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Abstract

Towards a Formal Reactive Autonomic Systems Framework using

Category Theory

Heng Kuang, Ph.D.

Concordia University, 2013

Software complexity crisis is the main obstacle to further progress in IT industry, as

the difficulty of managing complex and massive computing systems goes well beyond IT

administrators’ capabilities. One of the remaining options is autonomic computing, which

helps to address complexity by using technology to manage technology in terms of hiding

and removing low level complexities from end users.

Real-time reactive systems are some of the most complex systems that have become

increasingly heterogeneous and intelligent. Thus, we want to add autonomic features to

real-time reactive systems by building a formal framework, Reactive Autonomic Systems

Framework (RASF), which can leverage specification, modeling and development of

Reactive Autonomic Systems (RAS). With autonomic behavior, the real-time reactive

systems are more self-managed to themselves and more adaptive to their environment.

Formal methods are proven approaches to ensure the correct operation of complex

interacting systems. However, many current formal approaches do not have appropriate

mechanisms to specify RAS and have not addressed well on verifying self-management

behavior, which is one of the most important features of the RAS. The management of
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evolving specifications and analysis of changes require a specification structure, which

can isolate those changes in a small number of components and analyze the impacts of a

change on interconnected components. Category theory has been proposed as a

framework to offer that structure; it has a rich body of theory to reason about objects and

their relations. Furthermore, category theory adopts a correct by construction approach

by which components can be specified, proved and composed in the way of preserving

their properties.

In the multi-agent community, agent-based approach is considered as a natural way to

model and implement autonomic systems, as the ability of an autonomous agent can be

easily mapped to the self-management behaviors in autonomic systems. Thus, many ideas

from the Multi-Agent Systems (MAS) community can be adapted to implement the

autonomic systems, such as the self-management behavior, automatic group formation,

interfacing and evolution.

Therefore, in terms of achieving our research goal, we need to i) build an architecture

and corresponding communication mechanism for modeling both reactive and autonomic

behavior of the RAS, ii) formally specify the architecture, communication and behavior

above using category theory, iii) design and implement the architecture, communication

as well as behavior of the RAS model by the MAS approach with its implementation and

iv) illustrate our RASF methodology and approach with case studies.
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Chapter 1: Introduction

This thesis presents the result of the research and practical work made towards the nature,

specification, modeling, formalization and illustration of Reactive Autonomic Systems

Framework (RASF). The thesis lays a ground for the RASF project that provides rigorous

development of Reactive Autonomic Systems (RAS).

1.1 Research Motivation

Software complexity is the main obstacle to further progress in IT industry, as the

difficulty of managing complex and massive computing systems goes well beyond IT

administrators’ capabilities. Although current software engineering methodologies and

programming language innovations have extended the size as well as complexity of

computing systems, only depending on those will not get IT industry through the present

software complexity problem. One of the remaining options is autonomic computing,

which helps to address complexity by using technology to manage technology in terms of

hiding and removing low level complexities from end users [80, 38].

The term autonomic is derived from human autonomic nervous system that monitors

heartbeat, blood pressure and body temperature without any conscious thought. This

self-regulation and separation provides the ability for human beings to concentrate on

high level objectives without managing specific details [58]. In a similar way, an

autonomic computing system is able to manage itself by anticipating requirements and

resolving problems with minimum human intervention. Thus, IT professionals can focus

on business-oriented objectives instead of computing level tasks with implementation,
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configuration and maintenance details [63].

We need to select a target system that can get benefit from applying the autonomic

computing paradigm. Real-time reactive systems are some of the most complex systems;

the complexity involved comes from their real-time as well as reactive characteristics: 1)

involves concurrency; 2) have strict timing requirements; 3) must be reliable; 4) involves

software and hardware components; 5) have become increasingly heterogeneous. Thus,

we want to add autonomic features to real-time reactive systems by building a framework

(RASF) that can leverage specification, modeling and development of the RAS. With

autonomic behavior, real-time reactive systems are more self-managed to themselves and

more adaptive to their environment; the RAS can simplify and enhance the experience of

end-users through anticipating their needs in a complex, dynamic and uncertain

environment.

1.2 Research Problems

As real-time reactive systems become more complex, testing and error-finding also

become more difficult, especially for the autonomic behavior with self-management and

self-evolving capabilities added. Race conditions in those systems are very difficult to be

found by inputting sample data and checking if results are correct, as certain errors are

time-based and only occur when processes send or receive data at particular time, in

particular sequence or after learning. In order to find those errors by testing, all possible

state combinations of the processes have to be executed, which are exponential in the

number of states.
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Formal methods are proven approaches to ensure correct operation of complex

interacting systems, since a formal specification can be used to prove the properties of a

system, check for particular types of errors, and it also can be used as an input for model

checking. However, most of current formal approaches do not have an appropriate

mechanism to specify RAS and have not addressed well on verifying emergent behavior

(an emergent behavior can appear when a number of simple entities operate in an

environment, forming more complex behaviors as a collective), which is one of the most

important characteristics of the RAS. Figure 1 compares current formal methods for the

specification of emergent behavior and more details about those formal methods and their

comparison can be found in [51]. The management of analysis for changes requires a

specification structure, which is able to isolate those changes within a small number of

components and analyze the impacts of a change on interconnected components [185].

Figure 1: Comparison of Formal Methods for Emergent Behavior Analysis [51]
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The following describes some specification techniques which have been used to

specify social, swarm, as well as emergent behavior [51]:

 WSCCS: it is a process algebra used to model social insects [170] and analyze

non-linear aspects of social insects [156].

 X-Machines: they have been used to model cell biology [55, 56]; their modifications,

such as Communicating Stream X-Machines [57], also have potential to specify

swarms.

 Dynamic Emergent System Modeling Language (DESML) [82]: a variant of the

UML that can be used to model emergent systems.

 Cellular Automata [119]: they have been used to model systems which exhibit

emergent behavior.

 Artificial Physics [153]: it uses physics-based modeling to gauge emergent behavior

and ensure formation flying as well as other constraints on swarms.

Category theory has been proposed as a framework to offer that structure; it also has

been successfully used to provide composition primitives in both algebraic [189] and

temporal logic [35] specification languages. Category theory has a rich body of theory to

reason about objects and their relations (specifications as well as their interactions), and it

is abstract enough for a wide range of different specification languages. Moreover,

automation may be achieved in category theory, for example, the composition of two

specifications can be derived automatically and the category of specifications follows

some properties, such as co-completeness. Category theory for software specification has
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adopted a correct by construction approach by which components are specified, proved,

and composed in the way of preserving their properties [185].

Thus, the research problems targeted in this thesis are not only how to model reactive

autonomic systems, but also how to formalize the RAS models using category theory

constructs in terms of verifying autonomic properties and validating self-management

behavior.

1.3 Research Goal and Objectives

According to the research problems we defined above, our research goal is to build a

formal framework (RASF) which can leverage modeling, formal specification as well as

development of the RAS. In order to achieve the research goal, we need to: a) Build an

architecture and corresponding communication mechanism for modeling both reactive

and autonomic behavior of the RAS; b) Formally specify the architecture, communication

and behavior above using category theory as a formal method.

After having the RAS model and its formal specification, we should elaborate it to an

instance model and implement it through a case study to support the value and feasibility

of our research. In the multi-agent community, agent-based approach is considered as a

natural way to model and implement autonomic systems, as the ability of an autonomous

agent can be easily mapped to the self-management behaviors in autonomic systems.

Moreover, the ability of Multi-Agent Systems (MAS) to make interactions among

components explicit and control them in a flexible way supports a more distributed way

[167]. Many ideas from the MAS community can be adapted to implement autonomic
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systems, such as self-management behavior, automatic group formation, knowledge

mining, agent coordination, agent adaptation, interfacing and evolution [190].

Figure 2: RASF Approach

Therefore, in terms of achieving our research goal, we also need to: c) design and

implement the architecture, communication and behavior of the RAS model by a MAS

approach; d) illustrate our methodology with a case study. Figure 2 depicts a perspective

of our research methodology: 1) Build a RAS model based on the RAS requirements and

properties; 2) Transfer the RAS model to its CAT (category theory) model using the

category constructs; 3) Transfer the RAS model to its MAS model using the agent
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constructs; 4) Transfer the MAS model to its CAT model; 5) Implement the MAS model

using the Jadex framework, which allows for programming software agent in XML, Java

and can be deployed on different kinds of middleware such as JADE; 6) Visualize the

CAT mode of RAS model to its graphical representation in terms of the validation

between categorical models; 7) Visualize the CAT model of MAS model to its graphical

representation; 8) Transfer the MAS implementation to its CAT model; 9) Visualize the

CAT model of MAS implementation to its graphical representation; 10) Apply the RASF

approach to industrial projects in terms of supporting its feasibility.

1.4 Research Approach

As we started our research from scratch and it involves multiple fields (autonomic

computing, multi-agent systems, category theory and real-time reactive systems), I did a

comprehensive literature review on those fields before I started to develop our RASF

approach. Figure 3 shows a road map of my research activities in order to achieve my

contribution on the processes of 2, 4, 6, 10, 14 as well as corresponding outcome 1, 3, 5

illustrated in Figure 2. I also co-supervised and participated in the related processes of 8,

12 and corresponding outcome 7, 9, 11, 13, 15 that were conducted by the other three

master students.



8

Figure 3: Road Map of Research Activities
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1.5 Organization of the Thesis

This thesis is organized as follows:

Chapter 2 introduces the background as well as conceptual view of the autonomic

computing paradigm. This chapter indicates some possible architecture perspectives and

corresponding requirement specification for the RASF. We also introduced the agent-

based computing technology that can be used to design and implement autonomic as well

as reactive behavior for the RAS modeled by the RASF.

Chapter 3 presents the definitions, propositions and theorems of the category theory,

which may be applied to specify reactive and autonomic behavior for the RAS, such as

categories, morphisms, functors, limits, duality and naturality.

Chapter 4 gives an introduction to three case studies in terms of illustrating our

research methodology and approach, which include Mars-world, Prospecting Asteroid

Mission and an industrial project End-to-End iFix Tool.

Chapter 5 provides a comprehensive conceptual view of RASF. This chapter intends

to capture and convey the significant architectural decisions for further design as well as

implementation of the RASF.

Chapter 6 describes the prototype design of categorical RASF model, transformation

from the categorical RAS model to its XML specification as well as transformation from

categorical MAS model to its XML specification.

Chapter 7 presents the prototype design of self-healing property, prototype design of

the categorical specification for self-healing and transformation from the categorical self-
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healing property to its XML specification.

Chapter 8 illustrates the prototype design of self-configuration property, prototype

design of categorical specification for the self-configuration and transformation from the

categorical self-configuration property to its XML specification.

Chapter 9 gives an introduction to the implementation of RASF Integration Tool

(RASFIT) and the integration of the MAS implementation to RASFIT, which includes the

Eclipse plug-in module, Enterprise Architect module, Jadex module, CATCanvas module

and model transformation module.

Chapter 10 describes the prototype design of self-healing and self-configuration in

case studies using the RASF.

Chapter 11 presents conclusions to be drawn from this thesis work and offers the

directions of future work on the RASF.
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Chapter 2: Autonomic Systems and Multi-Agent Systems

This chapter states the research activities 1), 2), 3), 5) in Figure 3, which are literature

review on autonomic computing, real-time reactive systems, multi-agent systems as well

as formal methods. I had three publications [124, 88 & 176] related to that review.

Software complexity is the main obstacle to the further progress in IT industry, as the

difficulty of managing complex and massive computing systems goes well beyond IT

administrators’ capabilities. This complexity is derived from the following aspects:

 The need to integrate heterogeneous software environments into one cooperated

computing system, and to extend that billions computing devices connected to the

Internet.

 The rapid stream of changing and conflicting requirements at runtime requires timely

and decisive responses.

 As the growing uncertainty of software environments due to unpredictable, diverse

and interconnected computing systems, it is very difficult to anticipate and design

interactions among the elements of those systems.

Although current software engineering methodologies (such as spiral development,

incremental development, rapid application development and extreme programming) as

well as programming language innovations have extended the size as well as complexity

of computing systems, only depending on those two solutions will not get IT industry

through the present software complexity crisis due to those three aspects above. Thus,

one of the remaining options is autonomic computing, which helps to address complexity
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by using technology to manage technology, in terms of hiding and removing low level

complexities from end users [80, 38].

2.1 Definition of Autonomic Systems

The term autonomic is derived from human autonomic nervous system that monitors

heartbeat, blood pressure and body temperature without any conscious thought. This

self-regulation and separation provides the ability for human beings to concentrate on

high level objectives without managing specific details [58]. In a similar way, an

autonomic computing system can manage itself by resolving problems with minimum

human intervention. Thus, IT professionals can focus on business-oriented objectives

instead of computing level tasks with implementation, configuration and maintenance

details [63].

Autonomic computing is not a totally new technology, but a goal-oriented and

holistic computing paradigm to develop computer systems. Thus, autonomic computing

is not a conventional computer systems paradigm, but a visionary approach which groups

existing technologies together to achieve a common goal [155, 109]. The main goal of

autonomic computing is similar to that of pervasive computing, which is a computing

paradigm to create embedded, fitting and natural systems in terms of using them without

managing them [183, 101]. The holistic approach means that autonomic computing does

not specify that technology will be used to achieve those goals, and any existing

technology that presents the pervasiveness and self-management behavior can be

considered as autonomic computing, such as grid computing [3, 19], middleware [23, 172,
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40], databases [69, 100], networking [133, 12, 144] and peer to peer applications [103].

Several researchers have proposed definitions for autonomic computing since 2001

according to its original vision from Horn [58]. Kephart and Chess defines the primary

goal of autonomic computing as self-management, which can be further decomposed into

self-configuration, self-healing, self-optimization and self-protection [80]. In addition,

self-adaptive [2], self-organization [33] as well as self-knowledge [169] have also been

proposed to define autonomic computing.

In terms of establishing a standardized definition for autonomic computing, Lin,

MacArthur as well as Leaney [101] propose an application of software engineering

methodology (IEEE standard for a Software Quality Metrics Methodology [68]) to

address the lack of commonly accepted and quantifiable definition. This methodology

provides a systematic way to define software projects by analyzing and identifying their

quality requirements, which can be verified, applied and validated at each stage of

development lifecycle. Figure 4 shows a list of quality factors with their definitions, and

the Quality Metrics Framework [68] for autonomic computing is depicted in Figure 5; the

more details about the openness, anticipatory, self-awareness and context-awareness in

that figure can be found in [101].
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Figure 4: Quality Factors of Autonomic Computing [101]

Figure 5: Quality Metrics Framework for Autonomic Computing [101]

2.2 Characteristics of Autonomic Systems

The essence of autonomic computing systems is self-management that can be achieved

by realizing self-configuration, self-healing, self-optimization and self-protection.
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2.2.1 Self-Configuration

Autonomic computing systems are able to configure themselves automatically according

to high level policies (business level objectives), which specify what is required instead

of how they are implemented. For instance, after a new element joins, it automatically

learns composition as well as configuration of the system and registers itself in terms of

being used by other elements [80].

2.2.2 Self-Healing

Autonomic computing systems can detect, diagnose and repair bugs or failures in

software as well as hardware. For example, a problem diagnosis element analyzes

information from log files or monitors by using system knowledge, and then compares

the diagnosis against system patches or alerts IT professionals. Finally, the system installs

the appropriate patches followed by a regression test [80].

2.2.3 Self-Optimization

Autonomic computing systems are able to improve their operations and make themselves

more efficient in performance or cost. For example, they can monitor, test and tune their

parameters; they also can proactively upgrade their functions through finding, verifying,

applying and validating the latest updates [80].

2.2.4 Self-Protection

Autonomic computing systems can defend the whole system against malicious attacks or

cascading failures uncorrected by self-healing; they are also able to anticipate problems

according to early reports from sensors and react to avoid or mitigate them [80].
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2.3 Architecture of Autonomic Systems

The architecture for autonomic computing must reach the following requirements [63]:

 It should indicate external interfaces and behaviors of individual system elements.

 It must state how to integrate those elements so that they can cooperate toward

system-wide self-management.

 It has to describe how to build systems by those elements in a manner that the system

is autonomic as a whole.

The blueprint [63] organizes an autonomic computing system into building blocks

connected by enterprise service bus patterns, which allow the elements to collaborate

through standard mechanism, such as Web services. Figure 6 shows one example of

composing those building blocks.

The lowest layer consists of managed resources that make up the IT infrastructure.

Those resources can be hardware or software and may have embedded self-management

features. More details can be found in [63].

Figure 6: Autonomic Computing Reference Architecture [63]
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Layer 2 contains standard manageability interfaces for accessing and controlling the

managed resources in Layer 1 by the manageability endpoints.

Layer 3 and Layer 4 automate IT management processes by autonomic managers. A

resource may have one or more managers in Layer 3, and each manager implements

corresponding intelligent control loop (self-configuring, self-healing, self-optimizing as

well as self-protecting).

Layer 4 consists of autonomic managers that orchestrate other managers in terms of

delivering system-wide autonomic behavior by incorporating intelligent control loops

with the perspective of overall IT infrastructure.

The top layer indicates a manual manager which provides a common system

management interface for IT professional through an integrated solution console. The

manual layer as well as autonomic manager layers obtain and share knowledge from

knowledge sources. Therefore, resources and managers can collaborate to offer services

and implement business processes.

2.3.1 Manageability Endpoint

Manageability Endpoint [63] is the component exposing states and management

operations for a managed resource. It can communicate with an autonomic manager

through the manageability interface. A manageability endpoint consists of a sensor for

getting data from the resource and an effector for executing operations on the resource.

2.3.2 Autonomic Manager

Autonomic Manager [63] is the component which implements an intelligent control loop
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as Figure 7 shows. Monitor is responsible for collecting information from a managed

resource, such as status and metrics; analyze correlates those data aggregated in monitor

and help the autonomic manager to learn IT environment and predicate future situations;

plan provides the mechanisms for constructing actions to achieve desired goals based on

policy information; execute controls the plan execution under the concern of dynamic

environment. More details can be found in [63].

Figure 7: Intelligent Control Loop [63]

However, an IT administrator might delegate only certain parts of the intelligent

control loop to an autonomic manager. Moreover, each autonomic manager also has a

sensor and an effector as its interface to communicate with other autonomic managers.

2.3.3 Knowledge Source

Knowledge Source [63] is an implementation of the repository providing access to the

knowledge, which consists of the management data with syntax and semantics, such as

symptoms, policies, and plans.

The knowledge can be shared among autonomic managers through their sensors and

effectors, and every autonomic manager is able to access the knowledge from one or
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more knowledge sources. Moreover, the data used by the intelligent control loop, such as

topology information, historical logs, and metrics also can be stored as knowledge.

2.3.4 Manual Manager

Manual Manager [63] is an implementation of the user interface which provides a

mechanism for an IT professional to manually perform some management operations.

The manual manager collaborates with autonomic managers or other manual

managers, and it involves a management console for the IT professional to delegate

management operations to autonomic managers, such as configuration, monitoring and

control.

2.4 Development of Autonomic Systems

There are presently seven core capabilities available for autonomic manager development

[65]: 1) policy determination; 2) solution knowledge; 3) common system administration;

4) problem determination; 5) autonomic monitoring; 6) complex analysis; 7) transaction

measurement.

2.4.1 Policy Determination

Policies are key part of the knowledge used by an autonomic manager to make decisions,

since they contain the criteria for achieving goals or determining actions. Moreover,

policies can control the planning components of an autonomic manager. Figure 8 shows

the policy management in an autonomic component.
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Figure 8: Policy Management in an Autonomic Element [26]

By defining policies in a standard way, they can be shared between autonomic

mangers so that multiple subsystems can be managed in a similar manner.

2.4.2 Solution Knowledge

It contains many types of data coming from multiple points, such as operating systems,

application languages, system utility and performance data. Common solution knowledge

removes the complexity introduced by different formats and installation tools.

Moreover, the knowledge acquired in a consistent way can be used by autonomic

managers in the contexts other than configuration, such as problem determination or

optimization. In particular, solutions are combinations of platform capabilities (operating

systems and middleware) as well as application elements. The idea is to acquire that

information to support installation, configuration and maintenance at the solution level.
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2.4.3 Common System Administration

It can be achieved by using a common console approach and consists of a framework for

reuse as well as a consistent presentation of autonomic complex systems’ properties.

According to the paper [67], the primary goal of a common console is to provide a

single platform which can host all administrative operations of servers, software, and

databases in a manner that allow users to manage solutions rather than managing

individual systems or products. By increasing consistency of presentation and behavior

across those administrative operations, the common console develops a familiar user

interface which promotes reusing learned interaction skills instead of learning new and

proprietary user interfaces.

2.4.4 Problem Determination

Autonomic managers take actions based on problems they find in managed elements. The

first basic capability of an autonomic manager is to extract high quality data in terms of

determining if a problem really exists, and the second one is to classify that problem.

2.4.5 Autonomic Monitoring

It enables an autonomic manager to filter, aggregate, and perform a complete analysis

based on collected data in terms of detecting problems in systems when they happen. This

capability includes [65]:

 A tool to gather information from sensors.

 A built-in data filtering mechanism.

 Pre-defined resource models and mechanisms for creating new models which enable
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the description of a logical resource state.

 A tool to add policy knowledge.

 Analysis engines for basic cause analysis, server-level correlations across multiple

complex systems, events and automate problem resolution.

2.4.6 Complex Analysis

Autonomic managers should be able to perform complex data analysis and reason based

on large amount of data collected from managed resources by sensors. This data includes

information about resource configuration, status, workload and throughput that is static or

dynamic.

The tasks of common complex data analysis include classification, clustering data to

characterize complex states and detect similar situations, prediction of workload and

throughout based on past experience, reasoning for causal analysis as well as problem

determination and optimization of resource configurations.

2.4.7 Transaction Measurement

It represents information based on the flow of interactions over an autonomic architecture.

Autonomic managers need the transaction measurement capability which spans system

boundaries to understand how the resources of heterogeneous systems combine into a

distributed transaction environment. By monitoring that measurement, an autonomic

manager can analyze and plan to change resource allocation for optimizing performance

across those multiple systems based on policies; it can also determine some potential

bottlenecks in the systems [65].
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2.5 Multi-Agent Systems

This section states the research activity 3) in Figure 3. In the multi-agent community,

agent-based approach is considered as a natural way to model autonomic systems, since

the ability of an autonomous agent can be easily mapped to self-management behaviors

in autonomic systems. In addition, the ability of a Multi-Agent System (MAS) to make

interactions between components explicitly and control them in a flexible way supports a

more distributed complexity [167].

Therefore, the MAS approach is well-suited for autonomic computing systems, and

many ideas from the MAS community can be adapted to implement autonomic systems,

such as self-management behavior, automatic group formation, agent coordination,

evolution, agent adaptation, knowledge mining and interfacing [190].

2.5.1 Autonomous Agent

An agent is defined as a computer system which is capable of independent action on

behalf of its user or owner, situated in a certain environment, and capable of autonomous

actions in that environment to achieve its design objectives [191].

Agents have stronger notion of autonomy than objects in object-oriented paradigm,

and they make decision for themselves whether they need to perform actions requested

by another agent. Moreover, agents are able to control their internal states and own

behavior; they experience environment through their sensors and act by effectors [191].

Agents also can communicate with other agents or users through certain agent

communication languages. An agent is an agent with following properties [73]:



24

 Reactive: the agent should perceive its environment and respond in a timely way to

the changes that occur in the environment;

 Proactive: the agent should not simply respond to its environment but be capable to

show opportunistic along with goal-directed behavior and take the initiative where

appropriate;

 Social: the agent can interact with other agents or users when appropriate to complete

its problem solving and help others with their activities.

2.5.2 Definition of Multi-Agent Systems

A Multi-Agent System (MAS) is a software system possessing a number of autonomous

agents which interact with one another and exchange messages through certain agent

communication languages [191]. Therefore, those agents require the ability to cooperate,

coordinate and negotiate with others in terms of successful interactions. The agents act on

behalf of users with different goals as well as motivations, and the MAS can achieve its

goals that are difficult to be reached by each individual agent. The characteristics of the

MAS are [76]: 1) each agent has incomplete information or capabilities for solving

problems; 2) there is no global system control; 3) data is decentralized; 3) computation is

either asynchronous or synchronous.

The motivation for increasing interest in MAS research is due to their abilities such

as the following [73, 159]:

 Solving problems that are too large for a centralized agent to solve because of

resource limitations, performance bottlenecks or single-point of failures.
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 Allowing for interconnection and interoperation of multiple existing legacy systems.

 Solving problems where data, expertise or control is distributed.

 Solving problems which can be naturally regarded as a society of autonomously

interacting components or agents.

Thus, the system performance can be improved along the dimensions below [159]:

 Computational efficiency: concurrency of computation is exploited as long as

communication is kept minimal, such as transmitting high level information instead

of low level data.

 Reliability: by graceful recovery of component failures since agents with redundant

capabilities or appropriate inter-agent coordination can be found dynamically, such

as taking over the responsibilities of failed agents.

 Extensibility: the number and capabilities of the agents working on a problem can be

changed.

 Robustness: by the system’s ability to tolerate uncertainty.

 Maintainability: the modularity by composing a system with multiple agents.

 Responsiveness: the modularity can handle exceptions locally instead of spreading

them to the whole system.

 Flexibility: agents with different capabilities can adaptively organize to solve

problems.

 Usability: because functionally specific agents can be reused in different agent teams

to solve various problems.
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2.5.3 Agent Interactions

For designing the MAS, we need to implement micro and macro designs that are agent

design as well as society design respectively [191]. In the agent design, the focus is to

build agents which are capable of independent and autonomous actions; in the society

design, the task is to establish interaction capabilities of those agents, such as cooperation,

coordination and negotiation, particularly when certain conflicts arise between them [73].

Agent interactions are guided by cooperation strategies to improve their collective

performance. The early work on distributed planning took the approach of complete

planning before actions, so the agents must be able to recognize sub-goal interactions and

either avoid them or resolve them [73]. For example, the authors in [39] propose a

synchronizer agent to recognize and resolve those interactions; other agents send their

plans to the synchronizer who examines the plans for critical aspects.

The notion of the interactions between self-interested agents has been focused on

negotiation, which is the presence of some conflict forms that must be resolved in a

decentralized manner by the self-interested agents through bounded rationality and

incomplete information. In addition, those agents communicate and iteratively exchange

proposals as well as counter-proposals [73].

The negotiation is considered as a method for coordination and conflict resolution,

such as resolving goal inconsistencies while planning, resolving conflicts in resource

allocation and resolving task disparities when determining organizational structures [73].

Another important aspect of successful interaction for self-interested agents is the
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capability to adapt their behavior in terms of changing environment. The authors in [61]

describe an agent’s belief process for conjectures about the effect of their actions. A

conjectural equilibrium is defined where all agents’ expectations are realized, and each

agent responds to its expectations optimally. The authors also present a multi-agent

system in which an agent builds a model of other agents’ response [73].

2.5.4 Agent Communication Languages

Agent Communication Language (ACL) is one of proposed languages for communicating

agents, and most of ACL are based on the speech-act theory that is expressed by standard

keywords known as performatives [179]. There are two main ACL:

 Knowledge Query and Manipulation Language (KQML): proposed by DARPA

Knowledge Sharing Effort (KSE). KQML is the notion of performative keywords

such as ask-if, tell, and ask-one.

 Foundation for Intelligent Physical Agents’ Agent Communication Language (FIPA-

ACL): FIPA-ACL message structures are defined by FIPA Agent Communication

Standards as Figure 9 shows.
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Figure 9: FIPA Standard: Components of Communication Model [181]

A FIPA-compliant message is the fundamental form of communication among agents

that consists of Envelope, Payload, Message, and Content as Figure 10 shows.

Figure 10: FIPA Message Structure [181]

2.5.5 Agent Architecture

According to the paper [108], agent architecture specifies how the agent can be

decomposed into a set of component modules and how these modules communicate with
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each other. Typically, the author in [191] identifies three categories for single agent

architectures as the following:

 Deliberative agent architecture: an agent contains an explicitly represented symbolic

model of its environment, and it makes decisions through symbolic reasoning. There

are three types of reasoning agents: symbolic reasoning agents, deductive reasoning

agents and practical reasoning agents. Belief-Desire-Intention (BDI) architecture is

one of the main deliberative agent architectures.

 Reactive agent architecture: an agent acts based on stimulus-response rules and it

does not symbolically represent its environment. In this architecture, agents are able

to maintain ongoing interactions with their environment and respond to the changes

in it [192]. The architecture in [22] is a good example of reactive agent architecture

that considers agent properties, capabilities, and environment.

 Hybrid agent architecture: an agent can act both deliberatively and reactively. In this

architecture, agent designers can build an agent out of two or more subsystems: one

is the deliberative agent containing a symbolic model that can develop plans and

make decisions in the way proposed by symbolic agents; another one is the reactive

agent which is capable of reacting to events without complex reasoning.

The BDI architecture is a philosophical model for describing rational agents [136],

and it contains specific denotation of Beliefs, Desires as well as Intentions [17]. The

architecture addresses how those Beliefs, Desires and Intentions are represented, updated

and processed. In the BDI architecture, agents with particular mental attitudes can choose
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appropriate actions based on their capabilities and internal structures.

Beliefs indicate how agents know their surroundings that include themselves and

other agents. The Beliefs also include inference rules which allow forward chaining to

new beliefs, and the information is stored in a database called belief base. Unlike

knowledge, the Beliefs may be not true [181].

Desires are goals that agents would like to achieve [149], such as finding the best

price or becoming rich, and they are the motivational state of those agents. The difference

between desires and goals is that a set of goals must be consistent, but desires may be

inconsistent.

Intentions are the targets of agents, and they indicate what the agents have chosen to

do, which represent the deliberative state of those agents. In an implemented system, the

Intentions describe an executing plan that is a sequence of actions performed by an agent

to achieve one or more intentions. Plans are only partially with details being added during

their process [181]. The BDI approach consists of the following components [193]:

 A philosophical component for the theory of human rational actions.

 A software architecture component used in a number of complex applications.

 A logical component for the BDI logics.

When new information arrives, agents can update their beliefs or desires. The new

beliefs or desires can trigger certain actions, but only one intended action is selected and

activated. After executing that action, the intentions of those agents are updated, and the

new beliefs or desires are stored. Finally, a new cycle of the BDI model execution starts.
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2.5.6 Agent Oriented Programming

Agent oriented programming has revealed a great potential to develop complex computer

applications by agent technologies. There are a number of approaches and methodologies

for agent-based programming, such as Jason [117], 3APL [54], JADE [8], and Jadex

[131].

Java Agent Development Framework (JADE) is one of the most widely used agent

oriented middleware today, and it provides a FIPA-compliant agent platform as well as a

package for developing Java agents. The JADE is the open-source software which has

been under development since 1999 by Telecom Italia Labs. The internal architecture of

the JADE fully complies with FIPA standard, and it provides a basic set of functionalities

that are considered as essential for autonomous agents [181].

Jadex is also a Java-based and FIPA-compliant agent environment, but it allows

modeling goal-oriented agents according to the BDI architecture. In the abstract Jadex

architecture [131], an agent can receive and send messages. The received messages or

goal events can trigger the internal reaction and deliberation mechanism of the agent,

which dispatches those events to the plans selected from a plan base. Running plans may

access and modify a belief base, exchange messages with other agents, create new goals

and trigger internal events again [181].

Belief base: stores a set of beliefs that make up the knowledge of an agent. Unlike

other BDI-based multi-agent systems, which beliefs are represented by certain kind of

first-order predicate logic or relational models, the beliefs in Jadex is a storage of
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knowledge as a database for an agent. Those beliefs cannot support any inference

mechanism, and there are several advanced features on top of the belief representation.

Jadex uses an Object Query Language (OQL), which is a kind of query language adopted

from object-relational database world, to search the conditions that can trigger plans or

goals when certain beliefs change. In addition, the beliefs also can be stored as

expressions and evaluated dynamically on demand [181].

Goal structure: goals in Jadex are not just a special kind of event as those in pure

BDI-based multi-agent systems but a central concept. An agent can engage into some

actions for its goals until they have been achieved, unreachable or undesired. A goal

lifecycle consists of the following states [131]: option, active and suspended, which can

distinguish between just adopted and actively pursued goals. When a goal is adopted, it

becomes an option added to the desire structure of the agent, and application specific goal

deliberation mechanisms are responsible for managing the state transitions of all adopted

goals. There are four types of goals that extend the general lifecycle and exhibit different

behavior regarding to their processing as the following [181]:

 Achieve goal: defining a desired target state without specifying how to reach it.

 Maintain goal: specifying a state which should be kept once it is achieved.

 Perform goal: stating that something should be done but may not necessarily lead to

any specific result.

 Query goal: representing a need for information.

Plan specification: plans are used to specify agents’ actions to achieve their goals,
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and Jadex uses a plan-library approach to represent the agents’ plans, which are written in

Java and predefined by developers. Those plans are instantiated in terms of handling

events, achieving goals, building action libraries for the agents as well as providing all

flexibilities of the Java programming language. The plans consist of two parts that are a

plan head and a plan body; the plan head defines the circumstances under which the plan

body is instantiated and executed. Based on the current circumstance, plans are selected

automatically in response to occurring events or goals by the system [181].

Agent definition: the complete definition of an agent is captured in a XML file

called Agent Definition File (ADF). The ADF consists of beliefs, goals, events, plans and

other agent elements; it can be regarded as a type specification for a class of instantiated

agents. Plans are declared by specifying how to instantiate them from the Java class. In

addition, the initial state of an agent can be determined in a configuration tag that defines

initial beliefs, goals and plans. In Jadex, the ADF is loaded first to start an agent; that

agent can be initialized by the configuration tag [181].

Execution model: before incoming messages in a message queue can be forwarded

to the system, it has to be assigned a capability of handling those messages. If a message

belongs to an ongoing conversation, an event for the incoming message is created in the

capability of executing that conversation, and the created event can be added to the global

event list of an agent; otherwise, an appropriate capability has to be found. Moreover,

there is a dispatcher in the execution model that is responsible for selecting applicable

plans for those events from the event list. Jadex can provide flexible settings to influence
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the event processing based on the different event types and instances. The messages are

posted to one plan, and many plans are executed for one goal. After the plans have been

selected, they are placed in a ready list and wait for execution which is performed by a

scheduler [181].

2.5.7 Formal Methods for Multi-Agent Systems

When there is critical safety as well as security issues involved, informal analysis is not

adequate to ensure software qualities. Instead of using natural language with inherent

vagueness and ambiguity, formal notations can provide a means for precise specification,

which has been concerned with the description of a software design and its properties in a

mathematical logic or other formal notations [104]. In order to understand properties of

the systems containing multiple actors, powerful modeling and reasoning techniques are

necessary to capture potential evolutions of the systems, especially when agents or agent

systems are to be modeled and analyzed computationally [105].

Formal methods for agent systems attempt to represent and understand properties of

the systems by using logical formalisms to describe both mental states of the agents and

possible interactions in systems. Those logics of beliefs and temporal modalities require

efficient as well as rigorous theorem-proving or model-checking algorithms, which can

test, debug and verify the properties of multi-agent systems before their implementation

phase [105].

For the design of self-*, a programming paradigm that can support automated

checking of both functional and non-functional system properties may be needed. This
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would lead to certify agent components for correctness in terms of their specifications.

Moreover, techniques are needed to ensure that the systems execute in an acceptable and

safe manner during the adaptation processes, such as using high level contracts,

invariants or dependency analysis to monitor system correctness before, during and after

adaptations [105].

2.6 Related Work

2.6.1 Self-Management Properties

This subsection states the research activity 1) in Figure 3. The difficulties of dynamic

software reconfiguration are examined in [184]. The authors concluded that both static

structure and run time behavior must be captured in terms of defining the workable

reconfiguration model.

An autonomic approach to network service deployment that scales to large and

heterogeneous networks is explored in [47]. The paper introduces a two-phase intelligent

network service deployment: 1) a macro-level operating in a hierarchical distributed way

to query and collect the capabilities of the nodes in network; 2) a micro-level refining

installation based on custom capabilities of each network component.

The authors in [16] claims that cooperative negotiation using incremental elicitation

is required to perform resource allocation in a distributed autonomic system. The paper

presents algorithms for computing mini-max regret and two elicitation strategies. They

use an automated resource manager which can allocate resources for workload managers

in order to maximize total organizational utility and then solve the resource allocation
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problem.

Self-configuration is concerned with physical design, deployment and their static

aspects in [129]. The project called LAMDA (Lights-out, Automated Management of

Distributed Applications) is based on an adaptation of the Hierarchical Queuing Petri

Nets to model the environment.

The authors in [48] present an architecture for process execution that has an

autonomic controller. The controller provides self-tuning, self-configuration as well as

self-healing capabilities in order to automatically configure a distributed service

composition engine. The system has been designed so that its components can be

dynamically replicated on several nodes of a cluster. In addition, through the controller,

the engine can react to variations in workload through altering its configuration to

achieve better performance. The controller can also heal the system in case of failures.

The authors in [64] describe a problem determination methodology and architecture

that can standardize log format, content as well as organization. Moreover, the autonomic

systems which implement self-healing are based on the common problem determination

architecture to identify problems and implement solutions.

The authors in [92] propose an approach to implement self-healing according to the

“resource model” concept and System Management Ontology for representing Common

Information Model constructs.

The authors in [178] present a self-healing method which automates the mirroring

and replications in a network of servers. Moreover, the paper describes a design based on
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a self-configuration mesh of computers and a communication mechanism between those

nodes that operate on a rooted spanning tree.

The authors in [197] describe adaptive components as a framework for component-

based development. An adaptive component has multiple implementations, and each one

is optimized for a particular request workload. The paper also claims that the dynamic

switching between implementations at run-time will become a useful self-optimization

tool for autonomic computing.

Statistical modeling, tracking as well as forecasting techniques borrowed from

econometrics are explored in [143] to yield a predictive autonomic system that regulates

its behavior in the anticipation of its needs. Moreover, the paper claims that the systems

using Clockwork method can detect and forecast cyclic variations on future performance;

they can use data to reconfigure themselves by anticipating their needs.

The authors in [1] describe a model-based control and optimization framework to

design autonomic systems which continually optimize their performance by changing

workload demands and operating conditions. The performance management problems of

interest are posed as one of sequential optimization under uncertainty, and a look-ahead

control approach is used to optimize the forecast system behavior over a limited

prediction horizon. The basic control concepts are then extended to tackle distributed

systems where multiple controllers must interact with each other to ensure overall

performance goals.

The authors in [154] present a general architecture to build self-optimization services.
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Their framework can support both dynamic composition of service configurations and

runtime adaptation of configuration according to changes in a system or requirements.

The authors design a recipe representation which can be used by developers to capture

their service-specific knowledge. The recipe is used by a generic runtime infrastructure to

realize initial service configuration and adaptation. The runtime infrastructure includes a

synthesizer that constructs an abstract service configuration and maps it to physical nodes,

an adaptation manager which monitors the service and applies adaptation strategies, and

an adaptation coordinator that resolves conflicts among those strategies.

2.6.2 Autonomic Systems Modeling

IBM Tivoli Management Suite provides a jump-start toward fulfilling the ultimate goal of

a fully autonomic system. Figure 11 shows the coverage of IBM Tivoli Management

Suite across the IBM portfolio of products and services.

Self-Configuration: Configuration Manager can be noticed when the software on a

machine is not synchronized with a reference model, and it also creates a customized

deployment plan for each machine in a cluster. Identity Manager automates user life

cycles with native repositories. It communicates directly with access-system to create

accounts, passwords and privileges. Storage Manager can automatically identify and load

drivers for the storage devices connected to servers.
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Figure 11: IBM Tivoli Management Suite across IBM Overall Architecture [118]

Figure 12: Tivoli Autonomic Software Products [118]
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Self-Healing: Enterprise Console automatically inspects error logs, derives problem

causes and initiates necessary actions. Switch Analyzer correlates network device errors

to rot cases without human intervention. NetView is able to display network topologies,

discover TCP/IP networks, correlate events, monitor network health and gather data. It

has the router fault isolation which identifies causes of errors and consequently initiates

corresponding actions. Monitoring for applications, databases as well as middleware can

automatically discover, diagnose and initiate problem resolution. Risk Manager contains

the self-healing technology which assesses security threats and automates responses for

server reconfiguration, patch deployment as well as account revocation. Storage Resource

Manager automatically notices storage problems and executes policy-based actions to

solve those problems.

Self-Optimization: Service Level Advisor can perform trend analysis according to

historical performance data and make predications on critical thresholds in the form of

events sent to Enterprise Console. Workload Scheduler for Applications is able to monitor

and automate workload executions. Monitoring for Transaction Performance enables the

monitoring of performance and availability of transactions. Storage Manager supports

adaptive differencing technology that can optimize resource usage for backup.

Self-Protection: Access Manager is able to prevent unauthorized access and control

resources for authenticated users. Identity Manager centralizes identity management and

integrates automated workflow of business processes. Risk Manager can provide system

wide self-protection by assessing potential threats and automating responses.
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N1 is the Sun Microsystems product for grid computing [157, 158]. It provides

services to manage heterogeneous environment and removes information technology

complexity by technical means. Sun Management Center in N1 grid cluster architecture

is based on an intelligent agent reference model, where a manager can monitor and

control managed entities by sending requests to agents residing on managed nodes, and

those agents can collect management data on the behalf of the manager. Thus,

Management Center uses autonomous agent technology to implement its autonomic

capabilities, which includes powerful system administration tools, test and verification

tools, as well as automated installation and deployment tools [158].

Figure 13: Sun N1 Autonomic Characteristics [158]

Self-Configuration: Solaris Live Upgrade and Web Start Flash provide automated

installation and deployment technologies with which systems can be upgraded while they

are running.

Self-Healing: Sun Management Center which is based on agent technologies can

provide self-healing capability. Account and Reporting Console uses a comprehensive

way to collect and analyzed detailed statics of usage on the Grid.
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Self-Optimization: Sun Grid Engine distributed resource management software can

optimize the utilization of both software and hardware resources within a heterogeneous

networked environment.

Self-Protection: Technical Computing Portal provides a high-performance technical

computing with a secure anytime and anywhere access to a single Web based point of

delivery for services, content as well as complex applications through a standard Internet

browser and a simple user interface.

Dynamic System Initiative is a Microsoft effort to incorporate into the Microsoft

Windows platform a number of solutions which will ultimately implement autonomic

characteristics [114]. Microsoft autonomic computing architecture is based on System

Definition Model (SDM), which is used to create definitions for distributed systems, such

as the definitions of resources, endpoints, relationships and subsystems. Moreover, the

SDM contains deployment information, installation processes, as well as schemas for

configuration, events, automation tasks, health models and operational policies.

Figure 14: Microsoft DSI Autonomic Characteristics [114]
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Self-Configuration: Virtual Disk Service provides a vendor independent interface to

identify and configure storage devices from multiple vendors. Windows Management

Instrumentation can provide direct and unified management tools locally or remotely for

administrators. Software Update Services automatically deliver critical patches to target

computers from a single Intranet. System Management Server can provide WAN-aware

capability to reliable deployment of applications for thousands of workstations.

Self-Healing: Microsoft Operation Management incorporates event management,

proactive monitoring and altering, reporting and trend analysis as well as system and

application specific knowledge to improve manageability. Corporate Error Reporting can

provide information about the problems in applications for vendors and developers.

Internet Information Services is a Web server with self-healing that is supported by a new

fault tolerant process model.

Self-Optimization: Network Load Balancing enhances scalability and availability of

mission-critical, TCP/IP-based services, such as Web, Terminal Services, virtual private

networking and streaming media servers. Windows System Resource Manager can help

administrators to control how CPU resources are allocated to applications, servers and

processes. It improves system performance, reduces interference among resources and

creates a more predictable experience for users.

Self-Protection: Integrated Support for .NET as well as ASP.NET leverage a fully

managed and protected application environment of Web along with XML services.
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2.6.3 Real-Time Reactive Systems

This subsection states the research activity 2) in Figure 3. The authors in [147] present a

formal framework for automatically recovering a class of reactive systems from run-time

failures. That class of systems comprises the executions which can be divided into rounds

so that each round performs a new unit of work. The paper also shows how the system

recovery and repair problems can be modeled as an instance of online learning problems.

The framework leverages parallelism to proactively explore the space of repairs before a

failure is occurred.

The authors in [151] introduce the real-time reference architecture for autonomic

computing where components implementing functions of real-time system elements or

blocks, such as transducers, controllers and actuators are designed. Based on the design

and implementation of that reference architecture, a self-adapting loop according to

system-specific adaptation knowledge that includes the types and properties of autonomic

components, behavior constraints as well as strategies for adaptation is proposed in [152].

The proposed system is an integral part of a real-time system which controls the behavior

of computing environment and evaluating its global behavior through a mathematical

description of time variation on the number of users in that system. According to the

evaluation, the adaptive system can change the control structure of autonomic computing

environment by replacing its controller with the one that matches corresponding user time

variation law. Moreover, the elements of the self-adapting loop as well as the trade-off

between additional overhead and autonomic computing processes are discussed in [152].



45

2.6.4 Multi-Agent Systems

This subsection states the research activity 3) in Figure 3. The authors in [167] present

Unity, a decentralized architecture for autonomic computing based on multiple interacting

agents called autonomic elements. The paper also illustrates how the Unity architecture

achieves autonomic behavior, such as goal-driven self-healing and real-time self-

optimization. In addition, they present a realistic prototype implementation that shows

how a collection of Unity elements self-assembles, recovers from certain classes of faults

and manages computational resources in a dynamic multi-application environment.

The authors in [98] introduce a peer-to-peer agent framework to support autonomic

applications in a decentralized distributed environment and provide those agents to

discover, compose, control elements. The framework also defines agent interaction and

negotiation protocols for enabling appropriate application behavior to be dynamically

negotiated and enacted. The defined protocols and agent activities are supported by a

scalable decentralized and shared-space based substrate.

The authors in [122] propose a multi-agent flexible and scalable autonomic service

and network management architecture. The proposed architecture is expected to reduce

the time for new services and minimize the cost of operations, development as well as

deployment of services in a scalable, flexible and autonomic way. The cost model show

that only instantiation cost of activated services is included, which means the cost might

be reduced to its minimum.

The authors in [15] describe an agent-based semantic platform where autonomic
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computing principles can be applied to ensure the constant update of platform knowledge

base. Self-optimization and self-management techniques are proved to be very effective

for population as well as update of a semantic annotation repository. In addition, low

computational requirements and a built-in along with naturally distributed architecture

allow an easy deployment of the proposed platform on current Web.

The authors in [171] introduce an extension to UML 2.0 called Agent Modeling

Language (AML) that addresses specific needs, such as modeling autonomy, proactivity

and role-based behavior. In addition, the AML can be directly used by the designers of

autonomic computing systems to visually model their architectures and behaviors.

The authors in [99] present the architecture and operation of Rudder, a rule-based

adaptive multi-agent infrastructure for supporting autonomic applications in a pervasive

Grid environment. Rudder enables dynamic composition and coordination of autonomic

components to manage changing application requirements as well as system context.

The authors in [45] propose a self-organized model of agent-enabling autonomic

computing for the Grid environment. The model adopts intelligent agents as autonomic

elements and enables those agent-based elements to dynamically organize the system

management without a centralized control. At the element level, each agent possesses

certain capabilities as well as interests according to its managed resources and governs

internal affairs to achieve elementary autonomy. At the system level, agents contribute to

system management and cooperate to implement advanced autonomic behavior. That

cooperation is organized by dynamically associated relationship among those autonomic
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elements (agents), including acquaintance, collaboration and notification.

The authors in [14] describe a toolkit for building multi-agent autonomic systems

called Agent Building and Learning Environment (ABLE), which provides a lightweight

Java agent framework, a comprehensive JavaBeans library of the intelligent software

components, a set of development and test tools as well as an agent platform. The paper

illustrates a series of agents built by ABLE components and presents three case studies

using ABLE toolkit. By using the ABLE component library to build agents running on an

ABLE distributed agent platform, the authors discuss how they can incrementally add

new behaviors and capabilities to autonomic systems.

The authors in [127] adopt the multi-agent approach for developing Autonomic

Information System (AIS), which can adjust its processing algorithms and data sources to

provide necessary information at various levels of efficiency and effectiveness. The

approach is based on Organization Model for Adaptive Computational Systems.

The authors in [95] present a model of adaptive agent built from the fine-grained

reusable components which can implement non-functional mechanisms, such as mobility,

adaptation skills and communication. Every agent can dynamically and autonomously

change its components to adapt runtime context, which improves safety and performance

for open, pervasive as well as large-scale distributed applications.

The authors in [59] indicates an autonomic computing infrastructure called MAACE

that can provide dynamically programmable control and management services to support

development along with deployment of intelligent applications. Moreover, the MAACE
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can provide an environment to manage and control software systems through multi-agent

system cooperation, which has agent federation systems, agent mediate service systems

and agent monitoring systems.

The authors in [132] explore a multi-agent approach for developing an autonomic

architecture for telehealth systems, which involves remotely monitoring health conditions

of patients in post-surgery and patients with chronic diseases or life-threatening health

problems who require continuous monitoring.

The authors in [79] present the use of autonomic concepts for reflex autonomy in the

development of a multi-agent system. In addition, findings are discussed with reference

to the use of JADE agent platform.

The authors in [107] propose a multi-agent autonomic as well as bio-inspired based

framework with the self-managing capabilities to solve complex scheduling problems by

cooperative negotiation.

The authors in [173] describe two prototype agent-based systems, Lights-out Ground

Operations System as well as Agent Concept Testbed, and their autonomic properties that

were developed at NASA Goddard Space Flight Center to demonstrate autonomous

operations of future space flight missions.

2.6.5 Formal Methods

This subsection states the research activity 5) in Figure 3. The authors in [104] use Z to

construct a formal specification that can provide clear and precise definitions for objects,

agents as well as autonomous agents; the definitions allow a better understanding of the



49

functionalities from different systems.

The authors in [137] provide an abstract agent architecture which can serve as an

idealization of an implemented system and as a means for investigating theoretical

properties first, then the paper [138] describes an alternative formalization by starting

with that implemented system and formalizing semantics by an agent language, which

can be viewed as an abstraction of the implemented system and allows agent programs to

be written and interpreted.

The authors in [49] present a formal approach to the MAS by prototyping and

simulation oriented processes. The authors use a multi-formalism approach which is the

composition of Object-Z and state charts; this formalism enables the specification for

both reactive and transformational aspects of the MAS as well as their prototyping by

simulation. In addition, the authors use an organizational model that considers roles,

interactions and organizations from requirements to detailed design.

The authors in paper [29] introduce an agent-oriented modeling technique based on

Unified Modeling Language (UML) notation; graph transformation is used both on the

level of modeling to capture agent-specific aspects and the underlying formal semantics.

The authors also state a concurrency theory of graph transformation systems following a

double-pushout approach in terms of formalizing the relation among global requirement

specifications by sequence diagrams, and the implementation-oriented design models in

which graph transformation rules specify the local operations of agents.

The authors in [196] propose a model-based approach to design and implement
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intelligent agents for the MAS. They use formal methods at the design phase of the agent

development life cycle instead of specifying agent behavior. The authors choose agent

oriented G-net model based on G-net formalism, which is a type of high-level Petri net,

to serve as a high-level design for intelligent agents. According to that high-level design,

they further derive the agent architecture and detailed design for agent implementation; a

toolkit called Agent Development Kit is developed to support the rapid development of

intelligent agents for the MAS.

The authors in [37] propose a temporal logic to represent dynamic agent behavior,

which is more powerful than corresponding classic logic and is useful for the description

of dynamic behavior in reactive systems. The authors consider a multi-agent system as a

system consisting of concurrently executing objects.

The authors in [195] use Predicate/Transition (PrT) nets, a high-level formalism of

Petri net, to model and verify multi-agent behaviors. According to the PrT model, certain

properties like parallel execution of multi-plans and their guarantee for the achievement

of goals, can be verified by analyzing the dependency relations between transitions.

The authors in [200] provide a formal Specification Language for Agent-Based

Systems (SLABS) to specify agent behaviors, which enable software engineers to analyze

agent-based systems before their implementation.

The authors in [106] describe a Constraint-Based Agent (CBA) design approach that

includes two formal models: 1) Constraint Nets; 2) Timed  -automata. A constraint net

can model agents and their environment symmetrically as dynamical systems; a timed
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 -automata can specify desired real-time dynamic behaviors of those situated agents.

The authors in [77] study the adaptation of multi-agent systems from system level

and describe a formal framework for the multi-agent systems with adaptation capabilities.

The framework uses the polyadic pi-calculus that is suitable for specifying the software

with dynamic configurations.

The authors in [128] develop a formal multi-agent system based on a modal algebra

to preserve essential characteristics of its autonomous software agents; it can also explore

the formal properties and management of cooperation (non-hierarchical or flat structures)

as well as the coordination (hierarchical structures) between those agents, which can be

constructed by the operations of the model.

The authors in [32] introduce a formal-language model to explicitly formalize

agent-environment interaction in a multi-agent systems framework called Conversational

Grammar Systems (CGS). The CGS provides a model with a high degree of flexibility,

since it can accept new concepts and modify rules, protocols as well as settings during

computation. The formal model used in this paper is based on eco-grammar systems,

which can be defined as an evolutionary multi-agent system where different components

interact with a special component called environment. Therefore, there are two types of

components that are agents and the environment in an eco-grammar system; both of them

can be represented by a string of symbols that identifies current state of the components.

Those strings can change based on the sets of evolution rules (L systems); the interactions

between agents and the environment are executed by agents’ actions on the environment
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state through certain productions from the sets of action rules.

The authors in [34] present a formal analysis of social interactions in multi-agent

systems. The fundamental building blocks are social agents which may be individuals or

group of agents whose structures can be formally characterized in terms of roles and

relationships among them. The work presented in this paper is formulated under the BDI

paradigm. A logical language L includes three modal operators B, D and I to express

beliefs, desires as well as intentions respectively.

The authors in [139] propose a formal approach that adopts a formal specification

language Temporal Z to cover the individual agent aspects and collective aspects of a

multi-agent application in terms of coordination protocols, organization structures and

planning activities. This paper also presents a methodology according to the stepwise

refinements that allow developing a design specification from an abstract requirement

specification.

2.7 Summary

In this chapter, we have briefly reviewed some concepts of the autonomic computing

technology that can be applied to the RASF.

An autonomic system has the characteristics of self-configuration, self-healing,

self-optimization and self-protection; the autonomic computing control loop makes a

foundation of autonomic systems. In order to implement those characteristics, autonomic

managers should have the following capabilities: 1) policy determination; 2) solution

knowledge; 3) common system administration; 4) problem determination; 5) autonomic
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monitoring; 6) complex analysis; 7) transaction measurement.

We also described the architectures, open standards, development and related work

of the autonomic computing by which we can conclude that agent-based approach is a

natural way to model autonomic systems, so many ideas from the MAS community can

be adapted to implement autonomic systems. Thus, we gave an introduction of agent-

based computing technology, which included the definitions, interactions, communication

language, architecture, programming and formal methods of multi-agent systems.

Finally, we discussed the related work on autonomic systems modeling, real-time

reactive systems, multi-agent systems and potential formal methods used for specifying

reactive autonomic systems. We concluded that most of current formal approaches do not

have appropriate mechanisms to specify RAS and have not addressed well on verifying

emergent behavior (see Page 3 and Figure 1). Thus, we will give an introduction of

category theory in the next chapter as a formal framework to specify autonomic and

reactive behavior of the RAS modeled by RASF.
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Chapter 3: Background: Category Theory

This chapter states the research activity 6) in Figure 3, which is the literature review on

Category Theory. Structure is crucial in large specifications and programs. A well-chosen

structure may greatly improve understanding, validation as well as modification of a

specification. In the RAS where self-management behavior is one of the most important

characteristics, the management of evolving specifications and analysis of changes

require a specification structure, which can isolate those changes in a small number of

components and analyze the impacts of a change on interconnected components [185].

Category theory has been proposed as a framework to offer that structure; it also has

been successfully used to provide composition primitives in both algebraic [189] and

temporal logic [35] specification languages. Category theory has a rich body of theory to

reason about objects and their relations (specifications as well as their interactions); it is

abstract enough for a wide range of different specification languages. Furthermore,

category theory for software specification has adopted a correct by construction approach

by which components are specified, proved and composed in the way of preserving their

properties [185].

Complex systems may be identified with diagrams (semi-formal), in which system

components along with connectors and their interconnections represent nodes as well as

edges respectively. However, the word diagram in category theory has a formal meaning

and carries all the intuitions that come from practice. Comparing to other formalization of

the software architecture concept, category theory is semantic framework to formalize
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interconnection, configuration, instantiation and composition which are important aspects

of modeling the RAS with both autonomous and autonomic behavior. This can be

achieved at a very abstract level, since category theory proposes a toolbox applied to

whatever formalism for capturing components’ behavior, as long as that formalism

satisfies certain structure properties [36].

Category theory focuses on the relationships (morphisms) between objects instead of

their representations; the morphisms can determine the nature of interactions established

between the objects. Thus, a particular category may reflect a corresponding architectural

style. In addition, category theory provides techniques to manipulate and reason about

diagrams for building hierarchies of the system complexity, allowing systems to be used

as components of more complex systems, and inferring the properties of systems from

their configurations [36].

3.1 Definition of Category [6]

Definition 3.1.1: A category consists of the following data:

 Objects: A, B, C, etc.

 Arrows (Morphisms): f, g, h, etc.

 For each arrow f, there are given objects: dom(f), cod(f) called domain as well as

codomain of f, and f : A → B indicates that A = dom(f), B = cod(f).

 Given arrows f : A → B and g : B → C with cod(f) = dom(g), there is an given arrow:

g ◦ f : A → C called composite of f and g.
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 For each object A, there is an given arrow: 1A : A → A called identity arrow of A.

These data need to satisfy the following laws:

 Associativity: h ◦ (g ◦ f) = (h ◦ g) ◦ f for all f : A → B, g : B → C, h : C → D.

 Unit: f ◦1A = f =1B ◦ f for all f : A → B.

Definition 3.1.2: A functor F: C → D between categories C and D is a mapping of

objects to objects and arrows to arrows in the way of: 1) F(f: A → B) = F(f) : F(A) →

F(B); 2) F(g ◦ f) = F(g) ◦ F(f); 3) F(1A ) = ()1F A .

Definition 3.1.3: in any category C, an arrow f : A → B is called an isomorphism if

there is an arrow g : B → A in C such that g ◦ f =1A and f ◦ g =1B . Since identities are

unique, g = 1f  . A is isomorphic to B: A B if there exists an isomorphism between them.

Definition 3.1.4: in any category C, an object is called initial object I if for any

object X in C, there is a unique morphism I → X; an object is called terminal object T if

for any object X in C, there is a unique morphism X → T.

Definition 3.1.5: discrete category is a category where all morphisms are identity

morphisms.

Definition 3.1.6: category of sets is the category in which objects are sets. The

morphism between sets A and B are all functions from A to B.

3.2 Constructions on Category [6]

Definition 3.2.1: The product of two categories C and D: CD has objects of the form

(C, D) for CC, DD and arrows of the form (f, g) : (C, D) → ( 'C , 'D ) for f : C
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→ 'C C and g : D → 'D D. Composition and units are defined as: ( 'f , 'g ) ◦ (f, g) =

( 'f ◦ f, 'g ◦ g), (, )1 C D = (1C ,1D ); there are two projection functors: C 1 CD 2D

defined by 1 (C, D) = C, 1 (f, g) = f and similarly for 2 .

Definition 3.2.2: the opposite or dual category opC of a category C has the same

objects as C, and an arrow f : C → D in opC is an arrow f : D → C in C. Thus, opC is

just C with all of the arrows being formally inversed. It is convenient to have a notation

for distinguishing objects and arrows in C (f : C → D) from the same ones in opC

( f : D →C ). With this notation, the composition and units in opC can be defined in

terms of corresponding operations in C as 1C = 1C and f ◦ g = g  f.

Definition 3.2.3: the arrow category C of a category C has the arrow of C as

objects, and an arrow g from f : A → B to 'f : 'A → 'B in C is a commutative square

as the following diagram, where 1g and 2g are arrows in C. Such an arrow is a pair of

arrows g = ( 1g , 2g ) in C that 2g ◦ f = 'f ◦ 1g , and the identity of arrow 1 f on an object

f : A → B is the pair (1A ,1B ). The composition of arrows is ( 1h , 2h ) ◦ ( 1g , 2g ) =

( 1h ◦ 1g , 2h ◦ 2g ), and there are two functors: C dom C codD.

Definition 3.2.4: the slice category C/C of a category C over an object CC has:

 objects: all arrows fC such that cod(f) = C.
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 arrows: g from f : X → C to 'f : 'X → C is an arrow g : X → 'X in C such that 'f ◦

g = f as the following diagram shows:

Definition 3.2.5: the co-slice category C/C of a category C under an object CC

has:

 objects: all arrows fC such that dom(f) = C.

 arrows: h from f : C → X to 'f : C → 'X is an arrow h : X → 'X such that h ◦ f = 'f

3.3 Abstract Structures in Category [6]

Definition 3.3.1: in any category C, an arrow f : A → B is called a:

 monomorphism if given any g, h : C → A, f ◦ g = f ◦ h implies g = h; it can be

represented as

 epimorphism if given any i, j : B → D, i ◦ f = j ◦ f implies i = j; it can be represented

as

Definition 3.3.2: in any category C, an object: 1) 0 is initial if for any object C, there

is a unique morphism 0 → C; 2) 1 is terminal if for any object C, there is a unique

morphism C → 1. A terminal object in C is exactly an initial object in opC .

Definition 3.3.3: a split monomorphism (epimorphism) is an arrow with a left (right)
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inverse. Given arrows e : X → A and s : A → X such that e ◦ s =1A , then s is called a

section or splitting of e; e is called a retraction of s; A is called a retract of X.

Definition 3.3.4: in any category C, a product diagram for the object A and B

consists of an object P and arrows A 1p P 2p B satisfying: given any diagram of

the form A 1x X 2x B, there exists a unique u : X → P making the following

diagram commute, and a pair of objects may have many different products in a category.

3.4 Duality in Category [6]

Proposition 3.4.1: for any statement ∑ about categories, if ∑ holds for all categories,

then so does the dual statement * : ∑ implies * .

Definition 3.4.2: a diagram A 1qQ 2q B is a coproduct of A, B if for any Z

and A 1z Z 2z B, there is a unique u : Q → Z with u ◦ iq = iz as indicated in:

The coproduct is usually represented as A 1iA + B 2i B, and [f, g] represents

uniquely determined arrow u : A + B → Z. The coprojection 1i : A → A + B and 2i : B →

A + B are usually called injections, and a coproduct of two objects is exactly their product

in the opposite category.
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Definition 3.4.3: in any category C, given parallel arrows , an equalizer of

f and g consists of E and e : E → A such that: f ◦ e = g ◦ e, which means given z : Z → A

with f ◦ z = g ◦ z there is a unique u : Z → E with e ◦ u = z as indicated in the following

diagram:

Definition 3.4.4: for any parallel arrows f, g : A → B in a category C, a coequalizer

consists of Q and q : B → Q with the property q ◦ f = q ◦ g as indicated in the following

diagram:

That is, given any Z and z : B → Z, if z ◦ f = z ◦ g, then exists a unique u : Q → Z such that

u ◦ q = z.

3.5 Limits and Colimits [6]

Definition 3.5.1: in any category C, a pullback of arrows f, g with cod(f) = cod (g):

consists of the following arrows such that f ◦ 1p =g ◦ 2p .
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For example, given any 1z : Z → A and 2z : Z → B with f ◦ 1z = g ◦ 2z , there exists a

unique u : Z → P with 1z = 1p ◦ u and 2z = 2p ◦ u.

Pullbacks may use product-style notation as the following diagram:

Lemma 3.5.2: consider the commutative diagram in a category with pullbacks:

 If the two squares are pullbacks, so is the outer rectangle: A B (B C D) A C D

 If the right square and the outer rectangle are pullbacks, so is the left square

Corollary 3.5.3: the pullback of a commutative triangle is a commutative triangle.

Specially, given a commutative triangle as on the right end of the prism diagram below,
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for any h : 'C → C if one can form the pullbacks ' and ' as on the left end, then

there exists a unique ' making the left end a commutative triangle as well as the upper

a commutative rectangle.

Definition 3.5.4: Dualize the definition f a pullback o define the “copullback”

(usually called the “pushout”) of two arrows with common domain.

Definition 3.5.5: let J and C be categories. A diagram of type J in C is a functor D :

J → C. The objects in the index category J are represented as i, j, … and the values of the

functor D : J → C are in the form iD , jD , …. A cone to a diagram D consists of an

object C and a family of arrows in C, jc : C → jD for each object jJ such that for each

arrow α : i → j in J, the following triangle commutes.

A morphism of cones υ : (C, jc ) → ( 'C , '
jc ) is an arrow υ in C making each triangle

commute.
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Definition 3.5.6: a limit for a diagram D : J → C is a terminal object in the category

Cone(D) represented as ip : lim
j

jD → iD . A finite limit is a limit for a diagram on finite

index category J. Given any cone (C, jc ) to D, there is a unique arrow u : C → lim
j

jD

such that for all j, jp ◦ u = jc .

Definition 3.5.7: a functor F : C → D is said to preserve limits of type J if whenever

jp : L → jD is a limit for a diagram D : J → C, the cone F jp : FL → F jD is then a

limit for diagram FD : J → D, F( lim
 jD ) lim


F( jD ). A functor that preserves all limits

is said to be continuous.

Definition 3.5.8: a functor of the form F : opC → D is called a contravariant functor

on C, which takes f : A → B to F(f) : F(B) → F(A) and F(g ◦ f) = F(f) ◦ F(g).

Definition 3.5.9: a colimit for a diagram D : J → C is an initial object in the category

of cocones from the base D, which consists of an object C (the vertex) and arrow

jc : jD → C for each jJ, such that for all α : i → j in J, jc ◦ D(α) = ic . A morphism of

cocones f : (C, ( jc )) → ( 'C , ( '
jc )) is an arrow f : C → 'C in C such that f ◦ jc = '

jc for

all jJ; an initial cocone maps uniquely to any other cocone from D, and a colimit can be

represented as lim
jJ

jD .

Definition 3.5.10: a functor F : C → D is said to create limits of type J if for every

diagram C : J → C and limit jp : L → F jC in D, there is a unique cone jp : L → jC in

C with F( jp ) = jp and F( L ) = L which is a limit for C; every limit in D is the image of

a unique cone in C. The notation of creating colimits is defined analogously.
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3.6 Functors and Naturality [6]

Definition 3.6.1: a functor F : C → D is said to be:

 injective on objects if the object part 0F : 0C → 0D is injective, and it is surjective on

objects if 0F is surjective.

 injective on arrows if the arrow part 1F : 1C → 1D is injective, and it is surjective on

arrows if 1F is surjective.

Proposition 3.6.2: a full subcategory consists of some objects in C and all

the arrows between them, thus satisfying the closure conditions for a subcategory.

Definition 3.6.3: for categories C, D as well as functors F, G : C → D, a natural

transformation (υ : F → G) is a family of arrows in D,
0

(: )C CFC GC  C , such that

for any f : C → 'C in C, there exists 'C
 ◦ F(f) = G(f) ◦ C as indicated in the following

diagram. Given such a natural transformation υ : F → G, the D-arrow C : FC → GC is

called the component of υ at C.

Definition 3.6.4: the functor category Fun(C, D) has: 1) objects: functors F : C → D;

2) arrows: natural transformations υ : F → G. For each object F, (1 )F C =1FC : FC → FC

and the components of F G H has components () C  = C ◦ C .

Definition 3.6.5: a natural isomorphism is a natural transformation υ : F → G which

is an isomorphism in the functor category Fun(C, D).
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Lemma 3.6.6: a natural transformation υ : F → G is a natural isomorphism if each

component C : FC → GC is an isomorphism.

Definition 3.6.7: an equivalence of categories consists of functors E : C → D, F : D

→ C and natural isomorphisms α :1C ~ F ◦ E in CC , β :1D ~ E ◦ F in DD ; the functor F

is called a pseudo-inverse of E; the categories C and D are said to be equivalent: C D.

The equivalence of categories is a generation of isomorphism, and two categories C, D

are isomorphic if there are functors E : C → D, F : D → C such that 1C = GF, 1D = FG.

In the case of equivalence C D, the identity natural transformations are replaced by

natural isomorphisms; the equivalence of categories may be considered as isomorphism

up to isomorphism.

Property 3.6.8: If C is a full subcategory of D and every Y  D is isomorphic to

some object X in C, then the inclusion functor F: C → D is an equivalence of categories.

3.7 Related Work

There has been an increasing interest on applying category theory to various areas of

computer science. Particularly, it has been used to: 1) study different approaches for the

mathematical semantics of programming languages; 2) define semantics for parallelism

and synchronization; 3) provide a generalized concept of automata; 4) specify problems,

clarify concepts, formulate consistent definitions, analyze and help in understanding

computational phenomenon [94].

Category theory has played a role in studying initial algebra [41] and many sorted

algebraic theories [42] have formed a basis for current algebraic semantics of abstract
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data types. Category theory has also been applied to relate different theories. For example,

the author in [186, 187, 188] describes an application of category theory on the Petri-Net

Model for parallel computation and relates it to models, such as trees, state machines,

event structures and nets.

The authors in [163, 164] apply a category theory framework to general systems. A

symbolic category method is introduced to categorize various system classes and their

concepts. The authors also indicate how the concept of states as well as their space

representation can be derived in the framework of category theory.

The authors in [43] apply the category theory as a conceptual tool to model general

systems through the abstract representation of systems, which take objects, systems,

interconnection and behavior as a basis. The authors present a Behavioral Theorem,

stating that the behavior of an interconnection between objects can be considered as the

behavior of individual objects; they also indicate that the notion of autonomy, interaction,

cooperation and self-organization are relevant to their study.

The author in [46] presents a unifying framework based on category theory for the

component dependencies modeling techniques. The authors in [91] provide a universal

categorical model of synchronization between computing processes. The authors in [146]

define the synchronization on a formula of two consequence systems and provide the

categorical characterization for construction.

The authors in [71] present the modular composition of a transaction processing

protocol, namely three-phase commit (3PC) protocol utilizing some concepts of category
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theory; they illustrate how the overall global properties of the protocol can be proved by

utilizing constructs for local sub-properties from the inherent building blocks in the 3PC

protocol.

The authors in [5] state a general definition of machines in an arbitrary category,

which unifies the theories of sequential machines, linear control systems, tree automata

and stochastic automata.

The authors in [60] provide a precise semantics for both components structuring and

models mapping by using category theory. In this paper, morphism composition is used to

trace the interconnections and mapping relations among component-based models, while

consistency between the sorts/operations of those models at different abstract levels is

maintained by functors.

The authors in [168] abstract and describe the process of multi-sensor data fusion as

well as its taxonomy by a language of category theory. Categories are developed for

sensors, data sets, processors, feature sets, classifiers as well as label sets. Fusion rules

are defined and shown to hold a unique role in various categories; fusion processes can

be described as an optimization of fusion rules in an appropriate category.

The author in [50] provides the architecture for system configuration, which is

independent of various approaches for the specification, design and coding of systems.

The key idea is to focus on configuring those systems from reusable modules at any stage

during system development. The module is precisely defined as an instance of a textual

specification; the configuration takes place in a mathematical framework that is based on
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the category theory.

The authors in [182] report on the application of category theory to design a

simulated robot control system, where a neural network controller is constructed based on

a desired conceptual ontology.

3.8 Summary

In this chapter, we have presented some definitions, propositions and theorems of the

category theory, which may be applied to specify autonomic and reactive behavior of the

RAS modeled by RASF in Chapter 6.

Category theory has a rich body of theory to reason about objects as well as their

relations, and it is abstract enough for a wide range of different specification languages.

Category theory for the software specification has adopted a correct by construction

approach by which components are specified, proved and composed in the way of

preserving their properties. Moreover, category theory can provide techniques to

manipulate and reason diagrams for building hierarchies of system complexity, allowing

systems to be used as components of more complex systems and inferring properties of

the systems from their configurations.

Finally, we have introduced the concept of constructions, duality, limits, naturality

and adjoints in the category theory. We will start to describe our case studies in terms of

illustrating the RASF approach in the next chapter.
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Chapter 4: Background: Case Studies

This chapter states the research activity 4) in Figure 3, which is the literature review on

case studies. I had one publication [126] during this stage.

4.1 Mars-World

The Mars-world case study [201] is mainly used in the rest of this thesis to illustrate our

approach. In this case study, a group of robots accomplish ore exploitation on the planet

Mars. To achieve this goal, these robots must locate ore resources (the squares in Figure

15) in the area, mine them, and transport produced the ore to a base (the pentagon in

Figure 15) in terms of storage. This process is completed by three types of robots, and all

the robots have a sensor range to detect presence of ore. There is a sentry robot whose

responsibility is to analyze suspicious spots to evaluate if there is enough ore to be mined.

This type of robot has a wider sensor range to better verify candidate locations. When the

sentry robot evaluates a mine to be exploited, it sends its location to a second robot type

known as production robot. This robot has devices to dig and mine ore. After finishing its

job, the production robot calls a carry robot to transport the produced ore to the home

base. The carry robot has necessary equipments to carry ore and ability to move faster

than the other types of robots.

To better illustrate our approach, we have added two more types of robots to this case

study. These two robots are more involved in administration and coordination tasks at the

autonomic group as well as system levels. A group supervisor robot can form a group of

robots to find and exploit ore in the areas requested by a system manager robot. It can
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register specialist robots, supervise them and resolve conflicts between them. A system

manager robot may receive requests from the ground station on Earth and transfer

required data back. It can manage group supervisor robots, assign tasks to them and

collect requested data from them. Moreover, each supervisor robot and manager robot

has its backup robots used to ensure fault-tolerance, since they serve as critical roles and

store important data, such as repositories and work outcomes.

Figure 15 depicts a sample scenario of the Mars-world. When the group supervisor

robot receives an order with the subarea coordinate of the ole, it forms an exploration

group with sentry robots, production robots and carry robots. The size and composition

of the group is dynamic based on how much ore is found and left in its subarea. For

instance, the supervisor robot in subarea1 can ask the supervisor robot in subarea2 or any

other supervisor robot for more production robots and carry robots because of new

detected ore. The amount of remaining ore of each spot is indicated as a percentage

number and reported to the supervisor robot by the sentry robots.

Figure 15: A sample scenario of Mars-world
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4.2 Prospecting Asteroid Mission

In order to support the versatility and flexibility of applying our research outcome, we

also select the Prospecting Asteroid Mission (PAM) case study as another application

modeled by the RASF.

The PAM is an application of Autonomous Nano Technology Swarm (ANTS) mission

architecture from NASA. The PAM consists of 1000 pico-spacecraft organized into 10

specialist classes with highly maneuverable as well as configurable solar sails. The basic

design elements are low-power, low-weight components and individual systems that are

capable of operating as fully autonomous and adaptable units for swarm demands as well

as environmental needs. Through 10 to 20 sub-swarms operating simultaneously,

hundreds of asteroids could be explored during a mission traverse for an asteroid belt

[25].

The PAM must fulfill the following asteroid survey requirements: 1) optimal science

operations at every asteroid such as the search of appropriate spacecraft trajectories that

can enable efficient operation of workers’ instruments and concurrent operations between

multiple asteroids such as asteroid detection and tracking; 2) ongoing evolution of

strategies as a function of asteroid characteristics; 3) no single point failure and

robustness with respect to minor or critical loss; 4) a high level of autonomy as a group of

specialized workers. The PAM is designed for a systematic study of an entire population

of elements and involves not only a smart spacecraft, but also an autonomic and

distributed network of sensors or spacecraft with the specialized device capabilities, for
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instance, computing, imaging and spectrometry, as well as adaptable and evolvable

heuristic systems. Furthermore, the sub-swarms of spacecraft can operate autonomously

to enable the optimal gathering of complementary measurements for selected targets and

can also simultaneously operate in a broadly defined framework of goals to select targets

from candidate asteroids [25].

Figure 16: A Sample PAM Scenario [174]

The PAM spacecraft explore a selected asteroid through offering the highest quality

and coverage of measurement by particular classes of measurers that are called virtual

teams. A virtual instrument team consists of members from each spacecraft type to

optimize data collection. Another strategy involves providing the comprehensive

measurement to solve particular scientific problems by forming virtual experiment teams

made up of members of multiple specialist spacecraft. The social structure of the PAM

swarm can be determined by a particular set of scientific and mission requirements, as
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well as representative system elements may include [27]: 1) a general, for distributed

intelligence operations, resource management, mission conflict resolution, navigation,

mission objectives and collision avoidance; 2) rulers, for heuristic operation planning,

local conflict resolution, local resource management, scientific discovery data sharing

and task assignment; 3) workers, for local heuristic operation planning and scientific data

collection [27].

The PAM can therefore be regarded as an RAS with autonomic properties [174]. The

resources can be configured and reconfigured to support parallel operations at hundreds

of asteroids over a given period (self-configuration). For example, a sub-swarm may be

organized for scientific operations at an asteroid, and this sub-swarm can be reorganized

at another asteroid. The rulers may maintain data on different types of asteroids and

determine their characteristics over time. Therefore, the whole system can be optimized

because time will not be wasted on the asteroids that are not of interest or are difficult to

observe (self-optimization). The messengers provide communication between the rulers,

workers and Earth, so they can adjust their positions to balance the communication (self-

adaptation). The PAM individuals should be capable of coordinating their orbits and

trajectories to avoid collisions with other individuals in a reactive way. Moreover, the

plans of the rulers should incorporate the constraints necessary for acceptable collision

risk between the spacecraft when they perform observation tasks (self-protection and

reactive). The rulers capable of sensing solar storms should invoke the goal of protecting

their missions when they recognize a threat of such storms. In addition, the rulers can
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inform the workers of the potential for these events to occur, so that they can orient their

solar panels and sails to minimize the impact of solar wind. The rulers can also power

down the workers’ subsystems to minimize the disruption from charged particles (self-

protection and self-adaptation).

4.3 End-to-End iFix Tool

In order to support the feasibility of applying our research outcome on industrial projects,

I select the End-to-End iFix Tool (E2E) case study as an industrial application modeled

by the RASF during my research internship at IBM Canada.

The E2E is a fully automated fix (patch) generation tool for the IBM WebSphere

Application Server (WAS). It is a web-based application to process official fix creation

requests from the IBM support teams. The tool implements an automated and autonomic

process to build and test iFixes with minimal user input as well as intervention based on

source code for a fix being available and identifiable in a source code repository system.

The tool consists of three main components: 1) Web-based GUI front-end; 2) Fix creation

engine; 3) Fix validation engine. The information obtained from the front-end is used to

obtain an installable iFix from the creation engine; the validation engine is then used to

install, test and uninstall the iFix to validate correctness as well as completeness. The

E2E interacts with a repository tool to store source code and a build tool to compile the

source code into object code and a packaging tool to package the object code into an

installable fix.
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Figure 17: A Perspective of E2E

The fix creation engine leverage source code repository, source code compile tool and

object code packaging tool to create an ifix. The actions below are executed based on the

user input: 1) defect information is extracted from the source code repository; that

information is then displayed to the end users for confirmation and modifications, which

can be checked for consistency with the source code repository; 2) the engine then wraps

up the information and forwards a build request to the source code compile tool in terms

of generating binary classes, which can be packaged by the object code packaging tool,

validate by the FVT test bucket and uploaded to the iFix repository.
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The fix validation engine provides a mechanism to verify the integrity (correctness,

completeness, installability and uninstallability) of an iFix reactively in the run time,

which leverages two services: 1) GIT automation framework to validate iFix installation;

2) FAT bucket hosted by the Continuous Testing Framework server. If both testing results

are positive, the iFix will then be uploaded to public iFix repository and an email

notification will be sent the end users with the deliverable iFix.

4.4 Related Work

The authors in [53] present a model-driven autonomic computing technology for the

ANTS missions. Comparing to other models, the new hierarchical model can overcome

challenges of largeness, complexity, dynamicity and unexpectedness in the ANTS system.

The paper also describes the structure and functions of virtual neuron, which is a basic

unit together with the model for the model-driven autonomic technology in the ANTS

missions.

The authors in [18] introduce an Agent Modeling Language (AML) and demonstrate

how AML can be applied to efficiently, accurately and comprehensively model the PAM

system. A selection of the AML models that specify the PAM domain, goals, architecture

as well as behaviors are also presented in this paper.

The authors in [175] describe a formal task-scheduling approach and model a self-

scheduling behavior of the ANTS by an autonomic system specification language, where

both group and individual tasks are structured in the form of time aware fault-tolerant

which applies tolerance to timing violations.
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4.5 Summary

In this chapter, we have described three case studies in terms of illustrating the RASF

approach, which includes Mars-world, PAM and End-to-End iFix Tool.

In Mars-world, the objective for a group of robots is to mine ore; the mining process

is composed of locating the ore, mining it, and transporting the mined ore to a home base.

The sensed occurrences of ore are reported to a sentry robot that has a wider sensor range

in terms of verifying whether a suspicious spot actually has ore. When ore is found, the

location is sent to a randomly selected production robot with the mining device. After

mining is finished, a group of carry robots is requested to transport ore to the home base.

The PAM spacecraft study a selected target by particular classes of measurers called

virtual teams. For example, an experiment team consists of the specialist classes to solve

particular scientific problems, such as Petrologist team. The system elements include

generals, rulers, workers, and messengers.

The E2E is a web-based application to process official fix creation requests from the

IBM support teams. The tool implements an automated and autonomic process to build

and test iFixes with minimal user input as well as intervention based on source code for a

fix being available and identifiable in a source code repository system.

After introducing all necessary background on autonomic computing, multi-agent

systems, real-time reactive systems, formal methods, category theory and case studies,

we will illustrate the RASF methodology in the next chapter.
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Chapter 5: Methodology of RASF

This chapter states the research activity 7) in Figure 3, which is the prototype design of

the RASF model, and describes the contribution of the author (Section 5.1 & 5.2) as well

as the collaboration and supervision to the master students involved in the RASF project

(Section 5.3 & 5.4).

Real-time reactive systems are some of the most complex systems, and they have

become increasingly heterogeneous and intelligent. However, current formal approaches

do not have an appropriate mechanism to specify autonomic reactive systems, which are

able to simplify and enhance the experience of end-users by anticipating their needs in a

complex, dynamic and uncertain environment. With autonomic behavior, the real-time

reactive systems can be more self-managed to themselves and more adaptive to their

environment. Therefore, our goal is to build a formal framework, the RASF, which can

leverage modeling, specification and development of the RAS.

5.1 RAS Model in RASF

The RAS architecture model (see Figure 18) is a four-layer architecture that consists of

Reactive Autonomic Objects (RAO), Reactive Autonomic Components (RAC), Reactive

Autonomic Component Groups (RACG) as well as the RAS. The autonomic features are

implemented by RAO Leaders (RAOL), RAC Supervisors (RACS) and RACG Managers

(RACGM) at the RAC, RACG as well as RAS layer respectively [90]. In this layered

architecture model, each tier communicates only with the tier immediately above or



79

below it. Thus, the independence of those tiers makes their modularity, encapsulation,

hierarchical decomposition and reuse possible.

Figure 18: RASF Architecture Model

5.1.1 RAO

The reactive behavior of RAO is modeled as a labeled transition system augmented with

ports, resources, attributes and the logical assertion on those attributes as well as time

constraints [123]. More specifically, it is modeled as a 9-tuple

where are specified as in [134]:

 Ρ is a finite set of ports associated with each port-type and the null-type whose

only port is the null port po.

 ε is a finite set of events and includes the silent-event tick.

 Θ is a finite set of states where , is the initial state; there is no final state.

 is a finite set of typed attributes: abstract data types and port reference types.

 is a finite set of Larch traits for the abstract data type used in .

 Φ is a function-vector (Φs, Φat) which Φs associates with each state a set of sub

states and Φat associates with each state a set of attributes.



80

 Λ is a finite set of transition specifications between the states.

 is a finite set of time-constraints over the transitions.

 R models the set of resources available locally for the object to support its

functionality.

5.1.2 RAC

RAC is a homogenous set of communicating RAO, where one of the RAO is assigned as

a leader (RAOL) of the rest (workers). The workers are responsible for reactive tasks,

while the RAOL works on autonomic tasks such as coordinating the self-monitoring at

component level. Thus, the RAOL has a different set of states from the workers, which

states are autonomic behavior related besides the reactive behavior. The reactive and

autonomic natures of formal specifications for the RAOL enable them to implement

autonomic functionalities in a real-time reactive system. In order to coordinate the work

as well as communication between the RAO, a RAC specification consists of Members,

Configure, Leader, Supervisor, Neighbors and Repository (see Figure 19). The RAC is

the minimum centralized Reactive Autonomic Element (RAE) that has the ability of

self-management in RASF [84].

Figure 19: Specification of the RAC
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Similarly to the RAO, the reactive behavior of a RAC that consists of n collaborating

RAO is specified as a 9-tuple [123]:

 is a set of port-types allowing for a synchronous communication between the

RAO.

 is a union of all .

 is a finite set of reachable and valid Synchronous Production Machine (SPM)

states.

 is a union of the finite sets .

 is a union of the finite sets of Larch Specification Language (LSL) traits for

Abstract Data Type (ADT) used in the RAO.

 is a function-vector ( ) that associates with each SPM state

a set of sub states; associates with each SPM state the union of the

set of attributes a set of attributes

 is a finite set of transition specifications between the states.

 is a finite set of time-constraints over the transitions.

 is a set of resources available in the RAO; it is defined as a union of all

.

5.1.3 RACG

RACG is a set of RAC that cooperate in fulfillment of group tasks by synchronous

communications. The autonomic behavior at group level is coordinated by a supervisor

(RACS). Figure 20 shows a RACG specification.
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Figure 20: Specification of the RACG

5.1.4 RAS

RAS is made up of RACG with corresponding communication. It provides an integrated

interface for users to delegate tasks and monitor systems. A manager (RACGM) is

responsible for coordinating autonomic behavior at system level. Figure 21 illustrates a

RAS specification.

Figure 21: Specification of the RAS

5.2 Autonomic Behavior in RASF

In RASF, the autonomic behaviors of RAOL, RACS and RACGM are modeled as the

intelligent control loops specified as labeled transition systems (Figure 22), where states

specify tasks (Monitor, Analyze, Plan, Execute, HandleException); events specify

triggers from one state to another; transitions specify state sequences under time

constraints [85].
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Figure 22: An Example of Intelligent Control Loop

5.2.1 Monitor

Monitor is the first state and it has three internal events which are NoChange, HasChange

and MonitorException depending on the evaluated current states of the RAE being

monitored. If those states keep the same evaluation as previously, NoChange event occurs

and the control loop goes back to Monitor; otherwise, HasChange event occurs and the

control loop transits to Analyze. The evaluation can be realized with heart-beating

messages sent by those RAE which are connected by ports. The configuration changes

caused by those RAE’s new composition at runtime can also be monitored in a similar

way as the state changes [126].

5.2.2 Analyze

The intelligent control loop transits from Monitor to Analyze triggered by HasChange

event [176]. Figure 23 depicts the graphical notation of a transition.
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Figure 23: Specification of a Transition

 Port condition: a logical assertion on attributes and a port ID pid. If an assertion is

true, then the pid can be bound to any port belonging to the port type of the event

associated with a transition.

 Enabling condition: a logical assertion on attributes specifying necessary condition

for a transition to take place.

 Post-condition: a logical assertion on attributes, and a port ID pid. The post-condition

gives a data computation associated with a transition.

 Time constraint condition: a lower bound, an upper bound and an integer named

TCvarN (N is a number) that should be initialized to 0 on the transition of a

constraining event as the second Action. The upper bound must be specified and the

lower bound is assumed to be 0 unless otherwise indicated. A constrained event may

have zero, one or more disabling states where it cannot be fired. The time constraint

condition does not apply to transitions that are not constrained events.

 Action: occurs when the control loop enters a state and has a format of post-condition

&& time constraint initialization. If it is empty, the post-condition is true. The time

constraint initialization does not apply to transitions that are not constraining events.

When the intelligent control loop enters Analyze state, certain evaluation is processed.

For instance, functionality compliance is assessed by verifying the behavioral correctness
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of the RAE being analyzed and comparing their current states (collected in Monitor state)

with their state machines. If this evaluation is positive, meaning that those RAE’s

behaviors follow their specifications as well as system policies, then no action is needed

and the control loop is back to Monitor state triggered by NoAction event. However, if the

result is negative, the defective RAE is detected and the control loop transits to Plan state

triggered by HasAction event. Similarly, the reliability verification is performed in

Analyze state by comparing current reliability value with required level when the RAE

composition changes at runtime [124].

5.2.3 Plan

After the intelligent control loop enters Plan state, a problem solving process is activated

and the control loop transits to Execute state triggered by HasPlan event. For example, if

a defective RAE is found after analyzing its functional compliance, there are two options

for the control loop. The first option is to provide either switching or repairing plans for

users’ consideration, which are made up of basic steps represented as knowledge in

repositories. The second option is to develop those plans and execute them without users’

intervention in Execute state when the RAS has enough autonomy and authorization from

the users. Similarly for the reliability verification, if an assessment reaches a required

level, a changing plan is developed; otherwise, a rejection to the RAE changes with

explanation and suggestion is created.

5.2.4 Execute

Execute is the last state of the intelligent control loop. The plans proposed in Plan state
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are scheduled, executed and validated. Finally, the control loop goes back to Monitor

state triggered by ActionDone event. For instance, in order to replace a defective RAE, a

rigorous schedule is needed to state right timing to perform every step of a switching plan,

since the control loop stays in a real-time reactive environment and supports hot plugging

for the cooperated RAE. After the implementation of that switching plan, a validation

between the outcome and plan is processed. If the outcome passes its validation, the

control loop enters the Monitor state; otherwise, an exception handling mechanism is

activated and the control loop transits to HandleException state.

5.2.5 Exception Handling

In addition to the states of Monitor, Analyze, Plan and Execute, we have modeled

HandleException state for fault-tolerance of the intelligent control loop. All exceptions to

those four states will trigger a HasException event and transition to HandleException

state, which has the benefit of exposing accurate behavior of the control loop when

exceptions occur and having a centralized exception handling mechanism. The control

loop goes back to one of those four states triggered by ExceptionHandled event when

exceptions are processed.

Each state of the intelligent control loop can also have its sub-states for more specific

behaviors in that state (see Figure 24 as an example for the sub-states of Monitor state).
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Figure 24: Sub-states of the Monitor State

5.3 Mapping RAS Model to MAS Model

This section states the collaboration and supervision to the master students involved in

the RASF project for the research work 7) in Figure 2 [62]. In multi-agent community,

agent-based approach is considered as a natural way to model autonomic systems, since

the ability of an autonomous agent can be easily mapped to the self-management

behaviors in autonomic systems. The ability of MAS to make the interactions between

components explicitly and control them in a flexible way supports a more distributed

complexity [167].

Therefore, the MAS approach is well-suited for autonomic computing systems, and

many ideas from the MAS community can be adapted to implement autonomic systems,

such as self-management behavior, automatic group formation, agent coordination,

evolution, agent adaptation, knowledge mining and interfacing [190].

By applying the MAS approach to implement RAS, the following characteristics of

the RAS can be realized [88]:

 Reactivity: agents are reactive.

 Autonomy: agents are autonomous.
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 Computational efficiency: a composite computation task can be disassembled to a set

of subtasks, which are implemented by several agents in a parallel and distributed

way.

 Extendibility: new agents can be easily created and enrolled in the RAS according to

dynamic and unpredictable running environment.

 Flexibility: the variety of agents and growing repositories make the RAS adapt to

diverse legacy systems.

 Robustness: redundant agents for the same task and their ability of hot swapping

greatly improve the RAS fault-tolerance as well as recoverability.

Figure 25 shows a general mapping from RAS to MAS. The elements in MAS are

layered too; RAS is mapped to MAS; RACG is mapped to sub-MAS, which is a sub group

of agents; RAC are mapped to agents; RAO are mapped to agents’ plans, goals and beliefs.

The MAS comprises centralized or distributed sub-MAS, which are differentiated by their

responsibilities, goals or tasks. The sub-MAS contain agent(s), and the agents are grouped

by common goals that are differentiated by their individual roles. An agent includes

various plans based on agents’ beliefs, goals and events. Figure 26 depicts a package

diagram of MAS which reflects the RAS hierarchy. It exhibits a static global view of the

overall system. The basic components for the system are system manager agent,

supervisor agent and regular agent [62].
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Figure 25: Mapping from RAS to MAS [62]

Figure 26: MAS Representation after the Mapping from RAS [62]

System manager agent is the most essential part that acts as a brain for the overall

system. It governs and manages the entire system. Supervisor agent exists in each

multi-agent group (Sub-MAS). It is the group leader that supervises the group. It plays a

similar role as the system manager agent but with limited power and localized view of the

entire system. Regular agent is the worker in the multi-agent society. Each agent in the

package has goals, beliefs and plans components [62].

Those agents communicate with each other in order to work together for performing

various tasks and they are hierarchical (Figure 27). Regular agents are on the bottom

level; system manager agent is on the top level. All agents can only communicate with
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the agents in the same level or the level directly below or above. In this case, system

manager agent can only converse with supervisor agents; regular agents are only able to

communicate with supervisor agents; supervisor agents have the ability to send messages

to both system manager agent and regular agents. This design strategy reduces the

coupling of agents’ communication and assigns system with modularity, encapsulation,

hierarchical decomposition as well as reusability [62].

Figure 27: Agent Hierarchy in RASF [62]

There are two communication types in our MAS model: local communication and

global communication. Local communication happens only in the group level

(Sub-MAS). In a group, regular agents communicate with each other to cooperate. If

communication issues happen between regular agents, error report messages will be sent

to supervisor agent by concerned regular agents. Based on its beliefs, the supervisor

agent will make a decision and send messages back to the regular agents. The second

type is the global communication that happens between Sub-MAS. Regular agents cannot

communicate with the agents in other groups. Supervisor agents can communicate with

other supervisor agents and system manager agent, but they are not allowed to have

contacts with the regular agents in other groups. The system manager agent has the ability
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to get in touch only with supervisor agents. More details can be found in [62].

5.4 Model Transformation from RAS to MAS Implementation

This section states the collaboration and supervision to the master students involved in

RASF project for the research work 8) in Figure 2 [148]. The input of the model

transformation process is created using a grammar defined from the RAS model. The

outcome of applying that grammar definition is an XML file which represents each type

of RAE. A set of transformation rules are applied on that XML file to create the output of

the model transformation in Jadex, which is a Java-based MAS-BDI compatible agent

programming tool. The output model in Jadex consists of Agent Definition Files (ADF)

in XML format, which defines beliefs, goals, message events, plan headers and the plan

files in Java code that contain the body of executable plans [148]. Figure 28 illustrates the

transformation process.

Figure 28: Model Transformation Process from RAS to MAS Implementation [148]

5.4.1 RAS Grammar

The RAS grammar defines the RAE in RASF based on Extended BNF ISO 14977 [70].

Figure 29 shows the grammar of the RAS architecture model. The behavior of RAO and

RAC are illustrated by the RAS grammar shown in Figures 30 and 31. More details and
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explanation of those figures can be found in [148].

RAOL = RAO, repository;
repository = {property}-;
property = name, type, {value}-;
RAC = RAOL, {RAO}-;
RACGM = RAC, RAS_repository;
RACS = RAC, RACG_repository;
RACG = RACS, {RAC}-;
RAS = RACGM, {RACG}-;

Figure 29: Grammar of the RAS Architecture Model [148]

RAO-behavior = {reactive-atomic}-;
reactive-atomic = reactive-trigger, message;
reactive-trigger = sender, event, receiver;
message = sender, event, receiver;
sender, receiver = RAO | RAOL | RACS | RACGM | ENVIRONMENT;
event = EO | EI | IN | timeout;
timeout = integer;

Figure 30: Grammar of the RAO Behavior [148]

RAC-behavior = {reactive | self-properties}-;
reactive = {ex-path}-;
ex-path = reactive-trigger | proactive-trigger, {message};
sender, receiver = RAO | RAOL | RACS | RACGM | ENVIRONMENT;
proactive-trigger = sender, IN, receiver;
reactive-trigger = sender, event, receiver;
message = sender, event, receiver;
self-properties = {goal}-;
goal = name, ex-path;

Figure 31: Grammar of the RAC Behavior [148]

5.4.2 Input Model of Transformation

The input model for the transformation is the RAS architecture model captured and

represented in a XML format. RAO is the atomic element in RASF. Figure 32 depicts the

XML specification of the RAO. There is no architectural definition for the RAO because
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it is an atomic element, and its reactive behavior is specified by the trigger-response pairs

that capture its atomic behavior. RAC is the principal element in RASF and consists of

atomic elements RAO with autonomic behavior. The XML specification of RAC consists

of tags that define its static structure and other tags that determine its behavior (see

Figure 33). More details and explanation of those figures can be found in [148].

<RAO name = “rao-name”>
<REACTIVE-ATOMIC>

<TRIGGER name= “trigger-name”/>
<PLAN name= “plan-name”/>
<RESPONSE name= “response-name”/>

</REACTIVE-ATOMIC>
</RAO>

Figure 32: RAO Specification Template in XML Format [148]

<RAC name = “rac-name”>
<MEMBERS>

<MEMBER name = “rao-name”/>
</MEMBERS>
<INTERACTIONS>

<INTERACTION source = “source-rao” name = “event-name” target =
“target-rao”/>

</INTERACTIONS>
<REACTIVE-BEH>

<LIST-EX-PATH>
<EX-PATH name = “ex-path-name”>

<TRIGGER>
<SENDER name = “environment”/>
<EVENT name = “trigger-name”/>
<RECEIVER name = “receiver-name”/>

</TRIGGER>
<MESSAGE>

<SENDER name = “sender-name”/>
<EVENT name = “event-name” type= “event-type”>

<TIMEOUT min= integer max = integer/>
</EVENT>
<RECEIVER name = “receiver-name”/>
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</MESSAGE>
</EX-PATH>
</LIST-EX-PATH>

</REACTIVE-BEH>
<SELF-PROP>

<GOAL name = “goal-name” path = “ex-path-name”>
<EX-PATH>
</EX-PATH>

</GOAL>
</SELF-PROP>
<LEADER name = “raol-name”/>
<REPOSITORY>

<PROPERTY name=“property-name”
type=“property-type”>value</PROPERTY>

</ REPOSITORY>
</RAC>

Figure 33: RAC Specification Template in XML Format [148]

<RACG name = “racg-name”>
<MEMBERS>

<MEMBER name = “rac-name”/>
</MEMBERS>
<INTERACTIONS>

<INTERACTION source = “source-rac” name = “event-name” target =
“target-rac”/>

</INTERACTIONS>
<LEADER name = “supervisor-name”/>
<REPOSITORY>

<PROPERTY name=“property-name”
type=“property-type”>value</PROPERTY>

</ REPOSITORY>
</RACG>

Figure 34: RACG Specification Template in XML Format [148]

5.4.3 Output Model

The output model for the transformation is the MAS framework in a BDI architecture

defined and implemented in Jadex, a Java-based multi agent platform where the agents
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are defined by two file formats. The definition of an agent in XML format is stored in an

Agent Definition File (ADF); the body of plans in Java language format is stored in a

Java source code file. The ADF file consists of different tags to implement various

concepts of the BDI model.

5.4.4 Transformation Rules

After having the input and output of the model transformation, a set of mapping rules for

the XML format of RAS model and MAS model are defined as: 1) <RAC> to <package>;

2) <MEMBERS> to <package>; 3) <RAO> to <agent>; 4) <INTERACTION> to

<messageevent>; 5) <LEADER> to <beliefs>; 6) <REPOSITORY> to <beliefs>; 7)

<PROPERTY> to <belief>/<beliefset>; 8) <EX-PATH> to <plan>; 9) <MESSAGE> to

<plan>; 10) Asynchronous message event rule; 11) Synchronous message event without

timeout rule; 12) Synchronous message event with timeout rule; 13) Empty message

event rule; 14) <REACTIVE-BEHAVIOR> vs. <SELF-PROPERTY>; 15) <GOAL> to

<achievegoal> [148].

5.5 RASF Process Model

In order to develop a reactive autonomic system using RASF, we can follow the RASF

process model indicated below based on the Figure 2 in Section 1.3.

Phase 1 (arrow 2): Build a RAS model (box 3) based on the RAS requirements (box

1). This model includes: i) RAS architecture model (Figure 21), ii) reactive behavior of

RAE (Section 5.1.1 & 5.1.2), iii) the specification of RAE (Figure 23 & 24) and iv)

specification of the self-* properties self-healing (Section 7.1, 7.3 & 7.5) as well as
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self-configuration (Section 8.1, 8.3 & 8.5), that includes autonomic behavior (intelligent

control loop) of the RAE (Section 5.2).

Phase 2 (arrow 4): Transform the RAS model in Phase 1 to its categorical model (box

5) using the category theory. This transformation includes the categorical models of the

structure (Section 6.1), the behavior (Section 6.2) and the self-* properties self-healing

(Section 7.2, 7.4, 7.6 & 7.7) as well as self-configuration (Section 8.2, 8.4, 8.6 & 8.7) in

the RAS model together with corresponding XML representation (Section 7.8 & 8.8).

Phase 3 (arrow 6): Transform the RAS model in Phase 1 to its MAS model (box 7).

This transformation includes the mapping from the RAS architecture model to the MAS

architecture model (Figure 28), from RAS specification to MAS specification (Figure 29)

and from the RAS behavior to the MAS behavior (Section 5.3).

Phase 4 (arrow 12): Transform MAS model in Phase 3 to its categorical model (box

13) using category theory. This transformation includes the categorical models of plans

(Section 6.5.1), goals (Section 6.5.2), beliefs (Section 6.5.3), agents (Section 6.5.4) as

well as repository (Section 6.5.5) in the MAS model together with corresponding XML

representation (Section 6.6).

Phase 5 (arrow 10): Visualize the categorical RAS model in Phase 2 to its graphical

representation (box 11) by importing its XML representation in Phase 2 to our graphical

illustration tool CATCanvas (Section 6.4.2).

Phase 6 (arrow 14): Visualize the categorical MAS model in Phase 4 to its graphical

representation (box 15) by importing its XML representation in Phase 4 to our graphical
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illustration tool CATCanvas (Section 6.4.2).

Phase 7 (verification line between box 5 and box 13): Verify if the categorical MAS

model in Phase 4 conforms to the categorical RAS model in Phase 2. This verification is

achieved through comparing their XML representations generated in Phase 4 and Phase 2

against their mapping rules extended from Phase 3 with category theory. This phase is

one of our future work directions.

Phase 8 (the validation line between box 11 and box 15): Validate if the graphical

illustration of categorical MAS model in Phase 6 conforms to the graphical illustration of

categorical RAS model in Phase 5. This validation can be achieved by comparing the

XML representations exported from the CATCanvas in Phase 6 and Phase 5 against their

mapping rules extended from Phase 3 with CML (Section 6.4.1). This phase is one of our

future work directions.

Phase 9 (arrow 8): Transform the MAS model in Phase 3 above to its implementation

(box 9) using the Jadex framework. This transformation (Figure 31) includes the RAS

grammar (Section 5.4.1), input model (Section 5.4.2), output model (Section 5.4.3) and

transformation rules (Section 5.4.4).

Phase 10 (arrow 16): Transform the MAS implementation in Phase 9 to categorical

model (box 17) using category theory. This phase is one of our future work directions.

Phase 11 (arrow 18): Visualize the categorical MAS implementation in Phase 10 to

its graphical representation (box 19) by importing its XML representation in Phase 10 to

our graphical illustration tool CATCanvas (Section 6.4.2). This phase is one of our future
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work directions.

Phase 12 (the verification line between box 13 and box 17): Verify if the categorical

MAS implementation in Phase 10 conforms to the categorical MAS model in Phase 4.

This verification is achieved by comparing their XML representations generated in Phase

10 and Phase 4 against their mapping rules extended from Phase 9 with category theory.

This phase is one of our future work directions.

Phase 13 (the validation line between box 15 and box 19): Validate if the graphical

illustration of the categorical MAS implementation in Phase 11 conforms to the graphical

illustration of the categorical MAS model in Phase 6. This validation can be achieved

through comparing the XML representations exported from the CATCanvas in Phase 11

and Phase 6 against their mapping rules extended from Phase 9 with CML (Section 6.4.1).

This phase is one of our future work directions.

5.6 RASF Tooling Support

After having the RASF process model, we developed a tool named RASF Integration

Tool (RASFIT) to support the models, specifications, transformations, verifications and

validations in the RASF process model we introduced earlier in Section 5.5.

RASFIT is an Eclipse [202] plug-in based solution that extends the Eclipse IDE with

i) a UML design tool (Enterprise Architect [203]), ii) a framework in terms of building

the multi-agent applications named Jadex [204], iii) a model transformation framework

[148] to produce the multi-agent templates representing the RAS components that satisfy

both reactive and autonomic properties and iv) a graphical tool for illustrating categorical
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models [81].

The architecture of RASFIT (Figure 227) consists of i) an Eclipse plug-in module

(Section 9.1.1) that is responsible for the interactions from end users through the Eclipse

IDE by using the Eclipse API, ii) an Enterprise Architecture (EA) module (Section 9.1.2)

which is responsible for modeling RAE through the integrated EA IDE in the Eclipse IDE

by using the EA API, iii) a Jadex module (Section 9.1.3) that is responsible for modeling

the MAS implementation from the RAS model through the integrated Jadex IDE in the

Eclipse IDE by using the Jadex API, iv) a model transformation module (Section 9.1.4)

which is responsible for transforming the RAS model represented in a XML format to the

MAS implementation represented in the format of agent definition files, defining beliefs,

goals, message events, plan headers and related plan files in Java code that contain the

body of executable plans [148], and v) a CATCanvas module (Section 9.1.5) that is for

graphically illustrating a RAS model represented in a XML format by importing its XML

file [81].

5.7 Summary

In this chapter, we have given a conceptual view of the RASF and conveyed architectural

decisions for further design as well as implementation of the RASF.

The 4-tier architecture for the RASF consists of the RAO, RAC, RACG and RAS;

the autonomic behavior, such as self-monitoring or self-analyzing, is implemented by the

component leaders (RAOL), group supervisors (RACS) and system managers (RACGM)

at the RAC, RACG as well as RAS tier respectively. The RAO is modeled as a labeled
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transition system augmented with ports, attributes, logical assertion on the attributes, time

constraints and resource specification; the RAC is a set of synchronously communicating

RAO, where one of the RAO is assigned as a leader of the rest (workers); the RACG is a

set of centralized or distributed RAC which cooperate in fulfillment of group tasks by

asynchronous communication; the RAS is made up of centralized or distributed RACG

with their asynchronous communication.

Finally, we have presented the autonomic behavior (intelligent control loop) in RASF,

mapping from RAS model to MAS model, model transformation from RAS to the MAS

implementation and the introduction of RASF process model as well as tooling support.

We will explain the categorical specification of RASF in next chapter according to the

RAS model, MAS model and category theory we described in this chapter and Chapter 3

respectively.
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Chapter 6: Categorical Specifications of RASF

This chapter states the research activity 8), 18), 19) in Figure 3, which are prototype

design of categorical RASF model, transformation from categorical RAS model to its

XML specification as well as transformation from categorical MAS model to its XML

specification, and describes the contribution of the author (Section 6.1, 6.2, 6.3 and 6.6)

as well as the collaboration and supervision to the master students involved in the RASF

project (6.4 & 6.5). I had one publication [90] and one in preparation for this chapter.

Category theory can provide abstract hierarchical types which are useful to build

complex data types for RAS. This will allow them to be modeled in isolation thus a

modular treatment is possible. Moreover, their hierarchical nature allows the axioms of a

subcategory to be inherited from its category, which gives a consistent approach to data

abstraction [115] at each stage during the development and usage of RASF, such as

requirement specifications, RAS modeling, MAS modeling, model transformation and

implementation.

The RAE in the RAS can change state, be manipulated, or connected to other RAE;

the categorical invariant properties, such as limit and colimit (see Definition 3.5.6 &

3.5.9), are used to characterize those RAE and their behavior. The basic building blocks

for the RAS description are provided by the categorical notions of objects, morphisms,

categories, functors and natural transformations; deriving and composing structures are

achieved through canonical constructors, universal constructors as well as categorical

invariant properties (see Section 3.5).
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6.1 Categorical Model of Structure in RASF

This section states the research activity 8) in Figure 3. Based on the architecture model in

RASF, the internal structure of a RAS is both hierarchical (composition of its RAE) and

recursive (tiered interconnectivity of its RAE). Therefore, the behavior of a RAS can be

characterized by its RAE and their interactions. A categorical framework for that

behavior can be freely generated below.

Property 6.0.1: Type is a category where objects represent the object types denoted

by ObjType(Type) and morphisms represent the morphism types as MorType(Type). For

example, MyCategory is a category where objects are denoted by Obj(MyCategory) and

morphisms denoted by Mor(MyCategory). There is a functor F from MyCategory to Type

which maps each object of MyCategory to a type (an object of Type): F(Obj(MyCategory))

= ObjType(Type) and maps each morphism of MyCategory to a type (a morphism of

Type): F(Mor(MyCategory)) = MorType(Type).

Figure 35: An Example of Type Category

In Figure 35, a type category called TypeCategory contains objects: type1, type1 and

type3; type m morphisms: c and d; type n morphisms: a, b and e. MyCategory contains
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objects: A, B, C and D; morphisms: u, v, w, x and y. Functor F maps MyCategory objects

and morphisms to types in TypeCategory: F(A) = Type1, F(B) = Type1, F(C) = Type2, F(D)

= Type3, F(u) = e (type n), F(v) = b (type m), F(w) = d (type m), F(x) = a (type n) and

F(y) = c (type m).

Property 6.0.2: the null object ObjectNull in a category does not have any real

meaning or content and it does not have any relationship with other objects. ObjectNull

and its identity morphism are useful for catching “non-useful” or “non-related” objects as

well as morphisms from other categories by defined functors (relations).

Figure 36: An Example of Null Object in Category

Figure 36 is an example of using ObjectNull. MyCategory A contains objects: A, B, C,

D and ObjectNull; morphisms: a, b, c, d and e. MyCategory B has objects: A, B, C and

ObjectNull; morphisms: a, b and c. Functor H maps MyCategory A objects and morphisms

to MyCategory B: H (A) = A, H (B) = B, H (C) = C, H (D) = ObjectNull, H (ObjectNull) =

ObjectNull, H (a) = a, H (b) = b, H (c) = c, H (d) = id ObjectNull and H (e) = id ObjectNull.

From this example, we can see MyCategory B contains all the objects and morphisms in

MyCategory A except for object D and its related morphisms d and e.

Property 6.0.3: A directed graph G is a set O of objects called vertices or nodes, and
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a set A of ordered pairs of vertices are called arrows or directed edges [93]. Every arrow

diagram or directed graph can be specified as a category named PATH where morphisms

are sequences (paths) of arrows. One can create a directed graph by drawing an arrow

from x to y where x, y ∈ the same set X, which can be associated with the category

denoted by PATH (X) or PATH [130]. The objects are elements in X and the morphisms

are all sequences (paths) of the adjacent arrows. This naturally defines a composition of

arrows. This viewpoint leads to a general categorical semantics for the relational

structures. Vice versa, every category is a graphical structure.

Figure 37: An Example of PATH Category

Figure 37 is an example of PATH. For morphisms (arrows) f: x → y, g: y → z and

morphism k: x → z, if f, g and k are of the same type, then k is not considered as a direct

arrow since k equals to the sequence (path) of the consecutive arrows (f and g). By the

definition of PATH, the lengths of the sequences f and g are one, and the length of k is

two. The existence of the identity arrow for each object will always be assumed by

definition, and it can be interpreted as sequences of length zero.

Property 6.1.1: RAE-Type is an instance category of the Type category (see

Property 6.0.1) in which objects represent the RAE types denoted by ObjType(RAE-

Type) and morphisms represent the morphism types denoted by MorType(RAE-Type).
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For example, RAE-Type-Instance is the category in which objects are denoted by

Obj(RAE-Type-Instance) and morphisms denoted by Mor(RAE-Type-Instance). There

is a functor F from RAE-Type-Instance to RAE-Type, a structure-preserving mapping

of the objects of RAE-Type-Instance to objects of RAE-Type: F(ObjType(RAE-Type-

Instance)) = Obj(RAE-Type), and of the morphisms of RAE-Type-Instance to the

morphisms of RAE-Type: F(MorType(RAE-Type-Instance)) = Mor(RAE-Type) as the

Definition 3.1.2 (see the figure below).

Property 6.1.2: RAC can be specified as a category RAC with a set of objects |RAC|

and morphisms so that for each iRAO , jRAO  |RAC|, there is a set of morphisms f :

RAC( iRAO , jRAO ) mapping the iRAO to jRAO which indicate the communication

between them as f : iRAO → jRAO (see Definition 3.1.1).

Proof. All what we need is to prove: i) the existence of composition and identity

morphism, and ii) prove associativity. Let RAO1, RAO2 and RAO3 be three RAO such that

RAO1 can interact with RAO2, which can interact with RAO3. Then RAO1 can interact

with RAO3 (indirectly through RAO2), which means the existence of a composition of

morphisms between RAO1 and RAO3. The identity morphism does exist as a natural
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representation of internal interactions. Let f, g and h be the morphisms such that f: RAO1

→ RAO2, g: RAO2 → RAO3 and h: RAO3 → RAO4. It is clear that h ◦ (g ◦ f) = (h ◦ g) ◦ f.■

Every category C has an identity functor 1C : C → C. We can then easily demonstrate

the following property.

Property 6.1.3: The evolutions of a RAC, because of self-adaptation as well as self-

organization (original behavior is preserved) are modeled with functors. For instance, an

evolution from RAC to RAC’ is specified as a functor F, a structure-preserving mapping

of the objects (RAO) in RAC to the objects (RAO') in RAC' (F: |RAC| → |RAC'|), and of

the morphisms in RAC to morphisms in RAC' (F: RAC(RAOi, RAOj) → RAC'(F(RAOi),

F(RAOj))) as the Definition 3.1.2 (see the figure below).

In category theory, the natural transformation provides a way of transforming one

functor into another while respecting the internal structure (i.e. the composition of

morphisms) of the categories involved (see Definition 3.6.3).
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Property 6.1.4: Because the evolutions of RAC are specified as functors from the

category RAC to RAC', the mapping of those evolutions can be represented by the

natural transformation: υ : Evolution1 → Evolution2 is a family of the arrows in RAC':

vRAO: Evolution1(RAO) → Evolution2(RAO), such that for any f : RAO → RAO' in RAC,

there exists vRAO ◦ Evolution1(f) = Evolution2(f) ◦ vRAO as indicated in the figures below,

and vRAO is the component of the natural transformation υ (see Definition 3.6.3). In

addition, both RAC and RAC' should have the functor Conform to their index (type)

category RAO-Type in terms of structure-preserving mapping.

Property 6.1.5: All possible evolutions (functors) and their relationships (natural

transformations) for the RAE can be specified as a functor category Fun(RAE, RAE'),

where objects are functors Evolution : RAE → RAE' and morphisms are their natural

transformations υ : Evolutioni → Evolutionj (see Definition 3.6.4).

If we regard RAE and RAE' as objects instead of categories by ignoring the object

details inside RAE and RAE', all possible evolutions for the RAE can be specified as a
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category RAE-Evolution where objects are RAE, RAE', RAE'', etc., and morphisms are

those evolutions, such as Evolution1, Evolution2, etc.

Proof. All what we need is to prove: i) the existence of composition and identity

morphism, and ii) prove associativity. Let RAE' and RAE'' be two evolutions for the RAE

such that RAE can evolve to RAE', which can evolve to RAE''. Then RAE can evolve to

RAE'' (indirectly through RAE'), which means the existence of a composition of the

morphisms between RAE and RAE''. The identity morphism does exist as a natural

representation of internal evolutions. Let f, g and h be the morphisms such that f: RAE →

RAE', g: RAE' → RAE'' and h: RAE'' → RAE'''. It is clear that h ◦ (g ◦ f) = (h ◦ g) ◦ f.■

Property 6.1.6: RACG can be specified as a category RACG with a set of full

subcategories and products such that for each mRAC , nRAC RACG, there is a set of

products P : mRAC  nRAC has objects of the form ( mRAO , nRAO ) for mRAO 

| mRAC |, nRAO  | nRAC | and arrows of the form (f, g) : ( mRAO , nRAO ) → ( '
mRAO ,

'
nRAO ) for f : mRAO → '

mRAO  | mRAC | and g : nRAO → '
nRAO  | nRAC | (see

Definition 3.2.1 & Proposition 3.6.2).

Property 6.1.7: The RACG may also be specified as a category RACG with a set of
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objects |RACG| and morphisms such that for each mRAC , nRAC  |RACG|, there is a set

of morphisms f : RACG( mRAC , nRAC ) mapping the mRAC to the nRAC that indicate

the communication between them as f : RACm → RACn (see Definition 3.1.1).

Proof. All what we need is to prove: i) the existence of composition and identity

morphism, and ii) prove associativity. Let RAC1, RAC2 and RAC3 be three RAC such that

RAC1 can interact with RAC2, which can interact with RAC3. Then RAC1 can interact

with RAC3 (indirectly through RAC2), which means the existence of a composition of

morphisms between RAC1 and RAC3. The identity morphism does exist as a natural

representation of internal interactions. Let f, g and h be the morphisms such that f: RAC1

→ RAC2, g: RAC2 → RAC3 and h: RAC3 → RAC4. It is clear that h ◦ (g ◦ f) = (h ◦ g) ◦ f.■

Property 6.1.8: The evolutions of a RACG, because of self-adaptation as well as self-

organization (original behavior is preserved) are modeled with functors. For instance, an

evolution from RACG to RACG’ is specified as a functor F, a structure-preserving

mapping of the objects (RAC) in RACG to the objects (RAC') in RACG' (F: |RACG| →

|RACG'|), and of the morphisms in RACG to the morphisms in RACG' (F: RACG

(RACi, RACj) → RACG'(F(RACi), F(RACj))) as the Definition 3.1.2 (see the figure

below).
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Property 6.1.9: Because the evolutions of RACG are specified as functors from the

category RACG to RACG', the mapping of those evolutions can be represented by the

natural transformation: υ : Evolution1 → Evolution2 is a family of the arrows in RACG':

vRAC: Evolution1(RAC) → Evolution2(RAC), such that for any f : RAC → RAC' in RACG,

there exists vRAC ◦ Evolution1(f) = Evolution2(f) ◦ vRAC as indicated in the figures below,

and vRAC is the component of the natural transformation υ (see Definition 3.6.3). In

addition, both RACG and RACG' should have the functor Conform to their index (type)

category RAC-Type in terms of structure-preserving mapping.

Property 6.1.10: RAS can be specified as a category RAS with a set of full

subcategories and products such that for each mRACG , nRACG RAS, there is a set of
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products P : mRACG  nRACG has objects of the form ( mRAC , nRAC ) for mRAC 

| mRACG |, nRAC  | nRACG | and arrows of the form (f, g) : ( mRAC , nRAC ) →

( '
mRAC , '

nRAC ) for f : mRAC → '
mRAC  | mRACG | and g : nRAC → '

nRAC  | nRACG |

(see Definition 3.2.1 & Proposition 3.6.2).

Property 6.1.11: The RAS may also be specified as a category RAS with a set of

objects |RAS| and morphisms such that for each xRACG , yRACG  |RAS|, there is a set

of morphisms f : RAS( xRACG , yRACG ) mapping the xRACG to the yRACG that

indicate their interactions as f : xRACG → yRACG (see Definition 3.1.1).

Proof. All what we need is to prove: i) the existence of composition and identity

morphism, and ii) prove associativity. Let RACG1, RACG2 and RACG3 be three RACG

such that RACG1 can interact with RACG2, which can interact with RACG3. Then RACG1

can interact with RACG3 (indirectly through RACG2), which means the existence of a

composition of morphisms between RACG1 and RACG3. The identity morphism does exist

as a natural representation of internal interactions. Let f, g and h be the morphisms such

that f: RACG1 → RACG2, g: RACG2 → RACG3 and h: RACG3 → RACG4. It is clear that

h ◦ (g ◦ f) = (h ◦ g) ◦ f.■

Property 6.1.12: The evolutions of a RAS, because of self-adaptation as well as self-
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organization (original behavior is preserved) are modeled with functors. For instance, an

evolution from RAS to RAS’ is specified as a functor F, a structure-preserving mapping

of the objects (RACG) in RAS to the objects (RACG') in RAS' (F: |RAS| → |RAS'|), and

of the morphisms in RAS to the morphisms in RAS' (F: RAS(RACGi, RACGj) →

RAS'(F(RACGi), F(RACGj))) as the Definition 3.1.2 (see the figure below).

Property 6.1.13: Because the evolutions of RAS are specified as functors from the

category RAS to RAS', the mapping of those evolutions can be represented by the natural

transformation: υ : Evolution1 → Evolution2 is a family of the arrows in RAS': vRACG:

Evolution1(RACG) → Evolution2(RACG), such that for any f : RACG → RACG' in RAS,

there exists vRACG ◦ Evolution1(f) = Evolution2(f) ◦ vRACG as indicated in the figures below,

and vRAC is the component of the natural transformation υ (see Definition 3.6.3). In

addition, both RAS and RAS' should have the functor Conform to their index (type)

category RACG-Type in terms of structure-preserving mapping.
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Property 6.1.14: The constraints on constructing a RAC type from a group of RAO

types can be specified as a functor Construct from the category RAO-Type to category

RAC-Type, a structure-preserving mapping of the objects (RAO-Type) in RAO-Type to

the objects (RAC-Type) in RAC-Type (F: |RAO-Type| → |RAC-Type|), and of the

morphisms in RAO-Type to the identity morphisms in RAC-Type (F: RAO-Type(RAO-

Typei, RAO-Typej) → RAC-Type(RAC-Typem, RAC-Typem)) as Definition 3.1.2 (see the

figure below).

Property 6.1.15: The constraints on constructing a RACG type from a group of RAC

types can be specified as a functor Construct from the category RAC-Type to category

RACG-Type, a structure-preserving mapping of the objects (RAC-Type) in RAC-Type to

the objects (RACG-Type) in RACG-Type (F: |RAC-Type| → |RACG-Type|), and of the

morphisms in RAC-Type to the identity morphisms in RACG-Type (F: RAC-Type

(RAC-Typei, RAC-Typej) → RACG-Type(RACG-Typem, RACG-Typem)) as Definition
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3.1.2 (see the figure below).

Property 6.1.16: The constraints on constructing a RAS type from a group of RACG

types can be specified as a functor Construct from the category RACG-Type to category

RAS-Type, a structure-preserving mapping of the objects (RACG-Type) in RACG-Type

to the objects (RAS-Type) in RAS-Type (F: |RACG-Type| → |RAS-Type|), and of the

morphisms in RACG-Type to the identity morphisms in RAS-Type (F: RACG-Type

(RACG-Typei, RACG-Typej) → RAS-Type(RAS-Typem, RAS-Typem)) as Definition 3.1.2

(see the figure below).

6.2 Categorical Model of Behavior in RASF

This section states the research activity 8) in Figure 3.

Definition 6.2.1: A monoid (sometimes called semi-group with unit) is a set M

equipped with a binary operation · : M × M → M and a distinguished “unit” element
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uM such that for all x, y, zM, x · (y · z) = (x · y) · z and u · x = x = x · u. Equivalently, a

monoid is a category with just one object. The arrows of the category are the elements of

the monoid. In particular, the identity arrow is the unit element u. Composition of arrows

is the binary operation m · n of the monoid [6].

Property 6.2.2: The behavior of a RAE can be specified as an automation that

consists of an input set Event, a state set State, an output set Action, a transition function

f : EventState → State, an initial state State0  State, and an output function g : State

→ Action. The behavior of that automata is a function b : Event* → Action (from the

monoid Event* to Action). A category RAE-Behavior of that behavior has the objects as

pairs (Event, b : Event* → Action) and the morphisms from (Event, b : Event* → Action)

to (Event’, b’ : Event*’ → Action’) as pairs (h, j), where h : Event → Event’ and j :

Action→ Action’ such that the following diagram commutes.

Proof. The composition law of automata is defined to be that of functions between

sets. For example, composition applies internally to each component of the morphsims (X,

b : *X → Y). Similarly, the identity of an automation is defined to be the pairs that

consists of the two identity functions over X and function b : *X → Y. The proof of

RAE-Behavior is indeed obtained because the associativity of the composition law and
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the property of the identity are automatically inherited from the corresponding properties

of functions.

Property 6.2.3: Discrete-Time is a category in which objects are abstracting time

unit represented as integers, and morphisms are of type “before” denoted as “<”.

Proof. All what we need is to prove: i) the existence of composition and identity

morphism, and ii) prove associativity. Let Unit1, Unit2 and Unit3 be three time units such

that Unit1 is before Unit2, which is before Unit3. Then Unit1 is before Unit3 (indirectly

through Unit2), which means the existence of a composition of morphisms between Unit1

and Unit3. The identity morphism does exist as a natural representation of interactions

with atomic time unit. Let f, g and h be the morphisms such that f: Unit1→ Unit2, g: Unit2

→ Unit3 and h: Unit3 → Unit4. It is clear that h ◦ (g ◦ f) = (h ◦ g) ◦ f.■

Property 6.2.4: STATE is a category in which objects are states denoted by State1,

State2…, and morphisms are transitions denoted by Transition1, Transition2….

Proof. All what we need is to prove: i) the existence of composition and identity

morphism, and ii) prove associativity. Let State1, State2 and State3 be three states such

that State1 transits to State2, which transits to State3. Then State1 can transit to State3

(indirectly through State2), which means the existence of a composition of morphisms
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between State1 and State3. The identity morphism does exist as a natural representation of

internal transitions. Let f, g and h be the morphisms such that f: State1→ State2, g: State2

→ State3 and h: State3 → State4. It is clear that h ◦ (g ◦ f) = (h ◦ g) ◦ f.■

Property 6.2.5: The time constraints on the state transitions of the RAE is specified

as a functor from STATE to Discrete-Time (see Property 6.2.3), a structure-preserving

mapping of the objects (states) of STATE to the objects (time unit expressed as integers)

of Discrete-Time, and of the morphisms of STATE (transition) to morphisms (before) of

Discrete-Time (see Definition 3.1.2 and the figure below).

Property 6.2.6: The synchronous communication between the RAE can be specified

as their product denoted by RAEi × RAEj consisting of an object P as well as arrows

RAEi 1p P 2p RAEj satisfying: any diagram of a form RAEi 1x X 2x RAEj,

there exists a unique u : X → P making the following diagram commute (see Definition
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3.3.4).

Property 6.2.7: The asynchronous communication among the RAE can be specified

by their coproduct denoted by RAEi + RAEj consisting of an object Q and arrows RAEi

1qQ 2q RAEj satisfying: any diagram of the form RAEi 1z Z 2z RAEj,

there exists a unique u : Q → Z making the following diagram commute (see Definition

3.4.2).

Property 6.2.8: The next relay of the outgoing communication from the same source

object RAE to the same destination object RAE’ can be specified as the pushout: RAE’ =

RAEi +RAE RAEj, such that given any 1z : RAEi → Z and 2z : RAEj → Z with 1z ◦ f = 2z ◦ g,

there exists a unique u : RAE’ → Z, u ◦ 1p = 1z and u ◦ 2p = 2z (see Definition 3.5.4).
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Property 6.2.9: The previous relay of the incoming communication toward the same

destination RAE from the same source object RAE’ can be specified as the pullback: RAE’

= RAEi ×RAE RAEj, such that given any 1z : Z → RAEi and 2z : Z → RAEj with f ◦ 1z = g ◦ 2z ,

there exists a unique u : Z → RAE’ with 1z = 1p ◦ u and 2z = 2p ◦ u (see Definition 3.5.3).

Property 6.2.10: If we start with a diagram of RAO, a kind of universal communicator

may be introduced, and this is a higher-level object with arrow connections to each object

in a base diagram. Therefore, we can model that object (limit or colimit object) and those

arrow connections as a limit or colimit of the base diagram. Graphically speaking, the

limit is a domain of all the arrows going to the RAO in the base diagram, and the colimit

is a codomain of all the arrows coming from the RAO in the base diagram. Having the

limit or colimit allows for the modeling of each specific interaction among the RAO

(group behavior) by the communication path between the limit (colimit) object and those

RAO. According to the definition of the limit (colimit) object, no other object in the

diagram can improve the communication capability comparing to the limit (colimit)

object due to the commutativity constraint in the universal properties of a limit (colimit).

As the behavior of a RAC is aggregated from the behavior of its RAO (RAC is
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aggregated from its RAO), a limit for the category (diagram) RAC can represent its

designated group behavior. Let RAO-Type and RAO-Type-Instance be categories (see

Property 6.1.1). A diagram of type RAO-Type in RAO-Type-Instance is the functor

Construct : RAO-Type → RAO-Type-Instance. The objects in the index category

RAO-Type are represented as RAO-Typei, RAO-Typej, … and the values of the functor

Construct are in the form of Construct(RAO-Typei), Construct(RAO-Typej), …. A cone to

the diagram Construct consists of an object RAO as well as a family of morphisms in

RAO-Type-Instance, Communication(RAO-Typej): RAO → Construct(RAO-Typej) for

each object RAO-Typej RAO-Type such that for each morphism Communication :

RAO-Typei → RAO-Typej in RAO-Type, the following triangle commutes.

A morphism of cones Communication : (RAO, Communication(RAO-Typej)) → (RAO’,

Communication (RAO-Typej)’) is a morphism Communication in RAO-Type-Instance

making each triangle commute: Communication (RAO-Typej) = Communication(RAO-

Typej)’ ◦ Communication for all RAO-TypejRAO-Type. Therefore we have a category
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RAC-Behavior(Construct) of cones to Construct (see the figure below).

We consider the diagram Construct as a view of RAO-Type in RAO-Type-Instance.

A cone to such a diagram Construct is imaged as a many-sided pyramid over the base

Construct, and a morphism of cones is an arrow between the apexes of such pyramids.

A limit for the diagram Construct : RAO-Type → RAO-Type-Instance is a terminal

object in the category RAC-Behavior(Construct) represented as RAOL (limit object)

along with the communication from RAOL to RAO. A finite limit is a limit for a diagram

on a finite index category RAO-Type. As a result, the grid-like communication among

the RAO can be regarded as a cone-like incoming communication between those RAO

and their RAOL, through converting their relationship of many-to-many to one-to-many

by a categorical computation. Such model facilitates the specification of the designated

behavior of those RAO by hiding the many-to-many relationship details (see Definition

3.5.6 and the figure below).
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The validity of the category RAO-Type-Instance in the figure above is guaranteed

by the functor from RAO-Type-Instance to RAO-Type (see Property 6.1.1).

Property 6.2.11: Similarly to Property 6.2.10, a colimit for the diagram Construct:

RAO-Type → RAO-Type-Instance is an initial object in the category of cocones from

the base Construct represented as RAOL (colimit object) along with the communication

from RAO to RAOL. Each cocone consists of an object RAO (the vertex) and morphisms

Communication(RAO-Typej) : Construct(RAO-Typej) → RAO for every RAO-Typej 

RAO-Type, such that for all the Communication : RAO-Typei→RAO-Typej in RAO-Type,

the triangle below commutes: Communication(RAO-Typej) ◦ Construct(Communication)

= Communication(RAO-Typei) as the definition 3.5.9 (see the figure below).
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A morphism of the cocones Communication : (RAO', Communication(RAO-Typej)') →

(RAO, Communication(RAO-Typej)) is a morphism Communication: RAO' → RAO in

RAO-Type-Instance, the triangle below commutes: Communication ◦ Communication

(RAO-Typej)' = Communication(RAO-Typej) for all RAO-Typej  RAO-Type (see the

figure below).

As a result, the grid-like communication among the RAO can be regarded as a

cone-like outgoing communication between those RAO and their RAOL, by converting

their relationship of many-to-many to many-to-one through a categorical computation.
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Such model facilitates the specification of the achieved behavior of those RAO by hiding

the many-to-many relationship details (see the figure below).

The validity of the category RAO-Type-Instance in the figure above is guaranteed

by the functor from RAO-Type-Instance to RAO-Type (see Property 6.1.1).

Property 6.2.12: The outgoing communication from the RAO to its RAOL in a RAC

can be specified by a slice category as RAC/RAOL, where each object is the outgoing

communication (f, f’) and the morphism is the arrow g from f: RAOi → RAOL to f’:

RAOj→ RAOL such that f’ ◦ g = f (see Definition 3.2.4).



125

Property 6.2.13: The incoming communication from the RAOL to its RAO in a

RAC can be specified by a coslice category as RAOL/RAC, where objects are incoming

communication (f, f’) and the morphism is an arrow g from f: RAOL → RAOi to f’:

RAOL→ RAOj such that g ◦ f = f’ (see Definition 3.2.5).

Property 6.2.14: As the behavior of a RACG is aggregated from the behavior of its

RAC (RACG is aggregated from its RAC), a limit for the category (diagram) RACG can

represent its designated group behavior. Let RAC-Type and RAC-Type-Instance be

categories (see Property 6.1.1). A diagram of type RAC-Type in RAC-Type-Instance is

the functor Construct : RAC-Type → RAC-Type-Instance. The objects in the index

category RAC-Type are represented as RAC-Typei, RAC-Typej, … and the values of

functor Construct are in the form of Construct (RAC-Typei), Construct(RAC-Typej), …. A

cone to diagram Construct consists of an object RAC and a family of morphisms in

RAC-Type-Instance, Communication (RAC-Typej): RAC → Construct(RAC-Typej) for

each object RAC-Typej  RAC-Type such that for each morphism Communication :

RAC-Typei → RAC-Typej in RAC-Type, the following triangle commutes.
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A morphism of cones Communication : (RAC, Communication(RAC-Typej)) → (RAC’,

Communication (RAC-Typej)’) is a morphism Communication in RAC-Type-Instance

making each triangle commute: Communication(RAC-Typej) = Communication(RAC-

Typej)’ ◦ Communication for all RAC-TypejRAC-Type. Therefore, we have a category

RACG-Behavior(Construct) of cones to Construct (see the figure below).

A limit for the diagram Construct : RAC-Type → RAC-Type-Instance is a terminal

object in the category RACG-Behavior(Construct) represented as RACS (limit object)
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along with the communication from RACS to RAC. A finite limit is a limit for a diagram

on a finite index category RAC-Type. As a result, the grid-like communication among

the RAC can be regarded as a cone-like incoming communication between those RAC

and their RACS, through converting their relationship of many-to-many to one-to-many

by a categorical computation. Such model facilitates the specification of the designated

behavior of those RAC by hiding the many-to-many relationship details (see Definition

3.5.6 and the figure below).

The validity of the category RAC-Type-Instance in the figure above is guaranteed

by the functor from RAC-Type-Instance to RAC-Type (see Property 6.1.1).

Property 6.2.15: Similarly to Property 6.2.14, a colimit for the diagram Construct:

RAC-Type → RAC-Type-Instance is an initial object in the category of cocones from
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the base Construct represented as RACS (colimit object) along with the communication

from RAC to RACS. Each cocone consists of an object RAC (the vertex) and morphisms

Communication(RAC-Typej) : Construct(RAC-Typej) → RAC for every RAC-Typej

RAC-Type, such that for all the Communication : RAC-Typei→RAC-Typej in RAC-Type,

the triangle below commutes: Communication(RAC-Typej) ◦ Construct(Communication)

= Communication (RAC-Typei) as the definition 3.5.9 (see the figure below).

A morphism of the cocones Communication : (RAC', Communication(RAC-Typej)') →

(RAC, Communication(RAC-Typej)) is a morphism Communication: RAC' → RAC in

RAC-Type-Instance, the triangle below commutes: Communication ◦ Communication

(RAC-Typej)' = Communication(RAC-Typej) for all RAC-TypejRAC-Type (see the

figure below).
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As a result, the grid-like communication among the RAC can be regarded as a

cone-like outgoing communication between those RAC and their RACS, by converting

their relationship of many-to-many to many-to-one through a categorical computation.

Such model facilitates the specification of the achieved behavior of those RAC by hiding

the many-to-many relationship details (see the figure below).
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The validity of the category RAC-Type-Instance in the figure above is guaranteed

by the functor from RAC-Type-Instance to RAC-Type (see Property 6.1.1).

Property 6.2.16: The outgoing communication from the RAC to its RACS in a

RACG can be specified by a slice category as RACG/RACS, where each object is the

outgoing communication (f, f’) and the morphism is the arrow g from f: RACi → RACS to

f’: RACj → RACS such that f’ ◦ g = f (see Definition 3.2.4).

Property 6.2.17: The incoming communication from the RACS to its RAC in a

RACG can be specified by a coslice category as RACS/RACG, where each object is the

incoming communication (f, f’) and the morphism is an arrow g from f: RACS → RACi to

f’: RACS→ RACj such that g ◦ f = f’ (see Definition 3.2.5).

Property 6.2.18: As the behavior of a RAS is aggregated from the behavior of its

RACG (RAS is aggregated from its RACG), a limit for the category (diagram) RAS can

represent its designated group behavior. Let RACG-Type and RACG-Type-Instance be

categories (see Property 6.1.1). A diagram of the type RACG-Type in RACG-Type-
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Instance is a functor Construct : RACG-Type → RACG-Type-Instance. The objects in

the index category RACG-Type can be represented as RACG-Typei, RACG-Typej, … and

the values of functor Construct are in the form of Construct(RACG-Typei), Construct

(RACG-Typej), …. A cone to the diagram Construct consists of an object RACG and a

family of morphisms in RACG-Type-Instance, Communication(RACG-Typej): RACG →

Construct (RACG-Typej) for each object RACG-TypejRACG-Type such that for each

morphism Communication : RACG-Typei → RACG-Typej in RACG-Type, the following

triangle commutes.

A morphism of cones Communication : (RACG, Communication(RACG-Typej)) →

(RACG’, Communication(RACG-Typej)’) is a morphism Communication in RACG-Type-

Instance making each triangle commute: Communication(RACG-Typej)=Communication

(RACG-Typej)’ ◦ Communication for all RACG-TypejRACG-Type. Therefore, we have

a category RAS-Behavior(Construct) of cones to Construct.
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A limit for the diagram Construct : RACG-Type → RACG-Type-Instance is a

terminal object in the category RAS-Behavior(Construct) represented as RACGM (limit

object) along with the communication from RACGM to RACG. A finite limit is a limit for

a diagram on a finite index category RACG-Type. Thus, the grid-like communication

among the RACG can be regarded as a cone-like outgoing communication between those

RACG and their RACGM, through converting their relationship of many-to-many to

many-to-one by a categorical computation. Such model facilitates the specification of the

designated behavior of those RACG by hiding the many-to-many relationship details (see

Definition 3.5.6 and the figure below).
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The validity of the category RACG-Type-Instance in the figure above is guaranteed

by the functor from RACG-Type-Instance to RACG-Type (see Property 6.1.1).

Property 6.2.19: Similarly to Property 6.2.18, a colimit for the diagram Construct:

RACG-Type → RACG-Type-Instance is an initial object in the category of cocones

from the base Construct specified as RACGM (colimit object) with the communication

from RACG to RACGM. Each cocone consists of an object RACG (the vertex) and

morphisms Communication(RACG-Typej) : Construct(RACG-Typej) → RACG for every

RACG-TypejRACG-Type, such that for all the Communication : RACG-Typei→RACG-

Typej in RACG-Type, the following triangle commutes: Communication(RACG-Typej) ◦

Construct(Communication) = Communication(RACG-Typei).
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A morphism of the cocones Communication : (RACG', Communication(RACG-Typej)')

→(RACG, Communication(RACG-Typej)) is a morphism Communication: RACG' →

RACG in RACG-Type-Instance such that the triangle below commutes: Communication

◦ Communication(RACG-Typej)' = Communication(RACG-Typej) for all RACG-Typej

RACG-Type as the definition 3.5.9.

Thus, the grid-like communication among the RACG can be regarded as a cone-like

outgoing communication between those RACG and their RACGM, through converting
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their relationship of many-to-many to many-to-one by a categorical computation. Such

model facilitates the specification of the achieved behavior of those RACG by hiding the

many-to-many relationship details.

The validity of the category RACG-Type-Instance in the figure above is guaranteed

by the functor from RACG-Type-Instance to RACG-Type (see Property 6.1.1).

Property 6.2.20: The outgoing communication from the RACG to its RACGM in a

RAS can be specified by a slice category as RAS/RACGM, where each object is the

outgoing communication (f, f’) and the morphism is the arrow g from f: RACGi →

RACGM to f’: RACGj → RACGM such that f’ ◦ g = f (see Definition 3.2.4).
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Property 6.2.21: The incoming communication from the RACGM to its RACG in a

RAS can be specified by a coslice category as RACGM/RAS, where objects are incoming

communications (f, f’) and the morphism is an arrow g from f: RACGM → RACGi to f’:

RACGM → RACGj such that g ◦ f = f’ (see Definition 3.2.5).

Property 6.2.22: Transition-Type is an instance category of the Type category (see

Property 6.0.1) in which objects represent the transition types denoted by ObjType

(Transition-Type) and morphisms represent the morphism types denoted by MorType

(Transition-Type). For example, Transition-Type-Instance is a category where objects

are denoted by Obj(Transition-Type-Instance) and morphisms are denoted by Mor

(Transition-Type-Instance). There is a functor F from Transition-Type-Instance to

Transition-Type, a structure-preserving mapping of the objects of the Transition-Type-

Instance to the objects of Transition-Type: F(ObjType(Transition-Type-Instance)) =

Obj(Transition-Type), and of the morphisms of the Transition-Type-Instance to the

morphisms of Transition-Type denoted as F(MorType(Transition-Type-Instance)) =
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Mor (Transition-Type) Definition 3.1.2 (see the figure below).

Property 6.2.23: The transitions between the states in Property 6.2.4 can be specified

as a category Transition where objects are transitions: Transition1, Transition2…., and

morphisms are their preorder relationship "before" (see Definition 3.1.1). Every transition

is modeled by the triple (state, event, state) indicating the source state, trigger event, and

destination state of the corresponding transition.

Proof. All what we need is to prove: i) the existence of composition and identity

morphism, and ii) prove associativity. Let Transition1, Transition2 and Transition3 be

three transitions such that Transition1 occurs before Transition2, which occurs before

Transition3. Then Transition1 occurs before Transition3 (indirectly through Transition2),

which means the existence of a composition of morphisms from Transition1 to Transition3.

The identity morphism does exist as a natural representation of internal transitions. Let f,

g and h be morphisms so that f: Transition1→ Transition2, g: Transition2 → Transition3

and h: Transition3 → Transition4. It is clear that h ◦ (g ◦ f) = (h ◦ g) ◦ f.■
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Property 6.2.24: The time constraints on the transitions above can be specified as a

functor from Transition to Discrete-Time (see Property 6.2.3), a structure-preserving

mapping of the objects (transitions) of Transition to the objects (time unit expressed as

integers) of Discrete-Time, and of the morphisms of the Transition (before) to the

morphisms (before) of Discrete-Time (see Definition 3.1.2 and the figure below).

Property 6.2.25: Two transition sequences are considered equivalent (or isomorphic)

denoted as TransSeq1 ~ TransSeq2 iff their first transitions Trans1 and Trans2 have the

same source state; their last transitions have the same destination state; and the event of

Trans1 is exactly the event of Trans2.

For instance, TransSeq1 = <(Monitor, HasChange, Analyze)> is equivalent to the

composite transition TransSeq2 = < (Monitor, HasChange, Analyze), (Analyze, Analyze-

Exception, HandleException), (HandleException, Handled-Analyze, Analyze)>.



139

Property 6.2.26: The sequences of the transitions in Property 6.2.2 can be specified

as a category TRANSITION where objects are sequences of transitions denoted by

Sequence1, Sequence2..., and morphsims are the equivalence relationship between those

sequences (see Definition 3.1.1).

Proof. All what we need is to prove: i) the existence of composition and identity

morphism, and ii) prove associativity. Let Sequence1, Sequence2 and Sequence3 be three

sequences so that Sequence1 is equivalent to Sequence2, which is equivalent to Sequence3.

Then Sequence1 is equivalent to Sequence3 (indirectly through Sequence2), which means

the existence of a composition of morphisms from Sequence1 to Sequence3. The identity

morphism does exist as a natural representation of internal equivalence. Let f, g and h be

morphisms such that f: Sequence1 → Sequence2, g: Sequence2 → Sequence3 and h:

Sequence3 → Sequence4. It is clear that h ◦ (g ◦ f) = (h ◦ g) ◦ f.■

Property 6.2.27: Action-Type is an instance category of the Type category (see

Property 6.0.1) where objects represent the action types denoted by ObjType(Action-

Type) and morphisms represent the morphism types denoted by MorType (Action-Type).

For example, Action-Type-Instance is a category in which objects are denoted by Obj

(Action-Type-Instance) and morphisms are denoted by Mor(Action-Type-Instance).
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There is a functor F from Action-Type-Instance to Action-Type, a structure-preserving

mapping of the objects of Action-Type-Instance to objects of Action-Type: F(ObjType

(Action-Type-Instance)) = Obj(Action-Type) and of the morphisms of Action-Type-

Instance to the morphisms of Action-Type: F(MorType (Action-Type-Instance)) = Mor

(Action-Type) as Definition 3.1.2 (see the figure below).

Property 6.2.28: The actions in Property 6.2.2 is a category Action where objects

are actions: Action1, Action2…., and morphisms are their preorder relationship "before".

(see Definition 3.1.1) Every action is specified as the quadruple (sender, trigger-event,

last-event, receiver) stating the sender of trigger-event, the trigger-event triggering an

action, the last-event outputted from the action, and the receiver of trigger-event.

Proof. All what we need is to prove: i) the existence of composition and identity

morphism, and ii) prove associativity. Let Action1, Action2 and Action3 be three actions

such that Action1 occurs before Action2, which occurs before Action3. Then Action1 occurs

before Action3 (indirectly through Action2), which means the existence of a composition of

the morphisms from Action1 to Action3. The identity morphism does exist as a natural

representation of internal actions. Let f, g and h be morphisms so that f: Action1 →
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Action2, g: Action2 → Action3 and h: Action3 → Action4. It is clear that h ◦ (g ◦ f) = (h ◦ g)

◦ f.■

Property 6.2.29: The time constraints on the actions above is specified as a functor

from Action to Discrete-Time (see Property 6.2.3), a structure-preserving mapping of the

objects (actions) of Action to objects (time unit expressed as integers) of Discrete-Time,

and of the morphisms of Action (before) to the morphisms (before) of Discrete-Time

(see Definition 3.1.2 and the figure below).

Property 6.2.30: Two sequences of actions are equivalent (or isomorphic) denoted as

ActSeq1 ~ ActSeq2 iff the first actions in both sequences have the same sender and

trigger- event, the last actions in both sequences have the same receiver and last-event.

For example, ActSeq1 = <(RACS, StartRAC, HeartbeatRAC, RACS)> is equivalent to

ActSeq2 = < (RACS, StartRAC, NoHeartbeatRAC, RACS), (RACS, RestartRAC, Heartbeat
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-RAC, RACS)>.

Property 6.2.31: The sequence of actions is a category INTERACTION in which

objects are sequences consisting of actions that capture the interchanged external events

as well as communication parties, and morphisms are equivalence relationship between

those sequences (see Definition 3.1.1).

Proof. All what we need is to prove: i) the existence of composition and identity

morphism, and ii) prove associativity. Let Sequence1, Sequence2 and Sequence3 be three

sequences so that Sequence1 is equivalent to Sequence2, which is equivalent to Sequence3.

Then Sequence1 is equivalent to Sequence3 (indirectly through Sequence2), which means

the existence of a composition of morphisms from Sequence1 to Sequence3. The identity

morphism does exist as a natural representation of internal equivalence. Let f, g and h be

morphisms such that f: Sequence1 → Sequence2, g: Sequence2 → Sequence3 and h:

Sequence3 → Sequence4. It is clear that h ◦ (g ◦ f) = (h ◦ g) ◦ f.■

Property 6.2.32: The social life of any RAE in the category RAS is a subcategory of

RAS denoted as SOCIAL(RAE), where the objects are RAE and all other RAE’ |RAS|

that have the morphisms with RAE, and the morphisms are social connections between

RAE and RAE’ as RAS(RAE, RAE’) or RAS(RAE’, RAE) as the Definition 3.1.1.
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Proof. All what we need is to prove: i) the existence of composition and identity

morphism, and ii) prove associativity. Let RAE1, RAE2 and RAE3 be three RAE such that

RAE1 connects to RAE2, which connects to RAE3. Then RAE1 connects to RAE3 (indirectly

through RAE2), which means the existence of a composition of morphisms between RAE1

and RAE3. The identity morphism does exist as a natural representation of internal

connections. Let f, g and h be the morphisms such that f: RAE1 → RAE2, g: RAE2 →

RAE3 and h: RAE3 → RAE4. It is clear that h ◦ (g ◦ f) = (h ◦ g) ◦ f.■

Property 6.2.33 The social life of RAE is equivalent to the social life of RAE’ iff

SOCIAL(RAE) ~ SOCIAL(RAE’) as the Property 3.6.8.

Property 6.2.34: Evolution-Type is an instance category of the Type category (see

Property 6.0.1) in which objects represent the evolution types denoted by ObjType

(Evolution-Type) and morphisms represent the morphism types denoted by MorType

(Evolution-Type). For example, Evolution-Type-Instance is the category where objects

are denoted by Obj(Evolution-Type-Instance) as well as morphisms denoted by Mor

(Evolution-Type-Instance). There is a functor F from the Evolution-Type-Instance to

the Evolution-Type, a structure-preserving mapping of the objects of Evolution-Type-

Instance to the objects of Evolution-Type: F(ObjType(Evolution-Type-Instance)) =
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Obj(Evolution-Type), and of the morphisms of the Evolution-Type-Instance to the

morphisms of the Evolution-Type as the F(MorType(Evolution-Type-Instance)) = Mor

(Evolution-Type) as the Definition 3.1.2 and the figure below.

Property 6.2.35: The evolutions of the RAE in RASF is a category Evolution where

the objects are evolutions: Evolution1, Evolution2…., and morphisms are their preorder

relationship "before" (see Definition 3.1.1).

Proof. All what we need is to prove: i) the existence of composition and identity

morphism, and ii) prove associativity. Let Evolution1, Evolution2 and Evolution3 be three

evolutions such that Evolution1 occurs before Evolution2, which occurs before Evolution3.

Then Evolution1 occurs before Evolution3 (indirectly through Evolution2), which means

the existence of a composition of the morphisms from the Evolution1 to Evolution3. The

identity morphism does exist as a natural representation of internal evolutions. Let f, g

and h be morphisms so that f: Evolution1 → Evolution2, g: Evolution2 → Evolution3 and

h: Evolution3 → Evolution4. It is clear that h ◦ (g ◦ f) = (h ◦ g) ◦ f.■
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Property 6.2.36: The time constraints on the evolutions above can be specified as a

functor from Evolution to Discrete-Time (see Property 6.2.3), a structure-preserving

mapping of the objects (evolutions) of Evolution to the objects (time unit expressed as

integers) of Discrete-Time, and of the morphisms of the Evolution (before) to the

morphisms (before) of the Discrete-Time (see Definition 3.1.2 and the figure below).

Property 6.2.37: Two evolutions (Evolution1: RAE -> RAE'; Evolution1: RAE ->

RAE'') are equivalent or isomorphic denoted as Evolution1 ~ Evolution2 iff the starting

RAE of those two evolutions are the same (RAE = RAE) and the social lives of the ending

RAE are equivalent/isomorphic (SOCIAL(RAE) ~ SOCIAL(RAE’)) as Property 6.2.33.

Property 6.2.38: Two sequences of evolutions are equivalent (or isomorphic) denoted

as EvoSeq1 ~ EvoSeq2 iff both the first and the last evolutions in those two sequences are

equivalent (or isomorphic) respectively. For example, EvoSeq1 = <Restart, Substitute,
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Take-over> is equivalent to EvoSeq2 = < Restart, Take-over>.

Property 6.2.39: The sequence of the RAE evolutions is a category EVOLUTION

where objects are sequences of the RAE evolutions, and morphisms are the equivalence

relationship between those sequences (see Definition 3.1.1).

Proof. All what we need is to prove: i) the existence of composition and identity

morphism, and ii) prove associativity. Let Sequence1, Sequence2 and Sequence3 be three

sequences so that Sequence1 is equivalent to Sequence2, which is equivalent to Sequence3.

Then Sequence1 is equivalent to Sequence3 (indirectly through Sequence2), which means

the existence of a composition of morphisms from Sequence1 to Sequence3. The identity

morphism does exist as a natural representation of internal equivalence. Let f, g and h be

morphisms such that f: Sequence1 → Sequence2, g: Sequence2 → Sequence3 and h:

Sequence3 → Sequence4. It is clear that h ◦ (g ◦ f) = (h ◦ g) ◦ f.■

Based on the categorical constructors and behavior we presented above, Figures 38,

39 and 40 below illustrate the templates for the categorical specification of RAC, RACG

as well as RAS respectively, which can be expressed in a XML format later.

CAT-RAC <name>

Objects: <collection of objects specifying a set of RAO in RAC>

Morphisms: <collection of morphisms specifying the interactions between RAO>
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Limit Object: < a limit specifying designated behavior model of those RAO>

Colimit Object: < a colimit specifying actual behavior model of those RAO>

Product Objects: <collection of product objects specifying synchronous communication between RAO>

Coproduct Objects: <collection of coproduct objects for asynchronous communication between RAO>

Pushout Objects: <collection of pushout objects for next relays of outgoing communication from RAO>

Pullback Objects: <collection of pullback objects for previous relays of incoming communication to RAO>

Slice Category: <a category specifying outgoing communication and their relations from RAO to RAOL>

Coslice Category: <a category specifying incoming communication and their relations from RAOL to RAO>

Functors: <collection of functors specifying the evolutions of a RAC>

Natural Transformations: <collection of natural transformations for the relations of those evolutions in RAC>

Functor Category: <a category specifying all possible evolutions and their relations in RAC>

End CAT-RAC

Figure 38: Template for Categorical Specification of RAC

CAT-RACG <name>

Objects: <collection of objects specifying a set of RAC in RACG>

Morphisms: <collection of morphisms specifying the interactions between RAC>

Limit: <a limit specifying designated behavior model of those RAC>

Colimit: <a colimit specifying actual behavior model of those RAC>

Product Objects: <collection of product objects specifying synchronous communication between RAC>

Coproduct Objects: <collection of coproduct objects for asynchronous communication between RAC>

Pushout Objects: <collection of pushout objects specifying next communication relays between RAC>

Pullback Objects: <collection of pullback objects specifying previous communication relays between RAC>

Slice Category: <a category specifying outgoing communication and their relations between RAC>

Coslice Category: <a category specifying incoming communication and their relations between RAC>

Subcategories: <collection of subcategories specifying a set of RAO in RAC>

Product Categories: <collection of product categories specifying interactions between RAC>

Functors: <collection of functors specifying the evolutions of a RACG>

Natural Transformations: <collection of natural transformations specifying the relations of those evolutions>

Functor Category: <a category specifying all possible evolutions and their relations in the RACG>

End CAT-RACG

Figure 39: Template for Categorical Specification of RACG

CAT-RAS <name>

Objects: <collection of limit or colimit objects specifying a set of RACS in RAS>

Morphisms: <collection of morphisms specifying the interactions between RACS>

Limit Object: <limit object of RACS specifying RACGM based on interactions from RACGM to RACS>

Colimit Object: <colimit object of RACS specifying RACGM based on interactions from RACS to RACGM>

Product Objects: <collection of product objects specifying synchronous communication between RACS>

Coproduct Objects: <collection of coproduct objects for asynchronous communication between RACS>

Pushout Objects: <collection of pushout objects for next relays of outgoing communication from RACS>
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Pullback Objects: <collection of pullback objects for previous relays of incoming communication to RACS>

Slice Category: <a category specifying outgoing communication and their relations from RACS to RACGM>

Coslice Category: <a category for incoming communication and their relations from RACGM to RACS>

Subcategories: <collection of subcategories specifying a set of RACG in RAS>

Product Categories: <collection of product categories specifying interactions between RACG in RAS>

Functors: <collection of functors specifying the evolutions of a RAS>

Natural Transformations: <collection of natural transformations for the relations of evolutions in RAS>

Functor Category: <a category specifying all possible evolutions and their relations in RAS>

End CAT-RAS

Figure 40: Template for Categorical Specification of RAS

6.3 Representation of Categorical Models in RASF

This section states the research activity 18) in Figure 3. After having the categorical

models in RASF, we need to express them using XML in terms of feeding them to our

graphical illustration tool.

6.3.1 Representation for Categorical Model of Constructors

The figure below depicts an example of the representation for the categorical model of

constructors (defined in Section 6.1) in a XML format, and more XML representation can

be found in Appendix A.

<CATEGORY name = “RAE-Type”>
<OBJECT>

<OBJECT name = “RAE-Typei”/>
<OBJECT name = “RAE-Typej”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Communication-Typen”/>
<FROM-OBJECT name = “RAE-Typei”/>
<TO-OBJECT name = “RAE-Typej”/>

</MORPHISM>
</MORPHISM>

</CATEGORY>

Figure 41: XML Specification of Index Category RAE-Type
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6.3.2 Representation for Categorical Model of Behavior

The following figure depicts an example of the representation for the categorical model

of behavior (defined in Section 6.2) in a XML format, and more XML representation can

be found in Appendix B.

<CATEGORY name = “Function-Pair-Type”>
<OBJECT>

<OBJECT name = “Function-Pair-Typei”/>
<OBJECT name = “Function-pair-Typej”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Interaction-Typen”/>
<FROM-OBJECT name = “Function-Pair-Typei”/>
<TO-OBJECT name = “Function-Pair-Typej”/>

<MORPHISM>
</MORPHISM>

</CATEGORY>

Figure 42: XML Specification of Index Category Function-Pair-Type

6.4 Graphical Illustration of Categorical Models in RASF

This section states the collaboration and supervision to the master students involved in

the RASF project for the research work 11) in Figure 2.

6.4.1 Categorical Modeling Language (CML)

CML is a powerful modeling language with a formal basis from the category theory and

graphical modeling notations. The convention of the graphical model is an adaptation of

the category theory convention where a circle represents an object in a category and a

directed arrow represents a morphism. The CML specification is constructed using the

CML formal grammar. The grammar also serves as a basis for generating the XML file



150

for the CML models constructed using a categorical modeling tool [81].

CML uses Extended Backus-Naur Form (EBNF) for the grammar notation. The

grammar can be used to determine the exact syntax for any category construct. An EBNF

based grammar consists of “non-terminals” and “terminals”. Non-terminals are symbols

within a BNF definition, also defined in the grammar. Terminals are endpoints in BNF

definition, consisting of category theory keywords; all non-terminals appear in brackets

< > and all terminals appear without brackets. The start symbol in the CML grammar

corresponds to a list of non-terminals, each of which translates to a model in the CML as

the following. More details about the grammar for the typed-category, functor, natural

transformation, diagram, cone, cocone, limit, colimit and product in [81].

 <Typed_Category> consists of a keyword TYPED-CATEGORY followed by the

non-terminals for the name and Id of the category. The keyword Types of Objects

serves as a heading for a list of object types. The keyword Objects with a notation

for a set of objects in the category is followed by a list of objects in that category.

 <Object_Type> consists of a list of the type names and Ids for each type and a list

of object type instances with name and Id for each instance.

 <Object> consists of the object type name and Id followed by the instance objects

for that type.

 <Morphism_Type> consists of a name of the morphism type followed by a list of

morphisms for that type.

 <Morphism> is <Mor_Instance> that is a list of morphism instances for each
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morphism type followed by <Mor_Identity>.

 <Mor_Identity> is the list of Identity morphisms for each object instance in

<Object>.

 <Axiom> consists of all properties that must hold true to prove the correctness of

the models according to the category theory. It primarily consists of <Property>

that is <Identity> and <Associativity>.

 <Id> is a symbol for construction of the names and Ids in CML. It consists of one

or more characters.

 The non-terminal <Character> consists of all alphabets and digits from 0 to 9.

 <Empty> facilitates the termination of a name or Id with an empty space.

6.4.2 Graphical Illustration Tool

The name of our graphical illustration tool is CATCanvas, which is inspired from the

visual models of category theory constructed on a drawing canvas. So far there are two

categorical constructs have been implemented in CATCanvas: Category and Functor. For

each construct there is a separate view and drawing canvases. A categorical model can be

either drawn manually or imported from a XML file to the canvas. Similarly the model

may also be exported to a XML file or saved as an image file. CATCanvas is a

Web-based application running in a Flash player, and its UI is a Flex-based Web UI built

by the MXML controls [81]. There is a “Rules Engine” in CATCanvas that is responsible

for the construction of categorically correct models. The engine plays an active role when

performing functor mapping. For the constructed diagrams (models), the XML generator
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can build the XML specifications and send them to the Web UI in terms of exporting

them to files. The XML parser can extract the XML files and send the parsed data to the

UI in terms of rendering the graphical models. Figure 44 depicts an example of using

CATCanvas and exporting to a XML file, which is illustrated in Figure 43. More details

about our graphical tool can be found in [81].

Figure 43: A Sample of the XML File Exported from the Graphical Model [81]
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Figure 44: An Example of Using CATCanvas and Exporting to a XML File [81]

6.5 Categorical Specification of MAS Model in RASF

This section states the collaboration and supervision to the master students involved in

the RASF project for the research work 13) in Figure 2. In Section 5.3, we stated a

mapping from the RAS model to MAS model in the RASF, and we will introduce the

categorical specification of the MAS model in this section, such as plans, goals, beliefs

and their relationships.
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6.5.1 Plans

Plans represent the agent’s means to act on the requests initiated by other agents or from

its environment, and one single plan is abstracted as a sequence of actions. Thus, plans of

an agent are collections of sequences of actions, which are performed in a discrete time.

Definition 6.5.1: Action is a discrete category (see Definition 3.1.5) whose objects

are actions in the intelligent control loop, denoted by Act1, Act2…, and the only

morphisms are identity morphisms of those objects [62].

Definition 6.5.2: Plan is a category that represents one plan whose objects are actions

denoted by Act1, Act2… and morphisms are before that model the partial order between

the actions. A sequence of actions can be understood as a path in category theory (see

Property 6.0.3), and only paths of length equal or less than one are considered as

morphisms. Inside Plan, we define a special object denoted as ActNull (null action), and it

doesn’t have any morphism from or to other actions; it is used to catch exceptions [62].

Definition 6.5.3: PLAN is a category whose objects are plans denoted by Plan1,

Plan2… and morphisms are before that model the partial order between the plans. This

partial order can be understood as a path in category theory [see Property 6.0.3], and only

paths of length equal or less than one are considered as validated morphisms. Inside

PLAN, we define a special object, called PlanNull (null object), and it doesn’t have any

morphism from or to other plans; it is used to catch exceptions [62].

Definition 6.5.4: sequence _action is a functor from Action to Plan. It provides a

rule mapping all the actions in Action to actions in Plan, and all the identity morphisms
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in Action to identity morphisms in Plan [62].

Definition 6.5.5: refined _by _plan is a functor from Plan to PLAN. It means that the

actions in Plan are used to complete or build plans in PLAN; it also provides a rule that

maps all the actions in Plan to plans in PLAN, and all the morphisms in Plan to identity

morphisms in PLAN [62].

Definition 6.5.6: timing _action is a functor from the Plan to Discrete-Time (see

Property 6.2.3), which maps actions in Plan to time units in Discrete-Time, and maps

before in Plan to before in Discrete-Time [62].

Definition 6.5.7: timing _plan is a functor from PLAN to Discrete-Time (see

Property 6.2.3), which maps plans in PLAN to time units in Discrete-Time, and maps

before in Plan to before in Discrete-Time [62].

6.5.2 Goals

Goals make up the agent’s motivational stance and are the driving forces for its actions.

Therefore, the representation and handing of goals is one of the main features of agents.

In fact, each agent has a set of goals which are dispatched by plans.

Definition 6.5.8: GOAL is a category whose objects are goals and morphisms are

depends. The definition of depends can be the domain of this morphism having a higher

or the same priority level than its co-domain. Inside GOAL, there is a special goal

denoted by GoalNull that stands for an empty object with no morphism from or to other

goals; it is used to catch exceptions [62].

Definition 6.5.9: Dependency is a category whose objects are integers such as 1, 0,
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-1 or unsigned, and morphisms are more-than denoted as “≥”. The object unsigned

doesn’t have any relations (morphisms) with other objects. It is used to set up the order of

importance or urgency of different goals [62].

Definition 6.5.10: assigned_dependency is a functor from GOAL to Dependency. It

models the fact that goals in GOAL can be assigned to related order in Dependency;

depends in GOAL can be mapped to more-than in Dependency [62].

6.5.3 Beliefs

Beliefs represent agent’s knowledge or information about environment and itself. Beliefs

are built from different information called facts, which are organized into different sets

denoted as fact sets.

Definition 6.5.11: FactSet is a discrete category where objects are facts and the only

morphisms are identity morphisms. The facts are information or knowledge about the

agent’s environments and system. Based on the different usage, facts are classified into

different categories FactSet. Two special categories of FactSet need to be introduced:

FactSetBase and FactSetNull. FactSetBase includes all the facts every other FactSet has,

and FactSetNull contains no facts at all or it’s an empty set. Inside FactSet (includes

FactSetBase, except FactSetNull), we define a special object denoted as FactNull (a null fact)

which doesn’t have morphisms. It is used to catch exceptions [62].

Definition 6.5.12: BELIEF is a category of Sets (see Definition 3.1.6), whose objects

are categories FactSets (one FactSetBase as well as one FactSetNull are included as

default), and the morphisms are subset _of. Any FactSet is a subset of FactSetBase, and
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more formally, every fact within FactSet can be found in FactSetBase. Similarly,

FactSetNull has subset _of relations to every FactSet [62].

6.5.4 Agents

Goals represent the concrete motivations that influence an agent’s behavior. The concrete

actions an agent may carry out to reach its goals are described in plans. A plan is a

procedural recipe describing the actions to take in order to achieve a goal. In BDI systems,

each plan must dispatch a goal, but the goal can be a null object. Basically, in an agent,

the plans have to dispatch relevant goals.

Definition 6.5.13: plan _goal is a functor from PLAN to GOAL. It captures the fact

that every Plan from PLAN dispatches a goal from GOAL. Every Plan in PLAN can be

mapped to one Goal in GOAL, and morphisms before in PLAN can be mapped to

morphisms depends in GOAL. The functor grantees that: one plan can only dispatch one

corresponding goal, but different plans can dispatch a same goal [62].

Definition 6.5.14: plan _belief is a functor from PLAN to BELIEF. It means that

agent plans have access to read or write facts from agent’s beliefs. Every plan in PLAN

can be mapped to one FactSet (either FactSetBase or FactSetNull) in BELIEF, and all the

morphisms in PLAN are mapped to the identity morphism of FactSetNull in BELIEF. The

functor formalizes the communication from plans to beliefs. [62].

Definition 6.5.15: goal _belief is a functor from GOAL to BELIEF. It means every

goal has an access to read facts or knowledge from agent beliefs. Every Goal in GOAL is

mapped to one FactSet in BELIEF, and morphisms depends in GOAL are mapped to the
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identity morphism of FactSetNull in BELIEF. The functor formalizes the communication

from goals to beliefs. By this functor, goals are able to read data from beliefs and justify

if they can be accomplished [62].

Definition 6.5.16: An agent can be represented by categories: Action, Plan, PLAN,

GOAL, BELIEF and FactSet with functors: plan _goal, plan _belief, goal _belief,

refined _by _plan and sequence _action [62].

Definition 6.5.17: MAS is a category whose objects are agents and morphisms are

communication which represents that one agent has activities of conveying information to

another agent; communication can be differentiated by types [62].

6.5.5 Repository Agent

Definition 6.5.18: Repository-Type is a type category (see Property 6.0.1) whose objects

represent the types of agents, and morphisms represent the types of connections between

those repository types. Repository-Type-Instance is a category whose objects represent

repositories, and morphisms represent connections between those repositories.

Definition 6.5.19: Repository-Access that maps agents in MAS to repositories in

Repository-Type-Instance, and maps every communication in MAS to each connection

in Repository-Type-Instance.

6.6 Representation of Categorical MAS Models in RASF

This section states the research activity 19) in Figure 3. After having the categorical MAS

models in RASF, we need to express them using XML in terms of feeding them to our

graphical illustration tool as the following example, and more XML representation can be
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found in Appendix C.

<CATEGORY name = “Plan-Type”>
<OBJECT>

<OBJECT name = “Plan-Typei”/>
<OBJECT name = “Plan-Typej”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Partial-Order”/>
<FROM-OBJECT name = “Plan-Typei”/>
<TO-OBJECT name = “Plan-Typej”/>

</MORPHISM>
</MORPHISM>

</CATEGORY>

Figure 45: XML Specification of Type Category Plan-Type

6.7 Summary

In this chapter, we described the categorical RASF model, transformation from the

categorical RAS model to its XML specification as well as transformation from

categorical MAS model to its XML specification.

Based on the architecture model in RASF we presented in Chapter 5, the internal

structure of a RAS is both hierarchical (composition of its RAE) and recursive (tiered

interconnectivity of its RAE). Therefore, the behavior of a RAS can be characterized by

its RAE and their interactions. The categorical models for the structure and behavior in

RASF were generated in Section 6.1 & 6.2 respectively.

After having the categorical models in RASF, we expressed them using XML in

Section 6.3 for feeding them to our graphical illustration tool CATCanvas, which was

introduced in Section 6.4.
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Finally, the categorical specifications of the MAS model (plans, goals, beliefs and

their relations) together with their XML representations were introduced in Section 6.5 &

6.6. We will introduce the categorical specifications of the self-healing property for the

RASF in next chapter.
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Chapter 7: Categorical Specifications of Self-Healing in RASF

This chapter states the research activities 10), 11) and 20) in Figure 3 that are prototype

design of self-healing, prototype design of categorical specification for self-healing and

transformation from the categorical self-healing property to its XML specification. I had

two publications [177 & 87] for this chapter. After having described the categorical

specification of the RAS model, MAS model with their representation and graphical

illustration, a categorical specification of self-healing is explained in this chapter.

In order to simplify our description, we use the Reactive Autonomic Elements (RAE)

to represent RAO, RAOL, RAC, RACS, RACG and RACGM. The interactive behavior

between RAE in the RAS model can be specified as external event sequences.

If we consider each RAE as a black box with corresponding internal reactive or

autonomic behavior, only the external events crossing the RAE boundary are observable,

so the interactions between RAE to achieve a usage goal are performed by interchanging

their external events that are of two types: 1) input (from destination RAE to source RAE);

2) output (from source RAE to destination RAE). Moreover, the timing requirements can

be modeled as global clock events: a Tick abstracting one time unit and a NTR abstracting

No Timing Requirement. Incorporating the Ticks into interaction patterns allows for the

performance analysis of the minimum and maximum delay time for each RAE usage

during design validation and testing phase.

We extract the event sequencing and the timing constraints in the form of rules that

relate to: 1) Input Events (IE) to IE; 2) IE to Output Events (OE); 3) OE to OE; 4) OE to



162

IE; 5) Trigger Events (TE) to Last Events (LE), where LE is an event finalizing the usage

of a RAE started by TE. The above knowledge is sufficient to produce generic interaction

patterns between RAE. The first event in such an interaction pattern is always a TE from

source RAE, and the order between events in one pattern must satisfy sequencing rules for

the partial order between RAE. We call such a pattern a legal sequence. More details

about the algorithm for generating exhaustive set of legal sequences from a given set of

requirements can be found in [125].

Figure 47, 48 and 49 show the specification of a sample RAE depicted in Figure 46

by which we can illustrate the self-healing property in RASF.

Figure 46: Example of RAS Application Model
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Figure 47: Specification of RAC1 Structure

Figure 48: Specification of RACG1 Structure

Figure 49: Specification of RAS1 Structure

7.1 Scenario1: Crashed RAO

After RAO1 is started by RAOL1, it begins to send its heartbeat messages to RAOL1

every t ticks [177], while RAOL1 is in the first state of its intelligent control loop,
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monitoring the status of RAO1. If RAOL1 receives the heartbeat messages from RAO1,

NoChange event keeps it in Monitor state; otherwise, RAO1-Crashed event is triggered

and then RAOL1 transits to Analyze state, while a time constraint variable (TCvar1) is

initialized to work as a local clock in terms of time constraints on each transition of the

intelligent control loop. The value of TCvar1 is t0, t1, t2, t3... where t0 < t1 < t2 < t3.

After RAOL1 enters Analyze state, it sends a Restart message to RAO1 in t0 ticks. If

RAO1 is recoverable, NoAction event occurs and RACS1 goes back to Monitor state,

while the TCvar1 is reset; otherwise, RAOL1 transits to Plan state triggered by HasAction

event in t1 ticks (see Figure 52).

Figure 50: Substitution Work Flow in RAC1

Figure 51: Take-Over Work Flow in RAC1
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Figure 52: Intelligent Control Loop in RAOL1 for Self-Healing

When RAOL1 is in Plan state, it sends the RequestRAO1 message with the type

information of RAO1 to RACS1, and the latter tries to replace RAO1 by an available RAO

which is isomorphic to RAO1 in RAS1, such as RAO3, since isomorphic objects behave

in the same way. If RACS1 finds RAO3 successfully, RAOL1 chooses the plan Substitute

and transits to Execute state triggered by Substitute event in t2 ticks; otherwise, it selects

the plan Take-over and enters Execute state triggered by Take-over event in t2 ticks. In

this plan, RAO2 takes the responsibilities of RAO1 and works as the product object of

original RAO1 and RAO2, since they behave as a synchronous product machine.

When RAOL1 is in Execute state and the plan Substitute is applicable, RAOL1 sends

a register message to RAO3 and then initializes it to the status of RAO1 according to the

checkpoint made before. When the plan take-over is applicable, RAOL1 sends a take-over
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message to RAO2 and update it to the status of the synchronous product machine of

RAO1 and RAO2 based on the checkpoint. After the plan execution, RAOL1 validates the

behavior of RAC1 and its evolution (see Property 6.1.3) RAC1’ based on categorical

specifications. If RAC1’ has equivalent behavior with RAC1, ActionDone event occurs

and RAOL1 transits to Monitor state in t3 ticks; otherwise, ActionFailed event keeps it in

Execute state for the user intervention from User Console by RACS1 and RACGM1.

7.2 Categorical Illustration of Scenario1

The actions in the substitution work flow and take-over work flow of RAC1 can be

specified as the categories where objects are those actions (Restart, RequestRAO1,

Register, etc.), and morphisms are their preorder relationship before. Each object (action)

in those categories is a quadruple (see Property 6.2.28). For example, RequestRAO =

(RAOL1, NoHeartbeat-AfterRestart, SearchRAO, RACS1). Moreover, the sequences of

those actions can be specified as the categories in which objects are those sequences

(<Restart, NoHeartbeat, RequestRAO, Request>, <RequestRAO, Request, Confirmed,

Register, Heartbeat>), and morphisms are equivalence relationship between those

sequences (see Property 6.2.31).

The transitions in the intelligent control loop of RAOL1 for self-healing can be

specified as a category in which objects are those transitions (NoChange, RAO1-Crashed,

RestartRAO1, etc.), and morphisms are their preorder relations before. Each object

(transition) in that category is a triple (see Property 6.2.23). For example, RAO1-Crashed

= (Monitor, NoHeartbeat, Analyze). Moreover, the sequences of those transitions can be
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specified as a category in which objects are those sequences (<No- Change,

RAO1-Crashed, RestartRAO1, NoAction>, <RestartRAO1, HasAction, Take- over,

ActionDone>), and morphisms are equivalence relation between those sequences (see

Property 6.2.26).

Figure 53: Categorical Constructs in RAC1 Representation

Figure 53 depicts the categorical representation of RAC1 before RAO1 is crashed.

The category RAC1 consists of three objects RAO1, RAO2 and RAOL1. The bidirectional

communications among those objects are six morphisms to specify working collaboration

between RAO1 and RAO2, as well as the leadership from RAOL1 to RAO1 and RAO2

(see Property 6.1.2). The SPM (Synchronous Product Machines) for the synchronous

communication between two objects in RAC1 can be represented by SPM1, SPM2 and

SPM3 (see Property 6.2.6). Slice category models Report actions (Report1 and Report2)
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with their relations (Work1) from RAO1 and RAO2 to RAOL1 (see Property 6.2.12);

coslice category may interpret Order actions (Order1 and Order2) with their relations

(Work2) from RAOL1 to RAO1 and RAO2 (see Property 6.2.13).

Let RAC1 be a subcategory (consisting of objects RAOL1, RAO1, RAO2 and the

morphisms among them) of RAC1-0 (a category consisting of all potential RAE for the

self-healing in RAC1). If RAC1 is recovered by restarting crashed RAO1, it evolves to

RAC1-1 (consisting of objects RAOL1, RAO1-1, RAO2 and the morphisms among them

in RAC1-0), which has the same categorical structure as RAC1 except for the different

initial status of RAO1. This evolution is represented by the Restart functor (a

structure-preserving mapping) from RAC1-1 to RAC1-0. If RAC1 is recovered by

substituting RAO1 by its isomorphic object RAO3 (see Definition 3.1.3), it will evolve to

RAC1-2 (consisting of objects RAOL1, RAO3, RAO2 along with the morphisms among

them in RAC1-0), which has the same categorical structure as RAC1 but replacing RAO1

with RAO3. The above is specified by the Substitute functor, a structure-preserving

mapping (see Figure 54).

However, if RAC1 is recovered by asking RAO2 to take over the responsibilities of

RAO1, it will evolve to RAC1-3 (consisting of objects RAOL1-1, SPM1 along with the

morphisms among them in RAC1-0), which has different categorical structure, but both

of them have the equivalent social lives (see Property 6.2.33). The mapping among those

evolutions Restart, Substitute and Take-over of the RAC1 can be interpreted as natural

transformations (see Property 6.1.4). The functor category having those functors as
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objects and their natural transformations as morphisms illustrate all possible evolutions

with their relations. In addition, the natural transformation3 is a composition of natural

transformation1 and natural transformation2, which may be interpreted as the following:

the result of the evolution Restart -> Substitute -> Take-over is equivalent to the evolution

Restart -> Take-over. Figure 56, 57 and 58 depict those natural transformations and their

composition respectively.

Figure 54: Evolution for Self-Healing in RAC1

Figure 55: Natural Transformation for Self-Healing in RAC1
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Figure 56: Natural Transformation from Restart to Substitute in RAC1

Figure 57: Natural Transformation from Substitute to Take-over in RAC1

Figure 58: Natural Transformation from Restart to Take-over in RAC1

When both RAO1 and RAO2 are crashed at the same time, RAOL1 tries to restart

them first. If neither of them can be restarted, RAOL1 will send a message to RACS1 for

requesting the isomorphic objects (RAO3 and RAO4) of RAO1 and RAO2; otherwise, the

remaining process is the same as the illustration above. When RACS1 cannot find RAO3

and RAO4, RAOL1 will take over the responsibilities of RAO1 and RAO2, working as a

product object of them, such as SPM1; otherwise, the description above may indicate the

remaining process. If a RAC consists of more than two RAOL, the similar categorical

representation can be generated as we explained previously.

In this scenario, we proposed three solutions (restart, substitute and take-over) for
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the fault-tolerance in case of the crashed RAO, which cover all possible situations in

terms of self-healing from the practical usage.

7.3 Scenario2: Crashed RAOL

After RAOL1 is started by RACS1, it begins to send its heartbeat messages to RACS1

every t ticks, while RACS1 is in the first state of its intelligent control loop, monitoring

the status of RAOL1. If RACS1 receives the heartbeat messages from RAOL1, NoChange

event keeps it in Monitor state; otherwise, RAOL1-Crashed event is triggered and then

RACS1 transits to Analyze state, while a time constraint variable (TCvar2) is initialized to

work as a local clock in terms of time constraints on each transition of the intelligent

control loop. The value of TCvar1 is t0, t1, t2, t3... where t0 < t1 < t2 < t3. After RACS1

enters Analyze state, it sends a Restart message to RAOL1 in t0 ticks. If RAOL1 is

recoverable, NoAction event occurs and RACS1 goes back to Monitor state, while the

TCvar2 is reset; otherwise, RACS1 transits to Plan state triggered by HasAction event in

t4 ticks (see Figure 61).

Figure 59: Substitution Work Flow in RACG1
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Figure 60: Take-Over Work Flow in RACG1

Figure 61: Intelligent Control Loop in RACS1 for Self-Healing

When RACS1 is in Plan state, it sends the RequestRAOL1 message with the type

information of RAOL1 to RACGM1, and the latter tries to replace RAOL1 by an available

RAOL which is isomorphic to RAOL1 in RAS1, such as RAOL3, since isomorphic objects

behave in the same way. If RACGM1 finds RAOL3 successfully, RACS1 chooses the plan
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Substitute and transits to Execute state triggered by Substitute event in t5 ticks; otherwise,

it selects the plan Take-over and enters Execute state triggered by Take-over event in t5

ticks. In this plan, RAOL2 takes the responsibilities of RAOL1 and works as the product

object of the original RAOL1 and RAOL2, since they behave as a synchronous product

machine.

When RACS1 is in Execute state and the plan Substitute is applicable, RACS1 sends a

register message to RAOL3 and then initializes it to the status of RAOL1 according to the

checkpoint made before. When the plan take-over is applicable, RACS1 sends a take-over

message to RAOL2 and update it to the status of the synchronous product machine of

RAOL1 and RAOL2 based on the checkpoint. After the plan execution, RACS1 validates

the behavior of RACG1 and its evolution (see Property 6.1.3) RACG1’ according to

their categorical specifications. If RACG1’ has equivalent behavior with RACG1,

ActionDone event occurs and RACS1 transits to Monitor state in t6 ticks; otherwise,

ActionFailed event keeps it in Execute state for the user intervention from User Console

by RACGM1.

7.4 Categorical Illustration of Scenario2

The actions in the substitution work flow and take-over work flow of RACG1 can be

specified as the categories where objects are those actions (Restart, RequestRAOL1,

Register, etc.), and morphisms are their preorder relation before. Each object (action) in

those categories is a quadruple (see Property 6.2.28). For example, Register = (RACS1,

RAOL3IsAvailable, RAOL3IsRegistered, RAOL3). Furthermore, the sequences of those
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actions can be specified as the categories where objects are those sequences (<Register,

Heartbeat, Connect>, <Connect, Heartbeat, Connect, Heartbeat>), and morphisms are

the equivalence relationship between those sequences (see Property 6.2.31).

The transitions in the intelligent control loop of RACS1 for self-healing can be

specified as a category in which objects are those transitions (HasAction, Substitute,

ActionDone, etc.), and morphisms are their preorder relations before. Each object

(transition) in a category is a triple (see Property 6.2.23). For example, HasAction =

(Analyze, NoHeartBeatAfterRestart, Plan). Moreover, the sequences of the transitions can

be specified as a category where objects are those sequences (<HasAction, Substitute,

ActionFailed>, <HasAction, NoPlan, Take-over, ActionDone>), and morphisms are the

equivalence relation between those sequences (see Property 6.2.26).

Figure 62 depicts a categorical representation of RACG1 before RAOL1 is crashed.

The category RACG1 consists of the objects RAOL1, RAOL2, RAOL3 and RACS1. The

bidirectional communications among those objects are morphisms to specify the working

collaboration among RAOL1, RAOL2, RAOL3, as well as the leadership from RACS1 to

RAOL1, RAOL2 and RAOL3 (see Property 6.1.2). The SPM for the synchronous

communication between two objects in RACG1 can be represented by SPM5, SPM6 and

SPM7 (see Property 6.2.6). Slice category models Report actions (Report1, Report2 and

Report3) with their relations (Work1, Work3 and Work5) from RAOL1, RAOL2 and

RAOL3 to RACS1 (see Property 6.2.12); coslice category may interpret Order actions

(Order1, Order2 and Order3) with their relations (Work2, Work4 and Work6) from
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RACS1 to RAOL1, RAOL2 and RAOL3 (see Property 6.2.13).

Figure 62: Categorical Constructs in RACG1 Representation

Let RACG1 be a subcategory (consisting of objects RACS1, RAOL1, RAOL2 and

the morphisms among them) of RACG1-0 (a category consisting of all potential RAE for

the self-healing in RACG1). If RACG1 is recovered by restarting crashed RAOL1, it

evolves to RACG1-1 (consisting of objects RACS1, RAOL1-1, RAOL2 along with the

morphisms among them in RACG1-0), which has the same categorical structure as the

RACG1 except for different initial status of RAOL1. This evolution is represented by the

Restart functor (a structure-preserving mapping) from the RACG1-1 to RACG1-0. If

RACG1 is recovered by substituting RAOL1 by its isomorphic object RAOL3 (see
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Definition 3.1.3), it will evolve to RACG1-2 (consisting of objects RACS1, RAOL3,

RAOL2 and the morphisms among them in RAC1-0) with the same categorical structure

as RACG1 but replacing RAOL1 with RAOL3. The above is specified by the Substitute

functor, a structure-preserving mapping (see Figure 63).

Figure 63: Evolution for Self-Healing in RACG1

Figure 64: Natural Transformation for Self-Healing in RACG1

However, if RACG1 is recovered by asking RAOL2 to take over the responsibilities

of RAOL1, it will evolve to RACG1-3 (consisting of objects RACS1-1, SPM2 and the
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morphisms between them in RACG1-0), which has different categorical structure, but

both of them have the equivalent social lives (see Property 6.2.33). The mapping among

those evolutions Restart, Substitute and Take-over of the RACG1 can be interpreted as

natural transformations (see Property 6.1.4). The functor category having those functors

as objects and their natural transformations as morphisms illustrate all possible evolutions

with their relations. In addition, the natural transformation3 is a composition of natural

transformation1 and natural transformation2, which may be interpreted as the following:

the result of the evolution Restart -> Substitute -> Take-over is equivalent to the evolution

Restart -> Take-over. Figure 65, 66 and 67 depict those natural transformations and their

composition respectively.

Figure 65: Natural Transformation from Restart to Substitute in RACG1

Figure 66: Natural Transformation from Substitute to Take-over in RACG1
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Figure 67: Natural Transformation from Restart to Take-over in RACG1

When both RAOL1 and RAOL2 are crashed at the same time, RACS1 tries to restart

them first. If neither of them can be restarted, RACS1 will send a message to RACGM1

for requesting the isomorphic objects (RAOL3 and RAOL4) of RAOL1 and RAOL2;

otherwise, the remaining process is the same as the illustration above. When RACGM1

cannot find RAOL3 and RAOL4, RACS1 will take over the responsibilities of RAOL1 and

RAOL2, working as a product object of them, such as SPM1; otherwise, the description

above may indicate the remaining process. If a RACG consists of more than two RACS,

the similar categorical representation can be generated as we explained previously.

In this scenario, we proposed three solutions (restart, substitute and take-over) for

the fault-tolerance in case of the crashed RAOL, which cover all possible situations in

terms of self-healing from the practical usage.

7.5 Scenario3: Crashed RACS

After RACS1 is started by RACGM1, it begins to send its heartbeat messages to RACGM1

every t ticks, while RACGM1 is in the first state of its intelligent control loop, monitoring

the status of RACS1. If RACGM1 receives the heartbeat messages from RACS1,

NoChange event keeps it in Monitor state; otherwise, RACS1-Crashed event is triggered

and then RACGM1 transits to Analyze state, while a time constraint variable (TCvar3) is
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initialized to work as a local clock in terms of time constraints on each transition of the

intelligent control loop. The value of TCvar3 is t0, t1, t2, t3... where t0 < t1 < t2 < t3.

After RACGM1 enters Analyze state, it sends a Restart message to RACS1 in t0 ticks. If

RACS1 is recoverable, NoAction event occurs and RACGM1 goes back to Monitor state,

while the TCvar3 is reset; otherwise, RACGM1 transits to the Plan state triggered by

HasAction event in t7 ticks (see Figure 70).

Figure 68: Substitution Work Flow in RAS1

Figure 69: Take-Over Work Flow in RAS1
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Figure 70: Intelligent Control Loop in RACGM1 for Self-Healing

When RACGM1 is in Plan state, it sends the RequestRACS1 message with the type

information of RACS1 to User Console, and the latter tries to replace RACS1 by an

available RACS that is isomorphic to RACS1 in RAS, such as RACS3, since isomorphic

objects behave in the same way. If User Console finds RACS3 successfully, RACGM1

chooses the plan Substitute and transits to Execute state triggered by Substitute event in t8

ticks; otherwise, it selects the plan Take-over and enters Execute state triggered by

Take-over event in t8 ticks. In this plan, RACS2 takes the responsibilities of RACS1 and

works as the product object of the original RACS1 and RACS2, since they behave as a

synchronous product machine.

When RACGM1 is in Execute state and the plan Substitute is applicable, RACGM1

sends a register message to RACS3 and initializes it to the status of RACS1 according to
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the checkpoint made before. When the plan take-over is applicable, RACGM1 sends a

take-over message to RACS2 and update it to the status of the synchronous product

machine of RACS1 as well as RACS2 based on the checkpoint. After the plan execution,

RACGM1 validates the behavior of RAS1 and its evolution (see Property 6.1.3) RAS1’

according to their categorical specifications. If RAS1’ has the equivalent behavior with

RAS1, ActionDone event occurs and RACGM1 transits to Monitor state in t9 ticks;

otherwise, ActionFailed event keeps it in Execute state for the user intervention from

User Console.

7.6 Categorical Illustration of Scenario3

The actions in the substitution work flow and take-over work flow of RAS1 can be

specified as the categories where objects are those actions (Restart, RequestRACS,

NotFound, etc.), and morphisms are their preorder relation before. Each object (action) in

those categories is a quadruple (see Property 6.2.28). For example, Take-over =

(RACGM1, NotFoundRACS, RequestSubstitution, RACS2). Furthermore, the sequences of

those actions can be specified as the categories where objects are those sequences

(<RequestRACS, NotFound, Take-over>, <Take-over, Confirmed, Connect, Heartbeat>),

and morphisms are equivalence relationship between those sequences (see Property

6.2.31).

The transitions in the intelligent control loop of RAS1 for self-healing can be

specified as a category in which objects are those transitions (HasAction, Substitute,

ActionDone, etc.), and morphisms are their preorder relations before. Each object
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(transition) in a category is a triple (see Property 6.2.23). For example, HasAction =

(Analyze, NoHeartBeatAfterRestart, Plan). Moreover, the sequences of the transitions can

be specified as a category where objects are those sequences (<HasAction, Substitute,

ActionFailed>, <HasAction, NoPlan, Take-over, ActionDone>), and morphisms are the

equivalence relation between those sequences (see Property 6.2.26).

Figure 71: Categorical Illustration of RAS1

Figure 71 depicts the categorical representation of RAS1 before RACS1 is crashed.

The category RAS1 consists of objects RACS1, RACS2, RACS3 as well as RACGM1. The

bidirectional communications among those objects are morphisms to specify the working

collaboration among RACS1, RACS2, RACS3, and the leadership from RACGM1 to
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RACS1, RACS2 as well as RACS3 (see Property 6.1.2). The SPM for the synchronous

communication between two objects in RAS1 can be represented by SPM1, SPM2 and

SPM3 (see Property 6.2.6). Slice category models Report actions (Report1, Report2 and

Report3) with their relations (Work1, Work3 and Work5) from RACS1, RACS2 and

RACS3 to RACGM1 (see Property 6.2.12); coslice category may interpret Order actions

(Order1, Order2 and Order3) with their relations (Work2, Work4 and Work6) from

RACGM1 to RACS1, RACS2 and RACS3 (see Property 6.2.13).

Let RAS1 be a subcategory (consisting of objects RACGM1, RACS1, RACS2 and

the morphisms among them) of RAS1-0 (a category consisting of all potential RAE for

the self-healing in RAS1). If RAS1 is recovered by restarting crashed RACS1, it evolves

to RAS1-1 having the same categorical structure as RAS1 except for different initial

status of RACS1. This evolution can be represented by the Restart functor (a

structure-preserving mapping) from RAS1-1 to RAS1-0. If RAS1 is recovered by

substituting RACS1 with its isomorphic object RACS3 (see Definition 3.1.3), it evolves to

RAS1-2 (consisting of objects RACGM1, RACS3, RACS2 and the morphisms among

them in RAS1-0), which has the same categorical structure as RAS1 but replacing

RACS1 with RACS3. The above is specified by the Substitute functor, a

structure-preserving mapping (see Figure 72).
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Figure 72: Evolution for Self-Healing in RAS1

Figure 73: Natural Transformation for Self-Healing in RAS1

However, if RAS1 is recovered by asking RACS2 to take over the responsibilities of

RACS1, it evolves to RAS1-3 (consisting of objects RACGM1-1, SPM1 along with the

morphisms between them in RAS1-0), which has the different categorical structure, but

both of them have the equivalent social lives (see Property 6.2.33). The mapping among

those evolutions Restart, Substitute and Take-over can be interpreted as their natural

transformations (see Property 6.1.4). The functor category having those functors as its
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objects and their natural transformations as morphisms illustrate all possible evolutions

with their relations. In addition, the natural transformation3 is a composition of natural

transformation1 and natural transformation2, which may be interpreted as the following:

the result of the evolution Restart -> Substitute -> Take-over is equivalent to the evolution

Restart -> Take-over. Figure 74, 75 and 76 illustrate those natural transformations and

their composition respectively.

Figure 74: Natural Transformation from Restart to Substitute in RAS1

Figure 75: Natural Transformation from Substitute to Take-over in RAS1

Figure 76: Natural Transformation from Restart to Take-over in RAS1

When both RACS1 and RACS2 are crashed at the same time, RACGM1 tries to restart

them first. If neither of them can be restarted, RACGM1 will send a message to User

Console for requesting isomorphic objects (RACS3 and RACS4) of RACS1 and RACS2;
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otherwise, the remaining process is the same as the illustration above. When the User

Console cannot find RACS3 and RACS4, RACGM1 will take over the responsibilities of

RACS1 and RACS2, working as a product object of them, such as SPM1; otherwise, the

description above may indicate the remaining process. If a RAS consists of more than

two RACGM, the similar categorical representation can be generated as we explained

previously.

In this scenario, we proposed three solutions (restart, substitute and take-over) for

the fault-tolerance in case of the crashed RACS, which cover all possible situations in

terms of self-healing from the practical usage.

7.7 Categorical Specifications of Self-Healing

As we stated in Chapter 5 and Chapter 6, the self-* (autonomic) behavior of a RAE is

modeled as sequences of transitions corresponding to execution paths derived from the

matching labeled transition system, and the interactive behavior between the RAE are

modeled by the sequences of external (observable) events interchanged between the

interfaces of those RAE. The sequences of the transitions and external event sequences

are modeled as the categories TRANSITION and INTERACTION respectively. For

example, the behavior of the ICLM (Intelligent Control Loop Model) depicted in Chapter

5 is interpreted by the category TRANSITION(ICLM) = <Seq1, Seq2, …, Seqn>, where

the objects are sequences of transitions, such as Seq1 = <Trans1-1, Trans1-2, …, Trans1-m>

(n, m ≥ 1), and the morphisms are equivalence relations between those sequences. Thus,

TRANSITION(ICLM) is a category because identity morphisms exist and associativity
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of morphisms holds. Moreover, every transition in a sequence is modeled by the triple

(state, event, state) indicating the source state, trigger event, and destination state of the

corresponding transition in the ICLM, such as Trans1-1 = (Monitor, HasChange, Analyze).

Similarly, the interactive behavior between RAE can be interpreted by the category

INTERACTION(RAE), where the objects are sequences consisting of actions which

capture the interchanged external events and the communication parties (the sender of the

external event which triggers the communication, the receiver of the expected outcome

event), such as Seq1 = <Act1-1, Act1-2, …, Act1-n>; the morphisms are equivalence relations

between those sequences. In addition, every action in a sequence is specified as the

quadruple (sender, trigger-event, last-event, receiver) stating the sender of trigger-event,

the trigger-event triggering an action, the last-event outputted from the action, and the

receiver of trigger-event.

After a RAS is formed, RACGM, RACS and RAOL start their intelligent control

loops and monitor the heartbeat messages sent in a certain time interval by RACS, RAOL,

and RAO respectively (see Figure 77), which status are carried by those heartbeat

messages. After RACGM receives a task from the user console, it chooses an action

sequence (ActSeqRACGM) from the category INTERACTION(RACGM) in terms of

fulfilling the task and interact with RACS1 because of the action ActRACGM1 in the

action sequence ActSeqRACGM; then RACS1 selects an action sequence (ActSeqRACS1)

from INTERACTION(RACS1) in order to perform ActRACGM1 and communicates with

RAC1 due to the action ActRACS11 in the action sequence ActSeqRACS1. Similarly,
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RAOL1 picks an action sequence (ActSeq-RAOL1) from INTERACTION(RAOL1) to

implement ActRACS11 and collaborates with the RAO1 for the action ActRAOL11 in

ActSeqRAOL1; eventually, RAO1 chooses the action sequence (ActSeqRAO1) from the

INTERACTION(RAO1) in terms of realizing ActRAOL11 and cooperates with RAO2

due to the action ActRAO11 in ActSeqRAO1.

Figure 77: Work Flow of Formatting a RAS

Property 7.7.1 Fault-tolerance property in RAE: We state how fault-tolerance is

applied to the internal behavior of RAE through the ICLM described in Chapter 5. If

there is an exception during the transition Trans2 = (Analyze, HasAction, Plan), RAE

transits to HandleException state instead of Plan state triggered by AnalyzeException

event as Trans2e = (Analyze, AnalyzeException, HandleException); after an exception is

handled successfully, RAE rolls back to Analyze state triggered by HandledAnalyze event

with the same status as before the exception as Trans2h = (HandleException, Handled-

Analyze, Analyze). It proceeds to the Trans2 as TransSeq1
’ = <Trans1, Trans2e, Trans2h,

Trans2, …, Transn> that is isomorphic to TransSeq1 = <Trans1, Trans2, …, Transn> (see

Property 6.2.32). Thus, the category TRANSITION(RAE) including objects TransSeq1,
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TransSeq2, …, TransSeqm is a full subcategory of the category TRANSITION (RAE’)

having objects TransSeq1, TransSeq1
’, TransSeq2, …, and both categories are equivalent

(see Property 3.6.8). This means that two sequences exhibit the same internal behavior in

RAE for performing an action and leads to the fault-tolerance property.

Property 7.7.2 Interactive behavior equivalence between RAE. If RAC1 cannot be

started by a RACS due to an exception as ActRAC11e = (RACS1, StartRAC1,

NoHeartbeat -RAC1, RACS1), RACS1 tries to restart RAC1 later as ActRAC11h =

(RACS1, Restart- RAC1, Heartbeat-RAC1, RACS1) if the exception can be processed and

then it continues to ActRAC12 as ActSeqRAC11’ = <ActRAC11e, ActRAC11h,

ActRAC12, …, ActRAC1n>, which is equivalent to ActSeqRAC11 = <ActRAC11,

ActRAC12, …, ActRAC1n> (see Property 7.7.3). Therefore, the category

INTERACTION(RAC1) including the objects ActSeqRAC11, ActSeqRAC12, …,

ActSeqRAC1m is a full subcategory of INTERACTION (RAC1’) with objects

ActSeqRAC11, ActSeqRAC11’, ActSeqRAC12, …, ActSeqRAC1m and two categories are

equivalent (see Property 3.6.8). It demonstrates that both sequences have the same

interactive behavior between RACS1 and RAC1 in terms of executing an action so that

the fault-tolerance property is achieved.

Property 7.7.3 Substitutability of RAE. RAE is equivalent to RAE’ denoted as RAE

~ RAE’ iff 1) they belong to the same type (RAO, RAOL, RAC, RACS, RACG or

RACGM); 2) they have equivalent social lives SOCIAL(RAE) ~ SOCIAL(RAE’); 3) they

have the equivalent internal structures when regarding them as two categories so that
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CAT(RAE) ~ CAT(RAE’); and 4) they have equivalent internal and interactive behavior

as TRANSITION(RAE) ~ TRANSITION(RAE’), INTERACTION(RAE) ~ INTER-

ACTION(RAE’). If RAE ~ RAE’, they can be substituted by each other.

7.8 Representation of Categorical Specification for Self-Healing

The figure below depicts an example of the representation for a categorical specification

(in XML format) of the self-healing property we present earlier in this chapter, and more

XML representation can be found in Appendix D.

<CATEGORY name = “Substitution-Work-Flow-for-Self-Healing”>
<OBJECT>

<OBJECT name = “Restart” type = “Work-Flow-Action”/>
<OBJECT name = “NoHeartbeat” type = “Work-Flow-Action”/>
<OBJECT name = “RequestRAE” type = “Work-Flow-Action”/>
<OBJECT name = “Request” type = “Work-Flow-Action”/>
<OBJECT name = “Confirmed” type = “Work-Flow-Action”/>
<OBJECT name = “Register” type = “Work-Flow-Action”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Before” type =“Preorder”/>
<FROM-OBJECT name = “Restart” type = “Work-Flow-Action”/>
<TO-OBJECT name = “NoHeartbeat” type = “Work-Flow-Action”/>

<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>

<FROM-OBJECT name = “NoHeartbeat”
type = “Work-Flow-Action”/>

<TO-OBJECT name = “RequestRAE” type = “Work-Flow-Action”/>
<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>

<FROM-OBJECT name = “RequestRAE” type = “Work-Flow-Action”/>
<TO-OBJECT name = “Request” type = “Work-Flow-Action”/>

<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>

<FROM-OBJECT name = “Request” type = “Work-Flow-Action”/>
<TO-OBJECT name = “Confirmed” type = “Work-Flow-Action”/>

<MORPHISM>
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<MORPHISM name = “Before” type =“Preorder”/>
<FROM-OBJECT name = “Confirmed” type = “Work-Flow-Action”/>
<TO-OBJECT name = “Register” type = “Work-Flow-Action”/>

<MORPHISM>
</MORPHISM>

</CATEGORY>

Figure 78: XML Specification of Category Substitution-Flow-Self-Healing

7.9 Summary

In this chapter, we presented a prototype design of self-healing property, prototype design

of the categorical specification for self-healing and transformation from the categorical

self- healing property to its XML specification.

We described three scenarios regarding the self-healing which are crashed RAO

(Section 7.1), crashed RAOL (Section 7.3) as well as crashed RACS (Section 7.5) using

intelligent control loops. We also presented the categorical illustration for those three

scenarios in section 7.2, 7.4 & 7.6 respectively using functors, natural transformations

and functor categories.

Finally, the categorical specifications for the self-healing related properties together

with their XML representations were presented in Section 7.7 & 7.8, such as the fault-

tolerance property, interactive behavior equivalence among RAE and substitutability of

the RAE. We will introduce the categorical specifications of self-configuration property

for RASF in next chapter.
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Chapter 8: Categorical Specification of Self-Configuration

This chapter states the research activity 15, 16) and 21) in Figure 3, which are prototype

design of self-configuration, prototype design of categorical specification for the self-

configuration and transformation from the categorical self-configuration property to its

XML specification. I have one publication in preparation for this chapter. In Chapter 5 &

6, we introduced the RAS model and MAS model with their architectures, composition

rules, communication protocols and related categorical specifications. The configuration

of the RAS and MAS must follow those rules and protocols during the life cycle of them,

such as their formation and evolution because of the self-protection, self-optimization, or

self-healing. Furthermore, those formation as well as evolution should be achieved in an

autonomic way by giving RACGM tasks from User Console.

8.1 Forming a RAS

After receiving the task of forming a RAS from User Console, RACGM starts to create

RACS and establish corresponding connections among them based on the composition

rules and communication protocols specified by the index category RAS-Formation (see

Property 6.1.1). Figure 79 depicts an example of forming categories RAS1 and RAS2

from their index category RAS-Formation. Figure 80 and 81 illustrate the detailed object

as well as morphism mappings from RAS1 and RAS2 to the RAS-Formation

respectively. The RACGM can be initialized and validated by an initialization manager in

User Console.
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Figure 79: Example of Forming RAS from RAS-Formation

Object Mapping Morphism Mapping (RAS-Formation <- RAS1)

RACGM1 ->RACGM-Type1 Comm1->Comm-Type1, Comm2->Comm-Type2

RACS1->RACS-Type1 Comm3->Comm-Type3, Comm4->Comm-Type4

RACS2->RACS-Type1 Comm5->Comm-Type2, Comm6->Comm-Type1
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RACS3->RACS-Type2 Comm7->Comm-Type9, Comm8->Comm-Type10

Comm9->Comm-Type10, Comm10->Comm-Type9

RACS1–RACS2-> Identity-Mor(RACS-Type1)

Figure 80: Object and Morphism Mapping of Functor RAS-Forming1

Object Mapping Morphism Mapping (RAS-Formation <- RAS2)

RACGM2->RACGM-Type2 Comm1->Comm-Type7, Comm2->Comm-Type8

RACS4->RACS-Type3 Comm3->Comm-Type5, Comm4->Comm-Type6

RACS5->RACS-Type3 Comm5->Comm-Type8, Comm6->Comm-Type7

RACS6->RACS-Type2 Comm7->Comm-Type11, Comm8->Comm-Type12

Comm9->Comm-Type12, Comm10->Comm-Type11

RACS4–RACS5-> Identity-Mor(RACS-Type3)

Figure 81: Object and Morphism Mapping of Functor RAS-Forming2

Figure 82: Formation Work Flow in RAS1
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Figure 83: Self-Configuration Work Flow in RAS1

Figure 84: Self-Configuration Work Flow of Substitution in RAS1

Figure 85: Self-Configuration Work Flow of Take-over in RAS1
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Figure 86: Intelligent Control Loop in RACGM1 for Self-Configuration

Figure 87: ICL in RACGM1 for Communication Self-Configuration

After RACGM1 initializes its RACS according to the requirements from the User

Console and the capabilities of those RACS, it validates the configuration of those RACS
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against their types every t ticks (a tick is an abstraction of one time unit under a global

clock in RAS1), while RACGM1 is in the first state of its intelligent control loop

(monitoring). If the configuration of those RACS conforms to their types, composition

rules and communication protocols (see Property 8.7.4), NoViolation event keeps

RACGM1 in Monitor state; otherwise, NeedInvestigation event is triggered and RACGM1

transits to Analyze state, while a time constraint variable (TCvar1) is initialized to work

as a local clock in terms of time constraints on each transition of the intelligent control

loop. The value of TCvar1 is t0, t1, t2, t3... where t0 < t1 < t2 < t3.

After RACGM1 enters Analyze state, 1) it sends a Restart message to RACS1 in t0

ticks where the violation is caused by incorrect RACS type or incorrect communication

type from RACS1 to RACGM1. If RACS1 conforms to its type and communication type,

NoAction event occurs and RACGM1 goes back to Monitor state, while the TCvar1 is

reset; otherwise, RACGM1 transits to Plan state triggered by LaunchSelfHealing event in

t1 ticks. 2) If the violation is caused by incorrect communication type from other RACS

(RACS3) to RACS1, RACGM1 sends a Restart message to RACS3. If the communication

conforms to its type, NoAction event occurs and RACGM1 goes back to Monitor state,

while the TCvar1 is reset; otherwise, RACGM1 transits to Plan state triggered by the

LaunchSelfHealing event within t1 ticks. 3) If the violation is caused by the incorrect

communication type from RACGM1 to RACS1, RACGM1 resets that communication. If it

conforms to the correct one specified in the index category RAS-Formation (see

Property 8.7.4), NoAction event occurs and RACGM1 goes back to the Monitor state,
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while the TCvar1 is reset; otherwise, RACGM1 transits to Plan state triggered by the

LaunchSelfHealing event in t1 ticks.

When RACGM1 is in Plan state, it chooses either Substitute plan or Take-over plan,

based on the availability of substitutable RACS for RACS1 (scenario 1 in the paragraph

above) or for RACS3 (scenario 2). RACGM1 transits to Execute state triggered by the

Substitute event or Take-over event respectively in t2 ticks. For scenario 3, RACGM1

sends a selfViolation message to User Console, and the latter chooses either Substitute

plan or Take-over plan based on the availability of substitutable RACGM for RACGM1.

It transits to Execute state triggered by Substitute or Take-over event in t2 ticks.

When RACGM1 is in Execute state and Substitute plan is applicable, it sends a

register message to the substitutable RACS of RACS1 (scenario 1) or RACS3 (scenario 2)

and initialize it to the status of RACS1 or RACS3 according to the checkpoint made

before. When the take-over plan is applicable, RACGM1 sends a take-over message to

RACS2 (scenario 1 or scenario 2) and update it to the status of the synchronous product

machine of RACS1 and RACS2, or RACS3 and RACS2 based on the checkpoint. After the

plan execution, RACGM1 validates the configuration of RAS1’, an evolution of RAS1

(see Property 6.1.3) against its index category RAS-Formation according to their

categorical specifications. If that configuration conforms to the index category (see

Property 8.7.4), ActionDone event occurs and RACGM1 transits to the Monitor state in t3

ticks; otherwise, ActionFailed event keeps it in Execute state for the user intervention

from User Console. For scenario 3, RACGM1 is substituted by RACGM3 or taken over
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by RACGM2.

8.2 Categorical Illustration of Forming a RAS

The actions in the formation work flow, self-configuration work flow, substitution work

flow and take-over work flow of RAS1 can be specified as the categories where objects

are those actions (InitializeRACS, ValidateRACS, ValidateRACcommunication, etc.), and

morphisms are their preorder relationship before. Each object (action) in those categories

is a quadruple (see Property 6.2.28). For example, LaunchInvestigation = (RACGM1,

NotConfrom-RACS, InvestigateRACS, RACS1); the sequences of those actions can be

specified as the categories in which objects are those sequences (<InitializeRACGM,

Heartbeat, InitializeRACS, Heartbeat>, <ValidateRACGM, Conform, ValidateRACS,

NotConform>), and morphisms are the equivalence relationship between those sequences

(see Property 6.2.31).

The transitions in the intelligent control loop of RACGM1 for self-configuration can

be specified as a category in which objects are those transitions (NoViolation,

NeedInvestigation, RestartRACS, NoAction, etc.), and morphisms are their preorder

relations before. Each object (transition) in that category is a triple (see Property 6.2.23).

For example, NeedInvestigation = (Monitor, NotConform-RACS, Analyze); the sequences

of those transitions can be specified as a category in which objects are those sequences

(<NoViolation, NeedInvestigation, RestartRACS1, NoAction>, <RestartRACS1,

LaunchSelfHealing, Substitute, ActionDone>), and morphisms are equivalence relations

between those sequences (see Property 6.2.26).
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Let RAS1 be a subcategory (consisting of the objects RACGM1, RACS1, RACS2,

RACS3 and the morphisms among them) of RAS1-0 (a category consisting of all the

potential RAE for the self-configuration in RAS1). If RAS1 is conformed to the index

category RAS-Formation by restarting the violated RACS1 or RACS3, it will evolve to

RAS1-1 (consisting of the objects RACGM1, RACS1 or RACS1-1, RACS2, RACS3 or

RACS3-1 and the morphisms among them in RAS1-0), which has the same configuration

and categorical structure as RAS1 except for the different initial status of RACS1 or

RACS3. This evolution is specified by a Restart functor (a structure-preserving mapping)

from the RAS1-1 to RAS1-0. If RAS1 is conformed to RAS-Formation by substituting

the RACS1 or RACS3 with their isomorphic objects RACS7 or RACS9 (see Definition

3.1.3), it will evolve to RAS1-2 (consisting of objects RACGM1, RACS1 or RACS7,

RACS2, RACS3 or RACS9 and the morphisms among them in RAS1-0) that has the

same configuration and categorical structure as RAS1 but replacing RACS1 or RACS3

with RACS7 or RACS9. The above is specified by the Substitute functor, a

structure-preserving mapping. If RAS1 is conformed to the RAS-Formation by asking

RACS2 to take over the responsibilities of RACS1 or RACS3, it will evolve to RAS1-3

(consisting of objects RACGM1-1, SPM, RACS1 or RACS3 and the morphisms among

them in the RAS1-0), which has different categorical structure, but both of them have the

equivalent configuration (see Property 8.7.5 and the figure below).



201

Figure 88: Evolution for Self-Configuration in RAS1

Figure 89: Natural Transformation for Self-Configuration in RAS1

The mapping among those evolutions RestartRACS, SubstituteRACS and Take-over-

RACS of the RAS1 can be interpreted as natural transformations (see Property 6.1.4). The

functor category having those functors as objects and their natural transformations as

morphisms illustrate all possible evolutions with their relations. In addition, the natural
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transformation3 is a composition of natural transformation1 and natural transformation2,

which may be interpreted as the following: the result of the evolution RestartRACS ->

SubstituteRACS -> Take-over-RACS is equivalent to the evolution RestartRACS -> Take-

over-RACS. Figure 90, 91 and 92 illustrate those natural transformations and their

composition respectively.

Figure 90: Natural Transformation RestartRACS -> SubstituteRACS in RAS1

Figure 91: Natural Transformation SubstituteRACS -> Take-over-RACS in RAS1

Figure 92: Natural Transformation RestartRACS -> Take-over-RACS in RAS1

Let RAS1 be a subcategory (consisting of the objects RACGM1, RACS1, RACS2,

RACS3 and the morphisms among them) of RAS1-0’ (a category consisting of all the

potential RAE for the communication self-configuration in RAS1). If RAS1 is conformed

to the RAS-Formation by restarting the communication from RACGM1 to RACS1 or

restarting RACGM1, it evolves to RAS1-4 (consisting of objects RACGM1-1, RACS1,
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RACS2, RACS3 and the morphisms among them in the RAS1-0’), which has the same

configuration and categorical structure as RAS1 except for the different initial status of

RACGM1. This evolution is specified by a RestartRACGM functor (a structure-preserving

mapping) from RAS1-4 to RAS1-0'. If RAS1 is conformed to the RAS-Formation by

substituting RACGM1 with its isomorphic objects RACGM3 (see Definition 3.1.3), it

evolves to RAS1-5 (consisting of objects RACGM3, RACS1, RACS2, RACS3 and the

morphisms among them in the RAS1-0’), which has the same configuration and

categorical structure as the RAS1 but replacing the RACGM1 with RACGM3. The above

is specified by a SubstituteRACGM functor, a structure-preserving mapping. If RAS1 is

conformed to RAS-Formation by asking RACGM2 to take over the responsibilities of

RACGM1, it evolves to RAS1-6 (consisting of objects SPM, RACS1, RACS2, RACS3

and the morphisms among them in RAS1-0’), which has different categorical structure,

but both of them have the equivalent configuration (see Property 8.7.5 and Figure 93).

The mapping among those evolutions RestartRACGM, SubstituteRACGM and Take-

over-RACGM of the RAS1 is interpreted as natural transformations (see Property 6.1.4).

The functor category having those functors as objects and their natural transformations as

morphisms illustrate all possible evolutions with their relations. In addition, the natural

transformation6 is a composition of natural transformation4 and natural transformation5,

which may be interpreted as the following: the result of the evolution RestartRACGM ->

SubstituteRACGM -> Take-over-RACGM is equivalent to the evolution RestartRACGM

-> Take-over-RACGM. Figure 95, 96 and 97 illustrate those natural transformations and
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their composition respectively.

Figure 93: Evolution for Communication Self-Configuration in RAS1

Figure 94: Natural Transformation for Communication Self-Configuration in RAS1
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Figure 95: Natural Transformation RestartRACGM -> SubstituteRACGM in RAS1

Figure 96: Natural Transformation SubstituteRACGM->Take-over-RACGM in RAS1

Figure 97: Natural Transformation RestartRACGM -> Take-over-RACGM in RAS1

When both RACGM1 and RACGM2 cannot conform to RAS-Formation at the same

time, User Console tries to restart them first. If neither of them can conform to RAS-

Formation after being restarted, User Console will substitute RACGM1 and RACGM2

with their isomorphic objects RACGM3 and RACGM4; otherwise, the remaining process

is the same as the illustration above. When the User Console cannot find RACGM3 or

RACGM4, it will send an action-required message to end users; otherwise, the

description above may indicate the remaining process. If a RAS consists of more than

two RACGM, the similar categorical representation can be generated as we explained.

8.3 Forming a RACG

After receiving the task of forming a RACG from RACGM, RACS starts to create RAOL
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and establish corresponding connections among them based on the composition rules and

communication protocols specified by index category RACG-Formation (see Property

6.1.1). Figure 98 illustrates an example of forming the categories RACG1 and RACG2

from their index category RACG-Formation. Figure 99 and 100 describe the detailed

object as well as morphism mappings from RACG1 and RACG2 to RACG-Formation

respectively.

Figure 98: Example of Forming RACG from RACG-Formation
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Object Mapping Morphism Mapping (RACG-Formation <- RACG1)

RACS1->RACS-Type1 Comm1->Comm-Type1, Comm2->Comm-Type2

RAOL1->RAOL-Type1 Comm3->Comm-Type3, Comm4->Comm-Type4

RAOL2->RAOL-Type1 Comm5->Comm-Type2, Comm6->Comm--Type1

RAOL3->RAOL-Type2 Comm7->Comm-Type9, Comm8->Comm-Type10

Comm9->Comm-Type10, Comm10->Comm-Type9

RAOL1–RAOL2-> Identity-Mor(RAOL-Type1)

Figure 99: Object and Morphism Mapping of Functor RACG-Forming1

Object Mapping Morphism Mapping (RACG-Formation <- RACG2)

RACS2->RACS-Type2 Comm1->Comm1-Type7, Comm2->Comm-Type8

RAOL4->RAOL-Type3 Comm3->Comm-Type5, Comm4->Comm-Type6

RAOL5->RAOL-Type3 Comm5->Comm-Type8, Comm6->Comm-Type7

RAOL6->RAOL-Type2 Comm7->Comm-Type11, Comm8->Comm-Type12

Comm9->Comm-Type12, Comm10->Comm-Type11

RAOL4–RAOL5-> Identity-Mor(RAOL-Type3)

Figure 100: Object and Morphism Mapping of Functor RACG-Forming2

After RACS1 initializes its RAOL according to the requirements from the RACGM

and the capabilities of those RAOL, it validates the configuration of those RAOL against

their types every t ticks (a tick is an abstraction of one time unit under a global clock in

the RACG1), while RACS1 is in the first state of its intelligent control loop (monitoring).
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If the configuration of those RAOL conforms to their types, composition rules as well as

communication protocols (see Property 8.7.4), NoViolation event keeps RACS1 in

Monitor state; otherwise, NeedInvestigation event is triggered and RACS1 transits to

Analyze state, while a time constraint variable (TCvar2) is initialized to work as a local

clock in terms of time constraints on each transition of the intelligent control loop. The

value of TCvar2 is t0, t1, t2, t3... where t0 < t1 < t2 < t3.

Figure 101: RACG Formation Work Flow

Figure 102: RACG Self-Configuration Work Flow
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Figure 103: RACG Self-Configuration Work Flow by Substitution

Figure 104: RACG Self-Configuration Work Flow by Take-over

Figure 105: Intelligent Control Loop in RACS1 for Self-Configuration
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Figure 106: ICL in RACS1 for Communication Self-Configuration

After RACS1 enters Analyze state, 1) it sends a Restart message to RAOL1 in t0 ticks

where the violation is caused by the incorrect RAOL type or incorrect communication

type from RAOL1 to RACS1. If RAOL1 conforms to its type and communication type,

NoAction event occurs and RACS1 goes back to Monitor state, while the TCvar2 is reset;

otherwise, RACS1 transits to Plan state triggered by LaunchSelfHealing event in t4 ticks.

2) If the violation is caused by incorrect communication type from other RAOL (RAOL3)

to RAOL1, RACS1 sends a Restart message to RAOL3. If the communication conforms to

its type, NoAction event occurs and RACS1 goes back to Monitor state, while the TCvar2

is reset; otherwise, RACS1 transits to Plan state triggered by the LaunchSelfHealing event

within t4 ticks. 3) If the violation is caused by the incorrect communication type from

RACS1 to RAOL1, RACS1 resets that communication. If it conforms to the correct one
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specified in the index category RACG-Formation (see Property 8.7.4), NoAction event

occurs and RACS1 goes back to the Monitor state, while the TCvar2 is reset; otherwise,

RACS1 transits to Plan state triggered by LaunchSelfHealing event in t4 ticks.

When RACS1 is in Plan state, it chooses either Substitute plan or Take-over plan,

based on the availability of substitutable RAOL for RAOL1 (scenario 1 in the paragraph

above) or for RAOL3 (scenario 2). RACS1 transits to Execute state triggered by the

Substitute event or Take-over event respectively in t5 ticks. For scenario 3, RACS1 sends

a selfViolation message to RACGM1, and the latter chooses either Substitute plan or

Take-over plan based on the availability of substitutable RACS for RACS1. It transits to

Execute state triggered by Substitute or Take-over event in t5 ticks.

When RACS1 is in Execute state and Substitute plan is applicable, it sends a register

message to the substitutable RAOL of RAOL1 (scenario 1) or RAOL3 (scenario 2) and

initialize it to the status of RAOL1 or RAOL3 according to the checkpoint made before.

When the take-over plan is applicable, RACS1 sends a take-over message to RAOL2

(scenario 1 or scenario 2) and update it to the status of the synchronous product machine

of RAOL1 and RAOL2, or RAOL3 and RAOL2 according to the checkpoint. After the plan

execution, RACS1 validates the configuration of RACG1’, an evolution of RACG1 (see

Property 6.1.3) against the index category RACG-Formation based on their categorical

specifications. If that configuration conforms to the index category (see Property 8.7.4),

ActionDone event occurs and then RACS1 transits to the Monitor state within t6 ticks;

otherwise, ActionFailed event keeps it in Execute state for RACGM1’s intervention. For
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scenario 3, RACS1 is substituted by RACS3 or taken over by RACS2.

8.4 Categorical Illustration of Forming a RACG

The actions in the formation work flow, self-configuration work flow, substitution work

flow and take-over work flow of RACG1 can be specified as the categories where objects

are the actions (InitializeRAOL, ValidateRAOL, ValidateRAOLcommunication, etc.), and

morphisms are their preorder relationship before. Each object (action) in those categories

is a quadruple (see Property 6.2.28). For example, LaunchInvestigation = (RACS1,

NotConfrom-RAOL, InvestigateRAOL, RAOL1), and the sequences of those actions can

be specified as the categories in which objects are those sequences (<InitializeRACS,

Heartbeat, InitializeRAOL, Heartbeat>, <ValidateRACS, Conform, ValidateRAOL,

NotConform>), and morphisms are the equivalence relationship between those sequences

(see Property 6.2.31).

The transitions in the intelligent control loop of RACS1 for self-configuration can be

specified as the category in which objects are those transitions (NoViolation,

NeedInvestigation, RestartRAOL, NoAction, etc.), and morphisms are their preorder

relations before. Each object (transition) in that category is a triple (see Property 6.2.23).

For example, NeedInvestigation = (Monitor, NotConform-RAOL, Analyze); the sequences

of those transitions can be specified as a category in which objects are those sequences

(<NoViolation, NeedInvestigation, RestartRAOL1, NoAction>, <RestartRAOL1,

LaunchSelfHealing, Substitute, ActionDone>), and morphisms are equivalence relations

between those sequences (see Property 6.2.26).
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Let RACG1 be a subcategory (consisting of the objects RACS1, RAOL1, RAOL2,

RAOL3 and the morphisms among them) of RACG1-0 (a category consisting of all the

potential RAE for the self-configuration in RACG1). If RACG1 is conformed to the

index category RACG-Formation by restarting violated RAOL1 or RAOL3, it evolves to

RACG1-1 (consisting of the objects RACS1, RAOL1 or RAOL1-1, RAOL2, RAOL3 or

RAOL3-1 and the morphisms among them in RACG1-0) that has the same configuration

and categorical structure as RACG1 except for the different initial status of RAOL1 or

RAOL3. This evolution is specified by a Restart functor (a structure-preserving mapping)

from RACG1-1 to RACG1-0. If RACG1 is conformed to the RACG-Formation by

substituting RAOL1 or RAOL3 with their isomorphic objects RAOL7 or RAOL9 (see

Definition 3.1.3), it will evolve to RACG1-2 (consisting of objects RACS1, RAOL1 or

RAOL7, RAOL2, RAOL3 or RAOL9 and the morphisms among them in RACG1-0),

which has the same configuration and categorical structure as the RACG1 but replacing

RAOL1 or RAOL3 with RAOL7 or RAOL9. The above is specified by a Substitute functor,

a structure-preserving mapping. If RACG1 is conformed to RACG-Formation by

asking RAOL2 to take over the responsibilities of RAOL1 or RAOL3, it evolves to

RACG1-3 (consisting of the objects RACS1-1, SPM, RAOL1 or RAOL3 and the

morphisms among them in RACG1-0), which has the different categorical structure, but

both of them have the equivalent configuration (see Property 8.7.5 and the figure below).
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Figure 107: Evolution for Self-Configuration in RACG1

Figure 108: Natural Transformation for Self-Configuration in RACG1

The mapping among those evolutions RestartRAOL, SubstituteRAOL and Take-over-

RAOL of the RACG1 can be interpreted as natural transformations (see Property 6.1.4).

The functor category having those functors as objects and their natural transformations as

morphisms illustrate all possible evolutions with their relations. In addition, the natural
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transformation3 is a composition of natural transformation1 and natural transformation2,

which may be interpreted as the following: the result of the evolution RestartRAOL ->

SubstituteRAOL -> Take-over-RAOL is equivalent to the evolution RestartRAOL -> Take-

over-RAOL. Figure 109, 110 and 111 illustrate those natural transformations and their

composition respectively.

Figure 109: Natural Transformation RestartRAOL -> SubstituteRAOL in RACG1

Figure 110: Natural Transformation SubstituteRAOL -> Take-over-RAOL in RACG1

Figure 111: Natural Transformation RestartRAOL -> Take-over-RAOL in RACG1

Let RACG1 be a subcategory (consisting of the objects RACS1, RAOL1, RAOL2,

RAOL3 and the morphisms among them) of RACG1-0’ (a category consisting of all the

potential RAE for the communication self-configuration within RACG1). If RACG1 is

conformed to the RACG-Formation by restarting the communication from RACS1 to

RAOL1 or restarting RACS1, it evolves to RACG1-4 (consisting of objects RACS1-1,
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RAOL1, RAOL2, RAOL3 and the morphisms among them in the RACG1-0’), which has

the same configuration and categorical structure as RACG1 except for the different

initial status of RACS1. This evolution is specified by the RestartRACS functor (a

structure-preserving mapping) from RACG1-4 to RACG1-0'. If RACG1 is conformed to

RACG- Formation by substituting RACS1 with its isomorphic objects RACS3 (see

Definition 3.1.3), it evolves to RACG1-5 (consisting of objects RACS3, RAOL1,

RAOL2, RAOL3 and the morphisms among them in the RACG1-0’), which has the same

configuration and categorical structure as RACG1 but replacing RACS1 with RACS3.

The above is specified by the SubstituteRACS functor, a structure-preserving mapping. If

RACG1 is conformed to the RACG-Formation by asking RACS2 to take over the

responsibilities of RACS1, it evolves to RACG1-6 (consisting of objects SPM, RAOL1,

RAOL2, RAOL3 and the morphisms among them in RACG1-0’), which has different

categorical structure, but both of them have the equivalent configuration (see Property

8.7.5 and Figure 112).

The mapping among those evolutions RestartRACS, SubstituteRACS and Take-over-

RACS of the RACG1 is interpreted as natural transformations (see Property 6.1.4). The

functor category having those functors as objects and their natural transformations as

morphisms illustrate all possible evolutions with their relations. In addition, the natural

transformation6 is a composition of natural transformation4 and natural transformation5,

which may be interpreted as the following: the result of the evolution RestartRACS ->

SubstituteRACS -> Take-over-RACS is equivalent to the evolution RestartRACS -> Take-
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over-RACS. Figure 114, 115 and 116 illustrate those natural transformations and their

composition respectively.

Figure 112: Evolution for Communication Self-Configuration in RACG1

Figure 113: Natural Transformation of Communication Self-Configuration in RACG1
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Figure 114: Natural Transformation RestartRACS -> SubstituteRACS in RACG1

Figure 115: Natural Transformation SubstituteRACS -> Take-over-RACS in RACG1

Figure 116: Natural Transformation RestartRACS -> Take-over-RACS in RACG1

When both RACS1 and RACS2 cannot conform to RACG-Formation at the same

time, RACGM1 tries to restart them first. If neither of them can conform to RACG-

Formation after being restarted, RACGM1 will substitute RACS1 and RACS2 with their

isomorphic objects RACS3 and RACS4; otherwise, the remaining process is the same as

the illustration above. When RACGM1 cannot find RACS3 or RACS4, it will send an

action-required message to User Console; otherwise, the description above may indicate

the remaining process. If a RACG consists of more than two RACS, a similar categorical

representation can be generated as we explained previously.

8.5 Forming a RAC

After receiving the task of forming a RAC from RACS, RAOL starts to create RAO and
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establish corresponding connections between them based on the composition rules and

communication protocols specified by the index category RAC-Formation (see Property

6.1.1). Figure 117 depicts an example of forming the categories RAC1 and RAC2 from

their index category RAC-Formation. Figure 118 and 119 describe the detailed object as

well as morphism mappings from RAC1 and RAC2 to RAC-Formation respectively.

Figure 117: Example of Forming RAC from RAC-Formation
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Object Mapping Morphism Mapping (RAC-Formation <- RAC1)

RAOL->RAOL-Type1 Comm1->Comm-Type1, Comm2->Comm-Type2

RAO1->RAO-Type1 Comm3->Comm-Type3, Comm4->Comm-Type4

RAO2->RAO-Type1 Comm5->Comm-Type2, Comm6->Comm-Type1

RAO3->RAO-Type2 Comm7->Comm-Type9, Comm8->Comm-Type10

Comm9->Comm-Type10, Comm10->Comm-Type9

RAO1–RAO2-> Identity-Mor(RAO-Type1)

Figure 118: Object and Morphism Mapping of Functor RAC-Forming1

Object Mapping Morphism Mapping (RAC-Formation <- RAC2)

RAOL2->RAOL-Type2 Comm1->Comm-Type7, Comm2->Comm-Type8

RAO4->RAO-Type3 Comm3->Comm-Type5, Comm4->Comm-Type6

RAO5->RAO-Type3 Comm5->Comm-Type8, Comm6->Comm-Type7

RAO6->RAO-Type2 Comm7->Comm-Type11, Comm8->Comm-Type12

Comm9->Comm-Type12, Comm10->Comm-Type11

RAO4–RAO5-> Identity-Mor(RAO-Type3)

Figure 119: Object and Morphism Mapping of Functor RAC-Forming2

After RAOL1 initializes its RAO according to the requirements from RACS1 and the

capabilities of those RAO, it validates the configuration of those RAO against their types

every t ticks (a tick is an abstraction of one time unit under a global clock in the RAC1),

while RAOL1 is in the first state of its intelligent control loop (monitoring). If the
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configuration of those RAO conforms to their types, composition rules as well as

communication protocols (see Property 8.7.4), NoViolation event keeps the RAOL1 in

Monitor state; otherwise, NeedInvestigation event is triggered and RAOL1 transits to

Analyze state, while a time constraint variable (TCvar3) is initialized to work as a local

clock in terms of time constraints on each transition of the intelligent control loop. The

value of TCvar2 is t0, t1, t2, t3... where t0 < t1 < t2 < t3.

Figure 120: RAC Formation Work Flow

Figure 121: RAC Self-Configuration Work Flow
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Figure 122: RAC Self-Configuration Work Flow by Substitution

Figure 123: RAC Self-Configuration Work Flow by Take-over

Figure 124: Intelligent Control Loop in RAC1 for Self-Configuration
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Figure 125: ICL in RAC1 for Communication Self-Configuration

After RAOL1 enters Analyze state, 1) it sends a Restart message to RAO1 in t0 ticks

where the violation is caused by the incorrect RAO type or incorrect communication type

from RAO1 to RAOL1. If RAO1 conforms to its type or communication type, NoAction

event occurs and RAOL1 goes back to Monitor state, while the TCvar3 is reset; otherwise,

RAOL1 transits to Plan state triggered by LaunchSelfHealing event in t7 ticks. 2) If the

violation is caused by incorrect communication type from other RAO (RAO3) to RAO1,

RAOL1 sends a Restart message to RAO3. If the communication conforms to its type,

NoAction event occurs and RAOL1 goes back to Monitor state, while the TCvar3 is reset;

otherwise, RAOL1 transits to Plan state triggered by the LaunchSelfHealing event within

t7 ticks. 3) If the violation is caused by the incorrect communication type from RAOL1 to

RAO1, RAOL1 resets that communication. If it conforms to the correct one specified in
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the index category RAC-Formation (see Property 8.7.4), NoAction event occurs and

RAOL1 goes back to the Monitor state, while TCvar3 is reset; otherwise, RAOL1 transits

to Plan state triggered by LaunchSelfHealing event in t7 ticks.

When RAOL1 is in Plan state, it chooses either Substitute plan or Take-over plan,

based on the availability of substitutable RAO for RAO1 (scenario 1 in the paragraph

above) or for RAO3 (scenario 2). RAOL1 transits to Execute state triggered by the

Substitute event or Take-over event respectively in t8 ticks. For scenario 3, RAOL1 sends

a selfViolation message to RACS1, and the latter chooses either Substitute plan or Take-

over plan according to the availability of substitutable RAOL for RAOL1. It transits to

Execute state triggered by Substitute or Take-over event in t8 ticks.

When RAOL1 is in Execute state and Substitute plan is applicable, it sends a register

message to the substitutable RAO of RAO1 (scenario 1) or RAO3 (scenario 2) and then

initialize it to the status of RAO1 or RAO3 based on the checkpoint made before. When

the take-over plan is applicable, RAOL1 sends a take-over message to RAO2 (scenario 1

or scenario 2) and update it to the status of the synchronous product machine of RAO1

and RAO2, or RAO3 and RAO2 according to the checkpoint. After the plan execution,

RAOL1 validates the configuration of RAC1’, an evolution of RAC1 (see Property 6.1.3)

against the index category RAC-Formation based on their categorical specifications. If

that configuration conforms to the index category (see Property 8.7.4), ActionDone event

occurs and RAOL1 transits to the Monitor state within t9 ticks; otherwise, ActionFailed

event keeps it in Execute state for RACS1’s intervention. For scenario 3, RAOL1 is
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substituted by RAOL3 or taken over by RAOL2.

8.6 Categorical Illustration of Forming a RAC

The actions in the formation work flow, self-configuration work flow, substitution work

flow and take-over work flow of RAC1 can be specified as the categories where objects

are the actions (InitializeRAO, ValidateRAO, ValidateRAOcommunication, etc.), and

morphisms are their preorder relationship before. Each object (action) in those categories

is a quadruple (see Property 6.2.28). For example, LaunchInvestigation = (RAOL1,

NotConfrom-RAO, InvestigateRAO, RAO1), and the sequences of those actions can be

specified as the categories in which objects are those sequences (<InitializeRAOL,

Heartbeat, InitializeRAO, Heartbeat>, <ValidateRAOL, Conform, ValidateRAO,

NotConform>), and morphisms are the equivalence relationship between those sequences

(see Property 6.2.31).

The transitions in the intelligent control loop of RAOL1 for self-configuration can be

specified as the category in which objects are those transitions (NoViolation,

NeedInvestigation, RestartRAO, NoAction, etc.), and morphisms are their preorder

relations before. Each object (transition) in that category is a triple (see Property 6.2.23).

For example, NeedInvestigation = (Monitor, NotConform-RAO, Analyze); the sequences

of those transitions can be specified as a category in which objects are those sequences

(<NoViolation, NeedInvestigation, RestartRAO1, NoAction>, <RestartRAO1,

LaunchSelfHealing, Substitute, ActionDone>), and morphisms are equivalence relations

between those sequences (see Property 6.2.26).



226

Let RAC1 be a subcategory (consisting of objects RAOL1, RAO1, RAO2, RAO3

and the morphisms among them) of RAC1-0 (a category consisting of all the potential

RAE for the self-configuration in RAC1). If RAC1 is conformed to the index category

RAC-Formation by restarting the violated RAO1 or RAO3, it will evolve to RAC1-1

(consisting of the objects RAOL1, RAO1 or RAO1-1, RAO2, RAO3 or RAO3-1 and the

morphisms among them in RAC1-0), which has the same configuration and categorical

structure as RAC1 except for the different initial status of RAO1 or RAO3. This evolution

is specified by a Restart functor (a structure-preserving mapping) from RAC1-1 to

RAC1-0. If RAC1 is conformed to RAC-Formation by substituting RAO1 or RAO3

with their isomorphic objects RAO7 or RAO9 (see Definition 3.1.3), it will evolve to

RAC1-2 (consisting of objects RAOL1, RAO1 or RAO7, RAO2, RAO3 or RAO9 and

the morphisms among them in the RAC1-0), which has the same configuration and

categorical structure as RAC1 but replacing RAO1 or RAO3 with RAO7 or RAO9. The

above is specified by a Substitute functor, a structure-preserving mapping. If RAC1 is

conformed to the RAC-Formation by asking RAO2 to take over the responsibilities of

RAO1 or RAO3, it evolves to RAC1-3 (consisting of objects RAOL1-1, SPM, RAO1 or

RAO3 and the morphisms among them in RAC1-0), which has the different categorical

structure, but both of them have the equivalent configuration (see Property 8.7.5 and the

figure below).
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Figure 126: Evolution for Self-Configuration in RAC1

Figure 127: Natural Transformation for Self-Configuration in RAC1

The mapping among those evolutions RestartRAO, SubstituteRAO and Take-over-

RAO of the RAC1 can be interpreted as natural transformations (see Property 6.1.4). The

functor category having those functors as objects and their natural transformations as

morphisms illustrate all possible evolutions with their relations. In addition, the natural
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transformation3 is a composition of natural transformation1 and natural transformation2,

which may be interpreted as the following: the result of the evolution RestartRAO ->

SubstituteRAO -> Take-over-RAO is equivalent to the evolution RestartRAO -> Take-

over-RAO. Figure 128, 129 and 130 illustrate those natural transformations and their

composition respectively.

Figure 128: Natural Transformation RestartRAO -> SubstituteRAO in RAC1

Figure 129: Natural Transformation SubstituteRAO -> Take-over-RAO in RAC1

Figure 130: Natural Transformation RestartRAO -> Take-over-RAO in RAC1

Let RAC1 be a subcategory (consisting of objects RAOL1, RAO1, RAO2, RAO3

and the morphisms among them) of RAC1-0’ (a category consisting of all the potential

RAE for the communication self-configuration in RAC1). If RAC1 is conformed to

RAC- Formation by restarting the communication from RAOL1 to RAO1 or restarting

RAOL1, it will evolve to RAC1-4 (consisting of objects RAOL1-1, RAO1, RAO2, RAO3
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and the morphisms among them in RAC1-0’), which has the same configuration and

categorical structure as RAC1 except for the different initial status of RAOL1. This

evolution is specified by a RestartRAOL functor from RAC1-4 to RAC1-0'. If RAC1 is

conformed to the RAC-Formation by substituting RAOL1 with its isomorphic objects

RAOL3 (see Definition 3.1.3), it evolves to RAC1-5 (consisting of objects RAOL3,

RAO1, RAO2, RAO3 and the morphisms among them in RAC1-0’), which has the same

configuration and categorical structure as RAC1 but replacing the RAOL1 with RAOL3.

The above is specified by the SubstituteRAOL functor, a structure-preserving mapping. If

RAC1 is conformed to RAC-Formation by asking RAOL2 to take over the

responsibilities of RAOL1, it evolves to RAC1-6 (consisting of objects SPM, RAO1,

RAO2, RAO3 and the morphisms among them in RAC1-0’), which has different

categorical structure, but both of them have the equivalent configuration (see Property

8.7.5 and Figure 131).

The mapping among those evolutions RestartRAOL, SubstituteRAOL and Take-over-

RAOL of the RAC1 is interpreted as natural transformations (see Property 6.1.4). The

functor category having those functors as objects and their natural transformations as

morphisms illustrate all possible evolutions with their relations. In addition, the natural

transformation6 is a composition of natural transformation4 and natural transformation5,

which may be interpreted as the following: the result of the evolution RestartRAOL ->

SubstituteRAOL -> Take-over-RAOL is equivalent to the evolution RestartRAOL -> Take-

over-RAOL. Figure 133, 134 and 135 illustrate those natural transformations and their
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composition respectively.

Figure 131: Evolution for Communication Self-Configuration in RAC1

Figure 132: Natural Transformation of Communication Self-Configuration in RAC1
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Figure 133: Natural Transformation RestartRAOL -> SubstituteRAOL in RAC1

Figure 134: Natural Transformation SubstituteRAOL -> Take-over-RAOL in RAC1

Figure 135: Natural Transformation RestartRAOL -> Take-over-RAOL in RAC1

When both RAC1 and RAC2 cannot conform to RAC-Formation at the same time,

RACS1 tries to restart them first. If neither of them can conform to RAC-Formation after

being restarted, RACS1 will substitute RAOL1 and RAOL2 with their isomorphic objects

RAOL3 as well as RAOL4; otherwise, the remaining process is the same as the illustration

above. When RACS1 cannot find the RAOL3 or RAOL4, it will send an action-required

message to the RACGM1; otherwise, the description above may indicate the remaining

process. If a RAC consists of more than two RAOL, the similar categorical representation

can be generated as we explained previously.

8.7 Categorical Specifications of Self-Configuration

Property 8.7.1: The configuration of a RAC is a category denoted as CONFIG(RAC),
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where objects are RAO and morphisms are connections between those RAO as CONFIG

(RAO, RAO’) or CONFIG(RAO’, RAO).

Proof. All what we need is to prove: i) the existence of composition and identity

morphism, and ii) prove associativity. Let RAO1, RAO2 and RAO3 be three RAO such that

RAO1 connects to RAO2, which connects to RAO3, so RAO1 connects to RAO3 (indirectly

through RAO2), meaning that the existence of a composition of morphisms between RAO1

and RAO3. The identity morphism does exist as the natural representation of internal

connections. Let f, g and h be the morphisms such that f: RAO1 → RAO2, g: RAO2 →

RAO3 and h: RAO3 → RAO4. It is clear that h ◦ (g ◦ f) = (h ◦ g) ◦ f.■

Property 8.7.2: The configuration of a RACG is the category denoted as CONFIG

(RACG), where objects are RAC and morphisms are connections between those RAC as

CONFIG (RAC, RAC’) or CONFIG(RAC’, RAC).

Proof. All what we need is to prove: i) the existence of composition and identity

morphism, and ii) prove associativity. Let RAC1, RAC2 and RAC3 be three RAC such that

RAC1 connects to RAC2, which connects to RAC3, so RAC1 connects to RAC3 (indirectly

through RAC2), meaning that the existence of a composition of morphisms between RAC1

and RAC3. The identity morphism does exist as the natural representation of internal
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connections. Let f, g and h be the morphisms such that f: RAC1 → RAC2, g: RAC2 →

RAC3 and h: RAC3 → RAC4. It is clear that h ◦ (g ◦ f) = (h ◦ g) ◦ f.■

Property 8.7.3: The configuration of a RAS is a category denoted as CONFIG (RAS),

where objects are RACG and morphisms are the connections between those RACG as

CONFIG (RACG, RACG’) or CONFIG(RACG’, RACG).

Proof. All what we need is to prove: i) the existence of composition and identity

morphism, and ii) prove associativity. Let RACG1, RACG2 and RACG3 be three RACG

such that RACG1 connects to RACG2, which connects to RACG3, so RACG1 connects to

RACG3 (indirectly through RACG2), meaning that the existence of a composition of

morphisms between RACG1 and RACG3. The identity morphism does exist as the natural

representation of internal connections. Let f, g and h be the morphisms such that f:

RACG1 → RACG2, g: RACG2 → RACG3 and h: RACG3 → RACG4. It is clear that h ◦ (g

◦ f) = (h ◦ g) ◦ f.■
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Property 8.7.4: The configuration of RAE is conformed to the configuration of RAE-

Formation iff there exist a functor F from CONFIG(RAE) to CONFIG(RAE-Formation).

The functor F guarantees all the objects and morphisms in CONFIG(RAE) have their

mapped object types and morphism types in CONFIG(RAE-Formation).

Property 8.7.5: Two RAE’s configurations are considered to be equivalent iff their

social lives are equivalent (see Property 7.7.2) and they both conform to the configuration

of RAE-Formation configRAE-Formation.

8.8 Representation of Categorical Specification of Self-Configuration

The figure below depicts an example of the representation for a categorical specification

(in XML format) of the self-configuration property we present earlier in this chapter, and

more XML representation can be found in Appendix E.

<CATEGORY name = “Formation-Work-Flow-in-RAS”>
<OBJECT>

<OBJECT name = “InitializeRACGM” type = “Work-Flow-Action”/>
<OBJECT name = “InitializeRACS” type = “Work-Flow-Action”/>
<OBJECT name = “Heartbeat” type = “Work-Flow-Action”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Before” type =“Preorder”/>
<FROM-OBJECT name = “InitializeRACGM”

type = “Work-Flow-Action”/>
<TO-OBJECT name = “Heartbeat” type = “Work-Flow-Action”/>

<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>

<FROM-OBJECT name = “InitializeRACGM”
type = “Work-Flow-Action”/>

<TO-OBJECT name = “InitializeRACS” type = “Work-Flow-Action”/>
<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>

<FROM-OBJECT name = “InitializeRACS”
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type = “Work-Flow-Action”/>
<TO-OBJECT name = “Heartbeat” type = “Work-Flow-Action”/>

<MORPHISM>
</MORPHISM>

</CATEGORY>

Figure 136: XML Specification of Category Formation-Work-Flow-in-RAS

8.9 Summary

In this chapter, we illustrated a prototype design of self-configuration property, prototype

design of categorical specification for the self-configuration and transformation from the

categorical self-configuration property to its XML specification.

We described three scenarios regarding the self-configuration that are forming a RAS

(Section 8.1), forming a RACG (Section 8.3) and forming a RAC (Section 8.5) using

intelligent control loops. In addition, we presented the categorical illustration for those

scenarios in section 8.2, 8.4 & 8.6 respectively using functors, natural transformations

and functor categories.

Finally, the categorical specifications for the self-configuration related properties

together with their XML representations were illustrated in Section 8.7 & 8.8, such as the

configuration of RAE, conformation between the configurations of RAE as well as the

equivalence of RAE’s configurations.
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Chapter 9: RASF Integration Tool

This chapter states the research activity 13) & 14) in Figure 3, which are implementation

of the RASF tool and integration of the MAS implementation to the RASF tool. I had one

publication [85] and one in preparation during this stage. After describing the RASF

process model, the models as well as specifications of the architecture, behavior and

self-* properties in RASF, we have developed a tool, RASF Integration Tool (RASFIT),

for supporting the RASF process methodology.

9.1 Architecture of RASFIT

Figure 137: Architecture of RASF Integration Tool

Figure 137 depicts the architecture of RASFIT, which is an Eclipse [202] plug-in based

solution that extends the Eclipse IDE with a UML design tool (Enterprise Architect [203])
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for modeling and code generation, a framework for building the multi-agent applications

named Jadex [204], a model transformation framework [148] to produce the multi-agent

templates representing the RAS components that satisfy both reactive and autonomic

properties, and a graphical tool in terms of illustrating categorical models [81]. The

following figure illustrates an example of the user interface in RASFIT, and more

examples can be found in Appendix F.

Figure 138: Toolbar Area for RASFIT

9.1.1 Eclipse Plug-in Module

The Eclipse plug-in module includes the projects "org.concordia.RASF.feature", "org.

concordia.RASF.site" and some classes in the project "org.concordia.RASF.core". Figure

139 & 140 show some parts of the Eclipse plug-in module, which is responsible for the

interactions from end users through the Eclipse IDE by using the Eclipse API. The users

can use this module to configure RASFIT, create new RASF projects, packages and

classes; they can also trigger other modules from it, such as the EA module for Phase 1 &
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2 in Section 5.5, Jadex module for Phase 9 and model transformation module for Phase 3.

Figure 139: Part1 of the Eclipse Plug-in Module

Figure 140: Part2 of the Eclipse Plug-in Module

9.1.2 EA Module

The EA module can be used for the Phase 1 & 2 we introduced in Section 5.5. This
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module includes some packages and classes in the project "org.concordia.RASF. core".

Figure 141 depicts some parts of the EA module that is responsible for modeling RAE of

RAS through the integrated EA IDE in the Eclipse IDE by using the EA API. End users

can use this module to draw UML diagrams, generate code template or XML templates

and import predefined RASF model templates which are developed in the project

"org.concordia.RASF.profile" (see Figure 142). Figure 143 shows the design and model

of the RASF modeling profile that include stereotypes, meta-classes, RASF elements,

interactions and diagrams for modeling the RAE in RAS.

Figure 141: Part of the EA module
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Figure 142: Project of RASF Modeling Profile

Figure 143: Design and Model of RASF Modeling Profile
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Figure 144 illustrates a meta-model of the RASF elements and interactions for the

RASF diagrams. For example, the stereotype <<RAGM>> with the meta-type of RAGM

and the type of "RAGMtype" including its repository is extended from the meta-class of

RASF package; the stereotype <<RACS>> with the meta-type of RACS and the type of

"RACStype" having its repository is extended from the meta-class of RASF component;

the stereotype <<RAOL>> with the meta-type of RAOL and the type of "RAOLtype"

containing its repository is extended from the meta-class of RASF class; the stereotype

<<Report>> with the meta-type of Report and the type of "reportType" is extended from

the meta-class of RASF information flow.

Figure 144: Meta-model of the RASF Elements and Interactions

Figure 145 depicts a meta-model of the RASF diagrams with corresponding toolbox.

For instance, the RASF interaction diagram is extended from the meta-class of the EA
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sequence diagram with the toolbox "RASF Interaction"; the RASF logical diagram is

extended from the meta-class of the EA class diagram with the toolbox "RASF Logical".

Figure 145: Meta-model of the RASF Diagrams

Figure 146 shows a meta-model of the RASF toolbox "Logical". For example, the

"Logical Elements" is extended from the meta-class of the EA toolbox page with RASF

elements, such as RAO, RAOL, RAC, RACS and RAGM.

Figure 146: Meta-model of the RASF Toolbox "Logical"
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9.1.3 Jadex Module

The Jadex module can be used for the Phase 9 we introduced in Section 5.5. This module

includes some packages and classes in the project "org.concordia.RASF.core". Figure 147

illustrates some parts of the Jadex module which is responsible for modeling the MAS

implementation from the RAS model through the integrated Jadex IDE in the Eclipse

IDE by using the Jadex API. End users can use this module to create a RASF project with

the Jadex nature, create new agents with their capabilities, beliefs, goals, and start the

Jadex platform in terms of running or debugging the MAS applications.

Figure 147: Part of the Jadex Module
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9.1.4 Model Transformation Module

The model transformation module can be used for the Phase 3 & 4 we introduced in

Section 5.5. This module includes project "org.concordia.RASF.RAStoMAS" (see Figure

148), which is responsible for transforming the RAS model represented in a XML format

(generated from the EA module in Section 9.1.2) to the MAS implementation represented

in format of agent definition files, defining beliefs, goals, message events, plan headers

and related plan files in Java that contain the body of executable plans [148].

Figure 148: Part of the Model Transformation Module

9.1.5 CATCanvas Module

The CATCanvas module can be used for the Phase 5, 6 & 11. This module is a standalone

application described in [81]. End users may use this module to graphically illustrate a

RAS model represented in a XML format by importing its XML file. Moreover, the users

can draw new categorical diagrams using the CATCanvas, export those diagrams to XML

files and then import them to generate the RAS and MAS models.
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9.2 Installation and Configuration of RASFIT

Installing RASFIT is similar to other Eclipse plug-ins as the figures in Appendix G

illustrating. The following figure depicts the starting point.

After installing RASFIT successfully and restarting Eclipse, the next step is to

configure RASFIT as the figures in Appendix G illustrating. The following figure depicts

the starting point.
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9.3 Applying RASF Methodology with RASFIT

This section describes how to use RASFIT to develop a RAS based on the RASF process

model (Section 5.5) that includes modeling and specification. The model transformation

and implementation will be addressed in the next chapter together with case studies. We

only list the first step for each stage, and more details can be found in Appendix H.

9.3.1 Creation of RASF Project

Step 1 (Phase 1 in Section 5.5): In the Eclipse IDE, click “File” “New” “Other…”

9.3.2 Modeling in RASF Project

Step 11 (Phase 1): Double click the model file of Enterprise Architect (EA) under the

folder "model", and the project explorer of EA is opened (see the figure below).
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9.3.3 XML File and Code Template Generation in RASF Project

After completing the RAS modeling, we can generate the XML specification file and

code template for the RAS model automatically in terms of transforming it to the MAS

model as the following:

Step 22 (Phase 1 & 2): The XML specification file generation is triggered by clicking the

button "RASF Code Generation" either from the RASF toolbar or from the RASF menu.

The generation only applies to the RASF projects; otherwise, it will throw an error

message (see the figure below).
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9.3.4 Model Transformation and Application Deployment

After having the XML specification files and source code templates, we can extract all

necessary information from them according to the input model (see Section 5.4.2) of the

model transformation module (see Section 9.1.4). The following figure depicts an

example of the output model and source code for the Mars-World case study (see Section

4.1).

Step 29 (Phase 9): In order to deploy the MAS implementations that are transformed and

developed from the XML specification files as well as source code templates, we can

start a Jade and Jadex platform by clicking the button "Start EJADE RMA" either from

the RASF toolbar or from the RASF menu (see the figure below).
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9.4 Summary

In this chapter, we gave an introduction to the implementation of RASFIT and integration

of the MAS implementation to RASFIT, which includes the Eclipse plug-in module,

Enterprise Architect module, Jadex module, CATCanvas module as well as the model

transformation module.

RASFIT is and Eclipse plug-in based solution that extends the Eclipse IDE with a

UML design tool (EA) for modeling and code generation, a framework for building the

multi-agent applications (Jadex), a model transformation framework to produce the

multi- agent templates representing the RAS components that satisfy autonomic

properties, and a graphical tool in terms of illustrating categorical models.

We presented the architecture, installation and configuration of RASFIT. We also

illustrated how to apply RASF methodology with RASFIT, which includes the creation,

modeling, XML file and code template generation, model transformation and application

deployment in RASF project.

We will introduce our case studies to support the RASF methodology and approach

in next chapter.
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Chapter 10: RASF Case Studies

This chapter states the research activity 9), 12), 17) in Figure 3, which state the prototype

design of self-healing and self-configuration in case studies using RASF. The background

and introduction of those case studies can be found in Chapter 4. I had one publication

[86] and one in preparation for this chapter.

10.1 Mars-World

In Mars-world, the objective for a group of robots is to mine ore; the mining process is

composed of locating the ore, mining it, and transporting the mined ore to a home base.

10.1.1 Architecture Model of Mars-World

Figure 149: Example of Mars-world Modeled using RASF
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Figure 149 depicts an example of the architecture model of Mars-world built from the

RAS architecture model (see Figure 21 in Section 5.1) for a simplified scenario presented

above (Phase 1 in Section 5.5), where every circle represents the component of a robot

and each arrow specifies the communication between those components.

In this example, an exploration group (RACG1) has a supervisor robot (RACS1) and

its backup (RACS1'), a production robot (RAC1), a carry robot (RAC2) and a sentry

robot (RAC3). A control unit (RAOL) and a sensor (RAO1) are two common devices of

each robot. Moreover, different types of robots have their particular equipments. For

instance, a production robot has a drill (RAO2); a carry robot has a trailer (RAO3); a

sentry robot has an enhanced sensor (RAO5) instead of the standard one. The figures

below illustrate the specifications of production robot, exploration group and Mars-world

according to the specifications of RAC (Figure 22), RACG (Figure 23) and RAS (Figure

24) in Section 5.1.2, 5.1.3 & 5.1.4.

Figure 150: Specification of Production Robot
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Figure 151: Specification of Exploration Group

Figure 152: Specification of Mars World

The following figures illustrate some examples of using the RASFIT we introduced

earlier in Chapter 9 in terms of specifying the architecture model of Mars-world.

Figure 153: Class Diagram of Sentry Robot1
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Figure 154: Component Diagram of Exploration Group1

Figure 155: Package Diagram of Mars-world

10.1.2 Self-Healing in Mars-World

Crashed Sensor. After sensor1 is started by CU1, it starts to send its heartbeat messages

to CU1 every t ticks, while CU1 is in Monitor state, monitoring the status of sensor1. If

CU1 receives the heartbeat messages from sensor1, NoChange event keeps it in Monitor

state; otherwise, Sensor1-Crashed event is triggered and CU1 transits to Analyze state,

while a time constraint variable (TCvar1) is initialized to work as a local clock in terms
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of time constraints on each transition of the intelligent control loop. After CU1 enters

Analyze state, it sends the Restart message to sensor1 in t0 ticks. If sensor1 is recoverable,

NoAction event occurs and CU1 goes back to Monitor state, while TCvar1 is reset;

otherwise, CU1 transits to Plan state triggered by HasAction event in t1 ticks. When CU1

is in Plan, it broadcasts RequestSensor1 messages with type information of sensor1 to all

other robots for replacing it by an available sensor which is equivalent to sensor1, such

as sensor8, since equivalent objects behave in the same way (see Property 7.7.3). If at

least one sensor is available for switching, CU1 chooses Substitute plan and transits to

Execute state triggered by Substitute event in t2 ticks; otherwise, it selects Take-over plan

and enters Execute triggered by Take-over event in t2 ticks. In this plan, drill1 takes the

responsibilities of sensor1 by its backup sensor and works as the product object of

original drill1 and sensor1, because of their synchronous communication. When CU1 is

in Execute state and Substitute plan is applicable, CU1 sends a register message to

sensor8 and then initializes it to the status of sensor1 based on the checkpoint made

before. When Take-over plan is applicable, CU1 sends a Take-over message to drill1 and

update it to the status of synchronous product machine of drill1 and sensor1 based on the

checkpoint made before. After executing the plan, CU1 validates the original as well as

evolutionary behaviors of production robot1 based on their categorical specifications. If

they are equivalent, ActionDone event occurs and CU1 transits to Monitor in t3 ticks;

otherwise, ActionFailed event keeps it in Execute for the user intervention from ground

station through supervisor robot1 and manager robot (see the figures below).
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Figure 156: Sensor Substitution Work Flow in Production Robot

Figure 157: Sensor Take-over Work Flow in Production Robot

When both sensor1 and drill1 are crashed at the same time, CU1 tries to restart them

first. If neither of them can be recovered, CU1 broadcasts messages to all other robots for

requesting the equivalent sensor and drill of them; otherwise, the remaining process is the

same as the illustration before. If none of sensor or drill is available, CU1 broadcasts

messages to all other robots for requesting the equivalent production robot of the original

one, or the description before is applicable for remaining process (Phase 1 in Section

5.5).
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Figure 158: Intelligent Control Loop of Control Unit in Production Robot

Crashed Control Unit. As the scenario above, after a sentry robot is started by its

supervisor robot, its control unit (CU3) begins to send heartbeat messages to supervisor

robot’s control unit (CU4) every t ticks. Figures 159 and 160 show the work flows of

substituting or taking over crashed CU3. If CU1, CU2 and CU3 are crashed at the same

time, CU4 tries to restart them first. If none of them can be restarted, CU4 can broadcast

messages to all other robots in terms of requesting the equivalent objects of CU1, CU2

and CU3; otherwise, the remaining process is the same as the description before. If none

of CU is available for substituting, CU4 may broadcast messages to all other robots for

requesting the equivalent production robot, carry robot as well as sentry robot of the

original ones; otherwise, the illustration before may indicate the remaining process.
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Figure 159: Control Unit Substitution Work Flow in Sentry Robot

Figure 160: Control Unit Take-over Work Flow in Sentry Robot

Figure 161: Intelligent Control Loop of Control Unit in Supervisor Robot
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Crashed Robot. Similarly as the scenarios discussed above, after a specialist robot

is started by a supervisor robot, it begins to send its heartbeat messages to the supervisor

robot. If any part of the specialist robot is crashed and it cannot be restarted, substituted,

or took over, the supervisor robot identifies it as a crashed robot and broadcasts messages

to all other specialist robots for requesting an equivalent robot of the original one (see

Figure 162). If none of the specialist robot is available for substituting, the supervisor

robot waits for the user intervention from ground station through manager robot (see

Figure 163, 164).

Figure 162: Carry Robot Substitution Work Flow in Exploration Group

Figure 163: User Intervention Request Work Flow in Exploration Group
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Figure 164: Intelligent Control Loop of Control Unit in Manager Robot

10.1.3 Self-Configuration in Mars-World

Forming Mars-world. After receiving the task of forming a Mars-world from Console,

manager robot starts to create supervisor robots and establish corresponding connections

among them based on the composition rules and communication protocols specified by

the index category Mars-world-Formation. Figure 165 depicts an example of forming

the category Mars-world from its index category Mars-world-Formation. Figure 166

illustrates the detailed object as well as morphism mappings from Mars-world to Mars-

world-Formation. The manager robot is initialized and validated by an initialization

manager in the Console (Phase 1 in Section 5.5).
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Figure 165: Example of Forming Mars-world from Mars-world-Formation
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Object Mapping Morphism Mapping (RAS-Formation <- RAS1)

Manager Robot1 -> Manager Robot Comm1->Comm-Type1, Comm2->Comm-Type2

Supervisor Robot1 -> Supervisor Robot Comm3->Comm-Type1, Comm4->Comm-Type2

Supervisor Robot2 -> Supervisor Robot Comm5->Comm-Type3, Comm6->Comm-Type4

Sentry Robot1 -> Sentry Robot Comm7->Comm-Type5, Comm8->Comm-Type6

Production Robot1 -> Production Robot Comm9->Comm-Type7, Comm10->Comm-Type8

Carry Robot1 -> Carry Robot Comm11->Comm-Type3, Comm12->Comm-Type4

Sentry Robot2 -> Sentry Robot Supervisor Robot1 – Supervisor Robot2 -> Identity-Mor(Supervisor Robot)

Figure 166: Object and Morphism Mapping of Functor Mars-world-Forming

Figure 167: Formation Work Flow in Mars-world
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Figure 168: Self-Configuration Work Flow in Mars-world

Figure 169: Self-Configuration Work Flow of Substitution in Mars-world

Figure 170: Self-Configuration Work Flow of Take-over in Mars-world
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After manager robot1 initializes its supervisor robots according to the requirements

from Console as well as the capabilities of those supervisor robots, it validates the

configuration of those supervisor robots against their types every t ticks, while manager

robot1 is in the first state of its intelligent control loop (monitoring). If the configuration

of those supervisor robots conforms to their types, composition rules and communication

protocols (see Property 8.7.4), NoViolation event keeps manager robot1 in Monitor state;

otherwise, NeedInvestigation event is triggered and manager robot1 transits to Analyze

state, while a time constraint variable (TCvar1) is initialized to work as a local clock in

terms of time constraints on each transition of the intelligent control loop. The value of

TCvar1 is t0, t1, t2, t3... where t0 < t1 < t2 < t3.

After manager robot1 enters the Analyze state, 1) it sends the Restart message to

supervisor robot1 in t0 ticks where the violation is caused by incorrect supervisor robot

type or incorrect communication type from the supervisor robot1 to manage robot1. If

supervisor robot1 conforms to its type and communication type, NoAction event occurs

and manager robot1 goes back to Monitor state, while the TCvar1 is reset; otherwise,

manager robot1 transits to Plan state triggered by LaunchSelfHealing event in t1 ticks. 2)

If the violation is caused by incorrect communication type from other supervisor robot

(supervisor robot3) to supervisor robot1, manager robot1 sends the Restart message to

supervisor robot3. If the communication conforms to its type, NoAction event occurs and

manager robot1 goes back to the Monitor state, while the TCvar1 is reset; otherwise,

manager robot1 transits to Plan state triggered by the LaunchSelfHealing event within t1
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ticks. 3) If the violation is caused by the incorrect communication type from manager

robot1 to supervisor robot1, manager robot1 resets that communication. If it conforms to

the correct one specified in the index category Mars-world-Formation (see Property

8.7.4), NoAction event occurs and manager robot1 goes back to the Monitor state, while

the TCvar1 is reset; otherwise, manager robot1 transits to Plan state triggered by the

LaunchSelfHealing event in t1 ticks.

Figure 171: Intelligent Control Loop in Manager Robot1 for Self-Configuration
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Figure 172: ICL in Manager Robot1 for Communication Self-Configuration

When manager robot1 is in Plan state, it chooses either Substitute plan or Take-over

plan, based on the availability of substitutable supervisor robot for supervisor robot1

(scenario 1 in the paragraph above) or for supervisor robot3 (scenario 2). Manager

robot1 transits to Execute state triggered by the Substitute event or Take-over event

respectively in t2 ticks. For scenario 3, manager robot1 sends a selfViolation message to

Console, and the latter chooses either Substitute plan or Take-over plan based on the

availability of substitutable manager robot for manager robot1. It transits to Execute state

triggered by Substitute or Take-over event in t2 ticks.

When manager robot1 is in Execute state and Substitute plan is applicable, it sends a

register message to the substitutable supervisor robot of supervisor robot1 (scenario 1) or

supervisor robot3 (scenario 2) and initialize it to status of supervisor robot1 or supervisor
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robot3 according to the checkpoint made before. When the take-over plan is applicable,

manager robot1 sends a take-over message to supervisor robot2 (scenario 1 or scenario 2)

and update it to the status of the synchronous product machine of supervisor robot1 and

supervisor robot2, or supervisor robot3 and supervisor robot2 based on the checkpoint.

After the plan execution, manager robot1 validates the configuration of Mars-world’, an

evolution of Mars-world (see Property 6.1.3) against its index category Mars-world-

Formation according to their categorical specifications. If that configuration conforms to

the index category (see Property 8.7.4), ActionDone event occurs and manager robot1

transits to the Monitor state in t3 ticks; otherwise, ActionFailed event keeps it in Execute

state for the user intervention from the Console. For scenario 3, the manager robot1 is

substituted by manager robot3 or taken over by manager robot2.

10.1.4 Categorical Model of Structure in Mars-World

According to the Property 6.1.2 in Chapter 6, every robot in Mars-world, a production

robot, for instance, is a category Production-Robot1 (PR1) consisting of objects Drill1,

Sensor1, Control-Unit1 (CU1) and their interactions PR1(Drill1, Sensor1), PR1(CU1,

Drill1) and PR1(CU1, Sensor1). Similarly, for an exploration group (see Property 6.1.7),

the category Exploration Group1 (EG1) includes the full sub-categories Production-

Robot1 (PR1), Carry Robot1 (CR1), Sentry Robot1 (SR1), and Supervisor Robot1

(Supervisor1). Moreover, the types of robots, their parts and groups can be specified by

their corresponding type categories as Robot-Formation, Robot-Group-Formation and

Mars-World-Formation (Phase 2 in Section 5.5).
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The evolution of a robot, for example, from PR1 to PR1’, because of the new

configuration for its drill1 or sensor1, is a functor F: PR1' → PR1-0 (see Property 6.1.3).

Moreover, the evolution of an exploration group, for instance, from EG1 to EG1’ due to

the new organization for its PR1, CR1, or SR1 may be modeled as F: EG1' → EG1-0

(see Property 6.1.9). The relationship between two solutions in terms of fault-tolerance

for an exploration group, Solution1: EG1' → EG1-0 as well as Solution2: EG1'' →

EG1-0, can be modeled by a natural transformation convert1: Solution1 → Solution2 (see

Property 6.1.10). All those solutions (functors) along with their conversions (natural

transformations) may be specified by the functor category Solutions (EG1', EG1-0) as

the Property 6.1.11.

The figure below depicts the representation of the index category Robot-Formation

in a XML format (Phase 2 in Section 5.5); more details can be found in Appendix I.

<CATEGORY name = “Robot-Formation”>
<OBJECT>

<OBJECT name = “Sensor”/>
<OBJECT name = “Drill”/>
<OBJECT name = “Trailer”/>
<OBJECT name = “Control-Unit”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Communication-from-CU-to-Sensor”/>
<FROM-OBJECT name = “Control-Unit”/>
<TO-OBJECT name = “Sensor”/>

</MORPHISM>
<MORPHISM name = “Communication-from-CU-to-Drill”/>

<FROM-OBJECT name = “Control-Unit”/>
<TO-OBJECT name = “Drill”/>

</MORPHISM>
<MORPHISM name = “Communication-from-CU-to-Trailer”/>



268

<FROM-OBJECT name = “Control-Unit”/>
<TO-OBJECT name = “Trailer”/>

</MORPHISM>
<MORPHISM name = “Communication-from-Sensor-to-CU”/>

<FROM-OBJECT name = “Sensor”/>
<TO-OBJECT name = “Control-Unit”/>

</MORPHISM>
<MORPHISM name = “Communication-from-Drill-to-CU”/>

<FROM-OBJECT name = “Drill”/>
<TO-OBJECT name = “Control-Unit”/>

</MORPHISM>
<MORPHISM name = “Communication-from-Trailer-to-CU”/>

<FROM-OBJECT name = “Trailer”/>
<TO-OBJECT name = “Control-Unit”/>

</MORPHISM>
<MORPHISM name = “Communication-from-Sensor-to-Drill”/>

<FROM-OBJECT name = “Sensor”/>
<TO-OBJECT name = “Drill”/>

</MORPHISM>
<MORPHISM name = “Communication-from-Sensor-to-Trailer”/>

<FROM-OBJECT name = “Sensor”/>
<TO-OBJECT name = “Trailer”/>

</MORPHISM>
<MORPHISM name = “Communication-from-Drill-to-Sensor”/>

<FROM-OBJECT name = “Drill”/>
<TO-OBJECT name = “Sensor”/>

</MORPHISM>
<MORPHISM name = “Communication-from-Trailer-to-Sensor”/>

<FROM-OBJECT name = “Trailer”/>
<TO-OBJECT name = “Sensor”/>

</MORPHISM>
</MORPHISM>

</CATEGORY>

Figure 173: XML Specification of Index Category Robot-Formation

10.1.5 Categorical Model of Behavior in Mars-World

The synchronous communication and asynchronous between the parts of a robot, such as

the control units, sensors or drills can be specified as their products and coproduct
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correspondingly (see Property 6.2.6 & 6.2.7).

<CATEGORY name = “Robot-Part-Behavior”>
<OBJECT>

<OBJECT name = “Function-Pairi” type = “Function-Pair-Typei”/>
<OBJECT name = “Function-Pairj” type = “Function-Pair-Typej”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Interactionn” type =“Interaction-Typen”/>
<FROM-OBJECT name = “Function-Pairi”

type = “Function-Pair-Typei”/>
<TO-OBJECT name = “Function-Pairj” type = “Function-Pair-Typej”/>

<MORPHISM>
</MORPHISM>

</CATEGORY>

Figure 174: XML Specification of Category Robot-Part-Behavior

<PRODUCT name = “Sync-Communication-between-Sensor-and-Drill”>
<PRODUCT-OBJECT name = “Synchronous-Communicationm”

type = “Sync-Communication-between-Robot-Parts”/>
<BETWEEN-OBJECT name = “Sensori” type = “Sensor”/>
<BETWEEN-OBJECT name = “Drillj” type = “Drill”/>

</PRODUCT>
<PRODUCT name = “Sync-Communication-between-Sensor-and-Trailer”>

<PRODUCT-OBJECT name = “Synchronous-Communicationn”
type = “Sync-Communication-between-Robot-Parts”/>

<BETWEEN-OBJECT name = “Sensorx” type = “Sensor”/>
<BETWEEN-OBJECT name = “Trailery” type = “Trailer”/>

</PRODUCT>

Figure 175: XML Specification of Synchronous Communication in Robot

<COPRODUCT name = “Async-Communication-between-Sensor-and-CU”>
<COPRODUCT-OBJECT name = “Asynchronous-Communicationx”

type = “Async-Communication-between-Robot-Parts”/>
<BETWEEN-OBJECT name = “Sensori” type = “Sensor”/>
<BETWEEN-OBJECT name = “CUj” type = “Control-Unit”/>

</COPRODUCT>
<COPRODUCT name = “Async-Communication-between-Drill-and-CU”>

<COPRODUCT-OBJECT name = “Asynchronous-Communicationy”
type = “Async-Communication-between-Robot-Parts”/>
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<BETWEEN-OBJECT name = “Drilli” type = “Drill”/>
<BETWEEN-OBJECT name = “CUj” type = “Control-Unit”/>

<COPRODUCT name = “Async-Communication-between-Trailer-and-CU”>
<COPRODUCT-OBJECT name = “Asynchronous-Communicationz”

type = “Async-Communication-between-Robot-Parts”/>
<BETWEEN-OBJECT name = “Traileri” type = “Drill”/>
<BETWEEN-OBJECT name = “CUj” type = “Control-Unit”/>

</COPRODUCT>

Figure 176: XML Specification of Asynchronous Communication in Robot

The next relay of the outgoing communication from the same source object Control-

Unit to the same destination object Drill by two relay objects Sensors can be specified as

the pushout Drill = Sensori +Control-Unit Sensorj (see Property 6.2.8 and the figure below).

<PUSHOUT name = “Next-Communication-Relay-from-CU-to-Drill”>
<SOURCE-OBJECT name = “CUn” type = “Control-Unit”/>
<RELAY-OBJECT name = “Sensori” type = “Sensor”/>
<RELAY-OBJECT name = “Sensorj” type = “Sensor”/>
<DESTINATION-OBJECT name = “Drillpushout” type = “Drill”/>

</PUSHOUT>

Figure 177: XML Specification of Pushout Next Communication Relay in Robot

The previous relay of the incoming communication toward the same destination

object Control-Unit from the same source object Trailer by two replay object Sensors can

be specified as the pullback: Trailer = Sensori ×Control-Unit Sensorj (see property 6.2.9).
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<PULLBACK name = “Previous-Communication-Relay-from-Trailer-to-CU”>
<SOURCE-OBJECT name = “Trailerpullback” type = “Trailer”/>
<RELAY-OBJECT name = “Sensori” type = “Sensor”/>
<RELAY-OBJECT name = “Sensorj” type = “Sensor”/>
<DESTINATION-OBJECT name = “CUn” type = “Control-Unit”/>

</PULLBACK>

Figure 178: XML Specification of Pullback Previous Communication Relay in Robot

The designated behavior of a robot, such as the sentry robot, production robot, carry

robot or supervisor robot, can be specified as a category of cones, where objects are the

cones consisting of an object Robot-Part with a family of Communications in the

diagram from Robot-Formation to Robot, and morphisms are incoming

communications among those cones (see Property 6.2.10 and the figure below).

<CATEGORY name = “Robot-Behavior-Designated”>
<OBJECT>

<OBJECT name = “Cone-to-Diagrami”
type = “Cone-to-Diagram-Robot-Part”/>

<OBJECT name = “Cone-to-Diagramj”
type = “Cone-to-Diagram-Robot-Part”/>
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</OBJECT>
<MORPHISM>

<MORPHISM name = “Incoming-Communicationn”
type =“Incoming-Communication-Robot-Part”/>

<FROM-OBJECT name = “Cone-to-Diagrami”
type = “Cone-to-Diagram-Robot-Part”/>

<TO-OBJECT name = “Cone-to-Diagramj”
type = “Cone-to-Diagram-Robot-Part”/>

<MORPHISM>
</MORPHISM>

</CATEGORY>

Figure 179: XML Specification of Category Robot-Behavior-Designated

<LIMIT name = “Limit-of-Robot-Behavior-Designated”>
<DIAGRAM name = “Constructn” source-category = “Robot-Formation”

destination-category = “Robotn”/>
<BEHAVIOR-CATEGORY name = “Robotn-Behavior-Designated”/>
<TERMINAL-OBJECT name = “CUn” type = “Control-Unit”/>

</LIMIT>

Figure 180: XML Specification of Limit Limit-of-Robot-Behavior-Designated
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The achieved behavior of a robot in the runtime can be specified as a category of

cocones, where objects are the cocones consisting of an object Robot-Part with a family

of Communications in the diagram from Robot-Formation to Robot, and morphisms are

outgoing communications among the cocones (see Property 6.2.11 and the figure below).
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<CATEGORY name = “Robot-Behavior-Achieved”>
<OBJECT>

<OBJECT name = “Cocone-to-Diagrami”
type = “Cocone-to-Diagram-Robot-Part”/>

<OBJECT name = “Cocone-to-Diagramj”
type = “Cocone-to-Diagram-Robot-Part”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Outgoing-Communicationn”
type =“Outgoing-Communication-Robot-Part”/>

<FROM-OBJECT name = “Cocone-to-Diagrami”
type = “Cocone-to-Diagram-Robot-Part”/>

<TO-OBJECT name = “Cocone-to-Diagramj”
type = “Cocone-to-Diagram-Robot-Part”/>

<MORPHISM>
</MORPHISM>

</CATEGORY>

Figure 181: XML Specification of Category Robot-Behavior-Achieved

<COLIMIT name = “Colimit-of-RAC-Behavior-Achieved”>
<DIAGRAM name = “Constructn” source-category = “RAO-Type”

destination-category = “RACn”/>
<BEHAVIOR-CATEGORY name = “RACn-Behavior-Achieved”/>
<INITIAL-OBJECT name = “RAOLn” type = “RAOL-Typen”/>

</COLIMIT>

Figure 182: XML Specification of Colimit Colimit-of-Robot-Behavior-Achieved
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The outgoing communication from the Sensor, Drill and Trailer to their Control Unit

in a Robot can be specified by a slice category as Robot/CU (see Property 6.2.12).

<SLICE-CATEGORY name = “Production-Robot1/Control-Unit1”>
<OBJECT>

<OBJECT name = “Report1” type = “Report”/>
<OBJECT name = “Report2” type = “Report”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Coordination1” type =“Coordination”/>
<FROM-OBJECT name = “Report1” type = “Report”/>
<TO-OBJECT name = “Report2” type = “Report”/>

<MORPHISM>
</MORPHISM>

</SLICE-CATEGORY>

Figure 183: XML Specification of Slice Category Production-Robot1/CU1
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The incoming communication from the Control Unit to the Sensor, Drill and Trailer

in a Robot can be specified by a coslice category as CU/Robot (see Property 6.2.13).

<COSLICE-CATEGORY name = “Control-Unit1/Production-Robot1”>
<OBJECT>

<OBJECT name = “Command1” type = “Command”/>
<OBJECT name = “Command3” type = “Command”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Coordination2” type =“Coordination”/>
<FROM-OBJECT name = “Command1” type = “Command”/>
<TO-OBJECT name = “Command3” type = “Command”/>

<MORPHISM>
</MORPHISM>

</CATEGORY>

Figure 184: XML Specification of Coslice Category CU1/Production-Robot1

The social life of any Robot in the category Mars-world is a subcategory of Mars-

world denoted as SOCIAL(Robot), where the objects are Robot and all other Robot’

|Mars-world| that have morphisms with Robot, and the morphisms are social connections

between Robot and Robot’ as Mars-world(Robot, Robot’) or Mars-world(Robot’, Robot)

as the Definition 3.1.1.

10.1.6 Categorical Model of Self-Healing in Mars-World

Figure 185 illustrates a categorical specification of production robot1 before snesor1 is

crashed. The category PR1 consists of three objects drill1, sensor1 and CU1. Therefore,
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the bidirectional communications between those objects are six morphisms to specify the

working collaboration between drill1 and sensor1 (coordination1, coordiantion2) as well

as leadership among CU1, drill1 and sensor1 (command1, report1, command2, report2).

Synchronous communication between drill1 and sensor1 is specified as their product.

Slice category models Report actions (report1, report2) with the relations (coordination1)

from drill1 and sensor1 to CU1; coslice category specifies Command actions (command1,

command2) with their relations (coordination2) from CU1 to drill1 and sensor1.

CAT-RAC <Production Robot1>

Objects: <Drill1, Sensor1, CU1>

Morphisms: <Coordiantion1(Drill1, Sensor1), Coordination2(Sensor1, Drill1), Report1(Drill1, CU1),

Command1(CU1, Drill1), Report2(Sensor1, CU1), Order2(CU1, Sensor1)>

Limit Object: <CU1>

Colimit Object: <CU1>

Product Objects: <SPM1(Drill1, Sensor1)>

Coproduct Objects: <(Drill1, CU1), (Sensor1, CU1)>

Pushout Objects: <Collect1(Command1, Command2)>

Pullback Objects: <Trance1(Report1, Report2)>

Slice Category: <(Report1, Report2), Coordination1>

Coslice Category: <(Command1, Command2), Coordination2>

Functors: <Restart(PR1-1, PR1-0), Substitute(PR1-2, PR1-0), Take-over(PR1-3, PR1-0)>

Natural Transformations: <Convert1(Restart, Substitute), Convert2(Substitute, Take-over),

Convert3(Restart, Take-over)>

Functor Category: <(Restart, Substitute, Take-over), Convert1, Convert2, Convert3>

End CAT-RAC

Figure 185: Categorical Specification of Production Robot

If PR1 is recovered by restarting crashed sensor1, it evolves to PR1-1 consisting of

the same composition and categorical specification as PR1 except for the different initial

status of sensor1, and this evolution is represented as the Restart functor from PR1-1 to

PR1-0 (a category with all potential robot parts for the self-healing in a production robot).
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If PR1 is recovered by replacing sensor1 with one of its equivalent object sensor8, it

evolves to PR1-2 having the same composition and categorical specification as PR1

except for substituting each sensor1 with sensor8, which evolution is specified as a

Substitute functor. However, if PR1 is recovered by asking drill1 to take over the

responsibilities of sensor1, it will evolve to PR1-3 which has a different composition and

categorical specification (see Figure 186), but both of them have the equivalent behavior,

since drill1’ works as the product object of original drill1 and sensor1 through its backup

sensor and drill1’ ~ drill1 × sensor1.

Figure 186: Evolution for Self-Healing in Production Robot

Moreover, the conversions between the plans Restart, Substitute, and Take-over may

be interpreted as a Convert natural transformations. For example, Convert1 is used to

specify the mapping from Restart to Substitute when PR1 cannot be recovered after

restarting Sensor1 due to its defects. Thus, a functor category consisting of those functors
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as objects with their natural transformations as morphisms models all possible evolutions

and their relations.

Figure 187: Natural Transformation for Self-Healing in Production Robot1

Figure 188: Natural Transformation from Restart to Substitute in PR1

Figure 189: Natural Transformation from Substitute to Take-over in PR1

Figure 190: Natural Transformation from Restart to Take-over in PR1

The following figures illustrate the representation of the categorical model for the

self-healing property described above in a XML format (Phase 2 in Section 5.5).
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<FUNCTOR name = “Production-Robot-Self-Healing-Restart”
source-category = “PR1-1”
target-category = “PR1-0”>

<OBJECT-MAPPING>
<OBJECT-MAPPING source-object = “Sensor1-1”

target-object = “Sensor1”/>
<OBJECT-MAPPING source-object = “Drill1”

target-object = “Drill1”/>
<OBJECT-MAPPING source-object = “Control-Unit1”

target-object = “Control-Unit1”/>
</OBJECT-MAPPING>
<MORPHISM-MAPPING>

<MORPHSIM-MAPPING source-morphism = “Command1-1”
target-morphism = “Command1”/>

<MORPHSIM-MAPPING source-morphism = “Command2”
target-morphism = “Command2”/>

<MORPHSIM-MAPPING source-morphism = “Report1-1”
target-morphism = “Report1”/>

<MORPHSIM-MAPPING source-morphism = “Report2”
target-morphism = “Report2”/>

<MORPHSIM-MAPPING source-morphism = “Cooperate1-1”
target-morphism = “Cooperate1”/>

<MORPHSIM-MAPPING source-morphism = “Cooperate2”
target-morphism = “Cooperate2”/>

</MORPHISM-MAPPING>
</FUNCTOR>

Figure 191: XML Specification of Functor PR1-Self-Healing-Restart

<FUNCTOR name = “Production-Robot-Self-Healing-Substitute”
source-category = “PR1-2”
target-category = “PR1-0”>

<OBJECT-MAPPING>
<OBJECT-MAPPING source-object = “Sensor8”

target-object = “Sensor1”/>
<OBJECT-MAPPING source-object = “Drill1”

target-object = “Drill1”/>
<OBJECT-MAPPING source-object = “Control-Unit1”

target-object = “Control-Unit1”/>
</OBJECT-MAPPING>
<MORPHISM-MAPPING>

<MORPHSIM-MAPPING source-morphism = “Command8”
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target-morphism = “Command1”/>
<MORPHSIM-MAPPING source-morphism = “Command2”

target-morphism = “Command2”/>
<MORPHSIM-MAPPING source-morphism = “Report8”

target-morphism = “Report1”/>
<MORPHSIM-MAPPING source-morphism = “Report2”

target-morphism = “Report2”/>
<MORPHSIM-MAPPING source-morphism = “Cooperate8”

target-morphism = “Cooperate1”/>
<MORPHSIM-MAPPING source-morphism = “Cooperate2”

target-morphism = “Cooperate2”/>
</MORPHISM-MAPPING>

</FUNCTOR>

Figure 192: XML Specification of Functor PR1-Self-Healing-Substitute

<FUNCTOR name = “Production-Robot-Self-Healing-Take-Over”
source-category = “PR1-3”
target-category = “PR1-0”>

<OBJECT-MAPPING>
<OBJECT-MAPPING source-object = “SPM1”

target-object = “Sensor1”/>
<OBJECT-MAPPING source-object = “SPM1”

target-object = “Drill1”/>
<OBJECT-MAPPING source-object = “Control-Unit1-1”

target-object = “Control-Unit1”/>
</OBJECT-MAPPING>
<MORPHISM-MAPPING>

<MORPHSIM-MAPPING source-morphism = “Command6”
target-morphism = “Command1”/>

<MORPHSIM-MAPPING source-morphism = “Command7”
target-morphism = “Command2”/>

<MORPHSIM-MAPPING source-morphism = “Report6”
target-morphism = “Report1”/>

<MORPHSIM-MAPPING source-morphism = “Report7”
target-morphism = “Report2”/>

<MORPHSIM-MAPPING source-morphism = “Cooperate6”
target-morphism = “Cooperate1”/>

<MORPHSIM-MAPPING source-morphism = “Cooperate7”
target-morphism = “Cooperate2”/>

</MORPHISM-MAPPING>
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</FUNCTOR>

Figure 193: XML Specification of Functor PR1-Self-Healing-Take-Over

<NATURAL-TRANSFORMATION name = “Relation-of-PR-Evolution”>
<ARROW>

<ARROW name = “Convert1”/>
<FROM-FUNCTOR name = “PR-Self-Healing-Restart”

type = “PR-Evolution-Self-Healing”/>
<TO-FUNCTOR name = “PR-Self-Healing-Substitute”

type = “PR-Evolution-Self-Healing”/>
</ARROW>
<ARROW name = “Convert3”/>

<FROM-FUNCTOR name = “PR-Self-Healing-Restart”
type = “PR-Evolution-Self-Healing”/>

<TO-FUNCTOR name = “PR-Self-Healing-Take-Over”
type = “PR-Evolution-Self-Healing”/>

</ARROW>
<ARROW name = “Convert2”/>

<FROM-FUNCTOR name = “PR-Self-Healing-Substitute”
type = “PR-Evolution-Self-Healing”/>

<TO-FUNCTOR name = “PR-Self-Healing-Take-Over”
type = “PR-Evolution-Self-Healing”/>

</ARROW>
</ARROW>

</NATURAL-TRANSFORMATION>

Figure 194: XML Specification of Natural Transformation PR-Evolution-Relation

<CATEGORY name = “Relation-Set-of-PR-Evolution-Self-Healing”>
<OBJECT>

<OBJECT name = “PR-Self-Healing-Restart”
type = “PR-Evolution-Self-Healing” />

<OBJECT name = “PR-Self-Healing-Substitute”
type = “PR-Evolution-Self-Healing”/>

<OBJECT name = “PR-Self-Healing-Take-Over”
type = “PR-Evolution-Self-Healing”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Convert1”
type =“PR-Evolution-Relation-Self-Healing”/>

<FROM-OBJECT name = “PR-Self-Healing-Restart”
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type = “PR-Evolution-Self-Healing” />
<TO-OBJECT name = “PR-Self-Healing-Substitute”

type = “PR-Evolution-Self-Healing”/>
</MORPHISM>
<MORPHISM name = “Convert3”

type =“PR-Evolution-Relation-Self-Healing”/>
<FROM-OBJECT name = “PR-Self-Healing-Restart”

type = “PR-Evolution-Self-Healing” />
<TO-OBJECT name = “PR-Self-Healing-Take-Over”

type = “PR-Evolution-Self-Healing”/>
</MORPHISM>
<MORPHISM name = “Convert2”

type =“PR-Evolution-Relation-Self-Healing”/>
<FROM-OBJECT name = “PR-Self-Healing-Substitute”

type = “PR-Evolution-Self-Healing” />
<TO-OBJECT name = “PR-Self-Healing-Take-Over”

type = “PR-Evolution-Self-Healing”/>
</MORPHISM>

</MORPHISM>
</CATEGORY>

Figure 195: XML Specification of Functor Category PR-Evolution-Relation-Set

10.1.7 Categorical Model of Self-Configuration in Mars-World

The actions in the formation work flow, self-configuration work flow, substitution work

flow and take-over work flow of Mars-world can be specified as the categories in which

objects are those actions and morphisms are their preorder relationship before. Each

object (action) in those categories is a quadruple (see Property 6.2.28); the sequences of

those actions can be specified as the categories where objects are those sequences and

morphisms are equivalence relationship between those sequences (see Property 6.2.31).

The transitions in intelligent control loop of manager robot1 for self-configuration

can be specified as a category where objects are those transitions and the morphisms are
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their preorder relations before. Each object (transition) in that category is a triple (see

Property 6.2.23); the sequences of the transitions can be specified as a category in which

objects are those sequences and morphisms are the equivalence relations between those

sequences (see Property 6.2.26).

Let Mars-world1 be a subcategory of Mars-world1-0 (a category consisting of all

the potential robots for self-configuration in Mars-world1). If Mars-world1 is conformed

to the index category Mars-world-Formation by restarting violated supervisor robot1 or

supervisor robot3, it will evolve to Mars-world1-1, which has the same configuration

and categorical structure as Mars-world1 except for different initial status of supervisor

robot1 or supervisor robot3. This evolution can be specified by a Restart functor from

Mars-world1-1 to Mars-world1-0. If Mars-world1 is conformed to the Mars-world-

Formation by substituting supervisor robot1 or supervisor robot3 with their isomorphic

objects supervisor7 or supervisor robot9 (see Definition 3.1.3), it will evolve to Mars-

world1-2 that has the same configuration and categorical structure as Mars-world1 but

replacing supervisor robot1 or supervisor robot3 with supervisor robot7 or supervisor

robot9. The above is specified by the Substitute functor. If Mars-world1 is conformed to

the Mars-world-Formation by asking supervisor robot2 to take over the responsibilities

of supervisor robot1 or supervisor robot3, it will evolve to Mars-world1-3, which has

different categorical structure, but both of them have the equivalent configuration (see

Property 8.7.5 and the figure below).
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Figure 196: Evolution for Self-Configuration in Mars-world1

Figure 197: Natural Transformation for Self-Configuration in Mars-world1

The mapping among those evolutions RestartSR, SubstituteSR and Take-over-SR of

the Mars-world1 can be interpreted as natural transformations (see Property 6.1.4). The

functor category having those functors as objects and their natural transformations as

morphisms illustrate all possible evolutions with their relations. In addition, Convert3 is a
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composition of Convert1 and Convert2, which may be interpreted as the following: the

result of the evolution RestartSR -> SubstituteSR -> Take-over-SR is equivalent to the

evolution RestartSR -> Take-over-SR. Figure 198, 199 and 200 illustrate those natural

transformations and their composition respectively.

Figure 198: Natural Transformation RestartSR -> SubstituteSR in Mars-world1

Figure 199: Natural Transformation SubstituteSR -> Take-over-SR in Mars-world1

Figure 200: Natural Transformation RestartSR -> Take-over-SR in Mars-world1

The following figures illustrate the representation of the categorical model for the

self-configuration property described above in a XML format (Phase 2 in Section 5.5).

<CATEGORY name = “Formation-Work-Flow-in-Mars-world”>
<OBJECT>

<OBJECT name = “InitializeManagerRobot” type = “Work-Flow-Action”/>
<OBJECT name = “InitializeSupervisorRobot”

type = “Work-Flow-Action”/>
<OBJECT name = “Heartbeat” type = “Work-Flow-Action”/>

</OBJECT>
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<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>

<FROM-OBJECT name = “InitializeManagerRobot”
type = “Work-Flow-Action”/>

<TO-OBJECT name = “Heartbeat” type = “Work-Flow-Action”/>
<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>

<FROM-OBJECT name = “InitializeManagerRobot”
type = “Work-Flow-Action”/>

<TO-OBJECT name = “InitializeSupervisorRobot”
type = “Work-Flow-Action”/>

<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>

<FROM-OBJECT name = “InitializeSupervisorRobot”
type = “Work-Flow-Action”/>

<TO-OBJECT name = “Heartbeat” type = “Work-Flow-Action”/>
<MORPHISM>

</MORPHISM>
</CATEGORY>

Figure 201: XML Specification of Category Formation-Work-Flow-in-Mars-world

<NATURAL-TRANSFORMATION name = “SR-Evolution-Self-Configuration”>
<ARROW>

<ARROW name = “Relation1”/>
<FROM-FUNCTOR name = “SR-Self-Configuration-Restart”

type = “SR-Evolution-Self-Configuration”/>
<TO-FUNCTOR name = “SR-Self-Configuration-Substitute”

type = “SR-Evolution-Self-Configuration”/>
</ARROW>
<ARROW name = “Relation2”/>

<FROM-FUNCTOR name = “SR-Self-Configuration-Restart”
type = “SR-Evolution-Self-Configuration”/>

<TO-FUNCTOR name = “SR-Self-Configuration-Take-Over”
type = “SR-Evolution-Self-Configuration”/>

</ARROW>
<ARROW name = “Relation3”/>

<FROM-FUNCTOR name = “SR-Self-Configuration-Substitute”
type = “SR-Evolution-Self-Configuration”/>

<TO-FUNCTOR name = “SR-Self-Configuration-Take-Over”
type = “SR-Evolution-Self-Configuration”/>

</ARROW>
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</ARROW>
</NATURAL-TRANSFORMATION>

Figure 202: XML Specification of Natural Transformation SR-Self-Configuration

<CATEGORY name = “Relation-Set-of-SR-Evolution-Self-Configuration”>
<OBJECT>

<OBJECT name = “SR-Self-Configuration-Restart”
type = “SR-Evolution-Self-Configuration” />

<OBJECT name = “SR-Self-Configuration-Substitute”
type = “SR-Evolution-Self-Configuration”/>

<OBJECT name = “SR-Self-Configuration-Take-Over”
type = “SR-Evolution-Self-Configuration”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Relation1”
type =“SR-Evolution-Relation-Self-Configuration”/>

<FROM-OBJECT name = “SR-Self-Configuration-Restart”
type = “SR-Evolution-Self-Configuration” />

<TO-OBJECT name = “SR-Self-Configuration-Substitute”
type = “SR-Evolution-Self-Configuration”/>

</MORPHISM>
<MORPHISM name = “Relation2”

type =“SR-Evolution-Relation-Self-Configuration”/>
<FROM-OBJECT name = “SR-Self-Configuration-Restart”

type = “SR-Evolution-Self-Configuration” />
<TO-OBJECT name = “SR-Self-Configuration-Take-Over”

type = “SR-Evolution-Self-Configuration”/>
</MORPHISM>
<MORPHISM name = “Relation3”

type =“SR-Evolution-Relation-Self-Configuration”/>
<FROM-OBJECT name = “SR-Self-Configuration-Substitute”

type = “SR-Evolution-Self-Configuration” />
<TO-OBJECT name = “SR-Self-Configuration-Take-Over”

type = “SR-Evolution-Self-Configuration”/>
</MORPHISM>

</MORPHISM>
</CATEGORY>

Figure 203: XML Specification of Functor Category SR-Self-Configuration
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<CATEGORY name = “Robot-Configuration”>
<OBJECT>

<OBJECT name = “Sensor1” type = “Sensor”/>
<OBJECT name = “Control-Unit1” type = “Control-Unit”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Command1” type =“Command”/>
<FROM-OBJECT name = “Control-Unit1” type = “Control-Unit”/>
<TO-OBJECT name = “Sensor1” type = “Sensor”/>

<MORPHISM>
<MORPHISM name = “Report1” type =“Report”/>

<FROM-OBJECT name = “Sensor1” type = “Sensor”/>
<TO-OBJECT name = “Control-Unit1” type = “Control-Unit”/>

<MORPHISM>
</MORPHISM>

</CATEGORY>

Figure 204: XML Specification of Category Robot-Configuration

10.1.8 Transform RAS Model of Mars-world to MAS Model

In this section, we will describe the transformation from the RAS model of Mars-world to

its MAS model (Phase 3 in Section 5.5). We will focus on the substitutability of RAC

(robots), since RACG (exploration group) is the minimum RAE that can independently

fulfill a complete work in RAS (Mars-world). More details about this transformation can

be found in [148].

In Mars-world, there are five types of agents (robots): Manager, Supervisor, Sentry,

Producer and Carry agents. A Manager agent can create and manage Supervisor agents;

each Supervisor is in charge of an exploration group to exploit ore mines. It initiates a

number of Sentry agents to search and analyze ore targets in the area assigned by the

Manager. If a target is found, the Supervisor assigns the task of analyzing the target to an
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available Sentry agent and after that forms a group of Producer as well as Carry agents to

perform exploiting tasks. After finishing the analyzing process, the Sentry requests some

available Producer agents to exploit the target mine. After finishing the production work,

a Producer calls some available Carry agents to carry the produced ore to the home base.

Each Carry has a limited capacity of ore so that it travels between the target mine and

home base [148].

To simulate the malfunctioning of one agent, users can click on the agent in GUI that

is considered as a signal to disable it (see Figure 205). This is done inside the mouse click

event listener of the environment panel in the Mars-world GUI plan of a Manager agent.

If the x and y coordinates of the clicked point falls inside any agent area, a message event

that tells the agent to shutdown itself is created. For each agent, there is a shutdown plan,

which consists of taking a snapshot of the agent execution status, pushing the snapshot

into a queue in terms of retrieving it later by a Supervisor for recovery, and shutting

down the agent. The snapshot has agent snapshot, goal snapshot and message snapshot.

Figure 205: Sequence Diagram of Shutdown [148]
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Each Supervisor agent has a perform goal (see Figure 206) that checks continuously

the status of the agents in the environment belonging to the Supervisor’s group. In the

plan triggered by this goal, if the Supervisor detects any inactive agent whose type is

checked, it selects an appropriate recovery plan for that type of agent and creates a top

level goal for the agent’s recovery [148].

The Supervisor agent has a recovery plan for each of the group agents including the

Sentry agents, Producer agents and Carry agents. For example, if a Carry agent is getting

damaged, the Supervisor selects RecoverCarryPlan to recover the Carry agent. This plan

consists of four steps: 1) it creates a new Carry agent from scratch; 2) it recovers the

miscellaneous agent information, such as the location of the agent; 3) it deals with the

goal recovery; and 4) it recovers the message event queue of the Carry agent [148].

Figure 206: Sequence Diagram of Carry Recovery [148]
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10.1.9 Transform MAS Model of Mars-world to Categorical Model

In this section, the following agents from the Mars-world will be used to represent the

fault-tolerance property (Phase 4 in Section 5.5). They are repository agent Repository,

repository type Repository Type, supervisor agent Supervisor, carry agents Carry1 and

Carry2. More details can be found in [62].

Figure 207: Carry Agent Type [62]

Figure 208: Carry1 Agent [62]
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Figure 209: Category Repository Type in Mars-world [62]

Property 10.1.1 Restart: An agent can be restarted, if and only if this agent’s categories

Action, Plan, PLAN, GOAL, FactSet and BELIEF are isomorphic to repository agent’s

categories. These categories within repository exist as default before the agent is created,

and can be updated during system runtime. If this agent is restart-able, its supervisor

agent will recreate the agent, otherwise, the agent’s stored categories will be removed

from the repository by the supervisor agent. We write isomorphism (A, B) == TRUE to

indicate that category A is isomorphic to category B, otherwise we use isomorphism (A, B)

== FALSE [62].

Figure 210: Fault-tolerance Property – Restart in Agent A [62]
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Property 10.1.2 Inclusion Agent: Let A and B be two agents. If all the following

categories: Action, Plan, PLAN, GOAL, FactSet, and BELIEF defined in A include B’s

Action, Plan, PLAN, GOAL, FactSet, and BELIEF, we say agent A is an Inclusion

Agent of agent B [62].

Property 10.1.3 Takeover: An agent A can take over (i.e. replace) an agent B if and

only if IncAgent (A, B) == TRUE [62].

Figure 211: Include in Action of Mars-world [62]

Figure 212: Include in Plan of Mars-world [62]

Figure 213: Include in PLAN of Mars-world [62]



295

Figure 214: Include in GOAL of Mars-world

Figure 215: Fault-tolerance Property – Take-over by Inclusion Agent [62]

Figure 216: Include in BELIEF of Mars-world

10.1.10 Transform MAS Model of Mars-world to Implementation

In this section, we will introduce the transformation from the MAS model of Mars-world

to its implementation (Phase 9 in Section 5.5). More details about this transformation can

be found in [148].

To create a new agent, the ams_create_agent goal is used. When an agent of a certain

type is created, the static initial state of that agent type is recovered automatically. This

kind of information can be considered as static initial status of an agent and is recovered
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in agent creation phase. There is another type of status information that is dynamic and is

changing in time. The recovery of dynamic status of agents is based on the status

snapshots taken at the shutdown moment of the agents. In order to simulate the ongoing

access of a Supervisor agent to the information of its group, there must be a way to

inform this Supervisor of the current status of its agents. The Supervisor polls the current

agent snapshot from the agent snapshot queue and creates a message event request_

location_recovery and sends this message to the new created Carry agent without waiting

for the reply from its side [148].

When a message event is received by the new Carry agent, it can trigger its Recover_

Location_Plan, where the agent is waiting for the request_location_recovery message

and once received, it restores the location of the agent from agent snapshot and sets the

current location of the agent to this value and then creates the walk_around goal to start

the walking of the agent from this location. The walk_around goal is a perform goal that

is followed by the agent when there is nothing to do. When an agent is moving around, it

can find new sources of ore and inform the Supervisor of their existence. This walk_

around goal is inhibited if in the next recovery step the carry_ore goal is recovered as the

latter has a higher priority [148].

The current plan that the agent is pursuing must be recovered. The only way to get a

snapshot of the plan execution is to store useful variables from different steps of the plan

(commit and rollback). To recover the current goal, the Supervisor takes advantage of the

GoalSnapshot stack in AgentSnapshot class. The Supervisor agent creates a request_
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goal_recovery message event and puts the GoalSnapshot as its content and sends the

request to the new Carry agent. If there is no goal to recover, the value of null is set as

the goal to recover. After sending the request, the Supervisor agent waits for the reply

from the Carry agent to check if it has finished its recovery process. This is done by

using the sendMessageAndWait method to establish a conversation between those two

agents. The reason is that the new Carry agent has to finish the unfinished goal of the

damaged agent before moving to its message event queue to pick an event message to

start a new carry_ore goal. By establishing a conversation between those two agents and

waiting for the reply, the recovery plan in the Supervisor side is suspended until a

response comes back from the Carry agent [148].

On receiving the request for the goal recovery, the Carry agent triggers its plan to

recover a goal using the goal snapshot information, by which the Carry agent identifies

the step that the damaged agent was executing when a problem happened. In Recover_

Goal_Plan, the Carry agent restores the target location as well as ore load from the goal

snapshot. The Recover_Goal_Plan is a special copy of CarryOrePlan with a facility of

the conditional entrance points according to the variable checkpoints. After finishing a

goal, the Carry agent pops the goal from the stack. After finishing this task, the Carry

agent creates its carry goal which listens to the request_carry message events. These

message events can be from Supervisor agent that is recovering the message event queue

of the damaged agent or from Producer agents as expected in the normal behavior of the

system. In this point that the Carry agent is listening to request_carry message events,
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the Supervisor can start the recovery of the message events. Thus, the Carry agent creates

a reply message event named reply_goal_recovery in response to the message request_

goal_recovery of the Supervisor agent [148].

10.2 Prospecting Asteroid Mission

In order to support the versatility and flexibility of applying our research outcome, we

also select the Prospecting Asteroid Mission (PAM) case study as another application

modeled by the RASF. Moreover, we use PAM to illustrate how to visualize categorical

RAS model, MAS model as well as implementation (Phase 5, 6 & 11 in Section 5.5) for

practical usages. However, we keep a simplified and concise illustration for this case

study comparing to the Mars-world case study to avoid redundancy.

The PAM spacecraft study a selected target by particular classes of measurers called

virtual teams. For example, an experiment team consists of the specialist classes to solve

particular scientific problems, such as Petrologist team. The system elements include

generals, rulers, workers, and messengers (see Figure 19 in Section 4.2). More details

about the PAM scenarios can be found in Section 4.2. The specification of fault-tolerance

in a Petrologist team is discussed as follows.

A Petrologist team (RACG1) has a ruler (RACS1), an imaging worker (RAC1), an

X-ray worker (RAC2) and a messenger (RAC3). Control Unit (CU, such as RAOL1,

RAOL2 & RAOL3) and sail (RAO2, RAO4, RAO5, RAO6 as well as RAO7 are two

common devices of each spacecraft. Moreover, different types of workers have particular

equipments. For instance, imaging workers has Imaging Devices (ID, such as RAO1);
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X-ray workers has X-ray Devices (XD, such as RAO3). After a Petrologist team is formed

and then is sent to explore an asteroid by its general (RACGM1) of a swarm (RAS1), the

general starts to monitor the ruler that monitors its imaging worker, X-ray worker and

messenger; moreover, the CU in each spacecraft monitors its devices (see Figure 217).

Figure 217: Example of PAM Modeled using RASF

If the CU of an imaging worker doesn’t receive the heart beat messages from its ID

in a required interval, it assumes ID is crashed and sends a restart message to that ID. If

the ID is restarted successfully and works normally, CU continues to monitor its devices

as usual; otherwise, CU asks its ruler to substitute the crashed ID with isomorphic one to

ensure equivalent behavior. If ruler cannot find required ID for substitution, the take-over

plan proposed in section 4 is not applicable either, since the product device of ID and sail

doesn’t exist in PAM. Therefore, ruler has to replace the whole imaging worker with the

isomorphic one, which is the case of crashed RAC (see the figure below).
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Figure 218: Substitution Work Flow of Imaging Worker

Similarly, if ruler doesn’t receive heartbeat from the CU of its X-ray worker within a

required interval (scenario 2), it sends a restart to that CU. If the CU cannot be restarted,

ruler substitutes the crashed CU with isomorphic one to ensure their equivalent behavior.

If ruler cannot find required CU for substitution, it asks another worker, such as imaging

worker to take over the control of XD and sail on the crashed X-ray worker. If all other

workers are not available, ruler takes over the CU by itself. However, if ruler cannot take

over CU either, it has to replace the whole X-ray worker with the isomorphic one [87].

10.2.1 CML Model for Sub-swarm Organization in PAM

Figure 219 & 220 include the CML specification (see Section 6.4.1) and its visual model

respectively for a typical sub-swarm organization. More details can be found in [81].

TYPED-CATEGORY

PAM Sub-swarm (S1)

Types of Objects

Object_Type: Ruler (R)

Object_Type_Instances: Leader (L)

Object_Type: Messenger (M)

Object_Type_Instances:  Team Messenger (TM),

Sub-Swarm Messenger (SM)

Object_Type: Worker (W)

Object_Type_Instances:  X-Ray (WXR),

Type of Morphisms

Morphism_Type: Management (m):

L → TM, L → SM, L → W

Morphism_Type: Cooperation (c):

W → W, TM → W, W → TM

Morphism_Type: Communication (cu):

TM → SM, TM → TM , W → SM, TM → L

Morphisms: Mor(S1)

m1 (L1) = TM2, m2 (L1) = SM1,

m3 (L1) = WXR1, m4 (L1) = WGR1,
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Gamma Ray(WGR),

Infra-Red(WIR),

Altimeter(WAL)

Objects: Obj(S1)

R: L1

TM: TM1, TM2

SM: SM1

WXR: WXR1, WXR3

WGR : WGR1

WIR : WIR1

WIR : WAL1

Composition

(c3 о  m5) =  m4, (c1 о  m3) =  m4, (c4 о  m1) =  m5, (c2

о  m1) =  m3, (c1 о  c2) =  c5, (cu1 о  m1) =  m7,

(cu2 о  m7) =  m2, (m2 о  cu8) =  cu3,

(m3 о  cu8) =  c2, (m4 о  cu8) =  c5, (m5 о  cu8) =  c4,

(cu2 о  c7) =  cu4, (cu5 о  c8) =  cu4, (c6 о  c8) =  c7,

(cu2 о  c6) =  cu5, (c3 о  c4) =  c5, (cu2 о  cu1) =  cu3,

(cu3 о  m1) =  m2, (m7 о  cu8) =  cu1

m5 (L1) = WIR1, m7 (L1) = TM1,

c1 (WXR1) = WGR1, c2 (TM2) = WXR1,

c3 (WIR1) = WGR1, c4 (TM2) = WIR1,

c5 (TM2) = WGR1, c6 (WAL1) = TM1,

c7 (WXR3) = TM1, c8 (WXR3) = WAL1,

cu1 (TM2) = TM1, cu2 (TM1) = SM1,

cu3 (TM2) = SM1, cu4 (WXR3) = SM1,

cu5 (WAL1) = SM1, cu8 (TM2) = L1

Identity:  Identity(S1)

Id(L1): L1 → L1 , Id(SM1): SM1 → SM1,

Id(TM1): TM1 → TM1, Id(TM2): TM2 → TM2,

Id(WXR1): WXR1 → WXR1, Id(WXR3): WXR3 → WXR3,

Id(WAL1): WAL1 → WAL1, Id(WGR1): WGR1 → WGR1,

Id(WIR1): WIR1 → WIR1

Axioms

Identity:  x  Identity(S1) , y Mor(S1),

x о y  = y = y о x

Associativity:  c1 о  (c2 о  m1) = (c1 о  c2 ) о m1

c3 о  (c4 о  m1) = (c3 о  c4 ) о m1

c1 о  (m3 о  cu8) = (c1 о  m3 ) о cu8

c3 о  (m5 о  cu8) = (c3 о  m5 ) о cu8

cu2 о  (cu1 о  m1) = (cu2 о  cu1 ) о m1

cu2 о  (m7 о  cu8) = (cu2 о  m7 ) о cu8

cu2 о  (c6 о  c8) = (cu2 о  c6 ) о c8

Figure 219: CML Specification Model of a PAM Swarm Scenario [81]

Figure 220: CML Graphical Model of a PAM Swarm Scenario [81]

10.2.2 Self-Configuration in PAM

The virtual teams of spacecraft are configured to carry out optimal science operations on
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the target asteroids. When the operations are complete, the team breaks up for possible

reconfiguration at another asteroid site. This reconfiguring continues throughout the life

of the swarm. Reconfiguring may also be required as the result of a failure or anomaly of

some sort. The specification in Figure 221 captures the behavior of a team relocating to a

new position in the sub-swarm and its graphical model is given in Figure 222 [81].

Categories:

TYPED-CATEGORY

Petrologist Team (PT1) …

TYPED-CATEGORY

PAM Sub-swarm (S2)

Types of Objects

Object_Type: Ruler (R)

Object_Type_Instances:   Leader (L)

Object_Type: Messenger (M)

Object_Type_Instances:  Team Messenger (TM),

Sub-Swarm Messenger (SM)

Object_Type: Worker (W)

Object_Type_Instances:   Radio Sound (WRS),

Imager(WIM),

Infra-Red(WIR),

Helper(WH)

Objects: Obj(S2)

R: L1

SM: SM1, SM3

WRS: WRS1

WIM : WIM3

WIR : WIR3

WH : WH1

Type of Morphisms

Morphism_Type: Data Update (du):

W → L

Morphism_Type: Management (m):

L → SM

Morphism_Type: Cooperation (c):

W → W

Morphism_Type: Communication (cu):

Morphisms: Mor(S2)

m7 (L1) = SM1, c11 (WH1) = WIR3,

c12 (WRS1) = WIR3, c9 (WH1) = WRS1,

c10 (WH1) = WIM3, c8 (WRS1) = WIM3,

cu10 (WRS1) = SM1, cu11 (WRS1) = SM3,

cu12 (SM3) = SM1, cu13 (WH1) = SM1

Identity:  Identity(S2)

Id(L1): L1 → L1 , Id(SM1): SM1 → SM1,

Id(SM3): SM3 → SM3, Id(WRS1): WRS1 → WRS1, Id(WH1):

WH1 → WH1, Id(WIM3): WIM3 → WIM3, Id(WIR3): WIR3

→ WIR3

Composition

(c8 о  c9) =  c10, (c12 о  c9) =  c11,

(m7 о  du1) =  cu13, (cu10 о  c9) =  cu13,

(cu11 о  c9) =  cu14,  (cu12 о  cu11) =  cu10,

(cu12 о  cu14) =  cu13, (cu15 о  cu11) =  cu13,

(cu13 о  cu9) =  cu14,  (c13 о  c9) =  c16,

(cu15 о  cu14) =  cu16

Axioms

Identity:  x  Identity(S2) , y Mor(S2),

x о y  = y = y о x

Associativity:

cu12 о  (cu11 о  c9) = (cu12 о  cu11 ) о c9

cu15 о  (cu11 о  c9) = (cu15 о  cu11 ) о c9

Category  Source: PT1

Category  Target : S2

FUNCTOR (Team Relocation, R, PT1, S2)

R(c3): PT1 (WIR1, WGR1, c3) →

S2(R(WIR1): WIR3, R(WGR1) : WIR3, R(c3): Id(WIR3)),

R(c4): PT1 (TM2, WIR1, c4) →

S2(R(TM2): WH1 , R(WIR1): WIR3, R(c4): c11),
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SM → SM, W → SM , SM → L

Functor Objects

Messenger:

R(TM2): PT1 (TM2) → S2 (R(TM2):WH1)

X-Ray:

R(WXR1): PT1 (WXR1) → S2 (R(WXR1) :WRS1)

Infra-red:

R (WIR1): PT1 (WIR1) → S2 (R(WIR1) :WIR3)

Gamma Ray:

R(WGR1): PT1 (WGR1) → S2 (R(WGR1) :WIR3)

Functor Morphisms

Cooperation:

R(c1): PT1 (WXR1, WGR1, c1) →

S2(R(WXR1): WRS1, R(WGR1): WIR3, R(c1): c12),

R(c2): PT1 (TM2, WXR1, c2) →

S2(R(TM2): WH1, R (WXR1) :WRS1, R(c2): c9),

R(c5): PT1 (TM2, WGR1, c5) →

S2(R(TM2): WH1, R(WGR1): WIR3, R(c5): c11)

Functor Composition

R (c3 о c4) = R (c3) о R(c4) = R(c5)

R (c1 о c2) = R (c1) о R(c2) = R(c5)

Functor Axioms

Identity: R(Id(TM2)) = Id(R(TM2))

R(Id(WXR1)) = Id(R(WXR1))

R(Id(WIR1)) = Id(R(WIR1))

R(Id(WGR1)) = Id(R(WGR1))

Figure 221: CML Model for Team Relocation Scenario [81]

Figure 222: CML Graphical Model for Team Relocation Scenario [81]
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10.2.3 Self-Protection in PAM

After receiving the confirmation from the sub-swarm leader regarding a solar storm, a

sub-swarm messenger communicates information to the other sub-swarm messengers. All

sub-swarm messengers inform their team messengers that in turn inform all the workers

in the team. Each spacecraft after receiving a warning message and performing necessary

communication puts itself to a “stand by” mode. Figure 223 includes a CML model for

this scenario constructed using the limit construct grammar and its graphical model is

given in Figure 224 [81].

Diagram:

DIAGRAM (D, IC, S1)…

Cones:

CONE (Object: TM2)…

CONE (Object: L1)

Co-Cone Objects

D(k), D(j), D(i),

Co-Cone  Morphisms

Management:        L1(k): L1 → D(k),

L1(j): L1 → D(j),

L1(i): L1 → D(i)

Limit  Morphisms

Management:        L1(k): L1 → D(k),

L1(j): L1 → D(j),

L1(i): L1 → D(i)

Cooperation:         TM2(k): TM2 → D(k),

TM2(j): TM2 → D(j),

TM2(i): TM2 → D(i),

D(α): D(i) → D(j),

D(β): D(j) → D(k)

Communication:   D(α): D(k) → D(l)

D(β): D(j) → D(k)

Category Id: S1

Diagram Id: D

Cone Ids: TM2, L1

LIMIT

Terminal Object: TM2

Unique Morphism(u): m1: L1 → TM2

Limit  Objects

D(i), D(j), D(k)

Limit  Axioms

m1 о L1(i) = TM2(i)

m1 о L1(j) = TM2(j)

m1 о L1(k) = TM2(k)

Figure 223: CML Model for PAM Self-Protection [81]
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Figure 224: CML Graphical Model for PAM Self-Protection [81]

10.3 End-to-End iFix Tool

In order to support the feasibility of applying our research outcome on industrial projects,

I select the End-to-End iFix Tool (E2E) case study as an industrial application modeled

by the RASF during my research internship at IBM Canada. We keep a simplified and

concise illustration for this case study comparing to the Mars-world case study to avoid

redundancy.

The E2E is a web-based application to process official fix creation requests from the

IBM support teams. The tool implements an automated and autonomic process to build

and test iFixes with minimal user input as well as intervention based on source code for a

fix being available and identifiable in a source code repository system. The E2E interacts

with a repository tool to store source code and a build tool to compile the source code

into object code and a packaging tool to package the object code into an installable fix

(see Figure 20 in Section 4.3).

Figure 225 depicts the architecture model of E2E according to the RAS architecture

model (see Figure 21 in Section 5.1). This model is a four-layer architecture that consists
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of build objects (RAO, such as CMVC session, Aphid request, submit moonstone test and

ICT input), build components (RAC, such as CMVC engine, Aphid engine, ICT engine

and Moonstone engine), build component groups (RACG, such as back-end support

group and front-end support group) and the whole tool itself (RAS). The autonomic

features can be implemented by component manager (RAOL, such as CMVC manager,

Aphid manager, ICT manager and Moonstone manager), the component group manager

(RACS, such as Build manager and GUI manager) as well as tool manager (RACGM,

E2E adapter/manager) at the RAC, RACG and RAS layer respectively. In this layered

architecture model, each tier communicates with the tier immediately above or below it.

Figure 225: RAS Architecture Model for E2E

Figure 226 depicts an example of the architecture model of E2E for a simplified

scenario presented above (see Phase 1 in Section 5.5), where every circle represents an

implemented class of the build component and each arrow specifies the procedure call

between those classes. In this example, the E2E (RAS1) consists of a director package

(RACG3) for tool management, a front-end support package (RACG2) for the business

logic related to UI and a back-end support package (RACG1) for the process of building

an iFix. The director package includes a component iFix Engine (RACGM1) which has
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two classes: E2E Session (RAO7) and E2E Manager (RAOL5). The front-end support

package consists of two components: Front-end Engine (RACS2) with two classes GUI

Adapter (RAOL7), Build Servlet (RAO9) and GUI Engine (RAC4) with two classes GUI

Manager (RAOL6) as well as GUI Data (RAO8). In back-end support package, there are

four components Back-end Engine (RACS1), CMVC Engine (RAC1), Aphid Engine

(RAC2) and ICT Engine (RAC3) with their classes, such as Build Manager (RAOL4),

CMVC Manager (RAOL1), Aphid Manager (RAOL2) and ICT Manager (RAOL3).

Figure 226: Example of E2E Modeled using RASF

10.3.1 Self-Healing in E2E

After E2E is deployed to the application server, E2E Manager starts to monitor the heart

messages sent from GUI Adapter and Build Manager. If there is any exceptions thrown

from them that might cause termination of their services, E2E Manager can catch them
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and retrieve the self-healing process as we described in Chapter 7, either restarting the

services from those two classes by recalling corresponding methods, or substituting them

by creating the new instances of those classes.

Another scenario of self-healing is the fault-tolerance when submitting source code

compiling requests to Aphid servers. For example, if Aphid Manger receives bad request

messages from Aphid servers through Aphid Request due to the unavailability of those

servers in the middle of compiling, it can automatically redirect the original requests to

another available Aphid server without the intervention of end users.

10.3.2 Self-Configuration in E2E

Build Manager is responsible for monitoring the configuration, communication as well as

behavior of the components CMVC Engine, Aphid Engine and ICT Engine by checking

the status of CMVC Manager, Aphid Manager and ICT Manager against their meta-

model respectively. If there is any incorrect configuration or unexpected behavior from

those components, the Build Manager will retrieve the self-configuration process as we

stated in Chapter 8.

Another scenario of self-configuration is that E2E is deployed on four nodes, and the

iFix building requests from end users can be automatically redirected to an optimal node.

The necessary resource and configuration on that node to build an iFix can be acquired

automatically based on the meta-model of E2E without the intervention of administrators.

10.4 Summary

In this chapter, we illustrated how to apply RASF approach to three different case studies.
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For the Mars-world, we presented a complete process of using RASF approach based on

the process model in Section 5.5, which include the architecture model, self-healing and

self-configuration properties, categorical models of structure, behavior as well as those

properties in Mars-world. For the self-healing property, we showed all possible scenarios

at each tier in the architecture model, such as crashed sensors (RAO), crashed control

units (RAOL), crashed robots (RAC) and crashed supervisor robots (RACS). For the

self-configuration property, we also illustrated all possible scenarios according to the

architecture model, such as forming Mars-world, forming exploration groups and forming

robots.

For the PAM, we focused on the visualization of the categorical models generated

from the RAS model and MAS model using our graphical illustration tool CATCanvas.

That visualization can help us to achieve the validation between those categorical models

besides the verification between them textually. Moreover, it can help IT professionals

with minimum category theory knowledge to better understand those categorical models.

It can also help either IT professionals or category theory experts to manipulate the

categorical diagrams in terms of reasoning.

Finally, we introduced how to apply the RAS model on the E2E, an industrial project

from the IBM Toronto Lab, to support the flexibility and feasibility to use our RASF

approach.
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Chapter 11: Conclusion and Future Work

In this chapter, we conclude this thesis work by presenting the significance of the RASF

approach, contributions, concluding remarks and future work.

11.1 Significance of RASF Approach

We conducted a comprehensive literature review (see Chapter 2) on autonomic systems,

multi-agent systems, real-time reactive systems and formal methods. To the best of our

knowledge, there is no similar integrated formal framework targeting the whole life cycle

of developing reactive autonomic systems, from requirement specification, architecture

model (structure and behavior), meta-model (constructed from the architecture model),

instance model (generated from the meta-model) and implementation model (the MAS

model and implemented from the instance model) to formal specification (using category

theory), visualization of the categorical model (using CATCanvas), model transformation

between those models, model checking (verification & validation) and tooling support

(RASFIT).

Furthermore, to the best of our knowledge, our RASF approach is the first attempt to

formally specify the autonomic systems with self-* properties, multi-agent systems with

goals, plans as well as beliefs and real-time reactive systems with time constraints using

category theory (a relatively young branch of the mathematics has been successfully

extended to the fields of computer science and software engineering). Category theory as

a formal method can address the characteristics of reactive autonomic systems as well as

multi-agent systems very well because: i) it offers a specification structure that can isolate
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analysis of changes in a small number of components and analyze impacts of a change on

inter- connected components; ii) it has a rich body of theory to reason objects and their

relations; iii) it adopts a correct by construction approach by which components can be

specified, proved and composed in the way of preserving their properties.

Domain theory is introduced as a study of special kinds of partially ordered sets (or

posets) in mathematics, those sets are called domains. A partially ordered set (poset) can

formalize and generalize the intuitive concept of an ordering, sequencing or arrangement

of the elements for a set. “Partial order” means that not every pair of elements needs to be

related: for some pairs, it may be that neither element precedes the other in the same

poset. In comparison to category theory, it has a limitation of capturing all kinds of the

relations between posets, such as “depends on”, since it is not a ordering, sequencing or

arrangement relation. Domain theory cannot be used to model self-relation of elements in

a poset, which is well defined as the identity morphism in category theory.

Logic theory, such as first order logic, has been used to model multi-agent systems.

In comparison to the category theory, instead of capturing the structure and properties, it

models the reasoning of properties that are shared by objects.

Comparing to other formal approaches which either lack of emergent and self-

management behavior specification, verification as well as validation (CSP, Temporal

Logic, Unity Logic, ASSL and PTN), or lack of visualization (CSP, WSCCS, Temporal

Logic, Unity Logic and ASSL) or tooling support (WSCCS, Temporal Logic, X-Machine,

Unity Logic and PTN), our RASF approach supports each aspect of specifying, verifying
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and validating reactive autonomic systems, such as formal basis, visual formalism,

adaptability to programming, tooling support, modularity and self-management behavior.

11.2 Contributions

This thesis work proposed a formal framework (RASF) which can leverage modeling,

formal specification as well as development of the RAS. The main contributions of this

thesis work are summarized below:

 Reactive Autonomic Systems Framework that includes the architecture model

with structure (Section 5.1) and behavior (Section 5.2) as well as process model

(Section 5.5). I had one publication [90] for this contribution.

 Categorical RAS model in RASF that includes the categorical model of structure

(Section 6.1), behavior (Section 6.2) and their XML representations (Section 6.3).

I had one publication [90] for this contribution.

 XML representation of the categorical MAS model (plans, goals, beliefs and

agents) in RASF (Section 6.6). I had one publication in preparation for this

contribution.

 Specification of the self-healing in RASF which includes three scenarios (Section

7.1, 7.3 & 7.5) with their categorical illustration (Section 7.2, 7.4 & 7.6),

categorical specifications of self-healing properties (Section 7.7) and their XML

representations (Section 7.8). I had two publications [177 & 87] for this

contribution.

 Specification of the self-configuration in RASF which includes three scenarios
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(Section 8.1, 8.3 & 8.5) with their categorical illustration (Section 8.2, 8.4 & 8.6),

categorical specifications of self-configuration properties (Section 8.7) as well as

their XML representations (Section 8.8). I had one publication in preparation for

this contribution.

 RASF integration tool (RASFIT) as a plug-in of Eclipse to support the RASF

approach and apply the RASF process model (Chapter 9). I had one publication

[85] and one in preparation during this contribution.

 Modeling, specification and design of case studies using RASF (Section 10.1.1)

with self-healing (Section 10.1.2), self-configuration (10.1.3) and their categorical

models (Section 10.1.4 – 10.1.7). I had one publication [86] and one in

preparation for this contribution.

 Applied our RASF approach to three industrial projects: End-to-End iFix Tool,

Integrated Data Access Tool as well as Rational Team Concert Validation Tool.

Moreover, we are preparing the application of NSERC’s Engage Grant with IBM

Centers for Advanced Studies at IBM Toronto Lab based on one of those three

projects.

 Joint work with two master students for mapping the RAS model to the MAS

model (Section 5.3) and model transformation from RAS to MAS implementation

(Section 5.4).

 Joint work with two master students for the graphical illustration (CATCanvas) of

categorical models (Section 6.4) and categorical specifications of the MAS model
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(Section 6.5).

 Joint work with two master students for transforming the RAS models of case

studies to their MAS models (Section 10.1.8), transforming the MAS models to

their categorical models (Section 10.1.9) and transforming the MAS models to

their implementations (Section 10.1.10).

11.3 Challenges of RASF Approach

RASF approach still faces some challenges at current stage which might be overcome

through our future work. For example, 1) how RASF approach can seamlessly fill the

knowledge and technical gaps between IT professionals and category theory experts, so

that both of them can use RASF freely from their own perspective without knowing too

much details about the other side; 2) how RASF approach can be widely accepted and

easily applied to the industrial projects, since category theory is relatively abstract and

there are very few industrial research projects on using it right now.

Another challenge is how RASF implements a formal reasoning mechanism to

reason about new properties from existing ones, either from the XML representations of

the categorical models or from the visualization of those models. Moreover, we can

discover flaws for the various models in RASF by that formal reasoning mechanism.

11.4 Future Work

Some of the future extensions to this thesis work include the following aspects:

 Our approach focuses on the self-healing and self-configuration properties in RAS.

However, self-* properties of autonomic systems include self-optimization, self-
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protection, etc., a future direction would be the extension of our approach to

address those properties.

 We need to enhance RASFIT in terms of verifying if the categorical MAS model

generated in Phase 4 (see Phase 7 in Section 5.5) conforms to the categorical RAS

model in Phase 2.

 We need to enhance RASFIT in terms of validating if the graphical illustration of

categorical MAS model in Phase 6 (see Phase 8 in Section 5.5) conforms to the

graphical illustration of categorical RAS model in Phase 5.

 We need to support the transformation from the MAS implementation in Phase 9

(see Phase 10 in Section 5.5) to its categorical model using category theory.

 We need to support the visualization of categorical MAS implementation in Phase

10 (see Phase 11 in Section 5.5) to its graphical representation by importing its

XML representation in Phase 10 to our graphical illustration tool CATCanvas.

 We need to enhance RASFIT for verifying if the categorical MAS implementation

in Phase 10 (see Phase 12 in Section 5.5) conforms to the categorical MAS model

in Phase 4.

 We need to enhance RASFIT for validating if the graphical illustration of the

categorical MAS implementation in Phase 11 (see the Phase 13 in Section 5.5)

conforms to the graphical illustration of the categorical MAS model in Phase 6.
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Appendix A: Representation for Categorical Model of Constructors
<CATEGORY name = “RAE-Type-Instance”>

<OBJECT>
<OBJECT name = “RAEi” type = “RAE-Typei” />
<OBJECT name = “RAEj” type = “RAE-Typej”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Communicationn” type =“Communication-Typen”/>
<FROM-OBJECT name = “RAEi” type = “RAE-Typei”/>
<TO-OBJECT name = “RAEj” type = “RAE-Typej”/>

</MORPHISM>
</MORPHISM>

</CATEGORY>

Figure 227: XML Specification of Category RAE-Type-Instance

<CATEGORY name = “RAC”>
<OBJECT>

<OBJECT name = “RAOi” type = “RAO-Typei”/>
<OBJECT name = “RAOj” type = “RAO-Typej”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Communicationn” type =“Communication-Typen”/>
<FROM-OBJECT name = “RAOi” type = “RAO-Typei”/>
<TO-OBJECT name = “RAOj” type = “RAO-Typej”/>

</MORPHISM>
</MORPHISM>

</CATEGORY>

Figure 228: XML Specification of Category RAC

<FUNCTOR name = “RAC-Evolution” source-category = “RAC'”
target-category = “RAC”>

<OBJECT-MAPPING>
<OBJECT-MAPPING source-object = “RAOj” target-object = “RAOi”/>
<OBJECT-MAPPING source-object = “RAOk” target-object = “RAOi”/>

</OBJECT-MAPPING>
<MORPHISM-MAPPING>

<MORPHSIM-MAPPING source-morphism = “Communicationj”
target-morphism = “Communicationi”/>

<MORPHSIM-MAPPING source-morphism = “Communicationk”

http://jadex.informatik.uni-hamburg.de/xwiki/bin/view/About/Overview
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target-morphism = “Communicationi”/>
</MORPHISM-MAPPING>

</FUNCTOR>

Figure 229: XML Specification of Functor RAC-Evolution

<NATURAL-TRANSFORMATION name = “Relation-of-RAE-Evolution”>
<ARROW>

<ARROW name = “Relationn”/>
<FROM-FUNCTOR name = “RAE-Evolutioni”

type = “RAE-Evolution-Typei”/>
<TO-FUNCTOR name = “RAE-Evolutionj”

type = “RAE-Evolution-Typei”/>
</ARROW>

</ARROW>
</NATURAL-TRANSFORMATION>

Figure 230: XML Specification of Natural Transformation Relation

<CATEGORY name = “Relation-Set-of-RAE-Evolution”>
<OBJECT>

<OBJECT name = “RAE-Evolutioni” type = “RAE-Evolution-Typei” />
<OBJECT name = “RAE-Evolutionj” type = “RAE-Evolution-Typej”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Relationn” type =“Relation-Typen”/>
<FROM-OBJECT name = “RAE-Evolutioni”

type = “RAE-Evolution-Typei” />
<TO-OBJECT name = “RAE-Evolutionj”

type = “RAE-Evolution-Typej”/>
</MORPHISM>

</MORPHISM>
</CATEGORY>

Figure 231: XML Specification of Functor Category Relation-Set

<CATEGORY name = “RACG”>
<OBJECT>

<OBJECT name = “RACi” type = “RAC-Typei” />
<OBJECT name = “RACj” type = “RAC-Typej”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Communicationn” type =“Communication-Typen”/>
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<FROM-OBJECT name = “RACi” type = “RAC-Typei”/>
<TO-OBJECT name = “RACj” type = “RAC-Typej”/>

</MORPHISM>
</MORPHISM>

</CATEGORY>

Figure 232: XML Specification of Category RACG

<FUNCTOR name = “RACG-Evolution” source-category = “RACG'”
target-category = “RACG”>

<OBJECT-MAPPING>
<OBJECT-MAPPING source-object = “RACj” target-object = “RACi”/>
<OBJECT-MAPPING source-object = “RACk” target-object = “RACi”/>

</OBJECT-MAPPING>
<MORPHISM-MAPPING>

<MORPHSIM-MAPPING source-morphism = “Communicationj”
target-morphism = “Communicationi”/>

<MORPHSIM-MAPPING source-morphism = “Communicationk”
target-morphism = “Communicationi”/>

</MORPHISM-MAPPING>
</FUNCTOR>

Figure 233: XML Specification of Functor RACG-Evolution

<CATEGORY name = “RAS”>
<OBJECT>

<OBJECT name = “RACGi” type = “RACG-Typei” />
<OBJECT name = “RACGj” type = “RACG-Typej”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Communicationn” type =“Communication-Typen”/>
<FROM-OBJECT name = “RACGi” type = “RACG-Typei”/>
<TO-OBJECT name = “RACGj” type = “RACG-Typej”/>

</MORPHISM>
</MORPHISM>

</CATEGORY>

Figure 234: XML Specification of Category RAS

<FUNCTOR name = “RAS-Evolution” source-category = “RAS'”
target-category = “RAS”>

<OBJECT-MAPPING>
<OBJECT-MAPPING source-object = “RACGj” target-object = “RACGi”/>
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<OBJECT-MAPPING source-object = “RACGk” target-object = “RACGi”/>
</OBJECT-MAPPING>
<MORPHISM-MAPPING>

<MORPHSIM-MAPPING source-morphism = “Communicationj”
target-morphism = “Communicationi”/>

<MORPHSIM-MAPPING source-morphism = “Communicationk”
target-morphism = “Communicationi”/>

</MORPHISM-MAPPING>
</FUNCTOR>

Figure 235: XML Specification of Functor RAS-Evolution
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Appendix B: Representation for Categorical Model of Behavior
<CATEGORY name = “RAE-Behavior”>

<OBJECT>
<OBJECT name = “Function-Pairi” type = “Function-Pair-Typei”/>
<OBJECT name = “Function-Pairj” type = “Function-Pair-Typej”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Interactionn” type =“Interaction-Typen”/>
<FROM-OBJECT name = “Function-Pairi”

type = “Function-Pair-Typei”/>
<TO-OBJECT name = “Function-Pairj” type = “Function-Pair-Typej”/>

<MORPHISM>
</MORPHISM>

</CATEGORY>

Figure 236: XML Specification of Category RAE-Behavior

<CATEGORY name = “Discrete-Time”>
<OBJECT>

<OBJECT name = “Abstract-Time-Uniti” type = “Integer”/>
<OBJECT name = “Abstract-Time-Unitj” type = “Integer”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Before” type =“Preorder”/>
<FROM-OBJECT name = “Abstract-Time-Uniti” type = “Integer”/>
<TO-OBJECT name = “Abstract-Time-Unitj” type = “Integer”/>

<MORPHISM>
</MORPHISM>

</CATEGORY>

Figure 237: XML Specification of Category Discrete-Time

<CATEGORY name = “State-Type”>
<OBJECT>

<OBJECT name = “State-Typei”/>
<OBJECT name = “State-Typej”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Transition-Typen”/>
<FROM-OBJECT name = “State-Typei”/>
<TO-OBJECT name = “State-Typej”/>
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<MORPHISM>
</MORPHISM>

</CATEGORY>

Figure 238: XML Specification of Index Category State-Type

<CATEGORY name = “STATE”>
<OBJECT>

<OBJECT name = “Statei” type = “State-Typei”/>
<OBJECT name = “Statej” type = “State-Typej”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Transitionn” type =“Transition-Typen”/>
<FROM-OBJECT name = “Statei” type = “State-Typei”/>
<TO-OBJECT name = “Statej” type = “State-Typej”/>

<MORPHISM>
</MORPHISM>

</CATEGORY>

Figure 239: XML Specification of Category STATE

<FUNCTOR name = “Time-Constraint” source-category = “STATE”
target-category = “Discrete-Time’”>

<OBJECT-MAPPING>
<OBJECT-MAPPING source-object = “Statei”

target-object = “Abstract-Time-Uniti”/>
<OBJECT-MAPPING source-object = “Statej”

target-object = “Abstract-Time-Unitj”/>
</OBJECT-MAPPING>
<MORPHISM-MAPPING>

<MORPHSIM-MAPPING source-morphism = “Transitionn”
target-morphism = “Before”/>

<MORPHSIM-MAPPING source-morphism = “Transitionn”
target-morphism = “Before”/>

</MORPHISM-MAPPING>
</FUNCTOR>

Figure 240: XML Specification of Functor Time-Constraint-for-State

<PRODUCT name = “Synchronous-Communication-between-RAE”>
<PRODUCT-OBJECT name = “Synchronous-Communicationn”

type = “Synchronous-Communication-Typen”/>
<BETWEEN-OBJECT name = “RAEi” type = “RAE-Typei”/>
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<BETWEEN-OBJECT name = “RAEj” type = “RAE-Typej”/>
</PRODUCT>

Figure 241: XML Specification of Product Synchronous Communication of RAE

<COPRODUCT name = “Asynchronous-Communication-between-RAE”>
<COPRODUCT-OBJECT name = “Asynchronous-Communicationn”

type = “Asynchronous-Communication-Typen”/>
<BETWEEN-OBJECT name = “RAEi” type = “RAE-Typei”/>
<BETWEEN-OBJECT name = “RAEj” type = “RAE-Typej”/>

</COPRODUCT>

Figure 242: XML Specification of Coproduct Asynchronous Communication of RAE

<PUSHOUT name = “Next-Communication-Relay-of-RAE”>
<SOURCE-OBJECT name = “RAEn” type = “RAE-Typen”/>
<RELAY-OBJECT name = “RAEi” type = “RAE-Typei”/>
<RELAY-OBJECT name = “RAEj” type = “RAE-Typej”/>
<DESTINATION-OBJECT name = “RAEpushout” type = “RAE-Typepushout”/>

</PUSHOUT>

Figure 243: XML Specification of Pushout Next Communication Relay of RAE

<PULLBACK name = “Previous-Communication-Relay-of-RAE”>
<SOURCE-OBJECT name = “RAEpullback” type = “RAE-Typepullback”/>
<RELAY-OBJECT name = “RAEi” type = “RAE-Typei”/>
<RELAY-OBJECT name = “RAEj” type = “RAE-Typej”/>
<DESTINATION-OBJECT name = “RAEn” type = “RAE-Typen”/>

</PULLBACK>

Figure 244: XML Specification of Pullback Previous Communication Relay of RAE

<CATEGORY name = “RAE-Behavior-Designated”>
<OBJECT>

<OBJECT name = “Cone-to-Diagrami” type = “Cone-to-Diagram-Typei”/>
<OBJECT name = “Cone-to-Diagramj” type = “Cone-to-Diagram-Typej”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Incoming-Communicationn”
type =“Incoming-Communication-Typen”/>

<FROM-OBJECT name = “Cone-to-Diagrami”
type = “Cone-to-Diagram-Typei”/>

<TO-OBJECT name = “Cone-to-Diagramj”
type = “Cone-to-Diagram-Typej”/>
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<MORPHISM>
</MORPHISM>

</CATEGORY>

Figure 245: XML Specification of Category RAE-Behavior-Designated

<LIMIT name = “RAC-Behavior-Designated-Limit”>
<DIAGRAM name = “Constructn” source-category = “RAO-Type”

destination-category = “RACn”/>
<BEHAVIOR-CATEGORY name = “RACn-Behavior-Designated”/>
<TERMINAL-OBJECT name = “RAOLn” type = “RAOL-Typen”/>

</LIMIT>

Figure 246: XML Specification of Limit RAC-Behavior-Designated-Limit

<CATEGORY name = “RAE-Behavior-Achieved”>
<OBJECT>

<OBJECT name = “Cocone-to-Diagrami”
type = “Cocone-to-Diagram-Typei”/>

<OBJECT name = “Cocone-to-Diagramj”
type = “Cocone-to-Diagram-Typej”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Outgoing-Communicationn”
type =“Outgoing-Communication-Typen”/>

<FROM-OBJECT name = “Cocone-to-Diagrami”
type = “Cocone-to-Diagram-Typei”/>

<TO-OBJECT name = “Cocone-to-Diagramj”
type = “Cocone-to-Diagram-Typej”/>

<MORPHISM>
</MORPHISM>

</CATEGORY>

Figure 247: XML Specification of Category RAE-Behavior-Achieved

<COLIMIT name = “RAC-Behavior-Achieved-Colimit”>
<DIAGRAM name = “Constructn” source-category = “RAO-Type”

destination-category = “RACn”/>
<BEHAVIOR-CATEGORY name = “RACn-Behavior-Achieved”/>
<INITIAL-OBJECT name = “RAOLn” type = “RAOL-Typen”/>

</COLIMIT>

Figure 248: XML Specification of Colimit RAC-Behavior-Achieved-Colimit
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<SLICE-CATEGORY name = “RAC/RAOL”>
<OBJECT>

<OBJECT name = “Outgoing-Communicationi”
type = “Outgoing-Communication-Typei”/>

<OBJECT name = “Outgoing-Communicationj”
type = “Outgoing-Communication-Typej”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Connectionn” type =“Connection-Typen”/>
<FROM-OBJECT name = “Outgoing-Communicationi”

type = “Outgoing-Communication-Typei”/>
<TO-OBJECT name = “Outgoing-Communicationj”

type = “Outgoing-Communication-Typej”/>
<MORPHISM>

</MORPHISM>
</SLICE-CATEGORY>

Figure 249: XML Specification of Slice Category RAC/RAOL

<COSLICE-CATEGORY name = “RAOL/RAC”>
<OBJECT>

<OBJECT name = “Incoming-Communicationi”
type = “Incoming-Communication-Typei”/>

<OBJECT name = “Incoming-Communicationj”
type = “Incoming-Communication-Typej”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Connectionn” type =“Connection-Typen”/>
<FROM-OBJECT name = “Incoming-Communicationi”

type = “Incoming-Communication-Typei”/>
<TO-OBJECT name = “Incoming-Communicationj”

type = “Incoming-Communication-Typej”/>
<MORPHISM>

</MORPHISM>
</CATEGORY>

Figure 250: XML Specification of Coslice Category RAOL/RAC

<LIMIT name = “RACG-Behavior-Designated-Limit”>
<DIAGRAM name = “Constructn” source-category = “RAC-Type”

destination-category = “RACGn”/>
<BEHAVIOR-CATEGORY name = “RACGn-Behavior-Designated”/>
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<TERMINAL-OBJECT name = “RACSn” type = “RACS-Typen”/>
</LIMIT>

Figure 251: XML Specification of Limit RACG-Behavior-Designated-Limit

<COLIMIT name = “RACG-Behavior-Achieved-Colimit”>
<DIAGRAM name = “Constructn” source-category = “RAC-Type”

destination-category = “RACGn”/>
<BEHAVIOR-CATEGORY name = “RACGn-Behavior-Achieved”/>
<INITIAL-OBJECT name = “RACSn” type = “RACS-Typen”/>

</COLIMIT>

Figure 252: XML Specification of Colimit RACG-Behavior-Achieved-Colimit

<LIMIT name = “RAS-Behavior-Designated-Limit”>
<DIAGRAM name = “Constructn” source-category = “RACG-Type”

destination-category = “RASn”/>
<BEHAVIOR-CATEGORY name = “RASn-Behavior-Designated”/>
<TERMINAL-OBJECT name = “RACGMn” type = “RACGM-Typen”/>

</LIMIT>

Figure 253: XML Specification of Limit RAS-Behavior-Designated-Limit

<COLIMIT name = “RAS-Behavior-Achieved-Colimit”>
<DIAGRAM name = “Constructn” source-category = “RACG-Type”

destination-category = “RASn”/>
<BEHAVIOR-CATEGORY name = “RASn-Behavior-Achieved”/>
<INITIAL-OBJECT name = “RACGMn” type = “RACGM-Typen”/>

</COLIMIT>

Figure 254: XML Specification of Colimit RAS-Behavior-Achieved-Colimit

<CATEGORY name = “Transition-Type”>
<OBJECT>

<OBJECT name = “Transition-Typei”/>
<OBJECT name = “Transition-Typej”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Before”/>
<FROM-OBJECT name = “Transition-Typei”/>
<TO-OBJECT name = “Transition-Typej”/>

<MORPHISM>
</MORPHISM>
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</CATEGORY>

Figure 255: XML Specification of Index Category Transition-Type

<CATEGORY name = “Transition”>
<OBJECT>

<OBJECT name = “Transitioni” type = “Transition-Typei”/>
<OBJECT name = “Transitionj” type = “Transition-Typej”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Before” type =“Preorder”/>
<FROM-OBJECT name = “Transitioni” type = “Transition-Typei”/>
<TO-OBJECT name = “Transitionj” type = “Transition-Typej”/>

<MORPHISM>
</MORPHISM>

</CATEGORY>

Figure 256: XML Specification of Category Transition

<FUNCTOR name = “Time-Constraint” source-category = “Transition”
target-category = “Discrete-Time’”>

<OBJECT-MAPPING>
<OBJECT-MAPPING source-object = “Transitioni”

target-object = “Abstract-Time-Uniti”/>
<OBJECT-MAPPING source-object = “Transitionj”

target-object = “Abstract-Time-Unitj”/>
</OBJECT-MAPPING>
<MORPHISM-MAPPING>

<MORPHSIM-MAPPING source-morphism = “Before”
target-morphism = “Before”/>

<MORPHSIM-MAPPING source-morphism = “Before”
target-morphism = “Before”/>

</MORPHISM-MAPPING>
</FUNCTOR>

Figure 257: XML Specification of Functor Time-Constraint-for-Transition

<CATEGORY name = “TRANSITION”>
<OBJECT>

<OBJECT name = “Sequencei” type = “Transition-Sequence”/>
<OBJECT name = “Sequencej” type = “Transition-Sequence”/>

</OBJECT>
<MORPHISM>
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<MORPHISM name = “Equivalent” type =“Preorder”/>
<FROM-OBJECT name = “Sequencei” type = “Transition-Sequence”/>
<TO-OBJECT name = “Sequencej” type = “Transition-Sequence”/>

<MORPHISM>
</MORPHISM>

</CATEGORY>

Figure 258: XML Specification of Category TRANSITION

<CATEGORY name = “Action-Type”>
<OBJECT>

<OBJECT name = “Action-Typei”/>
<OBJECT name = “Action-Typej”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Before”/>
<FROM-OBJECT name = “Action-Typei”/>
<TO-OBJECT name = “Action-Typej”/>

<MORPHISM>
</MORPHISM>

</CATEGORY>

Figure 259: XML Specification of Index Category Action-Type

<CATEGORY name = “Action”>
<OBJECT>

<OBJECT name = “Actioni” type = “Action-Typei”/>
<OBJECT name = “Actionj” type = “Action-Typej”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Before” type =“Preorder”/>
<FROM-OBJECT name = “Actioni” type = “Action-Typei”/>
<TO-OBJECT name = “Actionj” type = “Action-Typej”/>

<MORPHISM>
</MORPHISM>

</CATEGORY>

Figure 260: XML Specification of Category Action

<FUNCTOR name = “Time-Constraint” source-category = “Action”
target-category = “Discrete-Time’”>

<OBJECT-MAPPING>
<OBJECT-MAPPING source-object = “Actioni”
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target-object = “Abstract-Time-Uniti”/>
<OBJECT-MAPPING source-object = “Actionj”

target-object = “Abstract-Time-Unitj”/>
</OBJECT-MAPPING>
<MORPHISM-MAPPING>

<MORPHSIM-MAPPING source-morphism = “Before”
target-morphism = “Before”/>

<MORPHSIM-MAPPING source-morphism = “Before”
target-morphism = “Before”/>

</MORPHISM-MAPPING>
</FUNCTOR>

Figure 261: XML Specification of Functor Time-Constraint-for-Action

<CATEGORY name = “INTERACTION”>
<OBJECT>

<OBJECT name = “Sequencei” type = “Action-Sequence”/>
<OBJECT name = “Sequencej” type = “Action-Sequence”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Equivalent” type =“Preorder”/>
<FROM-OBJECT name = “Sequencei” type = “Action-Sequence”/>
<TO-OBJECT name = “Sequencej” type = “Action-Sequence”/>

<MORPHISM>
</MORPHISM>

</CATEGORY>

Figure 262: XML Specification of Category INTERACTION

<CATEGORY name = “RAE-Social-Life”>
<OBJECT>

<OBJECT name = “RAEi” type = “RAE-Typei”/>
<OBJECT name = “RAEj” type = “RAE-Typej”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Social Connectionm”
type =“Social-Connection-Typem”/>

<FROM-OBJECT name = “RAEi” type = “RAE-Typei”/>
<TO-OBJECT name = “RAEj” type = “RAE-Typej”/>

<MORPHISM>
</MORPHISM>
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</CATEGORY>

Figure 263: XML Specification of Category RAE-Social-Life

<CATEGORY name = “Evolution-Type”>
<OBJECT>

<OBJECT name = “Evolution-Typei”/>
<OBJECT name = “Evolution-Typej”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Before”/>
<FROM-OBJECT name = “Evolution-Typei”/>
<TO-OBJECT name = “Evolution-Typej”/>

<MORPHISM>
</MORPHISM>

</CATEGORY>

Figure 264: XML Specification of Index Category Evolution-Type

<CATEGORY name = “Evolution”>
<OBJECT>

<OBJECT name = “Evolutioni” type = “Evolution-Typei”/>
<OBJECT name = “Evolutionj” type = “Evolution-Typej”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Before” type =“Preorder”/>
<FROM-OBJECT name = “Evolutioni” type = “Evolution-Typei”/>
<TO-OBJECT name = “Evolutionj” type = “Evolution-Typej”/>

<MORPHISM>
</MORPHISM>

</CATEGORY>

Figure 265: XML Specification of Category Evolution

<FUNCTOR name = “Time-Constraint” source-category = “Evolution”
target-category = “Discrete-Time’”>

<OBJECT-MAPPING>
<OBJECT-MAPPING source-object = “Evolutioni”

target-object = “Abstract-Time-Uniti”/>
<OBJECT-MAPPING source-object = “Evolutionj”

target-object = “Abstract-Time-Unitj”/>
</OBJECT-MAPPING>
<MORPHISM-MAPPING>
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<MORPHSIM-MAPPING source-morphism = “Before”
target-morphism = “Before”/>

<MORPHSIM-MAPPING source-morphism = “Before”
target-morphism = “Before”/>

</MORPHISM-MAPPING>
</FUNCTOR>

Figure 266: XML Specification of Functor Time-Constraint-for-Evolution

<CATEGORY name = “EVOLUTION”>
<OBJECT>

<OBJECT name = “Sequencei” type = “Evolution-Sequence”/>
<OBJECT name = “Sequencej” type = “Evolution-Sequence”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Equivalent” type =“Preorder”/>
<FROM-OBJECT name = “Sequencei” type = “Evolution-Sequence”/>
<TO-OBJECT name = “Sequencej” type = “Evolution-Sequence”/>

<MORPHISM>
</MORPHISM>

</CATEGORY>

Figure 267: XML Specification of Category EVOLUTION



359

Appendix C: Representation of Categorical MAS Models in RASF
<CATEGORY name = “Plan”>

<OBJECT>
<OBJECT name = “Actioni” type = “Action-Typei”/>
<OBJECT name = “Actionj” type = “Action-Typej”/>
<OBJECT name = “ActionNull” type = “Action-TypeNull”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Before” type = “Partial-Order”/>
<FROM-OBJECT name = “Actioni” type = “Action-Typei”/>
<TO-OBJECT name = “Actionj” type = “Action-Typej”/>

</MORPHISM>
</MORPHISM>

</CATEGORY>

Figure 268: XML Specification of Category Plan

<CATEGORY name = “PLAN”>
<OBJECT>

<OBJECT name = “Plani” type = “Category”/>
<OBJECT name = “Planj” type = “Category”/>
<OBJECT name = “PlanNull” type = “Category”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Before” type = “Functor”/>
<FROM-OBJECT name = “Plani” type = “Category”/>
<TO-OBJECT name = “Planj” type = “Category”/>

</MORPHISM>
</MORPHISM>

</CATEGORY>

Figure 269: XML Specification of Category PLAN

<FUNCTOR name = “Refined-by-Plan” source-category = “Plan”
target-category = “PLAN”>

<OBJECT-MAPPING>
<OBJECT-MAPPING source-object = “Actioni” target-object = “Plani”/>
<OBJECT-MAPPING source-object = “Actionj” target-object = “Planj”/>

</OBJECT-MAPPING>
<MORPHISM-MAPPING>

<MORPHSIM-MAPPING source-morphism = “Before”



360

target-morphism = “Identity-Plani”/>
<MORPHSIM-MAPPING source-morphism = “Before”

target-morphism = “Identity-Planj”/>
</MORPHISM-MAPPING>

</FUNCTOR>

Figure 270: XML Specification of Functor Refined-by-Plan

<FUNCTOR name = “Timing-Plan” source-category = “PLAN”
target-category = “Discrete-Time”>

<OBJECT-MAPPING>
<OBJECT-MAPPING source-object = “Plani”

target-object = “Abstract-Time-Uniti”/>
<OBJECT-MAPPING source-object = “Planj”

target-object = “Abstract-Time-Unitj”/>
</OBJECT-MAPPING>
<MORPHISM-MAPPING>

<MORPHSIM-MAPPING source-morphism = “Before”
target-morphism = “Before”/>

<MORPHSIM-MAPPING source-morphism = “Before”
target-morphism = “Before”/>

</MORPHISM-MAPPING>
</FUNCTOR>

Figure 271: XML Specification of Functor Timing-Plan

<CATEGORY name = “Goal-Type”>
<OBJECT>

<OBJECT name = “Goal-Typei”/>
<OBJECT name = “Goal-Typej”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Partial-Order”/>
<FROM-OBJECT name = “Goal-Typei”/>
<TO-OBJECT name = “Goal-Typej”/>

</MORPHISM>
</MORPHISM>

</CATEGORY>

Figure 272: XML Specification of Type Category Goal-Type

<CATEGORY name = “Goal-Type-Instance”>
<OBJECT>
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<OBJECT name = “Goali” type = “Goal-Typei”/>
<OBJECT name = “Goalj” type = “Goal-Typej”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Depend” type =“Partial-Order”/>
<FROM-OBJECT name = “Goali” type = “Goal-Typei”/>
<TO-OBJECT name = “Goalj” type = “Goal-Typej”/>

<MORPHISM>
</MORPHISM>

</CATEGORY>

Figure 273: XML Specification of Category Goal-Type-Instance

<CATEGORY name = “GOAL”>
<OBJECT>

<OBJECT name = “Goali” type = “Goal-Typei”/>
<OBJECT name = “Goalj” type = “Goal-Typej”/>
<OBJECT name = “GoalNull” type = “Goal-TypeNull”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Depend” type = “Partial-Order”/>
<FROM-OBJECT name = “Goali” type = “Goal-Typei”/>
<TO-OBJECT name = “Goalj” type = “Goal-Typej”/>

</MORPHISM>
</MORPHISM>

</CATEGORY>

Figure 274: XML Specification of Category GOAL

<CATEGORY name = “Priority-Type”>
<OBJECT>

<OBJECT name = “Priority-Typei”/>
<OBJECT name = “Priority-Typej”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Partial-Order”/>
<FROM-OBJECT name = “Priority-Typei”/>
<TO-OBJECT name = “Priority-Typej”/>

</MORPHISM>
</MORPHISM>

</CATEGORY>

Figure 275: XML Specification of Type Category Priority-Type



362

<CATEGORY name = “Priority-Type-Instance”>
<OBJECT>

<OBJECT name = “Priorityi” type = “Priority-Typei”/>
<OBJECT name = “Priorityj” type = “Priority-Typej”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Higher-Than” type =“Partial-Order”/>
<FROM-OBJECT name = “Priorityi” type = “Priority-Typei”/>
<TO-OBJECT name = “Priorityj” type = “Priority-Typej”/>

<MORPHISM>
</MORPHISM>

</CATEGORY>

Figure 276: XML Specification of Category Priority-Type-Instance

<CATEGORY name = “Dependency”>
<OBJECT>

<OBJECT name = “Priorityi” type = “Priority-Typei”/>
<OBJECT name = “Priorityj” type = “Priority-Typej”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Higher-Than” type = “Partial-Order”/>
<FROM-OBJECT name = “Priorityi” type = “Priority-Typei”/>
<TO-OBJECT name = “Priorityj” type = “Priority-Typej”/>

</MORPHISM>
</MORPHISM>

</CATEGORY>

Figure 277: XML Specification of Category Dependency

<FUNCTOR name = “Assigned-Dependency” source-category = “GOAL”
target-category = “Dependency”>

<OBJECT-MAPPING>
<OBJECT-MAPPING source-object = “Goali” target-object = “Priorityi”/>
<OBJECT-MAPPING source-object = “Goalj” target-object = “Priorityj”/>

</OBJECT-MAPPING>
<MORPHISM-MAPPING>

<MORPHSIM-MAPPING source-morphism = “Depend”
target-morphism = “Higher-Than”/>

<MORPHSIM-MAPPING source-morphism = “Depend”
target-morphism = “Higher-Than”/>

</MORPHISM-MAPPING>
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</FUNCTOR>

Figure 278: XML Specification of Functor Assigned-Dependency

<CATEGORY name = “Fact-Type”>
<OBJECT>

<OBJECT name = “Fact-Typei”/>
<OBJECT name = “Fact-Typej”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Partial-Order”/>
<FROM-OBJECT name = “Fact-Typei”/>
<TO-OBJECT name = “Fact-Typej”/>

</MORPHISM>
</MORPHISM>

</CATEGORY>

Figure 279: XML Specification of Type Category Fact-Type

<CATEGORY name = “FactSet”>
<OBJECT>

<OBJECT name = “Facti” type = “Fact-Typei”/>
<OBJECT name = “Factj” type = “Fact-Typej”/>
<OBJECT name = “FactNull” type = “Fact-TypeNull”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Identity-Facti” type = “Identity-Morphism”/>
<FROM-OBJECT name = “Facti” type = “Fact-Typei”/>
<TO-OBJECT name = “Facti” type = “Fact-Typei”/>

</MORPHISM>
<MORPHISM name = “Identity-Factj”/>

<FROM-OBJECT name = “Factj” type = “Fact-Typej”/>
<TO-OBJECT name = “Factj” type = “Fact-Typej”/>

</MORPHISM>
<MORPHISM name = “Identity-FactNull”/>

<FROM-OBJECT name = “FactNull” type = “Fact-TypeNull”/>
<TO-OBJECT name = “FactNull” type = “Fact-TypeNull”/>

</MORPHISM>
</MORPHISM>

</CATEGORY>

Figure 280: XML Specification of Discrete Category FactSet
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<CATEGORY name = “FactSetNull”>
<OBJECT>
</OBJECT>
<MORPHISM>
</MORPHISM>

</CATEGORY>

Figure 281: XML Specification of Discrete Category FactSetNull

<CATEGORY name = “FactSetBase”>
<OBJECT>

<OBJECT name = “Base-Facti” type = “Base-Fact-Typei”/>
<OBJECT name = “Base-Factj” type = “Base-Fact-Typej”/>
<OBJECT name = “Base-FactNull” type = “Base-Fact-TypeNull”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Identity-Base-Facti” type = “Identity-Morphism”/>
<FROM-OBJECT name = “Base-Facti” type = “Base-Fact-Typei”/>
<TO-OBJECT name = “Base-Facti” type = “Base-Fact-Typei”/>

</MORPHISM>
<MORPHISM name = “Identity-Base-Factj” type = “Identity-Morphism”/>

<FROM-OBJECT name = “Base-Factj” type = “Base-Fact-Typej”/>
<TO-OBJECT name = “Base-Factj” type = “Base-Fact-Typej”/>

</MORPHISM>
<MORPHISM name = “Identity-Base-FactNull”

type = “Identity-Morphism”/>
<FROM-OBJECT name = “Base-FactNull”

type = “Base-Fact-TypeNull”/>
<TO-OBJECT name = “Base-FactNull”

type = “Base-Fact-TypeNull”/>
</MORPHISM>

</MORPHISM>
</CATEGORY>

Figure 282: XML Specification of Discrete Category FactSetBase

<CATEGORY name = “BELIEF”>
<OBJECT>

<OBJECT name = “FactSetBase” type = “FactSet”/>
<OBJECT name = “FactSetNull” type = “FactSet”/>
<OBJECT name = “FactSeti” type = “FactSet”/>
<OBJECT name = “FactSetj” type = “FactSet”/>
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</OBJECT>
<MORPHISM>

<MORPHISM name = “Subset-of” type = “Partial-Order”/>
<FROM-OBJECT name = “FactSeti” type = “FactSet”/>
<TO-OBJECT name = “FactSetj” type = “FactSet”/>

</MORPHISM>
<MORPHISM name = “Subset-of” type = “Partial-Order”/>

<FROM-OBJECT name = “FactSetBase” type = “FactSet”/>
<TO-OBJECT name = “FactSeti” type = “FactSet”/>

</MORPHISM>
<MORPHISM name = “Subset-of” type = “Partial-Order”/>

<FROM-OBJECT name = “FactSetNull” type = “FactSet”/>
<TO-OBJECT name = “FactSeti” type = “FactSet”/>

</MORPHISM>
<MORPHISM name = “Subset-of” type = “Partial-Order”/>

<FROM-OBJECT name = “FactSetBase” type = “FactSet”/>
<TO-OBJECT name = “FactSetj” type = “FactSet”/>

</MORPHISM>
<MORPHISM name = “Subset-of” type = “Partial-Order”/>

<FROM-OBJECT name = “FactSetNull” type = “FactSet”/>
<TO-OBJECT name = “FactSetj” type = “FactSet”/>

</MORPHISM>
</MORPHISM>

</CATEGORY>

Figure 283: XML Specification of Category BELIEF

<FUNCTOR name = “Plan-Goal” source-category = “PLAN”
target-category = “GOAL”>

<OBJECT-MAPPING>
<OBJECT-MAPPING source-object = “Plani” target-object = “Goali”/>
<OBJECT-MAPPING source-object = “Planj” target-object = “Goalj”/>

</OBJECT-MAPPING>
<MORPHISM-MAPPING>

<MORPHSIM-MAPPING source-morphism = “Before”
target-morphism = “Depend”/>

<MORPHSIM-MAPPING source-morphism = “Before”
target-morphism = “Depend”/>

</MORPHISM-MAPPING>
</FUNCTOR>

Figure 284: XML Specification of Functor Plan-Goal
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<FUNCTOR name = “Plan-Belief” source-category = “PLAN”
target-category = “BELIEF”>

<OBJECT-MAPPING>
<OBJECT-MAPPING source-object = “Plani” target-object = “FactSeti”/>
<OBJECT-MAPPING source-object = “Planj” target-object = “FactSetj”/>

</OBJECT-MAPPING>
<MORPHISM-MAPPING>

<MORPHSIM-MAPPING source-morphism = “Before”
target-morphism = “Identity-FactSetNull”/>

<MORPHSIM-MAPPING source-morphism = “Before”
target-morphism = “Identity-FactSetNull”/>

</MORPHISM-MAPPING>
</FUNCTOR>

Figure 285: XML Specification of Functor Plan-Belief

<FUNCTOR name = “Goal-Belief” source-category = “GOAL”
target-category = “BELIEF”>

<OBJECT-MAPPING>
<OBJECT-MAPPING source-object = “Goali” target-object = “FactSeti”/>
<OBJECT-MAPPING source-object = “Goalj” target-object = “FactSetj”/>

</OBJECT-MAPPING>
<MORPHISM-MAPPING>

<MORPHSIM-MAPPING source-morphism = “Depend”
target-morphism = “Identity-FactSetNull”/>

<MORPHSIM-MAPPING source-morphism = “Depend”
target-morphism = “Identity-FactSetNull”/>

</MORPHISM-MAPPING>
</FUNCTOR>

Figure 286: XML Specification of Functor Goal-Belief

<CATEGORY name = “AGENT”>
<OBJECT>

<OBJECT name = “Action” type = “Category”/>
<OBJECT name = “Plan” type = “Category”/>
<OBJECT name = “PLAN” type = “Category”/>
<OBJECT name = “GOAL” type = “Category”/>
<OBJECT name = “BELIEF” type = “Category”/>
<OBJECT name = “FactSet” type = “Category”/>

</OBJECT>
<MORPHISM>
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<MORPHISM name = “Plan-Goal” type = “Functor”/>
<FROM-OBJECT name = “PLAN” type = “Category”/>
<TO-OBJECT name = “GOAL” type = “Category”/>

</MORPHISM>
<MORPHISM name = “Plan-Belief” type = “Functor”/>

<FROM-OBJECT name = “PLAN” type = “Category”/>
<TO-OBJECT name = “BELIEF” type = “Category”/>

</MORPHISM>
<MORPHISM name = “Goal-Belief” type = “Functor”/>

<FROM-OBJECT name = “GOAL” type = “Category”/>
<TO-OBJECT name = “BELIEF” type = “Category”/>

</MORPHISM>
<MORPHISM name = “Refined-by-Plan” type = “Functor”/>

<FROM-OBJECT name = “Plan” type = “Category”/>
<TO-OBJECT name = “PLAN” type = “Category”/>

</MORPHISM>
<MORPHISM name = “Sequence-Action” type = “Functor”/>

<FROM-OBJECT name = “Action” type = “Category”/>
<TO-OBJECT name = “Plan” type = “Category”/>

</MORPHISM>
</MORPHISM>

</CATEGORY>

Figure 287: XML Specification of Category AGENT

<CATEGORY name = “Agent-Type”>
<OBJECT>

<OBJECT name = “Agent-Typei”/>
<OBJECT name = “Agent-Typej”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Communication-Typen”/>
<FROM-OBJECT name = “Agent-Typei”/>
<TO-OBJECT name = “Agent-Typej”/>

</MORPHISM>
</MORPHISM>

</CATEGORY>

Figure 288: XML Specification of Type Category Agent-Type

<CATEGORY name = “Agent-Type-Instance”>
<OBJECT>
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<OBJECT name = “Agenti” type = “Agent-Typei”/>
<OBJECT name = “Agentj” type = “Agent-Typej”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Communicationn” type =“Communication-Typen”/>
<FROM-OBJECT name = “Agenti” type = “Agent-Typei”/>
<TO-OBJECT name = “Agentj” type = “Agent-Typej”/>

<MORPHISM>
</MORPHISM>

</CATEGORY>

Figure 289: XML Specification of Category Agent-Type-Instance

<CATEGORY name = “MAS”>
<OBJECT>

<OBJECT name = “Agenti” type = “Agent-Typei”/>
<OBJECT name = “Agentj” type = “Agent-Typej”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Communicationn”
type = “Communication-Typen”/>

<FROM-OBJECT name = “Agenti” type = “Agent-Typei”/>
<TO-OBJECT name = “Agentj” type = “Agent-Typej”/>

</MORPHISM>
</MORPHISM>

</CATEGORY>

Figure 290: XML Specification of Category MAS

<CATEGORY name = “Repository-Type”>
<OBJECT>

<OBJECT name = “Repository-Typei”/>
<OBJECT name = “Repository-Typej”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Connection-Typen”/>
<FROM-OBJECT name = “Repository-Typei”/>
<TO-OBJECT name = “Repository-Typej”/>

</MORPHISM>
</MORPHISM>

</CATEGORY>

Figure 291: XML Specification of Type Category Repository-Type
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<CATEGORY name = “Repository-Type-Instance”>
<OBJECT>

<OBJECT name = “Repositoryi” type = “Repository-Typei” />
<OBJECT name = “Repositoryj” type = “Repository-Typej”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Connectionn” type =“Connection-Typen”/>
<FROM-OBJECT name = “Repositoryi” type = “Repository-Typei”/>
<TO-OBJECT name = “Repositoryj” type = “Repository-Typej”/>

</MORPHISM>
</MORPHISM>

</CATEGORY>

Figure 292: XML Specification of Category Repository-Type-Instance

<FUNCTOR name = “Repository-Access” source-category = “MAS”
target-category = “Repository-Type-Instance”>

<OBJECT-MAPPING>
<OBJECT-MAPPING source-object = “Agenti”

target-object = “Repositoryi”/>
<OBJECT-MAPPING source-object = “Agentj”

target-object = “Repositoryj”/>
</OBJECT-MAPPING>
<MORPHISM-MAPPING>

<MORPHSIM-MAPPING source-morphism = “Communicationn”
target-morphism = “Connectionn”/>

<MORPHSIM-MAPPING source-morphism = “Communicationm”
target-morphism = “Connectionm”/>

</MORPHISM-MAPPING>
</FUNCTOR>

Figure 293: XML Specification of Functor Repository-Access

<CATEGORY name = “MAS-Type”>
<OBJECT>

<OBJECT name = “MAS-Typei”/>
<OBJECT name = “MAS-Typej”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Communication-Typen”/>
<FROM-OBJECT name = “MAS-Typei”/>
<TO-OBJECT name = “MAS-Typej”/>
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</MORPHISM>
</MORPHISM>

</CATEGORY>

Figure 294: XML Specification of Type Category MAS-Type

<CATEGORY name = “MAS-Type-Instance”>
<OBJECT>

<OBJECT name = “MASi” type = “MAS-Typei” />
<OBJECT name = “MASj” type = “MAS-Typej”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Communicationn” type =“Communication-Typen”/>
<FROM-OBJECT name = “MASi” type = “MAS-Typei”/>
<TO-OBJECT name = “MASj” type = “MAS-Typej”/>

</MORPHISM>
</MORPHISM>

</CATEGORY>

Figure 295: XML Specification of Category MAS-Type-Instance
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Appendix D: Representation of Categorical Self-Healing
<CATEGORY name = “Take-over-Work-Flow-for-Self-Healing”>

<OBJECT>
<OBJECT name = “Restart” type = “Work-Flow-Action”/>
<OBJECT name = “NoHeartbeat” type = “Work-Flow-Action”/>
<OBJECT name = “RequestRAE” type = “Work-Flow-Action”/>
<OBJECT name = “NotFound” type = “Work-Flow-Action”/>
<OBJECT name = “Take-over” type = “Work-Flow-Action”/>
<OBJECT name = “Confirmed” type = “Work-Flow-Action”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Before” type =“Preorder”/>
<FROM-OBJECT name = “Restart” type = “Work-Flow-Action”/>
<TO-OBJECT name = “NoHeartbeat” type = “Work-Flow-Action”/>

<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>

<FROM-OBJECT name = “NoHeartbeat”
type = “Work-Flow-Action”/>

<TO-OBJECT name = “RequestRAE” type = “Work-Flow-Action”/>
<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>

<FROM-OBJECT name = “RequestRAE” type = “Work-Flow-Action”/>
<TO-OBJECT name = “NotFound” type = “Work-Flow-Action”/>

<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>

<FROM-OBJECT name = “NotFound” type = “Work-Flow-Action”/>
<TO-OBJECT name = “Take-over” type = “Work-Flow-Action”/>

<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>

<FROM-OBJECT name = “Take-over” type = “Work-Flow-Action”/>
<TO-OBJECT name = “Confirmed” type = “Work-Flow-Action”/>

<MORPHISM>
</MORPHISM>

</CATEGORY>

Figure 296: XML Specification of Category Take-Over-Flow-Self-Healing

<CATEGORY name = “Intelligent-Control-Loop-Time-for-Self-Healing”>
<OBJECT>

<OBJECT name = “t0” type = “Integer”/>
<OBJECT name = “t1” type = “Integer”/>
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<OBJECT name = “t2” type = “Integer”/>
<OBJECT name = “t3” type = “Integer”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Before” type =“Preorder”/>
<FROM-OBJECT name = “t0” type = “Integer”/>
<TO-OBJECT name = “t1” type = “Integer”/>

<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>

<FROM-OBJECT name = “t0” type = “Integer”/>
<TO-OBJECT name = “t2” type = “Integer”/>

<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>

<FROM-OBJECT name = “t0” type = “Integer”/>
<TO-OBJECT name = “t3” type = “Integer”/>

<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>

<FROM-OBJECT name = “t1” type = “Integer”/>
<TO-OBJECT name = “t2” type = “Integer”/>

<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>

<FROM-OBJECT name = “t1” type = “Integer”/>
<TO-OBJECT name = “t3” type = “Integer”/>

<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>

<FROM-OBJECT name = “t2” type = “Integer”/>
<TO-OBJECT name = “t3” type = “Integer”/>

<MORPHISM>
</MORPHISM>

</CATEGORY>

Figure 297: XML Specification of Category ICL-Time-Self-Healing

<FUNCTOR name = “Intelligent-Control-Loop-Time-Constraint-Self-Healing”
source-category = “ICL-State-Self-Healing”
target-category = “ICL-Time-Self-Healing’”>

<OBJECT-MAPPING>
<OBJECT-MAPPING source-object = “Analyze” target-object = “t0”/>
<OBJECT-MAPPING source-object = “Analyze” target-object = “t1”/>
<OBJECT-MAPPING source-object = “Plan” target-object = “t2”/>
<OBJECT-MAPPING source-object = “Plan” target-object = “t3”/>

</OBJECT-MAPPING>
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<MORPHISM-MAPPING>
<MORPHSIM-MAPPING source-morphism = “Restart-RAE”

target-morphism = “Before”/>
<MORPHSIM-MAPPING source-morphism = “Has-Action”

target-morphism = “Before”/>
<MORPHSIM-MAPPING source-morphism = “Substitute”

target-morphism = “Before”/>
<MORPHSIM-MAPPING source-morphism = “Take-Over”

target-morphism = “Before”/>
<MORPHSIM-MAPPING source-morphism = “Action-Done”

target-morphism = “Before”/>
</MORPHISM-MAPPING>

</FUNCTOR>

Figure 298: XML Specification of Category Time-Constraint-Self-Healing

<FUNCTOR name = “RACG-Self-Healing-Restart”
source-category = “RACG1-1”
target-category = “RACG1-0”>

<OBJECT-MAPPING>
<OBJECT-MAPPING source-object = “RAOL1-1”

target-object = “RAOL1”/>
<OBJECT-MAPPING source-object = “RAOL2”

target-object = “RAOL2”/>
<OBJECT-MAPPING source-object = “RACS1”

target-object = “RACS1”/>
</OBJECT-MAPPING>
<MORPHISM-MAPPING>

<MORPHSIM-MAPPING source-morphism = “Command1-1”
target-morphism = “Command1”/>

<MORPHSIM-MAPPING source-morphism = “Command2”
target-morphism = “Command2”/>

<MORPHSIM-MAPPING source-morphism = “Report1-1”
target-morphism = “Report1”/>

<MORPHSIM-MAPPING source-morphism = “Report2”
target-morphism = “Report2”/>

<MORPHSIM-MAPPING source-morphism = “Cooperate1-1”
target-morphism = “Cooperate1”/>

<MORPHSIM-MAPPING source-morphism = “Cooperate2”
target-morphism = “Cooperate2”/>

</MORPHISM-MAPPING>
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</FUNCTOR>

Figure 299: XML Specification of Functor RACG-Self-Healing-Restart

<FUNCTOR name = “RACG-Self-Healing-Substitute”
source-category = “RACG1-2”
target-category = “RACG1-0”>

<OBJECT-MAPPING>
<OBJECT-MAPPING source-object = “RAOL3”

target-object = “RAOL1”/>
<OBJECT-MAPPING source-object = “RAOL2”

target-object = “RAOL2”/>
<OBJECT-MAPPING source-object = “RACS1”

target-object = “RACS1”/>
</OBJECT-MAPPING>
<MORPHISM-MAPPING>

<MORPHSIM-MAPPING source-morphism = “Command3”
target-morphism = “Command1”/>

<MORPHSIM-MAPPING source-morphism = “Command2”
target-morphism = “Command2”/>

<MORPHSIM-MAPPING source-morphism = “Report3”
target-morphism = “Report1”/>

<MORPHSIM-MAPPING source-morphism = “Report2”
target-morphism = “Report2”/>

<MORPHSIM-MAPPING source-morphism = “Cooperate3”
target-morphism = “Cooperate1”/>

<MORPHSIM-MAPPING source-morphism = “Cooperate2”
target-morphism = “Cooperate2”/>

</MORPHISM-MAPPING>
</FUNCTOR>

Figure 300: XML Specification of Functor RACG-Self-Healing-Substitute

<FUNCTOR name = “RACG-Self-Healing-Take-Over”
source-category = “RACG1-3”
target-category = “RACG1-0”>

<OBJECT-MAPPING>
<OBJECT-MAPPING source-object = “SPM2” target-object = “RAOL1”/>
<OBJECT-MAPPING source-object = “SPM2” target-object = “RAOL2”/>
<OBJECT-MAPPING source-object = “RACS1-1”

target-object = “RACS1”/>
</OBJECT-MAPPING>
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<MORPHISM-MAPPING>
<MORPHSIM-MAPPING source-morphism = “Command6”

target-morphism = “Command1”/>
<MORPHSIM-MAPPING source-morphism = “Command7”

target-morphism = “Command2”/>
<MORPHSIM-MAPPING source-morphism = “Report6”

target-morphism = “Report1”/>
<MORPHSIM-MAPPING source-morphism = “Report7”

target-morphism = “Report2”/>
<MORPHSIM-MAPPING source-morphism = “Cooperate6”

target-morphism = “Cooperate1”/>
<MORPHSIM-MAPPING source-morphism = “Cooperate7”

target-morphism = “Cooperate2”/>
</MORPHISM-MAPPING>

</FUNCTOR>

Figure 301: XML Specification of Functor RACG-Self-Healing-Take-Over

<NATURAL-TRANSFORMATION name = “Relation-of-RACG-Evolution”>
<ARROW>

<ARROW name = “Relation4”/>
<FROM-FUNCTOR name = “RACG-Self-Healing-Restart”

type = “RACG-Evolution-Self-Healing”/>
<TO-FUNCTOR name = “RACG-Self-Healing-Substitute”

type = “RACG-Evolution-Self-Healing”/>
</ARROW>
<ARROW name = “Relation5”/>

<FROM-FUNCTOR name = “RACG-Self-Healing-Restart”
type = “RACG-Evolution-Self-Healing”/>

<TO-FUNCTOR name = “RACG-Self-Healing-Take-Over”
type = “RACG-Evolution-Self-Healing”/>

</ARROW>
<ARROW name = “Relation6”/>

<FROM-FUNCTOR name = “RACG-Self-Healing-Substitute”
type = “RACG-Evolution-Self-Healing”/>

<TO-FUNCTOR name = “RACG-Self-Healing-Take-Over”
type = “RACG-Evolution-Self-Healing”/>

</ARROW>
</ARROW>

</NATURAL-TRANSFORMATION>

Figure 302: XML Specification of Natural Transformation RACG-Evolution-Relation
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<CATEGORY name = “Relation-Set-of-RACG-Evolution-Self-Healing”>
<OBJECT>

<OBJECT name = “RACG-Self-Healing-Restart”
type = “RACG-Evolution-Self-Healing” />

<OBJECT name = “RACG-Self-Healing-Substitute”
type = “RACG-Evolution-Self-Healing”/>

<OBJECT name = “RACG-Self-Healing-Take-Over”
type = “RACG-Evolution-Self-Healing”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Relation4”
type =“RACG-Evolution-Relation-Self-Healing”/>

<FROM-OBJECT name = “RACG-Self-Healing-Restart”
type = “RACG-Evolution-Self-Healing” />

<TO-OBJECT name = “RACG-Self-Healing-Substitute”
type = “RACG-Evolution-Self-Healing”/>

</MORPHISM>
<MORPHISM name = “Relation5”

type =“RACG-Evolution-Relation-Self-Healing”/>
<FROM-OBJECT name = “RACG-Self-Healing-Restart”

type = “RACG-Evolution-Self-Healing” />
<TO-OBJECT name = “RACG-Self-Healing-Take-Over”

type = “RACG-Evolution-Self-Healing”/>
</MORPHISM>
<MORPHISM name = “Relation6”

type =“RACG-Evolution-Relation-Self-Healing”/>
<FROM-OBJECT name = “RACG-Self-Healing-Substitute”

type = “RACG-Evolution-Self-Healing” />
<TO-OBJECT name = “RACG-Self-Healing-Take-Over”

type = “RACG-Evolution-Self-Healing”/>
</MORPHISM>

</MORPHISM>
</CATEGORY>

Figure 303: XML Specification of Functor Category RACG-Evolution-Relation-Set
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Appendix E: Representation of Categorical Self-Configuration
<CATEGORY name = “Self-Configuration-Work-Flow”>

<OBJECT>
<OBJECT name = “ValidateRACGM” type = “Work-Flow-Action”/>
<OBJECT name = “ValidateRACS” type = “Work-Flow-Action”/>
<OBJECT name = “LaunchInvestigation” type = “Work-Flow-Action”/>
<OBJECT name = “ValidateRACScommunication”

type = “Work-Flow-Action”/>
<OBJECT name = “Conform” type = “Work-Flow-Action”/>
<OBJECT name = “NotConform” type = “Work-Flow-Action”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Before” type =“Preorder”/>
<FROM-OBJECT name = “ValidateRACGM”

type = “Work-Flow-Action”/>
<TO-OBJECT name = “Conform” type = “Work-Flow-Action”/>

<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>

<FROM-OBJECT name = “ValidateRACGM”
type = “Work-Flow-Action”/>

<TO-OBJECT name = “NotConform” type = “Work-Flow-Action”/>
<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>

<FROM-OBJECT name = “ValidateRACS”
type = “Work-Flow-Action”/>

<TO-OBJECT name = “Conform” type = “Work-Flow-Action”/>
<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>

<FROM-OBJECT name = “ValidateRACS”
type = “Work-Flow-Action”/>

<TO-OBJECT name = “NotConform” type = “Work-Flow-Action”/>
<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>

<FROM-OBJECT name = “ValidateRACScommunication”
type = “Work-Flow-Action”/>

<TO-OBJECT name = “Conform” type = “Work-Flow-Action”/>
<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>

<FROM-OBJECT name = “ValidateRACScommunication”
type = “Work-Flow-Action”/>
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<TO-OBJECT name = “NotConform” type = “Work-Flow-Action”/>
<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>

<FROM-OBJECT name = “NotConform” type = “Work-Flow-Action”/>
<TO-OBJECT name = “LaunchInvestigation”

type = “Work-Flow-Action”/>
<MORPHISM>

</MORPHISM>
</CATEGORY>

Figure 304: XML Specification of Category Self-Configuration-Work-Flow

<CATEGORY name = “Substitution-Work-Flow-for-Self-Configuration”>
<OBJECT>

<OBJECT name = “WrongCommType” type = “Work-Flow-Action”/>
<OBJECT name = “SelfViolation” type = “Work-Flow-Action”/>
<OBJECT name = “Request” type = “Work-Flow-Action”/>
<OBJECT name = “Confirm” type = “Work-Flow-Action”/>
<OBJECT name = “Register” type = “Work-Flow-Action”/>
<OBJECT name = “Heartbeat” type = “Work-Flow-Action”/>
<OBJECT name = “Connect” type = “Work-Flow-Action”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Before” type =“Preorder”/>
<FROM-OBJECT name = “WrongCommType”

type = “Work-Flow-Action”/>
<TO-OBJECT name = “SelfViolation” type = “Work-Flow-Action”/>

<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>

<FROM-OBJECT name = “SelfViolation”
type = “Work-Flow-Action”/>

<TO-OBJECT name = “Request” type = “Work-Flow-Action”/>
<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>

<FROM-OBJECT name = “Request” type = “Work-Flow-Action”/>
<TO-OBJECT name = “Confirm” type = “Work-Flow-Action”/>

<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>

<FROM-OBJECT name = “Confirm” type = “Work-Flow-Action”/>
<TO-OBJECT name = “Register” type = “Work-Flow-Action”/>

<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>
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<FROM-OBJECT name = “Register” type = “Work-Flow-Action”/>
<TO-OBJECT name = “Heartbeat” type = “Work-Flow-Action”/>

<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>

<FROM-OBJECT name = “Heartbeat” type = “Work-Flow-Action”/>
<TO-OBJECT name = “Connect” type = “Work-Flow-Action”/>

<MORPHISM>
</MORPHISM>

</CATEGORY>

Figure 305: XML Specification of Category Substitution-Flow-Self-Configuration

<CATEGORY name = “Take-over-Work-Flow-for-Self-Configuration”>
<OBJECT>

<OBJECT name = “WrongCommType” type = “Work-Flow-Action”/>
<OBJECT name = “SelfViolation” type = “Work-Flow-Action”/>
<OBJECT name = “Take-over” type = “Work-Flow-Action”/>
<OBJECT name = “Confirm” type = “Work-Flow-Action”/>
<OBJECT name = “Connect” type = “Work-Flow-Action”/>
<OBJECT name = “Heartbeat” type = “Work-Flow-Action”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Before” type =“Preorder”/>
<FROM-OBJECT name = “WrongCommType”

type = “Work-Flow-Action”/>
<TO-OBJECT name = “SelfViolation” type = “Work-Flow-Action”/>

<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>

<FROM-OBJECT name = “SelfViolation”
type = “Work-Flow-Action”/>

<TO-OBJECT name = “Take-over” type = “Work-Flow-Action”/>
<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>

<FROM-OBJECT name = “Take-over” type = “Work-Flow-Action”/>
<TO-OBJECT name = “Confirm” type = “Work-Flow-Action”/>

<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>

<FROM-OBJECT name = “Confirm” type = “Work-Flow-Action”/>
<TO-OBJECT name = “Connect” type = “Work-Flow-Action”/>

<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>

<FROM-OBJECT name = “Connect” type = “Work-Flow-Action”/>
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<TO-OBJECT name = “Heartbeat” type = “Work-Flow-Action”/>
<MORPHISM>

</MORPHISM>
</CATEGORY>

Figure 306: XML Specification of Category Take-over-Flow-Self-Configuration

<CATEGORY name = “Intelligent-Control-Loop-Time-for-Self-Configuration”>
<OBJECT>

<OBJECT name = “t0” type = “Integer”/>
<OBJECT name = “t4” type = “Integer”/>
<OBJECT name = “t5” type = “Integer”/>
<OBJECT name = “t6” type = “Integer”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Before” type =“Preorder”/>
<FROM-OBJECT name = “t0” type = “Integer”/>
<TO-OBJECT name = “t4” type = “Integer”/>

<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>

<FROM-OBJECT name = “t0” type = “Integer”/>
<TO-OBJECT name = “t5” type = “Integer”/>

<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>

<FROM-OBJECT name = “t0” type = “Integer”/>
<TO-OBJECT name = “t6” type = “Integer”/>

<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>

<FROM-OBJECT name = “t4” type = “Integer”/>
<TO-OBJECT name = “t5” type = “Integer”/>

<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>

<FROM-OBJECT name = “t4” type = “Integer”/>
<TO-OBJECT name = “t6” type = “Integer”/>

<MORPHISM>
<MORPHISM name = “Before” type =“Preorder”/>

<FROM-OBJECT name = “t5” type = “Integer”/>
<TO-OBJECT name = “t6” type = “Integer”/>

<MORPHISM>
</MORPHISM>
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</CATEGORY>

Figure 307: XML Specification of Category ICL-Time-Self-Configuration

<FUNCTOR name = “ICL-Time-Constraint-Self-Configuration”
source-category = “ICL-State-Self-Configuration”
target-category = “ICL-Time-Self-Configuration’”>

<OBJECT-MAPPING>
<OBJECT-MAPPING source-object = “Analyze” target-object = “t0”/>
<OBJECT-MAPPING source-object = “Analyze” target-object = “t4”/>
<OBJECT-MAPPING source-object = “Plan” target-object = “t5”/>
<OBJECT-MAPPING source-object = “Plan” target-object = “t6”/>

</OBJECT-MAPPING>
<MORPHISM-MAPPING>

<MORPHSIM-MAPPING source-morphism = “Restart-RAE”
target-morphism = “Before”/>

<MORPHSIM-MAPPING source-morphism = “Launch-Self-Healing”
target-morphism = “Before”/>

<MORPHSIM-MAPPING source-morphism = “Substitute”
target-morphism = “Before”/>

<MORPHSIM-MAPPING source-morphism = “Take-Over”
target-morphism = “Before”/>

<MORPHSIM-MAPPING source-morphism = “Action-Done”
target-morphism = “Before”/>

</MORPHISM-MAPPING>
</FUNCTOR>

Figure 308: XML Specification of Category Time-Constraint-Self-Configuration

<FUNCTOR name = “RAC-Self-Configuration-RestartRAOL”
source-category = “RAC1-4”
target-category = “RAC1-0’”>

<OBJECT-MAPPING>
<OBJECT-MAPPING source-object = “RAO1” target-object = “RAO1”/>
<OBJECT-MAPPING source-object = “RAO2” target-object = “RAO2”/>
<OBJECT-MAPPING source-object = “RAO3” target-object = “RAO3”/>
<OBJECT-MAPPING source-object = “RAOL1-1”

target-object = “RAOL1”/>
</OBJECT-MAPPING>
<MORPHISM-MAPPING>

<MORPHSIM-MAPPING source-morphism = “Command1-1”
target-morphism = “Command1”/>
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<MORPHSIM-MAPPING source-morphism = “Command2-1”
target-morphism = “Command2”/>

<MORPHSIM-MAPPING source-morphism = “Command3-1”
target-morphism = “Command3”/>

<MORPHSIM-MAPPING source-morphism = “Report1-1”
target-morphism = “Report1”/>

<MORPHSIM-MAPPING source-morphism = “Report2-1”
target-morphism = “Report2”/>

<MORPHSIM-MAPPING source-morphism = “Report3-1”
target-morphism = “Report3”/>

<MORPHSIM-MAPPING source-morphism = “Cooperate1”
target-morphism = “Cooperate1”/>

<MORPHSIM-MAPPING source-morphism = “Cooperate2”
target-morphism = “Cooperate2”/>

<MORPHSIM-MAPPING source-morphism = “Cooperate3”
target-morphism = “Cooperate3”/>

<MORPHSIM-MAPPING source-morphism = “Cooperate4”
target-morphism = “Cooperate4”/>

<MORPHSIM-MAPPING source-morphism = “Cooperate5”
target-morphism = “Cooperate5”/>

<MORPHSIM-MAPPING source-morphism = “Cooperate6”
target-morphism = “Cooperate6”/>

</MORPHISM-MAPPING>
</FUNCTOR>

Figure 309: XML Specification of Functor RAC-Self-Configuration-RestartRAOL

<FUNCTOR name = “RAC-Self-Configuration-SubstituteRAOL”
source-category = “RAC1-5”
target-category = “RAC1-0’”>

<OBJECT-MAPPING>
<OBJECT-MAPPING source-object = “RAO1” target-object = “RAO1”/>
<OBJECT-MAPPING source-object = “RAO2” target-object = “RAO2”/>
<OBJECT-MAPPING source-object = “RAO3” target-object = “RAO3”/>
<OBJECT-MAPPING source-object = “RAOL3”

target-object = “RAOL1”/>
</OBJECT-MAPPING>
<MORPHISM-MAPPING>

<MORPHSIM-MAPPING source-morphism = “Command4”
target-morphism = “Command1”/>

<MORPHSIM-MAPPING source-morphism = “Command5”
target-morphism = “Command2”/>
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<MORPHSIM-MAPPING source-morphism = “Command6”
target-morphism = “Command3”/>

<MORPHSIM-MAPPING source-morphism = “Report4”
target-morphism = “Report1”/>

<MORPHSIM-MAPPING source-morphism = “Report5”
target-morphism = “Report2”/>

<MORPHSIM-MAPPING source-morphism = “Report6”
target-morphism = “Report3”/>

<MORPHSIM-MAPPING source-morphism = “Cooperate1”
target-morphism = “Cooperate1”/>

<MORPHSIM-MAPPING source-morphism = “Cooperate2”
target-morphism = “Cooperate2”/>

<MORPHSIM-MAPPING source-morphism = “Cooperate3”
target-morphism = “Cooperate3”/>

<MORPHSIM-MAPPING source-morphism = “Cooperate4”
target-morphism = “Cooperate4”/>

<MORPHSIM-MAPPING source-morphism = “Cooperate5”
target-morphism = “Cooperate5”/>

<MORPHSIM-MAPPING source-morphism = “Cooperate6”
target-morphism = “Cooperate6”/>

</MORPHISM-MAPPING>
</FUNCTOR>

Figure 310: XML Specification of Functor RAC-Self-Configuration-SubstituteRAOL

<FUNCTOR name = “RAC-Self-Configuration-Take-over-RAOL”
source-category = “RAC1-6”
target-category = “RAC1-0’”>

<OBJECT-MAPPING>
<OBJECT-MAPPING source-object = “RAO1” target-object = “RAO1”/>
<OBJECT-MAPPING source-object = “RAO2” target-object = “RAO2”/>
<OBJECT-MAPPING source-object = “RAO3” target-object = “RAO3”/>
<OBJECT-MAPPING source-object = “SPM” target-object = “RAOL1”/>

</OBJECT-MAPPING>
<MORPHISM-MAPPING>

<MORPHSIM-MAPPING source-morphism = “Command7”
target-morphism = “Command1”/>

<MORPHSIM-MAPPING source-morphism = “Command8”
target-morphism = “Command2”/>

<MORPHSIM-MAPPING source-morphism = “Command9”
target-morphism = “Command3”/>

<MORPHSIM-MAPPING source-morphism = “Report7”
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target-morphism = “Report1”/>
<MORPHSIM-MAPPING source-morphism = “Report8”

target-morphism = “Report2”/>
<MORPHSIM-MAPPING source-morphism = “Report9”

target-morphism = “Report3”/>
<MORPHSIM-MAPPING source-morphism = “Cooperate1”

target-morphism = “Cooperate1”/>
<MORPHSIM-MAPPING source-morphism = “Cooperate2”

target-morphism = “Cooperate2”/>
<MORPHSIM-MAPPING source-morphism = “Cooperate3”

target-morphism = “Cooperate3”/>
<MORPHSIM-MAPPING source-morphism = “Cooperate4”

target-morphism = “Cooperate4”/>
<MORPHSIM-MAPPING source-morphism = “Cooperate5”

target-morphism = “Cooperate5”/>
<MORPHSIM-MAPPING source-morphism = “Cooperate6”

target-morphism = “Cooperate6”/>
</MORPHISM-MAPPING>

</FUNCTOR>

Figure 311: XML Specification of Functor RAC-Self-Configuration-Take-over-RAOL

<NATURAL-TRANSFORMATION name = “RAC-Evolution-Self-Configuration”>
<ARROW>

<ARROW name = “Relation1”/>
<FROM-FUNCTOR name = “RAC-Self-Configuration-Restart”

type = “RAC-Evolution-Self-Configuration”/>
<TO-FUNCTOR name = “RAC-Self-Configuration-Substitute”

type = “RAC-Evolution-Self-Configuration”/>
</ARROW>
<ARROW name = “Relation2”/>

<FROM-FUNCTOR name = “RAC-Self-Configuration-Restart”
type = “RAC-Evolution-Self-Configuration”/>

<TO-FUNCTOR name = “RAC-Self-Configuration-Take-Over”
type = “RAC-Evolution-Self-Configuration”/>

</ARROW>
<ARROW name = “Relation3”/>

<FROM-FUNCTOR name = “RAC-Self-Configuration-Substitute”
type = “RAC-Evolution-Self-Configuration”/>

<TO-FUNCTOR name = “RAC-Self-Configuration-Take-Over”
type = “RAC-Evolution-Self-Configuration”/>

</ARROW>



385

</ARROW>
</NATURAL-TRANSFORMATION>

Figure 312: XML Specification of Natural Transformation RAC-Self-Configuration

<CATEGORY name = “Relation-Set-of-RAC-Evolution-Self-Configuration”>
<OBJECT>

<OBJECT name = “RAC-Self-Configuration-Restart”
type = “RAC-Evolution-Self-Configuration” />

<OBJECT name = “RAC-Self-Configuration-Substitute”
type = “RAC-Evolution-Self-Configuration”/>

<OBJECT name = “RAC-Self-Configuration-Take-Over”
type = “RAC-Evolution-Self-Configuration”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Relation1”
type =“RAC-Evolution-Relation-Self-Configuration”/>

<FROM-OBJECT name = “RAC-Self-Configuration-Restart”
type = “RAC-Evolution-Self-Configuration” />

<TO-OBJECT name = “RAC-Self-Configuration-Substitute”
type = “RAC-Evolution-Self-Configuration”/>

</MORPHISM>
<MORPHISM name = “Relation2”

type =“RAC-Evolution-Relation-Self-Configuration”/>
<FROM-OBJECT name = “RAC-Self-Configuration-Restart”

type = “RAC-Evolution-Self-Configuration” />
<TO-OBJECT name = “RAC-Self-Configuration-Take-Over”

type = “RAC-Evolution-Self-Configuration”/>
</MORPHISM>
<MORPHISM name = “Relation3”

type =“RAC-Evolution-Relation-Self-Configuration”/>
<FROM-OBJECT name = “RAC-Self-Configuration-Substitute”

type = “RAC-Evolution-Self-Configuration” />
<TO-OBJECT name = “RAC-Self-Configuration-Take-Over”

type = “RAC-Evolution-Self-Configuration”/>
</MORPHISM>

</MORPHISM>
</CATEGORY>

Figure 313: XML Specification of Functor Category RAC-Self-Configuration
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<CATEGORY name = “RAC-Configuration”>
<OBJECT>

<OBJECT name = “RAOi” type = “RAO-Typei”/>
<OBJECT name = “RAOj” type = “RAO-Typej”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Connectionm” type =“Connection-Typem”/>
<FROM-OBJECT name = “RAOi” type = “RAO-Typei”/>
<TO-OBJECT name = “RAOj” type = “RAO-Typej”/>

<MORPHISM>
</MORPHISM>

</CATEGORY>

Figure 314: XML Specification of Category RAC-Configuration

<CATEGORY name = “RACG-Configuration”>
<OBJECT>

<OBJECT name = “RACi” type = “RAC-Typei”/>
<OBJECT name = “RACj” type = “RAC-Typej”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Connectionm” type =“Connection-Typem”/>
<FROM-OBJECT name = “RACi” type = “RAC-Typei”/>
<TO-OBJECT name = “RACj” type = “RAC-Typej”/>

<MORPHISM>
</MORPHISM>

</CATEGORY>

Figure 315: XML Specification of Category RACG-Configuration
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Appendix F: Screen Shots of RASFIT

Figure 316: Menu Area for RASFIT

Figure 317: Toolbox Area for Drawing UML Diagrams in RASFIT
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Figure 318: Canvas for Drawing UML Diagrams in RASFIT

Figure 319: Project Browser for Drawing UML Diagrams in RASFIT
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Appendix G: Installation and Configuration of RASFIT
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Appendix H: Applying RASF Methodology with RASFIT

Step 2 (Phase 1): Select “RASF Project” from the new project wizard and click “Next >”.

Step 3 (Phase 1): Enter the project name and click “Finish” (see the figure below).



391

Step 4a (Phase 1): A RASF project and related model files, jars, libraries, folders are

created.

Step 4b (Phase 1): Alternatively, a RASF project can be created by selecting “New RASF

Project” or clicking the button highlighted by the red rectangle in the figure below.

Step 5 (Phase 1): Create a new package by selecting “New RASF Package” or clicking

the button highlighted by the red rectangle in the figure below.
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Step 6 (Phase 1): Enter the source folder as well as package name and click “Finish” (see

the figure below).

Step 7 (Phase 3): Create an agent description file by selecting “New”  “Other…” on

the package.
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Step 8 (Phase 3): Select “Jadex Agent Description File” and click “Next >”.

Step 9 (Phase 3): Enter the destination project, agent name, package and click “Finish”.
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Step 10 (Phase 3): After successfully creating the agent description file, it can be edited

in the editor view as the following:

Step 12 (Phase 1): Click the button "Open in Enterprise Architect" to switch from the

Eclipse IDE to the EA IDE in the project explorer of EA (see the figure below).
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Step 13a (Phase 1): We can start modeling through the toolbar in the project browser

depicted below, such as "Add a Package", "New Diagram", "Create Element" and

"Import Source Directory". The EA IDE can be switched back to the Eclipse IDE by

clicking the button "Close EA".

Step 13b (Phase 1): Alternatively, we can import the predefined model templates and

patterns by clicking the button "New Model from Pattern" --> selecting "RASF" from the

popup dialogue "Select model(s)" --> checking the corresponding model template (see

the figure below).
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Step 14 (Phase 1): After successfully importing selected model template, the predefined

packages and diagrams are created and can be expanded in the view of "Project Browser",

such as the package "RAS Model", package diagram "RAS Model", component diagram

"RAG1", class diagram "RAC1" and state diagram "RAC1ICL". We can modify those

diagrams in the canvas area and add new RAE by dragging them from the toolbox, such

as RAO, RAC and RAG (see the figure below).
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Step 15 (Phase 1): The diagrams mentioned above can be navigated either from the

project browser or by double clicking the related RAE on the canvas. For example, we

can double click the "RAG1" to navigate from the package diagram "RAS Model" to the

component diagram "RAG1" and to the class diagram "RAC1" by double clicking the

"RAC1" illustrated in the figures below.
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Step 16 (Phase 1): The properties of RAO and RAOL on the figure above can be setup by

double clicking them. The figure below depicts how to configure some general properties

of RAOL, such as name (RAOL1), scope (Public) and programming language (Java, C++,

PHP. etc.). The stereotype of RAOL1 is set to <<RAOL>> by checking "RAOL" from

the profile "RASF" on the popup dialogue of the selecting stereotypes. End users can

only choose from <<RAO>> and <<RAOL>> that are applied to the RASF class diagram

(RAO level modeling) and constrained in the RASF modeling profile.
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Step 17 (Phase 1): From the tab "Details", we can set the cardinality, visibility and

concurrency (synchronous or asynchronous) of each RAE (see the figure below).
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Step 18 (Phase 1): The autonomic properties such as self-configuration and self-healing,

RAOLtype (RAOL- type1) and repository (local repository) of RAOL1 can be

configured through the tab "Tagged Values" showed below.

Step 19 (Phase 1): The properties of interactions between RAO and RAOL can be setup

by double click them. The figure below depicts how to configure some general properties

of the interaction from RAOL to RAO, such as source object (RAOL1), target object

(RAO1) and direction (Source -> Destination). The stereotype of that interaction is set to

<<Command>> by checking "Command" from profile "RASF" on the popup dialogue of

selecting stereotypes. We can only choose from <<Report>> as well as <<Command>>

that are applied to the RASF class diagram and constrained in the RASF modeling

profile.
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Step 20 (Phase 1): Similarly, we can set other RAE's properties by right clicking them

and selecting "Properties..." as the figure below illustrates.

Step 21 (Phase 2): After having specified and drawn the RAS model with corresponding

structures, behavior as well as self-* properties, we can specify and draw the categorical

RAS model as we described in Chapter 6 (see the figures below as some examples).
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Step 23 (Phase 1 & 2): If the XML specification file is generated successfully, a new

folder "output" is created under the selected project. There is a subfolder "Images"

containing all the image files for each diagram created in the Section 9.3.2. Moreover, a

XML file having the RAS specification with the project name is also generated under the

project folder (see the figure below).
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Step 24 (Phase 1 & 2): The following figures depict a perspective of XML specification

file and a part of the file content with RAE property configuration.
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Step 25 (Phase 1): In order to generate the code template for the RAE in the RAS model,

we can right click "<<RAOL>> RAOL1" --> "Generate Code..." from the project

browser as the figure below illustrates.

Step 26a (Phase 1): From the popup dialogue "Generate Code", we need to choose the

path of the source code template --> select the target language --> click button "Generate",

and that template will be created under the specified path (see the figures below).
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Step 26b (Phase 1): Alternatively, we may generate the source code templates for a group

of classes under the same package by right clicking the package name "RAG2" -->

selecting "Code Engineering" --> clicking "Generate Source Code...".
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Step 27 (Phase 1): From the popup dialogue "Generate Package Source Code", we need

to check "Include all Child Packages" --> select the objects to create --> click button

"Generate" (see the figures below).
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Step 28 (Phase 1): If the generation process is completed successfully, the source code

templates will be created under the specified package as the figure below shows.

Step 30a (Phase 9): From the popup window "Jadex Control Center", we need to input

the path of the agent defintion file (Manager.agent.xml) and click the button "Start" to
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deploy the MAS implementation on the Jade and Jadex platform as the figures below.

Step 30b (Phase 9): Alternatively, we can deploy MAS implementation by right clicking

the agent definition file --> "RASF" --> "Deploy Agent(s)" (see the figure below).
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Appendix I: Representation of Categorical Model in Mars-world
<CATEGORY name = “Production-Robot1”>

<OBJECT>
<OBJECT name = “Sensor1” type = “Sensor”/>
<OBJECT name = “Drill1” type = “Drill”/>
<OBJECT name = “CU1” type = “CU”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Command1”
type =“Command-from-CU-to-Sensor”/>

<FROM-OBJECT name = “CU1” type = “CU”/>
<TO-OBJECT name = “Sensor1” type = “Sensor”/>

</MORPHISM>
<MORPHISM name = “Command2”

type =“Command-from-CU-and-Drill”/>
<FROM-OBJECT name = “CU1” type = “CU”/>
<TO-OBJECT name = “Drill1” type = “Drill”/>

</MORPHISM>
<MORPHISM name = “Report1” type =“Command-from-Sensor-to-CU”/>

<FROM-OBJECT name = “Sensor1” type = “Sensor”/>
<TO-OBJECT name = “CU1” type = “CU”/>

</MORPHISM>
<MORPHISM name = “Report2” type =“Command-from-Drill-to-CU”/>

<FROM-OBJECT name = “Drill1” type = “Drill”/>
<TO-OBJECT name = “CU1” type = “CU”/>

</MORPHISM>
<MORPHISM name = “Cooperate1”

type =“Communication-from-Sensor-to-Drill”/>
<FROM-OBJECT name = “Sensor1” type = “Sensor”/>
<TO-OBJECT name = “Drill1” type = “Drill”/>

</MORPHISM>
<MORPHISM name = “Cooperate2”

type =“Communication-from-Drill-to-Sensor”/>
<FROM-OBJECT name = “Drill1” type = “Drill”/>
<TO-OBJECT name = “Sensor1” type = “Sensor”/>

</MORPHISM>
</MORPHISM>

</CATEGORY>

Figure 320: XML Specification of Category Production-Robot1
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<CATEGORY name = “Robot-Group-Formation”>
<OBJECT>

<OBJECT name = “Production-Robot”/>
<OBJECT name = “Sentry-Robot”/>
<OBJECT name = “Carry-Robot”/>
<OBJECT name = “Supervisor-Robot”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Communication-from-Supervisor-to-PR”/>
<FROM-OBJECT name = “Supervisor-Robot”/>
<TO-OBJECT name = “Production-Robot”/>

</MORPHISM>
<MORPHISM name = “Communication-from-Supervisor-to-SR”/>

<FROM-OBJECT name = “Supervisor-Robot”/>
<TO-OBJECT name = “Sentry-Robot”/>

</MORPHISM>
<MORPHISM name = “Communication-from-Supervisor-to-CR”/>

<FROM-OBJECT name = “Supervisor-Robot”/>
<TO-OBJECT name = “Carry-Robot”/>

</MORPHISM>
<MORPHISM name = “Communication-from-PR-to-Supervisor”/>

<FROM-OBJECT name = “Production-Robot”/>
<TO-OBJECT name = “Supervisor-Robot”/>

</MORPHISM>
<MORPHISM name = “Communication-from-SR-to-Supervisor”/>

<FROM-OBJECT name = “Sentry-Robot”/>
<TO-OBJECT name = “Supervisor-Robot”/>

</MORPHISM>
<MORPHISM name = “Communication-from-CR-to-Supervisor”/>

<FROM-OBJECT name = “Carry-Robot”/>
<TO-OBJECT name = “Supervisor-Robot”/>

</MORPHISM>
<MORPHISM name = “Communication-from-SR-to-PR”/>

<FROM-OBJECT name = “Sentry-Robot”/>
<TO-OBJECT name = “Production-Robot”/>

</MORPHISM>
<MORPHISM name = “Communication-from-PR-to-SR”/>

<FROM-OBJECT name = “Production-Robot”/>
<TO-OBJECT name = “Sentry-Robot”/>

</MORPHISM>
<MORPHISM name = “Communication-from-PR-to-CR”/>
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<FROM-OBJECT name = “Production-Robot”/>
<TO-OBJECT name = “Carry-Robot”/>

</MORPHISM>
<MORPHISM name = “Communication-from-CR-to-PR”/>

<FROM-OBJECT name = “Carry-Robot”/>
<TO-OBJECT name = “Production-Robot”/>

</MORPHISM>
</MORPHISM>

</CATEGORY>

Figure 321: XML Specification of Category Robot-Group-Formation

<CATEGORY name = “Exploration-Group1”>
<OBJECT>

<OBJECT name = “PR1” type = “Production-Robot” />
<OBJECT name = “SR1” type = “Sentry-Robot”/>
<OBJECT name = “CR1” type = “Carry-Robot”/>
<OBJECT name = “Supervisor1” type = “Supervisor-Robot”/>

</OBJECT>
<MORPHISM>

<MORPHISM name = “Command1”
type =“ Communication-from-Supervisor-to-PR”/>

<FROM-OBJECT name = “Supervisor1” type = “Supervisor-Robot”/>
<TO-OBJECT name = “PR1” type = “Production-Robot”/>

<MORPHISM>
<MORPHISM name = “Command2”

type =“ Communication-from-Supervisor-to-SR”/>
<FROM-OBJECT name = “Supervisor1” type = “Supervisor-Robot”/>
<TO-OBJECT name = “SR1” type = “Sentry-Robot”/>

<MORPHISM>
<MORPHISM name = “Command3”

type =“ Communication-from-Supervisor-to-CR”/>
<FROM-OBJECT name = “Supervisor1” type = “Supervisor-Robot”/>
<TO-OBJECT name = “CR1” type = “Carry-Robot”/>

<MORPHISM>
<MORPHISM name = “Report1”

type =“ Communication-from-PR-to-Supervisor”/>
<FROM-OBJECT name = “PR1” type = “Production-Robot”/>
<TO-OBJECT name = “Supervisor1” type = “Supervisor-Robot”/>

<MORPHISM>
<MORPHISM name = “Report2”

type =“ Communication-from-SR-to-Supervisor”/>
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<FROM-OBJECT name = “SR1” type = “Sentry-Robot”/>
<TO-OBJECT name = “Supervisor1” type = “Supervisor-Robot”/>

<MORPHISM>
<MORPHISM name = “Report3”

type =“ Communication-from-CR-to-Supervisor”/>
<FROM-OBJECT name = “CR1” type = “Carry-Robot”/>
<TO-OBJECT name = “Supervisor1” type = “Supervisor-Robot”/>

<MORPHISM>
<MORPHISM name = “Cooperate1”

type =“ Communication-from-SR-to-PR”/>
<FROM-OBJECT name = “SR1” type = “Sentry-Robot”/>
<TO-OBJECT name = “PR1” type = “Production-Robot”/>

<MORPHISM>
<MORPHISM name = “Cooperate2”

type =“ Communication-from-PR-to-SR”/>
<FROM-OBJECT name = “PR1” type = “Production-Robot”/>
<TO-OBJECT name = “SR1” type = “Sentry-Robot”/>

<MORPHISM>
<MORPHISM name = “Cooperate3”

type =“ Communication-from-PR-to-CR”/>
<FROM-OBJECT name = “PR1” type = “Production-Robot”/>
<TO-OBJECT name = “CR1” type = “Carry-Robot”/>

<MORPHISM>
<MORPHISM name = “Cooperate4”

type =“ Communication-from-CR-to-PR”/>
<FROM-OBJECT name = “CR1” type = “Carry-Robot”/>
<TO-OBJECT name = “PR1” type = “Production-Robot”/>

<MORPHISM>
</MORPHISM>

</CATEGORY>

Figure 322: XML Specification of Category Exploration-Group1

<CATEGORY name = “Mars-World-Formation”>
<OBJECT>

<OBJECT name = “Exploration-Group”/>
<OBJECT name = “Production-Group” />
<OBJECT name = “Carry-Group” />

</OBJECT>
<MORPHISM>

<MORPHISM name = “Communication-from-EG-to-PG”/>
<FROM-OBJECT name = “Exploration-Group”/>
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<TO-OBJECT name = “Production-Group”/>
<MORPHISM>
<MORPHISM name = “Communication-from-PG-to-CG”/>

<FROM-OBJECT name = “Production-Group”/>
<TO-OBJECT name = “Carry-Group”/>

<MORPHISM>
<MORPHISM name = “Communication-from-CG-to-EG”/>

<FROM-OBJECT name = “Carry-Group”/>
<TO-OBJECT name = “Exploration-Group”/>

<MORPHISM>
<MORPHISM name = “Communication-from-PG-to-EG”/>

<FROM-OBJECT name = “Production-Group”/>
<TO-OBJECT name = “Exploration-Group”/>

<MORPHISM>
<MORPHISM name = “Communication-from-EG-to-CG”/>

<FROM-OBJECT name = “Exploration-Group”/>
<TO-OBJECT name = “Carry-Group”/>

<MORPHISM>
<MORPHISM name = “Communication-from-CG-to-PG”/>

<FROM-OBJECT name = “Carry-Group”/>
<TO-OBJECT name = “Production-Group”/>

<MORPHISM>
</MORPHISM>

</CATEGORY>

Figure 323: XML Specification of Category Mars-World-Formation


