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ABSTRACT

Pricing Catastrophic Mortality Bonds Using State Space Models

Zhifeng Zhang

Catastrophic mortality bonds are designed to hedge against the mortality risks.

The payoff at maturity depends on the realized mortality index over the life of

the bond, therefore modeling the mortality index is the main concern in our study.

Since mortality shocks are detected using outlier analysis, non-Gaussian state space

models with a fat-tailed error term are proposed to fit the mortality index and to

handle shocks. By comparing several state space models with different fat-tailed

distributions, an ARIMA process for the baseline mortality and the t-distribution for

capturing mortality shocks are chosen. We obtain the price of the mortality bond

using the proposed model and estimate the market price of risk. It appears that

the market price of risk is lower than the ones obtained in the literature, which is

consistent with the industrial empirical results from Wang (2004). This implies that

our model is capable of handling mortality risks.
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Introduction

Catastrophic mortality bonds are designed to hedge against the mortality shock,

which is a sudden increase in mortality rates over a short period. Its payoff at maturity

is based on a realized mortality index, which could be the weighted average of annual

mortality rates among different countries and ages. In the case of the Swiss Re Bond,

for instance, the payoff would be less than the face value if the mortality rate raises

above 130% of the reference mortality index. As a result, whether there would be

catastrophic mortality events in the future or not affects the payoff and thus the

price of catastrophic mortality bonds. Calibrating a mortality model and forecasting

possible catastrophic mortality rates become the main concern of this thesis.

Mortality rates are affected by various factors. On the one hand, mortality rates

were decreasing during recent decades because of improvements in medical care,

hygienic conditions, the establishment of global health systems, etc. On the other

hand, the possibility of catastrophic mortality rates cannot be ignored because of

higher percentage of populations at older ages, increased urban population density,

and the increased human mobility (see Huynh et al., 2012). During the past one

hundred years, the mortality index experienced an extreme event in 1918 caused by

the Spanish flu pandemic and several relatively smaller shocks. Naturally, how to

model shocks that appeared in the past and that could also appear in the future
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becomes our concern. Several mortality rate models have been introduced in the

literature.

Lee and Carter (1992) develop a mortality model that includes mortality changes

in terms of age and time. They forecast this mortality index and point out that using

only the recent data decreases both the average and width of confidence intervals,

since the volatile period (the earlier period) is not taken into account. This paper

provides a fundamental idea to study mortality. Girosi and King (2007) provide good

insights and complimentary comments on this model. To fully consider mortality

shocks, a model compatible with multiple shocks is needed.

Lin and Cox (2008) model the mortality rates using a general Weiner process

based on the difference of the logarithmic mortality rates, which guarantees that

the mortality rates are always positive. They introduce another log-normal variable

to represent the scale of possible shocks and a Bernoulli random variable for shock

occurrences. This is an improvement for mortality models by introducing a stochastic

process to model shocks.

Milidonis et al. (2011) propose a two-regime switching model to fit the mortality

index. The scale of shocks is also independent of time but the occurrence of shocks

depends on the transition probability matrix. Based on their results, the estimated

mean values of two regimes are very closed and the drift level of volatile regime still

has a decreasing tendency. On the other hand, the variance of volatile regime is

estimated to be much higher than stable regime. This implies that the shocks are

modeled through volatility parameters instead of drift parameters.

There are other different ways to model mortality index. For example, Deng

et al. (2012) apply a Brownian motion to model baseline mortality rates. In terms

of modeling shocks, they use a mixture distribution to measure the scale of shocks
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(different parameters for positive shocks and negative shocks) and use a Poisson

process to model the occurrence of shocks. There are two different assumptions in

this model. First, this model differentiates positive shocks and negative shocks by

using different parameters. Second, it allows more than one shock each year following

a Poisson process. The paper shows that the positive shocks have larger severity but

fewer occurrences.

We can use different approaches to model baseline mortality rates, the shock

effects, and the occurrence of shocks. For instance, Lin and Cox (2008) consider that

mortality shocks are transient and independent of time while Milidonis et al. (2011)

allows the possibility of dependent mortality shocks. In this thesis, we propose a

state space model (SSM) to fit the mortality index. Basically, it is a dynamic system

including an observation and state equations, with the advantage, as in other time

series models, that the fitted values can be compared with historical data. We found

that the linear form of SSM is flexible enough to model the baseline mortality.1 One of

the advantages is that we can model the baseline mortality rates with latent variables

through the state equation. Another advantage is that shocks can be modeled with

an additive term in the observation equation. Unlike Lin and Cox (2008), there is no

trigger (discrete regimes) to indicate the occurrence of shocks. Instead, a fat-tailed

distribution to measure the shock effects is adopted. Whenever there is a shock, this

distribution should be able to capture the extreme values without conditional on the

trigger of occurrence. The diagnostic tests will fully explain the reasonability of our

model setting.

To model mortality shocks reasonably, non-Gaussian state space models could

1In terms of modeling using the non-linear form, refer to Durbin and Koopman (2001), Jungbacker

and Koopman (2007), and a non-linear state space model application Ward et al. (2007).
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be applied. The Gaussian SSMs can be represented by matrices and be estimated

using the Kalman filter and smoother (Durbin and Koopman, 2001). However,

it cannot deal with most fat-tailed distributions. In terms of non-Gaussian state

space models, Kitagawa (1987) proposes a numerical algorithm which approximates

the integrals derived from conditional distributions. This algorithm is not practical

because of its computationally inefficiency. A more practical algorithm using Monte

Carlo simulation was proposed by Kitagawa (1996).

Durbin and Koopman (1997) propose another algorithm to deal with non-Gaussian

SSMs, which is based on the Kalman filter and smoother and the importance sampling

technique. An efficient and simple simulation smoother has been proposed by Durbin

and Koopman (2002). According to their algorithm, variance matrices do not need

to be calculated, which reduces computational time. Another efficient simulation

smoother is introduced by De Jong and Shephard (1995). Durbin and Koopman

(2002) compare these two algorithms in detail.

Finally we will price the Swiss Re mortality bond issued in 2003. Mortality bonds

are securities used to hedge the catastrophic mortality events. The discounted cash

flow mainly depends on the realized mortality rates, which will be calculated from our

state space model. Given that the actuarial present value of the bond will not match

its actual face value, Lin and Cox (2008) explain this discrepancy by introducing the

mortality market price of risk, which can be calculated using the Wang Transform

(Wang, 2002). Finally, we will compare our market price of risk with other models.
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Chapter 1

Data and Shock Detection

In this chapter, we construct the mortality index that will be used in our analysis

of the Swiss Re mortality bond. As discussed previously, we want to identify the

shocks (catastrophic mortality rates) to remove them in order to construct baseline

mortality rates (defined as moratlity rates without shock effects; see Huynh et al.,

2012). Statistically, shocks can be regarded as outliers which are extreme values that

the standard normal error cannot handle. The outlier detection technique proposed by

Chen and Liu (1993) and Cryer and Chan (2008) can be used to identify the presence

of shocks where the baseline mortality rates are modeled using ARIMA models. The

main goals are to confirm the existence of shocks and show that ARIMA models can

fit baseline mortality rates.

1.1 Data

We construct the mortality index used in Swiss Re bond discussed by Krutov (2010).

The index is a weighted average of mortality rates among genders, five countries

(including USA, England, France, Italy and Switzerland) and twelve age intervals.
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The weighted average mortality index at a given year can be calculated as follow:

qt =
5∑

j=1

Cj

12∑
i=1

Ai(G
mqmijt +Gfqfijt), t = 1900, 1901, · · · , 2008,

where Ai is the weight for age interval i (shown in Table 1.1), Cj is the weight for

country j (shown in Table 1.2), Gm = 65% and Gf = 35% represent the weights of

male and female respectively, and qmijt and qfijt represent the mortality rates of male

and female for age interval i, country j, and year t. Therefore, we use mortality rate

tables for these five countries between age 20 to 79 from year 1900 to 2008. The

mortality tables for USA between 1900-1932 are taken from the Human Life Table

Database1. The mortality tables for the other four countries and USA, between 1933-

2008, are taken from the Human Mortality Database2. Figure 1.1 shows the annual

mortality rates from 1900-2008.

Table 1.1: Weights of age intervals

Age Interval 20-24 25-29 30-34 35-39 40-44 45-49

Ai 1% 5% 12.5% 20% 20% 16%

Age Interval 50-54 55-59 60-64 65-69 70-74 75-79

Ai 12% 7% 3% 2% 1% 0.5%

Table 1.2: Weights of countries

Country U.S. U.K. France Switzerland Italy

Cj 70% 15% 7.5% 5% 2.5%

Several observations can be drawn from Figure 1.1. First, there is a general

decreasing tendency for mortality rates from 1900 - 2008 which could be explained

1http://www.lifetable.de/.
2http://www.mortality.org/.
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Figure 1.1: Mortality rate qt from year 1900 - 2008

by medical improvement, health monitoring systems, improved living environments,

etc. Second, the mortality rates before 1945 had larger volatilities than mortality

rates after 1945. Two possible reasons for this gap are the improvement of data

collection techniques and reduction of the number of wars in the reference countries.

In addition, the slope of the decreasing tendency before 1945 is steeper than after 1945;

in other words, the mortality index decreases at a slower rate after 1945. Mortality

rates may have a structural change between these two periods (see Li et al. 2011

for structural change detection). Finally, there was a big shock in 1918, which was

caused by the Spanish flu epidemic (Morens et al., 2010). The shock was transient

and it disappeared right after that year. Actually, there were more shocks during the

past one hundred years which were also transient, such as positive shocks caused by

World War II in 1940 (Li and Chan, 2005).

We consider to apply the Logit transform on qt so that the variation gap can be
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reduced and negative qt values would be avoided. Let

yt = ln(
100qt
1− qt

), (1.1)

where qt is the mortality index from Figure 1.1. The transformed mortality index

is shown in Figure 1.2. The differences between qt and yt are mainly due to the

convexity of the Logit transformation function.
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Figure 1.2: Logit transformed mortality rate yt, years 1900 - 2008

The transformed data yt includes some modifications compared to qt, which are

better for modeling. First, the difference in slopes for yt is not as obvious as for qt,

so the general decreasing tendency becomes more linear. It would be easier to apply

a simple regression model. In addition, while the shock in 1918 is still obvious, it is

much smaller in scale. Hence the transformed mortality index possesses a more stable

simulation result which would help fit a standard ARIMA model.

Unless specified, we will use these transformed mortality rates to construct the

mortality models and conduct the analysis.
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1.2 Shock Detection

In this section, we investigate whether or not it is reasonable to apply an ARIMA

model to fit the baseline mortality index. To achieve this, we first need to remove the

shocks. Statistically, mortality shocks can be treated as outliers which are regarded as

extreme values that standard time series model cannot handle; in other words, they

are extreme values that violate the normal error assumption. The outlier detection

technique from Cryer and Chan (2008) and Chen and Liu (1993) will be applied to

detect shocks and specify the ARIMA model for baseline mortality rates.

Before fitting an ARIMA model to the baseline mortality rates, it would be easier

to handle if this baseline process has a constant mean. Based on Figure 1.2, a simple

linear regression model is applied to yt to remove the decreasing tendency. The fitted

linear regression model is yt = −0.01388t + 2.1285, t = 1, 2, · · · , n. The t-test for

the slope parameter is not rejected and the R-square statistic is 0.9772, which is also

significant3. The fitted values are shown in Figure 1.34, which also shows the graph

of residuals for this regression model. The residuals, as expected, fluctuate around

zero but include shocks.

As shown in Figure 1.3, the residuals include a huge shock in year 1918 as well as

some small shocks. Cryer and Chan (2008) introduce an approach to detect outliers

3Using the R package: stats
4We compared using the original data qt and the transformed data yt. When qt is used, a second-

order polynomial model fits better, indicating that the decreasing tendency behaves as a curve more

than a straight line (with R-square statistic 0.95 > 0.93). The shape of this second-order polynomial

graph also verifies our previous observation, that the slope of the decreasing tendency for mortality

rate is steeper before 1942. While we realize that the second-order polynomial regression fits yt well,

it would be more complicated than a linear model. On the other hand, if yt is used, the fitted model

would be simpler and has an even larger R-square statistic of 0.9772.
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Figure 1.3: Univariate linear regression model: fitted value (left) and residuals (right)

and Chen and Liu (1993) provide an algorithm to get an outlier-free ARIMA model

after removing their impacts. Li and Chan (2005, 2007) apply these techniques

to study mortality rates in European and North American countries, respectively.

Denote the residuals as rt, which are our observations yt after removing the decreasing

tendency. Following Cryer and Chan (2008), two types of outliers are introduced:

additive outliers (AO) and innovative outliers (IO).

Additive outliers behave as a one-time shock on rt, that is

rt =

⎧⎪⎨
⎪⎩

r0t + δAO
t if AO occurs,

r0t otherwise,

where r0t is the baseline process for the residuals and δAO
t is the scale of the AO at

time t.

Innovative outliers, on the other hand, are one-time shocks on εt, which is the

10



error term of rt. Let δ
IO
t denote the scale of this IO at time t, hence

εt =

⎧⎪⎨
⎪⎩

ε0t + δIOt if IO occurs,

ε0t otherwise,

where ε0t is the error term of r0t . The error term ε0t should be independent and have

an identical distribution (i.i.d).

While AO behaves as the transient effect, IO has lasting effects on r0t . For a

stationary process, this effect would decay as time proceeds. Shocks in the mortality

rates are probably additive outliers since these shocks are expected to be transient,

such as a pandemic flu. Our main goal is to confirm the existence of shocks as well as

the reasonability of using an ARIMA model to fit the baseline process. The difference

between AO and IO is not as important as the fact that they are both outliers.

Now we briefly introduce the hypothesis tests for AO and IO (see Cryer and Chan,

2008). Consider the AR(∞) representation for the baseline process r0t ,

ε0t = r0t − π1r
0
t−1 − π2r

0
t−2 − · · · .

Since we have observations rt instead of r0t , the above model is replaced by

εt = rt − π1rt−1 − π2rt−2 − · · · .

As mentioned above, while ε0t and r0t do not include shocks, εt and rt may include

shocks. Let λIO
t and λAO

t be the statistics for IO and AO at time t, respectively. λIO
t

is the standardized innovative outlier effect statistic and it is defined as

λIO
t =

εt
σ
, (1.2)

where σ is the standard deviation of δIOt . Similarly, λAO
t is the standardized additive

outlier effect statistic defined as

λAO
t =

−ρ2
∑n

k=t πk−trk
ρσ

, (1.3)

11



where ρ2 = (
∑n

k=t π
2
k−t)

−1, π0 = −1, and ρσ is the standard deviation of δAO
t . In

both cases, σ can be robustly estimated by the mean absolute residual times
√

π
2

(Cryer and Chan, 2008). AO or IO would be detected as outliers whenever these two

statistics are greater than the upper percentile with a certain significant level α. If

λIO
T is significant at time T , the scale of this IO is δIOT = σλIO

T ; if λAO
T is significant,

the scale of this AO is δAO
T = ρσλAO

t . If λIO
t and λAO

t are both significant, choose the

larger one and set rt to be the corresponding type of outlier. For example, if both

IOs and AOs are detected at time T and λAO
T ≥ λIO

T , then rT is set to be AO, and

vice versa.

Basically, we want to find the best ARIMA(p, d, q) model where p is the order

of AR process, q is the order of MA process, and d is the order of differentiation.

In practice, a good model will not have large values for p, d, and q. While more

parameters lead to a higher log-likelihood value, the AIC and BIC criteria are used

to avoid parameter redundancy. They are given by

AIC = −2 lnL+ 2k and BIC = −2 lnL+ k lnn, (1.4)

where L is the maximized likelihood, k is the number of parameters, and n is the

sample size.

Li and Chan (2005) introduce the following algorithm to find the outliers and the

corresponding underlying model.

1. Initially, set r0t = rt. Choose the best model to determine certain p, d, and q

without recognizing any outlier from a range of ARIMA models. The choice

can be according to either the AIC or BIC criteria.

2. Apply the outlier detection test to calculate λIO
t and λAO

t using (1.2) and (1.3)
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for all t.5 AOs or IOs would be detected as outliers whenever these two statistics

are greater than the upper percentile with a certain significant level α. If there

is at least one detected outlier, determine the largest |λt| and set it to be the

corresponding type of outlier, then proceed to the next step. Otherwise go to

Step 4.

3. If the new outlier at time T is an AO, then r0T = rT − δAO
T at time T . Use the

updated r0t to estimate parameters and calculate the AIC value. Similarly, if

the new outlier is an IO, then ε0T = εT − δIOT at time T . With the updated r0t

and ε0t , fit the model with the same p, d, and q. Go to Step 2.

4. Similarly to Step 1, choose the best model to determine the updated p, d, and q

with the updated r0t , according to the AIC or BIC criteria. The chosen criteria

should be consistent with Step 1. If the updated parameters p, d and q remain

the same, it means that the baseline ARIMA model has converged. Otherwise,

go back to Step 2 to start a new iteration with the updated parameters.

As an illustration, we perform the outlier detection algorithm for the mortality

index in terms of AIC criteria. The outlier detection process using the BIC criterion

could be performed similarly.

1. Define rt as residuals in Figure 1.3. Set r0t = rt and α = 5%.

2. Initially, we selected models from a range of ARIMA models with maximal

order6 pmax = 5, dmax = 2 and qmax = 5. With no identified outliers and

initial yt (the residuals in Figure 1.3), the best model was ARIMA(3,0,1) with

AIC = −336.95.

5Using the R package: TSA.
6The maximum bound can be adjusted if the optimization result reaches this bound.
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3. Then we detected the outliers with this model, showing that there are possible

AOs and IOs both at time 1918 and 1919, with λAO
1918 = 12.02, λAO

1919 = −4.12,

λIO
1918 = 10.1, and λIO

1919 = −7.21. We chose the largest |λ|, therefore λAO
T = 12.02

at time 1918 was selected. That is to say, r1918 is identified as an AO. We

calculated δAO
1918 = 0.3219, then updated the data r1918 to remove the outlier

effect: r01918 = r1918 − δAO
1918. With this updated data and the ARIMA(3,0,1)

model, the resulting AIC is −460.92. As we can see, the AIC value is improved

significantly after identifying the AO at t = 1918.

4. We performed again the outlier detection in Step 3. This time, r1921 and r1940

were detected as possible AOs. We chose the largest |λT | which was λ1921 =

|−4.359| at t = 1921. With δAO
1921 = −0.0738, we then updated the data r1921 to

remove the outlier effect: r01921 = r1921−δAO
1921. Without the outliers in year 1918

and 1921, the ARIMA(3,0,1) model was improved with an AIC = −478.52.

5. We repeated Step 3. This time, r1940 was detected as a possible AO. No IOs

were detected. Since there is only one possible outlier, we chose it to be the AO.

We calculated δAO
1940 = 0.055, then updated the data r1940 to remove the outlier

effect: r01940 = r1940 − δAO
1940. Without the outliers in years 1918, 1921 and 1940,

the ARIMA(3,0,1) model was improved, with an AIC = −491.48.

6. We again repeated Step 3. r1907 was detected as a possible AO and r1908

was detected as a possible IO. The largest |λT | was |λAO
1907| = 3.8929. With

δAO
1907 = 0.05465, we updated the data r1907 to remove the outlier effect:

r01907 = r1907 − δAO
1907. Without the outliers in years 1918, 1921, 1940 and 1907,

the ARIMA(3,0,1) model improved to an AIC = −505.98.

7. No further outliers were detected in repeating Step 3.
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8. Then we re-selected models from a range of ARIMA models by minimizing

the AIC. The fitted model changed to be ARIMA(1,0,4) with an improved

AIC = −514.22.

9. We again repeated Step 3. No AOs were detected. r1946 was detected as the

only possible IO with |λIO
1946| = −3.582 and δIO1946 = −0.07327. Updating r0t ,

we fitted the ARIMA(1,0,4) model taking the IO into account. The model was

improved with the AIC = −523.83.

10. Step 3 did not detect any further AO or IO.

11. With the outlier-free r0t (four AOs and one IO), we re-selected from a range of

ARIMA models using the AIC criterion. The best model was ARIMA(3,0,3)

with AIC = −525.59 which improved that of the ARIMA(1,0,4).

12. Step 3 did not detect any further AO or IO.

13. We re-selected the model once again and the best model converged at

ARIMA(3,0,3). This terminated the outlier detection procedure. Therefore,

the final model is ARIMA(3, 0, 3) + AO(1918, 1921, 1940, 1907) + IO(1946).

We verify this final model by comparing the ACF, PACF graphs, and QQ-

plots for the residuals of the ARIMA(3,0,3) model, after removal of the outliers

and the residuals for the ARIMA(3,0,1) model before the outlier detection. As

shown in Figure 1.4, the residuals do not follow a normal distribution and there are

autocorrelations and partial correlations before the outlier detection. Therefore, after

the outlier detection, the baseline model follows an ARIMA model with i.i.d normal

errors. That is to say, the model ARIMA(3, 0, 3) + AO(1918, 1921, 1940, 1907) +
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IO(1946) not only successfully detects outliers, but also indicates that an ARIMA

model can be fitted to the baseline mortality rates.
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Figure 1.4: QQ-plot (upper), ACF (middle) and PACF (lower) of residuals for

ARIMA(3,0,1) and ARIMA(3,0,3) + AO(1918,1921,1940,1907) + IO(1946)

Similarly, another model was determined using the BIC criterion instead of the

AIC, following the above steps. The best model according to the BIC criterion is

ARIMA(2, 0, 0)+AO(1918, 1921, 1940, 1907)+IO(1946) with a BIC = −506.49. As

we can see, the BIC imposes a heavier penalty than AIC on parameter redundancy.

Similarly, Figure 1.5 compares the residuals of this ARIMA(2,0,0) model and the

16



ARIMA(1,0,0) model before outlier detection. Again, the model chosen after outlier

detection constitutes an improved baseline ARIMA model.
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Figure 1.5: QQ-plot (upper), ACF (middle) and PACF (lower) of residuals for

ARIMA(1,0,0) and ARIMA(2,0,0) + AO(1918,1921,1940,1907) + IO(1946)

Moreover, the Shapiro-Wilk normality test indicates that the p-values for the

above two models after outlier detection, chosen with the AIC and BIC criteria are

0.8371 and 0.2377. While our two models pass the normality test, the model residuals

by AIC are closer to a normal distribution.

Here we provide another reason to use transformed yt values instead of qt. This
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data transformation can reduce the variation gap. If qt is used instead, we would not

get normal residuals here even if the same outlier detection procedure was applied,

because larger volatility would lead to fatter tails than normal.

The above diagnostic tests indicate that both of these two outlier detection

models provide a good fit. Although they indicate different baseline ARIMA models,

ARIMA(3,0,3) and ARIMA(2,0,0), due to the different model selection criteria, they

both detect the same five outliers, i.e. AO(1918,1921,1940,1907) and IO(1946). We

summarize the detected shock information in Table 1.3. The shock effects are similar

between the two criteria. We also find that all five shocks have similar shock effects

ranging from 0.05 to 0.08 (in terms of absolute values), except for the extremal positive

shock in 1918, which is about five times of other shock effects and was caused by a

devastating pandemic (see Morens et al., 2010). Figure 1.6 visually points out these

five outliers on the plot of qt. Looking back at the history, some reasons could explain

these shocks. For instance, 1907 was a peak year in European immigration to the

U.S. and the positive shock in 1940 may be caused by World War II, while medical

improvement and better protection of health led to mortality decreases in 1946 (Li

and Chan, 2005).

Table 1.3: Detected shocks with AIC and BIC criterion

Year T 1907 1918 1921 1940 1946

AO/IO AO AO AO AO IO

Positive/Negative Shocks + + − + −

Shock Effects δ
AO/IO
T with AIC 0.05465 0.3219 −0.0738 0.055 −0.07327

Shock Effects δ
AO/IO
T with BIC 0.05872 0.356 −0.07922 0.0684 −0.08466
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Figure 1.6: Plot of qt with five detected outliers

1.3 Remarks

We compared the results between the AIC and BIC criteria. On the one hand, these

two models detect the same outlier occurrences, though the scale and the detection

order of outliers are not the same. On the other hand, the baseline ARIMA models

obtained by these two criteria are different. This implies that the baseline model

searched by the outlier detection procedure is not unique; accordingly, the outlier

effect and detection order may not be unique either. It depends on the model selection

criteria that we use. However, good models by certain criteria should detect similar

outliers and finally pass all the diagnostic tests.

As mentioned earlier in this section, the outlier detection process described here

is a simplified version. Chen and Liu (1993) introduce four types of outliers and

also consider the joint effect for multiple outliers using multiple regression model. In
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Chen and Liu’s model, the baseline process may be more consistent among different

model selection criteria, because differences of outlier effects and the detection order

would be reduced if the joint effect is considered. Li and Chan (2005) study the

mortality rates of the United Kingdom and Scandinavian countries. A similar study

in North America is introduced in Li and Chan (2007). While the huge shock in 1918

is detected in both of these two papers, other detected shocks are somehow different

mainly because the data on which their results are based is different.

In conclusion, we show the existence of shocks and the feasibility in using an

ARIMA process to model the baseline mortality rate, where two models are provided

to remove both the decreasing tendency and outlier effects. This important conclusion

is used in our mortality index analysis in Chapter 3.
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Chapter 2

State Space Models

This chapter introduces the state space model (SSM) which is a branch of time series

analysis. The state space model is a system of equations that includes an observation

equation as well as a state equation and they each contain a stochastic error term.

The SSM can be constructed using linear or non-linear equations. On the one hand,

the non-linear state space model is developed due to the improvement of simulation

techniques. On the other hand, the linear state space model is still being used more

often since they are easier to program and interpret. We will focus on linear SSMs

in our study. Filtering and smoothing are required because of the existence of latent

variables and two error terms. An intuitive derivation of filtering and smoothing

techniques using conditional distributions is introduced by Kitagawa (1987). With

Gaussian errors, the efficient Kalman filter and smoother (see Kalman, 1960) can be

used. Simulation techniques, such as importance sampling, are required in the case

of non-Gaussian SSMs. Durbin and Koopman (1997) propose an algorithm to deal

with non-Gaussian SSMs. It is based on the Kalman filter and smoother as well as

the importance sampling technique. The simulation smoother is required to calculate

the likelihood function and expectations (see Section 2.5 for definitions). Durbin and
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Koopman (2002) propose a simple and efficient algorithm for simulation smoother.

Finally, diagnostic tests will be discussed.

2.1 The Linear State Space Model

This section introduces the linear state space model, which is given by

yt = Zt xt + εt, (2.1)

xt+1 = Tt xt +Rt ηt, (2.2)

where (2.1) is called the observation equation, (2.2) the state equation, yt are the

observations, xt is the latent variable vector, and εt and ηt are error terms. Table 2.1

summarizes the dimensionality of variables in (2.1) and (2.2) given that yt is 1×1. The

state equation (2.2) connects two consecutive latent variables xt and the observation

equation (2.1) links the latent variables xt with the observations yt. The dimension

of xt accounts for the complexity of the state space model because it represents the

inner connection of the equations. While Zt xt and Tt xt represent the deterministic

parts of the system, the error terms represent the stochastic part.

Table 2.1: The dimension of variables in linear SSM

Variable yt xt Zt Tt Rt εt ηt

Dimensions 1× 1 m× 1 1×m m×m m× r 1× 1 r × 1
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2.2 Filtering and Smoothing: the Conditional

Approach

The observation and state equations contain deterministic and stochastic parts. At

each time t, the conditional probability density function (pdf) could be calculated

given the distribution of εt and ηt. However, xt is not observable, so quantities like

E(xt+1|xt) and E(yt|xt) cannot be calculated. In fact, we are only able to calculate

expectations that are conditional on Yt, such as E(yt+1|Yt), E(xt+1|Yt), and E(xt|Yn),

where Yt = {y1, y2, · · · , yt}. To obtain these probabilities, filtering and smoothing are

necessary.

This section briefly shows the work by Kitagawa (1987), which provides a

straightforward way to understand SSM filtering and smoothing. To simplify the

problem, we suppose that

yt = Z xt + εt,

xt+1 = T xt +Rηt,

(2.3)

where matrices Z, T , and R are time invariant, yt and xt are both one-dimensional.

2.2.1 Filtering

Filtering is a forward process that obtains the probability density function p(xt|Yt)

for t = 0, 1, · · · , n. This process starts from p(x0), which is the initial distribution

of x0, to p(xn|Yn), which is the last step of filtering. Figure 2.1 shows the filtering

process.

Suppose that we have done the filtering process up to time t − 1, saying that

p(xt−1|Yt−1) is known. As shown in Figure 2.1, the conditional pdf of xt|Yt−1 needs
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p(x0) · · · p(xt−1|Yt−1) p(xt|Yt−1) p(xt|Yt) · · · p(xn|Yn)

Figure 2.1: Filtering process

to be defined in order to find p(xt|Yt). That is

p(xt|Yt−1) =
∫

p(xt, xt−1|Yt−1)dxt−1.

Using Bayes theorem,

p(xt, xt−1|Yt−1) = p(xt|xt−1, Yt−1)p(xt−1|Yt−1),

where p(xt−1|Yt−1) is known. Since xt could be derived given xt−1 using (2.2), we

have p(xt|xt−1, Yt−1) = p(xt|xt−1). Therefore,

p(xt|Yt−1) =
∫

p(xt|xt−1)p(xt−1|Yt−1)dxt−1. (2.4)

The probability density function of the one-step prediction is

p(yt|Yt−1) =
∫

p(xt, yt|Yt−1)dxt =

∫
p(yt|xt, Yt−1)p(xt|Yt−1)dxt.

Note that p(yt|xt, Yt−1) = p(yt|xt) by (2.1), then

p(yt|Yt−1) =
∫

p(yt|xt)p(xt|Yt−1)dxt, (2.5)

where p(xt|Yt−1) is given by (2.4) and p(yt|xt) is obtained using the observation

equation. Note that the conditional pdf of yt|Yt−1 given in (2.5) is used to derive

the likelihood function. The conditional pdf of xt|Yt is given using (2.5) by

p(xt|Yt) = p(xt|yt, Yt−1) =
p(xt, yt|Yt−1)
p(yt|Yt−1)

=
p(yt|xt)p(xt|Yt−1)∫
p(yt|xt)p(xt|Yt−1)dxt

. (2.6)

The distribution of xn|Yn could be obtained using (2.4), (2.5), and (2.6) iteratively.
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2.2.2 Smoothing

The smoothing is a backward process used to find the distribution of xt|Yn. It starts

with p(xn|Yn) which is given by filtering, and finishes with p(x1|Yn). Suppose that

the probability density function p(xt+1|Yn) is given, the pdf p(xt|Yn) by smoothing is

obtained as follows,

p(xt, xt+1|Yn) = p(xt+1|Yn)p(xt|xt+1, Yn) = p(xt+1|Yn)p(xt|xt+1, Yt)

=
p(xt+1|Yn)p(xt, xt+1|Yt)

p(xt+1|Yt)
=

p(xt+1|Yn)p(xt+1|xt)p(xt|Yt)

p(xt+1|Yt)
,

(2.7)

where p(xt+1|xt) is given by the state equation, p(xt|Yt) and p(xt+1|Yt) are obtained

from (2.6) and (2.4), respectively. Using (2.7) leads to

p(xt|Yn) =

∫
p(xt, xt+1|Yn)dxt+1 =

∫
p(xt+1|Yn)p(xt+1|xt)p(xt|Yt)

p(xt+1|Yt)
dxt+1. (2.8)

With the above filtering and smoothing results, some quantities can be calculated.

For example, using the filtering probability function p(xt|Yt), the smoothing proba-

bility function p(xt|Yn), and the one-step prediction probability function p(yt+1|Yt),

the expected filtering and smoothing values are given by,

E(yt+1|Yt) =

∫
yt+1p(yt+1|Yt)dyt+1,

E(xt|Yt) =

∫
xtp(xt|Yt)dxt,

E(xt|Yn) =

∫
xtp(xt|Yn)dxt.

(2.9)

For another example, using (2.5), the likelihood function is

L(ψ|Yn) = p(Yn|ψ) =
n∏

t=1

p(yt|Yt−1, ψ), (2.10)

where ψ is a set of parameters of the state space model.

In general, the filtering probability function p(xt|Yt) and smoothing probability

function p(xt|Yn) are hard to calculate since they include solving multiple integrals.
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Multidimensional variables will also add more complexity to this problem. The

conditional probability approach could be used when distributions of error terms are

conjugate. For non-conjugate distributions, it is unrealistic to proceed by definition.

An efficient algorithm is necessary to apply to state space models, such as the

important sampling or Gibbs sampling.

2.3 State Space Model with Normal Error Terms

In this section, two different approaches are introduced to process the filtering

and smoothing iterations. The first approach calculates filtering and smoothing

distribution functions using (2.4), (2.5), (2.6), and (2.8). The second approach

capitalizes on the fact that normal distributions are conjugate. This approach is

known as Kalman filter and smoother, which is much more computationally efficient.

To simplify the notations, we use the following,

x̂t = E(xt|Yt−1), x̄t = E(xt|Yt), x̃t = E(xt|Yn),

V̂t = V ar(xt|Yt−1), V̄t = V ar(xt|Yt), Ṽt = V ar(xt|Yn).

(2.11)

2.3.1 Filtering and Smoothing with the Conditional Ap-

proach

The conditional pdf is obtained from one-dimension xt and yt. That is

yt|xt ∼ N(xt, σ
2
ε), xt+1|xt ∼ N(xt, σ

2
η). (2.12)

Now given

xt−1|Yt−1 ∼ N(x̄t−1, V̄t−1), (2.13)
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we derive the probability density function p(xt|Yt−1) using (2.4), (2.12), and (2.13).

p(xt|Yt−1) =
∫ ∞

−∞
p(xt|xt−1)p(xt−1|Yt−1)dxt−1

∝
∫ ∞

−∞
e
− 1

2

[
(xt−xt−1)

2

σ2
η

+
(xt−1−x̄t−1)

2

V̄t−1

]
dxt−1

∝
∫ ∞

−∞
e
− 1

2

[(
1

σ2
η
+ 1

V̄t−1

)(
xt−1− V̄t−1xt+σ2

ηx̄t−1

σ2
η+V̄t−1

)2

+
x2t
σ2
η
+

x̄2t−1
V̄t−1

−
(

1

σ2
η
+ 1

V̄t−1

)(
V̄t−1xt+σ2

ηx̄t−1

σ2
η+V̄t−1

)2
]
dxt−1

∝ e
− 1

2

[
x2t
σ2
η
+

x̄2t−1
V̄t−1

−
(

1

σ2
η
+ 1

V̄t−1

)(
V̄t−1xt+σ2

ηx̄t−1

σ2
η+V̄t−1

)2
]

∝ e
− 1

2

(xt−x̄t−1)
2

σ2
η+V̄t−1 .

Hence

xt|Yt−1 ∼ N(x̂t, V̂t), (2.14)

where

x̂t = x̄t−1, V̂t = V̄t−1 + σ2
η. (2.15)

Note that xt|Yt−1 has the same mean as xt−1|Yt−1 but a larger variance. Using (2.6)

and (2.14), we have

p(xt|Yt) =
p(yt|xt)p(xt|Yt−1)∫
p(yt|xt)p(xt|Yt−1)dxt

∝ p(yt|xt)p(xt|Yt−1)

∝ e
− 1

2

[
(yt−xt)

2

σ2
ε

+
(xt−x̂t)

2

V̂t

]

∝ e
− 1

2

[(
1

σ2
ε
+ 1

V̂t

)(
xt− V̂tyt+σ2

ε x̂t
V̂t+σ2

ε

)2
]
.

Therefore,

xt|Yt ∼ N(x̄t, V̄t),

where

x̄t =
V̂tyt + σ2

ε x̂t

V̂t + σ2
ε

, V̄t =
V̂tσ

2
ε

V̂t + σ2
ε

.
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Replacing x̂t and V̂t by (2.15), we will get the relationship between two consecutive

filtering values,

x̄t =
(V̄t−1 + σ2

η)yt + σ2
ε x̄t−1

σ2
η + V̄t−1 + σ2

ε

, V̄t =
(σ2

η + V̄t−1)σ2
ε

σ2
η + V̄t−1 + σ2

ε

. (2.16)

As we can see, the filtering value at time t is a weighted average of the filtering value

of previous period and the observation at time t.

Next, we deal with the smoothing, which starts with p(xt+1|Yn), where

xt+1|Yn ∼ N(x̃t+1, Ṽt+1).

The smoothing iteration given by p(xt|Yn) is obtained by using (2.8) and (2.12).

p(xt|Yn) =

∫
p(xt+1|Yn)p(xt+1|xt)p(xt|Yt)

p(xt+1|Yt)
dxt+1

∝
∫ ∞

−∞
e
− 1

2

[
(xt+1−x̃t+1)

2

Ṽt+1
+

(xt+1−xt)
2

σ2
η

+
(xt−x̄t)

2

V̄t
− (xt+1−x̂t+1)

2

V̂t+1

]
dxt+1

∝ e
− 1

2

[
(xt−x̄t)

2

V̄t
+

x2t
σ2
η

] ∫ ∞

−∞
e

− 1
2

⎡
⎢⎢⎣
(

1
Ṽt+1

+ 1

σ2
η
− 1

V̂t+1

)⎛
⎜⎝xt+1−

x̃t+1
Ṽt+1

+
xt
σ2
η
− x̂t+1

V̂t+1
1

Ṽt+1
+ 1

σ2
η
− 1

V̂t+1

⎞
⎟⎠

2

−

(
x̃t+1
Ṽt+1

+
xt
σ2
η
− x̂t+1

V̂t+1

)2

1
Ṽt+1

+ 1
σ2
η
− 1

V̂t+1

⎤
⎥⎥⎦
dxt+1

∝ e

− 1
2

⎡
⎢⎢⎣ (xt−x̄t)

2

V̄t
+

x2t
σ2
η
−

(
x̃t+1
Ṽt+1

+
xt
σ2
η
− x̂t+1

V̂t+1

)2

1
Ṽt+1

+ 1
σ2
η
− 1

V̂t+1

⎤
⎥⎥⎦

∝ e

− 1
2

⎡
⎢⎣
⎛
⎝ 1

V̄t
+ 1

σ2
η
−

1
(σ2

η)2

1
Ṽt+1

+ 1
σ2
η
− 1

V̂t+1

⎞
⎠x2

t−2

⎛
⎜⎝ x̄t

V̄t
+

x̃t+1

Ṽt+1σ
2
η
− x̂t+1

V̂t+1σ
2
η

1
Ṽt+1

+ 1
σ2
η
− 1

V̂t+1

⎞
⎟⎠xt

⎤
⎥⎦
.

(2.17)

Using x̂t+1 = x̄t and V̂t+1 = V̄t + σ2
η, we can simplify the two terms before x2

t and xt

in (2.17), that is

1

V̄t

+
1

σ2
η

−
1

(σ2
η)

2

1
Ṽt+1

+ 1
σ2
η
− 1

V̂t+1

=

(
1
V̄t

+ 1
σ2
η

)(
1

Ṽt+1
− 1

V̂t+1

)
+ 1

V̄tσ2
η

1
Ṽt+1

+ 1
σ2
η
− 1

V̂t+1

=

1
V̄tσ2

η
· V̂t+1

Ṽt+1

1
Ṽt+1

+ 1
σ2
η
− 1

V̂t+1

=
(V̂t+1)

2

(σ2
ηV̂t+1 + V̄tṼt+1)V̄t

,

(2.18)
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and

x̄t

V̄t

+

x̃t+1

Ṽt+1σ2
η
− x̂t+1

V̂t+1σ2
η

1
Ṽt+1

+ 1
σ2
η
− 1

V̂t+1

=
x̄t

V̄t

+
V̂t+1x̃t+1 − Ṽt+1x̂t+1

σ2
ηV̂t+1 + V̄tṼt+1

=
(σ2

ηx̄t + V̄tx̃t+1)V̂t+1

(σ2
ηV̂t+1 + V̄tṼt+1)V̄t

.

(2.19)

Now substituting (2.18) and (2.19) into (2.17) leads to

p(xt|Yn) ∝ e
− 1

2

[(
(V̂t+1)

2

(σ2
ηV̂t+1+V̄tṼt+1)V̄t

)
x2
t−2

(
(σ2

ηx̄t+V̄tx̃t+1)V̂t+1

(σ2
ηV̂t+1+V̄tṼt+1)V̄t

)
xt

]

∝ e
− 1

2

(
(V̂t+1)

2

(σ2
ηV̂t+1+V̄tṼt+1)V̄t

)(
xt−σ2

ηx̄t+V̄tx̃t+1

V̂t+1

)2

∝ e
− 1

2

(
(V̂t+1)

2

(σ2
ηV̂t+1+V̄tṼt+1)V̄t

)(
xt−σ2

ηx̄t+V̄tx̃t+1

σ2
η+V̄t

)2

.

Hence,

xt|Yn ∼ N(x̃t, Ṽt),

where

x̃t =
σ2
ηx̄t + V̄tx̃t+1

σ2
η + V̄t

, Ṽt =
(σ2

ηV̂t+1 + V̄tṼt+1)V̄t

(V̂t+1)2
. (2.20)

The smoothing iteration (2.20) is also a weighted average for x̃t, averaging between

x̄t and x̃t+1.

2.3.2 Kalman Filter and Smoother

We now generalize the above filtering and smoothing results for a multidimensional

state space model capitalizing on the Gaussian distribution. Consider the following

state space model where xt is multidimensional,

yt = Zt xt + εt, εt ∼ N(0, σ2
ε),

xt+1 = Tt xt +Rt ηt, ηt ∼ N(0, Qt),

(2.21)

where Zt, Tt, Rt, Qt are therefore matrices, yt is a one-dimensional vector, the

covariance matrix of ηt is Qt, and the initial condition for xt is that x1 ∼ N(x̂1, V̂1).
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Durbin and Koopman (2001) develop the Kalman filter and smoother by calculating

the expectation and variance of the normal distributions instead of probability density

functions as in Section 2.3.1.

We first introduce the filtering step, which aims to obtain the distribution of

xt+1|Yt from the distribution of xt|Yt−1. Because of Gaussian error terms, it can be

achieved by iterating from x̂t and V̂t to x̂t+1 and V̂t+1, respectively. According to

(2.21),

x̂t+1 = E(Ttxt +Rtηt|Yt) = TtE(xt|Yt) = Ttx̄t, (2.22)

and

V̂t+1 = Var(Ttxt +Rtηt|Yt) = TtV̄tT
′
t +RtQtR

′
t. (2.23)

Define the one-step prediction error as vt = yt − Ztx̂t. By the Regression Lemma

(Durbin and Koopman, 2001), the filtering values x̄t and V̄t are given by

x̄t = E(xt|Yt) = E(xt|Yt−1, vt) = x̂t + V̂tZ
′
tF
−1
t vt, (2.24)

and

V̄t = Var(xt|Yt) = Var(xt|Yt−1, vt) = V̂t + V̂tZ
′
tF
−1
t ZtV̂t, (2.25)

where Ft = Var(vt) = ZtV̂tZ
′
t + σ2

ε . Substitute (2.24) into (2.22),

x̂t+1 = Tt(x̂t + V̂tZ
′
tF
−1
t vt) = Ttx̂t +Ktvt, (2.26)

where Kt = TtV̂tZ
′
tF
−1
t . Using (2.25), (2.23) becomes

V̂t+1 = Tt(V̂t + V̂tZ
′
tF
−1
t ZtV̂t)T

′
t +RtQtR

′
t = TtV̂tL

′
t +RtQtR

′
t, (2.27)

where Lt = Tt −KtZt.

Therefore, as we can see in (2.26) and (2.27), the Kalman filter forwardly calculates

x̂t and V̂t, t = 1, 2, · · · , n.
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In the smoothing iterations, we aim to obtain the smoothing values x̃t, Ṽt, η̃t,

and ε̃t, where η̃t = E(ηt|Yn) and ε̃t = E(εt|Yn). By the definition of smoothing, the

mean and variance of xt|Yn (i.e. x̃t and Ṽt) are calculated iteratively given x̃t+1 and

Ṽt+1 from the distribution of xt+1|Yn. Since

x̃t = E(xt|Yn) = E(xt|Yt−1, vt, · · · , vn),

using the Regression Lemma (Durbin and Koopman, 2001), we have

E(xt|Yt−1, vt, · · · , vn) = x̂t+
n∑

j=t

Cov(xt, vj)F
−1
j vj = x̂t+

n∑
j=t

E[xt(xj−x̂j)
′]Z ′j F

−1
j vj,

where

E[xt(xj − x̂j)
′] = E{E[xt(xj − x̂j)

′|Yn]} = V̂t L
′
t · · ·L′j−1.

To summarize, we have

x̃t = x̂t + V̂t rt−1, (2.28)

where rt is obtained by backwards recursions, that is

rt−1 = Z ′t F
−1
t vt + L′t rt, (2.29)

for t = n, n− 1, · · · , 0, and initiates with rn = 0.

Following the same idea of calculating x̃t, we have

ε̃t = Ht(F
−1
t vt −K ′

t rt) and η̃t = Qt R
′
t rt.

Define Nt = Var(rt). Using (2.29), we have

Nt−1 = Var(rt−1) = Var(Z ′t F
−1
t vt + L′t rt)

= Z ′t F
−1
t Var(vt) (F

−1
t )′ Zt + L′t Var(rt)Lt = Z ′t F

−1
t Zt + L′t Nt Lt.

Nt is iterated backwardly, initiated with Nn = 0. Similarly, using (2.28) and the

Regression Lemma (Durbin and Koopman, 2001),

Ṽt = V̂t − V̂t Var(rt−1) V̂t = V̂t − V̂t Nt−1 V̂t.
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As we can see, Ṽt = Var(xt|Yn) < V̂t = Var(xt|Yt−1) since xt|Yn contains more

information and thus less variation than xt|Yt−1.

The Kalman filter and smoother is efficient because only the inverse of Ft is needed,

which usually has lower dimensions than Vt.

2.4 State Space Model with Non-Normal Error

Terms: Importance Sampling

This section generalizes the SSM to non-Gaussian error terms. The algorithm

proposed in Section 2.3 works for normal error terms. The generalized SSM is similar

to (2.21) but the distributions of error terms are not constrained to the Gaussian

distribution. Hence the system of equations is

yt = Zt xt + εt,

xt+1 = Tt xt +Rt ηt,

(2.30)

where εt and ηt are not necessarily Gaussian distributions. For illustration, we assume

that εt and ηt have non-Gaussian pdfs p(εt) and p(ηt), respectively. In terms of

conjugate distributions for error terms, such as the beta distribution (see Zhen and

Basawa, 2009), an algorithm similar to the one presented in Section 2.3.1 can be

derived. However, if the distributions are not conjugate, Section 2.3.1 could be

applied but it is not computationally efficient. Since there is no analytical form

for the likelihood function with non-conjugate error terms, simulation techniques

are required. Two techniques have been widely used: Importance Sampling and

Gibbs Sampling. The importance sampling is a simulation technique using another

distribution as an approximation for the distribution of interest. In this thesis, the

importance sampling is used since it is easy to derive and takes full advantage of the
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Kalman filter and smoother.

2.4.1 Importance Sampling

Suppose we want to calculate the expected value of f(x) given Yn. That is

Ep[f(x)|Yn] =

∫
f(x)p(x|Yn)dx, (2.31)

where x = {x1,x2, · · · ,xn} and Ep(·) represents the expectation under the pdf

p(x|Yn). Simulation techniques could be used to approximate (2.31) when there

is no closed form solutions. Sometimes the sampling of random variables x|Yn could

be difficult as well. We will tackle this problem by approximating the distribution of

xt|Yn using an importance density distribution. In terms of the state space model,

the purpose of importance sampling is to approximate the non-Gaussian distribution

by a Gaussian distribution and then use the Kalman filter and smoother. Durbin and

Koopman (2001) illustrate how the importance sampling technique is implemented

in SSM.

Let g(εt) and g(ηt) be importance probability density functions, which approximate

p(εt) and p(ηt), respectively. This simulation approach is more efficient when g(·) is

closer to p(·). If g(εt) and g(ηt) are both Gaussian distributions, g(x|Yn) would also

be Gaussian which is used to approximate (2.31), where x = {x1,x2, · · · ,xn}. The

Equation (2.31) under the importance density g(x|Yn) becomes

Ep[f(x)|Yn] =

∫
f(x)p(x|Yn)dx

=

∫
f(x)

p(x|Yn)

g(x|Yn)
g(x|Yn)dx = Eg

[
f(x)

p(x|Yn)

g(x|Yn)

]
,

where Eg(·) represents the expectation under probability distribution g(x|Yn). Using

Bayes Theorem, we have

Ep[f(x)|Yn] =
g(Yn)

p(Yn)

∫
f(x)

p(x, Yn)

g(x, Yn)
g(x|Yn)dx =

g(Yn)

p(Yn)
Eg

[
f(x)

p(x, Yn)

g(x, Yn)

]
.
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Similarly, we have g(Yn)
p(Yn)

Eg

[
p(x,Yn)
g(x,Yn)

]
= 1. Therefore,

Ep[f(x)|Yn] =
Eg[f(x)w(x, Yn)]

Eg[w(x, Yn)]
,

where

w(x, Yn) =
p(x, Yn)

g(x, Yn)
=

p(x1)
∏n

t=1 p(ηt)p(yt|xt)

g(x1)
∏n

t=1 g(ηt)g(yt|xt)
.

Suppose that N samples x̌(1), x̌(2), · · · , x̌(N) are drawn from the Gaussian density

g(x|Yn). Hence, the Monte Carlo estimate of the expected value (2.31) is given by

Êp[f(x)|Yn] =

∑N
i=1 f(x̌

(i))w(x̌(i), Yn)∑N
i=1 w(x̌

(i), Yn)
. (2.32)

The importance sampling is now obtained in a specific SSM that will be used for

the mortality index. Suppose that

yt = Zt xt + εt, εt has pdf p(εt),

xt+1 = Tt xt +Rt ηt, ηt ∼ N(0, Qt).

(2.33)

Then w(x̌(i), Yn) in (2.32) can be simplified where p(η) = g(η) and p(x1) = g(x1),

that is

w(x̌(i), Yn) =
p(x̌(i), Yn)

g(x̌(i), Yn)
=

p(x̌
(i)
1 )

∏n
t=1 p(ηt)p(yt|x̌(i)

t )

g(x̌
(i)
1 )

∏n
t=1 g(ηt)g(yt|x̌(i)

t )
=

n∏
t=1

p(yt|x̌(i)
t )

g(yt|x̌(i)
t )

, (2.34)

where x̌(i) = {x̌(i)
1 , x̌

(i)
2 , · · · , x̌(i)

n }. Define θ̌
(i)
t = Ztx̌

(i)
t and ε̌

(i)
t = yt − θ̌

(i)
t . Equation

(2.34) can be obtained using

w(θ̌
(i)
, Yn) =

n∏
t=1

p(yt|θ̌(i)t )

g(yt|θ̌(i)t )
, (2.35)

where θ̌
(i)

= {θ̌(i)1 , θ̌
(i)
2 , · · · , θ̌(i)n }. Under model (2.33) where yt is a linear combination

of θt = Ztxt and εt, (2.34) can also be written as

w(ε̌(i), Yn) =
n∏

t=1

p(yt − θ̌
(i)
t |θ̌(i)t )

g(yt − θ̌
(i)
t |θ̌(i)t )

=
n∏

t=1

p(ε̌
(i)
t )

g(ε̌
(i)
t )

, (2.36)
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where ε̌(i) = (ε̌
(i)
1 , ε̌

(i)
2 , · · · , ε̌(i)n ).

In fact, there is no difference in using smoothing values among x̌, ε̌ and θ̌ for w(·)

under model (2.33). This conclusion derives from Lemma A.2 shown in Appendix A.

According to Lemma A.2, we have p(yt|x̌t) = p(yt − θ̌t) = p(ε̌t). This means (2.34)-

(2.36) are equivalent. We prefer to use θ̌ or ε̌ instead of x̌ to implement the simulation

because θ̌t or ε̌t are one-dimensional at each time t.

Based on (2.34), (2.35), and (2.36), the importance sampling relies on:

• Determine the importance sampling distribution g(εt);

• Sample x̌ from g(x|Yn).

2.4.2 Importance Sampling Algorithm

This section proposes the Gaussian importance density function g(εt) when (2.33) is

approximated by a Gaussian SSM, which is given by

yt = Zt xt + εt, εt ∼ N(0, Ht),

xt+1 = Tt xt +Rt ηt, ηt ∼ N(0, Qt),

(2.37)

where Ht means the variance of εt at time t. Ht can be estimated in the following

way (Durbin and Koopman, 1997),

H̃−1
t = − 1

εt

d log p(εt)

dεt

∣∣∣∣
εt=yt−θ̃t

, (2.38)

where θ̃t = Ztx̃t, which represents the smoothing value calculated using the Kalman

filter and smoother. Since H̃t is the estimated variance, the pdf p(εt) must satisfy the

following condition

− 1

εt

d log p(εt)

dεt
> 0, (2.39)

for all εt. Durbin and Koopman (1997) propose a way to find the converged H̃t and

θ̃t under the following fixed-point iteration:
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1. Start with an initial value H̃t;

2. Get the smoothed values θ̃t using Kalman filter and smoother (Section 2.3.2);

3. Use θ̃t to calculate an updated H̃t using (2.38);

4. Repeat the second and third steps until convergence.

This number of iterations before convergence is usually less than 15 to 20. Since the

Kalman filter and smoother is efficient, this algorithm usually runs in less than one

second.

2.5 Simulation Smoother and Antithetic Variables

2.5.1 Simulation Smoother

Now we discuss how to simulate samples x̌ from g(x|Yn). Since we already have the

approximated normal state space model, given in (2.33) where Ht is approximated

by H̃t. That is

yt = Zt xt + εt, εt ∼ N(0, H̃t),

xt+1 = Tt xt +Rt ηt, ηt ∼ N(0, Qt).

(2.40)

Durbin and Koopman (2002) introduce an efficient simulation smoother algorithm

that we will be able to generate θ̌t = Ztx̌t. In general, there are two ways to implement

this algorithm. On the one hand, x̌t can be simulated directly. On the other hand,

η̌t and ε̌t can be generated and then x̌t can be calculated using the Kalman filter

and smoother. While the former is more straightforward, the latter may be more

computationally efficient since the dimension of ηt is usually less than that of xt.

To simulate the smoothing x̌, we need to generate the smoothing ε̌t from g(εt|Yn)

and η̌t from g(ηt|Yn). Once we simulate η̌t from g(η|Yn), θ̌t+1 can be calculated using
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θ̌t+1 = Zt(Ttx̌t + Rtη̌t). Suppose g(ηt|Yn) ∼ N(η̃t, Q̇t), where η̃t = E(ηt|Yn) and Q̇t

is the variance matrix of ηt|Yn.

We start with simulating samples η+
t from N(0, Qt) and ε+t from N(0, H̃t). Using

(2.40) we get the corresponding y+t . Given the general result that in a multivariate

normal distribution the conditional variance-covariance matrix of a vector given that

a second vector is fixed does not depend on the second vector (see, for example,

Anderson, 1984, Theorem 2.5.1), we have Var(η+
t |Y +

n ) = Var(ηt|Yn) = Q̇t, where

Y +
n = {y+1 , y+2 , · · · , y+n }. Denote η̃+

t = E(η+
t |Y +

n ); then η+
t |Y +

n ∼ N(η̃+
t , Q̇t).

Therefore, (η+
t − η̃+

t )|y+ ∼ N(0, Q̇t), which is the simulation sample that we want.

To sum up, the simulation smoothing samples for g(ηt|y) are η̌t = η̃t + (η+
t − η̃+

t ) ∼

N(η̃t, Q̇t). The simulation smoothing samples for g(εt|y) can be generated similarly

by ε̌t = ε̃t + (ε+t − ε̃+t ) ∼ N(ε̃t, Ḣt). Algorithm 2.1 summarizes the above ideas.

Algorithm 2.1 Simulation Smoother

The following algorithm is used to generate simulation smoothing samples x̌ from

g(x|Yn).

1. Calculate x̌ = E(x|Yn) using the Kalman filter and smoother in Section 2.3.2.

2. Simulate samples η+
t from N(0, Qt) and ε+t from N(0, H̃t), for t = 1, 2, · · · , n.

Using (2.40), x+
t , θ

+
t , and y+t can be obtained iteratively, for t = 1, 2, · · · , n,

based on generated samples for the initial value x+
1 ∼ N(x̂1, V̂1).

3. Under the classical state space model in (2.40), apply the Kalman filter and

smoother in Section 2.3.2 to the simulated values y+ and get the smoothing

values x̃+
t = E(x+

t |Y +
n ) and θ̃+t = Ztx̃

+
t , for t = 1, 2, · · · , n.

4. Let θ̌t = θ̃t + (θ+t − θ̃+t ), where θ̌t ∼ N(θ̃t,Var(θt|Yn)), for t = 1, 2, · · · , n.

37



Repeating Algorithm 2.1 could generate N samples from the distribution of θ|Yn,

i.e. θ̌(1), θ̌(2), · · · , θ̌(N), where each simulation path θ̌(i) = {θ̌(i)1 , θ̌
(i)
2 , · · · , θ̌(i)n }.

2.5.2 Antithetic Variables

Antithetic variables can improve the simulation efficiency by increasing the sample

size for each sampling path. We will use three antithetic variables introduced by

Durbin and Koopman (1997).

The first antithetic variable is defined as

θ̌A1 = 2θ̃ − θ̌, (2.41)

which is easy to calculate and implement.

The second antithetic variable method can be calculated using Algorithm 2.2.

Once we generate N samples of θ̌, 4N samples could be generated including θ̌, θ̌A1 ,

θ̌A2 , and θ̌A3 .

2.6 Monte Carlo Likelihood Estimation

After the construction of the state space model, we need to estimate the parameters

using maximum likelihood estimation. Since we use the importance sampling

technique with a Gaussian state space model as an approximation of a non-

Gaussian state space model, the likelihood function of (2.33) would be based on

the approximated model (2.40). The general idea is to obtain the likelihood function

of the Gaussian model, and then modify this likelihood function with an adjustment

factor to take the approximation into consideration.
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Algorithm 2.2 Antithetic Variables Balanced for Scale

1. For each simulation sample based on Algorithm 2.1, let u be a vector containing

r × n variables, all following N(0, 1), in order to generate η+. Find c = u′u.

Therefore, c is a univariate random variable which follows a Chi-squared

distribution with rn degrees of freedom.

2. Find q = Pr(χ2
rn < c), and let c̄(i) = F−1χ2

rn
(1− q).

3. A second antithetic variable can be defined as

θ̌A2 = θ̃ +

√
c̄

c
(θ̌ − θ̃). (2.42)

4. Based on (2.41) and (2.42), a third antithetic variable can be constructed:

θ̌A3 = θ̃ +

√
c̄

c
(θ̌A1 − θ̃). (2.43)

2.6.1 Likelihood Function of Gaussian State Space Model

Denote by Lg(ψ) be the likelihood function of the Gaussian model given in (2.40),

where g(·) represents a Gaussian distribution and ψ is the parameter set. Assuming

ψ is predetermined, Lg(ψ) can be written briefly as Lg. The likelihood function of

model (2.40) can be derived as following:

Lg = g(y1, y2, · · · , yn) =
n∏

t=1

g(yt|Yt−1).

So we need to calculate the distribution of g(yt|Yt−1). Similar to the derivation in

Section 2.3, g(yt|Yt−1) follows a normal distribution because of the conjugate property.

Moreover,

Eg(yt|Yt−1) = Eg(Ztxt + εt|Yt−1) = ZtEg(xt|Yt−1) = Ztx̂t
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and

V arg(yt|Yt−1) = V arg(Ztxt + εt|Yt−1)

= ZtV arg(xt|Yt−1)Z ′t + V arg(εt|Yt−1)

= ZtV̂tZ
′
t + H̃t = Ft.

Therefore,

yt|Yt−1 ∼ N(Ztx̂t, Ft). (2.44)

The conditional pdf is given by

g(yt|Yt−1) =
1√

2π|Ft|
e−

1
2
(yt−Ztx̂t)′F−1

t (yt−Ztx̂t) =
1√

2π|Ft|
e−

1
2
v′tF

−1
t vt .

The log of likelihood function is

logLg =
n∑

t=1

log g(yt|Yt−1) = −n

2
log 2π − 1

2

n∑
t=1

(log|Ft|+ v′tF
−1
t vt). (2.45)

2.6.2 Adjustment Factors

Denote Lp as the likelihood function of the non-Gaussian SSM in (2.33). By definition,

Lp =

∫
p(x, Yn)dx =

∫
p(θ, Yn)dθ.

Using the importance sampling technique leads to

Lp =

∫
p(θ, Yn)

g(θ, Yn)
g(θ, Yn)dθ = g(Yn)

∫
p(θ, Yn)

g(θ, Yn)
g(θ|Yn)dθ = Lg

∫
p(θ, Yn)

g(θ, Yn)
g(θ|Yn)dθ.

Under model (2.33), w(x, Yn) =
p(x,Yn)
g(x,Yn)

= p(Yn|θ)
g(Yn|θ) = w(θ, Yn). Then,

Lp = Lg

∫
w(θ, Yn)g(θ|Yn)dθ = LgEg(θ|Yn)[w(θ, Yn)].

The above integral needs to be solved numerically. From Section 2.5, the samples θ̌

from g(θ̌|Yn) can be obtained based on Section 2.5. Therefore Lp can be approximated

using these simulation samples by

logLp ≈ logLg + log w̄, (2.46)
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where

w̄ =
N∑
i=1

w(θ̌(i), Yn) =
N∑
i=1

n∏
t=1

p(yt|θ̌(i)t )

g(yt|θ̌(i)t )
=

N∑
i=1

n∏
t=1

p(yt − θ̌
(i)
t )

g(yt − θ̌
(i)
t )

, (2.47)

according to (2.35) and (2.36).

However, Durbin and Koopman (1997) point out that the likelihood estimation in

(2.46) is biased after taking log function. An approximated unbiased estimator has

been proposed.

logLp ≈ logLg + log w̄ +
s2w

2Nw̄2
, (2.48)

where

s2w =
1

N − 1

N∑
i=1

(
n∏

t=1

p(yt|θ̌(i)t )

g(yt|θ̌(i)t )
− w̄)2.

Next we incorporate the antithetic variables into the calculation of the likelihood

value. In (2.47), only θ̌ is used to calculate w. With antithetic variables, wi is updated

as

wi =
1

4
[w(θ̌(i), Yn) + w(θ̌A1,(i), Yn) + w(θ̌A2,(i), Yn) + w(θ̌A3,(i), Yn)], (2.49)

where θ̌A1,(i), θ̌A2,(i), θ̌A3,(i) are calculated from (2.41), (2.42) and (2.43). Now we use

the updated wi to calculate the w̄ and s2w, then substitute into (2.48) to get the

approximated unbiased likelihood estimation.

2.7 Diagnostic Test

Diagnostic tests for the Gaussian SSM are performed using standardized one-step

ahead prediction errors

et =
vt√
Ft

, (2.50)

where vt and Ft are from the Kalman filter in Section 2.3.2. If the model is properly

calibrated, et should follow a normal distribution and be uncorrelated, based on (2.44).
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The property that et is uncorrelated can be derived through Cholesky decomposition

(Durbin and Koopman, 2001, for more details). Therefore, et should be a standard

normal and uncorrelated series under proper model specifications. The normality

assumption can be tested with a QQ-plot and a Shapiro-Wilk normality test. The

correlation could be tested using an ACF graph and a Ljung-Box Test.

If the error terms are not Gaussian, the estimated error terms should follow the

assumed non-Gaussian distribution. As shown in Section 3.3.3, a QQ-plot and a

Kolmogorov-Smirnov test would be used for diagnostic test.
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Chapter 3

Mortality Rate Models

In this chapter, state space models will be used to fit and predict the mortality index.

The state space model would be chosen based on the AIC or BIC criterion. Other two

mortality models in the literature will be discussed and compared to the proposed

state space model.

The key issue when modeling the mortality index is how to handle shocks.

Contrary to Li and Chan (2005, 2007), the mortality shocks are critical components of

the mortality index. Li and Chan (2005) mention that the outlier detection technique

cannot distinguish the extreme values whether they are outliers or from a fat-tailed

distribution. Incorporating a fat-tailed distribution into our modeling of the mortality

index is more reasonable in terms of the nature of our problem. Therefore, a model

based on time series for the baseline mortality that includes a fat-tailed distribution

to model the shocks is proposed.

The state space model is an ideal choice. The classical state space model

can handle various linear connections between latent variables and observations.

Extending to non-Gaussian state space models, we can use different distributions

and linear transformations to model error terms. Moreover, generalized SSMs are
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useful tools and model various relations (univariate or multidimensional, linear or

non-linear, Gaussian or non-Gaussian, etc.) between latent variables, error terms,

and observations.

According to the observations, the shocks occurred several times over the last one

hundred years with a the huge shock in 1918. Since most of these shocks occurred

over a one-year period, we assume that the mortality shocks are transient. Moreover,

for better projecting mortality shocks, we also assume that the occurrence and scale

of shocks would not be affected by the improvement of mortality. In other words, we

believe that shocks would happen in the same behavior as what they did in the past

(i.e. independent of time).

3.1 ARIMA Models

In this section, we rewrite the ARIMA model in the form of SSMs, that is

yt = Zt xt,

xt+1 = Tt xt +Rt ηt, ηt ∼ N(0, σ2
η),

(3.1)
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where

xt =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẏt−1

Δ1ẏt−1
...

Δdẏt

φ2Δ
dẏt−1 + · · ·+ φrΔ

dẏt−r+1 + ϕ1ηt + · · ·+ ϕr−1ηt−r+2

φ3Δ
dẏt−1 + · · ·+ φrΔ

dẏt−r+2 + ϕ2ηt + · · ·+ ϕr−1ηt−r+3

...

φrΔ
dẏt−1 + ϕr−1ηt

μt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(d+r+1)×1

Zt =

[
1 1 · · · 1 0 0 · · · 0 1

]
1×(d+r+1)

Tt =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 1 0 0 · · · 0 0

0 1 · · · 1 0 0 · · · 0 0

...
...

. . .
...

...
...

. . .
...

...

0 0 · · · 1 0 0 · · · 0 0

0 0 · · · φ1 1 0 · · · 0 0

0 0 · · · φ2 0 1 · · · 0 0

...
...

. . .
...

...
...

. . .
...

...

0 0 · · · φr 0 0 · · · 0 0

0 0 · · · 0 0 0 · · · 0 β

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(d+r+1)×(d+r+1)

Rt =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

...

1

ϕ1

ϕ2

...

ϕr−1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(d+r+1)×1
(3.2)

r = max(p, q + 1), ẏt = yt − μt, and Δdẏt is the nth order differentiation of ẏt. The

parameter μt represents the decreasing tendency with decreasing rate β and initial

value μ1. The variable ẏt follows an ARIMA(p,d,q) and correspondingly Δdẏt follows

an ARMA(p,q).
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3.2 Gaussian Mortality Models

This section tests if it is suitable to use normal error terms to model the mortality

index. In fact, Section 1.2 concludes that normal error terms do not provide a good

fit of the mortality index using the outlier detection technique. However, it would

be interesting to investigate if similar conclusions could be drawn using the SSM

analysis.

Using model (3.1), a normal error εt could be added to model shock effects,

yt = Zt xt + εt, εt ∼ N(0, σ2
ε),

xt+1 = Tt xt +Rt ηt, ηt ∼ N(0, σ2
η),

(3.3)

where xt, Zt, Tt, and Rt are given in (3.2), and yt is the logit transform observations

given in Figure 1.2.

We apply the Kalman filter and smoother introduced in Section 2.3.2 to fit the

model. To choose the best model, we calculate the likelihood function for a wide

range of ARIMA models using (2.45) and evaluate the AIC and BIC criteria, which

are given in (1.4). According to (2.45), we need to get Ft and vt, which are calculated

during the filtering process discussed in Section 2.3.2. Then the maximum likelihood

value and the parameters can be estimated using a numerical optimization algorithm1.

Table 3.1 shows a sample of the ARIMA models with different orders.

As we can see, the ARIMA(1, 0, 0) model has the smallest AIC and BIC values.

The ARIMA(1, 0, 0) process for ẏt is ẏt = φ1ẏt−1 + ηt. The mortality index model

1Using the R package: optim to perform the optimization.
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Table 3.1: Gaussian SSM models selection

ARIMA Parameters Likelihood AIC BIC

(0,0,0) 4 97.62 −187.25 -176.48

(1,0,0) 5 164.82 −319.63 -306.17

(0,0,1) 5 128.53 −247.06 -233.60

(1,0,1) 6 165.12 −318.25 -302.10

(2,0,1) 7 165.12 −316.24 -297.40

using a SSM with ARIMA(1, 0, 0) baseline mortality is given by

yt =

[
1 1

]⎡⎢⎣ẏt
μt

⎤
⎥⎦+ εt, εt ∼ N(0, σ2

ε),

⎡
⎢⎣ẏt+1

μt+1

⎤
⎥⎦ =

⎡
⎢⎣φ1 0

0 β

⎤
⎥⎦
⎡
⎢⎣ẏt
μt

⎤
⎥⎦+

⎡
⎢⎣1
0

⎤
⎥⎦ ηt+1, ηt ∼ N(0, σ2

η).

(3.4)

In this model, there are three types of parameters: φ1 is the parameter of the AR

process for the latent variable ẏt, σ
2
ε and σ2

η are the variances of error terms, and β

controls the decreasing rate of μt. The estimated parameters are given in Table 3.2.

Table 3.2: Parameter estimation for ARIMA(1, 0, 0)

φ1 = 0.9502 σ2
η = exp(−6.4117) σ2

ε = exp(−7.2338)

β = 0.991 μ1 = 2.0605

logL = 164.82 AIC = −319.63 BIC = −306.17

The estimated parameters are plugged into the model in (3.4). Apply the Kalman

filter and smoother in Section 2.3.2 to get the smoothed x̃t as well as η̃t and ε̃t.

Figure 3.1 shows that the model fits the data well before diagnostic tests.
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Figure 3.1: The observations yt v.s. fitted value x̃t

However, Figure 3.2 indicates some problems for η̃t and ε̃t. The diagnostic tests

show that the two error terms are not normally distributed. According to the QQ-

plot, both η̃t and ε̃t have fatter tails than normal distributions. In other words, normal

error terms are not able to capture mortality shocks.

3.3 Non-Gaussian Mortality Models

Recall from the outlier detection technique in Section 1.2 that the ARIMA model

could provide a good fit to the baseline mortality. In terms of the time series analysis,

ARIMA models are flexible and easy to handle. This implies that the baseline process

could be modeled using normal residuals after removing shock effects.

In state space models, the error term in the observation equation εt disturbs yt

without affecting the latent variable xt, which behaves in a similar way to AOs in
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Figure 3.2: The smoothed values and normal QQ-plot of η̃t (lower) and ε̃t (upper)

outlier detection analysis. We mentioned that mortality shocks are supposed to be

transient, so we expect that εt would handle the mortality shocks in yt, which is

reasonable because shocks are mainly detected as AOs (Table 1.3).

Since we want to incorporate the shocks into the state space model, there are

two approaches that could be considered to model transient shocks. The shocks can

be added into the deterministic part Zt xt or the stochastic part εt. Both of these

approaches are practical for model calibration. For the former, indicator functions

could be used to model the occurrence of shocks. Its prediction becomes the key

issue. A natural way to model and predict indicator sequences is using Markov chains

(Mächler and Bühlmann, 2004) or using binary sequence modeling, e.g, Keenan (1982)

and Zhen and Basawa (2009). However this approach is more complex. On the other

hand, letting the stochastic part εt capture the shocks leads to a simplified model

with nice predictive properties.
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Based on the above discussion, we propose a fat-tailed distribution or a mixed

distribution to represent the error term εt which is used to model shocks. According

to the outlier detection analysis in Section 1.2, the mortality index has five outliers;

three of them have positive effects and two of them have negative effects. This implies

that the domain of the proposed distribution should include positive and negative

values. The mode and mean are expected to be around zero, since these error terms

should not influence the average level of mortality rates, but just model the possible

occurrence of shocks. The skewness of mortality shocks is expected to be positive

since larger positive extreme mortality shocks were discovered. In fact, the concavity

of the logit transform function (1.1) adds this effect on the skewness of the projected

mortality index.

3.3.1 Model Calibration

We propose a general state space model where the state equation is an ARIMA(p, d, q)

process and the observation equation includes a fat-tailed distribution for εt, that is

yt = Zt xt + εt, εt ∼ non-Gaussian distribution,

xt+1 = Tt xt +Rt ηt, ηt ∼ N(0, σ2
η),

(3.5)

where xt, Zt, Tt, and Rt are given in (3.2).

A possible choice for εt is the t-distribution. We will use this as an example

to estimate parameters and the likelihood function given specific orders of ARIMA

models. Later on, we will consider more possible error distributions. Here, we consider

εt
σε

∼ tv and ẏt ∼ ARIMA(2, 1, 0). (3.6)

Compared with the Gaussian model in Section 3.2, there is one more parameter v in

this model.
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3.3.2 Estimation of Parameters

The importance sampling technique introduced in Chapter 2 is applied to estimate

the SSM. The general idea is to use a classic SSM to approximate (3.6). In other

words, we use a Gaussian distribution g(εt) as importance density to approximate

p(εt). The approximated SSM is given by (3.6) with εt ∼ N(0, H̃t), where

H̃t =
σ2
εv + (yt − θ̃t)

2

v + 1
=

σ2
εv + ε̃2t
v + 1

. (3.7)

The variance H̃t is obtained using (2.38), where

p(εt) ∝
(
1 +

ε2t
vσ2

ε

)− v+1
2 1

σε

. (3.8)

Therefore,

H̃−1
t = − 1

εt

d log p(εt)

dεt

∣∣∣∣
εt=yt−θ̃t

=
v + 1

σ2
εv + (yt − θ̃t)2

.

According to Lemma A.1, θ̃t + ε̃t = yt, which leads to

H̃t =
σ2
εv + (yt − θ̃t)

2

v + 1
=

σ2
εv + ε̃2t
v + 1

.

Equation (3.7) indicates that we could choose either θ̃t or ε̃t to calculate H̃t, where

θ̃t or ε̃t are both smoothed values by the Kalman filter and smoother. Note that H̃t

calculated based on the t-distribution satisfies (2.39) for any ε̃t.

We apply the algorithm presented in Section 2.4.2. With the Kalman filter and

smoother as well as the convergent H̃t, we are able to calculate the log-likelihood value

of the approximated Gaussian model using (2.45). To calculate the log-likelihood of

our original model (3.6) simulation techniques are required based on Section 2.6.2. All

the steps for the Kalman filter and smoother are not necessary. In fact, only vt, x̂t,

and rt are required. Then ε̃t can be calculated directly using the Kalman smoother.

For comparison, several distributions are used to model the error term εt. The

spliced t-distribution has different t-distributions with different degrees of freedom,
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defined over positive and negative domains. The second spliced distribution includes

normal distribution for the negative domain and the t-distribution for the positive

domain. Therefore, there is one more parameter compared to the single t-distribution.

Then we choose the corresponding orders for ARIMA models according to the AIC

criterion. The results are shown in Table 3.3. The t-distribution ranked first using

both the AIC and BIC criteria. The AIC and BIC are much lower for normal

distributions which cannot capture the shocks properly.

Table 3.3: SSM models comparison

εt ARIMA Parameters Likelihood AIC BIC

t-distribution (2,1,0) 7 245.99 −477.97 -459.13

Normal (1,0,0) 6 164.61 −319.63 -306.17

spliced t-dist (2,1,0) 8 246.70 −477.40 -455.87

spliced normal and t-dist (3,0,0) 7 235.05 −456.10 -437.26

MLEs are presented in Table 3.4 and are obtained using numerical optimization

in R2. The parameters σ2
η and σ2

ε are quite close, meaning that the volatilities caused

by these scaling parameters are equivalent. This implies that both of the state and

observation error terms share the volatilities of the mortality index. The parameter

β indicates the mortality index has a decreasing tendency. The degrees of freedom of

the t-distribution v, the most important parameter in this model, is estimated to be

1.3 which means that the second moment does not exist and more emphasis is put

on fat-tailed distributions. Compared to the results in model (3.4), the likelihood as

well as AIC and BIC are improved significantly, indicating the superiority of applying

fat-tail distributions.

2We can use optim, DEoptim or genoud in R to perform the optimization.
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Table 3.4: Estimated parameters for non-Gaussian SSM

φ1 = 1.2892 φ2 = −0.6397 σ2
η = exp(−9.6201)

σ2
ε = exp(−10.2831) β = 0.9916 μ1 = 2.0564

v = 1.3049

logL = 245.99 AIC = −477.97 BIC = −459.13

3.3.3 Model Diagnostic

This section discusses two diagnostic tests for the approximated model and the

error term εt, respectively. We begin and analyze the standardized one-step ahead

prediction error et obtained from the approximated SSM. First we test its normality.

We can see from the QQ-plot of standardized one-step ahead prediction errors et

(Figure 3.3) that the normal distribution fits well. The Shapiro-Wilk Normality

statistic is W = 0.93143 which gives a p-value of 0.2008 above the confidence level

0.05.

Then we test its independence. From the ACF and PACF graphs in Figure 3.3

we can conclude that there is no autocorrelation or partial correlation in et. This is

also confirmed by the Ljung-Box test (Cryer and Chan, 2008), which shows that the

corresponding statistic p-value is above the confidence level 0.05 for lags between 6

and 20.

Next, we will test whether εt follows a t-distribution. Since we are not able to

separate εt from vt because of the latent variable xt, we would use ε̃t as samples to

do the diagnostic tests. Figure 3.4 shows that the t-distribution is able to capture

the huge shock in 1918, ε̃t−dist1918 = 0.351 while ε̃Normal−dist
1918 = 0.16 as discussed in

Section 3.2, which reflects the difference of the ability to capture large shocks by the

3Use shapiro.test in R.
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Figure 3.3: Diagnostic tests on standardized one-step ahead prediction error et

t-distribution and the normal distribution.

Figure 3.4 also presents the empirical fitted cumulative distribution functions of

ε̃t as well as a t-distribution QQ-plot. Generally speaking, both of the cdf plot and

QQ-plot show that the t-distribution provides a good fit. The QQ-plot shows that

the shock in 1918 is an extreme value.

We also apply non-parametric diagnostic tests to verify the t-distribution. The

Kolmogorov-Smirnov and Cramer-von Mises tests do not reject that the ε̃t is from

a t-distribution with p-value of 0.2533 and 0.2033, respectively. According to these

diagnostic tests, the t-distribution is a reasonable choice to model shocks.

3.3.4 Model Fitting and Forecast

Figure 3.5 shows four curves: the transformed data yt, the filtering, smoothing and

one-step ahead forecast of θt based on the approximated model. The one-step ahead
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Figure 3.4: Diagnostic tests on standardized smoothed observation error ε̃t

forecast θ̂t and filtering values θ̄t are calculated using,

θ̂t = Ztx̂t = yt − vt, θ̄t = Zt x̄t = Zt(x̂t + V̂t Z
′
t F

−1
t vt),

and smoothed value θ̃t is illustrated in Section 2.3.2. While one-step ahead forecast

values reflect the tendency based on up-to-date information, the smoothed value is

closer to the mean level since it takes into account the future information.

Next, we forecast the mortality index for thirty years. With the estimated

parameters under model (3.6), we generate future paths by simulating samples from

the normal and t-distributions. Figure 3.6 shows the prediction for thirty years of yt

using 100, 000 simulated paths. Since the estimated degrees of freedom v > 1, the

theoretical mean for yt exists. Figure 3.6 also shows the 1% confidence interval, which

is symmetric around the mean value.

Figure 3.7 shows the actual prediction of the mortality index qt with mean and

1% confidence intervals.
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Figure 3.5: The plot of data yt, one-step ahead forecast θ̂t, filtered values θ̄t and

smoothed values θ̃t

1900 1920 1940 1960 1980 2000 2020 2040

0.
0

0.
5

1.
0

1.
5

2.
0

Prediction of yt

Year

yt

original data
thirty−year forecast: mean and 1% confidence interval 
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confidence interval.

3.4 The Outlier Analysis and State Space Models

In the previous two sections, we use the normal and student distributions to model

the shock effects. Figure 3.8 shows the graphs of ε̃t for these two models. Table 3.5

gives the five solid points which represent the outliers detected in Section 1.2. The

first two lines are detected shock effects from Table 1.3. Five of the largest shock

effects, according to ε̃t−distt , are consistent with the detected shocks and their values

are close to δT . On the other hand, ε̃Normal−dist
t under the Gaussian SSM model does

not capture shocks properly.

Previously we mentioned that it was not important for the mortality index to

distinguish between IOs and AOs. It is interesting to note that our model captures

the shock effect in 1946, which was detected as IO in Section 1.2. In fact, if we apply

the outlier detection technique based on θ̃t, which excludes shock effects ε̃t, neither
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Figure 3.8: ε̃t marked with detected outliers: ε̃Normal−dist
t (upper) and ε̃t−distt (lower)

Table 3.5: Comparison of shock effects

Year T 1907 1918 1921 1940 1946

δT with AIC 0.05465 0.3219 −0.0738 0.055 −0.07327

δT with BIC 0.05872 0.356 −0.07922 0.0684 −0.08466

ε̃Normal−dist
t 0.02718 0.1592 −0.04229 0.02986 −0.02359

ε̃t−distt 0.05871 0.3510 −0.06847 0.07518 −0.04859

IOs nor AOs can be detected. This means that εt is actually responsible for capturing

all of shock effects so that the baseline model does not contain any shocks.
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3.5 Comparison of Mortality Rate Models

In this section, we compare our model with other mortality index models, which have

already been discussed briefly in the Introduction.

3.5.1 Lin and Cox (2008)

Lin and Cox (2008) model the mortality index using two log-normal processes, one

for baseline mortality rates and the other for modeling shocks, that is

baseline model: q̄t = q̄t−1e(α−σ
2/2)+σZ1,t ,

shock model: Yt =

⎧⎪⎨
⎪⎩

em+sZ2,t , with probability p,

1, with probability 1− p,

mortality rate model: qt = q̄tYt,

where Z1,t and Z2,t are two independent standard normal variables. The baseline

process is a geometric Brownian motion with drift parameter α and scale parameter

σ. In terms of shocks, they use a Bernoulli distribution to model the probability

of shocks and thus a piece-wise defined function to model the shock effects with

shift parameter m and scale parameter s. They assume that these two processes

are independent, which means that the shocks do not affect the baseline mortality.

The mortality index is the synthesis of these two processes. In the case that a shock

occurs, a positive value m is added to the mean and the variance is increased by s.

But the shock at time t would not affect the next period; in other words, the mortality

rate would go back to its baseline unless there is another shock that happens at time

t+ 1. It is worth mentioning that qt is observable and q̄t is a latent variable.
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Using yt = ln(qt), we can rewrite the above model in terms of SSM,

observation equation: yt = ȳt + (m+ sZ2)Bt,

state equation: ȳt = ȳt−1 + (α− σ2/2) + σZ1,

(3.9)

whereBt are i.i.d random variables that follow a Bernoulli distribution with parameter

p. The baseline mortality is an ARIMA(0,1,0) process. Therefore, this model is a

general form of Lee and Carter (1992) where modeling shocks is much simpler. The

main difference with (3.6) is that they use two random variables (Z2 and Bt) to model

the shocks while our model uses the t-distribution. The Lin and Cox (2008) model is

much easier to fit since the combination of geometric Brownian motion and normal

error terms in the observation equation lead to an analytical form for the likelihood

function.

The main drawback is the difficulty to verify whether the baseline model follows

geometric Brownian motion and the shock effects can be modeled by a log-normal

distribution. Moreover, Table 1.3 and Figure 3.8 show that there is a negative shock in

1921, but Lin and Cox (2008) focus on positive shocks and assumed that the baseline

model can take this negative shock into account. However, Figure 3.2 indicates

that normal error term is not able to capture both positive and negative shocks.

In addition, they also simplify the calculation of the likelihood function, which would

not be accurate.

3.5.2 Milidonis et al. (2011)

Milidonis et al. (2011) use a log-normal regime switching process to model the
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increment in the mortality index. They use

Two-Regime Model: Yt =

⎧⎪⎨
⎪⎩

μ1t+ σ1Wt, Volatile Regime,

μ2t+ σ2Wt, Stable Regime,

Transition Matrix: P =

⎡
⎢⎣p11 p12

p21 p22

⎤
⎥⎦ ,

where Yt = ln
(

qt
qt−1

)
.

Based on their estimation results, the drifts of both regimes fluctuate around the

decreasing tendency rate4. Therefore, this model uses scale parameters to distinguish

between stable regime and volatile regime where most shocks appeared. Based on

Figure 1.1, the mortality index has a high volatility during the first half of the

twentieth century and a lower volatility in the past fifty years. Moreover, the volatility

may be overestimated because mortality rates would go back to baseline once shocks

happen. The main difference between these two models is that Lin and Cox (2008)

use an add-on variable Yt to model shocks so they do not allow this volatile regime

to last over one-year. Milidonis et al. (2011) model this using a transition probability

instead.

The main difference between our model and other two models is the way to model

shocks. While Lin and Cox (2008) use a shift parameter to control shock effects and

Milidonis et al. (2011) use a scale parameter to represent the volatile regime, we use

a shape parameter in t-distributions to represent the shock effects. In addition, our

model does not define the occurrence of shocks.

4It could represent the parameter redundancy.
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3.6 Pricing Mortality Bond

This section prices the Swiss Re mortality bonds issued in 2003. These bonds are

securities used by insurance companies to hedge their catastrophic mortality. The

cash flows of this bond include coupons and a face amount linked with the mortality

index at maturity. Coupons vary with the LIBOR rate while the payment at maturity

would be determined based on the realized mortality index. For instance, if there is

mortality shock during this period, the payment at maturity would be decreased.

This thesis mainly discusses the Swiss Re bond, the first mortality bond issued

in 2003. Two more mortality bonds were issued by Swiss Re Company in 2004. The

same method can be applied to get the present value. We do not consider those bonds

since they are based on a different mortality index (see Milidonis et al., 2011). We will

first introduce the payoff structure of this bond and find the actuarial present value.

We will compare our model with Lin and Cox (2008) and Milidonis et al. (2011) as

well as the industrial empirical result given by Wang (2004).

3.6.1 Design of the Swiss Re Bond

In December 2003, Swiss Re issued a catastrophic mortality bond with a principle

of $400 million that would mature in three years (from 2004 to 2006) with quarterly

coupons (totally 12 coupons) and a mortality-linked face amount at maturity.

The discounted cash flow (DCF) of the Swiss Re bond can be calculated as follows,

DCF =
12∑
j=1

Cj

(1 + r
4
)j

+
P × F

(1 + r
4
)12

, (3.10)

where the quarterly coupon value at the jth quarter is Cj =
(S+Lj)F

4
, F = $400 million

is the face value of the bond, S = 1.35% is the spread, the LIBOR rate Lj = 1% is

assumed, the nominal discounting rate r = 1% is also assumed, and the percentage
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of face value at maturity P is defined by the Swiss Re bond as follows,

P = max

(
100%−

2006∑
t=2004

losst, 0

)
, (3.11)

where

losst =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, if qt ≤ 1.3q0,

1− 1.5q0 − qt
0.2q0

, if 1.3q0 < qt ≤ 1.5q0, t = 2004, 2005, 2006,

1, if qt > 1.5q0,

and q0 = q2003.

The probability of getting two mortality shocks or more within a three-year period

is approximately

1− [P (qt < 1.3q0)]
3 − 3[P (qt < 1.3q0)]

2P (qt > 1.3q0)

≈1−
[
P

(
εt
σε

<
ln 1.3

σε

)]3
− 3

[
P

(
εt
σε

<
ln 1.3

σε

)]2 [
P

(
εt
σε

>
ln 1.3

σε

)]

=9.5717× 10−6.

For this reason, Lin and Cox (2008) approximate
∑2006

t=2004 losst in (3.11) by

maxt=2004,2005,2006(losst)
5. Then (3.11) can be written as

P =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, if qmax ≤ 1.3q0,

1.5q0 − qmax

0.2q0
, if 1.3q0 < qmax ≤ 1.5q0,

0, if qmax > 1.5q0,

(3.12)

where qmax = max(q2004, q2005, q2006). We will also use (3.12) since it is easier to handle

and leads to the same result.

3.6.2 Market Price of Risk

Obtaining that the actuarial present value of the discounted cash flow will not match

the actual face value of the bond, Lin and Cox (2008) explain this discrepancy by

5This approximation may not be accurate when the duration of the bond is long.
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introducing the mortality market price of risk, which is introduced through the Wang

(2002) transform. Generally speaking, this mortality risk premium is a surcharge on

the observed mortality imposed by investors in exchange of taking the mortality risk.

Hence, the cdf of the observed mortality index is transformed using the two-factor

Wang transform:

F ∗qmax
(x) = Q[Φ−1(Fqmax(x))− λ] (3.13)

where Φ(x) is standard normal cdf, Q(x) is t-distribution, Fqmax(x) is the cdf of qmax,

λ is the mortality risk premium. Wang (2004) concludes that the degrees of freedom

are five according to the industrial empirical result for catastrophic bonds.

Since we cannot represent the Fqmax(x) analytically, we use the empirical cdf of

qmax, which is presented in Figure 3.9. We first set λ with an initial value λ0. With

the empirical cdf Fqmax(x), the F ∗qmax
(x) can be calculated using (3.13). Then the

corresponding transformed pdf f ∗qmax
(x) can be calculated. As shown in Figure 3.9,

the Wang transformed f ∗qmax
(x) shifts to the right with more weights on mortality

shocks, specially for the extreme values. The lower graph is with the whole domain,

while the upper graph is with up to 99.8% quantile for a better view.

With N simulation paths for qmax, the percentages P (1), P (2), · · · , P (N) can be

calculated using (3.12). Then using (3.10) the discounted cash flow can be obtained

for each path: DCF (1), DCF (2), · · · , DCF (N). Then the transformed APV of the

mortality bond can be calculated using

APV (λ0) =
N∑
i=1

DCF (i)f ∗X(xi).

Finally, set APV (λ) = F to search for the numerical solution of λ. The market price

of risk for our model is estimated to be 0.4085.

Table 3.6 compares the market price of risk of our model with other models
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Figure 3.9: Empirical probability distribution fX(x) and Wang transformed proba-

bility distribution f ∗X(x) with 50000 simulation paths

discussed in Section 3.5. Our result is close to Wang’s empirical result which is

based on twelve catastrophic bonds. On the other hand, Lin and Cox (2008) and

Milidonis et al. (2011)6 both have a larger market price of risk by underestimating

shocks, since these two models are based on the normal distribution to control shock

effects.

6Use R package RHmm.
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Table 3.6: Comparison of market price of risk λ among different models

Model Market Price of Risk λ

SSM mortality rate model 0.4085

Lin and Cox (2008) 1.3603

Milidonis et al. (2011) 0.84

Wang (2004) 0.45
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Conclusion

This thesis applies non-Gaussian state space models to fit the mortality index of

the Swiss Re bond. The best model includes an ARIMA(2,1,0) process in the state

equation and a t-distribution error term in the observation equation. The degrees of

freedom of the t-distribution are 1.3, which is a fat-tailed distribution and implies

the occurrence of mortality shocks. This can also be confirmed based on the outlier

detection, from which five mortality shocks are detected, including the huge shock

caused by the Spanish flu pandemic in 1918. Our model provides a good fit, passes

diagnostic tests, and has nicer properties compared with other mortality models in

the literature. The market price of risk under this model is estimated to be 0.4 by

Wang’s transform, close to the industrial empirical result based on twelve catastrophic

bonds given by Wang (2004).
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Appendix A

The Simulation Smoother

Lemma A.1. Under the model (2.21), Zt x̃t + ε̃t = yt for t = 1, 2, . . . , n.

Proof. Using the Kalman smoother,

x̃t = x̂t + V̂t(Z
′
t F

−1
t vt + L′t rt), ε̃t = Ht(F

−1
t vt −K ′

t rt),

then

Ztx̃t + ε̃t = Zt x̂t + (Zt V̂t Z
′
t +Ht)F

−1
t vt + (Zt V̂t L

′
t −Ht K

′
t)rt

= (Zt x̂t + vt) + (Zt V̂t L
′
t −Ht K

′
t)rt.

Using the Kalman filter,

Zt x̂t + vt = yt,

and

Zt V̂t L
′
t −Ht K

′
t = Zt V̂t(T

′
t − Z ′t K

′
t)−Ht Kt

= Zt V̂t T
′
t − (Zt V̂t Z

′
t +Ht)K

′
t

= Zt V̂t T
′
t − Ft[(F

−1
t )′ Zt V̂

′
t T

′
t ].

Since Ft and V̂t are both covariance matrices, we have V̂ ′t = V̂t and (F−1t )′ = F−1t .

Then,

Zt V̂t T
′
t − Ft[(F

−1
t )′Zt V̂

′
t T

′
t ] = 0.
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To sum up,

Zt x̃t + ε̃t = yt.

Lemma A.2. Under the model in (2.21), yt = Zt x̌t+ ε̌t = θ̌t+ ε̌t, for t = 1, 2, . . . , n.

Proof. By the definition of θ̌t shown in Algorithm 2.1, as well as the definition of ε̌t,

we have

θ̌t + ε̌t = [θ̃t + (θ+t − θ̃+t )] + [ε̃t + (ε+t − ε̃+t )]

= (θ̃t + ε̃t) + (θ+t + ε+t )− (θ̃+t + ε̃+t ).

By Lemma A.1, θ̃t+ ε̃t = yt. According to the second step in Algorithm 2.1, θ+t +ε+t =

y+t . And also according to the Lemma A.1, saying that the sum of the smoothing

values of θt and εt is equal to yt, we have

θ̃+t + ε̃+t = y+t .

Therefore,

θ̌t + ε̌t = yt + y+t − y+t = yt.
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