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Abstract 

 

Hub location problems deal with the location of hub facilities and the allocation of the 

demand nodes to hub facilities so as to effectively route the demand between origin–

destination pairs. Transportation systems such as mail, freight, passenger and even 

telecommunication systems most often employ hub and spoke networks to provide a 

strong balance between high service quality and low costs resulting in an economically 

competitive operation. In this study the Modular Hub Location Problem (Multiple 

assignments without direct connections) (MHLP-MA) is introduced. A Lagrangean 

relaxation method is used to approximately solve large scale instances. It relaxes a set of 

complicating constraints to efficiently obtain lower and upper bounds on the optimal 

solution of the problem. Computational experiments are performed in order to evaluate 

the effectiveness and limitations of the proposed model and solution method. 
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Chapter 1: Introduction 
 

Nowadays, transportation is an important science and one of the challenging areas in our 

daily lives. A huge amount of products or services are being transported all over the 

world every day. Trucking is one of the most important types of land freight 

transportation all over the world. For example, 81% of the freight bill is accounted by 

motor carriers in the United States. Commodities are routed more than 430 billion miles. 

It costs 372 billion dollars per year (Campbell, 2005). Optimization of transportation 

networks has been widely studied by researchers and practitioners. Many companies 

which deal with transportation in different applications try to design the best network to 

increase their productivity and reduce the total cost of transportation.  

Hub Location has become an important area of location theory since 25 years ago and it 

has attracted many researchers in different fields of study such as geography, operation 

research, economy and transportation (Taaffe et al, 1996). Hub-and-spoke networks 

provide an efficient service by establishing hub facilities between origins and destinations 

(O/D). Hub-and-spoke networks use a set of hub facilities and a reduced number of links 

to connect a large number of (O/D) nodes. 

Hub facilities help to transmit and switch flows which come from non-hub points in a 

huge network. They are used to take advantage of the economies of scale on inter-hub 

links. They have changed the way many industries do business (Pirkul, 1998). Hub 

location problems (HLPs) deal with the design of hub-and-spoke networks and arise 

when passengers, mails, cargos, and/or data must be transported between every pair of 

(O/D), but it could cost a lot of money to transport products or services from every single 
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point to another point directly. Using these types of transportation networks reduces the 

total cost of transportation, but it might increase distance between every pair of (O/D). 

For example, in computer networks, fiber cables are only used to connect hubs and it is 

not economic to use them to join any two non-hub nodes. Finding the best locations to 

open hub facilities is the most challenging and time consuming part for companies. They 

have to spend a lot of time and it will cost a lot of money to find the best locations and 

build hub facilities to reduce the total cost of transportation.  

As it can be seen in Figure 1, without using hub facilities, origins and destinations are 

connected to each other directly, and then we have a large number of links between 

origins and destinations. Suppose that there are N nodes in a fully interconnected network 

and each node might be either an origin or a destination, then there will be N (N-1) pairs 

of nodes in a network between origins and destinations (Daskin, 1995). If trucking 

companies want to satisfy their customers’ needs and deliver the flows, they have to use a 

truck for each pair of (O/D) and it would be a huge number of trucks to satisfy 

customers’ demands. Consider that hub facilities are used in the network, and then the 

number of links will be reduced. 

B

A

F

E

D

C

Hub Hub

HubHub

 

Figure 1: Fully connected network (Daskin, 1995) vs. Hub Networks with 4 hubs 
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If one node is selected as a hub node and it is connected to all of the other nodes, which 

are presented as spoke, there will be 2(N-1) connections to connect all origins and 

destinations (Daskin, 1995). In this case, trucking companies do not need to use many 

trucks and they can take advantages of economies of scale. For instance, a general 

scheme of hub network and routing commodities in truck transportation is shown in 

Figure 2.   

Shipper

Local 

Pick-up

Origin Terminal

First Hub

Group Line-Haul 

Movement

Second Hub

 Line-Haul 

Movement

Group Line-Haul 

Movement

Destination Terminal

Local 

Delivery

Consignee

 

Figure 2: Shipment route through the hub-and-spoke 

 

Similar to trucking companies, airline and postal delivery companies use hub facilities in 

their networks to take advantage of their benefits. These companies have more traffic in 

their hub facilities. Many passengers or mails are coming from other cities or facilities to 

a hub and they are transported from the hub to final destinations or other hub facilities. 

As it is shown in Figure 1, the number of arcs between origins and destinations are less 

than in fully interconnected networks. Nodes with large circles are hub nodes and nodes 

with small circles are non-hub nodes. 

 Hub facilities might receive flows from non-hub nodes and then transport them to other 

hub facilities or non-hub nodes. On the other hand, hub facilities could collect flows from 

other nodes in the network and route them to other hub nodes or non-hub nodes. These 

are two main functions of hub nodes in the network.  
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Usually demand is specified as flows of freights or passengers between pairs of (O/D). 

These flows are transported via trucks, airplanes, ships and fiber cables. In the area of 

telecommunications, demand is data and information (such as video, voice, etc.). 

Telecommunication applications include phone networks, computer networks and video 

teleconferences. Information is transported through a diversity of media such as fiber 

cables and phone lines (Campbell et al, 2002).  

There are several types of hub location problems in the literature. There are a number of 

differences between them such as the number of hub facilities to locate and the way in 

which hubs are connected, the allocation of non-hub nodes to hub nodes, and capacity 

constraints on the hubs or arcs. However, there are four assumptions which most classical 

hub location problems have in common.  

The first assumption is that there is no installation cost for hub arcs, then hub facilities 

can be fully interconnected in the network. Commodities can be routed via inter-hub arcs, 

and a discount factor α (0<α<1) can be applied to cost of transportation on inter-hub links 

between every pair of hub facilities. The second assumption is that discount factor is flow 

independent and it is the same for every amount of flow on all inter-hub links between 

every pair of hub nodes. The third assumption is that flows must be consolidated by hub 

facilities. Therefore, the routes between O/D pairs have to contain at least one hub 

facility. The forth assumption states that the distances between pair of nodes are assumed 

to be symmetric and to satisfy the triangular inequality. 

Hub location problems (HLPs) have been widely studied in the OR community, but the 

above mentioned assumptions may cause unrealistic results. Suppose that hub facilities 

are fully interconnected and it might give results that the amount of flow which are 
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routed via inter-hub links are less than the amount of flows which are routed via access 

links, but discount factor is applied only on inter-hub links. The amount of demand which 

is transported via inter-hub links could be different, but the same discount factor is 

applied for all inter-hub arcs in classical hub location models. The assumptions which 

have been used in classical hub location problems cause few miscalculations in the total 

transportation costs and the structure of the optimal network. The results might cause to 

select a non-optimal set of hub facilities. It cloud also lead to assign non-hob nodes to 

hub facilities in the wrong way.  

There are several works have relaxed these assumptions (see for instance, O'Kelly and 

Bryan, 1998; Kimms, 2006). A model that allows discount factors on hub arcs to be a 

function of flows is proposed in O’Kelly and Bryan (1998) and it has been further studied 

in Bryan (1998). The transportation cost in a hub arc as a function of its flow is measured 

by a nonlinear cost function. The relaxation of fully interconnected assumption reduces 

the limitations of flow dependent costs (see O’Kelly and Miller, 1994; Campbell et al., 

2005 a,b). Consolidation of flow at hubs might also be unrealistic in some applications. 

Generally, hub facilities are used for consolidation and/or sorting of flows but, in some 

applications like freight transportation, hub nodes are used only for consolidation 

proposes. Therefore, both in terms of efficiency (low costs) and effectiveness (high levels 

of service) it could be better to have a direct connection between two non-hub nodes to 

route the flow. Some papers have considered the design of the networks based on direct 

connections between non-hub nodes (see for instance, Aykin, 1994 and 1995; Sung and 

Jin, 2001). 
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Mirzaghafour (2013) recently presented a new class of hub location problems, referred to 

Modular Hub Location Problems (MHLP). These problems overcome the above 

mentioned disadvantages of classical HLPs.  MHLPs do not assume that hub facilities are 

full interconnected. They use modular costs on every links in the network to calculate the 

total transportation cost and it is no longer based on flow independency. The total cost of 

transportation is calculated directly based on the number of facility links selected in the 

solution network. Moreover, the presented models do not use nonlinear functions when 

dealing with flow dependent discounted costs. The proposed model is suited to design 

freight transportation and airline networks. Mirzaghafour (2013) introduced mixed 

integer programming formulations for four different versions of the MHLP to solve them 

using a general purpose solver. MHLPs turned out to be much more difficult optimization 

problems, as instances with only 10 nodes can be optimally solved with CPLEX. 

The main contribution of this thesis is to present a Lagrangean relaxation approach that 

uses a path-based formulation to obtain lower and upper bounds on the optimal solution 

of the problem. The proposed method relaxes a set of complicating constraints that link 

the location, design, and routing decisions to obtain a Lagrangean function that can be 

decomposed into four families of independent sub-problems.  Three of these families of 

sub-problems are knapsack problems, whereas the last ones are simple problems that can 

be efficiently solved by inspection. Given that the Lagrangean relaxation does not have 

the integrality property. In general, the obtained lower bounds will be better than the 

linear programing relaxation (LP) bounds. Moreover, we propose a simple heuristic 

algorithm to obtain upper bounds. We use the classical subgradient optimization method 

to solve the Lagrangean dual problem to obtain the best possible lower bounds. We have 
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run a set of computational experiments with several benchmark instances that correspond 

to real life application coming from a postal delivery network in Australia. The results 

indicate that the Lagrangean dual problem generates lower bounds that improve on the 

lower bound associated with the LP relaxation with computational times that are small 

considering the size and difficulty of the instances. The state-of-the-art optimization 

software CPLEX can only optimally solve instances with up to 10 nodes, whereas the 

proposed solution method is able to obtain approximate solutions for instances with up to 

50 nodes.  

The reminder of this thesis is structured as follows. Chapter 2 presents a review on hub 

location and basic foundations of solution methodologies used in this document. Chapter 

3 introduces the problem definition and mathematical formulations of UHLPs and 

MHLPs. The Lagrangean relaxation algorithm and the primal heuristic are presented in 

Chapter 4. Chapter 5 provides the computational experiments and an analysis of the 

obtained results. Finally, conclusions and directions for future research are given in 

Chapter 6. 
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Chapter 2: Preliminaries 

In this chapter, network components and characteristics of hub location problems are 

presented and some real applications are explained. Transportation applications specially 

trucking transportations is the main focus of this study. Finally, solution methodologies 

which have been used are explained in detail. 

2.1) Literature Review  

Hub location has been studied by many researchers for many years. It is one of the main 

classes of facility location problems. Much research has been done to design hub and 

spoke networks for different applications in transportation and telecommunications.  

Goldman (1969) is the first study on hub and spoke networks. The first mathematical 

formulation of hub and spoke networks, as a quadratic integer programming, has been 

presented in O'Kelly (1987). Early surveys in this field are in Campbell (1994a) and 

O’Kelly and Miller (1994). Klincewicz (1998) presents a survey on the location of hubs 

and the design of hub networks in telecommunication applications, whereas a survey in 

the area of air transportation have been studied in Bryan and O’Kelly (1999).               

The facility location problem has been studied widely in Operations Research since the 

early 1960’s. The goal is to make decisions on the placement of facilities such as 

factories, warehouses to serve customers efficiently at minimum cost. For an overview of 

previous work on facility location see Cornuejols et al. (1990). Classical facility location 

problems and hub location problems have some features in common. They also have few 

significant differences. Flows are routed via intermediate facilities between pair of nodes 

in hub location problems. Hub nodes act as consolidation and sorting centers and they 
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need to be linked to each other in order to connect origins to destinations. An example of 

hub-and-spoke network is shown in Figure 3.  

Hub (2)Hub (3)

Hub (1)

i
j

 

Figure 3: A typical hub location network 

 

On the other hand, demands are sent and received to/from facilities in classical facility 

location problems and there is no need to connect facilities to each other in the network 

(see Figure 4).  

Facility 

(2)

Facility 

(3)

Facility 

(1)

 

Figure 4: A typical classical facility location network 
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2.1.1) Hub-and-spoke networks 

Hub-and-spoke systems have been used in various industrial applications. Hub-and-spoke 

networks assist carriers to transport commodities between many pairs of (O/D) at high 

frequencies and low costs. Hub facilities consolidate commodities before routing them to 

final destinations and it causes to reduce the number of connections and transportation 

costs by applying economies of scale between hub facilities. HLPs emphasis on the 

determination of the location of hub facilities and on the routing of flows through the 

network so as to minimize the total set-up and transportation cost. 

2.1.2) Characteristics of Hub and Spoke Networks 

Similar to other systems and structures, hub and spoke (H&S) networks have some 

advantages and disadvantages.  

Advantages 

The most important advantages of hub and spoke networks are: 

Economies of Scale: The reduction of transportation cost per unit of commodities or 

passengers caused by the consolidation of demands on larger connections (inter-hub 

links). Whenever size of service or amount of flows increases, flow cost per unit of 

commodity decreases.  

Economies of Scope: The cost of performing multiple jobs simultaneously is more 

efficient than performing every job separately. Therefore, hub facilities are susceptible to 

perform three different roles which are merging, switching and distribution at the same 

time. 
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Disadvantages 

Hub and spoke (H&S) networks also have some disadvantages: 

 Longer travel times and high costs of some routes. 

 Capacity overload.  

 Higher risk of accident. 

 Congestion phenomena. 

 Missing connecting facilities due to the unforeseen delay (interrupt) at some parts 

of the network. 

2.1.3) Network Components 

In every hub network, some points are selected as non-hub nodes which could be origins 

and destinations and some points might be selected as hub centers. All origins and 

destinations are connected to each other by two different types of arcs which are access 

arcs or inter-hub arcs.  

Hub nodes:  

Hub nodes are selected among a set of nodes in the network. A hub node might 

consecutively have three functionalities (see Figure 5): 

1) Merging of flows that are received by a hub node, in order to have a larger amount of 

flows and letting economies of scale to be exploited. 

2) Switching (transfer) which allows the flows to be readdressed at the hub node. 

3) Distribution (decomposition) of large flows into smaller ones.  
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Sorting
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Unloading
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Figure 5: Flow of demands from the senders to receivers 

 

Non-hub nodes: The nodes which do not act as hub centers are non-hub nodes and these 

types of points can be connected to hub facilities and non-hub nodes in several ways. In 

some hub location problems, non-hub nodes can be connected to just one facility and in 

some cases they can be connected to more than one. They can also be connected to other 

non-hub nodes if it is profitable, but in some cases they are not allowed to have direct 

connections to other non-hub nodes.  

Arcs: Demands are routed from origins to destinations. Origins and destinations are 

connected to each other by links which are called arcs. As mentioned, every link could 

have a transportation rate (Campbell, 1998). Links are weighted by discount factors to 

present collection, transportation, and distribution costs for every unit of flow.  
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Generally, arcs can be divided to four categories as below: 

1- Inter-hub arcs: inter-hub arcs connect hub facilities to each other and they have a 

discount factor α for the flows which are routed in inter-hub links. 

2- Access Arcs (1): these kinds of links are used to connect non-hub nodes to hub 

facilities. Generally, non-hub nodes which are linked to hub nodes are origins in the 

networks.   

3- Access Arcs (2): these access arcs are applied to connect hub facilities to non-hub 

nodes which are mostly destinations.  

4- Arcs between non-hub nodes: In some models non-hub nodes are allowed to have 

direct connections if it is necessary and profitable (Aykin, 1994, 1995). 

HubHub
Inter-hub Arc

A
cc

es
s 
A

rc
 (2

)

Direct Connection

Access Arc (1)

 

Figure 6: Different types of arcs 

 

Flows: Flows represent products and services that are transported from origins to 

destinations. Types of flow might be different and they are considered as inputs for the 

model. Considering the influence of competition rather than assuming a fixed given 

demand, makes the model more realistic. Amount of flows between origins and 
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destinations is depended on the total cost of travel between each pair of nodes in some 

models (Marianov et al, 1999). Mails or parcels are demands in postal delivery 

application. Data or information is denoted as a flow in telecommunication applications. 

Airline applications have various classes of flows such as passengers, cargos and mails. 

In other real applications flows or demands are commodities or services that need to be 

transported.   

Constraints 

Similar to other problems, hub location problems also have constraints. Some constraints 

are explained as follows: 

Capacity constraints on nodes: Every company which is dealing with transportation has 

capacity constraints in its demand centers and hub facilities. For example, in a hub 

facility of a trucking company, many trucks are coming and leaving to load or unload 

commodities. There are specific numbers of docks and they cannot serve unlimited trucks 

to load or unload. The same situation happens for other applications such as postal 

delivery and airline applications. A postal delivery company might be able to sort a 

limited number of mails in its hub facilities. It sorts a maximum numbers of mails which 

is possible to do in a hub facility. Passengers or commodities are arriving or departing 

from many other cities or countries to a hub in airline applications. There is a limited 

number of terminals to serve aircrafts in the airport and it is not possible to load or unload 

an unlimited number of passengers or cargos.   

Capacity constraints on arcs: This type of capacity defines the amount of flow that can 

be routed on arcs. From another point of view, it presents an upper bound on the amount 
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of demand which can be transported on every arc. The relationship between capacities of 

inter-hub links has been studied in Bryan (1998). 

Performance constraints: Performance constraints are important to handle demands in 

the system. They are applied to be sure that hub network works efficiently and it is 

possible to control the traffic. These are mostly used in telecommunication systems, 

including restrictions on the percentage of calls blocked because of not having enough 

capacity. Klincewicz (1998) considers performance constraints in transportation 

applications and Marianov and Serra (2000) proposes a model in airline application that 

considers a constraint on the length of the queue of aircrafts waiting for a runway at a 

hub.  

2.1.3) Models and classification of Hub Location Problems 

To solve more realistic problems, several authors have studied different aspects of the 

classical hub location problems. Various kinds of problems have been analyzed such as 

capacitated or uncapacitated problems, single allocation or multiple allocations, and 

models which non-hub nodes are allowed to have direct connections between each other. 

These problems can be classified based on the type of objective they consider.  

Objective  

Most HLPs have Cost oriented and/or service oriented objective functions. Minimizing 

the total cost is one of the important goals for most HLPs which are considered in 

literature. The different types of costs are considered for various applications. For 

instance, shipment of the right amount of demands to reduce the total cost of 

transportation is what all transportation enterprises are dealing with, but in 

telecommunication applications, fixed costs to construct the hubs and connections are 
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concerned. Moreover, service oriented objective functions such as traveling time and 

coverage measures have been studied in literature, For instance, minimizing the 

maximum travel time between all O/D pairs in the network can be an objective function 

to reduce service time. 

 

Variants of Hub Location Problems 

Some of the most important classes of HLPs are: 

1- ρ-Hub Median Problems (ρHMP) 

Given a fixed number of hubs (ρ), the objective is to find the best location for ρ hub 

facilities so as to minimize the total transportation cost. p-hub median problems are 

studied in two different subgroups:  

 Single allocation  

 Multiple allocations.  

Single allocation: Every non-hub node is connected to just one hub facility in single 

allocation model. The first linear integer programming formulation for the single 

allocation p-hub median problem has been introduced in Campbell (1994b). The most 

computationally efficient exact solution procedure is the shortest path based branch-and-

bound algorithm presented in Ernst and Krishnamoorthy (1998b). 

Multiple Allocations: Every demand center is allowed to send and receive flows to/from 

more than one hub facility in the multiple allocation problems. The first work to 

formulate the multiple allocation p-hub median problems as a linear integer program is 

Campbell (1992). Several authors have worked on p-hub median problems with multiple 

assignments such as Skorin-Kapov et al. (1996), Ernst and Krishnamoorthy (1998a, 

1998b), and Boland et al. (2004). 
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Figure 7 and Figure 8 shows hub networks with single assignment and multiple 

assignments. 

Hub Hub

 

Figure 7: Hub networks with a single allocation 

Hub Hub

 

Figure 8: Hub networks with multiple allocations 

 

2- The Hub Location Problems with Fixed Costs 

The number of hub facilities is unknown in hub location problems with fixed costs. Fixed 

costs and variable costs are considered and these cause to reduce the total cost of 

transportation. Whenever the number of hub facilities increases, the total cost of opening 

of hub facilities increases, but because of short distances between hub nodes and non-hub 

nodes the total transportation cost of demands decreases. For more references refer to 
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Campbell (1994b), Abdinnour Helm and Venkataramanan (1998), Topcuoglu et al. 

(2005), Cunha and Silva (2007), and Chen (2007).  

 

3-  The p-hub Center Problem 

The p-hub center problem is stated as a mini/max type problem. Generally, the main goal 

of the p-hub center problem is to place p hub facilities and to assign all non-hub nodes to 

the located hub facilities in order to minimize the maximum cost (time, distance) between 

any pair of origin and destination nodes. The first formulation of the p-hub center 

problem has been studied in Campbell (1994b). Single and multiple allocations of p-hub 

center problem have been studied in Kara and Tansel (2000), Ernst et al. (2009), and 

Meyer et al. (2009).  

 

4-  Hub Covering Problems 

Demand nodes are considered to be covered if they are located within a specified distance 

of a hub facility in hub covering problems. Every pair of (O/D) is covered by hubs k and 

m if the cost of transportation from origin to destination via hubs k and m does not exceed 

a specified value. The first mixed integer model for the hub covering problem was 

introduced in Campbell (1994b). Kara and Tansel (2003), Ernst et al. (2005) present the 

single allocation hub covering problem and new models for both single and multiple 

assignments hub covering problems have been studied in Wagner (2008).  

2.1.4) Potential Applications 

As mentioned, hub network systems are widely used in different areas of application. 

Two of the most important and well known areas of hub location problems are 

telecommunication and transportation. The main objective for almost all hub networks is 
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to reduce transportation cost and improve frequency of service. The most significant 

differences between transportation and telecommunication areas are their flows and costs. 

In transportation applications, such as public transportation, air passenger, air freight, 

express shipment, trucking, postal delivery and rapid transit, the demands are physical 

flows and they are in form of passengers or goods. They are transported by many 

different transportation vehicles such as buses, trucks, trains, taxis and planes. In 

telecommunication applications the flow which is routed on links is data or information. 

Data and information is transferred from origins to destinations via wires or optic fibers. 

In transportation applications the main issue is to reduce the total cost of distribution of 

products or services, but reducing the total expenses of building the network is the main 

concern in telecommunication applications.  

Some of the most important applications are explained briefly as follows: 

Trucking: Trucking application is one of the most important applications in hub location 

problems and it has been studied a lot by many authors. Trucking has two types of 

transportation which are Less-than-truckload (LTL) transportation and Full Truckload 

(FTL or TL) transportation. The goal of the transportation methods is to transfer 

shipments from origins (O) to destinations (D) in an effective way. The difference 

between LTL transportation and TL transportation is significant. Generally, truckload 

transportation is used for a large load to a destination or some destinations which are very 

close. Because truckload freights are quite large, there is no chance for the consolidation 

of freights from several origins because of vehicle storage space and weight limitations. 

Normally, truckload companies use the largest possible vehicles to ship larger orders at 

one time. Less-than-truckload transportation has considerable differences from an 
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operational and physical point of view from truckload. Hub facilities might not be used 

for consolidation and it could be used to reduce trucks’ traveling distances (Hunt, 1998). 

LTL enterprises do business with all small and large businesses. Transporting as much 

small freight as possible from several origins to destinations is the objective of LTL. The 

LTL carriers might pick up freights from origins and transport them to hub facilities. At 

hub facilities, shipments from several origins sort and consolidate into vehicles which are 

larger. The large trucks will transport the shipments to another hub facility, where each 

shipment will be categorized and sent to its respective destination. Trucks which are used 

between hub facilities on inter-hub links in LTL transportation are similar to trucks which 

are used for LT and they have similar weight and volume constraints. In many cases, 

LTL companies may apply TL strategies on inter-hub links which they have long 

distance routes. Several studies have been done about trucking applications in hub 

location. Taha et al. (1996) shows that several hub facilities provides better results than 

having just one hub facility in the network or transporting flows from origins to 

destinations directly. Other studies in trucking application which can be mentioned are 

Taha and Taylor (1994); Taha et al. (1996), Taylor et al. (1995), Taylor et al. (1999), 

Powel (1986), Powell and Sheffi (1983). 

 

Air transportation: Airline applications are also one of the most important areas in 

transportation. These can be separated in two groups which are passenger airline and 

freights airline. Passengers expect to have comfortable trip and experiencing the 

convenient trip for passengers is the most important issue that airline companies are 

facing with, but the total cost and performance are the significant issues for freight 
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airlines. Some of the most important differences between passenger airlines and freight 

airlines have been mentioned in O’Kelly (1998).  Pricing is an issue for passenger 

airlines. Airline companies usually compete with each other on the price of travel. 

Marinov et al. (1999) proposes some ideas on pricing both for passengers and freights. 

Discount for large volume of demands can be achieved by using larger aircrafts in inter-

hub connections and some authors presented different models and all inter-hub 

connections are discounted in their models. Jaillet et al. (1996) uses different types of 

aircrafts for different types of arcs. Larger aircrafts with larger capacity are used in inter-

hub connections and smaller ones are used in access arcs.  

Rapid transit: Mathematical formulations and solution methods have been proposed in 

Gelareh and Nickel (2007) and Nickel et al. (2001) for rapid transit systems. Gelareh 

(2008) presents many variants of the hub location problems with a diversity of hub level 

structures in specific addressing rapid transit planning. The first multi-period hub location 

problem for the rapid transit application has been proposed in Gelareh and Nickel (2008). 

Exact and heuristic solution approaches were developed for both single and multi-period 

models, and results show that both are very efficient. 

Postal network: Postal delivery applications are similar to other applications specially 

airline application but with some differences. Mails and parcels are sent from several 

origins and they are sorted and consolidated at hub facilities and finally, they are routed 

to different destinations. Australia Post has been discussed in Ernst and Krishnamoorthy 

(1996, 1999). Australia Post provided set of data to analyze hub location models. There 

are few differences between postal network and airline network. For instance, origin 

nodes could send mails and parcels to themselves in postal applications. First of all, 
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demands are transported to hubs where flows are sorted. Finally, they are returned to the 

origin nodes. Additionally, Capacities represent as the whole collection of demands 

which are sorted at hub facilities in postal applications.    

Telecommunication: Hub networks are widely used in telecommunication applications. 

In telecommunications the most significant issue which is concerned is the establishment 

cost more than the communication cost of the networks. Minimizing the total fixed cost 

of designing the network is the main objective. Unlike other applications, in 

telecommunication applications, flows are not tangible. The flow corresponds to data and 

information that is transported via wires or optic fibers. Access nodes which represent the 

tributary network denote as origins and destinations must be transported through transit 

or backbone networks which are transit nodes. All traffic which is departure from an 

access node should be passed through transit nodes on the way to its destinations. Every 

access node has to route traffic to one or two transit nodes that transport the traffic to 

several destinations. There are two types of costs. Fixed costs which are the costs of 

opening a transit node, and connection costs which are the costs of installing on each 

edge the capacity required to transport the flow on the edge itself. The problem is to 

decide the number and location of the transit nodes and assigning access nodes to the 

right transit nodes to minimize the total cost of the network. 

Many articles have been published on similar problems. Gavish (1991) proposes a 

telecommunication application which is about configuration of distributed computer 

systems. A model of large scale data for communication network has been designed in 

Chung et al. (1992). Many different and interesting telecommunication networks can be 
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found in Yoon et al. (1998a, 1998b), and Yoon and Tcha (1996). A survey on backbone 

and tributary network design problems has been done in Klincewicz (1998). 

2.2) Solution Methodology 

One of the best known solution methods to solve large scale networks is the Lagrangean 

relaxation method. It leads to achieve better results by eliminating a set of difficult 

constraints. In the following section, the proposed solution methodology is explained in 

detail.  

2.2.1) Lagrangean Relaxation  

Lagrangean relaxation (LR) method is one of the most useful techniques to solve       

large-scale optimization problems, mainly nonlinear programming and integer 

programming problems. One of the key features of LR is that problem can be usually 

decomposed in many independent sub-problems. Solving each sub-problem is easier than 

solving the whole problem with many constraints (Guignard, 2003). LR method was 

originally introduced by Held and Karp (1970, 1971). The main idea behind LR method 

is to remove a set of difficult constraints and add them to the objective function. The 

results presented in this section are mainly derived from Held and Karp (1970, 1971), 

Wolfe and Crowder (1974), Geoffrion (1974), Fisher (1981), and Guignard (2003).  

Consider the Linear Mixed-Integer Programming problem as:  

                           

                   subject to              
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Where    
   is the set of nonnegative integer n-dimensional vectors,    

 
  is the set of 

nonnegative real p-dimensional vectors, x = (   . . .    ) is a vector of integer variables, 

and y = (   . . .    ) is a vector of real variables. 

The feasible region of MIP is given by the set S = {(x,y)      
    

 
:           

and any (x,y)   S is called a feasible solution of the problem.  A given instance is feasible 

if S ≠ ∅.  

The function z is called the objective function. 

z = cx + dy 

 An optimal value (   ,   ) is a feasible point for which the objective function value is 

as less as possible, that is 

c  + d  ≤  cx + dy         (x,y)   S 

and       c  + d   is the optimal value of the solution.  

The linear programing problem (LP) is a special case of MIP. All integer variables are 

relaxed in LP and it does not have any integer variables. 

                         

                  subject to            

                                                                             
 
 

 

The aims of solving IP problems by algorithms, is to find a lower bound z≤    and an 

upper bound z≥   . Algorithms’ goal is to find an increasing sequence of lower bounds 

and a decreasing sequence of upper bounds. Algorithms stop when the difference 

between the lower bound and the upper bound is within a threshold value. Therefore, our 

objective is to find ways of obtaining such bounds.  
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In the case of upper bounds, every feasible solution     S provides an upper bound        

z = c(  ) ≥    . Finding feasible solutions is simple for some IP problems, and the major 

issue is to find a way to obtain good feasible solutions which provides the best (lowest) 

upper bound.  

In the case of lower bounds, relaxation and duality are two popular ways of finding them. 

The main idea behind the relaxation method is to replace a difficult IP problem by an 

easier optimization problem whose optimal value is at least as small as   .  

Definition 1:  Problem (RP)    = min {g(x) |x W ⊆   } is a relaxation of problem (P) 

    = min {f(x)|x   S ⊆    }, with the same decision variables x, if and only if: 

        1. S   W, and 

        2. g(x) ≤ f(x),   x   S. 

Based on the conditions (1) and (2) from Definition 1, the following proposition can be 

established:  

Proposition 1: if RP is a relaxation of P,    
 ≤   . 

 

There are several approximation methods which can be successfully applied to integer 

programing problems. They provide approximate solutions since optimality of the 

obtained solutions cannot be proved. Some types of solution methods, such as heuristics 

and metaheuristic, focus on finding feasible solutions. They are used to find upper 

bounds on the optimal solution value of the problem. There are some other methods, such 

as relaxations or decomposition methods. They focus on obtaining lower bounds on the 

optimal solution value. 

 



26 

 

One of the most useful and natural relaxations of IP is the linear programming relaxation, 

where integrality constraints are not considered from the model any more.  

There are other relaxations for IP problems such as Lagrangean Relaxation which is 

explained as follows:  

Consider the problem IP, which is called the integer programing problem: 

 (IP)                                

                  subject to            

                                        x   X = {x      
  : Dx ≥ d} 

(A,b) and (D,d) are m×(n+1) and r×(n+1) matrices, and x is an n-vector of non-negative 

integers (x     
 ). X is a set of discrete points in a polyhedron. The problem IP is called 

the primal problem and its solution is called a primal solution. Consider that the 

constraints      are complicated constraints to solve, and problem IP would be solved 

easier without them. A common method to solve IP is to solve its Lagrangean dual 

problem obtained via LR. In the LR method, constraints which are complicated to solve 

     ) are relaxed by presenting a vector u     
  and it is called Lagrangean 

multiplier and L(x,u) is Lagrangean function.  

L(x, u) = cx + u(b − Ax) 

 

 

The LR problem is then to solve the following: 

LR(u)  φ(u)  = min               L(x,u) 

                     subject to      x   X 

It is easy to prove that for any x   X, u     
  and any optimal solution    to IP it holds 

that:  

φ(u) ≤ L(x,u) ≤ cx   and  
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φ(u) ≤ L(  ,u) ≤ c   =     

Efficient solution methods to solve sub-problem LR(u) and the fact that φ(u) ≤     allows 

LR(u) to be used to provide lower bounds for IP. Different lower bounds φ(u) on the 

optimal value     are provided by different values of u. Any value of u which provides 

the greatest lower bound of      is an optimal solution to the Lagrangean dual (LD) 

problem: 

 

(LD)     = max {φ(u) : u ≥ 0} 

 

 

φ(u)  is an implicit function of u:  

            φ(u) = min              cx + u(b − Ax) 

 

       subject to      x X 

 

 

LD is a problem in the dual space of the Lagrangean multipliers u, whereas LR(u)  is a 

problem in the x space. Those complicated constraints which are equality constraints the 

multipliers u are not restricted in sign (u     ). 

Definition 2: LR has the integrality property if: 

Co{x      
  : Dx ≥ d} = {    

 
 : Dx ≥ d } 

The consequence of this property is that when the integrality property holds, the LR 

scheme cannot produce a bound stronger than the LP bound. However, this is useful 

because sometimes the LP bound can be computed more efficiently using a LR scheme 

than the traditional linear programming methods such as primal simplex, dual simplex, 

and interior point methods. 
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The consequence of mentioned property is as stated in the following corollaries: 

Corollary 1: If Co{x      
  : Dx ≥ d} = {    

 
 : Dx ≥ d }, then  

          

   is the optimal value of the LP relaxation. 

Corollary 2: If Co{x      
  : Dx ≥ d}   {    

 
 : Dx ≥ d }, then  

           

It may happen that the LR bound is strictly better than the LP bound.  Unless LR does not 

have the Integrality Property, it will not yield a stronger bound than the LP relaxation.  

The most challenging part of using LR is to optimize efficiently the LD function. There 

are several primal and dual methods to solve LD either exactly or approximately. Some 

of these methods are subgradient method, Outer approximation method and Bundle 

method (see, for instance, Guignard, 2003). Subgradient type methods utilize a 

subgradient of φ to find a direction of movement.  

Consider that    is the best (greatest) value of LR and with      =  (  ), and let     
 

be 

the projection of   
 

. The step direction from a given point    is just the subgradient of 

the objective function. 

    )   (b − A  ) 

The scalar     is a step size specifying how far we move from the current solution and it is 

positive. The step size which is generally used in practice is: 

     
            ))

     ) 
  

   is a scalar and       .  
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So that:  

     =   +        
 ) 

Finally,      should be non-negative. 

                 ) 

The formula uses the unknown UB. An estimated value of UB can be too small or large. 

If the estimated value of UB is too small, then steps could be too small and convergence 

would be slow. If the large UB is used, then it is projecting on a hyperplane which is too 

far away from     and it might be beyond the   . If the values of objective function do 

not improve for a large number of iterations, then the upper bound might has been 

underestimated. Therefore, the difference          ), should be reduced by 

multiplying it by a factor   
 
less than 1.  

     =   +     ). 
           ( 

 ))

     )  

2 

  where   
 
is reduced when there is no improvement 

for many iterations. For more references refer to Lemarechal (1974). 
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A scheme of the subgradient algorithm 

Iteration 0 

 Initialize     )     ;      ;      . 

 Imagine that UB is a known upper bound over the optimal value. 

Iteration k 

 Solve the lagrangean function    ). 

 If      ) >    ) ) then   

   )        ) . 

 End if 

 Calculate the subgradient γ(  ). 

 Compute the step size      
           ))

     )  
 . 

 (    )      )         
 ). 

 k = k +1 

It was pointed that    is reduced if there is no improvement for the particular number of 

iterations.  

 

2.2.2) Heuristic 

A method which is based on a role or a set of rules, and is used to construct a feasible 

solution is called a heuristic. Greedy and local search procedures are the most simple 

heuristics. A greedy heuristic aims to construct an initial feasible solution, but local 

search method improves some initial solutions. A lot of research has been done to 

develop heuristic methods that overcome local optimality. A metaheuristic is an 

algorithmic framework that provides a set of strategies to develop heuristic optimization 
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algorithms. The aims of metaheuristic algorithms are to find the best (feasible) solution 

out of all possible solutions of an optimization problem. Several metaheuristic have been 

introduced and developed by authors in the area of operation research such as tabu search 

(Glover, 1989 ; 1990), genetic and evolutive algorithms (Holland, 1975; Michalewicz, 

1992), simulated annealing (Kirpatrick et al., 1993), scatter search (Laguna and Martik, 

2003), and greedy randomized adaptive search procedures (Feo and Resende, 1995). 

Several different Lagrangean heuristics also have been presented in the literature. 

Whenever LR method is used to solve problems, metaheuristic and heuristics are 

developed to construct feasible solutions based on information that LR provides. In this 

study primal heuristic is used to construct feasible solution. It provides upper bounds on 

the optimal values, and the best (lowest) upper bound will be selected. The gap between 

lower bound and upper bound is calculated and it determines that how far the results are 

from optimal values. Primal heuristic and algorithm to construct a feasible solution is 

explained in Chapter 4. 
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Chapter 3: Problem Definition and Formulations 

Uncapacitated Hub Location Problems (UHLP) have been widely studied in the literature 

and are one of the most important types of HLPs. The amount of capacity is not 

considered in uncapacitated version of HLPs.   

3.1) Uncapacitated Hub Location Problem 

 

Let G = (N,A) be a complete graph, where N = {1,2,3,…n} represents the set of nodes 

which can be origins, destinations and potential hub facilities in the network. A is a set of 

arcs in the network. Demands are routed between origins and destinations (i,j) and     

denote the amount of flow.    is a fixed cost of installation of a hub facility. Distances 

between origins and destinations are shown by    . Distances satisfy the triangular 

inequality and transportation cost for each unit of flow is related to the distance between 

every pair of nodes. Hub facilities are assumed to be fully interconnected and a discount 

factor (0<α<1) is applied to calculate transportation cost between hub facilities on inter-

hub links and it causes the economies of scales in the network. The total cost of 

transportation in inter-hub links is less than the total cost of transportation between hub 

nodes and non-hub nodes because of the discount factor. Selecting hub facilities among a 

set of nodes and assigning non-hub nodes to the right hub facilities lead to minimize 

setup cost and transportation cost. As mentioned, hub facilities are fully interconnected 

and it is assumed that every non-hub node has to be connected to at least one hub node. 

Each route has to include at least one hub node and at most two hub facilities. First of all, 

flows have to be routed to a hub node from a non-hub node which is an origin (O/i) and 

then they are routed from a hub node (k) to another hub facility (m) if it is necessary. 
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Finally, flows have to be driven from the last hub node to a non-hub node which is a 

destination (D/j).  

If flows pass through the path of i-k-m-j, then the total transportation cost of routing 

flows from an origin (i) to a destination (j) is as follows: 

            (              )  

We define the following sets of decision variables: 

      =  flows between nodes i and j which is routed via inter-hub arc k and m 

  ={
                                        
           

  

The UHLP can be formulated as: 

min                        ∑ ∑ ∑ ∑                 ∑       

subject to 

                               ∑ ∑                                                                                     (1) 

                                     ≤                                                                                     (2) 

                                    ≤                                                                                     (3) 

                                                                                                                              (4) 

                                                                                                                       (5) 

The objective function minimizes the installation cost of potential hub facilities and the 

total transportation cost. Constraints (1) guarantee that there is a unique route for routing 
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the demands between every pair of origin and destination. Constraints (2) and (3) prohibit 

the flow to be routed via a node which is not a hub. Therefore, an optimal value have      

        since the total demand for every pair of origin and destination must be passed 

via the least cost hub pair. Constraints (4) and (5) are the classical integrality and non-

negativity constraints. 

3.2) Modular Hub Location Problems 

As mentioned in Chapter 1, the main objective of MHLPs is to design hub-and-spoke 

network by estimating more accurately the total transportation cost. Difference between 

classical UHLPs and MHLPs is the connection of hub nodes. In classical HLPs, it is 

assumed that hub nodes are fully interconnected at no costs in the network, but we do not 

consider a fully interconnected hub network at no cost in MHLPs. MHLPs also considers 

installation costs for the both access links and inter-hub links. In modular hub location 

problems, flow dependent modular cost is applied on every link in the network instead of 

using fixed discount factor for every hub arc in the network. These new modeling 

features lead to calculate more accurate and reliable transportation costs. 

Mirzaghafour (2013) introduced four different variants of the MHLP, which differ 

according to the way O/D nodes are connected to hub facilities and whether it is allowed 

to directly route flows from their origin to their destination. In this study, we consider the 

MHLP with multiple assignments without direct connections between non-hub nodes. As 

mentioned, modular hub location problems are more practical and accurate than 

capacitated or uncapacitated classical HLPs. Flows are routed via one or more than one 

hub facility, and non-hub nodes could be connected to more than one hub node, but non-

hub nodes are not allowed to have direct connections to each other.   
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Let G = (N,A) be a complete graph where N = {1,2,3,…,n} denotes the set of nodes in the 

network and A is a set of arcs which they connect origins to destinations. Hub facilities 

are not fully interconnected and distances between origins and destinations are not 

assumed to satisfy the triangular inequality property. Non-hub nodes are not allowed to 

have direct links to each other. The total transportation cost will be calculated based on 

the amount of flow which is routed via both access and inter-hub links. The amount of 

flow determines the number of facility links in the network.     represent the amount of 

flow which is transported from the origin i to the destination j, and    denote the fixed 

setup cost of a hub.     represent the distance between origin i and destination j. 

Demands are routed by facility links and there are two different type of them. Large 

facility links are used to transport flows between hub facilities. Whereas, smaller facility 

links are used to transport flows between origins and hub facilities or between hub 

facilities and destinations. Transportation cost of each facility link between hub nodes k 

and m is calculated by: 

              , 

Where     represents the fixed cost of buying or leasing a truck and   represents variable 

cost which can be labor and fuel costs. The capacity of every large truck is B.  

Transportation cost for small trucks between nodes k and m in access arcs is also similar 

to large ones which is:  

             , 

Where     and     are fixed and variable costs of small trucks with capacity of H. 
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Variable and fixed cost of larger trucks is more than small trucks. Capacity of trucks on 

inter-hub arcs is more than capacity of trucks on access arcs (B > H, b> p, lc>lq) then, 

transportation cost of per unit of demands on the inter-hub arcs is less than transportation 

cost of per unit on the access arcs. 
   

 
 < 

   

 
. 

The maximum number of large facility links which can be routed on inter-hub arcs is 

represented by   .  

   and   illustrate the maximum number of small facility links which can be routed on 

access arcs. 

First of all, for modeling the MHLP, some decision variables will be defined as: 

  ={
                                        
           

 

     = flows between nodes i and j use access arc of (i,k) 

     = flows between nodes i and j use access arc of (k,j) 

      = flows between nodes i and j use inter-hub arc of (k,m) 

    = number of trucks between hub nodes k and m 

   
  

= number of trucks between non hub node i and hub node k 

   
 = number of trucks between hub node k and none hub node j 
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MHLP with multiple assignments without direct connections can be formulated as 

follows:  

      ∑         + ∑ ∑       
 

      + ∑ ∑        
 

      + ∑ ∑               

subject to 

           ∑         =1                                                                                              (1) 

          ∑        =1                                                                                               (2)  

             ≤                                                                                                        (3)                                                                                                                  

             ≤                                                                                                         (4) 

          ∑ ∑                                                                                          (5) 

          ∑                  
                                                                                     (6) 

         ∑                 
                                                                                     (7) 

            
                                                                                                            (8) 

            
                                                                                                           (9)  

              +∑         - ∑          -    =0                                                (10) 

                                                                                                                       (11) 

            
     

                                                                                          (12)    

       0 ≤            ,      ≤ 1                                                                        (13) 
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The objective function minimizes the total cost of transportation and installation cost of 

hub facilities. Constraints (1) and (2) show that to route the flows from an origin to a 

destination one or more than one hub facility should be used. Constraints (3) and (4) state 

that there is an inter-hub arc if and only if both of connected nodes are hub facilities. 

Constraint (5) is a capacity constraint for flows which are routed via inter-hub arcs 

between two hub facilities. Constraint (6) is also a capacity constraint for flows which are 

routed via access arcs between non-hub nodes and hub nodes. Constraint (7) states the 

capacity constraint for flows which are routed via access arcs between hub nodes and 

non-hub nodes. Constraints (8) and (9) guarantee that for every access arc one of the 

starting or ending point should be a hub facility. It could be an access arc from an origin 

to a hub node or from a hub node to a destination. Constraint (10) are the well-known 

flow conservation constraints, and model the condition that the variables x, a, and s 

define the paths between origin and destination nodes. It ensures that the total number of 

arcs exiting every node is equal to the total number of arcs entering it. Constraints (11), 

(12), and (13) are the classical integrity and non-negativity constraints.   

Figure 11 illustrates an example of modular hub location network with multiple 

assignments without direct connections.  
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Figure 9: Network structure of MHLP-MA (no direct connections) 

 

 

 

 

 

 



40 

 

Chapter 4: Lagrangean relaxation 

4.1) Lagrangean relaxation 

Lagrangean Relaxation (LR) is a well-known method to solve large scale combinatorial 

optimization problems. It exploits the inherent structure of the problems to compute 

lower bounds on the value of the optimal solution. In the case of MHLP, if we relax 

constraints (1) - (4), and (8) - (10) in a Lagrangean fashion, weighting their violations 

with multiplier vectors               ) of appropriate dimension, we obtain the 

following Lagrangean function: 

               ) =    ∑            ∑ ∑             
   ∑ ∑             

   

                                               ∑ ∑                ∑ ∑          ( ∑           )   

                                               ∑ ∑          ( ∑           )  

                                               ∑ ∑          (  
   

      )   

                                               ∑ ∑                       )  

                                               ∑ ∑                 
        )  

                                               ∑ ∑           (    
         )  

                                            ∑ ∑ ∑               (      ∑          ∑               )    

                                   subject to    

                                          ∑ ∑                                                        (5) 

                                          ∑                 
                                                    (6) 

                                         ∑                 
                                                    (7) 

                                                                                                                               (11) 
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                                                                  (12) 

                                     0 ≤            ,                                                 (13) 

 

Observe that                 ) is separable into four sub-problems: (1) a problem in the 

space of the (x,y) variables, (2) a problem in the space of the      ) variables, (3) a 

problem in the space of the      ) 
variables, and (4)  a problem in the space of the 

  ) variables. After some algebra, the sub-problem in the space of the (x,y) can be 

expressed as: 

    
         )  =   ∑ ∑                              )      

                                    ∑ ∑ ∑ ∑                   (             ) 

                        
subject to    

                                              ∑ ∑                                                                         
 

                                                                                                                                              

                             0 ≤                                                                                   

 

The sub-problem in the space of (    ) 
is: 

      
       )  =     ∑ ∑    

 
                    )  

  ∑ ∑ ∑                           )
 

                              
subject to    

                                      ∑                 
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                                 0       1                                                                              

The sub-problem in the space of      ) 
is: 

      
       )  =     ∑ ∑    

 
   
  

               )  
  ∑ ∑ ∑                           )

 

                              
subject to    

                                       
∑                 

                                                                   

                                          
                                                                                          

                                 0        1                                                                           

The sub-problem in the space of   
is: 

          )        ∑            ∑             ))    

                                          ∑           ∑        ))     

                              
subject to    

                                                                                                                              

Note that each of the four sub-problems in which we decompose                ) 

captures one of the inherent structures of MHLP. The above analysis can be summarized 

in the following result: 

Proposition 1. 

               )             )  
       

       )         
       )            )  

           

                                       ∑ ∑            ∑ ∑           
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Solution to Sub-problem           )   

Given that each of the     variables appear only in one constraint, we can further 

decompose the           ) sub-problem in to independent sub-problems, one for each 

(k,m) pair, of the form: 

    
         ) =                       )       

   ∑ ∑ (             )            

                       subject to 

                                                      ∑ ∑                                                               
 

                                                                                                                                            

                                                                                                                  

We can efficiently solve these problems by iteratively evaluating different values of the 

    variables and finding the optimal value for the remaining       variables. That is, if 

we fix     to a particular value, the remaining problem reduces to a continuous knapsack 

problem, which can be optimally solved with the greedy knapsack algorithm (Lawler, 

1979). This algorithm works by ordering the       variables so that 

(   )       )   )

   )
 

(     )         )   )

     )
  

for s = 1, …, n
2
-n. In particular,    ) denotes the weight of the s

th
 ordered pair of nodes 

    ).  The greedy algorithm adds the ordered items (i.e., sets    )     ) one at a time 

to the knapsack, starting from    )   
 
, and continues as long as adding an item does not 
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exceed the capacity constraint     . The algorithm stops when residual capacity is equal 

to zero.  

To find the optimal value of the    variable we start from       and evaluate the 

objective value by solving the correspondent continuous knapsack problem. We then 

increase the value of     by one, increasing the capacity of the knapsack and allowing 

more    )   variables to take a positive value. We keep increasing     until the capacity 

increases to a point that all    )   variables are set to one. Finally, we obtain the optimal 

solution of     
         ) checking the value of     that provides the minimum objective 

function. The outline of the overall algorithm is depicted in Algorithm 1. 
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Algorithm 1. Solving sub-problem     
         ) 

             

      

do 

        

          

    

              

while (                      ) do 

 if              )    ) then  

     )      

                       ) 

                )       )  ) 

 

else 

   )   =               )
 

           

                )       )  )   )   

end-if 

      

end-while 

if                  ) then 

                 

end-if 

while        ) 
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Solution to Sub-problem       
       ) 

Similar to the previous sub-problem, because the    
  variables appear only in one 

constraint, we can further decompose the       
       ) sub-problem in to independent 

sub-problems, one for each     ) pair, of the form: 

 
     

 
         )        ∑ ∑    

 
                    )  

  ∑ ∑ ∑                           )
 

                              
subject to    

                                   ∑                 
                                                   

                                         
                                                                                

                                  0                                                                                         

 

These problems can also be solved efficiently by iteratively evaluating different values of 

the     
  variables and finding the optimal value for the remaining      variables. 

Therefore, if     
  is fixed to a particular value, the remaining problem reduces to a 

continuous knapsack problem, which can be solved with the greedy knapsack algorithm 

optimally. This algorithm works by ordering the       variables so that 

(    )       )   )

    )
 

(      )         )   )

      )
  

Similar to the previous sub-problem, for s = 1, …,    . In particular,     ) denotes the 

weight of the s
th

 ordered pair of nodes     ).  The greedy algorithm adds the ordered 

items (i.e., sets     )   ) one at a time to the knapsack, starting from      ) 
 
, and 
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continues as long as adding an item does not exceed the capacity constraint     
 . The 

algorithm stops when residual capacity is equal to zero.  

To find the optimal value of the    variable we start from    
    and evaluate the 

objective value by solving the correspondent continuous knapsack problem. We then 

increase the value of    
  by one, increasing the capacity of the knapsack and allowing 

more      ) variables to take a positive value. We keep increasing    
  until the capacity 

increases to a point that all      ) variables are set to one. Finally, we obtain the optimal 

solution of  
     

 
         ) checking the value of    

  that provides the minimum objective 

function. The outline of the overall algorithm is depicted in Algorithm 2. 
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Algorithm 2. Solving sub-problem  
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Solution to Sub-problem       
       ) 

Similar to the previous sub-problems, because the    
  variables appear only in one 

constraint, we can further decompose the       
       ) sub-problem in to independent 

sub-problems, one for each     ) pair, of the form: 

 
     

 
         )        ∑ ∑    

 
   
  

               )  
  ∑ ∑ ∑                           )

 

                                 
subject to    

                                          
∑                 

                                                  

                                            
                                                                        

                                           ≤                                                                                 

These problems can also be solved efficiently by iteratively evaluating different values of 

the    
  variables and finding the optimal value for the remaining      variables. That is, if 

   
  is fixed to a particular value, the remaining problem reduces to a continuous 

knapsack problem, which can be solved with the greedy knapsack algorithm optimally. 

This algorithm works by ordering the       variables so that 

(   )      )    )

   ) 
 

(     )        )    )

     ) 
 

for s = 1, …,    . In particular,    )  denotes the weight of the s
th

 ordered pair of 

nodes     ).  The greedy algorithm adds the ordered items (i.e., sets    )     ) one at a 

time to the knapsack, starting from    )   
 
, and continues as long as adding an item does 
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not exceed the capacity constraint     
 . The algorithm stops when residual capacity is 

equal to zero.  

To find the optimal value of the    
 variable we start from    

    and evaluate the 

objective value by solving the correspondent continuous knapsack problem. We then 

increase the value of    
  by one, increasing the capacity of the knapsack and allowing 

more    )   variables to take a positive value. We keep increasing    
  until the capacity 

increases to a point that all    )   variables are set to one. Finally, we obtain the optimal 

solution of  
     

 
         ) checking the value of    

  that provides the minimum objective 

function. The outline of the overall algorithm is depicted in Algorithm 3. 
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Algorithm 3. Solving sub-problem  
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Solution to Sub-problem           ) 

The last sub-problem (4) is a simple optimization problem that can be efficiently solved 

by inspection. Given that the integrality conditions on the z variables are the only 

constraints in this sub-problem, we can obtain the optimal solution value as 

          )  ∑     {  (    ∑           
   

)  ∑      

   

∑     
   

)}

   

  

by setting the variable         if its coefficient of the objective function is negative 

and         otherwise.   

The solution of the Lagrangean Dual  

In order to obtain the best lower bound one must solve the Lagrangean dual of MHLP, 

which is given by 

      
          

               )        

We apply the subgradient optimization method to solve this problem. For a given vector 

of dual multipliers                ), let             ),           )    
       ), 

   
       ),           )            ) and           ) denote the optimal solution to  

               ). Therefore, the subgradient of                ) is 

                )   

(( ∑           )      )
   

,( ∑           )      )
   

 (           )  

              ))   (          )               ))  
 (    

       )  
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            ) )  , (    
       )               ) )  

 (           )  

 ∑             )     ∑             )               ) )   ) 

The outline of the subgradient algorithm is depicted in Algorithm 4. The output of the 

algorithm is a lower bound   
  

and    denotes a known upper bound on the optimal 

value of the original problem.  

Algorithm 4: Subgradient Optimization Method 

Iteration 0 

       ;    

                      ;     . 

Let UB be a known upper bound on the optimal value. 

Iteration k 

Solve the lagrangean function                ). 

      if                         )  >     ) then 

                            ) 

          end-if 

Evaluate the subgradient γ(                    ). 

Compute the step size      
                       ))

                       )  
 . 

(                                  )                        )  

                    
                   ). 

k = k+1 

In the subgradient algorithm the factor    is cut off after 35 consecutive iterations 

without improving the lower bound and it is reset to the value 2 every 300 iterations.  
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4.2) Primal Heuristic  

We can exploit the primal information obtained from the Lagrangean function to 

construct feasible solutions and thus, upper bounds on the optimal solution value of the 

problem. We next present a primal heuristic which is applied at some iterations of the 

subgradient optimization that exploits such information. 

Every solution network that has enough capacity on the links to route all demands from 

their origins to their destinations is a feasible solution network. Every feasible solution 

provides an upper bound on the optimal solution value of the MHLP, but we cannot 

guarantee the optimality of the solution. 

At iteration k of the subgradient optimization method, the Lagrangean solution may not 

be feasible for the original problem MHLP, because some constraints were relaxed. Let 

            )         be the current set of open hub facilities associated with the 

Lagrangean solution at iteration k, which is obtained by solving                )  

When the location of the hub facilities is known, we note that the routing problem for the 

commodities is still a challenging NP-hard optimization problem, given that it can be 

transformed to a network loading problem (see, Magnanti et al, 1995). The main 

difficulty arises from the fact that we cannot know in advance how many access arcs and 

hub arcs are going to be used in the path for each commodity, as the links of the network 

have to be selected first, together with their capacities, to find such paths.  

A simple way to construct a feasible solution is to ensure that there exist at least one and 

at most two hub nodes in each route between O/D pairs. To do so, we first open the 

facilities contained in set    and assign the remaining non-hub nodes        to their 
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closest open hub i    . Temporarily assuming full interconnection between hub nodes, 

the path between each pair of nodes is then computed as the shortest path on the current 

hub network. Next, in order to obtain the number facility links on every access arc and 

hub arc, the amount of flow    , which is routed on each link of the network, must be 

calculated to determine the minimum number of facility links that are needed to route 

such flow. The outline of the primal heuristic algorithm is depicted in Algorithm 5.
 

Algorithm 5: A primal heuristic algorithm 

     

for all       ) do 

          

end-for 

for all         ) do 

    )        {         } 

     )       )      

         ):= ∑        

        ) := ∑        

           )      (
         )

 
)      )      (

        ) 

 
)   

end-for 

for all      )        ) do 

       := ∑ ∑            
 

              (
       

 
) 

end-for 
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Chapter 5: Experimental Results and Analysis 

We present the results of computational experiments performed to evaluate and analyze 

the proposed Lagrangean relaxation method. To assess the quality of the lower bounds 

obtained from the LR, we compare our results with the LP bounds of the MIP 

formulation. All algorithms were coded in C++ using the Visual Studio 2010 platform, 

and in order to solve the LPs, the MIP formulation was modeled with OPL and solved 

using CPLEX 12.2© Optimization Studio. The experiments have been run on a HP PC 

with 4.00 GB of RAM memory with a processor Dual-Core CPU 2.8 GHz, and under Windows 7 

environment (64-bit Operating System). 

The computational experiments were performed using the well-known Australian Post 

(AP) set of instances. This data set is the most commonly used in the hub location 

literature and can be downloaded from mscmga.ms.ic.ac.uk/jeb/orlib/phubinfo.html. It 

consists of the Euclidean distances     between 200 cities in Australia and     represents 

the postal flows between every pair of nodes. In this study, we have considered a set of 

instances containing small to medium size instances with up to 50 nodes. This set 

contains 20 instances, having four instances for each size N = 10, 20, 25, 40, and 50. For 

every problem size the four instances correspond to different combinations of 

characteristics for the fixed installation costs and the capacities for the hubs (parameters 

B, H, b, and p). The configuration of the parameters has been selected based in such a 

way that equivalent discount factors for the inter-hub arcs of α = {0.2, 0.6} are obtained 

when using fully loaded trucks. 
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5.1) A comparison of bounds 

Our preliminary computational results focus on the comparison of lower bounds obtained 

between a Lagrangean relaxation and an LP relaxation solved with CPLEX. As stated in 

Chapter 4, the subgradient optimization algorithm (SOA) is used to solve LR. This 

algorithm terminates when one of the following four criteria is met: 

i) All the components of the subgradient are zero. In this case the current solution is 

proven to be optimal. 

ii) The difference between the upper bound and the lower bound is less than a threshold 

value.    

|                       |    

iii) The improvement of the lower bound after k consecutive iterations is less than a 

threshold value χ. 

iv) The maximum number of iterations      is reached.  

After some tuning, we set the following parameter values:  

 

                                   

 

The results of the comparison between the lower bounds obtained with the LR method 

and the LP relaxation of the MIP formulation are given in Table 1. The first two columns 

give the number of nodes and the discount factor of each instance, respectively. As 

mentioned in Chapter 3, B represents the capacity of the large facility links between the 

hub nodes and H represents the capacity of the small facility links to transport flows from 
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non-hub nodes to hub nodes or from hub nodes to non-hub nodes. b and p represent the 

variable cost per unit traveled distance for the large and small facility links, respectively. 

The next two columns under the heading LR depict: i) the best lower bound obtained 

with LR, and ii) the CPU Time in seconds needed for LR to terminate.  

The next columns under the heading CPLEX provide: i) the linear programming 

relaxation bounds (LP), and ii) the CPU time in seconds needed for CPLEX to solve the 

LP relaxation.  

The last column illustrates the difference between the percent deviations of      and 

    . The percent deviation of the LP lower bound and the best known upper bound, i.e. 

 

      
       

  
      

The percent deviation of the best lower bound of LR and the best known upper bound, 

i.e. 

      
       

  
     

 

Finally, the difference between the percent deviations of      and      is: 

                  

It represents the efficiency of the presented solution method to improve the LP bounds. 

For the 10 node instances, the best known upper bound corresponds to the optimal 

solution obtained with CPLEX. However, given that CPLEX is not able to solve larger 

size instances with 20 nodes or more to optimality in one day of CPU time, we use the 
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best upper bound found by the primal heuristic. Whenever CPLEX is not able to solve the 

LP relaxation because of time limit, we write n.a. in the corresponding entry of the table. 

 

Table 1: Comparison of lower bounds between LR and LP relaxation 

 Instances LR CPLEX 
       -        

(%) 

 
N α B H b p LB 

CPU 

Time(s) 
LB 

CPU 

Time(s) 

10 

0.2 

 

0.2 

 

0.6 

 

0.6 

750 

 

750 

 

200 

 

300 

100 

 

100 

 

100 

 

150 

300 

 

600 

 

500 

 

500 

200 

 

400 

 

400 

 

400 

166431.26 

 

264791.04 

 

283192.15 

 

213496.64 

3.77 

 

3.81 

 

4.40 

 

3.98 

161726.04 

 

243229.59 

 

275184.31 

 

200413.68 

5.50 

 

6.03 

 

6.37 

 

5.89 

                     

2.49 

 

7.15 

 

2.38 

 

5.03 

 

20 

0.2 

 

0.2 

 

0.6 

 

0.6 

750 

 

750 

 

200 

 

300 

100 

 

100 

 

100 

 

150 

300 

 

600 

 

500 

 

500 

200 

 

400 

 

400 

 

400 

178667.04 

 

300098.25 

 

328213.23 

 

262713.69 

43.73 

 

45.07 

 

43.13 

 

40.14 

174491.99 

 

278175.86 

 

301969.26 

 

215667.18 

66.22 

 

87.86 

 

52.93 

 

47.76 

                                  

1.62 

 

4.47 

 

5.36 

 

12.13 

 

25 

0.2 

 

0.2 

 

0.6 

 

0.6 

750 

 

750 

 

200 

 

300 

100 

 

100 

 

100 

 

150 

300 

 

600 

 

500 

 

500 

200 

 

400 

 

400 

 

400 

190812.47 

 

320358.29 

 

351137.15 

 

307158.22 

215.38 

 

222.28 

 

220.82 

 

209.25 

177085.49 

 

280092.51 

 

304200.88 

 

218209.82 

271.53 

 

290.03 

 

268.49 

 

243.19 

 

4.77 

 

7.30 

 

8.51 

 

21.65 

 

40 

0.2 

 

0.2 

 

0.6 

 

0.6 

750 

 

750 

 

200 

 

300 

100 

 

100 

 

100 

 

150 

300 

 

600 

 

500 

 

500 

200 

 

400 

 

400 

 

400 

225652.64 

 

399941.06 

 

451894.55 

 

414172.35 

4137.19 

 

4567.75 

 

4678.85 

 

4411.39 

177666.79 

 

287264.24 

 

310072.86 

 

217219.54 

6235.76 

 

7201.81 

 

5350.21 

 

3638.76 

                   

14.85 

 

18.06 

 

22.73 

 

36.80 

 

50 

0.2 

 

0.2 

 

0.6 

 

0.6 

750 

 

750 

 

200 

 

300 

100 

 

100 

 

100 

 

150 

300 

 

600 

 

500 

 

500 

200 

 

400 

 

400 

 

400 

273228.09 

 

461738.30 

 

518675.90 

 

480950.06 

23781.08 

 

24197.63 

 

23964.13 

 

23135.30 

n.a. 

 

n.a. 

 

n.a. 

 

n.a. 

n.a. 

 

n.a. 

 

n.a. 

 

n.a. 

                       

n.a. 

 

n.a. 

 

n.a. 

 

n.a 
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As it can be seen in Table1, the proposed LR is able to consistently obtain better lower 

bounds that the ones obtained with the LP relaxation of the MIP formulation. This is one 

of the positive results that were expected, as the proposed LR dos not have the integrality 

property. Moreover, the percent improvement becomes larger as the size of the instances 

increase. In the smaller instances the improvement is between 2% to 6% whereas in the 

larger instances the improvement is between 20% to 37%.  

 In addition, the results of this table indicate that the LR requires less CPU time than 

CPLEX to obtain these improved bounds in all but one of the considered instances. As 

the number of nodes increases, the CPU time also increase for both the LR and the LP 

relaxation. LR is able to converge in less than one minute for the 20 node instances, and 

3.5 minutes for the 25 node instances. The running time of the LR for 40 node instances 

is 1.5 hours, but it takes more than 2 hours to obtain LP bounds with CPLEX. For 

instances with more than 40 nodes, CPLEX ran out of memory after a few hours. 

Therefore, it was not possible to obtain LP bounds for more than 40 node instances with 

4 GB of RAM memory. 
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5.2) Analysis of LR 

The goal of the computational experiments presented next is to analyze the capabilities 

and limitations of the proposed Lagrangean relaxation for obtaining approximate 

solutions of the MHLP. The results are given in Tables 2 and 3. For a specific 

configuration of B, H, b, and p the best lower bound and upper bound obtained in the LR 

and CPU time needed to obtain them are given. Finally, the gap between the best lower 

bound and the best upper bound is given, i.e. 

    
       

  
     

The optimal solution values of 10 node instances are given to evaluate the upper bounds 

obtained with the primal heuristic in Table 2. The last column illustrates the percent 

deviation between the best upper bound with the heuristic and the optimal solution value 

for 10 node instances, i.e.  

          
      

  
     

Table 2: Analysis of LR for 10 node instances 

 Instances LR 

Optimal 

solution 
% Deviation 

N α B H b P LB UB 
CPU 

Time(s) 
Gap (%) 

10 

0.2 

 

0.2 

 

0.6 

 

0.6 

750 

 

750 

 

200 

 

300 

100 

 

100 

 

100 

 

150 

300 

 

600 

 

500 

 

500 

200 

 

400 

 

400 

 

400 

166431.26 

 

264791.04 

 

283192.15 

 

213496.64 

219705.01 

 

405243.67 

 

405243.67 

 

296201.80 

3.77 

 

3.81 

 

4.40 

 

3.98 

24.17 

 

34.65 

 

30.11 

 

27.92 

 

188659.88 

 

301382.97 

 

335792.88 

 

260634.68 

 

14.13 

 

25.62 

 

17.13 

 

12.00 
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CPLEX is not able to obtain the optimal solutions for instances with more than 10 nodes. 

Therefore, it is not possible to further evaluate how far our upper bounds are from the 

optimal values. The results for analysis of LR for 20, 25, 40, and 50 node instances are 

given in Table 3. 

Table 3: Analysis of LR for 20, 25, 40, and 50 node instances 

 Instances LR 

N α B H b p LB UB 
CPU 

Time(s) 
Gap (%) 

20 

0.2 

 

0.2 

 

0.6 

 

0.6 

750 

 

750 

 

200 

 

300 

100 

 

100 

 

100 

 

150 

300 

 

600 

 

500 

 

500 

200 

 

400 

 

400 

 

400 

178667.04 

 

300098.25 

 

328213.23 

 

262713.69 

257614.96 

 

489814.37 

 

489814.37 

 

381533.07 

43.73 

 

45.07 

 

43.13 

 

40.14 

30.64 

 

38.73 

 

32.99 

 

31.14 

25 

0.2 

 

0.2 

 

0.6 

 

0.6 

750 

 

750 

 

200 

 

300 

100 

 

100 

 

100 

 

150 

300 

 

600 

 

500 

 

500 

200 

 

400 

 

400 

 

400 

190812.47 

 

320358.29 

 

351137.15 

 

307158.22 

287763.88 

 

551716.62 

 

551716.62 

 

410845.93 

215.38 

 

222.28 

 

220.82 

 

209.25 

33.69 

 

41.93 

 

36.35 

 

25.23 

40 

0.2 

 

0.2 

 

0.6 

 

0.6 

750 

 

750 

 

200 

 

300 

100 

 

100 

 

100 

 

150 

300 

 

600 

 

500 

 

500 

200 

 

400 

 

400 

 

400 

225652.64 

 

399941.06 

 

451894.55 

 

414172.35 

322976.46 

 

623888.32 

 

623888.32 

 

535292.71 

4137.12 

 

4567.75 

 

4678.85 

 

4411.39 

30.133 

 

35.89 

 

27.56 

 

22.62 

50 

0.2 

 

0.2 

 

0.6 

 

0.6 

750 

 

750 

 

200 

 

300 

100 

 

100 

 

100 

 

150 

300 

 

600 

 

500 

 

500 

200 

 

400 

 

400 

 

400 

273228.09 

 

461738.30 

 

518675.90 

 

480950.06 

 

356280.47 

 

688119.44

. 

688119.44 

 

647100.72

. 

23781.08 

 

24197.63 

 

23964.13 

 

23135.30 

23.31 

 

32.89 

 

24.62 

 

25.67 
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It can be seen in Tables 2 and 3, the primal heuristic is able to obtain feasible solutions 

for all considered instances. The obtained lower and upper bounds with LR are able to 

provide a percent optimality gap that ranges between 23% to 42%. For the 10 node 

instances that we know the optimal solution value, we can observe that the solutions 

obtained with our primal heuristic are not very close the optimal solution values.  

 

Even though this results are not very good, this is already a larger improvement with 

respect to what a general purpose solve, such as CPLEX, can do for this problem. For 

instance, the obtained lower bounds could be used in a branch and bound method to 

optimally solve the problem. Given that the bound are always better than the LP bound 

and the times are smaller, we expect to obtain the optimal solution faster than CPLEX. 

However, a specialized implementation of this method is required in order to be 

competitive. 
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Chapter 6: Conclusion 

This thesis studied a challenging class of hub location problems known as Modular Hub 

Location Problems (MHLP). These problems are able to create more realistic networks 

than other classical hub location problems. By relaxing common assumptions frequently 

considered in classical hub location problems, MHLPs are able to overcome several 

modeling weaknesses and creating more realistic networks. Hub facilities are not 

assumed to be fully interconnected anymore, and transportation costs are considered to be 

flow dependent. These costs are modeled by using step-wise (modular) functions on 

every link of the network. Moreover, distance between every pair of (O/D) nodes is not 

assumed to be symmetric or to satisfy the triangular inequality. Creating more realistic 

models makes MHLP much more difficult to solve, as compared with classical hub 

location problems. 

The main contribution of this thesis was to propose an approximate solution, based on 

Lagrangean relaxation (LR), to obtain lower and upper bounds on the optimal solution 

value of the MHLP.  To construct feasible solutions, a simple primal heuristic was also 

proposed in this study. 

Based on the computational experiments, the following results can be concluded:  

 Given that the proposed LR does not have the integrality property, it was capable 

of obtaining better lower bounds than the linear programming relaxation of the 

MIP formulation for all the considered instances. 

 Instances containing 20, 25, 40, and 50 nodes were approximately solved by the 

presented solution method. In contrast, a general purpose solver such as CPLEX 

was not able to solve the same problems in one day of CPU time. 



65 

 

 The CPU times of the LR to obtain better lower bounds were much less than the 

CPU times required by CPLEX to solve just the LP relaxations of the MIP 

formulation.  

A possible future research direction could be the integration of the proposed LR into a 

branch and bound framework to obtain optimal solutions for the MHLP. In addition, the 

development of sophisticated heuristic algorithms is highly relevant to obtain high quality 

solutions to this challenging optimization problem. Other research directions could be the 

incorporation of capacity constraints at the hub facilities or service level constraints to 

limit the structure of O/D paths to provide even more realistic hub location models. 
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