
A UNIFIED METAMODEL FOR ASSESSING AND PREDICTING SOFTWARE

EVOLVABILITY QUALITY

ASEEL HMOOD

A THESIS

 IN THE DEPARTMENT OF

COMPUTER SCIENCE AND SOFTWARE ENGINEERING

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY (COMPUTER SCIENCE)

CONCORDIA UNIVERSITY

MONTREAL, QUEBEC, CANADA

OCTOBER 2013

© ASEEL HMOOD, 2013

CONCORDIA UNIVERSITY

SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By: Aseel Hmood

Entitled: A Unified Metamodel for Assessing and Predicting Software Evolvability Quality

and submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY (Computer Science)

complies with the regulations of the University and meets the accepted standards with respect to original-

ity and quality.

Signed by the final examining committee:

 Chair

Dr. R. Dssouli

External Examiner

Dr. D. Amyot

 External to Program

Dr. A. Hamou-Lhadj

 Examiner

Dr. P. Grogono

 Examiner

Dr. R. Witte

 Thesis Supervisor

Dr. J. Rilling

Approved by

 Dr. V. Haarslev, Graduate Program Director

December 12, 2013

Dr. Christopher W. Trueman, Dean 

Faculty of Engineering & Computer Science

iii

ABSTRACT

A Unified Metamodel for Assessing and Predicting Software Evolvability Quality

Aseel Hmood, PhD

Concordia University, 2013

Software quality is a key assessment factor for organizations to determine the ability of software

ecosystems to meet the constantly changing requirements. Many quality models exist that capture

and assess the changing factors affecting the quality of a software product. Common to these models

is that they, contrary to the software ecosystems they are assessing, are not evolvable or reusable.

The thesis first defines what constitutes a unified, evolvable, and reusable quality metamodel. We

then introduce SE-EQUAM, a novel, ontological, quality assessment metamodel that was designed

from the ground up to support quality unification, reuse, and evolvability. We then validate the reus-

ability of our metamodel through instantiating a domain specific quality assessment model called

OntEQAM that assesses evolvability as a non-functional software quality based on product and com-

munity dimensions. A fuzzy logic based assessment process that addresses uncertainties around

score boundaries supports the evolvability quality assessment. The presented assessment process

also uses the unified representation of the input knowledge artifacts, the metamodel, and the model

to provide a fuzzy assessment score. Finally, we further interpret and predict the evolvability as-

sessment scores using a novel, cross-disciplinary approach that re-applies financial technical analy-

sis, which are indicators, and patterns typically used for price analysis and the forecasting of stocks

in financial markets. We performed several case studies to illustrate and evaluate the applicability of

our proposed evolvability score prediction approach.

iv

ACKNOWLEDGEMENT

First and foremost I would like to deeply thank my supervisor Professor Juergen Rilling

without his guidance, support and patience this work would not have happened. Throughout this

journey, Professor Rilling was always available to openly discuss new research ideas, ask challenging

questions and therefore elevate the work to the best it can be.

 I would like to thank my committee members, Professor Daniel Amyot (University of Otta-

wa), Professor Peter Grogono, Professor René Witte, and Professor Abdelwahab Hamou-Lhadj,

whose work and valuable feedback expanded my horizon and helped me discover new research op-

portunities that significantly improved my research.

In addition, a thank you to all my colleagues and co-authors at Concordia University: Dr.

Philipp Schugerl, David Walsh, Ninus Khamis, Mostafa Erfani, Chris Forbes, Chris Neil, and George

Peristerakis.

A special thanks to a unique friend and colleague Dr. Iman Keivnloo who was there for the

past four years to discuss and share research ideas, challenges, and literature. Our discussions led to

new published work and more research opportunities.

Last and not least, I want to express my gratitude and appreciation to my father Professor

Khadair Hmood who believed in me and supported me through all the steps of my journey. His advice

and words of wisdom were the light to guide me and help me see the glory to come and the payoff for

what I have invested. Thank you for your unconditional love and for giving me the chance to improve

myself. Thanks to my mother, Intesar Al-Naib, from whom I learnt the patience, tolerance, and open-

ness and finally thanks to my siblings: Ala’a, Ali, Jaffar, Zainab, Hadeel, and Fatima for being there for

me and for understanding my absence sometimes.

v

TABLE OF CONTENTS

ABSTRACT ... II

LIST OF FIGURES ..VII

LIST OF TABLES ... X

GLOSSARY ... XI

CHAPTER 1: INTRODUCTION .. 1

1.1 MOTIVATION .. 1

1.2 RESEARCH APPROACH ... 3

1.3 ISSUES NOT ADDRESSED IN THIS THESIS ... 6

1.4 THESIS OUTLINE ... 7

CHAPTER 2: BACKGROUND .. 9

2.1 EVOLVABILITY DEFINED .. 9

2.2 QUALITY ASSESSMENT MODELS ... 10

2.3 TRADITIONAL ASSESSMENT MODELS .. 14

2.4 OPEN SOURCE ASSESSMENT MODELS ... 21

2.5 SOFTWARE QUALITY ASSESSMENT PROCESS .. 36

2.6 REPOSITORY OF REPOSITORIES .. 50

2.7 ONTOLOGIES AND MINING SOFTWARE REPOSITORIES .. 51

2.8 SUMMARY .. 56

CHAPTER 3: SE-EQUAM, AN EVOLVABLE QUALITY METAMODEL ... 62

3.1. METAMODEL REUSABILITY REQUIREMENTS .. 63

3.2. KNOWLEDGE MODELING REQUIREMENT ... 71

3.3. KNOWLEDGE POPULATION REQUIREMENT .. 78

3.4. KNOWLEDGE EXPLORATION REQUIREMENT .. 80

3.5. SE-EQUAM RELATED WORK .. 82

3.6. SUMMARY .. 89

CHAPTER 4: ONTEQAM: ONTOLOGICAL EVOLVABILITY QUALITY ASSESSMENT MODEL 91

4.1. ONTEQAM ADDRESSES METAMODEL REUSE REQUIREMENTS .. 93

4.2. ONTEQAM ADDRESSES KNOWLEDGE MODELING REQUIREMENT ... 100

4.3. ONTEQAM ADDRESSES THE KNOWLEDGE POPULATION REQUIREMENT ... 105

vi

4.4. ONTEQAM ADDRESSES THE KNOWLEDGE EXPLORATION REQUIREMENT.. 111

CHAPTER 5: THE FUZZY LOGIC BASED ASSESSMENT PROCESS ...115

5.1. ASSESSMENT PROCESS .. 117

5.2. CASE STUDY ... 130

5.3. VALIDATION AGAINST QUALOSS ... 135

CHAPTER 6: EVOLVABILITY PREDICTION USING FINANCIAL TECHNICAL ANALYSIS ...141

6.1 SOFTWARE QUALITY PREDICTION MODELS ... 141

6.2 FINANCIAL TECHNICAL ANALYSIS ... 145

6.3 SUMMARY ... 155

CHAPTER 7: EVOLVABILITY SCORE INTERPRETATION AND PREDICTION ...156

7.1 FINANCIAL TECHNICAL ANALYSIS PROCESS ... 157

7.2 CASE STUDY- PREDICTING SOFTWARE EVOLVABILITY QUALITIES .. 159

7.3 SUMMARY .. 180

CHAPTER 8: CONCLUSION AND FUTURE WORK ...182

8.1 REVISITING OUR RESEARCH QUESTIONS ... 182

8.2 THREAT TO VALIDITY .. 184

8.3 FUTURE WORK ... 186

REFERENCES ..188

vii

LIST OF FIGURES
FIGURE 1 RESEACH APPROACH .. 4

FIGURE 2 QUALITY ASSESSMENT COMPONENTS ... 7

FIGURE 3 EXTRACTED (SYNTACTIC) QUALITY ASSESSMENT METAMODEL .. 12

FIGURE 4 MCCALL QUALITY MODEL .. 16

FIGURE 5 BOEHM QUALITY MODEL ... 17

FIGURE 6 ISO/IEC 9126-1 QUALITY MODEL .. 18

FIGURE 7 PRODUCT QUALITY MODEL AS DEFINED BY THE ISO/IEC 25010:2011 .. 19

FIGURE 8 QUALITY IN USE MODEL AS DEFINED BY THE ISO/IEC 25010:2011 .. 19

FIGURE 9 DROMEY QUALITY MODEL [64] ... 20

FIGURE 10 NASA SATC QUALITY MODEL... 21

FIGURE 11 QSOS QUALITY MODEL ... 23

FIGURE 12 CAPGEMINI OSMM QUALITY MODEL .. 24

FIGURE 13 OPENBRR QUALITY MODEL ... 25

FIGURE 14 SQO-OSS QUALITY MODEL ... 27

FIGURE 15 QUALOSS QUALITY MODEL .. 28

FIGURE 16 SIG MAINTAINABILITY MODEL .. 29

FIGURE 17 SQUALE QUALITY MODEL [68] ... 31

FIGURE 18 SQALE QUALITY MODEL PYRAMID [70].. 33

FIGURE 19 SAMPLE OF NONREMEDIATION FACTORS ISSUED FROM A SPECIFIC CONTEXT [70] ... 33

FIGURE 20 FURPS+ QUALITY MODEL .. 34

FIGURE 21 QUALOSS ASSESSMENT PROCESS STEPS .. 39

FIGURE 22 QSOS ASSESSMENT PROCESS STEPS .. 41

FIGURE 23 THE CAPGEMINI OSMM AXES [57] .. 42

FIGURE 24 CAPGEMINI OSMM ASSESSMENT PROCESS STEPS [57] ... 43

FIGURE 25 SMM ASSESSMENT PROCESS STEPS [66] .. 45

FIGURE 26 SMM MEASURE BENCHMARKING [64].. 45

FIGURE 27 SQALE ASSESSMENT PROCESS STEPS [69, 82] .. 46

viii

FIGURE 28 SQALE SCALE [82] ... 47

FIGURE 29 LEFT, MODAL, AND RIGHT BOUNDARIES ... 48

FIGURE 30 FUZZY LOGIC BASES ASSESSMENT PROCESS STEPS .. 48

FIGURE 31 FUZZIFICATION OF AVERAGE CYCLOMATIC COMPLEXITY [84] .. 49

FIGURE 32 FUZZIFICATION OF OUTPUT VARIABLE – MAINTAINABILITY [84]... 49

FIGURE 33 URI GENERATION SCHEMA [94] ... 53

FIGURE 34 SE-EQUAM REUSABILITY STEPS .. 65

FIGURE 35 RELATIONSHIPS BETWEEN MODELS, METAMODELS, AND ONTOLOGY [123] .. 66

FIGURE 36 SYNTACTIC METAMODEL AND DOMAIN MODLE INSTANCE (ISO/IEC 9126) EXAMPLE ... 67

FIGURE 37 SEMANTIC MAPPING TO ONTOLOGY METAMODEL .. 68

FIGURE 38 SAMPLE SQUALE REUSE OF QUAMON .. 69

FIGURE 39 QUAMON REUSABILITY USING A DOMAIN MODEL ONTOLOGYEXAMPLE (SUBSET) ... 70

FIGURE 40 QUAMON- METAMODEL ONTOLOGY (SUBSET) .. 72

FIGURE 41 SAMPLE SET OF URI GENERATION SCHEMA APPLICATION .. 79

FIGURE 42 ASSERTED VERSUS INFERRED QUERY KNOWLEDGE ... 81

FIGURE 43 SOFTWARE MEASUREMENT ONTOLOGY (SMO) [159]... 85

FIGURE 44 SMO DECISION CRITERIA [159] .. 87

FIGURE 45 SMO-II (SUBSET) [126] .. 88

FIGURE 46 ONTOLOGY MODELING FOR SOFTWARE EVALUATIONS [165] .. 89

FIGURE 47 REUSE OF SE-EQUAM METAMODEL TO INSTANTIATE A DOMAIN MODEL ONTOLOGY (ONTEQAM)[12] 92

FIGURE 48 THE SYNTACTIC METAMODEL AND ITS INSTANCE, THE DOMAIN MODEL (ONTEQAM) ... 94

FIGURE 49 SE-EQUAM SEMANTIC METAMODEL AND ITS INSTANCE, THE DOMAIN MODEL (ONTEQAM) 95

FIGURE 50 ONTEQAM DOMAIN MODEL RESUES QUAMON METAMODEL ONTOLOGY (SUBSET) ... 97

FIGURE 51 HASMEASURE-RELATED PROPERTY CHAIN CONSTRUCTS (PROTEGE VIEW) ... 99

FIGURE 52 SE-EQUAM KNOWLEDGE ARTIFACTS .. 101

FIGURE 53 ONTOLOGY POPULATION (ONTOLOGICAL KNOWLEDGE MODEL) .. 107

FIGURE 54 SEMANTICALLY RICHER KNOWLEDGE EXPLORATION ... 114

FIGURE 55 SIG MAINTAINABILITY MODEL BENCHMARKING APPROACH ... 115

FIGURE 56 SQALE SCALE [70] .. 116

FIGURE 57 FUZZY ASSESSMENT PROCESS STEPS .. 118

ix

FIGURE 58 MEASURE FUZZY SCALE ... 123

FIGURE 59 WEIGHT FUZZY SCALE .. 126

FIGURE 60 QUALITY SCORE FUZZY SCALE... 126

FIGURE 61 INFERENCING SCORE RESULTS FOR A GIVEN MEASURE AND WEIGHT .. 128

FIGURE 62 PMD NO. OF CONTRIBUTOR’S EVOLVABILITY SCORES .. 133

FIGURE 63 GOOGLE INC. 20/50 DAYS MA (6 MONTHS RANGE) ... 149

FIGURE 64 GOOGLE INC. 20 AND 50 DAYS MA CROSSOVER79 ... 150

FIGURE 65 GOOGLE INC. 20 DAYS MA, INCLUDING SUPPORT AND RESISTANCE LINES79 ... 151

FIGURE 66 GOOGLE INC. 6 MONTHS MACD.. 152

FIGURE 67 FINANCIAL TECHNICAL ANALYSIS PROCESS .. 158

FIGURE 68 M-TOP & W-BOTTOM PATTERNS .. 163

FIGURE 69 SAMPLE PATTERN DETECTION (BLACK IS A PATTERN AND RED IS NOT A PATTERN) .. 163

FIGURE 70 W-BOTTOM AND M-TOP ROOT AND EVOLUTION PATTERNS.. 165

FIGURE 71 ARGOUML EVOLUTION PATTERNS 2008-2011 .. 168

FIGURE 72 PULSE- PATTERNS ANNOTATION... 168

FIGURE 73 PULSE CROSSOVER AND BREAKOUT PATTERNS ... 171

FIGURE 74 ARGOUML- RESISTANCE BREAKOUT PATTERN /BULLISH CROSSOVER CAUSES A PATTERN REVERSAL 172

FIGURE 75 PULSE- MA CROSSOVER PATTERN AND M-TOPS PATTERN CORRELATION .. 175

FIGURE 76 20-MA, 50-MA AND MA CROSSOVER PATTERNS VERSUS LINEAR REGRESSION ... 176

x

LIST OF TABLES
TABLE 1 OVERVIEW OF SOFTWARE MAINTENANCE COST TO TOTALLIFECYCLE COST [6] ... 2

TABLE 2 SQO-OSS MAINTANABILITY QUALITY ASSESSMENT SCORE (SUBSET) [42] ... 44

TABLE 3 COMPARATIVE STUDY FOR EXISTING QUALITY ASSESSMENT MODELS .. 58

TABLE 4 DEFINITIONS OF QUAMON CONCEPTS ... 73

TABLE 5 DEFINITIONS OF QUAMON ATTRIBUTES .. 74

TABLE 6 DEFINITIONS OF QUAMON RELATIONSHIPS .. 74

TABLE 7 OWL2 PROPERTY CHAIN USAGE ... 77

TABLE 8 DEFINTIONS OF TOOLON CONCEPTS .. 102

TABLE 9 DEFINITIONS OF TOOLON RELATIONSHIPS ... 102

TABLE 10 ESTABLISHING TRACEABILITY LINKS USING SPARQL AND INFERENCE RULES ... 105

TABLE 11 ONTEQAM MEASURES ASSIGNMENTS (SUBSET) ... 119

TABLE 12 SAMPLE SPARQL QUERIES FOR MEASURES CALCULATION .. 122

TABLE 13 SAMPLE FUZZY CONTROL LANGUAGE (FCL) FILE .. 127

TABLE 14 PMD MEASURE VALUES, SCORES, AND FIRED RULES ... 133

TABLE 15 BASE MEASURES... 136

TABLE 16 ONTEQAM LOCAL & GLOBAL SCORES VERSUS QUALOSS (THREE OSS PROJECTS) .. 138

TABLE 17 A SUMMARY OF TECHNICAL INDICATORS AND THEIR ASSOCIATED PATTERNS ... 146

TABLE 18 W-BOTTOM ROOT PATTERNS EVOLUTION .. 154

TABLE 19 M-TOP ROOT PATTERNS EVOLUTION ... 154

TABLE 20 SUMMARY OF TECHNICAL INDICATORS AND ASSOCIATED PATTERNS .. 157

TABLE 21 M-TOP PATTERN APPLICABILITY (ACROSS ALL PROJECTS) .. 160

TABLE 22 THE MAPPING BETWEEN STOCK PRICE AND EVOLVABILITY SCORE PATTERN INTERPRETATION 166

TABLE 23 W-BOTTOM PATTERN APPLICABILITY (ACROSS ALL PROJECTS) ... 169

TABLE 24 M-TOP PATTERN APPLICABILITY (ACROSS ALL PROJECTS) .. 169

TABLE 25 QUANTITATIVE ANALYSIS OF MA-CROSSOVER AND SUPPORT/RESISTANCE LINES .. 173

TABLE 26 QUANTITATIVE ANALYSIS OF MA-CROSSOVERS AND SUPPORT/RESISTANCE PER INDIVIDUAL PROJECTS 174

TABLE 27 ACTUAL VERSUS PREDICTED SCORE FOR THE LAST THREE DATA POINTS USING 20-MA AND LR 177

TABLE 28 PERCENT PREDICTION ERROR RELATIVE TO THE TOTAL DATASET PER PROJECT (USING 20-MA) 178

TABLE 29 PERCENT PREDICTION ERROR RELATIVE TO THE TOTAL DATASET PER PROJECT (USING LR) 178

xi

GLOSSARY
Below is the list of definitions and acronyms used throughout the thesis:

Model: In our context, a model is used to refer to a quality model. According to ISO/IEC 14598 [33]

standard, a quality model is defined as: “The set of characteristics and relationships between them,

which provides the basis for specifying quality requirements and evaluating quality”

Metamodel: an abstraction, template, or frame that consists of a collection of concepts and relation-

ships. A model is an instance of a metamodel.

Score: it is also called a rank or a rate. Given a quality to assess and a weight of its importance, it re-

fers to the quality assessment result such as poor, average, or excellent.

Assessment process: the set of steps followed to calculate the quality score.

Measurement process: in our context, it is the same as an assessment process.

Uncertainty: refers to the level of confidence about the relationship of a value in a range. In our

work, it is the confidence of the quality score boundaries whether the score can be precisely poor or

it could be somewhere in between poor and very poor for example.

Domain: refers to the area of interest such a saying a domain specific ontology where the domain is

the evolvability quality.

Ontology: a formal (machine-readable) representation of shared knowledge.

Knowledge: in our context, it is meaningful information or facts about the software to be assessed

such as contributing community, historical releases, activities on code, and bugs/issues.

Artifact: represents the repository where the software knowledge is stored such as versioning sys-

tem, issue tracker, mailing lists. Artifacts differ in their knowledge abstraction levels and representa-

tions.

OWL: Web Ontology Language, a family of knowledge representation languages used to model ontol-
ogies.

OWL-DL: Web Ontology Language designed enriched with reasoning expressiveness derived from

the Description Logic field of study.

xii

OWA: Open World Assumption, the assumption associated with the use of ontologies and it means

that the truth-value of the knowledge is not derived from its explicit representation i.e., if it does not

exist that does not mean it’s false. The opposite is the Closed World Assumption.

URI: Uniform Resource Identifier, a string of characters used to identify a resource on the Internet.

W3C: the World Wide Web Consortium, the standards body for web technologies.

RDF: Resource Description Framework, a conceptual description of information that is implemented

in web resources.

RDFS: Resource Description Framework Schema, a set of classes with certain properties for RDF.

SPARQL: an RDF query language for triple storage.

Triple: An expression in a form of subject-predicate-object used to format knowledge in RDF data

model. For example, to represent the statement “the chair is red”, the subject is the chair, the predi-

cate is has color and the subject is red. Throughout the thesis, triples are represented in the following

format: <subject><predicate><object>.

N-triple: is a plain text, line-based data representation format used for RDF data storage and trans-

mission. In our research, we used an n-triple file format to store and transmit the triples that repre-

sent the software knowledge.

XML: Extensible Markup Language, a set of rules for encoding documents in machine-readable form.

T-Box: Terminology Box, a term used to describe a statement to establish a common, shared vocabu-

lary for concepts and their relationships in ontologies. For example, X is an instance of Y.

A-Box: Assertion Box, it is associated with a T-Box and represents the individual or instance of a

terminological statement represented in the T-Box. For example, Circle is an instance of Shape.

Concept: is a vocabulary or term defined as part of the T-Box to uniquely identify all its instanc-

es/individuals, for example, Quality Factor, Attribute, Measure, and Score.

Individual: is an instance, a real life example of a concept defined as part of the A-Box. In our con-

text, for example, Evolvability is an individual of the concept Quality Factor.

xiii

FLOSS: stands for free, libre open source software. It refers to software systems that openly shared

with online community to use, copy and change.

Software Ecosystem: refers to the collection of software artifacts that developed to constitute a

software system.

Semantic Web: an initiative led by W3C (World Wide Web Consortium) that aims to convert the un-

structured information available online into a semi-formal, and structured format.

VERON1: a VERsion control artifact ONtology: it defines concepts such as commit and commits

date/time.

ISSUEON2: an ISSUE tracker ONtology: it defines concepts such as issue/bug, issue history, com-

ments, and description.

METON3: a METadata ONtology: it defined shared concepts among various software artifacts such as

contributors and files.

QUAMON: a QUAlity Metamodel ONtology: it defines the common concepts and relationships used by

a quality model.

TOOLON: a TOOLs ONtology: it defines measurements related concepts used in assessing various

evolvability qualities that are extracted from external code analysis tools.

1 http://aseg.cs.concordia.ca/ontologies/2010/11/veron.rdf
2 https://sites.google.com/site/asegsecold/ontology/Issueon.owl
3 http://aseg.cs.concordia.ca/ontologies/2010/11/meton.rdf

http://aseg.cs.concordia.ca/ontologies/2010/11/veron.rdf
https://sites.google.com/site/asegsecold/ontology/Issueon.owl
http://aseg.cs.concordia.ca/ontologies/2010/11/meton.rdf

1

CHAPTER 1: INTRODUCTION

A sign that the software engineering profession has matured will be that we lose our preoccupation

with the first release and focus on the long-term health of our products. – David Parnas (1994)

1.1 MOTIVATION

Software evolvability is a non-functional software quality that refers to the ability of software to

adapt to continuously changing requirements over time. Requirements for changes in software come

in different forms, such as newly added features, bug fixes, or technology migration. The challenge of

achieving evolvability quality while facing changing requirements and environments remains a par-

amount issue for software systems. One of the challenges is the dispersed nature of software

knowledge resources over different representation formats and abstraction levels. Another challenge

is the lack of awareness of the software contributing community about the initial design decisions

that makes the software changes, while maintaining its quality, a complex and time consuming pro-

cess.

Despite the importance of non-functional requirements (NFRs), such as software evolvability, and

the fact that software maintenance contributes up to 90% of the total software life cycle cost [1, 2],

most existing processes still lack adequate support for NFRs in software maintenance.

The Seattle Times [3] estimated that the payroll cost alone to develop Microsoft’s Vista operating sys-

tem was $10 billion while the evolution cost starting in the late 1980s was roughly $30 billion.

It is estimated that 120 billion lines of source code were being maintained in 1990 [4]. In 2000, this

number was about 250 billion and increasing [5]. Companies add an average of 10% more lines of

source code each year only in enhancements [2], resulting in a doubling of the code size of the system

being maintained every 7 years [2]. It has been estimated that in the US alone, more than $70 bil-

lion is dedicated to maintenance annually [1]. For example, existing data associated with correcting

the Y2K bug showed that the US government alone spent about $8.38 billion during a 5-year period

2

to perform Y2K bug corrections, and, at a company-level, Nokia Inc. spent about $90 million on pre-

ventative Y2K bug corrections. Despite the fact that both researchers and practitioners have gained a

better understanding of the challenges and problems associated with software maintenance, the cost

associated with maintaining and managing the evolution of software systems has increased from

67% of the total cost in 1979 [6] to more than 90% in 2000 [7].

In [8], source code artifact measures were applied to predict maintenance efforts depending on the

evolvability of a software system; the study showed that in less evolvable systems, the time put to-

wards requirement changes and fixing errors was between 25% and 36% greater. Table 1 summa-

rizes the cost of maintenance as a percentage of the total software cost, which has clearly been in-

creasing over time.

TABLE 1 OVERVIEW OF SOFTWARE MAINTENANCE COST TO TOTALLIFECYCLE COST [6]

Year Cost of software
maintenance

Definition

2000 >90% Software cost devoted to system maintenance & evolution / total software
costs

1993 75% Software maintenance / information system budget (Fortune 1000 com-
panies)

1988 60-70% Software maintenance / total management information systems operating
budgets

1984 65-75% Effort spent on software maintenance / total available software engineer-
ing effort

1981 >50% Staff time spent on maintenance / total time (in 487 organizations)
1979 67% Maintenance costs / total software costs

The term evolvability was widely popularized by Lehman [9, 10] as part of his eight laws explaining

what constitutes software evolvability. Initially formulated in the mid-seventies [11] as three laws,

Lehman’s laws then evolved over the years [9-11] to the eight laws outlined below, which are defined

in terms of E-type systems. An E-Type system or program refers to a feedback system that is embed-

ded in real-world contexts where both the program and its environment evolve over time [9-11], we

will be referring to some of the laws throughout the thesis.

 Law I: Continuing Change — An E-type program must be continually adapted or it becomes

progressively less satisfactory.

3

 Law II: Increasing Complexity — As a program is evolved, its complexity increases unless

work is done to maintain or reduce it.

 Law III: Self-Regulation — The program evolution process is self-regulating when there is a

close to normal distribution of measures of product and process attributes.

 Law IV: Conservation of Organizational Stability (invariant work rate) — The average ef-

fective global activity rate on an evolving system is invariant over a product’s lifetime.

 Law V: Conservation of Familiarity — During the active life of an evolving program, the

content of successive releases is statistically invariant.

 Law VI: Continuing Growth — The functional content of a program must continually in-

crease over its lifetime to maintain user satisfaction.

 Law VII: Declining Quality — E-type programs will be perceived as of declining quality un-

less they are rigorously maintained and adapted to a changing operational environment.

 Law VIII: Feedback System — E-type programming processes constitute multi-loop, multi-

level feedback systems and must be treated as such to be successfully modified or improved.

Software evolvability is used in this research as a non-functional quality attribute that reflects

software adaptability to continuous change and its ease of reuse.

1.2 RESEARCH APPROACH

In this section, we describe our research approach (Figure 1). The approach is arranged in five steps,

each of which define the topic covered and the research question raised (which leads to the next

step).

http://en.wikipedia.org/w/index.php?title=Invariant_work_rate&action=edit&redlink=1

4

FIGURE 1 RESEACH APPROACH

The sequence of this thesis is guided by the four research questions described in Figure 1. These re-

search questions are focused on software evolvability quality. The different perspectives of software

evolvability that we looked at include what constitutes evolvability quality as defined by existing lit-

erature. This perspective covers existing quality assessment models and examines how each of them

is addressed.

Ontological, Evolvability Quality Assessment Model (Part of Contribution I) [17, 120]

Introduce OntEQAM (Ontological, Evolvability Quality Assessemnt Model), an example of SE-EQUAM (Evolvable, QUality
Assessment Metamodel). Extracted from existing quality models, OntEQAM assesses evolvability quality from product and

community dimensions and re-applies stock market, financial technical analysis in evolvability score interpretation and prediction.

Evolvability Score Interpretation and Prediction (Contribution III) [13, 14]

Introduce a novel, cross-deciplinary research to re-apply stock
market financial technical analysis to interpret and predict

evolvability quality.

RQ4: How can the formal reusability of the metamodel be
validated and the integration of assessment results be

supported?

Fuzzy Logic-Based Assessment Process (Contribution II)

Introduce a fuzzy-logic based quality assessment process to
address uncertainity around evolvability score boundaries.

RQ3: Can the interpretation and prediction of evolvability
trends be supported by indicators and patterns used

traditionally in financial markets?

Evolvable , Reusable, Quality Assessment Metamodel (Contribution I) [12, 120]

Introduce a novel, formally reusable, quality assessment
metamodel, i.e., SE-EQUAM (SE- Evolvable QUality Assessment

Metamodel), that addresses a model's evolution.

RQ2: How can the uncertainties around the assessment score
boundaries be addressed?

State of the Art - Chapter 2

Study how exisiting quality models address and assess
evolvability, e.g., McCall, ISO, QUALOSS, SQO-OSS, etc.

RQ1: Can a formal, reusable quality assessment metamodel be
developed that is readable by both humans and machines?

5

 RQ1: Can a formal, reusable quality assessment metamodel be developed that is readable by

both humans and machines?

o A thorough examination of the existing quality assessment models is addressed as

part of this thesis. Most of the models share a common metamodel representation,

but none address the possibility of the formal reusability of the model, i.e., by provid-

ing a machine-readable metamodel that could be further extended and reused by

other models. The lack of formal representation of the commonalities between the

different models introduces challenges, such as compliance to a common structure,

terminology, and manual reinvention of the existing work. To address our question,

we introduce a novel, evolvable, quality assessment metamodel that is developed us-

ing ontological representation to provide a machine-readable format. Our metamodel

could be reused and extended by other quality assessment models regardless of the

quality or set of qualities the model is addressing. Our ontological metamodel

demonstrates the integration of semantic reasoning technology, OWL DL, and

SPARQL (Contribution I) [12].

 RQ2: How to address the uncertainties around the assessment score boundaries?

o Existing quality assessment processes use a set of quality measures (e.g., lines of code

and number of open issues) as input for their assessment to determine an assess-

ment score (e.g., excellent or poor quality). Almost all existing approaches (except

those using the fuzzy logic process) consider crisp boundaries (e.g., a measure value

of x% or less is considered to be very poor, whereas as a value of x% + 0.1 is ranked

as only poor). However, using crisp assessment boundaries in the software domain is

challenging because one has to deal during the assessment proves often with missing

or incomplete knowledge that is being assessed. To address this challenge, we apply

the fuzzy logic assessment approach, whereby the assessment results (e.g., quality

scores and snapshots) are re-populated into the ontological representation of the as-

sessment metamodel for further interpretation (Contribution II).

6

 RQ3: Can the interpretation and prediction of evolvability trends be supported by indicators

and patterns used traditionally in financial markets?

o Most of the existing quality assessment models provide an assessment score for us-

ers without any further interpretation. Our goal is to monitor the evolvability score

patterns over time and then interpret these patterns as a way to predict future

scores. This part of our work introduces a novel interdisciplinary research that re-

applies the stock market analysis patterns used to interpret and predict stock price

evolution on the software evolution (Contribution III)[13, 14].

 RQ4: How can the formal reusability of the metamodel be validated and the integration of

assessment results be supported?

o As a validation of the reusability of our semantic, ontological metamodel introduced

to address RQ1, we present a quality model that addresses software evolvability

quality as an instance of the quality metamodel. This quality model is extracted from

existing quality assessment models (e.g., ISO/IEC 9126 [15] and QUALOSS [16]). The

evolvability quality model formally reuses the metamodel ontological representation

and semantics. The evolvability quality is assessed using the fuzzy logic process

(RQ2), and the assessment results are integrated with a knowledge base of a unified

ontological representation of the quality assessment input and output.

1.3 ISSUES NOT ADDRESSED IN THIS THESIS

The following issues are not addressed as part of this thesis:

 The focus of this thesis is software evolvability as a non-functional (NF) quality. The cover-

age of any NF software qualities, such as security, portability, performance, etc., is beyond

the scope of this thesis. Other generic purpose quality models, which will be described as

part of the background chapter, address most of non-evolvability specific qualities.

7

 The work performed by this thesis is presented in the form of case studies and experimental

examples developed using our own assessment framework. The framework does not pro-

vide graphical user interface as a visualization of the assessment results, but the results are

available in technical formats, such as fuzzy control language files, ontological n-triple files,

and command line.

 This work does not introduce new quality assessment measures. We reuse measures and

benchmarks from existing quality assessment models.

1.4 THESIS OUTLINE

Software quality assessment consists of the three main components: a metamodel, model, and a pro-

cess (Figure 2). The metamodel is an abstraction, template or a frame that consist of a collection of

concepts and relationships between them. A model is a concrete instance of the metamodel that ad-

dresses a specific quality composition. Finally, the assessment process is used by the model, which

takes a set of quality assessment artifacts as an input and quality score as an output. The derived

quality scores can then be further analyzed to detect historical patterns and predict future scores.

FIGURE 2 QUALITY ASSESSMENT COMPONENTS

The rest of this thesis is divided into eight chapters as mapped in Figure 2:

 Chapter 2: In this chapter, we will thoroughly discuss the terminology and definitions of the

main concepts used in this research, such as evolvability and quality. This chapter describes

8

the existing quality models, coverage for software evolvability quality, and conformance to

our syntactic metamodel. Quality assessment processes are described in a section within

which we address the steps to provide quality scores and the different scoring systems pro-

posed in the literature. This chapter ends with a summary of the challenges we faced in this

research and a comparative study of the major properties of the existing quality models.

 Chapter 3: In this chapter, we introduce the details of our Contribution I (i.e., SE-EQUAM, the

Evolvable, QUality Assessment Metamodel). We describe the core requirements needed for a

quality model to be considered evolvable and then outline how each requirement is ad-

dressed in our solution.

 Chapter 4: This chapter summarizes the fuzzified quality assessment process approach

(Contribution II). It details the steps to benchmark and calculates the quality score on differ-

ent levels of the quality model.

 Chapter 5: This chapter provides a technical case study to validate our Contribution I, which

is presented in Chapter 3. The validation is performed by instantiating the evolvable quality

metamodel (Chapter 3) and reusing the fuzzified assessment process (Chapter 4).

 Chapter 6: In this chapter, we first discuss the existing literature of the quality prediction

models used in software industry and then we provide a detailed background study on the

financial technical analysis for price interpretation and prediction provided by the stock

market industry, which we re-apply in our research as part of the next chapter (Chapter 7).

 Chapter 7: In this chapter, we explain our Contribution III, a novel, interdisciplinary ap-

proach that re-applies stock market technical analysis patterns, which are used to interpret

and predict price evolution on software quality score evolution. This study is performed on

the results obtained from reusing our metamodel (Chapter 3), assessment process (Chapter

4), and evolvability model (Chapter 5).

 Chapter 8: This chapter reviews our research questions and explains how they were ad-

dressed. It then describes the directions for future work.

9

CHAPTER 2: BACKGROUND

2.1 EVOLVABILITY DEFINED

Software systems require constant modifications in order to meet new and ever-changing require-

ments [8], increasing software complexities, and maintenance cost, unless change accommodations

are rigorously taking into account as part of the software development process [18]. All large and

successful software products require continuous evolution and as observed by Brooks in [19]: “As

soon as one freezes a design, it becomes obsolete in terms of its concepts.” The term evolvability

was widely popularized by Lehman [9, 20] as part of his eight laws explained what constitutes soft-

ware evolvability as continuing change, increasing complexity, and declining quality. Analyzing the

maintenance cost of 20 source code releases of the OS/360 empirically proves these laws. In [21]

Lehman defined evolvability both as a verb and a noun, but then mainly focused on its use as a verb,

which he described as: “how to evolve a software system.”

In [22] Kemerer and Slaughter suggest the following definition of software evolution: “Software evo-

lution refers to the dynamic behavior of software systems as they are maintained and enhanced over

their lifetime”. In [23] evolvability was defined as “the capacity of software systems to support adap-

tation to new requirements and use contexts over time”. Common to these definitions is their de-

scription of evolvability as the ability of a software product to react to ongoing changes and the im-

plementation of these changes in order to extend the lifespan of a software product.

More recently, Lehman’s definition of evolvability [21] was further refined by the ISO/IEC and IEEE

standards 14764-2006 [24], which used it to define the software maintenance area as: “the totality of

activities required to provide cost-effective support to a software system. Activities are performed

during the pre-delivery stage as well as the post-delivery stage”.

10

Given this definition, the terms software evolution and software maintenance are virtually synony-

mous [25, 26] and will be used interchangeable as a non-functional software quality throughout this

study.

2.2 QUALITY ASSESSMENT MODELS

Quality is a widely used term to evaluate the maturity of development processes in general within an

organization from a business point of view. Defining quality allows organizations to specify and de-

termine if a product has met certain non-functional and functional requirements. As Kitchenham

[27] states: "quality is hard to define, impossible to measure, easy to recognize"; Gillies et al. [28] de-

rives a similar observation by stating that quality is "transparent when presented, but easily recog-

nized in its absence". These general assumptions resulted in a large body of inconsistencies and often

even controversial definitions of what constitutes quality for software products. Unlike functional

requirements, where a single analysis technique (e.g., use case modeling) is sufficient to identify es-

sentially all requirements, the same analysis is not appropriate for all quality requirements.

The following section presents some commonly used definitions of what constitutes quality in soft-

ware. Software quality is often used to specify the degree to which a software product meets specific

functional and non-functional quality attributes.

Quality, as defined by the ISO 9000:2000 standard [29], is the “degree to which a set of inherent

characteristics fulfills requirements,” where a requirement is a “need or expectation that is stated,

generally implied or obligatory.” There has also been a significant body of work on classifying re-

quirements in order to establish links between software quality and requirements.

Another definition of what constitutes software quality is presented by the ISO standardization

committee in ISO 8402:1994 [30], which defines software quality as: “the totality of characteristics of

an entity that bear on its ability to satisfy stated and implied needs''.

11

Kitchenham [27] also specifies quality as the “fitness for needs,” which covers conformance to the

software’s specification (needs) and its ability to address the right problem (fitness). The IEEE 1061

standard [31] interprets software quality as the degree to which a software system fulfills a selected

group of attribute requirements, where quality attributes represent features or characteristics that

affect an item’s quality. In [32]a quality attribute has been defined as a non-functional characteristic

of a component or a system. In the same article, evolvability was described as a non-functional re-

quirement of system and therefore was treated as a characteristic and quality attribute [32].

Given the constantly and rapidly changing technologies (programming paradigms), processes (agile

and open source development), and new application domains (distributed and service oriented), as

well as social and economic changes (collaborative and global software development), software qual-

ity is gaining importance; yet, it must also adapt and evolve to capture these new contexts.

Assessing quality to assure easier handling of evolution problems and further changes to the soft-

ware in the future has been addressed in existing research through the introduction of various soft-

ware quality models. These models were introduced to define different software quality dimensions

and classified quality areas that affect the development and maintenance of software products.

The ISO/IEC 14598 [33] standard defines quality models as: “The set of characteristics and relation-

ships between them, which provides the basis for specifying quality requirements and evaluating

quality.”

Software quality models are artifacts for describing the quality factors of a single software product of

different types and domains. In order to allow for a comparison between the existing quality models,

a generic metamodel is introduced to establish a common terminology and structure.

2.2.1. GENERIC QUALITY ASSESSMENT METAMODEL

Most quality assessment models share a generic structure, template, or frame for assessing software

qualities that corresponds to a hierarchy or tree structure with multiple levels and a set of con-

straints that define the relationship between one level and the next one; in this thesis, this will be

12

called the quality assessment metamodel. Figure 3 represents the common syntactic metamodel that

will be used to standardize the terminology and analyze and evaluate the surveyed quality assess-

ments models.

FIGURE 3 EXTRACTED (SYNTACTIC) QUALITY ASSESSMENT METAMODEL

 With the exception of a few models that merge some levels, the metamodel is based on a core of five

abstraction levels; other models use the optional dimensional level 0.

Level 0 (Quality Dimension): The quality dimension is an optional level used by some models to

group quality factors used in many quality models. For example, in [34] the software quality of the

FLOSS project is viewed from the product, community, process, and tools dimensions. In [35] quality

is studied from different FLOSS roles perspectives, such as maintainer, contributor, adopter, and in-

tegrator. In [36] quality is either defined by the artifact during specific phases of the software devel-

opment lifecycle or by one of three domains: application, problem, or solution. The ISO/IEC 9126

[15] looked at quality as external or internal; while in [37] quality dimensions are domain, experi-

ence, and process.

Level 1 (Quality Factor): In the literature, different terminology exists to describe the term quality

factors. The ISO 9000:2005 standard [38] refers to them as quality characteristics, being any fea-

ture or characteristic of a product/service that is required to satisfy customer needs or achieve fit-

ness for use [29], while characteristics themselves are defined as non-measurable quality factors

that are used to classify the upper level of sub-characteristics of the ISO model. The IEEE standard

[39] introduces quality factors as management-oriented attributes of software that contribute to its

Attribute MeasureFactor SubfactorDimension

hasFactor HasSubfactor hasAttribute hasMeasure

Quality Factors Quality Attributes Quality MeasuresQuality Dimensions

.

.

.

Quality Subfactors

.

.

.

.

.

.
.

.

.

.

.

.

Project

hasDimension

13

overall quality. In the context of this research, we use the IEEE term quality factors to represent the

upper level quality factors of the surveyed quality models.

Level 2 (Quality Sub-factor): As outlined above, various definitions for quality factors exist, includ-

ing the ISO/IEC standard [38], which refers to them as quality sub-characteristics that may be sub-

jectively measured when required and may be decomposed into other sub-characteristics or alterna-

tively into attributes that help in their measurement. The IEEE standard [39] refers to quality sub-

factors as the decomposition of a quality factor to its technical components.

Level 3 (Quality Attributes): In the literature, both the ISO standard [38] and the IEEE standard

[39]refer to this level as the quality attribute. According to [39], a quality attribute is defined as a

characteristic of software that is a measurable physical or abstract property of an entity [39].

Level 4 (Quality Measures): Called metrics by some models, such as QUALOSS [40], SQUALE [41],

and SQO-OSS [42], quality measures are defined as directly measurable attributes of software and

are used to express certain aspects of the product that affect quality [43]. Another definition of quali-

ty measures is a function whose inputs are software data and whose output is a single numerical

value that can be interpreted as the degree to which software possesses a given attribute that affects

its quality [39]. The ISO 9000:20004 process standard defines a metric as a numerical measurement

of the effectiveness of tasks and activities. In this thesis we use the terms metric and measure inter-

changeably.

2.2.2. QUALITY ASSESSMENT IN TRADITIONAL VERSUS OPEN SOURCE SOFTWARE

For the survey of the quality assessment models, we will differentiate between models created for

open source and traditional (non-open) source software. FLOSS, unlike closed-source software, is

freely available software whereby users have access to the source code. FLOSS projects typically

share a collaborative development approach, with multiple geographically distributed developers

(aka contributors) addressing different needs and hardware platforms. The coordination among the

4 http://en.wikipedia.org/wiki/ISO_9000

http://en.wikipedia.org/wiki/ISO_9000

14

contributors is effectively based on shared communication protocols and there is no enforced leader-

ship that sets the project guidelines or drives the main decisions regarding the development process.

Roles change as FLOSS development grows and leadership arises in a bottom-up investiture, which

leads to a greater concentration on development itself. All contributors work on the same source

code and have equal opportunity to propose solutions to the same problem, which improves the

quality not only by solving errors but also by creating more adaptable software.5 A major drawback

with the FLOSS assessment approach is for projects with often less structured and controllable de-

velopment processes in place (e.g., open source projects), when a task assignment is becoming a

more ad-hoc decision (e.g., for open source projects, it depends completely on the availability of vol-

unteers). For large and successful FLOSS projects this problem does not exist because the community

is large and a wider selection is available. In contrast commercial (propriety or closed source) soft-

ware is typically recognized by a strictly pre-defined organizational structure with role assignments

and reporting hierarchies enforced from the beginning of the development process.

2.3 TRADITIONAL ASSESSMENT MODELS

The origin of most traditional (non-open source) assessment models dates back to the mid-1970s,

prior to widespread use of open source projects. These models originated from the need to assess the

quality of software products developed either internally within organizational boundaries or exter-

nally as part of outsourcing of the software development to third party developers. Common to these

assessment models both their focus on the (software) product and the well-defined software devel-

opment process supporting these products. In what follows, we survey the major traditional as-

sessment models, by mapping them to the structure of our generic metamodel in order to illustrate

their coverage and allow for a discussion of their benefits and limitations.

For brevity, we represent in this chapter the quality measures level of the models as a black-box. For

a detailed coverage of the individual measures used by the model, we refer the reader to the refer-

5 http://www.opensource.org

15

ences associated with each model. Among the more typical measures found in most models are cy-

clomatic complexity and code size in terms of lines of code.

2.3.1. MCCALL QUALITY MODEL

The 1977 McCall quality model [44] was introduced to primarily support the assessment of software

developers and development process quality. It attempts to address both users’ and developers’ per-

spectives by introducing three main dimensions used to categorize quality attributes [45]. Figure 4

shows the three dimensions: product revision (ability to change), product transition (adaptability

to new environments), and product operations (basic operational characteristics). Mapping the

McCall model to our generic quality assessment metamodel demonstrates that the McCall model does

not have a sub-factors level. The model has been criticized for using non-objective measures [46, 47]

and because the functionality of a software product is not directly covered as a quality aspect [46].

Figure 4 show that the model has no specific focus on evolvability.

16

FIGURE 4 MCCALL QUALITY MODEL

2.3.2. BOEHM’S QUALITY MODEL

Boehm’s 1976 model [48] is one of the early quality assessment models. Overall it is similar to

McCall’s model but with more emphasis on the maintainability aspects of quality [45]. It introduces

maintainability sub-factors, such as traceability and comprehensibility, along with associated

measures. Furthermore, Boehm’s model covers hardware dependencies not addressed by McCall’s

model. Comparing Boehm’s model with our generic metamodel shows that it covers all the quality

assessment levels (Figure 5). One of the criticisms of Boehm’s model is that the model definitions of

Usability

Integrity

Operability

Training

Product operation

Efficiency

Correctness

Reliability

Communicativeness

I/O Volume

I/O Rate

Access control

Access audit

Storage efficiency

Execution efficiency

Traceability

Completeness

Consistency

Accuracy

Error tolerance

Consistency

Simplicity

Product revision

Maintainability

Flexibility

Testability

Consistency

Simplicity

Conciseness

Self descriptiveness

Modularity

Simplicity

Instrumentation

Expandability

Generality

Self descriptiveness

Modularity

Product transition

Reusability

Portability

Interoperability

Generality

Self descriptiveness

Modularity

Machine independence

Software system independence

Self descriptiveness

Modularity

Machine independence

Software system independence

Modularity

Communications commonality

Data commonality

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*
*

*

*

*
*
*

*

*

*

*
*
*

*

*
*
*

*

*
*

*

Quality Factors Quality Attributes Quality MeasuresQuality Dimensions

*

*

*

*
*

M
ea

su
re

s

17

the quality factors are highly technical and difficult for non-technical stakeholders to grasp [47]. An-

other criticism is that the two quality dimensions are too generic and not well defined.

FIGURE 5 BOEHM QUALITY MODEL

2.3.3. ISO/IEC 9126 AND SQUARE

In 1991, the ISO committee, together with the International Electro-technical Commission (IEC), es-

tablished a common ISO/IEC 9126 quality model [15]. There are hundreds of standards developed

and maintained by software organizations but the most popular model is ISO/IEC 9126 [49].

Metrics

Portability

Testability

General utility

Understandability

Modifiability

Accessibility

Communicativeness

Structuredness

Self descriptiveness

Consistency

Structuredness

Self descriptiveness

Conciseness

Legibility

Traceability

Completeness

Consistency

As is utility

Reliability

Effeciency

Human Engineering

Completeness

Accuracy

Consistency

Accessibility

Communicativeness

Device efficiency

Accessibility

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

Maintainability

Device independence

Completeness

*

*

*

*

Quality Factors Quality Attributes Quality MetricsQuality Dimensions Quality Subfactors

*

18

FIGURE 6 ISO/IEC 9126-1 QUALITY MODEL

The objective of this standard was to integrate the many existing perspectives on software quality

and establish a worldwide-standardized model, which was further revised in 1998. The ISO/IEC

9126 [15] views quality from two dimensions: internal (how the product was developed) and ex-

ternal (how the product works in its environment). It also defines six characteristics (quality fac-

tors), which are further subdivided into sub-characteristics (quality sub-factors), as shown in the

Figure 6. In this quality model, maintainability is treated as a separate quality factor with several

quality attributes; however, it never clarifies how the identified factors can be measured [46, 50].

In 2011, ISO/IEC 25010 [51] was introduced to replace ISO/IEC 9126 [15]. ISO/IEC 25010 or

SQuaRE [51] stands for Systems and Software Quality Requirements and Evaluation. SQuaRE revises

and extends ISO/IEC 9126 [15], for example by adding security as a characteristic/factor rather than

a sub-characteristic; using more accurate names such as modifiability instead of changeability; and

adding new characteristics such as compatibility which includes interoperability and co-existence,

functional completeness, capacity, and reusability. SQuaRE defines two models: product quality mod-

el, which assesses internal and external software qualities (Figure 7). The second SQuaRE defined

Functionality

Reliability

Suitability

Accuracy

Interoperability

Compliance

Security

External & Internal

Qualities

Usability

Efficiency

Maintainability

Maturity

Recoverability

Fault Tolerance

compliance
Learnability

Understandability

Operability

Attractiveness

compliance

Time Behaviour

Resource utilization

Compliance

Stability

Analyzability

Changeability

Testability

Compliance

*

*
*

*

*

*

*

*

*

*

*
*

*

*

Portability

Installability

Replaceability

Adaptability

Co-existence

Compliance

*

*

*

*

*

*

*
*

*

*

Quality Factors Quality Attributes Quality MeasuresQuality Dimensions

M
e

a
s

u
re

s

19

model is Quality in use model, which assesses the software product qualities that impact stakeholders

(Figure 8).

FIGURE 7 PRODUCT QUALITY MODEL AS DEFINED BY THE ISO/IEC 25010:2011

FIGURE 8 QUALITY IN USE MODEL AS DEFINED BY THE ISO/IEC 25010:2011

Functionality

Suitability

Reliability

Functional Appropriateness

Accuracy

Software Product Quality

Performance Efficiency

Operability

Maintainability

Maturity

Availability

Fault Tolerance

Recoverability

Time Behaviour

Resource utilization

Approperiatness recognizability

Ease of use

User error protection

User interface aesthetic

Technical learnability

Technical accessibility

Modularity

Reusability

Modifiability

Analyzability

Testability

*

*

*

*

*

*

*
*

*

*

*

Portability

Install-ability

Replace-ability

Adaptability

*

*

*

*

*

*

*

*

*

*

Quality Factors Quality Attributes Quality MeasuresQuality Dimensions

Security

Confidentiality

Integrity

Non-repudiation

Accountability

Authenticity

Compatability
Co-existence

Interoperability

*
*

*

*

*

*
*

*

*

M
e

a
s

u
re

s

Effectiveness

Quality In Use

Efficiency

Satisfaction

Safety

Effectiveness

Efficiency

Likeability

Pleasure

Comfort

Trust

Economic damage risk

Health safety risk

Environmental risk

*

*

*
*

*

*

Usability

Learn-ability

Flexibility

Accessibility

Context conformity

*
*

*

*

Quality Factors Quality Attributes Quality MeasuresQuality Dimensions

*

*

*

M
e

a
s

u
re

s

20

2.3.4. DROMEY’S QUALITY MODEL

In 1996, Dromey’s model [52, 53], which is based on McCall and Boehm’s models, was introduced.

The model links product properties that influence quality with quality attributes [45]. If mapped to

our generic metamodel, the software product implementation in the Dromey’s model (Figure 9) cor-

responds to our quality dimension, the four product’s properties map to our quality factors, and each

factor/property has a set of quality attributes.

FIGURE 9 DROMEY QUALITY MODEL [64]

In the quality attributes level, the model identifies eight attributes, with six being the same as in the

ISO 9126 model [15]; it additionally defines reusability and process maturity attributes. One of the

main disadvantages of Dromey’s model is related to its ability to assess reliability and maintainabil-

ity, since both reliability and maintainability are assessed during the implementation phase, before

the system is actually operational [46].

2.3.5. NASA SATC QUALITY MODEL

In 1996, the NASA Software Assurance Technology Center SATC developed a quality model in order

to help its software managers to identify project risks and assess software quality [54]. The NASA

SATC quality model is based on both McCall’s [44] and Boehm’s [48] earlier models, as well as the

early ISO 9126 standard [15]. When mapped to our generic metamodel, the NASA SATC model

(Figure 10) covers three levels: quality dimensions, quality attributes, and metrics associated with

21

attributes. It lacks coverage for the quality factors and sub-factors levels. Also the model is very gen-

eral in respect to software quality and does not emphasize maintainability and comprehensibility.

FIGURE 10 NASA SATC QUALITY MODEL

2.4 OPEN SOURCE ASSESSMENT MODELS

In what follows, some of the major FLOSS quality assessment models are surveyed by mapping them

again to our generic metamodel and discussing the strengths and weaknesses of each model, in par-

ticular with respect to their ability to support the assessment of evolvability.

2.4.1. QSOS

In 2004, the method for Qualification and Selection of Open Source software (QSOS) [55] was intro-

duced. The QSOS offers a free method for adapters to qualify and select FLOSS software based on the

best match with respect to planned/actual and technical/functional requirements. The model uses

adjustable weights for the assessment process. Data is provided through manual data import. The

model provides a web-based interface to visualize the assessment results. In order to complete the

Requirements

Product/Code

Ambiguity

Completeness

Understand ability

Volatility

Traceability

Implementation

Effectivity

Testing Effectivity

Structutre/Arch

Maintainability

Reusability

Internal Doc

External Doc

Resource Usage

Completion rates

Correctness

*

*
*

*

*

*

*

*

*

*

*

*

*

Quality Attributes Quality MeasuresQuality Dimensions

M
e

a
s

u
re

s

22

automatic calculation of the assessment, no incomplete data should exist. The QSOS (Figure 11) sup-

ports three levels of our generic metamodel, with the main category being the quality dimensions

level, the QSOS criteria being our quality attributes, and the basic criterion corresponding to the

measures. The QSOS provides a discrete scoring for the various quality criteria; however, the scoring

itself is too restrictive by supporting only values from 0 to 2. It has also been observed that the QSOS

missed some of the FLOSS specific quality areas, such as install-ability, security, reference deploy-

ment, standard compliance, supporting availability, stability, and performance [56]. One of the major

shortcomings of the QSOS is its obsolete scoring, which prevents the model from being tailored to a

specific context or user’s need. The QSOS is a general quality assessment framework that is not

evolvability specific and treats maintenance only as one of many quality factors.

23

FIGURE 11 QSOS QUALITY MODEL

Metrics

Maturity

Adoption

Age

Stability

History / Known

problems

Fork probability

Intrinsic durability

Development leadership

Activity

Independence of

Developement

Popularity

References

Contributing

community

Books

Leading team

Management style

Developers,

identification, turnover

Activity on bugs

Activity on

functionalities

Activity on releases

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

Services

Documentation

Training

Support

Consulting

Industrialized Solution

Quality assurance

Packaging

Exploitation

QA Process

QA Tools

Sources

Distribution

*

*

*

*

*
*

*

*

*

Ease of use

Administration

Technical Adaptability

By Products

Modularity

Code Modification

Code Extension

*

*

Strategy

Licence

Permission

Protection against

proprietary forks

Providing Services

Maintainability

Code mastery

Quality of the source code

Technological dispersion

Intrinsic complexity

Technical documentation
*

*

*

*

Direct

Indirect

*

*

*

*

Quality Factors Quality Attributes Quality MetricsQuality Dimensions

24

2.4.2. CAPGEMINI OSMM

The Open Source Maturity Model (OSMM) [57] proposed in 2003 by CapGemini was an early attempt

to standardize the ad-hoc assessment approaches of FLOSS projects [58]. The OSMM is a commercial

product that allows for the evaluation of 12 generic product related characteristics and 15 user relat-

ed characteristics. Scores range from 1 to 5 and adjustable weights are applied to calculate the final

score [57]. If a certain indicator is inapplicable then a score of 3 is assigned, which will not have any

positive or negative effect of the final result; this is a unique characteristic of this model that distin-

guishes it from other models. When mapping the CapGemini OSMM (Figure 12) to our generic meta-

model, one can observe that it lacks factors and sub-factors levels. However, while its focus on the

assessment of the quality of the development processes, there is no explicit coverage of maintainabil-

ity within the assessment model.

FIGURE 12 CAPGEMINI OSMM QUALITY MODEL

2.4.3. OPENBRR

In 2005, the Open Business Readiness Rating (OpenBRR) was introduced [59]. OpenBRR is built upon

the existing OSMM models Cap Gemini’s OSMM [57]. It defines an open standard assessment model

[58] that enables the community to rate FLOSS in order to assess adopters in determining whether

Modularity

Interoperability

Standards

Age

Licence

Human organization

Developer community

Sellers aspects

Support

Easy to deploy

User community

Market penetration

*

*

*

*

*

*

*

*

*

*

Product

Integration

Use

Acceptance

*

*

Quality Attributes Quality MeasuresQuality Dimensions

M
e

a
s

u
re

s

25

certain software is mature enough to be adopted. The model uses a 1 to 5 score range but only three

scores are defined for almost half the metrics. This model can be adapted to the current user needs.

When mapped to our generic quality assessment metamodel, OpenBRR (Figure 13) covers only two

quality abstraction levels, the quality attributes and metrics, and therefore provides only a limited

grouping of the quality aspects.

FIGURE 13 OPENBRR QUALITY MODEL

One of the challenges with the model itself is that some of the measures in the model, such as end-

user UI experience, performance testing and benchmarks, performance tuning and configuration, and

difficulty to enter the core development team, are not well defined. Nine criteria in the model asked

for data that is typically unavailable or not easy to obtain, such as time to setup pre-requisites, num-

ber of security vulnerabilities in last 6 months, number of security vulnerabilities still open, refer-

ence deployment, and design for scalability. Furthermore, the model does not indicate if the evalua-

Functionality

Usability

Quality

Security

Performance

Scalability

Architecture

Support documentation

Adoption

Community professionalism *

*

*

*

*

*

*

*

*

*

Quality Attributes Quality Measures

M
e

a
s

u
re

s

26

tion is for any historical release or for the latest version. This approach could either be more open for

the user to decide what version to assess or vague and undefined. This model also misses some inter-

esting FLOSS quality areas such as: process quality, strategy and road map, modularity,6 and in par-

ticular maintainability as a quality factor. The OpenBRR [59] website states that the project does not

own a thriving community yet and the authors are working on revising it.

2.4.4. SQO-OSS

In 2006, Software Quality Observatory for Open Source Software (QSO-OSS) was introduced [60].

The project provides a framework to automatically evaluate FLOSS source code quality through a

comprehensive suite of software quality assessment tools to allow for a more objective analysis and

benchmarking of open source software [61]. The objective of the model is to improve code quality

by introducing a large range of innovative measures through the use of data mining approach.

Mapping to the generic quality assessment metamodel, the SQO-OSS model covers the quality of

FLOSS from two dimensions, product/code quality and community quality, and defines quality fac-

tors, attributes, and associated measures levels. From our generic metamodel perspective, it lacks the

sub-factors level, as outlined in Figure 14.

Previous models developed for FLOSS evaluation require a substantial effort from the user regarding

the rating of the software, while the model presented here asks for limited user interaction. Apart

from the model itself, the evaluation process facilitates a profile based evaluation algorithm that is

different from the traditional weighted aggregation used by most of the models. The evaluator, if

deemed necessary, can alter the profiles used for evaluation. The notion of developer and user com-

munities, communication, and collaboration, however, is not very explicit in the model and therefore

does not explicitly support the analysis of relationships between developers and code parts, for ex-

ample. Also the model only automates source code artifact and proposes an expected result of con-

sidering other artifacts [61]. Its coverage for evolvability is restricted to the same attributes offered

by the ISO model. Community evolvability is not covered.

6 http://www.itpro.lk/node/2814

http://www.itpro.lk/node/2814

27

FIGURE 14 SQO-OSS QUALITY MODEL

2.4.5. QUALOSS

In 2007, QUALity of Open Source Software (QUALOSS) [16] was introduced based on the OpenBRR

[59]and the QSOS [55] models to implement a FLOSS quality assessment model to assess evolvability

and robustness of FLOSS [56, 62, 63]. The objective of this model is to focus on the evolvability as-

pects of a system. It is built around a high-level assessment methodology that is used to benchmark

the quality of FLOSS. The initial assessment is a sequence of manual process of interviewing, writing,

and questionnaires that the user needs to do in order to initiate the assessment.

Data sources considered include FLOSS project releases, version control system, bug tracking sys-

tems, and mailing list archives. QUALOSS only published score results of a subset of its measures.

These measures were extracted from version control system and issue tracker.

Maintainability

Reliability

Analyzability

Changeability

Stability

Testability

Security

Mailing list quality

*

*

*

*

Documentation quality

Product (code) quality

Community quality

Quality Factors Quality Attributes Quality MeasuresQuality Dimensions

M
e

a
s

u
re

s

*

*

28

Mapped to the generic quality assessment metamodel, the QUALOSS model (Figure 15) misses the

sub-factors level. The QUALOSS model covers evolvability and robustness qualities but only evolva-

bility is considered in Figure 15.

FIGURE 15 QUALOSS QUALITY MODEL

Many of the measures used by the QUALOSS model rely on simple size and completeness measure-

ments and also include ambiguous references to user and community size without specifying any

Usefulness of

code doc

Usefulness of

user doc

Actuality coverage

Product evolvability

Maintainability

Interoperability

Portability

Actuality coverage

Product complexity

Architecture flexibility

Product build-ability

Runtime interoperability

Passive interoperability

Platform specificity

Standard compliance

*

*

*

*
*

*

Compliance to

standard

*

*

Product adoption

Developer

community liveness

Community evolvability

Process maturity

Support availability

User community size

Mission criticality

License permissiveness

Developer community size

Developer community activity

Developer community heterogeneity

Established process coverage

Process automation

Popularization

Modification support availability

Deployment support availability

Backward support

*

*

*

*

*

*

*

*

*

*

*

*

Quality Factors Quality Attributes Quality MeasuresQuality Dimensions

M
e

a
s

u
re

s

*

29

acceptable benchmarks. Furthermore, many of the proposed measures in the model are not currently

supported by automated tools and require manual data extraction/analysis. Some quality attributes

do not have any defined measures, such as mission criticality.

2.4.6. SIG MAINTAINABILITY MODEL

In 2007, Heitlager et al. introduced a practical model for rating maintainability quality called the SIG

Maintainability Model (SMM)7. SIG stands for Software Improvement Group.8 The objective of the

SMM is assessing maintainability quality based on the ISO/IEC 9126 standard [64-66]. It maps four of

the maintainability quality attributes to source code properties (Figure 16).

FIGURE 16 SIG MAINTAINABILITY MODEL

7 http://www.sig.eu/en/Research/690/__Maintainability_Model__.html
8 http://www.sig.eu/en

Analyzability

Maintainability (ISO/IEC 9126)

Changeability

Stability

Volume

Duplication

Unit complexity

Unit size

Unit interfacing

Module coupling

*

*

*

*

Testability

*

Quality Factors Quality Attributes Quality Measures

*

M
e

a
s

u
re

s
Product Properties

http://www.sig.eu/en

30

Quality attributes and assigned measures:

 Volume: The overall volume of the source code influences the analyzability of the system

(the larger the system the harder it is to analyze). Examples of assigned measures include:

LOC, function points, files count, and functional fields counts.

 Complexity per unit: The complexity of the source code units influences the system’s

changeability and its testability. Examples of assigned measures include: cyclomatic com-

plexity, fan-in, fan-out, coupling, and stability measures.

 Duplication: The degree of source code duplication (also called code cloning) influences ana-

lyzability and changeability. An example of assigned measures includes: duplicated blocks

over 6 lines.

 Unit size: The size of units influences their analyzability and testability and therefore that of

the system as a whole. Examples of assigned measures include: unit LOC, and code size.

 Unit testing: The degree of unit testing influences the analyzability, stability, and testability

of the system. Examples of assigned measures include: unit test coverage and number of as-

sert statements.

When mapping SMM to our generic quality metamodel, SMM extracts a subset of ISO/IEC 9126 [15]

that omit the dimension and sub-factors levels. SMM added a new layer that maps each quality at-

tribute to one or more of what they call product properties (e.g., volume and duplication). On the

other hand, each of these product properties has a 1-1 mapping with a quality measure.

SMM provides a clearly defined model structure along with simple set of quality measure that could

be easily extracted and calculated to support full automation. This has been already implemented as

a plugin as part of SonarSystem9. SMM only considers a single software artifact, i.e., source code. This

eliminates any knowledge to be added to the assessment from other artifacts, such as the issue track-

9 http://www.sonarsource.com/

31

er, code comments, or versioning system. It also ignores the software community as a perspective

that affects the software maintainability quality.

2.4.7. SQUALE

Qualixo first introduced Software Quality Enhancement (SQUALE) in 2008 [41, 67]. It is based on

McCall’s model [44] and the ISO/IEC 9126 [15] standard. SQUALE’s objective is to enhance both

technical and economical software qualities by assessing the effort needed for software modifica-

tions and identifying healing actions (practices); refer to Figure 17. It provides an opens source tool

to assess and improve software quality over time.

FIGURE 17 SQUALE QUALITY MODEL [68]

Functionality

Reliability

Acceptance tests

Modeling

Task aptitude

Architecture:

Evolutivity

Maintainability

Security

Simplicity

Stability

Technical tests

Architecture modularity

Architecture relevance

Architecture respect

Comprehension

Homogeneity

Modeling

Modularity

Comprehension

Homogeneity

Integration capacity

Simplicity

Reuse capacity

Comprehension

Exploitability

Integration capacity

Technical tests

Quality Factors Quality Attributes Quality Measures

M
e

a
s

u
re

s

Practices

Naming standard

Prog. standard

Formatting standard

Method size

Number of methods

Spagitti code

Efferent coupling

Class cohesion

Swiss army knife

Copy paste

...etc

...etc

*
*

*
*

*

*
*

32

When mapped to our generic metamodel, SQUALE adds new level, called practices, to bridge the gap

between attributes (criterion) and measures. An example of practice is that “complex classes should

be more documented than trivial ones.” [68]. The Air France quality standard defined 50 different

practices10. To calculate a practice, different measures are combined; for example, the comment rate

practice combines comment rate per method LOC and the cyclomatic complexity results.

SQUALE does not provide explanations for some of the benchmarks/thresholds used in finding the

practice scores, e.g., the comment rate practice verifies that a method should include at least 30% of

comments. It also depends on human analysis for a subset of the practices, e.g., quality assurance

plan availability and functional security.

2.4.8. SQALE

Software Quality Assessment based on Lifecycle Expectation11 (SQALE) is a quality model that focus-

es on source code quality based on lifecycle expectations. SQALE defines the quality model as a pyr-

amid of (sub-) factors or (sub-) characteristics rather than the tree view we defined in our generic

metamodel. The pyramid is arranged in such a way that the qualities at the bottom correspond to

those qualities addressed earlier in the development lifecycle [69] (Figure 18).

SQALE considers bad coding practices as a technical debt. SQALE defines a set of requirements to

comply with code non-functional qualities where any incompliance will be estimated as a debt. A re-

mediation function is associated with each of the “right code” compliance requirements, which is an-

other cost defined by the stakeholders and calculated as part of analyzing the current technical debt.

Each project or organization can define a target acceptable technical debt, which can be monitored

using SQALE. To pay back the debt, incompliance needs to be resolved.

10 http://www.squale.org/quality-models-site/research-deliverables/WP1.3_Practices-in-the-Squale-Quality-Model_v2.pdf
11 http://www.sqale.org/

http://www.sqale.org/

33

FIGURE 18 SQALE QUALITY MODEL PYRAMID [70]

The sum of all non-remediation costs is defined as the SQALE business impact index. This cost is pri-

oritized based on a pre-defined scale (Figure 19) where the requirements with the highest cost are

categorized as high priority (blocking is the highest) so that addressing them will minimize the calcu-

lated technical debt.

FIGURE 19 SAMPLE OF NONREMEDIATION FACTORS ISSUED FROM A SPECIFIC CONTEXT [70]

The SQALE model introduces a new way to look at the software quality and quality incompliance. The

focus of SQALE is the source code artifact only; it does not consider other knowledge artifacts such as

project issues, activities in terms of code commits over time, or the software community. A consider-

able amount of manual work is needed to initiate the assessment process (e.g., [69] the user needs to

34

define the assessment scope, e.g., reused, reusable, subcontracted, and application internal compo-

nents). SQALE also requires manual changes to the model, such as selecting the objective of the as-

sessment and the quality measures that are appropriate for the programming language used by the

software to be assessed.

2.4.9. OTHER Models

FURPS+: The Functionality, Usability, Reliability, Performance, and Supportability (FURPS) model

was introduced in by Grady and Gaswel [71] and then extended by IBM12. The plus is used to repre-

sent all other requirements, such as design or implementation constraints. FURPS+ classification ad-

dresses both functional and non-functional requirements [50]. The model does not have a quality

dimension level. To assess quality, it starts by identifying quality factors and then identifies sub-

factors along with measures. Evolvability is covered as part of the supportability factor (Figure 20).

FIGURE 20 FURPS+ QUALITY MODEL

12 www.rational.com

Functionality

Usability

Feature set

Capabilities

Generality

Security

Reliability

Performance

Supportability

Human factors

Aesthetics

Consistency

Documentation

Freq/severity of failure

Recoverability

Predictability

Accuracy

MTTF

Speed

Efficiency

Resource

consumption

Throughput

Response time

 Testability

Extensibility

Adaptability

Maintainability

Compatibility

Configurability

Serviceability

Installability

Localizability

Portability

*

*

*

*

*

*

*
*

*

*
*

*
*
*

*

*

*
*
*

*
*

*
*

*
*
*

Quality Factors Quality Attributes Quality Measures

*
*

M
ea

su
re

s

35

OpenBQR: In 2007, the Open Business Quality Rating (OpenBQR) model [72] was introduced as an

extension and integration of OpenBRR (2005) [73] and QSOS (2006) [55]. The OpenBQR model as-

sesses FLOSS quality with respect to user needs by taking into consideration some of the limitations

of the OpenBRR [73] and QSOS [55] models. Advancements include the use of code size and complex-

ity internal qualities, fault proneness, external qualities, and support availability in the future. The

model aims to provide a simple and formal comparison model for fast qualification and selection of

FLOSS. The assessment categories supported by the model are: target usage indicators, external qual-

ities, support availability, and functionality. One of the main challenges with the model is that there is

only limited documentation about it available and, from our perspective in particular, the model does

not explicitly cover evolvability as a quality factor.

Sonar13: An open source project focusing on analyzing code quality, such as architecture and design,

comments, code rules, duplications, unit tests, potential bugs, and complexity, that was first released

in 2007. It covers multiple programming languages and provides users with web-based tools and

plugins. It is the only project that provides a historical view of the measures quality evolution

through a feature called the time machine. Sonar reuses existing code analysis tools such as PMD,

CheckStyle, and FindBugs. Sonar integrates results from other models such as the SIG Maintainability

Model [64] and SQALE [70, 74].

Calibre: In 2004, Co-ordination Action on Libre/Free Open Source Software was introduced to coor-

dinate the study of the characteristics of open source software projects, products, processes, distrib-

uted development, and agile methods to help improve the next generation of the software engineer-

ing tools and methods as well as establish an European Union (EU) FLOSS research policy forum. It

focuses on integrating the interactions between the academic, industrial, and FLOSS communities

[75, 76].

13 http://www.sonarsource.org/

https://www.assembla.com/wiki/show/aseg/OpenBRR
http://www.sonarsource.org/

36

FLOSSWorld: In 2005, the FLOSSWorld14 project was introduced to strengthen Europe’s leadership

in FLOSS and open standards research by building a global constituency with partners from different

countries around the world. It aims to enhance the global awareness of FLOSS development, indus-

try, training, standards, and e-government issues for participating regions.

EDOS: In 2005, EDOS,15 which stands for Environment for the development and Distribution of Open

Source software, was introduced to study and solve problems associated with the production, man-

agement, and distribution of open source software packages, such as dependencies, downloads, qual-

ity assurance, and measures.

QualiPSo: QualiPSo,16 which stands for Trust and Quality Platform for Open Source Software, is an

integrated project that aims to define and implement technologies, procedures, and policies to facili-

tate the use of FLOSS projects within industries and governments. It is driven by the need to have

trust-worthy FLOSS to make FLOSS development a widely accepted practice.

2.5 SOFTWARE QUALITY ASSESSMENT PROCESS

In this section we discuss different quality assessment or measurement processes. Process is defined

as “set of interrelated or interacting activities which transform inputs into outputs” [38]. The meas-

urement process is the “process for establishing, planning, performing and evaluating measurement

within an overall project, enterprise or organizational measurement structure” [77]. The measure-

ment method is defined as a “logical sequence of operations, described generically, used in quantify-

ing an attribute with respect to a specified scale” [77]. There are two main method types: subjective,

whereby the measurement is based on human judgment (expert opinion) and objective, which is

based on quantities rules. The software quality assessment process refers to the set of steps that

takes the software knowledge artifacts (e.g., versioning system, issue tracker, and source code) as an

14 http://www.FLOSSworld.org/
15 http://www.edos-project.org/xwiki/bin/view/Main/WebHome
16 http://www.qualipso.org/

http://www.flossworld.org/
http://www.edos-project.org/xwiki/bin/view/Main/WebHome
http://www.qualipso.org/

37

input and provides a quality assessment score as an output (e.g., Excellent, Green, or 10 out of 10,

depending on the quality scale used). The purpose of the quality assessment process is to as-

sess/evaluate the quality status at a certain time stamp or snapshot, predict the future trend of the

assessed quality, and improve the software quality of interest. The quality assessment processes are

proposed by the existing quality assessment models covered earlier in this chapter or by individual

research papers that focus on the assessment of certain metrics/measures, e.g., [78-80].

In software assessment, scale is defined as an ordered set of continuous or discrete values or a set of

categories to which the attribute is mapped [77]. There are five main scale types [81]:

1. Nominal: classifies measure values by category and without order, e.g., classification data

for gender (m/f), where nothing indicates whether m>f and it could have any label as m/f,

0/1, T/F … another popular example is hair color (blonde, black, red, brown). This scale is

often used to find the number of occurrences per category.

2. Ordinal: ranks measure values e.g., rate of user’s satisfaction levels, and classification of de-

fects by severity. The values are ordered, but the differences are not important. This scale is

often used to sort the values in ascending or descending order. For instance, CMM defines

five different levels where the order is important (level 1 is the least mature while level 5 in-

dicates the highest level of maturity), but the distance between level 4 and 5 is not defined.

3. Interval: where the values of the measure have an order and are separated by equal dis-

tances. A constant scale without the true-zero value is used. The differences are not ratios

(e.g., for temperature 30°-20°=20°-10°, but 20°/10° is not twice as hot!). This scale permits

addition, subtraction, and averaging (e.g., the average peak temperature is 30°), which were

not applicable to previous scales.

4. Ratio: where the values of the measure have equal distances. This scale permits multiplica-

tion and division, e.g., height, weight, age, development cost, time between failures, and

schedule length.

38

5. Absolute: a special case of the ratio scale that provides simple counts or frequencies if

measured values are on the nominal or ordinal scale, e.g., number of commits, number of

bugs where the absolute scale determines the equality of values obtained from all the differ-

ent scales (all bugs regardless of their severity, for example).

By taking into consideration the above definitions of the types of scales, we will describe the scales

used by existing quality assessment models. As per Kitchenham [27], McCall’s quality model pro-

vides a set of questions that corresponds to a quality measure where the answer is either ‘Yes’ or

‘No.’ ‘Yes’ is the preferred higher quality answer. The ratio of all the ‘Yes’ answers to the total number

of answers is then normalized to a range of 0-1. The take on this approach is the subjectivity of indi-

vidual questions, difficulty to combine measures [27], and the Yes/No scale for the quality rather

than more flexible ordinal measurement scale where a middle case is allowed.

The ISO/IEC 9126 quality standard proposes the model and the assigned measures but with no

clear guidelines on how to perform the assessment process. Kitchenham [27] explains how the

ISO/IEC 9126 suggests predicting some of the non-measurable qualities without any guidelines on a

good prediction system.

The QUALOSS quality model provides a five-step assessment process (Figure 21):

39

FIGURE 21 QUALOSS ASSESSMENT PROCESS STEPS

The QUALOSS provides four ordinal scale values: Green, Yellow, Red, and Black (the details are de-

scribed as part of QUALOSS project WP4 Quality Models Construction and Validation, Deliverable 4.2:

metrics and indicators of the standard QUALOSS assessment17). The scale ranges from 100 to -100.

17 http://www.cetic.be/IMG/zip/Qualoss-WP4-Quality-Models-Construction-and-Validation.zip

Assessment
Initiation

•a manual process to identify business constrains and validate the assessment
outcome such as interviewing and writing questionnaires.

Setting up and
Planning

•in which the user identifies FLOSS endeavour(s) to assess, selects stakeholders and
defines their workload and rules to follow, identifies the tools to use (automated,
manual, semi-automated), plans supervision strategy for the remaining tasks, and
validates the outcomes. This step also includes knowledge artifacts identification and
set up.

Collecting and
Analyzing Data

•knowledge extraction and analysis using the artifacts identified in the previous step.

Results
Interpretation

•interpreting the analyzed data in step 3 based on the interpretation method defined
in step 2 while maintaining the traceability link between the analyzed data, the
method and result. Finally validate the result.

Supervising an
Assessment

•is a transversal step that runs from the beginning to the end along with other steps,
the objective is to monitor the execution and the validation of each of the tasks and
then provide ways to improve future assessment activities.

40

Green (>50 and <=100) and corresponds to no or minor evolvability/robustness risk where less the

5% of the assessed work provides undesirable or unpredictable results. Yellow (>0 and <=50) and

indicates a significant risk where the amount of needed rework is less than 30% of the assessed

work. Red (>-50 and <=0) and is a critical risk scale where the assessed work has major flaws and is

not evolvable/reusable. This means that at most 70% of the assessed work provides undesirable re-

sults. Finally, the black scale (>= -100 and <= -50 inclusive) and indicates a prohibitive risk, which

corresponds to “discard and start from scratch.” In this scale, only 5% of the existing work provides

desirable results. The scores are assigned at the measures level. Upper model’s levels, such as attrib-

utes (sub-) factors scores, are aggregated after assigning weight to each using the weighted mean of

the lower levels.

The QSOS quality model provides a four-step iterative process (Figure 22). The QSOS evaluation is

performed from three different axes:

1. Functional coverage: This coverage is with respect to the functional families grid defined in the

definition step. It scores 0, 1, and 2 (which is not wide enough of a range for scoring) according

to the rule not covered, partially covered, and completely covered, respectively.

2. Risks from user perspective: It defines 5 main categories for the criteria to be evaluated. Under

each category there is a list of criteria and sub-criteria that are scored from 0 to 2 which in-

cludes: intrinsic durability, industrialized solution, integration, technical adaptability, and strate-

gy. For example, the user risk category intrinsic durability is further refined by the sub-category

maturity, which is further classified into different age groups. Each age group has an assigned

score from 0 to 2 (<= 3 months score is 0, 3 months- 3 years score is 1, and >=3 years score is 2).

3. Risks from service provider perspective: This axis of evaluation regroups the criteria to estimate

risks incurred by a contractor offering services for FLOSS software. It is notable on the basis that

its level of commitment can be determined. Service provider risk is the main category that de-

fines maintainability or code mastery as subcategories, which are further divided into for exam-

ple quality of code. The score for that lowest level is assigned a score of 0, 1 or 2.

41

The QSOS quality model has three ordinal scale levels spanning over 0, 1, and 2, where 0 is con-

sidered the lowest quality and 2 is the highest. The scores will be for the measures level of the

quality model and the highest levels’ score are evaluated using the calculated scores of the infe-

rior level and the assigned weights.

FIGURE 22 QSOS ASSESSMENT PROCESS STEPS 18

The CapGemini OSMM performs the assessment based on two axes and four levels (Figure 23).

There are 12 criteria defined under each level.

18 http://www.qsos.org/Method.html

Definition

•software families: classification of domains and their associated functionality with each

domain
•types of licenses: ownership, virility, and inheritance.
•types of communities: single developer, informal/organized group, legal, or commercial.

Evaluation

•build a general ID card for the software project information and services and technology.
•build an evaluation sheet, a detailed ID card per release to describe and analyze the

evolution for the new release.

Qualification

•a filtration process on the list of FLOSS software defined and evaluated in the first 2 steps
in order to qualify the best to opt out according to the user specific context. The filters
are on (ID card, functional grid if covered or not, user risks if relevant, and service
provider’s risk).

Selection

•strict selection eliminates incompatible software by ID and functional grid plus a min
score of one is needed for relevant criteria and a min score of two for critical criteria
defined by user.

•loose selection uses weighting for functionalities as required, optional, or not required
with score for each and user’s risks as irrelevant, relevant or critical with a score for each.

42

FIGURE 23 THE CAPGEMINI OSMM AXES [57]

The CapGemini OSMM score ranges from 1-5 (1 for poor, 3 for average, and 5 for excellent), then ad-

justable weights apply to calculate the final score. For example, the product could be either mature or

immature. The assessment is performed by checking elements under product, such as age (refer to

Figure 12 above). The age indicates that a product is mature if it has been active for some time and

immature if it just started being active. Age scores are 1 if < 2 months, 3 if 1-2 years, and 5 if > 3

years. If a certain measure is inapplicable then a score of 3 is assigned such that it will have neither a

positive nor a negative effect on the final result.

The CapGemini OSMM provides the below assessment process steps in sequential order (Figure 24):

Product

Adoption Integration

Utilization

6
4
2
0

OSMM Score

43

FIGURE 24 CAPGEMINI OSMM ASSESSMENT PROCESS STEPS [57]

The SQO-OSS quality model provides an assessment process that is comprised of 4 categories and

does not assign weights [42]. The categories are Excellent (E), Good (G), Fair (F), and Poor (P). Any

measure that does not fit in any of the three first categories will be categorized as Poor. Below is an

example of the assessment scores of maintainability quality (Table 2) [42]:

Initial
Selection

•product research and rough selection.

Scoring

•scoring of products using the product indicators.

Interviewing

•interview the customer regarding the value (importance) of the application indicators.

CGE&Y
Scoring

•scoring using application indicators CGE&Y (CapCemini Ernst & Young) consultant.

Customer
Scoring

•scoring of the application indicators by the customer together with CGE&Y consultant.

Final
Selection and

Evaluation

•determining score card per product and final selection of right product for customer and
CGE&Y.

44

TABLE 2 SQO-OSS MAINTANABILITY QUALITY ASSESSMENT SCORE (SUBSET) [42]

Attribute Measure
Profile

Notes
E G F

Analyzability Cyclomatic Complexity

Number of statements

Comments frequency

4

10

0.5

6

25

0.3

8

50

0.1

Less is better

Less is better

More is better

Changeability Vocabulary frequency

Number of nested levels

4

1

7

3

10

5

Less is better

Less is better

Stability Number of entry nodes

Number of exit nodes

1

1

2

1

3

1

Less is better

One is better

Testability Cyclomatic Complexity

Number of nested levels

4

1

6

3

8

5

Less is better

Less is better

The SIG Maintainability Quality Model (SMM) provides a maintainability ordinal scale as: (++ / + /

o / - / --) or sometimes uses * to *****. SMM provides a 4-step evaluation process, Figure 25.

The SMM defines their measures’ scale in order to assign a quality score by taking expert opinions or

existing benchmarks (if benchmark exists such as Cyclomatic Complexity [64]) pertaining to the

measures boundaries. Figure 26 shows the different benchmarking approaches defined by SMM in

order to provide the maintainability quality scale. For example, for duplications to be rated 5 stars,

they must not exceed 3%. Another approach, called quality risk profiles (similar to the one used by

SQO-OSS [42]), is used for the cyclomatic complexity. Summing the units’ LOC and then dividing by

the total LOC in all units calculate the relative complexity.

45

FIGURE 25 SMM ASSESSMENT PROCESS STEPS [66]

FIGURE 26 SMM MEASURE BENCHMARKING [64]

The SQALE quality model provides a 7-step process (Figure 27):

Intake

•source code measures extraction and processing.

Scope

•creating scope definition (e.g., version, name, technology used, and number of files) and

tools configuration.

Measure

•the model runs the analysis tools to calculate the measures results and then validate
them.

Rate

•maintainability quality score is provided and compared to an existing target

(benchmark) and reports are created.

Measure Benchmark Rating

Duplication 3% *****

5% ****

10% ***

20% **

- *

Cyclomatic 1-10 Low

Complexity 11-20 Moderate

21-50 High

>50 Very High

 Maximum Relative Volume

Rating Moderate High Very High

***** 25% 0% 0%

**** 30% 5% 0%

*** 40% 10% 0%

** 50% 15% 5%

* - - -

46

FIGURE 27 SQALE ASSESSMENT PROCESS STEPS [69, 82]

Scope

•scope definition, including reusable components of the software to be assessed.

Tailor Model

•tailor the SQALE quality model, with a selection of the control points and a review of
the control point’s threshold.

Tools set up

•set up the SQALE automated measurement tool chain and qualify the measurement
chain using test cases.

Source Code
Config.

•gather the source code of a given configuration of the application; a fully compilable
and linkable set of software source code should be made available.

Code Analysis

•perform a first analysis of the available source code, check that the whole software
is analyzed, verify preliminary results by human inspection on a few selected cases
(worst cases and best cases to check for false positives and false negatives).

Analysis
Results

•compute the aggregate indices and analyse the results to identify the main issues
and recommended actions.

Improvement

•present the results to the team for improvement.

47

SQALE defines the assessment scale (Figure 28) based on the remediation cost versus team effort to

develop the changes from scratch where red corresponds to a remediation cost above 30%. The scale

ranges from [0 –> 0.9 –> 3 –> 9 –> 30 –> +∞].

FIGURE 28 SQALE SCALE [82]

Fuzzy Logic has more recently been used in quality assessment, maintainability quality as in [78, 79,

83, 84], and metrics score visualization as in [85]. Fuzzy logic is a methodology based on fuzzy set

theory, which is used to solve problems that are too complex to be understood quantitatively. Fuzzy

logic was first introduced in 1965 by Zadeh [86] to deal with uncertainties that are not handled well

in traditional mathematics. Sahraoui et al. [80, 87] have applied the fuzzy logic approach on the deci-

sion tree model. In the fuzzy logic approach, the numerical values of measures are replaced with lin-

guistic terms (big, small, low, etc.). Any fuzzy value can be thought of as a function, called the mem-

bership function (MF), whose domain is usually specified as a set of real numbers, and whose range

is the span of positive numbers in the closed interval [0,1]. Membership functions are either trape-

zoidal, triangular, or ramp or bell shaped. For the purpose of our research, we will use a combination

of triangular and ramp shaped membership functions. There is no significant difference between the

types of shapes to use.

The triangular fuzzy number is defined using three values for each state or linguistic variable, for

example medium, low, and poor. These values represent the left boundary (L), right boundary (R),

and modal or core (M), as represented in

Figure 29.

From To Rating Color
 < 0.9 A
 0.9 3 B
 3 9 C
 9 30 D
 30 > E

48

Fuzzy theory is defined as the degree to which a fuzzy number satisfies the given membership func-

tions. The degree of fuzziness is calculated as (Fuzziness of X = (R-L)/2M, 0<MF<1) [23]. MF(X) is

zero if X <= L or if X>= R, Otherwise MF(X) is calculated as:

FIGURE 29 LEFT, MODAL, AND RIGHT BOUNDARIES

MF(X) =(X-L)/(M-L), L<= X<=M

MF(X) = (R-X)/(R-M), M<=X<=R

The fuzzy process takes the software measures as an input and then applies fuzzification, inferenc-

ing, and de-fuzzification steps to provide quality assessment results (Figure 30).

FIGURE 30 FUZZY LOGIC BASES ASSESSMENT PROCESS STEPS

Fuzzification

•Define input and output fuzzy scales.
•Find the membership of the measure result to the input fuzzy scale.

Inferencing

•Define and implement fuzzy inference rules in the form: IF <input> THEN <output>.

De-
Fuzzification

•Produce a numerical representation for the fuzzy assessment score (use existing
methods such as centriod).

49

As part of the fuzzification steps, two fuzzy scales are defined: the input scale and the output scale.

The input scale corresponds to the scale of the measures to be fuzzified (e.g., in [84] the average

cyclomatic complexity measure has an input fuzzy scale of low/medium/high, Figure 31). The out-

put scale corresponds to the quality score scale (e.g., in [84] the maintainability quality score could

be very good, good, average, poor, and very poor), as in Figure 32.

FIGURE 31 FUZZIFICATION OF AVERAGE CYCLOMATIC COMPLEXITY [84]

FIGURE 32 FUZZIFICATION OF OUTPUT VARIABLE – MAINTAINABILITY [84]

Fuzzy inference rules should then be implemented (the rules are usually defined by a domain expert,

e.g., if the average cyclomatic complexity is low and the comment ratio is low then the maintainability

quality is very poor). This step corresponds to the inferencing step and could be implemented using

existing tools such as [88, 89]. The most popular inference style is the mamdani style [84]. The last

50

step is de-fuzzification, which calculates the center of gravity (centriod) [84] of the assessment re-

sult of all input values to finally provide a numerical score value.

2.6 REPOSITORY OF REPOSITORIES

Repository of Repositories (RoR) are publically available data collection projects used to ease the use

of FLOSS data distributed among different projects and their repositories. These RoR allow for diver-

gent representations and access formats. Data in repositories are usually gathered from different

locations and converted to some form of unified data format to allow for easy querying of the stored

data. Many quality models, such as QUALOSS [40, 90, 91], SQO-OSS [42, 92], and QSOS[55], use these

repositories to extract data from version control, issue tracker, source code, and mailing archive re-

positories. RoR often contain other community related information, such as developers’ names and

team size.

FLOSSMETRICS19 stands for Free/Libre Opens Source Systems Metrics and Benchmarking. It started

in 2006. It is a storage location for data collected from different FLOSS project repositories. It con-

structs, publishes, visualizes, and analyzes an updated empirical FLOSS database. It extracts data

from versioning systems, bug trackers, mailing list, and source code files. The results are provided via

a tool called Melquiades20 , which provides (as of May 2013) 1527 projects analysis for source code

management, 581 projects analysis for mailing lists, and 1442 projects analysis for bugs trackers.

FLOSSMOLE21 was introduced in 2006 and aims to provide raw data from FLOSS projects in many

formats to help researchers in data collection and integration. It provides tools for researchers to

gather their own data. FLOSSMOLE provides data about sourceforge projects and their developer’s

information, programming languages, and operating systems [93]. Interested users should send a

request to the FLOSSMOLE project to get data and access to the database and the basic query tool

19 http://www.FLOSSmetrics.org/
20 http://melquiades.flossmetrics.org/
21 http://ossmole.sourceforge.net/, http://FLOSSmole.org/

http://www.flossmetrics.org/
http://melquiades.flossmetrics.org/
http://ossmole.sourceforge.net/
http://flossmole.org/

51

[93]. From 2004 until now, it provides 1 TB of data gathered from over 400 web-based data collec-

tions. The site does not provide a specific count for the available projects, but it claims the availability

of millions of open source projects22.

FLOSSHUB,23 which started in 2008, is a portal FLOSS research resources and discussions. Its goal is

to store research papers, FLOSS data, tools, and community information to be made available for re-

searchers and the FLOSS community. Examples of its data sources are FLOSSMetrics19, Ohloh24,

FLOSSmole22, and Sourceforge Research Data Archives. FLOSSHUB does not store software data, but

it provides information about where to obtain the data.

OHLOH24 is a public wiki of open source software and people. It does not host open source projects

in the traditional sense but provides a directory, a community, and an analytics service that creates

reports from the extracted historical data. It offers a free API to users to create their own web ser-

vices based on Ohloh, language comparison, and FLOSS comparison tools. As of May 2013, Ohloh

provides data for over 589,584 open source projects.

SECOLD25 is the first online linked data repository to represent software source code artifacts.

SECOLD is an online source code crawler that ontologically represents the extracted knowledge.

SECOLD introduces the use of unique URI for each of the knowledge resource (e.g., source code file,

author, language…etc.). This knowledge is publically shared via linked data26 endpoint. SECOLD’s

first release contains data from 1.5 million Java code files [94].

2.7 ONTOLOGIES AND MINING SOFTWARE REPOSITORIES

Ontologies in computer science have been widely used as “a formal, explicit specification of a shared

conceptualization” [121]. In this context, formal refers to the fact that ontology should be machine-

22 http://flossmole.org/
23 http://FLOSShub.org/
24 http://www.ohloh.net/
25 http://secold.org/
26 linkeddata.org

http://flosshub.org/
http://www.ohloh.net/
http://secold.org/

52

readable, and explicit refers to its ability to define concept types (vocabularies) and constraints (as-

sumptions). Shared describes the fact that an ontology captures commonly agreed-upon knowledge,

that is, it is not private to an individual but is accepted by a group, and conceptualization refers to the

abstraction model used in ontologies to represent relevant concepts in a domain. Ontologies are met-

amodels or conceptual models that are built as a skeletal representation of a knowledge base to be

reused in specific domain applications [122, 123]. Ontologies allow for the definition of basic terms

and relations comprising the vocabulary of a domain as well as the rules for combining terms and

relations as extensions to the vocabulary [124].

Menzies [125] defines the cost benefits of ontologies as (1) interoperability, where two components

align via their ontological representation; (2) browsing/searching, where ontologies metadata adds

more intellectual querying capabilities; (3) reuse of publically shared knowledge instead of building

one from scratch; and (4) structured knowledge modeling using conceptualization. As a result, ontol-

ogies have become an important part of the knowledge modeling and sharing domain by acting as a

nonproprietary common language. The use of ontologies in software engineering has so far mostly

focused on the conceptualization of a domain of discourse and their relations. Ontologies can be ap-

plicable in all phases of the software engineering lifecycle e.g., software measurements [126], soft-

ware processes [127], and conceptualizing the collaborative nature of software engineering [128]. A

unified ontological representation has been introduced for the different knowledge resources within

a software ecosystem, promoting the reuse and sharing of knowledge and vocabularies in a domain

of discourse [129].

While there are some efforts for information sharing, there has not been considerable research pro-

gress in sharing the analysis knowledge (i.e., quality score analysis). Among the benefits of this

knowledge sharing approach are the reuse of analysis knowledge and its results. In other words, in-

stead of hard coding quality model analysis techniques within the application, they will be modeled

as logical expressions (e.g., within an ontology using OWL-DL, to be explained later in this section).

Linked Data is a by-product of the Semantic Web and has been promoted to address interoperability

and sharing issues for open and online datasets. In our approach, support for knowledge sharing,

53

integration, and interoperability are provided by an on the fly approach for inter-linking shared

knowledge [94], where a unique reproducible identifier (URI) generation schema (Figure 33) is de-

fined. This schema is based on a public API created as part of SeCOLD linked data27 project that pro-

vides URIs for entities at different abstraction levels, such as file, project, snapshot, or multiple pro-

jects level. We refer the reader to [94] for a more detailed discussion on the URI generation.

FIGURE 33 URI GENERATION SCHEMA [94]

Using this URI generation schema, extendibility (new concepts/instances and relationships) of ontol-

ogies can be achieved without the need for additional synchronization.

Ontologies support both incremental as well as incomplete knowledge modeling. In order for a model

to be able to deal safely with incomplete knowledge, the open world assumption (OWA) must hold.

That is, we cannot use the lack of information to infer further knowledge. Currently, existing software

quality models are based on a closed world assumption, which uses approaches such as relational

databases (relational algebra) whose formalism does not support OWA. The dynamic nature of the

available knowledge in software ecosystems requires constant knowledge updates, i.e., incremental

knowledge population. As a result of the OWA, if one cannot infer that an argument is true from the

available knowledge, it can also not be false. If, by adding some knowledge, a conclusion can later be

drawn, the value of the argument will be changed.

27 http://secold.org/

54

Description Logic (DL) is a family of logic based knowledge representation formalisms used to for-

mally represent knowledge of an application domain. DL can describe domains in terms of concepts

(classes), roles (properties, relationships), and individuals (instances). DL has become a cornerstone

of the Semantic Web when designing ontologies. OWL, a DL based description language for ontolo-

gies, is a commonly used knowledge representation language for the Semantic Web.

OWL has three different forms with different levels of expressiveness: OWL Lite, OWL DL, and OWL

Full. OWL Lite supports primary needs such as classification hierarchy and simple constraints. OWL

DL provides the maximum expressiveness, keeps computational completeness, and includes all OWL

constructs with certain restrictions. OWL Full also provides maximum expressiveness but without

computational guarantees. OWL Full is the union of OWL syntax and RDF. RDF stands for Resource

Description Framework, which is a general method for describing and modeling the information. It

expresses a statement as a triple (subject-predicate-object expressions). The predicate shows the

relationship between the object and the subject. OWL2, an extension of OWL, provides additional

features and improvements to OWL.

Ontologies have been used as the underlying technology for Mining Software Repositories (MSR),

which is the approach that we followed in our research. First, software repositories are defined as

storage locations for software data that are used to manage the progress of software projects. Ver-

sioning systems, issue tracking systems, testing repositories, and archived communication are all

examples of software repositories [111, 120, 130]. Common to these software repositories is that

they contain large amount of information created at various stages of the software lifecycle that is

stored at different abstraction level using different semantic models.

The main obstacle of mining different repositories is the interoperability due to the differences in

knowledge representation both semantically and syntactically. Syntax related problem could be re-

solved using data mapping, but semantic mapping is harder to resolve. Mining Software Repositories

(MSR) research addresses this challenge by focusing analyzing individual software repositories over

periods of time. MSR research attempts to identify relationships among different software reposito-

ries in order to support bug prediction, change prediction, program comprehension, process im-

55

provement and team collaboration, detect source code bad smells [8], reveal hidden dependencies

among different artifacts, investigate shortcomings, support software development predication, and

plan evolutionary aspects [111].

Other work more closely related to ours is the EvoOnt [131, 132] project, which provides software

ontologies for the versioning and issue tracker software artifacts. In their Beatle28 project they apply

their EvoOnt ontologies [132] to support software by querying using limited reasoning to discover

dependencies among bugs and their other modeled software artifacts within open source projects.

Ontologies were used to represent information in wiki pages in order to locate and reuse information

in these wikis across projects [133]. SE-ON29 [134] defines a pyramid of evolution ontologies for

software artifacts at different levels of abstraction such as system, domain, and concept. SE-ON [134]

aims to analyze the repositories including issue tracker, source code, and code clones.

QuOnt [135] is an example for the use of ontology-based models to rate the quality of service. SMO

(Software Measurement Ontology) [126, 136, 137] is a set of four sub-ontologies that define and con-

ceptualize metrics and quality, as defined by the IEEE Std. 610.12, IEEE Std. 1061-1998, ISO/IEC

14598 series, ISO VIM, ISO/IEC 15939, and some other work in the field. As part of our research, we

extend and reuse the SMO specifications. SMO will be discussed in more details later in Chapter 3.

The modeling of software artifacts (including documents) has been addressed in previous work of

our research group, with a focus on establishing semantic links among various software artifacts as

discussed in [12, 120, 138, 139] to provide process support for the evolution of software systems

using OWL ontologies [120]. However, the focus of the previous work was on knowledge integration

to support software maintenance tasks rather than on the quality assessment of software products.

28 http://code.google.com/p/baetle/
29 http://www.se-on.org/

http://code.google.com/p/baetle/

56

2.8 SUMMARY

In the previous sections, different quality assessment models, including both traditional and open

source models, were reviewed. The survey shows that traditional models focus mainly on well-

defined processes and related aspects, while FLOSS models tend to put more emphasis on open

source community aspects rather than on product itself [76].

In what follows, we provide a summary of a comparison of four traditional quality assessment mod-

els and five FLOSS quality assessment models that are either closely related or form the foundation of

the assessment methodology proposed in this research. The coverage analysis is divided into five

categories:

General, which compares the seniority of the model considering the year it was introduced and the

sponsor/author of the model that could give insight into whether the model was purely academic,

industrial, or a combination of these. This category also covers FLOSS specificity, community consid-

eration, and the evolution of each model based on the older existing models. For example QSOS start-

ed in 2004; authored by Atos origin, which makes it purely industrial, it addresses FLOSS projects yet

the community quality is partially covered as a separate quality (not part of maintainability quality),

e.g., community availability and developers turnover rate.

The Structure category compares the model content; starting with the number of levels covered by

each model against the generic quality assessment metamodel, it details which qualities specifically

covered or missed are described under each model sub-section.

The third category summarized the scoring model (ranges) used for the measures in the different

models to assess the quality attributes and rate the software product. The score range is usually a

numeric-value, which is adjustable in most models in order to allow customization to meet stake-

holder needs. Modifying the weights assigned to any level of the quality model is one form of custom-

ization. McCall [44] and QUALOSS [16, 40] are examples of adjustable models. Some models lack clar-

57

ification about this feature and are indicated as NA in the table below. Other models do not support

such model customization by having fixed scoring rules, such as QSOS [55].

The data sources category compares the software artifacts that are considered in that model. This is

either directly stated by the model or concluded from the set of measures provided. Source code arti-

facts are considered in all the models. FLOSS models consider more artifacts compared to traditional

models.

The next category determines whether the model provides tools support to help users in the as-

sessment process and checks whether or not the assessment process is automated. The only model

that claims full automation is SQO-OSS [42]. QUALOSS claims that it provides a quality assessment

tool but no implementation is provided so far [16, 40].

Finally, we provide five criteria for model evolvability, such as providing a formally reusable struc-

ture and knowledge representation such that new users could automatically reuse, customize, and

extend the model. One form of formal representation is providing a machine-readable format for the

model, such as ontology. The open world assumption is a criterion provided by ontologies and it al-

lows incremental knowledge population in cases where the extracted knowledge necessary for the

assessment is missing and incomplete at the assessment time. Finally, user defined queries provide

the users with the ability to further interpret the assessment results for their own purpose (e.g., the

user might be interested in only source code violations or style compliance, in which case the user

can query the results of these measures separately or compare different projects from that perspec-

tive).

Furthermore, the SQO-OSS [42, 145] design covers different artifacts but the measures included in

their project deliverables only cover source code artifacts. Compared to other FLOSS models, the

SQO-OSS model [145] does not cover community quality, e.g., licensing, turnover, support availabil-

ity, references, or books.

Despite being the only model that takes evolvability as its main focus, the QUALOSS model [40, 90,

91] does not cover some of the evolvability qualities, such as traceability, consistency, install-ability,

58

adaptability, and modularity. Furthermore, among the large subset of measures most of them are

only manual or semi-automatic (147 manual versus 65 automatic measures). QUALOSS [40, 90, 91]

included evolvability factors that have undefined assessments measures, such as mission criticality.

Finally, while the QUALOSS project proposed a tool to automate the assessment, nothing is available

on their website [16].

Common to most reviewed quality models is that they rely on simplified measures, such as counting

instances within software artifacts. Evolvability as a quality factor has not been a major focus in most

models (except for QUALOSS [91]). Existing models do not provide any guidance on the improvement

of the artifact itself or the enhancement of the software development processes in order to produce

higher quality artifacts and therefore a higher quality product that is easier to maintain.

TABLE 3 COMPARATIVE STUDY FOR EXISTING QUALITY ASSESSMENT MODELS

Comparison
Criteria

B
O

E
H

M

1

M
C

C
A

L
L

2

F
U

R
P

S
+

3

IS
O

/
IE

C

9
1

2
6

4

Q
S

O
S

5

S
Q

O
-O

S
S

6

Q
U

A
L

O
S

S
7

S
Q

U
A

L
E

8

S
M

M

9

G
e

n
e

ra
lity

Year 1976 1977 1987 1991 2004 2006 2007 2009 2007

Sp
o

n
so

rs/A
u

th
o

r

B
arry

 B
o

eh
m

Jim
 M

cC
all

G
rad

y
 &

 C
asw

ell

ISO
/IE

C
 O

rg

A
to

s O
rigin

Athens
Univ.of Eco-
nomics and

Business,
Aristotle
Univ. of

Thessaloniki,
ProSyst
GmbH,

Sirius Corpo-
ration ,

Klarälvda-
lens

Datakonsult
AB , KDE e.V.

CETIC,Univ
. of Namur,

Univer-
sidad Rey
Juan Car-

los,
Fraunhofer

IESE, Zea
Part-

ners,MERI
T, Adacore,

PEPITe

Ile-de-France
regional

council, Gen-
eral Direc-
torate for

Competitive-
ness, Indus-
try and Ser-

vices, Ze-
roturna-

round com-
pany

So
ftw

are Im
p

ro
vem

en
t G

ro
u

p
 (SIG

)

Based-on X X X 1,2 X 1,2,4 4, 5 2,4,7 4

FLOSS
specific

No No No No Yes Yes Yes No No

Communi-
ty consid-

ered

No No No No Partial Yes Yes No No

S
tru

ctu
re

of levels 5 4 3 4 4 4 4 5 4

Dimension Yes Yes No Yes Yes Yes Yes Yes No

Factor Yes Yes Yes Yes Yes Yes Yes Yes Yes

Subfactor Yes No No No No No No No No

Attribute Yes Yes Yes Yes Yes Yes Yes Yes Yes

59

Measure Yes Yes Yes Yes Yes Yes Yes Yes Yes

Others

No No No No No No No Yes (Practic-
es)

Yes
(Product
proper-

ties)

S
co

rin
g

 m
o

d
e

l

Score
range

Matrix 0-6 NA NA 0-2 Excellent
/Good
/Fair

Green
/Yellow
/Red
/Black

0-3 * to

Adjusta-
ble?

No Yes NA NA No Yes Yes Yes No

Uses
weights

Yes NA NA NA Yes No Yes Yes No

D
a

ta
 so

u
rce

s

Source
code

Yes Yes Yes Yes Yes Yes Yes Yes Yes

Issue
trackers

X X NA NA NA Yes Yes No No

Version
control

X X NA NA Yes Yes Yes No No

Inline docs Yes X NA NA No Partial Yes Yes No

External
tools

X X NA No No No Yes Yes No

T
o

o
l

su
p

p
o

rt

Tools
availability

No No No No O3S Alitheia Core No SQUALE plugin
on So-
narSys

Full auto-
mation

No No No No No Yes No Yes No

E
v

o
lv

a
b

ility

Formal
meta mod-

el

No No No No No No No No No

Formal
knowledge

sharing

No No No No NA NA NA NA No

Custom
queries

No No No No NA NA NA NA No

Here we summarize the main challenges we faced while studying the existing quality assessment

models:

 Knowledge availability: some quality models, such as OpenBRR [73], QSOS [55], and

QUALOSS [16], request some knowledge that would most likely be unavailable (e.g., time to

set up pre-requisites, time to vanilla installation/configuration, performance testing and

benchmarks, difficulty to enter the development team, developer identification, histo-

ry/known problem, and independence of development).

 Knowledge consistency and incompleteness: quality assessment is based on the extraction of

knowledge from a diverse set of knowledge artifacts/repositories, such as versioning sys-

tems and issue trackers. To check the inconsistency of the extracted and populated

60

knowledge using traditional approaches, such as relational database, is not suitable because

of the closed world assumption that does not provide a separation between the knowledge

completeness and consistency. (If the knowledge is unavailable then it’s assumed to be

false.) This approach is imprecise, giving a high probability of missing or incomplete

knowledge (e.g., late adoption of version control system or common issues that are not re-

ported as part of the issue tracker) [146].

 Addressing uncertainty: As part of either their scoring procedures or assessment scales,

most of the existing quality models opt for a scale with crisp boundaries (e.g., the quality

score could either be poor or very poor but nothing in between). However, if one considers

the fact that input knowledge artifacts (e.g., version control system, issue tracker, source

code etc.) could be missing (e.g., the version control system is only available two years after

the real development started) or contain incomplete data (e.g., there are some issues/bugs

that the community is aware of but never recorded in the issue tracking system), a quality

scale should be able to deal with these uncertainties as part of the assessment/measurement

process.

 Knowledge sharing and integration: most of the existing quality models do not provide their

assessment results (e.g., quality scores) in a format that the community could further ana-

lyze or reuse, e.g., McCall [44], ISO/IEC 9126 [15], QUALOSS [91], and Boehm [48].

 Score evolution: most of the existing models (except the Sonar System tool9) assess the qual-

ity of the latest snapshot of the software of interest. Since we are dealing with the concept of

“release early, release often,” [147] providing a single assessment at one point in time is in-

sufficient to make a decision about software evolvability quality.

 Subjectivity: most of the existing models (e.g., QUALOSS [91]) depend on expert opinions

and manual approaches to define the quality assessment scales (i.e., to determine what is

61

considered excellent or poor). This approach is subjective and makes it difficult to compare

the assessment results.

 Model reusability: existing quality model design and process are usually documented in tex-

tual paper format, such as SQO-OSS [42], and/or online webpages, such as QSOS30, which

hinders the ability to reuse and extend without re-implementing the model from scratch.

 Interpretation and prediction patterns: most of the models, such as McCall [44], QUALOSS

[91], and SQO-OSS [42], provide the user with the quality assessment score without further

interpretation of the current results or the ability to predict score trends. Evolution patterns

represent recurring trends in the past and their effect on the near future trends. Based on

the observation that history repeats itself, these recurring patterns are indicators of the fu-

ture. For example, if we observe that whenever the evolution trend of a certain quality of in-

terest dropped below a value X, a strong improvement followed, we can conclude that the

same behavior will reoccur. This helps us proactively analyze that pattern for process im-

provement purposes.

30 http://www.qsos.org/Method.html

http://www.qsos.org/Method.html

62

CHAPTER 3: SE-EQUAM, AN EVOLVABLE QUALITY METAMODEL

A domain model is a conceptualization of a domain problem in terms of its entities, properties, rela-

tionships, and constraints. In software, several domain models exist that are capable of representing

and assessing predefined sets of qualities, e.g., McCall [44], ISO/IEC 9126 [15], and QUALOSS [91]. All

these domain models share a common, while informal (not machine-readable), structural represen-

tation of the qualities they are assessing. While capable of assessing qualities in a given context, they

lack the formalism and semantics (inferring implicit knowledge that could be extracted from the as-

sessment and future prediction) required to allow these models to evolve and therefore make them

reusable for different assessment contexts.

As Lehman [9] already stated in his law of continuous change, a software system needs to adapt to

continuous changes otherwise it becomes less satisfactory and its quality declines. This law of con-

tinuous change is also a key motivation for SE-EQUAM, an Evolvable QUAlity Metamodel that ad-

dresses the need to derive a formal (machine-readable) domain model that can adapt to changes, in

our case changes to the software artifacts that are assessed.

A key objective of this thesis is to derive a quality metamodel that is not only capable of dealing with

continuous change but also allows for its reuse by simplifying the instantiation of new domain model

instances. The reusability of SE-EQUAM is supported by its ontological representation. Ontologies are

used to conceptualize the structure of SE-EQUAM (quality factors, sub-factors, attributes, measures,

weight, and relationships); its input artifacts, such as version control system and issue tracker; and

its outputs, such as the quality assessment score. Ontologies not only provide a formal way to repre-

sent knowledge but also eliminate ambiguity, enable validation, and provide a consistency-checking

approach [148].

SE-EQUAM uses semantic reasoners, in our work Pellet [149], to infer hidden relationships between

domain model attributes. More details about the semantic reasoning are provided in the next section.

63

Our approach incorporates the unified formal representation of knowledge resources [120] and the

Semantic Web (such as ontologies with added semantics and reasoning for implicit knowledge) to

create SE-EQUAM [12], a quality metamodel that has been designed from the ground up to support

domain model evolvability by reusing, integrating, and sharing existing models and their knowledge.

SE-EQUAM is based on a formal ontological modelling that allows for a semantic rich and human in-

terpretable representation. Semantic richness is the machine’s ability to interpret and reason more

complex meaning by shifting from the weaker taxonomical modeling to a richer, logic based

knowledge representation [150]. The main contribution of the introduced metamodel design is to

provide a first step towards the use of a formal assessment model in quality domain.

As part of SE-EQUAM [12], we identified the following set of complementary core requirements nec-

essary for a model to be considered an evolvable model: Model Reusability, Knowledge Modeling,

Knowledge Population, and Knowledge Exploration [12]. In what follows, we will describe each of

these requirements in more detail:

3.1. METAMODEL REUSABILITY REQUIREMENTS

In [151] software reuse has been defined as using existing software knowledge to derive new

knowledge. In [152] this definition has been extended to a set of characteristics that promote model

reusability. These characteristics of model reusability include: expressiveness, reusability scope,

transferability (sharable), and formalism (machine represent-ability). We define model reusability

therefore as the ability to extract sub-models that can be further refined and extended without violating

the consistency and soundness of the original structure of the model from which they were derived.

In [153] the four factors that affect the reusability quality are outlined as: portability, adaptability,

understandability, and confidence. Here, we provide a definition for each of the reusability factors and

outline how they are addressed by SE-EQUAM:

 Portability is the ease of transferring components from one environment to another [154].

Ontologies, used in representing SE-EQUAM, are considered to be one of the richest formal

64

representations of machine-readable systems, as described by Obrst in [150]. In our imple-

mentation, ontologies are stored and transmitted using a line-based, textual format called n-

triple, which is a machine independent format.

 Adaptability is the ease of change in a different context or functionality [154]. This is validat-

ed by the ability of a specific quality model to reuse SE-EQUAM in its own context needs. Be-

low, we will describe how the user can reuse/instantiate (throughout the thesis, the term

reuse and instantiation are used interchangeably) SE-EQUAM and extend it (by adding one

more level to the SQUALE [68] model).

 Understandability is how easy it is for the user to understand the design in order to reuse it

[154]. In reusability, the user needs to interface with the reusable component(s) as-is or

must make modifications before reusing them. In SE-EQUAM, the user can perform both ac-

tions. The user needs to be familiar with ontologies in order to be able to understand and re-

use SE-EQUAM.

 Confidence is the probability that the reused components will function as expected in the

new environment [154]. One form of confidence that our solution provides is through the in-

consistency checks provided by the inference engine (in our case Pellet [149]), which detects

contradictory facts and reports any found inconsistencies. SE-EQUAM is also query-able, for

example the user can write a query to determine which sub-factors of a specific quality fac-

tor (such as evolvability) need to be validated. The query language used is called SPARQL31.

A domain expert is needed to write the SPARQL test queries.

For a domain model to be reusable, its underlying structure and representation have to be based on a

(semi-) formal representation in order to support the four factors defined above. Existing domain mod-

els like McCall [44], ISO/IEC 9126 [15], and QUALOSS [91] lack this formalism. Their model struc-

tures are represented by an informal textual specification, which does not allow for the automated

instantiation of new domain models and, because of re-implementing the textual specification of the

31 http://www.w3.org/TR/rdf-sparql-query/

http://www.w3.org/TR/rdf-sparql-query/

65

model structure, has limited model reuse to manual reuse. SE-EQUAM addresses this model reuse

issue by defining a formal (machine-readable) ontological metamodel that can be instantiated and

customized for the purpose of reuse.

3.1.1. SE-EQUAM REUSABILITY PROCESS STEPS

In order to reuse SE-EQUAM, we followed the guidelines provided by the methontology method

[155]. Methontology is a structured method used to build ontologies [155]. Figure 34 defines each of

the steps used in this method. A concrete example of each of these steps is provided in a later section.

FIGURE 34 SE-EQUAM REUSABILITY STEPS

Specification Specification

•define the purpose and scope.

•define the input knowledge artifacts and expected output.

•define any SE-EQUAM modification needed .

Knowledge
Aquisition
Knowledge
Aquisition

•provide the technique(s) to be used in knowledge extraction (manual or automatic).

•provide references, links, or tools needed to perfom the extraction step.

•the output of this phase is unstructured knowledge format.

Conceptulalization
(TBox)

Conceptulalization
(TBox)

•create a terminologocal box (TBox), a structured form of knowledge (concepts, attributes, and
relationships). Reuse the SE-EQUAM TBox (import it) and extend it if needed.

•tools could be used to assist (e.g. Protégé (http://protege.stanford.edu)).

Implementation
(ABox)

Implementation
(ABox)

•create assertion box (ABox), a formal, structured representation such as RDF (Resource Description
Framework) on http://www.w3.org/RDF/, a general purpose language for knowledge represenation.
ABox creates instances for the TBox concepts.

•again, tool support is available such as Protégé (http://protege.stanford.edu).

Evaluation Evaluation

•validate consistency of the resulting ontology, i.e., the availability of contradictory information. Use
inference engines such as Pellet (http://clarkparsia.com/pellet)

•provide test cases for expected knowledge representation (e.g., concept1 connects to concept2 via
isRelatedTo relationship). Use SPARQL query language (http://www.w3.org/TR/rdf-sparql-query/) to
test.

66

3.1.2 SE-EQUAM: RELATIONSHIPS BETWEEN METAMODEL, MODEL, AND ONTOLOGY

SE-EQUAM introduces a semantic mapping between the syntactic metamodel (described in Section

2.2.1) and their corresponding semantic models. Domain specific model ontology can be instantiated

using the ontological metamodel [123]. Figure 35 illustrates the relationship between the different

syntactical and the semantic models used in our approach.

FIGURE 35 RELATIONSHIPS BETWEEN MODELS, METAMODELS, AND ONTOLOGY [123]

In our approach, we first abstract a syntactical metamodel for quality models by extracting a generic

metamodel structure from a set of existing quality models (domain models), such as ISO/IEC 9126

[15] or QUALOSS [91] (Figure 36). These domain models are considered instantiations of the syntac-

tic metamodel.

Metamodel Semantic Mapping

in
s

ta
n

ti
a

te

in
s

ta
n

ti
a

te

Domain Model

Ontology Metamodel

Domain Model

Ontology

Constraint#1

Constraint#2

Inference Rule#1

Inference Rule#2

Syntactic Domain Semantic Domain
SE-EQUAM

67

FIGURE 36 SYNTACTIC METAMODEL AND DOMAIN MODLE INSTANCE (ISO/IEC 9126) EXAMPLE

Existing approaches perform syntactic instantiation in an informal, mostly textual, form. In our ap-

proach, and in order to support model evolution and future reuse, we perform a semantic mapping

from a syntactic to a semantic form. Semantic mapping (Figure 37) refers to the formal and unified

conceptualization of the syntactic metamodel as an ontology metamodel with more semantics added

Attribute MeasureFactor SubfactorDimension

hasFactor HasSubfactor hasAttribute hasMeasure

Quality Factors Quality Attributes Quality MeasuresQuality Dimensions

.

.

.

Quality Subfactors

.

.

.

.

.

.
.

.

.

.

.

.

Project

hasDimension

Syntactic Metamodel

in
s

ta
n

ti
a

te

Functionality

Reliability

Suitability

Accuracy

Interoperability

Compliance

Security

External & Internal

Qualities

Usability

Efficiency

Maintainability

Maturity

Recoverability

Fault Tolerance

compliance
Learnability

Understandability

Operability

Attractiveness

compliance

Time Behaviour

Resource utilization

Compliance

Stability

Analyzability

Changeability

Testability

Compliance

*

*
*

*

*

*

*

*

*

*

*
*

*

*

Portability

Installability

Replaceability

Adaptability

Co-existence

Compliance

*

*

*

*

*

*

*
*

*

*

M
e

a
s

u
re

s

Syntactic Domain Model

68

to infer new relationships between the different metamodel entities. These semantic, inferred rela-

tionships are defined using OWL DL and semantic reasoners (more details are described in the next

section entitled Knowledge Modeling Requirements).

Ontology reuse has been supported by multiple case studies in the literature, which prove its cost

effectiveness [157]. In our approach, the semantic mapping of the existing syntactic metamodels re-

sulted in QUAMON (QUAlity Metamodel ONtology). QUAMON is built such that it can also be reused;

QUAMON itself reuses SMO [126] (Software Measurement Ontology) and its conceptualization (T-

Box) of measure, attribute, and scale.

Enabling and being able to support a semantic mapping between the syntactical and semantic ontol-

ogy metamodel is an essential requirement of our approach. The ontological metamodel allows us to

take advantage of ontologies and their semantic expressiveness to support model evolvability.

FIGURE 37 SEMANTIC MAPPING TO ONTOLOGY METAMODEL

Attribute MeasureFactor SubfactorDimension

Quality Factors Quality Attributes Quality MeasuresQuality Dimensions

.

.

.

Quality Subfactors

.

.

.

.

.

.

.

.

.

.

.

.

Project

Syntactic Metamodel

S
e

m
a

n
ti

c
 M

a
p

p
in

g

Attribute MeasureFactor SubfactorDimension

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Project

Semantic Ontology

Metamodel

(QUAMON)

Quality Factors Quality Attributes Quality MeasuresQuality Dimensions Quality Subfactors

hasFactor hasSubfactor hasAttribute hasMeasure

Asserted

Inferred

hasDimension

69

3.1.3 EXAMPLES OF SE-EQUAM REUSABILITY

A domain model such as the SQUALE model [41, 67] described in Chapter 2 extends our generic met-

amodel by adding an additional level, called Practice, between the Attributes and Measures levels.

For the SQUALE model [41, 67] to reuse our QUAMON semantic ontology metamodel (Figure 38), all

that it needs to do is clone the Attribute concept to create the Practice concept and clone the has-

Measure (asserted) relationship to create the hasPractice relationship as part of the T-Box (as de-

fined above in Figure 34). As part of the A-Box, populating individuals for the new model replaces the

<:att1, quamon:hasMeasure, :m1> with <:att1, quamon:hasPractice, :p1>, and <:p1, qua-

mon:hasMeasure, :m1>, where :att1, :m1 and :p1 are individuals of Attribute, Measure and Practice

concepts respectively. All of the existing asserted relationships and properties are recovered as part

of QUAMON semantic modeling. For the newly added relationship i.e. hasPractice, the user must de-

fine the new inferred relationships (dotted lines in Figure 38) following the same approach used by

hasMeasure (details are provided in the next section as part of the OWL2 property chain constructs).

FIGURE 38 SAMPLE SQUALE REUSE OF QUAMON

Another example of reusability would be eliminating Subfactors from QUAMON to meet ISO/IEC

25010:2011[51] model requirements. Following the same approach used by SQUALE [41, 67], any

user-specific domain model could reuse QUAMON by tailoring it to its needs. Both examples men-

tioned here, if implemented, should not violate the consistency and soundness of the existing ontolo-

Attribute PracticeFactor SubfactorDimension

Quality Factors Quality Attributes Quality PracticeQuality Dimensions

.

.

.

Quality Subfactors

.

.

.

.

.

.

.

.

.

.

.

.

Semantic Ontology Metamodel (QUAMON)- Reused by SQUALE

Measure

Quality Measures

.

.

.

hasFactor hasSubfactor hasAttribute hasMeasure

Asserted

Inferred

hasDimension hasPractice

Project

70

gy metamodel. A consistency check is automatically provided through ontology reasoners, such as

Pellet [149].

Aside from the ability to customize of the structural design of the metamodel given in the previous

two examples, metamodel reusability could be established by populating QUAMON with new user

defined instances/individuals in order to instantiate and customizes new domain model ontology to

create a domain specific instance of our quality ontology metamodel, for example, a domain model

that addresses security or robustness qualities.

Assume that a user needs to create a domain model ontology for assessing f1 as a quality factor, with

f1 consisting of a Subfactor sf1 concept, which in turn has a concept att1 as an Attribute. The concept

att1 is further refined by a concept m1 as a Measure. The user can populate QUAMON by creating

individuals (instances) of QUAMON concepts then linking these individuals using QUAMON’s prede-

fined relationships, such as <:f1, quamon.hasSubfactor, :sf1> and <:sf1, quamon.hasAttribute, :att1>

and <:att1, quamon.hasMeasure, :m1>.

FIGURE 39 QUAMON REUSABILITY USING A DOMAIN MODEL ONTOLOGYEXAMPLE (SUBSET)

Measure

Score

hasScore

hasScore

hasMeasure

Subfactor

Factor

Dimension

Attribute

hasScore

hasScore

hasScore

hasAttribute

hasSubfactor

hasFactor

m1

att1

sf1

f1

Metamodel Ontology

(QUAMON)

Is-a

Is-a

Is-a

Is-a

...etc

...etc

Domain model

ontology

hasMeasure

hasAttribute

hasSubfactor

...etc

...etc

71

This modeling approach allows users’ defined f1 factor to automatically reuse all the inferred rela-

tionships QUAMON added to the ontological model, such as hasSubfactor, hasAttribute, hasMeasure,

and hasScore.

Semantic reasoners (e.g., Pellet [149]) can be used for consistency checking to ensure the absence of

type or constraint contradiction that might have been introduced by the user when instantiating a

QUAMON domain model instance. Another scenario where the built-in consistency checks are benefi-

cial is when introducing concepts in the ontology as being disjointed such as Attribute and Measure

concepts. Attribute and Measure are disjoint when an individual/instance can either be a Measure or

an Attribute but not both. Users might assert that m1 (an individual of Measure) is the same individ-

ual as att1 (an individual of Attribute) that will introduce an inconsistency that can be detected by

the Pellet reasoner [149].

3.2. KNOWLEDGE MODELING REQUIREMENT

Software ecosystems involve a broad range of heterogeneous software components and artifacts at

various levels of abstraction and semantics. These systems are not static and must evolve and adapt

to the rapidly changing technologies (such as programming paradigms) and processes (such as agile

and global source code development). Given that they are distributed, it is often impossible to identi-

fy and create a single functional reference model for software components [158]. Furthermore, cul-

tural, social, and technological factors impact the qualities used to assess software arti-

facts/knowledge resources.

As a result, for a quality assessment model to be evolvable, the underlying model has to facilitate the

evolvability of the knowledge base through extendibility. Knowledge modeling here refers to the

conceptualization (T-Box) modeling of knowledge. Figure 40 shows a subset of QUAMON T-Box (con-

cepts and relationships):

72

FIGURE 40 QUAMON- METAMODEL ONTOLOGY (SUBSET)

Below we provide more detailed descriptions of QUAMON’s concepts (Table 4), attributes (Table 5),

and relationships (Table 6). QUAMON reuses the Software Measurement Ontology (SMO) [36, 159,

160] to define certain concepts, such as score and measure. A detailed description of SMO and its re-

use is provided at the end of this chapter, in the Related Work section.

The building blocks of QUAMON are the quality model hierarchy (e.g., dimension, factors, and

measures), the relationships between the levels (e.g., isAttributeOf, hasMeasure), and the attributes

(e.g., score has type excellent, very good, average, poor, and very poor). One of the aspects that are

not represented in QUAMON is the description of the information about the model such as its scope,

objective, and problems. SMO sub-ontology, called characteristics and objectives, could be reused for

this purpose32. In QUAMON, the Measure concept is not subdivided into types, such as base/derived

measures or direct/indirect measures. On the other hand, QUAMON applies weights for each meas-

ure; in this case, if a certain measure has a higher priority, it is assigned a higher weight. Figure 40

shows a sample of weight values as low, medium, or high.

32 http://alarcos.inf-cr.uclm.es/ontologies/smo/

SnapshotMeasure

Score

Weight

Result

hasWeight

hasResult

hasWeight

in

hasScore

hasScore

hasMeasure

Subfactor

Factor

Dimension

in

Attribute

hasScore

hasScore

hasScore
hasWeight

hasWeight

hasWeight

hasAttribute

hasSubfactor

hasFactor

in

isScoreof

ScoreType

...etc

MetaModel Ontology

(QUAMON)

Low

Medium

High

Poor

VeryPoor

Average

VeryGood

Excellent

...etc

Project

hasDimesnion

hasArtifact

Artifact

VersionControlIssueTracker

Tool

Shared Concept Main Concept Property
has

http://alarcos.inf-cr.uclm.es/ontologies/smo/

73

In QUAMON, we define the concept of Score. The score represents the quality rank. The score has a

type and a value. We considered that these two separate properties cover the numeric value repre-

sentation of score for models that rank quality in a numerical range such as 1-5, while score type is

used with models that rank quality in textual terms such as red/green, good/bad, or good/poor. Fig-

ure 40 shows sample score values.

Snapshot is one of the most important concepts in QUAMON. As our research revolves around evolv-

ability and software evolution, studying quality over time drives our solution. For any quality, the

evolution of its score is tagged by a snapshot of time. The snapshot has a type that could be every 10

days, 6 months, or year. The snapshot is tagged by its end date, for example, 2008-08-28 at 20:25:28.

Multiple concepts are associated with a snapshot, for example, a score is per snapshot, a contributor

could be active in a specific snapshot, and a bug is issued in a snapshot.

TABLE 4 DEFINITIONS OF QUAMON CONCEPTS

Concepts Super Concept Description

Dimension Thing A way to group factors together (e.g., community or product dimensions).

Factor Thing A feature or characteristic of a product/service that is required to satisfy custom-

er needs or achieve fitness for use (e.g., evolvability).

Sub-factor Thing The decomposition of a factor to its technical components (e.g., comprehensibil-

ity).

Attribute Thing Reuses SMO [36, 160]; a characteristic of a product; a measurable physical or

abstract property of an entity (e.g. analyzability or testability).

Measure Thing Reuses SMO [36, 160] ; a measurable property of the software that contributes to

assessing quality (e.g., ratio of files with code duplications).

Snapshot Thing A predefined period of time to extract datasets, e.g., every 6 months.

Score Thing The rating of quality on a predefined scale, e.g., very poor, poor, average, very

good, and excellent.

Measure Value Thing The numerical value of the measure calculation.

Item Value Thing The numerical value of dimension, factor, sub-factor, or attribute calculation

Snapshot File Thing A version of a source code file in a specific snapshot of time.

Artifact Thing Artifact could be a version control system, issue tracker, or an external tool. These

represent knowledge resources to extract software measures.

74

Project Thing Reuses DOAP ontology33; represents the definition of project to be assessed.

TABLE 5 DEFINITIONS OF QUAMON ATTRIBUTES

Concepts Attributes Description

Dimension, Factor,

Sub-factor, Attribute,

Measure

ID A unique identifier for each entity.

Name A human readable name for the asserted individual.

Weight The priority of the item, defaulted to the ISO standard but customizable by user

(Low, Medium, or High).

Snapshot Number The count of the number of snapshots in a project’s lifetime, e.g., a five-year-old

projects with snapshot type = 12 months will have 5 snapshots.

Type Snapshots could be x number of days, weeks, months, or years.

End Date Each snapshot is tagged with the end date (yyyy-mm-dd hh:mm:ss) of the snap-

shot.

Score Type Could be good, bad, average, red, green, etc., depending on the scale.

Value The numerical value of the type, e.g., for a scale 0-9, 0-3 is very poor and 7-9 is

excellent, etc.

Membership The degree of membership to a scale in a fuzzy scale system, e.g., 40% is very

poor and is 60% poor.

Assessed Value The value for which the score is assigned, e.g., if the calculated measure m1 value

>30 then the score is average.

TABLE 6 DEFINITIONS OF QUAMON RELATIONSHIPS

Relationship Concepts Description

hasName Measure-String The name of the measure.

hasID Measure-String The unique ID of the measure.

hasArtifact Measure-String The artifact name from which the measure value is extracted, e.g.,

issue tracker, external tool, version control system, etc.

hasScore Entity-Score The score of an entity (entity could be Dimension, Factor, Sub-factor,

Attribute, or Measure).

inSnapshot Measure-Snapshot

Score-Snapshot

The snapshot in which the measure/score is calculated.

hasValue Measure-Number The numerical value of the measure result.

33 http://usefulinc.com/ns/doap

http://usefulinc.com/ns/doap

75

hasScoreValue Score-Number The de-fuzzified/crisp number score value.

hasScoreType Score-String The score type, e.g., poor, excellent, green, red, etc.

hasScoreMembership Score-String The score membership to the type (in fuzzy system), e.g., 40% is poor

and 60% is average.

hasSnapshotEndDate Snapshot-DateTime The end date tag of snapshot in the format yyyy-mm-dd hh:mm:ss.

hasPreviousSnapshot Snapshot-Snapshot A snapshot correlate to the previous snapshot.

hasSnapshotType Snapshot-Type The snapshot type could be in days, weeks, months, or years.

isSnapshotOf SnapshotFile-LogicalFile A version of a file in a specific snapshot is correlated to its logical

representation as part of VERON, which conceptualizes the version

control system artifact as ontology.

hasDimension

isDimensionOf

Project-Dimension

Dimension-Project

The Project concept is defined as part of DOAP external ontology.

Each project has one or more dimensions (perspectives) to catego-

rize its qualities. isDimensionOf is the inverse relationship.

hasFactor

isFactorOf

Dimension-Factor

Factor-Dimension

Each Dimension defines one or more Factors, which are inversely

related to the Dimension.

hasSubfactor

isSubfactorOf

Factor-Subfactor

Subfactor-Factor

Each Factor has Subfactor(s) that inversely correlate back to the

Factor concept.

hasAttribute

isAttributeOf

Subfactor-Attribute

Atribute-Subfactor

Each Subfactor is subdivided into a set of Attributes. Each attribute is

inversely correlated to one or more Subfactors.

hasMeasure

isMeasureOf

Attribute-Measure

Measure-Attribute

One or more measures calculate each Attribute. The measure is used

to calculate one or more attributes.

hasMeasureResult Measure-Entity The measure result could be any concept defined by artifact ontology

such as file, commit, issue, contributor, violation, style error, etc..

hasMeasureValue Measure-Number Some measures have their results as numbers rather than entities,

e.g., LOC or issue count/ratio, and average commits over time.

hasAssessedValue Score-Number The score is correlated to the numerical value of the assessed entity

(measure, attribute, factor …etc.).

hasWeight Entity-String Dimension, Factor, Subfactor, Attribute, or Measure (entity) all have a

weight assigned. The weight could be Low, Medium, or High.

hasWeightValue Entity-Number Each entity has a weight that corresponds to a numerical range (e.g.,

low is 0-3, while high is 7-9). The scale is quality model specific.

hasArtifact Measure-Artifact Each measure input data is extracted from an artifact. The artifact

could be a version control system, an issue tracker, or an external

tool. The input knowledge artifacts are external ontologies with

which QUAMON integrates.

76

In our research, the focus is on software evolvability quality. Understanding software dependencies

and relationships among heterogeneous components distributed over multiple software artifacts is a

major challenge [161]. Without traceability links, knowledge is disconnected and it will require

greater effort and cost to comprehend these connections and perform software engineering tasks

such as reverse engineering and maintenance[161]. Ontologies support several techniques to enrich

the model, by establishing traceability links across multiple ontologies. In what follows, we explore

and describe three of the approaches that we use to find two types of links: (1) hidden/implicit links

that we infer from explicit knowledge using description logic axioms and (2) traceability links that

connect independent ontologies sharing a common knowledge.

Linking using SPARQL queries: Our ontological knowledge modeling supports the use of SPARQL

queries. One of our uses of SPARQL is to establish traceability links among different ontologies. One

possible scenario is finding the correlation between two different concepts that share a common

property. For example, the time a source code change is made to the time an issue about this file is

reported. Concrete examples are provided as part of the case study in the next chapter.

Linking through inference rules: Another approach for establishing traceability links between mul-

tiple ontologies. Inference rules provide an approach to infer implicit knowledge based on existing

knowledge. As mentioned previously, we use Pellet reasoner [149] to fire the inference rules and

enrich the ontology with new semantic links.

Traceability links through DL axioms: OWL DL axioms provide semantically rich properties that

can be used to infer implicit traceability links, and, similar to inference rules, the new links are recov-

ered using a semantic reasoner, such as Pellet [149] in our case. Below, we provide a concrete exam-

ple of implementing DL axioms on the metamodel ontology. In this example, metamodel levels are

linked automatically to lower levels using DL property chains. The result of this linking at the meta-

model level is shown in Figure 37 (above), including the added semantic based on asserted (explicit)

knowledge and the inferred (implicit) knowledge that can be extracted from QUAMON.

77

In our approach, we also take advantage of the new OWL2 Property Chain construct to model

knowledge inference through a chain of connections between a series of individuals. For SE-EQUAM,

we asserted five types of relationships, on which we apply the construct of property chain to infer the

inter-relationships among the quality model levels (Table 7).

TABLE 7 OWL2 PROPERTY CHAIN USAGE

Inferred Relation-
ships

Property Chain Constructor

Each Project has one or
more Factors,
Subfactors, Attributes,
and Measures.

SubPropertyOf(ObjectPropertyChain(:Project :hasFactor) :Factor)
SubPropertyOf(ObjectPropertyChain(:Project:hasSubfactor) :Subfactor)
SubPropertyOf(ObjectPropertyChain(:Project :hasAttribute) :Attribute)
SubPropertyOf(ObjectPropertyChain(:Project :hasMeasure) :Measure)

Each Dimension has
one or more
Subfactors, Attributes,
and Measures.

SubPropertyOf(ObjectPropertyChain(:Dimension :hasSubfactor) :Subfactor)
SubPropertyOf(ObjectPropertyChain(:Dimension :hasAttribute) :Attribute)
SubPropertyOf(ObjectPropertyChain(:Dimension :hasMeasure) :Measure)

Each Factor has one or
more Attributes and
Measures.

SubPropertyOf(ObjectPropertyChain(:Factor :hasAttribute) :Attribute)
SubPropertyOf(ObjectPropertyChain(:Factor :hasMeasure) :Measure)

Each Subfactor has one
or more Measures.

SubPropertyOf(ObjectPropertyChain(:Subfactor :hasMeasure) :Measure)

Here is an example of an OWL representation of the hasSubfactor property; it shows the chain of

properties for the hasSubfactor:

 <!-- http://aseg.cs.concordia.ca/ontologies/2010/11/quamon/hasSubfactor -->

<!-- quamon "http://aseg.cs.concordia.ca/ontologies/2010/11/quamon" -->

<owl:ObjectProperty rdf:about="&quamon;/hasSubfactor">
 <owl:propertyChainAxiom rdf:parseType="Collection">
 <rdf:Description rdf:about="& quamon;/hasDimension"/>
 <rdf:Description rdf:about="& quamon;/hasFactor"/>
 <rdf:Description rdf:about="& quamon;/hasSubfactor"/>
 </owl:propertyChainAxiom>
 <owl:propertyChainAxiom rdf:parseType="Collection">
 <rdf:Description rdf:about="& quamon;/hasFactor"/>
 <rdf:Description rdf:about="& quamon;/hasSubfactor"/>
 </owl:propertyChainAxiom>
 </owl:ObjectProperty>

Given the semantic linking and support for T-Box reasoning of the metamodel, users can now instan-

tiate domain model ontology by populating our QUAMON T-Box with the domain-specific individuals,

which will allow users to inherit all the semantic properties captured by the metamodel. In addition,

78

users can then further refine their domain ontology by adding new inference rules and relationships

to the model.

3.3. KNOWLEDGE POPULATION REQUIREMENT

Knowledge Population in SE-EQUAM refers to the instantiation or assertion of individuals to the A-

Box i.e. ontology population. SE-EQUAM supports knowledge modeling, population, integration, and

sharing by means of shared concepts and the use of our URI generation schema [94]. The URI genera-

tion schema provides a unique identifier for each software repository entity in the ontological model.

It allows us to share common concepts among different knowledge artifacts (sub-ontologies); accord-

ingly, a considerable number of traceability links are automatically provided at design time on the

ontology metamodel level. As explained in Chapter 2, the URI generation schema defines entities at

different abstraction levels [94]:

 Server level for individuals shared among different projects, such as programming language

or version control system type.

 Project level for individuals related to a certain project, such as a file or contributor name.

 Snapshot level for individuals defined during a specific time interval of the project’s life. An

individual could be a quality score or a file version at that snapshot for example if the project

is populated each 6 months then the end date of the sixth month is the snapshot ID.

For example, each entity on a project level has the project’s unique name as part of its URI, which

automatically correlates them together as a logical file. The snapshot level entity has the project and

the snapshot unique names as part of the URI, which automatically recovers the inSnapshot link. One

more example is correlating a file in the project to its various snapshots over time using the shared

local ID (marked in blue in Figure 41). This automated link recovery integrates different ontologies

together, in our example QUAMON, METON (metadata ontology for shared common software con-

79

cepts such as files that we reused) [120], and DOAP (description of a software project ontology that

we reused) [120], as long as they are all uploaded under the same domain.

Another advantage that the URI generation schema provides is the versioning of the concepts using

the month and the year as part of the URI design.

FIGURE 41 SAMPLE SET OF URI GENERATION SCHEMA APPLICATION

The URI schema provides on-the-fly knowledge integration with no added effort for synchronization

[120]. Also, the URI generation schema, also called reproducible identifiers [94], provides ontological

entities at any time and by any tool that further supports our metamodel design evolvability and re-

usability. The ontological model could be easily extended and enriched with more knowledge, such as

external knowledge resources or analysis tools results.

Given the heterogeneity and globalization of knowledge in software ecosystems, one can no longer

assume that all knowledge will be available at assessment time. Domain models will have to ensure

model and knowledge consistency, while having to deal with either missing or incomplete

knowledge. As a result, an evolvable model should support an open world assumption [162] to deal

with both incremental and missing knowledge while populating and assessing knowledge captured

by the model.

Incremental knowledge population is a key requirement for an evolvable quality assessment. This

is in particular important since not all knowledge resources might be available or complete at as-

sessment time where new knowledge is introduced continuously, older knowledge might be missing

(e.g., late adoption of version control system) and existing knowledge could be modified (e.g., new

comments added to an issue report, bug status changed, or piece of code documented). The incre-

<http://domain/ontologies/year/

month/quamon/inSnapshot>

<http://www.w3.org/1999/

02/22-rdf-syntax-ns#type>

<http://domain/resource/SnapshotFile/project1/

snapshot1/logical-file-url1>
<http://domain/ontologies/year/month/

quamon/SnapshotFile>

<http://domain/resource/project/project1>

<http://domain/ontologies/year/month/

meton/LogicalFile><http://domain/ontologies/year/

month/quamon/isSnapshotOf>

<http://domain/resource/logicalfile/project1/

logical-file-url1>

 <http://usefulinc.com/ns/doap#Project>

IndividualsRelationships Concepts

<http://domain/resource/snapshot/project1/

snapshot1>

<http://domain/ontologies/year/month/

quamon/Snapshot>

AssertedInferred

80

mental knowledge population is used for our continuously evolving knowledge base, e.g., adding a

new input artifact to such as mailing list or an external resource such as static analysis tool results.

The incremental knowledge population is supported by the ontology alignment to map the newly

added knowledge with the existing knowledge through establishing semantic links and defining

shared concepts (e.g., the contributor who posts or comments in the mailing list is mapped to the

same contributor who resolved an issue or made a modified a file in the versioning system).

Semantic web technologies provide an enabling technology that lets us deal with both incomplete

and missing knowledge. In software industry, the domain is evolvable and completeness is hard to

measure. SE-EQUAM provides a step-by-step population process for the ontological knowledge re-

sources in a concrete example in Chapter 4.

The ability to deal with an incremental population of ontologies, along with the semantic reasoners

ability to provide type consistency checks, allow us to deal with the knowledge population and explo-

ration uncertainties (uncertainty in this context refers to the lack of preciseness in the quality as-

sessment as a result of the evolvable nature of the software ecosystem).

3.4. KNOWLEDGE EXPLORATION REQUIREMENT

An evolvable assessment model has to support different assessment perspectives to meet various

stakeholder needs. An evolvable model has to allow for the customization of what (knowledge) and

how (measures, factors, and quality scores) can be utilized. As a result, knowledge exploration has to

go beyond answering a predefined set of common questions (queries). The model has to support

both the customization of the assessment processes as well as the knowledge exploration to support

model reuse and evolvability.

SE-EQUAM provides public access for all the populated knowledge resources online by integrating

with SECOLD.org, an online linked data repository that provides a human readable representation of

ontologies. As part of SECOLD, users can fetch/download data in RDF, XML, and other formats. Users

can also query the provided knowledge using the query endpoint. SE-EQUAM allows for: (1) a prede-

81

fined set of interesting queries to answer frequent quality assessment related questions and (2) pro-

vides users with the ability to formulate their own SPARQL queries to explore knowledge from the

ontology metamodel. Knowledge exploration will be supported by a SPARQL endpoint where the

user can write their queries related to their specific needs.

The predefined set of queries is divided into the following categories:

Structural queries: These queries address knowledge exploration to answer model struc-

ture/hierarchy related questions that only use the direct/asserted relationships in the quality meta-

model (e.g., relationship between factors and subfactors or attributes and measures).

Advanced structural queries: These queries take advantage of ontology reasoning abilities in order

to infer indirect/non-asserted knowledge and relationships (e.g., relationship between dimensions

and attributes or factors and measures.

FIGURE 42 ASSERTED VERSUS INFERRED QUERY KNOWLEDGE

Figure 42 shows an example of the asserted relationship queries (sold line arrows) versus the ad-

vanced inferred queries (dotted arrows) we are trying to answer. For example, QUAMON does not

assert any explicit relationship between dimensions and measures, but we provide a set of OWL2

property chain axioms to define sub-relationships based on asserted relationships. Then, the reason-

er (in our case, Pellet [149]) infers the relationship between dimensions and measures. The query, in

return, includes the inferred relationships as part of their results and treats them as if they were as-

serted. This approach hides the reasoning details from the user.

Assessment queries: These queries obtain assessment related facts. For example: “What is the as-

sessment score of a specific quality factor?” or “What is the assessment score for a specific quality

attribute at a certain point of time?” “What is the assessment score for the list of X items that scored

S?” or “What is the assessment score for the list of X items that scored S at Y point of time?” Ad-

Attribute Measure Factor S ubfacto r Dimension
hasFactor hasSubfactor hasAttribute hasMeasure

Project
hasDimension

Query 1

Query 2

82

vanced assessment queries: These queries go beyond the scope of the simple assessment queries by

taking advantage of ontology reasoning to classify the effect of specific quality attribute on the quali-

ty score. For example: What are the models’ item(s) that positively/neutrally/negatively affect X?

This query requires a relationship between the measures and the quality factor levels of the model.

This is not an asserted relationship, but using OWL2 property chain; we can infer this relationship

and answer the assessment related question using a simple SPARQL query.

The difference between the advanced structural and the advanced assessment queries is that the

structural queries are interested in relationships that constitute the model’s structure, while the ad-

vanced assessment queries are about score results and their effect. Both are advanced in the sense

that the query results will not be available to users without the added semantic reasoning.

3.5. SE-EQUAM RELATED WORK

There are quite a few existing initiatives that propose an ontology-based approach to handle soft-

ware quality assessment or measurement. The closest work to ours, and the one on which we based

the definitions of our QUAMON main concepts, is the Software Measurement Ontology (SMO) [36,

136, 159]. The SMO proposal aimed to unify and formalize the definitions provided in multiple exist-

ing standards, such as IEEE Std. 610.12: “Standard Glossary of Software Engineering Terminology,”

IEEE Std. 1061-1998: “IEEE Standard for a Software Quality Measures Methodology,” and ISO/IEC

15939: “Software engineering – Software measurement process.” [36, 136, 159].

SMO [36, 136, 159] analyzed and compared the terminologies used in several international standards

in order to consolidate and conceptualize the domains by providing a unified, common vocabulary

(T-Box) for future use. The SMO research resulted in four sub-ontologies (Figure 43)34:

 Software measurement characterization and objectives: provide information about the

measurement goal and context. This sub-ontology is about documenting a readable form of

34 http://alarcos.inf-cr.uclm.es/ontologies/smo/

http://alarcos.inf-cr.uclm.es/ontologies/smo/

83

the measurement metadata, such as what is a quality model or what is an attribute. QUA-

MON does not include objectives, scope, or definitions as such as part of the model, yet

QUAMON annotates all the concepts with human-readable definitions using rdfs:Label35 and

rdfs:Comment36. The user can import the software measurement characterization and objec-

tives sub-ontology to enrich their representation.

 Software measures: define the measure’s terminology, such as the type and scale of meas-

ure’s values. QUAMON reuses the measure and measure value definition from here but it

does not sub-divide the measures into base and derived types as in SMO. On the other hand,

QUAMON defines several other ways to group measures by:

o Weight: for each measure; this way measures could be grouped by their weight

(Low, Medium, and High). The weight in QUAMON represents the importance or

priority of the measure: the higher the more effect it has on the quality assessment.

SMO does not define the weight concept as part of their design 34.

o Data sources: such as versioning system, issue tracker, or tools such as PMD [163]

and CheckStyle [164]. These sources are used to extract measures used in assess-

ment. SMO does not define data sources or knowledge artifacts as part of their de-

sign 34.

o Parent (upper) level: measures in QUAMON are the lowest level in the model hierar-

chy. Grouping could be by quality attributes, subfactors, factors, and dimensions

that they measure. In SMO, everything aside from measure and attribute is a meas-

urable concept [159]. We argue that attributes and measures are also measurable

concepts, yet they are selectively defined as their own concepts while factors and

subfactors are not. QUAMON defines each of the measureable concepts separately.

35 http://www.w3.org/TR/rdf-schema/#ch_label
36 http://www.w3.org/TR/rdf-schema/#ch_comment

http://www.w3.org/TR/rdf-schema/#ch_label
http://www.w3.org/TR/rdf-schema/#ch_comment

84

Users can omit any quality concept (by assigning a weight of zero to it) or extend it

by adding new concepts to the model.

o Score: in QUAMON design, each measure has an associated quality score. The score

could be, for example, red/green/yellow/black, such as in QUALOSS [40]. Measures

then could be grouped by their score value.

 Measurement approach: defines the ways to obtain measurement results. Here the SMO de-

fines different approaches (method, function, and analysis model) for different types of

measures (base, derived, and indicator) [159]. QUAMON defines the concept measure with-

out further detailing subtypes; hence the concept measurement approach does not apply to

QUAMON. In QUAMON, the approach to calculate measures, which we will describe in the

next chapter, is either the tool-based approach, where we reuse existing libraries to calculate

popular software measures such as PMD [163] and CheckStyle[164], or the SPARQL-based

approach, where the measure is calculated using our own SPARQL queries which run against

the software knowledge base. In QUAMON, we did not define the concepts for these ap-

proaches, but the user can still find which measures are tool-based. (This is available as part

of the concept URI, as we will describe in the next chapter). If the measure is not tool-based,

then it is SPARQL-based.

 Measurement: defines concepts related to the measurement process, such as the approach

used to calculate a measurement result. In SMO, there is an approach per each type of meas-

ure, such as based or derived [159]. In QUAMON, we model the process input (such as the

knowledge artifacts used to extract measures and weights) and output (such as the quality

score) but we do not design the relationship between the approach and the measurement

result as part of the ontology. The reason is that we look at types of measures from a differ-

ent perspective. In QUAMON, measures could have different levels of importance in the as-

sessment process or could affect the quality positively/negatively based on their score,

85

which is why the approach and its relationship with the measurement result as defined in

SMO does not apply to QUAMON.

FIGURE 43 SOFTWARE MEASUREMENT ONTOLOGY (SMO) [159]

Our QUAMON ontology metamodel reuses and extends two of the SMO sub-ontologies (software

measures and software measurement characterization and objectives)[36, 159]. QUAMON does not

define software assessment/measurement process (e.g., measurement method, function, and analy-

sis model and decision criteria) as part of its ontological metamodel representation, yet the assess-

ment process output (e.g., score and measure result) is part of QUAMON. The main difference be-

tween QUAMON and SMO is that our metamodel infers indirect relationships among all the quality

metamodel levels. In QUAMON, the user can choose any quality of interest and check its relationships

with any other quality in the model directly and indirectly related to it. SMO lacks the indirect (in-

86

ferred) relationship definition. SMO does not distinguish between the concepts (dimension, factor,

and subfactor), all of which it defines as a measurable concept [159]. As a result, tracing back struc-

tural model information such as measures used in assessing a certain project are complicated, if even

possible, using SMO.

QUAMON defines another relationship from attribute to measure (hasMeasure); the same applies

from attribute to measurable concept (isAttributeOf).

SMO defines Measurement Result concept as the value resulted from a measurement where every

measurement produces only one result (refer to Measure Action sub-ontology37). Generally, in quali-

ty assessment, the measurement result is a numerical value resulting from a calculation such as

counting LOC or the ratio of active to idle contributors. This numerical result is then assigned a score

based on a predefined scale (e.g., if measure m1 value > x then the score is Excellent or Green). In

QUAMON, for a richer and more comprehensive ontological modeling, both values (the number and

the corresponding score) should be represented. SMO allows only one of these two measurement

results to be represented [159], while QUAMON defined both.

Another missing concept that QUAMON added to SMO is the weight for measure, attributes, or meas-

urable concepts. The weight concept or property is defined as part of the ISO/IEC 9126 standard [15]

and it represents the priority or importance of this quality item. Besides quality score and weight

concepts, SMO lacks a representation for a date-time stamp, snapshot, or version for any of its con-

cepts such as attribute, measure, or measurable concept [36, 159]. This is a significant concept for

quality models that assess software evolution or for any model that performs multiple assessments

and then compares them to older snapshots. The missing representation of score and snapshot con-

cepts from SMO hinders further interpretation of the measurement results such as trend analysis.

SMO provides an over-generalized definition for some concepts such as decision criteria and infor-

mation need. For example, in [159] paper the authors indicate that a decision criteria represents a

fuzzy-scale of low, medium, and high (e.g. in

37 http://alarcos.inf-cr.uclm.es/ontologies/smo/

http://alarcos.inf-cr.uclm.es/ontologies/smo/

87

Figure 44, the medium fuzzy term is defined by three points ((0, 0.4), (1, 0.55), and (0, 0.7)), but they

do not provide details about how to populate three fuzzy terms in a single concept.

FIGURE 44 SMO DECISION CRITERIA [159]

QUAMON integrates with existing ontological knowledge artifacts (VERON, METON, SOCON, IS-

SUEON, and TOOLON [120]) with auto-populated links using URI generation schema [94]. SMO does

not provide details about how to integrate with the input knowledge artifacts, such as source code

repository or issue tracker for example. Supporting the integration with input knowledge artifacts

enriches the ontological model to provide more comprehensive exploration capabilities.

Interestingly enough, in 2010 [126] there has been another research group who proposed another

SMO under the same name but a different objective; we will refer to it as SMO-II. SMO-II aims to eval-

uate the suitability of the measurement used in organizations based on their maturity level (the ma-

turity level is determined based on the Capability Maturity Model Integration (CMMI) with level 1 as

the lowest maturity and level 5 as the highest) [137]. SMO-II also provides software measurement

recommendations [126]. SMO-II claims that the existing SMO is not expressive because it is not based

on a unified foundational ontology or UFO [126]. (UFO is developed based on formal ontology; philo-

sophical logics; and language, linguistic, and cognitive psychology in order to provide a basis to de-

velop a domain specific ontology)[126]. SMO-II is not implemented in formal modeling language such

as OWL and it has been manually evaluated which makes SMO-II harder to reuse [126].

0.4 0.55 0.7

Low Medium High

88

FIGURE 45 SMO-II (SUBSET) [126]

Despite following a different approach that is based on UFO, SMO-II (Figure 45) does not provide a

significant change to the older SMO when it comes to the measure specific conceptualization that is

relevant to our work in QUAMON. SMO-II shifts its focus to the measurement process analysis in high

maturity software organizations (classified as Levels 4 or 5 based on the CMMI) [126, 137]. Software

process behavior analysis is not relevant to QUAMON.

Another ontological model (Figure 46) has been proposed in [165] that aim to support automated

software evaluation. The interesting part of this work is the representation of the knowledge artifacts

and the way it associates artifacts with artifact versions. It also defines a Tool concept as a knowledge

artifact. A comparison of the QUAMON design with the SMO design in Figure 46 shows that the QUA-

MON design shares the definition of concepts such as Artifact and Tool. However, in QUAMON the

Tool concept corresponds to the Snapshot (e.g., if the user obtains the tool’s results against annual

snapshots of a software, then an x-year-old software will have x number of snapshots, each of which

is dated by the end of the year date-time) and does currently no capture a version (as in SMO). The

version of the tool/artifact could be added as a property of the Artifact concept. QUAMON also de-

fines other kinds of software artifacts, such as issue tracker and version control systems.

89

FIGURE 46 ONTOLOGY MODELING FOR SOFTWARE EVALUATIONS [165]

Martin and Oslina [166, 167] introduced ontologies for software metrics (measures) (MO-Ontology)

for cataloguing web systems. MO-Ontology is implemented for WebQEM [168], a methodology with a

tool support that aims to measure the quality of Web applications. MO-Ontology is a subset of SMO

[166] that focuses on software measures conceptualization; therefore the same discussion of SMO

applies (such as missing score, weight, and snapshot representation or the break-down of the quality

model structural levels such as factor, sub-factor, and dimension). Martin and Oslina maintained a

communication with the SMO [166] group in an effort to merge both of their work. Similar to the on-

tological model for software evaluation (Figure 46), MO-Ontology defines the Software Tool as a

method to calculate Measure/Metric, which corresponds to QUAMON integration with TOOLON on-

tology as a knowledge artifact that provides also measures’ results. (More details about TOOLON are

to be provided in the next chapter).

3.6. SUMMARY

This chapter introduces SE-EQUAM, an ontology based, reusable quality assessment metamodel. SE-

EQUAM provides a formal, evolvable representation, which is machine readable and includes a se-

90

mantic mapping, of the common core dimensions and factors of existing quality assessment models.

We first identified a set of complementary core requirements necessary for a model to be considered

an evolvable model: Model Reusability, Knowledge Modeling, Knowledge Population, and Knowledge

Exploration [12]. Each of these requirements is discussed in more details to provide a foundation for

adopters when reusing the metamodel. Furthermore, a discussion on related work on ontologies in

quality assessment is provided, comparing both commonalities and differences among these existing

approaches and our approach.

91

CHAPTER 4: ONTEQAM: ONTOLOGICAL EVOLVABILITY QUALITY AS-

SESSMENT MODEL

Case study objectives: The objective of this chapter is to provide a case study to illustrate and vali-

date that our approach is capable of meeting our requirements for a reusable quality assessment

metamodel.

Case study setting: For the case study, we reuse the SE-EQUAM ontology metamodel presented in

Chapter 3 to instantiate a domain model ontology, i.e., our Ontology-based Evolvability Quality As-

sessment Model (OntEQAM) [17]. OntEQAM is designed to capture evolvability quality aspects based

on existing quality assessment models, such as ISO/IEC 9126 [15], SIG Maintainability Model38, and

QUALOSS [91]. OntEQAM structure could be extended such as adding new subfactors, attributes or

measures’ assignment by extending the ontological representation. OntEQAM focuses on the integra-

tion, semantic analysis, and assessment of knowledge resources typically found in software ecosys-

tems. We illustrate how our OntEQAM model takes advantage of the unified knowledge representa-

tion and associated semantic modeling provided by the SE-EQUAM metamodel [12] in order to assess

the evolvability quality of the software ecosystems through addressing the metamodel requirements.

Case study expected outcomes: Firstly, we will explain the reuse of the SE-EQUAM metamodel [12]

ontology, including its ontology design (concepts, relations, and semantic links) by populating QUA-

MON (metamodel ontology) with individuals (instances) from our ontological domain model (i.e., the

OntEQAM model). This population process (which creates an A-Box) corresponds to creating a con-

crete instance of SE-EQUAM. In the second part of the case study, we will illustrate how users can

take advantage of the semantic modeling approach used in SE-EQUAM to enhance knowledge popula-

tion and exploration to answer advanced, user-specific queries about the OntEQAM instances.

Figure 47 provides an overview of the complete case study and its expected outcomes. Following a

traditional approach of deriving a quality assessment model (left side of Figure 47), a syntactic quali-

38 http://www.sig.eu/en/Research/690/__Maintainability_Model__.html

92

ty metamodel is extracted from existing quality assessment models. In this approach, the textual

specification of the quality metamodel is then manually transformed into a domain-specific model by

re-implementing the metamodel and extending it with domain-specific information.

In contrast, the semantic approach (right side of Figure 47) corresponds to SE-EQUAM and its sup-

port for model reuse and evolvability. SE-EQUAM ontological representation provides a formal (ma-

chine-readable), reusable metamodel. This ontological representation also allows for additional se-

mantic modeling at the metamodel level by using DL axioms (such as the property chain axiom) to

infer new implicit relationships in the model.

FIGURE 47 REUSE OF SE-EQUAM METAMODEL TO INSTANTIATE A DOMAIN MODEL ONTOLOGY (ONTEQAM)[12]

Attribute MeasureFactor SubfactorDimension

Quality Factors Quality Attributes Quality MeasuresQuality Dimensions

.

.

.

Quality Subfactors

.

.

.

.

.

.

.

.

.

.

.

.

Project

Attribute MeasureFactor SubfactorDimension

Quality Factors Quality Attributes Quality MeasuresQuality Dimensions

.

.

.

Quality Subfactors

.

.

.

.

.

.

.

.

.

.

.

.

Project

Community

Analyzability

Product

Stability
Changeability

Testability

Compliance to standard

Documents quality

Activity

Evolvability

Comprehensibility

Developer community size

Developer community activity

Developer community

heterogeneity

Developers turnover

*

*

*

*

*

*
*

*

*

M
e

a
s

u
r
e

s

Project

Quality Factors Quality Attributes Quality MeasuresQuality Dimensions Quality Subfactors

hasFactor hasSubfactor hasAttribute hasMeasure

Asserted

Inferred

hasDimension

Community

Analyzability

Product

Stability
Changeability

Testability

Compliance to standard

Documents quality

Activity

Evolvability

Comprehensibility

Developer community size

Developer community activity

Developer community

heterogeneity

Developers turnover

*

*

*

*

*

* M
e

a
s

u
r
e

s

Project

Quality Factors Quality Attributes Quality MeasuresQuality Dimensions Quality Subfactors

QUALOSS

ISO/IEC 9126

Syntactic Quality Metamodel

Semantic Mapping

in
s

ta
n

ti
a

te

in
s

ta
n

ti
a

te

Syntactic OntEQAM Model

Semantic Ontology Metamodel

Semantic OntEQAM Domain Ontology

Constraint#1

Constraint#2

Inference Rule#1

Inference Rule#2

*

*

*
*

*

*

*

93

Below we illustrate each of the four requirements of SE-EQUAM with concrete examples to show

their applicability to the evolvability domain-specific quality model (i.e., OntEQAM).

4.1. ONTEQAM ADDRESSES METAMODEL REUSE REQUIREMENTS

The main goal of creating a metamodel is to provide a reusable framework for user-specific domain

models. Reusing SE-EQUAM provides the user’s domain model with a common, standardized termi-

nological box (T-Box) that represent the basic structural relationships as exists in literature, seman-

tically richer links, as well as the integration with input knowledge artifacts.

Below, we break down Figure 47 into Figure 48 and Figure 49 to show that when reusing the SE-

EQUAM ontology metamodel, not only is the conceptual design (model structure) reused, as is done

in the traditional, existing approach (Figure 48), but also the added semantic knowledge is automati-

cally instantiated (Figure 49) .

Figure 48 shows the mapping from the generic quality metamodel, as defined in the background

chapter, to a concrete instance of the OntEQAM quality model [17]. OntEQAM defines the evolvability

quality model structure based on the evolvability definitions of two sources (ISO/IEC 9126 [15] and

QUALOSS [16, 169]). The mapping is a syntactic mapping where OntEQAM uses the definition of the

asserted relationships between one level and the subsequent lower level (dimension -> factor -> sub-

factor -> attribute -> measure). Basic queries (such as: What are the sub-factors associated with

product evolvability?) can be answered through this mapping.

94

FIGURE 48 THE SYNTACTIC METAMODEL AND ITS INSTANCE, THE DOMAIN MODEL (ONTEQAM)

Figure 49 shows the asserted (explicitly modeled) knowledge in the final OntEQAM assessment mod-

el, as well as the inferable knowledge links (dashed lines), which are a result of the reuse of our onto-

logical metamodel. In our case study, we want the OntEQAM model to inherit the syntactical and the

semantic aspects of the SE-EQUAM ontology metamodel.

Attribute MeasureFactor SubfactorDimension

Quality Factors Quality AttributesQuality Dimensions

.

.

.

Quality Subfactors

.

.

.

.

.

.

.

.

.

.

.

.

Project

S
e

m
a

n
ti

c
 M

a
p

p
in

g
Community

Analyzability

Product

Stability

Changeability

Testability

Compliance to standard

Documents quality

Activity

Evolvability

Comprehensibility

Developer community size

Developer community activity

Developer community heterogeneity

Developers turnover

M
e

a
s

u
re

s

Project

Quality Factors Quality Attributes Quality MeasuresQuality Dimensions Quality Subfactors

hasFactor hasSubfactor hasAttribute hasMeasure
Asserted hasDimension

QUALOSS

ISO/IEC 9126
*
*
*

*

*
*
*

*
*
*

95

FIGURE 49 SE-EQUAM SEMANTIC METAMODEL AND ITS INSTANCE, THE DOMAIN MODEL (ONTEQAM)

Below we use a concerte example to describe how this can be achieved. In this chapter, we will be

using the following prefixes in the examples of our ontology triples (triple here refers to the subject-

predicate-object representation of the ontology individuals):

 doap: <http://usefulinc.com/ns/doap#>

 issueon: <http://aseg.cs.concordia.ca/ontologies/2010/11/issueon/>

Community

Analyzability

Product

Stability

Changeability

Testability

Compliance to standard

Documents quality

Activity

Evolvability

Comprehensibility

Developer community size

Developer community activity

Developer community heterogeneity

Developers turnover

M
e

a
s

u
re

s

Project

Quality Factors Quality Attributes Quality MeasuresQuality Dimensions Quality Subfactors

hasFactor hasSubfactor hasAttribute hasMeasure

Asserted

Inferred

hasDimension

*
*
*

*

*
*
*

*
*
*
*

in
s

ta
n

ti
a

te

Attribute Measure Factor S ubfacto r Dimension

Quality Factors Quality Attributes Quality Measures Quality Dimensions

.

.

.

Quality Subfactors

.

.

.
.
.
.

.

.

.
.
.
.

Project

96

 toolon: <http://aseg.cs.concordia.ca/ontologies/2010/11/toolon/>

 veron: <http://aseg.cs.concordia.ca/ontologies/2010/11/veron/>

 meton: <http://aseg.cs.concordia.ca/ontologies/2010/11/meton/>

 quamon: <http://aseg.cs.concordia.ca/ontologies/2010/11/quamon/>

 rdfs: <http://www.w3.org/2000/01/rdf-schema#>

 rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

 xsd: <http://www.w3.org/2001/XMLSchema#>

 fn: <http://www.w3.org/2005/xpath-functions#>

 afn: <http://jena.hpl.hp.com/ARQ/function#>

As part of the QUAMON ontology, we first define that each software project has an associated quality

dimension <doap:Project> <quamon:hasDimension> <quamon:Dimension>. This definition reuses an

existing doap39 ontology that is publically available to share the description of the software project in

an ontological format. This is the first step to connect the software project concept with the quality

model. QUAMON defines the quality metamodel concepts and relationships, such as <qua-

mon:hasFactor>,<quamon:Factor>,<quamon:hasSubfactor>,<quamon:Subfactor>, <qua-

mon:hasAttribute>,<quamon:Attribute>,<quamon:hasMeasure>,<quamon:Measure>, <qua-

mon:hasScore>,<quamon:Score>, <quamon:inSnapshot><quamon:Snapshot>, etc.

OntEQAM reuses the QUAMON ontology by populating QUAMON with concrete individuals. The fol-

lowing provides an example of instantiating QUMAON.

39 https://github.com/edumbill/doap/wiki

97

FIGURE 50 ONTEQAM DOMAIN MODEL RESUES QUAMON METAMODEL ONTOLOGY (SUBSET)

Figure 50 visualizes the reuse approach for the analyzability attribute and one of its measures, i.e.,

cyclomatic complexity. Steps 1 to 5 are applied here to obtain this result:

1. Define the product and community dimensions:

<quamon:Product> <rdfs:type> <quamon:Dimension> and <quamon:Community>

<rdfs:type> <quamon:Dimension> Figure 50 shows the example of the product dimension.

2. Define product_evolvability quality as a factor that is associated with the product dimension.

<quamon:Product_Evolvability> <quamon:hasFactor> <quamon:Product> and <qua-

mon:Product_Evolvability> <rdfs:type> <quamon:Factor>.

3. Following the same approach, OntEQAM defines comprehensibility as a subfactor of prod-

uct_evolvability which is associated with the analyzability quality attribute.

<quamon:Product_Evolvability> <quamon:hasSubfactor><quamon:Comprehensibility> and

<quamon:Comprehensibility> <rdfs:type> <quamon:Subfacor>.

<quamon:Comprehensibility> <quamon:hasAttribute> <quamon:Analyzability> and <qua-

mon:Analyzability> <rdfs:type> <quamon:Attribute>.

98

4. To complete the model structure, let’s say that OntEQAM defines files with the cyclomatic

complexity measure to assess the analyzability quality attribute.

<quamon:Analyzability> <quamon:hasMeasure> <quamon:CyclomaticComplexity> and

<quamon: CyclomaticComplexity > <rdfs:type> <quamon:Measure>, Figure 50.

At this stage, from points 1 to 5, queries (such as: What measures are associated with the prod-

uct_evolvability dimension? Or what attributes scored poorly under the community dimension?) will

not be answered because the only relationships that are asserted are the direct relationships be-

tween one level and the next level down (dimension -> factor -> subfactor -> attribute -> measure).

To resolve this issue, OntEQAM reuses QUAMON-added semantics of how the metamodel’s relation-

ship chain to each other (e.g., hasDimension relationship with hasSubfactor and hasMeasure). Here is

an example of the OWL2 property chain axioms defined to address the inferred metamodel relation-

ships. These axioms represent the dotted (inferred) lines in Figure 49. These inferred relationships

are recovered using the Pellet reasoner [149].

 Project-related OWL2 property chain constructs:
o SubPropertyOf(ObjectPropertyChain(:Project :hasFactor) :Factor)
o SubPropertyOf(ObjectPropertyChain(:Project :hasSubfactor) :Subfactor)
o SubPropertyOf(ObjectPropertyChain(:Project :hasAttribute) :Attribute)
o SubPropertyOf(ObjectPropertyChain(:Project :hasMeasure) :Measure)

 Dimension-related OWL2 property chain constructs:
o SubPropertyOf(ObjectPropertyChain(:Dimension :hasSubfactor) :Subfactor)
o SubPropertyOf(ObjectPropertyChain(:Dimension :hasAttribute) :Attribute)
o SubPropertyOf(ObjectPropertyChain(:Dimension :hasMeasure) :Measure)

 Factor-related OWL2 property chain constructs:
o SubPropertyOf(ObjectPropertyChain(:Factor :hasAttribute) :Attribute)
o SubPropertyOf(ObjectPropertyChain(:Factor :hasMeasure) :Measure)

 Subfactor-related OWL2 property chain constructs:
o SubPropertyOf(ObjectPropertyChain(:Subfactor :hasMeasure) :Measure)

When the user imports this OWL2 constructs file, the queries mentioned above are answered. The

question that could be asked here is: Can users define these inferred relationships without the prop-

erty chain? While it would be possible to assert all inferred relationships this would not only require

a significant amount of changes to the actual model and might become a source of design inconsist-

encies. For example, in a model that defines 20 measures, the user would need to assert 80 triples

99

(four relationships for each measure for the measure indirect relationship with projects, dimension,

factor, and subfactor) instead of having four constructs only (Figure 51) independent of the number

of measures defined in the model. The same issue applies for inferred relationships related to attrib-

utes, subfactors, and dimension, which leads to a higher complexity of the resulted ontology and

hence a harder to maintain solution. The reason is that whenever a new individual is created in the

model (e.g., a new measure is added), all the inferred relationships need to be asserted again by the

user.

FIGURE 51 HASMEASURE-RELATED PROPERTY CHAIN CONSTRUCTS (PROTEGE VIEW)

 Besides recovering semantic links, the Pellet reasoner [149] is also used for consistency checking

before the actual reasoning takes place. The consistency checking ensures that there is no type or

constraint contradiction being introduced by the user to the QUAMON. For example if the Attribute

and Measure concepts are defined as disjoint (i.e. an instance can either be a measure or attribute but

not both), then after the reuse, if the user mistakenly asserts that m1 (individual of Measure) is also

an individual of Attribute then the reasoner issues an inconsistency.

The OntEQAM model case study also shows how our SE-EQUAM metamodeling approach supports

the evolvability of the quality model by allowing users to instantiate domain model ontology for their

specific application context (in this example, this is a quality assessment model for evaluating the

evolvability of software systems). The same reusability approach could be applied in any new context

or domain.

100

4.2. ONTEQAM ADDRESSES KNOWLEDGE MODELING REQUIREMENT

Knowledge modeling refers to the T-Box modeling for knowledge artifacts. Chapter 3 focused on the

representation of QUAMON, our metamodel ontology. As part of this case study, to assess software

evolvability quality, we will reuse and integrate QUAMON with other ontological software knowledge

artifacts needed for OntEQAM. Figure 52 shows an example of such ontological integration of differ-

ent knowledge artifacts. These artifacts include (but are not limited to) Version Control Repository

(VERON),40 which models activities performed by different source code contributors over time.

VERON ontology conceptualizes commits made by contributors to the version control repository,

tagged with the date and time. Properties such as commit message and type of modification made

(add/delete/change) are also part of VERON. The Issue Tracker Repository (ISSUEON) 41 is designed

to model activities related to bug, and change and feature requests. The ISSUEON models concepts

such as the reported issue, date and time, assignee, comments made, and the status of the issue.

METON42 is the metadata ontology, and it defines the shared concepts among existing ontologies

such as source code files, contributors, and project information. Detailed descriptions of VERON,

METON, and ISSUEON ontologies are available here:

https://sites.google.com/site/asegsecold/ontology.

The ontological representation of the quality model (QUAMON) is used for modeling the assessment

model entities (e.g., factors, attributes, measures, scores, and weights). As part of our approach, we

also integrate results obtained from third-party source code analysis tools. SE-EQUAM currently in-

tegrates the results from the following four source code measurement tools: (1) PMD43, which ana-

lyzes code for possible bugs and dead and overcomplicated code; (2) Checkstyle44, which detects Ja-

vadoc style errors. Checkstyle configuration checks violations to defined standards such as: the Java

40 http://aseg.cs.concordia.ca/ontologies/2010/11/veron.rdf

41 https://sites.google.com/site/asegsecold/ontology/Issueon.owl
42 http://aseg.cs.concordia.ca/ontologies/2010/11/meton.rdf
43 http://pmd.sourceforge.net/
44 http://checkstyle.sourceforge.net/

https://sites.google.com/site/asegsecold/ontology
http://aseg.cs.concordia.ca/ontologies/2010/11/veron.rdf
http://aseg.cs.concordia.ca/ontologies/2010/11/meton.rdf
http://pmd.sourceforge.net/
http://checkstyle.sourceforge.net/

101

Language Specification45, the Sun Code Conventions46, the Javadoc guidelines47, and the JDK API48; (3)

Simian49, which reports duplicated code, i.e., file similarity (similar file names, start, and end line);

and (4) JDepend50, which reports package level dependencies and instability measures.

FIGURE 52 SE-EQUAM KNOWLEDGE ARTIFACTS

45 http://java.sun.com/docs/books/jls/second_edition/html/index.html
46 http://java.sun.com/docs/codeconv/
47 http://java.sun.com/j2se/javadoc/writingdoccomments/index.html
48 http://java.sun.com/j2se/docs/api/index.html
49 http://www.harukizaemon.com/simian/
50 http://clarkware.com/software/JDepend.html

commit

Message

DateTime

Issue

Comment

Description

Status

Logical File

Contributor

...etc...etc

...etc

...etc

Meta Data Ontology

(METON)

Issue Tracker Ontology

(ISSUEON)

Version Control Ontology

(VERON)

T
o

o
ls

 O
n

to
lo

g
y

(T
O

O
L

O
N

)

S
E

-E
Q

U
A

M
 O

n
to

lo
g

y

(Q
U

A
M

O
N

)

Inferred Concept Shared Concept Main Concept Property

PMDViolation

SimianBlock

StyleError

has

...etc

g
e

n
e

ra
te

E
xt

ra
ct

s-
fr

o
m

E
xt

e
rn

a
l T

o
o

ls

makes

Worked-on

Works-on

Snapshot

Measure

Score

Weight

CoreContributor

Result

hasWeight

hasResult

hasWeight

in

hasScore

hasScore

hasMeasure
TerritorizedFile

SnapshotFile

Subfactor

Factor

Dimension

in

Is-a

Attribute

hasScore

hasScore

hasScore
hasWeight

hasWeight

hasWeight

hasAttribute

hasSubfactor

hasFactor

in

isScoreof

ScoreType

h
a

sS
ty

le
E

rr
o

r

ha
sD

up
lic

at
eB

lo
ck

h
a

sV
io

la
tio

n

commits

Is-a

Is-a

Is-a

Is-a

isSnapshotOf

Is-a

...etc

Poor

VeryPoor

Average

VeryGood

Excellent

Low

Medium

High

ViolationMeasure

DuplicationMeasure

StyleErrorMeasure

hasMeasureResult

hasMeasureResult

hasMeasureResult

hasArtifact

Artifact

VersionControl

IssueTracker

Tool

h
a
sS

o
u
rce

h
a
sS

o
u
rc

e

hasSource

http://java.sun.com/docs/books/jls/second_edition/html/index.html
http://java.sun.com/docs/codeconv/
http://java.sun.com/j2se/javadoc/writingdoccomments/index.html
http://java.sun.com/j2se/docs/api/index.html
http://www.harukizaemon.com/simian/
http://clarkware.com/software/JDepend.html

102

We import the tool-specific XML measure reports and parse them to populate our corresponding

ontologies. Quality measures and results obtained from external analysis tools are captured by the

TOOLON ontology. Below we define each of TOOLON concepts (Table 8) and relationship (Table 9):

TABLE 8 DEFINTIONS OF TOOLON CONCEPTS

Concepts Tool Source Description

Style Error Checkstyle Source code comment style error as defined by standards, e.g., Javadoc.

Style Error Source Checkstyle The source name as defined by Checkstyle tool; each style error has a source,

Simian Block Simian Block of duplicated lines in a source code file.

Simian Set Simian Each set has one or more duplicated blocks within the same file.

Simian Check Simian Each simian check defines one or more sets of duplications on a project level.

PMD Violation PMD Each source code file has one or more PMD violation.

PMD Rule Set PMD Each violation is related to a named PMD rule set, e.g., design rules.

PMD Rule PMD Each rule set defines one or more rules, e.g., missing break in switch statement is

a design rule violation.

Package JDepend Source code package (set of related class files).

Snapshot Package JDepend A version of the package concept in a specific snapshot of time.

Cycle JDepend A package level cycle indicates two or more packages that depend on each other

and so should be changed and released together. A cycle is detected when the

package p1 depends on package p2, which in return depends on p1. Dependency

here indicates the import of that package path.

Class JDepend Each package has one or more classes. This concept is linked to the LogicalFile in

METON.

Abstract Class JDepend The class that does not provide implementation for all of its methods.

Concrete Class JDepend A derived class that provides all method implementations missing in its base

class.

TABLE 9 DEFINITIONS OF TOOLON RELATIONSHIPS

Relationship Concepts Description

hasStyleError SnapshotFile-

StyleError

Each source code file has one or more style (code comments) errors at a cer-

tain snapshot of time.

hasStyleErrorSource StyleError-

StyleErrorSource

Each style error has a source (Checkstyle API path) that defines the details of

the error.

hasStyleErrorMessage StyleError-String This relationship provides a human readable description of the detected style

103

error.

hasSet SimianCheck-

SimianSet

Each check of duplication in the source code defines one or more duplication

sets. The set includes the count of the duplicated lines.

hasLineCount SimianSet-

Number

The number of duplicated source code lines in a set.

hasDuplicateBlock SimianSet-

SimianBlock

Each set of duplication defines one or more duplication blocks that define the

location of duplicated lines within a file.

hasSourceFile SimianBlock-

SnapshotFile

Each block of duplicated source code lines are related to a file version at a

snapshot x.

hasStartLineNumber SimianBlock-

Number

The start line number for the duplicated source code block.

hasEndLineNumber SimianBlock-

Number

The end line number for the duplicated source code block.

hasViolation SnapshotFile-

PMDViolation

Each file has one or more code violations (as defined by PMD tool) at a certain

snapshot x.

hasViolationDescription PMDViolation-

String

This relationship provides a human readable description of the detected

violation.

hasRuleSet PMDViolation-

PMDRuleSet

Each violation is related to a rule set (a category for related violation rules).

hasRule PMDRuleSet -

PMDRule

The rule set defines one or more related violation rules.

hasPackageName Project-

SnapshotPackage

Each software project defines one or more packages at a certain time snap-

shot x.

hasTotalClasses SnapshotPackage-

Number

Defines the total number of classes under a package at snapshot x.

hasConcreteClasses SnapshotPackage-

Number

Defines the number of concrete classes under a package at time snapshot x.

hasAbstractClasses SnapshotPackage-

Number

Defines the number of abstract classes under a package at time snapshot x.

hasAfferentCoupling SnapshotPackage-

Number

Afferent coupling is detected when packages depend on classes of another

package, which increases the package responsibility. This relationship counts

the number of packages that depend on package p.

hasEfferentCoupling SnapshotPackage-

Number

Efferent coupling means the number of other packages that package p de-

pends on.

has Abstractness SnapshotPackage-

Number

The ratio of abstract to concrete classes in a package. Ranges from zero to

one. Zero indicates the absence of abstract classes, and one means that pack-

age only defines abstract classes.

hasInstability SnapshotPackage-

Number

Defines a package’s resilience to change based on its coupling. Instability =

efferent coupling/(efferent coupling + afferent coupling). Ranges from zero to

one. Zero indicates a completely stable package, and one means a completely

104

instable package.

hasClassFile SnapshotPackage-

Class

Defines classes/files under each package at a time snapshot x.

dependsOn SnapshotPackage-

SnapshotPackage

Defines the dependency from package p on other packages at a time snapshot

x. Dependency occurs when package p uses classes from other packages.

usedBy SnapshotPackage-

SnapshotPackage

The inverse of dependsOn.

hasCycleWith SnapshotPackage-

SnapshotPackage

Defines the cycle dependency between packages. Refer to the definition of

Cycle concept in the above table.

The following is an example of the shared concepts among our sub-ontologies. LogicalFile is a con-

cept defined in METON (Figure 52) [94]. The concept can be instantiated in several domain-specific

ontologies. For example, an individual is added to the VERON ontology to represent a file committed

by a contributor. A second individual is part of QUAMON when the measure that the user uses as-

sesses logical files for style error violations. Given our reproducible URI generation scheme, individ-

uals that are actually referring to the same LogicalFile can be identified as such in both ontologies.

Having this reproducible URI generation also allows for the independent population of the sub-

ontologies while supporting shared concept linking. SE-EQUAM also supports the generation of addi-

tional traceability links through SPARQL queries, inference rules, and DL axioms (e.g., property

chain) to further enrich and link the sub-ontologies.

Linking using SPARQL queries: In the following example, a traceability link is established among

quality assessments that take place at different time intervals. The snapshot concept is used to

uniquely define these different time intervals. One potentially interesting traceability link is created

by establishing a relationship between the Commit concept in the VERON ontology and the Snapshot

concept in the QUAMON ontology by using the commit date property (Table 10).

Linking through Inference rules: This is another traceability link that can be established to connect

the active Contributor concept in the METON ontology with a certain Snapshot by using an inference

rules (Table 10).

105

TABLE 10 ESTABLISHING TRACEABILITY LINKS USING SPARQL AND INFERENCE RULES

Linking using SPARQL queries Linking through Inference rules

SELECT DISTINCT ?snapshot ?res

WHERE{

?snapshot rdf:type quamon:Snapshot.

?snapshot quamon:hasSnapshotEndDate ?snd.

?snapshot quamon:hasPreviousSnapshot ?psn.

?psn quamon:hasSnapshotEndDate ?psnd.

?res rdf:type veron:Commit.

?res meton:hasDateTime ?d.

Filter (?d > ?psnd && ?d <= ?snd) }

[contPerSnapshot:

(?cmt meton:hasContributor ?cont)

(?cmt quamon:inSnapshot ?snapshot) -->

(?cont quamon:inSnapshot snapshot)

]

4.3. ONTEQAM ADDRESSES THE KNOWLEDGE POPULATION REQUIREMENT

Here, the knowledge population requirement refers to the A-Box ontological model population, i.e.,

the assertion of concrete individuals to the T-Box model.

The first step is to extract the knowledge from existing knowledge artifacts. In our current implemen-

tation, there are four major data sources supported by our assessment process: (1) version control

repositories, e.g., CVS51, SVN52, and Git53; (2) issue tracking repositories, e.g., Jira54, and Bugzilla55; (3)

source code, e.g. Java; and (4) third-party (external), static code analysis tools, e.g., PMD [163],

CheckStyle [164], Simian [170], and JDepend [171], described in the previous section.

Figure 53 shows a sample of the populated ontologies (A-Box); it extends the T-Box modeling (Figure

52) with concrete individuals.

In order to obtain the populated knowledge in Figure 53, the following steps are followed:

51 http://cvs.nongnu.org/
52 http://subversion.tigris.org/
53 http://git-scm.com/
54 https://www.atlassian.com/software/jira
55 http://www.bugzilla.org/

http://cvs.nongnu.org/
http://subversion.tigris.org/
http://git-scm.com/
https://www.atlassian.com/software/jira
http://www.bugzilla.org/

106

 Project setup: In this step, the user provides the project name (e.g., Creativecomputing). This

will be used to populate the project name and then connect that project with the quality di-

mension level of the assessment model.

 Artifact setup:

o Version Control: The user provides the version control URL from which the source

code can be extracted (e.g., http://creativecomputing.googlecode.com/svn/trunk/).

As part of the Ambient Software Evolution Group56, we support the extraction of

subversion e.g., CVS57, SVN58, and Git59; versioning systems [120].

o Issue Tracker: The user provides the issue tracker URL where the project’s issues

are populated. As part of the Ambient Software Evolution Group56, we support the

extraction of issues from GoogleCode60, Jira61, and SourceForge62.

 Snapshot setup: The user defines the type of snapshot required to perform the evolvability

assessment. A snapshot is defined by a period length and a type (e.g., 6 months, which indi-

cates that the user would like to obtain an evolvability score for the specified project every 6

months). By default, the analysis will cover the date from the first available commit the most

recent commit made (based on the assessment date). Our implementation supports snap-

shots of type day, week, month, and year.

56 https://sites.google.com/site/juergenrilling/
57 http://cvs.nongnu.org/
58 http://subversion.tigris.org/
59 http://git-scm.com/
60 http://code.google.com/
61 http://www.atlassian.com/software/jira
62 http://sourceforge.net/

http://creativecomputing.googlecode.com/svn/trunk/
https://sites.google.com/site/juergenrilling/
http://cvs.nongnu.org/
http://subversion.tigris.org/
http://git-scm.com/
http://code.google.com/
http://sourceforge.net/

107

FIGURE 53 ONTOLOGY POPULATION (ONTOLOGICAL KNOWLEDGE MODEL)

 Source code setup: This step is sub-divided into three steps:

o Location setup: The user needs to define a location on the file system where the ap-

plication could checkout the source code. This step can be used only one time unless

the user wants to change it.

o Source code checkout: The source code is checked out to the previously defined lo-

cation. Because our implementation considers space limitations, we only extract one

snapshot at any point of time to perform the required analysis, after which we de-

lete the checked out code from the file system before proceeding to the next snap-

108

shot. Note that each checkout is tagged with the snapshot end date (e.g.,

20091004120322, where it represents 2009-Oct-04 at 12:03:22).

o Tools’ report generation: We run external static analysis tools over the checked out

source code such as PMD [163], Checkstyle[164], Jdepend[171], and Simian [170]

and generate reports for source code violation, style errors, package dependency,

and code duplication, respectively. These reports are in XML format. Note that each

XML report is tagged with the project name, the tool that generated it, and the snap-

shot for which it was generated (e.g., Creativecompu-

ting_pmd_20091004120322.xml).

 Populate the input artifact ontologies: In this step, the population process starts by creating

the project ontology that defines the project name reusing DOAP

<http://usefulinc.com/ns/doap#name>. Next, we populate the VERON ontology, which is

used to define the start and end dates of the project lifetime. Based on these dates, the snap-

shots are calculated. The ISSUEON ontology is then populated with issues and their infor-

mation. Then, we correlate each commit in VERON and each issue in ISSUEON with the snap-

shot based on the commit date and the issue creation date, respectively. For example, as-

sume a snapshot 20091004120322, in which creative computing project has a commit num-

ber 33 and an issue ID 3 is reported. Here are the populated triples:

o <http://aseg.cs.concordia.ca/secold/resource/snapshot/creativecomputing/2009100

4120322><rdfs:type> <quamon:Snapshot> to define a snapshot for Creative Compu-

ting project with end date 2009-10-04 at 12:03:22.

o <http://aseg.cs.concordia.ca/secold/resource/commit/creativecomputing/33><rdfs:t

ype> <veron:Commit> to define commit ID 33 for Creative Computing project.

o <http://aseg.cs.concordia.ca/secold/resource/commit/creativecomputing/33><quam

on:inSnapshot><http://aseg.cs.concordia.ca/secold/resource/snapshot/creativecomp

uting/20091004120322> to assign the snapshot in which the commit 33 is made.

109

o <http://aseg.cs.concordia.ca/secold/resource/issue/creativecomputing/3><rdfs:type>

<issueon:Issue> to define a reported issue with ID 3 under Creative Computing pro-

ject.

o <http://aseg.cs.concordia.ca/secold/resource/issue/creativecomputing/3><quamon:i

nSnap-

shot><http://aseg.cs.concordia.ca/secold/resource/snapshot/creativecomputing/200

91004120322 > to assign the snapshot during which the issue ID 3 is reported.

METON is populated with shared data where, for example, a contributor could be the com-

mit author and the issue assignee. For example, the commit number 33 is submitted by John

Snow, and John Snow has also been assigned issue ID 3 (the added value of this approach is

the reusability of the URI generation schema described in the background chapter, as part of

QUAMON will automatically link the contributor concept in the METON and ISSUEON ontol-

ogies):

o <http://aseg.cs.concordia.ca/secold/resource/contributor/creativecomputing/johnsn

ow><rdfs:type><meton:Contributor> to define a contributor named John Snow under

creative computing project.

o <http://aseg.cs.concordia.ca/secold/resource/commit/creativecomputing/33><meto

n:hasContributor><http://aseg.cs.concordia.ca/secold/resource/contributor/ crea-

tivecomputing3/johnsnow> to link commit ID 33 to the contributor John Snow.

o http://aseg.cs.concordia.ca/secold/resource/issue/creativecomputing/3<issueon:has

Assignee><http://aseg.cs.concordia.ca/secold/resource/contributor/ creativecompu-

ting3/johnsnow> to link issue ID 3 to the contributor John Snow.

Next, we populate the TOOLON ontology; the input for this ontology is the set of the XML-

generated reports from the external analysis tools described in the previous step. For exam-

ple, the PMD tool, as part of the reported generated for 20091004120322 snapshot, indicat-

ed that the file f1 has violated the cyclomatic complexity rule. We parse this information

from the XML to triple format:

110

o <http://aseg.cs.concordia.ca/secold/resource/SnapshotFile/f1><toolon:hasViolation>

<toolon:CyclomaticComplexityViolation>.

The file f1 here is a snapshot file (reported in snapshot 20091004120322). One important

step needed here is the linking of this snapshot file with the logical file defined in the METON

ontology. To do this, we run a SPARQL query that matches the address of the logical file with

the snapshot file address; if they match then they are linked with isSnapshotOf relationship.

o <http://aseg.cs.concordia.ca/secold/resource/SnapshotFile/f1><quamon:isSnapshotO

f><http://aseg.cs.concordia.ca/secold/resource/LogicalFile/f1>.

The same process we described here for the PMD tool is applied for all the external tool re-

ports. Each XML report (e.g., Creativecomputing_pmd_20091004120322.xml) has a corre-

sponding sub-ontology under TOOLON called Creativecompu-

ting_pmd_20091004120322.ntriples.

 Import QUAMON: As part of this step, we import the QUAMON ontology that defines a met-

amodel of quality concepts (dimensions, measures, etc.) and their relationships (e.g., hasAt-

tribute, hasMeasure, etc.) into the populated knowledge base of version control, issue track-

er, and quality model information populated in the previous steps.

 Populate OntEQAM: OntEQAM defines individuals of each of the SE-EQUAM items, for exam-

ple,

<http://aseg.cs.concordia.ca/secold/resource/attribute/creativecomputing/Analyzability><rd

fs:type><quamon:Attribute>.<http://aseg.cs.concordia.ca/secold/resource/measure/creativec

omputing/CommitsOverTime><rdfs:type><quamon:Measure>. Meta information is also popu-

lated such as definition, score, and type. Details about how OntEQAM calculates the score are

provided in the next chapter.

 Reason for inferred knowledge: This step involves importing a pre-defined ontology that we

created with the added semantics used by QUAMON to infer indirect relationships between

the different model levels using OWL2 property chain. (Details are provided in section 4.1.)

111

We use the Pellet reasoner [149] to infer new relationships, and we will show how it is used

as part of the knowledge exploration to answer advanced queries in the next section.

4.4. ONTEQAM ADDRESSES THE KNOWLEDGE EXPLORATION REQUIREMENT

In what follows we provide examples of how the resulting OntEQAM evolvability quality assessment

model not only takes advantage of model reuse but also benefits from the semantic richer model dur-

ing knowledge exploration. While some of the existing models do provide their assessment results

on a web interface (e.g., SQO-OSS [42]) or as database dumps (e.g., QUALOSS via FLOSSMetrics [40]),

they only provide support for simple queries. In contrast, our approach allows for the use of ontolog-

ical reasoners to support semantically richer queries that include inferring implicit knowledge such

as indirect relationships.

Using traditional querying techniques, a query for retrieving “assessment results” will only return the

calculated measures values and their assessment scores. For the same problem, using a SPARQL que-

ry that takes advantage of our semantically rich representation will return an individual score break-

down across the complete model (e.g., dimension, factors, and subfactors).

The semantic modeling approach also forms the basis for user-defined structural queries to explore

model structure. In fact, given our unified ontological representation, cross-ontological exploration

can also be formulated.

In order to improve the readability, we omit the fully qualified names when referencing the ontolo-

gies. The following are examples of actual queries that can be supported natively by our semantic

modeling approach.

Structural queries: (Q1) Identify all measure(s) that are used to assess the score of the developer

community size attribute? This is a basic structure-related measure that uses the directly asserted

relationship between the attributes and measures of the quality model (Q1 in Figure 54).

SELECT ?measure WHERE {?measure rdf:type quamon:Measure. ?attribute rdf:type quamon:Attribute.

?attribute quamon:hasName ?name. FILTER regex(?name, "Developer Community Size", "i")}.

112

Advanced structural queries: (Q2) Return the quality measures grouped by the domain model’s di-

mension? This query returns the breakdown of the dimension score at its lowest levels, with

measures being the actual assessments of artifacts. The values of the measures are summed up in a

certain process (assessment process details are provided in Chapter 5) in order to find the attributes

scores, which, in turn, are used to find the sub-factors scores that contribute to finding the factors

scores, and finally the factors are used to find the dimensions scores. In this query, we are skipping

the whole model hierarchy and trying to find the indirect relationship between measures and dimen-

sions. To answer this query, we need a relationship that connects measures to dimensions. This rela-

tionship is not explicitly asserted within the OntEQAM quality model but is inferred from the OWL

property chain after it is integrating with SE-EQUAM (Q2 in Figure 54).

SELECT ?dimension ?measure WHERE {?dimension rdf:type quamon:Dimension. ?dimension qua-
mon:hasMeasure ?measure. } order by ?Dimension

Assessment queries: (Q3) What are the files that violated the source code cloning rules (applies to

code that does not call Clonable interface, calls super.clone(), and throws the CloneNotSupportedExcep-

tion in this case)? This is an interesting query for users assessing the quality of a software system

based on the proper usage of clones. The following query returns a project quality in terms of clones

detected. Files are extracted from METON, while violations are part of TOOLON.

SELECT ?file WHERE { ?file rdf:type meton:LogicalFile. ?file toolon:hasViolation ?violation. ?violation

toolon:hasRuleSet ?ruleset. ?ruleset rdfs:label ?lbl. FILTER regex(?lbl, "Clone Rule Violation", "i")}.

(Q4) What are the measures that scored excellent? This helps the user define what aspects of the as-

sessed project are strong and improve the overall quality score (marked as Q4 in Figure 54).

SELECT ?measure WHERE { ?measure rdf:type quamon:Measure. ?measure quamon:hasScore ?score.

?score quamon:hasScoreType “excellent”. }

(Q5) What are the commits that the contributor committed to the version control system with empty

message? This query is for users interested in the quality of the documentation/comments of the ver-

sioning system. This query uses VERON to get the commits where the commit message is a property

of the commit.

113

SELECT ?commit WHERE { ?commit rdf:type VERON:Commit. OPTIONAL { ?commit meton:hasMessage

?msg}. FILTER (!bound(?msg))}

(Q6) What is the assessment score of Stability quality attribute in snapshot Jan 24, 2010? This is a spe-

cific query that provides the user with the information about the score of any quality model item at

any point of time; this query could be used in many contexts where a certain time frame is of interest,

for example, at the time that a core member has left or another competitive project made a new re-

lease. We can then check how that situation affected the evolvability quality of our assessed project.

This query only considers two concepts from QUAMON: Attribute and Snapshot.

SELECT ?attribute WHERE { ?attribute rdf:type quamon:Attribute. ?attribute quamon:inSnapshot

?snapshot. ?snapshot quamon:hasSnapshotDate “01-24-2010”. ?attribute rdfs:label ?lbl. FILTER re-

gex(?lbl, "Stability", "i") }.

Advanced assessment queries: (Q7) Identify all projects where “changeability” attributes scored “Av-

erage.” This query is of particular interest to users who are assessing multiple projects for compari-

son or benchmarking purposes. In order to be able to answer this query, our approach can take ad-

vantage of the OWL2 property chain construct to infer implicit knowledge between the project and

the changeability quality attribute (Q7 in Figure 54).

SELECT DISTINCT ?project WHERE { ?project rdf:type doap:Project. ?project quamon:hasDimension ?d.

?d quamon:hasAttribute ?attribute.?attribute quamon:hasScore?score.?score quamon:hasScoreType "av

-erage". ?attribute rdfs:label ?lbl. FILTER regex (?lbl, "CHANGEABILITY", “i”) }

(Q8) Considering the “Excellent” score type as a positive impact on the assessment, what are the attrib-

utes that positively affect evolvability quality factor at any point of time? This query is interesting in

regards to defining the strong points of a certain item within the model (here it is evolvability). In

cases when the evolvability score is in the upper scale (very good or excellent), the query returns all

excellent quality score across the complete structure. This relationship is called hasAttribute and it

connects attributes to factors; it is inferred using the property chain construct (Q8 in Figure 54).

114

SELECT ?factor ?attribute WHERE { ?factor rdf:type quamon:factor. ?factor quamon:hasAttribute ?at-

tribute. ?attribute quamon:hasScore ?score. ?score quamon:hasScoreType “excellent”.}

FIGURE 54 SEMANTICALLY RICHER KNOWLEDGE EXPLORATION

Community

Analyzability

Product

Stability

Changeability

Testability

Compliance to Standard

Documents Quality

Activity

Evolvability

Comprehensibility

Developer community size

Developer community activity

Developer community heterogeneity

Developers turnover

*

*

*

*

*

*

*
*

*

*
*

M
e

a
s

u
re

s

Project

Quality Factors Quality Attributes Quality MeasuresQuality Dimensions Quality Subfactors

hasFactor hasSubfactor hasAttribute hasMeasure

Asserted

Inferred

hasDimension

Q2

Q8

Q7

Q1

Q4

115

CHAPTER 5: THE FUZZY LOGIC BASED ASSESSMENT PROCESS

A process is defined as “the set of interrelated or interacting activities which transforms input into

output” [38]. The quality assessment process is based on a sequence of steps, with the input being a

project with a set of knowledge artifacts (e.g., versioning system, issue tracker, source code) and its

output typically being a single, overall quality score. A key challenge is how to derive the actual score

and how to deal with various uncertainties that might affect the scoring. While some of the existing

quality models make the calculation of the quality scores transparent to the end-user (e.g., QUALOSS

[16, 40] and QSOS [55]), other models provide no details of how their assessment scores are derived

(e.g., ISO/IEC 9126 [15]).

In this thesis, we introduce a fuzzified quality assessment process that is capable of dealing with un-

certainties [78, 83, 85, 172]. There are two main sources during the assessment process where un-

certainties can arise: (1) Supporting a quality assessment in such a global context requires the use of

widely distributed, heterogeneous knowledge resources at different levels of representations and the

modeling and integration of semantics. The required knowledge integration creates uncertainties

about the availability, accuracy, and completeness of the available knowledge during the actual as-

sessment; (2) The boundaries of the assessment scores.

For example, the SIG maintainability model (SMM) [64] crisp measures’ scores based on benchmark-

ing scales which are determined by expert opinion.

FIGURE 55 SIG MAINTAINABILITY MODEL BENCHMARKING APPROACH

X% Y% W% R% Z%

Measure

S
co

re

Excellent

Very

Good
Average

PoorVery

Poor

--

++

-

0

+

116

Another example is Figure 56 which shows the SQALE model scale that defines crisp numerical

boundaries around each of the colors (score).

FIGURE 56 SQALE SCALE [70]

Crisp boundaries indicate that the information in a knowledge source is precise and complete. How-

ever, when assessing software ecosystems, knowledge resources might no longer reflect precise or

complete information and therefore the assessment values might no longer be crisp and actually be

between two successive scores. As a result, crisp scores: (1) cannot accurately reflect uncertainties

caused by scores around a measure’s score boundaries (e.g., a measure value of x% or less is consid-

ered as very poor, whereas as a score of x% + 0.1 is ranked to be only poor); (2) lack support for con-

sidering the membership degree of a score. For example, using the crisp scale, two measures, 0% and

x%, would be both rated as very poor. While in reality the x% is closer to poor (weak membership to

the very poor scale) while the 0 strongly belongs to the very poor scale; (3) reflect a lack of automa-

tion and a reliance on experts to define the benchmarks and crisp values for quality score. This is

both subjective and creates additional uncertainty.

Fuzzy logic has been widely used as a potential approach to deal with these types of uncertainties. If

we fuzzify the scale of colors used in Figure 56, the boundaries between any two colors will not

change from one range to the other but rather will provide gradual shade of the next scale color. For

example, if the user obtains a score of 30.5 then this would be in the overlapping areas (orange

shade). The intensity of the color shade indicates the membership of the score (e.g., the darker the

orange the closer it is to the red scale). This fuzzification is also fully automated using existing fuzzy

inference systems such as JFuzzyLogic [173][88]. In addition to the fuzzification, uncertainties can

From To Rating Color
 < 0.9 A
 0.9 3 B
 3 9 C
 9 30 D
 30 > E

117

also be dealt with by adjusting scoring weights assigned to various quality concepts. Quality concepts

with higher uncertainties (e.g., less reliability in the metrics) can be assigned lower weights.

The focus of our fuzzy-based assessment process is on how these uncertainties related to the as-

sessment of the evolvability quality of software systems can be addressed. SE-EQUAM is optionally

complemented with an underlying assessment process that addresses the fuzziness due to uncertain-

ties in the extracted knowledge and provides evolvability scores at different abstraction levels.

At the end of the assessment, we populate our existing ontology knowledge model with the assess-

ment results (evolvability score per each model item, e.g., measure score, attribute score, and dimen-

sion score) and score value per snapshot. The scores are available in both a fuzzy format (e.g., 40%

average and 60% very good) and as a de-fuzzified (numerical) scorre (e.g., 5 out of 9). Populating the

assessment results back to our ontology model provides the users with more information to further

analyze and compare queries.

5.1. ASSESSMENT PROCESS

The input to the process is defined by specifying the project(s) for which the evolvability quality is to

be assessed and the projects knowledge artifact(s) to be used during the assessment. The output is

the quality assessment score. Figure 57 shows the set of assessment steps. Details of each of the steps

are provided below:

118

FIGURE 57 FUZZY ASSESSMENT PROCESS STEPS

...

ISSUEON VERON SOCON

...

Measure Calculation

Assessment

(Inferencing & De-

Fuzzification)

Crisp input

Non-fuzzy values

Un-weighted

measure scores

Weight

Fuzzification

Fire

inference

rules

QUAMON

TOOLON

Score

(0-9)

L M H

0

1

VLLAHVH

0

1

Wt fuzzy scale Measure fuzzy scale

Weighted Score

Weight

(0-9)

VPPGVGE

0

1

Knowledge

Enrichment

119

5.1.1. MEASURE CALCULATION

As described in the OntEQAM knowledge population section in Chapter 4, which detailed knowledge

extraction and population, OntEQAM assigns measures to attributes based on existing quality as-

sessment models such as SMM [64], QUALOSS [40], and ISO/IEC 9126 [15]. Table 11 provides a more

detailed view of the measures assignments.

TABLE 11 ONTEQAM MEASURES ASSIGNMENTS (SUBSET)

Subfactor Attribute Measure
Tool

C
o

m
p

re
h

e
n

si
b

il
it

y

a
n

a
ly

za
b

il
it

y

Evolution in commits size. The size represents the number of
files committed in one activity on the version control system.

Ours

Evolution in Cyclomatic Complexity, number of decision
points in a method (1-4 denotes low, 8-10 denotes high and
>=11 denotes very high complexity). Decision points could
be if, while, for, and switch cases.

PMD

Evolution in the number of commits made on the version
control system.

Ours

Evolution in activity on source code files. Activities represent
modifications, additions and deletions made via commits on
the version control system on a specific file.

Ours

Evolution in code size (volume) violations in terms for npath
complexity, number of methods/fields in a class, and length
of methods or fields.

PMD

Evolution in the number of non-commented source code
method, variable, and/or constructor.

PMD

Evolution in design rules violations63 such as testing null
with .equals, uncommented empty method, and god classes
[174].

PMD

Basic rules violations64 such as override both equals and
hash code, return from finally block, and unconditional if
statement.

PMD

C
h

a
n

g
e

a
b

il
it

y

Evolution in the number of files that contains duplicated
lines of code. The default threshold for code duplication is 6
lines of code. It is case insensitive for any string or character,
ignores modifiers such as public and private.

Simain

Evolution in the number of the overall duplicated lines. Simian

Evolution in code size (volume) violations in terms for npath
complexity, number of methods/fields in a class, and length
of methods or fields.

PMD

Evolution in cyclomatic complexity, number of decision
points in a method (1-4 denotes low, 8-10 denotes high and
>=11 denotes very high complexity). Decision points could

PMD

63 http://pmd.sourceforge.net/pmd-5.0.4/rules/index.html#Design
64 http://pmd.sourceforge.net/pmd-5.0.4/rules/index.html#Basic

http://pmd.sourceforge.net/pmd-5.0.4/rules/index.html#Design
http://pmd.sourceforge.net/pmd-5.0.4/rules/index.html#Basic

120

be if, while, for, and switch cases.

Evolution in clone’s violation. This include the proper im-
plementation of clone() using super.clone(), throwing the
CloneNotSupportedException and implementing clonable
interface.

PMD

Import statements violations. This includes duplicated im-
ports, importing Java.lang, importing from the same package,
un-used imports and un-necessary use of fully qualified
names.

PMD

Evolution in design rules violations65 such as testing null
with .equals, uncommented empty method, and god classes
[174].

PMD

Basic rules violations66 such as override both equals and
hash code, return from finally block, and unconditional if
statement.

PMD

Evolution in coupling between objects including attributes,
local variables and return types. It also assesses the applica-
tion of Law of Demeter [175, 176].

PMD

Evolution in loose coupling; referencing objects with their
interfaces rather than their concrete implementation.

PMD

S
ta

b
il

it
y

Evolution in the number of files that contains duplicated
lines of code. The default threshold for code duplication is 6
lines of code. It is case insensitive for any string or character,
ignores modifiers such as public and private.

Simain

Evolution in the number of the overall duplicated lines. Simian

Evolution in cyclomatic complexity, number of decision
points in a method (1-4 denotes low, 8-10 denotes high and
>=11 denotes very high complexity). Decision points could
be if, while, for, and switch cases.

PMD

Evolution in code size (volume) violations in terms for npath
complexity, number of methods/fields in a class, and length
of methods or fields.

PMD

Evolution in exceptions handling violations such as catching
throwable, catching NullPointerExceptions, re-throwing ex-
ception, throwing exception in finally block, throwing in-
stances of the same exception, and catching generic excep-
tions.

PMD

Evolution in excessive imports, high number of import
statements indicates high coupling, which should be avoided.

PMD

Evolution in coupling between objects including attributes,
local variables and return types. It also assesses the applica-
tion of Law of Demeter [175, 176].

PMD

Evolution in design rules violations67 such as testing null
with .equals, uncommented empty method, and god classes
[174].

PMD

Evolution in loose coupling; referencing objects with their PMD

65 http://pmd.sourceforge.net/pmd-5.0.4/rules/index.html#Design
66 http://pmd.sourceforge.net/pmd-5.0.4/rules/index.html#Basic
67 http://pmd.sourceforge.net/pmd-5.0.4/rules/index.html#Design

http://pmd.sourceforge.net/pmd-5.0.4/rules/index.html#Design
http://pmd.sourceforge.net/pmd-5.0.4/rules/index.html#Basic
http://pmd.sourceforge.net/pmd-5.0.4/rules/index.html#Design

121

interfaces rather than their concrete implementation.

Basic rules violations68 such as override both equals and
hash code, return from finally block, and unconditional if
statement.

PMD

Evolution in clone’s violation. This include the proper im-
plementation of clone() using super.clone(), throwing the
CloneNotSupportedException and implementing clonable
interface.

PMD

Import statements violations. This includes duplicated im-
ports, importing Java.lang, importing from the same package,
un-used imports and un-necessary use of fully qualified
names.

PMD
T

e
st

a
b

il
it

y

Evolution in junit tests quality violations. This includes
measuring the signature of junit suite() method which should
be public and static, inclusion of information message in as-
sertions, each test case should include at least one assertion,
the proper use of assertEquals versus assertTrue, assertNull
and assertSame.

PMD

Evolution in cyclomatic complexity, number of decision
points in a method (1-4 denotes low, 8-10 denotes high and
>=11 denotes very high complexity). Decision points could
be if, while, for, and switch cases.

PMD

Evolution in exceptions handling violations such as catching
throwable, catching NullPointerExceptions, re-throwing ex-
ception, throwing exception in finally block, throwing in-
stances of the same exception, and catching generic excep-
tions.

PMD

Basic rules violations69 such as override both equals and
hash code, return from finally block, and unconditional if
statement.

PMD

C
o

m
p

li
a

n
ce

 t
o

st

a
n

d
a

rd

Evolution in Javadoc style errors. Checks include empty
blocks, the use of Javadoc style comments, and the proper
naming conventions70.

CheckStyle

Evolution in number of files with Javadoc errors as defined in
the previous measure.

CheckStyle

Evolution in un-used code such as private fields, local varia-
bles, and private methods, which are defined but not used.

PMD

D
o

c
q

u
a

li
ty

Evolution in naming convention violations 70. PMD

Evolution in Javadoc style errors. Checks include empty
blocks, the use of Javadoc style comments, and the proper
naming conventions70.

CheckStyle

Evolution in the number of non-commented source code
method, filed, and/or constructor.

PMD

Evolution in number of files with Javadoc errors. Checks in-
clude empty blocks, the use of Javadoc style comments, and
the proper naming conventions70.

CheckStyle

Evolution in commits made on the version control system
without a commit message to explain the change made.

Ours

68 http://pmd.sourceforge.net/pmd-5.0.4/rules/index.html#Basic
69 http://pmd.sourceforge.net/pmd-5.0.4/rules/index.html#Basic
70 http://docs.oracle.com/javase/specs/#40169

http://pmd.sourceforge.net/pmd-5.0.4/rules/index.html#Basic
http://pmd.sourceforge.net/pmd-5.0.4/rules/index.html#Basic
http://docs.oracle.com/javase/specs/#40169

122

 C

o
m

m
u

n
it

y

A

ct
iv

it
y

 D
e

v
e

lo
p

m
e

n
t

co
m

m
u

n
it

y

si
ze

Evolution in contributing community size. This is the number
of contributors who made any type of change to the software
based on the commit history in the version control system.

Ours

Evolution in core contributors’ size. A core member is a con-
tributor who made more than the average number of com-
mits to the version control system.

Ours

Evolution in the number of commits made to the version con-
trol system.

Ours

Evolution in number of files modified by a single contributor
based on the version control system.

Ours
D

e
v

e
lo

p
m

e
n

t
co

m
m

u
n

it
y

 a
c-

ti
v

it
y

Evolution in the number of commits made to the version con-
trol system.

Ours

Evolution in number of files modified by a single contributor
based on the version control system.

Ours

Evolution in the number of commits made by a single con-
tributor.

Ours

Evolution in activities per file. Activities include change, add,
and/or delete actions made to a file in the version control
system.

Ours

Evolution in the number of files modified in a single commit.
This represents the volume of a single change or activity
made on the version control system.

Ours

Measures’ results are calculated by querying our ontological knowledge model using SPARQL (e.g.,

Table 12). The returned results are further processed to subsequently define the measure scale.

As we can see from Table 12, each query returns two values: the measure result and the snapshot

with which it is associated. At the end, we count the number of returned results per snapshot to get a

numerical representation of the measure that we would use to measure benchmarking (scale defini-

tion will be detailed in the next step).

TABLE 12 SAMPLE SPARQL QUERIES FOR MEASURES CALCULATION

Measure SPARQL Query

Evolution in
number of new
contributors

SELECT distinct ?snapshot ?res WHERE { ?res rdf:type
meton:Contributor. ?cmt meton:hasContributor ?res. ?cmt qua-
mon:inSnapshot ?snapshot. ?snapshot quamon:hasSnapshotEndDate
?ss1. optional {?res quamon:inSnapshot ?s2. ?s2 qua-
mon:hasSnapshotEndDate ?ss2. filter (?ss1 > ?ss2)}. filter
(!bound(?ss2))} order by ?snapshot

Evolution in
files violate
Naming Rule
(PMD source)

SELECT distinct ?snapshot ?res WHERE { ?res rdf:type qua-
mon:SnapshotFile. ?snapshot rdf:type quamon:Snapshot. ?res qua-
mon:inSnapshot ?snapshot. ?res toolon:hasViolation ?v. ?v
toolon:hasRule ?rule. ?rule rdfs:label ?lbl. FILTER regex(?lbl, "Nam-
ing Rule", "i") }

Evolution in SELECT distinct ?snapshot ?res WHERE { ?res rdf:type

123

number of
commits with
empty message

veron:Commit. ?snapshot rdf:type quamon:Snapshot. ?res qua-
mon:inSnapshot ?snapshot. OPTIONAL {?res meton:hasMessage
?msg}. FILTER (!bound(?msg))}

5.1.2. FUZZIFICATION

In this step, we explain how we create a fuzzy assessment scale for the assessment process input

(measure and weight) and for the process output (score).

Create measure fuzzy scale: In most existing assessment models, a domain expert is required to

evaluate and assess a measure value to establish a final score, e.g., [64]. In contrast, the objective of

our approach is to reduce the dependency on domain experts and to provide a more uniform and

objective assessment. In order to achieve this goal, one has to be able to deal with data uncertainties

(e.g., data missing due to an incomplete project history). We apply a fuzzification approach that takes

measured values as an input and distributes the values to form a fuzzy scale. The inputs for this step

are (non-fuzzy) measure values obtained from earlier (e.g. Table 12) parts of our process and the

output is measure fuzzy scales.

FIGURE 58 MEASURE FUZZY SCALE

 Figure 58 shows such a fuzzy measure scale, where the x-axis represents the scores range and the y-

axis represents the membership degree of the measure value to the fuzzy scale (range is 0-1). The

higher the membership value, the stronger the value relations to its score scale. The x-axis points are

distributed mathematically by using the P1 as a minimum measure value (worst measure value over

time), P13 as a maximum value (best measure value over time), P7 as an average value, and the mid-

Very Low Low Average High Very High

0

1

P1
P2 P3

P4
P5 P6

P7
P8 P9

P10
P11 P12

P13
P14

X% X% X% X%

124

points between each. The last point, P14, is the maximum plus the standard deviation. Fuzzy terms

used for measures are {very low (VL), low (L), average (A), high (H), and very high (VH)}.

We analyze the measure results over a user-defined time interval ti, with ti being, for example, a 6-

month interval. As a result, ti is calculated as a function of project age divided by ti, with the project

age starting at the availability of the first stable release of a project.

- Main points: P1 = Min, P7 = Average, and P13 = Max.

-Mid points: P4 mid (P1, P7), p10 mid (P7, P13), P2.5 mid (P1, P4), P5.5 mid (P4, P7), P8.5 mid (P7, P10), and

P11.5 mid (P10, P13).

- Max points: P3, P6, P9, and P12, with Max points being computed as:

P Max = P (Max- 0.5) + ((0.5 * X%) * P (Max- 0.5))

 E.g., given an overlap X of 10%, the P3 term max point formula is:

P3 = P2.5 + ((0.5 * 10%) * P2.5)

In the next step we calculate the corresponding overlapping points: P2, P5, P8, and P11. These points

represent the area of overlap between two boundaries on the fuzzy scale (e.g., VP and P). A larger X

value indicates more uncertainty about the interpretation of the values, with overlapping points be-

ing computed as:

 P overlap = P (next max) – (X% * P (next max))

Given an overlap of interest X, an overlapping point P2 is computed as:

P2 = P3 – (X% * P3)

In our approach, P14 (the last point) is located after the maximum measure value, since future im-

provements (new high scores) have to be supported. P14 is calculated as the highest actual measured

value plus the standard deviation.

The overlapping values between fuzzy terms (indicated as x% in Figure 58) are not fixed and are de-

rived based on the actual measured values over time. Smaller overlaps indicate that a measure re-

125

mains stable or underwent only minor changes. In the case of measures that show a high fluctuation,

the overlap will become larger. This overlap has been designed into our fuzzification approach, since

fluctuation of values often indicates uncertainty about the measured result. Also, increasing overlaps

tend to shift the assessments more towards improvement (a higher overall score). As a result, for

example, values at the lower range of the VH scale have a higher chance of being scored as H because

of their high degree of overlap.

For each measure, there are three types of scales that could be used:

(1) A local scale, based on project’s specific (local) measures evolvability scores over time. The com-

bination of individual scores and their trend analysis can be used to classify and prioritize process

improvements at the product level; (2) A global comparison scale that compares different products

within the same domain. In this case, the benchmarking (highest and lowest scores) are based on the

scores obtained from the products to be compared. If a new benchmark score is obtained, the exist-

ing assessment scores in the comparison group will be adjusted accordingly. This scale is best suited

for scenarios when evaluation and comparison among comparing different products in the same do-

main are required; (3) A global market scale compares the evolvability scores of different products

against all assessed projects (independent from the domain). This form of assessment is best applied

for comparing the evolvability of different software products created within an organization or in a

global context. The global benchmarking represents the boundaries based on the results from other

projects in our assessment database. Whenever a new product (assessment) is added to our assess-

ment repository, all local benchmarks obtained from this assessment will be compared against the

existing global maxima/minima boundaries for their VH and VL scales. In the case of a new maximum

or minimum, the global scale for this measure will be recalculated and adjusted to reflect the availa-

bility of new (additional) data. For all scales, measures are calculated based on historical values and

scales are not compared against pre-defined goals/targets.

Create weight fuzzy scale: Each element in our SE-EQAUM metamodel (including factors, attributes,

measures, etc.) has an associated weight to reflect its importance towards the overall assessment.

Default values for the weights are based on the ISO 9126 standard [15], with users being able to cus-

126

tomize these values to their specific needs. The input for this task is (0-9), with the output being the

weight fuzzy scale {low, medium and high}, as in Figure 59. The weight fuzzy scale is calculated as is

done with the measures. However, weight values are fixed and the fuzzy scale is calculated once.

FIGURE 59 WEIGHT FUZZY SCALE

Create score fuzzy scale: This is the assessment weighted score. The input is fixed (0-9), and the

output is a fuzzy scale {Very Poor (VP), Poor (P), Average (AVG), Very Good (VG) and Excellent (E)}; see

Figure 60. Unlike measures fuzzy scale calculation, the score scales are fuzzified only once.

FIGURE 60 QUALITY SCORE FUZZY SCALE

5.1.3. ASSESSMENT (FINDING ASSESSMENT SCORES)

The input for this step is the fuzzy measure scores, and their weights and outputs are the weighted

evolvability scores. The fuzzy logic-based assessment process has three main steps: fuzzification,

inferencing, and de-fuzzification. The fuzzification step is covered in the previous step (creating the

fuzzy scales). The inferencing and de-fuzzification steps are described here as part of the assessment.

Low Medium High

0

1

P1 P3P2 P4
P6P5 P7 P8

Very Poor Poor Average Very Good Excellent

0

1

P1
P2 P3

P4
P5 P6

P7
P8 P9

P10
P11 P12

P13
P14

X% X% X% X%

127

The weighted evolvability scores are obtained by executing a set of fuzzy inference rules of the for-

mat: IF <input> THEN <output>. The input accepts AND operators for multiple inputs, where each

inference rule has two inputs, a measure and weight, and one output, the overall score. As part of our

assessment process, we automatically create a Fuzzy Control Language ((FCL) file per measure; refer

to Table 13. FCL is published by the International Electrotechnical Commission (IEC-61131-7)71 and

used with the JFuzzyLogic tool [173]. The fuzzy inference engine provided with JFuzzyLogic fires the

relevant fuzzy rule set. The following is an example of an auto-generated FCL file for the commits

over the time measure:

TABLE 13 SAMPLE FUZZY CONTROL LANGUAGE (FCL) FILE

FUNCTION_BLOCK CommitsOverTime

VAR_INPUT
CommitsOverTime: REAL;
 weight : REAL;
END_VAR

VAR_OUTPUT
 score : REAL;
END_VAR

FUZZIFY CommitsOverTime
 TERM VERYLOW := (53.15,0.0) (64.0,1.0) (82.29,1.0) ;
 TERM LOW := (38.51,0.0) (48.5,1.0) (59.06,0.0) ;
 TERM AVERAGE := (23.86,0.0) (33.0,1.0) (42.79,0.0) ;
 TERM HIGH := (9.22,0.0) (17.5,1.0) (26.51,0.0) ;
 TERM VERYHIGH := (0.0,1.0) (2.0,1.0) (10.24,0.0) ;
END_FUZZIFY

FUZZIFY weight
 TERM LOW := (0.0,1.0) (2.5,1.0) (3.94,0.0) ;
 TERM MEDIUM := (3.55,0.0) (5.0,1.0) (6.56,0.0) ;
 TERM HIGH := (5.9,0.0) (7.5,1.0) (9.0,1.0) ;
END_FUZZIFY

DEFUZZIFY score
 TERM VERYPOOR := (6.5,0.0) (7.5,1.0) (9.0,1.0) ;
 TERM POOR := (5.31,0.0) (6.25,1.0) (7.22,0.0) ;
 TERM AVERAGE := (4.14,0.0) (5.0,1.0) (5.9,0.0) ;
 TERM VERYGOOD := (2.95,0.0) (3.75,1.0) (4.6,0.0) ;
 TERM EXCELLENT := (0.0,1.0) (2.5,1.0) (3.28,0.0) ;

METHOD : COG; //Center of Gravity de-fuzzification
method
END_DEFUZZIFY

RULE 0 : IF CommitsOverTime is VERYLOW and weight is LOW
THEN score is POOR ;

RULE 1 : IF CommitsOverTime is VERYLOW and weight is MEDI-
UM THEN score is VERYPOOR ;

RULE 2 : IF CommitsOverTime is VERYLOW and weight is HIGH
THEN score is VERYPOOR ;

RULE 3 : IF CommitsOverTime is LOW and weight is LOW THEN
score is AVERAGE ;

RULE 4 : IF CommitsOverTime is LOW and weight is MEDIUM
THEN score is POOR ;

RULE 5 : IF CommitsOverTime is LOW and weight is HIGH THEN
score is VERYPOOR ;

RULE 6 : IF CommitsOverTime is AVERAGE and weight is LOW
THEN score is VERYGOOD ;

RULE 7 : IF CommitsOverTime is AVERAGE and weight is MEDI-
UM THEN score is AVERAGE ;

RULE 8 : IF CommitsOverTime is AVERAGE and weight is HIGH
THEN score is POOR ;

RULE 9 : IF CommitsOverTime is HIGH and weight is LOW THEN
score is EXCELLENT ;

RULE 10 : IF CommitsOverTime is HIGH and weight is MEDIUM
THEN score is VERYGOOD ;

RULE 11 : IF CommitsOverTime is HIGH and weight is HIGH THEN
score is AVERAGE ;

RULE 12 : IF CommitsOverTime is VERYHIGH and weight is LOW
THEN score is EXCELLENT ;

RULE 13 : IF CommitsOverTime is VERYHIGH and weight is ME-
DIUM THEN score is EXCELLENT ;

RULE 14 : IF CommitsOverTime is VERYHIGH and weight is HIGH
THEN score is VERYGOOD ;

END_RULEBLOCK

END_FUNCTION_BLOCK

71 http://jfuzzylogic.sourceforge.net/doc/iec_1131_7_cd1.pdf

http://jfuzzylogic.sourceforge.net/doc/iec_1131_7_cd1.pdf

128

FIGURE 61 INFERENCING SCORE RESULTS FOR A GIVEN MEASURE AND WEIGHT

As part of our assessment process, we made the following three assumptions to automate the fuzzy

inference rules: (1) In cases when the weight is high then the scores are one level lower. VP scores

will keep their value; (2) With low weight, scores are less relevant and the scores are one level high-

er. E scores keep their value; (3) With medium weight, scores keep their values. These assumptions

reflect the fact that when a measure is of high importance to the assessment (high weight) then its

score should be sensitive to the low measure value; therefore, the assumptions in this case are strict-

er for higher weights. Figure 61 summarizes the cross-reference of a measure scale (where the lower

the measure value the better, which explains having Excellent in the lower scale range. This applies

for measures such as code violations or style errors). The other input is the measure weight (low,

medium, and high). The output is the score value in the table; for example, if the measure value is

medium and the weight is low then the score will be very good (assumption 2).

Firing inference rules will calculate a final weighted measure score per snapshot and measure. Using

a bottom-up approach, we calculate the attribute evolvability, where the model attributes score per

snapshot (e.g., analyzability or testability) is based on the scores of its related measures. Similarly,

3.75 5.0 6.25 7.5 9.01.0

Very PoorPoorAverageVery GoodExcellent

0

1

X% X% X% X%

Measure

M
e

m
b

e
rs

h
ip

W
e

ig
h

t

Medium

High

Low

Very High High Medium Low Very Low

Very High/

High
Medium Low Very Low

Very High High Medium Low/Very

Low

Score

X

X

129

we calculate sub-factor scores, using their related attributes. The product evolvability score is com-

puted based on the model sub-factors and will be a single evolvability score per snapshot.

As discussed previously, during the actual evolvability assessment, we can no longer be certain that

the knowledge sources used for the assessment and benchmarking are complete and precise. There-

fore, the use of crisp scoring boundaries is no longer applicable. We address this challenge by using a

fuzzy logic approach, which provides: (1) the final scores that can be among two scales (e.g., VP and

P) and (2) membership functions that provide the strength of a score with respect to its belonging to

a certain scale (e.g., analyzability is 40% VG).

The last step in a fuzzy logic-based assessment process is de-fuzzification. In this step, we provide a

numerical assessment score based on the calculated linguistic score (e.g., excellent) by using the cen-

ter of gravity (COG) or the Centriod method used in, which is also considered as one of the most pop-

ular de-fuzzification methods [42,43].

COG =
∑

∑

 , where n represents the number of elements (e.g., score) and xi represents the

elements’ values, while MF(xi) is the value of membership function of the element (e.g., 0.4 to the low

and 0.6 to the medium scale). The JFuzzyLogic tool [173] automatically calculates the de-fuzzy value

with the method of choice as specified in the FCL file.

5.1.4. KNOWLEDGE ENRICHMENT

In this step of our process, we allow for further model enrichment with two types of knowledge: as-

sessment result knowledge and inferred knowledge. For the assessment results, the calculated quali-

ty assessment scores are re-populated into the QUAMON ontology for further analysis, comparison,

and exploration purposes. More advanced exploration is performed in the next chapter for score in-

terpretation and prediction, while, for the inferred knowledge, we aim to add more semantic value to

the knowledge base. For this purpose we sometimes use Description Logic axioms, e.g., OWL2 prop-

erty chain are construct to infer new relationships among quality model levels. Another example is

the population of the newly inferred concepts such as SnapshotFile, which is a copy of the LogicalFile

130

defined in the version control ontology, or the CoreContributor, who is a Contributor, as defined by

the metadata ontology (METON), who made more than the average number of commits in a snap-

shot. Enrichment also includes adding more inference rules and more data sources or integrating

scores obtained from another quality assessment model. This model enrichment will enhance the

user experience while exploring our knowledge ontology model.

For example, the user can add the QUALOSS risk score (green, yellow, red, and black) as another

score theme for our SE-EQUAM populated ontology. Assume that m1 is a quality measure instance

such as the evolution is number of commits, then

<:m1 rdf:type quamon:Measure> <:m1 quamon:hasScore “60% veryPoor”> <:m1 quamon:hasScore

“black”>

Being able to extend our knowledge base with semantically richer, new, inferred or calculated

knowledge is a key to ensuring that the future assessment needs are met. It not only supports the

reusability of the metamodel by extending it, it also addresses uncertainties with respect to the evo-

lution of the assessment requirements.

5.2. CASE STUDY

The purpose of this case study is to show the steps and the results of applying our fuzzy-based quali-

ty assessment process on an existing project. For brevity purposes, the case study details the assess-

ment process steps for one randomly selected measure (i.e. number of contributors over time), the

same steps apply for the rest. The goal is also to show how the fuzzy assessment process can address

uncertainties around the boundaries of two adjacent scores (e.g., poor and very poor or poor and

average).

For this example, we assume that the interested stakeholder has already defined ONTEQAM as a do-

main model to assess the contributor’s activity evolvability over time. The assessment is performed

on:

131

Project Name: PMD

Description: Java source code analyzer.

Artifact: version control

URL https://pmd.svn.sourceforge.net/svnroot/pmd

Snapshot: We decided to study the measure evolvability over 6 months’ time intervals. Given a 7

years lifespan; this result in 14 data points.

Relevant measure: the contributing community size for PMD project. For the case study, we selected

one measure to demonstrate the applicability of the assessment process. Similarly, the assessment can

be performed for the other measures.

We locally benchmark the measure by leveraging JFuzzyLogic [173] with its Fuzzy Control Language

file (FCL) based on IEC 61131-7 ed1.0 standard, 2000.

Measure calculation: As described earlier in this chapter, software artifacts such as version control

system in this example are extracted and populated as part of our ontological model (VERON,

METON, TOOLON and QUAMON). SPARQL queries are used to obtain the non-fuzzy measure values.

For example, the following SPARQL query is used to obtain the contributing community per snap-

shot:

SELECT DISTINCT ?snapshot ?res WHERE { ?cmt rdf:type veron:Commit. ?snapshot rdf:type qua-

mon:Snapshot. cmt meton:hasContributor ?res. ?cmt quamon:inSnapshot ?snapshot.} ORDER BY ?snap-

shot.

Fuzzification: Here is a partial copy of the FCL file for the PMD contributing community size meas-

ure (denoted as DC). The input to be fuzzified is the measure value obtained from the previous step

and its weight (in our example, we chose a medium weight value of 5. This is a customizable value),

and the output to de-fuzzify is the measure score to be calculated in this fuzzification step. The points

(X,Y) in each of the terms below are the three points that represent the fuzzy term in the scale of that

132

input/output value. The way to calculate each of these points is described in section 5.1.2 above

(fuzzification).

FUZZIFY DC

 TERM VERYLOW := (0.0,1.0) (0.0,1.0) (4.13,0.0) ;

 TERM LOW := (3.72,0.0) (7.86,1.0) (12.38,0.0) ;

 TERM AVERAGE := (11.14,0.0) (15.72,1.0) (20.63,0.0) ;

 TERM HIGH := (18.57,0.0) (23.58,1.0) (28.88,0.0) ;

 TERM VERYHIGH := (25.99,0.0) (31.43,1.0) (44.68,1.0) ;

END_FUZZIFY

FUZZIFY weight //one time scale generated for values 0-9

 TERM LOW := (0.0,1.0) (2.5,1.0) (3.94,0.0) ;

 TERM MEDIUM := (3.55,0.0) (5.0,1.0) (6.56,0.0) ;

 TERM HIGH := (5.9,0.0) (7.5,1.0) (9.0,1.0) ;

END_FUZZIFY

DEFUZZIFY score //one time scale generated for values 0-9

 TERM VERYPOOR := (0.0,1.0) (2.5,1.0) (3.28,0.0) ;

 TERM POOR := (2.95,0.0) (3.75,1.0) (4.6,0.0) ;

 TERM AVERAGE := (4.14,0.0) (5.0,1.0) (5.9,0.0) ;

 TERM VERYGOOD := (5.31,0.0) (6.25,1.0) (7.22,0.0) ;

 TERM EXCELLENT := (6.5,0.0) (7.5,1.0) (9.0,1.0) ;

END_DEFUZZIFY

Assessment: The set of inference rules that are fired for each input depends on the value of that

measure at that certain snapshot. Table 14 shows the corresponding evolvability score obtained for

the 14 data points, including the membership of the score (the value in brackets next to each rule)

and the fired rule(s). In order to have a more compact representation we use M: Measure, MED: Me-

dium and W: Weight. For scale values: VL: Very Low, L: Low, A: Average, H: High, VH: Very High,

P:Poor, VP: Very Poor, VG: very Good, and E: Excellent.

133

TABLE 14 PMD MEASURE VALUES, SCORES, AND FIRED RULES

Snapshot Measure Score Fired rule

1 6.0 0.47 (0.42) if (M IS VL) AND (W IS MED) then score IS VP

2 8.0 2.29 (0.42) if (M IS L) AND (W IS MED) then score IS P

3 9.0 4.33
(0.038) if (M IS L) AND (W IS MED) then score IS P

(0.42) if (M IS A) AND (W IS MED) then score IS A

4 9.0 4.33
(0.038) if (M IS L) AND (W IS MED) then score IS P

(0.42) if (M IS A) AND (W IS MED) then score IS A

5 8.0 2.29 (0.42) if (M IS L) AND (W IS MED) then score IS P

6 7.0 1.95 (0.18) if (M IS VL) AND (W IS MED) then score IS VP

7 8.0 2.29 (0.42) if (M IS L) AND (W IS MED) then score IS P

8 6.0 0.47 (0.42) if (M IS VL) AND (W IS MED) then score IS VP

9 8.0 2.29 (0.42) if (M IS L) AND (W IS MED) then score IS P

10 11.0 6.78 (0.42) if (M IS H) AND (W IS MED) then score IS VG

11 13.0 9.81 (0.42) if (M IS VH) AND (W IS MED) then score IS E

12 9.0
4.33

(0.03) if (M IS L) AND (W IS MED) then score IS P

(0.42) if (M IS A) AND (W IS MED) then score IS A

13 8.0 2.29 (0.42) if (M IS L) AND (W IS MED) then score IS P

14 7.0 1.95 (0.18) if (M IS VL) AND (W IS MED) then score IS VP

FIGURE 62 PMD NO. OF CONTRIBUTOR’S EVOLVABILITY SCORES

0

2

4

6

8

10

12

12 6 12 6 12 6 12 6 12 6 12 6 12 6

2002 2003 2004 2005 2006 2007 2008 2009

Sc
o

re

Time

PMD evolvability score for the no. of contributors in
6 months time interval

134

The de-fuzzified evolvability scores are calculated using the COG (Center Of Gravity) method; the

JFuzzyLogic tool [173] automatically calculated the de-fuzzified score for us. Figure 62 shows our

results of the de-fuzzified evolvability scores representing the contributor working on PMD along

with its trend line. We can observe that the number of people working on PMD increased initially,

then stabilized for almost a year, before dropping gradually until mid 2006. Between mid 2006 and

mid 2007 a significant increase in the number of people working on the project could be observed.

Further analysis of the PMD data showed that in this time period PMD had two major releases 4.0

and 4.1. After the two major releases, the number of developers dropped again. This decrease in

member activity is also reflected by the number of minor releases per year dropped from almost 16

per year in 2007 to 3 per year in 2009.

This example above shows how uncertainty can be handled using the fuzzy approach. Some values in

the table are on an overlapping scale, like measure value 9.0, which reflects an uncertainty if its value

should be scored as Low or Average. There are many reasons why uncertainty should be considered

when assessing quality of open source projects such as the possibility of missing data from the arti-

facts (e.g., versioning history misses is used after two years) or incomplete data (e.g., there could be

some bugs that are not reported on the issue tracker artifacts). To handle this uncertainty more than

one inference rule has to be fired (Table 14). The fuzzy approach shows that the value 9.0 has a high-

er strength towards the Average scale (0.42) than the strength towards the Low scale (0.38). The

rules will then be aggregated and de-fuzzified using the COG to provide the final non-fuzzy score.

In this example, we only considered one measure. Each measure is calculated the same way. In cases

where more than one measures are involved, we first compute the non-fuzzy score for each measure

and then aggregate these scores to calculate the attribute, subfactors, factors, and dimensions. The

effect of the fuzzification will become mainly visible at the higher assessment abstractions, such as

the quality dimension scores.

135

5.3. VALIDATION AGAINST QUALOSS

As part of our validation, we compare the results obtained from our assessment process with results

from QUALOSS [40].

Purpose: The purpose of this validation is to check, given the same set of measure:

 Whether our evolvability assessment scores are comparable to QUALOSS. We assume that a

VP/P score in ONTEQAM corresponds with a Black/Red (high risk), a A/VG score with Yel-

low (medium risk) and an E score should with Green (low risk).

 Whether our local assessment scores (project level scores specific to our approach) pro-

vides a finer grained assessment than the global scores (QUALOSS equivalent approach).

Why QUALOSS? QUALOSS [40] is the only quality model that also provides an evolvability specific

assessment score. QUALOSS’s benchmarking is based on their study for a large set of open source

projects from the FLOSSMetrics online repository [177][40]. QUALOSS scores are mapped to a color

scheme of Black, Red, Yellow, and Green, each of which corresponds to the evolvability quality from

high to low risk, respectively.

For the validation, we applied our approach on the following projects: PMD72, Liquibase73 , and

JFreeChart74. Liquibase is an open source Java based SQL Client, JFreeChart is an open source Java

based charting tool and PMD is a static Jave code analyzer. For each of these tools QUALOSS provides

data along with the assessment results online. The reason behind choosing these projects is the lim-

ited number of projects that has the QUALOSS quality indicators applied and provided online.

The data shown in Table 15 is based on the time intervals considered by QUALOSS assessment. The

last year data was assessed in the QUALOSS project was 2009. For comparison reason we cover the

same period in our analysis and benchmarking process.

72 http://melquiades.flossmetrics.org/projects/pmd/quality
73 http://melquiades.flossmetrics.org/projects/liquibase/quality
74 http://melquiades.flossmetrics.org/projects/jfreechart/quality

http://melquiades.flossmetrics.org/projects/pmd/quality
http://melquiades.flossmetrics.org/projects/liquibase/quality
http://melquiades.flossmetrics.org/projects/jfreechart/quality

136

TABLE 15 BASE MEASURES

Measure PMD Liquibase JFreeChart

Total number of
commits

6,970 864 2,205

Max. commits/month 441 82 260

Min. commits/month 0 0 0

Avg. commits/month 77 32 74

Total number of ac-
tivities

39,272 17,030 10,149

Max. activities per
month

1,837 7,359 1,976

Min. activities/month 0 0 0

Avg. activities/month 436 390 338

Total number of
committers

31 9 3

Total number of
unique files

12,468 14,469 2,639

Total SLOC 277,0243 106,083 484,298

Total LOC 728,6423 786,335 1,113,132

The following set of measures is used to assess the open source community liveness evolvability

quality and is based on the QUALOSS project. Note that the names of the measures (e.g.,

Tb_cm_IWA1) correspond to the naming used and published online by QUALOSS:

Tb_cm_IWA1: Monthly analysis of the community activity like commits posts by each contributor. In

the example below, for the versioning systems the commits per contributor is considered.

Tb_cm_IWA2: Monthly monitor for the increase and decrease in the community activity as number

of events (regardless of the contributor).

Tb_cm_SRA2: The measure retrieves the date of the first commit for each member of the community,

which will enable us to know if the number of new members committing code remains stable.

Tb_cm_SRA3: measures the first commit of each detected committer in the version control system

whose commit is not a code commit (checked using the committed file extension).

137

Tb_cm_SRA9: Monthly analysis for the evolution in the number of contributors in the community

which could help in measuring the size of a community.

We use a medium weight for all measures because QUALOSS does not consider a measure weight as

an input in the assessment and a medium weight usually does not affect the actual calculated score

(see our assumptions for fuzzy inference rules).

We used the global benchmarking technique for the validation against the QUALOSS results, since

QUALOSS provides only global assessments.

From a score range perspective (e.g., poor/very poor corresponds to red score in QUALOSS), our ON-

TEQAM scores match the QUALOSS global scores (OntEQAM provides local scores as well). However,

we also observed that the QUALOSS assessment result is Red for all three projects. Given the hetero-

geneity of the selected projects from domain, size, lifetime and activity dimensions, having the exact

assessment score (Red) is unexpected. QUALOSS results motivated us to perform an additional anal-

ysis of the QUALOSS data.

The Data provided by QUALOSS via SQL dumps for the project quality (e.g. fm3_jfreechart_quality75)

is incomplete and does not match the results obtained from running their own queries against

CVSAnaly tool data that QUALOSS uses to calculate measures related to version control system. Using

fm3_jfreechart_cvsanaly2_svn_scm76 database we calculate the monthly number of commits per con-

tributor (tb_cm_iwa1):

SELECT year(s.date), month(s.date), COUNT(s.rev)/COUNT(distinct s.committer_id) `cm-iwa1` FROM

scmlog s GROUP BY year(s.date), month(s.date);

Then we compare the results against fm3_jfreechart_quality75 database that QUALOSS also provides:

SELECT year, month, value FROM fm3_jfreechart_quality.tb_cm_iwa1_scm t where value >0 group by

year, month;

75 http://melquiades.flossmetrics.org/data/projects/jfreechart/fm3_jfreechart_quality_20091123T11:45:01.sql.gz
76
http://melquiades.flossmetrics.org/data/projects/jfreechart/fm3_jfreechart_cvsanaly2_svn_scm_20090304T06:42:18.57346
5.sql.gz

http://melquiades.flossmetrics.org/data/projects/jfreechart/fm3_jfreechart_quality_20091123T11:45:01.sql.gz
http://melquiades.flossmetrics.org/data/projects/jfreechart/fm3_jfreechart_cvsanaly2_svn_scm_20090304T06:42:18.573465.sql.gz
http://melquiades.flossmetrics.org/data/projects/jfreechart/fm3_jfreechart_cvsanaly2_svn_scm_20090304T06:42:18.573465.sql.gz

138

We found that JFreeChart tb_cm_iwa1 misses results of 20 months. Our finding suggests that the

justification of QUALOSS score results is related to (1) the incompleteness of data provided by

QUALOSS (e.g. JFreeChart assessment actually considered 6 out of 26 data points) and (2) the focus

of QUALOSS on global benchmarking as all projects are benchmarked on the same scale regardless of

their size, domain and community activity. The validation against the incomplete dataset is marked

as Global (I) in Table 16 where (I) means Incomplete.

Using our own implementation for data extraction, we assessed evolvability quality both locally and

globally for the same projects and for the same set of measures as of QUALOSS. In order to compare

to QUALOSS, we first used the same (incomplete) dataset by excluding the datapoints not considered

in QUALOSS results, this is marked as incomplete (I) in Table 16. The incomplete scores are global

only because QUALOSS approach corresponds to the global approach in our assessment. Yet, we are

still interested in the assessment results for the complete dataset and how it compares to the incom-

plete one. Thus, we provided both local and global scores for the complete dataset. The assessment

results taken from the complete set is different as we can see from Table 16.

TABLE 16 ONTEQAM LOCAL & GLOBAL SCORES VERSUS QUALOSS (THREE OSS PROJECTS)

M
e

a
su

re
s

PMD Liquibase JFreeChart

ONTEQAM Q
U

A
L

O
SS

ONTEQAM Q
U

A
L

O
SS

ONTEQAM Q
U

A
L

O
SS

G
lo

b
al (I)

L
o

cal

G
lo

b
al

G
lo

b
al(I)

L
o

cal

G
lo

b
al

G
lo

b
al (I)

L
o

cal

G
lo

b
al

iwa1 VP P P Red VP A A Red VP P P Red

iwa2 VP P P Red VP P P Red VP P P Red

sra2 VP P P Red P P VP Yellow VP A P Red

sra3 VP P P Red VP P VP Red VP VG VP Red

sra9 VP A A Red VP P VP Red VP P VP Red

Below we further analyze the assessment results obtained for each of the projects for the selected set

of measures in Table 16:

139

Tb_cm_IWA1: Considers the evolution of activities per committer based on information extracted

from the versioning system. We could observe that for all three projects the local and global scores

remained the same. This means for example, Liquibase had an average evolvability of the commits

per committer over time on its own scale level considering different time intervals and it’s also was

considered average when compared with PMD and JFreeChart.

Tb_cm_IWA2: The recorded activity of the versioning system on a monthly basis, over the three pro-

jects. The activity for all three projects is considered as poor (P), which corresponds to the Red score

in QUALOSS. For further validation, we compare this result against Ohloh [178] and we found that

Liquibase has some high activity peeks over time compared to the other two projects but these high

peeks are balanced out with the low activity at the beginning of the project lifetime so the overall

evolvability is still poor.

Tb_cm_SRA2: Evaluating this measure we noticed that locally JFreeChart would obtain an Average

(A) score but when compared with other projects its assessment drops to P. This outcome was ex-

pected since the total number of committers in JFreeChart is much lower compared to PMD (Table

16).

Tb_cm_SRA3: For this assessment, Liquibase’s score drops by one score during the global bench-

mark. JFreechart on the other hand drops in this case by three scores. This more dramatic drop is

due to the small number of committers in JFreeChart. The project has a local maximum of three

committers compared to a benchmarked global maximum of 31. This result shows how local and

global benchmarking results can vary significantly. Using existing assessment models, projects like

JFreeChart will always score low because of its small contributor base, when compared with other

projects. In particular, since the other projects could be in a different domain, size and activity. A lo-

cal benchmarking is another, more specific product level assessment that is interesting for stake-

holders looking for evaluating whether a certain product’s evolvability is average or poor.

Tb_cm_SRA9: As expected, PMD having the largest number of contributors in this evaluation, it will

score high in both the local and global benchmark.

140

Summarizing the above, scores might vary significantly when compared locally or globally, for exam-

ple iwa1 measure for Liquibase in Table 16 scored Very Poor globally (Red in QUALOSS) while it was

Average locally. The reason why the local and global scores vary is because of the different scales

used to classify the score in a certain range (poor, very poor, or average range). As explained earlier

in this chapter, the local scores obtain their scale from the scores of the assessed project (min and

max scale ends are the min and max values calculated for that project over its lifetime) while the

global scale is calculated based on the set of all the projects used in the assessment. We do believe

that allowing for local and global scales of the assessment scores; will accommodate better the stake-

holder requirements. The local score is useful for stakeholders who are interested in the project evo-

lution over time by calculating its new scores relative to its own values rather than relative other

projects. Local scores on the other hand are better indicators for assessing, how a project quality en-

hanced or declined compared to its historical growth. Assessing globally is useful when the projects

are comparable from several perspectives such as size, lifetime, and domain. Global scores for two or

more projects could be used for comparison to help adoption decisions.

141

CHAPTER 6: EVOLVABILITY PREDICTION USING FINANCIAL TECH-

NICAL ANALYSIS

In this chapter, we first describe existing approaches used in the software domain to predict software

quality. Then we discuss the financial technical analysis and the most popular indicators and patterns

used in the stock market domain to interpret and predict the trends of price changes over time. The

aim of this chapter is to provide the foundation needed to understand one of our research contribu-

tions i.e. applying the financial technical analysis used in predicting stocks price to predict software

quality. The detail of our contribution is covered in the next chapter.

6.1 SOFTWARE QUALITY PREDICTION MODELS

Quality prediction claims a particular quality value in the future based on the analysis of its historical

values [95]. Predicting software quality provides an early assessment of possible faults in software,

which then reduces the maintenance effort, time, and costs [95, 96]. Prediction models are used to

support process improvements and decision making.

Prediction models use historical data to predict future quality trends of software projects. To predict

software quality, existing research analyzed the evolution of its change requests (CR) [97], defects

[98], size [99], code changes [100], and social interactions [101].

There are several techniques that have been developed to predict software quality, each tested on a

different datasets [96, 102]. Software size and complexity metrics are traditionally used to predict

quality, mostly through predicting defects. In 1999, Fenton [103] criticized traditional software

defect prediction models, including source code size and complexity, which are testing process

prediction based on early defect inspection and design and development process prediction such as

the Capability Maturity Model (CMM)77. In [103] the author defined two problems: first, the defect

77 http://cmmiinstitute.com/

http://cmmiinstitute.com/

142

definition itself is unclear (i.e. post-release, total known defects, or after a pre-defined point of time).

Second, the problems with each prediction model (e.g., size) are programming language dependent;

the complexity measure formula ignores special control flow cases, such as crossing edges and type,

and the models ignore design faults and defect severity.

Prediction techniques based on Artificial Intelligence (AI) such as fuzzy logic [80, 87] were

popularized during the 2000s. A comparative study of these AI techniques was published in 2006

[95]. This study claims that the problem with regression models is that the prediction results are not

reliable because of the simultaneous use of highly correlated measures [95]. Most thresholds are

defined using sample data that do not necessarily reflect real life trends, which is why quality values

need not be crisp; in this case, fuzzy logic is used to address the loss of accuracy at the boundaries of

the predicted value. The study suggested using fuzzy logic with a genetic algorithm to automate the

data generation and reduce the cost [95].

A study held in 2008 [96] of existing prediction techniques compared 30 different software quality

prediction techniques on two public datasets published on PROMISE [104], e.g., case-based

reasoning, Bayesian network, regression methods, voted perception, decision trees, etc. The authors

divided the dataset into 66% training data and 34% testing data. Performance is evaluated using

precision, recall, specificity, and accuracy of prediction; the error rate for each technique is evaluated

using the difference between the actual and the predicted values. The comparison classified regression

techniques as one of the best techniques from performance and error rate perspectives. Zimmermann

[98] used the linear regression model to predict defects in three releases of Eclipse using the project’s

complexity metric. Precision, recall, and accuracy are calculated based on whether a file or package in

Eclipse will have at least one predicted defect. A positive correlation is found between the complexity

of the file/package and the number of defects. The same positive correlation is found between the

pre- and post-release defect counts.

In 2010 [105] published a comparative study of five prediction models, including the linear

regression models used in [106] and [107]. The authors applied the prediction models on the same

dataset of 11 open source projects and 328 versions. The results show a quality trend (quality is

143

improving, constant, or deteriorating) for each project produced by each prediction model. The

conclusion was that different models provide different conclusions for the same project. Another

unexpected conclusion was the lack of correlation between the results obtained from the two linear

regression models used in [106] and [107].

Another popular prediction technique is time series analysis. The time series technique used to

analyze historical data since the 1980s by Yuen [108], whereby the author used time series analysis,

more specifically the ARIMA (auto-regressive, integrated, moving average) model [109], as a

prediction model. ARIMA is applied on five successive releases of an operating system dataset used

by the author in previous work. The data is collected at the maintenance phase on a global/system

level and on individual release level. The goal is to observe the dynamic evolution behavior using the

auto-regression model formula. The results show that predicting the dynamic behavior of the system

is more accurate on a detailed level. The global view of collective system components tends to hide

evolutionary trend patterns, especially for complex systems.

In 1999, Kemerer and Slaughter [22] used the ARIMA model to predict evolvability by analyzing the

history of the monthly code changes of 23 commercial projects that had a 20-year history. Both

Kemerer [22] and Yuen [108] showed that the time series analysis approach did not provide any

insight about the software evolution process, due to the randomness of the data [22].

More recently, in 2007 [99], the time series analysis ARMIA prediction model was applied on the

version control system of three open source software to predict the evolution in size over the

project’s lifetime; the sample period of time used in this study was one day. The author [99] argues

that the choice of ARIMA is because the linear regression model (which is a more popular prediction

model for evolution trend) is not suitable for short-term evolution trend prediction. The validation is

performed against the prediction of size for the last year.

The study in [110] shows the number of new change requests per KLOC in order to forecast and

identify future trends. An increasing trend indicates either more interest of customers in new

features or a decline in quality. A decreasing trend either indicates that the software is stabilized and

144

at a mature level or has become less popular. Time series analysis was used on the five-year history

of Eclipse, Mozilla and JBoss; a two weeks’ period was considered. The prediction accuracy provided

differs from one project to another (20% in 80% of the cases in Mozilla, 25% in 70% of the cases in

JBoss, and 25% in 50% of the cases for Eclipse) [110].

More recently, Mining Software Repositories (MSR) was used to both mine the history (past

versions) of software artifacts (such as source code, documentation, bugs, etc.) and to predict future

software-changes to the software artifacts. The current MSR research focuses on mining either

individual or correlate analysis results from different repository types for change prediction,

program comprehension, and process improvement and on planning evolutionary aspects. The most

common repositories being mined are versioning systems and issue trackers [111-114]. Some of the

evolution aspects they analyzed and visualized included developer’s effort, detecting core

developers, re-assessing development effort, and hotspot detection. In [115] an approach for mining

email archives or public Free/Libre Open Source Software (FLOSS) mailing lists for open source

projects was introduced. In [116] inline source code documentation was mined through the

QUASOLEDO project and its quality assets, to investigate its effect on software evolution. The

approach automatically measures completeness, quality, readability, and evolution of inline

documentation.

On the other hand, change prediction is a well-established area that typically focuses on short-term

prediction for a current change context by applying some form of Impact Analysis (IA) [119]. IA

focuses on determining the effect of a modification (ripple and side-effect analysis) on software

artifacts. Traditional IA methods, unlike MSR, focus on the most current versions of the software

artifacts.

In our approach, MSR is used to extract both basic and value-added information from different

software repositories [120].

145

6.2 FINANCIAL TECHNICAL ANALYSIS

Over the past fifty years stock market prices have been one of the most analyzed data [140]. The fi-

nancial community assesses and analyzes fundamental qualities of a stock to predict future stock

performance by considering various external factors (e.g., competition and global trends) and inter-

nal factors (e.g., earnings, product cycles, current, and historical stock price). Stock market analysts

perform various types of analysis techniques to forecast/predict potential price trends for individual

stocks or the stock market in general.

In the 1940s, Roberts Edwards and John Magee introduced the term technical indicator [141]. Tech-

nical indicators are metrics derived from the stock price value, such as Moving Average (MA), Moving

Average Convergence Divergence (MACD), Relative Strength Indicator (RSI), and Bollinger Bands

Indicator (BBI) [141]. Indicators are used to confirm price movement and to form a buy/sell signal.

These indicators are used as parts of the technical analysis to assist traders make buy/sell decisions.

These technical indicators are typically associated with some technical patterns, which are used to

interpret price movement/directions (e.g., uptrend, downtrend, or side-to-side). These financial

technical patterns are based on the assumption that history repeats itself and that knowledge is cap-

tured from the past in the form of reoccurring patterns. There are two types of patterns, which are

distinguished in the technical analysis domain: reversal and continuation. A reversal pattern signals

that a prior trend will reverse on completion of the pattern. Conversely, a continuation pattern indi-

cates that the prior trend will continue onward upon the pattern's completion.

Success in trading stocks depends on timing the trades well. For years, stock traders have depended

on two major tools: fundamental analysis (1), based on company performance and growth projec-

tion, and (2) technical analysis using technical indicators, which are based on the analysis of the

trade history of a security through charts and mathematical formulas.

Technical indicators can be classified [142]: oscillators or leading indicators, and lagging indicators.

Leading indicators represent a form of price momentum over a fixed look-back period, which is the

146

time lapse used to calculate the indicator. Leading indicators are usually used for prediction because

they change before an event that leads to a price trend change. For example, a 20-day stochastic os-

cillator would use the past 20 days of price action in its calculation. All prior price action would be

ignored. Some of the most popular financial leading indicators include Commodity Channel Index

(CCI), Momentum, Moving Average Convergence-Divergence (MACD), and Relative Strength Index

(RSI) [142]. In contrast, a lagging indicator follows a price change. These types of lagging indicators

are commonly referred to as trend-following indicators and work best when markets develop strong

trends. Lagging indicators are designed to get traders in and keep them in as long as the trend is in-

tact. Some popular trend-following indicators include moving averages (exponential, simple, and

weighted).

Technical analysis divergence is said to occur when an indicator movement does not agree with the

price movement. Divergence can be bullish or bearish. If the indicator is making lower highs when the

price is making a higher high, there is supposed to be a bearish divergence. In the same way, when

the indicator makes higher lows when the price makes lower lows there is a bullish divergence. Di-

vergence indicates a reversal in the current trend.

In what follows, we introduce some of these commonly used technical financial indicators used in the

stock market analysis domain. In the stock market a combination of different patterns and indicators

are used to make a trading decision. Some indicators are used as a confirmation to another indicator,

while we use other indicators to show the price pattern (e.g., uptrend or downtrend); Table 17.

TABLE 17 A SUMMARY OF TECHNICAL INDICATORS AND THEIR ASSOCIATED PATTERNS

Technical Indicator Associated Pattern(s)

Moving Average (MA) Bullish/Bearish Crossover Pattern

MA Trend line Uptrend/Downtrend Direction Pattern

Support and Resistance Trend lines Support and Resistance Breakout Patterns

Bollinger Bands M-Tops and W-Bottoms Patterns

147

6.2.1 MOVING AVERAGE (MA) INDICATOR

Motivation: MA is one of the most fundamental and widely used financial technical indicators in the

stock market. Bigalow and Elliot [143] have pointed out that MAs are considered to be the most prof-

itable technical trading rules. A simple moving average is an indicator that calculates the average

stock price over a specified number of periods. If a security is exceptionally volatile, then a moving

average will help data smoothness. MA filters are commonly used with time series data, as they

smoothing out random noise and provide a cleaner perspective on the overall price activity. The

length of the moving average varies from short-, to medium-, to long-term. In trading, there are some

popular lengths, for example 20 data points for short-term predictions, 50 data points for traders

interested in medium-term analysis, and a 200 data point MA is a popular length for a long-term in-

vestment analysis. More details about the choice for the MA length are provided in the application

and example section below.

Intent: In the financial domain, MAs have been widely used to analyze if a stock (or financial mar-

kets in general) might be in a rising (bull) or falling (bear) trend. A buy signal is generated when the

most current data value rises above the MA, and a sell signal is generated when the current value

falls below the MA. If there is an actual clear trend occurring, this analysis approach works well. If,

however, the market is moving sideways or if there were excessive volatility, many whipsaws (false

signals in this case) patterns occur. Whipsaw patterns involve short-term upward movement in

price, followed by a drastic, longer downward move or, alternately, when prices drop shortly fol-

lowed by a suddenly longer upwards move.

Application and Example: The basic MA is computed as , with n representing the

number of data points that are considered when calculating the MA (e.g., 20, 50, or 100 data points),

and Y being the actual values for each individual data point.

The selection of an appropriate short- or long-term MA depends on the application context and ob-

jective. Short-term MAs are capable to react and follow stock price changes more closely and are

148

therefore more likely to be whipsaw-prone. In contrast, longer term MAs smooth out random noise

and provide a cleaner perspective on the overall price activity by only highlighting major trend

changes. A combination of short- and long-term MA types is widely used by traders to support their

buy/sell decisions. MAs with different time intervals (e.g., 20-MA and 100-MA) are often applied to

establish the existence (or absence) of trends and stock price directions. As part of their analysis,

traders will obtain different MA trends during a period.

Known-uses: indicators that can trigger buy/sell signals in the financial markets.

6.2.2 MOVING AVERAGE CROSSOVER PATTERN

Motivation: These crossovers are by far the most commonly used of the MA methods and have been

the subject of a lot of research. MA crossover happens when a short-term MA crosses through a long-

term MA. This signal is used to identify that momentum is shifting in one direction and a strong move

is likely approaching. The crossover MA technique attempts to reduce whipsaws while minimizing

the lateness of signals received. There is, more or less, an agreement among technical analysis re-

searchers on the ranges for identifying the short-, medium-, and long-term trend periods, which are

less than 20 days, 20 to 100 days, and more than 100 days, respectively78. The general rule in this

case is:

- Buy signal is generated when the short-term average crosses above the long-term average; and

- Sell signal is generated when the short-term average crosses below the long-term average.

Intent: To support trading sell/buy decision based on occurring patterns. This pattern defines two

crossover types: bullish, which indicates a buy signal, and bearish crossover, which indicates a sell

signal.

The premises for these behaviors are that a price that is moving up (or down) during period t is likely

to continue to move up (or down) in period t+1 unless there is evidence to the contrary. When the

78 http://www.investopedia.com/university/movingaverage/movingaverages1.asp

http://www.investopedia.com/university/movingaverage/movingaverages1.asp

149

short-term average crosses above the long-term average, this means that the average prices over the

short period are relatively higher than those MA that cover longer periods and hence the prices have

an upward momentum. This provides a lagged indicator that the price is moving upward relative to

the historical prices. The opposite is true when the short-term average moves below the long-term

average. Thus, the signals generated through the crossovers are very objective, which is why it is so

popular.

Application and example: Crossover patterns occur when a short-term MA crosses a longer term

MA. Figure 63 shows Google Inc. 20 and 50 days MA over a course of six months where the blue line

is the stock price per day.

FIGURE 63 GOOGLE INC. 20/50 DAYS MA (6 MONTHS RANGE)79

If the longest MA (50 days shown in Figure 63) is at the bottom and the shortest MA is at the top then

it is the correct order of an uptrend. A downtrend is the opposite. These uptrend/downtrends are

usually supportive indicators, which are used in connection with other indicators to make final

buy/sell decisions. Figure 64 zooms around the last crossover during the month of May for Google

Inc., where one can observe how the stock entered in an uptrend after the three MAs (20 and 50

79 http://ca.finance.yahoo.com

150

days) crossed over. Trend lines are simply straight lines drawn between at least two points (the

point could be an actual price or a MA value), indicating an up or downtrend.

FIGURE 64 GOOGLE INC. 20 AND 50 DAYS MA CROSSOVER79

6.2.3 DYNAMIC SUPPORT/RESISTANCE TREND LINES AND RELATED BREAKOUT PATTERNS

Motivation: Moving averages have also been applied to determine dynamic support and resistance

levels. They are dynamic since, in contrast to traditional horizontal support and resistance lines,

these support/resistance lines are constantly changing depending on recent price action. Technical

analysis attempts to gauge the strength and direction of a trend, based on the general assumption

that once a trend in motion, its direction will continue for some time. Many traders use these moving

averages based trend lines to determine key support or resistance levels for a stock, with support

lines being price levels at which prices tend to bounce up again (unless the support line is actually

broken) and resistance lines being price ceilings, which are typically not easily passed by a stock. MA

helps better identify the support and resistance lines (Figure 65). To find the support and resistance

lines, the following formulas are used based on Pivot Point (PP):

151

Intent: To support traders by providing patterns based on sell/buy decisions. When shares prices

approach the support lines, buyers become more likely to buy and sellers less likely to sell.At support

price levels, buyers tend to enter the market, therefore preventing further price drops. After a share

price drops below the support, this support line often becomes the new resistance level; this is be-

cause investors want to limit their losses and will sell later, when prices approach the former level.

Resistance occurs when the price hits an upside barrier, where an increase in the number of sellers

and a decrease of new buyers can be observed. If the current resistant level holds (i.e., no breakout is

observed), the supply of shares will remain larger than demand, often preventing the share price to

rise above the resistance level. A resistance level is broken; this resistance level becomes often the

new support level.

Application and Example: A pivot point (PP) analysis is often used in conjunction with calculating

support and resistance levels, similar to a trend line analysis. In a pivot point analysis, the first

support and resistance levels are calculated by using the width of the trading range between the

pivot point and either the high or low prices of the previous day. The second support and resistance

levels are calculated using the full width between the high and low prices of the previous day.

FIGURE 65 GOOGLE INC. 20 DAYS MA, INCLUDING SUPPORT AND RESISTANCE LINES79

152

6.2.4 MACD (MOVING AVERAGE CONVERGENCE/DIVERGENCE) INDICATOR

Motivation: Defined in the 1970s by Appel [144], this is one of the most popular analysis indicator

derived from MA.

Intent: Investors should pay attention to crossovers of the two signal lines (MACD Short and MACD

Long). A bullish pattern might occur if the MACD Short crosses the MACD Long from below and a

bearish pattern can be observed if the MACD Short crosses the MACD Long from above. Also in some

cases only a Zero Line crossover has been used as a signal. Buy when the MACD line crosses the zero

line, and sell when the MACD line crosses below the zero line.

Application and Example:

 .

MACD represents the difference between 26-MA and 12-MA. It uses a signal line (9 periods MA) or

zero line as the crossover baseline. Price convergence occurs when the 12-MA and 26-MA lines move

toward each other and divergence happens when they move away from each other. Bullish

divergence signal is generated when MACD rises above the signal or zero line (buy), while its bearish

divergence signals when MACD drops below the signal or the zero line (sell). Figure 39 shows Google

Inc MACD.

FIGURE 66 GOOGLE INC. 6 MONTHS MACD

153

6.2.5 BREAK-OUT PATTERNS: W-BOTTOM AND M-TOP PATTERNS

Motivation: W-Bottom and M-top patterns indicate the combined price fluctuation in a pattern that

resembles “W” or “M” shapes that are widely seen and easily recognizable price movements.

Intent: (1) To show price evolution in its movement from a weaker to a stronger pattern, as detailed

below; (2) Being reversal patterns, they define an upcoming uptrend/downtrend in price movement.

Application and Example: A W-Bottom pattern occurs when the price first drops close to the Lower

Bollinger Band (LBB) (not necessarily crosses it); then, second, it bounces up toward the Middle

Bollinger Band (MBB). Third, the price drops to usually lower low but if this low holds above the LBB

then it indicates a stronger price signal that finally strongly moves upward, which confirms a bullish

signal. There are different varieties of W-Bottom patterns; some are considered weaker than the

others. Table 18 below shows the 16 different patterns arranged from the weakest (W1) to the

strongest (W16).

The M-Top pattern is opposite to the W-Bottom; the M-Top pattern is detected when the price first

rises upward toward the Upper Bollinger Band (UBB), second pulls back to the MBB, and third moves

higher than the prior high (usually does not cross UBB), which is a sign that the rise in the price is not

strong enough, which is confirmed by the fourth move of the price downward as a bearish signal.

Below, we show the 16 different M-Tops (M1 to M16).

There exist many variations of these pure W-Bottom (Table 18) and M-top (Table 19) patterns, with

some of these variations being weaker in their prediction accuracy than others. Also these patterns

evolve over time through different levels of maturity.

The Root level represents a first indicator for the existence of a pattern and therefore is also

considered the least reliable form of that particular pattern. The remaining evolution levels of a root

pattern confirm the existence of a particular (root) pattern. The tables below show the evolution step

as a dotted red line.

154

 TABLE 18 W-BOTTOM ROOT PATTERNS EVOLUTION

W-Bottom

Root Level1 Level2 Level3

W1 W2 W3

W8

W4 W5 W10

W6 W7 W11 W12

W9 W13 W14

W15 W16

TABLE 19 M-TOP ROOT PATTERNS EVOLUTION

M-Tops

Root Level1 Level2 Level3

M2

M1

M8

M4 M3

M11

M10 M6 M5

M13

M12 M7

M16

M15 M14 M9

155

6.3 SUMMARY

As part of this chapter, we discussed software models currently used in analyzing and predicting

different software qualities such as defects, change request, and maintainability.

We introduced financial technical analysis which has been widely applied within the financial

domain to interpret and predict market movements. Financial market analysis is a mature, widely

applied domain and shares some common goals with assessing and predicting evolution qualities in

software systems. Both domains deal with the mining of existing data and have to deal with effects of

external/internal factors. In addition indicators and associated trend patterns were introduced

which are commonly used in the financial sector to identify and predict reoccurring patterns and

trends. The next chapter will discuss how some of these financial indicators and their associated

patterns can be reapplied to the software assessment domain, to identify and predict software

quality trends and patterns.

156

CHAPTER 7: EVOLVABILITY SCORE INTERPRETATION AND PREDIC-

TION

In Chapter 6, we described the financial technical analysis and the most popular indicators and

patterns used in the stock market to analyze the trends of the price changes over time and to predict

future prices. The contribution of our research is to investigate the applicability of existing stock

market indicators and associated trend patterns for the analysis and interpretation of quality

assessment scores obtained from assessing software systems. More specifically, we selected Moving

Average (MA) based indicators and patterns due to their wide use in the financial domain for

assessing, predicting, and interpreting share values and reapplied them in a software assessment

context to predict and interpret results from quality assessments (values) of software systems.

Moving Averages are commonly used with data to smooth out short-term fluctuations and highlight

longer-term trends in the stock market. We map different financial indicators and patterns, e.g., M-

Tops, W-Bottoms, and MA crossovers to the assessment scores obtained from open source projects,

and perform a qualitative and quantitative analysis to determine the applicability of financial

patterns for the software domain.

Motivation: Like the financial markets, many social, technical, and environmental factors affect the

evolution of software systems. In [9, 10] eight laws of software evolution were introduced describing

software evolvability as continuing change, resulting in increasing complexity and declining quality

of a software product. In [9, 10] software evolvability is defined as the ability to maintain and

enhance a software product continuously over its lifetime without a significant decline in its overall

quality. Common to both financial markets and software products is the need to analyze and predict

trends from large historical data repositories. The financial community assesses and analyzes

fundamental qualities of a stock to predict future stock performance by considering various external

factors (e.g., competition and global trends) and internal factors (e.g., earnings, product cycles,

current and historical stock price). Similarly, the software domain also considers internal factors

(e.g., product) and external factors (e.g., community) when assessing the quality of a software system.

157

Goal: In this research, our main objective is to introduce a cross-disciplinary approach that

investigates whether well-established financial market analysis techniques can also be applied in the

software domain. Similar to software design patterns, these financial patterns provide a pattern

description, a context of use and a method of capturing expert domain knowledge, as well as an

interpretation of the analysis results. As part of our research, we are particularly interested in the

following research question: Can the interpretation and prediction of evolvability trends be supported

by the indicators and patterns traditionally used in financial markets?

7.1 FINANCIAL TECHNICAL ANALYSIS PROCESS

The financial technical analysis is the process of interpreting and predicting software quality scores

using financial technical indicators and patterns. In order to analyze the software quality trends, we

adopt the financial technical analysis process. The input for this analysis process is the quality

assessment scores obtained by any quality assessment model (e.g., OntEQAM for evolvability quality

[17]). The output is the set of financial technical indicators and associated patterns in Table 20:

TABLE 20 SUMMARY OF TECHNICAL INDICATORS AND ASSOCIATED PATTERNS

Technical Indicator Associated Pattern(s)

Moving Average (MA) Bullish/Bearish Crossover Pattern

MA Trend Line80 Uptrend/Downtrend Direction Pattern

Support/Resistance Trend Lines Support/Resistance Breakout Patterns

Bollinger Bands Indicators (BBI) M-Tops and W-Bottoms Patterns

Similar to the financial markets, a dataset for the actual analysis will be required. The dataset should

contain sufficient data points to allow for the mining of different indicators (e.g., MA 20/50); in our

research, the input dataset consists of the quality assessment scores. Depending on the actual

analysis and prediction context, these quality scores can be obtained at different granularity levels,

ranging from the system level to the artifact level (e.g., evolution of commits over time as measure for

80 Trend line is a line drawn between two prices over time, used to interpret price movement/trend as rising, falling, or stable.

158

the evolution of the version control artifact) with snapshots being taken at regular time intervals

(similar to the daily stock market price). In the next step, we calculate the financial indicators (e.g.,

MAs and Bollinger Bands) to use them in the score trend analysis; these same indicators are also

used as support indicators for the analysis patterns identified in the pattern detection step. The

pattern detection highlights the reoccurrences of popular financial patterns, such as W-Bottoms and

M-Tops. In the last step, we combine the results of the previous two steps (indicators and patterns)

for further interpretation of the applicability of these patterns and the prediction results in the

software domain. The steps we follow in order to achieve this goal are summarized in Figure 67.

FIGURE 67 FINANCIAL TECHNICAL ANALYSIS PROCESS

Quality Scores
Acquisition

•numerical representation of the quality scores calculated at regular time intervals (e.g.,
each 10 days)

Techncial
Indicators

Calculation

•calculate the results of financial techncial indicators, such as MA and BB, to predict
quality scores.

Patten
Detection

•detect financial analysis patterns such as M-Tops, W-Bottoms, and crossovers.

Results
Analysis

•combine the indicators' results and the detected patters' results to improve the
accuracy of the analysis.

Validation

•validate the prediction of quality score in terms of the error% and compare the results
against the linear regression model.

159

7.2 CASE STUDY- PREDICTING SOFTWARE EVOLVABILITY QUALITIES

The case study applies the financial technical analysis process steps on four open source projects in

order to interpret and predict their evolvability quality scores.

7.2.1 QUALITY SCORES ACQUISITION

We evaluate the applicability of the proposed financial indicators by applying them to the prediction

of quality aspects related to the evolvability of open source projects. For the study, we select four

mature, midsize open source projects (Table 21) with software repositories, containing several years

of development data history. Data points that correspond to a 10-day time interval are extracted and

the evolvability scores are calculated for each data point. The choice for 10 days for our data points is

based on existing approaches, e.g., time series analysis for predicting new change requests per KLOC

where the data points of choice were bi-weekly, the study covered five years history of three projects

(Mozzila, Firefox and JBoss)[110].

Another reason why we selected the data points every 10 days is the need to obtain enough data

points to calculate the MA indicator; for example, you need a minimum of 50 snapshots to compute

the first data point for a 50 MA. Three of the projects chosen as part of this case study (i.e., Appfuse82,

Pulse84, and Beehive81) are from the same domain (open source, Java-based, web programming

tools). They all date back to 2005-2006 and provide us therefore with more than 100 data points to

analyze. We also chose ArgoUML85, an open source, Java-based project that addresses a different

domain (i.e., modeling) and provides more data points for interpretation. Below is a more detailed

description of each project:

Apache Beehive81 builds an object model on J2EE and struts for easier web programming. The

project was introduced in 2005 as part of the Apache software foundation. In Jan 2010, the project

retirement was announced due to community inactivity.

81 http://beehive.apache.org/

http://beehive.apache.org/

160

Appfuse82 is a Java based web programming tool. We selected Appfuse since it is has a mature, well-

established source code. Despite its small community size (18 contributors with a single active83

member), Appfuse is actively evolving. Our goal is to evaluate how this property would affect its

evolution pattern.

Pulse84 project provides an extensible portal for building J2EE web application. The project has a

total of 14 members but less than five have actively contributed.

ArgoUML85 is a CASE tool for drawing UML diagrams. The project has been actively developed as

part of the tigris.org open source community since 1998. To date, 51 members have contributed into

ArgoUML code but with an average of 6 active committers at a time.

TABLE 21 M-TOP PATTERN APPLICABILITY (ACROSS ALL PROJECTS)

 Beehive86 Appfuse87 Pulse88 ArgoUML89

Data ranges
considered

2005 -2010 2006 -2012 2005 - 2012
1998 -
2012

Versions analyzed 1.0.1-1.0 1.5-2.1 0.4-1.0 0.10.1-0.34

Project status Retired Active Active Active

Domain J2EE J2EE J2EE Modeling

of snapshots (data
points)

113 288 137 557

of revisions 1154 3336 2722 17712

of developers 11 18 14 51

of files 12101 5012 7532 15899

For the assessment scores, we consider evolvability quality scores for open source projects (e.g.,

evolution of commit activity or code style errors). These scores were obtained for every 10 days

82 http://appfuse.org/display/APF
83 active here refers to a contributor who committed more than the average number of total commits based on the version
control system
84 http://sourceforge.net/projects/pulse-java/
85 http://argouml.tigris.org/
86 http://beehive.apache.org/
87 http://appfuse.org/display/APF
88 http://sourceforge.net/projects/Pulse-java/
89 http://argouml.tigris.org/

http://appfuse.org/display/APF
http://sourceforge.net/projects/pulse-java/
http://argouml.tigris.org/
http://beehive.apache.org/
http://appfuse.org/display/APF
http://sourceforge.net/projects/pulse-java/
http://argouml.tigris.org/

161

through OntEQAM [17], our evolvability assessment quality model; and our fuzzified, quality

assessment process described in the previous chapter.

7.2.2 FINANCIAL TECHNICAL INDICATORS CALCULATION

In this step, for each project we compute the technical indicators 20-MA, 50-MA, UBB, LBB, as well

as the support and resistance lines based for the input quality scores acquired in the previous step.

1. MA calculation where n is the number of data points; in our case study we use 20 for

shorter- and 50 for longer-term MA. Y is the value of each data point; in our case study Y

represents the evolvability quality score value obtained using OntEQAM (Chapter 4) and using

our fuzzified quality assessment process (Chapter 5).

2. Upper/Middle/Lower Bolinger Bands (UBB/MBB/LBB): are calculated using the following

formulas where DP MA is the 20-MA values and STDEV is the standard deviation.

 []

 []

3. Support and Resistance lines: are computed based on the pivot point value (PP) equation where

the scores are calculated relative to the snapshot of time at which the score is considered:

Details about these indicators are described in section 6.2.

7.2.3 PATTERN DETECTION

As defined in the previous chapter, we detect M-Tops/W-Bottom, bullish/bearish crossover, and

support/resistance lines breakout patterns. Details about the patterns definition and calculation are

discussed in section 6.2. The pattern detection process is a semi-manual process, and obtained

quality scores for the project being analyzed are exported to an Excel sheet. With some of the

162

equations are provided directly within Excel (e.g., MA and linear regression) or manually entered and

copied over to other projects.

1. Bullish/Bearish MA crossover patterns detection: are detected whenever the short/long-term

MA trend lines cross each other. A bearish crossover is detected when the longer-term MA

crosses over the shorter MA indicators. In the stock market, the bearish crossover is also called a

dead crossover and indicates a sell signal because whenever a bearish crossover happens, the

future stock price is expected to go down (downtrend). The opposite is the bullish crossover,

which is detected when the shorter-term MA crosses over the longer-term MA indicator. Bullish

crossover pattern is also called a golden pattern because it indicates a buy signal and an expected

uptrend for the future prices. The mapping of the pattern interpretation in software quality is

described below in the Table 22.

2. Support/Resistance lines breakout patterns detection: The breakout patterns are based on the

support/resistance lines calculations. In the stock market, these lines indicate the strength of the

price trend (in our case, the evolvability quality trend). In the stock market, when the stock price

crosses above the resistance line indicator, a resistance breakout pattern is detected and

indicates a sell signal because the price should subsequently fall. The support line breakout

pattern happens when the stock price crosses below the support line indicator. It indicates a buy

signal and the price is expected to subsequently rise because of the increase in demand. The

mapping of the pattern interpretation in software quality is described below in the Table 22.

3. W-Bottom/M-top pattern detection: To detect these two patterns, we derived several pattern

detection rules. These rules address issues related to pattern granularity, outliers, and detection

of different pattern evolution levels. Figure 68 describes the M-Top and W-Bottom pattern points

that are observed when the detection process takes place.

163

FIGURE 68 M-TOP & W-BOTTOM PATTERNS

FIGURE 69 SAMPLE PATTERN DETECTION (BLACK IS A PATTERN AND RED IS NOT A PATTERN)

 X-Axis rule: For the detection of the initial core patterns, we consider a chart scale that

covers 3 years of a project’s lifetime and data points for every 10 days. We expect that the

initial core patterns occur over 4 to 6 data points, based on [141] work which states that the

closer the tops/bottoms the less valid the pattern (the duration between the two

tops/bottoms should be at least a month, which indicates that the root pattern would span

for more than a month90. In our case study, we considered a 40- to 60-day range). We chose

4-6 data points based on the stock market with the evolution of these core patterns adding at

least one data point for each evolution level. For example, in Figure 69, the first red M-Top-

like pattern is not detected because it does not span more than one data point (a month in

our example here).

 Y-Axis rule: To reduce noise in the data and the potential false positives that may result, we

only consider that scores are part of the pattern if they reflect at least a 15% change in score

value [141].

90 http://www.trending123.com/patterns/double_bottom.html

http://www.trending123.com/patterns/double_bottom.html

164

 Pattern height rule: The two tops of an M-Top and the two bottoms of a W-Bottom pattern

cannot be at the same level in order to be an actual instance of these patterns. According to

[141], there should be at least a 15% incline between the two tops/bottoms. The second W-

Bottom-like pattern in Figure 69 violates this rule, which is why it is not detected.

 Noise rule: If as part of a pattern evolution, outlier data points occur (e.g.,), we ignore

these if (a) they are only a single data point and (b) the outlier has no lasting affected on the

general pattern trend.

We performed a two-step analysis process. First we detect the occurrence of root patterns (e.g., W1,

M2) and then determined if the pattern continued evolving (e.g., W1 evolves to W2, W3, and then

W8); refer to Figure 70 for W-Bottom and M-Top root patterns and their associated evolution

patterns.

165

FIGURE 70 W-BOTTOM AND M-TOP ROOT AND EVOLUTION PATTERNS

The M-Top and W-Bottom pattern detection approach is semi-manual, whereby the UBB/MBB/LBB

and all data points are automatically calculated and exported in excel format; in addition the manual

process includes creating the charts and detecting the root and evolution patterns Figure 70.

166

Secondly, once a pattern is confirmed through the evolution level, we evaluate the short-term trend

in evolvability scores to validate if the pattern matches the actual evolution trend. The mapping be-

tween the stock market patterns analysis and the software evolvability score analysis used to per-

form this validation step is summarized in Table 22:

TABLE 22 THE MAPPING BETWEEN STOCK PRICE AND EVOLVABILITY SCORE PATTERN INTERPRETATION

Pattern Detected when Stock market inter-
pretation

Evolvability quality91 score
interpretation

Bearish cross-
over

Longer-term MA
crosses over/above
the shorter-term
MA.

Declining price trend
=> sell signal

Declining quality

-> Avoid or improve

Bullish crosso-
ver

Shorter-term MA
crosses over/above
the longer-term
MA.

Buy signal & price up-
trend

Positive signal -> Quality will
improve

Resistance
breakout

Quality score cross-
es above the re-
sistance line

Potentially long term
buy signal (till new re-
sistance to sell)

Positive signal -> consider reuse
-> quality continue improving

Support
breakout

Quality score cross-
es below the sup-
port line

Potentially long term
sell signal (till new sup-
port to buy)

 Quality is declining

=> Avoid adoption

M-Tops Figure 70 Bearish signal & price
will drop

Warning -> quality will decline

W-Bottoms Figure 70 Bullish signal & price
will rise

Positive signal -> quality will
improve

7.2.4 RESULT ANALYSIS

Here we combine the detected pattern to interpret and predict the quality score trend. We start with

W-Bottom and M-Top then use the MA crossovers and support/resistance breakout patterns to

confirm our findings. The approach outlined below is used to improve the accuracy of the

interpretation:

91 Quality here does not necessarly mean the overall project quality. It is the evolution quality of the concept used in the anal-

ysis and prediction such as measure, attribute, or dimension.

167

Analysing W-Bottom and M-Top Patterns

We considered a pattern occurrence to be a true positive (TP) if a pattern evolves (based on pattern

detection rules) to a stronger version of its root W-Bottom/M-Top pattern; otherwise the pattern is

considered to be a false positive (FP).

Precision (Precision = TP/ (TP+FP)) captures the likelihood that we observed a pattern evolve from

the root level to a particular evolution level.

In our analysis, we first determined the frequency of the root pattern and if the patterns actually

evolve into stronger evolution levels. The longer a pattern follows its evolvability path, the stronger

the evidence that the root pattern can actually predict a short-term trend.

For the four FLOSS projects, we manually annotated the W-Bottom and M-Top patterns. Figure 71

and Figure 72 show M-Tops and W-Bottoms for part of ArgoUML history (2009-2011) and Pulse

(2008-2012) lifetime. The X-Axis represents the data points and the Y-Axis represents the

evolvability score values.

The evolvability score is obtained in 10-day snapshots using the OntEQAM quality assessment model

and our fuzzy assessment process; Figure 71 and Figure 72 show the evolution in number of commits

made on the version control system for each of the projects. We highlighted the patterns and mapped

them to their equivalent root pattern (the solid black line); then we observed their evolution (black

dotted line). Some patterns evolve to their strongest form and some do not (e.g., the last M13 did not

evolve while W6 evolved to its strongest form W12).

168

FIGURE 71 ARGOUML EVOLUTION PATTERNS 2008-2011

FIGURE 72 PULSE- PATTERNS ANNOTATION

The results of this analysis applied to the four open source projects considered are shown for both

M-Top and W-Bottom pattern types in Table 23 and Table 24.

-1

0

1

2

3

4

5

6

7

8 Evo. Score

UpperBB

LowerBB

M13

M13

M11

W6

-1

0

1

2

3

4

5

6

7

8
Evo. Score

UpperBB

LowerBBM11

M8

W9

W4

169

TABLE 23 W-BOTTOM PATTERN APPLICABILITY (ACROSS ALL PROJECTS)

Root Level1 Level2 Level3

Pattern TP FP Precision Pattern TP FP Precision Pattern TP FP Precision Pattern

 W1 0 0 NA W2 0 0 NA W3 0 0 NA W8

 W4 2 2 50% W5 0 2 0% W10

 W6 7 0 100% W7 7 0 100% W11 2 5 28% W12

 W9 3 1 75% W13 2 1 66% W14

 W15 0 0 NA W16 0 0

TABLE 24 M-TOP PATTERN APPLICABILITY (ACROSS ALL PROJECTS)

Root Level1 Level2 Level3

Pattern TP FP Precision Pattern TP FP Precision Pattern TP FP Precision Pattern

M2 2 0 100% M1 0 0

M8 15 0 100% M4 4 11 26% M3

M11 14 1 93% M10 13 1 92% M6 10 3 76% M5

M13 10 1 90% M12 3 7 30% M7

M16 3 0 100% M15 1 2 33% M14 1 0 100% M9

Observations:

1. We observed that the root patterns follow their evolution patterns for up to 100% of the time in

Level 2 and Level 3 and therefore can predict short/midterm trends. This means that the M-

Top/W-Bottom patterns and price evolution trends as used in the financial technical analysis

domain are also applicable to the software evolvability quality domain. Once a pattern has been

detected, the behavior that has been observed and associated in the financial domain with these

patterns can also be re-applied to the software domain, as described in Table 22 (e.g., short-term

price fall/rise).

2. Similar to the financial markets, W and M-patterns seem to perform better for short-term trend

prediction. For example, in Table 24 when M11 root pattern is detected in 14 TP occurrences, the

short-term prediction is that the quality score value will drop more to form M10, which was true

170

in our case study with 92% precision. M10 pattern is predicted to drop even further to form M6,

and that prediction was 76% precise. This observation indicates that if the user aims for a high

precision rate (> 90%) then the applicability of the M-Top/W-Bottom patterns is better limited

to the short term evolution trends (mostly up to level 1).

3. The precision rates are usually lower for stronger evolution patterns. We believe that this is

related to the fact that stronger evolution patterns occurrences are less frequent. One more

factor to consider when calculating the precision rate is the human error because of the semi-

manual pattern detection/annotation part of the case study.

4. Some root patterns (e.g., M11 and W6) play a more important role on a pattern’s ability to

predict short-term assessment scores than others. For example, the M11 root pattern

outperformed the M8 pattern and W6 outperformed W4 and W1 in our studies. This indicates

that the trustworthiness of the M11 and W6 is higher (within the scope of this case study).

Analysing MA Crossover and Support/Resistance Lines Breakout Patterns

We also evaluated the following patterns on our dataset of four open source projects: Bullish

crossover, Bearish crossover, Resistance breakout, and Support breakout. For our study, we used 20

and 50 data points for Moving Averages. The evolvability scores are based on the evolvability scores

for the number of commits made by each project, extracted from their version control system. These

assessment scores are calculated every 10 days using the OntEQAM quality assessment model and

our fuzzy assessment process (the results used for analyzing M-Top and W-Bottom above). Table 25

provides a summary of our analysis for the MA-crossover patterns and resistance/support lines

breakouts for the four open source projects in our dataset. We considered a pattern occurrence to be

a true positive (TP) if:

 A bullish crossover is followed by an uptrend that lasted more than 4 weeks. If it lasted less

than 4 weeks, it is a FP (not significant enough of a post-pattern effect to make a prediction).

 A bearish crossover is followed by a downtrend that lasted more than 4 weeks, and FP if

less.

171

 A resistance line breakout continues upward for more than 2 weeks, and FP if less.

 A support line breakout continues downward for more than 2 weeks, and FP is less.

Otherwise, the pattern is a false positive (FP). The Precision is again = TP/ (TP+FP).

We chose a 4-week duration for the crossover patterns and a 2-week duration for the breakout

patterns because crossover patterns are calculated using MA lines and the MA is based on the past

20-50 historical data points. This historical duration is long enough to preserve the post-pattern

effect for a longer duration (4 weeks in our example). While the breakout patterns are based on the

evolvability score value breaking the support/resistance lines. The evolvability score is highly

volatile, which could be due to two factors: first, the selected measure itself (e.g., the number of

commits over time in this example) and second performing the assessment in such a low granularity

(10-day snapshots in this example). Hence, the effect of the post-breakout pattern does not last long

(if the breakout lasts for up to 4 weeks then it is a sign of pattern reversal, i.e., if the score breaks the

resistance line and lasts longer than 4 weeks then we expect the resistance line to become the new

support line). Figure 73 and Figure 74 show the crossover and breakout patterns for Pulse and

ArgoUML. More details about our observations for these figures are provided below.

FIGURE 73 PULSE CROSSOVER AND BREAKOUT PATTERNS

0

1

2

3

4

5

6

7

8 Evo. Score

20MA

50MA

Linear (Resistance)

Linear (Support)

Support Line

Resistance Line

Bearish Crossover

Bullish Crossover

Resistance breakout

172

FIGURE 74 ARGOUML- RESISTANCE BREAKOUT PATTERN /BULLISH CROSSOVER CAUSES A PATTERN REVERSAL

Observations:

1. The detected bullish crossover is followed by an uptrend (reflecting improvement in the quality

score), similar to the occurrences of the pattern in the stock market financial analysis (Figure

73). In this case the uptrend is strong enough to cause the score to breakout the resistance line

and lasted > 2 weeks (yet not long enough to cause a pattern reversal).

2. The detected bearish crossover is followed by a downtrend (a decline in the evolvability quality

score), which again confirms with the stock market financial analysis (Figure 73).

3. The resistance line breakout is confirmed if the uptrend breakout duration lasts more than 2

weeks, which means there is a possibility of trend reversal (the evolution will continue upward

above the resistance line then the resistance line will become the new support). Figure 74 shows

this case in ArgoUML around the end of 2001. In Figure 74 we see that the evolvability score is

below the first resistance line until the end of Sept 2001, at which point the score starts

improving upward to breakout the resistance line and continues for around two months, at

1

1.5

2

2.5

3

3.5

4

Evo. Score

20MA

50MA

Linear (Resistance)

Linear (Support)

Resistance Line

Resistance Line

Support Line

173

which point the score trend builds a new resistance line and the old resistance becomes the new

support.

4. The support line breakout is confirmed in the same way as the resistance line breakout but in a

downtrend fashion rather than an uptrend. In Pulse (Figure 73), the evolvability score did not

breakout the support line at any point of its lifetime. This indicates that Pulse preserved a stable

score range (not necessarily a good score range) over time and the score did not drop strongly

enough to break the support line level. Figure 73, also shows a support breakout for ArgoUML t

around mid-November 2001. However, this breakout did not last more than 2 weeks and

therefore is considered a False Positive(FP); and its post-pattern effect (downtrend for the

support line breakout) will have no lasting effect. This decision is confirmed in this example,

since the post-pattern downtrend effect did not occur and the score continued instead

improving.

5. For our dataset, both crossover patterns outperformed the resistance and support lines breakout

patterns (Table 25). The observation is expected because, as explained earlier, the crossover

patterns are stronger as they consider an average of long historical data points (20-50 data

points in our case study), while the breakout patterns are based on the volatile evolvability score

value.

Table 25 shows the TP, FP, and precision rate of the pattern detection for all the projects considered

in our case study.

TABLE 25 QUANTITATIVE ANALYSIS OF MA-CROSSOVER AND SUPPORT/RESISTANCE LINES

Pattern TP FP Precision

Bullish crossover 10 6 62%

Bearish crossover 14 4 77%

Resistance breakout 29 27 51%

Support breakout 0 11 0%

174

A more detailed analysis on a per project basis (Table 26) shows a significant variation among

projects not only in terms of pattern frequency but also in terms of their ability to predict.

TABLE 26 QUANTITATIVE ANALYSIS OF MA-CROSSOVERS AND SUPPORT/RESISTANCE PER INDIVIDUAL PROJECTS

Project

Overall
precision

Bullish
crossover
precision

Bearish
crossover
precision

Resistance
breakout
precision

Support
breakout
precision

ArgoUML 59% 77% 80% 68% 0%

Beehive 75% NA 100% 33% NA

Appfuse 58% 33% 66% 35% NA

Pulse 83% 100% 100% 25% NA

For higher prediction accuracy, we correlate the MA crossover pattern with the M-Top/W-Bottom

patterns to see if they confirm the same trend.

Figure 75 shows the Pulse project evolvability score over time with annotated patterns. Around

March 2010, we detected the first M-Top pattern (M11). We observe that the second top of M11 goes

upward from score value 2 to 8, which is the highest score that Pulse ever achieved. That score

uptrend affected the short-term MA (20-MA), whereby it moved in an uptrend fashion until the end

of August 2010. This is a significant, long-lasting post-pattern effect because the change in score

should be strong enough to cause the last 20 historical data points to move upward.

Around the same time (March 2010), there are two crossover patterns; the first is a bullish crossover

whereby the short-term MA crossed over the longer-term MA. The interpretation of this crossover

indicates an expected rise in the short-term future scores (expected based on Table 22). Both M-Top

and MA-Crossover patterns confirmed the uptrend prediction of the evolvability score.

The opposite case happens around mid-November 2010, at which point the MA shows a bearish

signal accompanied by an M-Top (M8) that reaches score 4 (half the first M-Top).

We conclude that the stronger the M-Top pattern, the more likely a crossover is to happen; M11

caused a bullish crossover (March 2010) while the two weaker M8 patterns that happened after

(between May and November 2010) were needed to initiate a bearish crossover. Strong and weak

175

here refer to the M-Top height (the higher the stronger, as the height here corresponds to the quality

score value and the strongest value achieved is 8 out of 10 for Pulse). Based on the financial technical

analysis, a bullish crossover is followed by an uptrend (higher score compared to the overall score

range) and a bearish crossover is followed by a downtrend or lower scores; we can consider these as

early signals to a rise or drop in the upcoming score.

FIGURE 75 PULSE- MA CROSSOVER PATTERN AND M-TOPS PATTERN CORRELATION

7.2.5 VALIDATION

In this section, we validate the MA trend line and crossover patterns against linear regression as one

of the most popular and most used indicator for trend analysis and prediction in software domain

[105]. Figure 76 below shows the linear regression applied to the same dataset on which we

performed our experimental analysis. Figure 76 also shows the short-term (20-MA) and longer-term

(50-MA) trend lines and crossover patterns against the evolvability score.

The MA trend lines are more sensitive to the fluctuations in evolvability score over time; for example,

throughout the year 2010 there has been a significant improvement in the evolvability score, which

is obvious from both 20-MA uptrends that started around March 2010. This uptrend was confirmed

by the bullish crossover pattern. This evolution trend gives the user an early sign that the

evolvability quality is improving significantly compared to the historical evolvability scores.

-1

0

1

2

3

4

5

6

7

8
Evo. Score

20MA

50MA

Bearish Crossover
Bullish Crossover

176

However, by only considering the linear regression trend line for the year 2010, the assumption

would be that the evolvability score is slowly dropping over time in a linear fashion. However, the

real evolution in 2010 is improving.

FIGURE 76 20-MA, 50-MA AND MA CROSSOVER PATTERNS VERSUS LINEAR REGRESSION

To assess the performance of our prediction, we reuse the Percent Prediction Error (PPE) formula as

defined in [110] where an agreed on error of 25% is considered acceptable for 75% of the dataset

[110].

 (

)

In our case study, the actual value represents the evolvability score value and the prediction is based

on the 20-MA.

Table 27 summarizes the actual evolvability score for the last three data points per project. The table

shows side-to-side comparison between the predictions applied using linear regression (LR) versus

the 20-MA used in our approach.

Linear regression is calculated using LR = TREND(actual y’s, actual x's, const)

0

1

2

3

4

5

6

7

8 Evo. Score

20MA

50MA

Linear (Evo. Score)

Bearish Crossover

Bullish Crossover

177

With the y value representing the actual quality scores for all data points before the next data point

to be predicted for the formula y= mx + b. Actual x’s represent an optional set of the snapshots (DPs),

for which the score is calculated using the same formula y = mx +b. Const is an optional value that is

set to zero if b is zero. The slope (m) is calculated using the difference between two scores over time

(e.g., (x1, y1) and (x2, y2) where x is the score and y is the time then m = (y2-y1)/(x2-x1)).

Note that it is by coincidence in our evaluation that the scores for the data points in the four projects

shown below (Table 27) were close.

TABLE 27 ACTUAL VERSUS PREDICTED SCORE FOR THE LAST THREE DATA POINTS USING 20-MA AND LR

Project 1st actu-

al

1stpredicted 2nd ac-

tual

2nd predicted 3rd ac-

tual

3rd predicted

20-MA LR 20-MA LR 20-MA LR

ArgoUML 1.45 1.75 2.30 1.48 1.76 2.31 1.45 1.63 2.31

Beehive 1.45 1.45 3.79 1.45 1.45 3.78 1.45 1.45 3.77

Appfuse 1.45 1.46 2.98 1.45 1.46 2.98 1.45 1.46 2.98

Pulse 1.46 1.51 1.58 1.47 1.51 1.58 1.54 1.50 1.57

Table 28 shows the total number of data points for each of the four open source projects we used in

this chapter as part of our case study. For each project, we calculate the 20-MA and associated the

number of data points that has a prediction error percentage (PPE%) <= 25 (PPE% <=25% is shown

to be an acceptable error rate for 70%-75% of the dataset [110]). This is calculated as:

PPE% relative to total DPs = (#PPE <=25%) * 100 / #of DPs used in 20-MA

 Table 28 then shows the percentage of the predicted data points that met the 25% PPE out of the

total number of that data points used per project. Then, we predict the last three data points in our

dataset (e.g., in ArgoUML, we use 554 DP for training and the last three for testing). The last three

columns show the PPE% of the three predicted DP.

178

TABLE 28 PERCENT PREDICTION ERROR RELATIVE TO THE TOTAL DATASET PER PROJECT (USING 20-MA)

Project #Snapshots

(data points)

#PPE

<=25%

≈PPE%

relative to

total DPs

1stDP pre-

diction

PPE%

2ndDP

prediction

PPE%

3rdDP pre-

diction

PPE%

ArgoUML 557 334 70% 21% 18% 12%

Beehive 113 86 73% 3% 3% 3%

Appfuse 288 125 50% 0.7% 0.6% 0.6%

Pulse 137 57 50% 3.4% 2.7% 2.2%

In Table 29, we apply the linear regression prediction to the same dataset and calculate the PPE% to

validate our prediction against linear regression.

TABLE 29 PERCENT PREDICTION ERROR RELATIVE TO THE TOTAL DATASET PER PROJECT (USING LR)

Project #Snapshots

(data points)

#PPE

<=25%

≈PPE%

relative to

total DPs

1stDP pre-

diction

PPE%

2ndDP

prediction

PPE%

3rdDP pre-

diction

PPE%

ArgoUML 557 151 30% 58% 56% 59%

Beehive 113 0 0 162% 161% 160%

Appfuse 288 21 8% 105% 105% 105%

Pulse 137 29 25% 73% 72% 65%

Table 28 and Table 29 illustrate that our prediction approach using the 20-MA provides a higher ac-

curacy (lower error rate per dataset) compared to standard linear regression models. We observed

that the linear regression approach, the number of data points that did not exceed the target ac-

ceptable error rate was less than half that of the MA approach.

Further analyzing the PPE%, the goal is to have PPE% as low as possible (PPE% of zero means that

our predicted value equals the actual value). The average PPE% for the three predicted data points

using 20MA is 5.7% while the Linear Regression approach provided an average error rate (PPE%) of

98% for the same dataset. In linear regression, PPE% exceeds 100% (the predicted value is more

than double the actual) in some cases such as Beehive and Appfuse. This means that the predicted

179

score value is more than one time higher than the actual value; for example, in Beehive the 3rd pre-

dicted DP with an error rate of 160% had a predicted score 3.77 while the actual is 1.45. As a result,

the predicted value is twice the actual value in some cases where linear regression approach is used.

Based on our interpretation, the following are the main factors that could impact the accuracy of the

quality prediction:

 Volume: The number of data points (snapshots). The larger (as in ArgoUML) the number of

data points considered, the higher the error rate. Unless the project is relatively stable and

the scores do not fluctuate over time.

 Stability: The stability of the score value over time is dependent on the measure itself, such

as the number of bug reports or code size or turnover in community members. The score

varies by the project’s activity on the selected measure being predicted. In our example, we

chose to predict the number of commits to be made in the next 10, 20, and 30 days. The

more active the project is, the higher the fluctuation rate of the score (less stability) and

hence the higher the prediction error.

 Prediction model: Different models, such as moving averages and linear regression, provide

different prediction rates. In our case study, we show that moving averages can provide for

short-term predictions (20 data points in this example) a lower error rate compared to line-

ar regression.

Our approach provides two major advantages over existing approaches (e.g., linear regression). First-

ly, our evaluation shows that our approach can achieve a higher precision (lower error rate) for pre-

dicting the short-term trend (next three data points) based on our validation presented above. This

finding proves that the financial technical indicators (such as MA) and patterns (such as crossovers,

M-Tops, and W-Bottoms) are applicable when interpreting and predicting software evolvability qual-

ity.

The second advantage includes the supporting patterns such as the crossovers, M-Tops and W-

Bottoms. These patterns (despite being calculated semi-manually) provide a finer grained prediction

180

of the next quality score. For example, if we detect a root W-Bottom pattern such as W6, then we can

predict that the next score will be higher (based on the next evolution pattern on W6) while in other

models such as LR, the scores are smoothed in a linear line where rises and drops are unpredictable.

Based on our evaluation, we do recommend using the MA for score prediction when the user is inter-

ested in short term prediction and the user is concerned about the precision of the prediction score

where the support of other indicators/patterns comes in handy. As part of our study, we predicted

the same data set using 50MA to see how a longer-term interval would affect the prediction accuracy.

The results for the 50MA are still better than the prediction provided by the LR model (e.g., for Ar-

goUML where PPE% relative to total DPs is approximately 30% using LR against 63% using 50MA).

The linear regression model is preferred for longer-term predictions (beyond the 50MA) as it smooth

down the evolution trend over time by considering all the historical data points rather than the last

20 or 50 for example.

7.3 SUMMARY

In this chapter, we studied the applicability of the financial technical analysis used for the stock price

evolution forecast to interpret and predict the software evolvability score. Our objective was to

address the question: Can the interpretation and prediction of evolvability trends be supported by the

indicators and patterns traditionally used in financial markets?

To answer this question we applied five different steps 1) define the dataset of quality scores; 2)

compute the financial technical indicators (e.g., MA and BB and support/resistance lines); 3) detect

the associated patterns (e.g., M-Top, W-Bottom, MA crossovers and support/resistance line

breakouts); 4) map the analysis used in stock market to our evolvability scores; and, finally, 5)

validate our approach against existing, popular approach such as the linear regression model.

Our evaluation shows that the use of moving average and the supporting patterns provide lower

prediction errors (higher precision) and finer grained prediction compared to a linear prediction

line. The answer to our question is yes, since financial indicators such as MA provided an error

181

prediction rate as low as 5.7% and can therefore, as discussed in [110], be considered a reliable

predictor. Patterns such as M-Top and W-Bottoms to predict rises/drops future score followed the

expected behaviour as in the stock price analysis by following the trend of the evolution patterns.

182

CHAPTER 8: CONCLUSION AND FUTURE WORK

This chapter concludes the presented work in this thesis by revisiting our initial research questions

and explaining how they were addressed in the thesis. This chapter also provides an overview of the

potential threats to validity. Finally, we discuss future work.

8.1 REVISITING OUR RESEARCH QUESTIONS

 RQ1: Can a formal, reusable quality assessment metamodel be developed that is readable by

both humans and machines?

o We address this research question by introducing a novel, evolvable, quality assess-

ment metamodel (SE-EQUAM) [120, 12] in Chapter 3. This model is based on an on-

tological representation to provide a metamodel that is both machine- and human-

readable. The SE-EQUAM metamodel can be reused and extended by domain specific

quality assessment models regardless of the quality or set of qualities the model is

assessing. In Chapter 4, we demonstrated a concrete instance (reuse) of the SE-

EQUAM model by introducing OntEQAM [17], an ontological evolvability assessment

model. The SE-EQUAM metamodel takes advantage of the integration of semantic

reasoning technology, OWL DL, and SPARQL.

 RQ2: How to address uncertainties around the assessment score boundaries?

o Assessing software qualities involves a diverse set of artifacts. However, the

knowledge captured by these artifacts might be either incomplete or missing during

extraction or population time. This incomplete or missing knowledge can cause un-

certainty about the assessment result/score. In Chapter 5, we show that our quality

assessment process is based on a fuzzy logic approach in which uncertainty is ad-

dressed by avoiding crisp score boundaries (e.g., a measure value of x% or less is

considered to be very poor, whereas as a score of x% + 0.1 is ranked as only poor).

We apply the fuzzy logic assessment approach as part of our evolvability assessment

183

where the assessment score has relationship strength with the range (e.g., 40% poor

and 60% average).

 RQ3: Can the interpretation and prediction of evolvability trends be supported by indicators

and patterns used traditionally in financial markets?

o In Chapter 7, we introduced a novel, interdisciplinary research that re-applies the

stock market analysis patterns used to interpret and predict stock price evolution on

the software evolution [13, 14]. We also compared our prediction against the linear

regression prediction model, one of the most popular prediction models. Our valida-

tion showed that the use of moving average and the supporting patterns provides

lower prediction errors (reached approximately 94% accuracy) and finer grained

prediction supported by evolvability patterns, such as M-Top and W-Bottom (com-

pared to a linear prediction line).

 RQ4: How can the formal reusability of the metamodel be validated and the integration of

the assessment results be supported?

o To validate the reusability of our SE-EQUAM [12] semantic, ontological metamodel in

Chapter 3, we instantiated/resued SE-EQUAM ontological representation by populat-

ing OntEQAM [17], our evolvability quality model in Chapter 4. OntEQAM [17] is ex-

tracted from existing models (e.g., ISO/IEC 9126 [15] and QUALOSS [16]). OntEQAM

formally reuses SE-EQUAM ontological representation and semantics and assesses

evolvability using the fuzzy logic assessment process described in Chapter 5. The on-

tological model we have for SE-EQUAM and its instance OntEQAM is enriched with

knowledge extracted from the assessment results. The knowledge base is used for

further analysis and custom queries.

184

8.2 THREAT TO VALIDITY

8.2.1 DESIGN AND IMPLEMENTATION THREATS

One of the major benefits of our unified quality metamodel SE-EQUAM [12] is the ease of formal (ma-

chine-readable) reuse. Reusability in this context requires an ontology expert in order to extend our

ontology metamodel to a domain ontology model. In particular, modeling new constraints and rela-

tions or inferring knowledge that is not modeled in the metamodel requires expertise in ontology

modeling and reasoning. We believe that this threat is not unique to our domain and can be observed

in other modeling domains (e.g., software design, database design), where the quality of the final

model/design similarly depends mostly on the expert performing the design/modeling step.

Another threat related to SE-EQUAM is the possibility of having design defects. Assessing the ontolo-

gy design quality is an inherently difficult problem, since what constitutes quality depends on differ-

ent non-functional requirements (e.g., reuse, usability, extendibility). We partly address this threat by

using an ontological reasoner (e.g., Pellet [149]), which is capable of checking the ontology design for

syntactical and consistency problems. However, the verification and optimization with respect to

other functional and non-functional requirements remain the responsibility of the domain expert.

The possibility exists of a threat caused by implementation defects when instantiating (reusing) our

metamodel ontology. We have addressed this potential threat by instantiating a partial evolvability

domain ontology model and comparing the results obtained from this model against results pub-

lished by QUALOSS [91]. For this validation, both models were using the same input and quality

model factors, subfactors, and attributes.

Validating the correctness of the newly inserted knowledge, such as adding a new attribute that is

not actually an attribute, is another potential threat. This threat can only be partially mitigated by

adding rules and constraints against the populated concepts, since much of the interpretation of what

constitutes an attribute in an assessment model is subjective to human interpretation and the

specific assessment context.

185

Adopting most of the measures results through using external tools could be a threat for two

reasons: first, there is a risk associated with maintaining the tool interface with our implementation

if the tool API changes and second there is uncertainty regarding the accuracy of the results

calculated. For the first threat, unless the tool modifies the XML generated report structure, there

should be no inconsistency with our current implementation. If the XML report structure changes,

then an expert should manually update the parser implementation we have for that tool. In addition,

we partially addressed the second threat by selecting tools that are widely used by other quality

models and researchers in the field, such as SonarSystem92.

The case studies described in this thesis are limited in their scope to open source Java project and the

results obtained from our case studies might not be applicable to other programming languages or

system types.

8.2.2 COMPLETENESS THREATS

A potential threat to our approach is whether the set of quality measures we considered in our

assessment as part of OntEQAM evaluation (refer to Chapter 4) are sufficient to accurately capture

evolvability as a quality factor. We addressed this threat by selecting our evolvability measures from

a well-established subset of existing quality models, such as ISO/IEC 9126 [15], QUALOSS [16], and

SIG MM93. While we only selected a subset of these evolvability attributes, we believe this subset is

sufficient to illustrate the applicability of our assessment model. Given the ontological reusability of

our design, extending OntEQAM to support other requirements including new measures, attributes

or subfactors is a straightforward task

Another threat to validity could be that we did not have sufficient data available to perform an

accurate trend analysis (especially for longer interval MAs). We tried to mitigate this threat by

limiting our analysis to a maximum of 100 data points, rather than the 200 data point MA typically

92 http://www.sonarqube.org/
93 http://www.sig.eu/en/Research/690/__Maintainability_Model__.html

http://www.sonarqube.org/

186

used in the stock market analysis. Using shorter MAs provides us with sufficient data points to

analyze the prediction quality of these indicators.

8.2.3 ACCURACY THREATS

Another threat to validity can be the trustworthiness of the OntEQAM evolvability scores used during

the analysis. We addressed this threat, by partially validating our evolvability scores against existing

models that addressed evolvability using a different assessment process (e.g., QUALOSS [16]). This

validation is performed over a pre-selected set of common measures. The lack of having a universal

definition of what measures to consider when assessing a certain software quality, such as

evolvability, makes it difficult, if not impossible, to compare our results to those of other existing

quality models.

Another threat is the accuracy of our prediction. We agree that the reliability of MA and its

capabilities to predict both long- and short-term evolvability might be limited. Further analysis with

respect to the reliability and predictive power are needed. Furthermore, similar to the stock market,

software projects have to deal with a magnitude of internal and external factors (e.g., competition

and global trends), which are not predictable. We therefore believe that MAs should be used in

conjunction with other prediction methods in order to improve the overall reliability and accuracy of

the prediction.

For the case study in Chapter 7, we illustrate the applicability of the presented approach using a

limited subset of the overall quality assessment model.

8.3 FUTURE WORK

The work presented in this thesis could be extended in several ways:

 There are several online repositories, such as FlossMetrics [177], Ohloh [178], and

SECOLD.org that host thousands of FLOSS projects. Enriching these repositories with

evolvability scores using existing models, such as OntEQAM [17], would provide the quality

187

research community with a reference to compare against in future work and a better

validation of the assessment results.

 This thesis provides preliminary evidence that demonstrates that financial technical

indicators and their associated patterns are applicable to the interpretation and prediction

of evolvability quality scores [13, 14]. This work can be further extended by first automating

the pattern detection process (which in turn makes it easier to have a larger dataset of

projects) and second looking for new patterns that could be applicable only in the software

domain or only for certain software qualities. Furthermore, the prediction approach should

be applied on a larger set of quality measures and different assessment levels, such as

attributes, factors, or dimensions. Also, as part of the future our work we plan to compare

the scores against other prediction more models, such as ARIMA [108,109].

 In this thesis, SE-EQUAM [12] has been instantiated by OntEQAM [12, 17]; more domain

models that assess other software qualities, such as security, should be evaluated as part of

the future work.

 The measure set that OntEQAM [12, 17] uses can be further extended by including additional

evolvability measures related to new knowledge artifacts, such as e-mail or project online

forums discussions.

 As part of the thesis several usage scenarios were briefly introduced (i.e., process

improvement, advisory systems). As part of the future work actual user studies should be

conducted to validate the applicability of the proposed usage scenarios in actual project

contexts. .

188

REFERENCES

[1] D. V. Edelstein, "Report on the IEEE STD 1219-1993 standard for software maintenance," ACM SIGSOFT

Software Engineering Notes, vol. 18, pp. 95, Oct. 1993.

[2] H. A. Muller, S. R. Tilley, and K. Wong, "Understanding software systems using reverse engineering

technology perspectives from the Rigi project," in Proc. 1993 Conf. Centre for Advanced Studies on Collabo-

rative Research: Software Engineering, Toronto, Ont., 1993, vol. 1, pp. 217-226.

[3] D. Takahashi, "Why Vista might be the last of its kind," The Seattle Times, December 2006, [Online].

Available: http://seattletimes.nwsource.com/html/businesstechnology/2003460386_btview04.html [Ac-

cessed: July 2013].

[4] R. Seacord, D. Plakosh, and G. Lewis, Modernizing Legacy Systems: Software Technologies, Engineering

Processes, and Business Practices. Boston, MA: Addison-Wesley, 2003.

[5] I. Sommerville, Software Engineering. New York, NY: Addison-Wesley, 2007.

[6] M. V. Zelkowitz A. C. Shaw, and J. D. Gannon, Principles of Software Engineering and Design. Englewood

Cliffs, NJ: Prentice-Hall,1979.

[7] L. Erlikh, "Leveraging legacy system dollars for E-business," IT Professional, vol. 2, pp. 17-23, May/June

2000.

 8] M. V. Ma ntyla , Empirical software evolvability - code smells and human evaluations," in 2010 IEEE Int.

Conf. on Software Maintenance (ICSM), Timișoara, Romania, 2010, pp. 1-6.

[9] M. M. Lehman, "On understanding laws, evolution and conservation in the large program life cycle," J

Syst Software, vol. 1, pp. 213-221, 1980.

[10] M. M. Lehman, "Laws of software evolution revisited," Lect Notes Comput Sc, vol. 1149, pp. 108-124,

1996.

[11] M. M. Lehman, "Laws of Program Evolution - Rules and Tools for Programming Management," in Proc.

Infotech State of the Art Conference, Why Software Projects Fail?, pp. 11/1-11/25, 1978.

[12] A. Hmood, I. Keivanloo, and J. Rilling, "SE-EQUAM - an evolvable quality metamodel," in 36th Computer

Software and Applications Conference and Workshops (COMPSAC), 2012, pp. 334-339.

[13] A. Hmood and J. Rilling, "Analyzing and predicting software quality trends using financial patterns," in

7th IEEE Int. Workshop on Quality Oriented Reuse of Software (QUORS) - Co-Located with COMPSAC 2013,

2013, p. 6.

[14] A. Hmood M. Erfani, I. Keivanloo, and J. Rilling, "Applying technical stock market indicators to analyze

and predict the evolvability of open source projects," in 28th Int. Conf. in Software Maintenance (ICSM),

2012, pp. 613-616.

[15] ISO, "ISO/IEC 9126: Software engineering-product quality-part 1: Quality model-part 4: Quality in use

metrics." 2001-2004.

[16] J. Deprez, F. F. Monfils, F. Steels, J. Flamand, and N. Devos, QUALOSS, November 2009 [Online]. Availa-

ble: http://www.cetic.be/QualOSS,500 [Accessed: July, 2013].

http://seattletimes.nwsource.com/html/businesstechnology/2003460386_btview04.html
http://www.cetic.be/QualOSS,500

189

[17] A. Hmood, P. Schugerl, J. Rilling, and P. Charland, "OntEQAM: A methodology for assessing evolvability

as a quality factor in software ecosystems," in IEEE Industrial Software Evolution and Maintenance Process-

es (WISEMP), 2010.

[18] M. Mäntylä, "Empirically discovered evolvability issues and human evaluations," Ph.D. dissertation,

Dept. Comp. Sci. and Eng., Helsinki Univ. of Technology, Helsinki, 2009.

[19] F. P. Brooks, The Mythical Man-Month: Essays on Software Engineering. Boston, MA: Addison-Wesley,

1995.

[20] M. M. Lehman J. F. Ramil, P. D. Wernick, D. E. Perry, and W. M. Turski, "Metrics and laws of software

evolution-the nineties view," in Proc. 4th Int. Software Metrics Symposium, 1997, pp. 20-32.

[21] M. M. Lehman, J. F. Ramil, and G. Kahen, "Evolution as a Noun and Evolution as a Verb," in Workshop

on Software and Organisation Co-evolution (SOCE), 2000.

[22] C. F. F. Kemerer and S. Slaughter, "An empirical approach to studying software evolution," IEEE Trans.

Software Eng., vol. 25, pp. 493-509, July/Aug. 1999.

[23] C. L. Nehaniv "Introduction to software evolvability," in Proc. 3rd Int. IEEE Workshop on Software

Evolvability, 2007, pp. vi – vii.

[24] ISO/IEC and IEEE, "Software Engineering - software lifecycle process - maintenance," Int’l Standard,

vol. 2006, pp. 4, 2006.

[25] Khanh Hoa Dam, "Supporting software evolution in agent systems," Ph.D. dissertation. School Comp.

Sci. and I.T. RMIT Univ., Melbourne, Australia, 2008.

[26] Y. Zhang, R. Witte, J. Rilling, and V. Haarslev, "Ontological approach for the semantic recovery of trace-

ability links between software artefacts," IET Software, vol. 2, pp. 185-203, 2008.

[27] B. Kitchenham and S. L. Pfleeger, "Software quality: the elusive target [special issues section]," Soft-

ware, IEEE, vol. 13, pp. 12-21, Jan. 1996.

[28] A. C. Gillies, Software Quality: Theory and Management, London: Chapman and Hall, 1992.

[29] D. Hoyle, ISO 9000 Quality Systems Handbook (5thed.). Jordan Hill, Oxford: Butterworth-Heinemann,

2005.

[30] ISO/IEC, "Quality management and quality assurance-- vocabulary," vol. ISO 8402, pp. v, 1994.

[31] IEEE Standard for a Software Quality Metrics Methodology, IEEE Standard 1061-1998, 1998.

[32] S. Ciraci and van Den Broek PM, "Evolvability as a quality attribute of software architectures," in Int.

ERCIM Workshop on Software Evolution, France, 2006, pp. 6-7.

[33] ISO, "ISO/IEC 14598-1:1999. Information technology - Software product evaluation -- Part 1: General

overview," 1999.

[34] J. Deprez, F. Monfils F. M. Ciolkowski, and M. Soto, "Defining software evolvability from a free/open-

source software," in 3rd Int. IEEE Workshop on Software Evolvability, Paris, France, 2007, pp. 29-35.

[35] J. F. Monfils and J. Deprez, "FlOSS managed data sources maturity level: A first attempt," in 3rd Int.

IEEE Workshop in Software Evolvability, Paris, France, 2007, pp. 54-59.

[36] F. Ruiz et al., "A proposal of a software measurement ontology," in Proc. Argentine Symposium on

Software Engineering, Buenos Aires, Argentina, 2003.

190

[37] D. E. Perry, "Dimensions of software evolution," in Proc. Int. Conf. on Software Maintenance ICSM, pp.

296-303, 1994.

[38] ISO, "TC 176/SC (2005). ISO 9000:2005, Quality management systems- Fundamentals and vocabu-

lary." 2005.

[39] N. F. Schneidewind, "Report on the IEEE standard for a software quality metrics methodology," in

IEEE Std 1061-1998, 1998, pp. i.

[40] D. Izquierdo-Cortazar J. M. Gonzalez-Barahona, S. Duenas, and G. Robles, "Towards automated quality

models for software development communities: the QualOSS and FLOSSMetrics case," in Quality of Info.

and Comm. Tech. (QUATIC), 7th Int. Conf., 2010, pp. 364-369.

[41] A. Bergel S. Denier, S. Ducasse, J. Laval, F. Bellingard, P. Vaillergues, F. Balmas, and K. Mordal-Manet,

"SQUALE – software QUALity enhancement," in 13th Euro. Conference Software Maintenance and Reengi-

neering (CSMR). 2009, pp. 285-288.

[42] Samoladas, I., G. Gousios, D. Spinellis, and I. Stamelos, "The SQO-OSS quality model: measurement

based open source software evaluation," in OSS'08: Open Source Development, Communities and Quality

(IFIP 2.13), 2008, pp. 237.

[43] N. E. Fenton, Software Metrics: A Rigorous and Practical Approach, Revised (2nd ed.). Course Technolo-

gy, 1998.

[44] J. A. McCall, P. K. Richards, and G. F. Walters,, "Factors in Software Quality. Vol. I. Concepts and Defini-

tions of Software Quality, General Electric, 1977.

[45] P. Berander, L. Damm, J. Eriksson, T. Gorschek, K. Henningsson, P. Jonsson, S. Kaa gstrom, D. Milicic, F.

Maartensson, K. Ronkko, and P. Tomaszewski, Software Quality Attributes and Trade-Offs. Blekinge Insti-

tute of Technology, 2005.

[46] A. Rawashdeh and B. Matalkah, "A new software quality model for evaluating COTS components,"

Journal of Computer Science, vol. 2, pp. 373-381, 2006.

[47] M. Côté, W. Suryn. and E. Georgiadou., "Software quality model requirements for software quality en-

gineering," Quality Engineering, 2003.

[48] B. Boehm, J. Brown, and M. Lipow, "Quantitative evaluation of software quality," in Proc. 2nd Int. Conf.

on SE, 1976, pp. 592-605.

[49] N. Bawane and C. V. Srikrishna, "A novel method for quantitative assessment of software quality,"

International Journal of Computer Science and Security (IJCSS), vol. 3, pp. 508, 2009.

[50] M. Ortega, M. A. Perez, and T. Rojas, "Construction of a systemic quality model for evaluating a soft-

ware product," Software Qual J, vol. 11, pp. 219-242, 2003.

[51] ISO, "ISO/IEC 25010:2011 Systems and software engineering - systems and software quality re-

quirements and evaluation (SQUARE)- Systems and software quality models," 2011.

[52] R. G. G. Dromey, "A model for software product quality," IEEE Trans. Software Eng., vol. 21, pp. 146-

162, 1995.

[53] R. G. Dromey, "Concerning the chimera," IEEE Software, vol. 13, pp. 33-43, 1996.

191

[54] L. Hyatt and L. Rosenberg, "A software quality model and metrics for risk assessment," in Proc. of the

Product Assurance Symposium and Software Product, Noordwijk, the Netherlands, 1996.

[55] A. Origin, QSOS. [Online]. Available: http://www.qsos.org/ [Accessed: July, 2013].

[56] J. C. Deprez and S. Alexandre, "Comparing assessment methodologies for free/open source software:

OpenBRR and QSOS," Lect Notes in Comput Sc, vol. 5089, pp. 189-203, 2008.

[57] F. W. Duijnhouwer and C. Widdows, "Capgemini expert letter open source maturity model," CapGemi-

ni, 2003.

[58] E. Petrinja, R. Nambakam, and A. Sillitti, "Introducing the OpenSource Maturity Model," in 2009 ICSE

Workshop on Emerging Trends in Free/Libre/Open Source Software Research and Development, pp. 37-41,

2009.

[59] OpenBRR [Online]. Available: http://www.openbrr.org/ [Accessed: July, 2013].

[60] I. Samoladas, I. Stamelos, and L. Angelis, and A. Oikonomou, "Open source software development

should strive for even greater code maintainability," Commun ACM, vol. 47, pp. 83-87, 2004.

[61] G. Gousios, V. Karakoidas, K. Stroggylos, P. Louridas, V. Vlachos, and D. Spinellis, "Software quality

assessment of open source software," in Proc. 11th Panhellenic Conf. on Informatics, Athens, 2007, pp. 303–

315.

[62] J. Deprez, F. F. Monfilsc, M. Ciolkowski, and M. Soto, "Defining software evolvability from a Free/Open-

source software perspective," in 3rd Int. IEEE Workshop on Software Evolvability, Paris, 2007, pp. 29-35.

[63] D. Izquierdo-Cortazar J. Gonzalez-Barahona, G. Robles, J. C. Deprez, and V. Auvray, "FLOSS communi-

ties: Analyzing evolvability and robustness from an industrial perspective," Open Source Software: New

Horizons, pp. 336-341, 2010.

[64] I. Heitlager, T. Kuipers, and J. Visser, "A practical model for measuring maintainability," in Quality of

Information and Communications Technology (QUATIC). 6th Int. Conf., 2007, pp. 30-39.

[65] B. Luijten and J. Visser, "Faster defect resolution with higher technical quality software," in Proc. 4th

Int. Workshop on System Quality and Maintainability, 2010, pp. 11-20.

[66] R. Baggen, J. Correia, K. Schill, and J. Visser, "Standardized code quality benchmarking for improving

software maintainability," Software Qual J, vol. 20, pp. 287-307, 2012.

[67] SQUALE, 2008 [Online]. Available: http://www.squale.org/index.html [Accessed: July, 2013].

[68] K. Mordal-manet, S. Denier, H. Wertz, J. Laval, F. Bellingard, and P. Vaillergues, "The squale model - A

practice-based industrial quality model," in 25th IEEE Int. Conf. on Software Maintenance ICSM, Edmonton,

AB, 2009, pp. 531-534.

[69] J. Letouzey and T. Coq, "The SQALE Analysis Model: An analysis model compliant with the representa-

tion condition for assessing the quality of software source code," in 2nd Int. Conf. on Advances in System

Testing and Validation Lifecycle, Nice, 2010, pp. 43-48.

[70] J. Letouzey and M. Ilkiewicz, "Managing technical debt with the SQALE Method," IEEE Software, vol.

29, pp. 44-51, 2012.

[71] R. B. Grady, Practical Software Metrics for Project Management and Process Improvement, Englewood

Cliffs, N.J: Prentice Hall, 1992.

http://www.qsos.org/
http://www.openbrr.org/
http://www.squale.org/index.html

192

[72] D. Taibi et al,, OpenBQR: A Framework for the Assessment of OSS. Boston, MA: Springer, 2007.

[73] OpenBRR, 2005 [Online]. Available: http://www.openbrr.org [Accessed: July 2013].

[74] J. Letouzey, "The SQALE method for evaluating technical debt," in Managing Technical Debt (MTD),

3rd Int. Workshop, Zurich, 2012, pp. 31-36.

[75] P. Adams, D. Nutter, S. Rank, and C. Boldyref., "Using open source tools to support collaboration with-

in CALIBRE," in Proc. 1st Int. Conf. on Open Source System, 2005, pp. 61.

[76] D. Nutter, S. Rank, and C. Boldyreff, "An open source collaboration infrastructure for Calibre," in Proc.

3rd Workshop in Cooperative Support for Disributed Software Engineering Processes (CSSE), Linz, Austria,

2004.

[77] ISO, "ISO/IEC 15939:2007 Systems and Software Engineering- Measurement process,", 2007 .

[78] H. Mittal and P. Bhatia, "Software maintainability assessment based on fuzzy logic technique," ACM

SIGSOFT Software Engineering Notes, vol. 34, pp. 1, 2009.

[79] J. B. Mittal, P. Bhatia, and H. Mittal, "Software maintenance productivity assessment using fuzzy logic,"

ACM SIGSOFT Software Engineering Notes, vol. 34, pp. 1, 2009.

[80] H. A. Sahraoui, M. Boukadoum, H. M. Chawiche, Gang Mai, and M. Serhani, "A fuzzy logic framework to

improve the performance and interpretation of rule-based quality prediction models for OO software," in

Proc. 26th Annual Int. Computer Software and Applications Conf. (COMPSAC), 2002, pp. 131-138.

[81] R. Park, Goal-Driven Software Measurement: A Guidebook. Pittsburgh, PA: Software Engineering Insti-

tute, Carnegie Mellon University, 1996.

[82] T. Coq and J. Rosen, "The SQALE quality and analysis models for assessing the quality of ada source

code," in Proc. 16th Ada-Europe Int. Conf. on Reliable Software Technologies, Edinburgh, UK, 2011, pp. 61-

74.

[83] Y. Singh, P. K. Bhatia, and O. Sangwan, "Predicting software maintenance using fuzzy model," ACM

SIGSOFT Software Engineering Notes, vol. 34, pp. 1, 2009.

[84] K. K. Aggarwal et al., "Measurement of software maintainability using a fuzzy model," Journal of Com-

puter Science, vol. 1, pp. 538-542, 2005.

[85] J. Senior, I. Allison, and J. A. Tepper, "Automated software quality visualisation using fuzzy logic tech-

niques," Techniques, vol. 7, pp. 25-40, 2007.

[86] L. A. Zadeh, "Fuzzy sets," Information and Control, vol. 8, pp. 338-353, 1965.

[87] H. A. Sahraoui, M. Boukadoum, and H. Lounis, "Building quality estimation models with fuzzy thresh-

old values," in L’OBJET, 2001.

[88] P. Cingolani, jFuzzyLogic Tool [Online]. Available: http://jfuzzylogic.sourceforge.net/ [Accessed: July,

2013].

[89] C. Mathworks, Fuzzy Logic Toolbox [Online]. Available: http://www.mathworks.com/products/fuzzy-

logic/index.html [Accessed: July 2013].

[90] D. Izquierdo-cortazar, G. Robles and J. M. Gonz'alez-barahona, "Assessing FLOSS communities: an ex-

perience report from the QualOSS project," in OSS, pp. 364, 2009.

http://www.openbrr.org/
http://jfuzzylogic.sourceforge.net/
http://www.mathworks.com/products/fuzzy-logic/index.html
http://www.mathworks.com/products/fuzzy-logic/index.html

193

[91] M. Soto and M. Ciolkowski, "The QualOSS open source assessment model measuring the performance

of open source communities," in 3rd Int. Symposium on Empirical Software Engineering and Measurement

(ESEM), Lake Buena Vista, FL, 2009, pp. 498-501.

[92] D. Spinellis, G. Gousios, V. Karakoidas, P. Louridas, P. J. Adams, I. Samoladas, and I. Stamelos, "Evaluat-

ing the quality of open source software," Electronic Notes in Theoretical Computer Science, vol. 233, pp. 5-

28, 2009.

[93] M. Conklin, J. Howison, and K. Crowston, "Collaboration using OSSmole: a repository of FLOSS data

and analyses," ACM SIGSOFT Software Engineering Notes, vol. 30, no. 4, 2005.

[94] I. Keivanloo, C. Forbes, J. Rilling, and P. Charland, "Towards sharing source code facts using linked

data," in Proc. 3rd Int. Workshop on Search-Driven Development: Users, Infrastructure, Tools, and Evaluation,

Waikiki, HI, 2011, pp. 25-28.

[95] M. J. Khan, S. Shamail, M. M. Awais, and T. Hussain, "Comparative study of various artificial intelli-

gence techniques to predict software quality," in IEEE Multitopic Conf. (INMIC). Islamabad, 2006, pp. 173-

177.

[96] S. Shafi, S. M. Hassan, A. Arshaq, M. J. Khan, and S. Shamail, "Software quality prediction techniques: A

comparative analysis," in 4th Int. Conf. on Emerging Technologies (ICET). Rawalpindi, 2008, pp. 242-246.

[97] A. E. Hassan and R. C. Holt, "Predicting change propagation in software systems," in Proc. 20th IEEE

Int. Conf. on Software Maintenance, 2004, pp. 284-293.

[98] T. Zimmermann, R. Premraj, and A. Zeller, "Predicting defects for eclipse," in Proc. 3rd Int. Workshop

on Predictor Models in Software Engineering, Minneapolis, MN, 2007.

[99] I. Herraiz, J. M. Gonzalez-Barahona, G. Robles, and D. M. German, "On the prediction of the evolution of

libre software projects," in IEEE Int. Conf. Software Maintenance (ICSM), 2007, pp. 405-414.

[100] A. T. T. Ying, G. C. Murphy, R. Ng, and M. C. Chu-Carroll, "Predicting source code changes by mining

change history," IEEE T Software Eng, vol. 30, pp. 574-586, 2004.

[101] N. Bettenburg and A. E. Hassan, "Studying the impact of social interactions on software quality," Em-

pir Softw Eng, vol. 18, pp. 375-431, 2013.

[102] M. Goulao, N. Fonte, M. Wermelinger, and F. B. Abreu, "Software evolution prediction using seasonal

time analysis: a comparative study," in European Conf. in Software Maintenance and Reengineering (CSMR),

Szeged, 2012, pp. 213-222.

[103] N. E. Fenton and M. Neil, "A critique of software defect prediction models," IEEE T Software Eng, vol.

25, pp. 675-689, 1999.

[104] T. Menzies, B. Caglayan, E. Kocaguneli, J. Krall, F. Peters, and B. Turhan, "The PROMISE Repository of

empirical software engineering data [online]. Available: http://promisedata.googlecode.com, 2012 .

[105] R. Lincke, T. Gutzmann, and W. Lo we, "Software quality prediction models compared," in 10th Int.

Conf. Quality Software (QSIC), 2010, pp. 82-91.

[106] R. Subramanyam and M. S. Krishnan, "Empirical analysis of CK metrics for object-oriented design

complexity: implications for software defects," IEEE T Softw Eng, vol. 29, pp. 297-310, 2003.

194

[107] Ping Yu, T. Systa, and H. Muller, "Predicting fault-proneness using OO metrics: an industrial case

study," in Proc. 6th European Conf. Software Maintenance and Reengineering (CSMR), 2002, pp. 99-107.

[108] C. K. S. Chong Hok Yuen, "On analytic maintenance process data at the global and the detailed levels:

A case study," in Proc. Conf. Software Maintenance, 1988, pp. 248-255.

[109] G. E. P. Box and G. M. Jenkins, Time Series Analysis: Forecasting and Control. Hoboken: NJ, Holden-

Day, 1976.

[110] B. Kenmei, G. Antoniol, and M. Di Penta, "Trend analysis and issue prediction in large-scale open

source systems," in 12th European Conf. Software Maintenance and Reengineering, 2008, pp. 73-82.

[111] M. D'Ambros, H. Gall, M. Lanza and M. Pinzger, "Analyzing software repositories to understand soft-

ware evolution," in Software Evolution, T. Mens and S. Demeyer, Eds. Berlin: Springer. 2008. pp. 39-70.

[112] C. Kiefer, A. Bernstein, and J. Tappolet, "Mining Software Repositories with iSPAROL and a Software

Evolution Ontology," in 4th Int. Workshop Mining Software Repositories (MSR), May 2007. pp. 10.

[113] T. Girba, A. Kuhn, M. Seeberger, and S. Ducasse,, "How Developers Drive Software Evolution," in 8th

Int. Workshop Principles of Software Evolution (IWPSE), 2005, pp. 113-122.

[114] Y. Liu, E. Stroulia, and H. Erdogmus, "Understanding the open-source software development process:

a case study with cvschecker,"in Proc. Int. Conf. Open Source Systems, 2005, pp. 154-161.

[115] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan, "Mining email social networks," Proc.

Int. Workshop on Mining Software Repositories (MSR), Shanghai, China, 2006, pp. 137.

[116] D. Schreck, V. Dallmeier, and T. Zimmermann, "How documentation evolves over time," in 9th Int.

Workshop on Principles of Software Evolution in Conjunction with the 6th ESEC/FSE Joint Meeting (IWPSE),

2007, pp. 4.

[117] A. Zaidman, B. V. Rompaey, S. Demeyer, and A. V. Deursen, "Mining software repositories to study co-

evolution of production & test code," in Int. Conference on Software Testing, Verification, and Validation,

2008, pp. 220-229.

[118] A. E. Hassan, "Mining software repositories to guide software development," in Int. Workshop on

Mining Software Repositories (MSR), Missouri, USA, 2005.

[119] R. Arnold and S. Bohner, Software Change Impact Analysis, Los Vaqueros, LA: IEEE Computers Socie-

ty Press, 1996.

[120] I. Keivanloo, C. Forbes, A. Hmood, M. Erfani, C. Neal, G. Peristerakis, and J. Rilling, "A linked data plat-

form for mining software repositories," in 9th IEEE Working Conference on Mining Software Repositories

(MSR), Zurich, 2012, pp. 32-35.

[121] T. R. Gruber, "A translation approach to portable ontology specifications," Knowledge Acquisition,

vol. 5, pp. 199-220, 1993.

[122] D. Vladan, "Understanding ontological engineering," Commun. ACM, vol. 45, pp. 136-144, 2002.

[123] M. Saeki and H. Kaiya, "On relationships among models, meta models, and ontologies," in Proc. 6th

OOPSLA Workshop on Domain-Specific Modeling (DSM), 2006.

[124] C. Calero, F. Ruiz, and M. Piattini, Ontologies for Software Engineering and Software Technology. Ber-

lin: Springer, 2006.

195

[125] T. Menzies, "Cost benefits of ontologies," Intelligence, vol. 10, pp. 26-32, 1999.

[126] M. P. Barcellos, R. A. Falbo, and R. Dal Moro, "A well-founded software measurement ontology," in

Proc. 6th Int. Conf. on Formal Ontology in I.S. (FOIS), Toronto, ON, 2010, pp. 213-226.

[127] J. Rilling, W. Meng, R. Witte, and P. Charland, "Story-driven approach to software evolution," IET

Software, vol. 2, pp. 304-320, 2008.

[128] P. Wongthongtham, E. Chang, T. Dillon, and I. Sommerville, "Development of a software engineering

ontology for multisite software development," IEEE T Knowl Data En., vol. 21, pp. 1205-1217, 2009.

[129] N. Guarino, "Formal ontology and information systems," in Proc. Formal Ontology in I.S (FOIS), 1998,

pp. 3-15.

[130] S. Ahmed, "Mining software repositories to support software evolution," M.A. thesis, Faculty Comp.

Sci. and Software Eng., Concordia Univ., Montreal, QC,, 2009.

[131] J. Tappolet, "Semantics-aware software project repositories," in Proc. ESWC Ph.D. Symposium, Spain,

2008.

[132] J. Tappolet, C. Kiefer, and A. Bernstein, "Semantic web enabled software analysis," Web Semantics:

Science, Services and Agents on the World Wide Web, vol. 8, pp. 225-240, 2010.

[133] B. Decker, E. Ras, J. Rech, B. Klein, and C. Hoecht, "Self-organized reuse of software engineering

knowledge supported by semantic wikis," in Proc. Workshop on Semantic Web Enabled Software Engineer-

ing (SWESE), 2005.

[134] M. Wursch, G. Ghezzi, M. Hert, G. Reif, and H. C. Gall, "SEON: a pyramid of ontologies for software

evolution and its applications," Computing, vol. 94, pp. 857-885, 2012.

[135] R. C. de Boer and H. van Vliet, "QuOnt: An ontology for the reuse of quality criteria," in ICSE Work-

shop Sharing and Reusing Architectural Knowledge (SHARK), Vancouver, BC, 2009, pp. 57-64.

[136] M. Bertoa and A. Vallecillo, Software Engineering and Software, Berlin: Springer, 2006.

[137] M. P. Barcellos, R. D. A. Falbo, A. R. Rocha, and V. Brazil, "Establishing a well-founded conceptualiza-

tion about software measurement in high maturity levels," in 7th Int. Conf. of Quality of Information and

Communications Technology (QUATIC), Porto, pp. 467-472, 2010.

[138] P. Schuegerl, J. Rilling, and P. Charland, "Enriching SE ontologies with bug report quality," in 4th Int.

Workshop on Semantic Web Enabled Software Engineering (SWESE) at the 7th Int. Semantic Web Conference

(ISWC), 2008, pp. 1-15.

[139] I. Keivanloo, L. Roostapour, P. Schugerl, and J. Rilling, "SE-CodeSearch: A Scalable Semantic Web-

Based Source Code Search Infrastructure," in IEEE Int Conf. on Software Maintenance (ICSM), 2010, pp. 1-5.

[140] C. W. J. Granger, "Forecasting stock market prices: lessons for forecasters," Int J Forecasting, vol. 8,

pp. 3, 1992.

[141] R. D. Edwards and J. Magee, Technical Analysis of Stock Trends. Stock Trend Service, 1948.

[142] J. Chen, Essentials of Technical Analysis for Financial Markets. Hoboken, NJ: Wiley, 2010.

[143] S. W. Bigalow and D. Elliott, "Day-trading with candlesticks and moving averages," Futures: News,

Analysis and Strategies for Futures, vol. 33, pp. 40-42, 2004.

196

[144] G. Appel, Technical Analysis: Power Tools for Active Investors. Upper Saddle River, NJ: Financial Times

Prentice Hall, 2005.

[145] SQO-OSS [Online]. Available: http://www.sqo-oss.org/ [Accessed: July 2013].

[146] T. Gilb, "Towards the engineering of requirements." Requir Eng, vol. 2, pp. 165-169, 1997.

[147] E. S. Raymond, The Cathedral and the Bazaar. 1st edition, Sebastopol, CA, USA, O'Reilly & Associates,

Inc., 1999.

[148] H. J. Happel and S. Seedorf, "Applications of ontologies in software engineering," in Proc. 2nd Int.

Workshop on Semantic Web Enabled Software Engineering (SWESE), 2006, pp. 5-9.

[149] L. Clark & Parsia, Pellet Reasoner [Online]. Available: http://clarkparsia.com/pellet/ [Accessed: July,

2013].

[150] L. Obrst, "Ontologies for semantically interoperable systems," in Proc. 12th Int. Conf. on Information

and Knowledge Management, 2003, pp. 366-369.

[151] W. Frakes and C. Terry, "Software reuse: metrics and models," ACM Comput Surv, vol. 28, pp. 415-

435, 1996.

[152] J. L. Cybulski, "Introduction to software reuse," The Univ. of Melbourne, Department of IS, Mel-

bourne, Tech. Rep. Research Report 96/4, 1996.

[153] G. Cardino, F. Baruchelli, and A. Valerio, "The evaluation of framework reusability," SIGAPP Appl.

Comput. Rev., vol. 5, pp. 21-27, 1997.

[154] G. Sindre, R. Conradi, and E. Karlsson, "The REBOOT approach to software reuse," J Syst Software.,

vol. 30, pp. 201-212, 1995.

[155] Fernández-López M., A. Gómez-Pérez, and N. Juristo, "Methontology: From ontological art towards

ontological engineering," in Proc. Symposium on Ontological Engineering, 1997.

[156] Stanford Center for Biomedical Informatics Research, Protégé [Online]. Available:

http://protege.stanford.edu/ [Accessed: July, 2013].

[157] E. P. Bontas, M. Mochol, and R. Tolksdorf, "Case studies on ontology reuse," in Proc. 5th Int. Conf. on

Knowledge Management (IKNOW), 2005.

[158] W. Meng, J. Rilling, Y. Zhang, R. Witte, and P. Charland, "An ontological software comprehension pro-

cess model," in Proc. 3rd Int. Workshop on Metamodels, Schemas, Grammars, and Ontologies for Reverse En-

gineering, 2006, pp. 1-15.

[159] F. Garcia, F. Ruiz, C. Calero, M. F. Bertoa, A. Vallecillo, B. Mora, and M. Piattini, "Effective use of ontol-

ogies in software measurement," Knowl Eng Rev, vol. 24, pp. 23-40, December, 2009.

[160] F. Garcia, M. Bertoa, C. Calero, A. Vallecillo, F. Ruiz, M. Piattini, and M. Genero, "Towards a consistent

terminology for software measurement," Information and Software Technology, vol. 48, pp. 631-644, 2006.

[161] Y. Zhang, R. Witte, J. Rilling and V. Haarslev, "An ontology-based approach for traceability recovery,"

in 3rd Int. Workshop on Metamodels, Schemas, Grammars, and Ontologies for Reverse Engineering, 2006, pp.

36-43.

[162] L. Baresi, E. Di Nitto, and C. Ghezzi, "Toward open-world software: issue and challenges," Computer,

vol. 39, pp. 36-43, 2006.

http://clarkparsia.com/pellet/

197

[163] InfoEther, PMD Tool [Online]. Available: http://pmd.sourceforge.net/ [Accessed: July, 2013].

[164] Oliver Burn, Checkstyle Tool [Online]. http://checkstyle.sourceforge.net/ [Accessed: July, 2013].

[165] R. Garcia-Castro, M. Esteban-Guti'errez, M. Kerrigan, and S. Grimm, "An ontology model to support

the automated evaluation of software," in Int. Conf. in Knowledge Systems (SEKE), Redwood City, 2010.

[166] M. De Los Angeles Martin and L. Olsina , "Towards an ontology for software metrics and indicators

as the foundation for a cataloging Web system," in Proc. of First Latin American Web Congress, pp.103,113,

Nov. 2003

[167] L. Olsina and M. De Los Angeles Martin, "Ontology for software metrics and indicators," J of Web Eng,

vol. 2, pp. 262-281, 2003.

[168] L. Olsina and G. Rossi, "Measuring web application quality with WebQEM," IEEE Multimedia, vol. 9,

pp. 20-29, 2002.

[169] J. Deprez, K. Haaland, and F. Kamseu, QualOSS methodology & QualOSS assessment method

(2008)[Online].Available

http://www.academia.edu/817534/QualOSS_Methodology_and_QualOSS_Assessment_Method,

[170] S. Harris, Simian Tool [Online]. http://www.harukizaemon.com/simian/ [Accessed:July, 2013].

[171]I. Clarkware Consulting, Jdepend Tool [Online].Available:

http://clarkware.com/software/JDepend.html [Accessed: July, 2013].

[172] H. Mittal, "Software quality assessment based on fuzzy logic technique," Int. Journal of Software

Computing Applications, pp. 105-112, 2008.

[173] P. Cingolani and J. Alcala-Fdez, "jFuzzyLogic: A robust and flexible fuzzy-logic inference system lan-

guage implementation," in IEEE Int. Conference on Fuzzy Systems (FUZZ-IEEE), 2012, pp. 1-8.

[174] M. Lanza and R. Marinescu, Object-Oriented Metrics in Practice: Using Software Metrics to Character-

ize, Evaluate, and Improve the Design of Object-Oriented Systems. Berlin: Springer, 2006.

[175] D. Thomas and A. Hunt, The Pragmatic Programmer: From Journeyman to Master. Longman, Amster-

dam: Addison-Wesley Professional, 1999.

[176] K. J. Lieberherr and I. M. Holland, "Assuring good style for object-oriented programs," IEEE Software,

vol. 6, pp. 38-48, 1989.

[177] GSyC/LibreSoft, Melquiades (2009) [Online]. Available: http://melquiades.flossmetrics.org/ [Ac-

cessed: July, 2013].

[178] Black Duck Software, Inc, OHLOH (2010) [Online]. Available: http://www.ohloh.net/ [Accessed: July,

2013].

http://pmd.sourceforge.net/
http://www.harukizaemon.com/simian/
http://clarkware.com/software/JDepend.html
http://melquiades.flossmetrics.org/

