SEMANTIC-BASED MULTI-FEATURED RANKING ALGORITHM FOR SERVICES IN SERVICE-ORIENTED COMPUTING

Ammar Alsaig

A THESIS
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE AND SOFTWARE ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

NOVEMBER 2013
© AMMAR ALSAIG, 2013
This is to certify that the thesis prepared

By: Mr. Ammar AbdulBasit Alsaig

Entitled: Semantic-Based, Multi-Featured Ranking Algorithm for Services in Service Oriented Computing

and submitted in partial fulfillment of the requirements for the degree of

Master in Applied Science (Software Engineering)

complies with the regulations of the University and meets the accepted standards with respect to originality and quality.

Signed by the final examining committee:

______________________________________ Chair
Dr. T. Popa

______________________________________ Examiner
Dr. J. Paquet

______________________________________ Examiner
Dr. O. Ormandjieva

______________________________________ Co-supervisor
Dr. V. S. Alagar

______________________________________ Co-supervisor
Dr. M. Mohammad

Approved by

Chair of Department or Graduate Program Director

Dr. Christopher W. Trueman, Interim Dean
Faculty of Engineering and Computer Science

Date
Abstract

Semantic-based Multi-featured Ranking Algorithm for Services in Service-oriented Computing

Ammar Alsaig

Service-Oriented Computing has brought great benefits for both service requesters and service providers. The potential of this paradigm cannot be achieved without efficient discovery and selection processes. The rapid-increasing volume of services and the heterogeneity of their features make the discovery and selection of services challenging. In this thesis we provide a novel vector-based ranking algorithm. The algorithm is both user-centric and semantic-based. It overcomes all restrictions and limitations that exist in previous vector-based ranking algorithms. We introduce fair ranking rules and apply them in our algorithm. The algorithm has been examined thoroughly with respect to its performance, accuracy and algorithmic complexity. We provide experimental results that show the significance and dominance of our solution over the existing ones.
Acknowledgments

Above all, I thank God for enlightening me with the knowledge and empowering me with the strength to complete this work. I thank him for surrounding me with kind people to only some of whom it is possible to give particular mention here. Without people around me, this thesis would not have been possible.

I am profoundly thankful and grateful for the support, teachings, and guidance of professor Vangalur Alagar. His knowledge and expertise in the field of mathematics and algorithms helped to build and improve the work in this thesis. Moreover, the guidance, support, and friendship of my co-supervisor, Dr. Mubarak Mohammad, has been valuable both academically and personally, for which I am extremely grateful.

I would like to extend my deepest thanks to my wife Duaa for her personal support and great patience at all times, it would have been a lonely road without her support. Without her and my children, Wedad, Sarah, and Yassir, I would not have been here. I also would like to express my thanks to my parents, and sisters for giving me their unequivocal support along the way, as always, for which my mere expression of thanks likewise does not suffice. A special thanks to my sister, Alaa who shared with me the difficulties and the joys of my years in Canada. She was a friend, a sister and a continuous support.

Last but not least, I would like to extend my gratitude to the Saudi Cultural Bureau for their financial support. I thank their staff for being always there for me to provide help.
Contents

List of Figures ix

List of Tables xi

1 Introduction 1

1.0.1 Contributions .. 4

2 Basic Concepts and Fair Ranking Requirements 5

2.1 Basic Concepts ... 5

2.1.1 Service ... 7

2.1.2 Query .. 8

2.1.3 Weights ... 8

2.1.4 Matching ... 9

2.1.5 Ranking ... 11

2.2 Requirements for a Fair Ranking Algorithm 14

2.2.1 Consumer Perspective 14

2.2.2 Algorithmic Perspective 15

2.3 Summary .. 17

3 Literature Review 18

3.1 Ranking Algorithms ... 19
3.1.1 Ranking Based on Vector-Based Similarity Measures 19
3.1.2 Ranking Algorithms Based on Graph-based Similarity Measures 21
3.1.3 Ranking based on Recommender Systems ... 22
3.1.4 Multi Criteria Decision Making ... 24
3.1.5 Analysis of Current Multi-featured Ranking Solutions 35

3.2 Similarity Measures ... 38
3.2.1 Vector-based Similarity Measure ... 39
3.2.2 Distance-based SMs: Current State of the Art 40
3.2.3 Criteria of Similarity Measure Evaluation 41
3.2.4 Evaluation Method ... 45
3.2.5 Observations and Analysis .. 50

4 General Overview on the Proposed Solution ... 57

4.1 Basic Information about The X-Algorithm ... 58
4.2 The X-Algorithm Front-end ... 58
4.2.1 Options provided to user ... 58
4.2.2 Conceptual Structure of User Request ... 60
4.3 The X-Algorithm Back-end ... 63
4.3.1 Preparation Phase ... 63
4.3.2 Multiplication Phase ... 65
4.3.3 Sorting Phase ... 67
4.3.4 General Pseudo Code of the Back End 67
4.4 Summary ... 69

5 Deeper Look Into The X-Algorithm .. 70

5.1 Weights .. 70
5.2 Modes, Semantics and the value of X ... 72
5.2.1 Ranking Modes ... 72
5.2.2 Semantics ... 73
5.2.3 Defining Scores Types ... 74
5.2.4 Exact Mode ... 76
5.2.5 Best Mode ... 76
5.2.6 Similarity Measure Pseudo Code .. 84
5.3 Symmetry in Exact Mode and Semantic Preference 87
 5.3.1 Symmetry ... 87
 5.3.2 Semantic Preference ... 90
5.4 Scaling Method ... 98
5.5 Essential Option ... 101
5.6 All Best Option ... 108
 5.6.1 The AllBest Value ... 109
5.7 Range Option ... 114
5.8 Algorithm Pseudo-code ... 118
5.9 Common Problems and Solutions ... 120
 5.9.1 Missing Feature Problem ... 120
 5.9.2 Mathematical Problems ... 120
 5.9.3 Compensation and Non-compensation Problem 121
5.10 Summary ... 121

6 Accuracy, Complexity, and Performance .. 123
6.1 Accuracy ... 123
 6.1.1 Why Google’s data? ... 124
 6.1.2 Problem of current ranking algorithm in Google Store 124
 6.1.3 Collecting and Analysing Google Store’s data 125
6.1.4 Applying our solution ... 126
6.2 Complexity .. 135
6.3 Performance .. 135
 6.3.1 Type 1 Dataset: Fixed Number of Features and Variable number of Services 136
 6.3.2 Type 2 Dataset: Variable number of Features and Fixed Number of Services 137
6.4 Summary ... 139

7 Ranking Composite Services .. 140
 7.1 Request Structure for Simple Services In a Composition 141
 7.2 Constructing Composite Request from Extended Simple Requests 142
 7.3 Responding to a Composite Request 144
 7.4 The Complexity of Ranking Composed Services 149
 7.5 Summary .. 150

8 Conclusion and Future Work ... 151
 8.1 Evaluation ... 152
 8.2 Future Work .. 153

Bibliography ... 156

Appendix ... 161

A Symmetry Calculations For Similarity Measures 161

B Limits Calculation For Similarity Measures 165

viii
List of Figures

1 Different categories of existing ranking algorithms .. 19
2 Ranking Algorithm Based on Similarity Measure .. 20
3 Structure of a service in graph-based model .. 22
4 General Structure of Recommender Systems ... 23
5 AHP pairwise comparisons .. 28
6 Different vector-based similarity measures ... 39
7 Dataset for testing the Symmetry property .. 46
8 Dataset for testing the Normalization property ... 47
9 Dataset for testing the Sensitivity to Small Changes property 48
10 Examining the Symmetry Feature in similarity measures 49
11 Examining the upper bounds of the similarity measures 51
12 Examining the Sensitivity to Small Changes Feature in similarity measures 53
13 The conceptual structure and Pseudo Code of the user request 61
14 An illustration of the Preparation Phase ... 64
15 Illustration of the Multiplication Phase ... 66
16 Illustration of the entire structure of X-Algorithm ... 69
17 Classification of semantics based on data types .. 74
18 The difference in RC behaviour when subtracted from ”1” 75
19 Different scores assignment in Exact Mode ... 75
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Types of Score assignment for More is Better Semantic</td>
</tr>
<tr>
<td>21</td>
<td>Types of scores assignment for Less is Better Semantic</td>
</tr>
<tr>
<td>22</td>
<td>Example of the method used to unify denominators</td>
</tr>
<tr>
<td>23</td>
<td>The way of applying the BoostValue on the properties based on the</td>
</tr>
<tr>
<td></td>
<td>semantics when Exact Mode is ON</td>
</tr>
<tr>
<td>24</td>
<td>Simple example that illustrates AllBest method</td>
</tr>
<tr>
<td>25</td>
<td>The assignment of different score types with Range Option</td>
</tr>
<tr>
<td>26</td>
<td>User Interface to build Query</td>
</tr>
<tr>
<td>27</td>
<td>A snap shot of the top nine Google Data as shown in the website at</td>
</tr>
<tr>
<td></td>
<td>the time of writing</td>
</tr>
<tr>
<td>28</td>
<td>Results for Case1</td>
</tr>
<tr>
<td>29</td>
<td>Results for Case2</td>
</tr>
<tr>
<td>30</td>
<td>Results for Case3</td>
</tr>
<tr>
<td>31</td>
<td>Results for Case4</td>
</tr>
<tr>
<td>32</td>
<td>Results for Case5</td>
</tr>
<tr>
<td>33</td>
<td>Results for Case6</td>
</tr>
<tr>
<td>34</td>
<td>Results for Case7</td>
</tr>
<tr>
<td>35</td>
<td>Results for Case8</td>
</tr>
<tr>
<td>36</td>
<td>Results for Case9</td>
</tr>
<tr>
<td>37</td>
<td>This figure shows how the results exhibits a linear growth</td>
</tr>
<tr>
<td>38</td>
<td>This figure shows how the results exhibits a linear growth</td>
</tr>
<tr>
<td>39</td>
<td>The structure of ESRS request</td>
</tr>
<tr>
<td>40</td>
<td>An illustration of the Service composition</td>
</tr>
<tr>
<td>41</td>
<td>The Ranking Algorithm in FrSeC Framework</td>
</tr>
</tbody>
</table>
List of Tables

1 Evaluation of Ranking Methods from Consumer Perspective 35
2 Evaluation of Ranking Methods from Algorithm Perspective 36
3 Similarity Measures that produce numbers in the range $[0,\infty]$, [Cha07] [Dan80] 41
4 Similarity Measures that produce numbers in the range $[0, Constant]$, [Cha07] [BB08] [Ibr12] [JRVF09] ... 42
5 Comparison between all Similarity Measures. .. 55
6 Results of $1 - RC$ applied on $q = 10$, and $s = [0, 20]$ 78
7 Results after removing 1 from the case $s > q$... 79
8 Results after adding 1 to the case $s > q$... 79
9 User Request .. 86
10 The values of features of each Service ... 86
11 The ranks of each Service based on the X-Algorithm 86
12 The asymmetric results produced by $Fraction_{asymmetric}$ 88
13 The symmetric results produced by $Fraction_{symmetric}$ 89
14 User Request .. 95
15 Available Services .. 96
16 Scores with $acc = 1$.. 96
17 Results of scores for the features of the available Services with $"acc = 0.1"$... 97
18 Motivation to use Scaling for MB and LB Semantics. 99
44 The Structure of CRS request for the two ESRS requests Rq_h and Rq_f. 149
45 This Table shows the ability/inability to integrate the X-algorithm options together152
46 Evaluation of the X-Algorithm with respect to consumer perspective requirements 153
47 Evaluation of the X-Algorithm with respect to consumer perspective requirements 153
Chapter 1

Introduction

Service-Oriented Computing (SOC) [SH06] has been well established as the main software development paradigm. It uses Service as the fundamental element for the development of applications in meeting social needs. SOC promotes development of distributed service applications in heterogeneous environments and provide customers to seek services with easy to use interfaces. An architectural model of SOC in which service is a first class element is called Service-Oriented Architecture (SOA) [Erl04]. The main elements of this architecture are service registry, service planner, service provider and service requester. A service provider prepares services and publishes them in service registry. A service provider can browse the contents of service registry, and then query the system for seeking services that match user queries. The planner is to deliver the services that match the user query. Given the large volume of services in the registry and the heterogeneous nature of services, finding the services that match a query according to a user's request and ranking them in a decreasing order of importance to the user are non-trivial tasks. There has to be an automatic and efficient method that can deliver ranked services to users based on their preferences. It is this problem that is addressed in this thesis.

A service can be described by many features. Typical features of a service are its functionality, its price, and other properties that describe the qualitative characteristics of the service. For
example, an air travel service is described by its routing, price, and class of travel. Therefore, service discovery process is not based on one feature or criterion of the service, but rather on many features. These features, both qualitative and quantitative features, are heterogeneous in nature. A survey of services offered by current service-based systems in many domains, such as Health Care, Power Distribution, On-line Banking, and On-line Shopping, will convince us that people use them out of necessity but are dissatisfied with their performance. We use the term “performance” in a wider sense, to mean the ability of the system to provide users the facility to construct complex requests as well its ability to deliver services that best match the user requests. Both these user-centric essentials are almost non-existent in existing systems. We can say that the service models in these systems are awfully inadequate to express complex service requirements of clients, inept to adapt to changing contextual situations, and insufficient to meet the expected needs of clients. Above all, there is no accountability when the system does not meet user expectations. To remedy this situation Ibrahim [Ibr12] proposed a rich service model, and a framework for SOC. Ibrahim also studied many query types, methods for query processing, and proposed one method for ranking services. In this thesis, we focus on service ranking.

The vector-based ranking algorithm [Ibr12] is the first contribution in SOC for ranking services on multiple features. This algorithm is executed by the planning unit in the FrSeC framework [Ibr12]. In Chapter 3 we critically review and analyse all ranking algorithms that were known including Ibrahim’s algorithm. After further scrutiny we found many limitations of all these algorithms. This motivated us to study and contribute to provide a solution that would remedy all the shortcomings and overcome the challenges faced by previous works in the literature of service ranking. The ranking algorithm developed in this thesis can be used in the planning unit of the FrSeC framework, as well as for ranking services in any service-oriented framework.

Our comprehensive study of the existing service ranking algorithms lead us to identify not
only their inadequacies, but also lead us to the conviction that we need a ranking algorithm that is both user-centric and semantic-based. The user-centric semantic-based ranking algorithm that we have developed can be customized to work correctly for all application domains. The proposed ranking method will enable the requester to formulate a “request” that specifies the query, the preferred semantics, and preferences for seeking services that not only match the query features but also agrees with the specified semantics. The ranking is driven by the semantics specified in the user request. The algorithm will rank services in decreasing order of “satisfaction” to the specified semantics.

In general, no two consumers are likely to have the same set of preferences in selecting a service or buying a product. The set of preferences will depend on their personal opinions on the quality attributes of the service. Consequently, a service request must be made user-centric. As an example, a user might prefer cheapest air travel service between two destinations, whereas another user might prefer a non-stop service between the two destinations, regardless of ticket price. The user request contains a query that specifies the attributes of the service, and semantics. That is, a query will specify features that are to “match” features in selected services and a semantic will specify the ‘meaning’ (semantics) for matching. A user might require exact match of features whereas another user might prefer best match of features. Since the meaning of “match” itself may be different for different users we defined different modes, called “best match” and “exact match” in the system. These modes are in line with their common sense usage. We allow the user to submit such mode along with a query and semantic references within the request. In general, the semantic preferences that apply to each feature in the query will be part of ‘service request’. That is, the ranking method provides the users a wide range of different options to specify in order that they can tailor the results to meet their own needs. To the best of our knowledge, there is no method that considers all the mentioned perspectives.
1.0.1 Contributions

The significant contributions of this thesis are:

- A set of criteria for fair ranking.
- A literature survey and critical evaluation of existing ranking algorithms.
- A semantic-based ranking algorithm called the X-Algorithm.
- An extension of the X-Algorithm to rank composite services.

These contributions are presented in the following manner. In Chapter 2 we discuss fair ranking and present our fair ranking criteria. In Chapter 3 we evaluate the existing ranking algorithms with respect to fair ranking requirements. In Chapter 4 we present a conceptual user interface to be used with the X-Algorithm. Also, we present the phases of the X-Algorithm execution. In Chapter 5 we discuss the different semantics and options that are normally used by consumers in choosing and judging services in everyday life. Also, we present the X-Algorithm and outline its details with examples. In addition, we introduce compensation. In Chapter 6 we present an experimental results to examine accuracy, performance and complexity of our algorithm. In Chapter 7, we extend the X-Algorithm to rank composite services. In Chapter 8, we summarize our achievements and outline future extensions.
Chapter 2

Basic Concepts and Fair Ranking

Requirements

In this chapter, we present the basic concepts of ranking algorithms. We first informally discuss how we perform implicit ranking of services in our daily life. Then, we explain how this implicit ranking should be made explicit when seeking online services. After that, we define basic terminologies involved with seeking online services. Also, we bring out some of the problems associated with ranking online services and we emphasize the need for a fair ranking algorithm, which does not exist today. Finally, we enumerate and briefly explain the requirements necessary to perform fair ranking.

2.1 Basic Concepts

In real life when we want to consume (buy) a service (product), we encounter many options. Then, we have to make a decision on which service (product) to choose. Services are described by the desired service features. For instance, when we book a flight some of the service features are number of transits to reach destination, in-flight food quality, and seat preference. Based
on these features, users decide which airlines to choose.

In general, not all features are of the same concern to all consumers. Some consumers maybe interested in only a single feature, some others maybe interested in multiple features. This requires consumers to define features that capture their interest. For instance, when renting an apartment consumers have to define some points of interest such as price, quality, and location to help real estate agents to find them the best apartment that matches their requirements.

Requirements of consumers are diverse. Some consumers will have specific requirements that they are looking for, in that they want a service that matches exactly their requirement as much as possible. For instance, consumers may look for an exact number of “stars” when they want to book a hotel room. On the other hand, some consumers may be looking for cheaper price, additional amenities, and good dining quality. Some others may have a mix of both requirements, in the sense that some features are essential while some other offers are at an acceptable level. Another example is when consumers look for an apartment to rent, they usually have a specific requirement for the number of rooms, but they may compromise on location and rent amount.

On many instances some features may contradict others. This contradiction leads to a trade-off in final selection. It is accepted that a higher quality apartment implies a higher cost for the consumer. This trade-off is resolved by knowing which feature is more important for a consumer. A consumer may compromise the low price for a better quality if the quality feature is more important than the cost. In other words, the renter would be willing to trade the low cost features for features of higher quality. However, there is no objective decision that can be made automatically regarding level of importance, because every consumer may have different degree of importance attached to different features. Therefore, it is the responsibility of consumers to define the level of importance for each feature of the service they desire. For instance, it is the responsibility for the person who's looking for an apartment to inform the
most important and the less important features to the real-estate agent. This will enable the agent to consider the most important features first, then following it the less important ones. Eventually, consumer definition of interesting features and features of importance would have an impact on ordering service selection.

We go through similar experience when we consume online services. We will encounter many options in selecting Services. In this thesis the emphasis on Service ranking and not on Service modeling. As such, we consider a Service to be a vector of features. Also, we usually have specific requirements which we formulate as a Query. Within a Query we attached a degree of importance, referred to as Weight, with each Query attribute. Finally, the available Services are matched with the Query to produce a list of Services that best fit our requirements in decreasing order of satisfaction. This process is referred to as ranking. Collectively, we refer to this process as ranking of online services based on weighted query. In order to rigorously explain this process algorithmically we define the concepts Service, Query, Weight, Matching and Results in the following sections.

2.1.1 Service

By Services we refer to the available options that we find in the market when we seek a Service. Each Service is described by single feature or multiple features. We refer to features of Service as attributes. Thus, a Service is defined as a list of attributes, where each attribute represents a feature of the Service.

\[
\text{Service} = [\text{attribute}_1, \text{attribute}_2, \ldots, \text{attributes}_n]
\]

Example 1. Suppose a car rental service is described by the three features price, car_status, and deposit_price, we represent the car rental service as

\[
\text{CarRentalService} = [\text{price}, \text{carStatus}, \text{depositPrice}]
\]
Because each Service is considered an alternative to the user, we use the terms alternative and Service interchangeably.

2.1.2 Query

Query is defined by consumers. It includes their specific requirements regarding a Service. Thus, a Query is represented as a list that includes one or more attributes. These attributes represent the favourable values of the features they want in the sought service. Hence, a Query is represented as

\[\text{Query} = [\text{value}_1, \text{value}_2, \ldots, \text{value}_n] \]

Each value in Query list corresponds to one of the attributes in the Service definition. For instance, a specific Query for the CarRentalService in Example 1 is

\[\text{Query} = [$200, \text{New}, $50] \]

where,

200 corresponds to price feature of the service.

New corresponds to carStatus feature.

50 corresponds to depositPrice feature.

2.1.3 Weights

Weights refer to the level of importance associated with each value defined in the Query. As explained earlier, the importance of introducing weights is to resolve the trade-offs. The weight corresponding to a Query is a vector of values, such that there is a one-one correspondence between a favourable value of the Query vector and the value of the weight vector. Thus, the lengths of these vectors are equal. Each numerical value in the weight vector represents the level of importance that the consumer associates with the corresponding favourable feature.
value in Query. Hence, corresponding to a Query = [value₁, value₂, ..., valueₙ] there exists a weights vector called

\[\text{Weight} = [W₁, W₂, ..., Wₙ] \]

The weight values in a weight vector can be given either numerically or as literals that can be interpreted by common sense semantics. As an example, the weight vector,

\[\text{Weight} = [\text{LeastImportant}, \text{MostImportant}, \text{NotImportant}] \]

may be used to specify the preferences of Service features. For numerical values, we use numbers in a specific scale, such as [0 − 5], where 0 represents the lowest importance and 5 represents the highest importance. For the CarRentalService shown in Example 1, the weights associated with the Query Q = [$200, New, $50] can be Weights = [5, 3, 0], where 5 is a weight associated with $200 (price feature), 3 is a weight associated with New (carStatus feature), and 0 is a weight associated with $50 (depositPrice feature).

2.1.4 Matching

Matching is a core concept of the decision making process. This is because we make our decisions considering options that satisfy all or most of our requirements. However, this process is performed implicitly in real life. In contrast, in digital world, Matching should be accomplished algorithmically. Specifically, matching process puts a user Query against the set of all available Services and produces a Matching Score. This score is a number assigned to each feature of each Service and is interpreted as a means of rewarding a specific Service feature for matching the corresponding feature in Query. Matching Algorithms produce Matching Scores based on Matching Rule/Matching Measure, where a rule defines a specific reward or penalty when matching or mismatching occurs. Matching Scores related to one Service are eventually aggregated into one value. This value represents the Matching degree of each Service to Query. We determine the Matching degree by taking the weights of each feature. A simple method
to calculate degree is to multiply each Matching Score by the corresponding weight. However, this simple method is insufficient to discriminate between Services that are relevant to a user Query.

Let us consider Example 1, in which each Service is described by the three features price, carStatus, and depositPrice. Assume we have three Services, S_1, S_2 and S_3 as three available Services in the market.

$S_1 = [300, New, 100]$

$S_2 = [200, Used/ANDGoodCondition, 60]$

$S_3 = [60, Used/ANDBadCondition, 10]$

Consider $Q = [300, New, AnyValue]$ to be the consumer’s Query and $W = [5, 3, 0]$ be the weights. In this case, the consumer is interested only in the features price and carStatus.

Let the Matching Rule be defined as follows:

\[
\text{Matching Rule} = \begin{cases}
\text{Matching Score} = 1 & \text{if } (Q_i = S_i) \text{(Matched)} \\
\text{Matching Score} = 0 & \text{if } (Q_i \neq S_i) \text{(Mismatched)}
\end{cases}
\]

By putting Q against the available Services, we can intuitively conclude that S_1 is the choice. Practically, this conclusion has been drawn based on Matching concept, where each element in the Query list is compared with the corresponding element in each Service list. Thus, by applying the defined Matching Rule on Query with each Service, we find out the following results:

<table>
<thead>
<tr>
<th>Query</th>
<th>Weights</th>
<th>Service</th>
<th>Matching Scores</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[300, New, AnyValue]$</td>
<td>$[5, 3, 0]$</td>
<td>$300, New, 100$</td>
<td>$[1, 1, 0]$</td>
</tr>
<tr>
<td>$[300, New, AnyValue]$</td>
<td>$[5, 3, 0]$</td>
<td>$200, Used/GoodCondition, 60$</td>
<td>$[0, 0, 0]$</td>
</tr>
<tr>
<td>$[300, New, AnyValue]$</td>
<td>$[5, 3, 0]$</td>
<td>$60, Used/BadCondition, 10$</td>
<td>$[0, 0, 0]$</td>
</tr>
</tbody>
</table>

By multiplying each matching score with the corresponding weight and calculating the total, we obtain the following results,
So, we conclude that S_1 matches Q because it receives the highest Matching score. However, this is a trivial case that is unlikely to happen in real life. For example, consider another Query definition $Q = [\$150, AnyValue, \$65]$. Also, assume the weights are defined as $W = [5, 0, 3]$. In this case, there is no full match. Particularly, the value 150 in Q does not match any of the corresponding features in the available Services. Similarly, the value 65 in Q does not match any of its counterparts in the available Services. By applying the same Matching Rule, we find the following results,

<table>
<thead>
<tr>
<th>Weights</th>
<th>Matching Score</th>
<th>Weighted Scores</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>[5, 3, 0]</td>
<td>[1, 1, 0]</td>
<td>[5, 3, 0]</td>
<td>8(S_1)</td>
</tr>
<tr>
<td>[5, 3, 0]</td>
<td>[0, 0, 0]</td>
<td>[0, 0, 0]</td>
<td>0(S_2)</td>
</tr>
<tr>
<td>[5, 3, 0]</td>
<td>[0, 0, 0]</td>
<td>[0, 0, 0]</td>
<td>0(S_3)</td>
</tr>
</tbody>
</table>

It is not surprising that all results are Zeros. This is because the Matching Rule has determined that all the available Services are not relevant to the defined Query. This case is more common in practice. As shown in this example, Matching provides no information as to which Service is better. To deal with similar cases where Matching is not effective we introduce Ranking concept.

2.1.5 Ranking

Ranking is a process to rank Services based upon the closeness of a Service with respect to a given Query. The difference between Matching and Ranking is that Matching rewards a Service feature only if it exactly matches the corresponding Query feature, whereas Ranking rewards every feature of a Service based upon its closeness to the corresponding Query feature. Similar to Matching, we also perform ranking implicitly in real life. In many cases, we prefer
a Service over another although none of the available options match our requirements completely. Nevertheless, we make our decision based on what we think is the best trade-off. In fact, we even say some statements that reflect our implicit ranking such as “It is not the best choice, but good for its price”, which means that we gave up some quality for a cheaper price. This also means that there was no option that meets all the desired requirements. In online Services, Ranking process cannot be performed intuitively. We need a precise algorithm for ranking. In Ranking algorithms, Ranking Score (rank) is assigned to each alternative based on a specific rule or measurement. Thus, each alternative is ordered by its rank, such that the highest ranked Service reflects higher relevance or closeness to consumer requirement. Thus, Ranking considers partial-matches and uses rules for measures for closeness.

Ranking algorithm must be designed with great care in order that the result produced by the algorithm reflects our intuitive expectations. The following example, similar to the one given in Matching section, illustrates that some ranking algorithms may mislead. We consider four Services to be ranked for a given Query vector and a weight vector.

\[
S_1 = [300, New, 100] \\
S_2 = [200, Used/GoodCondition, 60] \\
S_3 = [60, Used/BadCondition, 10] \\
S_4 = [145, New, 105] \\
Q = [150, AnyValue, 100] \\
W = [5, 0, 3]
\]

where,

\(S_1, S_2, S_3, S_4\) are the available Services in the market.

\(Q\) is the consumer Query.

\(W\) is the consumer level of importance associated with the Query.
Assume that our ranking rule is defined as follows

\[
\text{RankingRule} = \begin{cases}
5 & \text{if } Q_i = S_i \\
3 & \text{if } |Q_i - S_i| \leq \frac{Q_i}{2} & \text{& } Q_i \neq S_i \\
0 & \text{otherwise}
\end{cases}
\]

By applying the Ranking Rule on each feature of the Query and the available Services, we obtain the following results,

<table>
<thead>
<tr>
<th>Weights</th>
<th>Ranking Score</th>
<th>Weighted Scores</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>[5, 0, 3]</td>
<td>0, 0, 5</td>
<td>[0, 0, 15]</td>
<td>15(S_1)</td>
</tr>
<tr>
<td>[5, 0, 3]</td>
<td>3, 0, 3</td>
<td>[15, 0, 9]</td>
<td>24(S_2)</td>
</tr>
<tr>
<td>[5, 0, 3]</td>
<td>0, 0, 0</td>
<td>[0, 0, 0]</td>
<td>0(S_3)</td>
</tr>
<tr>
<td>[5, 0, 3]</td>
<td>3, 0, 3</td>
<td>[15, 0, 9]</td>
<td>24(S_4)</td>
</tr>
</tbody>
</table>

By looking at the total ranks for all Services, we find that Services S_2 and S_4 received the maximum rank, S_3 received the minimum rank, and S_1 received an intermediate rank. However, the options in S_2 and S_4 are different. For a consumer service S_4 is much closer to Q than S_2. This becomes evident by looking at the following table in which the deviation between the values of Services and the Query are shown.

| Feature | Q | |S_{2i} - Q_i| | |S_{4i} - Q_i| |
|------------|----|-----------------|-----------------|
| price | 150| 50 | 5 |
| carStatus | – | – | – |
| depositPrice| 100| 40 | 5 |

Since the difference between Q and S_4 is less than the difference between Q and S_2, we can say that S_4 is closer. Nevertheless, the ranking algorithm ranked S_2 and S_4 equally. The ranking method not only does not help the consumer to choose the Service closest to the request but it misleads the consumer by assigning similar ranks to different Services as if they provide the same level of quality. Therefore, we say that this Ranking Method is unfair. In the following section we explain fair Ranking and motivate the necessity to show convincingly that an algorithm is fair.
2.2 Requirements for a Fair Ranking Algorithm

Fairness is a loose term that has many perspectives. Therefore, we define fairness from two specific perspectives; from consumer perspective and from algorithm perspective. We discuss both views in the following subsections.

2.2.1 Consumer Perspective

A fair ranking algorithm from a consumer point of view is generally an algorithm that can produce results based only on the consumer's requirements, without any influence by other factors inherent to the algorithm or the system. Also, it is an algorithm that provides the consumer the closest Service to a Query. Specifically, a fair ranking algorithm is an algorithm that embraces the following characteristics.

- Allows consumers to look for better values: This means that the algorithm can find better values than the ones defined in the user request if the user demands it. For example, when a consumer defines a price a ranking algorithm that supports better values will find cheapest deals and provide them first. In a cheapest deal the price may not be closest to what was specified in a Query, but it is better for the consumer.

- Allow ranking based on numerical and non-numerical values: The will allow consumer to be able to use literal (textual) or numerical features in a Service. This reduces some of the restrictions on the consumer in finding the Service that best suits the requirement.

- Performs ranking Online (On-Spot) and without making any assumptions regarding consumer's requirement: Specifically, in addition to requirements consumers will have level of importance, and other options. Some ranking algorithms [SKR99] include offline analysis and consider other system-related criteria that are not related to the consumer requirements. This kind of analysis may result in ranking some Services higher not because
they are close to consumer’s requirement but because they meet some other system-related criteria. As a result, consumers do not receive a list that is characterized by only their requirements. The fair ranking algorithm that we discuss later will consider only consumer inputs and do not make other input or assumptions. This helps consumers to find Services tailored on their requirements as opposed to the output from other algorithms that make algorithmic assumptions and anticipatory consumers needs.

- Provide options to consumers to manipulate results: This helps consumers to see the results from different perspectives. Thus, they can choose the best trade-offs or best deals. For instance, consumers can find answers for questions like “what is the cheapest price for a best quality?, what is the cheapest price for specific rate?”, and so on.

In addition to the above characteristics that are necessary for fairness, we include efficiency and user-friendliness as two desirable characteristics for our fairness algorithm. The reason for including efficiency is that consumers hate to wait. In online businesses, one of the greatest enemies to business success is slow ranking or slow operations. In fact, waiting for too long often causes a loss for both consumers and Service providers. This is because consumers end up not selecting any Service as a result of the slow process. The reason to include user-friendliness is to enable consumers build queries without taking too much time to understand how to build a request. Also, building requests should be simple regardless the number of required features and the integrated options attached to it.

2.2.2 Algorithmic Perspective

From the algorithmic perspective a fair ranking should be consistent, flexible and timely. Below is a list of characteristics for an algorithmic perspective of fairness.

- Considers different semantics: It is necessary to support the idea of finding better values purely from an algorithmic view. To be able to find better values, the algorithm should
have a definition of what is a “better value”? Is a higher value better or is a lower value better? The answer depends upon the semantics of the features being compared. For some features, such as reliability, quality, and performance, ‘higher’ is better. For some features such as, cost and weight, ‘lower’ is better. For features that are described textually or by logical values (true/false) only exact match is acceptable.

- Produces normalized results: Normalization means producing the same range of numbers for all range of inputs. However, the specific definition of normalization is irrelevant in this view. In this level, normalized results implies that the numbers produced by the algorithm have a maximum value. Thus, regardless of the input, the output produced is always up to a maximum number. Knowing the maximum values produced by the algorithm make it more maintainable and manageable in the sense that it allows investigating the accuracy and the correctness of the results. Arbitrarily unknown results are hard to track and difficult to examine. In addition, knowing a maximum boundary helps in other subsequent processes that might use these numbers as input.

- Remains consistent: The algorithm produces the same result for the same input at any given time. That is, the environment in which the algorithm is executed should not have an impact on the generated results. This is because as mentioned earlier, we consider the fair ranking algorithm to be purely dependant on the consumer’s requirement.

- Accepts input in any range (from 0 to ∞): Some ranking algorithms [Ibr12] perform ranking only on a specific range. This puts restrictions on consumers in the sense that they cannot look for any values.

- Has no limitation on number of features included: Some algorithms [MMM12] accept only a specific number of features. This is because the number of features increase the complexity of the calculations to produce the results. However, we define a fair ranking
algorithm as an algorithm that offers freedom of choice regarding number of features. Thus, a consumer can include as many features as are necessary.

- Provides different options for results manipulation: The ranking algorithms are exposed to many inputs and different cases. For example, when two features are of the same importance to the consumer, and one is the best in a Service and the other is the best in another Service, which Service should the ranking algorithm rank higher? In this case, there is no guarantee that a specific response would be the best for the consumer. To overcome this, a fair ranking algorithm should allow consumers to have other options that can force some changes on the ranking method and generate different results. As a result, a consumer can view the results from different perspectives.

- Is built on a simple concept: This requirement is important to be able to integrate all the above mentioned requirements into the ranking method while maintaining the performance. Complex methods are difficult to comprehend and, thus, harder to change.

2.3 Summary

In this chapter, we introduced a general view on the actions we perform when we seek a Service in real life. Then, we explained how we pass through similar experience when we seek online Services. After that, we introduced the basic terminologies and concepts used in online business. Also, we discussed, through examples, the associated difficulties when seeking online services. There, we illustrated the need for a Fair Ranking Algorithm. We followed that by providing the definition of Fair Ranking Algorithm. Finally, we defined the requirements needed to perform fair ranking from two different perspectives; consumer perspective and algorithm perspective. We illustrated the basic concepts with simple examples.
Chapter 3

Literature Review

In this chapter, we review the published solutions for multi-featured Service ranking. We first review multi-featured ranking algorithms, categorized into (1) ranking based on Recommender Systems, (2) ranking based on Multi-Criteria Decision Making, and (3) ranking based on Similarity Measure. For each category, we provide a discussion on what the method is, how it works and why it is not a suitable solution for our problem. Then, we present a brief explanation and analysis of the current common solutions for the multi-featured ranking problem. However, there does not exist much work done in this category. So, we narrow down our study on Similarity Measures. We introduce a number of Similarity Measures and evaluate them in terms of evaluation criteria introduced in Chapter 2.
3.1 Ranking Algorithms

In this section, we briefly explain the published ranking algorithms, by putting them into four categories. Algorithms in each category follow one specific approach. The categories are (1) Ranking Based on Vector-Based Similarity Measures, (2) Ranking Based on Graph-Based Similarity Measures, (3) Ranking Based on Recommender Systems, and (4) Ranking Based on Multi-Criteria Decision Making, as depicted in Figure 1. For each approach, we provide a discussion regarding the functionality of the method, introduce the advantages of this method and finally evaluate the method in terms of fair ranking algorithm requirements introduced in Chapter 2. At the end of this section, we include an overall evaluation which compares all the mentioned methods. In addition, we introduce an analysis of how current Service provisioning websites adopt these methods to solve multi-features ranking problem.

3.1.1 Ranking Based on Vector-Based Similarity Measures

Similarity Measure (SM) is a method that calculates the degree of *closeness* (similarity) between two items. *Similarity Measures* can be one of two types; graph-based and vector-based. A detailed on *Similarity Measures* is presented in the next section. In this section, we discuss
the ranking algorithms built on Similarity Measure concepts where the main scoring system employed in the ranking algorithm is based on Similarity Measure. Most of the published ranking algorithms fall under this category. Although there are many ranking algorithms based on Similarity Measures, to the best of our knowledge there exists only one ranking algorithm [Ibr12] that is proposed for multi-featured Services. Since our focus in this thesis is on ranking multi-featured Services we limit our review to the multi-featured Service ranking algorithm of Ibrahim [Ibr12].

The vector-based ranking algorithm [Ibr12] is a normalized ranking algorithm that produces results in the range (0, 1). It only considers ranking the numerical features of Services. Also, this method can be applied to ranking complex or composed Services. The measure for ranking is defined by the following formula.

\[
RankingMeasure = \begin{cases}
1 & Q_i \geq S_i \\
2 - \frac{S_i}{Q_i} & Q_i < S_i < 2Q_i \\
0 & S_i \geq 2Q_i
\end{cases}
\]

(1)

where, \(Q_i\) represents the \(i^{th}\) attribute of the consumer Query, and \(S_i\) represents the corresponding \(i^{th}\) attribute of a Service.
Although this algorithm is based on a simple and intuitive measure, it fails to rank Services fairly. That is, by looking closely at the algorithm, we find that all values of attributes of Services that are less than or equal to the value of attributes defined in Query receive the highest score. This indicates that the algorithm does not consider “better values” than the one provided in the requirement. Also, it always considers a Service value that is greater than the value in the Query to be worse. This means that it’s semantic suits only certain domains, such as cost. Moreover, the algorithm considers Service attributes that are twice the Query attributes as irrelevant by assigning them all the lowest ranking score. This means that the algorithm is useful only in a specific range of input, namely for Service values that lie in the range [$Q_i, 2Q_i$], as depicted in Figure 2.

3.1.2 Ranking Algorithms Based on Graph-based Similarity Measures

Objects that encapsulate more than one feature can be represented as graphs [BM08]. A vertex in the graph represents a feature of the object and an edge represents a relationship between two features of the object. Figure 3 is an object with four features and four relationships. A Graph-Based Similarity Measure (GSM) is a measure that finds the degree of similarity between two given graphs. Ranking Based on GSM (RGSM) is a ranking algorithm that depends on a GSM to produce ranks.

RGSM models are mainly used in Pattern Recognition [DX08] [Mih04], and Image processing [RB09] applications. In these applications the ability to produce accurate results, investigate relationships between attributes and work with objects with varying number of features are more important than performance and simplicity. In fact, GSMs are known for their ability to build relations between nodes. Also, GSMs models function with binary and non-binary objects and they can produces accurate results with objects of different lengths. However, GSM models have a limited mathematical support [Mih04]. In fact, this is one of the major reasons why most of the ranking algorithms are not based on graphs. Also, GSM models are complex
Figure 3: Structure of a service in graph-based model

and run in exponential time. This means that their performance is not efficient in terms of generating fast response to requests.

In Service ranking, we need a numerical measure and hence we need a model that is wealthy in terms of mathematical support. We need operations like summing two objects which are not possible with GSM. Also, unlike in Image Processing applications, we do not need to have internal relationships between the attributes of a Service. For instance, in a car rental Services, there is no need for a relationship between a car model and a car colour. Collectively, they are just features that describe the product or the Service. In addition, we need a fast and simple method that can handle Gigabytes of Services in a timely fashion which cannot be offered by GSM models. For these reasons, GSM cannot be a solution for our ranking problem.

3.1.3 Ranking based on Recommender Systems

Recommender Systems are engines that rank the objects or items based on consumer ratings and feedback. Some systems also consider the user’s previous behaviour or profile [SKR99] [OH11]. It is usually an offline mechanism as it comprises heavy-load processes. That is, the recommendations and user profile are periodically collected, analysed and finally aggregated to a number
that reflects a rank to particular object. Then, the objects are ordered based on the aggregated score collected at recommendations calculation periods. Therefore, a user is only required to enter a textual descriptive information regarding a specific object, such as object name, to obtain the desired object. The general structure of recommender systems is illustrated in Figure 4.

The motivation for using recommendation systems for ranking can be threefold. First, it simplifies Query construction process for users. Second, it includes some intelligent processing in the sense that the system can anticipate what the users desire and provide it before they ask for it. Third, it benefits users and providers by directing the right Services to the right users.

Although the simplification of building queries is achieved, achieving the other two goals is not certain. In fact, due to the complication involved with the recommendation mechanism, problems like the harry potter problem [AT05] arose. In this problem, due to the pervasiveness of the film “Harry Potter” it was recommended at all times to all users, even for cases where the searched topic was irrelevant to the film’s content. As an attempt to solve similar problems, some studies [Han09] have proposed solutions like grouping users based on many criteria such as age and interest to preserve the relevance of the recommended items. Also, trusting the validity of recommendations is another concern regarding this ranking approach. From trusting perspective, false and meaningless feedbacks are serious problems. False feedback is
a feedback from a dishonest user who intend to maliciously degrade the rating of a certain provider, while meaningless feedback is an irrelevant feedback that was not meant to be for a particular product or a feedback that comes from an irrelevant user who's not interested in this particular category of products. For instance, a false feedback can be generated by a user who is loyal to another provider, while a meaningless feedback can come from a user whose interest does not match the category of the Service or product. Some solutions have been proposed to solve trusting issues [ZWQZ11]. They propose a framework that employs trust management models that use some methods to verify and authenticate user credentials and authorizations.

To sum up, because our goal is to provide a user-dependant ranking algorithm that can provide response on demand and in a timely manner, the recommendation systems cannot be our solution. Specifically, recommendation systems do not fit our fair ranking requirements for the following reasons. First, they lack the accuracy needed to satisfy specific user requirement, thus they are not user-dependant only. This is because they are based on anticipation rather than specific Query built by user. Second, they are offline methods, require tracking historical data, and consequently may not meet timeliness. This is against one of the main goals of our ranking algorithm which we claim to be timely. Third, they involve complicated, heavy-load processes and still face unsolved difficulties. Fourth, they are subjective and inconsistent processes that may vary from time to time. Therefore, recommender systems are not useful for fair ranking.

3.1.4 Multi Criteria Decision Making

Multi-Criteria Decision Making(MCDM) is considered a sub-discipline of Operations Research (OR) [Kah08]. MCDM is basically concerned with selection problems. These problems can be either fuzzy and subjective or numerical and objective. Many problems that can only be stated fuzzily, such as finding partners for marriage, making friends, and some that require making business decisions from anticipatory or observed information, are solved by MCDM method.
The goal of MCDM is to turn these problems into models based on numerical values and deal with them mathematically to arrive at a decision with the best trade-offs. Similar to ranking, MCDM is to produce scores for each alternative indicating their preference.

Because MCDM is to solve selection problems, some may argue that it is not relevant to ranking. It is true that in ranking no selection need to be made, because we can reorder based on relevance to input. However, we consider ranking and MCDM related for the following reasons. Although MCDM is used to make a decision, it does so based on some scores that it computes for each alternative which is similar to ranking. This means that we can use MCDM to rank. In many real-life applications selection of Services is based on ranking. For example, according to the empirical study reported in [Joa02, PHJ+07], 75% of Google users never scroll past the first page. Also, based on the report [GJG04, LHB+08] users usually look at the five top results in the list. This means, improper ranking may lead to improper selection or even non-selection, which happens when users do not care to select any alternative. For these reasons, it is legitimate to consider ranking as MCDM and vice versa.

MCDM consists of two main types. These are Multiple-criteria evaluation problems and Multiple-criteria design problems. In the former, the alternatives are either finite and known or predefined at the beginning of the process [Kah08]. This is similar to the situation for Service ranking. In the latter the alternatives are not defined and solutions might be infinite [Tek06]. So we consider only solutions to MCDM evaluation problems as suitable for ranking Services. Analytical Hierarchical Process (AHP) [Saa08] is a MCDM method that has been used to rank Services of the cloud [GVB12]. In this work, Service Measurement Index (SMI) defines a set of business-relevant Key Performance Indicators (KPIs) that provide a specific criteria for comparing business services. Thus, AHP method is applied on a pre-defined criteria and compare it given a specific user Query. The advantages and disadvantages of AHP are discussed [MMM12] [GHTH11]. These are summarized below.
Advantages of AHP

- The method is flexible and has the ability to check inconsistency between preferences. ¹
- It has the ability to rank objective and subjective data of a hierarchical nature.
- It decomposes the big comparison between Query and alternatives into a number of pairwise comparisons. Thus the larger problem is decomposed into smaller problems and their solutions are combined to get a solution to the original problem.
- It is the most reliable MCDM method.

Disadvantages of AHP

- It has the potential for Rank reversals, which means that the method produces unexpected inconsistent changes in the results when a change is performed on the alternatives set. That is, it is not a stable method that can be used for fair ranking.
- It allows compensation, which happens when good features of a Service hides the bad features. This is caused by the additive aggregation method adopted by the AHP method.
- It is a very complex and lengthy process, especially as the number of alternatives increase. This is because AHP decomposes the ranking into \((n(n-1)/2) \times (m(m-1)/2) \) (where \(n \) is number of criteria in a query and \(m \) is the number of alternatives) pairwise comparisons.
- For each pairwise comparison AHP requires users to input their preferences based on \((1 − 9)\) scale. However, users may find it difficult to choose the appropriate number.

In short, AHP cannot be expected to produce a fair solution, for the following reasons. First, it requires intensive calculations of high complexity as the number of attributes increases. This implies that we have to impose some limitation on the number of features associated with Service.

¹Inconsistency happens when the preferences are inconsistent. For example, if a is preferred over b, and b is preferred over c, then a should be preferred over c. otherwise, the preference is inconsistent.
objects. Second, users may fail to understand the impact of each number in the scale (1,9) defined for AHP. This misunderstanding can cause an inconsistent choice by the user. Third, the inconsistency problem associated with rank reversals, albeit the attempts to solve it, remains an open issue. As a result, AHP is not the best option for building a timely, simple, user-dependent and multi-featured ranking algorithm. The example shown below is to bring out the complexity of AHP method and to support our view that much simpler and faster algorithms might achieve the same result as AHP.

Example 2. In this example, we solve a ranking problem using the AHP method, and the vector-based ranking algorithm introduced in [Ibr12]. This example highlights the difference between the complexity of AHP and the vector-based algorithms, although they achieve the same result.

Problem Statement:

A car is described by the three criteria price, shipping_time and shipping_cost. It is required to choose the best car for a given query \(Q = [30000, 25 \text{ days}, 1000] \), given the three alternatives \(a_1, a_2, a_3 \).

- \(a_1 = [35000, 20 \text{ days}, 1500] \)
- \(a_2 = [40000, 30 \text{ days}, 1200] \)
- \(a_3 = [50000, 40 \text{ days}, 900] \)

Figure 5 graphically depicts the number of pairwise comparisons associated with three Services with three features.

Solving the problem using AHP:

We explain the nine steps involved in AHP method without going into the mathematical rationale for this approach. Such details can be found in [GVB12]. For each AHP step we explain the calculations done in that step and illustrate the calculation for the above problem.
• **Step 1.** Make \((n(n - 1)/2) \times (m(m - 1)/2)\) pairwise comparisons and estimate the relative weights.

In our problem \(n = 3\) and \(m = 3\). We compare \(a_1\) against \(a_2\), \(a_1\) against \(a_3\) and finally, \(a_2\) against \(a_3\) for each criterion. This means that we are going to make \(3 \times 3 = 9\) comparisons. Based on AHP definition, we have a 0...9 scale to estimate the preference of one alternative over the other.

Criterion: Price

\[
\begin{array}{cccccccccc}
| & | & | & | & | & | & | & | & |
\end{array}
\]

\[
\begin{array}{cccccccccc}
| & | & | & | & | & | & | & | & |
\end{array}
\]

Note the star on number 5 is the scale, which indicates that we prefer price of \(a_1\) five times over \(a_2\). Preferences for other comparisons are shown next.
Step 2. The Eigen vector (EV) is calculated. In this example we calculate an approximation only. For more information refer to [Tek06].

Step 3. The Reciprocal Matrix (RM) using EV is calculated. This is done by dividing each element of the EV matrix by the sum of its column. Thus, each element becomes normalized, and the column sum becomes 1.
Step 4. The priorities (PR) for each alternative on each criterion is calculated. This calculation for each alternative is basically the average of each raw of RM of that alternative.

Criterion: price

\[
PR_{a_1} = \frac{1}{3}(0.76 + 0.81 + 0.60) = 0.733
\]

\[
PR_{a_2} = \frac{1}{3}(0.15 + 0.16 + 0.33) = 0.203
\]

\[
PR_{a_3} = \frac{1}{3}(0.09 + 0.03 + 0.07) = 0.06
\]

Criterion: stime

\[
PR_{a_1} = \frac{1}{3}(0.76 + 0.81 + 0.60) = 0.733
\]

\[
PR_{a_2} = \frac{1}{3}(0.15 + 0.16 + 0.33) = 0.203
\]

\[
PR_{a_3} = \frac{1}{3}(0.09 + 0.03 + 0.07) = 0.06
\]

Criterion: scost
\[PR_{a_1} = \frac{1}{3}(0.09 + 0.05 + 0.11) = 0.084 \]

\[PR_{a_2} = \frac{1}{3}(0.27 + 0.16 + 0.15) = 0.193 \]

\[PR_{a_3} = \frac{1}{3}(0.64 + 0.79 + 0.75) = 0.724 \]

- **Step 5.** The Principle Eigen value \(\lambda_{\text{max}} \) is defined as

\[
\lambda_{\text{max}} = \text{Priority}_{a_1} \times \text{RM}_{C_1} + \text{Priority}_{a_2} \times \text{RM}_{C_2} + \text{Priority}_{a_3} \times \text{RM}_{C_3},
\]

where \(C \) refers to column sum of \(\text{RM} \), calculated in Step 2. For our example, the calculations of \(\lambda_{\text{max}} \) for the three criteria are shown below.

\[
\text{price} \lambda_{\text{max}} = 0.733 \times 1.31 + 0.203 \times 6.2 + 0.06 \times 15 = 3.1
\]

\[
\text{stime} \lambda_{\text{max}} = 0.733 \times 1.31 + 0.203 \times 6.2 + 0.06 \times 15 = 3.1
\]

\[
\text{scost} \lambda_{\text{max}} = 0.084 \times 11 + 0.193 \times 6.3 + 0.724 \times 1.34 = 3.1
\]

- **Step 6.** The Consistency Index (CI), defined as

\[
CI = \frac{\lambda_{\text{max}} - 3}{2},
\]

is calculated. Calculation of CI for each criterion is shown below.

\[
CI_{\text{price}} = \frac{3.1 - 3}{2} = 0.05
\]

\[
CI_{\text{stime}} = \frac{3.1 - 3}{2} = 0.05
\]

\[
CI_{\text{scost}} = \frac{3.1 - 3}{2} = 0.05
\]

- **Step 7.** The Consistency Ratio \(CR = \frac{RI}{CI} \), where \(RI \) is the Random Consistency Index [Saa83] is calculated. The calculated value of \(CR \) is considered consistent if
CR \geq 10\%. In [Saa83] the Random Index RI for n = 3 is given as 0.58 when n = 3.

Using it for our example, we calculate CR for each criterion,

\[
CR_{\text{price}} = \frac{0.05}{0.58} = 0.086 \times 100 = 8.6\% < 10\% \quad \text{consistent}
\]

\[
CR_{\text{stime}} = \frac{0.05}{0.58} = 0.086 \times 100 = 8.6\% < 10\% \quad \text{consistent}
\]

\[
CR_{\text{scost}} = \frac{0.05}{0.58} = 0.086 \times 100 = 8.6\% < 10\% \quad \text{consistent}
\]

- Step 8. The relative weights of each criterion are calculated. In calculating the weight of each criterion \(CW \), we assume that price is the most important to the user, then shipping cost and finally the shipping time.

\[
\begin{array}{ccccccccccc}
\text{price} & * & 9 & 7 & 5 & 3 & 1 & 3 & 5 & 7 & 9 \\
\text{stime} & 9 & 7 & 5 & 3 & 1 & 3 & 5 & 7 & 9 \\
\text{scost} & 9 & 7 & 5 & 3 & 1 & 3 & 5 & 7 & 9
\end{array}
\]

We apply the same steps applied previously on the pairwise comparisons between each alternative. That is, we apply the steps from (step2) to (step7). Hence,

\[
PR_{\text{price}} = \frac{1}{3}(0.75 + 0.64 + 0.79) = 0.72
\]

\[
PR_{\text{stime}} = \frac{1}{3}(0.11 + 0.09 + 0.05) = 0.08
\]

\[
PR_{\text{scost}} = \frac{1}{3}(0.15 + 0.27 + 0.16) = 0.19
\]

Also, we find,

\[
\lambda_{\text{max}} = 3.11
\]

\[
CI = 0.053
\]
\[CR = 0.095 \times 100 = 9.5\% < 10\% \text{ consistent.} \]

- **Step 9.** The final rank is calculated by applying the following formula for each alternative.

\[
FinalScore_{\text{alternative}} = CW_{\text{criterion}} \times PR_{\text{alternative}} + \cdots + CW_{\text{criterion}_n} \times PR_{\text{alternative}}
\]

The calculations for our example are shown below,

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Weight</th>
<th>Alternative Ranks</th>
</tr>
</thead>
</table>
| price | 0.72 | \(a_{1\text{rank}} = 0.72 \times 0.73 = 0.531 \)
| | | \(a_{2\text{rank}} = 0.72 \times 0.20 = 0.147 \)
| | | \(a_{3\text{rank}} = 0.72 \times 0.06 = 0.043 \) |
| stime | 0.08 | \(a_{1\text{rank}} = 0.08 \times 0.08 = 0.061 \)
| | | \(a_{2\text{rank}} = 0.08 \times 0.08 = 0.017 \)
| | | \(a_{3\text{rank}} = 0.08 \times 0.08 = 0.005 \) |
| scost | 0.193 | \(a_{1\text{rank}} = 0.19 \times 0.08 = 0.016 \)
| | | \(a_{2\text{rank}} = 0.19 \times 0.09 = 0.037 \)
| | | \(a_{3\text{rank}} = 0.19 \times 0.72 = 0.140 \) |

To calculate the final rank for each alternative, we simply add all it’s ranks. For example, for \(a_1 \) we add the ranks for \(a_1 \) in price, in stime and in scost. Thus,

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Final Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_1)</td>
<td>0.531 + 0.061 + 0.016 = 0.608</td>
</tr>
<tr>
<td>(a_2)</td>
<td>0.147 + 0.017 + 0.037 = 0.201</td>
</tr>
<tr>
<td>(a_3)</td>
<td>0.043 + 0.005 + 0.140 = 0.188</td>
</tr>
</tbody>
</table>

As the results indicate, \(a_1 > a_2 > a_3 \) where “\(> \)” means better.

Vector-based Ranking Algorithm [Ibr12]:

There are only three steps in this method.
1. Step 1. Assume user’s weights are given for each criteria, in a row vector W. Based on the algorithm’s definition, a weight is a value within the range $[1-5]$, where higher value indicates higher importance.

2. Step 2. Calculate the property ranks matrix PR based on the following definition. The rows of PR are the features and the columns are the alternatives.

$$PR = \begin{cases}
1 & \text{if } Q \geq \text{alternative} \\
2 - \frac{\text{alternative}}{Q} & \text{if } Q < \text{alternative} < 2Q \\
0 & \text{if } \text{alternative} \geq 2Q
\end{cases} \quad (2)$$

3. Step 3. Compute the product $W \times PR$. The result is a row matrix, giving the rankings of the alternatives.

Solution based on the above Algorithm for our Example:

1. The weights are as in AHP method.

$$W_{\text{price}} = 5 \quad W_{\text{stime}} = 1 \quad W_{\text{scost}} = 3$$

2. We calculate PR based on Algorithm 2.

$$PR = \begin{pmatrix}
\text{price} & 0.833 & 0.667 & 0.333 \\
\text{stime} & 1 & 0.8 & 0.4 \\
\text{scost} & 0.5 & 0.8 & 1
\end{pmatrix}$$

3. We compute $W \times PR$.

$$FinalRank = [5, 1, 3] \times \begin{pmatrix}
0.833 & 0.667 & 0.333 \\
1 & 0.8 & 0.4 \\
0.5 & 0.8 & 1
\end{pmatrix}$$
FinalRank = [4.165 + 1 + 2.5, 3.335 + 0.8 + 2.4, 1.665 + 0.4 + 3] = [6.665, 6.535, 5.065]

The result indicates, \(a_1 > a_2 > a_3 \) where “>” means better.

As the example shows, both AHP and the vector-based method of Ibrahim [Ibr12] have achieved the same results. The example highlights the complexity of AHP algorithm, which is many orders of magnitude higher when the number of features and the number of alternatives increase. Nevertheless, AHP remains a strong method that resolves fuzzy problems and make the most accurate decisions compared to other MCDM methods. However, we are not dealing with fuzzy problems, so AHP is not a preferred choice. Also, the vector-based approach of Ibrahim [Ibr12] has deficiencies which we want to overcome. So, our goal in this thesis is the investigation of simple, fast, yet considerably accurate vector-based methods for fair ranking.

3.1.5 Analysis of Current Multi-featured Ranking Solutions

In Chapter 2 we discussed the requirements of a fair ranking algorithm from Consumer and Algorithm perspectives. We apply these requirements to the ranking algorithms that we discussed in the previous section. We summarize our findings in Table 1 and Table 2. It is clear from this summary that none of the methods satisfy the fairness criteria.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Vector-Based</th>
<th>Graph-Based</th>
<th>Recommender Systems</th>
<th>MCDM</th>
</tr>
</thead>
<tbody>
<tr>
<td>ability to find better values</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>numerical/non-numerical values</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>online ranking without assumptions</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>options available to manipulate results</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Fast response</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>allow user-friendly Query building</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
</tr>
</tbody>
</table>

Table 1: Evaluation of Ranking Methods from Consumer Perspective
All websites and E-businesses tackle the multi-featured ranking problem using a combination of two methods. One method is one of the multi-featured ranking methods introduced previously in this chapter, i.e. VSM, GSM, Recommender, or MCDM. The second method is the concept of filtration.

The multi-featured ranking methods employed in modern websites do not include consumer requirements. They perform ranking in two levels. The first level is performed offline before publishing the Services. This level includes ranking Services based on multi-criteria defined by the website developers and administrators. This includes factors like price, provider reputation, recommendations, number of sales, payment issued by provider to increase rank and more criteria that are not defined by consumers. Then, the second level of ranking is an online ranking where they consider the textual description of the Service provided by the consumer in addition to a single criterion which is the rate/rank they produced in the first level of ranking. For example, in eBay.com or Amazon.com, the user is prompted to insert a textual description of the desired Service/product. Then, Services are provided in a certain order. This order is based not only on the textual match but other implicit criteria defined by the website developers.

The second method used to have multi-featured effect is the filtration. This concept is about
removing the irrelevant items from the result list. That is, the user is provided with certain tools or filters specific to each application domain. Through these filters, consumers can filter out the unfavourable products/Services. This is performed on-spot once a user clicks or choose those filters. For example, when a user wants to see items of a ranged price, there is no ranking performed. Rather, there is a filtration process that goes over all the results and filters out those products that are not within the specified price range.

Although the combination of the mentioned methods together provides the consumers with a multi-featured-like ranking, it can not be considered a fair ranking. This is due to the following reasons:

- The offline multi-featured ranking considers many factors. These factors are not dependent on the user request only. Thus, the user may receive unexpected results. This may lead in non-selection problem since the top ranked Services may not be the best for the user.

- Filtration does not provide consumers with other options. To clarify, in real life when we consider a specific price range, we would like to hear about those Services that meet our requirements first. However, we don’t mind hearing about those that meet all our requirements but slightly violate the range. This gives us the exposure on wider range of Services and provide us with a pure freedom to make a choice. In the same view, this allows providers to have opportunity to be exposed to wider range of consumers.

Some may argue that having internal offline ranking is beneficial for website developers. In particular, it gives developers opportunity to make financial benefits by controlling the rank list. For example, developers could ask for some extra fees to locate particular providers on top of the list in particular Service domain. Although we don’t support the idea of having any internal control in the result list, we think that fair ranking algorithm can still offer this option, with no need to offline ranking, if it has been integrated with the proper options.
Based on the evaluation shown above, we can see that there are no available methods that meet all our requirements. Nevertheless, we see that vector-based ranking are closest to our requirements. Thus, we dive into this type and try to investigate the basis of it as an attempt to come up with a method based on vectors that can meet all our requirements. The basis of vector-based ranking algorithms is called vector-based Similarity Measure, which will be our discussion in next section.

3.2 Similarity Measures

Similarity Measure is a metric that is used to calculate the degree of similarity between two items. It can be deterministic or probabilistic. SM is deterministic when its results don't change over time, and it's a probabilistic otherwise. Figure 6 shows the different types of vector-based similarity measures. Probabilistic Similarity Measure is used when solving fuzzy problems that depends on how the similarity is perceived at a certain time which might not be applicable in another time [AE07]. It is generally related to personal experience such as taste of product, or opinion about someone or something. Thus, it is not a useful measure within our scope of study. On the other hand, deterministic Similarity Measure produces the same output if given the same input at any given time based on calculations not on how it's perceived [AE07] which makes it relevant to our ranking problem. It can be applied on numbers, images, documents and any other comparable objects. However, Similarity Measures are mainly needed when a graded scale result is required. That is, the output expected of SM is a range of numbers indicating the degree of relevance between the compared objects. For example, SM for two documents can be 0, 5, or 10, indicating that the documents are not related, related by 50%, or identical.
3.2.1 Vector-based Similarity Measure

From the review done in previous sections, we conclude that Ranking Algorithms that meet all our requirements do not exist. Also, we found out that the Vector-Based Ranking Algorithms are the closest one to our requirements. Therefore, we decided to narrow down our investigation to Vector-Based Similarity Measures (VSM) which are the basis of Vector-Based Ranking Algorithms.

Vectors can be a way of describing a multi-featured objects. A dimension in the vector is also called a feature or an attribute. However, these vectors are not the vectors introduced in mathematics and physics which are represented in vector space. Rather, the vectors we are referring to are known as feature vectors [PS09]. Basically, a feature vector is an object that contains, or is described by, multiple features [SB09]. This object and its multiple features are represented as a point in multiple dimensions in the feature space [LM98]. Nevertheless, we are still able to use vectors algebraic operations such as Dot Products, and Scalar Products on such vectors. For example, a car can be described as a feature vector, where the car’s colour is a feature, its mileage is a feature and its price is a feature and so on. Thus, a VSM is a Similarity Measure that is used to calculate the degree of similarity between two given vectors.
The two types of VSM are Feature-based VSM (VFSM) and Distance-based VSM (VDSM) [XNJ02] [T+77]. The difference between the two types is that when comparing two objects in VFSM, the concept is to validate the equality between each attribute, and calculate the final results based on how many attributes of the objects are identical. For instance, for the vectors \(Q = [a, b, c] \) and \(V = [b, b, b] \), the similarity is 1. On the other hands, in VDSM the similarity of two objects is the number of attributes that differ in their vector representation. For example, for the vectors \(Q = [1, 2, 3] \) and \(V = [2, 3, 4] \) the similarity under VDSM is 3.

VFSM is beneficial when the only needed information is the equality between two features of a Service. This can work perfectly with non-numeric data types that don’t provide more than true/false kind of information such as strings and boolean. Our ranking algorithm is dependant on numbers as well. In fact, one of the key requirement of our ranking algorithm is to be able to perform comparisons between features. That is, which feature is less or more than the other. However, VFSM model cannot provide such an information. This concludes that VDSM is more applicable to our case. Nevertheless, we might need to integrate the concept of VFSM in our model when we use strings and boolean data types.

VDSM has been used in numerous scientific fields such as machine learning [Aga11], bioinformatics, genealogy, chemistry, information retrieval [Sig05], computer science, mathematics, image processing and many other fields [CYT05]. Thus, number of diverse VDSM exists. Therefore, a complete review of all of them is out of reach. However, we provide a review on most of the recent ones and ones that are highly related to our topic.

3.2.2 Distance-based SMs: Current State of the Art

We have grouped the Similarity Measures based on the range of data they produce. That is, we have created a table for each group. Similarity Measures that produce unbounded results, i.e. \([0, \infty)\) Formulas listed in Table 3 produce unbound values, while formulas listed in Table 4 produced bounded values.
(A) Euclidean Dist. L_2
\[d_{Euc} = \sqrt{\sum_{i=1}^{d} |S_i - Q_i|^2} \]

(B) City Block L_1
\[d_{CB} = \sum_{i=1}^{d} |S_i - Q_i| \]

(C) Chebyshev L_∞
\[d_{Cheb} = \max |S_i - Q_i| \]

(D) Minkowski L_p
\[d_{Mk} = \left(\sum_{i=1}^{d} |S_i - Q_i|^p \right)^{1/p} \]

(E) Kulczynski
\[d_{kul} = \frac{\sum_{i=1}^{d} |S_i - Q_i|}{\sum_{i=1}^{d} \min(S_i, Q_i)} \]

(F) Gower
\[d_{gow} = \frac{1}{d} \sum_{i=1}^{d} |S_i - Q_i| \]

(G) Lorentzian
\[d_{lor} = \sum_{i=1}^{d} \ln(1 + |S_i - Q_i|) \]

(H) Inner Product
\[d_{IP} = \sum_{i=1}^{d} S_i Q_i \]

Table 3: Similarity Measures that produce numbers in the range $[0, \infty]$, [Cha07] [Dan80]

*where S_i is the i_{th} attribute of a Service and Q_i is the i_{th} attribute of user Query

3.2.3 Criteria of Similarity Measure Evaluation

Similarity Measure is the core of Vector-Based Ranking Algorithms. Because our goal is to come up with a fair ranking algorithm, our Similarity Measure should be built with considerations to the requirements of fair ranking algorithms introduced in Chapter 2. However, because the introduced requirements were concentrated on ranking level, it had the two perspectives consumer and algorithm. On the contrary, our discussion here is at a lower level, and thus, consumer perspective is irrelevant at this stage, and part of algorithm perspective will be relevant to our discussion. Nevertheless, we will perform some changes to the requirements of fair ranking algorithm, in order to make them focused on Similarity Measures. Particularly, the requirements related to “Support Semantics, Consistency of results, Input range, Restrictions on number of features, and Options for results manipulation” are considered not relevant to Similarity Measures. We add the two new requirements Symmetry and Sensitivity to Small Differences that are relevant to Similarity Measure level. Finally, we redefine the two requirements Normalized outputs and Simplicity, that were introduced previously but explained generally.
| (I) Sørensen | \(d_{sor} = \frac{\sum_{i=1}^{d} |S_i - Q_i|}{\sum_{i=1}^{d} (S_i + Q_i)} \) | (J) Soergel | \(d_{sg} = \frac{\sum_{i=1}^{d} |S_i - Q_i|}{\sum_{i=1}^{d} \max(S_i, Q_i)} \) |
| --- | --- | --- | --- |
| (K) Cosine | \(S_{cos} = \frac{\sum_{i=1}^{d} S_i Q_i}{\sqrt{\sum_{i=1}^{d} S_i^2 \cdot \sum_{i=1}^{d} Q_i^2}} \) | (L) Canberra | \(d_{can} = \sum_{i=1}^{d} \frac{|S_i - Q_i|}{S_i + Q_i} \) |
| (M) Jaccard | \(d_{jac} = \frac{\sum_{i=1}^{d} (S_i - Q_i)^2}{\sum_{i=1}^{d} S_i^2 + \sum_{i=1}^{d} Q_i^2 - \sum_{i=1}^{d} S_i Q_i} \) | (N) Harmonic Mean | \(d_{HM} = 2 \sum_{i=1}^{d} \frac{S_i Q_i}{S_i + Q_i} \) |
| (O) Dice | \(d_{dice} = \frac{\sum_{i=1}^{d} (S_i - Q_i)^2}{\sum_{i=1}^{d} S_i^2 \cdot \sum_{i=1}^{d} Q_i^2} \) | (P) Angular Similarity | \(S_{Ang} = 1 - \frac{\cos^{-1}(S_{cos})}{\pi} \) |
| (Q) RC | \(S_{RC} = \sum_{i=1}^{d} \frac{|Q_i - S_i|}{\max(Q_i, S_i)} \) | (R) Service Ranking | \(d_{SR} = \sum_{i=1}^{d} 2 - \frac{S_i}{Q_i} \) |

Table 4: Similarity Measures that produce numbers in the range \([0, \text{Constant}]\), \([\text{Cha07}]\) \([\text{BB08}]\) \([\text{Ibr12}]\) \([\text{JRVF09}]\)

*where \(S_i, Q_i\) are the \(i_{th}\) attributes of Service, Query respectively. RC is Relative Change

Therefore, the following is a set of requirements that are relevant to Similarity Measures evaluation:

- **Symmetry**: With respect to Similarity Measure we define symmetry in this section.

- **Normalized Outputs**: With respect to Similarity Measure we redefined Normalized outputs in this section.

- **Sensitivity to Small Differences**: We define this concept with respect to Similarity Measure.

- **Simplicity**: Specific to Similarity Measure, redefined in this section.
In the following discussion we explain these requirements, their importance for fair ranking, and provide examples.

1. **Symmetry**: Let \(B = [b_1, b_2, \ldots, b_k] \), \(B' = [b'_1, b'_2, \ldots, b'_k] \) be two Services, and \(Q = [q_1, q_2, \ldots, q_k] \) be a Query. Let \(f \) be the function that computes the degree of similarity between every pair of components of the vectors. We say \(f \) has symmetry property if \(f(b_i, q_i) = f(b'_i, q_i) \) whenever \(|b_i - q_i| = |b'_i - q_i| \)

Example 3. Let \(q = 100 \), \(b = 10 + q = 110 \), \(b' = q - 10 = 90 \) where \(q \) is an attribute in the user Query, \(b \) and \(b' \) are values of attributes in two different Services. A symmetric Similarity Measure should produce equal scores for \(b \) and \(b' \) with respect to \(q \).

Symmetry is important for the following two reasons:

- When a user expects exact match and exact matching is not possible in the available Services, the Similarity Measure with symmetry produces the rankings which are closer to user expectation.

- To pave the road for introducing semantic preference in our ranking algorithm. During ranking, it is better to group together similar Services, which is achieved by Similarity Measure and then apply semantics within a group to discriminate the best semantically. To clarify this point, let us consider the semantics of attributes. Let the cost attribute be \(q \) in Query, and \(b, b' \) are attributes in two different Services as defined above in Example 3. Then, even though \(b \) and \(b' \) have the same difference from \(q \), \(b' \) is better as it is less costly. Because symmetry will force \(b \) and \(b' \) to be ranked the same, we boost the score of \(b' \) by adding a small constant value to it. Because the constant is small, it won’t produce imbalance in the overall ranks, and at the same time it would make \(b' \) rank higher than \(b \). Further details on the choice of boost value are introduced in Chapter 5.
2. Normalized scores: Scores are normalized, in the sense that they are adjusted to a common scale. Consequently, scores are bounded. As an example, let the attribute of a single-attribute Query be \(q = 100 \) and the attribute values of three single-attribute Services be \(a = 90, b = 80 \) and \(c = 70 \). The scores produced by the Similarity Measure are normalized if they are relative to the same bound. If the normalization constant is chosen to be 100, the normalized scores for \(a, b \) and \(c \) are 0.90, 0.80 and 0.70 respectively.

This criterion is important for the following reasons:

- To produce interpretable results. In fact, similarity measures in a ranking system maybe exposed to unbounded numbers. Theoretically, the attributes of Services and Query are lower bounded by zero but upper bounded by \(+\infty\). This means that if the Similarity Measure does not produce normalized outputs, it will produce an unexpectedly sparse numbers which cannot be understood.

- To minimize the influence of big numbers (scores) in the final ranking. When a Query has many attributes, the ranking or scoring system has to aggregate the sub-scores in some manner to compute the final score. One example of aggregation is the additive aggregation, in which all sub-scores are added to compute the final score. Having differences in the range of values of attributes will affect the fairness of the results in the sense that attributes with big values will have more influence on the total rank. By normalization of each attribute value, this influence can be eliminated.

3. Sensitive to small changes: We want a Similarity Measure to be able to detect small differences between Services. As an example, let a Query be described by a single attribute \(q \), where \(q = 50 \), and let available Services also described by single-attributes \(b \) and \(c \), where \(b = 50.01 \) and \(c = 50.02 \). A Similarity Measure is sensitive to small difference if it produces different scores for \(b \) and \(c \).
This characteristic is necessary for the following reasons:

- To ensure fairness of ranking it is necessary that even a small difference in the input should make a difference in the produced ranks.

- The algorithm can be employed to a variety of application domains where a small percentage of change is crucial to correct ranking. These include trading in precious metals and dealing with the presence of chemicals in food and drugs.

4. Simple: A Similarity Measures should be simple to calculate and easy to apply. Mathematically simple means that it's function definition is linear. Also, it should not be prone to mathematical violations such as division by Zero. Practically simple means it can be applied easily. This involves that it involves minimum number of operands and operations. The simplicity is important for the following reasons:

- To easily integrate the Similarity Measure with user preferences and other options.

- To easily integrate other features of our algorithm such as semantic-awareness and different datatypes support.

- To introduce composition and other subsequent calculations while maintaining the timeliness of the execution.

3.2.4 Evaluation Method

In this section, we explain the experimental analysis conducted on the Similarity Measures listed in Tables 3, 4 for the three specific properties symmetry, normalized output and sensitivity to small changes. The goal of this exercise is to test each published method for its potential for use in a fair Service ranking. In order to achieve this goal we created specific datasets for testing specific properties, and used Matlab [HL97] for numerical calculations, analysis, and graphical displays.
We restricted to Query and Services with two attributes. The outcome of the experiments do not depend on the Query, but rather on the available Services and the methods that compute similarity measures, so we fixed the Query $Q = [120, 14]$ and varied the datasets of available Services for conducting the experiments.

Let $S_x = [att_1, att_2]$ be a Service. In general, many Services are created by assigning values at random to att_1, and att_2. However, it is sufficient to make an analysis for symmetry and other properties on one attribute at a time. Therefore, we can fix the value of one attribute in the Service, say att_2, and then vary the values of att_1 to create a dataset. There is no loss of generality in fixing the value of att_2 to 14, which is the same as the value of the second attribute in the Query. The reason is if we choose any other number there will be a constant (the difference between the value of att_2 and q_2) factor throughout the calculations and it will not affect the final outcome.

We use the notation $Q(1)$ to refer to the first attribute of the Query, and $Q(2)$ to refer to the second one. Similarly, $S_x(1)$ refer to the first attribute of the x_{th} Service, and $S_x(2)$ refer to the second attribute of the x_{th}.

The numbers of $Q(1)$ and $Q(2)$ were chosen randomly with no specific reasons. However, values of S_x were chosen carefully to examine specific characteristics.

In the following paragraphs, we explain more details about each characteristic:
1. **Testing Symmetry Property**: We created the dataset in Figure 7. We started our Services list with Service $S_1(1) = 0$. Then, we added a value of 10 to first attribute of the next Service in each step. Hence,

$$S_2(1) = S_1(1) + 10 = 10$$

$$S_3(1) = S_2(1) + 10 = 20$$

$$\vdots$$

$$S_x(1) = S_{x-1} + 10 \text{ where } x \neq 1$$

The last Service in the dataset, $S_{25} = 2 \times Q(1) = 240$ which is an image to $S_1(1)$ around $Q(1)$. We call this dataset a symmetric dataset because each Service in the dataset has an image around Q. We compute the similarity using each one of the function defined Table 3 and Table 4. We plot the results of this study in Figure 10. In addition to the practical study, we formally examined the symmetry property for each function and included the results in Appendix A.

2. **Testing Normalized Output Property**: Figure 8 displays the dataset used to test this property. We took a large dataset because we wanted to examine whether scores are produced within specific range no matter how large is the difference between the Query and
the Service. Our practical findings is plotted in Figure 11. Additionally, similar to Symmetry, we have supported our practical finding with a formal study on each Similarity Measure in Appendix B.

3. Testing Sensitivity to Small Changes Property: Figure 9, shows the dataset used to test this property. We made a dataset with small differences between each Service. Thus, we started our Services list with Service $S_1(1) = 119.00$. Then, we added a value of 0.01 to first attribute of the next Service in each step. Hence,

$$S_2(1) = S_1(1) + 0.01 = 119.01$$

,

$$S_3(1) = S_2(1) + 0.01 = 119.02$$

$$\vdots$$

$$S_x(1) = S_{x-1} + 0.01$$ where $x \neq 1$

The last Service in the dataset, $S_{201} = 121.00$ which is an image to $S_1(1)$ around $Q(1)$. Hence, the dataset ranged between $[119.00 - 121.00]$. We illustrate our findings regarding sensitivity in Figure 12.
$Q(1) = 120, S_x(1) = [0 - 240], \#Services = 25$

Figure 10: Examining the Symmetry Feature in similarity measures
3.2.5 Observations and Analysis

Similarity Measures (A),(B),(C), and (D) in Table 3 come under Minkowski family, and their characteristics are similar. Thus we only include one of them, which is Euclidean distance. Similarity Measures (H) and (N) in Table 3 are not considered, as they fail to comply with any of the required characteristics. Below, we evaluate each Similarity Measure in terms of the requirements introduced earlier.

1. **Symmetry**: Based on Figure 10, Similarity Measures (E), (H), and (R) from Table 3 and Similarity Measures (I), (J), (K), (L), (M), (N), (O), (P), and (Q) from Table 4 are asymmetric. On the other hand, Similarity Measures (A), (F) and (G) from Table 3 are symmetric. The reason why (A),(F) and (G) are symmetric is because they are either divided by a constant like (F) or they are based on absolute difference, i.e not normalized. However, if we look at the asymmetric Similarity Measures, we find all of them normalized which is the main reason why they are not symmetric. That is, because they are all normalized to the values of S, Q or a sum of both, any change in the values of Q or S generates a change in the final value, even if it is a symmetric change. For example, The Similarity Measure (L) is normalized to \(|Q+S| \) Table 4, thus, if we consider \(Q = q \), and \(S_1 = q + 10 \). By substitution in (L) formula we find \(d_{can} = \frac{10}{2q+10} \). However, if we assume \(S_2 = q - 10 \), which is an image value to \(S_1 \) around \(Q \), we find \(d_{can} = \frac{10}{2q-10} \) which is not equal to \(\frac{10}{2q+10} \).
\[Q(1) = 120, \quad S_x(1) = [0 - 12000], \quad \#\text{Services} = 1201, \text{ with difference of 10 between each Service} \]

Figure 11: Examining the upper bounds of the similarity measures
2. **Normalized Outputs:** By looking at Figure 11, we can identify the bounded and unbounded *Similarity Measures*. Specifically, all *Similarity Measures* in Table 3 are unbounded where all *Similarity Measures* in Table 4 are bounded. As mentioned previously, symmetry and normalization are contradictory features. The absence of one allows the presence of the other. This is explained earlier in the symmetry discussion introduced above.
$Q(1) = 120, S_x(1) = [119.00 - 121.00], \# Services = 201$, with difference of 0.01 between each Service

Figure 12: Examining the Sensitivity to Small Changes Feature in similarity measures
3. **Sensitivity to Small Differences**: In Figure 12, we find two types of shapes: shapes that are curvy in the middle, and shapes that are pointy. This difference indicates the ability/ inability of the Similarity Measure to capture small changes in S values. The curvy shapes are formed because the Similarity Measure produced similar results for different S values that differ by 0.01. In fact, the results are not exactly similar, but there are high precision differences that a regular arithmetic tool would consider them similar. Although this problem can be avoided by using special arithmetic tools that can detect high precision variations, it is not preferable solution since this complexity is created only with 0.01 difference. The pointy shapes are formed because the Similarity Measure produced different results with each change in S values, which is an indication of the ability to capture small differences in the input. There are only three Similarity Measures that are insensitive to small changes in the input data. These are Similarity Measures (K), (M), and (O) in Table 4. The reason behind this limitation is the fact that the results of these Similarity Measures are normalized to big numbers. Thus, the bigger the denominator in Similarity Measures the higher the precision of the change in the produced numbers and the less the ability of regular arithmetic tools to detect them. Although the curves in Figure 12 are symmetric, they don’t prove the presence of this characteristic in the corresponding Similarity Measure. The curves are symmetric simply because the numbers are different from each other by a very small difference which make the results almost similar and hide the asymmetric nature of Similarity Measures. For instance, consider our Similarity Measure to be (I) and assume Q = 10 and let’s have two symmetric inputs $S_1 = 9.99, S_2 = 10.01$. Hence, by substituting in Similarity Measure (I), we get $r_{s1} = d_{sor} = \frac{|9.99 - 10|}{10 + 9.99} = 0.00050025$, while $r_{s2} = \frac{|10.01 - 10|}{10 + 10.01} = 0.00049975$. Thus, the difference between r_{s1} and r_{s2} is 0.0000005 which cannot be detected in the graph.

Remark. Similarity Measures (J) and (Q) in Table 4 seem to be similar but they are not. In
Table 5: Comparison between all Similarity Measures.

<table>
<thead>
<tr>
<th>Criterion</th>
<th>(A)</th>
<th>(E)</th>
<th>(F)</th>
<th>(G)</th>
<th>(I)</th>
<th>(J)</th>
<th>(K)</th>
<th>(L)</th>
<th>(M)</th>
<th>(O)</th>
<th>(P)</th>
<th>(Q)</th>
<th>(R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symmetry</td>
<td>✓</td>
<td>✗</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>Normalized outputs</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Simplicity</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Table 5 summarizes the comparison between the Similarity Measures in Table 3 and Table 4.

In summary, none of the examined Similarity Measures meets our requirements. However, there are six Similarity Measures that meet three requirements out of four. These are Similarity Measures (A), (F), (I), (J), (L), and (Q). The first two don’t meet the normalization requirement. The rest lack the symmetry characteristic. We want to avoid the mathematical study involved with normalizing unbounded numbers. Thus, we exclude (A) and (F) from our list of options. As a consequence, we are left with Similarity Measures (I), (J), (L), and (Q). The Similarity Measures (I) and (J) are excluded because they aggregate the results of all attributes of Query and Service in one step. This makes it hard on us to integrate scalars with each element. Also, all the candidate Similarity Measures except (Q) have denominators as total values. This increases the value of denominator and thus increases the precision needed to recognize small differences. Unlike other candidates, Relative Change (Q) Similarity Measure shows a simple
structure and captures highest details. Also, it only includes one number in the denominator which makes it always able to capture smaller differences. Thus, we decide to improve on it and try to customize it to meet our required characteristics.
Chapter 4

General Overview on the Proposed Solution

In this chapter, we introduce a general overview of the proposed fair ranking algorithm, the X-Algorithm. We first provide the basic mathematical background for the algorithm. Then, we explain the algorithm in the two dimensions, the front end and the back end. The front end represents the part of the algorithm that relates to end-users, where users need to define a query, preferences and make use of the options offered by the algorithm. There, we introduce, in abstract, all the options available for the user. Also, we illustrate how they can be conceptually structured altogether as one entity. After that, we introduce the back end, where the algorithm performs the actual ranking based on users’ entries and requirements passed through the front end. As part of this discussion, we briefly discuss the steps to obtain the final ranking results. At the end of the chapter, we briefly summarize the information given in this chapter.
4.1 Basic Information about The X-Algorithm

The X-algorithm is a user-based, semantic-based and vector-based ranking algorithm; It is to rank Services in service-oriented systems. The Algorithm is called The X-Algorithm because of the "X" variable that is used to introduce semantic-awareness in the ranking algorithm. Details about this variable and how it helps to rank diverse semantics differently is introduced in next chapter. It is user-based in the sense that it produces results based on only the user's requirements. That is, it does not make any assumptions or infer any knowledge from external resources or previous behaviour such as recommender systems. The X-Algorithm is also a semantic-aware algorithm. This is because the ranks produced by the algorithm considers the semantics or type of data in addition to its value. Finally, the algorithm is a vector-based algorithm as it considers Query, Services and all other listwise variables as feature-vectors\(^1\). Essentially, the X-Algorithm is based on a Similarity Measure, called Relative Change(Q), introduced in the previous chapter.

4.2 The X-Algorithm Front-end

This section is divided into two subsections. In the first subsection, we enumerate the options offered by the X-algorithm to end-users. Also, we introduce a brief explanation for each option. In the second subsection, we illustrate, through figures, the conceptual structure of the user request, including the Query, Weights, and Preferences. Finally, we introduce a pseudo code for the user request.

4.2.1 Options provided to user

In this subsection, we enumerate the available consumer options that enforce changes on the results. The algorithm offers two types of options; feature-option and query-option. The feature-vectors are n-dimensional vectors that are used to describe a specific object [LM98, LY93]
options can be set for each feature separately. On the other hand, query-option is an option that can be set for the entire Query, and cannot be different for different features in the Query.

Feature-Options

1. **Exact/Best Mode**: Each feature of the Query can be in one of these modes. *Exact Mode* means the user is interested to find Services that exactly match the values in the Query. In contrast, *Best Mode* means the user is interested to find better values than the one defined in the Query. That is, in *Exact Mode* the value defined in the Query is considered the best value, while in best mode, the value defined in the Query is the minimum requirement.

2. **Range of values**: This option is available only for numerical features. It implies that the user chooses to enter range of values rather than one single value. An example is when the user enters a range of accepted price.

3. **Essential values**: This option is available for numerical and non-numerical features. It allows the user to make one feature or group of features as non-negotiable. This prompts the algorithm to first meet this/these essential feature(s) and then the other non-essential features.

4. **Semantics**: This option can be either system-based or user-based. In case it is to be set by the user, it is included in the user request. Through this option the user can define the meaning for better or worse to a specific feature. Thus, the features can be ranked based on the semantics. For example, if a cheaper price is better for a user, the semantic for this feature should be “Less is Better”. This will prompt the algorithm to prefer the less expensive prices over the more expensive ones. Similarly, if the user defines it as “More is Better”, the algorithm will prefer the more expensive prices over the less expensive ones.
Query-Options

1. AllBest option: This option is available for the entire Query. Once set, it prompts the algorithm to prefer the Services that meet all requirements for all features first. Thus, it forces the algorithm to prefer Services that offer meet all requirements (even if minimum requirement) for all features over ones that offer good values for all features but violate the requirement of one feature.

2. Algorithm Accuracy: This option can be either a system-based or a user-based option. In case it is considered a user-based, it is included in the user request. Thus, user can set the accuracy of the algorithm as to indicate an acceptable error rate.

3. Essential Accuracy: Similar to algorithm accuracy, it can be based on system or users. When it is a user-based, it is included in the user request as to indicate the error rate of the essential option. Thus, this option is in effect only if essential option is "ON" for any feature.

4.2.2 Conceptual Structure of User Request

In this subsection, we provide a conceptual structure of the user request. User request consists of three entities; Query which includes the preferred values for each feature, Weights which includes level of importance for each value defined in Query, and Preferences which contains the options enumerated in the previous subsection. To combine those three entities in one object, we introduce the conceptual structure in Figure 13.

Example 4. In this example, we provide a user request for a wireless service. Assume the wireless service has the four features: Price per month(CAD), service range(meter), Internet Speed(MB/second), Download Limit Per Month(GB). Thus, it's defined as

\[Q = [\text{Price(CAD)}, \text{ServiceRange(m)}, \text{Speed(MB/s)}, \text{Download(GB/month)}] \]
Assume that the user is interested in a range of prices and prefers the price to be within the range (80-40). However, within the range the user thinks less values are better. Also, the user is interested in better(higher) Internet speed and download limit where the minimum requirement is (15 MB/second) and download limit of (120 GB/month). However, for security purposes, the user wants the exact service range specified in the Query as to not make the wireless service to be accessible from outside certain area. The user wants to see first the services that meet all requirements. Hence, the most important feature is the price, then comes the service range, then
come speed and download limit which are of the same importance.

Assume our weights are in the range (0, 5) where 5 means most important, and 0 means not important. Considering user requirements, we can translate the requirements to query, weights and preferences. Hence,

- **Price**: Options Range and Essential are used. This is because price is non-negotiable feature. Also, the semantic of price is “Better is Less” as the user wants to see less values within the range first.

- **Service Range**: Exact Mode option is used. Thus, algorithm will look for exact values or closest to one defined in the query.

- **Speed**: Best Mode option is used with the semantic “Better is More”. This is because higher speed and download are better as the user specified in the requirements.

- **Download**: Best Mode option is used with the semantic “Better is More”.

- **Because user wants to see services that meet all requirements first, ShowAll option is used.**

- **For options that are not specified by users, like Mode or semantics for any feature, we use ANY to indicate that it does not matter for the user.**

- **In this example, we assume the accuracy is set by the system.**

Following the conceptual structure introduced earlier, and considering the definition of the user request defined above, we define the following pseudo code for the user request.
Algorithm 1: Pseudo Code of the user request object

```
begin
Class: UserRequest
Query = [80,10,10,120]
Weights = [5,5,3,3]

// feature-options preferences
Range = [40,0,0,0] // 40 is a lower value of the price range
Mode = [ANY, Exact, Best, Best]
Essential = [True, False, False, False]
Semantic = [BetterLess, ANY, BetterMore, BetterMore]

// query-options preferences
AllBest = True
end
```

4.3 The X-Algorithm Back-end

The back end of the algorithm is where the actual ranking performed. The X-Algorithm performs ranking in three different phases. These phases are: Preparation Phase, Multiplication Phase and Sorting Phase.

4.3.1 Preparation Phase

This phase is divided into two steps: the Measuring Step and the Scaling Step. In the Measuring Step, the attributes of Query and Service are involved in a pairwise comparison. This comparison produces unnormalized numbers that are based on different scales. Therefore, the results of the pairwise comparison proceeds to the next step which is Scaling Step. Thus, the goal of Preparation Phase is the following:

1. Perform pairwise comparison between the attributes of Query and available Services.

2. Consider the following parts of the user request: Query, Semantic, Mode, Range, and Algorithm Accuracy.

3. Normalize the results of pairwise comparison to a common scale.
4. Generate the Prepared Matrix (PM).

In Measuring Step, the algorithm uses Query, Semantics, Mode, Range, and the Algorithm Accuracy as specified in the user request. In addition, the available list of Services is considered another input in this step. Hence, the algorithm takes each attribute of Query and compare it against an attribute of one Service using the defined Similarity Measure defined in next Chapter.

In Scaling Step, the produced numbers from the Measuring Step are justified into a common scale. Hence, each pairwise comparison result passes through a scaling method. This scaling
method adjusts the results to one common scale that is used for all other results. Finally, results of the Scaling Step are recorded in the Prepared Matrix (PM). The rows of this matrix are the attributes of different Services with respect to the attributes of Query. That is, the i_{th} row is PM matrix contains the scores of the i_{th} attributes of available Services with respect to the i_{th} attribute in Query. The columns of PM matrix are the available Services. The PM matrix is generated using the following components from the user request: Query, Mode, Semantic, Range and Algorithm Accuracy. Also, the results in PM are all normalized to a common scale. Figure 14 illustrates both steps.

4.3.2 Multiplication Phase

In this phase, the results are tailored to the needs of consumers. In essence, the level of importance, whether essential or not, are used in this phase. Hence, Weights, Essential, and Essential Accuracy are considered in the calculations. This phase is introduced to perform the following tasks:

1. Calculate the total Weight vector (Regular Weight + Essential Weight)
2. Multiply PM by the Weight vector.
3. Generate the Unsorted Ranks (UR) list.
4. Apply AllBest preference based on the user request.

The level of importance introduced to the PM matrix by multiplying the Weight vector by the PM matrix. However, because Essential option is basically an extra weight assigned to the essential feature to outweigh the importance of other non-essential features, we divide Weight vectors to two sub-vectors; Regular Weight vector and Essential Weight vector. Hence,

\[Weight = RegularWeights + EssentialWeights \]
After this addition, the Weight vector is multiplied by the PM matrix to produce what's called the *Unsorted Ranks* (UR). Hence,

$$UR = Weight \times PM$$

$$UR = (weight_1, weight_2, \ldots, weight_n) \times \begin{pmatrix} S_{11} & S_{12} & \cdots & S_{1n} \\ S_{21} & S_{22} & \cdots & S_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ S_{m1} & S_{m2} & \cdots & S_{mn} \end{pmatrix}$$

where,

S_{mn} is the score of the m_{th} feature of the n_{th} Service. Thus, the total rank of the i_{th} Service is
calculated as,

\[\text{TotalRank}_{S_i} = weight_1 \times S_{1i} + weight_2 \times S_{2i} + \ldots + weight_n \times S_{ni} \]

Since \(UR \) is a list of unsorted ranks of all \(Services \),

\[UR = [\text{TotalRank}_{S_1}, \text{TotalRank}_{S_2}, \text{TotalRank}_{S_n}] \]

\(UR \) is a list that contains the final ranks of all \(Services \) but these ranks are unsorted. This introduces us to the final phase, the Sorting Phase. In Sorting Phase there is one last user preference that is used which is AllBest option. Generally, AllBest preference prompts the algorithm to add values to the final rank as to prefer \(Services \) that meet at least all the minimum requirements of the \(Query \). The added value is obtained based on some calculations introduced in Chapter 5. Figure 15 depicts the Multiplication Phase.

4.3.3 Sorting Phase

This phase receives \(UR \) vector from the Multiplication Phase and applies a sorting algorithm to sort the list. Any sorting algorithm can be employed to sort the list in non-increasing order of ranks. However, we preferred the Quick Sort algorithm because it is stable [CLRS09]. The output of this phase is what we call Sorted Ranks (SR). Thus, this phase is to perform the following tasks:

1. Apply a sorting algorithm on \(UR \) vector and sort it in non-increasing order.

2. Generate the Sorted Ranks (SR).

4.3.4 General Pseudo Code of the Back End

In this subsection, we provide an abstract pseudo code of the back end. This pseudo code is shown in Algorithm 2.
Algorithm 2: General Pseudo Code of the X-Algorithm Back End

begin
 // Preparation Phase
 Input: query, range, semantic, algoAccuracy, mode, ServicesList
 Output: PM matrix
 for $i \leftarrow NumberOfServices$ do
 service \leftarrow ServiceList[i]
 for $j \leftarrow NumberOfFeaturesInQuery$ do
 preferences \leftarrow [range, mode, algoAccuracy, semantic]
 unnormalizedRank \leftarrow
 SimilarityMeasure(service[j], query[j], preferences)
 normalizedRank \leftarrow ScalingMethod(unnormalizedRank)
 $PM_{ij} \leftarrow$ normalizedRank
 end for
 end for
 // Multiplication Phase
 Input: essential, essentialAccuracy, AllBest, weights, PM
 Output: UR list
 essentialWeight \leftarrow calculateEss(essential, essentialAccuracy)
 TotalWeight \leftarrow weights + essentialWeight
 UR \leftarrow DotProduct(TotalWeight, PM)
 UR \leftarrow ApplyAllBest(AllBest, UR)
 // Sorting Phase
 Input: UR list
 Output: SR list(Descending Order)
 SR \leftarrow QuickSortDescending(UR)
end
4.4 Summary

In this chapter we have introduced the basic concepts of the X-Algorithm. We explained the X-Algorithms from two different views: front end back end. For each view, we discussed its functionality and its pseudo code. Figure 16 summarizes the structure of the X-Algorithm.
Chapter 5

Deeper Look Into The X-Algorithm

In this chapter, we expand the general information provided in previous chapter with details. We discuss each feature of the X-algorithm in terms of why and how it was integrated. Also, we support each option by a comprehensive example that touches all dimensions of the option. Finally, we provide an inclusive pseudo code that takes into consideration all options and characteristics of the algorithm.

5.1 Weights

Weight is a non-negative number assigned to represent level of importance for each feature in a Query. Thus, Weight Vector has the same length as Query. This vector is to be eventually multiplied by a matrix to be defined later in order to produce the ranks of Services. The different kinds of weights are defined as follows:

1. Significant (weight = 0.005): This weight is the highest weight (w_h) in our algorithm. It is assigned to a feature with highest significance.

2. Normal (weight = 0.003): This weight is assigned to a feature of a normal importance. Most of the features are usually at this level of importance.
3. Low \((weight = 0.001)\): This weight is assigned to a feature if it is not considered important, yet its existence causes measurable impact on the generated ranks.

4. Insignificant\((weight = 0.0001)\): The feature assigned this weight is not considered by the algorithm unless it is required to discriminate between equal Service rankings. That is, if two Services have all features of similar quality and differ from each other only because of an insignificant feature, the Service with better insignificant feature ranks higher. This means that there is a slight consideration given for insignificant feature. This weight \((w_l)\) is the lowest among the weights.

5. Do Not Consider\((weight = 0)\): A feature of this weight will not be considered in the generated ranks even if qualities of other features match. Users can achieve the same results by not including this feature in Query definition at all.

The defined weights have two main characteristics. First, they are small. The reason is that in our ranking algorithm, we construct a matrix by integrating many options that may increase the matrix elements. If the weights are not small numbers, when we multiply this matrix with the weight vector the final rank value may grow exponentially and become unmanageable. Second, the difference between weights is set as 0.002. In previous works \([Ibr12]\) sequential weights, such as 1, 2, 3, \ldots or 0.01, 0.02, 0.03, \ldots have been used. Based on our practical observations we found that sequential weights of small order, such as 0.001 and 0.002, are not very effective and can easily make almost similar results. Based on empirical study, we found 0.002 to be sufficient to make the desirable difference. So, we use a distance of 0.002 between weights to generate measurable difference between the ranks.
5.2 Modes, Semantics and the value of X

We introduce modes as a means to provide more options to users in specifying their preferences and to simulate real life experience. In this section, we introduce the different ranking modes offered by the X-Algorithm. Also, we discuss how the modes give the basis to introduce semantic-awareness to the X-Algorithm. Then, we introduce the semantics of data encountered by the algorithm. After that, we integrate the semantics into our algorithm. We follow this by a pseudo code illustrating how all semantics are handled in the X-Algorithm. Finally, we provide an example illustrating that our method is able to rank based on the semantic of inputs.

5.2.1 Ranking Modes

When we look for Services in real life, we have two types of requirements. First type of requirement is met by exact matching. Examples of such requirements include finding the number of rooms in a hotel, the model of a car that can accommodate five passengers, and products with specific brand names. Second type of requirement is met through the minimum needs. Examples of this type include booking a hotel which has at least 3 stars, finding a product with at least 1 year warranty, and finding a job that pays at least $50,000 per year. In some online Services we want to be able to look for exact values to some features of the Query, and better values for other features. As an example, in online film renting Service we usually want to see a specific film while we always look for better/cheaper price. Thus, we want the name feature of the film Service to be an exact match and the price/cost feature to be a better value. Therefore, we introduce two modes of ranking in our algorithm, called Exact Mode and Best Mode. The Exact Mode prompts the algorithm to look for an exact match to a specific feature in a Query, while Best Mode prompts it to look for better values than a specific feature in Query.

However, before diving into the details of Exact Mode and Best Mode, we have to define the meaning of the word "better". In some cases, “Less is Better” and in some others “More
is Better". This motivates us to study three kinds of semantics of the data encountered by the X-Algorithm. These are (1) Less is Better (LB), (2) More is Better (MB), and (3) Exact is Better (EB).

5.2.2 Semantics

Generally, data that we use to seek online Services include numerical and non-numerical types. Examples of numerical data include cost, weight, and percentage. Examples of non-numerical data include product names, product codes, and addresses. Numerical data can be data that are better as they increase in value, such as quality-related data. Examples are star ranking of a hotel, recommended rating of a Service, and reliability. It is also possible that some numerical data are considered better as they decrease in value. Examples include cost, waiting time in between repairs, and shipping time. The kinds of non-numerical data that we come across are of string or boolean types. String types, for names and addresses, must have an exact match. Boolean values, such as availability of a property in a product, which is described as "True/False" must be matched exactly. We summarize below our discussion on the semantic classification of data encountered by the X-Algorithm. Figure 17 illustrates the summary.

1. Numerical: There are two types.
 - better as the value increase (MB), and
 - better as the value decrease (LB).

2. Non-numerical: There are two types.
 - String values (EB), and
 - Boolean values (EB).
5.2.3 Defining Scores Types

In this section, we define two types of scores, called Reward Score \((\text{reward})\) and Penalty Score \((\text{penalty})\). These two types of scores will be generated by our Similarity Measure. In later sections we discuss how to assign semantics in different modes.

1. Reward Score \((\text{reward})\): This score is assigned to the attribute of Service that offers an equal value or better one than the one defined in Query. It can be a single value that is assigned in one specific case, or a range of values that fluctuates between a minimum reward \((\text{minReward})\) and a maximum reward \((\text{maxReward})\). The value of \text{minReward} is fixed for all modes and semantics. It is also the value assigned when Reward Score is a single value, while the value of \text{maxReward} might be different for different semantics and modes, as will be explained in later sections.

2. Penalty Score \((\text{penalty})\): This score is assigned when the attribute of a Service has a value
Figure 18: The difference in RC behaviour when subtracted from "1"

Figure 19: Different scores assignment in Exact Mode.

that is worse than the value required in Query. Unlike reward, penalty is always in the range $[\text{minPenalty} \text{ to } \text{maxPenalty}]$. The value of minPenalty is a value less than the value of minReward. The penalty score will approach the value of maxPenalty as the provided value in Service gets worse than the value defined in user Query.

Having introduced modes and score types we explain in the following sections how scores are assigned at different modes. We recall the definition of Relative Change RC (Q) Similarity Measure introduced in Chapter 3.
5.2.4 Exact Mode

By definition, RC is to generate scores that represent the similarity between two numerical inputs. The RC Similarity Measure generates an output in the range $[0, 1]$. Let q and s be numerical values, where q is related to an attribute in Query, and s is related to the same attribute in a Service. RC Similarity Measure considers the three different cases $q < s$, $q > s$ and $q = s$. Basically, RC generates the lowest score when $q = s$, and it generates graded score that approaches 1 as the difference between q and s increases (for cases $q < s$ and $q > s$). However, in Exact Mode we want the opposite behaviour. Specifically, we want the reward value to be assigned when exact match occurs ($q = s$), and we want a decreasing graded score that approaches 0, namely increasing penalty value, as the difference between values of q and s increases. Because the scores are bounded above by 1, the behaviour of RC can be reversed by subtracting the generated scores from 1. Thus, the highest score will be generated when $q = s$ and graded scores approaching 0 will be generated when the deviation between s and q gets higher. We used this reversing function $1 - RC$, whose behaviour is shown in Figure 18, to be able to generate proper scores. Figure 19 shows how the values of penalty and reward are defined for Exact Mode. Based on this discussion we define,

$$RC_{EXACT} = \begin{cases} 1 & s = q \\ 1 - \frac{|q-s|}{\max(q,s)} & s < q, s > q \end{cases}$$

(3)

Remark. The benefit of normalization is brought out in our approach. Because the results of RC are bounded above by 1 and the calculations are normalized to lie in the interval $[0, 1]$, we are able to reverse the behaviour of the RC results.

5.2.5 Best Mode

For Best Mode, we need to understand what "better" means for each semantic. Then, we try to incorporate this meaning into our Similarity Measure. However, the problem associated with
finding better values is that we don't know what is the best value in the available Services. Unlike Exact Mode where we assign reward to exact match, when finding better values there is no specific value to which we can assign rewards. To overcome this obstacle, we assign reward and penalty differently for the three types of semantics MB, LB, and EB.

MB Semantic

In MB semantics "More is Better". Fixing on the same attribute in a Service and Query, this means that the Service in which this attribute value is higher than the attribute value in the user Query is to be preferred. That is, a higher value in Service is better than a lower one. Thus, the value defined in the Query is the minimum acceptable value for the client. For example, when we look for a Service that rates 3/5 or higher, we are using MB as a semantic for the rating feature. In technical terms, we want our Similarity Measure to assign higher reward for features with higher values. Hence, minReward should be assigned when once minimum requirement is met, and the reward value should be increased towards maxReward as the value of Service attribute goes higher than the value defined in Query. On the other hand, the penalty value should be applied when the value of Service attribute is less than the value of the Query attribute and it should approach maxPenalty as the value of Service attribute goes further below the value defined in the Query. Assume s denotes the value of a Service attribute,
and \(q\) denotes the value of the same attribute in \(Query\). We define the RC function for \(MB\) as shown below:

\[
RC_{MB} = \begin{cases}
 \text{penalty} & s < q \\
 \text{minReward} & s = q \\
 v, \nu \in [\text{minReward}, \text{maxReward}] & s > q
\end{cases}
\]

Figure 20 shows how the score types are defined for MB semantic. We need to assign values to \(\text{penalty}\), \(\text{minReward}\), and \(v\) in such a way that \(\text{penalty} < \text{minReward} < v < \text{maxReward}\), and \(v\) approaches \(\text{maxReward}\) as \(s - q\) increases. We fix \(\text{minReward}\) at 1, and adapt RC function from Figure 18 (b) to define \(\text{penalty}\) and \(v\). We find that the left half of Figure 18 (b) meets our requirement. That is, when \(s\) and \(q\) values are close the score is high. However, when \(s\) exceeds the value of \(q\) the score drops down towards 0 while we want it to continue increasing. To motivate what we do to achieve this behaviour, we take a simple example. Assume \(q = 10\), and we have different values of \(s\) that range in the interval \([0, 20]\). Using the formula \(1 - \frac{|s-q|}{\max(q,s)}\) from Figure 18 we obtain Table 6.

<table>
<thead>
<tr>
<th>(q)</th>
<th>(s)</th>
<th>(\text{case})</th>
<th>(\text{RD})</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0</td>
<td>(s < q)</td>
<td>1 - 1 = 0</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>(s < q)</td>
<td>1 - 0.8 = 0.2</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>(s < q)</td>
<td>1 - 0.4 = 0.6</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>(s < q)</td>
<td>1 - 0.2 = 0.8</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>(s = q)</td>
<td>1 - 0 = 1</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>(s > q)</td>
<td>1 - 0.167 = 0.833</td>
</tr>
<tr>
<td>10</td>
<td>14</td>
<td>(s > q)</td>
<td>1 - 0.286 = 0.714</td>
</tr>
<tr>
<td>10</td>
<td>16</td>
<td>(s > q)</td>
<td>1 - 0.375 = 0.625</td>
</tr>
<tr>
<td>10</td>
<td>18</td>
<td>(s > q)</td>
<td>1 - 0.444 = 0.556</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>(s > q)</td>
<td>1 - 0.5 = 0.5</td>
</tr>
</tbody>
</table>

Table 6: Results of \(1 - RC\) applied on \(q = 10\), and \(s = [0, 20]\)

In this table, we find that the computed results for \(s \leq q\) are consistent with \(MB\) requirement. On the other hand, scores generated for values of \(s > q\) show a behaviour that is quite opposite to what we want. This seems to be because of the 1 that we subtract the score from. Therefore, we remove 1 from the case \(s > q\) as an attempt to keep the increasing behaviour of
the scores. Now we obtain scores as shown in Table 7.

<table>
<thead>
<tr>
<th>q</th>
<th>s</th>
<th>case</th>
<th>RD</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0</td>
<td><</td>
<td>1 – 1 = 0</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td><</td>
<td>1 – 0.8 = 0.2</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td><</td>
<td>1 – 0.4 = 0.6</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td><</td>
<td>1 – 0.2 = 0.8</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>=</td>
<td>1 – 0 = 1</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>></td>
<td>0.167</td>
</tr>
<tr>
<td>10</td>
<td>14</td>
<td>></td>
<td>0.286</td>
</tr>
<tr>
<td>10</td>
<td>16</td>
<td>></td>
<td>0.375</td>
</tr>
<tr>
<td>10</td>
<td>18</td>
<td>></td>
<td>0.444</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>></td>
<td>0.5</td>
</tr>
</tbody>
</table>

Table 7: Results after removing 1 from the case $s > q$

Results in Table 7 shows an increasing behaviour for the scores generated for case $s > q$. Yet, because the results of the RC Similarity Measure are bounded above by 1, it does not exceed the value of 1. Therefore, scores need to be “scaled”, which we achieve by manually shifting the scores by 1. Table 8 shows the result after shifting the scores of case $s > q$ by 1. This shifting will change the original upper bound of RC from 1 to 2. Thus, MB semantics will produce bounded scores.

<table>
<thead>
<tr>
<th>q</th>
<th>s</th>
<th>case</th>
<th>RD</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0</td>
<td><</td>
<td>1 – 1 = 0</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td><</td>
<td>1 – 0.8 = 0.2</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td><</td>
<td>1 – 0.4 = 0.6</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td><</td>
<td>1 – 0.2 = 0.8</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>=</td>
<td>1 – 0 = 1</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>></td>
<td>0.167 + 1 = 1.167</td>
</tr>
<tr>
<td>10</td>
<td>14</td>
<td>></td>
<td>0.286 + 1 = 1.286</td>
</tr>
<tr>
<td>10</td>
<td>16</td>
<td>></td>
<td>0.375 + 1 = 1.375</td>
</tr>
<tr>
<td>10</td>
<td>18</td>
<td>></td>
<td>0.444 + 1 = 1.444</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>></td>
<td>0.5 + 1 = 1.5</td>
</tr>
</tbody>
</table>

Table 8: Results after adding 1 to the case $s > q$

The results in Table 8 shows the behaviour we need under MB semantics. We come to the
following definition of score:

\[RC_{MB} = \begin{cases}
| -1 | & s = q \\
| -1 + \frac{|q-s|}{q} | & s < q \\
| -1 - \frac{|q-s|}{s} | & s > q
\end{cases} \]

(4)

Remark. Now the range of scores generated under MB semantics is different from the range for scores generated in EM semantics. This shows that scaling method is necessary when we fix RC function.

In Equation 4, the operation performed when the case is \(s < q \) is subtraction, where the operation performed when the case is \(s > q \) is addition. Changing the sign of \(-1\) would result in reversing the operations performed and thus reverse the overall outcome. Also, we used \(|-1|\), instead of 1, just for the sake of uniformity and explicitly pointing out the scaling.

LB Semantic

The Semantic LB means "Less is Better". It indicates that the less the value for a specific feature in a Service the better it is. Figure 21 shows how different score types are assigned for LB semantic. For example, price is usually better when it is less, i.e. cheaper. Thus, the behaviour we expect with this semantic is the opposite to the one defined for MB. Therefore, it is sufficient to changing \(-1\) in Equation 4 to \(+1\) to arrive at the formula for LB semantics.
In Equation 5, as opposed to MB, the operation performed in the case \(s < q \) is addition, i.e. a reward is granted, where the operation performed in the case \(s > q \) is subtraction, i.e. a penalty is assigned. Now, to combine both semantics in one definition, we refer to the semantic by \(X \). We define the value of \(X \) as follows,

\[
X = \begin{cases}
-1 & \text{Best Mode, semantic } = \text{MB} \\
+1 & \text{Best Mode, semantic } = \text{LB}
\end{cases}
\]

(6)

Using the definition of \(X \) from Equation 6 in Equation 4 and Equation 5, we arrive at the definition of \(R_{\text{X}} \) Similarity Measure. This definition is semantic-aware and is used in Best Mode.

\[
R_{\text{X}} = \begin{cases}
|X| & s = q \\
|X + \frac{|q-s|}{q}| & s < q \\
|X - \frac{|q-s|}{s}| & s > q
\end{cases}
\]

(7)

EB Semantic

The Semantic EB means "Exact is Better". In this semantic exact match is possible, because EB includes string and boolean data types in which the concept “better values” does not exist. EB semantic is based on "match or mismatch" concept where there is no need to associate modes with Service requests. So, we can decide to assign reward when equality occurs between an attribute value in a Service and the value of the same attribute in Query, and assign a penalty when mismatch occurs. However, we wish to add to the algorithm more flexibility to users and simulate real life experience. So we decided to allow a Query attribute for EB to be defined as a set of options (string values). For example, if a user is looking for a laptop where its colour can
be either black or white, the attribute value for colour attribute in the Query can be specified as \(\text{colour} = \{ \text{black}, \text{white} \} \). In turn, the algorithm would grant the reward to the laptop whose colour is included in the set of options provided by the user. Since each attribute in a Service has a unique value \(s \), whereas the user can specify set of values \(q \) for the same attribute in a Query we use the set notation \((s \in q) \) to denote the presence of Service attribute \(s \) in the set of values \(q \) defined in Query. We write \((s \notin q) \) to denote the absence of \(s \) in \(q \). Even with this slight extension we are still requiring a full match.

We allow another extension in which partial match between Service feature and user specified feature is possible. This partial match is restricted to string values. For example, if \(q \) is defined as a set of strings \(\{'x', 'y'\} \), and the attribute of a Service was found to be \(s = \{'xm'\} \), the algorithm won't consider the partial match between \(x \) (the value of first option of \(q \)) and \('xm' \) (the value of \(s \)). Thus, if we consider the concept of "match/mismatch" only, ranking EB type becomes very limited. To overcome this limitation we consider the possibilities that \(q_1 \) is a subset of \(s \) or \(s \) is a subset of \(q_1 \), as an attempt to introduce partial match. We denote these situations by \((q \subset s) \) and \((s \subset q) \), respectively.

The partial match, \((q \subset s) \) or \((s \subset q) \), should receive a reward than the mismatch, \((s \neq q) \) and lower score than the exact match \((s = q) \) or \((s \in q) \). For example, consider that we are looking for a product under the names 'dictionary' or 'oxford dictionary', and the Query attribute that represents the name of dictionary is \(q \), where,

\[
q = \{'dictionary', 'oxford_dictionary'\}
\]

Suppose the attributes \(s_1, s_2, \) and \(s_3 \) are the name attributes of three different available Services where, \(s_1 = 'dictionary', s_2 = 'oxford' \) and \(s_3 = 'translator' \). Based on our definition, \(s_1 \) should get the reward (full match), \(s_2 \) gets a lower rank (partial match) and \(s_3 \) gets the lowest rank (mismatch).

In Chapter 3, we introduced Feature-Based Similarity Measures that examine only equality
between features of Query and Service. In the aforementioned discussion, we have extended the Feature-Based Similarity Measure to include partial matches. The symbol SM_{EB} denotes the Feature-Based Similarity Measure used with EB semantic. In order to be consistent with the highest and lowest ranks produced for MB and LB semantics, within bounds, we define SM_{EB} as below:

$$SM_{EB} = \begin{cases}
+1 & s = q, s \in q \\
0.5 & s \subset q, q \subset s \\
0 & s \notin q
\end{cases}$$

(8)

Remark. Boolean Values are based on Match/Mismatch concept. The above discussion is irrelevant to boolean since it only has two values (True/False).

To arrive at a uniform notation, we need to adjust the values of X to include the EB semantics. Since EB is not involved in RC, X can be any value different from the values used for MB and LB. We choose this value to be Zero. Hence,

$$X = \begin{cases}
0 & EB \\
+1 & LB \\
-1 & MB
\end{cases}$$

(9)

Once the algorithm detects $X = 0$, it calculates the output based on Equation 8. Now, we have integrated all semantics in Best Mode. Also, we have integrated Exact Mode earlier. We want to make a unified definition for numerical types and another one for non-numerical types. This is to simplify implementation process. This requires us to include Exact Mode in the definition of X.

83
Finally, the definition of similarity measure is

$$SM_X = \begin{cases}
SM_{EB} & X = 0 \\
RC_X & (\text{Best Mode or Exact Mode}) \text{ and } (X = -1 \text{ or } X = 1)
\end{cases}$$

(11)

where RC_X is defined in Equation 6 and SM_{EB} is defined in Equation 8.

5.2.6 Similarity Measure Pseudo Code

Hereunder is the pseudo code for SM_X, which includes all situations of X.

84
Algorithm 3: Psuedo code for SM_X for handling different data types (MB, LB and EB) and for modes Exact and Best based on the value of X

Result: Services ranked based on value of X
Input: i_{th} attribute of Query(q), i_{th} attribute of Service(s), X

begin
 if semantic == EB then
 $X \leftarrow 0$
 else
 if Mode == Exact then
 if $s < q$ then
 $X \leftarrow -1$
 else
 $X \leftarrow +1$
 else if Mode == Best
 else if semantic == LB then
 $X \leftarrow +1$
 else
 $X \leftarrow -1$
 if $X==0$ then // EB semantic
 if $s=q$ OR $s \subset q$ then
 $R \leftarrow 1$
 else if $q \subset s$ OR $s \subset q$ then
 $R \leftarrow 0.5$
 else
 $R \leftarrow 0$
 else // MB, LB semantics for both modes (Exact&Best)
 if $s=q$ then
 $R \leftarrow |X|$
 else if $s < q$ then
 $R \leftarrow |X + \frac{(q-s)}{q}|$
 else
 $R \leftarrow |X + \frac{(s-q)}{s}|$
end
Example 5. This example illustrates the outcome of Algorithm 3 when it is applied to a Query which has different data types and both ranking modes. The user request Q and four Services S_1, S_2, S_3, and S_4 are defined in Table 9 and Table 10 respectively.

<table>
<thead>
<tr>
<th>Features' names</th>
<th>Price(f_1)</th>
<th>Rating(f_2)</th>
<th>Colour(f_3)</th>
<th>Weight(f_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Features' Semantics</td>
<td>LB</td>
<td>MB</td>
<td>EB</td>
<td>LB</td>
</tr>
<tr>
<td>Ranking Mode</td>
<td>Best</td>
<td>Best</td>
<td>Best</td>
<td>Exact</td>
</tr>
<tr>
<td>User Query</td>
<td>1000 CAD</td>
<td>4 stars</td>
<td>['RED','BLACK']</td>
<td>4 Pounds</td>
</tr>
</tbody>
</table>

Table 9: User Request

<table>
<thead>
<tr>
<th>Services</th>
<th>Price(f_1)</th>
<th>Rating(f_2)</th>
<th>Colour(f_3)</th>
<th>Weight(f_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>900 CAD</td>
<td>9 stars</td>
<td>'RED'</td>
<td>6 Pounds</td>
</tr>
<tr>
<td>S_2</td>
<td>1500 CAD</td>
<td>7 stars</td>
<td>'WHITE'</td>
<td>2 Pounds</td>
</tr>
<tr>
<td>S_3</td>
<td>400 CAD</td>
<td>3 stars</td>
<td>'BLACK'</td>
<td>3 Pounds</td>
</tr>
<tr>
<td>S_4</td>
<td>1000 CAD</td>
<td>4 stars</td>
<td>'BLACK&WHITE'</td>
<td>2.7 Pounds</td>
</tr>
</tbody>
</table>

Table 10: The values of features of each Service

According to Algorithm 3, we calculate the scores for each feature and their total. The result is shown in Table 11.

<table>
<thead>
<tr>
<th>Services</th>
<th>Price(f_1)</th>
<th>Rating(f_2)</th>
<th>Colour(f_3)</th>
<th>Weight(f_4)</th>
<th>Total Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>1.1</td>
<td>1.56</td>
<td>1</td>
<td>0.67</td>
<td>4.33</td>
</tr>
<tr>
<td>S_2</td>
<td>0.67</td>
<td>1.43</td>
<td>0</td>
<td>0.5</td>
<td>2.6</td>
</tr>
<tr>
<td>S_3</td>
<td>1.6</td>
<td>0.75</td>
<td>1</td>
<td>0.75</td>
<td>4.1</td>
</tr>
<tr>
<td>S_4</td>
<td>1</td>
<td>1</td>
<td>0.5</td>
<td>0.675</td>
<td>3.175</td>
</tr>
</tbody>
</table>

Table 11: The ranks of each Service based on the X-Algorithm

We notice that although values of $S_{1/4}$ and $S_{2/4}$ have the same distance from Q_{f_3} (the third column in Table 9) they have different ranks. However, based on Exact Mode definition the rank should be produced based on the distance from the Query and thus they should have the same ranks. So, Algorithm 3 needs to be sharpened. This issue is resolved in next section.
5.3 Symmetry in Exact Mode and Semantic Preference

In this section we discuss symmetry and semantic preference (SP). In Chapter 3 we have defined symmetry property of Similarity Measure. We use the same notation as before. Fixing the attribute, we let \(q \) denote its value in a Query, and \(s_1 \) and \(s_2 \) denote its values in two Services. Similarity Measure has similarity property if it produces the same rank for the attribute in the two Services if \(|q - s_1| = |q - s_2| \). We say that values \(s_1 \) and \(s_2 \) are ‘images’ around \(q \). Clearly, one of the Service value is higher than the other. In Exact Mode, the user might prefer the lower value (as in cost) if no exact match is possible. So, we discuss Semantic Preference (SP) to assign higher rank to Service attribute that is preferred by the user. It is clear that SP is dependant on the presence of symmetry.

5.3.1 Symmetry

Suppose a consumer wants to rent an apartment for $1000/month. However, there is no apartment matching the user requirement. Assume the closest available options are apartments with rents $800/month and $1200/month. Since both options differ by the same difference from the defined requirement, both should capture a similar degree of the consumer’s interest. That is, the Similarity Measure should produce similar scores for both options.

Our Similarity Measure \(RC_X \) for Exact Mode, as defined in Equation 3 in Section 5.2, looks like,

\[
RC_{EXACT} = \begin{cases}
|1| & s = q \\
| - 1 + \frac{|q - s|}{q} | & s < q \\
| + 1 - \frac{|q - s|}{s} | & s > q
\end{cases}
\]

(12)

\(RC_{EXACT} \) does not have symmetry property. It is due to the different denominators in the fractional parts of its definition for the cases \(s > q \) and \(s < q \). In order to achieve symmetry we have to unify the denominators, without violating the bounded outputs and normalization.
properties. We first tried the fraction

$$\text{Fraction}_{\text{asymmetric}} = \frac{\Delta}{\max(q,s)}$$

where $\Delta = |q - s|$ to replace the fractions $\frac{|q-s|}{q}$, and $\frac{|q-s|}{s}$. This does not produce the desired results, as illustrated in Table 12 for $q = 10$, $s_1 = [0, 2, 4, 6, 8]$, and $s_2 = [20, 18, 16, 14, 12, 10]$. Since $|s_2 - q| = |s_1 - q|$, the Service attribute values are symmetric with respect to the Query attribute value, however their ranks are not equal.

Table 12: The asymmetric results produced by $\text{Fraction}_{\text{asymmetric}}$

| $|q-s_1| = |q-s_2|$ | $s_1 \uparrow$ | $s_1 < q$ | $s_2 \downarrow$ | $s_2 > q$ |
|-----------------|--------------|----------|-------------|--------------|
| 10 | 0 | 1 | 20 | 0.5 |
| 8 | 2 | 0.8 | 18 | 0.44 |
| 6 | 4 | 0.6 | 16 | 0.38 |
| 4 | 6 | 0.4 | 14 | 0.29 |
| 2 | 8 | 0.2 | 12 | 0.17 |

To remedy the situation, we need to understand the behaviour of the function $\frac{\Delta}{\max(q,s)}$, for $s \in (0, \infty)$ and for a fixed q. Suppose $s_1 > q$ and $s_2 < q$. For the case $s_1 > q$ the denominator $\max(q,s_1) = s_1$ of $\text{Fraction}_{\text{asymmetric}}$ is in the range (q, ∞). For the case $s_2 < q$ the denominator $\max(q,s_2) = q$ of $\text{Fraction}_{\text{asymmetric}}$ is not in the range (q, ∞), because it is an open interval. We need to push this denominator by the amount $s_2 - q$, which is the image of s_2 around q. This will give the new denominator $s'_2 = |s_2 - q| + q$, which lies in (q, ∞) to the case $s_2 < q$. In the light of this discussion, we define $s' = \Delta + q$, where $\Delta = |q - s|$, as the denominator for case $s < q$, and $s = \max(q,s)$ as the denominator for the case $s > q$. Figure 22 illustrates the achieved symmetry for a simple example.

Thus we arrive at the refined definition $\text{Fraction}_{\text{symmetric}}$:

$$\text{Fraction}_{\text{symmetric}} = \begin{cases} \frac{\Delta}{s'} & s < q \\ \frac{\Delta}{s} & s > q \end{cases}$$ (13)
where, $\Delta = |q - s|$, $s' = \Delta + q$

By applying the fraction $\text{Fraction}_{\text{symmetric}}$ on the same example given above we obtain the results listed in Table 13. Now, the symmetry property is restored.

| $|q - s_1|$ | $|q - s_2|$ | s'_1 | $s_1 < q$ | $s_2 > q$ |
|---|---|---|---|---|
| 10 | $|10 - 0| + 10 = 20$ | 0 | 0.5 | 20 | 0.5 |
| 8 | $|10 - 2| + 10 = 18$ | 2 | 0.44 | 18 | 0.44 |
| 6 | $|10 - 4| + 10 = 16$ | 4 | 0.38 | 16 | 0.38 |
| 4 | $|10 - 6| + 10 = 14$ | 6 | 0.29 | 14 | 0.29 |
| 2 | $|10 - 8| + 10 = 12$ | 8 | 0.17 | 12 | 0.17 |

Table 13: The symmetric results produced by $\text{Fraction}_{\text{symmetric}}$

Remark. When we unified the denominators, we have caused the bounds of the output to fluctuate.

We might need to scale the results for reasons that are already highlighted in the previous section.

Scaling method is discussed in next section.
5.3.2 Semantic Preference

Semantic Preference (SP) is the process of scoring an attribute of a Service higher than an attribute of another Service because it is semantically better. For example, assume the price of two Services has the same difference from the price defined in Query such that the price of the first Service is more than Query and the price of the second Service is less than Query. Consumers tend to prefer the second Service as it is cheaper than the first Service. This is the meaning of “semantically better”.

Since scores produced for symmetric attributes of different Services with respect to Query are identical, we can introduce a manual change on the Similarity Measure to enforce the semantic preference. Basically, this manual change is a value that is added to the Similarity Measure of the semantically better attribute which we call the BoostValue. However, since we have many available Services, when we perform the manual change, we have to be aware not to disturb the fairness of the scores. This implies the following points:

- The introduction of BoostValue should not affect other characteristics of the Similarity Measure, such as normalization, sensitivity to small changes, and simplicity.

- The introduction of BoostValue should allow semantic preference within the symmetric attributes and not adversely affect any other attribute.

To clarify, let $score_1, score_2$ and $score_3$ be the scores of the price feature in three different Services. Suppose their values are 1.2, 1.2, 1.3, and $score_1$ and $score_2$ are scores of symmetric attributes. Now, the BoostValue that does not disturb the fairness should not make 1.2 better than 1.3, and should only affect the scores of symmetric attributes. This is challenging because we don’t know how close the other scores are to the scores of symmetric attributes. In other words, we don’t know how small should be the value of BoostValue that will not affect other surrounding scores related to other attributes. In the case of our example, BoostValue can be any value that is smaller than 0.1. But what if there is another score, say $score_4 = 1.21$, then...
then BoostValue should be less than 0.01. Therefore, there has to be an acceptable error rate specified for each application domain. In order to achieve these goals, we make a change in the Similarity Measure definition (of symmetry) rather than change the scores computed by it. We need to refine the symmetric Similarity Measure for Exact Mode which has been defined as follows:

$$\begin{align*}
RC_{Exact} &= \begin{cases}
| -1 + \frac{\Delta}{s'} | & s < q \\
| +1 - \frac{\Delta}{s} | & s > q
\end{cases}
\end{align*}$$

(14)

where, \(\Delta = |q - s|\), \(s' = \Delta + q\), \(q\) an attribute in Query, \(s\) an attribute in Service, and \(s'\) an image of \(s\) around \(q\).

In order to achieve the first requirement of BoostValue, we introduce it to change the denominator of \(RC_{Exact}\). This will ensure that the value of the fraction won’t exceed 1 and thus the total won’t exceed the maximum bound. Also, because the number to be added is small, it will not affect the sensitivity of the Similarity Measure. Moreover, because it is just a numerical value it will not affect the simplicity of the Similarity Measure. However, to make sure it won’t affect other attributes related to other Services, we have to define an acceptable accuracy that is specific to consumers/application domain. However, the question is what is the Boost Value (BV) that can be added to the denominator and shift all the semantically better features within a specific accuracy level? A formal justification of finding this value is in order.

Assume we have a feature \(f_a\) and \(f_b\) which are attributes in service_a and service_b respectively. Assume that both \(f_a\) and \(f_b\) have the same difference from the value of the Query \(q\). That is, \(|q - f_a| = |q - f_b|\), where \(f_a < q\) and \(f_b > q\). This means that \(f_a\) is semantically better than \(f_b\). We calculate the Prepared Matrix \(PM\) for \(f_a\) and \(f_b\) as follows:

$$PM_{f_a} = 1 - \frac{|q - f_{a'}|}{f_{a'}}$$

(15)

We substitute \(f_{a'} = q + |q - f_a|\) in Equation 15 to get

$$PM_{f_a} = 1 - \frac{|q - f_a|}{q + |q - f_a|}$$

(16)
Similarly,

\[PM_f = 1 - \frac{|q - f|}{f} \]

(17)

Since \(|q - f_a| = |q - f_b|\) we can substitute \(f_b\) with \(f_a\) in Equation 17 to get

\[PM_f = 1 - \frac{|q - f_a|}{q + |q - f_a|} \]

(18)

Now, we want to add a boost value \(BV\) to the denominator of the PM function of \(f_a\) in Equation 17.

\[PM_f = 1 - \frac{(q - f_a)}{q + (q - f_a) + BV} \]

(19)

The value \(BV\) added to the denominator should make \(PM\) of \(f_a\) better than the rank of \(f_b\), yet it must be within the accuracy level \(acc\) of the system. That is, it does not exceed the score of the next Service service \(c\). That is, \(|q - f_a|\) can be at most \(|q - f_c| + acc\), where \(f_c\) is an attribute in service \(c\).

\[|q - f_a| = |q - f_c| + acc = (f_c - q) + acc \]

(20)

where \(f_c > q\)

Similar to \(f_a\) we can calculate \(PM\) for \(f_c\) by the formula,

\[PM_f = 1 - \frac{|q - f_c|}{f_c} \]

(21)

However, from Equation 20, we can calculate \(f_c\) in terms of \(f_a\) and say,

\[f_c = q - f_a - acc + q = 2q - f_a - acc \]

(22)

Now, we want \(PM_{f_a}\) to be more than \(PM_{f_b}\) with the help of \(BV\) but less than \(PM_{f_c}\), so,

\[PM_{f_b} < PM_{f_a} < PM_{f_c} \]

(23)

Thus, from Equation 18, Equation 19 and Equation 21 in Equation 23 we find,

\[1 - \frac{(q - f_a)}{q + (q - f_a)} < 1 - \frac{(q - f_a)}{q + (q - f_a) + BV} < 1 - \frac{(f_c - q)}{f_c} \]
After subtracting 1 from all sides and then multiplying by -1 to get rid of the minus sign (note the change in the direction of the inequality as a result of multiplying by -1) we get

\[
\frac{(q - f_a)}{q + (q - f_a)} > \frac{(q - f_a)}{q + (q - f_a) + BV} > \frac{|q - f_c|}{f_c}
\]

since we want to solve for \(BV\), we take the reciprocals in the above inequality. We get

\[
\frac{q + (q - f_a)}{(q - f_a)} < \frac{q + (q - f_a) + BV}{(q - f_a)} < \frac{f_c}{|q - f_c|}
\]

After simplification we get the inequality

\[
0 < BV < \frac{f_c \times (q - f_a)}{|q - f_c|} - (2q - f_a)
\]

We can replace the absolute function \(|q - f_c|\) by \(f_c - q\), because \(f_c > q\). Thus, we arrive at

\[
0 < BV < \frac{f_c \times (q - f_a)}{(f_c - q)} - (2q - f_a)
\]

which can be simplified as follows:

\[
i.e., 0 < BV < \frac{q f_c - f_a f_c}{(f_c - q)} - (2q - f_a)
\]

\[
i.e., 0 < BV < \frac{q f_c - f_a f_c - 2q f_c + f_a f_c + 2q^2 - q f_a}{(f_c - q)}
\]

Now, from Equation 20, we substitute for \(f_c\)

\[
0 < BV < \frac{-q(2q - f_a - acc) + 2q^2 - q f_a}{((2q - f_a - acc) - q)}
\]

Hence,

\[
0 < BV < \frac{-2q^2 + q f_a' + q \times acc + 2q^2 - q f_a'}{q - f_a - acc}
\]

Thus, in order to make an addition to the denominator that will not affect other Services within a pre-set accuracy, the value of \(BV\) should be

\[
0 < BV < \frac{q \times acc}{q - f_a - acc} \tag{24}
\]
To make sure that the value of BV is valid with all values of q towards infinity, we calculate the limit of the right side of Equation 24. To avoid indeterminate form $\frac{\infty}{\infty}$ in the limit, we divide throughout by q, $q > 0$.

\[
\frac{q \ast acc \ast \frac{1}{q}}{(q - f_a - acc) \ast \frac{1}{q}} = \frac{acc}{1 - \frac{f_a}{q} - \frac{acc}{q}}
\]

By applying the limit function on Equation 25, we find,

\[
\lim_{q \to \infty} \frac{q \ast acc \ast \frac{1}{q}}{(q - f_a - acc) \ast \frac{1}{q}} = \lim_{q \to \infty} \frac{acc}{1 - \lim_{q \to \infty} \frac{f_a}{q} - \lim_{q \to \infty} \frac{acc}{q}} = acc
\]

As a result, the value BV that would remain valid for all values of q up to infinity should be more than 0 and less than acc. That is any value for BV in the interval $(0, acc)$ may be chosen.

Hence, the RC_{Exact} function with semantic preference would become

\[
RC_{\text{Exact}} = \begin{cases}
| -1 + \frac{\triangle}{s + (BV + X)} | & s < q \\
| +1 - \frac{\triangle}{s} | & s > q
\end{cases}
\]

where the value of "X" is the same one defined earlier (+1 for LB and −1 for MB semantics).

This will cause the overall score of the case $s < q$ to increase in case of LB semantic because it is the preferable case, and decrease with MB semantics.

Figure 23 shows how the $BoostValue$ is applied in our algorithm. Basically, it is not applied on a particular feature where symmetry occurs, but rather it is applied on all the attributes that fall under the case $s < q$. To clarify, for LB semantics the value $BoostValue$ is added to the denominator (because $x = +1$), which in return will increase the overall value of the score. Therefore, all values of all attributes under this case in the LB semantics will receive this privilege. On the other hand, if the semantic is MB, $BoostValue$ will be subtracted from the denominator (because $x = -1$) which will result in decreasing the overall score generated for this case, and thus, make the other case, i.e. $s > q$, better.
Figure 23: The way of applying the BoostValue on the properties based on the semantics when Exact Mode is ON

Example 6. In this example, we illustrate the symmetry and semantic preference principles. We perform those concepts for both semantics, MB and LB in Exact Mod. The user request is shown in Table 14. The available Services are shown in Table 15.

<table>
<thead>
<tr>
<th>-</th>
<th>Price(f_1)</th>
<th>Reliability(f_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semantic</td>
<td>LB($X = 1$)</td>
<td>MB($X = -1$)</td>
</tr>
<tr>
<td>Ranking Mode</td>
<td>Exact Mode</td>
<td>Exact Mode</td>
</tr>
<tr>
<td>Query</td>
<td>200$</td>
<td>50%</td>
</tr>
<tr>
<td>System Accuracy(acc)</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Table 14: User Request
We have chosen the values of service attributes such that they are ordered according to their closeness to the corresponding values defined in Query.

\[\text{price}_{S_3} \ll \text{price}_{S_4} \ll \text{price}_{S_1} \& \text{price}_{S_2} \]

and,

\[\text{reliability}_{S_2} \& \text{reliability}_{S_1} \ll \text{reliability}_{S_4} \ll \text{reliability}_{S_3} \]

where the symbol \(\ll \) means "better than" and the symbol \(\& \) means "similar quality".

\[
\begin{array}{|c|c|c|}
\hline
- & \text{Price}(f_1) & \text{Reliability}(f_2) \\
\hline
\text{Service}_1(S_1) & 150\$(s < q) & 90\%(s > q) \\
\text{Service}_2(S_2) & 250\$(s > q) & 10\%(s < q) \\
\text{Service}_3(S_3) & 249\$(s > q) & 91\%(s > q) \\
\text{Service}_4(S_4) & 249.9\$(s > q) & 90.1\%(s > q) \\
\hline
\end{array}
\]

Table 15: Available Services

We have applied the Similarity Measure, \(\text{RC}_{\text{Exact}} \) (Equation 26), considering the semantic preference with a system accuracy of 1, \(BV = 1 \) as defined in user request. Then, we have recorded the results in Table 16.

\[
\begin{array}{|c|c|c|}
\hline
\text{Services} & \text{Price} & \text{Reliability} \\
\hline
S_1 & 0.8007 & 0.5556 \\
S_2 & 0.8 & 0.5506 \\
S_3 & 0.803 & 0.5495 \\
S_4 & 0.8003 & 0.5549 \\
\hline
\end{array}
\]

Table 16: Scores with acc = 1

By looking at the results for each feature of available Services, we find that the symmetry in price features between \(\text{Price}_{S_1} \) and \(\text{Price}_{S_2} \) has been broken correctly. That is, the semantically better(cheaper) value \(\text{Price}_{S_1} \) has received a higher score. However, the features \(\text{Price}_{S_3} \) and \(\text{Price}_{S_4} \) provide closer values to the price feature defined in Query. So, they should receive higher scores than \(\text{Price}_{S_1} \) and \(\text{Price}_{S_2} \) even after boosting the score of \(S_1 \) for being semantically better. Indeed, \(\text{Price}_{S_3} \) received higher score, but not \(\text{Price}_{S_4} \). This is because the difference between
Price_{S_4} and the symmetric feature Price_{S_2} is less than the system accuracy, i.e. acc = 1, while the difference between Price_{S_3} and the symmetric feature is equal to system accuracy which makes it preserves its position.

Similarly, in Reliability feature Services S_1 and S_2 are symmetric. Based on the definition of Semantic Preference, BoostValue is to be applied only for the case FeatureService < FeatureQuery either by subtracting or adding it to the denominator. Because reliability attribute belongs to MB semantics subtracting the denominator by BoostValue in the case FeatureService < FeatureQuery should be done. As a result, the symmetry between Reliability_{S_1} and Reliability_{S_2} is broken in favour of the the feature Reliability_{S_1}. However, this subtraction made the attribute Reliability_{S_2} become worse than Reliability_{S_4} although Reliability_{S_2} is closer to Reliability defined in Query than Reliability_{S_4} by 0.1. Similar to Price, the inaccuracy of the result is because the system accuracy is set to 1, thus the Semantic Preference will not consider cases for differences between Services less than 1.

To correct the results shown above, we set the accuracy to acc = 0.1, we obtain the scores recorded in Table 17. Note how score of Price_{S_1} has become better than the score of Price_{S_2}, yet it remains less than the score of Price_{S_4}. Similarly, the score of Reliability_{S_2} has become less than the score of Reliability_{S_4}, yet it remains higher than the score of Reliability_{S_4}.

<table>
<thead>
<tr>
<th>Services</th>
<th>Price</th>
<th>Reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>0.8001</td>
<td>0.5556</td>
</tr>
<tr>
<td>S_2</td>
<td>0.8</td>
<td>0.5551</td>
</tr>
<tr>
<td>S_3</td>
<td>0.803</td>
<td>0.5495</td>
</tr>
<tr>
<td>S_4</td>
<td>0.8003</td>
<td>0.5549</td>
</tr>
</tbody>
</table>

Table 17: Results of scores for the features of the available Services with "acc = 0.1"
5.4 Scaling Method

Scaling is a function f that changes a value x in a finite interval (a, b) to a value $x' = f(x)$ in another interval $[A, B]$. The function f satisfies the property that if $x < x'$ in $[a, b]$ then $f(x) < f(x')$, $\frac{x}{x'} = \frac{f(x)}{f(x')}$. The scaling function that we use is a linear transformation based on the geometry of a line segment [Tek06].

\[
 nv = \frac{(nmax - nmin)(v - cmin)}{(cmax - cmin)} + nmin
\]

(27)

where $v \in [cmin, cmax]$, and $nv \in [nmin, nmax]$.

Basically, there is no need for scaling when we use the original Similarity Measure RC. However, because we have introduced new characteristics to this Similarity Measure, such as semantics and symmetry, the generated scores have been perturbed. Fair ranking should be consistent, as defined in Chapter 2. The ranks produced by the Similarity Measure SM_X should be as expected by the user’s expressed requirements. So, penalties and rewards are to be produced based on the difference between the Query's attributes and the Services' attributes. In any semantics, if a Service attribute (s) differs from the same Query attribute (q) by an amount a, the penalty or reward assigned to s should always be a function of a. That is, it is independent of Query or Service but depends only on the deviation between the values of their attributes in each semantics.

Example 7. We use the same notation as before to denote by q a Query attribute value and s to denote the corresponding Service attribute value. Suppose $q = 10$. We apply the Similarity Measure SM_X (defined in Equation 11 in Section 5.2) on different Services, given by their s values $s = [0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30]$. With each value of s we consider all semantics and modes, except EB semantics for which the range is already defined in the previous section.

Table 18 shows that the penalty produced by SM_X for $s = 12$ in LB semantics is equal to the
Table 18: Motivation to use Scaling for MB and LB Semantics.

One produced for $s = 8$ in MB semantics. This implies that their penalties are consistent. However, the range of penalties produced in LB is $(0, 1)$, while the range of penalties for MB is $(0.5, 1)$. This is normal because the values of s lie in the interval $(0, +\infty)$. That is, we don’t consider negative values in the inputs which makes the lower bound of MB penalties stops at 0.5. As a result, there has to be a difference in the ranges. However, the range $(0.5, 1)$ is very tight. Our example is using small values of s and q. However, if bigger values are used the tightness of the range will become clearer, and the difference between the produced results becomes high in precision. To illustrate this point, consider the values $s = [99, 98], q = 100$ with MB semantics. Since $s < q$ for both values of s, a penalty should be assigned. When $s = 99$ the assigned penalty is $\text{penalty} = 0.99497$, while for $s = 98$ the assigned penalty is $\text{penalty} = 0.989899$. Hence the difference, $\text{diff}_1 = 0.0051$.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline
\textbf{Modes} & \textbf{Best Mode} & \textbf{Exact Mode} & \textbf{ANY} & \hline
\textbf{Type} & \textbf{LB} & \textbf{MB} & \textbf{ANY} & \textbf{EB} & \\
\hline
\textbf{Case} & \textbf{s < q} & \textbf{s > q} & \textbf{s < q} & \textbf{s > q} & \textbf{s < q} & \textbf{s > q} & \textbf{ANY} & \\
\hline
\textbf{S} & \textbf{score type} & \textbf{reward} & \textbf{penalty} & \textbf{penalty} & \textbf{reward} & \textbf{penalty} & \textbf{penalty} & \textbf{ANY} & \\
\hline
0 & 1 + 0.50 & - & 0.50 & - & 0.50 & - & - & \\
2 & 1 + 0.44 & - & 0.56 & - & 0.56 & - & - & \\
4 & 1 + 0.38 & - & 0.63 & - & 0.63 & - & - & \\
6 & 1 + 0.29 & - & 0.71 & - & 0.71 & - & - & \\
8 & 1 + 0.17 & - & 0.83 & - & 0.83 & - & - & \\
\hline
10 & 1(\text{reward}_{\text{min}}) & 1(\text{reward}_{\text{min}}) & 1(\text{reward}) & - & \\
12 & - & 0.83 & - & 1 + 0.17 & - & 0.83 & - & \\
14 & - & 0.71 & - & 1 + 0.29 & - & 0.71 & - & \\
16 & - & 0.63 & - & 1 + 0.38 & - & 0.63 & - & \\
18 & - & 0.56 & - & 1 + 0.44 & - & 0.56 & - & \\
20 & - & 0.50 & - & 1 + 0.50 & - & 0.50 & - & \\
22 & - & 0.45 & - & 1 + 0.55 & - & 0.45 & - & \\
24 & - & 0.42 & - & 1 + 0.58 & - & 0.42 & - & \\
26 & - & 0.38 & - & 1 + 0.62 & - & 0.38 & - & \\
28 & - & 0.36 & - & 1 + 0.64 & - & 0.36 & - & \\
30 & - & 0.33 & - & 1 + 0.67 & - & 0.33 & - & \\
\cdots & - & \cdots & - & \cdots & - & \cdots & - & \\
+\infty & - & 0 & - & 2 & - & 1 & - & \\
\hline
\textbf{s = (0, \infty)} & (1, 1.5) & (0, 1) & (0.5, 1) & (1, 2) & (0, 1) & (0, 1) & \\
\hline
\end{tabular}
between the two penalties is very small. We solve this issue by widening the range (0.5, 1) to (0, 1) by using the Scaling Method introduced earlier in this Section. After scaling, the penalties are $\text{penalty} = 0.98994$ for $s = 99$ and $\text{penalty} = 0.979798$ for $s = 98$. The difference between penalties is $\text{diff}_2 = 0.01014$, which is an improvement by $\frac{(\text{diff}_2 - \text{diff}_1)}{\text{diff}_1} \times 100 = 98.82\%$. As explained earlier, because of the difference in the input range between LB and MB in the penalty zone, and to produce similar penalties, we should scale the values of LB to the range $(-1, 1)$.

Hence, the penalties in MB semantics stop at 0 when inputs stop at 0, while the penalties of LB continue to -1 as inputs approach $+\infty$.

For assigning the rewards we follow a similar procedure. The rewards in the semantics LB will stop at 2 when inputs reach "0", while the rewards in MB semantics continue to "3" as inputs approach $+\infty$.

As for Exact Mode, it is a different concept. This is because the reward in this mode is assigned in only one instance, when the value of q matches the value of s. For all other values of s we assign penalties. Similar to Best Mode, a scaling method is required to stretch the scores up to the range $(0, 1)$ for the case $s < q$ and $(-1, 1)$ for the case $s > q$.

Thus, by applying the aforementioned changes on the produced scores we obtain the scaled scores shown in Table 19.

Remark. Although there are still differences in the final upper/lower bound of the range for some semantics, it is still considered fair, as the scores are evenly produced for all semantics. Also, the different bounds of the range are based on the input range.
Table 19: Scaled Scores in Different Semantics.

<table>
<thead>
<tr>
<th>Modes</th>
<th>Best Mode</th>
<th>Exact Mode</th>
<th>ANY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>LB MB</td>
<td>ANY EB</td>
<td></td>
</tr>
<tr>
<td>Case</td>
<td>s < q</td>
<td>s > q</td>
<td>s < q</td>
</tr>
<tr>
<td>S</td>
<td></td>
<td></td>
<td>reward</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.88</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.76</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1.58</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1.34</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>-</td>
<td>0.66</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>-</td>
<td>0.44</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>-</td>
<td>0.26</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>-</td>
<td>−0.1</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>-</td>
<td>−0.16</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>-</td>
<td>−0.24</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>-</td>
<td>−0.28</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>-</td>
<td>−0.34</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>s = (0, ∞)</td>
<td>(1, 2)</td>
<td>(−1, 1)</td>
<td>(0, 1)</td>
</tr>
</tbody>
</table>

5.5 Essential Option

Non-negotiable requirements are common in real life. When we order a Service, it is possible that we have some requirements that we are not willing to compromise. It can be with respect to one or more features. Therefore, we incorporate the Essential Option feature for ranking Services.

Essential Option is a feature-option, so, it can be set for each feature independently. If a feature is not marked essential then it is regarded as not essential. We do not change the Similarity Measure to include Essential Option, instead, we use appropriate weights to discriminate and order essential features. Technically, when Essential Option is set for one feature, this
feature would have two weights, one is the Regular Weight reflecting user preference for this feature and the other Essential Weight which reflects that this feature is essential. The Regular Weight has been defined earlier in this Chapter. We discuss how to set the Essential Weight for an essential features that will make the matching Service to be ranked higher in the list.

Both regular and essential weights are vectors having the same length as the Query, such that each feature in Query has the corresponding weights in these vectors. In the essential weight vector W_E the weight is set to zero for non-essential features, and is set to w_e for an essential feature. Considering W_R denotes the regular weight vector, the weight vector for a Query is $W = W_R + W_E$, where $+$ denotes vector addition. The criterion for choosing the essential weight(s) is that their choice will outweigh other features no matter how good or bad they were. Below we explain how to calculate the essential weights.

Let N denotes the number of features in a Query. For the sake of clarity and simplicity, assume that the first feature in the Query is an essential feature (q_E) and the others are regular and non-essential features q_i. That is,

$$\text{Query} = \{q_1E, q_2, q_3, q_4, \ldots, q_N\}$$

Let the scores for an available Service be defined as $\text{scores} = (x_1, x_2, \ldots, x_N)$, where x_i is the i_{th} score of the i_{th} feature defined in Service. The total rank TR of a Service is the weighted sum of scores. That is,

$$TR = \sum_{i=1}^{N} w_i \times x_i,$$

where w_i is the i^{th} element of the weights vector W. We rewrite this sum as

$$TR = WS_E + WS_R \quad (28)$$

where, WS_E is the weighted score for all scores of services corresponding to the essential feature in Query and WS_R is the weighted score for all non-essential features.
In our example, there is only one essential feature. We want to calculate \(w_e \) for this essential feature, allowing all other non-essential features to assume maximum possible weight \(w_h \). The rationale is that such a value \(w_e \) will serve as upper bound for essential weights when the weights of other non-essential features are less than \(w_e \).

\[
WS_E = (w_e + w_h) * x_1
\]
(29)

and

\[
WS_R = w_h * x_2 + w_h * x_3 + \cdots + w_h * x_N
\]
(30)

Now, we want to define a worst case scenario for which we can obtain a value of \(w_e \) that prefers a total rank over another just based on the essential feature, no matter how good or bad other non-features are. So, we consider two Services, one which has all features in worst case (highest penalty) and one feature which is essential in best case (highest reward), and another that has all features in best case (highest reward) and only one essential feature which is “slightly worse” than the one defined for the first Service. The intent is to rank the first Service (best essential feature) on top of second Service (worse essential feature), although it has all the good non-essential values in it. Let \(a_i \) and \(b_i \) denote scores of the \(i \)th feature in the Services.

Service_1 = \([a_{1_{\text{bestE}}}, a_{2_{\text{worst}}}, a_{3_{\text{worst}}}, \ldots, a_{N_{\text{worst}}}]\) where \(a_2 = a_3 = \cdots = a_N \)
(31)

Service_2 = \([b_{1_{\text{worseE}}}, b_{2_{\text{best}}}, b_{3_{\text{best}}}, \ldots, b_{N_{\text{best}}}]\) where \(b_2 = b_3 = \cdots = b_N \)
(32)

We want the total rank \(TR_1 \) of Service_1 to be higher than the total rank \(TR_2 \) of Service_2, because \(a_{1_{\text{bestE}}} > b_{1_{\text{worseE}}} \) regardless of other non-essential features.

\[
TR_1 > TR_2
\]
(33)
From Equation 28, Equation 29, and Equation 30, we can say,

\[TR_1 = WS_E 1 + WS_R 1 \]

where

\[WS_E 1 = a_{1_{bestE}} * (w_e + w_h) \]

\[WS_R 1 = a_{2_{worst}} * (w_h) + \cdots + a_{N_{worst}} * (w_h) = w_h * (N - 1) * a_{2_{worst}} \]

Thus,

\[TR_1 = (w_e + w_h) a_{1_{bestE}} + w_h * (N - 1) * a_{2_{worst}} \] (34)

Similarly,

\[TR_2 = WS_E 2 + WS_R 2 \]

where

\[WS_E 2 = b_{2_{worseE}} * (w_e + w_h) \]

\[WS_R 2 = b_{2_{best}} * (w_h) + \cdots + b_{N_{best}} * (w_h) = w_h * (N - 1) * b_{2_{best}} \]

Thus,

\[TR_2 = (w_e + w_h) b_{1_{worseE}} + w_h * (N - 1) * b_{2_{best}} \] (35)

Hence, from Equation 34 and Equation 35 in Equation 33, we can conclude,

\[(w_e + w_h) a_{1_{bestE}} + w_h * (N - 1) * a_{2_{worst}} > (w_e + w_h) b_{1_{worseE}} + w_h * (N - 1) * b_{2_{best}} \] (36)

By solving the above inequality as an attempt to obtain the value of \(w_e \) we find,

\[w_e > w_h \frac{(a_{1_{bestE}} - b_{1_{worseE}} + (N - 1)(b_{2_{best}} - a_{2_{worst}}))}{a_{1_{bestE}} - b_{1_{worseE}}} \] (37)

The values for all the variables in Equation 37 are known, except for the variable \(b_{1_{worseE}} \). That is, we know the highest reward is 3, and the highest penalty is −2. Also, we know the highest weight. Hence, \(a_{1_{bestE}} = 3, b_{2_{best}} = 3, a_{2_{worst}} = -2 \) and \(w_h = 0.005 \). The difference between the two essential features is the accuracy of this option, which should be defined by the system or users as an input in the request. How accurate should this essential option be?
Specifically, the difference between the two essential features scores should be such that it is possible to prefer one Service over the other. For example, if the score of an essential feature in a Service\textsubscript{a} is \(a = 2 \), and the score of the same feature in another Service\textsubscript{b} is \(b = 1.999 \), the difference between the two scores is \(\text{diff} = a - b = 0.001 \). If the accuracy of the essential option is set to 0.001 it will prefer Service\textsubscript{a} over Service\textsubscript{b} because the difference between the scores of essential features is less than or equal to the accuracy of the algorithm. However, if the accuracy of the algorithm is set to 0.01, the algorithm is not guaranteed to prefer Service\textsubscript{a} over Service\textsubscript{b}. Hence, we introduce the user-defined (or system-defined) essential accuracy parameter \(\text{EssAcc} = a_{\text{bestE}} - b_{\text{worseE}} \) in Equation 37 to get

\[
we > wh \left(\frac{\text{EssAcc} + (N - 1)(b_{\text{best}} - a_{\text{worse}})}{\text{EssAcc}} \right)
\]

We add 1 to the right side of Equation 38 to choose \(we \):

\[
we = wh \left(\frac{\text{EssAcc} + (N - 1)(b_{\text{best}} - a_{\text{worse}})}{\text{EssAcc}} \right) + 1
\]

Remark. The small numbers we defined as our weights helped us in obtaining the essential weight as a manageable value. Otherwise, \(we \) will be a large number.

At this point, we have obtained the value of \(we \) that can make the essential feature becomes the pivot of the ranking regardless of how good or bad are the other non-essential features.

Next, we add one more flexibility for this option to allow users specify the level of importance to essential features, when more than one feature is essential. This is performed using the regular weight. That is, we multiply the essential weight \(we \) by the regular weight \(w_r \) assigned to each feature. Hence, we create different instances of the essential \(we \) based on the values of \(w_r \) assigned for each feature. However, since the regular weights are defined as fractions (divided by 1000), it will make the value of \(we \) smaller when multiplication is performed, which might make the value of \(we \) smaller than the sufficient value to prefer Services based on essential features. Thus, we avoid the fraction of \(w_r \) by multiplying it by 1000 and then
multiply w_r by w_e. That is,

$$w_i = w_{ri} + (w_{ei} \times w_{ri} \times 1000),$$

where, w_i is the i_{th} weight in the Weight vector defined in correspondence to the i_{th} attribute defined in Query vector.

Once the weight vector W is calculated and the Prepared Matrix (PM) of scores (for features against available Services) is computed, the total ranking vector TR is calculated with the formula

$$TR = W \times PM$$

Example 8. This example illustrates how essential option is to be treated in Service ranking. The essential option is applied on scores that have already been calculated. So, we assume that this phase is already performed, and we have the Prepared Matrix(PM) that contains the scores of the Services features as shown in the Table below. Let $Feature_{1E}$ be the only essential feature. So, the user is interested to get the Service with maximum score of the essential feature no matter how good the other non-essential features are in other Services. Let us assume that EssAcc = 0.1. Since $Feature_{1E}$ is what matters, it is easy to recognize that the ranking should be:

$$S_1 \ll S_2 \ll S_3 \ll S_4,$$

where \ll means “better than”

We use the values $N = 4$ for number of features, $\text{worst} = -2$ for the worst value (shown in the table), and $\text{best} = 3$ for the best value. The highest weight w_h defined in our algorithm is $w_h = 0.005$. Using these values in Equation 39 we calculate the value of w_e for $Feature_{1E}$.

$$w_e = 1.755$$

106
Since all other features are non-essential, the vector W_E is defined as follows:

$$W_E = [1.755, 0, 0, 0]$$

Let all features have the highest importance w_i. So, the regular weight vector is

$$W_R = [0.005, 0.005, 0.005, 0.005]$$

Since there is only one essential feature, we do not multiply the regular weight by 1000. Hence, the total weight vector W is

$$W = W_R + W_E = [1.76, 0.005, 0.005, 0.005]$$

The product $TR = W \times PM$ is the vector shown below.

<table>
<thead>
<tr>
<th></th>
<th>S_1</th>
<th>S_2</th>
<th>S_3</th>
<th>S_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR</td>
<td>5.25</td>
<td>5.3074</td>
<td>5.149</td>
<td>4.898</td>
</tr>
</tbody>
</table>

The above table clearly shows the following order of Service

$$S_2 \ll S_1 \ll S_3 \ll S_4$$

where the symbol \ll means “better than”

This result is against the expectation of essential option definition. Although $Feature_{1E}$ of S_1 is higher than $Feature_{1E}$ of S_2, the total rank for S_2 is higher. This is because the difference between the values of these features is $diff = 0.01$, which is smaller than the Essential Accuracy, i.e. $EssAcc = 0.1$. Thus, by changing the value of $EssAcc$ to 0.01, we can obtain more accurate results. We recalculate w_e using the new value of $EssAcc$, we get $w_e = 8.505 + 0.005 = 8.51$.

Then, using the new value of w_e, we recompute W and $W \times PR$, and obtain the following results,

<table>
<thead>
<tr>
<th></th>
<th>S_1</th>
<th>S_2</th>
<th>S_3</th>
<th>S_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR</td>
<td>25.5</td>
<td>25.4899</td>
<td>24.724</td>
<td>23.798</td>
</tr>
</tbody>
</table>

The new order of the Services becomes,

$$S_1 \ll S_2 \ll S_3 \ll S_4$$

where the symbol \ll means “better than”

which clearly shows that S_1 has a higher total score than S_2.

107
Remark. There are two valid methods to determine the essential mode accuracy. It can be assigned by users at building request time, or can be pre-set based on the application domain. The former, makes the algorithm more user-based, and adds more flexibility, dynamism and control to users. However, the problem of this choice that users might not understand how the accuracy works. This is because accuracy is at scores level not at inputs level. This require users to comprehensively understand how scores are generated. As a consequence, users might misuse it and receive unexpected results. The latter, however, makes the algorithm more controlled and easier to understand by users, but limits the users’ control of the output. We prefer the latter to comply with our claim on offering a user-friendly and understandable requesting concept.

5.6 All Best Option

For a given Query, assume that scores has been assigned to the different attributes of Services. In practice, these scores are simply added together to produce a total score. In this process, features with highest scores may hide the effect of the lower scores, because the total score is acceptable to the user. This effect of hiding is called compensation. The goal of AllBest Option is to minimize the effect of compensation and to rank Services which match all Query features (at their minimum requirements) as implied in either Exact Mode or Best Mode higher in the final ranking.

The option AllBest can only be set for the entire Query, unlike other options that can be set for each feature. Therefore, the change caused by this option is applied on the total ranks produced by the algorithm rather than the scores generated by the Similarity Measure. We propose a method that boosts the rank of each Service based on how close each feature is to the Query. This method performs calculations aside from the calculations of scores of each feature, yet in parallel. It records its results in a matrix called AllBest Matrix(ABM) that has a size equals to the size of the matrix PM that holds all the scores of all features. We define the matrix ABM
as follows:

\[
ABM[i, j] = \begin{cases}
1 & \text{if } PM[i, j] \text{ is a reward} \\
PM[i, j] & \text{if } PM[i, j] \text{ is a penalty}
\end{cases}
\] (40)

The rationale for assigning 1 is that it is the minimum \textit{reward}. At the same time we do not want to increase the \textit{penalty}. This way, we minimize the effect of compensation.

Eventually, ABM matrix will contain columns that represent \textit{Services}, and rows that represent features of these \textit{Services}. Each column of ABM matrix is aggregated to form what we call the \textit{AllBest Vector} (ABV) such that \(ABV_i\) is the \textit{AllBest Value} for the \(i_{th}\) \textit{Service}. The value \(ABV_i\) of a column is to be added to the final rank of the corresponding \textit{Service}. Formally, we construct the Vector \(ABV\) for the \textit{Services} as follow:

\[
ABV[j] = \sum_{i=1}^{N} ABM[i, j]
\]

where, \(ABV[j]\) is the \(ABV\) value for the \(j_{th}\) \textit{Service} in PM matrix. We define the total rank for \textit{Service}_j as \(TR'[j] = TR[j] + ABV[j]\). We illustrate \textit{AllBest} method with a simple example shown in Figure 24

In the following subsection we mathematically determine the value \(ABV\) for a \textit{Service} that can make the rank of that \textit{Service} higher than other \textit{Services} whose \(ABV\) values are smaller.

\section{5.6.1 The AllBest Value}

Let \(N\) denote the number of features in a \textit{Query} \(Q\), and \(F_{set}\) is the set of features defined in a \textit{Query} and \textit{Services}.

\[F_{set} = \{f_1, f_2, f_3, f_4, \ldots, f_N\}\]

In order to obtain a value of \(ABV\) that can work with any case, we should define a worst case and examine our \(ABV\) with it. the worst case scenario is given by the Service \(S_{good} =}
\{f_{1_{bad}}, f_{2_{good}}, \ldots, f_{N_{good}}\}, where $f_{1_{bad}}$ means that the minimum requirement is not met by that attribute and $f_{i_{good}}, i \geq 2$ means that the i_{th} feature gets the highest score. We call this the worst case because the effect of compensation is fully met here. Let $S_{\text{min}} = \{f_{1_{min}}, f_{2_{min}}, \ldots, f_{N_{min}}\}$, be the Service in which every feature defined in Query is met minimally (according to mode).

The goal of all best algorithm is to rank S_{min} higher than S_{good}.

We conduct a mathematical analysis to justify that consistency is preserved by the choice of
ABV values. The ABV value for TR_{min} (total weight corresponding to S_{min}) is N, and the ABV value for TR_{good} (total weight corresponding to S_{good}), is $N - 1 + y$ where y is the value $f_{1\text{bad}}$.

In order to rank S_{min} higher than S_{good}, we want

$$TR_{\text{min}} + N > TR_{\text{good}} + y + N - 1 \quad (41)$$

This is rewritten as,

$$TR_{\text{min}} + x > TR_{\text{good}} \quad (42)$$

where $x = 1 - y$ and $0 < x < 1$. Let w_h be the maximum weight that a user can assign. So the total rank for S_{good} is

$$TR_{\text{good}} = w_h \cdot f_{1\text{bad}} + w_h \cdot f_{2\text{good}} + w_h \cdot f_{3\text{good}} + \cdots + w_h \cdot f_{N\text{good}}$$

$$= TR_{\text{good}} = w_h \cdot f_{1\text{bad}} + w_h \cdot \sum (f_{2\text{good}} + f_{3\text{good}} + \cdots + f_{N\text{good}})$$

Hence,

$$TR_{\text{good}} = w_h \cdot f_{1\text{bad}} + w_h \cdot (N - 1) \cdot f_{i\text{good}}, 1 < i \leq N \quad (43)$$

We calculate TR_{min}:

$$TR_{\text{min}} = w_h \cdot N \cdot f_{j\text{min}}, 0 < j \leq N \quad (44)$$

Thus, from Equation 43 and Equation 44 in Equation 42

$$w_h \cdot N \cdot f_{j\text{min}} + x > w_h \cdot f_{1\text{bad}} + w_h \cdot (N - 1) \cdot f_{i\text{good}} \quad (45)$$

We substitute the values of $f_{j\text{min}} = 1$, $f_{\text{bad}} = 0.9$ and $f_{i\text{good}} = 3$ in Equation 45 to get,

$$w_h \cdot N \cdot 1 + x > w_h \cdot (3N - 3 + 0.9)$$

Hence,

$$w_h \cdot N + x > 3w_h \cdot N - 2.1w_h$$

111
That is,

\[x > w_h \ast N - 2.1w_h \]

(46)

i.e,

\[1 - y > 2w_h N - 10.5 \times 10^{-3} \]

Which means,

\[1 - (2w_h \ast N - 10.5 \times 10^{-3}) > y \]

Hence,

\[y < 1 - 2w_h \ast N + 10.5 \times 10^{-3} \]

(47)

Substituting \(w_h = 0.005 \) in Equation 47 we get,

\[y < 1 - 0.01N - 10.5 \times 10^{-3} \]

if \(N > 100 \) then \(2w_h \ast N > 1 \) this means that there is a possibility for \(y \) becoming negative for values \(N > 100 \). For values \(N <= 100 \), the value of \(y \) lies between 0 and 1. In practical user-centric applications, we do not expect any Query or Service to have 100 features. That is, for all practical applications the ABV values that we have chosen are consistent with our definition of maximum/minimum penalty. Next, we give a comprehensive example to illustrate all best option.

Example 9. Let a User Request \(Q \) be defined as in Table 20 considering that AllBest option is ON, i.e \(\text{AllBest}=1 \). Assume that the available Services are defined as in Table 21

<table>
<thead>
<tr>
<th></th>
<th>Feature 1</th>
<th>Feature 2</th>
<th>Feature 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Query</td>
<td>12000</td>
<td>10000</td>
<td>400</td>
</tr>
<tr>
<td>Mode</td>
<td>Best</td>
<td>Best</td>
<td>Exact</td>
</tr>
<tr>
<td>Semantics</td>
<td>LB</td>
<td>LB</td>
<td>LB</td>
</tr>
<tr>
<td>ESS</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AllBest</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Table 20: User Request
<table>
<thead>
<tr>
<th>Service</th>
<th>Feature 1</th>
<th>Feature 2</th>
<th>Feature 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service1</td>
<td>1</td>
<td>1</td>
<td>700</td>
</tr>
<tr>
<td>Service2</td>
<td>12000</td>
<td>10000</td>
<td>400</td>
</tr>
<tr>
<td>Service3</td>
<td>12000</td>
<td>10000</td>
<td>440</td>
</tr>
<tr>
<td>Service4</td>
<td>12100</td>
<td>11000</td>
<td>420</td>
</tr>
</tbody>
</table>

Table 21: available services

Calculating the Prepared Matrix (PR) along with the ABM matrix, we come with the following two matrices

\[
PR = \begin{pmatrix}
S_{1|f_1} & S_{2|f_1} & S_{3|f_1} & S_{4|f_1} \\
2.00 & 1.00 & 1.00 & 0.99 \\
2.00 & 1.00 & 1.00 & 0.91 \\
0.57 & 1.00 & 0.91 & 0.95 \\
\end{pmatrix}
ABM = \begin{pmatrix}
S_{1|f_1} & S_{2|f_1} & S_{3|f_1} & S_{4|f_1} \\
1 & 1 & 1 & 0.99 \\
1 & 1 & 1 & 0.91 \\
0.57 & 1 & 0.91 & 0.95 \\
\end{pmatrix}
\] (48)

We compute vectors TR and ABV by assuming \(w_h = 0.005 \),

\[
PR = \begin{pmatrix}
0.0229 & 0.015 & 0.0146 & 0.0143 \\
\end{pmatrix}
ABV = \begin{pmatrix}
2.57 & 3 & 2.91 & 2.85 \\
\end{pmatrix}
\] (49)

Before adding this value to the total rank (TR) of Services, the ranking list would look as follows:

\[TR_{S1} = 0.0229 \]
\[TR_{S2} = 0.015 \]
\[TR_{S3} = 0.0146 \]
\[TR_{S4} = 0.0143 \]

That is, the Service ranking is \(S1 > S2 > S3 > S4 \). This means that due to the high quality of some of the properties of Service S1, they compensated the shortcoming of one bad feature. This is acceptable; However, in some cases users don’t want to see this compensation.
Thus, by applying the final step of the AllBest Method, we get the total ranks:

\[TR_{S1} = 0.0229 + 2.57 = 2.5929 \]
\[TR_{S2} = 0.015 + 3 = 3.015 \]
\[TR_{S3} = 0.0146 + 2.91 = 2.9246 \]
\[TR_{S4} = 0.0143 + 2.85 = 2.8643 \]

Hence the ranking of Services after adding the ABV values to final ranks becomes as shown in Table 22

<table>
<thead>
<tr>
<th>Order</th>
<th>Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S₂</td>
</tr>
<tr>
<td>2</td>
<td>S₃</td>
</tr>
<tr>
<td>3</td>
<td>S₄</td>
</tr>
<tr>
<td>4</td>
<td>S₁</td>
</tr>
</tbody>
</table>

Table 22: Results after applying AllBest Method.

Note that this method does not remove compensation, but keeps it to minimal.

5.7 Range Option

In real life, looking for Services in a specific price range is common. For example, we tend to tell shop attendants our budget, so that they provide us with products they have within our desired price. Also, they start providing us with the least price within the specified price range with respect to other features of the product. We would like to integrate the same facility in online Services consumption. This is through offering the Range Option.

Technically, range option can be integrated in the X-Algorithm by making attributes of Services within the specified range in Query receive highest scores and attributes outside the range receive less scores, gradually as decreasing as they go further away from the specified range. However, this would mean that all values within the range are treated at the same level of quality, regardless of their semantics. For example, suppose a Query contains a price feature
defined as the range \(q = (1000, 5000) \). Now, is it fair to rank attributes of Services of price 1000 similar to those of the price 5000? If we want to give consumers options they would have in real life, the answer is No. This is because even within the specified range, semantics count. For LB semantics, 1000 should receive a higher score than 5000. This means that the values of attributes within the specified range should receive a range of reward based on semantics. Otherwise, penalty should be assigned. The value of penalty ranges from \(\minPenalty \) to \(\maxPenalty \) based on how far the value of the attribute is from the specified range. Thus, for LB semantics we assign \(\maxReward \) when the price feature of a Service equals to the least value of the price range specified in Query, and for MB semantics the \(\maxReward \) should be assigned when the price feature of a Service equals to the maximum value of the price range specified in Query. See Figure 25. Therefore, we need to perform ranking inside the range as well as ranking outside the range.

The ranking inside the range should be done with respect to semantics specified in Query. Thus, it is always going to be functioning as in Best Mode. That is, based on the definition of “better”, the values within the range are ranked. In order to achieve “better” for MB semantics and LB semantics we need to fix a reference point. We consider the mid point of the range.
specified in the Query as the Reference Value (ref):

$$ref = \frac{(a + b)}{2}$$

This reference value preserves all previous characteristics defined for the X-Algorithm such as symmetry and consistency. We need to prefer values of Service attributes that are within the required range specified in a Query, and at the same time consider other features of the Service with respect to the specified semantics, yet eliminate those Services that provide values outside the specified range in a Query. So, we calculate reward as well as penalty with respect to ref within the range, as explained earlier. Recall that the range for penalties of our algorithm is $(-1, 1)$, and it only turns to negative when $|s - q| > q$ as shown in Table 19 in Section 5.4. Therefore, defining the value ref as Query helps in discriminating between the penalties generated for values inside the range and outside the range. That is, because of the natural relationship between the reference value and the lower/upper bound of the range ($|v - ref| < ref$ where $v \in (lowerBound, upperBound)$), the penalty range produced within the range is always in the range $(0, maxReward)$. To penalize the values outside the range with a non-overlapping values with penalties inside the range, we introduce another function Out Of Range Penalty Function (OPF) for calculating penalties outside the range with respect to the same reference value ref. This function is similar to the RC_x function, yet it produces negative numbers. These negative numbers decrease in absolute value as the value of a Service attribute gets further away from the range specified in the Query. The penalties calculated by OPF lie in the range $(-1, 0)$, which is non-overlapping with the range $(0, maxReward)$. Since the function OPF performs the calculations of penalties with respect to one value ref, it considers semantics and symmetry in the same way as RC_{Exact}. To clarify, the values outside the range are scored based on their closeness to the range specified in Query.
Based on the above discussion, we come up with the following OPF function.

\[
OPF = \begin{cases}
-\frac{s-ref}{s} & s > q_{upper} \\
-\frac{ref-s}{s'+(BV*X)} & s < q_{lower}
\end{cases}
\] (51)

where, \(q_{upper} \) and \(q_{lower} \) are respectively the upper and lower bounds defined in Query range for a specific feature, \(s \) is the value of the same feature in a Service, \(s' = |ref - S| + ref \), \(ref = \frac{q_{upper} + q_{lower}}{2} \), \(BV \) is BoostValue and \(X = -1 \) for MB and \(X = +1 \) for LB semantics.

Example 10. This example illustrates Service ranking for a range Query, for the semantics LB and MB. Let \(q = [40, 70] \). Thus, \(q_{lower} = 40 \) and \(q_{upper} = 70 \). Let \(s_1 = 30 \), \(s_2 = 80 \), \(s_3 = 50 \), and \(s_4 = 60 \) be the values for the same feature (as in Query) in four different Services. The reference value \(ref = (40 + 70)/2 = 55 \)

Case 1: LB semantics. The following calculations are done with \(X = 1 \), and \(BV = 1 \).

Since, \(s_1 < q_{lower} \) and \(s_2 > q_{upper} \), both lie outside the range. So, penalties using OPF are calculated.

\[
s'_1 = ref + (ref - s_1) = 55 + (55 - 30) = 80
\]

Using the OPF function in Equation 51 we get the penalty for \(s_1 (s_1 < q_{lower}) \).

\[
OPF_{s_1} = -\frac{s'_1 - ref}{s'_1 + (BV*X)} = \frac{80 - 55}{80 + 1} = -0.3086
\]

We calculate the penalty OPF for \(s_2 (s_2 > q_{upper}) \)

\[
OPF_{s_2} = -\frac{s_2 - ref}{s_2} = -0.3125
\]

Since the features \(s_3 \) and \(s_4 \) are within the range, they are calculated regularly as introduced before.

Thus,

\[
s_3 = |X + \frac{ref - s_3}{s'_3 + (BV*X)}| = 1.082
\]

\[
s_4 = |X - \frac{s_4 - ref}{s_4}| = 0.917
\]
Notice that the penalty in \(s_2 \) is greater in absolute value than in \(s_1 \). This is because \(s_1 \) is semantically better than \(s_2 \) (cheaper). Also, note how \(s_3 \) received higher score than \(s_4 \) for being cheaper as well.

Case 2: MB semantics. \(X = -1 \). calculate \(s'_1 \) for the case \(s < Q_{lower} \)

\[
s'_1 = ref + (ref - s_1) = 55 + (55 - 30) = 80
\]

Using the OPF function 51 we get the penalty for \(s_1 \).

\[
OPF_{s_1} = -\frac{s'_1 - ref}{s'_1 + (BV * X)} = -\frac{80 - 55}{80 - 1} = -0.3165
\]

We calculate the penalty for \(s_2 \)

\[
OPF_{s_2} = -\frac{s_2 - ref}{s_2} = -0.3125
\]

Since the features \(s_3 \) and \(s_4 \) are within the range, they are calculated regularly as before. Thus,

\[
s_3 = |X + \frac{ref - s_3}{s'_3 + (BV * X)}| = 0.915
\]

Similarly,

\[
s_4 = |X - \frac{s_4 - ref}{s'_4}| = 1.083
\]

Notice that \(s_2 \) receives a lower penalty than \(s_1 \). Thus, \(s_2 \) in this case ranks higher than \(s_1 \) as it is semantically better. Also, \(s_4 \) receives a higher score than \(s_3 \).

5.8 Algorithm Pseudo-code

In this section, we present a Pseudo-code for the complete X-Algorithm. It incorporates all the options and modes discussed in this Chapter.
Algorithm 4: The X-Algorithm

Data: Services in the Registry
Result: Services ranked based on users' inputs
Input: Query, Modes(Exact,Best), RangeMode(RP), Essential(ESS), ShowBest(SABF),
 RegularWeight(RW), SystemAccuracy(acc)

begin
 Initialization
 for \(i \leftarrow \text{NumberOf Services} \) do
 for \(j \leftarrow \text{NumberOf Query Features} \) do
 \(X \leftarrow \text{CheckFeatureSemantic}(j) \) // \(X = -1(\text{MB}), +1(\text{LB}), 0(\text{EB}) \)
 \(\text{Mode} \leftarrow \text{CheckFeatureMode}(j) \) // \(\text{MODE} = 1(\text{Exact Mode}), 0(\text{Best Mode}) \)
 if \(q_i = 0 \) then
 \(PM_{ij} \leftarrow 0 \)
 else if \(s_{ij} = 0 \) OR \(s_{ij} = -1 \) then
 \(PM_{ij} \leftarrow -2 \)
 else if \(X = 0 \) then
 \(PM_{ij} \leftarrow \text{EBHandler}() \)
 else if \(s_{ij} = q_i \) then
 \(PM_{ij} \leftarrow 1 \)
 else if \(s_{ij} > q_i \) then
 if \(\text{Mode} = 1 \) \(X \leftarrow +1 \)
 \(PM_{ij} \leftarrow \text{scale}(|X - \frac{s_i - q_i}{s_{ij}}|) \)
 if \(\text{RP}=1 \) AND \(s_{ij} > q_i \text{upper} \) then // when \(\text{Range}=\text{ON} \)
 \(\text{ref} = (\text{upperValue} + \text{lowerValue})/2 \)
 \(PM_{ij} \leftarrow -\text{scale}(\text{ref} - s_{ij}) \)
 end if
 else
 \(BV = X \times \text{acc} \) // BoostValue
 if \(\text{Mode} = 0 \) \(X \leftarrow -1 \) // this only works if \(\text{EF}=1 \)
 \(s_i' \leftarrow q_i + (q_i - s_{ij}) \)
 \(PM_{ij} \leftarrow \text{scale}(|X + \frac{s_i' - q_i}{s_i' + BV}|) \)
 if \(\text{RP}=1 \) AND \(s_{ij} < q_i \text{lower} \) then // when \(\text{Range} = \text{ON} \)
 \(\text{ref} = (\text{upperValue} + \text{lowerValue})/2 \)
 \(PM_{ij} \leftarrow -\text{scale}(\text{ref} - s_{ij}) \)
 end if
 end if
 if \(PM_{ij} \geq 1 \) then // when \(\text{AllBest} \) option is \(\text{ON} \)
 \(\text{AllBest}_{ij} \leftarrow 1 \)
 else
 \(\text{AllBest}_{ij} \leftarrow PM_{ij} \)
 end if
 end for
 end for
 \(W_E = W_E \times \frac{W_R}{1000} \) // when \(\text{Essential} \) option is \(\text{ON} \)
 \(W = W_E + W_R \)
 \(\text{FinalRank} = W \times PM \)
 for \(i \leftarrow 0 \) to \(\text{size(AllBest)} \) do
 if \(\text{SumColumn(AllBest)} \leq \text{NumberOf Query Features} \) then
 \(\text{FR}(i) \leftarrow \text{FR}(i) + \text{SABFV} \)
 end if
 end for
end
5.9 Common Problems and Solutions

In this section we highlight the significance and originality of the X-Algorithm. We comment on the common problems associated with vector-based algorithms, and highlight the methods in X-Algorithm that overcome these problems.

5.9.1 Missing Feature Problem

This problem occurs when vectors are not of the same length which is claimed to be a limitation in vector-based algorithms [WMZ10] [RB09]. That is, when a feature specified in a Query is missing in one or more Service(s). Basically, this results in uneven matrix which cannot be rigorously treated with vector algebra. In order to overcome this obstacle, we assign a penalty of \(-2\), which is the maximum penalty (\textit{maxPenalty}) produced by the algorithm, to each feature missing in a Service. This will make the matrix even and valid for vector calculations. At the same time it will make the missing feature receive lowest score since it does not offer what the user has requested. Then, at the Multiplication Phase, the penalty affects the total rank based on the weight assigned to that missing feature in Query.

5.9.2 Mathematical Problems

Some ranking algorithms, based on \textit{Similarity Measure}, are prone to mathematical problems such as division by zero and square root of minus values. Our ranking algorithm is based on the \textit{Similarity Measure} \(SM_X\) is not prone to this problem because of two reasons. First, because we adopted symmetry and our denominator is always the image around the value of Query. Consider the fraction

\[
\frac{|q-s|}{y}
\]

in \(SM_X\), where \(y = s\) if \(s > q\) and \(y = s' = |q-s| + q\) if \(s < q\). If \(s = 0\), and because \(q > 0\) it is the case that \(s < q\). Thus, the denominator is \(y = s'\) which makes the denominator greater...
than 0. In case \(q = 0 \) and \(s \neq 0 \), it is the case \(s > q \) and thus the denominator is not 0. Division by zero is likely only when both \(q \) and \(s \) are 0. However in this case \(s = q \), which we examine before we calculate similarity.

Currently, we consider the values 0 in Query as an undesired feature, while 0 in Service features as a missing feature. Nevertheless, our algorithm is capable of dealing with it naturally. However, we have excluded those cases since we are aiming for employing our algorithm in online Services trading where the value 0 is inapplicable as a feature.

5.9.3 Compensation and Non-compensation Problem

Although we have come across this feature in brief in Section 5.6, we repeat it here for its importance and because it is a common concern. As explained earlier, compensatory algorithms allow the good features of a Service to cover for the bad features, while non-compensatory algorithms disallow that. Because we are using an additive aggregation method, where we sum all scores of all features of a Service to produce the Service's final rank, we are prone to this problem. However, since we claim we want to provide a real-life-like ranking algorithm, we should allow compensation as it is present even in real life. Nevertheless, we should also minimize it upon request. Therefore, we have provided the Option, AllBest to minimize this problem. Briefly, the problem is minimized by keeping all rewards to minimum reward value. This will ensure that the affect of the good features are degraded to minimal.

5.10 Summary

In this chapter, we have given a detailed development of X-Algorithm. We have started by defining the concepts of penalty and reward that we have adopted in our Similarity Measure. Then, we have explained each option of the algorithm in terms of the option's goal, and how it is integrated into our algorithm. With each option, we have provided an inclusive example that
covers all the cases of the option. After that, we have introduced a pseudo code that includes all algorithm options and functions. Finally, we commented on the most common problems of ranking algorithms and explained how X-Algorithm resolves them.
Chapter 6

Accuracy, Complexity, and Performance

In this chapter we discuss the accuracy of the X-Algorithm by running the algorithm on a selected subset of Google Data Store and manually validating the results. A theoretical analysis of the algorithm complexity is also discussed. Finally, we discuss the runtime performance of the X-Algorithm on two sets of randomly selected Service data.

6.1 Accuracy

We provide a case study to manually examine accuracy. In this case study, we apply our algorithm on a real-world data. This data is Google Application Store’s data [Inc08]. First, we are going to explain why we chose this data. Then, we will introduce the problem we are trying to solve through this case study and propose our solution. After that, we collect and analyse the Google Store's data. Finally, we apply our solution on the data and show our findings.
6.1.1 Why Google’s data?

The reason why we chose Google Store’s data in particular is behind the nature of its data. Since it has different semantics, i.e. MB, LB and EB, it allows us to examine our algorithm and the potential situations it unfolds. Also, each application or product in Google Store is multi-featured. This also complies with our algorithm as we make it to allow users to define multi-features in Query. Last, Google Store contains huge number of data that is commonly queried. Showing that we could improve on the current solution for such data proves our algorithm’s practicality and significance.

6.1.2 Problem of current ranking algorithm in Google Store

Currently, Google Store ranking is based on implicit criteria ranking. These criteria such as reviews, number of downloads, and level of usage are used to rank applications. However, users of Google Store don’t have the ability to Query based on a specific request. For example, if someone wants to look for cheapest application in a certain category, he/she cannot do so in the current Google solution. Similarly, users can’t look for cheapest application with highest rating. This limits users to see only what the implicit ranking algorithm has to offer.

To overcome this limitation, we propose the X-Algorithm as a solution. By applying our algorithm on top of the current ranking algorithm, we can allow users to manipulate the results list based on their specific requirements. These requirements can contain different data types and different modes as we will explain in next sections. Providing the different modes, semantics and options, as in X-Algorithm, we provide the customers to compose a wider range of Queries and get a more accurate ranking for their Queries.
6.1.3 Collecting and Analysing Google Store’s data

To be able to apply our algorithm on any data, we have to understand the data in terms of (1) the number of attributes, and (2) potential data types. The data of Google contains four attributes. These attributes are, name of application, rating, price and a flag that indicates whether application is free or not. The types of data are as follows:

- Name of application: The type of the name is string in all cases. Thus, it is EB attribute.
- Rating: The rating is better as it increases. This means it is MB attribute.
- Price: The price is better as it decreases. Hence, it is considered as LB attribute.
- Free application flag: It is a boolean data type which means it is EB attribute.

We also include two other data, but we called it unrankable data as they are not included as a criteria in ranking. These are

- Link for each product: This is necessary to make sure that we have mapped the data correctly.
- Installed flag: This indicates if a user has installed the application already. We have included it to be able to involve it in the ranking criteria in case we want it later on.

Having defined each attribute in Google’s data, we need now to define a method to collect this data. Since this data is accessible through a website, we need to extract the data we need to apply our algorithm.

Remark. *This extraction is for scientific reasons only. We do not perform, by any means, republishing (Web Scraping) or reusing Google’s Data publicly.*

The stages to extract Google Store’s data are explained below.

1. Parse the html file: We coded a small script that reads the html file and parses it.
2. Write the parsed version of html to a file: We have made the script to write each html to a different file. This is to improve the testability and fixing data errors if any.

3. Read all files and write it to one large file. Thus, the algorithm can be applied on a single file.

4. Apply the algorithm on the large file.

6.1.4 Applying our solution

In order to make our solution more practical, we have implemented our algorithm as an HTTP server. This server gets the request of the user from the browser, ranks the results based on the request, and sends the ranked results back to the user. Thus, we needed to implement an interface to the user through which requests can be made. In the user interface shown in Figure 26, we have included all options allowed by the algorithm.

For the sake of simplicity, we have included only nine Services in the file to be ranked by our algorithm. This is to show how we can manipulate the top nine data based on users requirement. At the time of testing, the top nine Services in Google Store are the ones shown in Table 23 and Figure 27. Also, we considered the variables EssentialAccuracy and AlgorithmAccuracy, to be pre-set to the values 0.01, 0.1 respectively. We also assumed the semantics of the Price feature is LB, the semantics of Rating feature is MB, and the semantics of both Name and isFree features is EB.

In the following paragraphs, we define a number of user Queries, and explain the differences between the rankings produced by the X-Algorithm and the original Google rankings.
Figure 27: A snap shot of the top nine Google Data as shown in the website at the time of writing.

<table>
<thead>
<tr>
<th>Rank</th>
<th>Name</th>
<th>Price</th>
<th>Rating</th>
<th>isFree</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Swift Keyboard</td>
<td>3.9</td>
<td>4.6</td>
<td>False</td>
</tr>
<tr>
<td>2</td>
<td>Nova Launcher Prime</td>
<td>4.0</td>
<td>4.8</td>
<td>False</td>
</tr>
<tr>
<td>3</td>
<td>Titanium Backup Pro Key root</td>
<td>6.4</td>
<td>4.8</td>
<td>False</td>
</tr>
<tr>
<td>4</td>
<td>Minecraft pocket edition</td>
<td>6.9</td>
<td>4.5</td>
<td>False</td>
</tr>
<tr>
<td>5</td>
<td>Poweramp Full version Unlocker</td>
<td>3.9</td>
<td>4.7</td>
<td>False</td>
</tr>
<tr>
<td>6</td>
<td>Swype keyboard</td>
<td>1.0</td>
<td>4.5</td>
<td>False</td>
</tr>
<tr>
<td>7</td>
<td>TuneIn Radio Pro</td>
<td>5.1</td>
<td>4.5</td>
<td>False</td>
</tr>
<tr>
<td>8</td>
<td>Beautiful Widgets Pro</td>
<td>1.9</td>
<td>4.3</td>
<td>False</td>
</tr>
<tr>
<td>9</td>
<td>Plants VS Zombies</td>
<td>0.9</td>
<td>3.4</td>
<td>False</td>
</tr>
</tbody>
</table>

Table 23: The top nine Services at the time of testing on Google Play Store

Potential Queries

1. Regular weighted Query which includes both matching modes

 • **Case1:** When the mode of Price feature is set to Exact and the mode of Rating is set to Best, the Query shown in Table 24 is applied to Google Data Store.
Case 2: When the mode of Price feature is set to Exact and the mode of Rating is set to Best, the Query shown in Table 25 is applied to Google Data Store.

Table 25: Query for Case 2

Notice that in this mode the second Service in Figure 28 becomes the first Service in Figure 29.
2. **Best flag is ON**

Case3: We consider the same Query shown in Table 24 with AllBest Option set to "ON"

Notice the change from the results of Case1. This is because the second Service in Figure 30 is closer to the user request than the first Service. That is, since there is a partial match in the name, and a compliance with the requested rating, the only missing part for a perfect match is 0.1 in price. Thus, when AllBest Option is "ON" the algorithm ranks the Service which was ranked second in Figure 28 to the top position in Figure 30.

3. **Essential flag is ON**

- **Case4:** When Price is set to Essential attribute and Best Mode is "ON", the Query shown in Table 26 is applied to Google Data Store.
In Figure 31 the Services ranked fourth and fifth have the same Price. However, the algorithm has ranked the item with application name "Swiftkey" higher than the other one, because of the name criterion. This illustrates that although Essential Option is "ON" ranking maybe affected with respect to other non-essential attributes.

- **Case5:** When Rating attribute is set to Essential and mode is Exact, the Query defined in Table 27 is applied to Google Data Store.
Since Rating attribute is set to Essential in Exact Mode, the item with application name "POWERAMP FULL VERSION UNLOCKER" and Rating 4.7 is ranked the highest in Figure 32. There are two Services with Rating 4.8 and one Service with Rating 4.6 and all of them are at the same distance from 4.7. However, the algorithm prefers to rank the two Services with Rating 4.8 higher than the Service with Rating 4.6, because the semantics for Rating attribute is MB.

- **Case6:** When Name attribute is set to Essential, the Query shown in Table 28 is applied to Google Data Store.

![Table 28: Query for Case6](image)
If we look at the first three Services in Figure 33, we find all of them contain the word "PRO" which is the one used in the Query. However, the algorithm preferred the one on top over the others that contain "PRO", because of the value of Rating attribute. The value of Rating attribute is considered because its weight in Query has been set to critical and the weight of Price has been set to low. Thus, when essential requirement is met which is the existence of the word "PRO", regular ranking for other non-essential properties is performed.

4. **Range flag is ON (only works with Best Mode)**

- **Case7**: When the Range Option is "ON" with Best Mode for Price feature, the Query in Table 29 is applied to Google Data Store.

<table>
<thead>
<tr>
<th></th>
<th>Name</th>
<th>Price</th>
<th>Rating</th>
<th>isFree</th>
</tr>
</thead>
<tbody>
<tr>
<td>VALUES</td>
<td>Nova</td>
<td>5.1-3</td>
<td>1</td>
<td>true</td>
</tr>
<tr>
<td>WEIGHTS</td>
<td>low</td>
<td>critical</td>
<td>normal</td>
<td>low</td>
</tr>
<tr>
<td>MODE</td>
<td>-</td>
<td>B</td>
<td>B</td>
<td>-</td>
</tr>
<tr>
<td>ESS</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RANGE</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SABF</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 29: Query for Case7
In Figure 34, notice how the semantics for Ranges play a pivotal role in ranking. That is because the semantic for Price is LB. That is, lowest values in the range are better than higher values. Also, notice how values on top are within the range. This shows the importance given to the feature with Range Option compared to other features. The reason is that the attribute values that don’t comply with the set range are punished, which affect their scores and thus affect their final ranks.

- **Case8:** When Range Option is "ON" with Best Mode for Rating attribute, the Query in Table 30 is applied on Google Data Store.

<table>
<thead>
<tr>
<th>Rank</th>
<th>App Rating</th>
<th>App Name</th>
<th>App Price</th>
<th>App is Free</th>
<th>App is Purchased</th>
<th>App Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>46</td>
<td>SWIFTKEY KEYBOARD</td>
<td>39</td>
<td>FALSE</td>
<td>FALSE</td>
<td>App Link</td>
</tr>
<tr>
<td>2</td>
<td>43</td>
<td>POWERAMP FULL VERSION UNLOCKER</td>
<td>39</td>
<td>FALSE</td>
<td>FALSE</td>
<td>App Link</td>
</tr>
<tr>
<td>3</td>
<td>48</td>
<td>NOVA LAUNCHER PRIME</td>
<td>4</td>
<td>FALSE</td>
<td>FALSE</td>
<td>App Link</td>
</tr>
<tr>
<td>4</td>
<td>45</td>
<td>TENNIS RADIO PRO</td>
<td>5.1</td>
<td>FALSE</td>
<td>FALSE</td>
<td>App Link</td>
</tr>
<tr>
<td>5</td>
<td>43</td>
<td>BEAUTIFUL WIDGETS PRO</td>
<td>1.9</td>
<td>FALSE</td>
<td>FALSE</td>
<td>App Link</td>
</tr>
<tr>
<td>6</td>
<td>3.4</td>
<td>PLANTS VS. ZOMBIES</td>
<td>0.9</td>
<td>FALSE</td>
<td>FALSE</td>
<td>App Link</td>
</tr>
<tr>
<td>7</td>
<td>48</td>
<td>TITANIUM BACKUP PRO KEY ROOT</td>
<td>6.4</td>
<td>FALSE</td>
<td>FALSE</td>
<td>App Link</td>
</tr>
<tr>
<td>8</td>
<td>45</td>
<td>SWYPE KEYBOARD</td>
<td>1</td>
<td>FALSE</td>
<td>FALSE</td>
<td>App Link</td>
</tr>
<tr>
<td>9</td>
<td>45</td>
<td>MINECRAFT POCKET EDITION</td>
<td>6.9</td>
<td>FALSE</td>
<td>FALSE</td>
<td>App Link</td>
</tr>
</tbody>
</table>

Table 30: Query for Case8
Unlike Case7, higher values within the range are ranked higher because the semantics of the Rating attribute is MB.

- **Case9:** When Essential and Range Options with Best Mode are set for Price, the Query in Table 31 is applied to Google Data Store.

<table>
<thead>
<tr>
<th>VALUES</th>
<th>Name</th>
<th>Price</th>
<th>Rating</th>
<th>isFree</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEIGTS</td>
<td>low</td>
<td>critical</td>
<td>normal</td>
<td>low</td>
</tr>
<tr>
<td>MODE</td>
<td>-</td>
<td>B</td>
<td>B</td>
<td>-</td>
</tr>
<tr>
<td>ESS</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RANGE</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SABF</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 31: Query for Case9

In Figure 36, the Services are ranked based on the Price attribute as it is set to Essential. Thus, values that match the minimum values within the range are ranked
higher as the semantic of Price is LB. However, values outside the range are ranked based on its closeness to the range. Similar to Essential Option, it is based on the LB semantic as well. That is, if two values differ from the range by the same distance on different directions, the values in favour of the semantics ranks higher than the other.

6.2 Complexity

In the pseudo code, we have tried to minimize the number of loops to be executed. No nested loops exist in the code except for the two main ones, one for the rows and the other for columns of the matrix PM. Within these two loops the modes and semantic preferences, and other options are included. The only thing that remains outside the loop is the final sorting of the total ranks. Thus, the algorithmic complexity of X-Algorithm is twofold; (1) the time necessary to calculate the aggregated ranks, and (2) the time necessary to sort these aggregated ranks. Since the first one does not have any nested loop, its complexity is $O(N_f \times N_s)$ where N_f is the number of features in each Service, and N_s is the number of Services to be ranked. Quicksort algorithm is used for the final ordering of Services. Hence, the total complexity is,

$$Time_{x_{\text{ algo}}} = T(N_f, N_s) = O(N_s \times N_f) + O(N_s \log(N_s))$$

It is reasonable to assume that the number of features N_f is fixed for an application. That is, N_f is a constant. Hence, asymptotically the complexity is $O(N_s \log(N_s))$, where N_s is the number of Services in the final order.

6.3 Performance

We evaluate the performance of X-Algorithm by measuring the execution times of the algorithm on randomly generated large datasets. We generated two different types of datasets. In one
6.3.1 Type 1 Dataset: Fixed Number of Features and Variable number of Services

We created ten datasets. The first dataset has 10000 services. Successively we increased the size by 10000 to create the rest of the datasets. We fixed the number of features to be six with semantics defined below.

$Features : [LB, LB, MB, MB, EB, EB]$

where LB, MB and EB are the different semantics for the features.

Fixing the number of features is important to measure the effect of changing the number of $Services$ on the execution time. Also, for a fair estimation we have included all semantics in each $Service$. We ran the X-Algorithm for each dataset three times and calculated the average of the execution times. These results are listed in Table 32. The results show a linear runtime behaviour, as shown in Figure(A) 37.

<table>
<thead>
<tr>
<th>Group</th>
<th># of Alternatives</th>
<th>Execution Time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10,000</td>
<td>137.964</td>
</tr>
<tr>
<td>2</td>
<td>20,000</td>
<td>212.189</td>
</tr>
<tr>
<td>3</td>
<td>30,000</td>
<td>291.361</td>
</tr>
<tr>
<td>4</td>
<td>40,000</td>
<td>349.656</td>
</tr>
<tr>
<td>5</td>
<td>50,000</td>
<td>414.279</td>
</tr>
<tr>
<td>6</td>
<td>60,000</td>
<td>473.738</td>
</tr>
<tr>
<td>7</td>
<td>70,000</td>
<td>553.305</td>
</tr>
<tr>
<td>8</td>
<td>80,000</td>
<td>624.474</td>
</tr>
<tr>
<td>9</td>
<td>90,000</td>
<td>666.083</td>
</tr>
<tr>
<td>10</td>
<td>100,000</td>
<td>728.330</td>
</tr>
</tbody>
</table>

Table 32: Execution time when number of $Services$ increases

As the figure shows, the linear model shows a good fit on the results. This is also shown in
Figure 37: This figure shows how the results exhibit a linear growth.

Figure (B) 37, where the correlation coefficient (R) was calculated. This function is a statistical function that is used to measure the goodness of the fitting model. It produces a number between (1, −1), where +1 shows the best fit and −1 indicates the worst. As the figure shows, R is 0.9988 which is considered to be a good fit.

6.3.2 Type2 Dataset: Variable number of Features and Fixed Number of Services

Here we examine the performance of the X-Algorithm when the number of Services is fixed to 1000, and the number of features is varied. Because our algorithm is a user-centric, the number of features cannot be too high. That is, if features are too many, Query becomes hard to be built by the user. However, it is important to capture the growth of the execution time when features increase. We ran the algorithm three times on each dataset. The first data set has ten attributes and successively the number of attributes is increased by 10 to produce nine other datasets. For all datasets, the Services are fixed. In all runs, we considered all the three semantics. In Table 33 we list the average execution times for the ten datasets.
<table>
<thead>
<tr>
<th>Group</th>
<th># of Features</th>
<th>Execution Time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>179.54</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>290.969</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>419.169</td>
</tr>
<tr>
<td>4</td>
<td>40</td>
<td>566.175</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
<td>726.794</td>
</tr>
<tr>
<td>6</td>
<td>60</td>
<td>802.669</td>
</tr>
<tr>
<td>7</td>
<td>70</td>
<td>960.520</td>
</tr>
<tr>
<td>8</td>
<td>80</td>
<td>1096</td>
</tr>
<tr>
<td>9</td>
<td>90</td>
<td>1245</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>1373.667</td>
</tr>
</tbody>
</table>

Table 33: Execution time evaluation when number of features increases.

The results show that the runtime behaviour is once again linear. We calculated the Correlation Coefficient R to measure the validity of the linear model. The Correlation Coefficient shows that the linear model is a good fit. Figure(A) 38 and Figure(B) 38 show the results of this experiment.
6.4 Summary

In this chapter we have provided an overall evaluation for the X-Algorithm from three different perspectives; Results Accuracy, Algorithmic Complexity, and Runtime Performance. In our evaluation, we exposed our algorithm to a real-world data, and randomly selected high volume data to see examine its robustness and practicality. We found that the X-Algorithm have performed exceptionally in all settings. This shows the algorithm significance and ability to be used in practice for wide range of applications.
Chapter 7

Ranking Composite Services

A Simple Service is atomic, in the sense that it cannot be split into smaller Services. A Complex Service is obtained by putting together one or more Simple Services. It is also possible to combine a simple Service with a complex Service to produce another complex Service. Since users are to construct requests for complex Services, we assume that a complex Service is a package of simple Services. In Service oriented computing researchers have studied different methods, called compositions, for putting together Services as a complex Service [Ibr12]. In this thesis, we use the terms complex Service and composite Service interchangeably.

In a social setting composite Services arise and are in great demand. As an example, a travel package offered by a Service provider is a complex Service, which typically includes air travel, hotel accommodations, car rental and other simple Services. A consumer can buy the whole package offered by a Service provider, however the consumer cannot buy an individual Service within the complex Service. This means that, in general, vacation packages offered by several Service providers need to be compared by consumers in order to select the best Service that meets their requirements. However, for online Services the user can either buy a Service package or can select simple Services individually and compose them. In the former situation, the packages are treated as single simple Services and ranked by the X-Algorithm
which we have discussed earlier in this thesis. In this Chapter, we discuss the latter situation in which users cannot determine the best Service composition because of at least two reasons. One reason is, the Services may be obtained from different Service providers. The other reason is, to manually rank the composed Services based on the preferences of individual Services is hard. So, there is a need to provide an automatic algorithm for ranking such compositions. In this Chapter we explain how the X-Algorithm can be used to rank such composite Services.

7.1 Request Structure for Simple Services In a Composition

A composition is performed on many Service types. In the situation where a user wants to compose hotel accommodation Services with airline booking Services we regard “hotel booking” and “airline booking” as two Service types. So, it is necessary for the user to compose a simple request for ranking simple Services, which has been discussed in Section 4.2.2, for each Service type. Based upon each request options and semantics, the X-Algorithm will produce a ranked list of available Services. In order to automatically combine and produce a ranking for the combinations it is necessary that the user inputs more options along with the simple request that govern the level of preference and importance of each Service type. So, we expand the simple request structure, introduced earlier for ranking simple services, with two additional fields Simple Request Weight (SRW) and Simple Request Essential (SRE). This extended structure, shown in Figure 39, is called Extended Simple Request Structure (ESRS). It is necessary to automatically construct a Composite Request Structure (CRS). We explain this construction in the next section. These two fields apply to all the Services ranked by the X-Algorithm, as compared to the other fields under Simple Request that apply to attributes of Services to be ranked by the X-Algorithm. That is, Simple Request (SR) field in ESRS is the user request to rank simple Services by the X-Algorithm that fit the attribute values and semantics defined in it. The value weight defined by the user for the attribute SRW in ESRS is the weight assigned to
Figure 39: The structure of ESRS request

<table>
<thead>
<tr>
<th>Simple Request(SR)</th>
<th>SRW</th>
<th>SRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>Feature₁ ... Featureₙ</td>
<td>weight</td>
</tr>
<tr>
<td>Query</td>
<td>value₁ ... valueₙ</td>
<td></td>
</tr>
<tr>
<td>Semantics</td>
<td>semantic₁ ... semanticₙ</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>weight₁ ... weightₙ</td>
<td></td>
</tr>
<tr>
<td>Mode</td>
<td>mode₁ ... modeₙ</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>range₁ ... rangeₙ</td>
<td></td>
</tr>
<tr>
<td>Essential</td>
<td>ess₁ ... essₙ</td>
<td></td>
</tr>
<tr>
<td>AllBest</td>
<td>ON/OFF</td>
<td></td>
</tr>
</tbody>
</table>

all Services ranked in response to the Simple Request part. If the attribute SRE in ESRS is set to "ON" ("OFF") then all Services ranked by the X-Algorithm is set to “ON” (“OFF”). We emphasize the necessity and importance of these two fields. In these two fields the user is required to assign preference and level of importance (regular or essential) to the Service within the composition, which will lead to determining whether a simple Service in a composition can be more important than another simple Service. Eventually, this will affect the ranks produced for the different compositions.

Thus, a user wishing to select m different Service sets for a composition will construct a ESRS for each Service type. Once the ESRS for all m requests are submitted, the system environment will automatically construct a CRS, rank Services based on the SR part of each ESRS, apply the CRS on the compositions of the ranked Service sets, and produce the rankings of compositions.

7.2 Constructing Composite Request from Extended Simple Requests

Let \(RqC = \{Rq₁,Rq₂, ..., Rqₙ\} \), where \(Rqᵢ \) denote the ESRS for \(i_{th} \) Service type. In the X-Algorithm every attribute will get a bounded score. We need to extend this concept to Service level. So, we provide a method for calculating the “maximum rank” \(\text{maxRank} \) for each
The calculation is done based on the regular ranks, and other options of the attributes within \(Rq_i \) definition in \(ESRS \). So, this maximum rank can be calculated prior to the ranking process. We define \(\text{maxRank} = \text{MRR} + \text{MEss} + \text{MAllBest} \), where:

- \(\text{MRR} \) is the maximum rank that the \(X \)-Algorithm achieves when both \(Essential \) and \(AllBest \) options are not set.

- \(\text{MEss} \) is the maximum rank when \(Essential \) option is set to "ON".

- \(\text{MAllBest} \) is the maximum when \(AllBest \) option is set to "ON".

Since \(\text{MRR} \), \(\text{MEss} \), and \(\text{MAllBest} \) are all bounded, the value \(\text{maxRank} \) will be bounded.

1. \(\text{MRR} \) is calculated in the multiplication of the weights by the scores of \(Service \) features, when all scores are set to the maximum reward (\(\text{maxReward} \)) and all the weights are set to the maximum weight (\(w_h \)). Thus, \(\text{MRR} = n \times w_h \times \text{maxReward} \) (where \(n \) is the number of features defined in \(Query \)).

2. The method to obtain essential weight \(w_e \) is explained in Equation 39 in Section 5.5. Thus, \(\text{MEss} = \text{maxReward} \times ((w_h \times 1000 \times w_e) + w_h) \times \text{nef} \). (where \(w_h \) and \(w_e \) are the highest regular weight and the essential weight respectively, and \(\text{nef} \) is the number of essential features defined in the user request).

3. As explained in Section 5.6, the maximum impact caused by this option on the final rank of \(Rq_i \) is an addition of the number of features defined in \(Rq_i \) to the final rank of the results of \(Rq_i \). Thus, \(\text{MAllBest} = n \times \text{AllBestFlag} \), (where \(n \) is the number of features in \(Query \) and \(\text{AllBestFlag} \) is 0 if \(AllBest \) option is "OFF" and \(\text{AllBestFlag} \) is 1 if \(AllBest \) option is "ON").

We include the \(\text{maxRank}_i \) for \(ESRS Rq_i \) in constructing \(CRS \).
Remark. If our algorithm does not produce bounded output, calculating the maximum value should be after ranking all the Services for each Rq_i, and then analyse the results to find the maximum result for each Rq_i. This highlights another importance of bounded results requirement.

The X-Algorithm interface is extended so that when it receives the first ESRS structure, it will start constructing the CRS. The CRS contains the following fields: (1) Complex Request Query (CRQ), (2) Complex Request Weight (CRW), (3) Complex Request Essential (CRE). Table 34 shows the CRS for the composite request that involves m ESRS requests.

<table>
<thead>
<tr>
<th></th>
<th>Rq_1</th>
<th>\ldots</th>
<th>Rq_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRQ</td>
<td>maxRank_{Rq_1}</td>
<td>\ldots</td>
<td>maxRank_{Rq_m}</td>
</tr>
<tr>
<td>CRW</td>
<td>SR_{Rq_1}</td>
<td>\ldots</td>
<td>SR_{Rq_m}</td>
</tr>
<tr>
<td>CRE</td>
<td>SRE_{Rq_1}</td>
<td>\ldots</td>
<td>SRE_{Rq_m}</td>
</tr>
</tbody>
</table>

Table 34: The Structure of CRS request for m ESRS.

7.3 Responding to a Composite Request

The X-Algorithm receives m ESRS, constructs a CRS, and does the following steps.

1. Rank Services for each Simple Request(Rq_i) using the X-Algorithm. Corresponding to Rq_i let TR_i denote the total ranks of Services calculated by X-Algorithm.

2. Compute the Cartesian Product for different total ranks, $TR = \{TR_1 \times TR_2 \times \cdots \times TR_m\}$.

We represent TR in $CPlan$ matrix as,

$$CPlan = \begin{bmatrix}
 r_{11} & r_{12} & \cdots & r_{1j} & \cdots & r_{1m} \\
 r_{21} & r_{22} & \cdots & r_{2j} & \cdots & r_{2m} \\
 \vdots & \vdots & \cdots & \vdots & \cdots & \vdots \\
 r_{i1} & r_{i2} & \cdots & r_{ij} & \cdots & r_{im} \\
 \vdots & \vdots & \cdots & \vdots & \cdots & \vdots \\
 r_{C1} & r_{C2} & \cdots & r_{Cj} & \cdots & r_{Cm}
\end{bmatrix} \quad (52)$$
where \(C = |TR| \). Each row in \(CPlan \) shows the rankings of simple Services in the composition. That is, the \(i_{th} \) row is the ranking vector of \(i_{th} \) composition, such that \(r_{ij} \in TR_j \) is the ranking of the simple Services corresponding to \(Rq_j \).

3. We regard the rows of \(CPlan \) matrix as alternates and would like to rank them with respect to Exact Match criteria of the ranks specified in \(CRQ \) subject to the weights \(CRW \) and the Essential option \(CRE \) specified Table 34. So, we are justified in running the X-Algorithm considering \(CRS \) as the user request and \(CPlan \) as the available alternatives.

Figure 40 illustrates the composing algorithm of the two Services, Service(A) and Service(B).

Example 11. In this example, we illustrate the steps of ranking Composed Services in practice. Suppose, a user defined one Composed Request that includes two different types of ESRS \(Rqh \) and \(Rqf \) defined in Table 35 and Table 36. For simplicity, we consider both EssentialAccuracy and AlgorithmAccuracy are pre-set to 0.1. Also, we assume that Hotel and Air Travel Services are

![Figure 40: An illustration of the Service composition](image-url)
defined in Table 37 and Table 38.

<table>
<thead>
<tr>
<th>Simple Hotel Request (Rqh)</th>
<th>SRW_h</th>
<th>SRE_h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Query</td>
<td>HotelPrice(h_1)</td>
<td>Stars(h_2)</td>
</tr>
<tr>
<td>Query</td>
<td>100$</td>
<td>4/5</td>
</tr>
<tr>
<td>Semantics</td>
<td>LB</td>
<td>MB</td>
</tr>
<tr>
<td>Weight</td>
<td>Significant</td>
<td>Normal</td>
</tr>
<tr>
<td>Mode</td>
<td>Best</td>
<td>Exact</td>
</tr>
<tr>
<td>Essential</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>AllBest</td>
<td>0(OFF)</td>
<td></td>
</tr>
</tbody>
</table>

Table 35: ESRS for Hotel Service

<table>
<thead>
<tr>
<th>Simple AirTravel Request (Rq_f)</th>
<th>SRW_f</th>
<th>SRE_f</th>
</tr>
</thead>
<tbody>
<tr>
<td>Query</td>
<td>TicketPrice(f_1)</td>
<td>Route(f_2)</td>
</tr>
<tr>
<td>Query</td>
<td>1000$</td>
<td>Direct</td>
</tr>
<tr>
<td>Semantics</td>
<td>LB</td>
<td>EB</td>
</tr>
<tr>
<td>Weight</td>
<td>Significant</td>
<td>Normal</td>
</tr>
<tr>
<td>Mode</td>
<td>Best</td>
<td>-</td>
</tr>
<tr>
<td>Range</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Essential</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AllBest</td>
<td>1(ON)</td>
<td></td>
</tr>
</tbody>
</table>

Table 36: ESRS for Air Travel Service

<table>
<thead>
<tr>
<th>HotelService_1(HS_1)</th>
<th>Price(hs_1)</th>
<th>Stars(hs_2)</th>
<th>Location(hs_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HotelService_1(HS_1)</td>
<td>60$</td>
<td>3.5/5</td>
<td>Suburb</td>
</tr>
<tr>
<td>HotelService_2(HS_2)</td>
<td>250$</td>
<td>5/5</td>
<td>Downtown</td>
</tr>
<tr>
<td>HotelService_3(HS_3)</td>
<td>100$</td>
<td>5/5</td>
<td>Suburb</td>
</tr>
</tbody>
</table>

Table 37: Available Hotel Services

<table>
<thead>
<tr>
<th>AirTravelService_1(FS_1)</th>
<th>Ticket Price(f_1)</th>
<th>Route(f_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AirTravelService_1(FS_1)</td>
<td>900$</td>
<td>Indirect</td>
</tr>
<tr>
<td>AirTravelService_2(FS_2)</td>
<td>1200$</td>
<td>Direct</td>
</tr>
<tr>
<td>AirTravelService_3(FS_3)</td>
<td>1000$</td>
<td>Direct</td>
</tr>
</tbody>
</table>

Table 38: Available Air Travel Services

We perform the following steps:

1. Calculate the maxRank_h for the Simple Hotel Request Rqh, and maxRank_f for the Simple
AirTravel Request Rq_f,

$$\text{maxRank}_h = RR_h + Ess_h + AllBest_h$$

where,

$$MRR_h = nfq \ast wh \ast \text{maxReward} = 3 \ast 0.005 \ast 3 = 0.045$$

$$MEss_h = \text{maxReward} \ast ((we \ast 1000wh) + wh) \ast neq$$

$$= 3 \ast ((0.005 \ast \frac{(0.1+(3-1) \ast 5)}{0.1} + 1) \ast 5 + 0.005) \ast 1 = 22.59$$

$$MAllBest = 3 \ast 0 = 0$$

Thus,

$$\text{maxRank}_h = 22.62$$

Similarly, we calculate the maxRank for the Simple Request, Rq_f,

$$\text{maxRank}_f = MRR_f + MEss_f + MAllBest_f = 0.03 + 0 + 2 = 2.03$$

2. Table 39 shows the CRS request structured automatically by the X-Algorithm for this example.

<table>
<thead>
<tr>
<th></th>
<th>Rq_h</th>
<th>Rq_f</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRQ</td>
<td>$\text{maxRank}_{Rq_h}(22.62)$</td>
<td>$\text{maxRank}_{Rq_f}(2.03)$</td>
</tr>
<tr>
<td>CRW</td>
<td>$SRW_{Rq_h}(0.005)$</td>
<td>$SRW_{Rq_f}(0.003)$</td>
</tr>
<tr>
<td>CRE</td>
<td>$SRE_{Rq_h}(0)$</td>
<td>$SRE_{Rq_f}(0)$</td>
</tr>
</tbody>
</table>

Table 39: The Structure of CRS request for the two Simple Requests Rq_h and Rq_f.

3. Rank the available Services for each ESRS using the X-Algorithm. The Total Ranks for different Hotel Services TR_h and for different Air Travel Services TR_f are shown in Table 40 and Table 41.

<table>
<thead>
<tr>
<th>Service</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS_1</td>
<td>7.42</td>
</tr>
<tr>
<td>HS_2</td>
<td>4.19</td>
</tr>
<tr>
<td>HS_3</td>
<td>6.28</td>
</tr>
</tbody>
</table>

Table 40: Ranks for available Hotel Services for ESQS Rq_h.
4. Compute \(TR = TR_h \times TR_f \), which is represented as the \(C_{Plan} \) matrix as shown in Table 42.

\[
TR = TR_h \times TR_f \\
\begin{bmatrix}
HS_1, FS_1 \\
HS_1, FS_2 \\
HS_1, FS_3 \\
HS_2, FS_1 \\
HS_2, FS_2 \\
HS_2, FS_3 \\
HS_3, FS_1 \\
HS_3, FS_2 \\
HS_3, FS_3
\end{bmatrix}
\Rightarrow C_{Plan} =
\begin{bmatrix}
HS_{11} & FS_{12} \\
HS_{21} & FS_{22} \\
HS_{31} & FS_{32} \\
HS_{41} & FS_{42} \\
HS_{51} & FS_{52} \\
HS_{61} & FS_{62} \\
HS_{71} & FS_{72} \\
HS_{81} & FS_{82} \\
HS_{91} & FS_{92}
\end{bmatrix}
\]

Table 42: The different composition plans (\(C_{Plan} \)) for Hotel and Air Travel Services.

5. Run the X-Algorithm on the Request CRS and on the available alternatives in \(C_{Plan} \). The ranks of rows in \(C_{Plan} \) are listed in Table 43 (ordered in a non-increasing order).

\[
\begin{array}{|c|c|}
\hline
\text{Ranked TR} & \text{\(C_{Plan} \) Ranks} \\
\hline
[HS_1, FS_3] & 0.0048 \\
[HS_1, FS_2] & 0.0042 \\
[HS_2, FS_3] & 0.0041 \\
[HS_1, FS_1] & 0.0040 \\
[HS_3, FS_2] & 0.0035 \\
[HS_3, FS_1] & 0.0032 \\
[HS_2, FS_3] & 0.0029 \\
[HS_2, FS_2] & 0.0023 \\
[HS_2, FS_1] & 0.0021 \\
\hline
\end{array}
\]

Table 43: Ranks of the different composition plans based on the Composite Request defined by the user.

The results shown in Table 43 are based on the Composite request CRS that does not includes any essential weight. Assume the user defined an essential weight to Hotel Simple Services such that
the X-Algorithm considers first the goodness of the Hotel Services, and then the Air Travel Services in the composition plan. Table 44 shows the request CRS with essential option set to Hotel Service.

<table>
<thead>
<tr>
<th></th>
<th>R_{qh}</th>
<th>R_{qf}</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRQ</td>
<td>$\text{maxRank}{R{qh}}(22.62)$</td>
<td>$\text{maxRank}{R{qf}}(2.03)$</td>
</tr>
<tr>
<td>CRW</td>
<td>$\text{SRW}{R{qh}}(0.005)$</td>
<td>$\text{SRW}{R{qf}}(0.003)$</td>
</tr>
<tr>
<td>CRE</td>
<td>$\text{SRE}{R{qh}}(1)$</td>
<td>$\text{SRE}{R{qf}}(0)$</td>
</tr>
</tbody>
</table>

Table 44: The Structure of CRS request for the two ESRS requests R_{qh} and R_{qf}.

The results of this request is listed in the following table (ordered in a non-increasing order). The ordering is essentially based on the Hotel Simple Services. The composite Services with a specific Hotel name ordered on Air Travel Services.

<table>
<thead>
<tr>
<th>ComposedServices</th>
<th>Composition Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[HRS_1, FRS_3]$</td>
<td>2.3381</td>
</tr>
<tr>
<td>$[HRS_1, FRS_2]$</td>
<td>2.3375</td>
</tr>
<tr>
<td>$[HRS_1, FRS_1]$</td>
<td>2.3373</td>
</tr>
<tr>
<td>$[HRS_3, FRS_3]$</td>
<td>1.3872</td>
</tr>
<tr>
<td>$[HRS_3, FRS_2]$</td>
<td>1.3866</td>
</tr>
<tr>
<td>$[HRS_3, FRS_1]$</td>
<td>1.3863</td>
</tr>
<tr>
<td>$[HRS_2, FRS_3]$</td>
<td>-0.0632</td>
</tr>
<tr>
<td>$[HRS_2, FRS_2]$</td>
<td>-0.0638</td>
</tr>
<tr>
<td>$[HRS_2, FRS_1]$</td>
<td>-0.0641</td>
</tr>
</tbody>
</table>

7.4 The Complexity of Ranking Composed Services

Let R_{qi} denote the i_{th} ESRS in a Composite Request CRS. Let there be m number of Simple Requests in CRS. The size of composition plan is C.

Based on the Complexity of X-Algorithm shown in Section 6.2, the time necessary to calculate the ranks of $CPlan$ is shown below

$$\text{Time}_{\text{Composed X Algo}} = O(C) + O(C \times m) + O(C \log(C))$$

where, $O(C)$ is the time necessary to obtain composition plans, $O(C \times m)$ is the time necessary to calculate
the total ranks for \(m \) composition plans in \(CPlan \), and \(O(C \log(C)) \) is the time necessary to sort the total ranks of \(CPlan \).

We remark that \(C \) is essentially dependant on the number of \(Services \) ranked and composed by the X-Algorithm and \(m \) is the number of \(ESRS \) requests. There is no obvious correlation between \(C \) and \(m \). For a fixed value of \(m \), the complexity is bounded by \(O(C \log(C)) \).

7.5 Summary

In this chapter we introduced the Composed Query Option for the X-Algorithm. We have illustrated the steps taken by the X-Algorithm to rank and respond to Composed Queries. Finally, we introduced the Algorithmic Complexity associated with this option.
Chapter 8

Conclusion and Future Work

In this thesis we have developed a solution to rank Services that have many heterogeneous features. Our algorithm contribute to the field of Service-Oriented Computing. Also, it provides a generic solution to any ranking problem in which input and alternatives for ranking can be described as vectors.

The X-Algorithm satisfies the fairness criteria, the scale set for comparing ranking algorithms. The input to the algorithm is a request that includes query and preferences from the user. These are applied against a set of Services in the system. The Services that match a query and comply with the semantics preferences that are specified in the user request are selected and ranked. X-Algorithm computes the scores for each Service attribute and a total rank for the whole Service with respect to the user request. The selected Services are ranked based on the total score. X-Algorithm has been extended to rank composite Services based on simple extensions to user requests. Thus, X-Algorithm is both user-centric and semantic-based. The semantics allow users to incorporate a wide range of options and preferences that are normally done informally in daily life for ranking Services. These options include Ranking modes, Essential, AllBest, Range and Service composition. Generally, options may be combined. There exist exceptions that are indicated in Table 45.
Table 45: This Table shows the ability/inability to integrate the X-algorithm options together

*— Essential option cannot be combined with AllBest option because both of them perform some adjustments on the ranking concept
— Exact Mode looks for exact match to one value, and Range option by default looks for numbers exact to ones within the range, therefore, they cannot be combined

8.1 Evaluation

We have evaluated the X-Algorithm computational level, where we conducted different experiments to evaluate the performance and accuracy of the X-Algorithm in practical settings. To validate the accuracy, we tested the behaviour of the algorithm on a case study. We tried different combinations of options and under each set of options the algorithm behaved exactly as expected. A manual inspection revealed the satisfaction of user specified semantics in all outcomes. We tested the run time efficiency of the algorithm on randomly generated data sets. In these practical studies, we found only a linear expansion of run time. In this section we evaluate our algorithm at a conceptual level. That is, we evaluate the X-Algorithm in terms of its satisfaction to the consumer and algorithmic requirements we defined for fair ranking. Table 46 and Table 47 show this evaluation.

As shown in Table 46 and Table 47, the X-Algorithm satisfies all the fair ranking requirements. However, we did not compare our algorithm with other algorithms. This is because there exists no algorithm with which it is meaningfully useful to compare.
Fair Ranking Requirements

<table>
<thead>
<tr>
<th>Ability to find better values</th>
<th>X-Algorithm</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>By using Best Mode option</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Numerical/non-numerical values</th>
<th>X-Algorithm</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-Algorithm accepts numbers, strings and boolean datatypes.</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Online ranking without assumptions</th>
<th>X-Algorithm</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outputs are generated on-spot based on user’s input only.</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Options to manipulate results</th>
<th>X-Algorithm</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-Algorithm offers many options to users: Best/Exact Modes, Range, AllBest, Essential and Semantic choice.</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fast response</th>
<th>X-Algorithm</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>The practical evaluation shows linear growth of the algorithms runtime.</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>User-friendly Query building</th>
<th>X-Algorithm</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Options can be easily integrated and structured in a simple user-interface.</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

Table 46: Evaluation of the X-Algorithm with respect to consumer perspective requirements

<table>
<thead>
<tr>
<th>Fair Ranking Requirements</th>
<th>X-Algorithm</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Different semantics support</td>
<td>✓</td>
<td>X-Algorithm considers MB, LB and EB semantics</td>
</tr>
<tr>
<td>Normalized outputs</td>
<td>✓</td>
<td>The X-Algorithm is based on the Similarity Measure SM_X which produces normalized outputs</td>
</tr>
<tr>
<td>Consistent outputs</td>
<td>✓</td>
<td>Outputs are based on inputs at any given time. Identical inputs produce identical outputs.</td>
</tr>
<tr>
<td>Input range $(0, \infty)$</td>
<td>✓</td>
<td>X-Algorithm puts no restrictions on inputs.</td>
</tr>
<tr>
<td>Unlimited number of features</td>
<td>✓</td>
<td>Number of features is unlimited.</td>
</tr>
<tr>
<td>Built on a simple concept</td>
<td>✓</td>
<td>X-Algorithm is based on Vector-Based Similarity Measures which are one of the simplest and easiest ranking approaches.</td>
</tr>
</tbody>
</table>

Table 47: Evaluation of the X-Algorithm with respect to consumer perspective requirements

8.2 Future Work

In order to realize the full potential of the X-Algorithm it should be properly plugged in a context-based SOA architecture as shown in Figure 41. This figure shows the interaction scenario among the SOA components that jointly enable Service publication, Service discovery, Service ranking and execution. The results of this thesis, when combined with Alaa Alsaig
[Als13], who has just completed the design and implementation of the Service registry using NoSQL technology, will cover the major tasks in Figure 41. The natural next step is to implement the following units of Figure 41.

- **Planning Unit** with interfaces to the Service registry, and the query processing unit Query Manager,
- a user interface for service requesters to compose queries with their semantic preferences, and
- **Composing unit, Negotiating Unit, Execution Unit.**

This is an important essential part of future work.
In order to be convinced of the operational ability of SOA in Figure 41, we have numbered the arrows in the figure in the order in which the tasks are to be performed, from publication to execution. Service publication process is done in (1,2), and is achieved by the thesis work of Alaa Alsaig [Als13]. A service requester interacts (3) with Query Manager who shares relevant information with Service Registry(4) and Ranking Unit (7). The selected Services from the Service Registry are sent to Context-based Filtering unit (5), which upon filtering are sent to Ranking Unit (6). Both Query Manager and Context-based Query Manager units are trivial designs, because they perform a simple task. The X-Algorithm is applied in Ranking Unit and the results are sent to the Composing Unit (8). Service composition is necessary only for composite queries. The results are provided to the user (9). In selection process the user has two options, either to have the Service executed (14), or send a negotiation request to the Negotiation Unit (10). In the later case, the negotiation request is forwarded to the service provider (11) who responds to the request (12). The Negotiation Unit sends the response to the user (13). This process can go on until either both parties agree or the service requester terminates the session. In the former case the service requester requests an execution of the Service (14). The responsibility of the Execution Unit to assure the complete delivery of the Service to the requester.

Another important aspect of future work is related to applying the X-Algorithm for problems that require vector-based ranking. The potential avenues to look at are ranking for admission to educational institutions (such as medical schools) and for preference-based ranking of companions in social networks.
Bibliography

[MMM12] Ana Milovanović, Maja Mitričević, and Andela Mijalković. The analytic hierarchy process (ahp) application in equipment selection. THE GROWTH OF SOFTWARE

Appendix A

Symmetry Calculations For Similarity Measures

This section is to prove the absence of symmetry characteristics in the SMs introduced in the literature survey.

Consider the following assumptions:

• each SM is tested with two different inputs S_1 and S_2, which are symmetric around q.

• the similarity measure is considered symmetric, if it produces similar outputs for S_1 and S_2, and asymmetric otherwise.

• value of S_2 is an image of value of S_1 around q, which means that $q - S_1 = S_2 - q$ where $S_1 < q$ and $S_2 > q$

• assume the value of $S_1 = a$, where $a < q$ and since S_2 is an image of S_1 around q, $S_2 = q - a + q = 2q + a$ which means that $2q + a > q$, FIGURE(**).

• we want to prove that $SM(S_1) = SM(S_2)$ for each SM in Tables 1,2.

• LS denotes left side of equation and RS denotes right side, which means that we want to
prove that $LS=RS$ where LS is the SM with S_1 as input and RS is the same SM with S_2 as input.

- we assume S_1 and S_2 have only one value, so, any sum is removed. In other words, since we are not using vector of values, there is no need to calculate the total ranks for different elements of vectors, thus, sum is removed from SMs.

1. Euclidean Distance,

$$LS = d_{Euc}(S_1) = \sqrt[2]{|S_1 - q|^2} = \sqrt[2]{|a - q|^2}$$

$$RS = d_{Euc}(S_2) = \sqrt[2]{|S_2 - q|^2} = \sqrt[2]{|(2q - a) - q|^2} = \sqrt[2]{|q - a|^2} = LS$$

Hence, Euclidean Distance is a symmetric SM.

2. Kulczynski

$$LS = d_{kul}(S_1) = \frac{|S_1 - q|}{\text{min}(S_1, q)} = \frac{|a - q|}{a}$$

$$RS = d_{kul}(S_2) = \frac{|S_2 - q|}{\text{min}(S_2, q)} = \frac{|(2q - a) - q|}{q} = \frac{|q - a|}{q} \neq LS$$

Thus, Kulczynski is an asymmetric SM.

3. Gower

$$LS = d_{gow}(S_1) = |S_1 - q| = |a - q|$$

$$RS = d_{gow}(S_2) = |S_2 - q| = |2q - a - q| = |q - a| = LS$$

As a result Gower is a symmetric SM.

4. Lorentzian

$$LS = d_{lor}(S_1) = \ln(1 + |S_1 - q|) = \ln(1 + |a - q|)$$

$$RS = d_{lor}(S_2) = \ln(1 + |S_2 - q|) = \ln(1 + |2q - a - q|) = \ln(1 + |q - a|) = LS$$

So, Lorentzian is a symmetric SM.
5. Inner Product

\[\text{LS} = d_{IP}(S_1) = S_1q = aq \]
\[\text{RS} = d_{IP}(S_2) = S_2q = (2q - a) * q = 2q^2 - aq \neq \text{LS} \]

Hence, Inner Product is an asymmetric SM.

6. Sørensen

\[\text{LS} = d_{sor}(S_1) = \frac{|S_1 - q|}{(S_1 + q)} = \frac{|a - q|}{(a + q)} \]
\[\text{RS} = d_{sor}(S_2) = \frac{|S_2 - q|}{(S_2 + q)} = \frac{|q - a|}{(3q - a)} \neq \text{LS} \]

Thus, Sørensen is an asymmetric SM.

7. Soergel

\[\text{LS} = d_{sg}(S_1) = \frac{|S_1 - q|}{\max(S_1, q)} = \frac{|a - q|}{q} \]
\[\text{RS} = d_{sg}(S_2) = \frac{|S_2 - q|}{\max(S_2, q)} = \frac{|q - a|}{2q - a} \neq \text{LS} \]

As a result, Soergel is an asymmetric SM.

8. Cosine

\[\text{LS} = S_{\cos}(S_1) = \frac{S_1q}{\sqrt{S_1^2 \sqrt{q^2}}} = \frac{aq}{\sqrt{a^2 \sqrt{q^2}}} \]
\[\text{RS} = S_{\cos}(S_2) = \frac{S_2q}{\sqrt{S_2^2 \sqrt{q^2}}} = \frac{2q^2 - aq}{\sqrt{(2q - a)^2 \sqrt{q^2}}} \neq \text{LS} \]

So, Cosine is an asymmetric SM.

9. Canberra

\[\text{LS} = d_{can}(S_1) = \frac{|S_1 - q|}{S_1 + q} = \frac{|a - q|}{a + q} \]
\[\text{RS} = d_{can}(S_2) = \frac{|S_2 - q|}{S_2 + q} = \frac{|q - a|}{3q - a} \neq \text{LS} \]

Hence, Canberra is an asymmetric SM.
10. Jaccard

\[LS = d_{jac}(S_1) = \frac{(S_1 - q)^2}{S_1^2 + q^2 - S_1 q} = \frac{(a - q)^2}{a^2 + q^2 - aq} \]
\[RS = d_{jac}(S_2) = \frac{(S_2 - q)^2}{S_2^2 + q^2 - S_2 q} = \frac{(q - a)^2}{(2q - a)^2 + q^2 - 2q^2 - aq} \neq LS \]

Thus, Jaccard is an asymmetric SM.

11. Harmonic Mean

\[LS = d_{HM}(S_1) = 2 \frac{S_1 q}{S_1 + q} = 2 \frac{aq}{a + q} \]
\[RS = d_{HM}(S_2) = 2 \frac{S_2 q}{S_2 + q} = 2 \frac{2q^2 - aq}{3q - a} \neq LS \]

As a result, Harmonic Mean is an asymmetric SM.

12. Dice

\[LS = d_{dice}(S_1) = \frac{(S_1 - q)^2}{S_1 q^2} = \frac{(a - q)^2}{a^2 q^2} \]
\[RS = d_{dice}(S_2) = \frac{(S_2 - q)^2}{S_2 q^2} = \frac{(q - a)^2}{(2q - a)^2 q^2} \neq LS \]

Hence, Dice is an asymmetric SM.

13. Relative Change

\[LS = d_{RC}(S_1) = \frac{|S_1 - q|}{\max(S_1, q)} = \frac{|a - q|}{q} \]
\[RS = d_{RC}(S_2) = \frac{|S_2 - q|}{\max(S_2, q)} = \frac{|q - a|}{(2q - a)} \neq LS \]

Thus, Relative Change is an asymmetric SM.

14. Service Ranking

\[LS = d_{RS}(S_1) = 2 - \frac{S_1}{q} \]
\[RS = d_{RS}(S_2) = 2 - \frac{S_2}{q} \]

since \(S_1 \neq S_2 \), then, \(LS \neq RS \). Thus, Ranking Service is an asymmetric SM.
Appendix B

Limits Calculation For Similarity Measures

In order to be able to calculate the limit of each similarity measure we have to make the following assumptions

- Since the value of query is the same for all services, we can consider the query as a constant denoted by c.

- Number of properties has to be limited. Hence, we consider it as a constant too denoted by c_1.

- Since the changing part is the value of the service’s property, we will denote it as x and substitute it by $+\infty$.

- Since the expected inputs are lower-bounded by zero and does not include minus values, we will exclude the calculation of $\lim_{x \to -\infty}$.

- Since the upper-bound is all what matters for us, we won’t bother looking at $\lim_{x \to 0}$.

165
1. Euclidean Distance

\[
\lim_{x \to \infty} \sqrt{|x - c|^2}
\]

because of the absolute function, we know it is a positive value, thus,

\[
\lim_{x \to \infty} |x - c| = |\lim_{x \to \infty} x - \lim_{x \to \infty} c| = \infty
\]

2. Kulczynski

\[
\lim_{x \to \infty} \frac{|x - c|}{\min(x, c)} = \lim_{x \to \infty} \frac{|x - c|}{c} = \frac{|\lim_{x \to \infty} x - \lim_{x \to \infty} c|}{\lim_{x \to \infty} c} = \frac{\infty - c}{c} = \infty
\]

3. Gower

\[
\lim_{x \to \infty} \frac{1}{c_1}|x - c| = \frac{|\lim_{x \to \infty} x - \lim_{x \to \infty} c|}{\lim_{x \to \infty} c_1} = \frac{\infty - c}{c_1} = \infty
\]

4. Lorentzian

\[
\lim_{x \to \infty} \ln(1 + |x - c|) = \lim_{x \to \infty} \ln(1 + |\infty - c|) = \lim_{x \to \infty} \ln(\infty) = \infty
\]

5. Sørensen

\[
\lim_{x \to \infty} \frac{|x - c|}{x + c} = \frac{\infty - c}{\infty + c} = \frac{\infty}{\infty}
\]

if we plug in \(\infty\) we end up with an indeterminate form \(\frac{\infty}{\infty}\), thus,

\[
\lim_{x \to \infty} \frac{|x - c|}{x + c} \times \frac{1}{x} = \lim_{x \to \infty} \frac{|1 - c/x|}{1 + c/x} = \frac{1 - 0}{1 + 0} = 1
\]

6. Soergel

\[
\lim_{x \to \infty} \frac{|x - c|}{\max(x, c)}
\]

since \(x\) is \(\infty\) it is larger than \(c\), so we can say,

\[
\lim_{x \to \infty} \frac{|x - c|}{x}
\]

this leads us to an indeterminate form \(\frac{\infty}{\infty}\), using the same method used above,

\[
\lim_{x \to \infty} \frac{|x - c|}{x} \times \frac{1}{x} = \frac{1 - 0}{1} = 1
\]
7. Cosine

\[
\frac{xc}{\sqrt{x^2 + c^2}}
\]

this clearly leads to indeterminate form \(\frac{\infty}{\infty}\), thus

\[
\lim_{x \to \infty} \frac{xc}{\sqrt{x^2 + c^2}} \times \frac{1/x}{1/x} = \frac{c}{\sqrt{c^2}}
\]

assuming \(c\) is a positive number, hence

\[
\lim_{x \to \infty} \frac{c}{\sqrt{c^2}} = 1
\]

8. Canberra (same case has been addressed in SM 5)

\[
\lim_{x \to \infty} \frac{|c - x|}{x + c} = 1
\]

9. Jaccard

\[
\lim_{x \to \infty} \frac{(x - c)^2}{x^2 + c^2 - xc}
\]

if we try plug-in method, we end up with the combined indeterminate form \(\frac{\infty}{\infty}\), thus,

by expanding the nominator we get,

\[
\lim_{x \to \infty} \frac{x^2 - 2xc + c^2}{x^2 + c^2 - xc} \times \frac{1/x^2}{1/x^2} = \lim_{x \to \infty} \frac{1 - (2c/x) + (c^2/x^2)}{1 + (c^2/x^2) - (c/x)} = \frac{1 - 0 + 0}{1 + 0 - 0} = 1
\]

10. Harmonic Mean

\[
\lim_{x \to \infty} 2 \frac{xc}{x + c}
\]

leads to the form \(\frac{\infty}{\infty}\)

hence,

\[
\lim_{x \to \infty} 2 \frac{xc}{x + c} \times \frac{1/x}{1/x} = \lim_{x \to \infty} \frac{2c}{1 + c/x} = 2c
\]

this means that the limit is based on the value of the query, this is clearly shown in

Figure 12 where the query value is 120.

11. 1-Dice

\[
1 - \lim_{x \to \infty} \frac{(x - c)^2}{x^2c^2}
\]

a plug-in clearly leads to the form \(\frac{\infty}{\infty}\)

thus,

\[
1 - \lim_{x \to \infty} \frac{x^2 - 2xc + c^2}{x^2c^2} \times \frac{1/x^2}{1/x^2} = 1 - \lim_{x \to \infty} \frac{1 - (2c/x) + (c^2/x^2)}{c^2} = 1 - \frac{1}{c^2}
\]
12. Angular Disparity

\[\lim_{x \to \infty} 1 - \frac{\cos^{-1}(\cos x)}{\pi} \]

since the limit of cosine when \(x \) approaches to infinity is 1 as shown in SM 7, then,

\[\lim_{x \to \infty} 1 - \frac{\cos^{-1}(1)}{\pi} = 1 - \frac{0}{\pi} = 1 \]

13. Relative Change is similar to Soergel, which is bounded by 1

14. Service Ranking

\[2 - \lim_{x \to \infty} \frac{x}{c} \]

using plugin method we find that

\[2 - \infty = -\infty \]