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1 Introduction

In this section, we summarize the research paper Optimal Reciprocal Reinsurance Treaties
Under the Joint Survival Probability and Joint Profitable Probability by Cai and Li (2012),
on which we base our numerical applications and new results. The main focus of the authors
is to design a reinsurance treaty that would be optimal not only to the insurer, but to the
reinsurer as well. This goal is established after considering that the stop-loss reinsurance
treaties that have been previously designed were proven to be optimal in the eyes of the
insurer, but there is no evidence suggesting that they are also in the best interests of the
reinsurer.

The issue of possible conflicting interests is tackled by defining and maximizing the joint
survival and joint profitable probabilities of the two parties in question. The authors begin by
looking at the optimal reinsurance retention under the expected value principle and find the
necessary values under the two types of treaties—quota share and stop-loss reinsurance—that
maximize the joint survival probability. From a mathematical perspective, the joint profitable
probability can be perceived as a special case of the joint survival probability when the initial
wealth of both parties are set to zero. However, for interpretational purposes, it is important
to consider the two as separate entities. First, it is established that for the quota share
reinsurance, the optimal retention is dependent on how the insurer’s initial wealth measures
up to what can be interpreted as the excess of the pure risk premium including safety loadings
over the premium received by the insurer from the insured. For this same treaty type, Cai
and Li (2012) find that interestingly enough, when evaluated at the optimal retention value,
the survival probability functions of both the insurer and reinsurer are equivalent. In fact,
they are identical to the cumulative distribution of the loss when it is equal to the sum of
the initial wealth of both parties and the insurance premium received by the insurer from
the insured. As a result, when this optimal retention value is used, the contract is optimal
and thus fair for both parties. For the stop-loss reinsurance contract studied in Theorems 2
to 4, the optimal retention that maximizes the joint survival probability is also equivalent
to this value. In these three theorems, the sufficient and necessary conditions leading to the
existence of an optimal stop-loss retention are examined.

Theorems 5 and 6 serve as the foundation that one could use to design general optimal
reinsurance contracts by maximizing the joint survival and joint profitable probability func-
tions under general premium principles and among a wide class of reinsurance policies. This
is eventually demonstrated through the design of a quota share contract under the variance
premium principle in Theorems 7 and 8, and finally a limited stop-loss contract under the
expected value principle in Theorems 9 to 12. Treaties that could be considered outside
the contents of this paper are proportional surplus and non-proportional excess-of-loss rein-
surance contracts. This demonstrates that their findings could serve as tools in the future
development of a desired form of reinsurance under a preferred reinsurance premium, that
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can be made fair in the perspective of both parties involved.

2 Assumptions

An aggregate loss random variable will be considered to model the loss incurred by the
insured. Numerical applications for the theorems in Cai and Li (2012) will be executed and
analyzed, focusing on the quota share and limited stop-loss reinsurance contracts. We shall
consider :

– The claim severity, Bi, as independent Exponential random variables with rate β = 0.01
– The claim frequency, N , as a Poisson random variable with λ = 2.

The Compound Poisson random variable is therefore defined asX =
N∑
i=1

Bi. Consequently,

its cumulative distribution function is :

F (x) =
N∑
i=1

Pr(N = i) Pr(X 6 x | N = i) + P (N = 0) =
N∑
i=1

2ie−2

i!
Γ(i;x) + e−2,

where Γ(i;x) is the incomplete gamma function, defined as 1
Γ(i)

∫ x
0
ti−1e−t dt.

3 Numerical Application of Theorem 1

3.1 A quota share reinsurance under the expected value principle

A quota share reinsurance contract will first be studied, with a fixed relative safety
loadings of θR = 0.15 for the reinsurer. Although not mentioned in the original paper, we
will also consider the safety loadings for the insurer, θI , at values below, equal to and above
θR = 0.15. It is important to consider relative safety loadings for both parties involved in
the treaty. We can assume that the insurance company is also interested in benefiting from
θI ’s advantages, such as covering the expenses of securing and maintaining the business. To
study the effect that this variable has on the contract, we shall consider θI = 0, 0.15 and 0.4.

Under the expected value principle, we take into account :

P f
R = 1.15E(f(X))
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P f
I = (1 + θI)E(If (x))

– f(x) = (1− b)X, the ceded loss covered by the reinsurer
– If (x) = bX, the retained loss covered by the insurer
– µ = E(N)E(B) = λ 1

β
= 2× 100 = 200, the expected aggregate loss of the contract

– PR(b) = (1.15)(1− b)µ = 230(1− b), the reinsurance premium
– PI(b) = (1 + θI)200b, the net insurance premium
– P0 = 230− b(30− 200θI), the insurance premium paid by the insured to the insurer
– p = (1 + θR)µ − P0 = 230 − P0, the excess of the pure risk premium including safety
loadings over P0

Numerical results for Theorem 1 are found in the following tables, conditioned on insurer
safety loadings. Reinsurer initial wealth is set at values both below and above the average
aggregate loss of 200. Insurer initial wealth is set within each specific case to respect the
constraints set by the first theorem. Although the authors define the initial wealth of both
parties as being strictly positive, we consider cases below zero as well. This leads to more
thorough results by providing solutions for each point of Theorem 1, when the insurer safety
loading is set to 0.15. This particular value of θI leads to p = 0, and thus without considering
negative values of uI , the case uI < p would be ignored. It is of importance to consider the
meaning of this negative value. First, since we are dealing with reinsurance treaties, it is
logical to assume that we are dealing with fairly large risks. Companies that assume these
risks are large and tend to be made up of multiple business lines. We can therefore assume
that with sufficient funds, it is possible for them to run a line which possesses a negative
initial wealth, with hope of it turning around in the near future.

As mentioned earlier, when the safety loadings for both parties are equal and set to
0.15, p is always 0 and thus optimal results are automatically obtained without excessive
calculations. However, for values of insurer safety loadings that differ from 0.15, one must
first calculate p∗ and P ∗0 , the optimal values of these variables, by evaluating each one at b∗,
the optimal retention for each case. For uI ≤ p, this evaluation simply consists of replacing b
in the equations for p and P0 by the quota retention b∗ provided by Theorem 1. For the case
uI > p though, b0 = b∗ is dependent on p, which is also expressed in terms of the optimal
quota retention. A quadratic equation must therefore be solved for these particular cases,
resulting in the following solutions :

b∗ =



0, for all θI and uI = p;

1, for all θI and uI < p;
(uI+uR+30)−

√
(uI+uR+30)2−120uI
60

, if θI = 0 and uI > p ;
uI

uI+uR
, if θI = 0.15 and uI > p;

(uI+uR+110)−
√

(uI+uR+110)2−120(80+uI)

60
, if θI = 0.4 and uI > p.
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For each combination of initial wealths, the numerical results for the first theorem can be
seen in the following tables, with optimal results showcased in Tables 2, 3 and 4.
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θI P0 = 230− b(30− 200θI) p = 230− P0 Range of p
0 230-30b 30b [0,30]

0.15 230 0 0
0.4 310-30b 30b-80 [-80,-50]

Table 1 – Expressions of important variables in terms of b

uI uR b∗ JS(b∗) P ∗0 p∗

0 100 0.0000 0.7874 230 0
0 300 0.0000 0.9272 230 0
15 100 1.0000 0.6296 200 30
15 300 1.0000 0.6296 200 30
35 100 0.2210 0.8160 223.3699545 6.630045473
35 300 0.0967 0.9394 227.1002506 2.899749443

Table 2 – Optimal results with θI = 0

uI uR b∗ JS(b∗)
-10 100 1.0000 0.6380
-10 300 1.0000 0.6380
0 100 0.0000 0.7874
0 300 0.0000 0.9272
35 100 0.2593 0.8222
35 300 0.1045 0.9403

Table 3 – Optimal results with θI = 0.15

uI uR b∗ JS(b∗) P ∗0 p∗

-80 100 0.0000 0.787389 310 -80
-80 300 0.0000 0.9272392 310 -80
-60 100 1.0000 0.6380359 280 -50
-60 300 1.0000 0.6380359 280 -50
-20 100 0.4535 0.8324218 296.394103 -66.39410298
-20 300 0.2085 0.946431 303.7458609 -73.74586088

Table 4 – Optimal results with θI = 0.4
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uI uR b∗ JS(b∗)
5 100 1.0000 0.6380
5 300 1.0000 0.6380
15 100 0.0000 0.7874
15 300 0.0000 0.9272
35 100 0.221 0.8160
35 300 0.09666 0.9394

Table 5 – Results for θI = 0 taking p = 15

uI uR b∗ JS(b∗)
-95 100 1.0000 0.6035
-95 300 1.0000 0.6035
-65 100 0.0000 0.7874
-65 300 0.0000 0.9272
-35 100 0.2308 0.8176
-35 300 0.0909 0.9386

Table 6 – Results for θI = 0.4 taking p = 65

As one would expect to see, the tables demonstrate the highest values for the joint survival
probability when the conditions to obtain b∗ are considered. To highlight this, the function
is first evaluated at an arbitrary retention ratio of 0.5. In Table 1, we see that each value of
θI is accompanied by its respective range of possible values for p. An arbitrary value for p
is therefore chosen by taking the midpoint of each range, which in fact results in b = 0.5.
Besides the case θI = 0.15 which results in a constant value of zero for p, it is observed that
when the quota retention b differs from b∗, the joint survival probability is not maximized.

When uI < p, the initial wealth of the reinsurer is irrelevant in the maximization of the
joint survival probability, since JS(b∗) = JS(1) = F (uI + P0). It is of interest to look at the
result when the initial wealth of the insurer is greater than p = 0, due to the certain b∗

that is obtained. Looking at the table values when uI = 35, we observe that the optimal
quota share retention is actually the proportion of the insurer’s initial wealth out of the
total initial wealth of both parties. Therefore, when p = 0, we get that If (x)

X
= uI

(uI+uR)
and

f(x)
X

= uR
(uI+uR)

. This makes sense since p, as defined in the paper, can be interpreted as the
difference between the pure risk premium with reinsurer safety loadings and the insurance
premium actually paid by the insured to the insurer of the contract. If this value is 0, then
both the reinsurer and insurer have the same expectations and thus neither party possesses
an unfair advantage. As a result, a logical value to accept for the proportion of loss that is
to be assumed by each of them, b, is their respective proportion of initial total wealth.
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4 Numerical Results of Proposition 1

This section provides results relating to the maximization of the joint profitable proba-
bility. We will first consider the case p = 0. For our model, Proposition 1 implies that when
θR = θI = 0.15, b∗ = b for any 0 < b < 1 and thus Jp(b∗) = F (P0) = F (230) = 0.6544017.
This means that when the safety loadings for both parties are equivalent and set to 0.15,
both the insurer and reinsurer stand to make profit from the contract 65.44 % of the time
for any given quota retention value. The choice of b is irrelevant, since in this scenario the
premium paid by the insured to the insurer, P0, is independent of the variable p. When
p 6= 0, the optimal quota retention is b∗ = 1 and the optimal values of P0 must be found in
order to calculate Jp(1) = F (P0) for each case of θI that differs from 0.15. These results are
summarized below in Table 7. It is observed that the maximum joint profitable probability
increases as the insurer safety loadings increases. This can be explained by the proportional
relationship between θI and P0 and the fact that Jp(b) depends solely on P0. The insurance
company increases their safety loadings when they assume a higher level of risk. To take on
this riskier contract, they would also charger a higher amount to the insured, which is in
turn represented by the increase in P0.

θI b∗ P ∗0 Jp(b
∗)

0.00 1.0000 200 0.603501
0.15 b ∈ [0,1] 230 0.654401
0.40 1.0000 280 0.7275728

Table 7 – Numerical results of Proposition 1

5 Summary of Theorems 2, 3 and 4

In the following three theorems, the optimal retention level d∗ of a stop-loss reinsurance is
studied. Theorem 2 describes the desired value d in the domain of [0,∞) that maximizes the
joint survival probability as the solution to an equation, while Theorem 3 states the necessary
and sufficient conditions for its existence. The optimal stop-loss retention that maximizes
the joint profitable probability is eventually examined in Theorem 4. It is interesting to
note that two conflicts of interests amongst the insurer and reinsurer arise after calculation
of the optimal stop-loss retention level. The first issue occurrs with the maximization of
the joint survival probability, when the insurer is found to benefit due to survival certainty,
meanwhile the reinsurer suffers from bankruptcy risk. Secondly, through maximization of the
joint profitable probability, it is seen that the insurer could make risk-free profits whereas the
reinsurer is at risk of not only a zero-gain situation, but of losing money as well. These two
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unfair situations are later resolved with the introduction of a limited stop-loss reinsurance
contract and a new optimal limited stop-loss retention level.

6 Summary of Theorems 5 and 6

In Theorems 5 and 6, the necessary conditions that f must comply with to be consi-
dered an optimal ceded loss function over the class of all admissible reinsurance policies
under a certain premium principle are given. These two theorems form the foundation for
all later findings, and they require that both the optimal ceded loss and optimal retained
loss functions be non-decreasing in x ≥ 0. As Theorem 5 states a condition to maximize
the joint survival probability, Theorem 6 does the same for the joint profitable probability
function. Mathematically, Theorems 5 and 6 provide one with the following two equations,
respectively :

βσ2(1− b∗)2 − (uI + uR + P0 − µ)(1− b∗) + uR = 0 (1)

and
b∗ =

βσ2 + µ− P0

βσ2
. (2)

These two theorems are then used throughout the remainder of the paper to construct
two new optimal reinsurance contracts ; a quota share one under the variance principle and
a limited stop-loss one under the expected value principle.

6.1 Optimal reinsurance under the variance principle

Beginning with the first of the two previously mentioned contract types, equations (1)
and (2) are broken down and re-expressed in terms of a new set of variables, as to design
a hypothetical optimal quota share reinsurance under the variance reinsurance premium
principle. The following are these expressions, relative to our aggregate loss model :

– V ar(X) = σ2 = E(N)V (B) + E(B)2V (N) = λ(2( 1
β
)2) = 40, 000;

– PR(b) = 200(1− b) + β(1− b)240, 000;
– PI(b) = P0 − PR(b);
– q = 200 + 40, 000β − 200θAb;
– ∆ = (uI + uR + 200θAb− 200)2 − 160, 000uRβ.
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For numerical purposes, we shall consider the insurance premium received by the insurer
from the insured as a variable depending on a safety loadings, θA and the expected value of
the retained loss. Variations of the safety loadings will represent the insurance company’s
focus on different age groups of the insureds. We shall therefore consider

P0 = θAE(If (x)) = 200θAb =

{
100b, if θA = 0.5 (young insureds) ;
300b, if θA = 1.5 (old insureds),

leading to the above expressions for q and ∆. Note that ∆ is in fact the discriminant of the
quadratic equation formed by solving the equation in Theorem 5, whereas q is the numerator
of b∗ in regards to Theorem 6. The results of the latter lead to the study of the maximization
of the joint profitable probability and are examined with greater detail in Theorem 8.

7 Numerical Application of Theorem 7

Three different cases arise when searching for the optimal quota share retention under
the variance principle, built on the foundation of ∆ being less than, equal to, or greater
than zero. Each of these three cases are then expanded in order to incorporate fact that
although solutions for the roots b1 and b2 could very well exist outside of the range [0,1],
such solutions cannot be considered as retention ratios and should therefore be discarded.
As a result, we obtain the six different cases below. Since our P0 depends on retention b,
the following expressions for the optimal retention b∗ in points four and five are found by
optimizing P0 in the equations of Theorem 7 and solving for the variable in question once
again.

1. If ∆ > 0 and b2 = 0, then b∗ = 0

2. If ∆ > 0 and b1 < 0 < b2 < 1, then b∗ = b2

3. If ∆ > 0 and 0 ≤ b1 < b2 < 1, then both b∗ = b1 and b∗ = b2 are optimal solutions
4. If ∆ = 0 and 0 < uI + uR + 200(θAb− 1) < 80000β, then b∗ = 80000β−uI−uR−200

80000β+200θA

5. If ∆ < 0 and 0 < q − uI < 40000β, then b∗ =
−200θA+

√
(200θA)2+4σ2β(200+σ2β−uI)

2σ2β

6. If ∆ < 0 and q − uI ≥ 40000β, then b∗ = 1

We consider β severity levels of 0.1, 0.5, 1 and 3. The following results are obtained by
following the calculations according to the authors’ findings :
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uI uR max∆ max(q − uI) b∗ JS(b∗)
-60 100 -1596400 4260 1 0.2427328
-60 300 -4780400 4260 1 0.2427328
0 100 -1600000 4200 1 0.3942969
0 300 -4760000 4200 1 0.3942969
35 100 -1598775 4165 1 0.4743334
35 300 -4744775 4165 1 0.4743334
150 150 -2360000 4050 1 0.6853708
200 150 -2337500 4000 1 0.7530113
300 150 -2277500 3900 0.975 0.8519364
500 150 -2097500 3700 0.94935 0.9526792

Table 8 – Optimal results : Young insureds with β = 0.1

uI uR max∆ max(q − uI) b∗ JS(b∗)
-60 100 -7996400 20260 1 0.2427328
-60 300 -23980400 20260 1 0.2427328
0 100 -8000000 20200 1 0.3942969
0 300 -23960000 20200 1 0.3942969
35 100 -7998775 20165 1 0.4743334
35 300 -23944775 20165 1 0.4743334
150 150 -11960000 20050 1 0.6853708
200 150 -11937500 20000 1 0.7530113
300 150 -11877500 19900 0.995 0.8519364
500 150 -11697500 19700 0.98997 0.9515152

Table 9 – Optimal results : Young insureds with β = 0.5

uI uR max∆ max(q − uI) b∗ JS(b∗)
-60 100 -15996400 40260 1 0.2427328
-60 300 -47980400 40260 1 0.2427328
0 100 -16000000 40200 1 0.3942969
0 300 -47960000 40200 1 0.3942969
35 100 -15998775 40165 1 0.4743334
35 300 -47944775 40165 1 0.4743334
150 150 -23960000 40050 1 0.6853708
200 150 -23937500 40000 1 0.7530113
300 150 -23877500 39900 0.9975 0.8519364
500 150 -23697500 39700 0.995 0.9513732

Table 10 – Optimal results : Young insureds with β = 1
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uI uR max∆ max(q − uI) b∗ JS(b∗)
-60 100 -47996400 120260 1 0.2427328
-60 300 -143980400 120200 1 0.2427328
0 100 -48000000 120200 1 0.3942969
0 300 -143960000 120165 1 0.3942969
35 100 -47998775 120165 1 0.4743334
35 300 -143944775 120050 1 0.4743334
150 150 -71960000 120200 1 0.6853708
200 150 -71937500 120000 1 0.7530113
300 150 -71877500 119900 0.99917 0.8519366
500 150 -71697500 119700 0.99833 0.9512785

Table 11 – Optimal results : Young insureds with β = 3

uI uR max∆ max(q − uI) b∗ JS(b∗)
-60 100 -1580400 4260 1 0.6701769
-60 300 -4684400 4260 1 0.6701769
0 100 -1560000 4200 1 0.7530113
0 300 -4640000 4200 1 0.7530113
35 100 -1544775 4165 1 0.7926999
35 300 -4610775 4165 1 0.7926999
150 150 -2240000 4050 1 0.8867208
200 150 -2197500 4000 1 0.9139345
300 150 -2097500 3900 0.98788 0.953091
500 150 -1837500 3700 0.925 0.9852765

Table 12 – Optimal results : Old insureds with β = 0.1

uI uR max∆ max(q − uI) b∗ JS(b∗)
-60 100 -7980400 20260 1 0.6701769
-60 300 -23884400 20260 1 0.6701769
0 100 -7960000 20200 1 0.7530113
0 300 -23840000 20200 1 0.7530113
35 100 -7944775 20165 1 0.7926999
35 300 -23810775 20165 1 0.7926999
150 150 -11840000 20050 1 0.8867208
200 150 -11797500 20000 1 0.9139345
300 150 -11697500 19900 0.99 0.9509453
500 150 -11437500 19700 0.985 0.9852765

Table 13 – Optimal results : Old insureds with β = 0.5
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uI uR max∆ max(q − uI) b∗ JS(b∗)
-60 100 -15980400 40260 1 0.6701769
-60 300 -47884400 40260 1 0.6701769
0 100 -15960000 40200 1 0.7530113
0 300 -47840000 40200 1 0.7530113
35 100 -15944775 40165 1 0.7926999
35 300 -47810775 40165 1 0.7926999
150 150 -23840000 40050 1 0.8867208
200 150 -23797500 40000 1 0.9139345
300 150 -23697500 39900 0.995 0.9510893
500 150 -23437500 39700 0.9925 0.9852765

Table 14 – Optimal results : Old insureds with β = 1

uI uR max∆ max(q − uI) b∗ JS(b∗)
-60 100 -47980400 120260 1 0.6701769
-60 300 -143884400 120200 1 0.6701769
0 100 -47960000 120200 1 0.7530113
0 300 -143840000 120165 1 0.7530113
35 100 -47944775 120165 1 0.7926999
35 300 -143810775 120050 1 0.7926999
150 150 -71840000 120200 1 0.8867208
200 150 -71797500 120000 1 0.9139345
300 150 -71697500 119900 0.998334 0.9511843
500 150 -71437500 119700 0.9975 0.9852765

Table 15 – Optimal results : Old insureds with β = 3

To obtain the correct b∗ and hence the optimal quota share reinsurance contract for each
case, ∆ first has to be observed to establish whether it is less than, greater than, or equal
to zero. It is important to note that this variable itself depends on b through its inclusion of
P0. Therefore, using the fact that ∆ is an increasing function in respect to b, its maximum
is considered by replacing b by 1 in order to narrow down which of the six above stated
restrictions each specific case belongs to. Looking at Tables 8 through 15, it can be observed
that for all of the reconsidered pairs of initial wealths from part one, a maximum delta value
of less than zero is observed. Using our model, a positive delta value will only be obtained if
the initial wealth of the reinsurer is very low relative to the initial wealth of the insurer.

At first, only the initial wealth pairings that are considered in previous sections of this
paper were chosen to be further studied under this new principle, restricting results to cases
where uI < uR. This lead to an optimal retention of b∗ = 1 for all cases that fell into this
category. A possible explanation for these results can be contemplated by examining the
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significance of q. In the paper, we are only given a mathematical representation of this value
in terms of µ, β, σ2 and P0, but it is interesting to interpret it as PR(0)−P0 or the excess of
the risk premium under the variance principle over the premium paid by the insured to the
insurer in the contract. Defining this variable as so, it can be looked at as the counterpart
of p = (1 + θR)µ − P0, which is similarly defined under the expected value principle. We
note that under the variance principle, this value depends on the degree of fluctuation of
the aggregate loss. The only way of achieving an optimal quota share retention of 1 is by
having ∆ < 0 and q − uI > 40, 0000β. Therefore, ceteris paribus, as q increases, so does
the likelihood of the optimal retention ratio being 1 for this specific reinsurance contract.
Consequently, we can say that as the expected profit of the contract under this premium
principle increases, the insurer has incentive to retain all of the loss, leading to an optimal
retention ratio of 1.

Now, referring to only our specific results in the preceding eight tables, the maximized
joint survival probabilities for each case were found by applying Theorem 7 of Cai and Li
(2012) to our model as follows :

JS(b∗) =

{
F (uI + 200θA), if b∗ = 1 ;
F (200 + 80, 000β − 2

√
40, 000β(200 + 40, 000β − 200θAb∗ − uI), if b∗ 6= 1.

As a result of the joint survival probability depending solely on the insurer’s initial wealth
and P0 when b∗ = 1, it does not vary with changes to the security level β. It can be observed
that the optimized value of the function is higher for the group of older insureds, which
makes sense since they are in fact charged a higher premium. We must also consider that
pairings of initial wealths are predetermined from the work dealing with previous theories,
and this leads to strictly focusing on cases where uI < uR. After this is taken into account, we
consider a few cases where the reinsurer’s initial wealth exceeds that of its counterpart, and
these results can be seen in the last three rows of Tables 8 to 15. We can see that although ∆
remains negative, the optimal retention is no longer strictly 1. From this point onwards, let
us refer to the term 40, 0000β in points 5 and 6 above as the threshold for each case (θA, β,
uI , uR). This value is of importance because it can be observed in each of the preceding nine
tables that when uI = µ = 200, the threshold is obtained. Consequently, we can say that
when the initial wealth of the insured is at most the expected value of the aggregate loss,
then the optimal reinsurance contract has a quota share retention of 1. As the initial wealth
of the insurer increases passed the average, the optimal retention decreases. Furthermore, for
each case, looking at the results as uR stays constant at 150 and uI varies, we see that as the
insurer’s initial wealth increases, b∗ decreases and the maximized joint survival probability
increases.
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8 Numerical Application of Theorem 8

With Theorem 6 serving as its foundation, Theorem 8 focuses on the joint profitable
probability function. Cai and Li (2012) state that a quota share reinsurance under the
variance principle with b∗ = 1 or b∗ = q

βσ2 forms an optimal contract within the class of all
admissible policies, for 0 ≤ q ≤ βσ2. Looking at Tables 8 to 15, we remark that only the
former optimal quota share retention is observed, as the latter is not present in our data.
We can therefore establish that the joint profitable probability function is only maximized
for combinations of (θA, β, uI , uR) such that uI < uR.

9 Numerical Application of Theorem 9

Theorem 5 is once again used to design an optimal limited stop-loss reinsurance contract
under the expected value principle. Theorem 9 focuses on optimality through maximization
of the joint survival probability.

Under the expected value principle, the net reinsurance and insurance premiums are
defined as follows :

PR(d1, d2) = (1 + θR)E(f(x)) = 1.15

∫ d1+d2

d1

S(x) dx,

PI(d1, d2) = (1 + θI)E(X − f(x)) = (1 + θI)

(
200− PR(d1, d2)

1.15

)
.

Simplification of the sum of these two equations leads us to a representation of the
premium paid by the insured, P0. Under this specific reinsurance contract and principle, we
obtain

P0 = 200(1 + θI) + S(x)(0.15− θI)d2.

As in Theorem 1, insurer safety loadings values of 0, 0.15 and 0.4 are considered. Cal-
culations are executed using R to generate values of F (x) and hence S(x) for various loss
amounts, both above and below the average of 200. Relative to our aggregate loss model,
Theorem 9 can therefore be restated as follows :

If d1+S(x)(1+θI)d2 = uI+200(1+θI) has solutions in Γ1 or d2 = uR
1−1.15S(x)

has solutions
in Γ2, then a limited stop-loss reinsurance with retention (d∗1, d

∗
2) ∈ Γ∗1

⋃
Γ∗2 is an optimal

reinsurance in F π. Here, Γ∗1 and Γ∗2 are the respective solution sets to these two equations.
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We consider :
– Γ1 consisting of all retention vectors (d1, d2) such that 0 ≤ d1 < uI + uR + P0, d2 ≥ 0

and d1 + d2 > uI + uR + P0;
– Γ2 consisting of all retention vectors (d1, d2) such that 0 ≤ d1 < uI + uR + P0, d2 ≥ 0

and d1 + d2 ≤ uI + uR + P0.

Table 16 contains important values that will be used in further calculations. We consider
various loss amounts and the corresponding premium paid by the insured for the three cases
of θI that were previously studied.

Loss Amount (x) S(x) P0 (θI = 0) P0 (θI = 0.15) P0 (θI = 0.4)
50 0.7309879 200 + 0.10964d2 230 280− 0.18275d2

100 0.6057031 200 + 0.09086d2 230 280− 0.15143d2

200 0.396499 200 + 0.05947d2 230 280− 0.09912d2

300 0.2469887 200 + 0.03705d2 230 280− 0.06175d2

1000 0.0041651 200 + 0.00062d2 230 280− 0.00104d2

Table 16 – Loss amount, survival probability and premium paid by insured
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Looking at possible results in Γ2, we can see that the second equation of this theorem,
d2 = uR

1−1.15S(x)
, is independent of θI . Accordingly, the results of the second component of the

retention vector are as follows for all possible insurer safety loadings values :

Loss Amount (x) uR d2

100 627.494624550
200 1254.989249
300 1,882

100 329.5528839100
200 659.1057678
300 989

100 183.8146935200
200 367.6293869
300 551

100 139.6720231300
200 279.3440463
300 419

100 100.48129181000
200 200.9625836
300 301

Table 17 – Results for d2 = uR
1−1.15S(x)

16



After consideration of each θI value, there are a few observations that can be made. The
simplest case arises when dealing with θI = θR = 0.15. Here, P0 is a constant and is therefore
independent of both of the retentions, d1 and d2. Since Theorem 10 focuses on conditions
that lead to the existence of the solutions that we are looking for in Theorem 9, further
calculations that result in optimal solutions are present in the next section.

10 Numerical Application of Theorem 10

To study the necessary and sufficient conditions for the existence of solutions to either of
the two principle equations in Theorem 9 for our Compound Poisson aggregate model, we
must consider :

– αR = 1
1+θR

= 20
23
≈ 0.869565

– dR = S−1(αR) = 0
– S(0) = 0.8646647

Correspondingly, it is observed that S(0) ≤ αR. By applying Cai and Li (2012) Theorem
10 to our model, solutions to the two showcased equations respectively exist in Γ1 or Γ2 if
and only if :

1.15

∫ uI+uR+P0

0

S(x) dx ≤ uI + P0.

Once again considering S(x) as a constant having been evaluated at a particular loss
amount, this results in the following inequality :

1.15S(x)(uI + uR + P0) ≤ uI + P0. (3)

As long as the above inequality holds, an optimal limited stop-loss reinsurance contract
exists under the expected value principle. As the authors observe, it is important to note
that the optimal retentions (d∗1,d∗2) in Γ2 lead to a contract that is unfair to the insurer in
terms of the joint survival probability, while the optimal retentions in Γ1 provide fairness
for both parties. For this reason, further results will be calculated strictly based on Γ1. Note
that values for P0 regarding all studied values of d2 can be observed in Tables 25 and 37 for
θI = 0, 0.4, and it is already known that P0 is constant at 230 for θI = 0.15. Isolating uI in
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(3), we obtain

uI ≤
P0 − 1.15S(x)(uR + P0)

1.15S(x)− 1

and as a result can find the maximum insurer initial wealth needed for a possible optimal
contract under each case. We shall call this maximum value u∗I . As a result, we can now plug
in values of S(x), P0, uR and d2 into the above inequality for each of the cases considered
and observe which pairings of (uI ,uR) lead to a possible optimal contract under our model.
For d2, values of 70 and 300 are used to calculate results for this retention vector component
both above and below the average of 200. The following three tables contain these results
for each case of θI .

Loss Amount (x) d2 uI
∗ for uR = 100 uI

∗ for uR = 200 uI
∗ for uR = 300

70 319.8352402 847.3452803 1374.8553250
300 294.6180402 822.1280803 1349.63812

70 23.23769057 252.8355811 482.4334717100
300 2.339890574 231.9377811 461.5356717

70 -120.3495074 -36.53611471 47.27727793200
300 -134.0276074 -50.21421471 33.59917793

70 -162.9214778 -123.2494557 -83.57743353300
300 -171.4429778 -131.7709557 -92.09893353

70 -199.5620945 -199.0807891 -198.59948361000
300 -199.7046945 -199.2233891 -198.7420836

Table 18 – Possible optimal contract combinations for θI = 0

Loss Amount (x) uI
∗ for uR = 100 uI

∗ for uR = 200 uI
∗ for uR = 300

50 297.5100402 825.0200803 1352.53012
100 329.5528839 229.943175 987.3423907
200 -146.1866074 -62.37321471 21.44017793
300 -190.3279778 -150.6559557 -110.9839335
1000 -229.5186945 -229.0373891 -228.5560836

Table 19 – Possible optimal contract combinations for θI = 0.15
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Loss Amount (x) d2 uI
∗ for uR = 100 uI

∗ for uR = 200 uI
∗ for uR = 300

70 260.3025402 787.8125803 1315.3226250
300 302.3350402 829.8450803 1357.35512

70 -39.80200943 189.7958811 419.3937717100
300 -4.973109426 224.6247811 454.2226717

70 -189.2482074 -105.4348147 -21.62142207200
300 -166.4506074 -82.63721471 1.176177931

70 -236.0054778 -196.3334557 -156.6614335300
300 -221.8029778 -182.1309557 -142.4589335

70 -279.4458945 -278.9645891 -278.48328361000
300 -279.2066945 -278.7253891 -278.2440836

Table 20 – Possible optimal contract combinations for θI = 0.4

In Table 19, it is important to note that when θI = 0.15, u∗I is unaltered by a change
in d2. This is due to the fact that for an insurer’s safety loadings of this amount, P0 is
independent of d2. In the previous three tables, we also observe that as the insurer safety
loadings increases, the range of u∗I also increases for each combination of x and d2. This is
representative of the riskiness of each contract in the eyes of the insurer, since the assumed
risk is proportional to the safety loadings value they would choose.

We shall now bind Theorems 9 and 10 together. Consequently, it can be said that for
each respective value of θI taking d2, x, uR and a maximum insurer initial wealth of u∗I
as observed in Tables 18 to 20, one can form an optimal reinsurance contract under the
expected value principle that maximizes the joint survival probability. For each case of insurer
safety loadings, the uI used for calculation purposes is the least integer of min{u∗I} for each
respective combination of loss amount and d2. This is done in order to respect the necessary
and sufficient conditions for a solution to exists in Γ1 and also for simplicity of further
calculations. For example, with θI = 0, for a loss amount of 50 and d2 = 70, we take uI
to be 319. Let these values be hereby known as uCI . Taking the minimum value for each
combination assures that uCI < u∗I for each pairing of (x,d2) and the three different values of
uR. The following tables demonstrate these results in the form of potential optimal retention
vectors after solving for d1 = uCI + (1 + θI)(200 − S(x)d2) (by Theorem 9’s equation for
solutions in Γ1) for each case :
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Loss Amount (x) d∗2 uCI d∗1 JS(d∗1, d
∗
2)

70 319 467.830847 0.93038550
300 294 274.70363 0.943573

70 23 180.600783 0.6862653100
300 2 20.28907 0.7767392

70 -121 51.24507 0.4437157200
300 -135 -53.9497 —

70 -163 19.710791 0.3694823300
300 -172 -46.09661 —

70 -200 -0.291557 —1000
300 -200 -1.24953 —

Table 21 – Optimal results for θI = 0

Loss Amount (x) d∗2 uCI d∗1 JS(d∗1, d
∗
2)

70 297 468.1554741 0.930512650
300 297 274.8091745 0.9436072

70 -1 180.2409005 0.6857298100
300 -1 20.0324305 0.7764517

70 -147 51.0818305 0.4433457200
300 -147 -53.792155 —

70 -191 19.11740965 0.3680346300
300 -191 -46.2111015 —

70 -230 -0.33529055 —1000
300 -230 -1.4369595 —

Table 22 – Optimal results for θI = 0.15
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Loss Amount (x) d∗2 uCI d∗1 JS(d∗1, d
∗
2)

70 261 468.363186 0.930985650
300 302 274.985082 0.9436641

70 -40 180.641096 0.6863253100
300 -4 20.604698 0.7782083

70 -190 51.143098 0.4434846200
300 -167 -53.52958 —

70 -237 18.7951074 0.3672475300
300 -222 -45.735254 —

70 -280 -0.4081798 —1000
300 -280 -1.749342 —

Table 23 – Optimal results for θI = 0.4

Looking at the above tables, one can now form an optimal limited stop-loss reinsurance
contract under the expected value principle that maximizes the joint survival probability.
Note that the first four columns of each table represent results for initial reinsurer wealth of
100, 200 and 300, due to our choice of uCI . In reality though, the definition of the joint survival
probability function for a limited stop-loss reinsurance depends on uR. Analyzing the values
prompted us to realize that for all optimal combinations, JS(d∗1, d

∗
2) = F (d2+uCI +PI(d1, d2)).

This is due to each studied combination resulting in d1 ≤ uI + PI(d1, d2) and d2 ≤ uR +
PR(d1, d2). Consequently, the maximized joint survival probability no longer depends on uR.
As a result, we can say that if d2 ≤ min{uR + PR(d1, d2)} for uR = 100, 200, 300, then
the evaluated joint survival function is accurate for all considered values of initial reinsurer
wealth. In reality, this is true for all cases in Tables 21 to 23.

It is important to note that negative values for d1 imply an invalid solution and thus
no joint survival probabilities are calculated for these retention vectors. Furthermore, this
implies that no optimal solution exists for these particular values of d2. Values of the net
reinsurance and insurance premiums are therefore retracted from their respective tables,
which are located in the section regarding Theorem 12.
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11 Numerical Application of Theorem 11

As a counterpart to Theorem 9 and its focus on maximizing the joint survival probability,
Theorem 11 concentrates on maximizing the joint profitable probability. Relative to our
aggregate model, it states that :

A limited stop-loss reinsurance with retentions (d∗1,d∗2) is an optimal reinsurance in F π

and thus maximizes the joint profitable probability if any of the following three cases hold :

1. If (d∗1,d∗2) ∈ Γ̄1 and satisfies d1 + 1.15S(x)d2 = P0 (4)
2. If (d∗1,d∗2) ∈ Γ̄2 and satisfies S(x) = 1

1.15
= αR = 20

23

3. If (d∗1,d∗2) ∈ Γ̄3.

We consider :
– Γ̄1 consisting of all retention vectors (d1, d2) such that 0 ≤ d1 < P0, d2 > 0 and
d1 + d2 > P0;

– Γ̄3 consisting of all retention vectors (d1, d2) such that d1 ≥ 0 and d2 = 0.

We see in point two of three above that the equation of interest is independent of the
retentions (d1, d2). As a matter of fact though, S(x) never takes on the specific value of 20

23
.

In our model, a maximum joint survival probability of approximately 0.8647 is attained when
an aggregate loss of zero is observed. Consequently, Γ̄2 is disregarded and focus is turned to
optimal retentions in Γ̄1 or Γ̄3 only.

We shall first focus on solutions in Γ̄3, as their existence is straightforward. As mentioned
above, we will be studying retention vectors (d1, d2) where d1 ≥ 0 and d2 = 0. Taking our
equations for the net reinsurance and insurance premiums that were established in Theorem
9, we obtain :

PR(d1, 0) = 0

and
PI(d1, 0) = 200(1 + θI).

Furthermore, JP (d1, 0) = F (200(1 + θI)) for all solutions in Γ̄3. The following table displays
the maximized values of the joint profitable probability function for each of the three insurer
safety loadings considered, for all optimal retention vectors in Γ̄3 :
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θI JP (d∗1, 0)
0 0.603501

0.15 0.6544017
0.4 0.7275728

Table 24 – Optimal results of joint profitable probability for retention vector in Γ̄3

As we can see, θI and JP (d∗1, 0) are positively correlated and the highest joint profitable
probability is thus obtained at the largest value of insurer safety loadings.

12 Numerical Application of Theorem 12

As a result of the observations made in Theorem 11, the concluding theorem will focus
on only the first point established by Cai and Li (2012), which is the following :

The equation d1 + 1.15S(x)d2 = P0 (4) of Theorem 11 has solutions in Γ̄1 if and only if,

S(P0) = S (200(1 + θI) + S(x)(0.15− θI)d2) < αR =
20

23
.

Even if we had not previously chosen to exclude solutions in Γ̄2 in Theorem’s 11 analysis,
Theorem 12 would have lead to the same conclusion. Since it has already been established
that our model implies S(0) < αR and the survival function is obviously decreasing in x, we
see that this contradicts the second point of the concluding theorem in Cai and Li (2012) and
once again we disregard solutions in the domain of Γ̄2. To find which retentions are optimal,
we once again consider the cases of P0 in Table 16 to see which vectors (d1,d2) are solutions
to the above equation. By inspection, we see that as long as P0 > 0 then S(P0) < 20

23
. As

a result, for each case of θI , we can find the minimum value of d2 that satisfies the above
equation.

For θI = 0, P0 > 0 implies d2 > value less than 0 for all loss amounts, as observed in
Table 16. Since d2 ∈ Γ implies it is at least zero, a solution (d1, d2) in Γ̄1 exists as long as
d2 ≥ 0 and hence for all possible retentions (d1,d2) ∈ Γ. The following table demonstrates
values of P0 for different loss amounts and values of the second component of the retention
vector, with an insurer safety loadings of 0. These calculations are needed to find solutions
of d1 in equation (4) for each respective case.
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d2 P0 for x = 50 P0 for x = 100 P0 for x = 200 P0 for x = 300 P0 for x = 1000
70 207.6748 206.3602 204.1629 202.5935 200.0434
150 216.446 213.629 208.9205 205.5575 200.093
250 227.41 222.715 214.8675 209.2625 200.155
300 232.892 227.258 217.841 211.115 200.186

Table 25 – P0 corresponding to different values of d2 for each loss amount with θI = 0

d∗2 d∗1 PR(d∗1, d
∗
2) PI(d

∗
1, d
∗
2) JP (d∗1, d

∗
2)

70 148.83 58.8448 148.830847 0.4607698
150 90.35 126.096 90.351815 0.7223607
250 17.25 210.16 17.253025 0.8928136
300 -19.3 252.192 -19.29637 —

Table 26 – Optimal results for θI = 0 and x = 50

d∗2 d∗1 PR(d∗1, d
∗
2) PI(d

∗
1, d
∗
2) JP (d∗1, d

∗
2)

70 157.601 48.75909955 157.600783 0.6147463
150 109.145 104.4837848 109.144535 0.6272971
250 48.575 174.1396413 48.574225 0.6425375
300 18.29 208.9675695 18.28907 0.6499726

Table 27 – Optimal results for θI = 0 and x = 100

d∗2 d∗1 PR(d∗1, d
∗
2) PI(d

∗
1, d
∗
2) JP (d∗1, d

∗
2)

70 172.24472 31.9181695 172.24507 0.6108893
150 140.5244 8.3960775 140.52515 0.5041726
250 100.874 113.9934625 100.87525 0.629404
300 81.0488 136.792155 81.0503 0.6344241

Table 28 – Optimal results for θI = 0 and x = 200

d∗2 d∗1 PR(d∗1, d
∗
2) PI(d

∗
1, d
∗
2) JP (d∗1, d

∗
2)

70 182.7107 19.88259 182.710791 0.6081159
150 162.9515 42.60555 162.951695 0.6133400
250 138.2525 71.00925 138.252825 0.6197949
300 125.903 85.2111 125.90339 0.6229912

Table 29 – Optimal results for θI = 0 and x = 300
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d∗2 d∗1 PR(d∗1, d
∗
2) PI(d

∗
1, d
∗
2) JP (d∗1, d

∗
2)

70 199.7081 0.33529055 199.708443 0.6035785
150 199.3745 0.71847975 199.375235 0.6036671
250 198.9575 1.19746625 198.958725 0.6037779
300 198.749 1.4369595 198.75047 0.6038333

Table 30 – Optimal results for θI = 0 and x = 1000

Once more, the value of d1 for a loss amount of 50 and d2 = 300 is discarded on the basis
of not belonging to Γ. It can also be observed that when θI = 0, as the amount of the loss
rises, P0 converges to the expected value of the loss.

As previously seen in Table 16, for θI = 0.15, P0 = 230 > 0 for all X values and thus a
solution exists for all loss amounts and retention vectors (d1,d2) ∈ Γ. Therefore, combining
the restrictions of Γ and Γ̄1, any combination of (d1,d2) such that 0 ≤ d1 < 230, d2 > 0
and d1 + d2 > 230 forms an optimal reinsurance in F π that maximizes the joint profitable
probability. Here, the previous set of inequalities make up what we can refer to as Γ̄∗1.

d∗2 d∗1 PR(d∗1, d
∗
2) PI(d

∗
1, d
∗
2) JP (d∗1, d

∗
2)

70 171.1552 58.8448 171.1554741 0.6544017
150 103.904 126.096 103.9045873 0.6544017
250 19.84 210.16 19.84097875 0.6544017
300 -22.192 252.192 -22.1908255 —

Table 31 – Optimal results for θI = 0.15 and x = 50

d∗2 d∗1 PR(d∗1, d
∗
2) PI(d

∗
1, d
∗
2) JP (d∗1, d

∗
2)

70 181.2408 48.7590995 181.2409005 0.6466404
150 125.516 104.4837848 125.5162153 0.6376034
250 55.86 174.1396414 55.86035875 0.6260547
300 21.032 208.9675692 21.0324305 0.6201746

Table 32 – Optimal results for θI = 0.15 and x = 100
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d∗2 d∗1 PR(d∗1, d
∗
2) PI(d

∗
1, d
∗
2) JP (d∗1, d

∗
2)

70 193.2941 31.9181695 198.0818305 0.6467443
150 151.3445 68.3960775 161.6039225 0.6376034
250 98.9075 113.9934625 116.0065375 0.6260547
300 72.689 136.792155 93.207845 0.6201746

Table 33 – Optimal results for θI = 0.15 and x = 200

d∗2 d∗1 PR(d∗1, d
∗
2) PI(d

∗
1, d
∗
2) JP (d∗1, d

∗
2)

70 210.11741 19.88259 210.1174097 0.6544017
150 187.39445 42.60555 187.3944493 0.6544017
250 158.99075 71.00925 158.9907488 0.6544017
300 144.7889 85.2111 144.7888985 0.6544017

Table 34 – Optimal results for θI = 0.15 and x = 300

d∗2 d∗1 PR(d∗1, d
∗
2) PI(d

∗
1, d
∗
2) JP (d∗1, d

∗
2)

70 229.6647095 0.33529055 229.6647095 0.6544017
150 229.2815203 0.71847975 229.2815203 0.6544017
250 228.8025338 1.19746625 228.8025338 0.6544017
300 228.5630405 1.4369595 228.5630405 0.6544017

Table 35 – Optimal results for θ = 0.15 and x = 1000
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The first observation to be made is the negative value of d1 when d2 = 300 for a loss
amount of 50. Since (-22.192,300) does not belong in Γ, this solution is discarded. The
others form examples of possible optimal retention vectors that maximize the joint profitable
probability of a limited stop-loss reinsurance under the expected value principle. In general,
by taking any d2 ≥ 0, one can find d1 = P0 − 1.15S(x)d2. If the resulting retention vector is
an element of Γ, then an optimal reinsurance can be designed when the insurer and reinsurer
safety loadings are of equal value. It is important to note that for Table 34, d∗1 and PI(d∗1, d∗2)
are equivalent to four decimal places and thus are considered as equal. Consequently, these
combinations are assigned the joint profitable probability definition of F (d∗1 + PR(d∗1, d

∗
2)).

Moreover, for θI = 0.4, results proving existence of solutions in Γ̄1 to the equation in
question are not as straightforward. For each loss amount, P0 can be represented as 280−cd2

(with c > 0) and thus a solution in Γ̄1 exists as long as d2 <
280
c
, assuring that P0 > 0. Let us

call this maximum value d′2, and the following table demonstrates this respective retention
vector component for different loss amounts under an insurer’s safety loadings of 0.4 :

Loss amount (x) d′2
50 1532.148
100 1849.039
200 2824.859
300 4534.413
1000 269230.769

Table 36 – Necessary and sufficient conditions for existence of solutions to (4) in Γ̄1 with
θI = 0.4
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Next, we find values of P0 for each case that will eventually be used in the calculations
for d1. The following are the results :

d2 P0 for x = 50 P0 for x = 100 P0 for x = 200 P0 for x = 300 P0 for x = 1000
70 267.2075 269.3999 273.0616 275.6775 279.9272
150 252.5875 257.2855 265.132 270.7375 279.844
250 234.3125 242.1425 255.22 264.5625 279.74
300 225.175 234.571 250.264 261.475 279.688
1500 5.875 52.855 131.32 187.375 278.44
1600 -12.4 37.712 121.408 181.2 278.336
1800 -48.95 7.426 101.584 168.85 278.128
1900 -67.225 -7.717 91.672 162.675 278.024
2800 -231.7 -144.004 2.464 107.1 277.088
2900 -249.975 -159.147 -7.448 100.925 276.984
4500 -542.375 -401.435 -166.04 2.125 275.32
4600 -560.65 -416.578 -175.952 -4.05 275.216
269000 -48879.75 -40454.67 -26383.28 -16330.75 0.24
269500 -48971.125 -40530.385 -26432.84 -16361.625 -0.28

Table 37 – P0 corresponding to different values of d2 for each loss amount with θI = 0.4

It can be observed that Table 37 thoroughly supports Table 36. We consider values of
d2 that were studied for the two previous cases, along with ones slightly below and above
the respective d′2 for each loss amount. For each x value, we can see that as d2 −→ d′2, the
value of P0 remains strictly positive. However, we observe that when d2 > d′2, the premium
paid by the insured takes on a negative value. Since it is established that P0 must be strictly
positive as a consequence of Theorem 12, a negative value represents non-existence of a
solution to equation (4) in Γ̄1 for θI = 0.4. Consequently, we can now say that with an
insurer’s safety loadings of 0.4, as long as d1 ≥ 0 and d2 < d′2, solutions to equation (4) in
Γ̄1 exist and lead to the maximization of the joint profitable probability. In Table 38 that
follows, whenever (d1,d2) respect these restrictions, the retention vector is optimal. In fact,
this implies that all pairings in this table such that d1 > 0 are valid optimal solutions. From
Table 38, we can thus retract optimal retention vectors and evaluate the maximized joint
profitable probability function for all results.
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d2 d1 for x = 50 d1 for x = 100 d1 for x = 200 d1 for x = 300 d1 for x = 1000
70 208.3627 220.6379 241.14342 255.79491 279.591907
150 126.4915 152.7955 196.7359 228.13195 279.125515
250 24.1525 67.9925 141.2265 193.55325 278.542525
300 -27.017 25.591 113.4718 176.2639 278.25103

Table 38 – (d∗1,d∗2) that maximize joint profitable probability for θI = 0.4

d∗2 d∗1 PR(d∗1, d
∗
2) PI(d

∗
1, d
∗
2) JP (d∗1, d

∗
2)

70 208.3627 58.8448 208.3631858 0.7101857
150 126.4915 126.096 126.492541 0.6892088
250 24.1525 210.16 24.154235 0.6612766
300 -27.017 252.192 -27.014918 —

Table 39 – Optimal results for θI = 0.4 and x = 50

d∗2 d∗1 PR(d∗1, d
∗
2) PI(d

∗
1, d
∗
2) JP (d∗1, d

∗
2)

70 220.6379 48.75909955 220.6410962 0.7132248
150 152.7955 104.4837848 152.802349 0.6960713
250 67.9925 174.1396413 68.003915 0.6734649
300 25.591 208.9675695 25.604698 0.6616656

Table 40 – Optimal results for θI = 0.4 and x = 100

d∗2 d∗1 PR(d∗1, d
∗
2) PI(d

∗
1, d
∗
2) JP (d∗1, d

∗
2)

70 241.14342 31.9181695 241.143098 0.6719429
150 196.7359 68.3960775 196.73521 0.5976325
250 141.2265 113.9934625 141.22535 0.4878221
300 113.4718 136.792155 113.47042 0.4259241

Table 41 – Optimal results for θI = 0.4 and x = 200

d∗2 d∗1 PR(d∗1, d
∗
2) PI(d

∗
1, d
∗
2) JP (d∗1, d

∗
2)

70 255.79491 19.88259 255.7951074 0.7217971
150 228.13195 42.60555 228.132373 0.7150725
250 193.55325 71.00925 193.553955 0.706479
300 176.2639 85.2111 176.264746 0.7021031

Table 42 – Optimal results for θI = 0.4 and x = 300
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d∗2 d∗1 PR(d∗1, d
∗
2) PI(d

∗
1, d
∗
2) JP (d∗1, d

∗
2)

70 279.591907 0.33529055 279.5918202 0.7270317
150 279.125515 0.71847975 279.125329 0.7264122
250 278.542525 1.19746625 278.542215 0.7256361
300 278.25103 1.4369595 278.250658 0.7252474

Table 43 – Optimal results for θ = 0.4 and x = 1000

13 Concluding Remarks

The procedures established in order to find optimal solutions in the last few sections are
undoubtedly not the only possibilities. For example, in Theorem 10, results were based on a
maximum value of initial insurer wealth found using equation (3). By changing this step and
focusing on a different variable—say, P0—we would have preceded differently and obtained
a different set of optimal results under this new criteria. Aspects like this make a paper like
Cai and Li (2012) interesting to work with, by providing us with ideas and theorems that
are extremely well thought out but also flexible and open to interpretation on behalf of the
reader.
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