
L d
NTT
L J
RACG]1 [Subsiifufe E} RACG1-0

|
J-'\,-r T 2 Jﬂ'lu'r T_?

Lake-o 1:-.?' * LI>

Figure 64: Natural Transformation for Self-Healing in RACG]1
However, if RACGT1 is recovered by asking RAOL? to take over the responsibilities

of RAOLI, it will evolve to RACG1-3 (consisting of objects RACS1-1, SPM2 and the

176

morphisms between them in RACG1-0), which has different categorical structure, but
both of them have the equivalent social lives (see Property 6.2.33). The mapping among
those evolutions Restart, Substitute and Take-over of the RACGI can be interpreted as
natural transformations (see Property 6.1.4). The functor category having those functors
as objects and their natural transformations as morphisms illustrate all possible evolutions
with their relations. In addition, the natural transformation3 is a composition of natural
transformationl and natural transformation2, which may be interpreted as the following:
the result of the evolution Restart -> Substitute -> Take-over is equivalent to the evolution
Restart -> Take-over. Figure 65, 66 and 67 depict those natural transformations and their

composition respectively.

NTL pacsi
RestartiRACST) = RACS] ——=) Substitute{RACS1) = RACSI
Restart{ Command) = Command -1 Substitutel Command 1) = Command 3
NT1. gaori

Restart(RAOLI) = RAOLI-1 =——= Substitute(RAOLI) = RAOL3
Figure 65: Natural Transformation from Restart to Substitute in RACGI

NT2 paess
Substitute{RACS1) = RACS] ——— Take-over(RACSI)= RACSI-1

Substituie{ Commandl) = Command3 Take-over Command) = Commandt
NT2. gaors
Substitnie{lRAOLDY = RAOL3 ':DTﬁhf-uw*r{RA OLIy=5PM2

Figure 66: Natural Transformation from Substitute to Take-over in RACGI

177

LY 2
NT3. s

Restart(RACS1) = RACS] ——) Take-over(RACSI)= RACSI-1

Restart{ Commandl) = Command -1 Take-overl Command 1y = Commandd
NT3. paors
Restarti RAQLTY = RAQLI-1 — Fake-over(RAQLIY= SPM2

Figure 67: Natural Transformation from Restart to Take-over in RACG1

When both RAOLI and RAOL?2 are crashed at the same time, RACS]I tries to restart
them first. If neither of them can be restarted, RACS! will send a message to RACGM1
for requesting the isomorphic objects (RAOL3 and RAOL4) of RAOLI and RAOL?2,
otherwise, the remaining process is the same as the illustration above. When RACGM 1
cannot find RAOL3 and RAOL4, RACSI will take over the responsibilities of RAOLI and
RAOL?2, working as a product object of them, such as SPM1; otherwise, the description
above may indicate the remaining process. If a RACG consists of more than two RACS,
the similar categorical representation can be generated as we explained previously.

In this scenario, we proposed three solutions (restart, substitute and take-over) for
the fault-tolerance in case of the crashed RAOL, which cover all possible situations in
terms of self-healing from the practical usage.

7.5 Scenario3: Crashed RACS

After RACS] is started by RACGM 1, it begins to send its heartbeat messages to RACGM 1
every ¢ ticks, while RACGM]1 is in the first state of its intelligent control loop, monitoring
the status of RACSI. If RACGMI receives the heartbeat messages from RACSI,
NoChange event keeps it in Monitor state; otherwise, RACSI-Crashed event is triggered

and then RACGM!| transits to Analyze state, while a time constraint variable (7Cvar3) is

178

initialized to work as a local clock in terms of time constraints on each transition of the
intelligent control loop. The value of TCvar3 is t0, t1, t2, t3... where t0 < t1 < t2 < 3.
After RACGM1 enters Analyze state, it sends a Restart message to RACSI in 0 ticks. If
RACS] is recoverable, NoAction event occurs and RACGM1 goes back to Monitor state,
while the TCvar3 is reset; otherwise, RACGM]1 transits to the Plan state triggered by

HasAction event in t7 ticks (see Figure 70).

RACNLTE BEACQLI ‘ | BACKSE User Consola ‘ BACCGMI BACK]
| | I [I Restart |
I i I i I ;|
| | | |
| | | LchucstRﬁ.L'S{} | NoHeartbeat J}
| | | _ I~ AN T T
I | L Request | | i
| | | |
I | | Confirmed ! | :
I I i T [

, | , | FoundRACS3 | |
I I I i T I |
I | L Rc‘g!stm’ | i
| | | ! |

I | Connect | Heartheat | :
[I~ A A i I
I | Heartheat | | | i
I LT T — [[I
L Connect | | | i
| 1 | | [|
I Heartheat 4 | | i
[| [[I

RACZ BAOLI ‘ ‘ BACSEZ User Console ‘ BACGMI EACS]
| | | I I . I
| | | | | Restart X
| ' | I I NoHeartbeat ~)
I | I | RequestRACS() L i I
| | | [~ I~ — A~ 7 7 71
I | I | MotFound I I
| | [[—————-— —3 I
I | I Take-over I I
I | I~ T] I
I l Connect I Confirmed I I
| £ |- o A — I
I | Heartbeat I | I I
| - | | |
L Connect I | I I
= T] | [I
I Heartbeat I | I I
|——————- B A — | | |

| [I

Figure 69: Take-Over Work Flow in RASI

179

[es]
Mo rerergre

[

[Yes]

Elcartbeat?

[Ma]
v Acrion
[TCwvari==t}]

/ ™

Mo cifan

w/"/-[re-set TCvard) |

A

Mnalyze

T [Ma]

["es]
Aciicend dren

[TCwvard==t9]

&>

HBACS S -Crashed
[(Tnitialize TCOwvar)

[MN]
HasAcrion
[TCvard-<—t7]

Flam

[Yes]

Execute P Srbsriture
E [TCvard==tk]"““'H-_'
0 [H D] J—

— Toeke—orves

\k ‘;,i [TCwvard==18]
[ax]
Acriontaifed

MaF e

Figure 70: Intelligent Control Loop in RACGM1 for Self-Healing

When RACGM]1 is in Plan state, it sends the RequestRACSI message with the type
information of RACSI to User Console, and the latter tries to replace RACSI by an
available RACS that is isomorphic to RACSI in RAS, such as RACS3, since isomorphic
objects behave in the same way. If User Console finds RACS3 successfully, RACGM1
chooses the plan Substitute and transits to Execute state triggered by Substitute event in t8
ticks; otherwise, it selects the plan Take-over and enters Execute state triggered by
Take-over event in (8 ticks. In this plan, RACS?2 takes the responsibilities of RACSI and

works as the product object of the original RACSI and RACS?2, since they behave as a

synchronous product machine.

When RACGM]1 is in Execute state and the plan Substitute is applicable, RACGM1

sends a register message to RACS3 and initializes it to the status of RACS/ according to

180

the checkpoint made before. When the plan take-over is applicable, RACGM1 sends a
take-over message to RACS2 and update it to the status of the synchronous product
machine of RACS1 as well as RACS?2 based on the checkpoint. After the plan execution,
RACGM1 validates the behavior of RAST and its evolution (see Property 6.1.3) RAST
according to their categorical specifications. If RAS1 has the equivalent behavior with
RAS1, ActionDone event occurs and RACGMI transits to Monitor state in t9 ticks;
otherwise, ActionFuailed event keeps it in Execute state for the user intervention from
User Console.
7.6 Categorical Illustration of Scenario3
The actions in the substitution work flow and take-over work flow of RAS1 can be
specified as the categories where objects are those actions (Restart, RequestRACS,
NotFound, etc.), and morphisms are their preorder relation before. Each object (action) in
those categories is a quadruple (see Property 6.2.28). For example, Take-over =
(RACGM1, NotFoundRACS, RequestSubstitution, RACS?2). Furthermore, the sequences of
those actions can be specified as the categories where objects are those sequences
(<RequestRACS, NotFound, Take-over>, <Take-over, Confirmed, Connect, Heartbeat>),
and morphisms are equivalence relationship between those sequences (see Property
6.2.31).

The transitions in the intelligent control loop of RASI for self-healing can be
specified as a category in which objects are those transitions (HasAction, Substitute,

ActionDone, etc.), and morphisms are their preorder relations before. Each object

181

(transition) in a category is a triple (see Property 6.2.23). For example, HasAction =
(Analyze, NoHeartBeatAfterRestart, Plan). Moreover, the sequences of the transitions can
be specified as a category where objects are those sequences (<HasAction, Substitute,
ActionFailed>, <HasAction, NoPlan, Take-over, ActionDone>), and morphisms are the

equivalence relation between those sequences (see Property 6.2.26).

CAT-RAS <RAS1>

Objects: <RACS1, RACS2, RACS3, RACGMI>

Morphisms: <Work1(RACS1, RACS2), Work2(RACS2, RACS1), Work3(RACS1, RACS3),
Work4(RACS3, RACS1), Work5(RACS2, RACS3), Work6(RACS3, RACS2),
Report](RACS1, RACGM]1), Report2(RACS2, RACGMI), Report3(RACS3, RACGM]),
Orderl(RACGMI, RACS1), Order2(RACGM1, RACS2), Order3(RACGM1, RACS3)>

Limit Object: <RACGM1>

Colimit Object: <RACGM1>

Product Objects: <SPM1(RACS1, RACS2), SPM2(RACS1, RACS3), SPM3(RACS2, RACS3)>

Coproduct Objects: <MQ1(RACS1, RACGM]1), MQ2(RACS2, RACGM]1), MQ3(RACS3. RACGM]1)>

Pushout Objects: <NR3(Orderl, Order2), NR4(Workd, Works)=

Pullback Objects: <PR3(Reportl, Report2), PR4(Work3, Work5)=

Slice Category: <(Reportl, Report2, Report3), Workl, Work3, Work5>

Coslice Category: <(Orderl, Order2, Order3), Work2, Workd, Work6>

Subcategories: <RACG1, RACG2, RACG3>

Product Categories: <Interact1(RACG1, RACG2), Interact2(RACG1, RACG3), Interact3(RACG2, RACG3)~

Functors: <Restart(RACGM1, RACGM1-1), Substitute(RACGM1, RACGM1-2),

Take-over(RACGM1, RACGM1-3)>
Natural Transformations: <NT1(Restart, Substitute), NT2(Substitute, Take-over), NT3(Restart, Take-over)>
Funetor Category: <(Restart, Substitute, Take-over), NT1, NT2, NT3>
End CAT-RAS

Figure 71: Categorical Illustration of RAS1
Figure 71 depicts the categorical representation of RAS1 before RACS! is crashed.
The category RAS1 consists of objects RACSI, RACS2, RACS3 as well as RACGM1. The
bidirectional communications among those objects are morphisms to specify the working

collaboration among RACSI, RACS2, RACS3, and the leadership from RACGMI to

182

RACSI, RACS?2 as well as RACS3 (see Property 6.1.2). The SPM for the synchronous
communication between two objects in RAS1 can be represented by SPM1, SPM2 and
SPM3 (see Property 6.2.6). Slice category models Report actions (Reportl, Report2 and
Report3) with their relations (Workl, Work3 and WorkS) from RACSI, RACS2 and
RACS3 to RACGM1 (see Property 6.2.12); coslice category may interpret Order actions
(Orderl, Order2 and Order3) with their relations (Work2, Work4 and Work6) from
RACGM1 to RACS1, RACS2 and RACS3 (see Property 6.2.13).

Let RAS1 be a subcategory (consisting of objects RACGM1, RACS1, RACS2 and
the morphisms among them) of RAS1-0 (a category consisting of all potential RAE for
the self-healing in RAS1). If RAS1 is recovered by restarting crashed RACS1, it evolves
to RAS1-1 having the same categorical structure as RAS1 except for different initial
status of RACSI. This evolution can be represented by the Restart functor (a
structure-preserving mapping) from RAS1-1 to RAS1-0. If RAS1 is recovered by
substituting RACS1 with its isomorphic object RACS3 (see Definition 3.1.3), it evolves to
RASI1-2 (consisting of objects RACGM1, RACS3, RACS2 and the morphisms among
them in RAS1-0), which has the same categorical structure as RAS1 but replacing
RACSI with RACS3. The above is specified by the Substitute functor, a

structure-preserving mapping (see Figure 72).

183

[Rasiz
|R.f'h.(.'(.i|‘k-1 I-1 I

!_ _SP"AI - I

Matural Transformation3 Matural Transformation?

[Ras10 RACGMI

|
—— RACGMI-I —_——
r“*"*'” RACGMI lracCs! | [Ras12 RACG rm]
SPMI
Substitute_| |
@) RACS? @J

RACS]-1 RACS2 |

Matural Transformation |

Figure 72: Evolution for Self-Healing in RAS1

r\
Rexstart
| 1]

NTT

RASI1 3:&&-;‘@:9 N RAS1-0
| N3V
NT2

LA
%

lake-over

Figure 73: Natural Transformation for Selt-Healing in RAS1

However, if RASI is recovered by asking RACS? to take over the responsibilities of
RACS], it evolves to RAS1-3 (consisting of objects RACGM1-1, SPM1 along with the
morphisms between them in RAS1-0), which has the different categorical structure, but
both of them have the equivalent social lives (see Property 6.2.33). The mapping among
those evolutions Restart, Substitute and Take-over can be interpreted as their natural

transformations (see Property 6.1.4). The functor category having those functors as its

184

objects and their natural transformations as morphisms illustrate all possible evolutions
with their relations. In addition, the natural transformation3 is a composition of natural
transformationl and natural transformation2, which may be interpreted as the following:
the result of the evolution Restart -> Substitute -> Take-over is equivalent to the evolution
Restart -=> Take-over. Figure 74, 75 and 76 illustrate those natural transformations and

their composition respectively.

NTI CRACGMY
Restart{RACGM1Y = RACGM] =——) Substitute(RACGMI)} = RACGM]
Restart{ Command) = Command -1 Substitutel Command 1) = Command 3
NI pacs:

Restart(RACST) = RACSI-1 == Substitute(RACSI) = RACS3
Figure 74: Natural Transformation from Restart to Substitute in RAS1

NT2. RACGM!
Substitute(RACGMIY = RACGM ———— Tuke-over{RACGMI) = RACGMI-1

Substitute{ Commandl) = Command3 Take-overd Commuand 1y = Commuand8
NT2. pacs:
Substitute(RACST) = RACS3 ——— Take-over(RACSI) = SPM3

Figure 75: Natural Transformation from Substitute to Take-over in RAS1

NT3. pacomn
Restart{i RACGM1) = RACGM] ——— Take-over{RACGMI1) = RACGMI-1
Restart{l Command) = Command -1 Take-overl Commandi) = Command8
!I\I'rrjuﬁwf'sll'

Restart{RACS1) = RACSI-1 =———=p Take-over{RACSI1) = SPM3
Figure 76: Natural Transformation from Restart to Take-over in RAS1
When both RACSI and RACS?2 are crashed at the same time, RACGM] tries to restart

them first. If neither of them can be restarted, RACGM1 will send a message to User

Console for requesting isomorphic objects (RACS3 and RACS4) of RACSI and RACS?2;

185

otherwise, the remaining process is the same as the illustration above. When the User
Console cannot find RACS3 and RACS4, RACGM1 will take over the responsibilities of
RACSI and RACS2, working as a product object of them, such as SPM1I; otherwise, the
description above may indicate the remaining process. If a RAS consists of more than
two RACGM, the similar categorical representation can be generated as we explained
previously.

In this scenario, we proposed three solutions (restart, substitute and take-over) for
the fault-tolerance in case of the crashed RACS, which cover all possible situations in
terms of self-healing from the practical usage.

7.7 Categorical Specifications of Self-Healing

As we stated in Chapter 5 and Chapter 6, the self-* (autonomic) behavior of a RAE is
modeled as sequences of transitions corresponding to execution paths derived from the
matching labeled transition system, and the interactive behavior between the RAE are
modeled by the sequences of external (observable) events interchanged between the
interfaces of those RAE. The sequences of the transitions and external event sequences
are modeled as the categories TRANSITION and INTERACTION respectively. For
example, the behavior of the ICLM (Intelligent Control Loop Model) depicted in Chapter
5 is interpreted by the category TRANSITION(ICLM) = <Seq,, Seq>, ..., Seq,>, where
the objects are sequences of transitions, such as Seq; = <Trans;;, Trans;.,, ..., Trans; >
(n, m > 1), and the morphisms are equivalence relations between those sequences. Thus,

TRANSITION(ICLM) is a category because identity morphisms exist and associativity

186

of morphisms holds. Moreover, every transition in a sequence is modeled by the triple
(state, event, state) indicating the source state, trigger event, and destination state of the
corresponding transition in the ICLM, such as Trans;.; = (Monitor, HasChange, Analyze).

Similarly, the interactive behavior between RAE can be interpreted by the category
INTERACTION(RAE), where the objects are sequences consisting of actions which
capture the interchanged external events and the communication parties (the sender of the
external event which triggers the communication, the receiver of the expected outcome
event), such as Seq; = <Act;.;, Act;.,, ..., Act;.,>; the morphisms are equivalence relations
between those sequences. In addition, every action in a sequence is specified as the
quadruple (sender, trigger-event, last-event, receiver) stating the sender of trigger-event,
the trigger-event triggering an action, the last-event outputted from the action, and the
receiver of trigger-event.

After a RAS is formed, RACGM, RACS and RAOL start their intelligent control
loops and monitor the heartbeat messages sent in a certain time interval by RACS, RAOL,
and RAO respectively (see Figure 77), which status are carried by those heartbeat
messages. After RACGM receives a task from the user console, it chooses an action
sequence (ActSegRACGM) from the category INTERACTION(RACGM) in terms of
fulfilling the task and interact with RACS1 because of the action ActRACGM; in the
action sequence ActSeqRACGM; then RACS1 selects an action sequence (ActSeqRACSI)
from INTERACTION(RACS]) in order to perform ActRACGM; and communicates with

RACI1 due to the action ActRACSI; in the action sequence ActSeqRACSI. Similarly,

187

RAOLI picks an action sequence (ActSeq-RAOLI) from INTERACTION(RAOLI) to
implement ActRACS1; and collaborates with the RAO1 for the action ActRAOLI; in
ActSeqRAOLI; eventually, RAOI1 chooses the action sequence (ActSeqRAOI) from the
INTERACTION(RAOI) in terms of realizing ActRAOLI; and cooperates with RAO2

due to the action ActRAO1; in ActSeqRAOI.

LlserC onsaole RACCM BEACS RACH. B Ay
| S@rRACGM | } |
' % | | |
, Heartbeat 7| SmrRACS | |
E——————— : = | |
, | Hearbeat ~| SarnRAOL | |
| E——————— ' A |
, I | Heartbeat 7| S@rRAOQ |
l 1 o = ——— t =
| 1 | | Heartheat |
| I | —————— |
| 1 |

Figure 77: Work Flow of Formatting a RAS

Property 7.7.1 Fault-tolerance property in RAE: We state how fault-tolerance is
applied to the internal behavior of RAE through the ICLM described in Chapter 5. If
there is an exception during the transition Trans; = (Analyze, HasAction, Plan), RAE
transits to HandleException state instead of Plan state triggered by AnalyzeException
event as Trans;, = (Analyze, AnalyzeException, HandleException), after an exception is
handled successfully, RAE rolls back to Analyze state triggered by HandledAnalyze event
with the same status as before the exception as Trans,, = (HandleException, Handled-
Analyze, Analyze). It proceeds to the Trans, as TransSeq[= <Trans;, Transs., Transyy,,
Trans,, ..., Trans,> that is isomorphic to TransSeq; = <Trans;, Trans, ..., Trans,> (see

Property 6.2.32). Thus, the category TRANSITION(RAE) including objects TransSeq;,

188

TransSeqs, ..., TransSeq, is a full subcategory of the category TRANSITION (RAE)
having objects TransSeq,, TransSeq, , TransSeqs, ..., and both categories are equivalent
(see Property 3.6.8). This means that two sequences exhibit the same internal behavior in
RAE for performing an action and leads to the fault-tolerance property.

Property 7.7.2 Interactive behavior equivalence between RAE. If RACI cannot be
started by a RACS due to an exception as ActRACIl;. = (RACSI, StartRACI,
NoHeartbeat -RACI, RACSI), RACS]1 tries to restart RACI1 later as ActRACI;, =
(RACS1, Restart- RACI, Heartbeat-RAC1, RACS]I) if the exception can be processed and
then it continues to ActRACI, as ActSeqRACI;” = <ActRACI;., ActRACI,
ActRACI,, ..., ActRACI,>, which is equivalent to ActSeqRACI; = <ActRACI,,
ActRACI,, ..., ActRACI,> (see Property 7.7.3). Therefore, the category
INTERACTION(RACI) including the objects ActSeqRACI;, ActSeqRACI;, ...,
ActSeqRACI,, is a full subcategory of INTERACTION (RACI) with objects
ActSeqRACI;, ActSeqRACI;’, ActSeqRACI,, ..., ActSeqRACI,, and two categories are
equivalent (see Property 3.6.8). It demonstrates that both sequences have the same
interactive behavior between RACS1 and RACI in terms of executing an action so that
the fault-tolerance property is achieved.

Property 7.7.3 Substitutability of RAE. RAE is equivalent to RAE denoted as RAE
~ RAE iff 1) they belong to the same type (RAO, RAOL, RAC, RACS, RACG or
RACGM); 2) they have equivalent social lives SOCIAL(RAE) ~ SOCIAL(RAE); 3) they

have the equivalent internal structures when regarding them as two categories so that

189

CAT(RAE) ~ CAT(RAE ’); and 4) they have equivalent internal and interactive behavior
as TRANSITION(RAE) ~ TRANSITION(RAE), INTERACTION(RAE) ~ INTER-
ACTION(RAE). If RAE ~ RAE, they can be substituted by each other.

7.8 Representation of Categorical Specification for Self-Healing

The figure below depicts an example of the representation for a categorical specification
(in XML format) of the self-healing property we present earlier in this chapter, and more

XML representation can be found in Appendix D.

<CATEGORY name = “Substitution-Work-Flow-for-Self-Healing”>
<OBJECT>
<OBIJECT name = “Restart” type = “Work-Flow-Action”/>
<OBJECT name = “NoHeartbeat” type = “Work-Flow-Action”/>
<OBIJECT name = “RequestRAE” type = “Work-Flow-Action™/>
<OBJECT name = “Request” type = “Work-Flow-Action”/>
<OBIJECT name = “Confirmed” type = “Work-Flow-Action™/>
<OBJECT name = “Register” type = “Work-Flow-Action”/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>
<FROM-OBJECT name = “Restart” type = “Work-Flow-Action”/>
<TO-OBJECT name = “NoHeartbeat” type = “Work-Flow-Action”/>
<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>
<FROM-OBJECT name = “NoHeartbeat”
type = “Work-Flow-Action”/>
<TO-OBJECT name = “RequestRAE” type = “Work-Flow-Action”/>
<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>
<FROM-OBJECT name = “RequestRAE” type = “Work-Flow-Action”/>
<TO-OBJECT name = “Request” type = “Work-Flow-Action™/>
<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>
<FROM-OBJECT name = “Request” type = “Work-Flow-Action/>
<TO-OBJECT name = “Confirmed”’ type = “Work-Flow-Action”/>
<MORPHISM>

190

<MORPHISM name = “Before” type =“Preorder”/>
<FROM-OBJECT name = “Confirmed” type = “Work-Flow-Action”/>
<TO-OBJECT name = “Register” type = “Work-Flow-Action”/>
<MORPHISM>
</MORPHISM>
</CATEGORY>

Figure 78: XML Specification of Category Substitution-Flow-Self-Healing
7.9 Summary
In this chapter, we presented a prototype design of self-healing property, prototype design
of the categorical specification for self-healing and transformation from the categorical
self- healing property to its XML specification.

We described three scenarios regarding the self-healing which are crashed RAO
(Section 7.1), crashed RAOL (Section 7.3) as well as crashed RACS (Section 7.5) using
intelligent control loops. We also presented the categorical illustration for those three
scenarios in section 7.2, 7.4 & 7.6 respectively using functors, natural transformations
and functor categories.

Finally, the categorical specifications for the self-healing related properties together
with their XML representations were presented in Section 7.7 & 7.8, such as the fault-
tolerance property, interactive behavior equivalence among RAE and substitutability of
the RAE. We will introduce the categorical specifications of self-configuration property

for RASF in next chapter.

191

Chapter 8: Categorical Specification of Self-Configuration

This chapter states the research activity 15, 16) and 21) in Figure 3, which are prototype
design of self-configuration, prototype design of categorical specification for the self-
configuration and transformation from the categorical self-configuration property to its
XML specification. I have one publication in preparation for this chapter. In Chapter 5 &
6, we introduced the RAS model and MAS model with their architectures, composition
rules, communication protocols and related categorical specifications. The configuration
of the RAS and MAS must follow those rules and protocols during the life cycle of them,
such as their formation and evolution because of the self-protection, self-optimization, or
self-healing. Furthermore, those formation as well as evolution should be achieved in an
autonomic way by giving RACGM tasks from User Console.

8.1 Forming a RAS

After receiving the task of forming a RAS from User Console, RACGM starts to create
RACS and establish corresponding connections among them based on the composition
rules and communication protocols specified by the index category RAS-Formation (see
Property 6.1.1). Figure 79 depicts an example of forming categories RAS1 and RAS2
from their index category RAS-Formation. Figure 80 and 81 illustrate the detailed object
as well as morphism mappings from RAS1 and RAS2 to the RAS-Formation
respectively. The RACGM can be initialized and validated by an initialization manager in

User Console.

192

RAS-Formation

’/,Idl\ /]dE.\‘

RACGM- RACGM-
Typel Typel

o] !

/li.nmm-T}'rlr_'S

RACS-Typel |

SO - 4
RACS-Typez | N RACS-Type3
' D= TV pE
\m/ \“Idﬁ/‘

RACGMI of
;F RACGM-Typel

RACGM2 of
RACGM-Type2

N

RACSIof |
RACS-Typel [

Comnld of Typed
Comnfd of Typed

RACSZ of

RACSS of
RACS-Typel

RACS-Typed

)

e
RACSS of
| RACS-Type2 |

Comnd3 of Type3s

Commfd ol Typeb

Figure 79: Example of Forming RAS from RAS-Formation

Object Mapping

Morphism Mapping (RAS-Formation <- RAS1)

RACGM1 ->RACGM-Typel

Comm1->Comm-Typel, Comm2->Comm-Type2

RACS1->RACS-Typel

Comm3->Comm-Type3, Comm4->Comm-Type4

RACS2->RACS-Typel

Comm5->Comm-Type2, Comm6->Comm-Typel

193

RACS3->RACS-Type2 Comm?7->Comm-Type9, Comm8->Comm-Typel0

Comm9->Comm-Typel0, Comm10->Comm-Type9

RACS1-RACS2-> Identity-Mor(RACS-Typel)

Figure 80: Object and Morphism Mapping of Functor RAS-Forming1

Object Mapping Morphism Mapping (RAS-Formation <- RAS2)

RACGM2->RACGM-Type2 Comm1->Comm-Type7, Comm2->Comm-Type8

RACS4->RACS-Type3 Comm3->Comm-Type5, Comm4->Comm-Type6
RACS5->RACS-Type3 Comm5->Comm-Type8, Comm6->Comm-Type7
RACS6->RACS-Type2 Comm7->Comm-Typell, Comm8->Comm-Typel2

Comm9->Comm-Typel2, Comm10->Comm-Typell

RACS4-RACS5-> Identity-Mor(RACS-Type3)

Figure 81: Object and Morphism Mapping of Functor RAS-Forming2

Supervisor Robot? Supervisor Robot| Manager Robotl Console

] I
| InifializeManagerRoboti) |

I I
I I
| I 2 |
I | [Hearibeat [
| N bbb b
I | InitializeSupervisorRobot() | I
I F | I
I | Heartbeat | I
I R e I
l, [nitiahizeSupervisorRobot() [|
F | | I
I Heartbaat [[
|mmm - To————————- — |
I
I
I
I
I

Figure 82: Formation Work Flow in RASI

194

BEACSE B A 2 BEACS] RACCMI ; “omsal
I | | I |
I I I LVaIIr:IatEFI‘.ACGM[] I
: : L ValidataRACS() r Conform I!
I 1 r~ [I
| ! | _Contorm |
| | ! _ |
I L Walidatall ACS() I I
: : Mot G{!mfarm I! :
I T i I
I L Launch In-.-pstrgatlnn{] I I
| - ! | |

Conform
I M _ == }I |
| T e L | |
L. A" a]n:lzjteR;‘tL b-:mumumm_itm-n{} I I
I~ | | | |
Mot Conform
| 1 1 |
N T %Jl I
L L_aum:h Iwasugamnl;} I I
I~ | | I |
Conform
. _ _ _ ___~ 1 =" _~ 4+ - - - ;_:.l |
| | | | |
| | | I |
Figure 83: Self-Configuration Work Flow in RAS1
RACGHMS User Console BACCMT BACS]
: : :'n.l"-"n::ngﬂm'lmTypal:ﬂ
I 1 I =
| L_ Selfviclation() |]
| = 1 |
I Requesi|} 1 | I
=~ 1 | |
| Confirrm 1 I |
r— = | 1
I Register(} I I |
r= I 1
| Heartbheat 1 | I
r—— === | 1
| ! Conmect I J
| i Heartbeat H i
k- T === S B
I | I 1
Figure 84: Self-Configuration Work Flow of Substitution in RAS1
B ACGN 2 User Console FEAC N BEALCS]
: : rlﬂlrrﬂr'g'cﬂlﬂmT}'pEEIJ
—
: | Selfviclation() | :
I ™ I I
I Take-ower() | I I
= Corfirm I I J
P e 55'] | |
I l Connect [[
1 1 1 =)
: : Heartbeat | |
e J|

Figure 85: Self-Configuration Work Flow of Take-over in RAS1

195

[Yes]

RestartBACSELARACSKS
Moo Faiendont forn [TCvarl==10]
K l [*es] / \\,
Monifor Merd ciion MAnalvze

.//{:rese*t TCwvarl }"“'--‘_‘h
~_ [No] 4

R TARAMENT
conformy affer

S Needlmvesrigaiion

(Initialize TCwvarl)
[No]

[_HPEE] LanmehSelfHealing
ActicnilDaen [TCvarl<=t1]
[TCwarl==t3]))
[*es]
Execute Srehstitte Plan

[TCvarl ==t2]~_

"‘"\._,_‘_‘_ [Mo]] a

Tafe—cmver

[TCvarl<==t2] \\\

. o Mo lan
AcrionFailed

Figure 86: Intelligent Control Loop in RACGM1 for Self-Configuration

[Yes] ResenU ommanication
Moo B rendorni forna [TCvar | ==10]
K l [Yes] / \\
Monitor

MorA cfion Analyze

.//“ {reset TCvarl) ™|
~ [No] -

S MNecdlwvesiigation

(Initialize TCwvarl)
[No]

[_HPEE] LanmehSelfHealing
Aotioniaen [TCwarl=~t1]
[TCwarl=-=t3]))
[*es]
Execute Srehstitte Plan

[TCvarl ==t2]~_

"‘"\.___‘_‘_ T J[{-N 0]] -
CEE— Ve
\ [No] /;i [TCwvarl==t2) \\\

. o Mo
Acriontailed

Figure 87: ICL in RACGMI1 for Communication Self-Configuration
After RACGM]1 initializes its RACS according to the requirements from the User

Console and the capabilities of those RACS, it validates the configuration of those RACS

196

against their types every ¢ ticks (a tick is an abstraction of one time unit under a global
clock in RAS1), while RACGM]1 is in the first state of its intelligent control loop
(monitoring). If the configuration of those RACS conforms to their types, composition
rules and communication protocols (see Property 8.7.4), NolViolation event keeps
RACGM1 in Monitor state; otherwise, Needlnvestigation event is triggered and RACGM 1
transits to Analyze state, while a time constraint variable (7Cvarl) is initialized to work
as a local clock in terms of time constraints on each transition of the intelligent control
loop. The value of TCvarl is t0, t1, t2, t3... where t0 < t1 <2 <{3.

After RACGM]1 enters Analyze state, 1) it sends a Restart message to RACS! in t0
ticks where the violation is caused by incorrect RACS type or incorrect communication
type from RACSI to RACGM]I. 1If RACSI conforms to its type and communication type,
NoAction event occurs and RACGM1I goes back to Monitor state, while the TCvarl is
reset; otherwise, RACGM] transits to Plan state triggered by LaunchSelfHealing event in
t1 ticks. 2) If the violation is caused by incorrect communication type from other RACS
(RACS3) to RACS1, RACGM1 sends a Restart message to RACS3. If the communication
conforms to its type, NoAction event occurs and RACGM1 goes back to Monitor state,
while the TCvarl is reset; otherwise, RACGM]1 transits to Plan state triggered by the
LaunchSelfHealing event within ¢/ ticks. 3) If the violation is caused by the incorrect
communication type from RACGMI to RACSI, RACGMI] resets that communication. If it
conforms to the correct one specified in the index category RAS-Formation (see

Property 8.7.4), NoAction event occurs and RACGM1 goes back to the Monitor state,

197

while the TCvarl is reset; otherwise, RACGM]1 transits to Plan state triggered by the
LaunchSelfHealing event in ¢1 ticks.

When RACGM1 is in Plan state, it chooses either Substitute plan or Take-over plan,
based on the availability of substitutable RACS for RACS! (scenario 1 in the paragraph
above) or for RACS3 (scenario 2). RACGM] transits to Execute state triggered by the
Substitute event or Take-over event respectively in ¢2 ticks. For scenario 3, RACGM1
sends a selfViolation message to User Console, and the latter chooses either Substitute
plan or Take-over plan based on the availability of substitutable RACGM for RACGM]1.
It transits to Execute state triggered by Substitute or Take-over event in t2 ticks.

When RACGM1I is in Execute state and Substitute plan is applicable, it sends a
register message to the substitutable RACS of RACS]! (scenario 1) or RACS3 (scenario 2)
and initialize it to the status of RACSI or RACS3 according to the checkpoint made
before. When the fake-over plan is applicable, RACGM1 sends a take-over message to
RACS?2 (scenario 1 or scenario 2) and update it to the status of the synchronous product
machine of RACSI and RACS2, or RACS3 and RACS?2 based on the checkpoint. After the
plan execution, RACGM] validates the configuration of RAS1’, an evolution of RAS1
(see Property 6.1.3) against its index category RAS-Formation according to their
categorical specifications. If that configuration conforms to the index category (see
Property 8.7.4), ActionDone event occurs and RACGM] transits to the Monitor state in 3
ticks; otherwise, ActionFailed event keeps it in Execute state for the user intervention

from User Console. For scenario 3, RACGM] 1is substituted by RACGM3 or taken over

198

by RACGM?.

8.2 Categorical Illustration of Forming a RAS

The actions in the formation work flow, self-configuration work flow, substitution work
flow and take-over work flow of RAS1 can be specified as the categories where objects
are those actions (/nitializeRACS, ValidateRACS, ValidateRACcommunication, etc.), and
morphisms are their preorder relationship before. Each object (action) in those categories
is a quadruple (see Property 6.2.28). For example, Launchinvestigation = (RACGM1,
NotConfrom-RACS, InvestigateRACS, RACSI); the sequences of those actions can be
specified as the categories in which objects are those sequences (<[nitializeRACGM,
Heartbeat, [nitializeRACS, Heartbeat>, <ValidateRACGM, Conform, ValidateRACS,
NotConform>), and morphisms are the equivalence relationship between those sequences
(see Property 6.2.31).

The transitions in the intelligent control loop of RACGMI1 for self-configuration can
be specified as a category in which objects are those transitions (NoViolation,
NeedInvestigation, RestartRACS, NoAction, etc.), and morphisms are their preorder
relations before. Each object (transition) in that category is a triple (see Property 6.2.23).
For example, NeedInvestigation = (Monitor, NotConform-RACS, Analyze), the sequences
of those transitions can be specified as a category in which objects are those sequences
(<NoViolation, NeedInvestigation, RestartRACSI, NoAction>, <RestartRACSI,
LaunchSelfHealing, Substitute, ActionDone>), and morphisms are equivalence relations

between those sequences (see Property 6.2.26).

199

Let RASI1 be a subcategory (consisting of the objects RACGM1, RACSI1, RACS2,
RACS3 and the morphisms among them) of RAS1-0 (a category consisting of all the
potential RAE for the self-configuration in RASI). If RAS1 is conformed to the index
category RAS-Formation by restarting the violated RACSI or RACS3, it will evolve to
RASI1-1 (consisting of the objects RACGM1, RACS1 or RACS1-1, RACS2, RACS3 or
RACS3-1 and the morphisms among them in RAS1-0), which has the same configuration
and categorical structure as RAS1 except for the different initial status of RACSI or
RACS3. This evolution is specified by a Restart functor (a structure-preserving mapping)
from the RAS1-1 to RAS1-0. If RAS1 is conformed to RAS-Formation by substituting
the RACSI or RACS3 with their isomorphic objects RACS7 or RACS9Y (see Definition
3.1.3), it will evolve to RAS1-2 (consisting of objects RACGM1, RACS1 or RACS7,
RACS2, RACS3 or RACS9 and the morphisms among them in RAS1-0) that has the
same configuration and categorical structure as RAS1 but replacing RACSI or RACS3
with RACS7 or RACSY9. The above is specified by the Substitute functor, a
structure-preserving mapping. If RAS1 is conformed to the RAS-Formation by asking
RACS?2 to take over the responsibilities of RACSI or RACS3, it will evolve to RAS1-3
(consisting of objects RACGM1-1, SPM, RACS1 or RACS3 and the morphisms among
them in the RAS1-0), which has different categorical structure, but both of them have the

equivalent configuration (see Property 8.7.5 and the figure below).

200

Matural Transforamtion3

| RACUSI/RACS I|

— —]

Matural Transforamtion |

Matural Transforamtion2

Figure 88: Evolution for Self-Configuration in RAS1

RASI1

N

H:i?.*;mn‘ RACH
MNTT

h J
Subsfitife RLA

d
N

[

|
J-'\,-r T 2 Jﬂ'h'r T_?

1
N

¥
Take-over HA0NS

L

RAS1-0

Figure 89: Natural Transformation for Self-Configuration in RAS1

The mapping among those evolutions RestartRACS, SubstituteRACS and Take-over-

RACS of the RASI1 can be interpreted as natural transformations (see Property 6.1.4). The

functor category having those functors as objects and their natural transformations as

morphisms illustrate all possible evolutions with their relations. In addition, the natural

201

transformation3 is a composition of natural transformationl and natural transformation2,
which may be interpreted as the following: the result of the evolution RestartRACS ->
SubstituteRACS -> Take-over-RACS is equivalent to the evolution RestartRACS -> Take-
over-RACS. Figure 90, 91 and 92 illustrate those natural transformations and their

composition respectively.

l'.‘"rTf-.l'f.JI.'r,r'.U.'
RestartRACS(RACGM Y= RACGM =) Substitute RACS(RACGM)Y = RACGM
RestartRACS(Command 1y = Command -1 Substitute RACS Commuand) = Command3
NTI. pacs:

RestartRACS(RACSI) = RACSI-1 =——=> SubstituteRACS(RACSI) = RACS3

Figure 90: Natural Transformation RestartRACS -> SubstituteRACS in RAS1

NT2. pacew
Substitute RACS(RACGM Y= RACGM ——— Take-over-RACS(RA CGMIYy= RACGMI-1
Substitute RACS{Command) = Command3 Take-over-RACS(Command 1) = Command8
NT2. pacsi

SubstituteRACS(RACSI) = RACS3 =———= Take-over-RACS(RACSI) = SPM

Figure 91: Natural Transformation SubstituteRACS -> Take-over-RACS in RAS1

NT3 wacoa
RestartRACS(RACGMITy = RACGM 1 —— Take-over-RACS(RA CGMI)= RACGMI-1
RestartRACS{Commandl) = Command -1 Take-over-RACS Command) = Command8
NT3. pacst

RestartRACS(RACS1) = RACS1-1 =———=p Take-over-RACS(RACSI) = SPM

Figure 92: Natural Transformation RestartRACS -> Take-over-RACS in RAS1
Let RASI1 be a subcategory (consisting of the objects RACGMI1, RACS1, RACS2,
RACS3 and the morphisms among them) of RAS1-0" (a category consisting of all the
potential RAE for the communication self-configuration in RAS1). If RAS1 is conformed
to the RAS-Formation by restarting the communication from RACGMI to RACSI or

restarting RACGM 1, it evolves to RAS1-4 (consisting of objects RACGMI1-1, RACSI,

202

RACS2, RACS3 and the morphisms among them in the RAS1-0'), which has the same
configuration and categorical structure as RAS1 except for the different initial status of
RACGM]. This evolution is specified by a RestartRACGM functor (a structure-preserving
mapping) from RAS1-4 to RAS1-0". If RAS1 is conformed to the RAS-Formation by
substituting RACGM1 with its isomorphic objects RACGM3 (see Definition 3.1.3), it
evolves to RAS1-5 (consisting of objects RACGM3, RACS1, RACS2, RACS3 and the
morphisms among them in the RAS1-0), which has the same configuration and
categorical structure as the RAS1 but replacing the RACGMI with RACGM3. The above
is specified by a SubstituteRACGM functor, a structure-preserving mapping. If RAS1 is
conformed to RAS-Formation by asking RACGM? to take over the responsibilities of
RACGM], it evolves to RAS1-6 (consisting of objects SPM, RACS1, RACS2, RACS3
and the morphisms among them in RAS1-0), which has different categorical structure,
but both of them have the equivalent configuration (see Property 8.7.5 and Figure 93).
The mapping among those evolutions RestartRACGM, SubstituteRACGM and Take-
over-RACGM of the RASI is interpreted as natural transformations (see Property 6.1.4).
The functor category having those functors as objects and their natural transformations as
morphisms illustrate all possible evolutions with their relations. In addition, the natural
transformation6 is a composition of natural transformation4 and natural transformation5,
which may be interpreted as the following: the result of the evolution RestartRACGM ->
SubstituteRACGM -> Take-over-RACGM 1is equivalent to the evolution RestartRACGM

-> Take-over-RACGM. Figure 95, 96 and 97 illustrate those natural transformations and

203

their composition respectively.

RAST-6 I
SPM

| |
Ir-: s raCs?|
| .|
|_ __ T RACS

=

E

o

5

z

&

=

g

[Rastor RACGMI |

Matural Transformationt |

Matural Transformations
RACS2 |

RACGMI

| RACS] AL

, RACES
Matural Transformationd |— =

Figure 93: Evolution for Communication Self-Configuration in RAS1

. .
Hesrart RACCAT
] 1~
NT4

' L

RAS1 |SimmmmerIrcar ™ RrRAS1-0
U an7s V)

NTS5

Y N
Toke-over KA GAT
1]

Figure 94: Natural Transformation for Communication Self-Configuration in RAS1

204

NT4. RACGM
RestartRACGM(RACGMI) = RACGMI1-1 —=p> SubstituteRACGM(RACGMI) = RACGM3

ResiartRACGM(Command 1) = Command| -1 Substititte RACGM(Command 1) = Command3
NT4. pacsi
RestartRACGM(RACST) = RACS] =———= SubstituteRACGM(RACSI) = RACS]
Figure 95: Natural Transformation RestartRACGM -> SubstituteRACGM in RAS1

JA"IT—i- RACCGM

SubstituteRACGM(RACGMI) = RACGM3 ——=) Take-over-RACGM(RACGM1) = SPM

Substitute RACGM(Commandl) = Command3 Take-over-RACGM Command I') = Command§
N3 pacs
SubstititeRACGM(RACST) = RACST ——— Take-over-RA COGM{RACS]) = RACS]

Figure 96: Natural Transformation SubstituteRACGM->Take-over-RACGM in RAS1

NT6. pacca
RestartRACGM(RACGM Iy = RACGM -1 [— Take-over-RACGM(RACGMT) = SPM

RestariRACGM{Command 1) = Command -1 ﬂ ﬂﬂf.{'e-av&} “RACGM(Command 'y = Command8

NT6. picsi
RestartRACGM{(RACS1) = RACS] =—=p Take-over-RACGM(RACSI) = RACS]

Figure 97: Natural Transformation RestartRACGM -> Take-over-RACGM in RAS1

When both RACGM1 and RACGM?2 cannot conform to RAS-Formation at the same
time, User Console tries to restart them first. If neither of them can conform to RAS-
Formation after being restarted, User Console will substitute RACGMI and RACGM?2
with their isomorphic objects RACGM3 and RACGM4; otherwise, the remaining process
is the same as the illustration above. When the User Console cannot find RACGM3 or
RACGM4, it will send an action-required message to end users; otherwise, the
description above may indicate the remaining process. If a RAS consists of more than
two RACGM, the similar categorical representation can be generated as we explained.
8.3 Forming a RACG

After receiving the task of forming a RACG from RACGM, RACS starts to create RAOL

205

and establish corresponding connections among them based on the composition rules and
communication protocols specified by index category RACG-Formation (see Property
6.1.1). Figure 98 illustrates an example of forming the categories RACG1 and RACG2
from their index category RACG-Formation. Figure 99 and 100 describe the detailed

object as well as morphism mappings from RACG1 and RACG2 to RACG-Formation

respectively.

RACG-Formation
¥ a ¥ a

, RACS-Typel RACS-Type2

K

a%
b

Comnr e
ainm- LYpeE
Uriim:

o

: Comm-Typed oITIT= | Y E
RAOL-Typel —PC_|/ RAOL-Typel \l_"F_ RAOL-Typed

Comim-Ty, : ‘__/‘ Comm-Tyvpel?

RACGI

RACG2

RACE] of
? RACS-Typel

N

RACS2 of
RACS-Type2

5

of Type:

RAOLI of

_ RAOLZ of
RAOL-Typel [

EAOL-Typel

RAOLA of
RAOL-Typed

RAOLS of
RAOL-Typel

Y

Comnld of Typed
Y

Comnld of Typed

13
Commfd of Typeb

Coimn

RAQLS of

RACLA of
r RAOL-Typel

RAOL-Type |

Figure 98: Example of Forming RACG from RACG-Formation

206

Object Mapping

Morphism Mapping (RACG-Formation <- RACGI)

RACS1->RACS-Typel

Comm1->Comm-Typel, Comm2->Comm-Type2

RAOLI1->RAOL-Typel

Comm3->Comm-Type3, Comm4->Comm-Type4

RAOL2->RAOL-Typel

Comm5->Comm-Type2, Comm6->Comm--Typel

RAOL3->RAOL-Type2

Comm7->Comm-Type9, Comm8->Comm-Typel0

Comm9->Comm-Typel0, Comm10->Comm-Type9

RAOL1-RAOL2-> Identity-Mor(RAOL-Typel)

Figure 99: Object and Morphism Mapping of Functor RACG-Formingl

Object Mapping

Morphism Mapping (RACG-Formation <- RACG2)

RACS2->RACS-Type2

Comm1->CommI-Type7, Comm2->Comm-Type8

RAOL4->RAOL-Type3

Comm3->Comm-Type5, Comm4->Comm-Type6

RAOLS5->RAOL-Type3

Comm35->Comm-Type8, Comm6->Comm-Type7

RAOL6->RAOL-Type2

Comm?7->Comm-Typell, Comm8->Comm-Typel2

Comm9->Comm-Typel2, Comm10->Comm-Typell

RAOL4-RAOLS5-> Identity-Mor(RAOL-Type3)

Figure 100: Object and Morphism Mapping of Functor RACG-Forming2

After RACS! initializes its RAOL according to the requirements from the RACGM
and the capabilities of those RAOL, it validates the configuration of those RAOL against
their types every ¢ ticks (a tick is an abstraction of one time unit under a global clock in

the RACG1), while RACS] is in the first state of its intelligent control loop (monitoring).

207

If the configuration of those RAOL conforms to their types, composition rules as well as
communication protocols (see Property 8.7.4), NoViolation event keeps RACSI in
Monitor state; otherwise, NeedInvestigation event is triggered and RACS! transits to
Analyze state, while a time constraint variable (7Cvar?2) is initialized to work as a local
clock in terms of time constraints on each transition of the intelligent control loop. The

value of TCvar2 is t0, t1, t2, t3... where t0 < tl <2 <(3.

RACHL3 BEAC 2 oAl 1 BEACS] BACCiM L
T T T T !
[| | | InitializeRMACS() |
[| | (= 1
[| 1 | Hearbeat |
I | 1 Fr—— — — — —

I I | initializeRAoL]) | I
[| =~ 1 |
[| 1 Heartbeat | |
I | r—— = |
[| imitialize R AL | |
[= T i i
I | Heartbeaat | |
[|——————— g — — ——— —3A I
[| initialize R AL | | |
I~ T 1 |
I | Heartbeat 1 | |
—— - — 44— —3A I

|

Figure 101: RACG Formation Work Flow

RACH.3 BACHL2 BAOLL RACS] BACOMI
: ! . | \alidataRACS() |
| | I L‘: alidata () |
: : L validateRA0L[) : Conform J
I I r Conform e]
[| 1 -7 5 |
[| - . . | |
| L validatelLAOL() I |
I N Mot Cr;r‘rﬁ'_‘lﬁ'n I I
[| _memeenm 5 |
[| 1 | |
| L Launch Investigation() | |
I N Caninrm | I
[| e 5 |
[T L . | |
L ﬁ-aIldﬁ_telt_-"t{_)L,cumnulmcqtmn{J | |
™ | | |

Mot Confarm
[| | |
T T T T T T A J’JI |
L Launch Investigation() | |
|
|
|
|

Figure 102: RACG Self-Configuration Work Flow

208

BEACSS BACCRI EACS] AL
: : :'n.l"u"n::ngﬂm'lmTyani
[| [=
| |_r Selfvislation(] | |
| = 1 |
I Requeasi(} | | |
= 1 | |
| Confirm | | |
r— - - | |
I Register(} | I I
r= 1 | |
| Heartbeat 1 | |
reT T T T Conmect ! I
| | | L
: i Heartbe=at Ir J‘]I
K——————= T == i B 1

|

Figure 103: RACG Self-Configuration Work Flow by Substitution

BRACS? BACCIML BRACS] BEACHL]
: : I'l."‘u"tﬂr‘nganypelL]J'
: | selfviclation() | :
I I I I
I Take-ower() | I |
™ Confi | I |
L _emmm . [[
I | Connect I |
| 1 | }J
: : Heartbeat | |
&——-——-——--———————d—_———— -

Figure 104: RACG Self-Configuration Work Flow by Take-over

[Yes]
Mo Fialation

A

“/‘l_]'l:ﬁl:'t TCvar2 }\““--.

[Yes]

RestortflACH I ARACS
[TCwvarZ=—=t]

yd AV

MerA cricen

A

[MNa]

h.,____“‘
Needlivesigaiion

[Yes]
Acticmiien
[TCwvar2=<=tf]

Exccute

Analyvze
AT

(Initialize TCwvar2)

[*es]

[MNa]
Lerne b SelfHeoling
[TCwvar=—=t4]

Srehstirute
T TCvarzemtS]~
[MNo]

]

‘\\H“ Take—over

N e A

ActionFailfed

Plan

[TCvar2==t5]

N

Mo lan

Figure 105: Intelligent Control Loop in RACSI1 for Self-Configuration

209

[es] Resenl mm i oo

Mo Fiolation [TCwvarZ2==t3]
" fves] yd N
A omitor Mord ciian Analyvee

=1
conformney affer
¥

/1 resct T wva rf\“x‘_‘_‘
m ~— [No] a4

Needlmvessigation

F 3 . s i
{Inmtialize TCwvar2)
[ur]
[es] s -
Aetion Doen LaunchSelfHealing

[TCwvar2==th] | TCwvarZ=<-14]

[es]
Execcute - Srbstitute Plan

[TCvarZ2=<=t53]™~._|
‘"‘*a._ [No) 7 Ew

Take—mver

[TCvar2==t5] \\

Mo lan

ActionFailed

Figure 106: ICL in RACS1 for Communication Self-Configuration

After RACSI enters Analyze state, 1) it sends a Restart message to RAOLI in t0 ticks
where the violation is caused by the incorrect RAOL type or incorrect communication
type from RAOLI to RACSI. If RAOLI conforms to its type and communication type,
NoAction event occurs and RACS| goes back to Monitor state, while the TCvar?2 is reset;
otherwise, RACS] transits to Plan state triggered by LaunchSelfHealing event in t4 ticks.
2) If the violation is caused by incorrect communication type from other RAOL (RAOL?3)
to RAOLI, RACSI sends a Restart message to RAOL3. If the communication conforms to
its type, NoAction event occurs and RACS1 goes back to Monitor state, while the TCvar?2
is reset; otherwise, RACS|1 transits to Plan state triggered by the LaunchSelfHealing event
within #4 ticks. 3) If the violation is caused by the incorrect communication type from

RACSI to RAOLI1, RACS] resets that communication. If it conforms to the correct one

210

specified in the index category RACG-Formation (see Property 8.7.4), NoAction event
occurs and RACSI goes back to the Monitor state, while the TCvar?2 is reset; otherwise,
RACS] transits to Plan state triggered by LaunchSelfHealing event in t4 ticks.

When RACS] is in Plan state, it chooses either Substitute plan or Take-over plan,
based on the availability of substitutable RAOL for RAOLI (scenario 1 in the paragraph
above) or for RAOL3 (scenario 2). RACSI transits to Execute state triggered by the
Substitute event or Take-over event respectively in ¢5 ticks. For scenario 3, RACS! sends
a selfViolation message to RACGM1, and the latter chooses either Substitute plan or
Take-over plan based on the availability of substitutable RACS for RACSI. It transits to
Execute state triggered by Substitute or Take-over event in t5 ticks.

When RACS! is in Execute state and Substitute plan is applicable, it sends a register
message to the substitutable RAOL of RAOLI (scenario 1) or RAOL3 (scenario 2) and
initialize it to the status of RAOLI or RAOL3 according to the checkpoint made before.
When the take-over plan is applicable, RACSI sends a take-over message to RAOL?2
(scenario 1 or scenario 2) and update it to the status of the synchronous product machine
of RAOLI and RAOL2, or RAOL3 and RAOL?2 according to the checkpoint. After the plan
execution, RACS] validates the configuration of RACG1’, an evolution of RACG1 (see
Property 6.1.3) against the index category RACG-Formation based on their categorical
specifications. If that configuration conforms to the index category (see Property 8.7.4),
ActionDone event occurs and then RACS] transits to the Monitor state within 6 ticks;

otherwise, ActionFuailed event keeps it in Execute state for RACGM1’s intervention. For

211

scenario 3, RACS]I is substituted by RACS3 or taken over by RACS?.

8.4 Categorical Illustration of Forming a RACG

The actions in the formation work flow, self-configuration work flow, substitution work
flow and take-over work flow of RACG]1 can be specified as the categories where objects
are the actions (/nitializeRAOL, ValidateRAOL, ValidateRAOLcommunication, etc.), and
morphisms are their preorder relationship before. Each object (action) in those categories
is a quadruple (see Property 6.2.28). For example, Launchilnvestigation = (RACSI,
NotConfrom-RAOL, InvestigateRAOL, RAOLI), and the sequences of those actions can
be specified as the categories in which objects are those sequences (<[nitializeRACS,
Heartbeat, [InitializeRAOL, Heartbeat>, <ValidateRACS, Conform, ValidateRAOL,
NotConform>), and morphisms are the equivalence relationship between those sequences
(see Property 6.2.31).

The transitions in the intelligent control loop of RACSI for self-configuration can be
specified as the category in which objects are those transitions (NoViolation,
NeedInvestigation, RestartRAOL, NoAction, etc.), and morphisms are their preorder
relations before. Each object (transition) in that category is a triple (see Property 6.2.23).
For example, Needlnvestigation = (Monitor, NotConform-RAOL, Analyze); the sequences
of those transitions can be specified as a category in which objects are those sequences
(<NoViolation, NeedInvestigation, RestartRAOLI, NoAction>, <RestartRAOLI,
LaunchSelfHealing, Substitute, ActionDone>), and morphisms are equivalence relations

between those sequences (see Property 6.2.26).

212

Let RACG1 be a subcategory (consisting of the objects RACS1, RAOL1, RAOL2,
RAOLS3 and the morphisms among them) of RACG1-0 (a category consisting of all the
potential RAE for the self-configuration in RACG1). If RACG1 is conformed to the
index category RACG-Formation by restarting violated RAOLI or RAOL3, it evolves to
RACGI1-1 (consisting of the objects RACS1, RAOLI or RAOL1-1, RAOL2, RAOL3 or
RAOL3-1 and the morphisms among them in RACG1-0) that has the same configuration
and categorical structure as RACGI1 except for the different initial status of RAOLI or
RAOL3. This evolution is specified by a Restart functor (a structure-preserving mapping)
from RACGI1-1 to RACGI1-0. If RACGT1 is conformed to the RACG-Formation by
substituting RAOLI or RAOL3 with their isomorphic objects RAOL7 or RAOLY (see
Definition 3.1.3), it will evolve to RACG1-2 (consisting of objects RACS1, RAOL1 or
RAOL7, RAOL2, RAOL3 or RAOL9 and the morphisms among them in RACG1-0),
which has the same configuration and categorical structure as the RACG1 but replacing
RAOLI or RAOL3 with RAOL7 or RAOLY. The above is specified by a Substitute functor,
a structure-preserving mapping. If RACGI1 is conformed to RACG-Formation by
asking RAOL2 to take over the responsibilities of RAOLI or RAOL3, it evolves to
RACGI1-3 (consisting of the objects RACSI-1, SPM, RAOL1 or RAOL3 and the
morphisms among them in RACG1-0), which has the different categorical structure, but

both of them have the equivalent configuration (see Property 8.7.5 and the figure below).

213

Matural Transformation j— — — — — — —™— — — — — — — | Matyral Transformation2
R

RACGI-1
| RACSI

| RAOLL-1

| RAOQL2Z
I

|

_Raobdt = |

RACGI-3

sM

RACS1-1 |

| RAOLIRAOL]

— — —

RACSI-1

Matural Transtormation |

Figure 107: Evolution for Self-Configuration in RACG1

RACGI

N

R;i?.*;mrr NRACH,
MNTT

h
Aubsiitufe AL

|
J-'\,-r T 2 Jﬂ'lu'r T_?
A J

d
I
1

Figure 108: Natural Transformation for Self-Configuration in RACG1
The mapping among those evolutions RestartRAOL, SubstituteRAOL and Take-over-
RAOL of the RACGTI can be interpreted as natural transformations (see Property 6.1.4).
The functor category having those functors as objects and their natural transformations as

morphisms illustrate all possible evolutions with their relations. In addition, the natural

Jake-over HACN
L/

214

RACGI1-0

transformation3 is a composition of natural transformationl and natural transformation2,
which may be interpreted as the following: the result of the evolution RestartRAOL ->
SubstituteRAOL -> Take-over-RAOL is equivalent to the evolution RestartRAOL -> Take-
over-RAOL. Figure 109, 110 and 111 illustrate those natural transformations and their

composition respectively.

NTL pacss
RestartRAOL(RACSI) = RACS] —— SubstituteRAOL(RACST) = RACS!
RestartRAOL(Command) = Command -1 Substitute RACL{ Command) = Command3
NTT gaors

RestartRAOL(RAOLI) = RAOLI-1 =——= SubstituteRAOL(RAOLI) = RAOL3

Figure 109: Natural Transformation RestartRAOL -> SubstituteRAOL in RACG1

N2 paow
Substitute RAOQL(RACST) = RACS! ——> Take- over-RAOL(RACS!) = RACS -1
Substitute RAOL{Command 1) = Commaned3 Take-over-RAOL(Command) = Command6
NT2. gaors

SubstituteRAOL(RAOLI) = RAOL3 =———pTake-over-RAOL(RAOLT) = SPM

Figure 110: Natural Transformation SubstituteRAOL -> Take-over-RAOL in RACGI1

JI"'FT-? SRACKS
RestartRAOL(RACS1) = RACS] —— Take-over-RAOL(RACS!) = RACSI-1
RestartRAOL{Command 1) = Command -1 Take-over-RAOL| Command 1}y = Commandt
NT3. paors

RestartRAOL(RAOLI) = RAOLI-1 =—= Take-over-RAOL(RAOLI) = SPM

Figure 111: Natural Transformation RestartRAOL -> Take-over-RAOL in RACG1

Let RACGI be a subcategory (consisting of the objects RACS1, RAOL1, RAOL2,
RAOL3 and the morphisms among them) of RACG1-0 (a category consisting of all the
potential RAE for the communication self-configuration within RACG1). If RACGI is
conformed to the RACG-Formation by restarting the communication from RACS! to

RAOLI or restarting RACS1, it evolves to RACG1-4 (consisting of objects RACSI1-1,

215

RAOLI, RAOL2, RAOL3 and the morphisms among them in the RACG1-0'), which has
the same configuration and categorical structure as RACGI1 except for the different
initial status of RACSI. This evolution is specified by the RestartRACS functor (a
structure-preserving mapping) from RACG1-4 to RACG1-0'. If RACG1 is conformed to
RACG- Formation by substituting RACS/ with its isomorphic objects RACS3 (see
Definition 3.1.3), it evolves to RACGI1-5 (consisting of objects RACS3, RAOLI,
RAOL2, RAOL3 and the morphisms among them in the RACG1-0), which has the same
configuration and categorical structure as RACGI1 but replacing RACSI with RACS3.
The above is specified by the SubstituteRACS functor, a structure-preserving mapping. If
RACGI1 is conformed to the RACG-Formation by asking RACS2 to take over the
responsibilities of RACS]I, it evolves to RACG1-6 (consisting of objects SPM, RAOLI,
RAOL2, RAOL3 and the morphisms among them in RACG1-0), which has different
categorical structure, but both of them have the equivalent configuration (see Property
8.7.5 and Figure 112).

The mapping among those evolutions RestartRACS, SubstituteRACS and Take-over-
RACS of the RACGI is interpreted as natural transformations (see Property 6.1.4). The
functor category having those functors as objects and their natural transformations as
morphisms illustrate all possible evolutions with their relations. In addition, the natural
transformation6 is a composition of natural transformation4 and natural transformation$,
which may be interpreted as the following: the result of the evolution RestartRACS ->

SubstituteRACS -> Take-over-RACS is equivalent to the evolution RestartRACS -> Take-

216

over-RACS. Figure 114, 115 and 116 illustrate those natural transformations and their

composition respectively.

Rﬁ.(Gl1-6

R "LU‘L-'
f‘kUL I

I{.-"L{JL?

|_R.¢{'Gl—l]'

Matural Transformation Matural Transformations

RAGLI

RACGI-4 | RACGI-S |
| RACSI-1 ACR3 |
[RACLI |
| | FAOQLI if‘kU‘LI|
| E‘UEE S —— Matural Transformationd | —Rfﬂ&— S

Figure 112: Evolution for Communication Self-Configuration in RACG1

R;i?.ﬁm'r ALK I\\

l//
NTH

¥
RACG1 [Subsiiiuie RALS S RACGI1-0
U n7s V)
NTS
L J
Take-over KA L':»I\
L]

Figure 113: Natural Transformation of Communication Self-Configuration in RACGI1

217

NTH, RACS]
RestartRACS(RACSI)= RACSI-1 ©—=——— SubstituteRACS(RACSI) = RACS3

RestartRACS(Command 1y = Command -1 Substitute RACS Commuand) = Command3
NTH. gaors
RestariRACS(RAOLTIY = RAOLT ———> SubstituteRA CSIRAOLTY = RAOLT

Figure 114: Natural Transformation RestartRACS -> SubstituteRACS in RACG1

J““"T-i- RACKS
SubstituteRACS(RACS 1) = RACS3 ——> Tuke-over-RACS(RACS] 1 =8PM
Substitute RACS Command 1) = Command3 Tuke-over-RACS Command) = Commandt
NT3 . paors

SubstituteRACS(RAOLI) = RAOLT =———= Take-over-RACS(RAOLI) = RAOLI
Figure 115: Natural Transformation SubstituteRACS -> Take-over-RACS in RACG1

Jﬂ.‘irﬁ- BACKS
RestartRACS(RACSTY = RACS1-1 ———p Take-over-RACS(RACS1) = SPM

RestariRACS Command 1y = Command -1 Take-over-RACS(Commuand 1y = Commandt
NT6.paors
RestariRACS(RAOLT = RAOLT ——> Take-over-RA CS(RAQLTIY = RAQOLI

Figure 116: Natural Transformation RestartRACS -> Take-over-RACS in RACG1

When both RACS! and RACS2 cannot conform to RACG-Formation at the same
time, RACGM] tries to restart them first. If neither of them can conform to RACG-
Formation after being restarted, RACGM1 will substitute RACSI and RACS2 with their
isomorphic objects RACS3 and RACS4; otherwise, the remaining process is the same as
the illustration above. When RACGM]I cannot find RACS3 or RACS4, it will send an
action-required message to User Console; otherwise, the description above may indicate
the remaining process. If a RACG consists of more than two RACS, a similar categorical
representation can be generated as we explained previously.
8.5 Forming a RAC

After receiving the task of forming a RAC from RACS, RAOL starts to create RAO and

218

establish corresponding connections between them based on the composition rules and
communication protocols specified by the index category RAC-Formation (see Property
6.1.1). Figure 117 depicts an example of forming the categories RAC1 and RAC2 from
their index category RAC-Formation. Figure 118 and 119 describe the detailed object as

well as morphism mappings from RAC1 and RAC2 to RAC-Formation respectively.

RAC-Formation
’,/““\‘ ’/-"'\\‘

, RAOL-Typel RAQL-Type2 q

Comm- Lype:
oimt- LYpe

[Comm-Type®

1 omim- 1 ype
RAC-Typel RAO-Type2 \I_"F_ RAD-Type3
[T K : ‘_'/ Comm-Typels

RAOLI of
",J RAOL-Typel

N

RADLD of
RADL-Type2

3

ol Type

RAO of

_ RAO2 of
RAQ-Typel |

RAC-Typel

RACH af RACS of

RAC-Typesd

Y

omnld ol Typel
Comnfd of Typed

Commd ol Typeh
Y

Comm

RAG3 of
RAO-Type2

RADG of
| Rao-Type2 |

Figure 117: Example of Forming RAC from RAC-Formation

219

Object Mapping Morphism Mapping (RAC-Formation <- RACI)

RAOL->RAOL-Typel Comm1->Comm-Typel, Comm2->Comm-Type2
RAO1->RAO-Typel Comm3->Comm-Type3, Comm4->Comm-Type4
RAO2->RAO-Typel Comm5->Comm-Type2, Comm6->Comm-Typel
RAO3->RAO-Type2 Comm7->Comm-Type9, Comm8->Comm-Typel0

Comm9->Comm-Typel0, Comm10->Comm-Type9

RAOI1-RAO2-> Identity-Mor(RAO-Typel)

Figure 118: Object and Morphism Mapping of Functor RAC-Forming1

Object Mapping Morphism Mapping (RAC-Formation <- RAC2)
RAOL2->RAOL-Type2 Comm1->Comm-Type7, Comm2->Comm-Type8
RAO4->RAO-Type3 Comm3->Comm-Type5, Comm4->Comm-Type6
RAO5->RAO-Type3 Comm35->Comm-Type8, Comm6->Comm-Type7
RAO6->RAO-Type2 Comm?7->Comm-Typell, Comm8->Comm-Typel2

Comm9->Comm-Typel2, Comm10->Comm-Typell

RAO4-RAO5-> Identity-Mor(RAO-Type3)

Figure 119: Object and Morphism Mapping of Functor RAC-Forming?2
After RAOLI initializes its RAO according to the requirements from RACS/ and the
capabilities of those RAO, it validates the configuration of those R4O against their types
every ¢ ticks (a tick is an abstraction of one time unit under a global clock in the RAC1),

while RAOLI is in the first state of its intelligent control loop (monitoring). If the

220

configuration of those RAO conforms to their types, composition rules as well as
communication protocols (see Property 8.7.4), NoViolation event keeps the RAOLI in
Monitor state; otherwise, NeedInvestigation event is triggered and RAOLI transits to
Analyze state, while a time constraint variable (7Cvar3) is initialized to work as a local
clock in terms of time constraints on each transition of the intelligent control loop. The

value of TCvar2 is t0, t1, t2, t3... where t0 < tl <2 <(3.

BACS RAOQZ BACK BACL RACS]
T T T T T
[| 1 | initializeRA00L())|
[| 1 = 1
[| 1 | Hearbezat |
I | 1 Fr—— — — — —

[| | initializeRAcy) | I
[| I~ 1 |
[| 1 Heartbeat | |
[| r——— |
[| mitializeRACH) | |
[= T | [
I | Heartbaat | |
[|——————— T ————— —A |
I | initialize A1) | |
I~ 1 |
I | Heartbheat] | |
I - — 44— —3A I
I | | | |
Figure 120: RAC Formation Work Flow

RACHL3 BACH.2 RACLIL BACHL RACS]
[| | | . |
I I I L. validatelRACL{) I

=
: : L validate R0 : Canform I!
I I r Conforimn e I
[[= —l l
[| . : 1 |
I L validate R AN} I I
I N Mot Cr;nfnnﬂ I I
[|\ e 3! |
[| 1 | |
I L Launch Investigation(} I I
I ™ Cmiﬂrm | I
[|\ oeemnem 3! |
[! Lo 1 |
L. 1-.'1]|1:l.'_jteli_.-"LU-:'ammum-:u!|Dm} I I
™ | | |
Mot Conform

0 _ | e E! |
[1 1 | |
I Launch Investigation() I I

|

|

|

|

Figure 121: RAC Self-Configuration Work Flow

221

RACL3 FACS] EAC 1 Al
: : :'n.l"u"r{:ngﬂnn'lmTypal:j:
[I [e
i | Selfviclation() I I
| = 1 |
| Requestt) | | |
I~ 1 | |
| Confirm 1 | |
- - - - = | |
I Register{} I I I
= 1 | |
| Heartbeat 1 | |
T | Connect \ :
I ™
: i Heartbeat i I
k= T === i B 1

I

BAC.2 BALCS] R] Bl
I | MrongComm Type)l
I | | }J
: | Seltviclation() | :
I I~ I I
I Take-owver() | I I
™ | | |
I Corfirm I I
I 2 Connect [[
| | | }J
: : Heartbeat | JI
|*C— —————————————————————— |

Figure 123: RAC Self-Configuration Work Flow by Take-over

[ves]

Mo Fiolaricm

[Yes]

pa

A CHTARAL
Cererfoaemns?

HesetRAC T ARACKS
| TCwvar3-<—tl]

o Ny

/[rc:sr:t TCwvardy
/

T [Me]

MewdTirves g tion

[es]
Actdermhane
[TCwari<=11]

Men A i Analyze

(Initialize T Cwvar3d)

[es]

Execcute

[™Na]
Lo Sedfiffecling
[TCOwvard==t7T]

[TCwvard=—=t8]—__

‘-\‘""‘--..___ [HD] _.__...--"""

— Srebsiiture Flan

Toke—aver

S
[™a]

Actiontaifed

[T vard-=—=tH]

=

Mo lan

Figure 124: Intelligent Control Loop in RACI1 for Self-Configuration

222

[*es] R ese il orm iiertioaitio
M F el Sern [T Cvarid==ti]

/4 (ves] yd Ny

rlomifor Modotian Analvze

//{re.set T wvar3s }\x_‘___
[MNa] -

MNeead lmvesrigation
(Initialize T Cvar3)

e

[™a]
Lo h SelfHeoaling
| TCwvar3d="=17]

[¥es]
Aovioni aone
[TCwari==t]
[*es]
Executse [Srebsritnre Plan

[TCvard==t8]~_]
‘H‘\-_h_____ [" @

Terke—orwer
[TCwvard==t8] \\\

Mo f e

Actiontaifed

Figure 125: ICL in RAC1 for Communication Self-Configuration

After RAOLI enters Analyze state, 1) it sends a Restart message to RAO! in t0 ticks
where the violation is caused by the incorrect RAO type or incorrect communication type
from RAOI to RAOLI. If RAOI conforms to its type or communication type, NoAction
event occurs and RAOLI goes back to Monitor state, while the TCvar3 is reset; otherwise,
RAOLI transits to Plan state triggered by LaunchSelfHealing event in t7 ticks. 2) If the
violation is caused by incorrect communication type from other RAO (RAO3) to RAOI,
RAOLI sends a Restart message to RAO3. If the communication conforms to its type,
NoAction event occurs and RAOLI goes back to Monitor state, while the TCvar3 is reset;
otherwise, RAOL] transits to Plan state triggered by the LaunchSelfHealing event within
t7 ticks. 3) If the violation is caused by the incorrect communication type from RAOLI to

RAOI, RAOLI resets that communication. If it conforms to the correct one specified in

223

the index category RAC-Formation (see Property 8.7.4), NoAction event occurs and
RAOLI goes back to the Monitor state, while TCvar3 is reset; otherwise, RAOLI transits
to Plan state triggered by LaunchSelfHealing event in ¢7 ticks.

When RAOLI is in Plan state, it chooses either Substitute plan or Take-over plan,
based on the availability of substitutable RAO for R4AO! (scenario 1 in the paragraph
above) or for RAO3 (scenario 2). RAOLI transits to Execute state triggered by the
Substitute event or Take-over event respectively in ¢8 ticks. For scenario 3, RAOLI sends
a selfViolation message to RACSI, and the latter chooses either Substitute plan or Take-
over plan according to the availability of substitutable RAOL for RAOLI. It transits to
Execute state triggered by Substitute or Take-over event in ¢8 ticks.

When RAOLI is in Execute state and Substitute plan is applicable, it sends a register
message to the substitutable RAO of RAOI (scenario 1) or RAO3 (scenario 2) and then
initialize it to the status of RAOI or RAO3 based on the checkpoint made before. When
the take-over plan is applicable, RAOLI sends a take-over message to RAOZ2 (scenario 1
or scenario 2) and update it to the status of the synchronous product machine of RAOI
and RAO2, or RAO3 and RAO?2 according to the checkpoint. After the plan execution,
RAOLI validates the configuration of RAC1’, an evolution of RACI (see Property 6.1.3)
against the index category RAC-Formation based on their categorical specifications. If
that configuration conforms to the index category (see Property 8.7.4), ActionDone event
occurs and RAOL] transits to the Monitor state within 19 ticks; otherwise, ActionFailed

event keeps it in Execute state for RACSI’s intervention. For scenario 3, RAOLI 1is

224

substituted by RAOL3 or taken over by RAOL?.

8.6 Categorical Illustration of Forming a RAC

The actions in the formation work flow, self-configuration work flow, substitution work
flow and take-over work flow of RACI1 can be specified as the categories where objects
are the actions (InitializeRAO, ValidateRAO, ValidateRAOcommunication, etc.), and
morphisms are their preorder relationship before. Each object (action) in those categories
is a quadruple (see Property 6.2.28). For example, Launchlnvestigation = (RAOLI,
NotConfrom-RAQO, InvestigateRAO, RAOI), and the sequences of those actions can be
specified as the categories in which objects are those sequences (<[nitializeRAOL,
Heartbeat, [InitializeRAO, Heartbeat>, <ValidateRAOL, Conform, ValidateRAO,
NotConform>), and morphisms are the equivalence relationship between those sequences
(see Property 6.2.31).

The transitions in the intelligent control loop of RAOL1 for self-configuration can be
specified as the category in which objects are those transitions (NoViolation,
NeedInvestigation, RestartRAO, NoAction, etc.), and morphisms are their preorder
relations before. Each object (transition) in that category is a triple (see Property 6.2.23).
For example, NeedInvestigation = (Monitor, NotConform-RAO, Analyze); the sequences
of those transitions can be specified as a category in which objects are those sequences
(<NoViolation, Needlnvestigation, RestartRAOI, NoAction>, <RestartRAOI,
LaunchSelfHealing, Substitute, ActionDone>), and morphisms are equivalence relations

between those sequences (see Property 6.2.26).

225

Let RAC1 be a subcategory (consisting of objects RAOLL, RAO1, RAO2, RAO3
and the morphisms among them) of RAC1-0 (a category consisting of all the potential
RAE for the self-configuration in RAC1). If RAC1 is conformed to the index category
RAC-Formation by restarting the violated RAO! or RAO3, it will evolve to RAC1-1
(consisting of the objects RAOL1, RAO1 or RAO1-1, RAO2, RAO3 or RAO3-1 and the
morphisms among them in RAC1-0), which has the same configuration and categorical
structure as RAC1 except for the different initial status of RAOI or RAO3. This evolution
is specified by a Restart functor (a structure-preserving mapping) from RACI1-1 to
RAC1-0. If RACT1 is conformed to RAC-Formation by substituting RAO! or RAO3
with their isomorphic objects RAO7 or RAO9 (see Definition 3.1.3), it will evolve to
RACI1-2 (consisting of objects RAOL1, RAO1 or RAO7, RAO2, RAO3 or RAO9 and
the morphisms among them in the RAC1-0), which has the same configuration and
categorical structure as RAC1 but replacing RAO! or RAO3 with RAO7 or RAOY. The
above is specified by a Substitute functor, a structure-preserving mapping. If RAC1 is
conformed to the RAC-Formation by asking RAO?2 to take over the responsibilities of
RAOI or RAO3, it evolves to RAC1-3 (consisting of objects RAOLI-1, SPM, RAO1 or
RAO3 and the morphisms among them in RAC1-0), which has the different categorical
structure, but both of them have the equivalent configuration (see Property 8.7.5 and the

figure below).

226

RAOLI-1 |

| RADI/RAOL |
— — — —]

Mamral Transtormation3 Matural Transtormation2

————— — — I Matural Transformation |]

Figure 126: Evolution for Self-Configuration in RAC1

H;i?.*;m;'r A P\

|.//
NT1

v

RAC] [SubsmmERIb— ™ RAC1-0
I =

NT2

Il’:k&—ﬂ:&.‘r ff_x?!r‘_} L[>

Figure 127: Natural Transformation for Self-Configuration in RACI
The mapping among those evolutions RestartRAO, SubstituteRAO and Take-over-
RAO of the RAC1 can be interpreted as natural transformations (see Property 6.1.4). The
functor category having those functors as objects and their natural transformations as

morphisms illustrate all possible evolutions with their relations. In addition, the natural

227

transformation3 is a composition of natural transformationl and natural transformation2,
which may be interpreted as the following: the result of the evolution RestartRAO ->
SubstituteRAO -> Take-over-RAO 1is equivalent to the evolution RestartRAO -> Take-
over-RAO. Figure 128, 129 and 130 illustrate those natural transformations and their

composition respectively.

NTL paor s
RestartRAO(RAOLI) = RAOL] ——=) SubstituteRAO{RAOLI) = RAOL]
RestariRA(Command 1y = Commandl-1 Substitute RA Command 1y = Commuand 3
NTL e

RestartRAO(RAOT) = RAO1-1 =——= SubstituteRANRAOI) = RAO3

Figure 128: Natural Transformation RestartRAQO -> SubstituteRAO in RACI

NT2 gaons
SubstituteRA(RAOL = R40L/ ——— Take-over-RAO(RAOLIY = RAOLI-1
Substittte RAO{Command) = Command3 Take-over-RAN Commuand ') = Command4
NT2. gae1

SubstituteRANRAOD) = RAO3 =———=) Take-over-RAO(RAOI) = SPM

Figure 129: Natural Transformation SubstituteRAO -> Take-over-RAO in RACI1

NT3. psons
RestartRAIRAOLTY= RAOLI ———> Take-over-RAO(RAOLI y=RAOLI-1
RestartRAO{Command 1) = Command -1 Take-over-RAO(Commuand 1)y = Commuand4
NT3. paos

RestartRAO(RAOT) = RAOI-1 =——= Take-over-RAO(RAOT) = SPM

Figure 130: Natural Transformation RestartRAO -> Take-over-RAO in RACI1
Let RAC1 be a subcategory (consisting of objects RAOLI, RAO1, RAO2, RAO3
and the morphisms among them) of RAC1-0" (a category consisting of all the potential
RAE for the communication self-configuration in RAC1). If RAC1 is conformed to
RAC- Formation by restarting the communication from RAOLI to RAO]! or restarting

RAOLI, it will evolve to RAC1-4 (consisting of objects RAOL1-1, RAO1, RAO2, RAO3

228

and the morphisms among them in RAC1-0), which has the same configuration and
categorical structure as RAC1 except for the different initial status of RAOLI. This
evolution is specified by a RestartRAOL functor from RAC1-4 to RAC1-0. If RAC1 is
conformed to the RAC-Formation by substituting RAOLI with its isomorphic objects
RAOL3 (see Definition 3.1.3), it evolves to RAC1-5 (consisting of objects RAOL3,
RAOI1, RAO2, RAO3 and the morphisms among them in RAC1-0), which has the same
configuration and categorical structure as RAC1 but replacing the RAOLI with RAOL3.
The above is specified by the SubstituteRAOL functor, a structure-preserving mapping. If
RAC1 is conformed to RAC-Formation by asking RAOL2 to take over the
responsibilities of RAOLI, it evolves to RAC1-6 (consisting of objects SPM, RAOI,
RAO2, RAO3 and the morphisms among them in RAC1-0)), which has different
categorical structure, but both of them have the equivalent configuration (see Property
8.7.5 and Figure 131).

The mapping among those evolutions RestartRAOL, SubstituteRAOL and Take-over-
RAOL of the RAC1 is interpreted as natural transformations (see Property 6.1.4). The
functor category having those functors as objects and their natural transformations as
morphisms illustrate all possible evolutions with their relations. In addition, the natural
transformation6 is a composition of natural transformation4 and natural transformation5,
which may be interpreted as the following: the result of the evolution RestartRAOL ->
SubstituteRAOL -> Take-over-RAOL is equivalent to the evolution RestartRAOL -> Take-

over-RAOL. Figure 133, 134 and 135 illustrate those natural transformations and their

229

composition respectively.

RACI-6 I
SPM
| |
| rAOZ |
I FACH
I
| RAO3 |

Matural Transformation |_R.-1Cl v | Matural Transformation5

Matural Transformationd]

Figure 131: Evolution for Communication Self-Configuration in RACI

H;;s. Fairt A, ™

|]
NTH
v
RAC1 [Subsfifuic RADT > RAC1-0

|
Ihr T:., Jﬂh T“;

L eake- ﬂlﬂE".?‘ Fil | ULI\\

Figure 132: Natural Transformation of Communication Self-Configuration in RAC1

230

NT4. paor
RestartRAOL(RAOLLY = RAOLI-1 > SubstituteRAOL(RAOLI)=RAOL3

RestartRAOL(Command) = Command -1 Substitute RACL{ Command) = Command3
NT4. pao:
RestartRAOLIRAOTY = RAOT — Substitte RAOL(RAOTY = RAOQ]

Figure 133: Natural Transformation RestartRAOL -> SubstituteRAOL in RAC1

NTS. prors
SubstituteRAOL(RAOL1Y = RAOL3 ——)Take-over-RAOL(RAOLI) = SPM

SubstituteRAOL(Command 1) = Command3 Take-over-RAQL(Command !y = Command4
NT3. o
Subsiitute RAOLIRAOD = RAOT —— Take-over-RAGLIRAOTN = RAO!

Figure 134: Natural Transformation SubstituteRAOL -> Take-over-RAOL in RACI1

NTO.pa01
RestartRAOL(RAOL Y = RAOLI-1 ——)Take-over-RAOL(RAOL] 1 =8PM
RestartRAOL(Commandl) = Command-1 Take-over-RAOL(Command 1) = Commuand4
NT6. gy

RestartRAOL(RAOT) = RAOI =——=pTake-over-RAOL(RAOI) = RAOI

Figure 135: Natural Transformation RestartRAOL -> Take-over-RAOL in RACI

When both RACI and RAC2 cannot conform to RAC-Formation at the same time,
RACS] tries to restart them first. If neither of them can conform to RAC-Formation after
being restarted, RACSI will substitute RAOLI and RAOL?2 with their isomorphic objects
RAOL3 as well as RAOL4; otherwise, the remaining process is the same as the illustration
above. When RACS! cannot find the RAOL3 or RAOL4, it will send an action-required
message to the RACGM1; otherwise, the description above may indicate the remaining
process. If a RAC consists of more than two RAOL, the similar categorical representation
can be generated as we explained previously.
8.7 Categorical Specifications of Self-Configuration

Property 8.7.1: The configuration of a RAC is a category denoted as CONFIG(RAC),

231

where objects are RAO and morphisms are connections between those R40 as CONFIG
(RAO, RAO) or CONFIG(RAO', RAO).

Proof. All what we need is to prove: i) the existence of composition and identity
morphism, and ii) prove associativity. Let RAO;, RAO; and RAQO; be three RAO such that
RAO; connects to RAO,, which connects to RAO3, so RAO; connects to RAQO; (indirectly
through RAQO;), meaning that the existence of a composition of morphisms between RAQ,
and RAQ;. The identity morphism does exist as the natural representation of internal
connections. Let f, g and h be the morphisms such that f: RAO; — RAQO,, g: RAO, —

RAO; and h: RAO3; — RAO,. It is clear that h° (g°f)=(h°g)°fm

Il _ 1d2
A S /A
RACQ] ————>» RAC?2

g-=r

fr =g £
RAOE <————— RAO3
L h L
Id3 1d3

Property 8.7.2: The configuration of a RACG is the category denoted as CONFIG
(RACG), where objects are RAC and morphisms are connections between those RAC as
CONFIG (RAC, RAC) or CONFIG(RAC , RAC).

Proof. All what we need is to prove: i) the existence of composition and identity
morphism, and ii) prove associativity. Let RAC;, RAC; and RAC; be three RAC such that
RAC) connects to RAC,, which connects to RAC3;, so RAC; connects to RACj; (indirectly
through RAC,), meaning that the existence of a composition of morphisms between RAC|

and RAC;. The identity morphism does exist as the natural representation of internal

232

connections. Let f, g and h be the morphisms such that f: RAC; — RAC,, g: RAC, —

RAC; and h: RAC; — RAC,. It is clear that h° (g°f)=(h°g)°fm

Id1 _ Id2
S S e
RACT —————» RAC?Z
g-°=F

fr o= g £
RACH ———m RACSH
v /7 "
1d3 1d3

Property 8.7.3: The configuration of a RAS is a category denoted as CONFIG (RAS),
where objects are RACG and morphisms are the connections between those RACG as
CONFIG (RACG, RACG) or CONFIG(RACG , RACG).

Proof. All what we need is to prove: i) the existence of composition and identity
morphism, and ii) prove associativity. Let RACG;, RACG, and RACG; be three RACG
such that RACG; connects to RACG,, which connects to RACG3, so RACG; connects to
RACG; (indirectly through RACG,), meaning that the existence of a composition of
morphisms between RACG| and RACGs;. The identity morphism does exist as the natural
representation of internal connections. Let f, g and h be the morphisms such that f:

RACG; — RACG,, g: RACG; — RACG; and h: RACG3; — RACGy. It is clear that h ° (g

N=(heg)efm

1d 1 _ 1d2

/A n Py
RACG] ——> RACG 2

g-f

fr = o g
RACGH G——RACG3

S h N

1d3 1d3

233

Property 8.7.4: The configuration of RAE is conformed to the configuration of RAE-
Formation iff there exist a functor F' from CONFIG(RAE) to CONFIG(RAE-Formation).
The functor F guarantees all the objects and morphisms in CONFIG(RAE) have their
mapped object types and morphism types in CONFIG(RAE-Formation).

Property 8.7.5: Two RAE’s configurations are considered to be equivalent iff their
social lives are equivalent (see Property 7.7.2) and they both conform to the configuration
of RAE-Formation configRAE-Formation.

8.8 Representation of Categorical Specification of Self-Configuration
The figure below depicts an example of the representation for a categorical specification
(in XML format) of the self-configuration property we present earlier in this chapter, and

more XML representation can be found in Appendix E.

<CATEGORY name = “Formation-Work-Flow-in-RAS’>
<OBJECT>
<OBJECT name = “InitializeRACGM type = “Work-Flow-Action”/>
<OBIJECT name = “InitializeRACS” type = “Work-Flow-Action”/>
<OBIJECT name = “Heartbeat” type = “Work-Flow-Action”/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>
<FROM-OBJECT name = “InitializeRACGM”
type = “Work-Flow-Action”/>
<TO-OBJECT name = “Heartbeat” type = “Work-Flow-Action”/>
<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>
<FROM-OBJECT name = “InitializeRACGM”
type = “Work-Flow-Action”/>
<TO-OBJECT name = “InitializeRACS” type = “Work-Flow-Action”/>
<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>
<FROM-OBJECT name = “InitializeRACS”

234

type = “Work-Flow-Action”/>
<TO-OBJECT name = “Heartbeat” type = “Work-Flow-Action”/>
<MORPHISM>
</MORPHISM>
</CATEGORY>

Figure 136: XML Specification of Category Formation-Work-Flow-in-RAS
8.9 Summary
In this chapter, we illustrated a prototype design of self-configuration property, prototype
design of categorical specification for the self-configuration and transformation from the
categorical self-configuration property to its XML specification.

We described three scenarios regarding the self-configuration that are forming a RAS
(Section 8.1), forming a RACG (Section 8.3) and forming a RAC (Section 8.5) using
intelligent control loops. In addition, we presented the categorical illustration for those
scenarios in section 8.2, 8.4 & 8.6 respectively using functors, natural transformations
and functor categories.

Finally, the categorical specifications for the self-configuration related properties
together with their XML representations were illustrated in Section 8.7 & 8.8, such as the
configuration of RAE, conformation between the configurations of RAE as well as the

equivalence of RAE’s configurations.

235

Chapter 9: RASF Integration Tool

This chapter states the research activity 13) & 14) in Figure 3, which are implementation
of the RASF tool and integration of the MAS implementation to the RASF tool. I had one
publication [85] and one in preparation during this stage. After describing the RASF
process model, the models as well as specifications of the architecture, behavior and
self-* properties in RASF, we have developed a tool, RASF Integration Tool (RASFIT),

for supporting the RASF process methodology.

9.1 Architecture of RASFIT

e RASFIT
Ceeeenein] RASFIT GUL O poeee.
Iran‘:fmmrI—(A‘ilo Intl.‘racti?m with vi I Modeli Buildil‘l’g Agent-
MAS End Users tsual Moedeling based Application | lustration
IT\-'EEEL’;SEITIT' Eclipse Plug-in Enterprise Jadex Module I cATcCanvas _|
| Module | Module Architect Module : | MModule

Nttt | | E— E————————— Y,

Third-party Tools

7 <7 <7
o y Enterprise -
Eclipse API Architect AP Jadex API
Eclipse Enterprise Jadex
PS Architect '

: Bold selid rectangles and arrows: My full contribution
| | Bold dashed rectangles and arrows: my partial contribution involving co-supervision and participation

Bald dotted rectangles and arvows: Fulure Work

I:] Regular rectangles and arrows: Third-party Tools and APIs
Figure 137: Architecture of RASF Integration Tool
Figure 137 depicts the architecture of RASFIT, which is an Eclipse [202] plug-in based

solution that extends the Eclipse IDE with a UML design tool (Enterprise Architect [203])

236

for modeling and code generation, a framework for building the multi-agent applications
named Jadex [204], a model transformation framework [148] to produce the multi-agent
templates representing the RAS components that satisfy both reactive and autonomic
properties, and a graphical tool in terms of illustrating categorical models [81]. The
following figure illustrates an example of the user interface in RASFIT, and more

examples can be found in Appendix F.

9~ e FweE W] $-0-Q%- BE- @ 5

[Package Explorer 22 = fp e -~ — O @ x
BT NewMarsworld
T OldMarswiorld = ':" o @A e aq i
= '[::‘,J' org.concordia.RASF, core
28 arc
B\ Referenced Libraries
B2\ Plug-in Dependencies
Bk JRE System Library [JavaSE-1.7] <RACLs
(g antlr mr:F:J:g;m “-—T————._.———_;———— RAC1:RAOL1
(> icons =]
= lib «Reports
(= META-INF
== model
@ RASmodel.eap
(= O5GI-INF
@ build. properties
-@ plugin. xml

Figure 138: Toolbar Area for RASFIT
9.1.1 Eclipse Plug-in Module
The Eclipse plug-in module includes the projects "org.concordia.RASF.feature", "org.
concordia.RASF.site" and some classes in the project "org.concordia.RASF.core". Figure
139 & 140 show some parts of the Eclipse plug-in module, which is responsible for the
interactions from end users through the Eclipse IDE by using the Eclipse API. The users

can use this module to configure RASFIT, create new RASF projects, packages and

classes; they can also trigger other modules from it, such as the EA module for Phase 1 &

237

2 in Section 5.5, Jadex module for Phase 9 and model transformation module for Phase 3.

L~ Project Explorer &3 = = | =® -~ — B8
a '[E‘J- org.concordia.FlASF.core -
4 [src

org.concordia.FLASF.core

-]

org.concordia. FLASF.core.actions

-]

=

org.concordia. RASF. core.activity
» org.concordia. ASF. core.common
org.concordia.FLASF.core.connector
org.concordia. FLASF.core.diagram
org.concordia. RASF. core.elerment
org.concordia.FASF. core.elermment_features

org.concordia. FLASF.core.exception

1]

org.concordia. RASF.core.factorny

org.concordia. FRAASF.core.natures |

org.concordia. FLASF.core.navigator

org.concordia. RASF.core.perspective |

org.concordia. RASF. core, platform

org.concordia.FEASF.core.preference |

org.concordia. FLASF. core.project_interface
org.concordia. FLASF.core.repositony
org.concordia. RASF. core.state
org.concordia. RAASF. core.uuid

org.concordia. FLASF. corevisitable
org.concordia. LASF. coreovisitor

s bt bl fo g g g g gy

org.concordia. RASF.corewizard |

Figure 139: Partl of the Eclipse Plug-in Module

[Project Explorer =3 =1 {E

org.concorcdia. RASF.core

=

=

I—=

== org.concordia.FRASF.feature
== org.concordia.FLAASF.Mars'World

- B org.concordia.RASF.MewMarsWorld
B erg.concordia.RASF.OldMarsWorld
» == org.concordia.FRASF.FLAStoMAS

| » == org.concordia.FASF.site

crg.concordia. LASF. T esthPlars'Waorld

o
o
|
o

o

Figure 140: Part2 of the Eclipse Plug-in Module
9.1.2 EA Module

The EA module can be used for the Phase 1 & 2 we introduced in Section 5.5. This

238

module includes some packages and classes in the project "org.concordia.RASF. core".
Figure 141 depicts some parts of the EA module that is responsible for modeling RAE of
RAS through the integrated EA IDE in the Eclipse IDE by using the EA API. End users
can use this module to draw UML diagrams, generate code template or XML templates
and import predefined RASF model templates which are developed in the project
"org.concordia.RASF.profile" (see Figure 142). Figure 143 shows the design and model
of the RASF modeling profile that include stereotypes, meta-classes, RASF elements,

interactions and diagrams for modeling the RAE in RAS.

L/ Project Explorer 52 = | = - . B8
] '[E‘J- org.concordia. RASF.core -
a [grc

org.concordia. RASF.core

-]

=

org.concordia. RASF.core,actions

=

org.concordia.FASF.core. activity
> org.concordia. RASF.core.common
org.concordia. RASF.core.connector
crg.concordia. FRASF.core. diagram
org.concordia. FRASF.core. elerment
org.concordia. RASF.core. elerment_features

org.concordia. RASF.core.exception

org.concordia. RASF.core factorny

m

org.concordia.FASF.core.natures
aorg.concordia. RASF.core.navigator
org.concordia. RASF.core. perspective
org.concordia. RASF core. platform
crg.concordia.FRASF.core. preference

org.concordia. RASF.core.praject_interface
org.concordia. RASF.core.repositony
org.concordia. FASF.core. state
org.concordia. FRASF.core.uuid

org.concordia. RASF.corewvisitable

org.concordia. RASF.corevisitor

piitagugegi g o feg kg g g kg e g e gy

org.concordia. RASF, corewizard

Figure 141: Part of the EA module

239

.. » Computer » Backup(E:) » Heng » workspace » |org.concordia.RASF.profile

Toolbox v 3 x |

File Edit View Tools Help
Organize » Include in library = Share with = Burn Mew folder
“r Favorites - || RASFMDG.mts.bak | |RAGmodel_export = RASFdiagram
Ml Desktop = || RASFMDG.xml.bak || RASmodel_export || RASFMDG
i Downloads & RASF |=| RACICL pattern |=| RASFprofile
“Zl Recent Places i RASFMDG |2 RACpattern |&] RASFtoolboxnteraction
RASFMDG |=| RACSICLpattern |=| RASFtoolboxLogical
= Libraries RASmodel |2 RACSpattern |&| RASmodel
B Documents =8 RASFMDG = RAGMmodel RASFMDG
dﬁ Music i _|RAGMmodel_export |2 RAGmodel

Figure 142: Project of RASF Modeling Profile

B Package Diagram: "RASFpackageDiagnm’ x |

More tools...
1= Class
1 Package
E Class
=@ Interface
Data Type
Enumeration
O Primitive
= Table
Signal
Q’ Association
I= Class Relationshi...
S A AR
VAR
Pr:;q PI.:||
=l Common
A E
B &
B i@

o

_N TH IFm

+ Class

+ Command

+ Component

+ Diagram_Class

+ Diagram_Sequence
+ InformaticnFlow

+ Interacticn Diagram
+ Interaction Elements

+ Interacticn Relationships

[T T T T T T

+ Logical Diagram
+ Logical Elements
+ Logical Relstionships
+ Package

= +RAC

+ RACS

+ RAG

+ RAGM

5 +Ra0

+ RAOL

+ Report

& + ToolboxPage

+ ToolboxPage

-~

m

Ea%EE B-@- +3 @
= I RASFmodel
. [E] RASFpackage
#7 RASFpackageDiagram
= [«profiles RASF Profile

- 3 RASF
%E RASF Diagrams
Ta RASF Interaction
.. @3 RASF Logical
e wmetaclasss Class
[«sterectypes Command
(2 simetaclass» Component
= «metaclass» Diagram_Class
= «mmetaclass» Diagram_Sequence
. «metaclass» InformationFlow
«stereotypes Interaction Ciagram
[=sterectypes Interaction Elements
[«sterectypes Interaction Relationships
. «sterectypes Logical Diagram
e «sterectype= Logical Elements
[«sterectypes Logical Relationships
[=metaclasse Package
B asterectypes RAC
2 asterectypes RACS
30 «sterectypes RAG
& B wstereotypes RAGM
[B sstereotypes RAD
& [E wstereotypes RACL
[E wsterectypes Report
& & «metaclasss ToclboxPage
= E «metaclass» ToclboxPage

Figure 143: Design and Model of RASF Modeling Profile

240

Figure 144 illustrates a meta-model of the RASF elements and interactions for the
RASF diagrams. For example, the stereotype <<RAGM>> with the meta-type of RAGM
and the type of "RAGMtype" including its repository is extended from the meta-class of
RASF package; the stereotype <<RACS>> with the meta-type of RACS and the type of
"RACStype" having its repository is extended from the meta-class of RASF component;
the stereotype <<RAOL>> with the meta-type of RAOL and the type of "RAOLtype"
containing its repository is extended from the meta-class of RASF class; the stereotype
<<Report>> with the meta-type of Report and the type of "reportType" is extended from

the meta-class of RASF information flow.

— e —

%8 Logical Diagram: "RASF" created: 02/03/2011 5:48.27 PM modified: 06/03/2011 5:33:44 PM 100% 827x 1165 r X
-
ROt gs ametaclasss RAC Q?
- _metatype = RAOL Class —
- RAOLtype = RACLtype aextendss . _ wextendss _mitstypr_- = H:._,
- repository = repository = isActive: Boolean - RAOtype = RAOtype

Report 4] Command 4]
ametaclasss -
- _metatype = Report rextendss InformationFlow wextendss - _metatype = Command
- reportType = reportType - commandType = commandType
ametacliasse
> Q; Component RAC @3
: EZE?;}::::’::;SHFL i - _defaultDiagramType = RASF Diagrams::... wextendss - _metatype = RAC
i : o _'_ - :'t" a - _makeCompaosite: boolean = frue - RACiype = RACtype
ERET S TRy = Repasiary + isindirectlylnstantiated: Boclean = true

RAGM 4] wmetaciassy
RAG
Package @3
- _metatype = RAGM) ~T—
- RAGMtype = RAGMtype wExtEndss - _defsultDiagramType = RASF Diagrams::... aextendss i E“:—‘ty =I::—= R*:—t:- _
- repository = repasitory - _makeCompaosite: boolean = true rtype = haype

Figure 144: Meta-model of the RASF Elements and Interactions
Figure 145 depicts a meta-model of the RASF diagrams with corresponding toolbox.

For instance, the RASF interaction diagram is extended from the meta-class of the EA

241

sequence diagram with the toolbox "RASF Interaction"; the RASF logical diagram is

extended from the meta-class of the EA class diagram with the toolbox "RASF Logical".

alias = Seguence
diagraml|D = ssd

isActive: boolean
toolbox = RASF Interaction

«wmetaclass.
Diagram_Class

alias = Class

diagraml|D = cld
isfctive: boolean
toolbox = RASF Logical

Figure 145: Meta-model of the RASF Diagrams
Figure 146 shows a meta-model of the RASF toolbox "Logical". For example, the
"Logical Elements" is extended from the meta-class of the EA toolbox page with RASF

elements, such as RAO, RAOL, RAC, RACS and RAGM.

Logical Relationships.
- UML:Aggregation = Aggregate
- UML:Assembly = Assembly
- UML:Associstion = Associate
- UML:AssociationClass = Association Class

- UML:Compasition = Compose

- UML:Delegste = Delegate - &

- UML::Generalization = Generalize - UML:AssociationElement = Association Element
- UML:Nesting = Nesting - UML:Enumeration = Enumerstion

- UML:Padkagelmport = Fadkage Import - UML:Interface = Interface

- UML:Packageherge = Paciages Merge -

- UML::Frimitive = Frimitive

- UML::Providedinterface = Expose Interface
- UML::Signal = Signal

- UML:Table = Table

Figure 146: Meta-model of the RASF Toolbox "Logical"

242

9.1.3 Jadex Module

The Jadex module can be used for the Phase 9 we introduced in Section 5.5. This module
includes some packages and classes in the project "org.concordia.RASF.core". Figure 147
illustrates some parts of the Jadex module which is responsible for modeling the MAS
implementation from the RAS model through the integrated Jadex IDE in the Eclipse
IDE by using the Jadex API. End users can use this module to create a RASF project with
the Jadex nature, create new agents with their capabilities, beliefs, goals, and start the

Jadex platform in terms of running or debugging the MAS applications.

L Project Explorer &3 =] =
- '[E‘J org.concordia. RASF.core -

|

a [src

-]

org

2concordia.

FAsSF.core

| -]

oro

Jconcordia.

RASF.core.

actions |

org
org
org
org
org
org
org
org

2wconcordia.
.concordia.
.concordia.
.concordia.
2wconcordia.
.concordia.
.concordia.
.concordia.

FASF.core,
FAasSF.core.
FAasSF.core.
FASF.core.
FASF.core,
FAasSF.core.
FAasSF.core

activity
COMImor
connector
diagram
elerment

elerment_features
cexception

FAasSF.corefactorny

org
org

2concordia.
.concordia.

FASF.core.
FRASF.core.

natures

nawigator

org

2concordia.

FRAsSF.core.

perspective

oro

Jconcordia.

RASF.core.

platform

org
org
org
org
org
org
org

2wconcordia.
.concordia.
.concordia.
.concordia.
2wconcordia.
.concordia.
.concordia.

FASF.core,
FAasSF.core.
FAasSF.core.
FASF.core.
FASF.core,

preference

project_interface

repositorns
state
uuid

FAasSF.corewisitable
FAasF.corewisitor

{8 £ £ 0 5 o 6 0 B o 01 0 000 e 0 66

oro

Jconcordia.

FASF.corewizard |

Figure 147: Part of the Jadex Module

243

m

9.1.4 Model Transformation Module

The model transformation module can be used for the Phase 3 & 4 we introduced in
Section 5.5. This module includes project "org.concordia.RASF.RAStoMAS" (see Figure
148), which is responsible for transforming the RAS model represented in a XML format
(generated from the EA module in Section 9.1.2) to the MAS implementation represented
in format of agent definition files, defining beliefs, goals, message events, plan headers

and related plan files in Java that contain the body of executable plans [148].

E Java EE - Drg.concordia.RASF.TestMarsWorIdjsrcfmarsworldfrmrlagerfManagEr.agent.xm— Eclipse_
File Edit Mavigate Search Project RASF Run Enterprise Architect Design Window Help

PWHCEUY $-0-Q- -6 ®c - @ 2
L™y Project Explorer 22 = B || % Manager.agentxml 3
S &le ”
=2 org.concordia.RASF.core Mode Content
=2 org.concordia.RASF feature 4 [€] agent
- .
l=> org.concordia.RASF.MarsWorld xmins http://jadex.sourceforge.net/jadex
H org.concordia.RASF.NewMarsWorld urmlnsesi http:/fwww.w3.org/2001/XMLSchema-instance
Tl org.concordia.RASF.OldMarsWorld usitschemalocation http://jadex.sourceforge.net/jadex h
|'[5‘J org.cencordia. RASF.RAStoMAS name Manager.agent
] , ,
l= org.concordia.RASF.site package marsworld. manager
'E' org.cencordia.RASF. TestMarsWorld [€] imports

Figure 148: Part of the Model Transformation Module
9.1.5 CATCanvas Module
The CATCanvas module can be used for the Phase 5, 6 & 11. This module is a standalone
application described in [81]. End users may use this module to graphically illustrate a
RAS model represented in a XML format by importing its XML file. Moreover, the users
can draw new categorical diagrams using the CATCanvas, export those diagrams to XML

files and then import them to generate the RAS and MAS models.

244

9.2 Installation and Configuration of RASFIT
Installing RASFIT is similar to other Eclipse plug-ins as the figures in Appendix G

illustrating. The following figure depicts the starting point.

12 Java EE - Eclipse
File Edit Mavigate Search Project RASF Run Enterprise Architect Window JgEd

il 2 HHFGCEJdY H-0-Q- iWeIcnme .
[Project Explorer 52 = H {7) Help Contents
= <‘}==,=> _ &7 Search.
I . : Dynamic Help
== org.concordia. RASF . core
I:_',—‘Jr org.concordia. RASF, feature Key Assist... Ctrl+shift+L
= org.concordia.RASF. MarsWoarld Tips and Tricks...
T:_’T org.concordia. RASF . NewMarsWaorld ,&? Report Bug or Enhancement...
TT—’T org.concordia. RASF, OldMars\Warld Cheat Sheets. ..
1= org.concordia.RASF RAStOMAS
=% org.concordia. RASF site Check for Updates
Install New Software. ..
Edipse Marketplace...
About Eclipse

After installing RASFIT successfully and restarting Eclipse, the next step is to
configure RASFIT as the figures in Appendix G illustrating. The following figure depicts

the starting point.

Java EE - Eclipse

File Edit Mavigate Search Project RASF Run Enterprise Architect BUHGERTE Help

— : . : Mew Window
O~ P EHEGCGEJY H-0- (
[P Proj =5 '
(1 Project Explorer -4 Open Perspective +
== Shaow View 3
'[,jj-Enrg.cuncurdia.R.ﬁ.SF.mre Customize Perspective. ..
TE'J- org.concordia, RASF, feature Save Perspective As...
I=F ora.concordia. RASF.MarsWorld Reset Perspective. ..
IE' org.concordia. RASF. MewMarsWorld Close Perspective
E; org.concordia. RASF. OldMarsWorld Close all Perspectives
l== ora.concordia. RASF . RAStoMAS
=2 org.concordia. RASE site Mavigation r
Web Browser r

245

9.3 Applying RASF Methodology with RASFIT

This section describes how to use RASFIT to develop a RAS based on the RASF process
model (Section 5.5) that includes modeling and specification. The model transformation
and implementation will be addressed in the next chapter together with case studies. We
only list the first step for each stage, and more details can be found in Appendix H.

9.3.1 Creation of RASF Project

Step 1 (Phase 1 in Section 5.5): In the Eclipse IDE, click “File” = “New” = “Other...”

Java EE - Eclipse

3-8 Edit Mavigate Search Project RASF Run Enterprise Architect Window Help

Mew Pl Y i JPA Project 4
Open File... .'_:é’ Enterprise Application Project

(5 Dynamic Web Project
&4 EJB Project

T Connector Project

[application Client Project
1 Static Web Project

[Project...

& serviet
[Session Bean (EJB 3.3)
| Refresh F5 [£& Message-Driven Bean (EJB 3.%)

Convert Line Delimiters To b | A Web Service
"% Folder
{} _g
| File
Switch Workspace »
Restart

gug Import... i Other... Ctrl+HM

[Example. ..

9.3.2 Modeling in RASF Project
Step 11 (Phase 1): Double click the model file of Enterprise Architect (EA) under the

folder "model", and the project explorer of EA is opened (see the figure below).

246

@] Java EE - org.concordia.RASF TestMarsWorld/src/marsworld/manager/Manager.agent.xml - Eclipse I D s

File Edit MNavigate S5earch Project RASF Run

Enterprise Architect Design Window Help

[s - PFHGCEYY $-0-Q- G-6- ®SF- 0 RIBD H-T-v oD~
[Project Explorer 52 =] <fg>| o ¥ = B[% Manager.agentxml i3 = O |[& Project Explorer 52
=2 org.concordia.RASF.core = |5 Model
= org.concordia RASF feature
Node Content
= org.concordia, RASF.MarsWorld
T org.concordia.RASF.NewMarsWaorld 4 [e] agent mports?, capaniiiies?, DENEls', goak:, plans
T org.concordia.RASF.OldMarsWorld xmins hitp://jedexsourceforge.net/jadex
. ' . ' xrmlns:xsi e/ www.w3.or chema-instan...
'bd org concordia. RASF.RAStoMAS ! hitp:// 3.0rg/2001/XMLSch
J J . " usiischemalocation http://jadex.sourceforge.net/jadex
I=r org.concordia RASF site name Manager.agent
BT org.concordia RASF. TestMarsWorld package marsvforlldgmanager
src i I
£ marsworld.manager El ImporFs”
[e] capabilities
K| Manager.agentxml belief.
=4, JRE System Library [JavaSE-1.7] [l e'l :
=), JUnit4 % 9|°a g
@ org.apache.logdj_1.213.v200903072027 jar - £\ eclip P a”‘t
g jadex-kernel-bdi-2.0-rc6 jar - Ex\eclipse\plugins\org [€] events .
@ jadex-commons-2.0-reb jar - E:\eclipse\pluginsiorg % expresrstl.ons
properties

@ Jjadex-platform-base-2.0-rch jar - E'\eclipsepluging'
=i JADEX
= model

@ org.concordia,RASF. TestMarsWorld.eap
= output

[e] configurations

9.3.3 XML File and Code Template Generation in RASF Project

After completing the RAS modeling, we can generate the XML specification file and

code template for the RAS model automatically in terms of transforming it to the MAS

model as the following:

Step 22 (Phase 1 & 2): The XML specification file generation is triggered by clicking the

button "RASF Code Generation" either from the RASF toolbar or from the RASF menu.

The generation only applies to the RASF projects; otherwise, it will throw an error

message (see the figure below).

@] Java EE - org.concordia.RASF. TestMarsWorld/src/marsworld/manager/Manager.agent.xml - Eclipse __ — - - A
File Edit Mavigate Search Project RASF Run Enterprise Architect Design Window Help
£~ PWHEGEIY $-0-%- B-6- SSH- @ R DA 50
[Project Explorer 52 = <.===g>| o 7 = B[[4 Manager.agentaml 5%
|'bd org.concordia.RASF.core |
— -
'bd Urg.cuncurd!a.RASF.feature Node Content
=5 org.concordia. RASF.MarsWaorld
. [e] agent mports?, capabilities?, be
'ﬁ' org.concordia. RASF.NewMarsWorld | https//iad o
B org.concordia.RASF.OldMarsWorld — pi//jadecsoure orge.;l)
122 org.concordia.RASF.RAStoMAS @ RASF Plug-in " T g
- n

'b‘J org.concordia.RASF site
B org.concordia. RASF. TestMarsWarld

-

Please select a RASF project to generate java code!

247

9.3.4 Model Transformation and Application Deployment

After having the XML specification files and source code templates, we can extract all
necessary information from them according to the input model (see Section 5.4.2) of the
model transformation module (see Section 9.1.4). The following figure depicts an

example of the output model and source code for the Mars-World case study (see Section

4.1).

L5 Project Explorer &2 ==

=2 org.concordia.RASF.core
=2 org.concordia.RASF.feature
=2 org.concordia.RASF.MarsWorld
'ET org.concordia. RASF. NewMarsWorld
'ET org.concordia. RASF.OldMarsWerld
| =2 org.concordia.RASF.RAStOMAS
2 src

7 transform
[J] X5LTLatticeReducerRules.java
[J] XSLTRAStoMASRules java

|:o|o jdom.jar
(g serializer.jar
(g xalan.jar

[mg xercesImpl jar

g xml-apis.jar

g wsltc.jar

=i, JRE System Library [JavaSE-1.7]

= lib

#| Carry.agentxml
CoCoMERules.latxml
CoCoMERulesl.latxml

L
L
~ LatticeReducerRules.xsl
L
L

MAS.xml
RAS.xml
~ RAStoMAS.xs|

=4 arn.concordia RASF site

Step 29 (Phase 9): In order to deploy the MAS implementations that are transformed and
developed from the XML specification files as well as source code templates, we can

start a Jade and Jadex platform by clicking the button "Start EJADE RMA" either from

¥| RASxml &3] HSLTRAStoMASRules,java

MNode
27 wml
4 [€] RAC
name
4 [e] MEMBER
name
4 [e] INTERACTIOMS
a4 [e| INTERACTION
source
name
target
a4 [e| INTERACTION
source
name
target
a4 [e| INTERACTION
source
name
target
> [e] INTERACTION
> [e] INTERACTION
> [e] INTERACTION
4 [€] LEADER
name

Content

version="1.0" encoding="UTF-8"
rac-name

cul

cul
restart
Sensorl

Sensorl
heartbeat
cul

cul

request_sensor
CUB

cul

the RASF toolbar or from the RASF menu (see the figure below).

248

m RecoverCal

E Java EE - org.concordia.RASF. MarsWorld/src/marsworld/supenvisor/RecoverCarryPlan.java - Ec]ipse_]
File Edit Socurce Refactor Mavigate Search Project | RASF | Run Enterprise Architect Win

5 - 2 G B H 35 & RASF Configuration
= Mew RASF Project I
L™ Project Explorer &2 — <.1='=§> | = B IET ! R
g - B Mew RASF Package i
== org.concordia,RASF.core 5
s IE"'- org.concordia, RASE feature ST | em et L2
- =2 org.concordia. RASF.MarsWaorld 5 RASF Code Generation i
>| B org.concordia.RASFE. NewMarsWorld | ‘o) Start EJADE RMA
- B erg.concordia.RASF.OldMarsWorld Y shutdown EJADE platform
. T:‘J- org.concordia. RASF.RAStoMAS r

9.4 Summary

In this chapter, we gave an introduction to the implementation of RASFIT and integration
of the MAS implementation to RASFIT, which includes the Eclipse plug-in module,
Enterprise Architect module, Jadex module, CATCanvas module as well as the model
transformation module.

RASFIT is and Eclipse plug-in based solution that extends the Eclipse IDE with a
UML design tool (EA) for modeling and code generation, a framework for building the
multi-agent applications (Jadex), a model transformation framework to produce the
multi- agent templates representing the RAS components that satisfy autonomic
properties, and a graphical tool in terms of illustrating categorical models.

We presented the architecture, installation and configuration of RASFIT. We also
illustrated how to apply RASF methodology with RASFIT, which includes the creation,
modeling, XML file and code template generation, model transformation and application
deployment in RASF project.

We will introduce our case studies to support the RASF methodology and approach

in next chapter.

249

Chapter 10: RASF Case Studies

This chapter states the research activity 9), 12), 17) in Figure 3, which state the prototype
design of self-healing and self-configuration in case studies using RASF. The background
and introduction of those case studies can be found in Chapter 4. I had one publication
[86] and one in preparation for this chapter.

10.1 Mars-World

In Mars-world, the objective for a group of robots is to mine ore; the mining process is

composed of locating the ore, mining it, and transporting the mined ore to a home base.

10.1.1 Architecture Model of Mars-World

e nan;.m;ﬂ
| I_Dirc:utnr Group 1 | Exploration Group2 (RACG 2} | | | | | |
| I Manager Robot I | Supervisor Robot2 Sentry Robot2 |
| || ®RacemD | | [®acs2) (RACH) sensors | | |
Sensors SensorT (RADR) I
| | (RADT | | (RAO9) [__’___:_.__50@0 |
CuUs Ly | :
| I {RAOLS) j I CUT (RACLT) CUG (RAOLS) : :
| L e /e —
| I ﬁuduﬂiun Robotl Exploration Groupl |
(RACT) an |
| | 1 (RAOLIY {RM‘{"}I |
| | |
: : / 1 raon) (RAOD) | S | :
CUs E‘h ‘,5? N cus ||
| | lirAOLAY W I /7 [RAOLY) | | |
| | Sensord Sensord |
| | ®A0S (RAOS) | | |
| Su ; :
pervisor - _— Sentry Robot] I
| | [Robot1 (RaCs1) Trf::l‘;; f’rﬂﬁi (RACH) | | |
| I Carry Robotl (RAC2) I |
. - __ - - - - - -1

Figure 149: Example of Mars-world Modeled using RASF

250

Figure 149 depicts an example of the architecture model of Mars-world built from the
RAS architecture model (see Figure 21 in Section 5.1) for a simplified scenario presented
above (Phase 1 in Section 5.5), where every circle represents the component of a robot
and each arrow specifies the communication between those components.

In this example, an exploration group (RACG1) has a supervisor robot (RACS1) and
its backup (RACS1), a production robot (RAC1), a carry robot (RAC2) and a sentry
robot (RAC3). A control unit (RAOL) and a sensor (RAO1) are two common devices of
each robot. Moreover, different types of robots have their particular equipments. For
instance, a production robot has a drill (RAO2); a carry robot has a trailer (RAO3); a
sentry robot has an enhanced sensor (RAOS) instead of the standard one. The figures
below illustrate the specifications of production robot, exploration group and Mars-world
according to the specifications of RAC (Figure 22), RACG (Figure 23) and RAS (Figure

24) in Section 5.1.2,5.1.3 & 5.1.4.

& <Produaction R obotl =

Ndembizr: <Dirilll | Sensorl, Z1T1=

Maferaciios: <(Drilll, 3 ensorl), (Drilll | C1T17, (Setasorl , CTT10,
(Dilll , CTT20, (Hensorl , T2

Leader: =CU1=

Stmperwisor: SEupervisor B obotl =

Mg ohiboy: <C arry Robotl | Sentiy Fobotl >

Reposifiory: <2 oanponert Fepositorss=

End FAC

Figure 150: Specification of Production Robot

251

A0 G <Explorat oo Groapl =
Meanber: <Prodaction R obotl | Carry Robotl | Sentrw BEobotl

Superdsa Eobotl=>

Baferacfices: <O, CU, (QUT2, O, (O3, C1TD,

(L, CTI2Y, (T, OIS, (O2, CI50s

Steservisor: <Super-dsor B obotl =
Mdemiagezr . <DhWlanager Eobotl>=

Mz ghibace: <Explor ation Growpd=
Reposiforp: <Groap Fepoatory=

End BF&CG

Figure 151: Specification of Exploration Group

R&E <hilarsarorld=

Ndznber: “Explorati onn Groapl , Expl orvati oi Gronagl?, Director Gy oot
Mferoacficer: <(CUT4, CU, (CUT4, CU7, (CU7, CUS =

Memiager: <hilanager Fobot=

User Corsolz: <Groand Statl oo

Mzt ghabace . =0ther Plarsarorlds=

Reposifory: <35ystem B epositoryd=

End Ras

Figure 152: Specification of Mars World

The following figures illustrate some examples of using the RASFIT we introduced

earlier in Chapter 9 in terms of specifying the architecture model of Mars-world.

Mare tools #

=1
2]
&
=

Logical
RAC
RACS
RAG
RAGM

oz Communicstiont «RAOL»

wFAD, .
«Commands -
C1-Sensord RAC1::ContrelUnit1

Communication2

_____________%_‘3.

Figure 153: Class Diagram of Sentry Robot1

252

Mare tools #

- Logical =
- =7 -
%] RAC -7 «RACH Bt
%] RACs ‘3"”;::_”1‘ “‘:’”1 CarryRobot1 CDmm:E'inatinnT
swCommand s = wflows ™ o
- -~ Con ication® =~
B RraG - -~ Communication2 | mm:lllna e ‘h“"‘m N
B RAGM - = | flows >~ =
= Rreo Gl T L commumemtons | 7]
: «RACS» I «Command» | SBACH
= RACL SuperviscrRobot1 Communicationi1 Communicationi2 ProductionRobot1
< Association (=t _6_ ________ e SUAERSE 0] oo
E : - | «Reports -
E 3| B ~. - .- =
H Gameopy T Communications : Communication10 e
~@ Interface T ~ - -
= ocRepnrt».‘k | - = aflows ’,—‘
B Object Communication2 T~ CDmmuEinatiDEB
[Port «Commands _ ~aflows
S =RACs -
H Primitive e SentryRobott = -
el -
Expose Inte N -
] signal
Figure 154: Component Diagram of Exploration Groupl
More tools... |
£ RaGM # T «RaGMs
= RAC /,f DirectorGroup
= RAOL // &j + ManagerRobot e
'Q' Association Communication ™
. ~BrETETie ‘;f ‘::: CDmmuTcatlnna
£ Enumeratior L o S ~ «Commands
mmunication it 5
«@ Interface # - CnmmuTl:atanl 2
- ﬁH'EpDrt” «Reports }-}.
B] object g ’ | «RAGs
_:J Port 2PAG: 1 ExplorationGroup1
. ExploraticnGroup2 . K
= Primitive) | - [Cummunications = &j + ProductionRobot1
2 Expose Inte €l + SentryRobot2 aflows &j] + SentryRobot
_.l Signal E + SupervisorRobot2 BT TR E + CamyRobot1
~ T _‘xﬂj“:x‘ ________ E + SupenvisorRobot1
5 Table

Figure 155: Package Diagram of Mars-world

10.1.2 Self-Healing in Mars-World

Crashed Sensor. After sensorl is started by CUI, it starts to send its heartbeat messages

to CUI every ¢t ticks, while CUI is in Monitor state, monitoring the status of sensorl. If

CUI receives the heartbeat messages from sensorl, NoChange event keeps it in Monitor

state; otherwise, Sensorl-Crashed event is triggered and CU] transits to Analyze state,

while a time constraint variable (7Cvarl) is initialized to work as a local clock in terms

253

of time constraints on each transition of the intelligent control loop. After CUI enters
Analyze state, it sends the Restart message to sensorl in t0 ticks. If sensorl is recoverable,
NoAction event occurs and CUI goes back to Monitor state, while TCvarl is reset;
otherwise, CUI transits to Plan state triggered by HasAction event in t1 ticks. When CU/
is in Plan, it broadcasts RequestSensorl messages with type information of sensor! to all
other robots for replacing it by an available sensor which is equivalent to sensorl, such
as sensord, since equivalent objects behave in the same way (see Property 7.7.3). If at
least one sensor is available for switching, CUI chooses Substitute plan and transits to
Execute state triggered by Substitute event in ¢2 ticks; otherwise, it selects Take-over plan
and enters Execute triggered by Take-over event in 2 ticks. In this plan, drilll takes the
responsibilities of sensorl by its backup sensor and works as the product object of
original drilll and sensorl, because of their synchronous communication. When CU/ is
in Execute state and Substitute plan is applicable, CUI sends a register message to
sensor8 and then initializes it to the status of semsorl based on the checkpoint made
before. When Take-over plan is applicable, CUI sends a Take-over message to drilll and
update it to the status of synchronous product machine of drilll and sensorl based on the
checkpoint made before. After executing the plan, CU/ validates the original as well as
evolutionary behaviors of production robotl based on their categorical specifications. If
they are equivalent, ActionDone event occurs and CU/ transits to Monitor in t3 ticks;
otherwise, ActionFuailed event keeps it in Execute for the user intervention from ground

station through supervisor robotl and manager robot (see the figures below).

254

Sensors CLS | | L Sensoerl

L ; ! Hestart !
I I | -
L ' = I MoHeartbeat)
| | RequestSensorl - - |
| ~ T~ — > — L
I Roquest | | |
-~ 1 | |
I Confirmed I | |
r— - — . | |
I Draregister | I I
™~ | . R | |
" MoHeartbeat | FindSensors | |
f—— — — —— 2 A |
I Remster | |
™] | |
I Heartbeat | |
— T T T —A [

| 1

CTIE i Sensorl Creill
5 b Restart 1
| I - - =
I RequestSensorl | Mok earthent I
S o — = — — —
| |

T
|
|
|
|
|
¥ |
Take-overSensorl I
B el
Contirmed ’ﬂ|

Figure 157: Sensor Take-over Work Flow in Production Robot
When both sensorl and drilll are crashed at the same time, CU] tries to restart them
first. If neither of them can be recovered, CU! broadcasts messages to all other robots for
requesting the equivalent sensor and drill of them; otherwise, the remaining process is the
same as the illustration before. If none of sensor or drill is available, CUI broadcasts
messages to all other robots for requesting the equivalent production robot of the original
one, or the description before is applicable for remaining process (Phase 1 in Section

5.5).

255

[*es]

- Restari Senvor f
Mo Fegrergre ¥

[TCwvarl==tl)]
J"f Er [Yes] d - “uy

MMonitor MoAdcrioen Analyze

‘//{reset TCvarl)y | _
<C T A<

Kensord -Crashed
(Initialize T Cwvarl) |
[Ma]
HasAcrion
[TCwvarl-==tl]

[Yes]
Aciicared Derrre
[TCwarl===t3]
[es]
Exccute o Srehsriite Plan

[TCwvarl<=t2]—_ | .
l$ [Mim] @
— Foke-aver]

N A

[T warl <==12]
[™ar]

NaP
ActionFailed LR

Figure 158: Intelligent Control Loop of Control Unit in Production Robot

Crashed Control Unit. As the scenario above, after a sentry robot is started by its
supervisor robot, its control unit (CU3) begins to send heartbeat messages to supervisor
robot’s control unit (CU4) every ¢ ticks. Figures 159 and 160 show the work flows of
substituting or taking over crashed CU3. If CUI, CU2 and CU3 are crashed at the same
time, CU4 tries to restart them first. If none of them can be restarted, CU4 can broadcast
messages to all other robots in terms of requesting the equivalent objects of CUI, CU2
and CU3; otherwise, the remaining process is the same as the description before. If none
of CU is available for substituting, CU4 may broadcast messages to all other robots for
requesting the equivalent production robot, carry robot as well as sentry robot of the

original ones; otherwise, the illustration before may indicate the remaining process.

256

Sensord CLIs L s LIS
I 1] Resiart |
| I IL }J
I | RequestCU3 I Maolleartbeat |
| < = ST)
I L Confirmmed I
I N L ﬁ'{ |
I L Remister I I

b=y
L Register : Heartbeat : :
= Heartheat T ! |
W % I I
I] |

Sensord Lz CLrs CLl4 LI
1 | 1 1 Restart |
| 1 | 1 }J
1 | | . I Molleartbeat |
I I L RequestCLIZ L _><_ T
! ! N MotAvailable 0 !
| 1 ﬁl |
. ! 'I'ake-nnﬂ:.-'erf_‘LlE ! !
| l_,: L] |
L Register :_ o _{_EIErTe_d o : :
r Heartbheat ! : : :
[o I I I
Figure 160: Control Unit Take-over Work Flow in Sentry Robot
[es]) .
NoCharnge RestariC L3

/

[Yes]
Moa A i

/”{reset TOvarly
/

[Mea]

["es]
Actteannerrie
[TCwarl ===t3]

[TCwvarl ==t}

2 Y

Analyze

-‘.q____‘_‘
LA -Cras e
(Initialize T Cvarl

[Mal
HoasAcrion
[T wvar L=t |

FPlam

[es]

Exccute Srebsifite
- e ==t 2T
R [Mi] I

— Fake-over

"'\M ‘;,i [T wvarl ==12]
[™ar]
ActionFaifed

MNP o

Figure 161: Intelligent Control Loop of Control Unit in Supervisor Robot

257

Crashed Robot. Similarly as the scenarios discussed above, after a specialist robot
is started by a supervisor robot, it begins to send its heartbeat messages to the supervisor
robot. If any part of the specialist robot is crashed and it cannot be restarted, substituted,
or took over, the supervisor robot identifies it as a crashed robot and broadcasts messages
to all other specialist robots for requesting an equivalent robot of the original one (see
Figure 162). If none of the specialist robot is available for substituting, the supervisor
robot waits for the user intervention from ground station through manager robot (see

Figure 163, 164).

Carry Raabet? Supervisaor Roboil Carry Foaobeot]
1| 1| Recowver :
| i - = |
1 RequestC R 1 1 Failed 1
o - —_—— —_—— — — —]
| Confirmeed | 1
e —A 1
| Fegister | 1
= t |
| Heartheat | 1
F———————— —= i
| | 1

Figure 162: Carry Robot Substitution Work Flow in Exploration Group

-

Giround Station Mlanager Robot Carry R [Su isor Robotl Carry Robat]
I I I
| | | Recover
| | I —
[[RequestCR 1 [Failed
| = T T
| | MotAvailable |
|
|

ILequestsolution

Requestsolution

™
1 Solution
F=—————=-= —A [

|
1 1
| |
| |
| |
) |
| Solution |

I . L

Figure 163: User Intervention Request Work Flow in Exploration Group

258

[es]

- RestariRah
Mo Frerergre ke e

[TCvar 1 ==t)]
,'"I Er [Yes) p - iy

mlomitor M A oo Auonalyze

w/—/{rese-t TCvarl) |
<@ A <E

Berbvart-Crars e
(Inmtialize TCwvarl) |

[Yes] [Mo]
d—:lr_'-!fr.l.-fﬂ-rrn-r_' HovActicn
[TCwarl ==t3] [TCwvarl-=gl |

[es]

Exccute P Srebsritnte

[TCwvarl==t2]—_|
lw [To]
— Fofe-aver -
N A

[TCvarl==12]
[Pdar]

Nl
AcricnFaifed AN

Figure 164: Intelligent Control Loop of Control Unit in Manager Robot

10.1.3 Self-Configuration in Mars-World

Forming Mars-world. After receiving the task of forming a Mars-world from Console,
manager robot starts to create supervisor robots and establish corresponding connections
among them based on the composition rules and communication protocols specified by
the index category Mars-world-Formation. Figure 165 depicts an example of forming
the category Mars-world from its index category Mars-world-Formation. Figure 166
illustrates the detailed object as well as morphism mappings from Mars-world to Mars-
world-Formation. The manager robot is initialized and validated by an initialization

manager in the Console (Phase 1 in Section 5.5).

259

Mars-world-Formation

Averion. L Comin=Typed 4 /lf'umm- pell [° =
Production- Sentry-Robot Carry-Robot

Robot

A A W A

Mars-world

Manager Robaot]

Comml of Typel
|_CommZ of Typel

QI ol
omm: of

Production

Robat1 Carry Robotl Sentry Robot2

Sentry Robot |

Figure 165: Example of Forming Mars-world from Mars-world-Formation

260

Object Mapping

Morphism Mapping (RAS-Formation <- RAS1)

Manager Robot1 -> Manager Robot

CommI->Comm-Typel, Comm2->Comm-Type2

Supervisor Robotl -> Supervisor Robot

Comm3->Comm-Typel, Comm4->Comm-Type2

Supervisor Robot2 -> Supervisor Robot

Comm5->Comm-Type3, Comm6->Comm-Type4

Sentry Robotl -> Sentry Robot

Comm?7->Comm-Type5, Comm8->Comm-Type6

Production Robotl -> Production Robot

Comm9->Comm-Type7, Comm10->Comm-Type8

Carry Robotl -> Carry Robot

Comm!1->Comm-Type3, Comm12->Comm-Type4

Sentry Robot2 -> Sentry Robot

Supervisor Robotl — Supervisor Robot2 -> Identity-Mor(Supervisor Robot)

Figure 166: Object and Morphism Mapping of Functor Mars-world-Forming

Supervisor Robot2 Supervisor Robot] Manager Robotl Console

InitializeManagerRobat()

| T
I I
F |
I

I |

| I

| I

| | [Hearbeat

| | I ——————=

I |, InitializeSupervisorRobot() | I

[F- | |

I | Heartbeat | I

RV At I

L InitializeSupervisarRobat() |

F T I

I Heartheat [

[————— I
I
I
I
I
I

A

Figure 167: Formation Work Flow in Mars-world

261

Supervisor Robot2 Supervizor Robotl

Manager Hobotl

L

Console

]

R _]
ValidateSupervisorBobot{)
]

|

Supervisor Robotl

IP‘ Mot Conform

E Launch Investigation(}) I

= i

|

| R Sovtutmtie it

WalidateSupervisorRobotCommunication() I

I |

Mot Conform I

- - - T T T —

I Launch Investigation() i

I~ I |

| Conform I

it Toooommooo- =i

| I I

Figure 168: Self-Configuration Work Flow in Mars-world
hWManaper Robot3 Console banaper Robotl

: : : WrongCommiTyped) :
| | | A
| L Selfviolation{) | |
I r~ 1 I
I Request(} I | I
=~ 1 | I
| Confirm | | |
r———————= — | I
L.- Registen|} | | |
= 1 | I
| Heartbeat | I |
:— | Connect : :
e
I I Heartbeat : ’}
k- T~ o Iy 1

Figure 169: Self-Configuration Work Flow of Substitution in Mars-world

Manaper Robot2 Conisale Manager Rolwt] Supeivisor Robotl
: : : WrongGommType() J
' ! SelfVialation() ' 7l
| | | |
| Take-over() N ' '
|- J | |
™ | | |
L Gonm | I
I | Connect I I
| | | =]
I | Hearibeat I 7
er ________ I 1
I I

Figure 170: Self-Configuration Work Flow of Take-over in Mars-world

262

After manager robotl initializes its supervisor robots according to the requirements
from Console as well as the capabilities of those supervisor robots, it validates the
configuration of those supervisor robots against their types every ¢ ticks, while manager
robotl is in the first state of its intelligent control loop (monitoring). If the configuration
of those supervisor robots conforms to their types, composition rules and communication
protocols (see Property 8.7.4), NoViolation event keeps manager robotl in Monitor state;
otherwise, NeedInvestigation event is triggered and manager robotl transits to Analyze
state, while a time constraint variable (7Cvarl) is initialized to work as a local clock in
terms of time constraints on each transition of the intelligent control loop. The value of
TCvarl is t0, t1, t2, t3... where 0 < t1 <2 <13.

After manager robotl enters the Analyze state, 1) it sends the Restart message to
supervisor robotl in t0 ticks where the violation is caused by incorrect supervisor robot
type or incorrect communication type from the supervisor robotl to manage robotl. If
supervisor robotl conforms to its type and communication type, NoAction event occurs
and manager robotl goes back to Monitor state, while the TCvarl is reset; otherwise,
manager robotl transits to Plan state triggered by LaunchSelfHealing event in ¢/ ticks. 2)
If the violation is caused by incorrect communication type from other supervisor robot
(supervisor robot3) to supervisor robotl, manager robotl sends the Restart message to
supervisor robot3. If the communication conforms to its type, NoAction event occurs and
manager robotl goes back to the Monitor state, while the TCvarl is reset; otherwise,

manager robotl transits to Plan state triggered by the LaunchSelfHealing event within ¢/

263

ticks. 3) If the violation is caused by the incorrect communication type from manager
robotl to supervisor robotl, manager robotl resets that communication. If it conforms to
the correct one specified in the index category Mars-world-Formation (see Property
8.7.4), NoAction event occurs and manager robotl goes back to the Monitor state, while
the TCvarl is reset; otherwise, manager robotl transits to Plan state triggered by the

LaunchSelfHealing event in ¢1 ticks.

[Yes] Supervisor Robot! /3
MerFiolation [TCwarl==ul]
/ \ [Yes]

Nerdcifon Analyze

(reset TCvarl }Kmx G
[No] /

Monftor

Tsnr Ko

stipervisorRobol

. comformy affer
Conforms? 1l il

esfari?
Needlnvestigation
T (Initialize TCvarl)
. [No]
[.TE""] LaunchielfHealing
Aetionlen [TCvarl<-t1]
[TCvarl<=t3] '
| [Yes]
Execuie Srebstitute IMlan

[TCvarl<=t2]™~_| Find

Mars-worldl-
onforms?

[Mo]

R\‘H" Take-over
\ N - [TCvarl==12] \ /
[No] NoPlan

ActivinFailed

Figure 171: Intelligent Control Loop in Manager Robot1 for Self-Configuration

264

[*es]

Mea Fieafeaddonmn

A"

[Yes]

Ml omagor

<G>

H.-r:,-rIl:'_'uru.r.l.'u.'.la}_'ma'un

Merdciten

/"cact TC 1rﬂrl}\"“--h_‘_‘
s [Ma]

MNeedlmvesrigation

I

[Yes]
ActionDoen
[TCwvarl <==t3]

W

{Inmtialize TCwvarl d

Execute

Tars-world1=
Conforms?

‘““‘x__\

SN e

ActiontFailed

[es]
Substirute

[TCvarl==t2]™~_]

[N
Tiake—vrver
[TCwarl==t2]

1

[Nn 1
LawnchSelfHealing
[TCwvarl==tl]

Plam

“ind
Subsnututable
[RRGEET [

S

v

Figure 172: ICL in Manager Robot1 for Communication Self-Configuration

When manager robotl is in Plan state, it chooses either Substitute plan or Take-over
plan, based on the availability of substitutable supervisor robot for supervisor robotl
(scenario 1 in the paragraph above) or for supervisor robot3 (scenario 2). Manager
robotl transits to Execute state triggered by the Substitute event or Take-over event
respectively in #2 ticks. For scenario 3, manager robotl sends a selfViolation message to
Console, and the latter chooses either Substitute plan or Take-over plan based on the

availability of substitutable manager robot for manager robotl. It transits to Execute state

triggered by Substitute or Take-over event in t2 ticks.

When manager robotl is in Execute state and Substitute plan is applicable, it sends a
register message to the substitutable supervisor robot of supervisor robotl (scenario 1) or

supervisor robot3 (scenario 2) and initialize it to status of supervisor robotl or supervisor

265

robot3 according to the checkpoint made before. When the take-over plan is applicable,
manager robotl sends a take-over message to supervisor robot2 (scenario 1 or scenario 2)
and update it to the status of the synchronous product machine of supervisor robotl and
supervisor robot2, or supervisor robot3 and supervisor robot2 based on the checkpoint.
After the plan execution, manager robotl validates the configuration of Mars-world’, an
evolution of Mars-world (see Property 6.1.3) against its index category Mars-world-
Formation according to their categorical specifications. If that configuration conforms to
the index category (see Property 8.7.4), ActionDone event occurs and manager robotl
transits to the Monitor state in ¢3 ticks; otherwise, ActionFuailed event keeps it in Execute
state for the user intervention from the Console. For scenario 3, the manager robotl is
substituted by manager robot3 or taken over by manager robot2.

10.1.4 Categorical Model of Structure in Mars-World

According to the Property 6.1.2 in Chapter 6, every robot in Mars-world, a production
robot, for instance, is a category Production-Robotl (PR1) consisting of objects Drilll,
Sensorl, Control-Unitl (CUI) and their interactions PR1(Drilll, Sensorl), PR1(CUI,
Drilll) and PR1(CU1, Sensorl). Similarly, for an exploration group (see Property 6.1.7),
the category Exploration Groupl (EG1) includes the full sub-categories Production-
Robotl (PR1), Carry Robotl (CR1), Sentry Robotl (SR1), and Supervisor Robotl
(Supervisorl). Moreover, the types of robots, their parts and groups can be specified by
their corresponding type categories as Robot-Formation, Robot-Group-Formation and

Mars-World-Formation (Phase 2 in Section 5.5).

266

The evolution of a robot, for example, from PRI1 to PRI’, because of the new
configuration for its drilll or sensorl, is a functor F: PR1 — PR1-0 (see Property 6.1.3).
Moreover, the evolution of an exploration group, for instance, from EG1 to EG1 due to
the new organization for its PR1, CR1, or SR1 may be modeled as F: EG1' — EG1-0
(see Property 6.1.9). The relationship between two solutions in terms of fault-tolerance
for an exploration group, Solutionl: EG1' — EG1-0 as well as Solution2: EG1' —
EG1-0, can be modeled by a natural transformation convertl: Solutionl — Solution2 (see
Property 6.1.10). All those solutions (functors) along with their conversions (natural
transformations) may be specified by the functor category Solutions (EG1', EG1-0) as
the Property 6.1.11.

The figure below depicts the representation of the index category Robot-Formation

in a XML format (Phase 2 in Section 5.5); more details can be found in Appendix I.

<CATEGORY name = “Robot-Formation™>
<OBJECT>
<OBJECT name = “Sensor”/>
<OBIJECT name = “Drill”’/>
<OBIJECT name = “Trailer”/>
<OBIJECT name = “Control-Unit’/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Communication-from-CU-to-Sensor”/>
<FROM-OBIJECT name = “Control-Unit’/>
<TO-OBJECT name = “Sensor”/>
</MORPHISM>
<MORPHISM name = “Communication-from-CU-to-Drill”/>
<FROM-OBIJECT name = “Control-Unit’/>
<TO-OBJECT name = “Drill”/>
</MORPHISM>
<MORPHISM name = “Communication-from-CU-to-Trailer”/>

267

<FROM-OBJECT name = “Control-Unit’/>
<TO-OBJECT name = “Trailer”/>

</MORPHISM>

<MORPHISM name = “Communication-from-Sensor-to-CU”/>
<FROM-OBJECT name = “Sensor”/>
<TO-OBJECT name = “Control-Unit”/>

</MORPHISM>

<MORPHISM name = “Communication-from-Drill-to-CU”/>
<FROM-OBJECT name = “Drill”’/>
<TO-OBJECT name = “Control-Unit”/>

</MORPHISM>

<MORPHISM name = “Communication-from-Trailer-to-CU”/>
<FROM-OBJECT name = “Trailer”/>
<TO-OBJECT name = “Control-Unit”/>

</MORPHISM>

<MORPHISM name = “Communication-from-Sensor-to-Drill”/>
<FROM-OBJECT name = “Sensor”/>
<TO-OBJECT name = “Drill”’/>

</MORPHISM>

<MORPHISM name = “Communication-from-Sensor-to-Trailer”/>
<FROM-OBJECT name = “Sensor”/>
<TO-OBJECT name = “Trailer”/>

</MORPHISM>

<MORPHISM name = “Communication-from-Drill-to-Sensor”/>
<FROM-OBJECT name = “Drill”’/>
<TO-OBJECT name = “Sensor”/>

</MORPHISM>

<MORPHISM name = “Communication-from-Trailer-to-Sensor”/>
<FROM-OBJECT name = “Trailer”/>
<TO-OBJECT name = “Sensor”/>

</MORPHISM>

</MORPHISM>
</CATEGORY>

Figure 173: XML Specification of Index Category Robot-Formation
10.1.5 Categorical Model of Behavior in Mars-World
The synchronous communication and asynchronous between the parts of a robot, such as

the control units, sensors or drills can be specified as their products and coproduct

268

correspondingly (see Property 6.2.6 & 6.2.7).

<CATEGORY name = “Robot-Part-Behavior”>
<OBJECT>
<OBJECT name = “Function-Pair;” type = “Function-Pair-Type;”/>
<OBJECT name = “Function-Pair;” type = “Function-Pair-Type;”/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Interaction,” type =“Interaction-Type,”/>
<FROM-OBJECT name = “Function-Pair;’
type = “Function-Pair-Type;”/>
<TO-OBJECT name = “Function-Pair;” type = “Function-Pair-Type;”/>
<MORPHISM>
</MORPHISM>
</CATEGORY>

Figure 174: XML Specification of Category Robot-Part-Behavior

<PRODUCT name = “Sync-Communication-between-Sensor-and-Drill”>
<PRODUCT-OBJECT name = “Synchronous-Communication,,”
type = “Sync-Communication-between-Robot-Parts”/>
<BETWEEN-OBJECT name = “Sensor;” type = “Sensor”/>
<BETWEEN-OBJECT name = “Drill;” type = “Drill”/>
</PRODUCT>

<PRODUCT name = “Sync-Communication-between-Sensor-and-Trailer”>
<PRODUCT-OBJECT name = “Synchronous-Communication,”
type = “Sync-Communication-between-Robot-Parts”/>
<BETWEEN-OBJECT name = “Sensor,” type = “Sensor”/>
<BETWEEN-OBJECT name = “Trailer,” type = “Trailer”/>
</PRODUCT>

Figure 175: XML Specification of Synchronous Communication in Robot

<COPRODUCT name = “Async-Communication-between-Sensor-and-CU”>
<COPRODUCT-OBJECT name = “Asynchronous-Communication,”
type = “Async-Communication-between-Robot-Parts”/>
<BETWEEN-OBJECT name = “Sensor;” type = “Sensor”/>
<BETWEEN-OBJECT name = “CU;” type = “Control-Unit”/>
</COPRODUCT>

<COPRODUCT name = “Async-Communication-between-Drill-and-CU>
<COPRODUCT-OBIJECT name = “Asynchronous-Communication,”
type = “Async-Communication-between-Robot-Parts”/>

269

<BETWEEN-OBJECT name = “Drill;” type = “Drill”/>
<BETWEEN-OBJECT name = “CU;” type = “Control-Unit’/>

<COPRODUCT name = “Async-Communication-between-Trailer-and-CU”>

<COPRODUCT-OBJECT name = “Asynchronous-Communication.”
type = “Async-Communication-between-Robot-Parts”/>
<BETWEEN-OBJECT name = “Trailer;” type = “Drill”’/>

<BETWEEN-OBJECT name = “CU;” type = “Control-Unit”/>
</COPRODUCT>

Figure 176: XML Specification of Asynchronous Communication in Robot
The next relay of the outgoing communication from the same source object Control-
Unit to the same destination object Drill by two relay objects Sensors can be specified as

the pushout Drill = Sensor; +conmor-unic Sensor; (see Property 6.2.8 and the figure below).

Corrrrol-Linie ':{H:?‘ Sernsor;
r Y.
o
Sensor, —————> Iwill
<PUSHOUT name = “Next-Communication-Relay-from-CU-to-Drill>
<SOURCE-OBJECT name = “CU,” type = “Control-Unit’/>
<RELAY-OBJECT name = “Sensor;” type = “Sensor”/>
<RELAY-OBJECT name = “Sensor;” type = “Sensor”/>
<DESTINATION-OBJECT name = “Drill,ysnou” type = “Drill”/>
</PUSHOUT>

Figure 177: XML Specification of Pushout Next Communication Relay in Robot
The previous relay of the incoming communication toward the same destination
object Control-Unit from the same source object Trailer by two replay object Sensors can

be specified as the pullback: Trailer = Sensor; X conwor-unit Sensor; (see property 6.2.9).

270

Fratler e———> Sensor;

+

o ar

Sensor, ———— Control-Unit

<PULLBACK name = “Previous-Communication-Relay-from-Trailer-to-CU>
<SOURCE-OBIJECT name = “Trailerpuipack” type = “Trailer”/>
<RELAY-OBJECT name = “Sensor;” type = “Sensor”/>
<RELAY-OBJECT name = “Sensor;” type = “Sensor”/>
<DESTINATION-OBJECT name = “CU,” type = “Control-Unit”/>
</PULLBACK>

Figure 178: XML Specification of Pullback Previous Communication Relay in Robot
The designated behavior of a robot, such as the sentry robot, production robot, carry
robot or supervisor robot, can be specified as a category of cones, where objects are the
cones consisting of an object Robot-Part with a family of Communications in the
diagram from Robot-Formation to Robot, and morphisms are incoming

communications among those cones (see Property 6.2.10 and the figure below).

Communication Owdi0)
Reabroa .f—:P.:u'r'- s ConstructfDeill)

(108u3g juonEAIINUILO Y

T
Construcif Sensor)
<CATEGORY name = “Robot-Behavior-Designated’>
<OBJECT>

<OBJECT name = “Cone-to-Diagram;”
type = “Cone-to-Diagram-Robot-Part”/>

<OBJECT name = “Cone-to-Diagram;”
type = “Cone-to-Diagram-Robot-Part”/>

271

</OBJECT>
<MORPHISM>
<MORPHISM name = “Incoming-Communication,”
type =“Incoming-Communication-Robot-Part’/>
<FROM-OBIJECT name = “Cone-to-Diagram;”
type = “Cone-to-Diagram-Robot-Part”/>
<TO-OBJECT name = “Cone-to-Diagram;”
type = “Cone-to-Diagram-Robot-Part”/>
<MORPHISM>
</MORPHISM>
</CATEGORY>

Figure 179: XML Specification of Category Robot-Behavior-Designated

Corsrrmmsertic o f Lo
T _:}Rﬂbﬂf—.PfH"!

(40SUAG) HOYDINMMUILLO")

T
Corrsfrmc i Sensor)

<LIMIT name = “Limit-of-Robot-Behavior-Designated’>
<DIAGRAM name = “Construct,” source-category = “Robot-Formation”
destination-category = “Robot,”/>
<BEHAVIOR-CATEGORY name = “Robot,-Behavior-Designated”/>
<TERMINAL-OBJECT name = “CU,” type = “Control-Unit”/>
</LIMIT>

Figure 180: XML Specification of Limit Limit-of-Robot-Behavior-Designated

272

Robot-Formation

Roboi-

Yari-Tvpe, Part-Type,

Construct Construct Construct

onsiruct Robot-Part-¥
Type,

(¥ ConstructfRobotPart-
Typey)

Robot-Part) Robot-Part’

Control Unit

The achieved behavior of a robot in the runtime can be specified as a category of
cocones, where objects are the cocones consisting of an object Robot-Part with a family
of Communications in the diagram from Robot-Formation to Robot, and morphisms are

outgoing communications among the cocones (see Property 6.2.11 and the figure below).

Communication(Frailer)

Roboi-Part {— v Constructi Trailer)
£

(40SUAS UOTBIIUNIIWIO.)

ConstructiSensor)

273

<CATEGORY name = “Robot-Behavior-Achieved”™
<OBJECT>
<OBJECT name = “Cocone-to-Diagram;”
type = “Cocone-to-Diagram-Robot-Part”/>
<OBJECT name = “Cocone-to-Diagram;”’
type = “Cocone-to-Diagram-Robot-Part”/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Qutgoing-Communication,”
type =“Outgoing-Communication-Robot-Part’/>
<FROM-OBJECT name = “Cocone-to-Diagram;’
type = “Cocone-to-Diagram-Robot-Part”/>
<TO-OBJECT name = “Cocone-to-Diagram;”’
type = “Cocone-to-Diagram-Robot-Part”’/>
<MORPHISM>
</MORPHISM>
</CATEGORY>

Figure 181: XML Specification of Category Robot-Behavior-Achieved

e i ca FEom

LT < 1 Roboi-Parre
P

(43104] | MDA

Cons F.!‘H-L'I{_T.!‘-r.r:'."w‘i

<COLIMIT name = “Colimit-of-RAC-Behavior-Achieved’>
<DIAGRAM name = “Construct,” source-category = “RAO-Type”
destination-category = “RAC,”/>
<BEHAVIOR-CATEGORY name = “RAC,-Behavior-Achieved” />
<INITIAL-OBJECT name = “RAOL,” type = “RAOL-Type,”/>
</COLIMIT>

Figure 182: XML Specification of Colimit Colimit-of-Robot-Behavior-Achieved

274

Robot-Formation

Robhoi-

Yari-Tvpe; Part-Type;

Construct Construct Construct

onstruct{Robot-Pari- Construct Communication-{ vpe,)

(¥ Constructf Robot-Pare=

Roboi-Part

Roboe-Part

Conrtrol Unit

The outgoing communication from the Sensor, Drill and Trailer to their Control Unit

in a Robot can be specified by a slice category as Robot/CU (see Property 6.2.12).

Cramne el oS

Sensord o MLl

Conirol- Uil

<SLICE-CATEGORY name = “Production-Robot1/Control-Unit1”’>
<OBJECT>
<OBIJECT name = “Reportl” type = “Report”/>
<OBIJECT name = “Report2” type = “Report’/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Coordination1” type =“Coordination”/>
<FROM-OBJECT name = “Reportl” type = “Report’/>
<TO-OBJECT name = “Report2” type = “Report”/>
<MORPHISM>
</MORPHISM>
</SLICE-CATEGORY>

Figure 183: XML Specification of Slice Category Production-Robotl/CUI

275

The incoming communication from the Control Unit to the Sensor, Drill and Trailer

in a Robot can be specified by a coslice category as CU/Robot (see Property 6.2.13).

sl S f e 2

Sensord o s Trailerd

Controf-Ulnicd

<COSLICE-CATEGORY name = “Control-Unitl/Production-Robot 1>
<OBJECT>
<OBJECT name = “Command1” type = “Command”’/>
<OBJECT name = “Command3” type = “Command’/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Coordination2” type =“Coordination”/>
<FROM-OBJECT name = “CommandI” type = “Command”/>
<TO-OBJECT name = “Command3” type = “Command”’/>
<MORPHISM>
</MORPHISM>
</CATEGORY>

Figure 184: XML Specification of Coslice Category CUI/Production-Robot1

The social life of any Robot in the category Mars-world is a subcategory of Mars-
world denoted as SOCIAL(Robot), where the objects are Robot and all other Robot €
|[Mars-world| that have morphisms with Robot, and the morphisms are social connections
between Robot and Robot as Mars-world(Robot, Robot) or Mars-world(Robot , Robot)
as the Definition 3.1.1.
10.1.6 Categorical Model of Self-Healing in Mars-World
Figure 185 illustrates a categorical specification of production robotl before snesorl is

crashed. The category PR1 consists of three objects drilll, sensorl and CUI. Therefore,

276

the bidirectional communications between those objects are six morphisms to specify the
working collaboration between drilll and sensorl (coordinationl, coordiantion2) as well
as leadership among CU1, drilll and sensorl (commandl, reportl, command?2, report2).
Synchronous communication between drilll and sensorl is specified as their product.
Slice category models Report actions (reportl, report2) with the relations (coordinationl)
from drilll and sensorl to CUI; coslice category specifies Command actions (command|l,

command?2) with their relations (coordination2) from CUI to drilll and sensorl.

CAT-RAC <Production Robot1>
Objects: <Drilll, Sensorl, CU1>
Morphisms: <Coordiantion1(Drilll, Sensorl), Coordination2(Sensorl, Drilll), Report1(Drilll, CU1),
Command1(CUI, Drilll), Report2(Sensorl, CU1), Order2(CU1, Sensor1)>
Limit Object: <CU1>
Colimit Object: <CU1>
Product Objects: <SPM1(Drilll, Sensorl)>
Coproduct Objects: <(Drilll, CU1), (Sensorl, CU1)>
Pushout Objects: <Collect] (Commandl, Command2)>
Pullback Objects: <Trancel(Reportl, Report2)>
Slice Category: <(Reportl, Report2), Coordination1>
Coslice Category: <(Commandl, Command2), Coordination2>
Functors: <Restart(PR1-1, PR1-0), Substitute(PR1-2, PR1-0), Take-over(PR1-3, PR1-0)>
Natural Transformations: <Convertl(Restart, Substitute), Convert2(Substitute, Take-over),
Convert3(Restart, Take-over)>
Functor Category: <(Restart, Substitute, Take-over), Convertl, Convert2, Convert3>
End CAT-RAC

Figure 185: Categorical Specification of Production Robot
If PR1 is recovered by restarting crashed sensorl, it evolves to PR1-1 consisting of
the same composition and categorical specification as PR1 except for the different initial
status of sensorl, and this evolution is represented as the Restart functor from PR1-1 to

PR1-0 (a category with all potential robot parts for the self-healing in a production robot).

277

If PR1 is recovered by replacing sensorl with one of its equivalent object sensors, it
evolves to PR1-2 having the same composition and categorical specification as PR1
except for substituting each sensorl with sensor8, which evolution is specified as a
Substitute functor. However, if PR1 is recovered by asking drilll to take over the
responsibilities of sensorl, it will evolve to PR1-3 which has a different composition and
categorical specification (see Figure 186), but both of them have the equivalent behavior,
since drill1’ works as the product object of original drilll and sensorl through its backup

sensor and drilll’ ~ drill]l x sensorl.

—— ——

PR1-3
| cul |
| |

|

SPMI
| IS —

Convert3 Convert2

|_I'Rl-ll

. . |
ﬂqu_ _—— i CL-1 | I—PIEI— —_—
| Ul ensor]] cul |
SPnl ’
| | Subsiitute | |
Darilld
| Sensorl-1 Drilll | I Sensord Dirilll |
_____ Sensorl-1 Sensorf T

Comvert|
Figure 186: Evolution for Self-Healing in Production Robot

Moreover, the conversions between the plans Restart, Substitute, and Take-over may

be interpreted as a Convert natural transformations. For example, Convertl is used to

specify the mapping from Restart to Substitute when PR1 cannot be recovered after

restarting Sensorl due to its defects. Thus, a functor category consisting of those functors

278

as objects with their natural transformations as morphisms models all possible evolutions

and their relations.

HL?-‘.-‘H‘IHT

Clorrrverit 1

[\/

PR1-0

¥
PR1 S PRITITE
' 3

L

Conver

A 4

Corrpvert2

LK —eneny

\/

Figure 187: Natural Transformation for Self-Healing in Production Robot1

Convert!. oy

Restart(CUDy = CUT T > Substitute(CUT = CUT
Restart{ Command) = Commaned -1 Substitutel Command 'y = Command8
Con t’lerrj'.ﬁl'.llr.'l.l."."
Restard Sensorl) = Sensord-T 1 5 Substinute(Sensorl) = Sensord

Figure 188: Natural Transformation from Restart to Substitute in PR1

Converi?.

Substitute(CLU) = CUI > Take-over(CULY = CUI-1
Substitutel Commandl) = Command8 Take-over(Command) = Command?¥
Convert2. some
Substitute(Sensorl) = Sensors | > Take-over(Sensorl) = SPM1

Figure 189: Natural Transformation from Substitute to Take-over in PR1

Convert3. o

Restart(CUY = CU! ——————> Take-over(C Uhy=cui-i
Restari{ Commandl) = Command -1 Take-over| Command)y = Command?
Convert3. somorr
Resiart(Sensorl) = Sensorl-] ! Take-over{Sensorl) = SPM]
Figure 190: Natural Transformation from Restart to Take-over in PR1

The following figures illustrate the representation of the categorical model for the

self-healing property described above in a XML format (Phase 2 in Section 5.5).

279

<FUNCTOR name = “Production-Robot-Self-Healing-Restart”
source-category = “PR[-1”
target-category = “PRI-0">
<OBJECT-MAPPING>
<OBJECT-MAPPING source-object = “Sensori-1”
target-object = “Sensor”/>
<OBJECT-MAPPING source-object = “Drilll”
target-object = “Drill1”/>
<OBJECT-MAPPING source-object = “Control-Unitl”
target-object = “Control-Unit1”/>
</OBJECT-MAPPING>
<MORPHISM-MAPPING>
<MORPHSIM-MAPPING source-morphism = “Command;_;”
target-morphism = “Command,;”/>
<MORPHSIM-MAPPING source-morphism = “Command,”
target-morphism = “Command,”/>
<MORPHSIM-MAPPING source-morphism = “Report;.;”
target-morphism = “Report;”/>
<MORPHSIM-MAPPING source-morphism = “Report,”
target-morphism = “Report,”/>
<MORPHSIM-MAPPING source-morphism = “Cooperate;.;”
target-morphism = “Cooperate;”/>
<MORPHSIM-MAPPING source-morphism = “Cooperate,”
target-morphism = “Cooperate,”/>
</MORPHISM-MAPPING>
</FUNCTOR>

Figure 191: XML Specification of Functor PRI-Self-Healing-Restart

<FUNCTOR name = “Production-Robot-Self-Healing-Substitute”
source-category = “PR[-2”
target-category = “PRI-0">
<OBJECT-MAPPING>
<OBJECT-MAPPING source-object = “Sensor8”
target-object = “Sensor”/>
<OBJECT-MAPPING source-object = “Drilll”
target-object = “Drill1”/>
<OBJECT-MAPPING source-object = “Control-Unitl”
target-object = “Control-Unit1”/>
</OBJECT-MAPPING>
<MORPHISM-MAPPING>
<MORPHSIM-MAPPING source-morphism = “Commandsg”

280

target-morphism = “Command,;”/>
<MORPHSIM-MAPPING source-morphism = “Command,”
target-morphism = “Command,”/>
<MORPHSIM-MAPPING source-morphism = “Reports”
target-morphism = “Report,”/>
<MORPHSIM-MAPPING source-morphism = “Report,”
target-morphism = “Report,”/>
<MORPHSIM-MAPPING source-morphism = “Cooperates”
target-morphism = “Cooperate;”/>
<MORPHSIM-MAPPING source-morphism = “Cooperate,”
target-morphism = “Cooperate,”/>
</MORPHISM-MAPPING>
</FUNCTOR>

Figure 192: XML Specification of Functor PR[-Self-Healing-Substitute

<FUNCTOR name = “Production-Robot-Self-Healing-Take-Over”
source-category = “PR[-3”
target-category = “PRI-0">
<OBJECT-MAPPING>
<OBJECT-MAPPING source-object = “SPMI”
target-object = “Sensor”/>
<OBJECT-MAPPING source-object = “SPMI”
target-object = “Drill1”/>
<OBJECT-MAPPING source-object = “Control-Unitl-1”
target-object = “Control-Unit1”/>
</OBJECT-MAPPING>
<MORPHISM-MAPPING>
<MORPHSIM-MAPPING source-morphism = “Commands”
target-morphism = “Command,;”/>
<MORPHSIM-MAPPING source-morphism = “Command;”’
target-morphism = “Command,”/>
<MORPHSIM-MAPPING source-morphism = “Reports”
target-morphism = “Report,”/>
<MORPHSIM-MAPPING source-morphism = “Report;”
target-morphism = “Report,”/>
<MORPHSIM-MAPPING source-morphism = “Cooperates”
target-morphism = “Cooperate;”/>
<MORPHSIM-MAPPING source-morphism = “Cooperate;”’
target-morphism = “Cooperate,”/>
</MORPHISM-MAPPING>

281

</FUNCTOR>

Figure 193: XML Specification of Functor PRI-Self-Healing-Take-Over

<NATURAL-TRANSFORMATION name = “Relation-of-PR-Evolution™>
<ARROW>
<ARROW name = “Convert;”/>
<FROM-FUNCTOR name = “PR-Self-Healing-Restart”
type = “PR-Evolution-Self-Healing”/>
<TO-FUNCTOR name = “PR-Self-Healing-Substitute”
type = “PR-Evolution-Self-Healing”/>
</ARROW>
<ARROW name = “Converts”’/>
<FROM-FUNCTOR name = “PR-Self-Healing-Restart”
type = “PR-Evolution-Self-Healing”/>
<TO-FUNCTOR name = “PR-Self-Healing-Take-Over”
type = “PR-Evolution-Self-Healing”/>
</ARROW>
<ARROW name = “Convert,”/>
<FROM-FUNCTOR name = “PR-Self-Healing-Substitute”
type = “PR-Evolution-Self-Healing”/>
<TO-FUNCTOR name = “PR-Self-Healing-Take-Over”
type = “PR-Evolution-Self-Healing”/>
</ARROW>
</ARROW>
</NATURAL-TRANSFORMATION>

Figure 194: XML Specification of Natural Transformation PR-Evolution-Relation

<CATEGORY name = “Relation-Set-of-PR-Evolution-Self-Healing>
<OBJECT>
<OBJECT name = “PR-Self-Healing-Restart”
type = “PR-Evolution-Self-Healing” />
<OBJECT name = “PR-Self-Healing-Substitute”
type = “PR-Evolution-Self-Healing”/>
<OBIJECT name = “PR-Self-Healing-Take-Over”
type = “PR-Evolution-Self-Healing”/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Convert;”
type =“PR-Evolution-Relation-Self-Healing”/>
<FROM-OBJECT name = “PR-Self-Healing-Restart”

282

type = “PR-Evolution-Self-Healing” />
<TO-OBJECT name = “PR-Self-Healing-Substitute”
type = “PR-Evolution-Self-Healing”/>
</MORPHISM>
<MORPHISM name = “Converts;”
type =“PR-Evolution-Relation-Self-Healing”/>
<FROM-OBJECT name = “PR-Self-Healing-Restart”
type = “PR-Evolution-Self-Healing” />
<TO-OBJECT name = “PR-Self-Healing-Take-Over”
type = “PR-Evolution-Self-Healing”/>
</MORPHISM>
<MORPHISM name = “Convert,”
type =“PR-Evolution-Relation-Self-Healing”/>
<FROM-OBJECT name = “PR-Self-Healing-Substitute”
type = “PR-Evolution-Self-Healing” />
<TO-OBJECT name = “PR-Self-Healing-Take-Over”
type = “PR-Evolution-Self-Healing”/>
</MORPHISM>
</MORPHISM>
</CATEGORY>

Figure 195: XML Specification of Functor Category PR-Evolution-Relation-Set
10.1.7 Categorical Model of Self-Configuration in Mars-World
The actions in the formation work flow, self-configuration work flow, substitution work
flow and take-over work flow of Mars-world can be specified as the categories in which
objects are those actions and morphisms are their preorder relationship before. Each
object (action) in those categories is a quadruple (see Property 6.2.28); the sequences of
those actions can be specified as the categories where objects are those sequences and
morphisms are equivalence relationship between those sequences (see Property 6.2.31).

The transitions in intelligent control loop of manager robotl for self-configuration

can be specified as a category where objects are those transitions and the morphisms are

283

their preorder relations before. Each object (transition) in that category is a triple (see
Property 6.2.23); the sequences of the transitions can be specified as a category in which
objects are those sequences and morphisms are the equivalence relations between those
sequences (see Property 6.2.26).

Let Mars-world1 be a subcategory of Mars-world1-0 (a category consisting of all
the potential robots for self-configuration in Mars-world1). If Mars-world1 is conformed
to the index category Mars-world-Formation by restarting violated supervisor robotl or
supervisor robot3, it will evolve to Mars-world1-1, which has the same configuration
and categorical structure as Mars-world1 except for different initial status of supervisor
robotl or supervisor robot3. This evolution can be specified by a Restart functor from
Mars-world1-1 to Mars-world1-0. If Mars-world1 is conformed to the Mars-world-
Formation by substituting supervisor robotl or supervisor robot3 with their isomorphic
objects supervisor7 or supervisor robot9 (see Definition 3.1.3), it will evolve to Mars-
world1-2 that has the same configuration and categorical structure as Mars-world1 but
replacing supervisor robotl or supervisor robot3 with supervisor robot7 or supervisor
robot9. The above is specified by the Substitute functor. If Mars-world1 is conformed to
the Mars-world-Formation by asking supervisor robot2 to take over the responsibilities
of supervisor robotl or supervisor robot3, it will evolve to Mars-world1-3, which has
different categorical structure, but both of them have the equivalent configuration (see

Property 8.7.5 and the figure below).

284

Mars-worldl-3

| MRL-1
L
|SJ'M

|

|
|
|
srysr1 |
—

Convert2

Converl3

Figure 196: Evolution for Self-Configuration in Mars-world1

. I~
Resrart 5K
| L]

Convert!
Mars- v [~ Mars-

bR itife S
worldl D B 1S worldl-0
Convert3

Comvert 2

Fi 'ﬂka!ﬂ Ve i * I\

e

Figure 197: Natural Transformation for Self-Configuration in Mars-world1

The mapping among those evolutions RestartSR, SubstituteSR and Take-over-SR of
the Mars-world1 can be interpreted as natural transformations (see Property 6.1.4). The
functor category having those functors as objects and their natural transformations as

morphisms illustrate all possible evolutions with their relations. In addition, Convert3 is a

285

composition of Convertl and Convert2, which may be interpreted as the following: the
result of the evolution RestartSR -> SubstituteSR -> Take-over-SR is equivalent to the
evolution RestartSR -> Take-over-SR. Figure 198, 199 and 200 illustrate those natural

transformations and their composition respectively.

Convertd. vy

RestartSR(MRIY = MRI T > SubstituteSRIMR 1) = MR

RestariSR(Command) = Command -1 ubstitute SRICommand ') = Command 7
Convertl.sg;
RestartSR(SRI) = SR1-] —————> SubstituteSR(SRI) = SR7

Figure 198: Natural Transformation RestartSR -> SubstituteSR in Mars-world1

Convert2. v

SubstituteSR(IMR 1) = MR] ©——) Take-over-SR(MRI)= MRI-]

SubstituteSR(Command 'y = Command? Take-over-SR(Command)y = Commuand8
Con N{.’J'fz.sn_,r

SubstitureSRISRI) = SR7 P Take-over-SR(5RT) = S5PM

Figure 199: Natural Transformation SubstituteSR -> Take-over-SR in Mars-world1

Comvert3.

RestariSRIMRIY = MR > Take-over-SRIMR] V=MRI-1
RestartSR{Command) = Command -1 Take-over-SR(Command 1y = Commands
Convert3.sn;
RestartSRISRIY=8R1-1 ¢ D> Take-over-SR(SR1) = SPM

Figure 200: Natural Transformation RestartSR -> Take-over-SR in Mars-world1
The following figures illustrate the representation of the categorical model for the

self-configuration property described above in a XML format (Phase 2 in Section 5.5).

<CATEGORY name = “Formation-Work-Flow-in-Mars-world’>
<OBJECT>
<OBIJECT name = “InitializeManagerRobot” type = “Work-Flow-Action”/>
<OBIJECT name = “InitializeSupervisorRobot”
type = “Work-Flow-Action”/>
<OBIJECT name = “Heartbeat” type = “Work-Flow-Action”/>
</OBJECT>

286

<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>
<FROM-OBJECT name = “InitializeManagerRobot”
type = “Work-Flow-Action”/>
<TO-OBJECT name = “Heartbeat” type = “Work-Flow-Action/>
<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>
<FROM-OBJECT name = “InitializeManagerRobot”
type = “Work-Flow-Action”/>
<TO-OBJECT name = “InitializeSupervisorRobot”
type = “Work-Flow-Action”/>
<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>
<FROM-OBJECT name = “InitializeSupervisorRobot”
type = “Work-Flow-Action”/>
<TO-OBJECT name = “Heartbeat” type = “Work-Flow-Action/>
<MORPHISM>
</MORPHISM>
</CATEGORY>

Figure 201: XML Specification of Category Formation-Work-Flow-in-Mars-world

<NATURAL-TRANSFORMATION name = “SR-Evolution-Self-Configuration”>
<ARROW>
<ARROW name = “Relation;”/>
<FROM-FUNCTOR name = “SR-Self-Configuration-Restart”
type = “SR-Evolution-Self-Configuration”/>
<TO-FUNCTOR name = “SR-Self-Configuration-Substitute”
type = “SR-Evolution-Self-Configuration”/>
</ARROW>
<ARROW name = “Relation,”/>
<FROM-FUNCTOR name = “SR-Self-Configuration-Restart”
type = “SR-Evolution-Self-Configuration”/>
<TO-FUNCTOR name = “SR-Self-Configuration-Take-Over”
type = “SR-Evolution-Self-Configuration”/>
</ARROW>
<ARROW name = “Relation;”/>
<FROM-FUNCTOR name = “SR-Self-Configuration-Substitute”
type = “SR-Evolution-Self-Configuration”/>
<TO-FUNCTOR name = “SR-Self-Configuration-Take-Over”
type = “SR-Evolution-Self-Configuration”/>
</ARROW>

287

</ARROW>
</NATURAL-TRANSFORMATION>

Figure 202: XML Specification of Natural Transformation SR-Self-Configuration

<CATEGORY name = “Relation-Set-of-SR-Evolution-Self-Configuration’>
<OBJECT>
<OBJECT name = “SR-Self-Configuration-Restart”
type = “SR-Evolution-Self-Configuration” />
<OBJECT name = “SR-Self-Configuration-Substitute”
type = “SR-Evolution-Self-Configuration”/>
<OBJECT name = “SR-Self-Configuration-Take-Over”
type = “SR-Evolution-Self-Configuration”/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Relation;”
type =“SR-Evolution-Relation-Self-Configuration™/>
<FROM-OBJECT name = “SR-Self-Configuration-Restart”
type = “SR-Evolution-Self-Configuration” />
<TO-OBJECT name = “SR-Self-Configuration-Substitute”
type = “SR-Evolution-Self-Configuration”/>
</MORPHISM>
<MORPHISM name = “Relation,”
type =“SR-Evolution-Relation-Self-Configuration™/>
<FROM-OBJECT name = “SR-Self-Configuration-Restart”
type = “SR-Evolution-Self-Configuration” />
<TO-OBJECT name = “SR-Self-Configuration-Take-Over”
type = “SR-Evolution-Self-Configuration”/>
</MORPHISM>
<MORPHISM name = “Relation;”
type =“SR-Evolution-Relation-Self-Configuration™/>
<FROM-OBJECT name = “SR-Self-Configuration-Substitute”
type = “SR-Evolution-Self-Configuration” />
<TO-OBJECT name = “SR-Self-Configuration-Take-Over”
type = “SR-Evolution-Self-Configuration”/>
</MORPHISM>
</MORPHISM>
</CATEGORY>

Figure 203: XML Specification of Functor Category SR-Self-Configuration

288

<CATEGORY name = “Robot-Configuration”>
<OBJECT>
<OBIJECT name = “Sensor;” type = “Sensor”/>
<OBIJECT name = “Control-Unit;” type = “Control-Unit”/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Command;” type =“Command”’/>
<FROM-OBJECT name = “Control-Unit;” type = “Control-Unit’/>
<TO-OBIJECT name = “Sensor;” type = “Sensor”/>
<MORPHISM>
<MORPHISM name = “Report;” type =“Report”/>
<FROM-OBJECT name = “Sensor;” type = “Sensor”/>
<TO-OBJECT name = “Control-Unit;” type = “Control-Unit”/>
<MORPHISM>
</MORPHISM>
</CATEGORY>

Figure 204: XML Specification of Category Robot-Configuration

10.1.8 Transform RAS Model of Mars-world to MAS Model

In this section, we will describe the transformation from the RAS model of Mars-world to

its MAS model (Phase 3 in Section 5.5). We will focus on the substitutability of RAC

(robots), since RACG (exploration group) is the minimum RAE that can independently

fulfill a complete work in RAS (Mars-world). More details about this transformation can

be found in [148].

In Mars-world, there are five types of agents (robots): Manager, Supervisor, Sentry,

Producer and Carry agents. A Manager agent can create and manage Supervisor agents;

each Supervisor is in charge of an exploration group to exploit ore mines. It initiates a

number of Sentry agents to search and analyze ore targets in the area assigned by the

Manager. If a target is found, the Supervisor assigns the task of analyzing the target to an

289

available Sentry agent and after that forms a group of Producer as well as Carry agents to
perform exploiting tasks. After finishing the analyzing process, the Sentry requests some
available Producer agents to exploit the target mine. After finishing the production work,
a Producer calls some available Carry agents to carry the produced ore to the home base.
Each Carry has a limited capacity of ore so that it travels between the target mine and
home base [148].

To simulate the malfunctioning of one agent, users can click on the agent in GUI that
is considered as a signal to disable it (see Figure 205). This is done inside the mouse click
event listener of the environment panel in the Mars-world GUI plan of a Manager agent.
If the x and y coordinates of the clicked point falls inside any agent area, a message event
that tells the agent to shutdown itself is created. For each agent, there is a shutdown plan,
which consists of taking a snapshot of the agent execution status, pushing the snapshot
into a queue in terms of retrieving it later by a Supervisor for recovery, and shutting

down the agent. The snapshot has agent snapshot, goal snapshot and message snapshot.

User GUI Agent

1 : Clicks()

'-:UZ : request_shutdowwn()
. = 3 : take_snapshot()

|: 4 : shutdowwn()

e

Figure 205: Sequence Diagram of Shutdown [148]

290

Each Supervisor agent has a perform goal (see Figure 206) that checks continuously
the status of the agents in the environment belonging to the Supervisor’s group. In the
plan triggered by this goal, if the Supervisor detects any inactive agent whose type is
checked, it selects an appropriate recovery plan for that type of agent and creates a top
level goal for the agent’s recovery [148].

The Supervisor agent has a recovery plan for each of the group agents including the
Sentry agents, Producer agents and Carry agents. For example, if a Carry agent is getting
damaged, the Supervisor selects RecoverCarryPlan to recover the Carry agent. This plan
consists of four steps: 1) it creates a new Carry agent from scratch; 2) it recovers the
miscellaneous agent information, such as the location of the agent; 3) it deals with the

goal recovery; and 4) it recovers the message event queue of the Carry agent [148].

Supervisor Agent Carry Agent Mews Carry Agent

1 : checkStatus() _
2 : Inactive() |_|

|

3 : recoverfge ntlf]

4 @ cre atEiAg ent()

¥

i

5 : request_Location_recovery()

 J

G :

recover_location()

7 : request_Goal_recovery()

h

: recover_goal()

9 : gnal_re't:cwered(]

1
[

I

I_I 10 : recover_events()

Figure 206: Sequence Diagram of Carry Recovery [148]

291

10.1.9 Transform MAS Model of Mars-world to Categorical Model

In this section, the following agents from the Mars-world will be used to represent the
fault-tolerance property (Phase 4 in Section 5.5). They are repository agent Repository,
repository type Repository Type, supervisor agent Supervisor, carry agents Carry; and

Carry;. More details can be found in [62].

Type Carry
Action Type PLAN Type GOAL Type
Actrrigger ACty aa]fcmy()n P/amMovc (alCarryore (alnove
Ao ACtunioad 7 anm m aMs >

BELIEF Type

Plan Type
ACtll‘lgng" /_\‘CtL‘,‘,d h/—> FaCtsetBase <\]
ACt &vc.
e Mo ACtUnload F aCtsetCarryOrc FactSetmovearea
i FactSetnun k
a, b, c,d and e :: “before ” h i j, and k :: “subser of ”
Figure 207: Carry Agent Type [62]
Carry,
PLAN, GOAL,
Plany /iﬁl\‘ ke —a GOALnun
m 1
Planéf:yl()\m ‘romTargetA Plané?rjll ‘romTargetA GoalCurry()rcI"rom'l'argclA GOalCurry()rcl"mm'l'urgclI}
P qrand 0,:: “before ” i, jrand k; :: “high priority ”

Plan (o \ \ PB, (GB,;
FEN s \ BELIEF
ACtsldrl(,drfy ACtanulnldﬁAl Amd()ﬂ, RBP; 4 \ F !
L \ u; > actSet.;usc‘\vl
ACtNuIl ACtMovc’l'nBusc ta /
S / FactSet
Iy 48, 4and t; 430 “before /RBP) ‘i jSetl e
_B o
Plan { FactSetnun i
Act. / 5 A S1E A vy x and “subset o,
StartCarry ActMoveToT: argetB *Cli.oadore i Lo e f
Actvul AcCtmoveToBase t . Zoom In Zoom In'
SA; 4 1) s, pand t; g2 “before ” .‘* K
- Action / FactSet; A FactSet; g
1 B .
ActsiarCan TargetALocation TargetBLocation
) 4 ACtMUV‘,l()BJSL SA
ACtLoadore A ctypoveroTarseta 1B TargetAOreAmount TargetBOreAmount.
ActyfoveToT argetB Factvui BaseLocation Factyun BaseLocation

SA; 4and SA; p:: sequence _action; RBP; 4and RBP, p:: refined _by _plan;
PG;:: plan _goal; GB;:: goal _belief; PB;:: plan _belief

Figure 208: Carry; Agent [62]

292

- Repository Type I
el A A // T e
Type Carry P Type Supervisor
PLAN Type /\\‘ ’ PLAN Type

GOAL Type
Plan Type BELIEF Type

S, T, Pand Q :: “Communicate”

/

/
/

Action Type

Action Type

GOAL Type

\Q/ Plan Type BELIEF Type

Figure 209: Category Repository Type in Mars-world [62]

—>

Property 10.1.1 Restart: An agent can be restarted, if and only if this agents categories
Action, Plan, PLAN, GOAL, FactSet and BELIEF are isomorphic to repository agent’s
categories. These categories within repository exist as default before the agent is created,
and can be updated during system runtime. If this agent is restart-able, its supervisor
agent will recreate the agent, otherwise, the agent’s stored categories will be removed
from the repository by the supervisor agent. We write isomorphism (A, B) == TRUE to

indicate that category A4 is isomorphic to category B, otherwise we use isomorphism (A, B)

== FALSE [62].

Agent A pefore Agent A ,ow Repository
Action Action Agent. Action

Plan Plan’ Agent. Plan

PLLAN PLLAN’ Agent. PLAN

GOAL GOAL Agent. GOAL
FactSet FactSet Agent. FactSet
BELIEF BELIEF Agent. BELIEF

Figure 210: Fault-tolerance Property — Restart in Agent A [62]

293

Property 10.1.2 Inclusion Agent: Let A and B be two agents. If all the following
categories: Action, Plan, PLAN, GOAL, FactSet, and BELIEF defined in A include B's
Action, Plan, PLAN, GOAL, FactSet, and BELIEF, we say agent A is an Inclusion
Agent of agent B [62].

Property 10.1.3 Takeover: An agent A can take over (i.e. replace) an agent B if and

only if IncAgent (A, B) == TRUE [62].

Action; Action, YT
Clynios ‘
::CESta”Cafry AcCtyioveToBase ACtStartCarry ACtMoveToBase UnloadOre
ClLoadOre ACtMoveToTargetA ACtLoadOre ACtMoveToTargetA ACttMoveAround
ACtMoveToTargetB
SRS ACtMoveToTargetB ACtStartMove

Figure 211: Include in Action of Mars-world [62]

Plan 1A

Plan 2 A
1A 4 S 4 —
ACtStanCarr\' v l:’ A 4 S2A
: ACtMO\'eToTargeLA ACllioagore ACtN“ll ACtStanCarry A - 4
CtMoveToTargetA ACtLoadOre
Actyun ACtMoveToBase - 4 ACtUnloadOre 2 A

// A S1 4 and 114 “before 7

Plan ;

1/8 4 S; B

Act; ,
StartCarry ACtyoveToTargetB ACtadOre

ACtNull ACtMoveToBase - l B

// B SIB and ;g “before 7

“ ”
11 Move - “before

2 A ACtMoveToBase <

”

]] A S1.A and 11_,4 o “ before

Plan 2B
Plan 2_move lg B 4 S> B
Act Allstancamy” gy Act s
Null]3 move MoveToTargetB ACty oaq0re

l2s
ActstanMove ActivoveAround Actnul ActvoveToBase <

”

L g s;pand 1, 50 “before

Figure 212: Include in Plan of Mars-world [62]

PLAN,
PLAN, Planyy
PlanNulI //pz\ m //qz\
/ p]\‘ /()]\L / q 1\‘ P lanCarryOreFromTargetA P lanCarryOreFromTargetA
PlanCanyOreFromTargetA PlanCan’yOreFromTargetA

pn qrand o; ;. “before ”

/
n; /
Plai MoveA\‘round ‘/ m;

P2 q2, 02, myand ny i “before ”

Figure 213: Include in PLAN of Mars-world [62]

294

GOAL GOAL
1 GOALNun GOAL 2
. /k —a . Null /k ——a GoalMoveAround
/i 1 /I 2 DY
G OalC arryOreFromTargetA G OalC arryOreFromTargetB G OalCarryOreF romTargetA G OalC arryOreFromTargetB
i, jrand k; :: “depends ” ryand k, ;1 “depends ”

Figure 214: Include in GOAL of Mars-world

Agent A Agent B
Action_ A Action_B
Plan A Plan B
PLAN_A PLAN_B
GOAL_A GOAL_B
BELIEF_ A BELIEF_ B

Figure 215: Fault-tolerance Property — Take-over by Inclusion Agent [62]

BELIEF, BELIEF,
_» FactSet _» FactSet
u — Base - v u —- Base -t v
o N b ’
FactSetl_A FactSetl_B FaCtsetZ_A FaCtSétZ_Move FaCtsetl_B
\ (Z
X — FaCtSCtNuu — Vi X — FaCtSCtNuu — V2
u;, v, x; andy; ;. “subset _of” U, Vo, X2, ¥2, woand z, i1 “subset _of 7

Figure 216: Include in BELIEF of Mars-world
10.1.10 Transform MAS Model of Mars-world to Implementation
In this section, we will introduce the transformation from the MAS model of Mars-world
to its implementation (Phase 9 in Section 5.5). More details about this transformation can
be found in [148].
To create a new agent, the ams create agent goal is used. When an agent of a certain
type is created, the static initial state of that agent type is recovered automatically. This

kind of information can be considered as static initial status of an agent and is recovered

295

in agent creation phase. There is another type of status information that is dynamic and is
changing in time. The recovery of dynamic status of agents is based on the status
snapshots taken at the shutdown moment of the agents. In order to simulate the ongoing
access of a Supervisor agent to the information of its group, there must be a way to
inform this Supervisor of the current status of its agents. The Supervisor polls the current
agent snapshot from the agent snapshot queue and creates a message event request
location _recovery and sends this message to the new created Carry agent without waiting
for the reply from its side [148].

When a message event is received by the new Carry agent, it can trigger its Recover
Location_Plan, where the agent is waiting for the request location recovery message
and once received, it restores the location of the agent from agent snapshot and sets the
current location of the agent to this value and then creates the walk around goal to start
the walking of the agent from this location. The walk around goal is a perform goal that
is followed by the agent when there is nothing to do. When an agent is moving around, it
can find new sources of ore and inform the Supervisor of their existence. This walk
around goal is inhibited if in the next recovery step the carry ore goal is recovered as the
latter has a higher priority [148].

The current plan that the agent is pursuing must be recovered. The only way to get a
snapshot of the plan execution is to store useful variables from different steps of the plan
(commit and rollback). To recover the current goal, the Supervisor takes advantage of the

GoalSnapshot stack in AgentSnapshot class. The Supervisor agent creates a request

296

goal recovery message event and puts the GoalSnapshot as its content and sends the
request to the new Carry agent. If there is no goal to recover, the value of null is set as
the goal to recover. After sending the request, the Supervisor agent waits for the reply
from the Carry agent to check if it has finished its recovery process. This is done by
using the sendMessageAndWait method to establish a conversation between those two
agents. The reason is that the new Carry agent has to finish the unfinished goal of the
damaged agent before moving to its message event queue to pick an event message to
start a new carry ore goal. By establishing a conversation between those two agents and
waiting for the reply, the recovery plan in the Supervisor side is suspended until a
response comes back from the Carry agent [148].

On receiving the request for the goal recovery, the Carry agent triggers its plan to
recover a goal using the goal snapshot information, by which the Carry agent identifies
the step that the damaged agent was executing when a problem happened. In Recover
Goal Plan, the Carry agent restores the target location as well as ore load from the goal
snapshot. The Recover Goal Plan is a special copy of CarryOrePlan with a facility of
the conditional entrance points according to the variable checkpoints. After finishing a
goal, the Carry agent pops the goal from the stack. After finishing this task, the Carry
agent creates its carry goal which listens to the request carry message events. These
message events can be from Supervisor agent that is recovering the message event queue
of the damaged agent or from Producer agents as expected in the normal behavior of the

system. In this point that the Carry agent is listening to request carry message events,

297

the Supervisor can start the recovery of the message events. Thus, the Carry agent creates
a reply message event named reply goal recovery in response to the message request
goal recovery of the Supervisor agent [148].

10.2 Prospecting Asteroid Mission

In order to support the versatility and flexibility of applying our research outcome, we
also select the Prospecting Asteroid Mission (PAM) case study as another application
modeled by the RASF. Moreover, we use PAM to illustrate how to visualize categorical
RAS model, MAS model as well as implementation (Phase 5, 6 & 11 in Section 5.5) for
practical usages. However, we keep a simplified and concise illustration for this case
study comparing to the Mars-world case study to avoid redundancy.

The PAM spacecraft study a selected target by particular classes of measurers called
virtual teams. For example, an experiment team consists of the specialist classes to solve
particular scientific problems, such as Petrologist team. The system elements include
generals, rulers, workers, and messengers (see Figure 19 in Section 4.2). More details
about the PAM scenarios can be found in Section 4.2. The specification of fault-tolerance
in a Petrologist team is discussed as follows.

A Petrologist team (RACGT1) has a ruler (RACS1), an imaging worker (RAC1), an
X-ray worker (RAC2) and a messenger (RAC3). Control Unit (CU, such as RAOLI,
RAOL2 & RAOL3) and sail (RAO2, RAO4, RAOS5, RAO6 as well as RAO7 are two
common devices of each spacecraft. Moreover, different types of workers have particular

equipments. For instance, imaging workers has Imaging Devices (ID, such as RAOI);

298

X-ray workers has X-ray Devices (XD, such as RAO3). After a Petrologist team is formed
and then is sent to explore an asteroid by its general (RACGM1) of a swarm (RAS1), the
general starts to monitor the ruler that monitors its imaging worker, X-ray worker and

messenger; moreover, the CU in each spacecraft monitors its devices (see Figure 217).

—_— —_—— — — — — — —_——— —
|_ - .. = T Petrologist Team
(RACG1) |

|
| Ruler | | Messenger
| |(RACSD X1 Sailz | _ (RACH)
| | (raoay - (RADL)
MN-ray Worker (RAC2)
| ' :
L _ - - - - 9 - - - - - 0O 0" =1

Figure 217: Example of PAM Modeled using RASF

If the CU of an imaging worker doesn’t receive the heart beat messages from its ID
in a required interval, it assumes /D is crashed and sends a restart message to that ID. If
the ID is restarted successfully and works normally, CU continues to monitor its devices
as usual; otherwise, CU asks its ruler to substitute the crashed /D with isomorphic one to
ensure equivalent behavior. If ruler cannot find required /D for substitution, the take-over
plan proposed in section 4 is not applicable either, since the product device of /D and sail
doesn’t exist in PAM. Therefore, ruler has to replace the whole imaging worker with the

isomorphic one, which is the case of crashed RAC (see the figure below).

299

Imagrimar Worker2 Fulerld TmasrineWork erl Trmaringr g |

1 1 1 Restart 1
| I I :.,l
: L ReguestDevice L Malleartbeat :
= — _}{ _____
: FeqguestWorker : Mot ownd II :
r Confirmed o T T T : :
[T T T T T T T I I
L{ Register I I I
| I I 1
Heartheat
L _=aroesm = ! !
| |]

Figure 218: Substitution Work Flow of Imaging Worker

Similarly, if ruler doesn’t receive heartbeat from the CU of its X-ray worker within a
required interval (scenario 2), it sends a restart to that CU. If the CU cannot be restarted,
ruler substitutes the crashed CU with isomorphic one to ensure their equivalent behavior.
If ruler cannot find required CU for substitution, it asks another worker, such as imaging
worker to take over the control of XD and sail on the crashed X-ray worker. If all other
workers are not available, ruler takes over the CU by itself. However, if ruler cannot take
over CU either, it has to replace the whole X-ray worker with the isomorphic one [87].
10.2.1 CML Model for Sub-swarm Organization in PAM
Figure 219 & 220 include the CML specification (see Section 6.4.1) and its visual model

respectively for a typical sub-swarm organization. More details can be found in [81].

TYPED-CATEGORY Type of Morphisms

PAM Sub-swarm (S;) Morphism_Type: Management (m):

Types of Objects L-TM,L—>SM,L—->W

Object_Type: Ruler (R) Morphism_Type: Cooperation (c):

Object_Type Instances: Leader (L) W—->W,T™M - W, W—->TM

Object_Type: Messenger (M) Morphism_Type: Communication (cu):

Object_Type Instances: Team Messenger (TM), ™ - SM,TM - TM , W — SM, TM — L
Sub-Swarm Messenger (SM) Morphisms: Mor(S;)

Object_Type: Worker (W) m; (L) =TM,, m, (L)) = SM,,

Object_Type Instances: X-Ray (Wxgr), m; (L) = Wxgi, myg (L1) = Wori,

300

Gamma Ray(Wgr),
Infra-Red(Wir),

ms (L) = Wiy, my (L) = TM,,
c1 (Wxr1) = Wari, €2 (TM:) = Wiy,

Altimeter(War) ¢3 (Wiri) = Wari, ¢4 (TMz) = Wigy,
Objects: Obj(S1) ¢s (TM2) = Wari, ¢6 (WaL1) = TMy,
R: L, ¢7 (Wxrs) = TMy, cg (Wxrs) = Wari,
TM: TM,, TM, cu; (TMs) = TM,, cup (TM;) = SMy,
SM: SM; cuz (TMy) = SMy, cuy (Wxr3) = SMy,

Wxr: Wxri, Wxrs

CUs (WALI) = SM], Cug (TMz) = L]

War : Wari Identity: Identity(S;)

Wir s Wina d(Ly): Ly — Ly , [d(SM,): SM; — SM,,

Wik : WarLi 1d(TM,): TM; — TM,, 1d(TM,): TM,; — TM,,
Composition 1d(Wxr1): Wxri — Wxri, 1d(Wxrs): Wxrs — Wxes,

(c3 0 mMs)= my (c; 0 mM3)= my, (cs 0 mMy)=

0o m)= m(c; 0 C)= Cs(cy 0 my)=

(cu; 0 my)= my (M, 0 cug)= cus,

ms, (C2

1d(War1): War — Wan, 1d(Weri): Wori — Wari,

1d(Wir1): Wiri — Wiri

Axioms

(m; o cug) = ¢ (M4 O cug) = Cs, (ms O ¢4, | Identity: V x € Identity(S,),y € Mor(S)),
(cu; 0 ¢7) = cus (Cus 0 Cg) = cusg (Co O c7, X0y =y=yox
(cu; 0 ¢c6) = cus, (c3 0 cg) = cCs, (CU; O cus, | Associativity: c¢;0 (c; 0 my)=(c;0 c;)omy

(cu3 0 m)= my(Mm; 0 cugp)= cu

c;0 (¢4 0 my)=(cz0 cg)om

cio (m3 o cug)=(c;0 m;3)ocug
c;0 (ms o cug)=(c;0 ms)ocug
ci,0 (cuyy 0o my)=(cu;0 cuj)omy
cu,0 (m; o cug)=(cu,0 my)ocug

cu,0 (cg 0 cg)=(Cu,0 Cg)OCs

Figure 219: CML Specification Model of a PAM Swarm Scenario [81]

Figure 220: CML Graphical Model of a PAM Swarm Scenario [81]

10.2.2 Self-Configuration in PAM

The virtual teams of spacecraft are configured to carry out optimal science operations on

301

the target asteroids. When the operations are complete, the team breaks up for possible
reconfiguration at another asteroid site. This reconfiguring continues throughout the life
of the swarm. Reconfiguring may also be required as the result of a failure or anomaly of
some sort. The specification in Figure 221 captures the behavior of a team relocating to a

new position in the sub-swarm and its graphical model is given in Figure 222 [81].

Categories:
TYPED-CATEGORY

Petrologist Team (PT)) ...
TYPED-CATEGORY

PAM Sub-swarm (S,)

Types of Objects

Object_Type: Ruler (R)
Object_Type Instances: Leader (L)

Object_Type: Messenger (M)

Object_Type Instances: Team Messenger (TM),
Sub-Swarm Messenger (SM)

Object_Type: Worker (W)

Object_Type Instances: Radio Sound (Wkgs),

Imager(Wiv),
Infra-Red(Wir),
Helper(Wy)

Objects: Obj(S3)

R: L,

SM: SM,, SM;

Whs: Wrsi

Wim : Wivs

Wik : Wigrs

Wh : Wiy

Type of Morphisms

Morphism_Type: Data Update (du):

W—-L

Morphism_Type: Management (m):

L—SM

Morphism_Type: Cooperation (c):

W-W

Morphism_Type: Communication (cu):

302

Morphisms: Mor(S3)

m; (L)) = SMy, ¢i1 (Wni) = Wigs,

c12 (Wrs1) = Wirs, ¢o (Whi) = Whrsi,

c1o (Whi) = Wims, cs (Wrs1) = Wins,
cuyo (Wrs1) = SMy, cuyy (Wrsi) = SM,
cuyz (SM3) = SMy, cuyz (Wir) = SM;
Identity: Identity(S,)

ld(Ly): L — L, , 1d(SM,): SM, — SM,,

1d(SM3): SM3 — SMs, 1d(Wrs1): Wrsi — Wasi, 1d(Ww):
Wi — Wi, 1d(Wiis): Wiy — Wivs, 1d(Wirs): Wirs

— Wirs

Composition

(cs 0 co)= ci,(c2 0)= cup

(m7; o du))= cups,(cup 0 Co)= cuyz,

(cup 0 c9)= cuw, (cu 0 cup)= cu,

(cu;; 0 cup)= cup, (Cus 0 cup)= cup,

(cuj;3 0 cug)= cuw, (C13 0 €)= Cig

(cu;s 0 cuy)= cuye

Axioms

Identity: V x € Identity(S,;),y € Mor(S,),
X0y =y=yox

Associativity:

cuppo (cup 0 c9)=(cujx0 cu;)ocy

cu;so (cup 0 c9) =(cujs0 cuy) 0Co

Category Source: PT,

Category Target : S,

FUNCTOR (Team Relocation, R, PT}, S,)

R(c3): PTy (Wiri, Wari, €3) —

S>(R(Wiri): Wirs, R(Wari) : Wirs, R(c3): 1d(Wirs)),

R(cs): PT (TM,, Wiri, €4) —
S>2(R(TMy): Wi , R(Wiri): Wirs, R(cs): cnr),

SM — SM, W - SM 5 SM — L R(C5): PT] (TMz, WGRI, Cs) b

Functor Objects S2(R(TM): Wi, R(War1): Wirs, R(Cs): ¢11)
Messenger: Functor Composition

R(TM,): PT; (TM;) — S, (R(TM,): W) R(csocs) = R(cs) oR(cs) = R(cs)
X-Ray: R(cioc) = R(ci))oR(c:) = R(cs)
R(Wxr1): PT; (Wxr1) = S2 (R(Wxr1) :Wkrs1) Functor Axioms

Infra-red: Identity: R(Id(TM,)) = Id(R(TM,))
R (Wir)): PT; (Wiri) — Sz (R(Wir1) :Wigs) RUId(Wxr1)) = 1dR(Wxr1))
Gamma Ray: RId(Wir1)) = IdR(Wi1))
R(Wari1): PT1 (Wer1) — Sz (R(Wari) :Wirs) R(d(War1)) = Id(R(Wgr1))
Functor Morphisms

Cooperation:

R(c1): PT; (Wxri, Wari, €1) —

So(R(Wxr1): Wrsi, R(Wer1): Wirs, R(c1): ¢12),
R(ca): PT, (TM,, Wxgy, €2) —

Sa(R(TM2): Wiii, R (Wxr1) :Wrsi, R(¢2): €9),

Figure 221: CML Model for Team Relocation Scenario [81]

Typed-Category: Sa2

Figure 222: CML Graphical Model for Team Relocation Scenario [81]

303

10.2.3 Self-Protection in PAM

After receiving the confirmation from the sub-swarm leader regarding a solar storm, a
sub-swarm messenger communicates information to the other sub-swarm messengers. All
sub-swarm messengers inform their team messengers that in turn inform all the workers
in the team. Each spacecraft after receiving a warning message and performing necessary
communication puts itself to a “stand by” mode. Figure 223 includes a CML model for
this scenario constructed using the limit construct grammar and its graphical model is

given in Figure 224 [81].

Diagram: Communication: D(a): D(k) — D(1)
DIAGRAM (D, IC, S))... D(B): D(@) — D(k)
Cones: Category Id: S,
CONE (Object: TM,). .. Diagram Id: D
CONE (Object: L) Cone Ids: TM,, L,
Co-Cone Objects LIMIT
D(k), D(), D(), Terminal Object: TM,
Co-Cone Morphisms Unique Morphism(u): m;: L; — TM,
Management: Li(k): Ly — D(k), Limit Objects
LiG): Li — DG, D(i), D(j), D(k)
L(i): L, — D() Limit Axioms
Limit Morphisms m; oLi(i) =TMx3)
Management: Lik): Ly — D(k), m; oLi(j) =TMx()
LiG): Li — D@), m; oLi(k) =TMyk)

Li(i): Ly — D()
Cooperation: TM(k): TM, — D(k),
TMy(j): TM, — DY),
TM,(i): TM, — D(i),
D(a): D(i) — D(j),
D(B): D() — D(k)

Figure 223: CML Model for PAM Self-Protection [81]

304

Figure 224: CML Graphical Model for PAM Self-Protection [81]
10.3 End-to-End iFix Tool
In order to support the feasibility of applying our research outcome on industrial projects,
I select the End-to-End iFix Tool (E2E) case study as an industrial application modeled
by the RASF during my research internship at IBM Canada. We keep a simplified and
concise illustration for this case study comparing to the Mars-world case study to avoid
redundancy.

The E2E is a web-based application to process official fix creation requests from the
IBM support teams. The tool implements an automated and autonomic process to build
and test iFixes with minimal user input as well as intervention based on source code for a
fix being available and identifiable in a source code repository system. The E2E interacts
with a repository tool to store source code and a build tool to compile the source code
into object code and a packaging tool to package the object code into an installable fix
(see Figure 20 in Section 4.3).

Figure 225 depicts the architecture model of E2E according to the RAS architecture

model (see Figure 21 in Section 5.1). This model is a four-layer architecture that consists

305

of build objects (RAO, such as CMVC session, Aphid request, submit moonstone test and
ICT input), build components (RAC, such as CMVC engine, Aphid engine, ICT engine
and Moonstone engine), build component groups (RACG, such as back-end support
group and front-end support group) and the whole tool itself (RAS). The autonomic
features can be implemented by component manager (RAOL, such as CMVC manager,
Aphid manager, ICT manager and Moonstone manager), the component group manager
(RACS, such as Build manager and GUI manager) as well as tool manager (RACGM,
E2E adapter/manager) at the RAC, RACG and RAS layer respectively. In this layered

architecture model, each tier communicates with the tier immediately above or below it.

[FAS - E2ZE iFix Tool (E2E Adapter/Manager) |

1L

[RACG - Build Component Groups (Build Manager, GUI Manager) |

1

| EAC - Build Components (CMYC Manager, Aphid Manager, ICT Manager, Moonstong Manager) |

1

[RAC — Build Objects (CMYCSession, AphidRequest, ICTInput, SubmitMoonstone T'est) |

Figure 225: RAS Architecture Model for E2E
Figure 226 depicts an example of the architecture model of E2E for a simplified
scenario presented above (see Phase 1 in Section 5.5), where every circle represents an
implemented class of the build component and each arrow specifies the procedure call
between those classes. In this example, the E2E (RAS1) consists of a director package
(RACG3) for tool management, a front-end support package (RACG2) for the business
logic related to Ul and a back-end support package (RACG1) for the process of building

an iFix. The director package includes a component iFix Engine (RACGM1) which has

306

two classes: E2E Session (RAO7) and E2E Manager (RAOLS). The front-end support
package consists of two components: Front-end Engine (RACS2) with two classes GUI
Adapter (RAOL7), Build Servlet (RAQO9) and GUI Engine (RAC4) with two classes GUI
Manager (RAOL6) as well as GUI Data (RAOS8). In back-end support package, there are
four components Back-end Engine (RACS1), CMVC Engine (RACI), Aphid Engine
(RAC2) and ICT Engine (RAC3) with their classes, such as Build Manager (RAOL4),

CMVC Manager (RAOL1), Aphid Manager (RAOL2) and ICT Manager (RAOLS3).

[_ End-to-End iFix Tool (Rnsnj

|- Front-end Support Package [R.-\CGEJ—I

iFix Engine Componcnt |
(RACGMI) E32F Session |
|

|

|

| (RADT}
| EZE Manager

| (RAOQLS)

Front-¢nd Engine

Component (RACS2)
Build Serviet
(RACHY)

|
|
.
GUI Engine Component |
(RACY) |
GUI Data (RAOS) | |
o
|
|
|

—t==0=0

U1 Adapter (RAOLT) GUT Manager (RAOLG)

|
|
|
|
|
|
: e - % ——————————————— '
-7y 7 Back-cnd Support Package | |
|
| C C Engine Component (RACGT) | |
| | ACT) _ MW Manager (RAOQL Y | |
| T
| | VO session CMVE Def& | |
| | {RADI) {(RAO2) e | |
| | Build Manager \"t\ f;" TCT Manager | |
| | [RAOLA4) W, A (RADOL3) | |
Build Data : ; 1CT Imput
|| (RAOG) v (RAOS) | |
| | Back-end Engine P) e ICT Engine |
| Aphid Engine Component (RACZ) |
| | |

Figure 226: Example of E2E Modeled using RASF
10.3.1 Self-Healing in E2E
After E2E is deployed to the application server, E2E Manager starts to monitor the heart
messages sent from GUI Adapter and Build Manager. If there is any exceptions thrown

from them that might cause termination of their services, E2E Manager can catch them

307

and retrieve the self-healing process as we described in Chapter 7, either restarting the
services from those two classes by recalling corresponding methods, or substituting them
by creating the new instances of those classes.

Another scenario of self-healing is the fault-tolerance when submitting source code
compiling requests to Aphid servers. For example, if Aphid Manger receives bad request
messages from Aphid servers through Aphid Request due to the unavailability of those
servers in the middle of compiling, it can automatically redirect the original requests to
another available Aphid server without the intervention of end users.

10.3.2 Self-Configuration in E2E

Build Manager is responsible for monitoring the configuration, communication as well as
behavior of the components CMVC Engine, Aphid Engine and ICT Engine by checking
the status of CMVC Manager, Aphid Manager and ICT Manager against their meta-
model respectively. If there is any incorrect configuration or unexpected behavior from
those components, the Build Manager will retrieve the self-configuration process as we
stated in Chapter 8.

Another scenario of self-configuration is that E2E is deployed on four nodes, and the
iFix building requests from end users can be automatically redirected to an optimal node.
The necessary resource and configuration on that node to build an iFix can be acquired
automatically based on the meta-model of E2E without the intervention of administrators.
10.4 Summary

In this chapter, we illustrated how to apply RASF approach to three different case studies.

308

For the Mars-world, we presented a complete process of using RASF approach based on
the process model in Section 5.5, which include the architecture model, self-healing and
self-configuration properties, categorical models of structure, behavior as well as those
properties in Mars-world. For the self-healing property, we showed all possible scenarios
at each tier in the architecture model, such as crashed sensors (RAO), crashed control
units (RAOL), crashed robots (RAC) and crashed supervisor robots (RACS). For the
self-configuration property, we also illustrated all possible scenarios according to the
architecture model, such as forming Mars-world, forming exploration groups and forming
robots.

For the PAM, we focused on the visualization of the categorical models generated
from the RAS model and MAS model using our graphical illustration tool CATCanvas.
That visualization can help us to achieve the validation between those categorical models
besides the verification between them textually. Moreover, it can help IT professionals
with minimum category theory knowledge to better understand those categorical models.
It can also help either IT professionals or category theory experts to manipulate the
categorical diagrams in terms of reasoning.

Finally, we introduced how to apply the RAS model on the E2E, an industrial project
from the IBM Toronto Lab, to support the flexibility and feasibility to use our RASF

approach.

309

Chapter 11: Conclusion and Future Work

In this chapter, we conclude this thesis work by presenting the significance of the RASF
approach, contributions, concluding remarks and future work.

11.1 Significance of RASF Approach

We conducted a comprehensive literature review (see Chapter 2) on autonomic systems,
multi-agent systems, real-time reactive systems and formal methods. To the best of our
knowledge, there is no similar integrated formal framework targeting the whole life cycle
of developing reactive autonomic systems, from requirement specification, architecture
model (structure and behavior), meta-model (constructed from the architecture model),
instance model (generated from the meta-model) and implementation model (the MAS
model and implemented from the instance model) to formal specification (using category
theory), visualization of the categorical model (using CATCanvas), model transformation
between those models, model checking (verification & validation) and tooling support
(RASFIT).

Furthermore, to the best of our knowledge, our RASF approach is the first attempt to
formally specify the autonomic systems with self-* properties, multi-agent systems with
goals, plans as well as beliefs and real-time reactive systems with time constraints using
category theory (a relatively young branch of the mathematics has been successfully
extended to the fields of computer science and software engineering). Category theory as
a formal method can address the characteristics of reactive autonomic systems as well as

multi-agent systems very well because: 1) it offers a specification structure that can isolate

310

analysis of changes in a small number of components and analyze impacts of a change on
inter- connected components; ii) it has a rich body of theory to reason objects and their
relations; iii) it adopts a correct by construction approach by which components can be
specified, proved and composed in the way of preserving their properties.

Domain theory is introduced as a study of special kinds of partially ordered sets (or
posets) in mathematics, those sets are called domains. A partially ordered set (poset) can
formalize and generalize the intuitive concept of an ordering, sequencing or arrangement
of the elements for a set. “Partial order” means that not every pair of elements needs to be
related: for some pairs, it may be that neither element precedes the other in the same
poset. In comparison to category theory, it has a limitation of capturing all kinds of the
relations between posets, such as “depends on”, since it is not a ordering, sequencing or
arrangement relation. Domain theory cannot be used to model self-relation of elements in
a poset, which is well defined as the identity morphism in category theory.

Logic theory, such as first order logic, has been used to model multi-agent systems.
In comparison to the category theory, instead of capturing the structure and properties, it
models the reasoning of properties that are shared by objects.

Comparing to other formal approaches which either lack of emergent and self-
management behavior specification, verification as well as validation (CSP, Temporal
Logic, Unity Logic, ASSL and PTN), or lack of visualization (CSP, WSCCS, Temporal
Logic, Unity Logic and ASSL) or tooling support (WSCCS, Temporal Logic, X-Machine,

Unity Logic and PTN), our RASF approach supports each aspect of specifying, verifying

311

and validating reactive autonomic systems, such as formal basis, visual formalism,

adaptability to programming, tooling support, modularity and self-management behavior.

11.2 Contributions

This thesis work proposed a formal framework (RASF) which can leverage modeling,

formal specification as well as development of the RAS. The main contributions of this

thesis work are summarized below:

Reactive Autonomic Systems Framework that includes the architecture model
with structure (Section 5.1) and behavior (Section 5.2) as well as process model
(Section 5.5). I had one publication [90] for this contribution.

Categorical RAS model in RASF that includes the categorical model of structure
(Section 6.1), behavior (Section 6.2) and their XML representations (Section 6.3).
I had one publication [90] for this contribution.

XML representation of the categorical MAS model (plans, goals, beliefs and
agents) in RASF (Section 6.6). I had one publication in preparation for this
contribution.

Specification of the self-healing in RASF which includes three scenarios (Section
7.1, 7.3 & 7.5) with their categorical illustration (Section 7.2, 7.4 & 7.6),
categorical specifications of self-healing properties (Section 7.7) and their XML
representations (Section 7.8). I had two publications [177 & 87] for this
contribution.

Specification of the self-configuration in RASF which includes three scenarios

312

(Section 8.1, 8.3 & 8.5) with their categorical illustration (Section 8.2, 8.4 & 8.6),
categorical specifications of self-configuration properties (Section 8.7) as well as
their XML representations (Section 8.8). I had one publication in preparation for
this contribution.

RASF integration tool (RASFIT) as a plug-in of Eclipse to support the RASF
approach and apply the RASF process model (Chapter 9). I had one publication
[85] and one in preparation during this contribution.

Modeling, specification and design of case studies using RASF (Section 10.1.1)
with self-healing (Section 10.1.2), self-configuration (10.1.3) and their categorical
models (Section 10.1.4 — 10.1.7). I had one publication [86] and one in
preparation for this contribution.

Applied our RASF approach to three industrial projects: End-to-End iFix Tool,
Integrated Data Access Tool as well as Rational Team Concert Validation Tool.
Moreover, we are preparing the application of NSERC’s Engage Grant with IBM
Centers for Advanced Studies at IBM Toronto Lab based on one of those three
projects.

Joint work with two master students for mapping the RAS model to the MAS
model (Section 5.3) and model transformation from RAS to MAS implementation
(Section 5.4).

Joint work with two master students for the graphical illustration (CATCanvas) of

categorical models (Section 6.4) and categorical specifications of the MAS model

313

(Section 6.5).

e Joint work with two master students for transforming the RAS models of case
studies to their MAS models (Section 10.1.8), transforming the MAS models to
their categorical models (Section 10.1.9) and transforming the MAS models to
their implementations (Section 10.1.10).

11.3 Challenges of RASF Approach

RASF approach still faces some challenges at current stage which might be overcome
through our future work. For example, 1) how RASF approach can seamlessly fill the
knowledge and technical gaps between IT professionals and category theory experts, so
that both of them can use RASF freely from their own perspective without knowing too
much details about the other side; 2) how RASF approach can be widely accepted and
easily applied to the industrial projects, since category theory is relatively abstract and
there are very few industrial research projects on using it right now.

Another challenge is how RASF implements a formal reasoning mechanism to
reason about new properties from existing ones, either from the XML representations of
the categorical models or from the visualization of those models. Moreover, we can
discover flaws for the various models in RASF by that formal reasoning mechanism.
11.4 Future Work
Some of the future extensions to this thesis work include the following aspects:

e Our approach focuses on the self-healing and self-configuration properties in RAS.

However, self-* properties of autonomic systems include self-optimization, self-

314

protection, etc., a future direction would be the extension of our approach to
address those properties.

We need to enhance RASFIT in terms of verifying if the categorical MAS model
generated in Phase 4 (see Phase 7 in Section 5.5) conforms to the categorical RAS
model in Phase 2.

We need to enhance RASFIT in terms of validating if the graphical illustration of
categorical MAS model in Phase 6 (see Phase 8 in Section 5.5) conforms to the
graphical illustration of categorical RAS model in Phase 5.

We need to support the transformation from the MAS implementation in Phase 9
(see Phase 10 in Section 5.5) to its categorical model using category theory.

We need to support the visualization of categorical MAS implementation in Phase
10 (see Phase 11 in Section 5.5) to its graphical representation by importing its
XML representation in Phase 10 to our graphical illustration tool CATCanvas.

We need to enhance RASFIT for verifying if the categorical MAS implementation
in Phase 10 (see Phase 12 in Section 5.5) conforms to the categorical MAS model
in Phase 4.

We need to enhance RASFIT for validating if the graphical illustration of the
categorical MAS implementation in Phase 11 (see the Phase 13 in Section 5.5)

conforms to the graphical illustration of the categorical MAS model in Phase 6.

315

References

[1] S. Abdelwahed and N. Kandasamy, “A Control-Based Approach to Autonomic
Performance Management in Computing Systems”, Autonomic Computing: Concepts,
Infrastructure, and Applications, CRC Press, December 2006, Page 149 — 167.

[2] M. Agarwal, V. Bhat, H. Liu, V. Matossian, V. Putty, C. Schmidt, G. Zhang, L. Zhen,
M. Parashar, B. Khargharia, S. Hariri, “AutoMate: Enabling Autonomic Applications on
the Grid”, Autonomic Computing Workshop, June 2003, Page 48 — 57.

[3] M. Agarwal, M. Parashar, “Enabling Autonomic Compositions in Grid Environment”,
Proceedings of the 4™ International Workshop on Grid Computing, November 2003, Page
34 —41.

[4] J. Appavoo, K. Hui, C. A. N. Soules, R. W. Wisniewski, D. M. Da Silva, O. Krieger,
M. A. Auslander, D. J. Edelsohn, B. Gamsa, G. R. Gagner, P. McKennedy, M. Ostrowski,
B. Rosenburg, M. Stumm, and J. Xenidis, “Enabling autonomic behavior in systems
software with hot swaping”, IBM Systems Journal, Volume 42, No.1, January 2003, Page
60 — 76.

[5] M. A. Arbib and E. G. Manes, “Machines in a Category: An Expository Introduction”,
SIAM Review, Volume 16, No. 2, April 1974, Page 163 — 192.

[6] S. Awodey, Category Theory, Oxford University Press, July 2006.

[7] R. Barrett, P. P. Maglio, E. Kandogan, and J. Bailey, “Usable autonomic Computing
Systems: the Administrator’s Perspective”, Proceedings of the 1% International

Conference on Autonomic Computing, May 2004, Page 18 — 26.

316

[8] F. Bellifemine, G. Caire, and D. Greenwood, Developing Multi-Agent Systems with
JADE, John Wiley & Sons, April 2007.

[9] J. Bentahar, Z. Maamar, D. Benslimane, and P. Thiran, “An Argumentation
Framework for Communities of Web Services”, IEEE Intelligent Systems, Volume 22,
Issue 6, November 2007, Page 75 — 83.

[10] J. Bentahar, “A Pragmatic and Semantic Unified Framework for Agent
Communication”, PhD Thesis, Department of Computer Science and Software
Engineering, Laval University, Laval, Quebec, Canada, May 2005.

[11] P. Besnard and A. Hunter, “A Logic-Based Theory of Deductive Arguments”,
Artificial Intelligence, Volume 128, Issue 1-2, May 2001, Page 203 — 235.

[12] A. Beygelmizer, G. Grinstein, R. Linsker, I. Rish, “Improving Network Robustness”,
Proceedings of the 1* International Conference on Autonomic Computing, May 2004,
Page 322 — 323.

[13] V. Bhat, M. Parashar, and N. Kandasamy, “Autonomic Data Streaming for
High-Performance Scientific ~Applications”, Autonomic Computing: Concepts,
Infrastructure, and Applications, CRC Press, December 2006, Page 413 — 433.

[14] J. P. Bigus, D. A. Schlosnagle, J. R. Pilgrim, W. N. Mills III, and Y. Diao, “ABLE: A
Toolkit for Building Multi Agent Autonomic System”, IBM Systems Journal, Volume 41,
No.3, September 2002, Page 350 — 371.

[15] D. Bonino, A. Bosca, and F. Corno, “An Agent Based Autonomic Semantic

Platform”, Proceedings of the 1% International Conference on Autonomic Computing,

317

May 2004, Page 189 — 196.

[16] C. Boutilier, R. Das, G. Tesauro, J. O. Kephart, and W. E. Walsh, “Cooperative
Negotiation in Autonomic Systems using Incremental Utility Elicitation”, Proceedings of
the 19™ Conference in Uncertainty in Artificial Intelligence, August 2003, Page 89 — 97.
[17] M. Bratman, Intention, Plans, and Practical Reason, Harvard University Press,
November 1987.

[18] R. Cervenka, D. Greenwood, and 1. Trencansky, “The AML Approach to Modeling
Autonomic Systems”, Proceedings of the 2" International Conference on Autonomic and
Autonomous Systems, July 2006, Page 29 — 34.

[19] A. J. Chakravarti, G. Baumgartner, M. Lauria, “The Organic Grid: Self-Organizing
Computation on a Peer-to-Peer Network”, Proceedings of the 1*' International Conference
on Autonomic Computing, May 2004, Page 96 — 103.

[20] M. E. Bratman, “Planning and the Stability of Intentions”, Journal of Minds and
Machines, Volume 2, No. 1, February 1992, Page 1 — 16.

[21] F. Brazier, B. D. Keplicz, N. R. Jennings, and J. Treur, “Formal Specification of
Multi-Agent Systems: a Real-World Case”, Proceedings of the 1* International
Conference on Multi-Agent Systems, June 1995, Page 25 — 32.

[22] R. A. Brooks, “A Robust Layered Control System for a Mobile Robot”, IEEE
Journal of Robotics and Automation, Volume 2, Issue 1, March 1986, Page 14 — 23.

[23] L. Chen, G. Agrawal, “Self-Adaptation in a Middleware for Processing Data Stream”,

Proceedings of the 1* International Conference on Autonomic Computing, May 2004,

318

Page 292 — 293.

[24] D. M. Chess, C. C. Palmer, and S. R. White, “Security in an Autonomic Computing
Environment”, IBM Systems Journal, Volume 42, No.1, January, 2003, Page 107 — 118.
[25] P. E. Clark, M. L. Rilee, W. Truszkowski, G. Marr, S. A. Curtis, C. Y. Cheung, and M.
Rudisill, “PAM: Biologically Inspired Engineering and Exploration Mission Concept,
Components, and Requirements for Asteroid Population Survey”, Proceedings of the 550
International Astronautical Congress, October 2004, IAC-04-Q5.07.

[26] I. Croitoru, “Autonomic Systems Modeling Development: A Survey”, Master Major
Report, Department of Computer Science & Software Engineering, Concordia University,
Montreal, Quebec, Canada, April 2006.

[27] S. Curtis, J. Mica, J. Nuth, G. Marr, M. Rilee, and M. Bhat, “ANTS (Autonomous
Nano Technology Swarm): an Artificial Intelligence Approach to Asteroid Belt Resource
Exploration”, Proceedings of the 51* International Astronautical Congress, October 2000,
[AA-00-TAA.Q.5.08.

[28] K. Decker and V. Lesser, “Designing a Family of Coordination Algorithms”,
Proceedings of the 1% International Conference on Multi-Agent Systems, June 1995, Page
73 — 80.

[29] R. Depke, R. Heckel, and J. M. Kuster, “Formal Agent-Oriented Modeling with
UML and Graph Transformation”, Science of Computer Programming, Volume 44, Issue
2, August 2002, Page 229 — 252.

[30] Y. Diao, J. L. Hellerstein, S. Parekh, and J. P. Bigus, “Managing Web Server

319

Performance with AutoTune Agents”, IBM Systems Journal, Volume 42, No.1, January
2003, Page 136 — 149.

[31] E. H. Durfee, “Coordination of Distributed Problem Solvers”, Kluwer Academic
Publishers, August 1988.

[32] G. B. Enguix and M. D. J. Lopez, “Agent-Environment Interaction in a Multi-Agent
System: a Formal Model”, Proceedings of the 2007 GECCO Conference on Genetic and
Evolutionary Computation, July 2007, Page 2607 — 2612.

[33] T. Eymann, M. Reinickke, O. Ardaiz, P. Artigas, F. Freitag, L. Navarro,
“Self-Organizing Resource Allocation for Autonomic Network”, Proceedings of the 14
International Workshop on Database and Expert Systems Applications, September 2003,
Page 656 — 660.

[34] M. Fasli, “Social Interactions in Multi-Agent Systems: A Formal Approach”,
Proceedings of the 2003 IEEE/WIC International Conference on Intelligent Agent
Technology, October 2003, Page 240 — 246.

[35] J. Fiadeiro and T. Maibaum, “Temporal Theories as Modularisation Units for
Concurrent System Specification”, Formal Aspects of Computing, Volume 4, No. 3, May
1992, Page 239 —272.

[36] J. Fiadeiro and T. Maibaum, “A Mathematical Toolbox for the Software Architect”,
Proceedings of the 8" International Workshop on Software Specification and Design,
March 1996, Page 46 — 55.

[37] M. Fisher, “Representing and Executing Agent-Based Systems”, Proceedings of the

320

Workshop on Agent Theories, Architectures, and Languages on Intelligent Agents,
August 1995, Page 307 — 323.

[38] A. G. Ganek, T. A. Corbi, “The Dawning of the Autonomic Computing Era”, IBM
Systems Journal, Volume 42, No. 1, January 2003, Page 5 — 18.

[39] M. P. Georgeff, “Communication and Interaction in Multi-Agent Planning”,
Proceedings of the 3" National Conference on Artificial Intelligence, August 1983, Page
125 -129.

[40] R. Ginis, R. Strom, “An Automatic Messaging Middleware with Stateful Stream
Transformation”, Proceedings of the 1% International Conference on Autonomic
Computing, May 2004, Page 316 — 317.

[41] J. A. Goguen, J. W. Thatcher, and E. G. Wagner, “An Initial Algebra Approach to the
Specification, Correctness and Implementation of Abstract Data types”, Current Trends in
Programming Methodology: Data Structuring, Prentice-Hall, September 1978, Page 80 —
149.

[42] J. A. Goguen and R. M. Burstall, “Some Fundamental Algebraic Tools for the
Semantics of Computation — Part 1: Comma Categories, Colimits, Signatures and
Theories”, Theoretical Computer Science, Volume 31, No. 2, July 1984, Page 175 — 209.
[43] J. A. Goguen and F. J. Verela, “Systems and Distinctions, Duality and
Complementarity”, International Journal of General Systems, Volume 5, No. 1, January
1979, Page 31 —43.

[44] B. Grosz and C. Sidner, “Collaborative Plans for Complex Group Actions”, Artificial

321

Intelligence, Volume 86, No. 2, October 1996, Page 269 — 357.

[45] H. Guo, J, Gao, P. Zhu, and F. Zhang, “A Self-Organized Model of Agent-Enabling
Autonomic Computing for Grid Environment”, Proceedings of the 6" World Congress on
Intelligent Control and Automation, June 2006, Page 2623 — 2627.

[46] J. Guo, “Using Category Theory to Model Software Component Dependencies”,
Proceedings of the 9" Annual IEEE International Conference and Workshop on the
Engineering of Computer-Based Systems, April 2002, Page 185 — 192.

[47] R. Haas, P. Droz, and B. Stiller, “Autonomic service deployment in networks”, IBM
Systems Journal, Volume 42, No.1, January 2003, Page 150 — 164.

[48] T. Heinis, C. Pautasso, and G. Alonso, “A Self-Configuring Service Composition
Engine”, Autonomic Computing: Concepts, Infrastructure, and Applications, CRC Press,
December 2006, Page 237 — 251.

[49] V. Hilaire, A. Koukam, P. Gruer, and J. P. Muller, “Formal Specification and
Prototyping of Multi-Agent Systems”, Proceedings of the 1* International Workshop on
Engineering Societies in the Agent World, August 2000, Page 114 — 127.

[50] G. Hill, “Category Theory for the Configuration of Complex Systems”, Proceedings
of the 3" International Conference on Methodology and Software Technology, June 1993,
Page 193 — 200.

[51] M. G. Hinchey, C. A. Rouft, J. L. Rash, and W. F. Truszkowski, “Requirements of an
Integrated Formal Method for Intelligent Swarms”, Proceedings of the 10" International

Workshop on Formal Methods for Industrial Critical Systems, September 2005, Page 125

322

—133.

[52] M. Hinchey, Y. Dai, J. L. Rash, W. Truszkowski, and M. Madhusoodan, “Bionic
Autonomic Nervous System and Self-Healing for NASA ANTS-Like Missions”,
Proceedings of the 2007 ACM Symposium on Applied Computing, March 2007, Page 90
- 96.

[53] M. Hinchey, Y. Dai, C. A. Rouff, J. L. Rash, and M. Qi, “Modeling for NASA
Autonomous Nano-Technology Swarm Missions and Model-Driven Autonomic
Computing”, Proceedings of the 21% International Conference on Advanced Networking
and Applications, May 2007, Page 250 — 257.

[54] K.V. Hindriks, F. S. De Boer, W. V. Der Hoek, and J. Ch. Meyer, “Agent
Programming in 3APL”, International Journal of Autonomous Agents and Multi-Agent
Systems, Volume 2, Issue 4, November 1999, Page 357 — 401.

[55] W. M. L. Holcombe, “Towards a Formal Description of Intracellular Biochemical
Organization”, Technical Report CS-86-1, Department of Computer Science, Sheffield
University, Sheffield, South Yorkshire, United Kingdom, January 1986.

[56] W. M. L. Holcombe, “Mathematical Models of Cell Biochemistry”, Technical
Report CS-86-4, Department of Computer Science, Sheffield University, Sheffield, South
Yorkshire, United Kingdom, April 1986.

[57] W. M. L. Holcombe, “X-Machines as a Basis for Dynamic System Specification”,
Software Engineering Journal, Volume 3, Issue 2, March1988, Page 69 — 76.

[58] P. Horn, “Autonomic Computing: IBM Perspective on the State of Information

323

Technology”, Presented at AGENDA 2001, IBM T. J. Watson Labs, October 2001.

[59] J. Hu, J. Gao, B. Liao, and J. Chen, “Multi-Agent System Based Autonomic
Computing Environment”, Proceedings of the 3" International Conference on Machine
Learning and Cybernetics, August 2004, Page 105 — 110.

[60] J. Hou, J. Wan, and S. Wang, “Formalization of Architecture-Centric Model
Mapping Using Category”, Proceedings of the 8™ ACIS International Conference on
Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed
Computing, July 2007, Page 670 — 675.

[61] J. Hu and M. P. Wellman, “Self-Fulfilling Bias in Multi Agent Learning”,
Proceedings of the 2" International Conference on Multi-Agent Systems, December
1996, Page 118 — 125.

[62] J. Huang, “Modeling Multi-Agent Systems with Category Theory”, Master’s Thesis,
Department of Computer Science and Software Engineering, Concordia University,
Montreal, Canada, 2011.

[63] IBM Corporation, “An Architectural Blueprint for Autonomic Computing,” White
Paper, 4™ Edition, June 2006.

[64] IBM Corporation, “Automating problem determination, a first step towards self-
healing computing systems”, White Paper, October 2003.

[65] IBM Corporation, “An architectural blueprint for autonomic computing”, White
Paper, 1* Edition, April 2003.

[66] IBM Corporation, “An architectural blueprint for autonomic computing”, White

324

Paper, 2" Edition, October 2004.

[67] IBM Corporation, “An architectural blueprint for autonomic computing”, White
Paper, 3" Edition, June 2005.

[68] IEEE Standard 1061-1998, “IEEE Standard for a Software Quality Metrics
Methodology”, IEEE Computer Society, March 1998.

[69] L Ilyas, V. Markl, P. Haas, P. G. Brown, A. Aboulnaga, “Automatic Relationship
Discovery in Self-Managing Database Systems”, Proceedings of the 1% International
Conference on Autonomic Computing, May 2004, Page 340 — 341.

[70] ISO/IEC 14977:1996(E), “Information technology - Syntactic metalanguage -
Extended BNF”, ISO/IEC, 1996.

[71] V. Janarthanan and P. Sinha, “Modular Composition and Verification of Transaction
Processing Protocols”, Proceedings of the 23" International Conference on Distributed
Computing Systems, May 2003, Page 450 — 457.

[72] J. Jann, L. M. Browning, and R. S. Burgula, “Dynamic Reconfiguration: Basic
building blocks for autonomic computing on IBM pSeries servers”, IBM Systems Journal,
Volume 42, No.1, January 2003, Page 29 — 37.

[73] N. R. Jennings, K. P. Sycara, M. Wooldridge, “A Roadmap of Agent Research and
Development”, International Journal of Autonomous Agents and Multi-Agent Systems,
Volume 1, Issue 1, July 1998, Page 7 — 38.

[74] N. R. Jennings, “Controlling Cooperative Problem Solving in Industrial Multi-Agent

Systems Using Joint Intentions”, Artificial Intelligence, Volume 75, Issue 2, June 1995,

325

Page 195 — 240.

[75] N. R. Jennings, “Specification and Implementation of a Belief Desire Joint-Intention
Architecture for Collaborative Problem Solving”, Journal of Intelligent and Cooperative
Information Systems, Volume 2, No. 3, June 1993, Page 289 — 318.

[76] N. R. Jennings, P. Faratin, M. J. Johnson, T. J. Norman, P. O’Brien, and M. E.
Wiegand, “Agent-Based Business Process Management”, International Journal of
Cooperative Information systems, Volume 5, No. 2 & 3, June & September 1996, Page
105 - 130.

[77] W. Jiao, M. Zhou, and Q. Wang, “Formal Framework for Adaptive Multi-Agent
Systems”, Proceedings of the 2003 IEEE/WIC International Conference on Intelligent
Agent Technology, October 2003, Page 442 — 445.

[78] M. Johnson and C. N. G. Dampney, “On Category Theory as a (meta) Ontology for
Information Systems Research”, Proceedings of the International Conference on Formal
Ontology in Information Systems, October 2001, Page 59 — 69.

[79] S. E. Johnston, R. Sterritt, E. Hanna, and P. O’Hagan, “Reflex Autonomicity in an
Agent-Based Security System: The Autonomic Access Control System”, Proceedings of
the 4™ IEEE International Workshop on Engineering of Autonomic and Autonomous
Systems, March 2007, Page 68 — 78.

[80] J. O. Kephart, D. M. Chess, “The Vision of Autonomic Computing”, Computer,
Volume 36, No. 1, January 2003, Page 41 — 50.

[81] N. Khurshid, “Towards Specifying Swarm-Based Systems using Categorical

326

Modeling Language: A Case Study”, Master’s Thesis, Department of Computer Science
and Software Engineering, Concordia University, Montreal, Canada, 2011.

[82] J. R. Kiniry, “The Specification of Dynamic Distributed Component Systems”,
Master Thesis, Department of Computer Science, California Institute of Technology,
Pasadena, California, United State of America, May 1998.

[83] S. Kraus, J. Wilkenfeld, and G. Zlotkin, “Multi Agent Negotiation under Time
Constraints”, Artificial Intelligence, Volume 75, No. 2, June 1995, Page 297 — 345.

[84] H. Kuang, “Architecture for Reactive Autonomic Systems: AS-TRM Approach”,
Master Thesis, Department of Computer Science & Software Engineering, Concordia
University, Montreal, Quebec, Canada, April 2006.

[85] H.Kuang, “Architecture for Reactive Autonomic Systems: AS-TRM Approach”,
LAP LAMBERT Academic Publishing, 2010, ISBN: 978- 3838364124.

[86] H. Kuang, J. Bentahar, O. Ormandjieva, N. Shafieidizaji, S. Klasa, “Formal
Specification of Substitutability Property for Fault-Tolerance in Reactive Autonomic
Systems”, Frontiers in Artificial Intelligence and Applications, Volume 217, pp. 357 —
380, IOS Press, 2010, DOI: 10.3233/978-1-60750-629-4-357.

[87] H. Kuang, O. Ormandjieva, S. Klasa, J. Bentahar, “A Formal Specification of
Fault-Tolerance in Prospecting Asteroid Mission with Reactive Autonomic Systems
Framework™, Proceedings of the Twenty-First IEEE International Conference on
Application-specific Systems, Architectures and Processors, pp. 99 — 106, Rennes, France,

July 2010.

327

[88] H. Kuang, O. Ormandjieva, "Self-Monitoring of Non-Functional Requirements in
Reactive Autonomic Systems Framework: A Multi-Agent Systems Approach",
Proceedings of the Third International Multi-Conference on Computing in the Global
Information Technology, pp. 186-192, Athens, Greece, July 2008.

[89] H. Kuang, “Reactive Autonomic Systems Framework: Multi-Agent Approach”,
Ph.D. Thesis Proposal, Department of Computer Science & Software Engineering,
Concordia University, Montreal, Quebec, Canada, February 2009.

[90] H. Kuang, O. Ormandjieva, S. Klasa, N. Khurshid, and J. Bentahar, “Towards
specifying reactive autonomic systems with a categorical approach: a case study”, Studies
in Computational Intelligence, Volume 253/2009, Springer Berlin/Heidelberg, November
2009, 119-134.

[91] A. Labella and A. Pettorossi, “Universal Models in Categories for Process
Synchronization”, Proceedings on Mathematical Models for the Semantics of Parallelism,
September 1986, Page 183 — 198.

[92] G. Lafranchi, P. D. Peruta, A. Perrone, and D. Calvanese, “Toward a new landscape
of systems management in an autonomic computing environment”, IBM Systems Journal,
Volume 42, No. 1, January 2003, Page 119 — 128.

[93] S. M. Lane, “Categories for the Working Mathematician”, Springer—Verlag: New
York, Heidelberg, Berlin, 1971.

[94] W. M. Lee, “Modeling and Specification of Autonomous Systems Using Category

Theory”, PhD Thesis, Department of Computer Science, University College London,

328

London, Greater London, United Kingdom, October 1989.

[95] S. Leriche and J. P. Arcangeli, “Flexible Architectures and Agents for Adaptive
Autonomic Systems”, Proceedings of the 4™ [EEE International Workshop on
Engineering of Autonomic and Autonomous Systems, March 2007, Page 99 — 106.

[96] V. R. Lesser, “A Retrospective View of FA/C Distributed Problem Solving”, IEEE
Transactions on Systems, Man, and Cybernetics, Volume 21, No. 6, December 1991,
Page 1347 — 1362.

[97] H. J. Levesque, P. R. Cohen, and J. H. T. Nunes, “On Acting Together”, Proceedings
of the 8" National Conference on Artificial Intelligence, July 1990, Page 94 — 99.

[98] Z. Li and M. Parashar, “A Decentralized Agent Framework for Dynamic
Composition and Coordination for Autonomic Applications”, Proceedings of the 16"
International Workshop on Database and Expert Systems Applications, August 2005,
Page 165 — 169.

[99] Z. Li and M. Parashar, “Rudder: A Rule-Based Multi-Agent Infrastructure for
Supporting Autonomic Grid Applications”, Proceedings of the 1° International
Conference on Autonomic Computing, May 2004, Page 278 — 279.

[100] S. Lightstone, B. Schiefer, D. Zilio, J. Kleewein, “Autonomic Computing for
Relational Databases: the Ten-Year Vision”, Proceedings of the IEEE International
Conference on Industrial Informatics, August 2003, Page 419 — 424.

[101] P. Lin, A. MacArthur, J. Leaney, “Defining Autonomic Computing: A Software

Engineering Perspective”, Proceedings of the 2005 Australian Conference on Software

329

Engineering, March 2005, Page 88 — 97.

[102] H. Liu and M. Parashar, “A Programming System for Autonomic Self-Managing
Applications”, Autonomic Computing: Concepts, Infrastructure, and Applications, CRC
Press, December 2006, Page 211 — 235.

[103] C. Loeser, M. Ditze, P. AltenBernd, F. Rammig, “GRUSEL — a Self-Optimizing
Bandwidth Aware Video on Demand P2P Application”, Proceedings of the 1%
International Conference on Autonomic Computing, May 2004, Page 330 — 331.

[104] M. Luck and M. D’Inverno, “A Conceptual Framework for Agent Definition and
Development”, the Computer Journal, Volume 44, No. 1, November 2001, Page 1 — 20.
[105] M. Luck, P. McBurney, O. Shehory, S. Willmott, and AgentLink Community, Agent
Technology: Computing as Interaction, a Roadmap for Agent-Based Computing,
AgentLink III, September 2005.

[106] A. K. Mackworth and Y. Zhang, “A Formal Approach to Agent Design: an
Overview of Constraint-Based Agents”, Constraints, Volume 8, Issue 3, July 2003, Page
229 —242.

[107] A. Madureira, J. Santos, and 1. Pereira, “Self-Managing Agents for Dynamic
Scheduling in Manufacturing”, Proceedings of the 2008 GECCO Conference on Genetic
and Evolutionary Computation, July 2008, Page 2187 — 2192.

[108] P. Maes, “Situated Agents Can Have Goals”, Designing Autonomous Agents:
Theory and Practice from Biology to Engineering and Back, MIT Press, February 1991,

Page 49 — 70.

330

[109] E. Mainsah, “Autonomic Computing: the Next Era of Computing”, IEE Electronics
Communication Engineering Journal, Volume 14, No. 1, February 2002, Page 2 — 3.

[110] V. Markl, G. M. Lohman, and V. Rahman, “LEO: An Autonomic Query Optimizer
for DB2”, IBM Systems Journal, Volume 42, No.1, January 2003, Page 98 — 106.

[111] T. Marshall and Y. S. Dai, “Reliability Improvement and Models in Autonomic
Computing”, Proceedings of the 11™ International Conference on Parallel and Distributed
Systems, July 2005, Page 468 —472.

[112] P. McBurney, S. Parsons, and M. Wooldridge, “Desiderata for Agent Argumentation
Protocols”, Proceedings of the 1*' International Joint Conference on Autonomous Agents
and Multi Agent Systems, July 2002, Page 402 — 409.

[113] P. McBurney and S. Parsons, “Games that Agents Play: a Formal Framework for
Dialogues between Autonomous Agents”, Journal of Logic, Language, and Information,
Volume 11, Issue 3, July 2002, Page 315 — 334.

[114] Microsoft Corporation, “Microsoft Dynamic Systems Initiative”, White Paper,
October 2003.

[115] R. Milner, “A Theory of Type Polymorphism in Programming”, Journal of
Computer and System Sciences, Volume 17, No. 3, December 1978, Page 348 — 375.
[116] P. Moraitis and N. Spanoudakis, “Argumentation-Based Agent Interaction in an
Ambient-Intelligence Context”, IEEE Intelligent Systems, Volume 22, Issue 6, November
2007, Page 84 — 93.

[117] A. F. Moreira, R. Vieira, and R. H. Bordini, “Extending the Operational Semantics

331

of a BDI Agent-Oriented Programming Language for Introducing Speech-Act Based
Communication”, Proceedings of the 1% International Workshop on Declarative Agent
Languages and Technologies, July 2003, Page 135 — 154.

[118] R. Murch, Autonomic Computing, IBM Press, April 2004.

[119] J. V. Neumann, Theory of Self-Reproducing Automata, University of Illinois Press,
July 1966.

[120] A. Newell, Unified Theories of Cognition, Harvard University Press, April 1994.
[121] M. Parashar, “Autonomic Grid Computing: Concepts, Requirements, and
Infrastructure”, Autonomic Computing: Concepts, Infrastructure, and Applications, CRC
Press, December 2006, Page 49 — 70.

[122] Y. A. Obaisat and R. Braun, “A Multi-Agent Flexible Architecture for Autonomic
Services and Network Management”, Proceedings of the 5" ACS/IEEE International
Conference on Computer Systems and Applications, May 2007, Page 132 — 138.

[123] O. Ormandjieva and J. Quiroz, “Methodology for Automatic Generation of
Exhaustive Behavioral Models in Reactive Autonomic Systems”, Proceedings of the
International Conference on Software Engineering Theory and Practice, July 2008, Page
95 - 104.

[124] O. Ormandjieva, H. Kuang, and E. Vassev, “Reliability Self-Assessment in
Reactive Autonomic Systems: Autonomic System-Time Reactive Model Approach”,
International Transactions on Systems Science and Applications, Volume 2, No. 1,

September 2006, Page 99-104.

332

[125] O. Ormandjieva, 1. Hussain, “Towards Automatic Generation of Formal Scenarios
Specifications from Real-Time Reactive Systems Requirements Written in NL”,
Proceedings of the International Conference on Parallel and Distributed Processing
Techniques and Applications, Las Vegas, USA, June 2006, pp. 991 — 999.

[126] O. Ormandjieva, H. Kuang, S. Klasa, "Reactive Autonomic System Performance
Modeling and Self-Monitoring with Category Theory", Proceedings of the Fourth
International Conference on Software and Data Technologies, pp. 325-330, Sofia,
Bulgaria, July 2009.

[127] W. H. Oyenan and S. A. DeLoach, “Design and Evaluation of a Multi Agent
Autonomic Information System”, Proceedings of the 2007 IEEE/WIC/ACM International
Conference on Intelligent Agent Technology, November 2007, Page 182 — 188.

[128] P. A. Patsouris, “Coordinated Flows in a Formal Multi-Agent System Based on a
Modal Algebra”, Proceedings of the 1999 International Conference on Parallel
Processing, September 1999, Page 480 — 487.

[129] L. Paulson, “Computer System Heal Thyself”, IEEE Computer, Volume 35, No. 8§,
August 2002, Page 20 — 22.

[130] J. Pfalzgraf, T. Soboll, “On a General Notion of Transformationfor Multiagent
Systems”, Integrated Design and Process Technology, IDPT-2007 printed in the United
States of America, June 2007.

[131] A. Pokahr, L. Braubach, and W. Lamersdorf, “Jadex: a BDI Reasoning Engine”,

Multi-Agent Programming, Springer, September 2005, Page 149 — 174.

333

[132] G. Pour, “Prospects for Expanding Telehealth: Multi-Agent Autonomic
Architecture”, Proceedings of the International Conference on Computational
Intelligence for Modeling Control and Automation, and International Conference on
Intelligent Agent, Web Technologies and Internet Commerce, November 2006, Page 130
—135.

[133] G. Qu, S. Hariri, S. Jangiti, J. Rudraraju, S. Oh, S. Fayssal, G. Zhang, M. Parashar,
“Online Monitoring and Analysis for Self-Protection Against Network Attacks”,
Proceedings of the 1* International Conference on Autonomic Computing, May 2004,
Page 324 — 325.

[134] J. Quiroz, “Methodology for Automatic Generation of Behavioral Specification in
Reactive Autonomic Systems", Master’s Thesis, Department of Computer Science and
Software Engineering, Concordia University, Montreal, Canada, 2007.

[135] I. Rahwan, P. Moraitis, and C. Reed, Argumentation in Multi-Agent Systems,
Proceedings of the 1* Workshop on Argumentation in Multi-Agent Systems, July 2004.
[136] A. Rao and M. Georgeff, “An Abstract Architecture for Rational Agents”,
Proceedings of the 3" International Conference on Principles of Knowledge
Representation and Reasoning, October 1992, Page 439 — 449.

[137] A. Rao and M. Georgeff, “An Abstract Architecture for Rational Agents”,
Proceedings of the 3" International Conference on Principles of Knowledge
Representation and Reasoning, October 1992, Page 439 — 449.

[138] A. Rao, “AgentSpeak(L): BDI Agents Speak Out in a Logical Computable

334

Language”, Proceedings of the 7t European Workshop on Modelling Autonomous
Agents in a Multi-Agent World, January 1996, Page 42 — 55.

[139] A. Regayeg, A. H. Kacem, and M. Jmaiel, “Towards a Formal Methodology for
Developing Multi-Agent Applications Using Temporal Z”, Proceedings of the 31
ACS/IEEE International Conference on Computer Systems and Applications, January
2005, Page 123 —130.

[140] C. Rich and C. Sidner, “COLLAGEN: When Agents Collaborate with People”,
Proceedings of the 1% International Conference on Autonomous Agents, February 1997,
Page 284 — 291.

[141] J. S. Rosenschein, “Rational Interaction: Cooperation among Intelligent Agents”,
PhD Thesis, Department of Computer Science, Stanford University, Stanford, California,
United States of America, January 1986.

[142] J. S. Rosenschein and G. Zlotkin, Rules of Encounter: Designing Conventions for
Automated Negotiation among Computers, MIT Press, July 1994.

[143] L. W. Russel, S. P. Morgan, and E. G. Chron, “Clockwork: A new movement in
autonomic systems”, IBM System Journal, Volume 42, No.1, January 2003, Page 77 — 84.
[144] S. M. Sadjadi, P. K. McKinley, R. E. K. Stirewalt, B. H. C. Cheng, “Generation of
Self-Optimizing Wireless Network Application”, Proceedings of the 1* International
Conference on Autonomic Computing, May 2004, Page 310 — 311.

[145] T. Sandholm and V. Lesser, “Issues in Automated Negotiation and Electronic

Commerce: Extending the Contract Net Protocol”, Proceedings of the 1% International

335

Conference on Multi Agent Systems, June 1995, Page 328 — 335.

[146] A. Sernadas, C. Sernadas, and C. Caleiro, “Synchronization of Logics”, Journal of
Studia Logica, Volume 59, No. 2, September 1997, Page 217 — 247.

[147] S. A. Seshia, “Autonomic Reactive Systems via Online Learning”, Proceedings of
the 4™ International Conference on Autonomic Computing, June 2007, Page 30 — 39.
[148] N. Shafiei-Dizaji, “Multi-Agent Approach to Modeling and Implementing
Fault-Tolerance in Reactive Autonomic Systems”, Master’s Thesis, Department of
Computer Science and Software Engineering, Concordia University, Montreal, Canada,
2011.

[149] M. P. Singh and M. N. Huhns, Service-Oriented Computing: Semantics, Processes,
and Agents, John Wiley & Sons, January 2005.

[150] G. Smith and J. Derrick, “Refinement and Verification of Concurrent Systems
Specified in Object-Z and CSP”, Proceedings of the 1% IEEE International Conference on
Formal Engineering Methods, November 1997, Page 293 — 302.

[151] B. Solomon, D. Ionescu, M. Litoiu, and M. Mihaescu, “Towards a Real-Time
Reference Architecture for Autonomic Systems”, Proceedings of the International
Workshop on Software Engineering for Adaptive and Self-Managing Systems, May 2007,
Page 10 — 19.

[152] B. Solomon, D. Ionescu, M. Litoiu, and M. Mihaescu, “A Real-Time Adaptive
Control of Autonomic Computing Environments”, Proceedings of the Conference of the

Centre for Advanced Studies on Collaborative Research, October 2007, Page 124 — 136.

336

[153] W. M. Spears and D. F. Gordon, “Using Artificial Physics to Control Agents”,
Proceedings of the 1999 International Conference on Information Intelligence and
Systems, October 1999, Page 281 — 288.

[154] P. Steenkiste and A. Huang, “Recipe-Based Service Configuration and Adaptation”,
Autonomic Computing: Concepts, Infrastructure, and Applications, CRC Press,
December 2006, Page 189 — 207.

[155] R. Sterritt, D. Bustard, “Towards Autonomic Computing: Effective Event
Management”, Proceedings of the 27" Annual NASA Goddard/IEEE Software
Engineering Workshop, December 2002, Page 40 — 47.

[156] D. J. T. Sumpter, G. B. Blanchard, and D. S. Broomhead, “Ants and Agents: a
Process Algebra Approach to Modeling Ant Colony Behaviour”, Bulletin of
Mathematical Biology, Volume 63, No. 5, September 2001, Page 951 — 980.

[157] Sun Microsystems, “Sun Cluster Grid Architecture”, White Paper, May 2002.

[158] Sun Microsystems, “ARCO, N1 Grid Engine 6 Accounting and Reporting Console”,
White Paper, May 2005.

[159] K. P. Sycara, “Multi Agent Systems”, Al Magazine, Volume 19, No. 2, July 1998,
Page 79 — 92.

[160] K. P. Sycara, “Resolving Goal Conflicts via Negotiation”, Proceedings of the 7t
National Conference on Artificial Intelligence, August 1988, Page 245 — 250.

[161] K. P. Sycara, “Persuasive Argumentation in Negotiation”, Journal of Theory and

Decision, Volume 28, No. 3, May 1990, Page 203 — 242.

337

[162] K. P. Sycara, “Negotiation Planning: an Al Approach”, European Journal of
Operational Research, Volume 46, No. 2, May 1990, Page 216 — 234.

[163] Y. Takahara and T. Takai, “Category Theoretical Framework of General Systems”,
International Journal of General Systems, Volume 11, No. 1, February 1985, Page 1 — 33.

[164] Y. Takahara and T. Takai, “The Category Theory of Time System”, International
Journal of General Systems, Volume 12, No. 1, February 1986, Page 71 — 105.

[165] M. Tambe, “Towards Flexible Teamwork”, Journal of Artificial Intelligence
Research, Volume 7, July 1997, Page 83 — 124.

[166] R. Telford, R. Horman, S. Lightstone, N. Markov, S. O. Connell, and G. Lohman,
“Usability and design consideration for an autonomic relational database management
system”, IBM Systems Journal, Volume 42, No.4, 2003, Page 568 — 581.

[167] G. Tesauro, D. M. Chess, W. E. Walsh, R. Das, A. Segal, I. Whalley, J. O. Kephart,
and S. R. White, “A Multi-Agent Systems Approach to Autonomic Computing”,
Proceedings of the 3™ International Joint Conference on Autonomous Agents and
Multi-Agent Systems, July 2004, Page 464 — 471.

[168] S. N. Thorsen and M. E. Oxley, “Describing Data Fusion Using Category”,
Proceedings of the 6" International Conference on Information Fusion, July 2003, Page
1202 — 1206.

[169] H. Tianfield, “Multi-Agent Autonomic Architecture and Its Application in
E-Medicine”, Proceedings of the IEEE/WIC International Conference on Intelligent

Agent Technology, October 2003, Page 601 — 604.

338

[170] C. Tofts, “Describing Social Insect Behaviour Using Process Algebra”, Transaction
on Social Computing Simulation, Volume 10, No. 1, December 1992, Page 227 — 283.
[171] L. Trencansky, R. Cervenka, and D. Greenwood, “Applying a UML-Based Agent
Modeling Language to the Autonomic Computing Domain”, Proceedings of the ACM
SIGPLAN International Conference on Object-Oriented Programming Systems,
Language, and Applications, October 2006, Page 521 — 529.

[172] W. Trumler, J. Petzold, F. Bagci, T. Ungerer, “AMUN — Autonomic Middleware for
Ubiquitous Environments Applied to the Smart Doorplate Project”, Proceedings of the 1
International Conference on Autonomic Computing, May 2004, Page 274 — 275.

[173] W. Truszkowski, J. Rash, C. Rouff, and M. Hinchey, “Some Autonomic Properties
of Two Legacy Multi-Agent Systems — LOGOS and ACT”, Proceedings of the 11" [EEE
International Conference and Workshop on the Engineering of Computer-Based Systems,
May 2004, Page 490 — 498.

[174] W. F. Truszkowski, M. G. Hinchey, J. L. Rash, and C. A. Rouft, “Autonomous and
Autonomic Systems: a Paradigm for Future Space Exploration Missions”, IEEE
Transaction on Systems, Man, and Cybernetics, Part C: Applications and Reviews,
Volume 36, Issue 3, May 2006, Page 279 — 291.

[175] E. Vassev, M. Hinchey, and J. Paquet, “A Self-Scheduling Model for NASA
Swarm-Based Exploration Missions Using ASSL”, Proceedings of the 5" IEEE
Workshop on Engineering of Autonomic and Autonomous Systems, March 2008, Page 54

—64.

339

[176] E. Vassev, H. Kuang, O. Ormandjieva, J. Paquet, "Reactive, Distributed and
Autonomic Computing Aspects of AS-TRM", Proceedings of the First International
Conference on Software and Data Technologies, pp. 196-202, Setubal, Portugal,
September 2006.

[177] E. Vassev, Q. T. D. Nguyen, H. Kuang, “Fault-Tolerance through Message-logging
and Check-pointing: Disaster Recovery for CORBA —based Distributed Bank Servers”,
CoRR abs/0911.3092, 2009.

[178] D. C. Verma, S. Sahu, S. Calo, A. Shaikh, I. Chang, and A. Acharya, “SRIRAM: A
scalable resilient autonomic mesh”, IBM Systems Journal, Volume 42, No.l, January
2003, Page 19 — 28.

[179] C. Vermeulen and B. Bauwens, “Software Agents Using XML for Telecom Service
Modeling: a Practical Experience”, Proceedings of the SGML/XML Europe’98, May
1998, Page 253 — 262.

[180] D. N. Walton and E. C. W. Krabble, Commitment in Dialogue: Basic Concepts of
Interpersonal Reasoning, SUNY Press, July 1995.

[181] W. Wan, “Specifying and Verifying Communities of Web Services Using
Argumentative Agents”, Master Thesis, Concordia Institute for Information Systems
Engineering, Concordia University, Montreal, Quebec, Canada, August 2008.

[182] D. B. Weaver, M. J. Healy, and T. P. Caudell, “An Application of
Category-Theoretic Design Methods to the Control of a Simulated Robot”, Proceedings

of the International Joint Conference on Neural Networks, August 2007, Page 2058 —

340

2063.

[183] M. Weiser, “Creating the Invisible Interface”, Proceedings of the 7" Annual ACM
Symposium on User Interface Software and Technology, 1994, Page 1 — 2.

[184] K. Whinsnant, Z. T. Kalbarczyk, and R. K. Tyer, “A System Model for
Dynamically Reconfigurable Software”, IBM Systems Journal, Volume 42, No. 1,
January 2003, Page 45 — 59.

[185] V. Wiels and S. Easterbrook, “Management of Evolving Specifications Using
Category Theory”, Proceedings of the 13™ IEEE International Conference on Automated
Software Engineering, October 1998, Page 12 — 21.

[186] G. Winskel, “Categories of Models for Concurrency”, Lecture Notes in Computer
Science, Volume 197, July 1984, Page 246 — 267.

[187] G. Winskel, “Petri Nets, Algebras and Morphisms”, Technical Report, No. 79,
Computer Laboratory, University of Cambridge, Cambridge, Cambridgeshire, United
Kingdom, September 1985.

[188] G. Winskel, “Category Theory and Models for Parallel Computation”, Technical
Report, No. 85, Computer Laboratory, University of Cambridge, Cambridge,
Cambridgeshire, United Kingdom, April 1986.

[189] M. Wirsing, “Algebraic Specification”, Handbook of Theoretical Computer Science,
Volume B, Elsevier and MIT Press, July 1990, Page 675 — 788.

[190] T. D. Wolf and T. Holvoet, “Towards Autonomic Computing: Agent-Based

Modeling, Dynamical Systems Analysis, and Decentralised Control”, Proceedings of the

341

1" International Workshop on Autonomic Computing Principles and Architectures,
August 2003, Page 470 — 479.

[191] M. Wooldridge, An Introduction to Multi Agent Systems, John Wiley & Sons, June
2002.

[192] M. Wooldridge and N. R. Jennings, “Agent Theories, Architectures, and Languages:
a Survey”, Proceedings of the Workshop on Agent Theories, Architectures, and
Languages on Intelligent Agents, August 1994, Page 1 — 39.

[193] M. Wooldridge, Reasoning about Rational Agents, MIT Press, July 2000.

[194] M. Wooldridge and N. Jennings, “The Cooperative Problem-Solving Process”,
Journal of Logic and Computation, Volume 9, No. 4, August 1999, Page 563 — 592.

[195] D. Xu, R. Volz, and T. loerger, “Modeling and Verifying Multi-Agent Behaviors
Using Predicate/Transition Nets”, Proceedings of the 14™ International Conference on
Software Engineering and Knowledge Engineering, July 2002, Page 193 — 200.

[196] H. Xu and S. M. Shatz, “ADK: an Agent Development Kit Based on a Formal
Design Model for Multi-Agent Systems”, Automated Software Engineering, Volume 10,
Issue 4, October 2003, Page 337 — 365.

[197] D. M. Yellin, “Competitive Algorithms for the Dynamic Selection of Component
Implementation”, IBM Systems Journal, Volume 42, No.1, January 2003, Page 85 — 97.
[198] D. Zeng and K. P. Sycara, “Benefits of Learning in Negotiation”, Proceedings of
the 14™ National Conference on Artificial Intelligence, July 1997, Page 36 —41.

[199] D. Zeng and K. P. Sycara, “Bayesian Learning in Negotiation”, International

342

Journal of Human-Computer Studies, Volume 48, Issue 1, January 1998, Page 125 — 141.
[200] H. Zhu, “SLABS: a Formal Specification Language for Agent-Based Systems”,
International Journal of Software Engineering and Knowledge Engineering, Volume 11,
No.5, November 2001, Page 529 — 558.

[201] http://jadex-agents.informatik.uni-hamburg.de/xwiki/bin/view/Usages/Examples,
Last viewed on 2013.01.15.

[202] http://www.eclipse.org/.

[203] http://www.sparxsystems.com/products/ea/index.html.

[204] http://jadex.informatik.uni-hamburg.de/xwiki/bin/view/About/Overview.

343

http://jadex-agents.informatik.uni-hamburg.de/xwiki/bin/view/Usages/Examples
http://www.eclipse.org/
http://www.sparxsystems.com/products/ea/index.html

Appendix A: Representation for Categorical Model of Constructors

<CATEGORY name = “RAE-Type-Instance”>
<OBJECT>
<OBJECT name = “RAE;” type = “RAE-Type;” />
<OBJECT name = “RAE;” type = “RAE-Type;”/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Communication,” type =“Communication-Type,”/>
<FROM-OBJECT name = “RAE;” type = “RAE-Type;’/>
<TO-OBJECT name = “RAE;” type = “RAE-Type;”/>
</MORPHISM>
</MORPHISM>
</CATEGORY>

Figure 227: XML Specification of Category RAE-Type-Instance

<CATEGORY name = “RAC™>
<OBJECT>
<OBJECT name = “RAO,” type = “RAO-Type;”/>
<OBJECT name = “RA0O;” type = “RAO-Type;”/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Communication,” type =“Communication-Type,”/>
<FROM-OBJECT name = “RAO,” type = “RAO-Type;”/>
<TO-OBJECT name = “RA0;” type = “RAO-Type,”/>
</MORPHISM>
</MORPHISM>
</CATEGORY>

Figure 228: XML Specification of Category RAC

<FUNCTOR name = “RAC-Evolution” source-category = “RA Cc”
target-category = “RAC>

<OBJECT-MAPPING>
<OBJECT-MAPPING source-object = “RA0O;” target-object = “RAO;”/>
<OBJECT-MAPPING source-object = “RAQ;” target-object = “RAO,”/>

</OBJECT-MAPPING>

<MORPHISM-MAPPING>
<MORPHSIM-MAPPING source-morphism = “Communication;”

target-morphism = “Communication;”/>

<MORPHSIM-MAPPING source-morphism = “Communication;”

344

http://jadex.informatik.uni-hamburg.de/xwiki/bin/view/About/Overview

target-morphism = “Communication;”/>
</MORPHISM-MAPPING>
</FUNCTOR>

Figure 229: XML Specification of Functor RAC-Evolution

<NATURAL-TRANSFORMATION name = “Relation-of-RAE-Evolution™>
<ARROW>
<ARROW name = “Relation,”/>
<FROM-FUNCTOR name = “RAE-Evolution;”
type = “RAE-Evolution-Type;”/>
<TO-FUNCTOR name = “RAE-Evolution;”
type = “RAE-Evolution-Type;”/>
</ARROW>
</ARROW>
</NATURAL-TRANSFORMATION>

Figure 230: XML Specification of Natural Transformation Relation

<CATEGORY name = “Relation-Set-of-RAE-Evolution”>
<OBJECT>
<OBIJECT name = “RAE-Evolution;” type = “RAE-Evolution-Type;” />
<OBJECT name = “RAE-Evolution;” type = “RAE-Evolution-Type;”/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Relation,” type =“Relation-Type,”/>
<FROM-OBJECT name = “RAE-Evolution;”
type = “RAE-Evolution-Type;” />
<TO-OBJECT name = “RAE-Evolution;”
type = “RAE-Evolution-Type;”/>
</MORPHISM>
</MORPHISM>
</CATEGORY>

Figure 231: XML Specification of Functor Category Relation-Set

<CATEGORY name = “RACG>
<OBJECT>
<OBIJECT name = “RAC;” type = “RAC-Type;” />
<OBJECT name = “RAC;” type = “RAC-Type;”/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Communication,” type =“Communication-Type,”/>

345

<FROM-OBJECT name = “RAC;” type = “RAC-Type;”/>
<TO-OBJECT name = “RAC;” type = “RAC-Type,”/>
</MORPHISM>
</MORPHISM>
</CATEGORY>

Figure 232: XML Specification of Category RACG

<FUNCTOR name = “RACG-Evolution” source-category = “RACG™
target-category = “RACG™>
<OBJECT-MAPPING>
<OBJECT-MAPPING source-object = “RAC;” target-object = “RAC;”/>
<OBJECT-MAPPING source-object = “RAC}” target-object = “RAC;”/>
</OBJECT-MAPPING>
<MORPHISM-MAPPING>
<MORPHSIM-MAPPING source-morphism = “Communication;”
target-morphism = “Communication;”/>
<MORPHSIM-MAPPING source-morphism = “Communication;”
target-morphism = “Communication;”/>
</MORPHISM-MAPPING>
</FUNCTOR>

Figure 233: XML Specification of Functor RACG-Evolution

<CATEGORY name = “RAS>
<OBJECT>
<OBJECT name = “RACG;” type = “RACG-Type;” />
<OBJECT name = “RACG;” type = “RACG-Type;”/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Communication,” type =“Communication-Type,”/>
<FROM-OBJECT name = “RACG;” type = “RACG-Type;”’/>
<TO-OBJECT name = “RACG;” type = “RACG-Type;”/>
</MORPHISM>
</MORPHISM>
</CATEGORY>

Figure 234: XML Specification of Category RAS

<FUNCTOR name = “RAS-Evolution” source-category = “RAS”
target-category = “RAS™>
<OBJECT-MAPPING>
<OBJECT-MAPPING source-object = “RACG,” target-object = “RACG;”/>

346

<OBJECT-MAPPING source-object = “RACG” target-object = “RACG;”/>
</OBJECT-MAPPING>
<MORPHISM-MAPPING>
<MORPHSIM-MAPPING source-morphism = “Communication;”
target-morphism = “Communication;”/>
<MORPHSIM-MAPPING source-morphism = “Communication;”
target-morphism = “Communication;”/>
</MORPHISM-MAPPING>
</FUNCTOR>

Figure 235: XML Specification of Functor RAS-Evolution

347

Appendix B: Representation for Categorical Model of Behavior

<CATEGORY name = “RAE-Behavior”>
<OBJECT>
<OBIJECT name = “Function-Pair;” type = “Function-Pair-Type;”/>
<OBJECT name = “Function-Pair;” type = “Function-Pair-Type;”/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Interaction,” type =“Interaction-Type,”/>
<FROM-OBJECT name = “Function-Pair;’
type = “Function-Pair-Type;”/>
<TO-OBJECT name = “Function-Pair;” type = “Function-Pair-Type;”/>
<MORPHISM>
</MORPHISM>
</CATEGORY>

Figure 236: XML Specification of Category RAE-Behavior

<CATEGORY name = “Discrete-Time>
<OBJECT>
<OBJECT name = “Abstract-Time-Unit;” type = “Integer”/>
<OBJECT name = “Abstract-Time-Unit;” type = “Integer”/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>
<FROM-OBJECT name = “Abstract-Time-Unit,” type = “Integer”/>
<TO-OBJECT name = “4bstract-Time-Unit;” type = “Integer”/>
<MORPHISM>
</MORPHISM>
</CATEGORY>

Figure 237: XML Specification of Category Discrete-Time

<CATEGORY name = “State-Type”>
<OBJECT>
<OBJECT name = “State-Type;”/>
<OBJECT name = “State-Type;”/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Transition-Type,”/>
<FROM-OBJECT name = “State-Type;”/>
<TO-OBJECT name = “State-Type;”/>

348

<MORPHISM>
</MORPHISM>
</CATEGORY>

Figure 238: XML Specification of Index Category State-Type

<CATEGORY name = “STATE”>
<OBJECT>
<OBJECT name = “State;” type = “State-Type;”/>
<OBJECT name = “State;” type = “State-Type;”/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Transition,” type =“Transition-Type,”/>
<FROM-OBJECT name = “State;” type = “State-Type;”/>
<TO-OBJECT name = “State;” type = “State-Type;’/>
<MORPHISM>
</MORPHISM>
</CATEGORY>

Figure 239: XML Specification of Category STATE

<FUNCTOR name = “Time-Constraint” source-category = “STATE”
target-category = “Discrete-Time >
<OBJECT-MAPPING>
<OBJECT-MAPPING source-object = “State;”
target-object = “Abstract-Time-Unit;”/>
<OBJECT-MAPPING source-object = “State;”
target-object = “Abstract-Time-Unit;”/>
</OBJECT-MAPPING>
<MORPHISM-MAPPING>
<MORPHSIM-MAPPING source-morphism = “Transition,”
target-morphism = “Before”/>
<MORPHSIM-MAPPING source-morphism = “Transition,”
target-morphism = “Before”/>
</MORPHISM-MAPPING>
</FUNCTOR>

Figure 240: XML Specification of Functor Time-Constraint-for-State

<PRODUCT name = “Synchronous-Communication-between-RAE">
<PRODUCT-OBJECT name = “Synchronous-Communication,”
type = “Synchronous-Communication-Type,” />
<BETWEEN-OBJECT name = “RAE;” type = “RAE-Type;”/>

349

<BETWEEN-OBJECT name = “RAE;” type = “RAE-Type;”/>
</PRODUCT>

Figure 241: XML Specification of Product Synchronous Communication of RAE

<COPRODUCT name = “Asynchronous-Communication-between-RAE>
<COPRODUCT-OBJECT name = “Asynchronous-Communication,”
type = “Asynchronous-Communication-Type,”/>
<BETWEEN-OBJECT name = “RAE;” type = “RAE-Type;”/>
<BETWEEN-OBJECT name = “RAE;” type = “RAE-Type;’/>
</COPRODUCT>

Figure 242: XML Specification of Coproduct Asynchronous Communication of RAE

<PUSHOUT name = “Next-Communication-Relay-of-RAE”>
<SOURCE-OBIJECT name = “RAE,” type = “RAE-Type,”/>
<RELAY-OBJECT name = “RAE;” type = “RAE-Type;”’/>
<RELAY-OBJECT name = “RAE;” type = “RAE-Type;”/>
<DESTINATION-OBJECT name = “RAE,ushou’” type = “RAE-Typepushou”/>
</PUSHOUT>

Figure 243: XML Specification of Pushout Next Communication Relay of RAE

<PULLBACK name = “Previous-Communication-Relay-of-RAE”>
<SOURCE-OBJECT name = “RAEpullback” type = “RAE'Typepullback”/>
<RELAY-OBJECT name = “RAE;” type = “RAE-Type;”/>
<RELAY-OBJECT name = “RAE;” type = “RAE-Type;”/>
<DESTINATION-OBJECT name = “RAE,” type = “RAE-Type,”/>
</PULLBACK>

Figure 244: XML Specification of Pullback Previous Communication Relay of RAE

<CATEGORY name = “RAE-Behavior-Designated”>
<OBJECT>
<OBJECT name = “Cone-to-Diagram;” type = “Cone-to-Diagram-Type;”/>
<OBJECT name = “Cone-to-Diagram;” type = “Cone-to-Diagram-Type;”/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Incoming-Communication,”
type =“Incoming-Communication-Type,”/>
<FROM-OBIJECT name = “Cone-to-Diagram;”
type = “Cone-to-Diagram-Type;’/>
<TO-OBJECT name = “Cone-to-Diagram;”
type = “Cone-to-Diagram-Type;”’/>

350

<MORPHISM>
</MORPHISM>
</CATEGORY>

Figure 245: XML Specification of Category RAE-Behavior-Designated

<LIMIT name = “RAC-Behavior-Designated-Limit’>
<DIAGRAM name = “Construct,” source-category = “RAO-Type”
destination-category = “RAC,”/>
<BEHAVIOR-CATEGORY name = “RAC,-Behavior-Designated/>
<TERMINAL-OBJECT name = “RAOL,” type = “RAOL-Type,”/>
</LIMIT>

Figure 246: XML Specification of Limit RAC-Behavior-Designated-Limit

<CATEGORY name = “RAE-Behavior-Achieved’>
<OBJECT>
<OBJECT name = “Cocone-to-Diagram;”
type = “Cocone-to-Diagram-Type;”/>
<OBJECT name = “Cocone-to-Diagram;”’
type = “Cocone-to-Diagram-Type;”/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Qutgoing-Communication,”
type =“Outgoing-Communication-Type,”/>
<FROM-OBJECT name = “Cocone-to-Diagram;’
type = “Cocone-to-Diagram-Type;”/>
<TO-OBJECT name = “Cocone-to-Diagram;”’
type = “Cocone-to-Diagram-Type;”/>
<MORPHISM>
</MORPHISM>
</CATEGORY>

Figure 247: XML Specification of Category RAE-Behavior-Achieved

<COLIMIT name = “RAC-Behavior-Achieved-Colimit”>
<DIAGRAM name = “Construct,” source-category = “RAO-Type”
destination-category = “RAC,”/>
<BEHAVIOR-CATEGORY name = “RAC,-Behavior-Achieved” />
<INITIAL-OBJECT name = “RAOL,” type = “RAOL-Type,”/>
</COLIMIT>

Figure 248: XML Specification of Colimit RAC-Behavior-Achieved-Colimit

351

<SLICE-CATEGORY name = “RAC/RAOL”>
<OBJECT>
<OBJECT name = “Qutgoing-Communication;”
type = “Outgoing-Communication-Type;”/>
<OBJECT name = “Outgoing-Communication;”’
type = “Outgoing-Communication-Type;”/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Connection,” type =“Connection-Type,”/>
<FROM-OBIJECT name = “Outgoing-Communication;’
type = “Outgoing-Communication-Type;”/>
<TO-OBJECT name = “OQutgoing-Communication;”
type = “Outgoing-Communication-Type;”/>
<MORPHISM>
</MORPHISM>
</SLICE-CATEGORY>

Figure 249: XML Specification of Slice Category RAC/RAOL

<COSLICE-CATEGORY name = “RAOL/RAC”>
<OBJECT>
<OBJECT name = “Incoming-Communication;”
type = “Incoming-Communication-Type;”/>
<OBIJECT name = “Incoming-Communication;”’
type = “Incoming-Communication-Type;”/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Connection,” type =“Connection-Type,”/>
<FROM-OBIJECT name = “Incoming-Communication;’
type = “Incoming-Communication-Type;”/>
<TO-OBJECT name = “Incoming-Communication;”
type = “Incoming-Communication-Type;”/>
<MORPHISM>
</MORPHISM>
</CATEGORY>

Figure 250: XML Specification of Coslice Category RAOL/RAC

<LIMIT name = “RACG-Behavior-Designated-Limit’>
<DIAGRAM name = “Construct,” source-category = “RAC-Type”
destination-category = “RACG,”/>
<BEHAVIOR-CATEGORY name = “RACG,-Behavior-Designated’/>

352

<TERMINAL-OBJECT name = “RACS,” type = “RACS-Type,”/>
</LIMIT>

Figure 251: XML Specification of Limit RACG-Behavior-Designated-Limit

<COLIMIT name = “RACG-Behavior-Achieved-Colimit”>
<DIAGRAM name = “Construct,” source-category = “RAC-Type”
destination-category = “RACG,”/>
<BEHAVIOR-CATEGORY name = “RACG,,-Behavior-Achieved’/>
<INITIAL-OBJECT name = “RACS,” type = “RACS-Type,”/>
</COLIMIT>

Figure 252: XML Specification of Colimit RACG-Behavior-Achieved-Colimit

<LIMIT name = “RAS-Behavior-Designated-Limit”>
<DIAGRAM name = “Construct,” source-category = “RACG-Type”
destination-category = “RAS,”/>
<BEHAVIOR-CATEGORY name = “RAS,-Behavior-Designated”’/>
<TERMINAL-OBJECT name = “RACGM,” type = “RACGM-Type,”/>
</LIMIT>

Figure 253: XML Specification of Limit RAS-Behavior-Designated-Limit

<COLIMIT name = “RAS-Behavior-Achieved-Colimit’>
<DIAGRAM name = “Construct,” source-category = “RACG-Type”
destination-category = “RAS,”/>
<BEHAVIOR-CATEGORY name = “RAS,-Behavior-Achieved” />
<INITIAL-OBJECT name = “RACGM,” type = “RACGM-Type,”/>
</COLIMIT>

Figure 254: XML Specification of Colimit RAS-Behavior-Achieved-Colimit

<CATEGORY name = “Transition-Type”>
<OBJECT>
<OBIJECT name = “Transition-Type;”/>
<OBJECT name = “Transition-Type;”’/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Before”/>
<FROM-OBIJECT name = “Transition-Type;’/>
<TO-OBJECT name = “Transition-Type;”/>
<MORPHISM>
</MORPHISM>

353

</CATEGORY>

Figure 255: XML Specification of Index Category Transition-Type

<CATEGORY name = “Transition”>
<OBJECT>
<OBJECT name = “Transition;” type = “Transition-Type;”/>
<OBJECT name = “Transition;” type = “Transition-Type;”/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>
<FROM-OBJECT name = “Transition;” type = “Transition-Type;”/>
<TO-OBJECT name = “Transition;” type = “Transition-Type;”/>
<MORPHISM>
</MORPHISM>
</CATEGORY>

Figure 256: XML Specification of Category Transition

<FUNCTOR name = “Time-Constraint” source-category = “Transition”
target-category = “Discrete-Time >
<OBJECT-MAPPING>
<OBJECT-MAPPING source-object = “Transition;”
target-object = “Abstract-Time-Unit;”/>
<OBJECT-MAPPING source-object = “Transition;”
target-object = “Abstract-Time-Unit;”/>
</OBJECT-MAPPING>
<MORPHISM-MAPPING>
<MORPHSIM-MAPPING source-morphism = “Before”
target-morphism = “Before”/>
<MORPHSIM-MAPPING source-morphism = “Before”
target-morphism = “Before”/>
</MORPHISM-MAPPING>
</FUNCTOR>

Figure 257: XML Specification of Functor Time-Constraint-for-Transition

<CATEGORY name = “TRANSITION">
<OBJECT>
<OBJECT name = “Sequence;” type = “Transition-Sequence”/>
<OBJECT name = “Sequence;” type = “Transition-Sequence”/>
</OBJECT>
<MORPHISM>

354

<MORPHISM name = “Equivalent” type =“Preorder’/>
<FROM-OBJECT name = “Sequence;” type = “Transition-Sequence”/>
<TO-OBJECT name = “Sequence;” type = “Transition-Sequence”/>
<MORPHISM>
</MORPHISM>
</CATEGORY>

Figure 258: XML Specification of Category TRANSITION

<CATEGORY name = “Action-Type”>
<OBJECT>
<OBJECT name = “Action-Type;”/>
<OBJECT name = “Action-Type;”/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Before”/>
<FROM-OBJECT name = “Action-Type;”/>
<TO-OBJECT name = “Action-Type;”’/>
<MORPHISM>
</MORPHISM>
</CATEGORY>

Figure 259: XML Specification of Index Category Action-Type

<CATEGORY name = “Action”>
<OBJECT>
<OBJECT name = “Action;” type = “Action-Type;”’/>
<OBJECT name = “Action;” type = “Action-Type;”/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>
<FROM-OBJECT name = “Action;” type = “Action-Type;”/>
<TO-OBJECT name = “Action;” type = “Action-Type;”/>
<MORPHISM>
</MORPHISM>
</CATEGORY>

Figure 260: XML Specification of Category Action

<FUNCTOR name = “Time-Constraint” source-category = “Action”
target-category = “Discrete-Time >
<OBJECT-MAPPING>
<OBJECT-MAPPING source-object = “Action;”

355

target-object = “Abstract-Time-Unit;”/>
<OBJECT-MAPPING source-object = “Action;”
target-object = “Abstract-Time-Unit;”/>
</OBJECT-MAPPING>
<MORPHISM-MAPPING>
<MORPHSIM-MAPPING source-morphism = “Before”
target-morphism = “Before”/>
<MORPHSIM-MAPPING source-morphism = “Before”
target-morphism = “Before”/>
</MORPHISM-MAPPING>
</FUNCTOR>

Figure 261: XML Specification of Functor Time-Constraint-for-Action

<CATEGORY name = “INTERACTION>
<OBJECT>
<OBJECT name = “Sequence;” type = “Action-Sequence”/>
<OBJECT name = “Sequence;” type = “Action-Sequence”/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Equivalent” type =“Preorder’/>
<FROM-OBJECT name = “Sequence;” type = “Action-Sequence”/>
<TO-OBJECT name = “Sequence;” type = “Action-Sequence”/>
<MORPHISM>
</MORPHISM>
</CATEGORY>

Figure 262: XML Specification of Category INTERACTION

<CATEGORY name = “RAE-Social-Life”>
<OBJECT>
<OBIJECT name = “RAE;” type = “RAE-Type;”/>
<OBJECT name = “RAE;” type = “RAE-Type;”’/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Social Connection,,”
type =“Social-Connection-Type,,” />
<FROM-OBJECT name = “RAE;” type = “RAE-Type;”/>
<TO-OBJECT name = “RAE;” type = “RAE-Type;”/>
<MORPHISM>
</MORPHISM>

356

</CATEGORY>

Figure 263: XML Specification of Category RAE-Social-Life

<CATEGORY name = “Evolution-Type”>
<OBJECT>
<OBIJECT name = “Evolution-Type;”/>

<OBJECT name = “Evolution-Type;”/>
</OBJECT>

<MORPHISM>
<MORPHISM name = “Before”/>
<FROM-OBJECT name = “Evolution-Type;”/>
<TO-OBJECT name = “Evolution-Type;”/>
<MORPHISM>
</MORPHISM>
</CATEGORY>

Figure 264: XML Specification of Index Category Evolution-Type

<CATEGORY name = “Evolution”>
<OBJECT>

<OBIJECT name = “Evolution;” type = “Evolution-Type;”/>

<OBJECT name = “Evolution;” type = “Evolution-Type;”/>
</OBJECT>

<MORPHISM>

<MORPHISM name = “Before” type =“Preorder”/>
<FROM-OBJECT name = “Evolution;” type = “Evolution-Type;”/>

<TO-OBIJECT name = “Evolution;” type = “Evolution-Type;”/>
<MORPHISM>

</MORPHISM>
</CATEGORY>

Figure 265: XML Specification of Category Evolution

<FUNCTOR name = “Time-Constraint” source-category = “Evolution”
target-category = “Discrete- Time >
<OBJECT-MAPPING>
<OBJECT-MAPPING source-object = “Evolution;”

target-object = “Abstract-Time-Unit,”/>
<OBJECT-MAPPING source-object = “Evolution;”

target-object = “Abstract-Time-Unit;”/>
</OBJECT-MAPPING>

<MORPHISM-MAPPING>

357

<MORPHSIM-MAPPING source-morphism = “Before”
target-morphism = “Before”/>
<MORPHSIM-MAPPING source-morphism = “Before”
target-morphism = “Before”/>
</MORPHISM-MAPPING>
</FUNCTOR>

Figure 266: XML Specification of Functor Time-Constraint-for-Evolution

<CATEGORY name = “EVOLUTION">
<OBJECT>
<OBJECT name = “Sequence;” type = “Evolution-Sequence”/>
<OBJECT name = “Sequence;” type = “Evolution-Sequence”/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Equivalent” type =“Preorder’/>
<FROM-OBJECT name = “Sequence;” type = “Evolution-Sequence”/>
<TO-OBJECT name = “Sequence;” type = “Evolution-Sequence”/>
<MORPHISM>
</MORPHISM>
</CATEGORY>

Figure 267: XML Specification of Category EVOLUTION

358

Appendix C: Representation of Categorical MAS Models in RASF

<CATEGORY name = “Plan”>
<OBJECT>
<OBJECT name = “Action;” type = “Action-Type;”/>
<OBJECT name = “Action;” type = “Action-Type;”/>
<OBJECT name = “Actiony,;” type = “Action-Typen,;” >
</OBJECT>
<MORPHISM>
<MORPHISM name = “Before” type = “Partial-Order”/>
<FROM-OBJECT name = “Action;” type = “Action-Type;”/>
<TO-OBJECT name = “Action;” type = “Action-Type;”/>
</MORPHISM>
</MORPHISM>
</CATEGORY>

Figure 268: XML Specification of Category Plan

<CATEGORY name = “PLAN>
<OBJECT>
<OBIJECT name = “Plan;” type = “Category”/>
<OBJECT name = “Plan;” type = “Category”/>
<OBJECT name = “Plany,;” type = “Category”/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Before” type = “Functor”/>
<FROM-OBJECT name = “Plan;” type = “Category”/>
<TO-OBJECT name = “Plan;” type = “Category”/>
</MORPHISM>
</MORPHISM>
</CATEGORY>

Figure 269: XML Specification of Category PLAN

<FUNCTOR name = “Refined-by-Plan” source-category = “Plan”
target-category = “PLAN>
<OBJECT-MAPPING>
<OBJECT-MAPPING source-object = “Action;” target-object = “Plan;”/>
<OBJECT-MAPPING source-object = “Action;” target-object = “Plan;”/>
</OBJECT-MAPPING>
<MORPHISM-MAPPING>
<MORPHSIM-MAPPING source-morphism = “Before”

359

target-morphism = “Identity-Plan;”/>
<MORPHSIM-MAPPING source-morphism = “Before”
target-morphism = “Identity-Plan;”/>
</MORPHISM-MAPPING>
</FUNCTOR>

Figure 270: XML Specification of Functor Refined-by-Plan

<FUNCTOR name = “Timing-Plan” source-category = “PLAN”
target-category = “Discrete-Time”>
<OBJECT-MAPPING>
<OBJECT-MAPPING source-object = “Plan;”
target-object = “Abstract-Time-Unit;”/>
<OBJECT-MAPPING source-object = “Plan;”
target-object = “Abstract-Time-Unit;”/>
</OBJECT-MAPPING>
<MORPHISM-MAPPING>
<MORPHSIM-MAPPING source-morphism = “Before”
target-morphism = “Before”/>
<MORPHSIM-MAPPING source-morphism = “Before”
target-morphism = “Before”/>
</MORPHISM-MAPPING>
</FUNCTOR>

Figure 271: XML Specification of Functor Timing-Plan

<CATEGORY name = “Goal-Type”>
<OBJECT>
<OBJECT name = “Goal-Type;”/>
<OBJECT name = “Goal-Type;’/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Partial-Order”/>
<FROM-OBJECT name = “Goal-Type;”/>
<TO-OBJECT name = “Goal-Type,”/>
</MORPHISM>
</MORPHISM>
</CATEGORY>

Figure 272: XML Specification of Type Category Goal-Type

<CATEGORY name = “Goal-Type-Instance’>
<OBJECT>

360

<OBIJECT name = “Goal;” type = “Goal-Type;”/>
<OBJECT name = “Goal;” type = “Goal-Type;”/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Depend” type =*“Partial-Order”/>
<FROM-OBJECT name = “Goal;” type = “Goal-Type;”/>
<TO-OBJECT name = “Goal;” type = “Goal-Type;”/>
<MORPHISM>
</MORPHISM>
</CATEGORY>

Figure 273: XML Specification of Category Goal-Type-Instance

<CATEGORY name = “GOAL”>
<OBJECT>
<OBIJECT name = “Goal;” type = “Goal-Type;”/>
<OBJECT name = “Goal;” type = “Goal-Type;”/>
<OBIJECT name = “Goaly” type = “Goal-Typenu”/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Depend” type = “Partial-Order”/>
<FROM-OBJECT name = “Goal;” type = “Goal-Type;”/>
<TO-OBJECT name = “Goal;” type = “Goal-Type;”/>
</MORPHISM>
</MORPHISM>
</CATEGORY>

Figure 274: XML Specification of Category GOAL

<CATEGORY name = “Priority-Type”>
<OBJECT>
<OBIJECT name = “Priority-Type;”’/>
<OBJECT name = “Priority-Type;”/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Partial-Order”/>
<FROM-OBJECT name = “Priority-Type;”/>
<TO-OBJECT name = “Priority-Type;”/>
</MORPHISM>
</MORPHISM>
</CATEGORY>

Figure 275: XML Specification of Type Category Priority-Type

361

<CATEGORY name = “Priority-Type-Instance”>
<OBJECT>
<OBIJECT name = “Priority;” type = “Priority-Type;”’ />
<OBJECT name = “Priority;” type = “Priority-Type;”/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Higher-Than” type =*“Partial-Order”/>
<FROM-OBJECT name = “Priority;” type = “Priority-Type;”/>
<TO-OBIJECT name = “Priority;” type = “Priority-Type;”/>
<MORPHISM>
</MORPHISM>
</CATEGORY>

Figure 276: XML Specification of Category Priority-Type-Instance

<CATEGORY name = “Dependency”>
<OBJECT>
<OBIJECT name = “Priority;” type = “Priority-Type;”’ />
<OBJECT name = “Priority;” type = “Priority-Type;”/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Higher-Than” type = “Partial-Order”/>
<FROM-OBJECT name = “Priority;” type = “Priority-Type;”/>
<TO-OBJECT name = “Priority;” type = “Priority-Type;”/>
</MORPHISM>
</MORPHISM>
</CATEGORY>

Figure 277: XML Specification of Category Dependency

<FUNCTOR name = “Assigned-Dependenc)” source-category = “GOAL”
target-category = “Dependency”™>
<OBJECT-MAPPING>
<OBJECT-MAPPING source-object = “Goal,” target-object = “Priority;”/>
<OBJECT-MAPPING source-object = “Goal;” target-object = “Priority,”/>
</OBJECT-MAPPING>
<MORPHISM-MAPPING>
<MORPHSIM-MAPPING source-morphism = “Depend”
target-morphism = “Higher-Than”/>
<MORPHSIM-MAPPING source-morphism = “Depend”
target-morphism = “Higher-Than”/>
</MORPHISM-MAPPING>

362

</FUNCTOR>

Figure 278: XML Specification of Functor Assigned-Dependency

<CATEGORY name = “Fact-Type”>
<OBJECT>
<OBJECT name = “Fact-Type;”/>
<OBJECT name = “Fact-Type;”/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Partial-Order”/>
<FROM-OBJECT name = “Fact-Type;’/>
<TO-OBJECT name = “Fact-Type;”/>
</MORPHISM>
</MORPHISM>
</CATEGORY>

Figure 279: XML Specification of Type Category Fact-Type

<CATEGORY name = “FactSet’>
<OBJECT>
<OBIJECT name = “Fact;” type = “Fact-Type;”/>
<OBJECT name = “Fact;” type = “Fact-Type;”/>
<OBIJECT name = “Factyu’ type = “Fact-Typenu’” >
</OBJECT>
<MORPHISM>
<MORPHISM name = “Identity-Fact;” type = “Identity-Morphism”/>
<FROM-OBJECT name = “Fact;” type = “Fact-Type;’/>
<TO-OBJECT name = “Fact;” type = “Fact-Type;”’/>
</MORPHISM>
<MORPHISM name = “Identity-Fact;”/>
<FROM-OBJECT name = “Fact;” type = “Fact-Type;”’/>
<TO-OBJECT name = “Fact;” type = “Fact-Type;”/>
</MORPHISM>
<MORPHISM name = “Identity-Facty,;”/>
<FROM-OBIJECT name = “Facty,;” type = “Fact-Typenu >
<TO-OBIJECT name = “Factyu’ type = “Fact-Typenu’” />
</MORPHISM>
</MORPHISM>
</CATEGORY>

Figure 280: XML Specification of Discrete Category FactSet

363

<CATEGORY name = “FactSety,; >
<OBJECT>
</OBJECT>
<MORPHISM>
</MORPHISM>
</CATEGORY>

Figure 281: XML Specification of Discrete Category FactSetnun

<CATEGORY name = “FactSetp,s. >
<OBJECT>
<OBJECT name = “Base-Fact;” type = “Base-Fact-Type;”/>
<OBJECT name = “Base-Fact;” type = “Base-Fact-Type;”/>
<OBJECT name = “Base-Facty,;” type = “Base-Fact-Typen,"/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Identity-Base-Fact;” type = “Identity-Morphism”/>
<FROM-OBJECT name = “Base-Fact;” type = “Base-Fact-Type;”/>
<TO-OBJECT name = “Base-Fact;” type = “Base-Fact-Type;”/>
</MORPHISM>
<MORPHISM name = “Identity-Base-Fact;” type = “Identity-Morphism”/>
<FROM-OBJECT name = “Base-Fact;” type = “Base-Fact-Type;”’/>
<TO-OBJECT name = “Base-Fact;” type = “Base-Fact-Type;”/>
</MORPHISM>
<MORPHISM name = “Identity-Base-Facty,;’
type = “Identity-Morphism”/>
<FROM-OBIJECT name = “Base-Facty,;’
type = “Base-Fact-Typen,” >
<TO-OBJECT name = “Base-Factyu’
type = “Base-Fact-Typen,i” >
</MORPHISM>
</MORPHISM>
</CATEGORY>

Figure 282: XML Specification of Discrete Category FactSetg,se

<CATEGORY name = “BELIEF>
<OBJECT>
<OBJECT name = “FactSetg,s.” type = “FactSet”/>
<OBIJECT name = “FactSety,;” type = “FactSet”/>
<OBJECT name = “FactSet;” type = “FactSet”/>
<OBJECT name = “FactSet;” type = “FactSet”/>

364

</OBJECT>
<MORPHISM>
<MORPHISM name = “Subset-of” type = “Partial-Order”/>
<FROM-OBJECT name = “FactSet;” type = “FactSet”/>
<TO-OBJECT name = “FactSet;” type = “FactSet”/>
</MORPHISM>
<MORPHISM name = “Subset-of” type = “Partial-Order”/>
<FROM-OBJECT name = “FactSetp,s.” type = “FactSet”/>
<TO-OBJECT name = “FactSet;” type = “FactSet”/>
</MORPHISM>
<MORPHISM name = “Subset-of” type = “Partial-Order”/>
<FROM-OBJECT name = “FactSety,;”’ type = “FactSet”/>
<TO-OBJECT name = “FactSet;” type = “FactSet”/>
</MORPHISM>
<MORPHISM name = “Subset-of” type = “Partial-Order”/>
<FROM-OBJECT name = “FactSetp,s.” type = “FactSet”/>
<TO-OBJECT name = “FactSet;” type = “FactSet”/>
</MORPHISM>
<MORPHISM name = “Subset-of” type = “Partial-Order”/>
<FROM-OBJECT name = “FactSety,;”’ type = “FactSet”/>
<TO-OBJECT name = “FactSet;” type = “FactSet”/>
</MORPHISM>
</MORPHISM>
</CATEGORY>

Figure 283: XML Specification of Category BELIEF

<FUNCTOR name = “Plan-Goal” source-category = “PLAN”
target-category = “GOAL>
<OBJECT-MAPPING>
<OBJECT-MAPPING source-object = “Plan;” target-object = “Goal;”/>
<OBJECT-MAPPING source-object = “Plan;” target-object = “Goal;”’/>
</OBJECT-MAPPING>
<MORPHISM-MAPPING>
<MORPHSIM-MAPPING source-morphism = “Before”
target-morphism = “Depend”/>
<MORPHSIM-MAPPING source-morphism = “Before”
target-morphism = “Depend”/>
</MORPHISM-MAPPING>
</FUNCTOR>

Figure 284: XML Specification of Functor Plan-Goal

365

<FUNCTOR name = “Plan-Belief” source-category = “PLAN”
target-category = “BELIEF>
<OBJECT-MAPPING>
<OBJECT-MAPPING source-object = “Plan,” target-object = “FactSet;”/>
<OBJECT-MAPPING source-object = “Plan;” target-object = “FactSet;”/>
</OBJECT-MAPPING>
<MORPHISM-MAPPING>
<MORPHSIM-MAPPING source-morphism = “Before”
target-morphism = “Identity-FactSety,;” />
<MORPHSIM-MAPPING source-morphism = “Before”
target-morphism = “Identity-FactSety,;” />
</MORPHISM-MAPPING>
</FUNCTOR>

Figure 285: XML Specification of Functor Plan-Belief

<FUNCTOR name = “Goal-Belief” source-category = “GOAL”
target-category = “BELIEF>
<OBJECT-MAPPING>
<OBJECT-MAPPING source-object = “Goal;” target-object = “FactSet;”/>
<OBJECT-MAPPING source-object = “Goal;” target-object = “FactSet;”/>
</OBJECT-MAPPING>
<MORPHISM-MAPPING>
<MORPHSIM-MAPPING source-morphism = “Depend”
target-morphism = “Identity-FactSety,;” />
<MORPHSIM-MAPPING source-morphism = “Depend”
target-morphism = “Identity-FactSety,;” />
</MORPHISM-MAPPING>
</FUNCTOR>

Figure 286: XML Specification of Functor Goal-Belief

<CATEGORY name = “AGENT>

<OBJECT>
<OBIJECT name = “Action” type = “Category”/>
<OBJECT name = “Plan” type = “Category”/>
<OBIJECT name = “PLAN” type = “Category”/>
<OBJECT name = “GOAL” type = “Category”/>
<OBJECT name = “BELIEF” type = “Category”/>
<OBJECT name = “FactSet” type = “Category”/>

</OBJECT>

<MORPHISM>

366

<MORPHISM name = “Plan-Goal” type = “Functor”/>
<FROM-OBJECT name = “PLAN” type = “Category”/>
<TO-OBJECT name = “GOAL” type = “Category”/>

</MORPHISM>

<MORPHISM name = “Plan-Belief” type = “Functor”/>
<FROM-OBJECT name = “PLAN” type = “Category”/>
<TO-OBIJECT name = “BELIEF” type = “Category”/>

</MORPHISM>

<MORPHISM name = “Goal-Belief’ type = “Functor’/>
<FROM-OBJECT name = “GOAL” type = “Category”/>
<TO-OBIJECT name = “BELIEF” type = “Category”/>

</MORPHISM>

<MORPHISM name = “Refined-by-Plan” type = “Functor”/>
<FROM-OBIJECT name = “Plan” type = “Category”/>
<TO-OBJECT name = “PLAN” type = “Category”/>

</MORPHISM>

<MORPHISM name = “Sequence-Action” type = “Functor’/>
<FROM-OBJECT name = “Action” type = “Category”/>
<TO-OBJECT name = “Plan” type = “Category”/>

</MORPHISM>

</MORPHISM>
</CATEGORY>

Figure 287: XML Specification of Category AGENT

<CATEGORY name = “Agent-Type”>
<OBJECT>
<OBJECT name = “Agent-Type;”/>
<OBJECT name = “Agent-Type,”/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Communication-Type,”/>
<FROM-OBJECT name = “Agent-Type;”/>
<TO-OBJECT name = “Agent-Type;”/>
</MORPHISM>
</MORPHISM>
</CATEGORY>

Figure 288: XML Specification of Type Category Agent-Type

<CATEGORY name = “Agent-Type-Instance”>
<OBJECT>

367

<OBJECT name = “Agent;” type = “Agent-Type;”/>
<OBJECT name = “Agent;” type = “Agent-Type;”’/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Communication,” type =“Communication-Type,”/>
<FROM-OBJECT name = “Agent;” type = “Agent-Type;’/>
<TO-OBJECT name = “Agent;” type = “Agent-Type;”/>
<MORPHISM>
</MORPHISM>
</CATEGORY>

Figure 289: XML Specification of Category Agent-Type-Instance

<CATEGORY name = “MAS>
<OBJECT>
<OBJECT name = “Agent;” type = “Agent-Type;”/>
<OBJECT name = “Agent;” type = “Agent-Type;”/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Communication,”
type = “Communication-Type,”/>
<FROM-OBIJECT name = “Agent;” type = “Agent-Type;”/>
<TO-OBJECT name = “Agent;” type = “Agent-Type;”/>
</MORPHISM>
</MORPHISM>
</CATEGORY>

Figure 290: XML Specification of Category MAS

<CATEGORY name = “Repository-Type”>
<OBJECT>
<OBIJECT name = “Repository-Type;”/>
<OBJECT name = “Repository-Type;”/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Connection-Type,”/>
<FROM-OBJECT name = “Repository-Type;”/>
<TO-OBJECT name = “Repository-Type;”/>
</MORPHISM>
</MORPHISM>
</CATEGORY>

Figure 291: XML Specification of Type Category Repository-Type

368

<CATEGORY name = “Repository-Type-Instance”>
<OBJECT>
<OBJECT name = “Repository;” type = “Repository-Type;” >
<OBJECT name = “Repository,” type = “Repository-Type;”/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Connection,” type =“Connection-Type,”/>
<FROM-OBJECT name = “Repository;” type = “Repository-Type;”/>
<TO-OBJECT name = “Repository;” type = “Repository-Type;”/>
</MORPHISM>
</MORPHISM>
</CATEGORY>

Figure 292: XML Specification of Category Repository-Type-Instance

<FUNCTOR name = “Repository-Access” source-category = “MAS”
target-category = “Repository-Type-Instance”™
<OBJECT-MAPPING>
<OBJECT-MAPPING source-object = “Agent;”
target-object = “Repository;”/>
<OBJECT-MAPPING source-object = “Agent;”
target-object = “Repository;”/>
</OBJECT-MAPPING>
<MORPHISM-MAPPING>
<MORPHSIM-MAPPING source-morphism = “Communication,,”
target-morphism = “Connection,”/>
<MORPHSIM-MAPPING source-morphism = “Communication,,”
target-morphism = “Connection,,”/>
</MORPHISM-MAPPING>
</FUNCTOR>

Figure 293: XML Specification of Functor Repository-Access

<CATEGORY name = “MAS-Type”>
<OBJECT>
<OBJECT name = “MAS-Type;”/>
<OBJECT name = “MAS-Type;”/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Communication-Type,”/>
<FROM-OBJECT name = “MAS-Tipe;’/>
<TO-OBJECT name = “MAS-Type;”/>

369

</MORPHISM>
</MORPHISM>
</CATEGORY>

Figure 294: XML Specification of Type Category MAS-Type

<CATEGORY name = “MAS-Type-Instance”>
<OBJECT>
<OBJECT name = “MAS,” type = “MAS-Type;” >
<OBJECT name = “MAS;” type = “MAS-Type,”/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Communication,” type =“Communication-Type,”/>
<FROM-OBJECT name = “MAS;” type = “MAS-Type;’/>
<TO-OBJECT name = “MAS;” type = “MAS-Type;”/>
</MORPHISM>
</MORPHISM>
</CATEGORY>

Figure 295: XML Specification of Category MAS-Type-Instance

370

Appendix D: Representation of Categorical Self-Healing

<CATEGORY name = “Take-over-Work-Flow-for-Self-Healing>
<OBJECT>
<OBIJECT name = “Restart” type = “Work-Flow-Action”/>
<OBJECT name = “NoHeartbeat” type = “Work-Flow-Action”/>
<OBIJECT name = “RequestRAE” type = “Work-Flow-Action™/>
<OBIJECT name = “NotFound” type = “Work-Flow-Action”/>
<OBJECT name = “Take-over” type = “Work-Flow-Action”/>
<OBIJECT name = “Confirmed” type = “Work-Flow-Action™/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>
<FROM-OBJECT name = “Restart” type = “Work-Flow-Action”/>
<TO-OBJECT name = “NoHeartbeat” type = “Work-Flow-Action”/>
<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>
<FROM-OBJECT name = “NoHeartbeat”
type = “Work-Flow-Action”/>
<TO-OBJECT name = “RequestRAE” type = “Work-Flow-Action”/>
<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>

<TO-OBJECT name = “NotFound” type = “Work-Flow-Action”/>
<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>
<FROM-OBJECT name = “NotFound” type = “Work-Flow-Action”/>
<TO-OBJECT name = “Take-over” type = “Work-Flow-Action”/>
<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>
<FROM-OBJECT name = “Take-over” type = “Work-Flow-Action”/>
<TO-OBJECT name = “Confirmed” type = “Work-Flow-Action”/>
<MORPHISM>
</MORPHISM>
</CATEGORY>

<FROM-OBJECT name = “RequestRAE” type = “Work-Flow-Action”/>

Figure 296: XML Specification of Category Take-Over-Flow-Self-Healing

<CATEGORY name = “Intelligent-Control-Loop-Time-for-Self-Healing>
<OBJECT>
<OBIJECT name = “£0” type = “Integer’/>
<OBIJECT name = “¢1” type = “Integer’/>

371

<OBIJECT name = “£2” type = “Integer”/>
<OBIJECT name = “¢3” type = “Integer’/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>
<FROM-OBJECT name = “t0” type = “Integer”/>
<TO-OBIJECT name = “¢1” type = “Integer’/>
<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>
<FROM-OBJECT name = “10” type = “Integer”/>
<TO-OBJECT name = “£2” type = “Integer’/>
<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>
<FROM-OBJECT name = “10” type = “Integer”/>
<TO-OBIJECT name = “¢3” type = “Integer’/>
<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>
<FROM-OBJECT name = “t1” type = “Integer”/>
<TO-OBIJECT name = “£2” type = “Integer’/>
<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>
<FROM-OBJECT name = “t1” type = “Integer”/>
<TO-OBJECT name = “¢3” type = “Integer’/>
<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>
<FROM-OBJECT name = “12” type = “Integer”/>
<TO-OBJECT name = “¢3” type = “Integer’/>
<MORPHISM>
</MORPHISM>
</CATEGORY>

Figure 297: XML Specification of Category ICL-Time-Self-Healing

<FUNCTOR name = “Intelligent-Control-Loop-Time-Constraint-Self-Healing”
source-category = “ICL-State-Self-Healing”
target-category = “ICL-Time-Self-Healing >
<OBJECT-MAPPING>
<OBJECT-MAPPING source-object = “Analyze” target-object = “¢0”/>
<OBIJECT-MAPPING source-object = “Analyze” target-object = “t1”/>
<OBJECT-MAPPING source-object = “Plan” target-object = “12”/>
<OBJECT-MAPPING source-object = “Plan” target-object = “t3”/>
</OBJECT-MAPPING>

372

<MORPHISM-MAPPING>
<MORPHSIM-MAPPING source-morphism = “Restart-RAE”
target-morphism = “Before”/>
<MORPHSIM-MAPPING source-morphism = “Has-Action”
target-morphism = “Before”/>
<MORPHSIM-MAPPING source-morphism = “Substitute”
target-morphism = “Before”/>
<MORPHSIM-MAPPING source-morphism = “Take-Over”
target-morphism = “Before”/>
<MORPHSIM-MAPPING source-morphism = “Action-Done”
target-morphism = “Before”/>
</MORPHISM-MAPPING>
</FUNCTOR>

Figure 298: XML Specification of Category Time-Constraint-Self-Healing

<FUNCTOR name = “RACG-Self-Healing-Restart”
source-category = “RACGI-1"
target-category = “RACG1-0">
<OBJECT-MAPPING>
<OBJECT-MAPPING source-object = “RAOLI-1"
target-object = “RAOLI”/>
<OBJECT-MAPPING source-object = “RAOL2”
target-object = “RAOL2”/>
<OBJECT-MAPPING source-object = “RACSI”
target-object = “RACSI”/>
</OBJECT-MAPPING>
<MORPHISM-MAPPING>
<MORPHSIM-MAPPING source-morphism = “Command;_;”
target-morphism = “Command,;”/>
<MORPHSIM-MAPPING source-morphism = “Command,”
target-morphism = “Command,”/>
<MORPHSIM-MAPPING source-morphism = “Report;.;”
target-morphism = “Report,”/>
<MORPHSIM-MAPPING source-morphism = “Report,”
target-morphism = “Report,”/>
<MORPHSIM-MAPPING source-morphism = “Cooperate;.;”
target-morphism = “Cooperate;”/>
<MORPHSIM-MAPPING source-morphism = “Cooperate,”
target-morphism = “Cooperate,”/>
</MORPHISM-MAPPING>

373

</FUNCTOR>

Figure 299: XML Specification of Functor RACG-Self-Healing-Restart

<FUNCTOR name = “RACG-Self-Healing-Substitute”
source-category = “RACG1-2”
target-category = “RACG1-0">
<OBJECT-MAPPING>
<OBJECT-MAPPING source-object = “RAOL3”
target-object = “RAOLI1”/>
<OBJECT-MAPPING source-object = “RAOL2”
target-object = “RAOL2”/>
<OBJECT-MAPPING source-object = “RACSI”
target-object = “RACSI1”/>
</OBJECT-MAPPING>
<MORPHISM-MAPPING>
<MORPHSIM-MAPPING source-morphism = “Commands”
target-morphism = “Command,;”/>
<MORPHSIM-MAPPING source-morphism = “Command,”
target-morphism = “Command,”/>
<MORPHSIM-MAPPING source-morphism = “Report;”
target-morphism = “Report,”/>
<MORPHSIM-MAPPING source-morphism = “Report,”
target-morphism = “Report,”/>
<MORPHSIM-MAPPING source-morphism = “Cooperate;”
target-morphism = “Cooperate;”/>
<MORPHSIM-MAPPING source-morphism = “Cooperate,”
target-morphism = “Cooperate,”/>
</MORPHISM-MAPPING>
</FUNCTOR>

Figure 300: XML Specification of Functor RACG-Self-Healing-Substitute

<FUNCTOR name = “RACG-Self-Healing-Take-Over”
source-category = “RACGI-3”
target-category = “RACG1-0">
<OBJECT-MAPPING>
<OBJECT-MAPPING source-object = “SPM?2” target-object = “RAOLI1”/>
<OBJECT-MAPPING source-object = “SPM?2” target-object = “RAOL2”/>
<OBJECT-MAPPING source-object = “RACSI-1”
target-object = “RACSI1”/>
</OBJECT-MAPPING>

374

<MORPHISM-MAPPING>
<MORPHSIM-MAPPING source-morphism = “Commands”
target-morphism = “Command,;”/>
<MORPHSIM-MAPPING source-morphism = “Command;”’
target-morphism = “Command,”/>
<MORPHSIM-MAPPING source-morphism = “Reports”
target-morphism = “Report,”/>
<MORPHSIM-MAPPING source-morphism = “Report;”
target-morphism = “Report,”/>
<MORPHSIM-MAPPING source-morphism = “Cooperates”
target-morphism = “Cooperate;”/>
<MORPHSIM-MAPPING source-morphism = “Cooperate;’
target-morphism = “Cooperate,”/>
</MORPHISM-MAPPING>
</FUNCTOR>

Figure 301: XML Specification of Functor RACG-Self-Healing-Take-Over

<NATURAL-TRANSFORMATION name = “Relation-of-RACG-Evolution”>
<ARROW>
<ARROW name = “Relation,”/>
<FROM-FUNCTOR name = “RACG-Self-Healing-Restart”
type = “RACG-Evolution-Self-Healing”/>
<TO-FUNCTOR name = “RACG-Self-Healing-Substitute”
type = “RACG-Evolution-Self-Healing”/>
</ARROW>
<ARROW name = “Relations”/>
<FROM-FUNCTOR name = “RACG-Self-Healing-Restart”
type = “RACG-Evolution-Self-Healing”/>
<TO-FUNCTOR name = “RACG-Self-Healing-Take-Over”
type = “RACG-Evolution-Self-Healing”/>
</ARROW>
<ARROW name = “Relations”/>
<FROM-FUNCTOR name = “RACG-Self-Healing-Substitute”
type = “RACG-Evolution-Self-Healing”/>
<TO-FUNCTOR name = “RACG-Self-Healing-Take-Over”
type = “RACG-Evolution-Self-Healing”/>
</ARROW>
</ARROW>
</NATURAL-TRANSFORMATION>

Figure 302: XML Specification of Natural Transformation RACG-Evolution-Relation

375

<CATEGORY name = “Relation-Set-of-RACG-Evolution-Self-Healing>
<OBJECT>
<OBJECT name = “RACG-Self-Healing-Restart”
type = “RACG-Evolution-Self-Healing” />
<OBIJECT name = “RACG-Self-Healing-Substitute”
type = “RACG-Evolution-Self-Healing” />
<OBJECT name = “RACG-Self-Healing-Take-Over”
type = “RACG-Evolution-Self-Healing”/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Relation,”
type =“RACG-Evolution-Relation-Self-Healing”/>
<FROM-OBJECT name = “RACG-Self-Healing-Restart”
type = “RACG-Evolution-Self-Healing” />
<TO-OBJECT name = “RACG-Self-Healing-Substitute”
type = “RACG-Evolution-Self-Healing”/>
</MORPHISM>
<MORPHISM name = “Relations”
type =“RACG-Evolution-Relation-Self-Healing”/>
<FROM-OBJECT name = “RACG-Self-Healing-Restart”
type = “RACG-Evolution-Self-Healing” />
<TO-OBJECT name = “RACG-Self-Healing-Take-Over”
type = “RACG-Evolution-Self-Healing”/>
</MORPHISM>
<MORPHISM name = “Relations”
type =“RACG-Evolution-Relation-Self-Healing”/>
<FROM-OBJECT name = “RACG-Self-Healing-Substitute”
type = “RACG-Evolution-Self-Healing” />
<TO-OBJECT name = “RACG-Self-Healing-Take-Over”
type = “RACG-Evolution-Self-Healing”/>
</MORPHISM>
</MORPHISM>
</CATEGORY>

Figure 303: XML Specification of Functor Category RACG-Evolution-Relation-Set

376

Appendix E: Representation of Categorical Self-Configuration

<CATEGORY name = “Self-Configuration-Work-Flow”>
<OBJECT>
<OBJECT name = “ValidateRACGM” type = “Work-Flow-Action”/>
<OBJECT name = “ValidateRACS” type = “Work-Flow-Action”/>
<OBJECT name = “Launchinvestigation” type = “Work-Flow-Action”/>
<OBIJECT name = “ValidateRACScommunication”
type = “Work-Flow-Action”/>
<OBIJECT name = “Conform” type = “Work-Flow-Action”/>
<OBIJECT name = “NotConform” type = “Work-Flow-Action™/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>
<FROM-OBJECT name = “ValidateRACGM”
type = “Work-Flow-Action”/>
<TO-OBJECT name = “Conform” type = “Work-Flow-Action”/>
<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>
<FROM-OBJECT name = “ValidateRACGM”
type = “Work-Flow-Action”/>
<TO-OBJECT name = “NotConform” type = “Work-Flow-Action”/>
<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>
<FROM-OBJECT name = “ValidateRACS”
type = “Work-Flow-Action”/>
<TO-OBJECT name = “Conform” type = “Work-Flow-Action”/>
<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>
<FROM-OBJECT name = “ValidateRACS”
type = “Work-Flow-Action”/>
<TO-OBJECT name = “NotConform” type = “Work-Flow-Action”/>
<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>
<FROM-OBJECT name = “ValidateRACScommunication”
type = “Work-Flow-Action”/>
<TO-OBJECT name = “Conform” type = “Work-Flow-Action”/>
<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>
<FROM-OBJECT name = “ValidateRACScommunication”
type = “Work-Flow-Action”/>

377

<TO-OBJECT name = “NotConform” type = “Work-Flow-Action”/>

<MORPHISM>

<MORPHISM name = “Before” type =“Preorder”/>
<FROM-OBJECT name = “NotConform” type = “Work-Flow-Action”/>
<TO-OBJECT name = “Launchlnvestigation”

type = “Work-Flow-Action”/>
<MORPHISM>
</MORPHISM>
</CATEGORY>

Figure 304: XML Specification of Category Self-Configuration-Work-Flow

<CATEGORY name = “Substitution-Work-Flow-for-Self-Configuration”>
<OBJECT>
<OBJECT name = “WrongCommType” type = “Work-Flow-Action”/>
<OBJECT name = “SelfViolation” type = “Work-Flow-Action”/>
<OBJECT name = “Request” type = “Work-Flow-Action”/>
<OBJECT name = “Confirm” type = “Work-Flow-Action”/>
<OBJECT name = “Register” type = “Work-Flow-Action”/>
<OBJECT name = “Heartbeat” type = “Work-Flow-Action”/>
<OBJECT name = “Connect” type = “Work-Flow-Action”/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>
<FROM-OBIJECT name = “WrongCommType”
type = “Work-Flow-Action”/>
<TO-OBJECT name = “SelfViolation” type = “Work-Flow-Action”/>
<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>
<FROM-OBJECT name = “SelfViolation”
type = “Work-Flow-Action”/>
<TO-OBJECT name = “Request” type = “Work-Flow-Action”/>
<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>
<FROM-OBJECT name = “Request” type = “Work-Flow-Action/>
<TO-OBJECT name = “Confirm” type = “Work-Flow-Action”/>
<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>
<FROM-OBJECT name = “Confirm” type = “Work-Flow-Action”/>
<TO-OBJECT name = “Register” type = “Work-Flow-Action”/>
<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>

378

<FROM-OBJECT name = “Register” type = “Work-Flow-Action”/>
<TO-OBJECT name = “Heartbeat” type = “Work-Flow-Action”/>

<MORPHISM>

<MORPHISM name = “Before” type =“Preorder”/>
<FROM-OBJECT name = “Heartbeat” type = “Work-Flow-Action”/>
<TO-OBJECT name = “Connect” type = “Work-Flow-Action”/>

<MORPHISM>

</MORPHISM>
</CATEGORY>

Figure 305: XML Specification of Category Substitution-Flow-Self-Configuration

<CATEGORY name = “Take-over-Work-Flow-for-Self-Configuration™>
<OBJECT>
<OBJECT name = “WrongCommType” type = “Work-Flow-Action”/>
<OBJECT name = “SelfViolation” type = “Work-Flow-Action”/>
<OBJECT name = “Take-over” type = “Work-Flow-Action”/>
<OBJECT name = “Confirm” type = “Work-Flow-Action”/>
<OBJECT name = “Connect” type = “Work-Flow-Action”/>
<OBJECT name = “Heartbeat” type = “Work-Flow-Action”/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>
<FROM-OBIJECT name = “WrongCommType”
type = “Work-Flow-Action”/>
<TO-OBJECT name = “SelfViolation” type = “Work-Flow-Action”/>
<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>
<FROM-OBJECT name = “SelfViolation”
type = “Work-Flow-Action”/>
<TO-OBJECT name = “Take-over” type = “Work-Flow-Action”/>
<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>
<FROM-OBJECT name = “Take-over” type = “Work-Flow-Action”/>
<TO-OBJECT name = “Confirm” type = “Work-Flow-Action”/>
<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>
<FROM-OBJECT name = “Confirm” type = “Work-Flow-Action”/>
<TO-OBJECT name = “Connect” type = “Work-Flow-Action”/>
<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>
<FROM-OBJECT name = “Connect” type = “Work-Flow-Action”/>

379

<TO-OBJECT name = “Heartbeat” type = “Work-Flow-Action/>
<MORPHISM>
</MORPHISM>
</CATEGORY>

Figure 306: XML Specification of Category Take-over-Flow-Self-Configuration

<CATEGORY name = “Intelligent-Control-Loop-Time-for-Self-Configuration”>
<OBJECT>
<OBIJECT name = “£0” type = “Integer’/>
<OBIJECT name = “#4” type = “Integer’/>
<OBIJECT name = “£5” type = “Integer’/>
<OBJECT name = “¢6” type = “Integer’/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>
<FROM-OBJECT name = “t0” type = “Integer”/>
<TO-OBIJECT name = “#4” type = “Integer’/>
<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>
<FROM-OBJECT name = “t0” type = “Integer”/>
<TO-OBIJECT name = “£5” type = “Integer’/>
<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>
<FROM-OBJECT name = “10” type = “Integer”/>
<TO-OBIJECT name = “t6” type = “Integer’/>
<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>
<FROM-OBJECT name = “t4” type = “Integer”/>
<TO-OBIJECT name = “£5” type = “Integer’/>
<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>
<FROM-OBJECT name = “t4” type = “Integer”/>
<TO-OBJECT name = “t6” type = “Integer’/>
<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>
<FROM-OBJECT name = “15” type = “Integer”/>
<TO-OBIJECT name = “¢6” type = “Integer’/>
<MORPHISM>
</MORPHISM>

380

</CATEGORY>

Figure 307: XML Specification of Category ICL-Time-Self-Configuration

<FUNCTOR name = “ICL-Time-Constraint-Self-Configuration”
source-category = “ICL-State-Self-Configuration”
target-category = “ICL-Time-Self-Configuration >
<OBJECT-MAPPING>
<OBJECT-MAPPING source-object = “Analyze” target-object = “¢0”/>
<OBJECT-MAPPING source-object = “Analyze” target-object = “¢t4”/>
<OBJECT-MAPPING source-object = “Plan” target-object = “t5”/>
<OBJECT-MAPPING source-object = “Plan” target-object = “t6”/>
</OBJECT-MAPPING>
<MORPHISM-MAPPING>
<MORPHSIM-MAPPING source-morphism = “Restart-RAE”
target-morphism = “Before”/>
<MORPHSIM-MAPPING source-morphism = “Launch-Self-Healing”
target-morphism = “Before”/>
<MORPHSIM-MAPPING source-morphism = “Substitute”
target-morphism = “Before”/>
<MORPHSIM-MAPPING source-morphism = “Take-Over”
target-morphism = “Before”/>
<MORPHSIM-MAPPING source-morphism = “Action-Done”
target-morphism = “Before”/>
</MORPHISM-MAPPING>
</FUNCTOR>

Figure 308: XML Specification of Category Time-Constraint-Self-Configuration

<FUNCTOR name = “RAC-Self-Configuration-RestartRAOL”
source-category = “RACI-4”
target-category = “RACI-0 ">
<OBJECT-MAPPING>
<OBJECT-MAPPING source-object = “RAO” target-object = “RAO1”/>
<OBJECT-MAPPING source-object = “RA0O2” target-object = “RAO2”/>
<OBJECT-MAPPING source-object = “RAO3” target-object = “RA0O3”/>
<OBJECT-MAPPING source-object = “RAOLI-1"
target-object = “RAOLI”/>
</OBJECT-MAPPING>
<MORPHISM-MAPPING>
<MORPHSIM-MAPPING source-morphism = “Command;_;”
target-morphism = “Command,;”/>

381

<MORPHSIM-MAPPING source-morphism = “Command,.;”
target-morphism = “Command,”/>
<MORPHSIM-MAPPING source-morphism = “Command;.;”
target-morphism = “Command;”/>
<MORPHSIM-MAPPING source-morphism = “Report;.;”
target-morphism = “Report,”/>
<MORPHSIM-MAPPING source-morphism = “Report;.;”
target-morphism = “Report,”/>
<MORPHSIM-MAPPING source-morphism = “Report;.;”
target-morphism = “Report;”/>
<MORPHSIM-MAPPING source-morphism = “Cooperate;”
target-morphism = “Cooperate;”/>
<MORPHSIM-MAPPING source-morphism = “Cooperate,”
target-morphism = “Cooperate,”/>
<MORPHSIM-MAPPING source-morphism = “Cooperate;”
target-morphism = “Cooperates;”/>
<MORPHSIM-MAPPING source-morphism = “Cooperate,’
target-morphism = “Cooperate,’/>
<MORPHSIM-MAPPING source-morphism = “Cooperates”
target-morphism = “Cooperates”/>
<MORPHSIM-MAPPING source-morphism = “Cooperates”
target-morphism = “Cooperates”/>
</MORPHISM-MAPPING>
</FUNCTOR>

Figure 309: XML Specification of Functor RAC-Self-Configuration-RestartRAOL

<FUNCTOR name = “RAC-Self-Configuration-SubstituteRAOL”
source-category = “RACI-5”
target-category = “RACI-0 ">
<OBJECT-MAPPING>
<OBJECT-MAPPING source-object = “RAOI” target-object = “RAO1”/>
<OBJECT-MAPPING source-object = “RA0O2” target-object = “RAO02”/>
<OBJECT-MAPPING source-object = “RAO3” target-object = “RA0O3”/>
<OBJECT-MAPPING source-object = “RAOL3”
target-object = “RAOLI”/>
</OBJECT-MAPPING>
<MORPHISM-MAPPING>
<MORPHSIM-MAPPING source-morphism = “Command,’
target-morphism = “Command,;”/>
<MORPHSIM-MAPPING source-morphism = “Commands”
target-morphism = “Command,”/>

382

<MORPHSIM-MAPPING source-morphism = “Commands”
target-morphism = “Command;”/>
<MORPHSIM-MAPPING source-morphism = “Report,”
target-morphism = “Report,”/>
<MORPHSIM-MAPPING source-morphism = “Reports”
target-morphism = “Report,”/>
<MORPHSIM-MAPPING source-morphism = “Reports”
target-morphism = “Report;”/>
<MORPHSIM-MAPPING source-morphism = “Cooperate;”
target-morphism = “Cooperate;”/>
<MORPHSIM-MAPPING source-morphism = “Cooperate,”
target-morphism = “Cooperate,”/>
<MORPHSIM-MAPPING source-morphism = “Cooperate;”
target-morphism = “Cooperates;”/>
<MORPHSIM-MAPPING source-morphism = “Cooperate,’
target-morphism = “Cooperate,’/>
<MORPHSIM-MAPPING source-morphism = “Cooperates”
target-morphism = “Cooperates”/>
<MORPHSIM-MAPPING source-morphism = “Cooperates”
target-morphism = “Cooperates”/>
</MORPHISM-MAPPING>
</FUNCTOR>

Figure 310: XML Specification of Functor RAC-Self-Configuration-SubstituteRAOL

<FUNCTOR name = “RAC-Self-Configuration-Take-over-RAOL”
source-category = “RACI-6”
target-category = “RACI-0 ">
<OBJECT-MAPPING>
<OBJECT-MAPPING source-object = “RAOI” target-object = “RAO1”/>
<OBJECT-MAPPING source-object = “RA0O2” target-object = “RAO02”/>
<OBJECT-MAPPING source-object = “RAO3” target-object = “RA0O3”/>
<OBJECT-MAPPING source-object = “SPM target-object = “RAOLI”/>
</OBJECT-MAPPING>
<MORPHISM-MAPPING>
<MORPHSIM-MAPPING source-morphism = “Command;”’
target-morphism = “Command,;”/>
<MORPHSIM-MAPPING source-morphism = “Commandsg”
target-morphism = “Command,”/>
<MORPHSIM-MAPPING source-morphism = “Commandy”
target-morphism = “Command;”/>
<MORPHSIM-MAPPING source-morphism = “Report;”

383

target-morphism = “Report,”/>
<MORPHSIM-MAPPING source-morphism = “Reports”
target-morphism = “Report,”/>
<MORPHSIM-MAPPING source-morphism = “Reporty”
target-morphism = “Report;”/>
<MORPHSIM-MAPPING source-morphism = “Cooperate;”
target-morphism = “Cooperate;”/>
<MORPHSIM-MAPPING source-morphism = “Cooperate,”
target-morphism = “Cooperate,”/>
<MORPHSIM-MAPPING source-morphism = “Cooperate;”
target-morphism = “Cooperates;”/>
<MORPHSIM-MAPPING source-morphism = “Cooperate,’
target-morphism = “Cooperate,’/>
<MORPHSIM-MAPPING source-morphism = “Cooperates”
target-morphism = “Cooperates”/>
<MORPHSIM-MAPPING source-morphism = “Cooperates”
target-morphism = “Cooperates”/>

</MORPHISM-MAPPING>
</FUNCTOR>

Figure 311: XML Specification of Functor RAC-Self-Configuration-Take-over-RAOL

<NATURAL-TRANSFORMATION name = “RAC-Evolution-Self-Configuration™>

<ARROW>

<ARROW name = “Relation;”/>
<FROM-FUNCTOR name = “RAC-Self-Configuration-Restart”
type = “RAC-Evolution-Self-Configuration™/>
<TO-FUNCTOR name = “RAC-Self-Configuration-Substitute”
type = “RAC-Evolution-Self-Configuration™/>
</ARROW>
<ARROW name = “Relation,”/>
<FROM-FUNCTOR name = “RAC-Self-Configuration-Restart”
type = “RAC-Evolution-Self-Configuration™/>
<TO-FUNCTOR name = “RAC-Self-Configuration-Take-Over”
type = “RAC-Evolution-Self-Configuration™/>
</ARROW>
<ARROW name = “Relation;”/>
<FROM-FUNCTOR name = “RAC-Self-Configuration-Substitute”
type = “RAC-Evolution-Self-Configuration™/>
<TO-FUNCTOR name = “RAC-Self-Configuration-Take-Over”
type = “RAC-Evolution-Self-Configuration™/>
</ARROW>

384

</ARROW>
</NATURAL-TRANSFORMATION>

Figure 312: XML Specification of Natural Transformation RAC-Self-Configuration

<CATEGORY name = “Relation-Set-of-RAC-Evolution-Self-Configuration”>
<OBJECT>
<OBJECT name = “RAC-Self-Configuration-Restart”
type = “RAC-Evolution-Self-Configuration™ />
<OBIJECT name = “RAC-Self-Configuration-Substitute”
type = “RAC-Evolution-Self-Configuration™/>
<OBJECT name = “RAC-Self-Configuration-Take-Over”
type = “RAC-Evolution-Self-Configuration™/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Relation;”
type =“RAC-Evolution-Relation-Self-Configuration™/>
<FROM-OBJECT name = “RAC-Self-Configuration-Restart”
type = “RAC-Evolution-Self-Configuration™ />
<TO-OBJECT name = “RAC-Self-Configuration-Substitute”
type = “RAC-Evolution-Self-Configuration”/>
</MORPHISM>
<MORPHISM name = “Relation,”
type =“RAC-Evolution-Relation-Self-Configuration”/>
<FROM-OBJECT name = “RAC-Self-Configuration-Restart”
type = “RAC-Evolution-Self-Configuration™ />
<TO-OBJECT name = “RAC-Self-Configuration-Take-Over”
type = “RAC-Evolution-Self-Configuration”/>
</MORPHISM>
<MORPHISM name = “Relation;”
type =“RAC-Evolution-Relation-Self-Configuration”/>
<FROM-OBJECT name = “RAC-Self-Configuration-Substitute”
type = “RAC-Evolution-Self-Configuration™ />
<TO-OBJECT name = “RAC-Self-Configuration-Take-Over”
type = “RAC-Evolution-Self-Configuration”/>
</MORPHISM>
</MORPHISM>
</CATEGORY>

Figure 313: XML Specification of Functor Category RAC-Self-Configuration

385

<CATEGORY name = “RAC-Configuration™>
<OBJECT>
<OBJECT name = “RAO,” type = “RAO-Type;”/>
<OBJECT name = “RAO;” type = “RAO-Type,”/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Connection,,” type =*“Connection-Type,”/>
<FROM-OBJECT name = “RAO,” type = “RAO-Type;’/>
<TO-OBJECT name = “RA0;” type = “RAO-Type;”/>
<MORPHISM>
</MORPHISM>
</CATEGORY>

Figure 314: XML Specification of Category RAC-Configuration

<CATEGORY name = “RACG-Configuration™>
<OBJECT>
<OBJECT name = “RAC;” type = “RAC-Type;’/>
<OBJECT name = “RAC;” type = “RAC-Type;”/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Connection,,” type ="“Connection-Type,, />
<FROM-OBJECT name = “RAC;” type = “RAC-Type;”/>
<TO-OBJECT name = “RAC;” type = “RAC-Type;”/>
<MORPHISM>
</MORPHISM>
</CATEGORY>

Figure 315: XML Specification of Category RACG-Configuration

386

Appendix F: Screen Shots of RASFIT

%} Java - - Eclipse
File Edit Mavigate Search Project

Run Enterprise Architect Window Help

09 H B S 8 | @ R Contorsten b-iwe- @o 0 Hor e oo
va T New RASF Project
g = = = H¥ New RASF Package B_
EE NewMarsWorld @ New Class :
B OldMarswarld : _ N @
EEJ- org ;:"Iscordia n core RASF Code Generation
- ") Start EJADE RMA
Eﬂ Referenced Libraries ' Shutdown EJADE platform

Eﬂ Plug-in Dependencies
=) IRE System Library [1avasE-1.7]
&l antr
(= icons
-G lb
-(Z= META-INF
== model
(= 0SGIINF
@ build.properties
a plugin. xml

Figure 316: Menu Area for RASFIT

Ml @ LF LF & &

Figure 317: Toolbox Area for Drawing UML Diagrams in RASFIT

387

Edit UML

[Cosees |

Figure 319: Project Browser for Drawing UML Diagrams in RASFIT

388

Appendix G: Installation and Configuration of RASFIT

Java EE - Eclipse

File Edit Mavigate Search Project RASE Run Enterprise Architect \Window Help

BT PP HEGCGEYY H-0-Q- iG-6G- &S - @R

&=
B%| Software

J "
= 1% org.concordia, RASF core Check the items that you wish to install. A
-2 org.concordia.RASF. feature |
(=] g org.concordia. RASF . MarsWorld
EI--'ﬁ| org.concordia, RASF.NewMarsWorld I 1
=] ﬁ' org.concordia.RASF. OldMarsworld Work with: ”RMF - file: fE: /Heng/Schoolfworkspace forg.concordia, RASF .site y"[Add... }

=] % org.concordia, RASF.RAStoMAS Find more software by working with the “Available Software Sites” preferences.
=R org,concordia, RASF site

type filter text |

Name | Version
=] 00 RASF Plugins
L RASF Feature 0.1.2
p—
Details
Shaow only the [atest versions of available software [[IHide items that are already installed
Group items by category What is already installed?

[show only software applicable to target environment
Contact all update sites during install to find required software

—
[Bl: mart
0 items

Descri ® :7 < Back

(¥ Java EE - E
File Edit Mavigste Search Project RASF Rup Enterprise Architect Window Help

D ieHWHEGEYY [H-0-Q- i Z-Ee- B0 R

=
= Preferences
Gle~
2 org.concorda RASF.core RASF Setting Gy
e2] E\W‘J org.concordia. RASF. feature (¥ General
H RASF Prefer;
e %J org.concordia, RASF, Marsworld [+ Ant mistahn
. ﬁ org.concordia, RASF. NewMars\World ¥ Data Management Path to RASF installation: |E:\edipse\plugins\prg.conccrdia.R.ASF.oo(e_O.1.2| [Browse, ..]
org.concordia, RASF, OldMars\World [Help . =
g org.concordia,RASF.RAStOMAS [Instal Update Path to Jadex installation: |E:Weng\smaol\warkspaoehadexfz.()ics | [Browse...]
(25 org.concordia, RASF. site i Java Jadex Version: |2.0-c8 |
[JavaEE
¥ Java Persistence Path to Enterprise Architect installation: |C:\Wogram Files\Sparx Systems | [Browse...]
g ;ﬁy‘fsc"pt Platform
5 i) = (O IADE (%) MDEX
- RASF Setting ;
e Host: |Io<3|host ‘
[#- Run/Debug Platform port: | 1089 ‘
g i::‘:r [#] Use random mtp port (MTP port will be omitted)
. Terminal Platform MTP part: [7778 |
[Usage Data Collector [use user defined parametters (Following params will be used)
Validation
& Web User-defined params: | -port 1059 -jade_mtp_port 7773 -detect-main false ‘
[Web Services [[] start eCAT monitoring agent
0 Proxy host: | ‘
Proxy port: | ‘
[Restore Defauits | [apoly |
@ ——

389

Appendix H: Applying RASF Methodology with RASFIT

Step 2 (Phase 1): Select “RASF Project” from the new project wizard and click “Next >”.

it Java EE - Eclipse

File Edit Mavigate Search Project RASFE Run Enterprise Architect Window Help

7 (i P HEHECGEIYE H-O0-Q- I G-E @ @ LR G

Project Explorer ¢ e |
=Rl < new
& 1=% org.concordia. RASF..core .
oo == org. concordia. RASF. feature Select a wizard F—
E'&d org.concordia. RASF . Mars\orld r
(2] 'E?T org.concordia. RASF . MewMars\World e —
E]:Ef org.concordia, RASF . OldMarsWarld
& =% org.concordia. RASF.RAStOMAS Wizards:
E-1=% org.concordia.RASF site |7-,'pr= filter text |
#-= Java EE =~
-2 Java Emitter Templates
% JavaScript
(= JAXE
E-= PA
[H--[= Plug-in Development
=12 Reactive Autonomic Systems Framework
H ‘ Jadex Agent Description File |
BT RASF Project =
[[* Remote System Explorer
B2 Server e)
H = SQL Development
= Tasks
1725 1 lear Accictanca e

Step 3 (Phase 1): Enter the project name and click “Finish” (see the figure below).

<+ Java EE - Eclipse

File Edit RMNavigate Search Project RASF Run Enterprise srchicect \Window Help

7 Imufee I e HGEIAYE H-0-Q- G-E- I®™o @ R Y-S

Fiw Project Explorer X S|

=B || < Mew RASF Project
Er‘w'] org.concordia. RASF.core a
E!E‘% org.concordia. RASF. feature Create a RASF Project
E‘&d org, concordia. RASF . MarsWaorld Enter a Project Mame
I?-.!'ﬁI org.concordia. RASF . NewMars\World
#F org.concordia,RASF,OldMarsWorld
& =% org.concordia RASF.RAStOMAS

Project name: | org.concordia. RASF . TestMarsWorld
1= org.concordia.RASF site

Uge default location

Location: | E:VHenag\Schoolworkspaceorg. concordia, RASF. TestMarsWorld Browse, ..

zhoose file system: | default

@ BT B . |

390

Step 4a (Phase 1): A RASF project and related model files, jars, libraries, folders are

created.
_+ RASF - Eclipse
File Edit MNavigate Search Project RA&5F Enterprise Architeck Run MWindow Help

- S oEHEFEEBEIE - i - fi =] -

F-1=% org.concordia.RASF.core

- = org.concordia. . RASF. feature

fg}]- org.concordia.RASF . MarsWorld
'ET' org.concordia. RASF . NewMarsWorld
Tﬁ' org.concordia. RASF . OldMarsWorld
E-1=% org.concordia. RASFE . RAStOMAS
Ia:d' org.concordia. RASF . site

ﬂ JRE System Library [JavaSE-1.6]

-Eh JUnit 4

" @ org.apache.log4i_1.2.13.v200903072027.jar - E:\edipse'plugins\org. concordia. RASF . core_0. 1. 2Vib
=28 -@ jadex-kernel-bdi-2.0-rcs.jar - E: \edipse'plugins'org. concordia. RASF.core_0. 1. 2Yib

E-fod jadex-commons-2.0-rc6.jar - E: \edipse'pluginslorg. concordia, RASF, core_0. 1, 2\ib

=E @ jadex-platform-base-2.0-rc6.jar - E: \edipse\pluginsorg. concordia. RASF .core_0. 1. 2Yib

=, JADEX

= model

----- @ org.concordia. RASF TestMarsWorld. eap

Step 4b (Phase 1): Alternatively, a RASF project can be created by selecting “New RASF

Project” or clicking the button highlighted by the red rectangle in the figure below.

File Edit Mavigate Search Project Qi¥-%38 Enterprise Architect Run Win
=5 - - - Tﬁl B 4 RASF Configuration hg

-
T2 RASF Explorer 3 £E Mew RASF Package

: == org.concordia. RASF. core @- Mew RASE Class

' '[E'J org.concordia. RLASF. feature E RASE Code Generation

'LE‘J org.concordia. RASF. MarsWorld |
'ET' org.concordia, RASF ., MewMarsvy ﬂ Start EJADE RMA

; 'ET' org.concordia. RASFE, QldMarsiWo H Shutdown EJADE platform

'[E‘J- org.concordia. RASF . RAStoMAS

; '[E‘J org.concordia. RASF ., site
q.concordia. RASF . TestMarsWorld

Step 5 (Phase 1): Create a new package by selecting “New RASF Package” or clicking

the button highlighted by the red rectangle in the figure below.

391

1_F RASF - Eclipse

File Edit Mawvigate Search Project %8 Enterprise Architect Run Win

N © 2 BY # RASF Configuration L

E - BT Mew RASF Project -

Tl RASF Explorer 3 5| =5 MNew RASF Package |
-1=% org.concordia.RASF.core (& Mew RASF Class

-1=% org.concordia.RASF. feature
=2 org.concordia. RASE. MarsWorld
E‘ org.concordia. RASF. MewMarsw

[RASF Code Generation
‘o) start EJADE RMA

B org.concordia. RASF. QldMarswo ¥ shutdown EJADE platform

-1=2 org.concordia.RASF.RAStoMAS
122 org.concordia.RASF. site
'E' org.concordia. RASF. TestMarsWorld

=Bl

H--E& JRE System Library [JavaSE-1.6]

&

Step 6 (Phase 1): Enter the source folder as well as package name and click “Finish” (see

the figure below).

File Edit Mavigate Search Projeck RASFE Enterpriss Architect Run Window Help
S e EHGCGEYY QG- 2 - AR R
B B&- o
=% org.concordia. RASF.core
BE.—LJ' org.concordia. RASF . feature

L::T‘,Jr org.concordia, RASF . MarsWorld Java Package r__;

'T:r New Jaya Package

L-E!'ﬁI org.concordia, RASF . NewMarsWorld
Bﬁ org.concordia, RASF, OldMars\World
#-12% org.concordia.RASF . RAStoMAS

Create a new Jawva package.

E‘ I=> org.concordia. RASF. site Creates folders corresponding to packages.

E]'ﬁI org.concordia, RASF TestMars\World -
g Source folder: |org.concordla.RASF.Tesﬂ\ﬂarsWorld,lsrc | [Browse. ..]
@ﬂ JRE System Library [JavaSE-1.6] Mame: |marsworld.manager |
B @l JUnit 4

@ org.apache.log4_1.2.13.v20090307202
El @ jadex-kernel-bdi-2.0-rc6.jar - E:\=clipse

@ (= jadex-commons-2.0-rcS.jar - E:edipse g
=] @ jadex-platform-base-2.0-rcs.jar - E:\adi
-z, JADEX

= model

@ org.concordia.RASF. TestMarsWorld.
i output

@ [Finsh][cancel

Step 7 (Phase 3): Create an agent description file by selecting “New” - “Other...” on

the package.

392

¥ RASF - Eclipse

File Edit Mavigate Search Project RASF Enterprise Architect Run Window Help
RS eWECEWY Q- S -

BT RASF Explorer 53 & T =0

'EJ' org.concordia. RASF.core

'EJ' org.concordia. RASF. feature

'ﬁ’l—'J' org.concordia. RASF . MarsWorld

B org.concordia, RASF.NewMarsWorld

B org.concordia. RASF.OldMarsWarld

=% org.concordia.RASF.RAStoMAS

£-1=% org.concordia, RASF.site
EIIEI org.concordia. LASF . TestMarsWorld

o
=
B

H - hi]
] < roject...
B, JRE System Library } - =
-- Junit 4 o Open Type Hierarchy Fa (@ Annotation
4 org.a .
9-2P3FNE- 09— showIn Alt-+Shift-Hiy b (& Class
& Enum
- (2] copy Ctrl+C ﬁ.
. Interface
2 jadex-platform-ba E= Copy Qualified Name
e — B Package
[B Paste Cirl+v
€ Delete Delete % Example. ..
#» Remowve from Context Ctrl+alt+shift-+Down
Build Path * 1—

Step 8 (Phase 3): Select “Jadex Agent Description File” and click “Next >”.

File Edit Mavigate Search Projeck: RASF Run Enterprise frchitect Window Help
S 9B GCGEYYE H-0-Q- G- I SE @ RG]
= =5

BE| s T

mlbd org.concordia. RASF.core =
R org.concordia. RASF. feature Select a wizard —
1?7‘] org.concordia. RASF.Mars\World r
El ﬁ' org.concordia.RASF.MewMarsWorld r—
E.! ﬁ' org.concordia. RASF. CldMarsworld
B-1=2 org.concordia RASF.RAStOMAS Wizards:
E\&J org.concordia RASF.site |
Eﬁ org.concordia.RASF. TestMarsWorld —
=8 src -~
. {3 marsworld.manager b
=--E JRE System Library [JavasE-1.6] "2 Plug-n Developrnernt
E-Eh JUnit 4 [#= Reactive Autonomic Systems Framework
£-(wi org.apache.log4_1.2.13.4200903072 LT AR A (ETIE
jadex-kernel-bdi-2.0-rc6.jar - E:\edlips B = RS Project .
@ @ Jjadex-commons-2.0-rcb.jar - E:'edipss & = Remote System Explorer
E@ jadex-platform-base-2.0-rco.jar -Ei'lg H e
=i JADEX B+ SQL Development
&= model g EES‘GA " =
...... = output ki ser Assistance
== Web |
B-[Z== Web Services
GFL 125 W ol
@

Step 9 (Phase 3): Enter the destination project, agent name, package and click “Finish”.

393

lava EE - Eclipse

File Edit Mavigate Search Project RASF FRun Enterprise grchitectk Window Help

IS HEGCGEJY $-0-Q- G-E- B0 5
I:IE.\

©

E‘E.T‘fj' org.concordia.RASF.core

E =% org.concordia.RASF. feature Agent Editor File
5 TK__-T;J’ org. concordia.RASF.MarsWorld This wizard creates a new agent file {with *.agent.xml extension)

Eﬁ org. concordia.RASF.MewMarsWorld
- org.concordia.RASF. OldMars\World
2 !

E‘ E_P org.concordia. RASF.RAStoMAS Destination project: |org.mnmrdia.RA5F.Tesﬂ\darsWorld | [Browse...]
-2 org.concordia.RASF.site

E!‘H' org, concordia.RASF . TestMarsWorld
=8 sre Agent name: |Manager |

~Hf marsworld.manager Package: |mar5world.manager |
Bl JRE System Library [JavaSE-1.8]
BB JUnit 4

-fas org.apache.logd_1.2.13.w200903072
jadex-+kernel-bdi-2.0-rcé.jar - E: edips
jadex-commons-2.0-rc6.jar - E: \eclipsd
jadex-platform-base-2.0-rcé.jar - E: e
= JADEX

- model

= output

@ MNext = L Finish J [Cancel J

Step 10 (Phase 3): After successfully creating the agent description file, it can be edited

in the editor view as the following:

ﬂ]a\m EE - org.conc
File Edit MNavigate Search Project RASF Run Enterprise Architect Design Window Help

GRS P HEcEIY $-0-Q-

R Proect Explorer 33 Sl 6 770 Mansgeragentaml £,

%‘J org.concordia.RASF.core
J .

&d org.concordia.RASF.feature Node Content
=% org.concordia.RASF.MarsWorld
25 org.concordia RASF.NewMarsWorld 4 [e] agent (imports?, capabilities?, beliefs?, goals?, plans?, events?, exp 7, prop 7, confi tions?)
B org.concordia RASF.OldMarsWorld @ xmins http://jadex.sourceforge.net/jadex
&‘J org.concordia RASF.RAStOMAS @ xmins:xsi http:/fwww.w3.org/2001/XMLSchema-instance
%‘J or:lconcordialR}\SFlsite (@ usischemalocation http://jadex.sourceforge.net/jadex http://jadex.sourceforge.net/jadex-2.0.xsd
%' org.concordia.RASF. TestMarsWorld @ name Manager.agent

8 src @ package marsworld.manager

2 marsworld.manager % ImpD:‘St ‘:Impclfll.t:‘
capabilities (capability®)
_Mana er.agentxml
= JRE_RW = QUEWESE_NI &) beliefs (belief* | beliefset* | belisfref” | beliefsetref*)*
= JUnit):i e ' [g] goals (performgoal™ | achievegeal™ | querygoal™ | maintaingoal™ | metagoal™ | performgoalref™ | achieveg...
org.apache.logdj_1.2.13.,200903072027 jar - B\ eclip 5] plans (plan”) :
adex-kernel-bdi-2.0-re6.iar - Efeclinse\plugineor [€] events (internalevent” | messageevent® | internaleventref* | messageeventref*)*
; - -bdi-2.0-rcb jar - E\ sel s\
jada{—commons—lﬂ—rcﬁjar R E:‘u’:cli:;:E\Elugin:‘.or: [g] expressions (expression™ | condition™ | expressionref™ | conditionref*)*
Jjadex-platform-base-2.0-rch jar - E'\eclipse\pluging’ g pro:ar‘tla;t ‘jmc?_at" It
configurations (configuration*)

B JADEX

(= model

(= output

Step 12 (Phase 1): Click the button "Open in Enterprise Architect" to switch from the

Eclipse IDE to the EA IDE in the project explorer of EA (see the figure below).

394

configurations?)

Step 13a (Phase 1): We can start modeling through the toolbar in the project browser
depicted below, such as "Add a Package", "New Diagram", "Create Element" and
"Import Source Directory". The EA IDE can be switched back to the Eclipse IDE by

clicking the button "Close EA".

LTSS e e

= |

el a5 T H-E- 4+ F
- gy Model

" Edit UML =0

| |

Step 13b (Phase 1): Alternatively, we can import the predefined model templates and
patterns by clicking the button "New Model from Pattern" --> selecting "RASF" from the
popup dialogue "Select model(s)" --> checking the corresponding model template (see

the figure below).

395

— - ———— - - T | =|a]| =

E-0-=-8;

Select model(s) to add to your project Select from: [<a|.|> ']

B ProjeciBrovzer v 3
ﬁ?‘é W 53 43
- g Model

| Technology | Name
[<default> = |n RAS Model Template
!5’55 Data Distribution Service IE RAG Model Template
& MDG Technology for DaDA. .. @] [RAGM Model Template
miz JCOMIX
SOMF 2.0
FL sysML 11
S(SystemC
Y verilog

Wil vHoL

B [U

x:)(2%

o
T
01

This is the RAS model template.

(===

Step 14 (Phase 1): After successfully importing selected model template, the predefined
packages and diagrams are created and can be expanded in the view of "Project Browser",
such as the package "RAS Model", package diagram "RAS Model", component diagram
"RAGI", class diagram "RAC1" and state diagram "RACIICL". We can modify those
diagrams in the canvas area and add new RAE by dragging them from the toolbox, such

as RAO, RAC and RAG (see the figure below).

396

8 org World -

© File Edit WView Project Diagram Element Tools Add-Ins Settings Window Help

21
21
=
=
=
=] 5 «RAO» RAOL
‘Q’ Associatior «RAOL» RAQLL
E Enumeratic RACIICL
=@ Interface ; RACIICL
B Object - @ Analyze
.. (O Execute
; :rui:ilive - (@ HandelException
12 Exposelnts - (@ Monitor
3 signal
Table
A Agaregate = «RACH RAO2
-@ Assembly «RAOL» RAOLZ
/ Associate
Kg Associatior
/* Compose
A Delegate
A Generalize

Step 15 (Phase 1): The diagrams mentioned above can be navigated either from the
project browser or by double clicking the related RAE on the canvas. For example, we
can double click the "RAGI1" to navigate from the package diagram "RAS Model" to the

component diagram "RAGI1" and to the class diagram "RAC1" by double clicking the

"RACI1" illustrated in the figures below.

i File Edit View Project Diagram Element Tools Add-ns Settings Window Help

Getting Started

& [E] RAS Madel
.. B3 RAS Model
= [«RAG= RAGL

+RAC1
+RHCS'I

RAOL
Association Element

«RACs RAOL
- B «RAOL= RAOLL
Enumeration

Interface
Object
Port

o L& D W R LR e
g

397

= g M
2 [E] RAS Madel
.. B3 RAS Model
£ [«RAG» RAGL
72 RAGL
& &1 «RAC»RAC
- B «RAOsRAOL
E «RAOL= RAOL1
RACIICL
RACIICL
@ Analyze
@ Execute

Association Element

Enumeration

Interface

£
£
i}
i}
=
B raoL
4
=]
—
|
Q

2 [E] RAS Model
- 3 RAS Model
£ [«RAGs RAGL

2] «RACs RACI

%2 RACL
«RAC= RAOL
=RAOLs RAOLL
@ RACIICL
RACLICL
i @ Analyze
2 Execute

RAOL
Association Element
Enumeration

Interface
Object
Port

M § [O m W

Step 16 (Phase 1): The properties of RAO and RAOL on the figure above can be setup by
double clicking them. The figure below depicts how to configure some general properties
of RAOL, such as name (RAOLL1), scope (Public) and programming language (Java, C++,
PHP. etc.). The stereotype of RAOLI is set to <<RAOL>> by checking "RAOL" from
the profile "RASF" on the popup dialogue of the selecting stereotypes. End users can
only choose from <<RAO>> and <<RAOL>> that are applied to the RASF class diagram

(RAO level modeling) and constrained in the RASF modeling profile.

398

e e

1

Sy

3
7

S

T, (S SRR,

«RACLy
RAC1:RACL1

T TR

T

Status:
Complexity:
Language:
Keywords:

3

Step 17 (Phase 1): From the tab "Details", we can set the cardinality, visibility and

concurrency (synchronous or asynchronous) of each RAE (see the figure below).

e

«RAOL»
RAC1:RAOL1

Ty

- ______ R —
General| Details M Constraints | Links | Scenarios | Files ITﬁH&B

E
F

ARORER, AR

G Cardinalty. 1 - Concumency
Visiilty: Public - © Sequential
() Guarded
() Active
() Synchronous

Collection Classes...

399

Step 18 (Phase 1): The autonomic properties such as self-configuration and self-healing,
RAOLtype (RAOL- typel) and repository (local repository) of RAOL1 can be

configured through the tab "Tagged Values" showed below.

12 AM modified: 12/03/2011 5:41:28 PM 100% 827x 1163

: o
o ’Iﬁ’ |#4 RAOL : RADLL

RAC1:RACL1

:k | General | Details | Requirements IConstlaints | Links | Scenarios I Files | Tagged Values

g | B8 G = x| B &

E RAOL1 (RAOL)
autonomic self-corfiguration, self-healing
RADLtype RAOLtypel

CEditUML [

=

repository local repositony

Step 19 (Phase 1): The properties of interactions between RAO and RAOL can be setup
by double click them. The figure below depicts how to configure some general properties
of the interaction from RAOL to RAO, such as source object (RAOL1), target object
(RAO1) and direction (Source -> Destination). The stereotype of that interaction is set to
<<Command>> by checking "Command" from profile "RASF" on the popup dialogue of
selecting stereotypes. We can only choose from <<Report>> as well as <<Command>>
that are applied to the RASF class diagram and constrained in the RASF modeling

profile.

400

Step 20 (Phase 1): Similarly, we can set other RAE's properties by right clicking them

and selecting "Properties..." as the figure below illustrates.

;/IIIIIIIIIIIIIlllilllilllillllllllllﬁ T
] il
A -
AZ-R-g-il ([FLé@
At i

2

E

b

z

- Add-Ins 3

Properties... Alt=Enter |
Open in Relationship Matrix

Documentation

Advanced

Open Package

Step 21 (Phase 2): After having specified and drawn the RAS model with corresponding
structures, behavior as well as self-* properties, we can specify and draw the categorical

RAS model as we described in Chapter 6 (see the figures below as some examples).

401

5 2

9333711 %,

WHOOMmMMmeEN ¢ 0o

S

s 99899

v o [1 [[

)

199999

e 9 [o] (0 [

[
5

mmmmmmmmmmmmm

W OOMmMMmeE: ¢ 0o M

402

|
=
=
=
=
¢
=
3
|
4

=
=
&

Step 23 (Phase 1 & 2): If the XML specification file is generated successfully, a new
folder "output" is created under the selected project. There is a subfolder "Images"
containing all the image files for each diagram created in the Section 9.3.2. Moreover, a
XML file having the RAS specification with the project name is also generated under the

project folder (see the figure below).

403

4 ﬁ' org.concordia. RASF. TestMarsWerld
2B src
> Bh JRE Systemn Library [JavaSE-1.7]
- B, JUnit 4
. [m org.apachelogdj_1.213.5200903072027 jar - E:\eclipse\pluginsorg..
od jadex-kernel-bdi-2.0-rcb.jar - EMeclipse\plugins\org.concordia. RAS

21

s E: jadex-commeons-2.0-rch.jar - ENeclipse\pluginshorg.concordia. RAS
. @ jadex-platform-base-2.0-rcb jar - E:\eclipse\plugins\.org.concordia.l
- By JADEX
4 = model

@ org.concordia. RASF TestMarsWorld.eap
|=| erg.concerdia. RASF. TestMarsWorld.ldb
4| = output

4 [Images
EAID_1894A6526_84C4 _4e76_82E1 3DAD1S28EE3A.png
EAID_24B9C307_7340_4bd4_81A7_007237E31014.png
EAID 2CEBD4C38 3400 _4dac 9CDD_A3GCAIACSC28.png
EAID_474E43BB_42C7 _4d62_ADTE_S5DAS22BESTOE.png
EAID 4DEDD276_56CC_4edd 83F2 6BCAZACHIG4].png
EAID_8332433D 987E_48f4_ 9D10_13BFCETC41BF.png
EAID 93352048_8825_4080_88F5_ED64F1204370.png
EAID SF7BAGBB_3227_461c_AFS5_7TCCCB4DAZF1T.png
EAID_ACE43D6F_E7EC_4000_SEGE_SD620B451020.png
EAID_E253DBCE_78CD_4dfed 8264 _6A42CCA492C9.png
EAID_F485ECDF_CC4B_49Fc_9945_D370BBE40ADO.png
org.concordia. RASF. TestMarsWorld_export.log
org.concordia. RASF. TestMarsWerld.xml

L TR LTI L L L JRL L JLr

L]

Step 24 (Phase 1 & 2): The following figures depict a perspective of XML specification

file and a part of the file content with RAE property configuration.

404

tMarsWarld xml -
Design - Window Help

G-~ @Oy~ @

=
% Manager.agent.xml

Ei gﬂ ? - ﬁ - % <$j - . -

@ UML Diagram 1

MNode Content

a [e] umlModel
(& xmitype uml:Model
narne E4_Model
wvisibility public
packagedElement
thecustomprofile_profile_data
RASFRAC
RASERAC
RASF:Report
RASF:Command
thecusternprofileautonomic
(@ base_Class EAID_BESADOAG_EF52 418 8F94_4BI922B90ATIE
(@ autonomic self-configuration, self-healing
RASFRACL
(@ base_Class EAID_BESADOAG_EF5Z_41e8_8F94_4B922B00ATIE
(® repository local repository
(@ RAOLtype RAOLtype
RASRRACS
RASRRAD
RASF:Report
RASF:Command

hk |% ¥ W W W W

[=l|[=] [¢] [=] [=] [¢] =] & &

Y
=]

[#] [] [#] [=]

WOW W W

<cransition|xmi:type="uml:Transition" xmi:id="EAID OBF72B4F 8DEE 4467 9A4E 2A829F5755DA" name="NoPlan"|visibil
"EAID 1B93FAD5_24D6_4145_SA4A 9DFE3C222AA2" target="EAID 2A4D054F_SA1B 491d A84D_910143785194"/>
fEransition]xmi:type="unl:Transition" xmi:id="EAID E5946B98_0D22 46f9 B386 BI3534747235" name{"HasPlan"|visib:
"EAID 1B93FAD5_24D6 4145 SA4A 9DFE3C222AA2" target="EAID 1D19A54B 7331 _494e 8030 BFDF55A1BED4"/>
Jtransition]xmi:type="mnl:Transition" xmi:id="EATD EB6EC055 FBFC_4401_AD2D_AF044780E6CE" name="PlanException’]
"EAID 1B93FAD5 24D6 4145 SA4A 9DFE3C222AA2" target="EAID AB2B535A 7126 42de 9159 C1100B812098"/>
<subvertex xmi:type="uml:Pseudostate" xmi:id="EATD 5A444EF1 3566 4919 B2E2 A2D51C142AB6" name="Initial"|visibi
<outgoing xmi:idref="EAID 43ETCA37_F4F4_dec7 83BE_E6CA9A2TDFSE"/>

</ subvertex>
{transition|xmi:type="uml:Transition" xmi:id="EAID 43E7CA37 F4F4 dec7 83BE E6CA9A27DF5SE" visibility="public" k
"EAID 5A444EF1_3566_4919 B2E2 A2D51C142AB6" target="EAID 4A223BA5 SF7C_4e91 94D5_T4FTCADADAEC"/>

region>

zdClassifier>

ilement>

Lement xmi:type="uml{InformationFlow| xmi:id="EAID_065ETEF9_89D1 4f53_B151_4B2BSSOCD2E3" source="EAID_7DCA83DF_A

15CE_F29D_47bf_867C_FC5DTC2CI8BA6"/>

lement xmi:type="uml{InformationFlow]' xmi:id="EAID BEDCOSBT_8F28_47a8 B957_ I6AFSBOOADIS" source="EAID 839075CE_F

33DF_AASC_4c3b_AE31 SBEB53BCASIES"/>

2nt>

Eile data base_Package="EAPK 5CG95FE3 B8CO1 4107 S5D63 94A0EC30CE3E" _p:ofile_data=“<:memo>:“!)

1t="EAID 0978DSF2 B318_ 4bb2 B4C4 68T7TCD48BDEI" Ctype="RACtype"/>

SATD 1DF84F4C 4FD1_47e5 84E4 1121C23A0788" RAOtype="RAOtype"/>
rmationFlow="EAID DF42C932 4BA7 448f AFAF 2B850D312417"/>

srmationFlow="EAID 2C3D86E6_A159_49a5 96AD 34FE577A4457"/3|

aomic base_Class=“EAID_ﬁESADUAﬁ_EFSQ_AleB_BF94_4B922B90A39E“|aut0n0mic=“self—configuration, self—healingp!>
'EATD BESADOAG EF52 4le8 8F94 4B922BO0DATIE" |repository="local repository" RACLtype=“RAOLtype“V>

znt="EAID 594D0OF40_FCEE_ 4e38 SBE2 CODF1F1D666C" repository="repository" RACStype="RACStype"/>

405

Step 25 (Phase 1): In order to generate the code template for the RAE in the RAS model,
we can right click "<<RAOL>> RAOLI" --> "Generate Code..." from the project

browser as the figure below illustrates.

Project BErowser

- 1
BB EH R BB) @
= gy Model
= [E] RAS Model |
%E FAS Model
= [«RAG» RAGI
'EE FAGL
= =i «RAC» RACL
. F2RaC
: «RAO= RAOL
«RAOL» RAOL}
= @ RACILICL Add-In
N RACLICL Properties...
- @ Analyze Custom Properties... Ctrl=5Shift+Ent:
- I Execute
- I HandelExce Add
- 13 Monitor
.. i Plan Paste Diagram...
~ @ Initial g | Attributes...
= ﬂ =RACS= RACSL @ Operations...
«RAO» RAOZ ||§ Generate Code... F1
«RAOL» RACL synchronize with Code ... F
@ RACSIICL @" View Sowurce Code... F1
= [«RAGM=» RAGML
%E RAGMIL Cipen Source Directory Ctrl=Alt-

Step 26a (Phase 1): From the popup dialogue "Generate Code", we need to choose the
path of the source code template --> select the target language --> click button "Generate",

and that template will be created under the specified path (see the figures below).

406

Y Froject Browser |
— BmEE & 58 1

) v
o = E %F'.é\s Model
- RAS Model
E\Heng'workspaceorg concordia RASF TestMarsWord'src\rasfrag 1hac 1 ‘
“ (] Generate & [«RAGs RAGL
Advanced ?ﬂg RAGL
] = «RAC« RACL
Target language Details
View T3 RACL
Java -l | RAOL1 «RAO» RACL
e -RAOL> RAOLL
a
e Close o & RACICL
m Ci RACIICL
= %;; . " Analyze
DL O Execute
- @@ HandelException
= E‘:E‘m g @ Monitor
SystemC ; @@ Plan
gBl_‘l.Iet L@ Initial
erilo
VHDI? il Help = ﬂ «RACS» RACS]
| Visual Basic ; %E RACSL
WorkFlowSeript «RAQ» RADZ

ava EE - org.co : - Ecli
&7 Java EE - org.concordia.RASF.TestMarsW] Ecli

File Edit Source Refactor Mavigate Search Project RASF Run Enterprise Architect Window Help
i~ #EHFGCGEIY H-0-Q- G-6- B8 4~ 9

[Project Explorer &3 = B | 4] Manager.agent.xml ; m é h |¥| org.concorc

it | - 1 package rasf.ragl.racl;

=2 org.concordia,RASF.core S e

[éj- org.concordia RASF feature * @author Heng

[éj- org.concordia.RASF.MarsWerld * fversion 1.8

B org.concordia.RASF.NewMarsWaorld :f@c-'eated B3-May-2@12 4:87:32 PM
org.concordia RASF.OldMarsWerld .

E org.concordia.RASF.RAStoMAS public class RAOL1

=2 org.concordia. RASF site

ﬁ org.concordia RASF. TestMarsWorld
[src

£ marsworld.manager

public RAOLL(){

}

[X] M t2ml public void finalize() throws Throwable {
anager.agentxm

rasf.ragl.ra
£ rasfragl.racl
[J] RAOLL java
© Raoul

}//end RAOL1

Step 26b (Phase 1): Alternatively, we may generate the source code templates for a group
of classes under the same package by right clicking the package name "RAG2" -->

selecting "Code Engineering" --> clicking "Generate Source Code...".

407

BlinmilE h B-8- 3 @

= (g Model
= [E] RAS Model
o OF
Add-In 4
E‘ Properties...
= Package Control 3
- o Add b
g [E, Paste Diagram...
.. (I View Package as List
- I Turn On Level Mumbering
. @
?‘S RAS E Linked Document... Ctri+Alt=D
B 1 «RAG Documentation 3
Ta R_.t| Code Engineering FH @ Generate Source Code ...
E ﬂ «H Execution Analyzer 4 E Import Source Directory ...

Import/Export Import Binary Module...

o

E Transform Current Package Ctrl=5hift+H Synchronize Package with Code ...

Step 27 (Phase 1): From the popup dialogue "Generate Package Source Code", we need
to check "Include all Child Packages" --> select the objects to create --> click button

"Generate" (see the figures below).

BB E % F-E- 4
i— = (g Model

= [B] RAS Model
75 RAG2
- B «RAOC= RAOL
© B «RAOL» RAOLL
RAOLLICL
2 Analyze
& Execute
@ HandelException
@ Meonitor
i @ Plan
- @ Initial
[]Retain Existing File Paths - T5 RAS Madel

Select Objects to Generate [¥] Indude all Child Packages | = D “RA;A;PIAGI

Type Target File E| ;g «RAC» RACL
E:'\Heng'\workspace\org.concordia. RASF . Tes... l?_'g RACL
E:\Heng\workspace‘org. concordia, RASF Tes... ; B «RAO» RAOL

.. B «RAOL» RAOLL

B @ RACLICL

. [B3 RACLICL

- & Analyze

- @ Execute

- @ HandelException

i @ Monitor

.. @ Plan

. ¥ Generate Package Source Code
RootPackage: RAGZ2

Synchraonize: [Synd-ronize model and code v]

m

Generate:

uto GenerateFles Rootovectorys | [[.]

408

% E % B 1

— — =] @ Model
Edit UML & [E] RAS Model
=[] RaG2 |
[CoseEa | 73 RAG2

RAO» RAOL
RAOL» RAOLL

—f = H i —
S— e W e =
Synchronize: Synchronize model a.mi Cumrent Action

(Generate selected objects:
Generate: —generating E:\Heng'workspace“org.concordia. RASF TestMarsWorld\src'rasf\rag 1'ac 1\RAD 1 java
[] Auto Generate Files Root Direc enerating E:\Heng'warkspace'org.concordia. RASF . TestMarsWodd srcrasf g 1'rac 1N"\RAQL 1 java

["]Retain Existing File Paths

Select Objects to Generate

Object Type
RAO1
RACL1

| Cancel Generation | l

[selectal | [selectione |

Step 28 (Phase 1): If the generation process is completed successfully, the source code

templates will be created under the specified package as the figure below shows.

8] Java EE - org.concordia.RASF. TestMarsWorld/src/rasf/rag2/rac1/RAO L java - Eclipse
File Edit Source Refactor Mavigate Search Project RASF Run Enterprise Architect Window Help

G~ dPEH#GCGEJIE H-0-Q- G-6- 8+~ P

w =0 I’m RACL java &2 [J] RAOLL java]||£| Manager.agentaml W
<}==.'|>| @ 1 package rasf.rag2.racl;
i =2 org.concordia.RASF.core ;___ JE
[‘Epd org.concordia, RASF feature 4 * [@author Heng
b =2 org.concordia.RASF.MarsWorld 5 * (fversion 1.8
i B org.concordia. RASF.NewMarsWorld & : ficreated @3-May-2012 3:17:38 PM
[» 'EJ' org.concord?a.RASF.OIdMarsWorId ; puﬁlic class RAOL {
[» I=% org.concordia, RASF.RAStoMAS 9
[TE‘J- org.concordia, RASF site v public RAOL(){
|.| B org.concordia.RASF. TestMarsWorld 1
4 [src 2 1
3
4 £ marsworld manager 4- public void finalize() throws Throwable {
|%] Manager.agent.xml 5
a |f3 rasfrag2.racl| 5
o [J] RAOLjava 7 }//end RAODL
b [J] RAOLLjava

Step 30a (Phase 9): From the popup window "Jadex Control Center", we need to input

the path of the agent defintion file (Manager.agent.xml) and click the button "Start" to

409

deploy the MAS implementation on the Jade and Jadex platform as the figures below.

[RASxml [[X] MASml

[RAStoMAS:s!

fm KSLTRAStoMASRules.java (m RecoverCarryPlanjava &%

1
adex Control Center(0.96 (2007/06/15): Unnamed project [

File Model Help

Gae H%

B iG g Jadex|

: - Settings

: |Filename

|Agenlname |Manager|

‘| - Description

MName :
¢ 4 proprio-pe :
niod :

& df@proprio-pc nio{
‘ ams@proprio-pc nic :

& jcc@proprio-pc

| \Heng'workspacelorg.concordia. RASF.OldMarsWorld\srcjadexiexamplesimarsworldimanageriManager.agent.xml

Configuration |1 Sentry | 2 Producers / 3 Carriers

| [] Auto generate

| Start || Reload || Reset || Help |

‘ Manager

The manager agent.

Can be used to launch the mars world example.

It consists of three different kinds of agents:

- Sentry agents are reponsible for examining orebodies

A ore capacity is shown on the map when an orebody was examined.
- Production agents produce ore at available orebodies.

- Carry agents are able to carry ore to the base.

1

Objective is to carry as much ore as possible to the

Bl

s ——= —
@J Jadex Contral Center 0.96 (2007/06/15): Unnamed project

File Model Help

Ll H%

Description

r Description

[Setimas - : Homebase
Filename |E.\Heng\w--
Configuration _@ : Sentry Agent

Agent name |Manager

‘% : Production Agent|

: Carry Agent

: Target

Manager@propricni
& carmy_o@propric-ni
& camy_1@propric-ni
& camry_2@propric-ni
& Production_3g@pr ni
& Production_ag@pr ni
& sentry_S@propricni

| »

Name |
¢ 2 proprio-pc :
& jcc@proprio-pc nig :||| The manager agen
& df@propric-pc nig

ams@proprio-pc nig :

Mars Robots

Can be usedto launch i
It consists of three differ
- Sentry agents are repa
A ore capacity is shown
- Production agents pro
- Carry agents are able

Objective is to carry as

Step 30b (Phase 9): Alternatively, we can deploy MAS implementation by right clicking

the agent definition file --> "RASF" --

> "Deploy Agent(s)" (see the figure below).

410

A\%

4

BREHE

IEIEIEIEEEIEEEEIEIEIEIEEEEIEIEIE

rg.concardia. RASF.MewMarsWorld

src
marsworld

[@Suppresskarnings(“serial™)
public class RecoverCarryPlan extends Plan {

constructors

marsworld.carrier
marsworld.images

i

marsworld.manager
[MarsworldGuijava

StarterPlan.java

Manager.agent.xml

Manager.agent.xml

(! [=) S =)

new_agent.agent.xr
marsworld.movement
marsworld.ontology
marsworld. producer
marsworld.sentry
marsworld. supervisor
antlr-runtime-3.2.jar
becel.jar
commons-codec-1.3 jar
crimson.jar

eaapi.jar

ejade.jar

GraphLayout.jar

http.jar

iiop.jar

jade.jar

jadeTools.jar
jadex_examples.jar
jadex_jadeadapter.jar
jadex_rt.jar
jadex_standalone.jar
jadex_tools.jar
jadex-commons-2.0-rcb.ja
jadex-kernel-bdi-2.0-rcb.ja
jadex-platform-base-2.0-rc¢
janino.jar

T |

E23
5
&]

1z
13
14

Mew

Show In

Open

Open With

Copy

Copy Qualified Name

Paste

Delete

Remowve from Context
Mark as Landmark
Build Path

Move...

Rename...

Import...
Export...

Refresh

Validate

Show in Remote Systermns view
Run As

Debug As

Profile As

Team

Compare With

Replace With

Source

411

»

Alt+Shift+W »
F3

Ctrl+C
Ctrl+V
Delete

Ctrl+ Alt+ Shift+ Down
Ctrl+Alt+Shift+Up

F2

F5

)

covered: "+this);

body ()
Environment)getBeliefba

new StartAgentInfo(“mar
1({"ams_create_agent™);
e").setValue(sa.getType
a.getName();

=") .setValue(agentiame)
Ffiguration").setValue(s
!=null)
Targuments").setValue(s
it(caj;

Data Source Explorer r['“[j Snip
C:\Program Files (x86)\Jawva\jre

15
se\pluginsorg. concordii

apter.standalone.Platfo
ms .
ing delegates.

35 Debug Agentis)

| o) Deploy Agentis)

Appendix I: Representation of Categorical Model in Mars-world

<CATEGORY name = “Production-Robot 1>
<OBJECT>
<OBIJECT name = “Sensor;” type = “Sensor”/>
<OBJECT name = “Drill;” type = “Drill”/>
<OBJECT name = “CU;” type = “CU”’/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Command;”
type =“Command-from-CU-to-Sensor”/>
<FROM-OBJECT name = “CU,” type = “CU”’/>
<TO-OBJECT name = “Sensor;” type = “Sensor”/>
</MORPHISM>
<MORPHISM name = “Command,”
type =“Command-from-CU-and-Drill”/>
<FROM-OBJECT name = “CU,” type = “CU”’/>
<TO-OBJECT name = “Drill;” type = “Drill”/>
</MORPHISM>
<MORPHISM name = “Report;” type =“Command-from-Sensor-to-CU”’/>
<FROM-OBJECT name = “Sensor;” type = “Sensor”/>
<TO-OBJECT name = “CU,” type = “CU”/>
</MORPHISM>
<MORPHISM name = “Report,” type =“Command-from-Drill-to-CU”/>
<FROM-OBIJECT name = “Drill;” type = “Drill”/>
<TO-OBJECT name = “CU,” type = “CU”/>
</MORPHISM>
<MORPHISM name = “Cooperate;”
type =“Communication-from-Sensor-to-Drill”/>
<FROM-OBJECT name = “Sensor;” type = “Sensor”/>
<TO-OBJECT name = “Drill;” type = “Drill”/>
</MORPHISM>
<MORPHISM name = “Cooperate;”
type =“Communication-from-Drill-to-Sensor”/>
<FROM-OBIJECT name = “Drill;” type = “Drill”/>
<TO-OBJECT name = “Sensor;” type = “Sensor”/>
</MORPHISM>
</MORPHISM>
</CATEGORY>

Figure 320: XML Specification of Category Production-Robot1

412

<CATEGORY name = “Robot-Group-Formation™>
<OBJECT>
<OBJECT name = “Production-Robot”/>
<OBJECT name = “Sentry-Robot”/>
<OBIJECT name = “Carry-Robot”/>
<OBJECT name = “Supervisor-Robot”/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Communication-from-Supervisor-to-PR”/>
<FROM-OBJECT name = “Supervisor-Robot”/>
<TO-OBIJECT name = “Production-Robot”/>
</MORPHISM>
<MORPHISM name = “Communication-from-Supervisor-to-SR”/>
<FROM-OBJECT name = “Supervisor-Robot”/>
<TO-OBJECT name = “Sentry-Robot”/>
</MORPHISM>
<MORPHISM name = “Communication-from-Supervisor-to-CR”/>
<FROM-OBJECT name = “Supervisor-Robot”/>
<TO-OBJECT name = “Carry-Robot”/>
</MORPHISM>
<MORPHISM name = “Communication-from-PR-to-Supervisor”/>
<FROM-OBJECT name = “Production-Robot”/>
<TO-OBJECT name = “Supervisor-Robot”/>
</MORPHISM>
<MORPHISM name = “Communication-from-SR-to-Supervisor’/>
<FROM-OBJECT name = “Sentry-Robot”/>
<TO-OBJECT name = “Supervisor-Robot”/>
</MORPHISM>
<MORPHISM name = “Communication-from-CR-to-Supervisor”/>
<FROM-OBJECT name = “Carry-Robot”/>
<TO-OBJECT name = “Supervisor-Robot”/>
</MORPHISM>
<MORPHISM name = “Communication-from-SR-to-PR”/>
<FROM-OBJECT name = “Sentry-Robot”/>
<TO-OBIJECT name = “Production-Robot”/>
</MORPHISM>
<MORPHISM name = “Communication-from-PR-to-SR”/>
<FROM-OBJECT name = “Production-Robot”/>
<TO-OBJECT name = “Sentry-Robot”/>
</MORPHISM>
<MORPHISM name = “Communication-from-PR-to-CR”/>

413

<FROM-OBJECT name = “Production-Robot”/>
<TO-OBJECT name = “Carry-Robot”/>

</MORPHISM>

<MORPHISM name = “Communication-from-CR-to-PR”/>
<FROM-OBJECT name = “Carry-Robot”/>
<TO-OBJECT name = “Production-Robot”/>

</MORPHISM>

</MORPHISM>
</CATEGORY>

Figure 321: XML Specification of Category Robot-Group-Formation

<CATEGORY name = “Exploration-Group;”>
<OBJECT>
<OBJECT name = “PR;” type = “Production-Robot” />
<OBJECT name = “SR;” type = “Sentry-Robot”/>
<OBJECT name = “CR;” type = “Carry-Robot”/>
<OBJECT name = “Supervisor;” type = “Supervisor-Robot”/>
</OBJECT>
<MORPHISM>
<MORPHISM name = “Command;”
type = Communication-from-Supervisor-to-PR”/>
<FROM-OBJECT name = “Supervisor;” type = “Supervisor-Robot”/>
<TO-OBJECT name = “PR;” type = “Production-Robot”/>
<MORPHISM>
<MORPHISM name = “Command,”
type = Communication-from-Supervisor-to-SR”/>
<FROM-OBJECT name = “Supervisor;” type = “Supervisor-Robot”/>
<TO-OBJECT name = “SR;” type = “Sentry-Robot’/>
<MORPHISM>
<MORPHISM name = “Command;”
type = Communication-from-Supervisor-to-CR”/>
<FROM-OBJECT name = “Supervisor;” type = “Supervisor-Robot”/>
<TO-OBJECT name = “CR;” type = “Carry-Robot”/>
<MORPHISM>
<MORPHISM name = “Report;”
type = Communication-from-PR-to-Supervisor”/>
<FROM-OBJECT name = “PR;” type = “Production-Robot”/>
<TO-OBJECT name = “Supervisor;” type = “Supervisor-Robot”/>
<MORPHISM>
<MORPHISM name = “Report,”
type = Communication-from-SR-to-Supervisor”/>

414

<FROM-OBJECT name = “SR;” type = “Sentry-Robot”/>
<TO-OBJECT name = “Supervisor;” type = “Supervisor-Robot”/>
<MORPHISM>
<MORPHISM name = “Report;”
type = Communication-from-CR-to-Supervisor”/>
<FROM-OBIJECT name = “CR;” type = “Carry-Robot”/>
<TO-OBJECT name = “Supervisor;” type = “Supervisor-Robot”/>
<MORPHISM>
<MORPHISM name = “Cooperate;”
type = Communication-from-SR-to-PR”/>
<FROM-OBJECT name = “SR;” type = “Sentry-Robot”/>
<TO-OBJECT name = “PR;” type = “Production-Robot”/>
<MORPHISM>
<MORPHISM name = “Cooperate;”
type = Communication-from-PR-to-SR”/>
<FROM-OBJECT name = “PR;” type = “Production-Robot”/>
<TO-OBJECT name = “SR;” type = “Sentry-Robot’/>
<MORPHISM>
<MORPHISM name = “Cooperate;”
type = Communication-from-PR-to-CR”/>
<FROM-OBJECT name = “PR;” type = “Production-Robot”/>
<TO-OBJECT name = “CR;” type = “Carry-Robot’/>
<MORPHISM>
<MORPHISM name = “Cooperate,”
type = Communication-from-CR-to-PR”/>
<FROM-OBIJECT name = “CR;” type = “Carry-Robot”/>
<TO-OBJECT name = “PR;” type = “Production-Robot”/>
<MORPHISM>
</MORPHISM>
</CATEGORY>

Figure 322: XML Specification of Category Exploration-Group1l

<CATEGORY name = “Mars-World-Formation”>

<OBJECT>
<OBIJECT name = “Exploration-Group”/>
<OBIJECT name = “Production-Group” />
<OBIJECT name = “Carry-Group” />

</OBJECT>

<MORPHISM>
<MORPHISM name = “Communication-from-EG-to-PG”/>

<FROM-OBJECT name = “Exploration-Group”/>

415

<TO-OBJECT name = “Production-Group’/>

<MORPHISM>

<MORPHISM name = “Communication-from-PG-to-CG”/>
<FROM-OBJECT name = “Production-Group”/>
<TO-OBIJECT name = “Carry-Group”/>

<MORPHISM>

<MORPHISM name = “Communication-from-CG-to-EG”/>
<FROM-OBJECT name = “Carry-Group”/>
<TO-OBJECT name = “Exploration-Group”/>

<MORPHISM>

<MORPHISM name = “Communication-from-PG-to-EG”/>
<FROM-OBJECT name = “Production-Group”/>
<TO-OBJECT name = “Exploration-Group”/>

<MORPHISM>

<MORPHISM name = “Communication-from-EG-to-CG”/>
<FROM-OBJECT name = “Exploration-Group”/>
<TO-OBIJECT name = “Carry-Group”/>

<MORPHISM>

<MORPHISM name = “Communication-from-CG-to-PG”/>
<FROM-OBJECT name = “Carry-Group”/>
<TO-OBJECT name = “Production-Group’/>

<MORPHISM>

</MORPHISM>
</CATEGORY>

Figure 323: XML Specification of Category Mars-World-Formation

416

