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Abstract

Fourier methods for numerical solution of FBSDEs.

Polynice Oyono Ngou, PhD.
Concordia University, 2014.

We present a Fourier analysis approach to numerical solution of forward-backward stochas-
tic differential equations (FBSDEs) and propose two implementations. Using the Euler time
discretization for backward stochastic differential equations (BSDEs), Fourier analysis allows
to express the conditional expectations included in the time discretization in terms of Fourier
integrals. The space discretization of these integrals then leads to expressions involving dis-
crete Fourier transforms (DFTs) so that the FFT algorithm can be used. We quickly presents
the convolution method on a uniform space grid. Locally, this first implementation produces a
truncation error, a space discretization error and an additional extrapolation error. Even if the
extrapolation error is convergent in time, the resulting absolute error may be high at the bound-
aries of the uniform space grid. In order to solve this problem, we propose a tree-like grid for the
space discretization which suppresses the extrapolation error leading to a globally convergent
numerical solution for the BSDE. The method is then extended to FBSDEs with bounded coeffi-
cients, reflected FBSDEs and higher order time discretizations of FBSDEs. Numerical examples
from finance illustrate its performance.
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Introduction

Since 1990, when Pardoux and Peng [96] proved the existence and uniqueness of solutions of back-
ward stochastic differential equations (BSDEs), research on the subject has been prolific both
in theory and applications. Pardoux and Peng [97] generalized the well-known Feynman-Kac
formula by showing the relationship between BSDEs and quasilinear partial differential equa-
tions (PDEs) whereas Antonelli [4] introduced forward-backward stochastic differential equations
(FBSDEs) and also established their well-posedness. Another article by Pardoux and Tang [98]
studies FBSDEs well-posedness and generalizes the result of Pardoux and Peng [97] to coupled
FBSDEs. The reader may find an introductory theory of FBSDEs in Appendix A. This study
addresses specifically the problem of numerical resolution of FBSDEs which has been an active
area of research for the last two decades. The interest in numerical solutions for FBSDEs mainly
stems from their various applications, especially in mathematical finance, and the lack of general
closed form solutions.

This short introduction first provides indications on the notation used throughout the docu-
ment. Then a presentation is given on the Euler time discretization for BSDEs since we mostly

rely on this scheme in this study. The introduction ends with a summary of the thesis content.

Notation

For a fixed terminal time T > 0, consider the complete filtered probability space (2, F, F, P),
so that F = {F; : t € [0,T]} where the filtration is generated by a d-dimensional Brownian
motion {W}icjo,r) and Fo contains the P-null sets of the o-algebra 7. We shall make use of
the following operators and spaces through our presentation:

N

e For any vector z € R™, we note the Euclidean norm as |z| = (31", #7)*. For a matrix b €

R we use the Frobenius norm which verifies
1
|b|> = Tr(bb*) where b* is the transpose matrix of b. Also, ||b||, represents the spectral

norm of b when b is a square matrix.

e C"(R™) is the set of n-times differentiable real valued functions on R™, and C}'(R™)

denotes that the derivatives are absolutely bounded up to order n.
e B(R™) is the Borel set on R™.
e S is the Skorohod set of real valued cadlag functions on [0, T7.

e LP(R") is the space of Fr-measurable R"-valued random variables X such that || X||,, =

E [|X|p]% < oo for p € N and L denotes the space of bounded random variables.

e L (R™) is the space of R™-valued adapted processes X such that

1Xp, =

P
sup |Xt|p < 09,
t€[0,T]

1



L% denotes the space of bounded processes.

e LY(R™) is the space of predictable R"-valued processes X such that

p L
3| P

T
1,y =E (/ |Xt|2dt> < oo

For a given stochastic process X on (€2, F), we simplify the notation of the conditional expecta-
tion with respect to F; as
Ef [u(X7)] = E [u(X7)|X; = ] (1.1)

for any deterministic function u where the conditional expectation is taken under the physical
probability measure P. Additional indications will be given when using an equivalent probability
measure. Also, C' and K will denote generic constants in our various inequalities.

Finally, all numerical results in this thesis are produced using a Pentium (R) Dual-Core,
T4200 model processor with 2.0 GHz.

The Euler scheme

Many numerical methods for FBSDEs with Lipschitz coefficients presented in Chapter 1 (and
particularly Monte Carlo regression and space discretization methods) are based on a time dis-
cretization called the Euler scheme. Those methods only differ in their approximations of the
conditional expectations involved in the time discretization. This section intends to present the

main time discretization algorithms for (F)BSDEs and the associated convergence result.

The Euler scheme is a time stepping method designed for SDEs and applicable to BSDEs
and decoupled FBSDEs with Lipschitz coefficients. We shall consider the decoupled FBSDE of
equation (A.5) with deterministic coefficients. The discrete time procedure that we present was
first introduced by Zhang [123, 124] followed by Bouchard and Touzi [20] and Hu, Nualart and
Song [61] among others. A concise summary of the method also figures in the review paper of
Bouchard, Elie and Touzi [19].

Because of the assumption of Lipschitz coefficients, the forward SDE discretization is usually
performed with an Euler scheme using a partition 7 = {0 =ty < ¢1 < ... < t,, = T} of the

interval [0, T']. The numerical solution {X{" };c[o,7) relies on the values at times nodes defined as

Xi=x
0= (1.2)
where A; = t;11 —t; and AW; = Wy, — Wy, for i =0,1,...,n — 1. We get
X = X7, t e[t tig) (1.3)

and this discretization yields a strong %—order convergent solution since the error E'x . on the

forward process satisfies

E% . :=E| sup |[X;—X]["| =O(r|) (1.4)

te[0,T)

with Landau notation as shown in Kloeden and Platen [69] where |7| is the maximal time step

|7| = max A;. (I.5)

0<i<n

2



An Euler scheme also helps in discretizing the backward process and leads to the following
time stepping
Y=Y + Jto, X0, Y7, Z0) Ay — (Z7);, AW, (1.6)
Taking the conditional expectations on both sides of equation (I.6) yields
Y =B Y7 F (0 X YT 200,

i+1

and if one first multiplies both sides of equation (I.6) by the Brownian increment AW, and takes
the conditional expectation after, we get

1
Zi = 1 E v

A L AWR,].

Those last two equations define the backward algorithm for numerical solution of BSDEs

Zf =0,Y" =¢&"

Y =B V7] + s XY ZE)As

known as the implicit Euler scheme since the value of the approximate forward process YT

appears on both sides of the system last equation. We choose £™ such that
12
1€ = €72 = O(Ix]) (1.8)

which is possible, for instance, in the Markovian case by taking £™ = g(X7) for continuous
terminal conditions g.
In order to avoid solving a non-linear equation to recover the backward process values Y;7,

one may consider an alternative scheme which is explicit in the backward process values

Zr =0,y =¢"

VI =BV, 1t XTL YT ZE) AR

and called the explicit Euler scheme. The approximate backward and control processes are then

defined as done previously for the forward process as
}/tﬂ— = }/;:, ZZT = Ztﬂ; for t € [ti,ti+1). (I].O)

Another explicit scheme consists in replacing the conditional expectation of the driver by
the driver values at conditional expectations from the explicit scheme of equation (I.9). This

procedure leads to the scheme

Zi, =0,Y] =¢7

Zf = B [KZIAWHEJ ,0<i<n (L.11)
Y =E [ii’fﬂlfti} + f(t, E [Yt’;lu-"ti} ZE)AL 0< i <.

We will denote the scheme of equation (I.11) the explicit Euler scheme 1 and the scheme of
equation (1.9) is denoted the explicit Euler scheme 2.
The global discretization error E in the backward and control processes is defined as

n—1 tit1
sup |V Y7 ['| + Y E [/ ' 2, — 27| ds (112)
i=0 ti

t€ltitit)

Efr = max E
0<i<n




and, under Lipschitz conditions on the FBSDE coefficients, admits the bound

n—1 tit1
EﬁgC(hHZEU : ]ZS—ZZ:]2ds]> (1.13)
i=0 ti

where
_ 1 tit1
Zr = —E, [ / sts} (L.14)
i Az i ”

and the constant C' depends exponentially on the Lipschitz constants due to the usage of the
Gronwall’s inequality in the proof. From this equation, a regularity property on the control
process Z is needed to prove the convergence of the Euler scheme.

This regularity result is proved by Zhang [124, 123] in the context of Lipschitz coefficients.
Knowing that ZZ: is the projection on the space F;,-measurable random variables, and hence
the best J;,-measurable approximation, of {Z;};c[0,7) on the interval [t;, ;1] we have

n—1 tit1 _ 9 n—1 tiy1
ZEU 2, - Z7 | ds} < ZE[/ \Zs — 2, ds
i=0 ti i=0 ti
< C|nl (1.15)

from equation (A.18). Consequently, the Euler schemes have a discretization error of

E. = O(|x|?). (1.16)

Summary

Chapter 1 gives an overview of existing numerical methods divided in three groups: partial dif-
ferential equation (PDE) based methods, spatial discretization based methods and Monte Carlo
regression based methods. Overall, PDE based methods require strong regularity condition on
the FBSDE coefficient whereas Monte Carlo methods are time consuming. Spatial discretization
methods may be seen as a tradeoff between the two other groups of methods.

The purpose of this thesis is the development of a spatial discretization method using ana-
lytic and numerical Fourier techniques. These techniques have already proved very efficient in
various areas such as in numerical methods for PDEs or in mathematical finance. In the con-
text of numerical methods for FBSDEs, numerical Fourier techniques have the advantage and
particularity of being spectral methods especially in the group of spatial discretization methods
for FBSDEs.

Chapter 2 gives the representation of BSDE numerical solutions as Fourier integrals and
proposes a first implementation of a fast Fourier transform (FFT) based method for BSDEs.
The numerical resolution is performed on a uniform grid and a local error analysis reveals a
consistent method with truncation errors under smoothness conditions on the BSDE coefficients.
Numerical examples then illustrate the accuracy of the method.

Even though the procedure in Chapter 2 is consistent and suitable for various applications,
the presence of truncation errors makes it less accurate. Chapter 3, which is the central chapter
of this thesis, introduces an alternative tree-like grid that removes the truncation error leading
to a conditionally stable and globally convergent method. A simulation method for BSDEs is
then developed and the convergence of the approximation is proved.

Chapter 4 focuses on the space discretization of FBSDEs as an extension of the material of
Chapter 3. In the context of FBSDEs, we show that the Fourier representation of the BSDE

numerical solution is possible and then build a conditionally stable and globally convergent



method. Nonetheless, the computations have to be performed through matrix multiplication
instead of the FFT algorithm as in Chapter 2 and 3 so that Fourier methods are less efficient
when applied on FBSDEs .

Finally, Chapter 5 visits the very recently proposed Runge-Kutta scheme for (F)BSDEs.
Runge-Kutta schemes are higher order time convergent time stepping methods that improve
the half order convergence of the Euler scheme used in the previous chapters. Here also, we
characterize the numerical solutions and apply the method developed in Chapter 4 (or Chapter 3
in the simple BSDE case). In the more general setting of Runge-Kutta schemes, the conditional
stability and global convergence of the method is established under mild conditions on some

characteristic functions.



Chapter 1

A literature review of numerical
methods for FBSDEs

Solutions to FBSDEs can be found through either the four-step scheme or the method of contin-
uation®. In the former method, proposed by Ma, Protter and Yong [79], the forward and control
processes are expressed explicitly in terms of a function which solves a Cauchy problem for a
quasilinear parabolic PDE. Yong [114], for the latter method, gives implicit solutions using the
notion of bridge which identifies new solutions of FBSDEs from known ones. Hence, on one hand
solving a FBSDE explicitly by means of the four-step scheme requires an explicit solution to a
quasilinear PDE, which is not an easy task, and on the other hand the method of continuation
only gives implicit solutions. For this reason, numerical methods are being developed in order to
seek approximate solutions to FBSDEs. The first numerical methods to appear were the PDE
based method of Douglas, Ma and Protter [40] along with the random time partition scheme of
Bally [7] and the tree based scheme of Chevance [28].

The present chapter gives an overview of existing numerical methods for FBSDEs and is
organized as follows. Section 1.1 deals with the four-step scheme based methods that numer-
ically solve the quasilinear PDE. Spatial discretization methods, including quantization tree
methods and multinomial trees, are presented in Section 1.2. Section 1.3 is about Monte Carlo
regression based methods and the final section summarizes numerical methods for BSDEs with

non-Lipschitz coefficients.

1.1 Four-step scheme based methods

Even if all numerical methods for FBSDESs can be linked to the four-step scheme, we can clearly
distinguish those treating the associated quasilinear PDE directly. These methods impose dif-
ferentiability and boundedness constrains on the FBSDE coefficients in order to ensure the
convergence of the numerical scheme for the PDE. Also, their extension to multidimensional
FBSDEs remains an open problem due to the lack of algorithms for multidimensional PDEs.
Nonetheless, four-step scheme based methods can compute numerical solutions to the most gen-
eral coupled FBSDEs. Here, we present those methods according to the type of algorithm used
to solve the PDE numerically.

ISee the book of Ma and Yong [81]



1.1.1 Finite difference methods

In 1996 Douglas, Ma and Protter [40] initiated numerical methods for FBSDEs. In that pa-
per, the authors rely on the four-step scheme and solve the quasilinear parabolic PDE using a
combination of characteristics and finite difference method.

Two similar types of FBSDE with nonlinear coefficients are considered: a “general case”
FBSDE where the diffusion coefficient of the forward process does not depend on the control
process and a “special case’ one where, in addition to the diffusion coefficient of the forward
process, the forward and backward drifts do not depend on the control process. Thus, the
stochastic equations are coupled in both cases and all involved processes (namely the forward
and backward processes, the control process and the Brownian motion) are assumed to be one-
dimensional.

When solving the “special case” FBSDE

dXt = a(t, Xt, Y;g)dt + O'(t, Xt, Y;g)th
—dY; = f(t, Xy, Y2)dt — Z,dW, (1.1.1)
Xo=mzo,Yr=¢

the PDE reduces to
2

%—l—a(t,x,u)%—l—%ﬁ(t,x,u)% + f(t,z,u) =0 (1.1.2)
which is first modified using a time change of variable to get an initial value value problem. A
method of characteristics is then applied and reduces the quasilinear advection-diffusion PDE
into a diffusion PDE. A finite difference scheme then discretizes the resulting PDE with a first
order forward difference in time along the characteristic and a second order central difference in
space. For a time step of At and a space step of Az, this gives a solution u” at time mesh #;

and grid point x; of the form

k_ k-1
uy — u; 1 _ _
L L e uF YD) 4 f(tr ) (1.1.3)
At 2
where @" 71 = u*~1(x; — a(ty, zi, u" 1) At) is the solution value along the characteristic obtained

by interpolation, and
ufiy = 2uf +uf
(Ba)?
stands for the second order finite difference for the second derivative. The scheme produces a

D? [uk] =

2

convergent solution with a first order local truncation error in both time and space.

The availability of a numerical solution to the PDE then allows the construction of numerical
solutions for the forward and backward SDEs using the four-step scheme representation of their
solutions and this construction is made possible since the approximate solution to the PDE sat-
isfies the Lipschitz condition. A forward (or explicit) Euler scheme? gives a numerical solution
to the forward SDE and the approximate solution to the backward SDE is obtained by interpo-
lating the PDE approximate solution at the values of the forward SDE numerical solution. This
procedure reproduces the convergence rates of the underlying Euler scheme. More precisely,
we get a half (%) order strongly convergent scheme for the solutions of both the forward and
backward SDE and a first order weakly convergent scheme for the forward SDE solution.

The numerical solution for the “general case” FBSDE

dXt = a(t, Xt, Y;g, Zt)dt + O'(t,Xt, Y;g)th
_d}/;f = f(ta Xta Y;fa Zt)dt - thWt (114)
Xo=uaz0,Yr=¢

2See Kloeden and Platen[69].



where the PDE takes the form
2

@Jr " (t )@ @+12(t )M
at a , Ly, U, 0\l, T, U ax 8;5 20— s Ly, U 8$2

ou

+ f (t,z,u,o(t,z,u)%) =0, (1.1.5)

seeks not only approximate solutions for the forward and backward processes but also for the
control process. This requires the implementation of a numerical scheme for the derivative of
the PDE solution. Hence, the authors deduce a second quasilinear advection-diffusion PDE de-
scribing the aforementioned derivative by differentiating the initial PDE. The resulting system
of PDEs is then solved by applying the numerical scheme of the “special case” to each PDE. In-
terpolations on the numerical solution of the PDE system help in solving the forward SDE with
an Euler scheme and computing values for the backward SDE solution and the control process.
Again, the method is half (%) order strongly convergent for the triple of processes solution to the
FBSDE and first order weakly convergent for the solution of the forward SDE and the control
process.

Milstein and Tretyakov [89, 90] also used a finite difference method on PDEs to solve FBSDEs
numerically. The algorithms in both papers are based on the four-step scheme but apply to a
less general type of FBSDEs. In the first paper [89], the authors consider a coupled FBSDE
where the forward coefficients do not depend on the control process and the driver depends only
linearly on it. The second paper [90] generalizes the first by introducing the control process in
the forward drift and a nonlinear driver in the control process. The driver has the form

f(tal‘ayaz) = fl(tal‘ayaz) + fQ(ta:L‘ayaz)y + f3(tal‘ayaz)z (116)
and this structure leads to the PDE
8u+~ ; (t )8u ou
5 alt,z,u,o(t,xz,u 9 ) 9x
1 5 0%u ou
+ 50— (tvxvu)@+f2 <t,z,u,o(t,z,u)%)u
0
+ fi (t,x,u,o(t,x,u)%) =0 (1.1.7)

where @ = a + o f3.

One of the major differences between the approach of Milstein and Tretyakov [89, 90] and
the one of Douglas, Ma and Protter [40] is in the numerical resolution of the quasilinear PDE.
Indeed, Milstein and Tretyakov [89, 90] chose a layer method which is a first order numerical
algorithm for parabolic PDEs grounded on these PDEs probabilistic representation. At time
node t; and for a time step of At, the numerical solution uj of the PDE in equation (1.1.2) is
given, for instance, by

i1 () + uppr ()

ug(z) = 5 + (A f (tr, z, up41(2)) (1.1.8)
where
e = x4+ (Aba (b, z, ups (z) £ VAL (b, 2, upsr (2)) - (1.1.9)

As to the stochastic part, the forward SDE resolution may consist of an Euler or Milstein
scheme and the backward and control processes are obtained by interpolating the PDE numerical
solution. The second major difference with Douglas, Ma and Protter [40] approach being that a
finite difference on the PDE numerical solution approximates the derivative of the PDE solution.
Indeed, the discrete operator D; defined as

Dyupq1](x) = ey (2f)) — upga (z;)

20 (t, z, upyr (7)) VAL (1.1.10)
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which is a central finite difference for the first derivative in the layer method, may be used to
approximate the derivative in various situations.

The method’s rate of mean-square convergence is % for the FBSDE triple solution when an
Euler scheme discretizes the forward SDE and 1 for the forward and backward solutions when
the Milstein scheme is used. The Milstein scheme on the forward SDE also yields a first order
mean-square convergence for the control process if the finite difference on the PDE numerical
solution is first order accurate.

1.1.2 The spectral method

It can be noted that, except for the Milstein and Tretyakov [89, 90] method under the Milstein
scheme with its first order convergence, numerical methods for FBSDEs yield a half order con-
vergence®. In their paper, Ma, Shen and Zhao [80] propose a four-step based numerical method

with an enhanced rate of convergence.

A uni-dimensional fully coupled FBSDE with continuously differentiable coefficients is con-
sidered. These coefficients must satisfy further growth and boundedness conditions. In partic-
ular, the forward process volatility, which does not depend on the control process, must have a
bounded second derivative.

The algorithm is applied to the quasilinear PDE expressed in divergence form

ou . ou\ou 0 (1, ou B
n +a (t,x,u, %) Iz + 92 <§O’ (t,x,u)%) + f(t,x,u) =0 (1.1.11)

for some Lipschitz and bounded function a. The discretization of this PDE starts with a first
order implicit time stepping that leads to an uni-dimensional elliptic equation in space at each
time node, but other time discretizations may be chosen? to reach higher orders of accuracy. At

time step tx, the solution wuy is expressed as

At\ 0 Ju
U — <7) % (O’Q(tk,l',’ll,k+1)a—;) =

~ 8uk 8uk
ug+1 + (At) (a (tk, T, U1, +1) Tkl

Ox or +f(tk,$,ﬂk+1)) . (1112)

The structure of the space domain, and more precisely the fact that it is the whole real line,
imposes the usage of Hermite polynomials® in the spectral method. Hence, at each time step,

the PDE solution u, and the term o2 (t, =, uk+1)aaij are interpolated with weighted polynomials
with weight function
w(z) = e 2% (1.1.13)

and an integration by parts of the elliptic ordinary differential equation (ODE) gives a variational
equation using Hermite quadrature. The last step for solving the PDE is to find the interpolation
weights from the variational equation. The procedure produces a numerical solution® with first
order accuracy in time and spectral convergence in space.

Concerning the numerical solution to the forward process, Ma, Shen and Zhao [80] propose

3_
2

strongly consistent schemes in addition to the usual explicit Euler scheme. In particular, the

three different highly accurate schemes including the first order Milstein scheme and two

Euler scheme leads to an approximation of the triple of processes which is half order accurate.

The idea that the method convergence rate can be improved when using a higher time stepping

3This includes four-step and Monte Carlo regression based methods as we will see later in this review.
4The authors mention an alternative Adam—Bashforth scheme.

5See Appendix C for a definition of Hermite polynomials and more precisely equation (C.10).
6Tncluding the solution to the PDE and its derivative.



method for the PDE and a higher order scheme for the forward SDE is illustrated with numerical

examples. The authors are able to reach a %—order of convergence for the FBSDE solution.

1.2 Spatial discretization based methods

Quantization based methods aim to weaken the regularity conditions imposed on the FBSDE
coefficients in PDE based methods. Those methods consist of replacing a (continuous) random
variable by a discrete one in order to estimate the expectations involved in the local representa-
tion of the FBSDE. Hence, the methods avoid the direct numerical treatment of the associated

quasi-linear PDE.

1.2.1 Quantization tree methods

After a time discretization of some local representation of FBSDE, quantization tree methods
typically discretize the forward process space at each time node using a quantization grid. A
function, called the quantizer, projects the values of the forward process on the grid. Calculating
the conditional expectations involved in the local representation of the FBSDE then depends on
the availability of transition probabilities at each time step.

In order to avoid solving a PDE numerically, Bally [7] developed a method for BSDEs with
a driver depending on the control process but the resolution of the BSDE has to be done at
Poisson random times to prove the method convergence. This inconvenience was mainly due to
the unknown path regularity of the control process. Chevance [28] overcame the time discretiza-
tion randomness by proposing the first quantization tree and convergent method for decoupled
FBSDEs.

Chevance [28] considers Markovian cases where the backward process terminal value depends
only on the forward process terminal value and his method applies if the BSDE driver does not
depend on the control process. Also, the decoupled FBSDE coefficients (forward SDE coefficients,
the driver and the terminal function) have to satisfy further differentiability and boundedness
conditions.

The forward SDE is discretized (over a deterministic time grid) by a weak Euler scheme where
the Brownian increments are replaced by a discrete random variable”. As to the backward SDE,
its discrete local representation uses the driver’s upper value. This discretization yields a first
order absolute error (in time).

In order to compute an approximate solution for the backward equation, Chevance [28] uses
a fixed space grid for the forward SDE at each time step and the forward process values on the
space grid are determined with the closest neighbor rule as the quantizer. More precisely, at
each time step the weak solution values of the forward process (using the previous time step
projections) are projected on the grid and the projection itself is defined for any number as the
least value among the closest grid point values to the number. The backward process values are
then computed (backward in time) by evaluating the BSDE discrete local representation using
the forward process projected values and the transition probabilities provided by the aforemen-
tioned discrete random variable. The procedure yields a weak solution for the BSDE that is first

order accurate in time and space.

Other quantization tree methods include the methods of Bally and Pages [8] and Bally, Pages
and Printems [9]. The methods are designed for reflected BSDEs (RBSDEs) and particularly for

"The discrete random variable must have zero mean, zero third moment, an unit variance and finite fifth
moment.
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the problem of pricing multidimensional American options and require only the usual Lipschitz
conditions needed for the decoupled RFBSDE well-posedness. Along with the method, the au-
thors address the problem of optimal grid and transition probability choice. Finally, Delarue and
Menozzi [35] developed a quantization method for solving parabolic PDEs via their probabilistic
representation through coupled FBSDEs. An interpolation procedure was then proposed by the

same authors in [36] as an improvement of the method.

1.2.2 Multinomial trees

Multinomial trees differ from quantization trees in two main fashions. First, the BSDE is it-
self discretized in multinomial methods whereas quantization methods only discretize the BSDE
local representation. Also, multinomial trees replace the Brownian increments that appear in
the discrete version of the FBSDE with discrete random variables: in quantization methods, the

forward process is directly targeted.

Indeed, note that Chevance discretizes only the local representation of the BSDE but not
the BSDE itself because of the unknown regularity of the control process. Hence, he does not
provide a numerical solution for the control process. The direct discretization of the BSDE? is
later made possible by Briand, Delyon and Memin [21] along with Ma, Protter, San Martin and
Torres [78] with the proof of its convergence with quasi-minimal conditions on the BSDE driver
and terminal random variable.

Briand, Delyon and Memin [21] and Ma, Protter, San Martin and Torres [78] both discretize
Brownian increments with a symmetric Bernoulli distribution leading to a binomial tree. The
method applies to one dimensional problems but can be generalized to multidimensional® BSDEs.
Nonetheless, one can note differences between the papers regarding the conditions of the BSDE
coefficients, the converging objects, the type of convergence and the induced algorithms. Indeed,
the BSDE driver of Briand, Delyon and Memin [21] depends on the control process whereas in
[78] it does not but requires continuity. Also, the first paper [21] proves convergence in probability
for the forward and control processes whereas the latter [78] proves convergence in distribution
for the forward process and the stochastic integral of the control process with respect to the
Brownian motion. Finally, Briand, Delyon and Memin [21] propose only an implicit method
whereas Ma, Protter, San Martin and Torres|[78] put forth a suitable explicit algorithm.

In general, the BSDE is discretized on an uniform partition with time step A as
Yy, = Y;5i+1 + Af(ti’ Yi., Zti) - \/ZZtiei-i-l (1'2'1)

where the ¢; are a sequence of independent, symmetric and discrete random variables. Equation

(1.2.1) can be numerically solved with the implicit backward algorithm

Y;,

i

E [}/;E'H»l |gtJ + Af(tia Y;EiaZti) (1.2.2)

1
i ﬁE [ni+16i+1|gti} (1'2'3)

where G is the discrete filtration generated by the sequence of ¢;’s. For the explicit scheme, one

Z

may consider
}/ti = E I:}/tiJrl |gt7,:| + Af(tiﬂ E I:}/ti+1|gti} ﬂZti) (124)

instead of the expression of equation (1.2.2).

8By replacing the Brownian increments in the BSDE with random steps.
9Bouchard and Touzi [20] consider “questionable” the extension of tree methods to high dimension problems

due to the difficulty of such extensions.
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Building on Briand, Delyon and Memin [21, 22] and Ma, Protter, San Martin and Torres
[78], Peng and Xu [99] worked on implicit and explicit algorithms for one dimensional BSDEs
and reflected BSDEs (RBSDEs) based on the binomial method and proved their convergence
for the backward and control processes under minimal conditions on the BSDE driver. Finally,
in the paper of Briand, Delyon and Memin [22], the approximation of the Brownian motion is

generalized from (scaled) random walks used in [21] to martingales.

1.3 Monte Carlo regression based methods

Simulation methods mostly apply to decoupled FBSDEs and essentially started with the work
of Zhang [124] and his proof of the control process path regularity. This path regularity allows
the implementation of strongly convergent (simulation based) algorithms with a deterministic
time discretization and avoid time node randomization as in Bally [7], numerical treatment of
the quasilinear PDE as in Douglas, Ma and Protter [40] or high regularity conditions on the
BSDE coefficients as in [40] or [28]. Moreover, the main advantage of simulation based methods

lies in their efficiency for multidimensional problems.

1.3.1 Backward schemes

The numerical implementation of Zhang’s [124] method requires only the usual Lipschitz con-
ditions on the FBSDE coefficients needed for the problem well-posedness. In particular, some
Lipschitz regularities!? are defined for the BSDE terminal value function that is allowed to be
non-Markovian, in the sense that it may depend on the whole forward process path.

Given a (deterministic) time partition, the forward SDE describing a (non-homogeneous) Ito
diffusion is numerically integrated with an Euler scheme which yields a half (%) order strongly
convergent solution. The mean square error (MSE), when valuing the BSDE terminal function
with the Euler solution of the forward process, is first order convergent in time in case the
terminal function is Markovian or L!-Lipschitz. The MSE is of the order of log(At~!)At for
time step At in the L°°-Lipschitz case.

As to the BSDE itself, Zhang [124] discretizes it with an explicit Euler scheme and the
backward and control process values are recovered backward in time using the BSDE local
representation. More precisely, expectations taken on the BSDE discretization compute the
approximate adapted solutions of the BSDE. The scheme is proved to be convergent in the
L?-sense of Zhang [124] and its convergence for the backward and control processes is strongly
related to the Lipschitz regularity of the BSDE terminal value function. Indeed, the scheme
yields a squared error of the order of log(At~!)At if either the driver does not depend of the
control process or the time partition is K-uniform!'. If in addition the BSDE terminal value
function is Markovian or L!-Lipschitz, then the convergence is half order in time (i.e a squared
error of order one). Zhang gives the following general error bound

sup ||Y; - Y;

te[0,T]

2 N2 .
L2+HZ7ZHL§ SC(|7T|+||§*§ ||L2) (1.3.1)

for a given time partition 7, where Y and Z are the BSDE piecewise constant numerical solutions.

When giving orders of convergence for his algorithm, Zhang [124] does not provide any
method for the valuation of the expectations involved in the BSDE local discrete representation
and numerical solution so that the order of convergence are valid when valuing exact expecta-
tions. Thus, not only does one still need an approximate method for the expectations in order

10Definition 2.1 of Zhang [124].
HDefinition 5.2 of Zhang [124].
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to implement the Zhang [124] algorithm but the orders of convergence have to be updated to
take into account the error induced by the approximation. Two main papers appeared to solve
this problem.

Bouchard and Touzi [20] consider a (decoupled) FBSDE where the forward process is a mul-
tidimensional time homogeneous Ito diffusion. The backward process is taken uni-dimensional
for simplicity. As in Zhang [124], an explicit Euler scheme numerically integrates the forward
SDE but the backward SDE is discretized with an explicit Euler scheme. Nonetheless, condi-
tional expectations still need to be computed in order to approximate the backward and control
processes discrete local representations.

In order to approximate the expectations, Bouchard and Touzi [20] apply a Malliavin calculus
based regression method which forces the simulated forward process values at each time node
to be independent. Hence, the forward process values at each time node have to be simulated
independently of its values at any other time node leading to a particularly time consuming
procedure.

For a fixed number N of paths (in the forward process simulation), the algorithm yields an
LP-error of the order At~—! for the backward process. Hence, the method has the undesired
property that errors tend to explode for a fixed number of simulated paths when reducing the
time step. The LP-error due to the expectation approximation multiplies this time stepping error
on the backward process and is of the order of At~ N 7%, where the forward process has
dimension d, for a global LP-error of the order of At~> % N~ 2. From this result, the authors
point out that if the number of simulated paths is taken to be n3p+g, where n is the number of
time steps in an uniform time grid, then one achieves a half order global LP-convergence in time
for the backward process. The article ends with an extension of the method to RBSDEs and a
numerical example on an American option pricing problem.

One of the main disadvantages of the Malliavin weights regression method is its compu-
tational complexity. Crisan, Manolarakis and Touzi [33] address this problem and propose a
simplification of the algorithm in Bouchard and Touzi [20]. The simplification consists in using
alternative Malliavin weights and preserves the method’s convergence features.

Using similar ideas, Gobet, Lemor and Warin [53] proposed another simulation method for
multidimensional decoupled FBSDEs that does not require independent simulations of the for-
ward process. Conditions on the FBSDE coefficients are those needed for well-posedness and,
particularly, the terminal function is assumed to have the L°°-Lipschitz property in the non-
Markovian case. As usual, a forward Euler scheme approximates for the forward process.

The backward algorithm for the BSDE is also built on a backward Euler discretization and
uses least squares regression to approximate the BSDE solution. At each time step, the back-
ward and control processes are represented as linear combinations of some basis functions. The
projection coefficients for both processes are then determined by minimizing the regression mean
square error with Picard iterations. The authors suggest orthogonal polynomials or hypercubes
as choices of basis functions.

The (partial) convergence study in [53], made on the backward and control process, gives a
rather complex expression for the upper bound of the method L2-squared error. Nonetheless, it
highlights another drawback of simulation-based backward schemes: the fact that errors accu-
mulate through the iterations since, at any time step, the approximations are computed using

previous ones.

Beside the most used explicit and implicit Euler schemes for BSDEs, other discretization
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schemes can be found in the literature. Zhao, Shen and Peng [125] introduced #-schemes where
the backward SDE is locally discretized with the driver and the control process weighted upper
and lower values. The numerical solutions Y;, and Z;, at mesh time ¢; then solve the following
system of equations

Y., = B, (Vi ] +A {1 —00E, [f(tit1,Yes Zepy)]
+ 01 f(ti, Ve, Ze,)} (1.3.2)
0 = E, [AWYi |+ Ai(1 = 0)E,, [f(tiv1,Yers Zeoyr ) AW
A {(1 = 02)Ey, [Z4,,,] + 0224, } (1.3.3)

where 6; and 6, are chosen in [0,1] and may depend on the mesh time ¢;. The trapezoidal
rule which consists in setting 6; = % and 6, = 1 is known to be second order accurate for
the backward process and first order accurate for the control process under differentiability and
boundedness conditions on the driver and the terminal condition. One may refer to Zhao, Wang
and Peng [126] or Li and Zhao [74].

More recently, Zhao, Zhang and Ju [127] carried out a multistep scheme but the conditional
expectations in their method are valued using Gauss-Hermite quadrature instead of Monte Carlo

regression.

1.3.2 Forward schemes

Forward schemes were designed by Bender and Denk [10] to address the two problems inherent
in simulation-based backward methods: the error explosion for small time steps and the error
accumulation due to embedded expectation approximations.

As in Gobet, Lemor and Warin [53], Bender and Denk [10] develop a method for multi-
dimensional decoupled FBSDEs with a non-homogeneous diffusion as the forward process, a
non-Markovian L°-Lipschitz terminal function and the usual (and minimal) conditions on the
FBSDE coefficients.

Instead of discretizing the BSDE locally, the authors employ Riemann type sums and Picard
iterations on the backward and control processes to approximate the backward integral at each
time step. More precisely, the approximate backward process is expressed in terms of the previous
Picard iteration processes and the obtained backward stochastic integral is discretized with
lower Riemann sums. Taking the expectation from the subsequent expression preserves the
adaptedness of the numerical solutions and gives formulas for the values of the current Picard
iteration backward and control processes at the different time nodes.

The n-th Picard iteration on a time partition 7 = {0 =t9 < t; < ... <ty =T} then takes

the form

[ N—1

Y= By € Yt XYL Z0ThA, (13.9)
L JZl
[ N-1

n AWl ™ b n— n—

Zr = B, |5 ¢ + > f XEL YT ZE A, (1.3.5)
L ! JZl

where Y;’j‘_l and Z,Z_l are the values of the numerical solutions obtained in the previous Picard
iteration for the backward and the control processes respectively.

Even though Picard iterations are the main feature in the method, the algorithm remains
quite efficient since, in general, very few iterations are needed to have satisfactory results.

The forward process can be simulated with a forward Euler scheme and the conditional ex-
pectations involved at each Picard iteration evaluated with a regression method forward through
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time nodes. The authors use a least squares regression with orthogonal basis functions, as in
Gobet, Lemor and Warin [53], to approximate the conditional expectations.

The algorithm produces a numerical solution with a half order L?-convergence in time when
the conditional expectations are exact which is similar to the result of Zhang [124] for backward
methods. More specifically, the quadratic error is given by

1 n
swp 1%~ ¥ 12 - 270 < © (Il +le - €1+ (3 +Cm) ) 30
t€[0,T]

Finally, the procedure’s convergence is also proved in the L?-sense without specification of the
rate of convergence.

Finally, an algorithm using Picard iterations was recently constructed by Bender and Zhang
[11] for weakly coupled FBSDEs with coefficients satisfying monotonicity conditions.

1.4 Methods for quadratic growth BSDESs

If numerical methods for FBSDEs with Lipschitz coefficients have mainly attracted researchers,
the non-Lipschitz cases are becoming a growing interest. Among BSDEs with non-Lipschitz
coefficients, those with quadratic growth are certainly the most studied. Since the proof of their
well-posedness by Kobylanski [70] for bounded terminal conditions, the studies of Briand and
Hu [24] extended the result to unbounded terminal conditions with exponential moments and
convex driver.

Nonetheless, numerical methods for quadratic BSDEs are available only in the bounded
terminal value case. This comes from the fact that the martingale defined by the Ito-integral
of the control process (Z ¢ W); = fot ZsdWy does not necessary conserve its the BMO property
when the terminal condition is unbounded, making the derivation of regularity and convergence
results arduous in that case.

Furthermore, numerical resolution of quadratic BSDEs faces a major obstacle even in the
bounded terminal condition case. Indeed, the existing time discretization methods, and partic-
ularly the Euler scheme, fail to converge for general quadratic BSDEs.

Imkeller and Dos Reis [65] try to overcome those difficulties by proposing a method that
applies to decoupled FBSDEs with bounded terminal condition and differentiable coefficients.
First, the authors prove the required path regularities for the solutions of quadratic BSDEs.
Their numerical method relies on a truncation of the driver which reduces the problem from a
quadratic framework to a Lipschitz one. Hence, the classical time discretization can be used on
the modified BSDE.

For one-dimensional BSDEs, a family of differentiable truncation functions h, : R — R is
defined such that h,(z) is simultaneously bounded by |z| and the integer n 4+ 1. Then, any
numerical method for FBSDEs with Lipschitz coefficients can be applied to the approximated
BSDE

—AY" = f(t, X0, Y] ho(Z7))dt — Z7dW;

where the control process is replaced by its truncated value in the BSDE driver.

Since classical algorithms already converge for the truncated BSDE, the method’s global
convergence depends on the convergence of the truncated BSDE solution to the actual solution.
Thanks to the BMO property of the process Z e W, a convergence rate is provided and is given,
for any 5 > 0 and p € N*, by the following error bound

n 2 n 2 _B
Y™ =Yl + 12" = 22 < Dgn™2 (1.4.1)
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where Dg and ¢ are given constants.

The authors point out the lack of efficiency of the truncation approach. Indeed, the method’s
convergence is assured when the time step At is inversely proportional to the exponential of the
Lipschitz constant related to the truncated driver. More precisely, the global error, including

1 eCn’
Dol — 122

where N is the number of time steps and C' > 0 is related to the Lipschitz constant of the driver.

the discretization error, is bounded by

Hence, one needs to consider more time steps when this Lipschitz constant slightly increases, so

to say when one tries to get a slightly better approximation through truncation.

Recently, another numerical algorithm was proposed by Richou [103]. Tt solves for decoupled
FBSDE with bounded terminal values and a forward volatility that is only a function of time
on an nonuniform time grid. The main feature of Richou’s approach is the Holder continuity of
the terminal value function.
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Chapter 2

Convolution method for BSDEs

In this chapter, we implement a quadrature method for numerical solution of BSDEs. An Euler
scheme discretizes the equation and we apply an FFT (Fast Fourier Transform) algorithm to
value the conditional expectations induced by the time discretization. Hence, the approach is
a typical spatial discretization method with the feature that the FFT algorithm serves as an
alternative to trees and quantization when computing the quadratures.

The FFT algorithm computes the (inverse) discrete Fourier transform (DFT) of a given
function and is widely used in various fields, and particularly in spectral and pseudo-spectral
methods for PDEs. In addition to its flexibility, one of its main advantages is its efficiency as
the FFT algorithm computes the values of the discrete Fourier transform of n function values
in O(nlog(n)) operations.

Two interesting financial applications of the algorithm are those of Carr and Madan [26] and
Lord et al. [76]. These two papers employ the FFT algorithm to compute quadratures in the
context of option pricing under Lévy processes. The first paper deals with European options
whereas the latter treats American options. Our approach is much closer to the one of Lord
et al. [76] since the numerical resolution of the BSDE is also made by dynamic programming

through the Euler scheme.

2.1 Preliminaries

In this chapter, we study the numerical solution of BSDEs of the form

T T
Y, = g(Wr) + / F(5, Yo, Z)ds — / Zraw, (2.1.1)
t t

where W is a d-dimensional Brownian motion with driver f:[0,7] x R x R? — R and terminal
condition ¢ : R* — R. Conditions on f and g are given in section A.1 of appendix A. In addition,
Proposition A.2 assures the well-posedness of such BSDEs.

It is known! from Pardoux and Peng [96] that if the Cauchy problem to the diffusion PDE

u d 2
%Jrézi:lg_szff(tvU,VU):O, (t,x) €[0,T) x R? o12)
has a unique solution then the solution (Y, Z) for the BSDE admits the representation

Y = u(t,W;) (2.1.3)

1See section A.2.2 in the appendix.
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Z, = Vu(t,Wy). (2.1.4)

This representation plays an important role in the sequel, since the convolution method implicitly
solves the PDE of equation (2.1.2).

2.2 Convolution for BSDEs

In this section, we present the main ideas behind the convolution method. More precisely, we
build numerical approximations to the BSDE of equation (2.1.1), using a time discretization
of the BSDE. Thereafter, we give some useful properties of these solutions. For simplicity, we
develop the method in the one dimensional case, i.e d = 1.

2.2.1 The approximate solutions and their properties

The starting point of the convolution method for BSDEs is the Euler scheme. We will mainly
consider its explicit version which takes the form

27 =0,Y[ =¢"

Zr = L+E [WHAWA@} (2.2.1)
Vi =E [ YEF| 1B Y VR 20

on a time mesh 7 = {tp = 0 < t; < ... < t, = T} and refer to it as the Euler scheme 1. A
similar version of the Euler scheme was already proposed by Peng and Xu [99] in the context
of binomial trees with the difference that the authors compute the expectations after the space
discretization and, hence, with a discrete filtration.

Since the Brownian motion W is a Markov process, we define the approximate gradient
u; : R — R at time mesh ¢;,, ¢ =0,1,...,n—1 as

i(7) = —F [Y’f

A B YT AW, = (2.2.2)

so that the approximate control process is given by
Z{ =4 (Wy,). (2.2.3)
We let the intermediate solution #; : R — R at time ¢; take the form

u;(x) =E |[Wh, = x| . (2.2.4)

tﬂ

Consequently, an approximate solution of the PDE of equation (2.1.2) at mesh time ¢; consists
of a real-valued function u; : R — R satisfying

Y7 = wi(W,) (2.2.5)
can be defined as
wi(@) = @)+ Acf(ts @), wiz)) (2.2.6)
where
@) = 1 [ G- DuahGlod (2.2.7)
@) = [ wnhlod (2.2.8)
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fori=0,1,....,n—1 and u,(x) = g(x). Note that u; is the approximate solution for the gradient
of the PDE solution Vu at mesh time t;. Similar expressions are obtained by Delarue and
Menozzi [35] in the context of FBSDEs and quasi-linear PDEs.

Also, the function & is the density function of W3, , conditional on the value of W;,. By the

stationary and the independence of Brownian increments, we have that
h(ylz) = h(y —=x). (2.2.9)

As in Lord et al. [76], the relation of equation (2.2.9) plays a central role in the convolution
method since it allows us to express the functions @; and 1; as convolutions. This, in addition,
simplifies the application of Fourier transforms and hence the computation of the integrals of
equations (2.2.7) and (2.2.8) via the DFT as we shall see in the sequel. Indeed

h(z) = (21A;) 77 exp (—Qi) (2.2.10)

since increments of a Brownian motion are normally distributed.
The implicit Euler scheme can also be considered in this analysis, only the expression for the
approximate solution differs. Indeed when the BSDE is discretized with the time stepping

Z5, =0, Y7 =¢"
27 = AE [Yt“ AWi|fti:| (2.2.11)

i+1
YT =B V7 V] + £t Vi 20)A

the approximate solution has wu; the implicit form

The approximate gradient #; and the intermediate solution @; satisfy equations (2.2.7) and (2.2.8)
respectively. The implicit representation of equation (2.2.12) is solvable for the approximate
solution u; when

| K <1 (2.2.13)

where K is the Lipschitz constant of the driver f. In this case, the explicit and implicit schemes
produce solutions with similar properties. For this reason, we mainly focus the analysis on the
explicit Euler scheme 1.

The solution (Y;, ZT) and (u;,%;), i = 0,1,...,n — 1, display important properties that are
worth mentioning. These properties are easily extensible to the multidimensional case even
though we present them in the one-dimensional setting. The next lemma describes the integra-

bility property of the solution (Y;", ZT).

Lemma 2.1. Suppose the conditions of Assumption A.2 are satisfied and p > 2. Then there
exists a positive constant Cr > 0 depending on the Lipschitz constant K, the time horizon T,

the partition ™ such that
1
sup [|Y;" || p +sup A7 |27 || p < Cn (IIfIILp +T sup If(t,0,0)|> : (2.2.14)
i i te[0,T

Hence, if ¢ = g(Wr) € L? and f(.,0,0) € C
Y € LP and ZT € L*.

Proof. Let’s first note that for 2 < p < oo

1
12715 = 7B (B, ViAW [7]
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< 1p {Az |E,, [(Y711)?] ‘g} (by the Cauchy-Schwartz inequality),
< Z_% E [E, [|Y74|"]] (by Jensen’s inequality),
= A CE H +1’ ]
A YL, (2.2.15)

Also, letting Y = E,, [Y/7,], we have

E [, [Y7i.][]
E [E,, [|[Y71]"]] (by Jensen’s inequality),
YTl (2.2.16)

Since, by the Lipschitz property of the driver f,

IN

v7| <

+ A K ( Y

+1271) + Ai sup |£(4,0,0)]
t€[0,T]

where K is the Lipschitz constant of f. Hence, we have that

Vol < ||77)| + ke (|57 + 127 050) + A sup 1£(2,0,0)
Lp Lp t€[0,T]
(using Minkowsky inequality),
< 1+ AK+AZK)|Y, Tl e + A s, | £(t,0,0)]
tel0,T
(using inequalities (2.2.15) and (2.2.16)),
n—1 N
< J10+ 2K+ AFE) (il +T sup 170,01
i telo,
(by Gronwall’s Lemma),
n—1 .
< exp | KT+ KDY AF ) (gl +T sup |f(£0,0)]
1=0 t€[0,7]
1
S 5071' <||§||LP +7T sup |f(t70a0)|> (2217)
t€[0,T]
From the inequalities of equation (2.2.17) and (2.2.15) we have
1 1
AZNZT N = 50 <||§||Lp +T sup If(t,070)|) : (2.2.18)
t€[0,T]

Taking the supremum on the left hand side of (2.2.17) and (2.2.18) then leads to the result of
equation (2.2.14) for 2 < p < oo. Finally, taking the limit as p — oo gives the result in the case
p = oo and completes the proof. O

As to the approximate solution (u;, 4;), we first present their differentiability properties. This
property will be used in the error analysis of the convolution method.

Lemma 2.2. If the driver f € C1?? is twice differentiable in the backward and control variables
and the driver g € C? is also twice differentiable then the approzimate solution u; € C? and the

approzimate gradient 1; € C? are both twice differentiable for i =0,1,...,n — 1.

Proof. The result follows by applying Leibniz’s integral rule successively. [l

It is important to ensure the approximate solution (u;,w;) is close enough to the PDE so-
lution u and its gradient Vu. The next lemma describes the error induced by the BSDE time
discretization through equations (2.2.6), (2.2.8) and (2.2.7). It holds since we know from Zhang
[124, 123] that the time discretization of the BSDEs yields a first order (quadratic) error term.
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Lemma 2.3. Under the conditions of Assumption A.2, we have that

max E [ sup  |u(t, Wy) ui(Wti)|2:|
te|

0<i<n tivti+1]
n—1 tit1
+ > E U [Vu(t, W) — ui(Wti)Fds} = O(|x) (2.2.19)
i=0 ti

for any time discretization 7 = {0 =19 <t; < ... <t, =T}.

Equations (2.2.6) and (2.2.8), along with the expression of the density of equation (2.2.9),
show that the intermediate solution %; and the approximate gradient «; are successive convolution
transformations. More specifically, they are (generalized) Gauss-Weierstrass transforms since
the kernel h is the Gaussian density. We give a quick introduction to the Gauss-Weierstrass
transform in Appendix D. This presentation stems from the impressive literature on convolution
transformations. The books of Hirshman and Widder [60] or Zemanian [120], for instance, are
dedicated to the subject and also to the particular case of Gauss-Weierstrass transform. In
addition, Appendix E contains an introduction to Fourier analysis that is used in the sequel.

2.2.2 Construction of the convolution method

For a dampening parameter o € R and any function f, we define the function f¢ as
f¥z) = e *f(x). (2.2.20)

Taking the Fourier transform of 4 gives
— 00 — 00
o0

sasie) = [ et [ unt - odyds
/

e
e e / u ()e* Y h(y — z)dydz

Sluiia](v)Sle™**h(=2)](v) (2.2.21)

> 8

using the convolution theorem of Proposition E.5. Moreover

Sle “*h(—2)|(v) = /OO e W2em % h(—2)dz

_ / ei(u—ia)wh(z)dz
after the change of variable x = —z,
= ¢(v—ia) (2.2.22)
where )
o(v) = exp <§Aiy2) (2.2.23)

is the characteristic function of the density h.

The equality of equation (2.2.22) is well-defined since |¢(v —ia)| < oo for any a € R.
Nonetheless, the structure of the terminal condition g (and more generally, the preceding ap-
proximation u;41) will have a major impact in the choice of the dampening parameter «.. Indeed,
the equations (2.2.21) and (2.2.22) then lead to

$lai](v) = Sluif ) (V)o(v — i) (2.2.24)

and hence the parameter a must be chosen so that the dampened functions v, ¢ = 0,1,...,n,

are integrable and admit Fourier transforms.
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Using the same approach, the Fourier transform of 4 gives
Sladlv) = =Sl ]()Flee ™ h(=2)](v)
i « a —z
—ES[UZ—H]( )5, 8le” *h(=2)](v)
0

o(v — ia)

— Sl
)o(v — ia). (2.2.25)

= (a+i)§[ui,](v

where the second equality holds by Proposition E.4.
From equations (2.2.24) and (2.2.25), we recover the functions @; and @; by taking the inverse

Fourier transform and adjusting for the dampening factor

di(w) = e™F " [Fluf]@)e(v —ia)] (2) (2.2.26)
ai(z) = e F ! [(a+iv)Fud,)(v)o(v —ia)] (z). (2.2.27)

It is possible to construct an alternative explicit characterization of the BSDE numerical

solution. One may consider directly the explicit Euler scheme

77 =0,Y[ =¢"

77 = xE {Y?HAW”}}J (2.2.28)
VP =E (Y7, + S Y 2R

to define the approximate solution of the PDE of equation (2.1.2). We refer to this scheme as
the explicit Euler scheme 2. In this case, the approximate solution and the approximate gradient

consist of functions v; and ¥; at mesh time ¢; which take the form

w@) = [ sty — oy (2.2.29)

where
Vip1(z) = viga(x) + Aif (i, viga (2), 0i(2)), (2.2.30)
o) = [ ol - o)y (2.231)

for i = 0,1,....,n — 1 and v,(z) = g(z). Following the steps of the previous characterization,

these equations naturally lead to
vila) = e F (305, ] (o —ia)] (@) (2.2.32)
vi(z) = e*F ! [(a+iv)Fi]W)e(v —ia)] (2). (2.2.33)

In this case, both v{* and o§* for ¢ = 0,1,...,n — 1 along with the dampened terminal condition
are assumed to be integrable so that they admit Fourier transforms.

2.3 Implementation

As seen in Section 2.2, the numerical approximations of the BSDE solution can be expressed
in terms of convolutions representing the conditional expectations involved in the explicit and
implicit Euler schemes. We present, in this section, the numerical techniques which will allow

us to compute the quadratures in the solution expressions.
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2.3.1 Space discretization

From equations (2.2.26), (2.2.27),(2.2.32) and (2.2.33) one notices that computing the approxi-
mate solutions u; and v; at mesh time ¢; reduces to computing a function 6 : R — R depending
of two functions ¢ : C — C and 7 : R — R in the following manner

O(z) = % /_OO eEne ()i (v)dy (2.3.1)

if we drop the dampening factor e®®. 2

This integral is numerically computed by discretizing the Fourier space with an uniform grid

of N +1 points {r;}, on the interval [-%, L] of length L , where N is even, such that
v, = vy +iAv (2.3.2)
where 1y = —% and Av = % Hence, for any = € R
L
1 [z ., -
O(x) = | eI (V)Y (v)dy
N-1
A o s
~ o ) M) (2:3.3)

where the integral is approximated using lower Riemann sums and

() :/ e I in® (g)de :/ e iie= %y (1) d. (2.34)

— 00 — 00

This last integral is also computed using a uniform grid of N 4 1 points {z; };-V:o such that
x; =20+ jAx (2.3.5)

where Az is chosen so that the Nyquist relation® is satisfied, i.e

_27r

Az 2.3.6
B (2:3.6)
We approximate the integral of equation (2.3.4) by first restricting the integration interval to
(20, zn] = [—4, L] and then applying a composite quadrature rule with weights {w;}Y, so that
TN .
ne(v;) = / e in®(x)dx (2.3.7)
xo
N
~ Ax Z w;e FIin®(z;)
j=0
N
- Azx- e—iloVi Z wje—iji%'e—ijquzna(xj)
§=0
N-1

- Azx- efiacgui Z wjefijizﬁ"efijquxna(l_j) + ,wNna (mN)

Jj=

since N is even. Assuming that
n%(zg) = n“(an), (2.3.8)

2For a suitable function 7, the transform defining the function 6 can be interpreted as dampened conditional

expectation of n or Vi depending of the function 1.
31n its explicit form, we have Av- Az = %” One may then choose Az first and retrieve Av form the Nyquist
relation.
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we have, for i =0,1,...., N — 1,

” 2m —1z v —
0 (vi) & e D [{(=1) i (2) ', (2.3.9)
since e~ AT — _1 with
Wj = Wj + ON—j, NWUN (2.3.10)

where d; ; stands for the Kronecker’s delta.

A similar approach can be found in Lord et al. [76] who enhance the discrete Fourier transform
with a composite trapezoidal quadrature rule to compute this last integral. However, the authors
omit the assumption of equation (2.3.8) leading to considerable numerical errors, especially
around the boundaries of the restricted domain [zg, zy].

Note that

C\Rna o, On”
(a+iv)3[n*|(v) =T |on® + o ()

. . . o
and hence, when using 1 (v) = (a + iv)¢(v — i), the Fourier coefficients of the derivative -

are implicitly considered. For this reason, we also assume that
on® on*

"L (20) = S (aw) (2.3.11)

for a differentiable function 7.
The values of the function 6 are computed at the grid points {:ck}fcvz_ol by combining equations
(2.3.3) and (2.3.9)

N—

O(z) =~ e (vy)e 70D [{(=1) ™ (2:) 1
=0

,_.

<.

N-1
_ eikVoAm Z eijk%r’l/)(l/j)@ [{(71)1',&)1_77&(11_) i]\isl}j
§=0
key—1 e N1 VTt
= ot | fped {-Dan @S, ) L 23a2)
J=0 J&
Since we use the DFT, the underlying trigonometric (and hence periodic) interpolation allows
us to set
9(,@]\[) = 9(1‘0) (2.3.13)

We shall see, in the following sub-section how to adjust the method to consider functions that
do not satisfy the conditions of equations (2.3.8) and (2.3.11).

2.3.2 Numerical considerations

The integrability condition on the dampened approximate solutions (u$, v¢* and 0¢), particularly
on the terminal value function g%, may seem too constraining since it narrows the scope of
BSDEs that can be numerically solved by the method. In fact, the condition has no effect on
the numerical method since we are performing a domain truncation when valuing numerically
the Fourier transform of the dampened approximate solutions by the DFT in equation (2.3.7).

Indeed, this integral truncation imposes an integrability condition only on the truncated function

E(@) = n"(@)[zg,2,) (%) (2.3.14)
where
lifze A
La(z) = (2.3.15)
0ifx ¢ A
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is the indicator function. The procedure is equivalent to solving the BSDE on the restricted

domain [zg, znN].

An important step in the convolution method for BSDEs presented here is the choice of
the parameter o used for dampening purposes. As already mentioned, the optimal dampening
parameter strongly depends on the structure of the function n and will considerably improve
the accuracy of the approximation of equation (2.3.9). Indeed, the DFT algorithm gives better
results when « is chosen such that

n*(zo) =n"(zN). (2.3.16)
Since we intend to solve not only for the PDE solution u but also for its derivative Vu, we also
need e o

o on®

o (xo) = o (xN) (2.3.17)

where we assume that the function 7 is differentiable at least at the boundaries of the restricted
domain.

Note that, even for very simple terminal value functions g the condition of equation (2.3.16)
may be impossible to satisfy. A straightforward example is provided by the function g(x) = = on
the interval [z, zny] = [—1,1]. In order to address this problem, we slightly modify the function
n by adding a linear function to get the modified dampened function nj , defined as

ng‘ﬂ(z) =e *(n(z) + Bz + K). (2.3.18)

The following lemma gives the optimal choice for the dampening parameter @ € R, and the
coefficients 5 € R and k € R.

Lemma 2.4. Suppose the real function n € Ct[a,b] is differentiable with

on an
5@ 7 5. ()

and let ng . be its dampened and modified function as defined in equation (2.3.18). Then

a = ! 10g<g_g(b)+6> , (2.3.19)

b—a %i(a) + B

L () + Bb) — =" (n(a) + fa) (2.3.20)

e—aa _ efab

solve the system of nonlinear equations

15 (@) = 1§ . (b)

o o 2.3.21
T (@) = T=(0) 220
for any 5 ¢ {%(a), %(b)}. If, in addition,
0 0
3 > max <|a—Z(b)|, |6—Z(a)|> (2.3.22)

then also o € R and xk € R.

Proof. The first equation of the system (2.3.21) gives (2.3.20) in a straightforward manner. Since
n is differentiable, 7§ is also differentiable and

ong .. B 0
S (0) = —ang (o) + e (G2 + )

and the system (2.3.21) leads to (2.3.19). Clearly, if the inequality (2.3.22) holds then both
%(b) + 8 and %(a) + j3 are strictly positive and o € R. O
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The transform of equation (2.3.18) may seem over parametrized since we use three param-
eters to satisfy only two conditions. However, using only two parameters may lead to complex

parameters or to an inconsistent system.

Remark 2.5. When implementing the method, the values of derivative % at zg and xy can
be approximated by finite difference. We use the second order forward (resp. backward) finite
difference when estimating %(mo) (resp. %(m ~)) as follows

%(mo) I +24Z(§1) —1@2) | oAl (2.3.23)
%(m) _ Snlew) = 4"(52;) TEN=2) 4 o(as), (2.3.24)

Also, one needs a positive constant, which represent the minimal slope allowed in the linear

transform Sz + k, say € > 0, as an input. Set

B = € + max < %(zjvﬂ, |%(z0)|) . (2.3.25)

Whenever %(xz\;) = %(b), one can set @ = x = 0 and

B = _nlen) = nlxo) (2.3.26)

IN — X0

Under the transformation of equation (2.3.18 ), the computation of our approximate solution
is not significantly more complex. One just has to make simple adjustments for the coefficient
B € R and k € R. For both Euler schemes of equations (2.2.1) and (2.2.28), properties of the

conditional expectation allows the adjustments and the following theorem gives their essence.

Theorem 2.6. Let 1 : [a,b] — R be an integrable function and define ng o : [a,b] = R as

g, () = 1(x) + Br + K

such that ng . is the dampened and modified function of n according to equation (2.3.18). Then
the function 0 : [a,b] — R of equation (2.3.1) admits the alternative representation

1 <
0(x) / e ng (W)Y )dv — e "B (2.3.27)

:% -

if v(v) = (a+ Ww)o(v — ia) or

1

0w) = 5 [ L)) — (81 + ) (2:3.28)

if () = (v —ia) .

Proof. First, let ¢(v) = (o + iv)¢(v — ia). By definition, we know that

0w = — [ e

21 ) o

_ E [n(Wi,,, ) AW W, = z]

= - (E [(U(WtiJrl) + ﬂWti+1 + H) AWZ|Wt1 = :L'] - ﬂAi)

= 5" (0.0 (Wi ) AW Wy, = 2] —e77f

= i/ ei”@(y)w(u)dy —e L.

2 J_ o
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Similarly, if ¥ (v) = ¢(v — ia), we have

1 <L
o) = o [ e

= e “E [U(Wti+1)|Wti = JE}

= ¢ “E [nﬁ,K(Wti+1)|Wti = :L'] - eiax(ﬂz + H)

= L/~ ei”z@(y)i/)(y)dl/ — e (Bx + k).

27 ) o
O
The solution for the control process Z;' satisfies
s 1 ™
Z = 1B, [(Yir,, + BWarss + ) AW;| = (2.3.29)

for any constants 3,k € R and at any time step t;, ¢ = 0,1,...,n — 1. Its conditional expectation
must be shifted downward by 8 when using the transform function nj , instead of n®. Thus,
equation (2.3.1) can be replaced by

1 [
@) = o [ en@)p)dy
- % _weiuw@(uw(y)dv—e‘”ﬁ (2.3.30)

whenever (v) = (a + iv)¢(v — ia) and the integral of this last equation is computed by the
method presented in equation (2.3.12) after optimizing for «, 8 and k.
Moreover, for any F,, ,-measurable random variable Y we have

E, [Y]=E, [Y+ W, +k| - BW,;, — k. (2.3.31)

7

For both proposed schemes, the conditional expectations involved in the expression of the forward
solution ¥;T must be corrected by the linear function Sz+k. Equivalently, the relation of equation
(2.3.1) is replaced by

1 [ . .
oa) = o | @i
- % _meim@(”)ﬂ’(y)dv*e“”(ﬂﬂwn) (2.3.32)

whenever 1 (v) = ¢(v — ia) where the integral of the last equation is computed with the method
of equation (2.3.12).

As to the interval length of the frequency domain L, we set it large enough so that the value
of the characteristic function ¢ is approximately zero (0) at the boundaries of the truncated
frequency domain [f%, %] Ideally, the truncated real space [zg, ] is centered around zero (0)
or more generally around the initial value of the Brownian motion {W}};c(o,77-

The structure of the BSDE driver f may have an undesirable effect on the algorithm, specially
when it is a non-smooth function. This problem can be solved simply by reducing the time step
A;. As a general rule, the larger is the Lipschitz constant of the driver f, the smaller should the
time step A; be. Due to the efficiency of the DFT algorithm, the method is well adapted for
relatively large values of n, the number of time steps.

Many quadrature rules are available to compute the approximate solution and approximate

gradient values. One may use the composite trapezoidal rule with weights of the form
1
w; =1— 5(5071'-‘1-(51\[71') ,1=0,1,..,.N (2.3.33)
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leading to w; = 1. The composite Simpson rule will improve accuracy in presence of a smooth
driver f.

Finally, the implementation of the convolution method gives the approximation values {u; }5_,
and {u,}1_o to the approximate solutions u; and u; for i = 0,1,2,...,n — 1. The detailed algo-
rithm is as follows:

Algorithm 2.1. Convolution Method
11 L L

1. Discretize the restricted real space [—35, 5] and the restricted Fourier space [—%, 5] with N

space steps so to have the real space nodes {xi}1_, and the Fourier space nodes {vi}1_,
2. Set up(zx) = g(xx)
3. For anyi fromn—1to0

(a) Compute o, B and k, defined in equation (2.8.18), such that

n=(Ui+1)g,, (2.3.34)
and n satisfies the boundary conditions.
(b) Compute 0(xy) through equation (2.3.12) for k =0,1,..., N with
() = o(v — i) (2.3.35)
and retrieve the values U;; as
Ui = % 0(zy) — (Brk + K) (2.3.36)
through Theorem 2.6.
(c) Compute 0(x;) through equation (2.8.12) for k =0,1,..., N with
Y(v) = (a+iv)o(v — ia) (2.3.37)
and retrieve the values 1, as
Ui = e**0(xy) — B (2.3.38)
through Theoreom 2.6.
(d) Compute the values u; as
Wik, = Wik + A f (t, Uik, k) (2.3.39)

for k=0,1,..., N;N through equation (2.2.6) when using the explicit Euler scheme 1
or as

Wi, = Uik + A f (ti, Wik, i) (2.3.40)
through equation (2.2.12) under the implicit Euler scheme.

Under the implicit Euler scheme, the node values u; for the approximate solution solve a
non-linear system of equation (2.2.12). For small time steps, and particularly if the condition
of equation (2.2.13) is satisfied, the node values w;; can be computed iteratively using Picard
iterations. When the node values are available under the implicit or explicit Euler scheme,
an approximate solution to the BSDE consists of a (linear) interpolation of a Brownian path
values through the node values {u;; }&_, and {u;,}o_, for i = 0,1,2,...,n — 1. The problem of
simulation is treated with more details in Chapter 3. the next section deals with the problem
space discretization errors.
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2.4 Local space discretization error

The convolution method induces two (2) main types of error. Aside from the time discretization
error F; that we already discussed in the introduction, we have a space discretization error.
We focuses on the study of this last error term. We limit the error analysis to the convolution
method on the explicit Euler scheme 1 since equivalent results are easily obtained for explicit
Euler scheme 2 and the implicit Euler scheme using the same techniques. When considering
the implicit scheme, the condition of equation (2.2.13) must be satisfied to assure existence and
uniqueness of the implicit approximate solution wu;.

Throughout the section, {w}4_o, {fk}h-o and {Q;}5_, denote the numerical solution of
equation (2.3.12) obtained from the convolution method at time mesh ¢; given the solution u;41
at time t;41,¢=0,1,...,n—1. The convolution method induces a space discretization error when
approximating the values of w;(xy) and 4;(zx) by u;, and 0y, respectively. We will particularly
describe the local behavior of this error term. We define it as

Ei, = |ui(xr) — wip| + |03 (2r) — Q] - (2.4.1)

The following theorem gives an error bound for the space discretization error under smooth-

ness conditions on the BSDE coefficients f and g.

Theorem 2.7. Suppose f € C*2 and g € C2. Then for anyi=0,1,...n—1andk =0,1,....N,

the convolution method applied on the truncated interval [— l} yields a (local) discretization

5%
error of the form
Eg = x(zx) + O (Az) + O (e*“?lﬂ) (2.4.2)

where the extrapolation error x satifies

L 2

3

x| < C ( / h(y)dy> (2.43)
L—|zp|

for some positive constants C, K > 0 depending on the driver f, the terminal function g and T

when using the trapezoidal quadrature rule.

Proof. Suppose the solution u; 1 at time t;,; is known. Since f € C??2 and g € C?, it is easily
shown that u;41 € C2. Also, we know from Zhang [124] and Bouchard and Touzi [20] that
Yﬂ'

v, = wit1(We,,) is square integrable so that w;41 is square integrable (with respect to the

Gaussian density).
In the light of Theorem 2.6, we can limit ourselves to the case where

i (=g) = v (3) ana T2t (-5) = 52 (3)

so that « = 8 =k = 0. Let {cx}72 __ be the Fourier coefficients of u;11 on [f%, %} We have
that
wo) = [ wa@hh-oddt [ wnhl - ady
ly—as| <4 ly—ak|>%
= [ wnlor by + [ et n)hG)dy
lyl<4$ ly|> %
where
/ Juiri(zr +y)hly)dy = E [Ui+1($k + AW 1)1y 1, 1 (AW, 1)
ly|> 3
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- o)

for some constant K > 0 which is inversely proportional to A; by Cauchy-Schwartz and Chernoff

inequalities since the solution u;1; is square integrable. Hence

Gw) = [ Tl by
lyl<$
+ i<k (wiv1(zr +y) — Too (i +y)) h(y)dy
+O (;Kﬁ) (2.4.4)
where Too(z) =Y 7o cre* e for z € R. So that, on one hand, we have

<%
= 1527 4 2
= X T (i) - [ Tt i)y
j=—o0 lyl>3
i 2w
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(by Proposition E.6),
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= Z ¢<]Tﬂ-) Cjel]TIk+O(A$)+O(€_Kl2)
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(by boundedness of T, and Chernoff inequalities),
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= ()P Y gl (1) B,y e F I 4 O(Az) + O (e_Kl2)
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= (DY oD [{(-1) i (w0) 251 5

j=

+ O(Az)+ 0O (e*Klz) (by Proposition E.8),

(=)

= @+ O(AT)+O (e*mz) .

On the other hand, assuming x; > 0 without loss of generality, let’s define xo as

Yolar) / _ (et 9) = Tl + ) Ry

|~

= [ (i1 (or +y) —uipr (o +y — 1)) h(y)dy

27Tk

since Th is periodic and Tho(z) = ui+1(z) on the interval [—%, —1]. Equation (2.4.4) them

becomes
ﬂl(xk) =, + XO(-Tk) + O(Am) +O (eiKlz) (245)
and we notice that, by the continuity of w; 41,
L
2
xolaw)] < Co | by (2.4.6)
z—lzk
for some positive constant Cy > 0 which is independent of A;.
Similarly
. 1 1
wize) = 1 i1 (2 + y)yh(y)dy + < uir1(x + y)yh(y)dy
i Jly|<4 i Jlyl>4
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+ O(Az) + O (e_KAfllz) (by Proposition E.8),

i+ O(Az) + O (e*“i’lﬁ) . (2.4.8)

By equations (2.4.7) and (2.4.8)

di(zn) = Wik + x1(zk) + O (Az) + O (e*“i’lﬂ) (2.4.9)

where K > 0 and, letting v(y) = w11 (7 +y) — Too(Tk +7),

x1 (k)
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= A7 / )h(y)dy (by symmetry),
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Since 2Z= is the Fourier expansion of 2%£L  we get
ox oxr

e (/_ h(y)dy) (2.4.10)

and Chauchy-Schwartz inequality, for some constant C7 > 0.

by the boundedness of 6”6";1
The Lipschitz property of the driver f completes the proof from the relations in equations

(2.4.5), (2.4.6), (2.4.9) and (2.4.10). O

Theorem 2.7 decomposes the spatial discretization error in three parts: the truncation error,
the discretization error and the extrapolation error. Most PDE based and spatial discretization
based methods for BSDEs fail in giving a bound for the error due to truncation. The error

—KA; ) has a spectral convergence of index 2

analysis shows that the truncation error O(e
when applying the convolution method. Also, the discretization error O (Ax), of first order, is
similar to other PDE based methods such as Douglas et al. [40] or Milstein and Tretyakov [90].

It is important to notice that the convolution method presented here is a (Fourier) spectral
as shown in the proof of Theorem 2.7. Hence, the space discretization error is actually also
spectral when the BSDE coefficients are smooth f € C*>° and g € C*>°. The proof of Theorem
2.7 produces only a first order space discretization error since the smoothness of the BSDE
coefficients is restricted to the second order differentiability.

The extrapolation error x is specific to the convolution method implemented using the DFT.
Equation (2.4.3) shows that errors appear and may accumulate around the boundaries of the
truncated domain. Nonetheless, the truncation error is mainly time related through the density
h and can be confined at the boundaries for fine time discretizations as shown in the following

corollary.
Corollary 2.8. Under the conditions of Theorem 2.7,

lim x(zx) =0 (2.4.11)

|7|—0

for any x € ( 35 é)
Proof. If x; = 0 then equation (2.4.3) gives |x(0)| < 0 and the result holds. If z; # 0 and
T € ( T 2) then

i </é|xk|h(y)dy> - (ilfo/lxklh(y)dy>
- (1 o)y o (y)dy>
- </1k >

(where 4 is the Dirac delta function),

= 0

N
N

N[

since 0 ¢ [£ — |zx|, £]. Equation (2.4.3) then leads to the result. O
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2.5 Extensions

Various simple extensions can be made of the convolution method. One of the most important
one is reflected BSDEs. We also consider the convolution method under arithmetic Brownian
motion. These cases have interesting applications in mathematical finance, especially for option

pricing.

2.5.1 Reflected BSDEs

Euler schemes have been constructed for reflected BSDE with continuous barrier which make
it. possible the application of the convolution method to such BSDEs. Consider the solution
(Y, Z, A) of the system

—dYy = f(t,Ys, Zy, )dt + dA; — Z,dW,
Y; > By ,dA; >0, Yt €[0,T] (2.5.1)
S = By)dA, =0, Y = g(Wr)

where the lower barrier is a deterministic function B : [0,7] x R — R of time and the Brownian

motion

B, = B(t,W,). (2.5.2)

This RBSDE is associated to the following obstacle problem

Qu 4 égzu + f(t,x,u, Vu) =0,
u(t,z) > B(t,z), (t,z) € [0,T] xR (2.5.3)
u(T,z) =g(z), z €R

as established by El Karoui et al. [45]. An adaption of the Euler scheme 1 provides the numerical

solution to the reflected BSDE through the equations

Z7 =0,Y] =¢"
Zr = LB {ytwﬂAWiu-‘ti}

AAf = (B V7, |F] + /(B V7 1] 20)80 - B, W)
YT =B Vi |+ 10 YT IF 20000+ aag

(2.5.4)

where for any number z € R, 2= = max(0, —z).

The problems of time discretization of RBSDEs and their convergence were treated in
Bouchard and Chassagneux [18] for the implicit Euler scheme. Peng and Xu [99] proposed
an equivalent scheme with a discrete filtration and proved its convergence under a binomial
method. This scheme is easily solved with a convolution method by noticing that the approxi-
mate solution u;, the approximate gradient v; and the approximate reflection u; at mesh time

t; can be written as
wi(x) = i(e)+ A f(t, a(2), wi(z) + Adi(z) (2.5.5)
where
i@ = 3 [ -l (2.5.6)
iia) = [mmﬂ<>wm@ (2:5.7)
Ati(z) = () — Gl2)
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fori =0,1,...,n — 1 and u,(z) = g(x). The computation of the approximated gradient u; and
the intermediate solution @, is identical to the non-reflected case exposed in Section 2.3.
One can also build an alternative scheme from the explicit Euler scheme 2 as follows

A
Z7 = AE [Y’T AWA]—}J

tit1

A7 = (B Y, + f( Y0, ZDANF] - Blta W)
YT =B |V, + [t Y

i ti+1’Zg)Ai|fti} + AA%TZ

(2.5.9)

and define the approximate solution v;, the approximate gradient v; and the approximate reflec-

tion v; as
vi(x) = /_OO Bt ()h(y — 2)dy + Avi(z) (2.5.10)
where h
Tiar() = i1 (@) + Asf (s, vien (@), 03(x)) and (2.5.11)
i@) = [ - aunhly - iy (25.12)
Avi(z) = vip1(x) — vi(2)
—  [Bipa () = Blts, )] (2.5.13)

fori =0,1,....,n — 1 and v, (z) = g(x).

One may even consider another scheme proposed by Peng and Xu [99] based on the penal-
ization method used by El Karoui et al.[45] to proved reflected BSDEs well-posedness. But since
the penalization method relies on estimates that approaches the RBSDE solution from below,
the scheme necessarily under-estimates the RBSDE solution.

Alternative to the Euler scheme itself can be found in the §—schemes of Zhao, Shen and Peng
[125]. We already gave a description of these latter schemes in equations (1.3.2) and (1.3.3) to

which a reflected feature can easily be added.

2.5.2 Arithmetic Brownian motion
We can extend the convolution method to consider an arithmetic Brownian motion

Xy =x0+ pt+ oWy (2.5.14)
as the forward process and solve for a Cauchy problem to an advection-diffusion equation

%-l—u%—l—%ﬁ%—i—f(t,x,u,avmzo ,(t,x) €0, T) xR

U(T, :L') = g(z), x € R. (2.5.15)

to which an obstacle can be added when in the presence of a reflected BSDE. The forward process
increments are indeed stationary, independent and normally distributed with density

L (z — MAi)Q)
hzr) = ——exp| ——+—— . 2.5.16
(@) (21A;) 20 p( 2027, ( )
and characteristic function
o(v) = eBilir=307%) (2.5.17)

The development of the convolution method in this case also leads to transforms identical to
equation (2.3.1) with ¢(v) = ¢(v — ia) when computing the approximate solutions v; or the
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intermediate solutions 4; and ¥(v) = o(a + iv)¢(rv — ia) when computing the approximate
gradients 4; and ;. In our codes, the approximate gradients @ and ¢ are actually estimates for
oVu = o% but the schemes can easily be modified so as to estimate the gradient Vu directly.

The equivalences

o) = 5 [ e
= % N ei”@(v)w(v)du —e " (B(x + pl;) + k) (2.5.18)

when ¥(v) = ¢(v — i) and

1 [ee)

0@) = 5| @)y
- % meim@@ﬁ/’(v)dyfe’”ﬂa (2.5.19)

when ¢ (v) = o(a + iv)¢(v — ia) of Theorem 2.6 still holds.

2.6 Numerical results

The convolution approach to BSDEs presented in this chapter can be used in various applica-
tions where a (numerical) solution to a PDE or a BSDE is needed. Here, we give examples of
applications in numerical solution to PDEs, simulation of (R)BSDEs and option pricing in a

one-dimensional framework.

2.6.1 Simulation of (R)BSDEs

The availability of a numerical solution to the PDE underlying the BSDE clearly makes it easy
to simulate the BSDE itself. Many authors, including Douglas, Ma and Protter [40] and Milstein
and Tretyakov [89, 90], put forth a PDE approach to solve (coupled) FBSDEs numerically as
discussed in Chapter 1. The convolution method, along with the binomial tree method of Peng

and Xu [99], is a lighter and more suitable method for the less general case of BSDEs.

We shall first consider the one-dimensional linear BSDE with generator
ft,y,2) =ay+bz+c (2.6.1)

with a, b and ¢ being real numbers. These BSDEs were already treated in Peng and Xu [99]
where the authors indicate that the initial value for the forward process Y of such a BSDE is
given by

Yo = e HTE [g(Wr)er] 4+ = (T — 1) (2.6.2)

where we take a maturity 7= 1,

g(x) = |, (2.6.3)
as the terminal condition and a = —1, b = 2 and ¢ = 1 for the sake of this example.
The PDE is solved on the restricted, real space domain [zg,zx] = [-10,10] with N = 2!2

grid points. The number of time steps n is set to 1000 and the minimal slope to € = 5.

When simulating the BSDE, the restricted real space domain plays a key role since it has
to contain the path values of the Brownian motion. One way to select the domain is by taking
it large enough so that the probability that the Brownian motion finishes in the restricted
domain approaches one (1). Indeed, the larger the restricted domain, the larger is the number
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Figure 2.6.1: Numerical solution to the linear PDE.

a) Approximate solution
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X
b) Approximate gradient

X t

The surfaces are obtained with the convolution method applied on Scheme 1 on the restricted domain
[0, zn] = [~10,10] with N = 212 grid points, n = 500 time steps and a minimal slope of ¢ = 5.

Table 2.6.1: Estimates for the initial value of the linear BSDE forward process.

n (number of time steps) 100 500 1000 2000
Convolution (Scheme 1)  1.3785 1.3750 1.3746 1.3743
Convolution (Scheme 2)  1.3777 1.3748 1.3745 1.3743
Trinomial tree (Scheme 1) 1.3785 1.3750 1.3746 1.3743

For the convolution method, the estimates are valued on the restricted domain [zo,zx] = [—10, 10] with 212
grid points and a minimal slope of € = 5.

of grid points NV since the space step Ax must be small enough for the numerical solution of
the PDE to detect the variation in the Brownian motion paths. When the Brownian motion
takes intermediate values that are not on the space grids, the corresponding values for the BSDE
solution can be interpolated (linearly) from the PDE solutions. The numerical solutions for the
PDE (approximate solution and gradient) are presented in Figure 2.6.1.

A Monte Carlo method gives an estimate of 1.3745 with a standard deviation 0.0045 for the
initial value of the forward process Y; using equation (2.6.2) and 5 x 106 trajectories. With this
estimate as a benchmark, Table 2.6.1 displays the values obtained with the convolution method
on the second scheme where only the number of time steps is changed among the specified inputs.
Additional results obtained with a trinomial tree method are presented for comparison. As one
can see, both the convolution and the trinomial tree estimates close up on finer time grids.

Figure 2.6.2 shows three (3) simulated paths for the Brownian motion W and the corre-
sponding simulated paths for the forward process Y and the control process Z. Paths for the
backward and control processes (Y; and Z; respectively) are simulated using the solution from
the convolution method applied on Scheme 1 on the restricted domain [xg, x| = [—10, 10] with
N = 2'2 grid points, n = 1000 time steps and a minimal slope of € = 5. The same number of time
steps is used to simulate the Brownian paths (W;). An advantage of the convolution method
over tree based methods is the simplification of the simulation procedure since the Brownian
path does not have to be approximated by scaled random walk as in Peng and Xu [99].
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Figure 2.6.2: Path simulation for the BSDE solution.
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It is possible to simulate reflected BSDEs in a similar manner. If we consider the reflected
BSDE with the same driver and terminal condition as in the previous non-reflected and linear

case and set the reflecting barrier to be
B(t,2) = g(x) = |a] , (t,2) € [0.7] x R, (2.6.4)

then we get the approximate solution and the approximate gradient displayed in Figure 2.6.3.

In order to simulate the reflecting process A, we compute the reflection increments from
equation (2.5.8) at each time step along the Brownian path. Summing those increments then
gives the corresponding path values for the reflecting process. Three (3) simulated Brownian
paths and their counterparts for the RBSDE solution are plotted in Figure 2.6.6. Paths for the
backward, control and reflecting processes (Y;, Z; and A; respectively) are simulated using the
solution from the convolution method applied on Scheme 1 on the restricted domain [zg, zy] =
[—10,10] with N = 212 grid points, n = 1000 time steps and a minimal slope of ¢ = 5. We
naturally use n = 1000 time steps to simulate the Brownian paths (W%).

The convolution method returns a forward process initial values of Yy = 1.3820 for both
Schemes 1 and 2 with the specified inputs. Those estimates are identical to the approximation
given by the trinomial tree method (Scheme 2) with the same number of time steps n = 1000 as

the convolution methods.

2.6.2 Option pricing under Black-Scholes model

Through option pricing problems, we will particularly treat the case of BSDEs with non-linear
drivers that was not considered in the previous examples. An introduction to financial applica-
tions of BSDEs, particularly to imperfect markets and American option problems, can be found
in El Karoui and Quenez [48], El Karoui, Pardoux and Quenez [46] or El Karoui, Peng and
Quenez [47]. Also the celebrated papers of Black and Scholes [17] and Merton [88] constitute
the financial basis in this section.

For the market model consisting of a single risky asset (or stock) {S¢}+ejo,7] with the dynamic
S = e (2.6.5)

where the process { X };c[0,7] represents the stock return, we price an European call option with
maturity 7 = 1 and strike price K under a lending rate of » = 0.01 and a borrowing rate R.
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Figure 2.6.3: Numerical solution to the linear PDE with obstacle.
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The surfaces are obtained with the convolution method applied on Scheme 1 on the restricted domain
[0, zn] = [~10,10] with N = 212 grid points, n = 500 time steps and a minimal slope of ¢ = 5.

Figure 2.6.4: Path simulation for the reflected BSDE solution.
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Figure 2.6.5: Absolute errors on American call option prices and deltas.
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Estimates were obtained by applying the convolution method (Scheme 1) on the restricted domain
[0, zn] = Xo + [=5, 5] with N = 212 grid points, n = 1000 time steps and a minimal slope of ¢ = 5. The option
has stike price K = So = 100 with R = r = 0.01.

The return process is an arithmetic Brownian motion
1,
Xt :X0+ n— 50’ t+O'Wt (266)

such that the stock has an initial value of Sy = eX° =

100, an expected return rate of y = 0.05
and a volatility of o = 0.2.
The call option price then follows a BSDE with the return process { X }¢cjo,7] as the forward

process, the driver

fty,2z)=—ry— <HT>2+(RT) (yfi)_ (2.6.7)

and the terminal function
g(z) = (e* — K)* (2.6.8)

under those imperfect market conditions.

When the borrowing rate equals the lending rate R = r = 0.01, the European and American
call options have the same price. Figure 2.6.5 shows the structure of the absolute error on stock
option prices and deltas where the true values are computed using the Black-Scholes formula.
As expected the errors are amplified at the boundaries of the truncated domain, but also for
around-the-money options in a lesser extend due to the non-smoothness of the terminal function
g. In addition, out-of-the-money options have smaller absolute errors compared to in-the-money
options and option prices also presents smaller absolute errors compare to option deltas.

The Black-Scholes formula gives call option prices of 4.6101, 8.4333 and 14.1929 at strike
prices K = 110, 100 and 90 respectively. Also, the true values for the option deltas are 0.7507,
0.5596 and 0.3720 when the strike price is K = 90,100 and 110 respectively. Table 2.6.2 gives
the price estimates with both convolution schemes and the trinomial tree method using different
time steps and the indicated strike prices. Also, Table 2.6.3 contains the relative errors for the

option deltas obtained from the approximate gradient by

o (Xo)
Delta = ———= 2.6.9
elta 50 ( )
when using Scheme 1 or
0o (X
Delta = 22(X0) (2.6.10)
O’So

for Scheme 2. A similar computation allows to obtain the option deltas from the trinomial tree
approach.
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Table 2.6.2: Relative errors (in percentage) for American call option prices on non-dividend-
paying stock with no market frictions.

K (Strike) n=500 n=1000 n=2000 n=5000

. 110 0.0456  0.0217 0.0108 0.0043
Convolution
100 0.0178  0.0095 0.0047 0.0024
(Scheme 1)
90 0.0049  0.0028 0.0014 0.0007
. 110 0.0087  0.0239 0.0022 0.0001
Convolution
100 0.0059  0.0024 0.0012 0.0007
(Scheme 2)
90 0.0028 0.0014 0.0007 0.0004
. . 110 0.0065 0.0369 0.0087 0.0022
Trinomial tree
100 0.0356  0.0012 0.0047 0.0024
(Scheme 1)
90 0.0007  0.0028 0.0021 0.0007

For the convolution method, the option prices are valued on the restricted domain [zo,zn] = Xo + [—5, 5] with
N = 212 grid points and a minimal slope of € = 5. Both the lending and the borrowing rates are taken equal
R =r=0.01.

Table 2.6.3: Relative errors (in percentage) for the American call option deltas on non-dividend-

paying stock with no market frictions.

K (Strike) 90 100 110
Convolution (Scheme 1)  0.0133 0.0010 0.2414
Convolution (Scheme 2)  0.0133 0.0010 0.2414

Trinomial tree (Scheme 1) 0.0133 0.0010 0.2414

For the convolution method, the option deltas are valued on the restricted domain [zo,zxn] = Xo + [—5,5] with
N = 212 grid points and a minimal slope of € = 5. The number of time steps is set to n = 2000 for all three
methods. The borrowing and lending rates are equal R = r = 0.01.

The results of Table 2.6.2 and 2.6.3 show the accuracy of the convolution method on a RBSDE
with a smooth linear driver. Indeed, the relative error percentages remain low (less than 0.3%)
for the estimated option prices and deltas. However, out-the-money option estimates seem to
display the largest relative errors. In the same order of idea, option deltas have larger relative
errors compared to option prices which confirms the observations on Figure 2.6.5. Overall,
the precision of the convolution method is similar to the trinomial method since both methods
display similar relative errors.

For a borrowing rate of R = 0.03 (different from the lending rate r = 0.01), the Black-
Scholes formula does not apply but the convolution method is able to produce the price and
delta surfaces for option along with estimates. Surfaces are displayed in Figure 2.6.6 for the
at-the-money European call option. Table 2.6.4 gives the at-the-money European option price
estimates with different time discretizations. Table 2.6.5 completes the information on option
price with out-of-the-money European option prices. All three methods (convolution method
on Scheme 1 and 2 and the trinomial method) return identical delta values as can be seen on
Table 2.6.6 when applied with n = 2000 time steps. The similarity in the estimates given by the
convolution method and the trinomial method is an indication of the good performance of the

convolution in non-smooth and non-linear driver cases.
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Table 2.6.4: At-the-money call option prices under imperfect market conditions.

n (number of time steps) 500 1000 2000 5000
Convolution (Scheme 1)  9.4132 9.4133 9.4133 9.4134
Convolution (Scheme 2)  9.4127 9.4131 9.4132 9.4133
Trinomial tree (Scheme 1) 9.4107 9.4136 9.4130 9.4132

For the convolution method, the estimates are valued on the restricted domain [zo, zn] = Xo + [—5, 5] with
N =212 grid points and a minimal slope of ¢ = 5. The risk free rates are R = 0.03 when borrowing and
r = 0.01 when lending and the option strike price is K = Sp = 100.

Figure 2.6.6: At-the-money European call option price and delta surfaces.
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Surfaces were obtained by truncating the approximate solution and grandient of the convolution method
Scheme 1) on the restricted domain [zg, zx] = Xo + [—5, 5] with N = 212 grid points, n = 1000 time steps and
g
a minimal slope of € = 5. The option has stike price K = Sp = 100 with R = 0.03 and r = 0.01.

The option pricing can be made using a Monte Carlo method such as the forward scheme
of Bender and Denk [10]. But in the context of uni-dimensional BSDEs, Monte Carlo methods
will generally be heavier than space discretization methods. As an illustration, the convolution
method on both Scheme 1 and 2 runs in approximately 4.4 seconds when pricing the option of
Table 2.6.4 with n = 1000 time steps. On the other hand, the trinomial tree method runs in
0.25 second. As to the forward scheme, it runs in 18 seconds with only n = 20 time steps?.
Fifty (50) independent valuations with the Monte Carlo method give a 95% confidence interval
of [9.3972,9.4222] which includes all estimates of Table 2.6.4. Hence, the convolution method is
faster that Monte Carlo methods but slower than the trinomial (or binomial) method.

The American call options, which solves a reflected BSDE with the barrier function

B(t,z) = g(z) = (e* — K)T , (t,2) € [0,T] xR (2.6.11)

essentially have the same price as their European counterparts under the market conditions
stated above since our risky asset {Si}+cjo,7] pays no dividend and, hence, the early exercise

premium is null. This can be seem numerically by simulating sample paths for the corresponding

4We also used the 7 first power functions and 100000 paths to generate the estimates. The Picard iterations
are stopped whenever the difference in two consecutive prices is less than 10~4 for a maximum number of 10
integrations.
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Table 2.6.5: Out-of-the-money European call option prices under imperfect market conditions.

K (Strike) n =500 n=1000 n=2000 n = 5000

Convolution 110 5.2932 5.2933 5.2933 5.2934
(Scheme 1) 90 15.4290  15.4291 15.4291 15.4292
Convolution 110 5.2924 5.2929 5.2931 5.2933
(Scheme 2) 90 15.4289  15.4291 15.4292 15.4292
Trinomial tree 110 5.2933 5.2918 5.2938 5.2935
(Scheme 1) 90 15.4295  15.4297 15.4295 15.4293

For the convolution method, the option prices are valued on the restricted domain [zo,zn] = Xo + [—5, 5] with

212 grid points and a minimal slope of € = 5. The risk free rates are R = 0.03 and r = 0.01.

Table 2.6.6: European call option deltas under imperfect market conditions.

K (Strike) 90 100 110
Convolution (Scheme 1)  0.7814 0.5987 0.4104
Convolution (Scheme 2)  0.7814 0.5987 0.4104

Trinomial tree (Scheme 1) 0.7814 0.5987 0.4104

For the convolution method, the option deltas are valued on the restricted domain [zo,zn] = X0 + [—5,5] with
N = 22 grid points and a minimal slope of € = 5. The number of time steps is set to n = 2000 for all three
methods. The risk free rates are R = 0.03 and r» = 0.01.

RBSDE solution. On Figure 2.6.7, one notices that the cost for hedging the (at-the-money)
American option is negligible either the option finishes in or out the money. Similar results are
obtained for in and out-of-the-money American call options.

If we introduce a dividend rate of § = 0.035 under imperfect market conditions (R = 0.03
and r = 0.01), the forward (return) process takes the form

X = Xo+ (u—é— 302> t + oWs. (2.6.12)
The European and American option prices differ and the Black-Scholes formula does not apply.
Table 2.6.7 compares the European and American call option prices under the convolution and
the trinomial method at different strike prices. Table 2.6.8 does the same exercise for option
deltas.

If the deltas computed with the convolution and the trinomial method are identical, the
convolution method gives slightly higher option prices compared to the trinomial method. This
difference in option prices between both methods may find its explanation in the extrapolation
errors generated by the convolution method or in the non-smoothness of the option price and
delta functions.

Nonetheless, the difference between European and American option prices shows that the
convolution method captures the reflecting effect. This difference between both option prices
can be visualized on Figure 2.6.8. Finally, Figure 2.6.9 shows the typical sample paths for the
American option where the reflecting process A; (hedging cost) is now non-zero for in-the-money
path indicating a difference in price with the European call option.
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Figure 2.6.7: Sample paths for the American call option on non-dividend-paying stock.
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Paths are simulated using the solution from the convolution method applied on Scheme 1 on the restricted

domain [z, zx] = Xo + [~5,5] with N = 2!2 grid points, n = 1000 time steps and ¢ = 5. We used n = 1000

time steps to simulate the stock price (St). Also, the American option, with stike K = Sp = 100, was priced
under imperfect market conditions: R = 0.03 and r = 0.01.

Table 2.6.7: European and American call option prices on dividend-paying stock.

K (Strike) European American

110 3.9963 4.0322

Convolution (Scheme 1) 100 7.4712 7.5610
90 12.8339 13.0505

110 3.9962 4.0321

Convolution (Scheme 2) 100 7.4712 7.5609
90 12.8339 13.0505

110 3.9958 4.0317

Trinomial tree (Scheme 1) 100 7.4716 7.5614
90 12.8333 13.0500

For the convolution method, the option deltas are valued on the restricted domain [zo,zxn] = Xo + [—5,5] with
N = 212 grid points and a minimal slope of € = 5. The number of time steps is set to n = 2000 for all three
methods. The risk free rates are R = 0.03 and r» = 0.01. The dividend yield is § = 0.035.
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Table 2.6.8: European and American call option deltas on dividend-paying stock.

K (Strike) European American

110 0.3322 0.3362
Convolution (Scheme 1) 100 0.5117 0.5207
90 0.7014 0.7203
110 0.3322 0.3363
Convolution (Scheme 2) 100 0.5117 0.5207
90 0.7014 0.7204
110 0.3322 0.3362
Trinomial tree (Scheme 1) 100 0.5117 0.5207
90 0.7014 0.7204

For the convolution method, the option deltas are valued on the restricted domain [zg,zn] = Xo + [—5,5] with
N = 212 grid points and a minimal slope of € = 5. The number of time steps is set to n = 2000 for all three
methods. The risk free rates are R = 0.03 and r» = 0.01. The dividend yield is § = 0.035.

Figure 2.6.8: Difference in price between the American and European call options on dividend-
paying stock.
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Surfaces was obtained by truncating the approximate solutions of the convolution method (Scheme 1) on the
restricted domain [xo,zx] = Xo + [~5,5] with N = 22 grid points, n = 1000 time steps and a minimal slope of
e = 5. The option has stike price K = Sp = 100 with R = 0.03, » = 0.01 and é§ = 0.035.

44



Figure 2.6.9: Sample paths for the American call option on dividend-paying stock.
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Paths are simulated using the solution from the convolution method applied on Scheme 1 on the restricted
domain [zg, zn] = Xo + [~5,5] with N = 212 grid points, n = 1000 time steps and a minimal slope of € = 5.
The option has stike price K = Sg = 100 with R = 0.03, » = 0.01 and ¢ = 0.035.

Overall, the convolution method implemented on a uniform grid gives satisfactory results.
The numerical results shows the method’s accuracy even on BSDEs with unbounded terminal
conditions and non-smooth coefficients. Nonetheless, the error analysis indicates the presence of
a truncation error. Since the truncation error depends on the time discretization and not on the

space discretization, a more suitable space discretization can suppress it. The following chapter

investigates the issue.
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Chapter 3

Alternative discretization of

convolution

This chapter proposes an alternative discretization of the convolution method developed in
Chapter 2. This alternative discretization is motivated by the absence of convergence of the
convolution scheme in the previous chapter. The non-converging error term is due to an extrap-
olation that occurs for most space nodes. This error term is larger for the space nodes around
the boundaries of the restricted domain as shown in the error analysis of the previous chapter.

In order to avoid extrapolation, we work with two different restricted domains. The first
domain discretizes the Brownian increment and the second discretizes the spatial domain on
which the BSDE solution is defined. The scheme then combines both discretizations by choosing
the same space step for each of them. The FFT algorithm is once again used to perform the
quadratures so to maintain the algorithm’s efficiency. If the procedure forces the contraction
of the space grid through times steps, we are able to build a space grid suitable for simulation

which assures convergence.

3.1 Alternative discretization

We shall illustrate the alternative discretization with the explicit Euler scheme 1 with the ap-
proximate solutions of equations (2.2.6), (2.2.7) and (2.2.8). On the time mesh 7 = {t; = 0 <
t; < ... <t, =T} such that

Ai:tHlfti,i:(),l,...,nfl, (311)

these equations may be written as

ul(x) = ’CLZ'(.T)+Aif(ti,ai(l'),’di(l')) (3.1.2)
where

@) = 5 [ el whl)dy (3.1.3)

W) = [ w9y (3.1.4)

after a change of variable for ¢ = 0,1,...,n — 1 and w,(x) = g(x). Under the implicit Euler

scheme, equation (3.1.2) may be replaced by
ui(z) = Ui(w) + Aif(ti, ui(x), 0i(z)) (3.1.5)

with the additional the condition of equation (2.2.13) on the time discretization.
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3.1.1 Alternative transform

In order to compute the convolutions of equations (3.1.3) and (3.1.4) with the FFT algorithm, the
main requirement was that the function values and the derivative values match at the boundaries
of the truncated domain. In Chapter 2, we used a transform to meet that requirement. Given

a function 7 : [a,b] — R and n € C*, we considered the transform

15, (x) = €= (n(x) + Bz + K) (3.1.6)

and the coefficients «, 8 and x were chosen such that

ng (@) =ng . (b)

ong ong ..
%5 @) = = 0).

(3.1.7)

The transform in equation (3.1.6) presents two main disadvantages. First, it uses three
coefficients when only two conditions need to be satisfied, leaving the third coefficient almost
free. Hence, we require a simplified transform with only two coefficients. Also, the transform
depends exponentially on the dampening coefficient a.. A linear dependence in the coefficients
is more suitable so that the error induced is also linear.

We propose the alternative transform

n*P(z) = ngo + oz’ =n(z) + az® + B (3.1.8)
satisfying
1 (@) =) 510)
(@) = 250,

The following lemma gives a method to select the coefficients « and g for the transform of
equation (3.1.8).

Lemma 3.1. Suppose the real function n € C'[a,b] is differentiable and let n®? be its trans-
formed function as defined in equation (3.1.8). Then

g(a) — 52 (b)

o = % (3.1.10)
B o= %a(bwLa) (3.1.11)

solve the system of linear equations defined by the conditions of equation (3.1.9).

Proof. The first equation of the system (3.1.9) gives (3.1.10) in a straightforward manner. Equa-
tion (3.1.11) is given by the second equation of the system. O

A major feature of the transform in equation (3.1.8) is the absence of dampening. Thus, the
convolutions on Scheme I are represented as

() = F [Bluin]@)ew)] (=) (3.1.12)
IS uis1] (@)o(v)] (2) (3.1.13)

whenever w;y1, ¢ = 1,2,...,n is integrable from equations (2.2.26) and (2.2.27). Numerically,
the truncation solves the integrability problem so that dampening is not needed. Hence, non-
integrable functions can be treated as already indicated in Subsection 2.3.2.

The next theorem gives the representation of convolution under the transform of equation
(3.1.8).
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Theorem 3.2. Let 1 : [a,b] — R be an integrable and differentiable function and let n™? be its
transformed function as defined in equation (8.1.8). Then the function 0 : [a,b] — R given by

0(x) =" By ()] (2) (3.1.14)

admits the alternative representation

0(z) = % /_OO ei”mn/o‘?i(u)z/}(u)du — (2az + B) (3.1.15)
() = ivg(v) or
1 [~ . — 5
O(z) = o [ g (WW)dy — a(a? + A;) — Ba (3.1.16)

if (v) = o(v) .
Proof. First, let ¢(v) = ivé(v). By definition, we know that

o) = 5 [ it
- ALZ (Wi, ) AW Wy, = 2]
1
= A B[(0V) —aWE, - B ) AW, =]
=SB L0 W) = alWe + ALY = 6Wi ) AW =]
- ALZE (P (Wi, VAW Wy, = 2] — (20 + )
- % _"; eV neB (V) (v)dy — (20 + B).
Similarly, if ¢(v) = ¢(v), we have
Oz) = i _O; i (v)ib(v)d

= E [U(Wti+1)|Wti = :L']
= E [na’B(WtHlﬂWti = :c} —afz? + A;) — Bx

1 [ —

= % eiuzna’ﬁ(y)"/}(y)dV*O&(sz +Ai) 7556.

— 00

O

As in Chapter 2, the values of the derivatives can be approximated by finite differences.

Another approach is to use the approximation of the derivative given by the convolution method.

3.1.2 Alternative grid

The discretization proposed in this chapter considers a fixed space grid for the integrated variable
y in equations (3.1.3) and (3.1.4) which represents the Brownian increment. This variable is
restricted on the interval of length ! > 0 centered at zero (0) with an even number N € N* of
steps. Hence, the space step is given by
Az = N (3.1.17)
This space is then used for the grid discretizing the domain variable & which represents the
Brownian process itself. At each time node t;, i = 0,1,2,...,n, the spatial domain is restricted
on an interval of length N;I where N; € N is a positive integer with

N; = No +i. (3.1.18)
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In order to maintain a space step of Az at each time step, we discretize the spatial domain with

N;N space steps. Since we center the spatial domain at Wy = 0, we get the space nodes

N;l
T =~ + kA2, k=01, N;N (3.1.19)

at mesh time ¢;. In particular, if Ny = 0 then the space grid at mesh time ¢y is composed of the
single point
Too — Wo. (3.1.20)

More precisely, we start the space grid at mesh time to with (NgN + 1) points. Then at
each times step, we add N new points to the space grid of the previous time step. Moreover,
those new N points are equally distributed at both boundaries of the previous restricted space
domain. These ideas are reflected in the relationship between space nodes of consecutive space
grids since

Tik = Tiyp1 gy N k=0,1,...,N;N. (3.1.21)

Figure 3.1.1 gives examples of alternative grids using different parameter values.

This approach already underlies tree based methods to a lesser extent however the present
discretization offers more flexibility. Whereas the number of space grid points at mesh time
to is limited to 1 in multinomial methods, it can be selected almost freely in this alternate
discretization. Also, the number N + 1 of nodes on the Brownian increment restricted domain
can be compared to the number of branches in a multinomial method. Hence, this alternative
discretization can be seen as a recombining tree with N + 1 branches and NgN + 1 initial grid
points since we use a fixed space step Ax.

The Fourier relations of equations (3.1.12) and (3.1.13) call for a discretization of the Fourier
space as well. At each mesh time ¢;, i = 1,2, ..., n, the Fourier space is restricted on an interval
of length L centered at zero (0) and discretized with N; N space steps. The equidistant nodes
are thus of the form

Vi, = —g + kAv;, k=0,1,..., N;N (3.1.22)

where Av; = &5 The Nyquist relation holds whenever L is such that
Ll = 27N. (3.1.23)

For a fixed time mesh, the length of the Brownian increment restricted interval I, the number
of space steps of this interval N and the number Ny completely defines the space grid described
above.

3.1.3 Numerical implementation

In this chapter, we seek numerical approximations of equations (3.1.12) and (3.1.13) at each
mesh time ¢;, s = 0,1,...,n — 1. At time t;, we use the generic functions §; : R - R, ¢ : R - C
and 0,41 : R — R such that

0:(z) = — / T g () (v)dv. (3.1.24)

:% .

We assume that the function 6;,, satisfies the boundary value equalities

0,11 <—“> = 91-“( “) (3.1.25)

2 2
00;41 N1l 00i11 [ Nitil
| —— = — | —. 1.2
ox < 2 Ox 2 (3.1.26)
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Figure 3.1.1: Examples of alternative grids with different values of Ny and N.
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Hence, the Fourier integral

o0
9i+1(1/) = / e*i”zﬁiﬂ(z)dz (3127)
— 00
. . . Nigyil Nipal . . . . . Niy1N
is restricted on the interval [—=5=, =2-] and discretized using the grid points {41},
with a quadrature rule with weights {wk}ivzglN As to the inverse Fourier integral of equation

L L

T 2072
Following the steps of Section 2.3.1, the values of the function 6; on the grid points {xi+17k},§;51N—1

(3.1.24) we restrict it on the interval | ] and discretize it with lower Riemann sums.

are given by

9i($i+1,k) ~ (*1)]6@71 [{1/1(Vi+1,j)D[9z‘+1]j}j-V;ElNil}k (3-1-28)
where
s~ Nit+1N—-1
Dffis]; = D [{(-1) dubia(@inn )25 ] (3.1.29)
and the weights {w; }?ZglN*l are defined as in equation (2.3.10). Consequently, equation (3.1.21)
gives
N | _ i1V —
0i(zix) = (-1 207! {{lﬁ(wﬂ,j)lD)[GiH]j};V:E o 1} e (3.1.30)
for k=0,1,..., N;N.
Due to the absence of dampening, we chose
(V) = 6(v) (3.1.31)
when computing the approximate solution u; and
Y(v) = veg(v) (3.1.32)

when computing the approximate gradient %, for i =0,1,...,n — 1.

The backward algorithm on the alternative grid is not significantly more complex than the
regular grid of Chapter 2. One simply needs to take into account the domain contraction
through time steps and discretize the Fourier space accordingly. The following algorithm details
the numerical procedure on the alternative grid.

Algorithm 3.1. Convolution Method on Alternative Grid

_ Nul Nyl
2 02

with N, N space steps so to have the real space nodes {znk}kN:"éV and {l/nk}i\,;év

1. Discretize the restricted real space | ] and the restricted Fourier space [—%, %]

2. Value up(znk) = g(@nk)
3. For any i fromn —1 to 0

(a) Compute « and 8 defining the transform of equation (3.1.8), such that
9i+1 = (ui+1)a’5 (3133)

and ;11 satisfies the boundary conditions of equations (3.1.25) and (3.1.26).
(b) Compute 0;(x;1,) through equation (3.1.80) for k =0,1,..., N;N with

) = o) (3.1.34)
and retrieve the values 1, as

’lNLik = Hl(xlk) — Oz(l'?ﬁk — Az)ﬂzzﬁk (3135)

o1



(c) Compute 0;(x;1,) through equation (3.1.80) for k =0,1,..., N;N with

P(v) = ivg(v) (3.1.36)
and retrieve the values ;5 as
Wi = 0;i(zix) — 20z, + B) . (3.1.37)
(d) Compute the values w;, as
Wik, = ik + A f (t, Uik, Wir) (3.1.38)

for k=0,1,..., N;N through equation (3.1.2) when using the explicit Euler scheme 1
or as

Wi, = Uik + A f (ti, Wik, i) (3.1.39)
through equation (3.1.5) under the implicit Euler scheme.

(e) Update the real space grid with equation (8.1.21) and the Fourier space grid by dis-

cretizing the interval [f%, %] with N;N space steps so to have the real space nodes

{zir}pg and {vir}

The algorithm produces the numerical solutions {u}n'n, {@i )ty and {i}rie, i =
0,1,...,n — 1. The next section deals with error considerations under the alternative discretiza-
tion.

3.2 Error analysis

First, we give a bound for the local discretization error. Let {w }n'o, {8 }pcn and {@}pn
denote the numerical solutions obtained from the convolution method at time mesh ¢; given the
solution u; 41 at time ¢;.1. For the convolution method on the alternative grid, we defined the

local discretization error as
Ei = |ul(xk) — uik| + |ai($k) — l'lik| (3.2.1)
fori =0,1,....n—1and k=0,1,..., N;N.

Theorem 3.3. Suppose that the driver f € C1'%2 and the terminal condition g € C>. Then the
convolution method yields a discretization error of the form

Ejp =0 (Az)+ O (e—Kmir”z) (3.2.2)
for some constant K > 0 on the alternative grid and under the trapezoidal quadrature rule.

Proof. The proof of this result is similar to the proof of Theorem 2.7 and strongly relies on
the ideas developped in Appendix E.3. We suppose the solution u;y; at time ¢;1; is known.
The solution u; 1 € C? is twice differentiable since f € C1'?2 and g € C2. Also, u;41 is square
integrable with respect to the Gaussian density.

As in Theorem 2.7, we limit ourselves to the case where

Niiql Niiql ou; N;iql ou; Niiql
o () =g () ang 2t (ol T ()

so that the coefficients of the transform are « = 5 = 0. Let T; be the Fourier polynomial

)

interpolating ;41 on [fNZT“l NZT“l} such that
Tz(x) = TNNi+1[ui+1]($), r € R. (323)
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We have that

)= /|y<

/I lUi+1($z‘k +y)h(y)dy = O(G_Klz)
Yy|>3

wit1 (i +y)h(y)dy + / witr1(za +y)h(y)dy

i ly|>%

where

for some constant K > 0 which is inversely proportional to A; by the Cauchy-Schwartz and
Chernoff inequalities since the solution ;41 is square integrable. Hence

Ui(zig) = /|<L
Y>3

— / Ti(xik + y)h(y)dy + O (Az) + O (eiKlZ)
lyl<4$
(by Proposition E.10),

- / Ti(ai + y)h(y)dy — / Ti(wa + y)h(y)dy
R

l
lyl>3

wisr(@an + y)h(y)dy + O (e )

YO (Az) + O (e*mz)

= /RTi(-Tik +y)h(y)dy + O (Azx) + O (eiKlZ)

(by Chernoff’s inequality, since T; is bounded),

NipaN

3 i 2" (g
= / Z djeJNi+1l( l’k+y)h(y)dy+ O(Az) + O (e_Klz)
R Nip1 N
===z
NN
E ii-2m o 27 5
— ST et T g +0O(Az) + 0O (e*m )
Nitil
. Nip1 N
===z
Ni+21N71
jj 27 o 2
LS g (125 ) o o ()
N;,. 1N 141
. i1
J=———5 —
Nit1N—1

NigiN f2m i N
dJ?ANiﬂN@ N /()
2

= DME N b)) (-1
=0

+ O(Az) + O (6—K12)
NNi+1N71 o N
= (D= Z ¢(Vi+1,j)D[Ui+1]jele(k+7)
j=0

+ O(Az) + O (e*mz)
(by Proposition E.9 when using the trapezoidal quadrature rule),
= fy+0(Az)+ O (e_Kl2) .

Similar techniques show that
di(xx) = g + O (Az) + O (e*mz) (3.2.4)

where K > 0 is inversely proportional to A;. The Lipschitz property of the driver f completes
the proof. O

As expected, the alternative discretization improves the local error bound by eliminating
extrapolation errors. The result of Theorem 3.3 establishes the consistency of the convolution
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method with respect to the approximate functions u; and gradients ;. Hence, the convolution
method is consistent to the PDE solution » and its derivative g—g since the time discretization is
itself convergent.

Furthermore, the absence of extrapolation errors in the local discretization allows us to
develop a bound for the global discretization error. The following corollary proves helpful when

deriving the global discretization error bound.

Corollary 3.4. Under the conditions of Theorem 3.3,

sup E; , = O(Az) + O (eiClWlfllZ) (3.2.5)
ik

where C' > 0 and |7| = sup; A,.

We define the global error as

Ej Az = supe;, + sup é; (3.2.6)
ik ik
where
ik = |Un—i(Tk) — Un—i K (3.2.7)
and
ik = |un_l(xk) — an—i,k' (3.2.8)

for i =1,...,n with egr = éo,x = 0. The next theorem describes the stability and convergence

properties of the convolution method.

Theorem 3.5. Suppose the conditions of Theorem 3.3 are satisfied. If the discretization is such

that
Ar Az
_ < VN
sgpmax( TN l) 1 (3.2.9)

then the convolution method is stable and the global discretization error Ej A, satisfies

Eian = O(Az) + O (efcl’fl’”z) (3.2.10)
where C' > 0.
Proof. First note that from the definitions of equations (3.2.1) and (3.2.7)

et < En_ik+|Unik— Un—ikl
< Bnoip+ 14+ AK) [Qn—ik — Un—ik
+ AK |ﬁn—i,k - an—i,kl (3.2.11)

where K > 0 is the Lipschitz constant of the driver f. Also, we have that
ik < En_ik+ On_ik — Un—ik|- (3.2.12)

from equations (3.2.1) and (3.2.8).
Furthermore, the construction of the convolution method gives

- . _ Niy1N—1
|G, — U] < ‘9 ! {{(b(l/iJrl,j)D[uiJrl —Uiv1,s]i 20" LH% + Eix
(by Theorem 3.3 since the transform function is given),
= GWit15) | Sup uis(ik) — wirrk] + Eik
NiptN \ = k

(using the matrix-vector representation of DFTs),
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N;; 1 N—-1

1
< A(Vig1,5) | supen—i—1.x + Ei
NipaN Z +15) k
e ([ o)
< Ydx | supe,_i—1k + Eix
Nigt N o !
Az
= ———supen_i—1k+ Eip. 3.2.13
(2mA;)Z & ' ( )
Similarly,
. . _ NiyiN—1
O, — ik| < ’9 ' [{¢(Vi+1,j)D[ui+1 — ittt ]Hﬂ + Eik
(by Theorem 3.3 since the transform function is given),
) Niy1N—1
< Vig1,j] @(Wit1,5) | supen—i—1,p + Eik
N; 1N jz:% | + ]| ( + J) .
(using the matrix representation of DFTs),
<

(Aviyr) ! (/ )
—_ x| ¢(x)dx | sup en—i—1,k + L,
Niy1N ]R| |9(@) k bk b

ik (3.2.14)

TA;

Then, combining the inequalities of equations (3.2.11), (3.2.13) and (3.2.14) leads to

A A
eir < CoE;r+ (1+2A;K)max (\/271_% ﬂAx ) supe;i_1x
Ax Az
<

COSfEEi7k+(1+2AiK)maX <\/ﬁ A >supeZ 1k

where Cyp > 0 and K > 0 is the Lipschitz constant of the driver f. So that

Az Az
ik < C Eip+ (14+20K —— i
S%pe N - OS_U.p N ( )max (m WAZ) Sl;-pe Lk
< CosupE;p + (14 2A,K)¢ supeZ 1.k (3.2.15)

ik

for some positive number ( satisfying

S ma( Ar Ax><§<1
u X | —=,—— .
e VoA, Th; ) S0

From the inequality of equation (3.2.15), Gronwall’s Lemma yields

supe; < Coe?TE sup Ei (3.2.16)
k ik
for i = 0,1,...,n knowing that ep; = 0. Hence, the convolution method is stable for the

approximate solution u; since its error at any time step is absolutely bounded.
The inequalities of equations (3.2.12), (3.2.14) and (3.2.16) lead to

A
supé;p < (01 + - COeQTK) sup E;
k (7AW ik
< (C1+ Coe?™) sup By (3.2.17)

ik
for a positive constant C7 > 0. Hence, the convolution method is also stable for the approximate
gradient ;.
The result of equation (3.2.10) follows by taking the supremum on the left hand sides of
equations (3.2.16) and (3.2.17) other time steps and applying Corollary 3.4. O
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Similar to most explicit methods for PDEs!, the convolution method displays a stability
condition described in equation (3.2.9). This condition is actually weaker compared to other
methods, especially the explicit finite difference method since the condition is easily satisfied. In
general, Theorem 3.5 shows that the convolution method converges when the space discretization
is relatively as fine as the time discretization and/or the square root of the time discretization.

Other numerical methods for BSDEs, and particularly Monte Carlo based method, have a
stability and convergence condition. Indeed, error explosion occurs for fine time discretizations
in the backward methods of Gobet et al. [53] and Bouchard and Touzi [20]. In order to maintain
stability and convergence, the space discretization has to be refined by increasing the number of
simulated paths.

The next corollary gives a method of discretization to produce a convergent scheme. It also
confirms that the major variables that impact convergence are the maximal time step |r| and
the space step Az. The length of the truncated domain [ has but a negligible effect on the global
error E; A, for fine time discretizations. Nonetheless, large values of [ are preferable to improve

speed of convergence but also for simulation reasons as we shall see in Section 3.3.

Corollary 3.6. If the space discretization is such that

Az < V27 min A, (3.2.18)

0<i<n

then the condition of equation (8.2.9) holds and the convolution method applied on Scheme 1

converges on the alternative grid as || — 0.

Proof. Assume without loss of generality that |r| < 1 then we have that

Az Az < Az
max | ——, —— —_—
V2 A A V2rA;

1

<

for i = 0,1,2,...,n — 1 where the last inequality holds by equation (5.3.9). Hence, the stability
condition of equation (3.2.9) holds.
Clearly |7| + Az — 0, and consequently E; o, — 0 by Theorem 3.5, as || — 0. O

As already mentioned in Chapter 2, the implicit Euler scheme will provide numerical so-
lutions with similar properties as those developed in Theorem 3.3 and Theorem 3.5. Indeed,
the convergence properties under the implicit Euler scheme can be established when the time
discretization satisfy the condition

7| K < 1 (3.2.19)

where K is the Lipschitz constant of the driver f. The numerical solution to the BSDE is
explicitly defined in the next section.

3.3 Simulation of BSDEs

The availability of approximations for the functions w; and @; , i = 0,1,2,..,n allows us to
simulate the BSDE. A numerical approximation of the BSDE solution can indeed be constructed

! For instance, the explicit finite difference method on the heat equation
ou 8%u
ot 022
The space step Az and the time step A have to satisfy an a stability and convergence condition of the form

1
A< ZAz?
2

as shown by the Von Neumann stability analysis of the scheme in Tveito and Winther [110], page 132.

26



from the numerical solution of the approximate solution {uik},iv;'g and the approximate gradient
{uik}g;fg, i =0,1,2,...,n. The approach is similar to most four step scheme (or PDE) based
methods for solving BSDEs.

Let (U3, Ui) be the extended solution at time mesh ¢; defined on the truncated interval

1 1
Ti = [-=Nil, = N;l). 3.3.1
[~ 5 Nil, 2 Nil] (33.1)
More precisely, U; : Z; — R (resp. U : T, — R) is the function obtained by linearly interpolating
the approximate solution {u;},'0 (resp. the approximate gradient {u;;}n 5 ) on the space
grid®. Hence, if x € [ik, 7 x+1] and Ny > 0 then

U; — U;
Ui(z) = uik + M(m — k) (3.3.2)
Tik+1 — Tik
and similarly
Ui(z) = g + —FEL 70k (0 ) (3.3.3)

Tik+1 — Tik

fori=0,1,....,.n—1and k=0,1,..., N;N — 1. In the particular case where Ny = 0, we set

Uo(z) = wo0dz0 (3.3.4)
Up(z) = 1000z (3.3.5)

so that there is no interpolation at time ¢y = 0.

An extended solution for the approximate solution was also defined by Douglas et al. [40]
using linear interpolation. Nonetheless, Douglas et al. [40] consider extensions on both time and
space. Also, the truncation inherent to the convolution method forces us to set the extended
solution to a graveyard value outside the space grid. Here, we set it as zero (0) but the boundary
values of the numerical solution can be used.

An important feature of the extension is that it does not introduce an additional error term
since the interpolation error is of a lesser order (in space) than the global discretization error

Ei az- The following theorem gives the interpolation (quadratic) error bound.

Theorem 3.7. Suppose the driver f € C122, the terminal condition g € C* and the stability

and convergence condition of equation (3.2.9) is satisfied. Then

. 2
sup sup |u;(z) — Ui($)|2 + sup sup |u;(z) — Ui(:zz)‘
i zel; i zel;
= O(A2?) + O (efclwl”ﬂ) (3.3.6)

where C > 0.

Proof. First note that since f € C1?? and g € C?, we have that u; € C? and 4; € C? are both
twice differentiable (using the Leibniz integral rule recursively). Hence, for « € [zk, i k+1]
Uj k+1 — Uik
ui(z) — Ui(z) = wi(x) — ug — —2F ¢

T — Tig)
Tik+1 — Tik

Wi (i ht1) — Ui(xik)(
Tik+1 — Tik

+O(A) + O (e*CW”Z)

= () —ui(ay) — T — Tig)

2The numerical solutions {ulk}g;]: and {u,k}g;]: are actually complex numbers. Since they approximate real
values, their imaginary parts are of the order of the global discretization error Ej; A, and hence negligible. For
this reason, we define the functions U; and U; as real-valued functions using the projection of the approximate
solutions onto the real line.

57



(by Theorem 3.5),

O(Az?) + O(Az) + O (e*CW”Z)
(since u; is twice differentiable),
O(Az) + O (e—clﬂl’llz) .

If Ny = 0, the last equation obviously holds at x = 0.
Clearly,
sup sup |u;(x) — Ui(z)]> = O(Az?) + O (e_c‘”‘flﬁ) (3.3.7)

1 x€EZ;
since the Z; are bounded intervals.

The same techniques show that

sup sup |1 (z) — Ui (x) . O(Az?) + 0 (efc‘“‘fllz) (3.3.8)

1 x€Z;
and the result follows. O

The approximation of the BSDE solution (Y, Z) is then given by the couple (y, z) defined on
[0,T) as

n—1

Yo = Z Ui(Wti)l[tiatHl)(t) (3.3.9)
1=0
n—1

zp = Z UsWe )L, t,,0)(t) (3.3.10)
=0

where {W}ic(o,) is a standard Brownian motion. By the definition of (y, z) and the continuity
of linear interpolations, and hence of the extended functions U; : Z; — R and U :T; — R, we
obtain the following corollary.

Corollary 3.8. The processes (y,z) are both F—adapted, cadlag and constant on any interval

[ti,tix1), ©=0,1,...,n — 1. Moreover,
(y,2) € LY (R?) (3.3.11)
i.e the processes are bounded.

The (quadratic) error on the BSDE solution is defined as

n—1 tit1
E2, \,:=max E| sup |Vi—yl’|+ E [/ |Zs — 24| ds] (3.3.12)
LA 0<i<n tE[ti,ti+1) ; t;

and characterized in the next theorem.

Theorem 3.9. Suppose the driver f € C1%2, the terminal condition g € C2, the stability and
convergence condition of equation (3.2.9) is satisfied and

§=g(Wr) e L* (3.3.13)

then
E2 1 ax = O(In]) + O(A2?) + O (e‘C(N°+1>2’2 + e‘C'”'”’z) (3.3.14)

where C > 0.
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Proof. We have that

2 2
Ew,l,Am < 2E7r+20121ia<an

sup |7 - ytlﬂ
te(ti,tit1)

n-1 tit1 9
+ 2 E/ 77 — zg d}
> [zl as

IN

n—1 tit1
AT IR
0<i<n [tE[tistiv1) i=0 ti

+ Cy |m| (by the result of equation 1.16),
n—1

= 20%1?<XnE |Yt71r —ytiﬂ +2;AiE [‘ZZZ fzti‘ﬂ + Cy |7

2 max E [|ul(th) — Ui(Wti)|2 1Ii(Wti)i|

0<i<n—1
n—1
+2 Z AE {
i=0
n—1

+ 2 max E |:|}/t7:‘2 1R\Ii (th)i| + 2 Z AlE [‘ZZ: ‘2 1]R\I-; (Wti ):|

0<i<n—1
- =0

IN

i 1z, (Wti)}

+ Cy |7l

IN

. 2
2 max sup [ui(e) = Ui(@)|* + 2T o sup [ia(e) - Ui(a)

n—1
+2 max B [[V7]* 1z, (W) | 27 AB [|27] 1ay2, (W3,

0<i<n ;
=0

+ Cy |7

n—1
|2 |2
= 2000 B[40 )] +2 3 AB (|27 ez, (2
+ Cy |n| + CoAg? + CyeCalml 12
(by Theorem 3.7),

w2 12
2 mx B Y [* 1z, (Wh,)] + 27 max B (125 102,072,

IN

+ Cl |7T| + CQASC2 + 0367C4|7r|71l2
2 max E UYJ ? 1R\L(Wti)} +27 max E Uzg; ? 1R\L(Wti)}

IN

1<i<n
+ Oy ||+ CyAz? + Cge_c‘””r”2
(since Wy € Ip),
C ] + C28a® + Coe™ @™ 1 G5 max B [1nz, (Wi,)]*

IN

(by the Cauchy-Schwartz inequality and Lemma 2.1),

_ —1;2 _ —1p7272
Cl |7T| + CQASC2 + 036 Calm ™1 + C5 rgax e Coti™ Nil
1<i<n

IN

(by Chernoff’s inequality),
Cy |r| + Cya® + Cae=Calml ™ | Oy e=CoT ™ (No+1)*1?

IN

This last inequality is equivalent to the result. [l

As shown in Theorem 3.9, three different error terms compose the simulation (quadratic)
error E\Qﬂ,l, A, the time discretization error, the space discretization error and the truncation
error. The time discretization error appears naturally knowing that the convolution method is
based on an explicit Euler scheme and is of first order as is the original Euler scheme. The space
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discretization error, of second order, results from both the global discretization error E; o, and
the quadratic form of the simulation error. The truncation error is influenced by the probability
that the Brownian motion path exits the space grid at a given time step. It remains spectral of
index 2 with respect to the truncation length [, and to some extent with respect to the length of
the truncated domain at the first time step (No + 1){. Thus, increasing Ny improves the speed
of convergence. However, convergence is assured for large values of [ as long as the assumptions
of Theorem 3.9 are satisfied.

In particular, the condition of equation (3.3.13) and its use in the proof of Theorem 3.9

indicate that the simulation error E? is controllable outside the space grid when the ap-

|zl Az
proximate backward process Y;T and the approximate control process Z[ are in L*. These
conditions are satisfied for a large range of BSDEs including BSDEs with terminal function g of
exponential growth such that

lg(x)| < CePl*l 2 e R (3.3.15)

for some constants C > 0 and p > 0. Unfortunately, the BSDE well-posedness does not require
the condition of equation (3.3.13). Thus, the convolution method may not converge for some
well-posed BSDEs in the sense of the simulation error Eﬁr\,l,Az in equation (3.3.12).

We can define an alternate simulation error by discarding the occurrences of the Brownian
motion outside the alternative grid. Then, the alternate simulation (quadratic) error Eﬁr‘, LAz 18

E? = max E
[7],l, Az 0<i<n

sup |}/t - yt|2 ]-L' (th)‘|

tE[ti,tit1)

n—1 tiv1
+ ) E U |Z — 24| 1Ii(Wti)ds} . (3.3.16)
i=0 ti
From the proof of Theorem 3.9, the following corollary stands.

Corollary 3.10. Suppose the driver f € C1'?2, the terminal condition g € C* and the stability

and convergence condition of equation (3.2.9) is satisfied, then
B2 1 00 = O(|]) + O(8a?) + O (=€) (3:3.17)

where C > 0.

3.4 Extensions

In this section, we discuss further extensions of the convolution method on the alternative grid.
These extensions include Reflected BSDEs and also BSDES based on an arithmetic Brownian

motion.

3.4.1 Simulation of RBSDEs

We defined, in Section 2.5, explicit schemes for the RBSDEs

—dYy = f(t,Ys, Zy, )dt + dAy — ZidW,
Y, > B, ,dA, >0, vt e[0,T] (3.4.1)
fOT(Yt — By)dAy =0, Yr = g(Xr)

where
B; = B(t,W) (3.4.2)
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for a deterministic function B : [0,7] x R — R. The time discretization of the RBSDE through

Euler scheme 1 is essentially equivalent to

wil@) = (@) + Acf (b @), wi(z) + Ad() (3.4.3)
with
@) = 3 [ - Dun o) (3.4.4)
o) = [ walespndy (3.4.5)
Aui(z) = [ﬂiZC)—I—Aif(ti,ﬂi(:v),ui(x))—B(ti,x)]_ (3.4.6)

fori =0,1,....,n—1 and u,(z) = g(x).

The convolution method on the alternative grid provides numerical estimates for the approx-
imate solution {uik}kN:”OV , the approximate gradient {mk},iv;g and the approximate increment
{Aﬂik};f;]g, i =0,1,...,n—1. We define the extended functions U; and U; as in equations
(3.3.2) and (3.3.3). An additional extended function AU; : Z; — R is defined by linearly interpo-
lating the values {Amk}gjg on the space grid at time mesh ¢;. Hence, for any x € [z, i k+1],

Aty py1 — Aligy

AU;(z) = Aty + (x — x1) (3.4.7)
Tik+1 — LTik
for i =0,1,..,n — 1. When Ny = 0, we simply have
AU()(SC) = A’l_l,oo(sxyo. (348)
A numerical approximation of the RBSDE solution (Y, Z, A) consists of the triplet (y, z, a)
where
n—1
be o = Z Ui(Wti)]‘[tiati+1)(t) (349)
i=0
n—1 .
= Z Ui(Wti)]‘[tithl)(t) (3410)
i=0
n—1 B
a = Y AT(W)1pm(b) (3.4.11)
i=0

and {W}}+¢(o,7 is a standard Brownian motion. By definition, the triple of processes { (yt, zt, at) }+ejo, 1)
is F—adapted and cadlag. Both processes {y: }+cjo, 1) and {2 }¢cjo, 1) are in LY (bounded) whereas
the process {at}e[o,r) is non-decreasing.

3.4.2 Arithmetic Brownian motion
When the forward process is the arithmetic Brownian motion X

X =0 + pt + oWy, (3.4.12)
the BSDE solution is associated to the Cauchy problem on the advection-diffusion equation

%Jru%Jr%UQ%an(t,z,u,UVu):O , (t,x) €[0,T) xR

u(T,x) = g(x), v € R. (3.4.13)

We already mentioned in Chapter 2 that the forward process increments are indeed stationary,
independent and normally distributed with density

S ex _w
hlw) = (27TA1')%O' p( 202, ) . (3.4.14)
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and characteristic function
d(v) = eBilir=307%) (3.4.15)

In this case, the convolution method is applied with ¢¥(v) = ¢(v) when computing the

intermediate solutions @; and with ¢ (v) = iv$(v) when computing the approximate gradient ;.

Though, we approximate the approximate gradient through the quantity cVu = og—g and hence

use ¥ (v) = iovg(v) in our implementation.

The equivalences of convolution representation under the transform of equation (3.1.8) are

given by
1 [~
o) = o [ e
= 5 [
—a [(z+ i)+ JQAJ — Bz + pd;) (3.4.16)
when ¥(v) = ¢(v) and
1 [,
@) = o [ e7i)p)dr
1o —
= g5 |l W)
—0 20z + pd;) + ] (3.4.17)

when ¢(v) = iov$(v). The computation of the approximate solution w; and the approximate

gradient %; as well as the BSDE simulation are done as described in the previous sections.

3.4.3 The Euler scheme 2

As stated in Chapter 2, the approximate solution v; and the approximate gradient ©; satisfy

vi(x) = /_00 Viy1(x +y)h(y)dy (3.4.18)

where
Uip1(@) = vigr(x) + Aif(ti, viga (2), 0i(2)) (3.4.19)
@) = [ (-aualetphl)dy (3.4.20)

for i =0,1,...,n — 1 and v, (z) = g(z) under the explicit Euler scheme 2.

In this setting, one notices that two successive conditional expectations have to be computed
at each time step through these equations. In order to maintain accuracy as described in Section
3.2, a total of 2N points have to be discarded on the space grid at each time step®. As a compar-
ison, only N points are lost in the alternative grid presented above. Thus, the implementation
of Euler scheme 2 is more computationally demanding compared to the Euler scheme 1.

Nonetheless, it is possible to implement the Euler scheme 2 on the alternative grid of Section
3.1. Indeed, a simple algorithm consists in using all values of the approximate gradient computed
through equation (3.4.20) in the intermediate solution of equation (3.4.19). Hence, only N points
are discarded from the space grid when computing the approximate solution with equation
(3.4.18). As a consequence, the Euler scheme 2 will display an additional extrapolation error,

3N points are discarded after computing equation (3.4.20) and N other points when computing equation
(3.4.18) which includes the solution of (3.4.20).
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especially at the boundaries on the truncated domain. The complete algorithm is given in
Algorithm 3.2.

Indeed, simple adaptations of Algorithm 3.2 allow us to solve for RBSDEs and/or for arith-
metic Brownian motion. These modification were already discussed in the beginning of this
section. Also, the simulation of (R)BSDEs follows naturally in the setting of Scheme 2 from the
presentation of the numerical solution for Scheme 1.

Algorithm 3.2. Convolution Method on Alternative Grid (scheme 2)

1. Discretize the restricted real space [—22t Nal] and the restricted Fourier space [—%, L]

with N, N space steps so to have the real space nodes {znk}iVZ"ON and {z/nk},iv;év
2. Value vy (Tnk) = g(@nk)
3. For any i fromn —1 to 0
(a) Compute o and S defining the transform of equation (3.1.8), such that
Oi11 = (vig1)™” (3.4.21)

and 0,11 satisfies the boundary conditions of equations (8.1.25) and (3.1.26).
(b) Compute 0;(x;41,%) through equation (3.1.28) for k=0,1, ..., N;11 N with

P(v) = ivg(v) (3.4.22)

and retrieve the values vU;;, as
Vit = Oi(@ip1,k) — (20xip1k + ) - (3.4.23)

(c) Compute the values Vjt1, as
Vix1,ke = Vit1,k + Di f(ti, vit1,k, Vik) (3.4.24)

for k=0,1,...,N;y1 N through equation (3.4.19).
(d) Compute o and S defining the transform of equation (3.1.8), such that
01 = (Dis1)™" (3.4.25)
and 0,11 satisfies the boundary conditions of equations (3.1.25) and (3.1.26).
(e) Compute 0;(x;1,) through equation (3.1.80) for k =0,1,..., N;N with
() = o) (3.4.26)
and retrieve the values v;, as
Vik = Ol(xzk) — a(:z:ik — Ai)ﬁxi,k. (3.4.27)

(f) Update the real space grid with equation (3.1.21) and the Fourier space grid by dis-

cretizing the interval [—%, £

{wik }kN;'JoV and {vi, }iv;zar .

| with N;N space steps so to have the real space nodes

3.5 Numerical results

The numerical results on the alternative grid stands as a complement of the results presented in
Section 2.6. We intend to demonstrate the absence of extrapolation error and give illustrations
of the (space and time) convergence order on the alternative grid. Since the truncation error is
demonstrated to be of spectral order, it can be easily set to the order of epsilon machine* and,
hence, be considered negligible.

4We use a double precision arithmetic with epsilon machine e = 2.2204 x 10~ 16,
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3.5.1 Space and time convergence order

In Appendix D, we develop closed form expressions for the approximate solution of the BSDE
with driver
flt,y,2) =ay+ bz (3.5.1)

and terminal condition
glx) = e¥”. (3.5.2)

Equations (D.14) and (D.15) give the backward and control process true solutions and equations
(D.16) and (D.17) give the approximate solutions after time discretization. It clearly follows
from these equations that the time discretization is convergent as expected. We would like to
test the convergence of the numerical solutions to the true solutions u and Vu and also to the
approximate solutions w; and w;, 9 =0,1,...,n — 1.

We solve the BSDE with terminal time 7' = 0.1 and coefficient parameters a = 3, b = —5 and
@ = 0.15 on uniform time meshes with A = % and space grids with Ny = 0. For a given time
mesh with n time steps and a space grid with interval length [ and N space steps, we compute
two different errors. On one hand, the error of the numerical solutions with respect to the true
solutions is computed as

Errue = max max |u(t;, i) — ikl
0<i<n 0<k<NN;
+ max max  |Vu(ts, Tik) — Uikl - (3.5.3)

0<i<n 0<k<NN;
On the other hand, the error of the numerical solutions with respect to the approximate solutions

is given by

max max  |ui(zik) — wik
0<i<n 0<k<NN;

Eapp

+ 021?<Xn ogglgajif(m [t (zix) — i) - (3.54)
We hence consider the maximal absolute error of the numerical solutions with Scheme 1 over
the entire grid on the solution u and its gradient Vu.

The error of the numerical solutions with respect to the approximate solutions (E 4,,) is cer-
tainly the most important one since it indicates the accuracy of the convolution method when
computing the conditional expectations appearing in the Euler scheme. On the alternative grid,
this error term includes the space discretization error and the truncation error as shown in The-
orem 3.5. We will use the error E4,, to analyze the spatial convergence of the method. As
to the error of the numerical solutions with respect to the true solutions (Er7yye), it incorpo-
rates the underlying time discretization error and can be used to analyze the effect of the time
discretization procedure.

In order to perform a spatial convergence analysis, we set n = 20 and we choose [ large
enough so that the truncation error can be neglected. More precisely, we set

1 =25VA (3.5.5)

and the truncation error is of the order of e=2°°C which is expected to be closed to machine
error for the constant C' > 0. The BSDE is then solved for different space discretizations with
N =27, 5¢€{1,2,3,4,5,6}. Figure 3.5.1 shows the log-log plot of the maximal errors E app and
Er.. for each of the space discretizations.

A first observation on Figure 3.5.1 is that the error with respect to the true solutions Erpj.
does not change throughout the different space discretizations. This indicates that the time

discretization error remains constant since we chose a constant time step (n = 20 ) for each of
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Figure 3.5.1: Log-log plot for space convergence analysis on alternative grid.
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— o Approximate Solutions (EApp)
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Order one (1) convergence

-14 .
10” 10”" 10
Space step (A x)

0

Errors computed using the numerical solutions (Scheme 1) on alternative grids. The time step is kept constant
at A = 0.005 and the truncation error of the order of epsilon machine for each space discretizations.

the space discretizations. The level of the associated line gives an idea of the time discretization
error which is of the order of 1072,

The error with respect to the approximate solutions I 4,, displays a curve which has a slope
of approximately one (1) for coarse space grids indicating an order one (1) convergence rate in
space as stated in Theorem 3.5. Nonetheless, the slope of the curve rapidly increases when the
space step Az is reduced so that the error drops to the order of 1074 near the level of machine
error. Hence, the convergence order is improved to nearly spectral when the space grid is refined.
This is consequence of the smoothness of the BSDE coefficients f and g and the use of Fourier
interpolation. Indeed, for infinitely differentiable coefficients f and g, the accuracy of the Fourier
interpolation underlying the convolution method® is actually greater than any polynomial order.
The assumptions of twice differentiability on the coefficients are simply minimal requirements

leading to the first order convergence rate in space.

Since the convolution method uses a time discretization of the BSDE, it may be interesting
to investigate the effect of the underlying time discretization. For the time convergence analysis,
we set the length [ to be

I =10VA, (3.5.6)

for each time discretization with time step A, so that the truncation error is of the order of
e10°C for a constant C' > 0. Then we fix the maximal space step at 0.0025. This is done by
choosing N such that

l l
N= 2 5.
[0.0025} + {0.0025} mod (8:5.7)

where, for x € R, [2] = min{m € Z : m > z} is the ceiling function and, for m € Z,

1if m is odd
m mod 2 = (3.5.8)

0 if m is even

is the modulo 2 operator. This procedure ensures that the chosen value of N is even and the

5See the proof of Theorem 3.3.
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Figure 3.5.2: Log-log plot for time convergence analysis on alternative grid.

10~ T T
o M E

10 3

)

5 —o— Approximate Solutions (EApp

——— True Solutions (Errue)

10k Half (0.5) order convergence

Absolute error
>

10° 10
Time step (A)

Errors computed using the numerical solutions (Scheme 1) on alternative grids. The space step is kept constant
at about Az = 0.0025 for each time discratization. Also, the length [ is set to be [ = 10v/ A so that the
truncation errors are of the same order for each time discretization.

alternative grid is constructable with a space step such that
Az < 0.0025. (3.5.9)

Since we have a maximal space step, we are forced to fix a maximal number of time steps such

that
T2
= 0.0025
in order to satisfy the condition of Lemma 3.6 and produce a stable algorithm. For this reason,
we solve the BSDE with n € {5, 10, 20, 40,80, 100} leading to different time discretizations. The

errors computed with those discretizations are displayed in the log-log plot of Figure 3.5.3.

~ 100.2651 (3.5.10)

Since we set a (almost) constant space step and a negligible truncation error, the error E 4y,
is (almost) constant for each time discretization. It also gives an indication of the impact of
the space discretization which is of the order of 107, As to the error with respect to the true
solutions FEr,.., it describes a line with slope % in the log-log plot. Hence, we may conclude
that the time discretization (absolute) error is of half (1) order®.

This result is consistent with the order of convergence of BSDE time discretization in Zhang
[124] or Bouchard and Touzi [20] and, hence, with the statements of Theorem 3.9 and Corollary
3.10. Indeed, if the time discretization (absolute) error with respect to the true solutions is
of half (%) order on the alternative grid, then we can expect the quadratic errors described in
Theorem 3.9 and Corollary 3.10 to be of first order in time.

3.5.2 Application to option pricing

As in Chapter 2, we use option pricing to test the convolution method performance in a non-
smooth setting. The market model considered here is identical to the one introduced in Section
2.6.2 with the difference that we price put options.

The risky asset {S;}sc[0,7) price is given by

Sy =eXt (3.5.11)

6 At least in this case.
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Table 3.5.1: Relative errors (in percentage) on the alterntive grid for European put option prices

K (Strike) n=50 n=100 n=200 n=>500

. 110 0.0149 0.0746 0.0335 0.0083
Convolution
100 0.6537  0.3269 0.1639 0.0660
(Scheme 1)
90 1.0993 0.0635 0.2549 0.0416
. 110 0.1102 0.0268 0.0095 0.0013
Convolution
100 0.7450 0.3730 0.1871 0.0753
(Scheme 2)
90 1.00745 0.0525 0.2494 0.0398
. . 110 0.0830 0.0646 0.0200 0.0087
Trinomial tree
100 0.1891 0.0990 0.0501 0.0374
(Scheme 1)
90 0.0388 0.3072 0.1035 0.0324

The convolution method on the alternative grid is performed with a uniform time mesh and parameters No = 5,
! = 15v/Ac and N = 23. All methods use a uniform time mesh.

where the return process {X;}cjo,7) satisfies
1,
Xe=Xo+ (p— Pl t+ oW, (3.5.12)
with initial price Sy = e*X° = 100, volatility o = 0.2 and expected return p = 0.05. In addition,

the market offers a lending rate of » = 0.01. Under these conditions, a European put option
with strike price K solves the BSDE with linear driver

fty,z)=—ry — (“ — T) z (3.5.13)

g

and the non-smooth terminal function
glz) = (K —e”)". (3.5.14)

The maturity of all considered options is T' = 1.

At strike prices K = 110, 100 and 90, the Black-Scholes formula returns put option prices
of 13.5156, 7.4383 and 3.2974 respectively and option deltas of —0.2655, —0.4404 and —0.6468
respectively. Table 3.5.1 and Table 3.5.2 give the relative errors for various time discretizations
produced by the estimates from the convolution methods on the alternative grid. For comparison
purposes, these tables also contain the relative errors of the estimates from the trinomial method
as presented in Appendix C. Since the numerical results in Section 2.6.2 indicate satisfactory
precision for relatively coarse time grids, we limit the number of time steps to n = 500. As
expected, the relative error decreases when the number of time steps increases so that the
precision of the convolution method is improved on finer time grids when using an alternative
space grid.

Overall, the convolution and trinomial methods give similar results since they produce similar
relative errors particularly for fine time discretizations. Nonetheless, the error on at-the-money
option prices are slightly higher than those on out-of-the money and in-the-money option prices
under the convolution method. As to option deltas, out-of-the money options have higher errors
than in-the-money options. Those observations are consequences of the non-smoothness of the
terminal condition g and the way errors diffuse through the approximation solution and the

approximate gradient under the convolution method on the alternative grid.
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Table 3.5.2: Relative errors (in percentage) on the alternative grid for European put option
deltas.

K (Strike) n=50 n=100 n=200 n=500

. 110 0.1039 0.1063 0.0506 0.0172
Convolution
100 0.2244 0.1113 0.0553 0.0219
(Scheme 1)
90 0.7750 0.2329 01808 0.0332
. 110 0.1532 0.1311 0.0633 0.0226
Convolution
100 0.3849 0.1924 0.0965 0.0389
(Scheme 2)
90 0.9876 0.3503 0.2413 0.0583
. . 110 0.1865 0.0243 0.0424 0.0132
Trinomial tree
100 0.2657 0.1264 0.0596 0.0240
(Scheme 1)
90 0.4370 0.3030 0.0680 0.0385

The convolution method on the alternative grid is performed with parameters No = 5, I = 15v/Ac and N = 23,
All methods use a uniform time mesh.

Figure 3.5.3: Absolute errors at the European put option maturity.
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Errors were computed using the numerical solutions (Scheme 1) on the alternative grid with parameters
1l =6vAc, Ngp = 10 and N = 2%, The uniform time mesh has n = 100 time steps.
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Figure 3.5.4: Absolute errors at the European put option issuance.

a) Error on option prices x 107
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Errors were computed using the numerical solutions (Scheme 1) on the alternative grid with parameters
l =6vAc, No =10 and N = 2°. The uniform time mesh has n = 100 time steps.

As already mentioned, the convolution method uses Fourier series interpolation which has a
particular behavior when applied to non-smooth functions. It is well-known that trigonometric
interpolations display high oscillations around the discontinuities of the interpolated function.
Those high oscillations are known as the Gibbs phenomenon and can be observed in the convo-
lution method on the alternative grid. Figure 3.5.3 illustrates the Gibbs phenomenon in option
prices and option deltas when the (at-the-money) option is close to maturity. If the oscillations
seem to be higher for option deltas, they are more persistent for option prices. Indeed, oscil-
lations disappear in option deltas close to the option issuance as shown in Figure 3.5.4. Also,
Figure 3.5.4 indicates that the error induced by the Gibbs phenomenon diffuse along the point
of discontinuity through time steps since the errors in option prices at the option issuance are
clearly higher when the option is at-the-money.

Of course, the presence of the Gibbs phenomenon is independent of the grid used under the
convolution method. Hence, this analysis also holds for the uniform space grid of Chapter 2.
However, the presence of the extrapolation error on a uniform grid makes the analysis more
complicated since this error globally dominates the space discretization error which contains the
error induced by the Gibbs phenomenon.

We conclude this section with the numerical resolution of RBSDEs using the convolution
method through American put option pricing. The barrier in this case is given as usual by

B(t,xz) = g(z), (t,z) € [0,T] x R. (3.5.15)

Table 3.5.3 shows at-the-money American put option price and delta estimates from the convo-
lution and the trinomial methods. The estimates from both methods remain similar which is an
indication of the convolution method accuracy for RBSDEs on the alternative grid. Similarly,
the regularity of the price and delta surfaces of Figure 3.5.5 gives an idea of the stability of
the numerical solutions for RBSDEs from the convolution method. Finally, this regularity and
accuracy allows for a reliable path simulation for (R)BSDEs as illustrated in Figure 3.5.6.

The implementation of the convolution method on the alternative grid produces a local dis-
cretization error exempt of truncation errors. The BSDE numerical solution was formally defined
and a global error analysis was conducted. The numerical results presented in this sections also
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Table 3.5.3: American put option price and delta estimates

K (Strike)  Price Delta
110 13.6860 -0.6402

Convolution (Scheme 1) 100 7.5115 -0.4466
90 3.3234 -0.2518
110 13.6855 -0.6402
Convolution (Scheme 2) 100 7.5112  -0.4465
90 3.3235 -0.2517
110 13.6860 -0.6402
Trinomial tree (Scheme 1) 100 7.5135  -0.4465
90 3.3239  -0.2518

Estimates were computed using the numerical solutions (Scheme 1) on the alternative grid with parameters
1 =15vAc, Ng =5 and N = 23. The uniform time mesh has n = 1000 time steps for all methods.

Figure 3.5.5: At-the-money American put option price and delta surfaces.

a) Price surface
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The surfaces are obtained using the numerical solutions (Scheme 1) on the alternative grid with parameters
1l =6vAc, No = 10 and N = 2%, The uniform time mesh has n = 100 time steps.
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Figure 3.5.6: Path simulation for the at-the-money American put option.
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The paths are interpolated from the numerical solutions (Scheme 1) on the alternative grid with parameters
I =6vAo, Ng =10 and N = 2°. The uniform time mesh has n = 100 time steps.

confirm the theoretical results developed in the error analysis. However, the convolution is lim-
ited to the BSDE case. Hence, the following section extends the results to the more general

FBSDE framework.
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Chapter 4

A Fourier interpolation method for
FBSDEs

An important and interesting extension of the convolution method consists in applying it to
FBSDEs. Unfortunately, the convolution representation of our approximate solutions, as devel-
oped and used in Chapters 2 and 3, are unavailable in the FBSDE case. The reason for this
inconvenience is that the forward process in a general FBSDE setting, even though a Markovian
process, does not have independent increments. Hence the distribution function of the forward
process increment does not depend exclusively on the increment, but also on the process’s last
position.

In this chapter, we shall use some of the ideas introduced in the previous chapters in order
to build a numerical method for FBSDEs. The main purpose is to obtain a numerical solution
on a uniform space grid as flexible as the one in Chapter 3 and resulting in a convergent scheme.
The majority of space discretization and PDE methods for FBSDEs fail in producing a uniform
space grid which makes the implementation of those methods quite challenging. Milstein and
Tretyakov [89, 90] and Delarue and Menozzi [35, 36] are notable examples. The reason for the
extend usage of non-uniform space grids stems from the non-stationarity of the forward process'.
Nonetheless, a uniform space grid seems to be easier to handle and more suitable for simulation.

4.1 Preliminaries

As already indicated, we work on the complete filtered probability space (2, F, F, P) where the
filtration F = {F; : t € [0,T]} is generated by a d-dimensional Brownian motion {W;}:c(o,1)-
The general FBSDE for which we seek a numerical solution is a system of the form

dXt = a(t, Xt>dt + O'(t7 Xt)th
—dY, = f(t, X,, Yy, Zy)dt — Z;dW, (4.1.1)
Xo=az0,Yr=¢

where the forward drift a : [0,T] x R? — R%, the forward volatility o : [0,7] x R¢ — RX4 the
driver f : [0,7] x RY x R x RY — R are deterministic functions. The initial condition zq € R?
and the terminal condition takes the Markovian form ¢ = g(X7) where g : R? — R.

We assume the usual Lipschitz and growth conditions on decoupled FBSDE coefficients. The

following Assumption gives the details.

In the weak sense.
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Assumption 4.1.1. There exist positive constants Ky, Ko K3, and K4 such that the coefficients
of the FBSDE (4.1.1) satisfy

la(t,z1) — a(t,z2)] < Kilz1 — 2| (4.1.2)
lo(t, z1) —o(t,z2)|l, < K|z — x| (4.1.3)
la(t, z)| + |lo(t, )|, < K> (4.1.4)
|f(t,:c1,y,z)ff(t,zg,y,z)| S Kl |331 *352| (415)
If(t,z,y1,21) — f(t o, y2, 22)] < K1 (Jyr —y2| + |21 — 22) (4.1.6)
[ftz,y,2)] < Ks(L+ [z + |y + |2]) (4.1.7)
for any t € [0,T], x,21,22 € R?, y,y1,y2 € R, 2,21, 20 € R
Moreover 02 := oo™ is (uniformly) invertible, continuous and bounded
[(@*(t, )7, < Ka (4.1.8)
for any t € [0,T], x € R%.
In addition, the terminal value is square integrable
€l = B [lg(xr)] < . (4.1.9)

A solution of the system of stochastic differential equations (4.1.1) is a triple of processes
(X,Y, Z) where the forward process X € L%(R?) is adapted and square integrable. In addition,
the backward process Y € L%(R) and the control process Z € L%(R?) are also adapted and
square integrable.

The problem of well-posedness for the systems of stochastic differential equations (4.1.1) has
been widely studied. The existence and uniqueness result of the forward process X is established
through SDE theory. Pardoux and Peng [96] proved the well-posedness of the backward SDE.

As indicated by Pardoux and Peng [97], the FBSDE of equation (4.1.1) is associated with
the following Cauchy problem on a quasilinear (parabolic) PDE

Gu 4 Lu+ f(t,z,u,0"(t,x)Vu) =0, (t,z) € [0,T) x R

(4.1.10)
u(T,x) = g(z), x € RY
where
d u 1 0%u
= Z(t . 4.1.11
- Dt agt 2_1 e (a.11)
The FBSDE solution can hence be expressed in terms of the PDE solution u as
t t
Xy = xo Jr/ a(s, Xs)ds +/ o(s, Xs)dWs (4.1.12)
0 0
Y = u(t, Xy) (4.1.13)
Zt = U*(t, Xt)Vu(t, Xt) (4114)

through the four step scheme of Ma, Protter and Yong [79].

4.2 Numerical implementation

We develop the numerical implementation of the Fourier interpolation method method. In
this section, the basics on the time and space discretizations are given. The presentation gives
Fourier representation of numerical solution in the general multidimensional case. The numerical

implementation however is restricted to the one-dimensional case.
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4.2.1 Time discretization and Fourier representation

As usual, the starting point is the explicit Euler scheme 1 applied to the FBSDE of equation
(4.1.1). On the time mesh 7 = {tx =0 < ¢; < ... < t,, = T} with time steps

Ai:tHlfti,i:(),l,...,nfl, (421)

the time discretization takes the form

X§ =20

X7, = X7+ alts, X7) A + o(ts, XT)AW,

ZF =0, Y7 = ¢ (4.2.2)
Zr = LE [Y;THAWA]-}J

YT =B V7R + 1 XTLE VLR Z0)As

where AW,; = W,,,, — W,,. First note that

i+1

1
ot XFVZE = AE[Y;TH (ti,Xg;)AWA]-}i}
1
_ KE[ T (AXT - Aia(ti,Xt’;))U-}i} (4.2.3)

with AXT = X[

.., — X{. Hence, the approximate solution u; at mesh time ¢; can be written as
i+1 7

ul(x) = ai(m)+Aif(ti,l',ai(l'),’c'ti($)) (424)

where the intermediate solution @; and the approximate gradient u; at mesh time ¢; satisfy

i(z) = E[t+1|X”— }
= [ wenle ity 25)
o(ti, x)ui(z) = KE{ ot XTI AW XT :x}
- A%— = ialt, 2)uia (2 4 y)hi(yle)dy (4.2.6)

fori =0,1,....,n — 1 and u,(z) = g(x). Moreover, the function h; is the conditional density of
the discrete forward increment AX[ given an initial position of X7’ = x at mesh time ¢;. From
the Euler scheme in equation (4.2.2), h; is the density of a Gaussian random variable with mean
A;a(t;, ) and variance-covariance matrix A;o2(t;, 7).

The density is explicitly given by
hilyle) = (2m) % [| Ao (13, 0)||; * exp ( 21Aiy* (UQ(ti,x))_ly) (4.2.7)
where y = y — A;a(t;, x) with characteristic function
bi(v,z) = eidiva(tiz) =AM 0 (L) (4.2.8)

The density function h; and the characteristic function ¢; satisfy the relation

hi(ylr) = #/}Rd e_i”*y(bi(u,x)dy. (4.2.9)

Consequently, they also satisfy

1

Pulul) =~ [ V)
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= Aa(t;, z)hi(y|z)

AiO'Q(ti,ZL') vty
+W/}Rd e " Yiveg; (v, x)dv (4.2.10)

where the first equality holds by Proposition E.4.

Hence, assuming u;4+1 is (Lebesque) integrable, equation (4.2.5) leads to

ui(z) = ﬁ/ﬂ{d Ui+1(9ﬁ+y)/ e g (v, ) dvdy

Rd
(using the relation of equation (4.2.9)),
ﬁ /]Rd /Rd e_iu*yui"'l(x +y)¢i(v, x)dydy
= %)d /Rd eV T F uis1 ] (V)i (v, x)dy
TS [wig1] (V) di (v, )] (). (4.2.11)

Since o(t, ) is a full rank matrix, equation (4.2.6) is equivalent to

o*(t;, x)

iole) = T [ ) [ e o)y
(using the relation of equation (4.2.10)),
o*(ti,x

- (QT)d) /R ) /R ) e Vi (z + y)ives (v, v)dydy

o*(t;,x)

N / G i) (v)iv ey (v, 2)dv
0" (b, )8 [Bluwi ) 0)iv i (v, 2)](2). (12.12)

We use the Fourier representations in equations (4.2.4), (4.2.11) and (4.2.12) in the implemen-
tation of the method under the explicit Euler scheme 1. Equation (4.2.4) can be replaced by

wi(z) = Gi(x) + A f (b, z,ui(x), 4 (x)) (4.2.18)

under the implicit Euler scheme. In this case, the condition on the time discretization of equation
(2.2.13) has to be satisfied.

If the forward process X admits the conditional characteristic function
oz, 7) =B |V Keer =X X, = g | (4.2.14)

then the conditional characteristic function may be used in the convolution method. The pro-
cedure leads to the expressions

di(z) = F 'Fluir] (W) (vox, A))(z) (4.2.15)
o* (ts, 2) T [Fwir 1) (V)ivey, (v, z, A;)] () (4.2.16)

for the intermediate solution and the approximation gradient in place of equations (4.2.11) and
(4.2.12). By using the conditional characteristic function, we are considering the true distribution
the forward increment AX; = Xi,
discretization AXT in the conditional expectations.

— X, instead of the Gaussian distribution of its Euler

i

4.2.2 Space discretization

Before discretizing the Fourier integrals in the one-dimensional case d = 1, we first consider the
behavior of the relations in equations (4.2.11) and (4.2.12) under the alternative transform. The
next theorem gives the result and its proof is essentially similar to the proof of Theorem 3.2.
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Theorem 4.1. Let ufﬁ be the alternative transform defined in equation (3.1.8) of the approx-

imate solution w;,41. Then the intermediate solution u; and the approximate gradient wu; in
equations (4.2.5) and (4.2.6) satisfy

ii(r) = F Bl 2))(z)
—af(z + Asa(ts, ©)? + Ajo? (t;, x)]

—B(z + Aia(t;, x)) (4.2.17)
wi(r) = olti,o)F Bl ive (v, o))
—o(ts, z)[2a(x + Aja(ti, ) + G (4.2.18)

a, . . .
i1 and its derivative

values are equal at the boundaries of a given interval through the method of Lemma 3.1. Con-

As usual, we select the parameters o and S such that the function u

sequently, it suffices to compute the values of a generic function 6; : R — R at each time step ¢;
verifying

0i(x) ! /00 V20, 1 (V)(v, z)dv. (4.2.19)

:% .

with ¢ : R? — C and ;1 : R — R. We may assume that ;,, satisfies the value and derivative
conditions at the boundaries of a given interval.

The space discretization is performed with an alternative grid as described in Chapter 3. In
this case, the alternative grid discretizes the forward process X and not the Brownian motion
as in the previous chapter. The grid is defined by the increment interval length [ > 0, its (even)
number of space steps N > 0 and the initial number of intervals Ny > 0 at mesh time tg. The
grid can be easily built such that the initial forward value zq is a grid point at the initial time
step tg i.e

o € {-TO,k k=0,1,.., NNo}. (4.2.20)

We assume that the grid is centered at the initial value of the forward process Xy = zg. This

requirement simplifies the error analysis even though a shifted grid does not alter the convergence

results. Moreover, a shifted grid may be useful to take into account the presence of a drift in

the forward process X or a known constraint on the support of its actual transition density.
Hence, assuming that

Oit1 (Tiv10) = Oi1 ($i+1,NNi+1) (4.2.21)
o (i) = o (TN (4.2.22)

and following the discretization steps of Section 1.2 or Section 3.1, we have

i) ~ (DM IO [z Dl 5 N (42:23)
for k=0,1,..., N;N. In addition,
D)y =D [{(-1) Bt (e )26 ] (4.224)
where the weights {'l]]j}j-v:iglN_l are as in equation (2.3.10).

In equation (4.2.23), the generic function 1 depends on the space node x;;. If the relation
generalizes for all space nodes x;, k = 0,1, ..., N;N, the function values 0;(z;), k = 0,1, ..., N;N,
can not be computed with a single direct FFT procedure. Instead, a separate FFT procedure
using the values of the generic function ¢ at x; is needed to compute the function value 6;(x; ).
Nonetheless the vector-matrix representation of the FFT procedure in equation (4.2.23) allows

the computation of all function values 0;(z;;) with a matrix multiplication.
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In the vector-matrix representation, equation (4.2.23) write
0;(zir) = (_1)k+%ﬁk+%\lf(xik)ID)[9i+1] (4.2.25)

where Fk+% is the (k + 4 )th row of the N;11N dimension inverse FFT matrix F and U(z)
is the N;;1 N dimension diagonal matrix built with the values {¢(vi11 5, xik)}év:iglel. Let 6

be the N; N dimension vector of the function values 6;(z;x) such that

e\, = 0;(zi) (4.2.26)

for k=0,1,..., N;N. The matrix representation gives
0 = vD[h; 4] (4.2.27)
where U is the (N;N + 1) x N;+1 N matrix such that

A (i Nk
\Ilg-i)-k,l-i-j = (*UkJr 2 wz]-( )"/)(ViJrl,j; Tik) (4.2.28)

with @; = ei2"WertM)™ k=0, 1,..., N;N and j =0,1,..., N, N — 1.
The algorithm for this Fourier interpolation method for (decoupled) FBSDEs is essentially
similar to Algorithm 3.1. One just has to adapt the methods of computation by using the

equations introduced in this section.

4.3 Error analysis

The error analysis for the Fourier interpolation method follows the ideas of Chapter 3. As in
Section 3.2, Fourier interpolation is used to derive a local discretization error which naturally
leads to a global discretization error under a stability condition. From the global error bound,
the simulation error is obtained using the time discretization error of Zhang [124] or Bouchard
and Touzi [20] as in Section 3.3. We focus the analysis as usual on the explicit Euler scheme 1.
The next theorem gives a bound for the local discretization error defined in equation (3.2.1).

Theorem 4.2. Suppose that the driver f € CY'%2 and the terminal condition g € C* and
Assumption 4.1.1 is satisfied. Then the Fourier interpolation method yields a discretization

error of the form
Eik =0 (A.’I]) + @ (e_KlAilillz) (431)

for some constant K > 0 on the alternative grid and under the trapezoidal quadrature rule.

Proof. Following the steps of Theorem 3.3, the truncation error relies on the expression

l
/ hylzig)dy = P {|AXZ”| > - | X[ = xi,k]
lyl>3 2

( AXT 12

2
P||——— ) >———— | XT =21 .
U(tiaxi,k)\/Ai> 402(tiazi,k)Ai} i k]

. 2
Let ( = Wi'k)& and knowing that the random variable (a(tiﬁ) follows a non-

central chi-square distribution with one (1) degree of freedom and non-centrality parameter
2
A= (“(t"’xi'k)) A;, we have

o(ti,Ti k)

/ h(ylzik)dy < inf (1725)—%675§+%
ly|>%

0<s<%

(by Chernoft’s inequality)
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< Ce%¢
(since A is bounded by Assumption 4.1.1),

06_2(02(ti11i,k)Ai)7ll2

A

< Qe

for some constants C; K > 0 and s € (0, %) where the last inequality holds since o~

2 is also

bounded from bellow.

This last inequality characterizes the truncation error. The Fourier interpolation then gives
the first order space discretization error and the Lipschitz property of the driver f completes the
proof. O

Theorem 4.2 implies that the structure of the local discretization error does not change when
solving a FBSDE with bounded forward coefficients on the alternative grid. The local space
discretization error is still of first order and the space truncation error of spectral order with
index 2. The boundedness of the forward drift ¢ and volatility ¢ plays a key role in maintaining
these convergence properties for the Fourier interpolation method. Also, the global discretization
error defined in equation (3.2.6) displays the same structure in our FBSDE case under a slightly
different stability condition that takes into account the presence of bounded forward process
coefficients. The next theorem states the result.

Theorem 4.3. Suppose the conditions of Theorem 4.2 are satisfied. If the space discretization

is such that )
KZAx KyA
supmax( 408 4 :c) <1 (4.3.2)

7 \/27TA1', 7TAi

then the Fourier interpolation method is stable and the global discretization error E; a, satisfies
Eian = O(Az) + O (efcl’fl’lﬂ) (4.3.3)
where C > 0 and K4 is the upper bound of equation (4.1.8).

Proof. In the proof of Theorem 3.3, we established that

eit < Ep_ik+ Uik — Un—ikl
< Bnoip+ 14+ AK) [Qn—ik — Un—ik
4 AK [ — ] (4.3.4)
bk < Enig+ [0n_ig — Un_ikl. (4.3.5)

In the FBSDE case presented in this chapter, and assuming that the values of the function ;41

and the sequence {u;15}o6'" match at the boundaries of the truncated interval,

~ . _ Nip1N—1
Qi — U] < ‘@ ! [{¢(Vi+1,j)D[Ui+1 = Uir1,s]i 10" }H%
1 NigiN—1
< NN Z |6(Vig1,5, ir)| | sup [wip1(@ik) — Wir1,k
i+1 =0 k
(using the matrix-vector representation of DFTs),
i NigiN—1
< N.. N Z |¢(Vi+1,j’xik)| sup €n—i—1,k
i+1 =0 k
(Avig)™! (/ )
< v, xi)| dv | sup ep—i—1.k
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Az
= Sup €n—i—1,k
(2770'2(ti;$ik)Ai)% k noet

Kf Az
B e 43.6
(2rA,)E R TR (4.3.6)

where the last inequality holds by Assumption 4.1.1. Similarly,

Qi — Gk < ’@1 [{T/J(Viﬂ,j,xik)m)[uiﬂ - uz‘+1,s]j}j-v:i81N_1]k+ﬁ
2
) NipiN—1
< NN > w61, wie)| | supen—io1x
i+1 =0 k
(using the matrix representation of DFTs),
(Avipr) ™" /
< B © el d L
> NiJrlN R|V¢(V xlk‘)l 14 Sl;pen i—1,k
Az
= ——  supen,_;_
w02 (ti, Tin) A kp oLk
K4A:L'
S 7TAZ- Sl;pen,iflﬁk. (437)

The rest of the proof is identical to the proof of Theorem 3.3. The inequalities of equations
(4.3.4), (4.3.6) and (4.3.7) lead to

A A
eir < CoEjp+ (14 2A;K)max (\/%—Az’ W—Axl) Sllip €i—1k
Ax Az
< Cosup Eip + (14 20K 2T or .
> OS;IkP k ( )max<m 7TAi>Sllipe 1,k

where Cyp > 0 and K > 0 is the Lipschitz constant of the driver f. Consequently,

Az Az
sup e; < CosupE;p+ (1 +2A0; K)max | ——, —— | supe;_
e < Co Lp g ( ) (\/M wAi) 1P €int,k

< Cosup B+ (1+2A,K)(supe;_1x (4.3.8)
ik k

for some positive number ( satisfying

K7 Az KiA
sqpmax( 4 x4—x>§§§1.

i \/27TAZ', 7TAZ'

and the Gronwall’s Lemma yields
supe; r < Coe?TE sup Eik (4.3.9)
k ik
from the inequality of equation (4.3.8) for ¢ = 0,1, ..., n knowing that eg , = 0. The last equation
establishes the stability of the Fourier interpolation method for the approximate solution u; since

its error at any time step is absolutely bounded.
The inequalities of equations (4.3.5), (4.3.7) and (4.3.9) lead to

A
supéjr < (01 + = CO€2TK> sup Fj
k (7AW ik
< (C1+Coe®™ ) sup By (4.3.10)
i,k

for a positive constant C7 > 0. Hence, the convolution method is also stable for the approximate
gradient ;.

The result of equation (4.3.3) follows by taking the supremum on the left hand sides of
equations (4.3.9) and (4.3.10) other time steps and applying Theorem 4.2. O
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Let (Ui, U;) be the extended solution at time mesh t; as defined at equations (3.3.2) and
(3.3.3). The numerical solution {(z¢,yt, 2¢) }+e[o,7) to the FBSDE (4.1.1) takes the form

T = ngyti,tm)(t) (4.3.11)
Y = ZU L, 10,0 (1) (4.3.12)

= ZU Mt tin) () (4.3.13)

on the time interval [0, 7). The quadratic error on the FBSDE solution is

+ max E

Sub |Xt B $t|2 0<i<n

te[tstit1)

EQZAI = max E

0<i<n t€(ti,tit1)

+ Z E [/W |Z — 2| ds] (4.3.14)

and the next theorem, inspired by Theorem 3.9, describes its error bound.

o o]

Theorem 4.4. Suppose the driver f € C122, the terminal condition g € C2, the stability and
convergence condition of equation (3.2.9) is satisfied and

¢=g(Xr)e L (4.3.15)
then
EZ a0 = O(7]) + O(A2?) + O ( C(No+1)™1% 4 e*c"frlﬂ) (4.3.16)
where C' > 0.

Proof. Since the quadratic error of the Euler scheme on the forward process is of first order in

time we clearly have

sup | Xy —z]*| = O(|x)). (4.3.17)

te[ti,tiv1)

max E
0<i<n

As to the backward part, the proof follows the steps of Theorem 3.9. The Euler scheme also gives
a quadratic error of first order in time for the backward and control processes. The quadratic
space discretization error and the spectral space truncation error are consequences of Theorem
4.3.

The error due the simulation on a finite grid reduces to the expression maxi<i<n E [1g\7,(X7)]
whenever g(X7) € L*. Since the intervals Z; are centered at X, we further have

- l
112?<XHE [1R\I (X[ )} < 112123,<an {X > Xog+ N; 2}
l
+ max P[X <X0—N—}
1<i<n 2
< max inf e_s(XO"'Ni%)Mti(s)
0<i<n s3>0
+ max inf e° s(Xo— i%)Mti(—s)
0<i<n s>0

by Chernoff’s inequality where My, is the moment generating function of X[ . The moment
generating function M;, satisfies



_ g [esxt’;lEti [es(xg—xgl)”

= E {esxzri—l(bi_l( is, X7 1)}

< e3RiKISHA L Ksls| | [esxtﬁ,l}
(by Assumption 4.1.1),

< €5X06%tiK§52+tiK2|5‘
(after a recursion),

< 5X0p3TK3s*+TKa|s|

for any s € R, so that

max E [1g\7,(X7)] < 2 max inf e 5Nit o3 TK3s* +TKzs
1<i<n 0<i<n s>0
TKy—N;
< 2 max e QTKZ( 5)°
0<i<n
272
< K max e Ol
0<i<n
272
S KS*C(NU+1) l .

O

Overall, the boundedness of the forward drift a and volatility o is crucial in the Fourier
interpolation method. Not only does it allow us to derive a bound for the local truncation error
in Theorem 4.2 but it also leads to the method’s global stability as shown by equation (4.3.2).
The proof of Theorem 4.4 also indicates that the boundedness of the forward coefficients is
necessary for the control of the simulation error.

The Fourier interpolation method can obviously be extended to reflected FBSDEs following
the procedure of Section 3.4.1. For a reflected FBSDE with a lower barrier of the form

dX, = a(t, X;)dt + o(t, X, )dW,

—dY, = f(t, X1, Yy, Zy, )dt + dAy — Z,dW,

Y, > By, dA; >0, t € [0,T] (4.3.18)
[T (Y — B)dA, =0

Xo=uw0,Yr =g(Xr)

where
B; = B(t, Xy) (4.3.19)

we may define the approximate solutions of the reflected FBSDE as

ui(x) = x) + A f (s, @, 4 (x), ui(z)) + A, (x) (4.3.20)
O / DYz + y)h(yl)dy (43:21)
W) = [ wle+ il (43.22)
Ati(xz) = [(z) + A f (b, x, 4 (x), 4 (x)) — B(ti, x)] (4.3.23)

for i = 0,1,....,n — 1 and u,(z) = g(z). The Fourier interpolation method presented in this
chapter allows us to compute the values of numerical solutions u;; and . for the backward
and control processes. The values for numerical solution of the reflecting process At follow
naturally. Defining the extended functions U;, U; and AU; as in equations (3.3.2), (3.3.3) and
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(3.4.7) respectively, the numerical solution (x, y, z, a) of the reflected FBSDE solution (X,Y, Z, A)

write

n—1

Ty = ZXgl[tivtiﬂ)(t) (4.3.24)
1=0
n—1

Yo = ZUi(XZ:)l[ti,tiJrl)(t) (4.3.25)
=0
n—1 .

ao= ) UilXD) L e() (4.3.26)
1=0
n—1 B

a = Y AUXT)Lp, 2)(1). (4.3.27)
=0

For this chapter, we will omit the numerical results. The material presented here is a gener-
alization of Chapter 3 . Hence, the numerical results from the previous chapters and the error
analysis conducted in this one already give an insight of the Fourier interpolation method per-
formance. Also, the present chapter can be viewed as a special case of the following chapter
so that the numerical results provided in Chapter 5 confirm the error analysis on the method
presented here.
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Chapter 5

Discretization of FBSDEs with

Runge-Kutta schemes

Runge-Kutta schemes, introduced by Chassagneux and Crisan [27], are a recent development of
time discretization methods for FBSDEs. They are themselves an extension of the well-known
Runge-Kutta methods for ODEs to FBSDEs. Hence, the schemes produce numerical solutions
of higher order of convergence and their properties are studied in Chassagneux and Crisan [27]
on a decoupled FBSDE. More precisely, the authors provide a discretization of the backward
SDE assuming that a discretization of the forward SDE is available.

In this chapter, we develop a Fourier method for the numerical solution of one-dimensional
BSDEs using Runge-Kutta schemes. The main ideas leading to BSDE numerical solutions were
already introduced in Chapter 3. Hence, we shall use the Fourier transform representations of
the various conditional expectations involved in the Runge-Kutta schemes to define approximate
solutions to the BSDE. These approximate solutions are then computed on an alternative grid
using the FFT algorithm in order to retrieve higher order convergent numerical solutions.

5.1 Runge-Kutta schemes

This section gives the formal definition of Runge-Kutta schemes. We also propose simple as-
sumptions on the time discretization of the forward SDE which lead to a simplification of the

scheme expressions.

5.1.1 Time discretization

In the general setting, the FBSDE considered is of the form

dXt = G(Xt)dt + O'(Xt)th
—dY; = f(Yy, Ze)dt — ZFdW, (5.1.1)
Xo =z, Y7 = g(Xr)
where W is a d—dimensional Brownian motion. The forward drift a : R? — R?, the forward
volatility o : R? — R4, the driver f : R x R — R and the terminal function ¢ : R — R

are all deterministic functions. It is always possible to generalize the system to consider time
dependent coefficients.
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Assumption 5.1.1. In addition to the usual Lipschitz and linear growth conditions ', we suppose

that all coefficients are bounded. In particular, the backward drift f € C;* and the terminal

function g € CJ* with m > 2 are at least twice differentiable.

The BSDE is discretized on the time partition 7 = {0 = tp < t; < ... < t,, = T’} as usual
with successive time steps
Ai :ti—i-l —ti ,i:O,l,...,n—l

and maximal time step

|7 == Jnax A;. (5.1.2)
<i<n

Let ¢ € N*, we consider the g-stage Runge-Kutta scheme giving the following numerical solution

at mesh time ¢;

Zy = By |HOAYT + A ZBJHWl a5, 27) (5.1.3)
j=1
[ q+1
YTo= By YT A i f(YVZT) (5.1.4)
j=1

for a set positive coefficients {fyj} 1 such that 0 = vy < ... < 441 = 1. The intermediate

solutions {(Y;;, Z];)}i_, take the form

’L]’
ZZTJ - Eti,j H;ffjﬁjA tit1 + A ZﬂJkH” (V=8 A f( iirk’ Zrk)
(5.1.5)
i J
}/:J = Eti,j }/t:rJrl + A1 Z O‘jkf(}/ifrkv :k) (516)
L k=1
where
tig=ti+ (1 —7)A;1<j<qg+1 (5.1.7)
with (Y7, 27,) = (Y7, 27, ), (Y1, 20 g1) = (Y77, Z7)) and terminal condition
(Y, Z,) = (9(X7), 0" (X7)Vg(XT)). (5.1.8)

The coefficients {04]}qu1 {ﬂJ}J Llor:1<j<q¢l<k<jland{Bjr:1<j<gq,1<k<j}

are all positive and satisfy

q+1
daj =1 (5.1.9)
j=1

Bij = 0,1<j<gq, (5.1.10)
J Jj—
daj = Y Br=v,1<j<q (5.1.11)

Let B™ denote the set of continuous and bounded functions on [0, 1] such that
1
B":={¢peCy: / s¥¢(s)ds = dox, k < m and k,m € N*}. (5.1.12)
0

The stochastic coefficient H;, with ¢ € [0,7) and A > 0 is defined as

1 [t [s—t
HY ;:Z/t ga( A )dWS (5.1.13)

1See Assumption 4.1.1.
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with ¢ € B™ for some m € N*,
The global error of the g—stage Runge-Kutta scheme & is defined as

n—1
112 12
£ = gmax [V, - Y] Lz+§,:0:Ai||Zti—Zti||Lz
n—1
= max B[, - 7] + ;:O AE (|2 - 27 7] (5.1.14)

and is hence weaker than the error F, considered for the Euler scheme. Nonetheless, the global
error &, is easier to handle since it is strongly related to the local time discretization error.
The scheme can be represented by the following tableau

Y1 aq.1 0 0 0 ﬂl,l 0 0

Yo | @21 a2 ... 0 0 B2 Bop ... 0

’)/q Oéq71 Oéqg e Oéqu 0 ﬂq,l ﬂq72 e ﬂqu
Yq+1 a1 a9 e Qq Qg1 ﬂl 52 . ﬂq

One can observe that if ogy1 = 0 and «;; = 0, 1 < j < g, then the g-stage Runge-Kutta
scheme is explicit. Otherwise, the scheme is implicit. For instance, the Runge-Kutta schemes

with tableau

0 0]0

1 1
and the scheme with tableau

0|0 0]0

14 111

known as the Crank-Nicholson scheme constitute 1—stage implicit Runge-Kutta schemes. The

only 1—stage explicit Runge-Kutta scheme admits the tableau

0j0 0|0
111 011

In Chassagneux and Crisan [27], the implicit and the explicit 1—stage Runge-Kutta schemes
are shown to be one-half (%) order convergent. The Crank-Nicholson scheme, already studied in
Crisan and Manolarakis [31], presents a first order of convergence. Notice that the Euler schemes
used in the previous chapters are not 1—stage Runge-Kutta schemes since they do not lead to
any consistent tableau. Nonetheless, their structure is equivalent to the explicit 1—stage Runge-
Kutta scheme and both schemes display the same half (%) order of convergence. The following
tableau gives a example of explicit 2-stage Runge-Kutta schemes of first order of convergence
for 72 € (0,1] and 31 € [0,1].

0 0 0 00 0
Y2 Y2 0 0] 7 0
L[i-5% 2 of6 1-4

5.1.2 Further simplification

From the g-stage Runge-Kutta scheme for BSDESs, one notices that we have at least 2¢ conditional
expectations to compute at each time step. These conditional expectations can be simplified and
made more suitable for numerical implementation if we consider a reasonable time discretization
of the forward SDE. Hence, we make the following assumption that we will use throughout the
chapter.
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Assumption 5.1.2. (1). The forward SDE is discretized with the piecewise constant process
X™ such that for t € [t;,t;+1) we have

X =X7 (5.1.15)
pathwise.
(2). The forward SDE time discretization with global error Ex - is of order m > 0 i.e

£% . = max || X, = O(|z]*™). (5.1.16)

= X7
3T 0<i<n tillL2

The conditions of Assumption 5.1.2 are not hard to meet. Many higher order time discretiza-
tions for forward SDEs satisfying the conditions for a given order m > 0 are indeed available.
Appendix B stands as an introduction to Ito-Taylor expansion based schemes as an example and
a more complete presentation of these schemes can be found in Kloeden and Platen [69] among
others. The next theorem gives a simplification of the BSDE time discretization expressions.

Theorem 5.1. Under Assumption 5.1.2 (1), the solution of the q-stage Runge-Kutta scheme

satisfies
{7, 2755 € T, (5.1.17)
for 0 < i < n. Consequently, we can write
7z = B [HD A (YT A0, 28] (5.1.18)
vy = E, [th + Moy f (V7,0 28,
+Ai Zajkf(Yfk, k) (5.1.19)
k=2

for0<i<nand1l <j<q+1 where pg4+1 = 1, Bg+1.1 = B1 and agy1 1 = ag.

Proof. Clearly (Y"1, 2] 1) = (Y{, Z}) € Fy, from equations (5.1.3) and (5.1.4). For 1 < j <
q and 0 <4 < n, we have

J

}/:J = E }/75?+1+Aizajkf 1kﬂ )|XW]
k=1

(starting from equation (5.1.6)),

= E 1+1+AZaka }/zkﬂ )|XW]
k=1

(by Assumption 5.1.2 since t; ; € [t;, tiv1)),

J
k=1
so that Y;; € F,. Similar arguments also show that Z; € F, starting from equation (5.1.5).

Slnce{( s 21 5) <Jz+2 € Fi,, we naturally get equatlon (5.1.19) from equations (5.1.6) and

(5.1.4) . In addltlon, knowing that
@; _ ;
B, [HY (s ] =0, 1<k <] (5.1.20)
leads to equation (5.1.18) from equations (5.1.5) and (5.1.3). O

As a consequence of Assumption 5.1.2, if the g—stage Runge-Kutta scheme and the forward
SDE time discretization are of order m > 0 then error of the FBSDE numerical solution defined
as Ex,x + & is of order m. We must hence choose the Runge-Kutta scheme and the SDE scheme
accordingly.
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5.2 Fourier transform representations

We develop the Fourier representation of our approximate solution for the BSDE under various
time discretizations for the forward SDE. First we focus on the simple framework of BSDEs then
we consider the FBSDE case. For implicit Runge-Kutta schemes, we assume that

Ir| K < 1 (5.2.1)

where K is the Lipschitz constant of the driver f for well-posedness reasons.

5.2.1 The BSDE case

In the context of BSDEs where the forward process is simply a Brownian motion?

T T
Y, = g(Wr) +/ f(Ys,Zs)der/ ZydW,, (5.2.2)
t t

the Euler time discretization satisfies Assumption 5.1.2 at any order of convergence m > 0.
Indeed, the Euler scheme is exact at any time node for a Brownian motion. We can then used
the result of Theorem 5.1 with any Runge-Kutta scheme for BSDE without limiting the scheme
convergence order.

Following Theorem 5.1, the intermediate solution {(u; j, u”)}gié at mesh time ¢;, 0 < i < n,

are given by

’ll@j (m) = E [Hiij7ryinai+l(Wti+1aﬁj,l)'Wti = x} (523)
J
wig(@®) = Bl (W, 050)We, = 2] + 80 agef(uir(n), k(@) (5.2.4)
k=2

for 1 < j < q+1 with g1 = ¢1, Bg+1,1 = B1 and agy1,x = o . The approximate solution u;
and approximate gradient u; at mesh time ¢;, 0 < ¢ < n, are then

u;i(z) = uj 41 () (5.2.5)
Ui(x) = U4, q41(x) (5.2.6)

with
U1 (2, @) = uip1 (@) + Ajorf (uia (2), ditr (2)) (5.2.7)

and
un(z) = g(x) (5.2.8)
tn(x) = Vg(z). (5.2.9)

From the analysis performed in Chapter 2 and Chapter 3, equation (5.2.4) naturally leads to

wij(x) = FF @i (0] ()oW)] () + A Z i f (i k() wi k() (5.2.10)

k=2
when @;41(., @) is Lebesgue integrable where ¢ is characteristic function on the Brownian incre-

ment
o(v) = exp (—%Aiy*u) (5.2.11)

Moreover, if the function (., 3) € C! is differentiable, equation (5.2.3) gives

. 1
u;,j(r) = V'A'E
=

vai+1(Wti+1aﬂj,1)/ti+l SD_] (M) dS|Wti =X
t QITAY

%

2This can be extended to arithmetic Brownian motion and Brownian motion with time dependent coefficients.
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(by the duality formula),
= E [Vag1(We,,,85,1)|We, = 2]
= F BV (580l (o) (2)
(when Vi,;41(., 8) is Lebesque integrable),
= § 7 [wSlai (5 850)]()o(v)] () (5.2.12)

where the last inequality holds by Proposition E.4.

Equations (5.2.10) and (5.2.12) characterize the Fourier transform representation of ¢—stage
Runge-Kutta schemes. It is important to note that these expressions do not depend on the
function ¢;. As a consequence their choice is irrelevant under Fourier methods in the BSDE
case even though they play a key role in the convergence of Runge-Kutta schemes. When using
the Fourier representations, one can always assume that the functions ¢; are consistent with the
convergence order of the Runge-Kutta scheme. In addition, the expressions for the conditional

expectations are essentially similar to those developed in Chapter 3.

5.2.2 The FBSDE case

Runge-Kutta schemes for FBSDESs require higher order time discretizations for SDE for conver-
gence reasons. In order to develop Fourier representations of the FBSDE numerical solutions,
another requirement is the availability of explicit conditional characteristic functions. We hence
make the following additional assumption on the forward SDE time discretization.

Assumption 5.2.1. The forward SDE time discretization admits the conditional characteristic
functions ¢; : R x R — C

¢i(v,z) = E {ei”* (%742 -%7) X7 = x] (5.2.13)
and ®; ; : R x R? — C4
o, ;(v,x) = E [Htffm NG (%52 -x7) X7 = :c} (5.2.14)
forO0<i<mnandl<j<q+1with g1 =p1.
In this setting, and letting the terminal conditions be
un(z) = g(x) (5.2.15)
Un(x) = o"(z)Vg(z), (5.2.16)

the intermediate solutions u; ; at time step ¢;, 0 < ¢ <n and 1 < j < g+ 1 are given by

J
wig(@) = B [aea (X7, )IXE = 2] + A7 e f(uin (@), (@)
k=2

1 i X7 -
B [ e [ & im0

+A; Z ajr f(uik(z), i (z))
=2

—_

S A G TR [T

J
+A; Z ajr f(wi (), i x(z))
=2
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(using Fubini’s theorem),

= o L0 (s )

+A; Z ajr f(wik(z), i x(z))
=2

= F Bl (5050 )i v, 2)] (@) + A Y agief (wi(@), (@) (5.2.17)

k=2

whenever ;11(., @) is Lebesgue integrable.
As to the intermediate solutions ; j, 0 <i <n and 1 < j < ¢+ 1, we have

wg@) = B A (X7, 80)1X7 = ]
= B BY [ NF e (8] (v)dv
= t; ti g, (27T)d Rd i+1\- Mj,1

1 T ©; iv* X" - .
= G LB [ e | e (3800 )

(using Fubini’s theorem),

= g [ TR 8 (3 ) @i

= § S (i1 (5 050)] (0) @i (v, 2)] () (5.2.18)
for an integrable function ;41 (., ). In addition, letting Dy X[ ., be the Malliavin derivative of

™ 1 L —
X7, given X[ =z, we have

tig, Vi

1 tiv1 . 7tz it Ty
/ DT, ¢ (2 ) ds ) e (%0, -x7)
VA Sy o ITAY

(2%

(I)i,j (1/, (E) = E |:H¢j eiy* (Xg;'+1 7Xt7;') |Xt7: = .’L':|

= vE}
k3

(by the duality formula),

™

WEy [Hm-ei”* (X7 —XZ)] (5.2.19)

with

H,, — /tHlDX“ (2l g (5.2.20)
WA, TP A ) >

id j

Even if the expressions in equations (5.2.17) and (5.2.18) appear too general, they are im-
plementable with the Fourier interpolation method on the alternative grid in various particular
cases. Indeed some SDE time discretizations allow us to retrieve not only the characteristics
¢; and ®; ; and also the Fourier representation under the alternative transform. In the sequel,
we give two notable examples with Ito-Taylor expansion schemes for the forward SDE in the
one-dimensional case. As already mentioned, an introduction to these schemes can be found in

Appendix B. We shall mainly focus on half order and first order schemes.

Half order Ito-Taylor schemes

The Euler scheme constitute the main example of half order Ito-Taylor scheme since

XZ:+1 = X7+ a(Xg;)Ai + a(XZ:)AWi
= XZ: + Z E(XZ:)IZiqtiJrl
zeA%\{(D}
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where Fioy(2) = a(z), F(1)(z) = o(r). In addition, we have that, for s € (;,t;i11),

DI, =0 (5.2.21)
and
D, =1. (5.2.22)
Hence,
DXT,, = Fuy (@) (5.2.23)
so we get, from equation (5.2.19), that
Q;j(v,z) = WwFy(2)E |:eiV<XZri+1_XZ;):| (since ¢, € BY),
= Fu(2)ivei(v,z). (5.2.24)

The conditional characteristic function is explicitly given by

bi(v, ) = exp {Ai (iF(O) () — %F(Ql)(x)ﬂ) } (5.2.25)

since the increment has a Gaussian distribution.

Equations (5.2.17) and (5.2.18) along with the characteristics of equations (5.2.25) and
(5.2.24) define the Fourier method under half order It6-Taylor schemes for SDEs and the method
is implementable with the procedure given in Chapter 3. The following theorem generalizes the
result of Lemma 4.1 to half order It6-Taylor schemes under Runge-Kutta schemes.

Theorem 5.2. Let uf‘H( y) be the alternative transform defined in equation (3.1.8) of the ap-
prozimate solution G;t1(.,y). Then the intermediate solutions u; ; and i, ; in equations (5.2.17)
and (5.2.18) satisfy

uig(z) = F RS a0)]@)éi(v,0)(@)
—af(z + AiFo)(2))* + A F (2)] = Bz + AiFg) (x))

A Y o f (i k(). ik (2)) (5.2.26)

i) = Foy@F Bl 80 0)ive: (v, 2)](z)
—F(l)(x)[Za(x + AzF(O) (.Z')) + ﬂ] (5.2.27)

under a half order Ité-Taylor scheme.

First order It6-Taylor schemes

Consider the first order scheme

Xr., o= X[+ Z F(XI 4,
€A1\ {0}
™ T T T 1,1
= X[+ Y. RN, +Fan XL,
1€h 1\ (0}

Then knowing that, for s € (¢;,ti+1),

1,1 1 1
D It( tlll = It(l) IS( t)+1
(using the fundamental theorem of calculus),
1
= LY., (5.2.28)
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the Malliavin derivative of the discretized forward process is given by

1
DXy, = Fay(x) + Fu1)(x) t(l )twl (5.2.29)
Equation (5.2.19) leads to
>, . iu(ng_ 7X,;'v) .
ij(v,x) = wFq(2)E |e i CHXT =g

+ iVF(Ll)(.T)Efi |:I£i171i+leiV(Xfi+1Xt”i):|
(since ¢; € BY),

= Fuy(z)iveg(v,x)
+ il/F(l,l)(SC)E |:I(1)

2 T ™
e (Xfi+1 —X ) :|

titit1
= Fuy(@)iv(l + (v, 2))di(v,2) (5.2.30)
with . A
Wra)\T)A
i\V, ) = . 5.2.31
C (V :E) ]. — ll/F(l,l)(SC)Ai ( )
since
F(l 1)( )E ti |:It(zl,2fz+1 eiV(Xti+1 Xti):|
_ i (X7, —X7)
= F(l)(-T)F(l,l)( )4 E ive' i+1 i
+7 @B, i), ()|
using the duality formula, so that
e | f@) X, X @ X7 -XT
F(l,l)( )E It( 3&+1 ( i1 z)] = F(l)(z)Ci(va)Eti [ ( tig1 Z):|
= Fuo(@)G(v,2)di(v,z). (5.2.32)

Equations (5.2.17) and (5.2.18) along with the expression in equation (5.2.30) characterize
the method under first order discretizations on the forward process when the characteristic ¢;
is available. The procedure introduced in Chapter 4 allows to do the computations given the
characteristics ¢; and ®; ; using the following theorem.

Theorem 5.3. Let uf‘H( y) be the alternative transform defined in equation (5.1.8) of the ap-
proximate solution ;11 (.,y). Then the intermediate solutions u; ; and i, ; in equations (5.2.17)
and (5.2.18) satisfy

wij(@) = F Ul a0)) ()i (v, @) (x)
—a [(z + AFy(2))? + AFR () + %AfF&l)(z)
—B(z + AjFy(x))

+4; Z ajr f(ui (), ik () (5.2.33)

Uij(x) = F(1>($)S* Bl (B0 W)iv (L + v, 7)) i (v, )] ()
—Fuy(2) [2a (z+ A Fo(x) + A Fa oy (x)) + 6] (5.2.34)

under a first order It6-Taylor scheme.
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Proof. By the definition of the alternative transform, we must have that

wij(@) = FBLES (0] ()¢ (v, 2)](2)
B [a(X7,,)? + BX7,]

j—1
TAilg 50y Z ik f (i g (), 05 1 (). (5.2.35)
k=2
Notice that
Ef X7, | = o+ A (@) (5.2.36)
and
Ei |:(XT:+1)2:| = Etw |:XZT+1i| +Vart [ t; +1]
= (JE + AZF(O) (:L'))
2
V8L, | (Fuo@1ih, + Fun @1, )
= (.T + AiF(O) (m))Q
1
JFAiF(21)(x) + §A?F(21,1)(z) (5.2.37)
2 2
wowing B2 [(10,)] = A Em[0)] - a2 awa

tit1 Tt tita

E! [It(}f 7D } — 0. Equations (5.2.35), (5.2.36) and (5.2.37) lead to the expression for
u;,; in equation (5.2.33).

The definition of the alternative transform also requires

i g(@) = Fy@F Bl 8010wl + G, 2)ér (v, 2)) ()
B} [HY o (0(X], )%+ BXT)]
Ry @ B B+ G,
~Fuy(@)Bf, [20(X7,,) + 5]
~Fun @, [10),,, (20(X7.,) + 8)]

(using the duality formula),

= Fuy(@)& ' [Blagi (8501 ()iv(1 + G(v, )é1 (v, )] (2)
—Fy(@) [2a (2 + AiFo)(2) + AiFa 1 (2)) + f] (5.2.38)

+1

using the duality formula once again. |

One notices that when using the half and first order Ito-Taylor schemes, the Fourier repre-
sentations do not depend on the scaling functions ¢; since the characteristic ®; ; do not depend
on them. In general, the expression for the characteristic ®; ; in equations (5.2.19) and (5.2.20)

tells that if the forward SDE time discretization is such that the Malliavin derivative D, X7 |

is independent of s € [t;,t;+1) then the Fourier representations are independent of the scaling
functions ;. This is due to the fact that the scaling function ¢, are at least in B°, i.e they
integrate to 1.

5.3 Error analysis

We denote by {u; ;o' and {u; ;4 }nih the intermediate numerical solutions obtained at mesh
time t;, 1 =0,1,...,n—1 and stage j, 1 < j < ¢+ 1, from the procedure of Chapter 4 when using
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a g—stage Runge-Kutta scheme. In addition, {u, jx}, 'y and {1 }r'0 are the intermediate
numerical solutions obtained at the intermediate stage j, 1 < j < ¢ + 1, of the mesh time ¢;
given the exact solutions u;11 and ;41 at time ;1. We have from the notation previously used
that the numerical solution at mesh time ¢; is given by

Uik = Uig+lk (5.3.1)

Ui = TUigik (5.3.2)
and computed from the intermediate solutions {ﬁiyk}kN:ig, 0 < ¢ < n where Up; = Un(Tnk)-
When the exact solutions u;4; and ;41 are known at ¢;11, we also write

W = Uig+1lk (5.3.3)

W = Ujgtik (5.3.4)
The local (space) discretization error has the form
FEi. = |u1(zk) — ui1k| + |u1(zk) — ﬁ11k| (535)

fori =0,1,....,n—1and k=0,1,..., N;N. The following assumptions prove crucial in the error
analysis that focuses exclusively on the one-dimensional case d = 1 and explicit Runge-Kutta
schemes even though the results can be generalized to implicit Runge-Kutta schemes when the
condition of equation (5.2.1) is satisfied.

Assumption 5.3.1. There are positive constants pg, so ,Ko and Cy > 0 such that
max(|¢;(iso, x|, |¢i(—iso, z)|) < efoRi (5.3.6)
and, hence, the discrete version of the forward process has conditional exponential moments. In

adddition,
/ |pi (v, z)|dv + max / |D; (v, )| dv < CoA;P°. (5.3.7)
Rd 1 Rd

<j<g+1

The next theorem gives a description of the local (space) discretization error bound where
we assume that the time discretization is given.

Theorem 5.4. Suppose that Assumptions 5.1.1, 5.1.2, 5.2.1 and 5.3.1 are satisfied. Then the
Fourier interpolation method yields a local space discretization error of the form

sup By, = O (Az) + O (e X) (5.3.8)
ik

for some constant K > 0 on the alternative grid and under the trapezoidal quadrature rule for
any explicit q-stage Runge-Kutta scheme.

Proof. Once again, we follow the steps in the proof of Theorem 3.3. The truncation error when
computing the numerical solutions 1; ;j is

E* [H;ff;17inai+1(Xg:+1;ﬂj11)1|AX{r|>%}
ik P
< KEZR HHti,Jj,'yin 1|AX?|>%}
(by boundedness of the BSDE coefficients),
- 273 1
< KEtik (Hti,]j',’Yin) :| Etik |:1|AXZ,|>%:|
(by the Cauchy-Schwartz inequality)

[ [t 1 s —t; i 2
— KEI’L’C . 1,7 d
b /t : (%‘Ai% < QITAY )) ’

7

1
2

BE [1ax o)

1
2
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(by Ito isometry)
1
2

< KA CE* |:1|AX1."|>%:|
(by the boundedness of functions ¢;),

1 2
< KA (infestos(—i inf e=5% (i
< wart (infemston(is) + inf e~ ais))
(by Chernoft’s inequality)
< KA__%e—SU%-F%KUAi

1

Ke 01

using Assumption 5.2.1. The Fourier interpolation leads to a first order space discretization
error by the twice differentiability of the driver f and the terminal condition ¢ when computing
the numerical solutions 11; ;-

The same statements hold for the numerical solutions u; 2 5 using identical arguments. By
recursion and using the Lipschitz property of the driver f, the statements hold for u; ;x, 1 <
j < g+ 1. Since the mesh time t; and the space node z;;, are arbitrary, the space truncation and

discretization error bounds hold for any ¢ and k. O

Locally, the truncation error remains spectral. Nonetheless, it is just of index 1 in this
general setting where the conditional characteristic function ¢; is unspecified. In Chapter 3
and 4, the quadratic exponential form of the characteristic function is the main reason for the
spectral convergence of index 2 in the truncation error. The space discretization error though
is unchanged with first order due to the second order differentiability of the BSDE coefficients.
Indeed, the Fourier interpolation produces a space discretization error with a higher order when
the driver f and the terminal function g have the required smoothness. We already illustrated
the phenomenon in the numerical results of Section 3.5.1. In general, if f € C;"*! and g € C;" 11,
we can expect a space discretization error of order m which is the convergence order of the
underlying Fourier interpolation.

We now turn to the global space discretization error Ej a, as defined in equation (3.2.6).

The next theorem gives its error bound.

Theorem 5.5. Suppose the conditions of Theorem 5.4 are satisfied. If the discretization is such

that CA
0AT

——F— < 3.

sgp{ﬂAgo}_l (5.3.9)

then the Fourier interpolation method is stable and yields a global discretization error Eja, of
the form
Ejng = O(Az) + 0O (e ) (5.3.10)

where K > 0 for any explicit q-stage Runge-Kutta scheme.
Proof. From the definition of the global space discretization error, we may write

€ik En_ik + | Un—ik — Un—i (5.3.11)
éitk < Ep_ik~+|0n—ik — Un—ik|- (5.3.12)

IN

Let’s assume the boundary values of the function ;. and the sequence ;4 s are matched on
the alternative grid so that we don’t have to treat the alternative transform. Under an explicit
q—stage Runge-Kutta scheme, we have

[0 — Uigk| = ’5‘3_1 [{‘I’i,j(vi+1,ma$ik)D[@i+1 — Git1slm N

}H%
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IN

IN

IN

IN

IN

Similarly, we get

IN

|11i,2,k - u12k|

IN

IN

IN

so that we get

Wi,k —

SN, (Vi tm, )|

N N
Az

o </ |Pi (v, i 1) dV> sup |ti41(Tix, B1,5) — Qit1,k
T Rd k

C()A$ - ~
W Sllip [@i+1 (Tiks B1,5) — Uitk

(using Assumption 5.3.1),
CoAzx
2 AP°
CoA

2r AP
(since f is Llpschltz and f1,; is bounded),
CoAx
2 APO
CoAx
2m AL

sup |Ui+1(Tix, B1,5) — Qit1,k
k

1+ AK)supen—i—1,k
k

+ 5o AI{Supenzlk

(1+AK)supen i—1k

+ (1 + AlK) sup én—i—l,k- (5313)
k

‘91 {{éf’z‘(l/iﬂ,m, Tik)D[tip1 — ﬁiJrl,s]m},,]ZZSN_l} o ‘

2

Am
(/ |¢z V, Zik |dV) sup |uz+1($zkaa1 2) - 'U/H-l k|

C()A:C - ~
sup |Uz'+1 (xik, 041,2) - ui+1,k|
k

2 AP
(using Assumption 5.3.1),
C()A:C
LING (1+AK) S‘;P en—i—1,k
CoAx
20N,0(1+A K)supén-i-1
CoAzx
Ui gk < OAPO (1+ AK) szp €n—i—1k
CoA
+2 z(1+AK)supen im1k (5.3.14)

APU

recursively for 1 < j < ¢+ 1 using the Lipschitz property of the driver f and the boundedness of
the Runge-Kutta coefficients. Equations (5.3.11) and (5.3.12) combined with equations (5.3.14)

and (5.3.13) lead to

Sup €; k + sup €;
k k

where

< 2sup Fy
ik
C()A.T

+ T AP0

(1+A,_;K) (sup €i—1,k + sup éi_Lk)
k k

IN

2sup Ei + (1 + A, K) (SUP €;—1,k +sup éi—l,k)
ik k k

sup{com} <¢<l

wAP°

Gronwall’s Lemma then yields

supe; r +supé; < 2¢TK sup Eyp, (5.3.15)
k k ik
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so that the scheme is stable. The result of equation (5.3.10) follows by taking the supremum on
the left hand side of equation (5.3.15) other time step and applying Theorem 5.4. |

In this general case, the global discretization error maintains the structure of the local dis-
cretization error under a stability condition. Equation (5.3.9) indicates that the space discretiza-
tion has to be relatively as fine as the time discretization to ensure stability. Hence, stability can
always be reached for any time discretization by refining the space discretization. However, the
structure of the characteristic functions ¢; and ®;; determines the relative refinement needed
for the space discretization.

The simulation of FBSDEs is not different from Chapter 3 and 4. Letting (Uy, U;) be the
extended solution at time mesh ¢; of equations (3.3.2) and (3.3.3), we define the approximate
processes (x,y,z) as

T = ZXgl[ti,tHl)(t) (5.3.16)
v = ZU Mt tin) () (5.3.17)

2 = ZU L, 10,0 (1) (5.3.18)

for t € [0,7). The boundedness of backward and control process solutions {y:}e[o,r) and
{2t}+efo,7) Was established in Chapter 3 (Corollary 3.8) and holds in the Runge-Kutta framework.
We will instead focus on the simulation error £;; A, defined as

n—1
E2 1 ae = OlgﬂanXt — |72 + Jnax Ve, = wn,ll72 + z;A 122, — 2,117 - (5.3.19)
K2

The next theorem describes the error bound.

Theorem 5.6. Suppose that Assumptions 5.1.1, 5.1.2, 5.2.1 and 5.3.1 are satisfied. If the
stability and convergence condition of equation (5.3.9) holds and both the forward discretization

and q-stage Runge-Kutta scheme are of order m > 0 then
€21.00 = O([™) + O(8a?) + 0 (e=CN0#! 4 =€) (5.3.20)
where C > 0.

Proof. The proof is essentially similar to the proof of Theorem 3.9. Since we assume that both
the forward and the backward schemes are of order m > 0 the time discretization error O(|x|*™)
is obviously of order m. Also the space discretization error O(Az?) and the space truncation
error O(e~¢!) follow from Theorem 5.5 and the quadratic nature of the simulation error.
Since the driver f and the terminal function g are bounded, the remaining error term is
related to
0<i<n T 0<i<ns>0

+oma, 323 e"(Xo=Nid) g, (is)

max B [1g\7,(X])] < max inf eiS(X“JrN"%)gbti(fis)

by Chernoff’s inequality where ¢, is the characteristic function of X77. It is shown by recursion
and using Assumption 5.3.1 that

eKoTJrS()XO

¢ti (7150)

o+, (is0) < efoT=s0Xo

IN



Hence,

_soN, L
max E [1g\7, (X7)] 2e50T max em*0Niz
0<i<n v ¢ 0<i<n

< 9eKoTg=so(No+1)3

IN

O

A simple extension of ¢-stage Runge-Kutta schemes to reflected FBSDE consists in applying
the reflection at the last stage and for all time nodes ¢;. Let’s consider the system

dX; = a(t, X;)dt + o(t, X, )dW,

—dY, = f(t, X1, Yy, Zy, )dt + dAy — Z,dW,

Y, > By, dA; >0, Vt € [0,T] (5.3.21)
Sy (Y = By)dA; =0

Xo=wz0, Yr = g(Xr)

where
B; = B(t, X4). (5.3.22)

The numerical solution of a g—stage Runge-Kutta scheme can be defined as

ui(z) = wige1(x) + Ab(x) (5.3.23)
A’l_l,z(l') = [ui1q+1(:c) - B(t“ 1')]7 (5325)

instead of equations (5.2.5) and (5.2.6). The intermediate solutions u;; and u;;, 1 < j < g+ 1,
are defined as previously and their numerical values may be given by the Fourier method on
the alternative grid. From there, the simulation a numerical solution (z,y, z, a) for the reflected
FBSDE is conducted through the equations

n—1

= ZXgl[tiatiﬂ)(t) (5.3.26)
1=0
n—1

yo= Y UL e() (5.3.27)
=0
nfl.

a = D UXT) () (5.3.28)
1=0
n—1

a = D AU(X])1y, 1) (5.3.29)
=0

where the extended solutions U;, U; and AU; are as in equations (3.3.2), (3.3.3) and (3.4.7)
respectively.

5.4 Application to commodity derivatives

We test the convergence properties of the Fourier interpolation method on Runge-Kutta schemes
with a problem of commodity derivative pricing under a model proposed by Lucia and Schwartz
[77]. We shall test the method’s convergence and behavior on smooth and unbounded FBSDE
coefficients. The non-smoothness of BSDE coefficients affects only the space discretization error
and was already studied in Chapter 3. Also, the unbounded coefficient framework includes
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the bounded coefficient case so that the ideas developed here also hold for bounded coefficient
FBSDEs.
The commodity spot price X is defined by

X, = SOV (5.4.1)

where the deterministic function S : RT — R represents the seasonality component of the
commodity and V' is the price diffusion following an Ornstein-Uhlenbeck process according to
the Vasicek [111] model

dVy = —kVidt + odWy. (5.4.2)

As indicated by Lucia and Schwartz [77], the commodity spot price X satisfies the stochastic

differential equation

dXt = Ii(e(t) —In Xt)Xtdt + O'Xtth (543)
where 2 4g
1 /0o
o(t) =~ (7 + E(t)) +5(8). (5.4.4)

We consider the commodity price as our forward process through equation (5.4.3).
When the risk free rate r and the market price of risk A\ are both constant, the forward (or
future) price Fy p :=Y; = u(t, X;) with maturity T > 0 at time ¢ < T is given by

Y, = ER[X7]
eS(T)J,—(lnXt—S(t))e’”(T’t)—"—N"h(T—t,m)-',-%h(T—tQm) (5.4.5)

with
h(r,k)=1—¢€e""7 (5.4.6)

where the expectation is taken under the equivalent risk measure Q. It can be shown that the
forward price solves a BSDE with linear driver

f(ty,2) ==Xz (5.4.7)

and terminal condition
g(z) = x. (5.4.8)

Options on forward contracts can also be represented in form of BSDEs in this spot price model
but we limit our analysis to forward price estimation. From equation (5.4.5) the control process
(or equivalently the forward price delta) is given by
Zt = aXtVu(t,Xt)
oe F Ty (t, X;). (5.4.9)

The adjustment speed of the diffusion process is k = 1.5 and the volatility of the diffusion is
set to be o = 0.065. The seasonality component is given by

S(t) =In P + 0.05sin(27t) (5.4.10)

and the initial spot price by
X = Pe"® =0.95P (5.4.11)

where we normalize the real value® of the commodity P = 1. Also, the maturity of the forward
contract is T = 0.25 and we suppose a market price of risk of A = 0.25.

3The real value P can be considered as the production cost (per unit) of the commodity.
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The FBSDE is solved on an alternative grid centered at X, with a uniform time mesh. For
a given number of time steps n and the initial number Ny = 1 of intervals, the length of an

increment interval is set as 18

:N0+TL

so that the truncated interval at time ¢,, has length 1.8. This restriction keeps the space nodes

l (5.4.12)

in the upper half plane knowing that the commodity price is a positive process. Moreover, the
number of space steps on an increment interval is N = 2.

We numerically solve the BSDE with the explicit 1—stage Runge-Kutta scheme of half order
and an explicit 2—stage Runge-Kutta scheme of first order. Under the explicit 1—stage scheme,
the commodity price is discretized with an Euler scheme whereas a Milstein scheme is used
for the forward process X under the explicit 2—stage Runge-Kutta scheme. Note that for the
Milstein scheme,

Fi)(z) =0’z (5.4.13)

and

(1,1)

1
titigr i(AWzQ - Al) (5414)

and we estimate the characteristic function with a Gaussian characteristic

. 1 1
¢i(v,x) = exp {AZ— <1F(0) (x)v — 5 (F(Ql)(z) + §AiF(21,1)(z)> 1/2) } . (5.4.15)
In addition, we use an explicit 2—stage Runge-Kutta scheme with tableau
0 ‘ 0 0 0 ‘ 0 0
2 | 2 2
15 0 0|5 O
T T

Under both FBSDE discretizations, we compute two different types of error. The first error
Er... evaluates the maximal absolute error of the numerical solution with respect to the true

solution
Erpye = max max  |u(t;, k) — wik]
0<i<n 0<k<NN;
+ max max |u(ti, i) — Wik (5.4.16)
0<i<n 0<k<NN;
where

u(t, ) = oxVu(t, z) = oe T Dy(t, z). (5.4.17)

The second error Eg;y,, approximates the simulation error £; ; a,. Given the numerical solution
{XZ:J- iy ,1=0,1,..,n—1 with m > 0 simulated paths for the forward process, we compute
the numerical solution {(yt, j, 2t;,;)}7%; of the backward process through equations (5.3.17) and

(5.3.18). The error Eg;,, hence writes as

1 m
Esim = E;O?ixn’u(tia)(g,j)_ytmj‘
=

m n—1 %
1 ) .
C L (Saen ) . G

j=1 \i=0

We systematically use m = 1000 paths. Even if the errors E7,,. and Eg;, may be of the
same order, they are interpreted differently. The error Er7,.,. gives the behavior of the maximal
approximation error on the grid whereas Eg;,, gives the behavior of the error on the relevant
part of grid when solving the FBSDE numerically. Figure 5.4.1 displays the errors under the
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explicit 1—stage Runge-Kutta scheme with n € {5, 10,20,50,100} and Figure 5.4.2 shows the
errors under the explicit 2—stage scheme.

The error graphs of Figures 5.4.1 and 5.4.2 look almost identical and confirm that the 2—stage
scheme is of first order and the 1—stage scheme of (at least) half order. The extra-efficiency of
the 1—stage scheme may be attributed in this particular case to the simplicity of the driver f
and the terminal condition g.

In Figure 5.4.3, we present the absolute errors along the simulated paths for the BSDE
solution. One notices that the maximal errors occur at the initial time ¢t = 0 for the forward
price (Y:) and at maturity 7" = 0.25 for the control process (Z;). Nonetheless, the simulation
errors are of the same order (10~%) for both processes. This information is confirmed by the
contour plot of Figure 5.4.4 not only along the simulated paths but on the entire grid.

Moreover, the contour plot gives indication on the source of errors. Indeed, Figure 5.4.4
shows that the maximal errors mainly occur for the upper space node values on the alternative
grid and they decrease for lower space node values. This is due to the unbounded nature of the
spot price process coefficients. Since the volatility of the spot price is a positive and increasing
function of the spot price*, higher spot price values lead to higher local volatility. Hence, the
fixed length of increment interval [ may not be sufficiently large to ensure accuracy for higher
space node values. In general, the phenomenon is amplified with the magnitude of the forward
process coefficients as illustrated in the contour plot of Figure 5.4.5 where we choose a higher
value for the volatility ¢ and keep the other parameters unchanged. Similar results can be
obtained by selecting a higher value for the speed of adjustment s as shown in Figure 5.4.6 .

We end this chapter with an efficiency study of our schemes. Using the parameters initially
given, the BSDE is solved on a uniform time grid with n € {10, 20, 40, 50, 60, 80, 100} time steps
and N € {2,22 23 24} space steps and value the computation time. Figure 5.4.7 displays the
results. First note that since the Fourier interpolation method of Chapter 4 performs matrix
multiplications, it is much slower than the convolution method of Chapter 3. As a comparison,
the convolution method runs in less than half a second of CPU time on the grids considered in
Figure 5.4.7 and using the same computing device.

As shown in Figure 5.4.7, the computation time of Fourier interpolation method increases
with the number of time steps leading to a tradeoff between computation speed and accuracy.
The exponential nature of the curves suggests that preference has to be given to the coarsest time
discretization providing a satisfactory level of accuracy. Similarly, the computation time also
increase drastically with the number N of space steps. Coarse space grid insuring accuracy are
hence also preferable. Since a total number of 2¢ conditional expectations are computed under
a g-stage Runge-Kutta scheme, we can expect the 1-stage scheme to run twice as fast as the
2-stage scheme. This is confirmed on Figure 5.4.7, especially when looking at the computation

times for n = 100.

4See equation (5.4.3).
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Figure 5.4.1: Log-log plot of errors using the 1-stage Runge-Kutta scheme.
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Figure 5.4.2: Log-log plot of errors using the 2-stage Runge-Kutta scheme.
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Figure 5.4.3: Simulation errors using the 2-stage Runge-Kutta scheme.
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The numerical solution is obtained on a time mesh with n = 100 time steps and returns an forward price of
1.0121 and initial value of 0.0453 for the control process. The exact values are 1.0123 and 0.0452 respectively.

Figure 5.4.4: Contour plot of errors using the 2-stage Runge-Kutta scheme.
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The numerical solution is obtained on a time mesh with n = 100 time steps and returns an forward price of
1.0121 and initial value of 0.0453 for the control process. The exact values are 1.0123 and 0.0452 respectively.
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Figure 5.4.5: Errors using the 2-stage Runge-Kutta scheme with ¢ = 0.08.
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The numerical solution is obtained on a time mesh with n = 100 time steps and returns an forward price of
1.0115 and initial value of 0.0558 for the control process. The exact values are 1.0119 and 0.0556 respectively.

Figure 5.4.6: Errors using the 2-stage Runge-Kutta scheme with x = 3.
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The numerical solution is obtained on a time mesh with n = 100 time steps and returns an forward price of
1.0238 and initial value of 0.0316 for the control process. The exact values are 1.0257 and 0.0315 respectively.
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Figure 5.4.7: CPU time (in seconds) of Runge-Kutta schemes.
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Conclusion

The present thesis investigated the application of Fourier methods to numerical solutions of
FBSDEs. In general, the method proposed consists of expressing the solution from a BSDE time
discretization in terms of Fourier integrals using some available characteristic functions. The
Fourier integrals are then discretized over a uniform space grid. In particular, the alternative
grid of Chapter 3 produces a consistent, stable and globally convergent FFT based method for
BSDEs using the Euler time discretization.

The results of Chapter 3 were extended to the FBSDE case and, in this framework, bounded-
ness conditions are necessary on the forward process coefficients to ensure consistency, stability
and convergence. Even if the method is still based on Fourier analysis, a matrix multiplication
is need in the FBSDE case since the increment of the forward process are not necessarily inde-
pendent. The matrix multiplication may lead to efficiency problems especially on fine time and
space grids.

While the Euler scheme constitutes the primary time discretization for BSDEs used in this
thesis, we focus on higher order Runge-Kutta schemes in Chapter 5. In this general framework,
we explicitly define the characteristic functions and perform the error analysis accordingly. Under
some integrability conditions on the characteristics, the Fourier interpolation based method is
consistent, stable and globally convergent.

We mainly illustrate the convergence and efficiency properties of the Fourier method with
derivative pricing examples from mathematical finance. Option pricing problems under the
Black and Scholes model are considered in Chapter 2 and Chapter 3. The numerical example of
Chapter 5 deals with a commodity modeling problem.

The thesis proposes a numerical implementation of the method only in the one-dimensional
case. Hence, the extension of the method to the multidimensional framework is of importance.
The definition of an alternative transform to mimic periodicity seems to be the only requirement
for convergence in the multidimensional case. However, efficiency may be problematic especially
when the method is applied to FBSDEs.

It may also be interesting to investigate alternative basis functions. Indeed, Fourier basis
functions have well known disadvantages such as their lack of localization or their non-causality.
As an alternative to Fourier basis functions, wavelets can be used and produce efficient algorithms
in the one-dimensional and the multidimensional framework for the BSDE and FBSDE cases.

Since Runge-Kutta methods for BSDEs are quite recent, the problem of their implementa-
tion offers many research opportunities. An interesting area of research could be the Fourier
representation of BSDE solutions under higher order time discretization for the forward process.
Also, Monte-Carlo and spatial discretization based methods can be extended to these schemes
with relative ease. Finally, (higher order) time discretizations for FBSDEs with non-Lipschitz

coefficients are still an open problem.
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Appendix

A Elements of FBSDE theory

Forward backward stochastic differential equations (FBSDEs) are quite recent mathematical
objects. Many interesting results have been proved concerning their existence, uniqueness and
properties. Some of those properties are particularly important for numerical simulation.

This appendix serves as an introduction to the theory of FBSDEs with Lipschitz coefficients.
We cover the existence and uniqueness results in Section A.1 and present major properties of
FBSDEs in Section A.2.

A.1 Classification of FBSDEs

From the well-known classical theory of stochastic differential equation (SDE), see Kloeden and
Platen [69] or Qksendal [94], we consider a forward process satisfying

dXt = a(t, Xt)dt + O'(t, Xt)th (A 1)

Xo =29

where a : [0,7] x R? — R? is the forward drift coefficient, o : [0, 7] x R — R¥*4 is the forward
diffusion (or volatility) coefficient. Both coefficients are assumed to be deterministic!? functions.
The Fy-measurable random variable o € R? defines the initial condition and is assumed to be

constant. The SDE is interpreted as the integral equation

¢ ¢
Xt =1x0+ / a(s, Xs)ds + / o(s, Xs)dWs, (A.2)
0 0

with ¢ € [0,7]. In addition, we assume that both coefficients a and o along with the initial

condition z( satisfy the regularity conditions listed below.
Assumption A.1. (on the forward SDE coefficients).

H1. The coefficients a and o are uniformly Lipschitz continuous in the space variable. Thus,
there exists K > 0 so that

lalt,2) — a(t,y)| + lo(t,2) — o(t,y)| < K |z — g
fort €[0,T] and x,y € R,
H2. The coefficients a and o have linear growth. Thus, there exists K > 0 such that
la(t, )| + [o(t, 2)| < K(1+ |z])

fort €[0,T] and x € R%.

121t is indeed possible to consider stochastic coefficients.
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For stochastic coefficients, the inequalities of assumptions (H1) and (H2) hold almost surely
and the coefficients have to satisfy additional measurability and square integrability conditions.
Explicitly, the functional a : Q x [0,7] x R — R? and ¢ : Q x [0,T] x R? — R? are measurable
with respect to P ® B(R?) (where P is a o-algebra on Q x [0,7]) and square integrable with
respect to dP x dt, with

E [/Ot {la(t.0) + |o(t,0)|2}dt] < 0.

The solution of the forward SDE of equation (A.1) is an adapted and continuous process
{Xt}eom € L%. The following proposition, due to It6 and proved in Kloeden and Platen [69],
states the forward SDE well-posedness.

Proposition A.1. Under assumptions (H1) and (H2), the forward stochastic differential equa-
tion given by equation (A.1) admits a unique (strong) solution X = {X;}ici0,1)-

Instead of an initial condition, we may consider an equation evolving backward in time from

a terminal condition formally given by

—dY, = f(t, Y, Z,)dt — Z}dW,
Yy = €.

(A.3)

Equation (A.3) is called a backward stochastic differential equation (BSDE). The corresponding
integral equation takes the form

T T
Yt=5+/ f(s,Ys,Zs)ds—/ Z:dw,, (A.4)
t t

with ¢ € [0,T]. We shall suppose, for simplicity, that the backward process {Y;}c[o,r] is uni-
dimensional. The (deterministic) function

f:[0,T] xR xR - R

stands for the backward process driver (or generator), the Fp-measurable random variable £
defines the terminal condition, and the adapted process {Z;}/c[o,7) taking values in R4 is called
the control process.

In order to ensure existence and uniqueness, the driver f and the terminal condition £ satisfy

the following regularity conditions:
Assumption A.2. (on the backward SDE coefficients).

H3. The driver f is uniformly Lipschitz continuous in the space variables, i.e there exists K > 0
such that

|f(tay1azl) - f(tay2522)| < K(lyl - 92| + |21 - ZQ')
HJ. The terminal condition & is square integrable, i.e & € L2.

When the driver is stochastic then it must be measurable with respect to P ® B(R) @ B(R9)
and square integrable with respect to dP x dt

T
E /0 |f(t,0,0)|2dt]<oo.

Also, the inequality of assumption (H3) holds P—almost surely.
A pair of adapted processes (Y, Z) is called a solution of the BSDE of equation (A.3) if it
satisfies equation (A.3), the process {Y;}ici0,1) € L% is continuous and {Zt}iepm € L2
Pardoux and Peng [96] proved an existence and uniqueness result for the BSDE.
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Proposition A.2. Under assumptions (H3) and (H/), the backward stochastic differential equa-
tion given by equation (A.3) admits a unique solution (Y, Z).

A decoupled forward-backward stochastic differential equation is obtained by combining a

forward SDE and a backward SDE in the following manner

dXt = a(t, Xt)dt + O'(t, Xt)th
—dYy = f(t, X4, Yy, Zy)dt — ZpdW,y (A.5)
Xo =0, Yr =¢

where the forward coefficients a and o do not depend upon the solution of the backward equation
(Y, Z) but the measurable driver

f:[0,T] xR xR x R - R

may depend on the forward process X.
The terminal condition ¢ is said to be Markovian if it can be written as a functional of the

forward process terminal value, i.e
§=9(Xr) (A.6)

for some function g : R? — R and non-Markovian if the functional involves other state variables.
In this last case we simply write £ = G(X) with

G:8" =R (A7)

such that |G(0)| < K for some constant K > 0 where 0 is the zero-valued vector function on
[0,T]. The functional G is said to be L*°-Lipschitz if there exists a constant K > 0 such that

G(z) = G(y)| < K sup |x(t) —y(t)| (A.8)
t€[0,T]

and L'-Lipschitz if there exists a constant K > 0 such that

Gx) - Gy)| < K / () — y(t)| dt (A.9)

for z,y € S%.

As to the solution to the decoupled FBSDE, it consists of a triple of processes (X,Y, Z)
and its existence and uniqueness naturally follow from Propositions A.1 and A.2 after simple
adaptations of hypothesis (H3) for a stochastic driver.

When the driver f is independent of the control process Z = {Z; };¢[o,1}, one can rewrite the
backward equation using an expectation representation as

T
Y;=E §+/ f(SaX57Ys)dS
t

]-'t] (A.10)

with ¢ € [0,T] and the control process Z = {Z:};c[o,r] can then be obtained through the mar-

tingale representation theorem.

Also, many special cases of coupled forward-backward differential equations have been con-
sidered. The most general case takes the form

dXt = a(t, Xt, }/t; Zt)dt + O'(t7 Xt, }/t, Zt)th
*d}/t = f(thta }/t; Zt)dt - thWt (A]‘]‘)
Xo=z0,Yr=¢
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where both forward coefficients depend on the pair of processes solution of the backward equation.

Pardoux and Tang [98] have proved the FBSDE well-posedness, i.e, existence and unique-
ness for the FBSDE solution (X,Y,Z) in three sub-cases with a probabilistic approach under
monotonicity condition and stochastic coefficients. In particular, the Markovian case where the
forward volatility o : [0, 7] x RY xR — R%*? is independent of the control process Z = {Zt}iepo.m
is treated.

In the general situation of equation (A.11), the four step scheme of Ma, Protter and Yong
[79] provides conditions for the well-posedness of a FBSDE with deterministic coefficients. Also,
the method of continuation of Yong [114] constitutes an alternative method to show FBSDE
well-posedness in the random coefficient case.

An important variation of BSDEs is the class of reflected BSDEs (RBSDEs) introduced by
El Karoui et al. [45]. They are obtained by imposing boundary conditions on classical BSDEs
and defined by the dynamics

—dY, = f(t,Ys, Zy)dt — ZydW, + dA,

(A.12)
Yr=¢

where the reflecting process {A¢}c(o,7] is a increasing process allowing the forward process to
satisfy the boundary condition.

The solution of the differential equation consists of a square integrable forward process Y
satisfying the boundary condition, the control process Z and a bounded variation process A
which satisfies minimality conditions. One may refer to Ma and Yong [81] for existence and
uniqueness results or El Karoui, Pardoux and Quenez [46] for applications to American option

pricing.

A.2 Properties of solutions to FBSDEs

Additional theoretical results, which play a key role in numerical methods for solutions of FB-
SDEs, are available. We present them for FBSDEs with Lipschitz coefficients but equivalent
results exist non-Lipschitz cases. In the following subsections, we present the relation between
FBSDEs and quasilinear partial differential equations (PDEs) and also results on moment esti-
mates of FBSDE solutions.

A.2.1 A priori estimates and regularity of solutions

The triple solution (X, Y, Z) of the FBSDE whose coefficients are allowed to be stochastic embeds
some regularity properties that are worth mentioning. First, we have the following moment
estimates for the forward process.

Proposition A.3. For any p > 2, there exists a constant C depending on the time horizon T,
the Lipschitz constant K and p such that the unique solution {X}icjo,1) of the forward SDE of

equation (A.1) with Lipschitz (and measurable square integrable) coefficients a and b satisfies

T
E| sup |X4J’| < CE |:I:0|p+/ la(t,0)|” + |o(t,0)|" dt (A.13)
te[0,T) 0
E[|X,— X,[’] < CE ||zo/’+ sup |a(t,0)[" + sup [b(t,0)["] |t — s["/?.
te[0,T] t€[0,T]

(A.14)
for any v € R? and s,t € [0, T].
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Moment estimates, from El Karoui, Peng and Quenez [47], are also available for solutions of
BSDEs.

Proposition A.4. For any p > 2, there exist a constant C' depending on the time horizon T,
the Lipschitz constant K and p such that the unique solution (Y, Z) of the BSDE of equation
(A.3) with Lipschitz (and measurable square integrable) driver verifies, for s,t € [0,T],

T p/2
E| s M|+ B|( [ 12
te[0,T] 0
[ T
< CE |£|”+/ |f<t,o,0)|”dt], (A.15)
0
E[)Y; — Y.["]

I ¢ p/2
< CE <|§|p+ sup |f<t,0,0>|p> |ts|“+</ |Zu|2du) ]
L t€[0,T] s

We now state a result on the stability property of the FBSDE solution and its continuous
dependence to the FBSDE coefficients.

(A.16)

Proposition A.5. Suppose (X% Y? Z°%) is the solution of the perturbed decoupled FBSDE with
initial value x3, terminal condition & and coefficients a®, o° and f° satisfying the Lipschitz
conditions such that x§ — xo as § — 0 and

%i—%EUaS(taiﬂ)—a(t,x)’2+‘05(t,x)—a(t,x)]z] = 0,
i B [Je8 — ¢+ |ty 2) - )] = o

Then, we have that

lim E

lim = 0. (A.17)

T
sup | X7 — X,|" + sup \Y;LYt|2+/ |20 — 7, at
t€[0,T] t€[0,T] 0

Pardoux and Tang [98] obtained results similar to Propositions A.3, A.4 and A.5 for p = 2
in different coupled cases. Proofs of well-posedness of uni-dimensional BSDEs usually rely on
an important property which is slightly stronger than the previous proposition and given by the
comparison theorem bellow. The proof of this proposition and the proposition itself figure in El
Karoui, Peng and Quenez [47].

Proposition A.6. Let (Y?, Z%) be the unique solution to the BSDE of equation (A.3) with driver
£t and terminal value & for i = 1,2. If the following inequalities hold

o (1 >¢€2 P-aus
o 0fi = fi(t,y,2) — f2(t,y,z) > 0, dP x dt-a.s and for all y € R and 2z € R?
then Yt > Y2 almost surely for any time t € [0,T].

Also, a path regularity property for the control process Z was proved by Zhang [123, 124].
The result is central when proving convergence of FBSDE time discretizations.

Proposition A.7. Suppose the terminal function G is L°°-Lipschitz and the control process Z
is cadlag. Then, there is a constant C depending on T and K only such that, for any partition
T={0=1ty <t1 <..<t, =T} of [0,T], we have

n

Z E
=1

where |T| = maxi<i<n [t — ti—1] is the partition mazimal time step.

t;
/ |Z = Zoo )P + 2 — Za, [P dt| < C(1 + |wo)*) ||, (A.18)

ti—1
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When the FBSDE coefficients are deterministic, the control process Z displays cadlag paths
for L>®-Lipschitz terminal functions and continuous paths for L'-Lipschitz terminal functions as
shown by Ma and Zhang[82]. A more recent result due to Gobet and Makhlouf [54] extends the
control process regularity to irregular Markovian terminal function g lying in the space

.. 2 o o BT B g
Lo = {g . E [9(X7)?] +te[O%] T—0)e < } (A.19)

for a € (0,1].

A.2.2 Relation to quasilinear PDEs

The solution (X, Y, Z) of a FBSDE depends on the connections between its components since, for
instance, coefficients of one of the FBSDE equations may depend on a component described by
the other equation. This connection is clearly established for coupled FBSDEs with deterministic
coefficients and Markovian terminal condition, i.e for the general situation of equation (A.11)
with the terminal condition of equation (A.6). In this case, the FBSDE is linked to the quasilinear
parabolic PDE

% + Lu+ f(t,z,u, z(t,z,u, Vu)) = 0, (t,x) € [0,T) x R?

(A.20)
u(T,x) = g(z), » € R?

where V := (8%1, s %) represents the gradient operator,

2:[0,T] x RY x R x R — R?
is a function such that
2(t,z,y,p) = po(t,z,y,2(t,z,y,p)), (A.21)
and

ou
89@'

d
Lu = Z a;(t, z,u, z(t, z,u, Vu))

0%u
G:Cic’)xj

1
+§ Z bij(t, x,u, 2(t, x,u, Vu)) (A.22)

with b = oo™,
Under various conditions on the existence, uniqueness and regularity of solutions to both
equations (A.20) and (A.21), it can be shown'? that the triple of processes (X,Y, Z) satisfies

t t
Xt = X0 + / &(S, Xt)dS + / &(t, Xt)th (A23)
0 0

where @ : [0,7] x R? — R? and & : [0,7] x R? — R4*? are given by
a(t,x) = alt,z,u(t,x),z(t,z,ut,z), Vu(t,z))),
g(t,x) = o(t,x,u(t,x),z(t, z,u(t,z), Vu(t,x)))
and the two remaining solution processes are defined as
Y: = wu(t,Xyp), (A.24)
Zy = z(t, X¢,u(t, Xe), Vu(t, Xt)). (A.25)

This result leads to a procedure, introduced by Ma, Yong and Protter [79], for solving coupled
FBSDEs called the four step scheme that goes as follows:

13See Ma, Yong and Protter [79] or Ma and Yong [81] in Chapter 4, Theorem 1.1 for proof.
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Four Step Method.
1. Find the function z : [0,T] x R x R x RY — R? defined by equation (A.21).

2. Solve the nonlinear PDE of equation (A.20) using the function z to get the function u :
[0,7] x R — R.

3. Solve the forward SDE of equation (A.23) to get the forward process X .

4. Define the processes Y and Z according to equations (A.24) and (A.25) respectively using

the functions u and z and the forward process X .

B Time discretization of SDEs

The formal definition of higher order time discretizations uses the multi-index notation and iter-
ated Brownian integral presented in Chapter 5 of Kloeden an Platen [69] and also in Chassagneux
and Crisan [27]. The set M of multi-indice with entries in {0, ...,d} is given by

M := {0} | Ju, {0, ..., d}! (B.1)

and for any multi-index » € M the measures ¢ and ¢ return the length and the number of zero of
the multi-index respectively with £() = 0. Moreover, —: (resp. 2—) is the multi-index obtained
by deleting the first (resp. last) entry of ¢ and (j),, refers to the multi-index of length m > 0
whose entries are identical and equal to j € {0,...,d}. A hierarchical set A C M is a set of
multi-indice such that

supf(1) < oo and —1 € A, V2 € A\{0}.

For instance, it is easily shown that the set
_ _ 1
Ay ={1:4(0)+20) <2mor £(r) = L() =m + 2 2m e N*}

is a hierarchical set. We define the iterated Brownian integral I} , with index 2 of length £(z) =
recursively as
1 ,if I=10
L= [iI'de  ifl>0andy =0 (B.2)
[frdwi  Lifl>0andy =j4,1<j<d.

On a time partition 7 = {0 =ty < t; < ... < t, =T} of [0,T], a strong order scheme for the
forward process defined by the SDE (A.1) then has the form
Xro=XI .+ > FE&DL,., (B.3)
1€AR\{0}

for some bounded functions F, : R* — R% related to the SDE coefficients @ and o. General
strong schemes are interesting mainly for their convergence properties. Kloeden and Platen

[69] (Theorem 11.5.1, page 391) show that a strong scheme built with the hierarchical set A,,

converges with order m i.e

Ex = max || X, - X7[|},
= o(x*™). (B.4)
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C Gauss quadrature approach to BSDEs

Instead of the convolution approach of Chapter 2 and Chapter 3, a Gauss quadrature can be used
to compute the conditional expectations involved in the numerical solution of BSDEs. In this
section, we present the method in the deterministic and stochastic points of view. Nonetheless,
both approaches are equivalent in practice since the resolution of the stochastic approach is made

through the deterministic approach presented bellow.

C.1 Deterministic approach

Starting from the Euler time discretization, we develop a deterministic algorithm for the approx-
imate solution u; and the approximate gradient %; in Chapter 2. At time step ¢;, the solutions

may be written as

where
o) = 5 [ vuile+ )y (©2)
W) = [ wnler i)y (C.3)

fori =0,1,....,n—1 and u,(z) = g(x).
The presence of the Gaussian density A in equation C.2 and C.3 allows the usage of Gaussian

quadrature based numerical method. Indeed, knowing the Gaussian density h has the form

h(z) = (27A;) "% exp (—;Zi) : (C.4)

equations C.2 and C.3 can be written as

() = (27TA1-)_%/ YUit1 (:chy\/E) e_%y2dy (C.5)

ww) = o[ O; wi (2 4+ 9V/A) ey (C6)

after a change of variable. The approximate solution and gradient values can hence be ap-
proximated locally with a Gauss-Hermite quadrature. For a concise introduction to Gaussian
quadratures, one may refer to Chapter 9 of Kress [71], Chapter 6 of Kiusalaas [72], Chapter 4
of Burden and Faires [25], Chapter 3 of Moin [91], Chapter 5 of Sauer [106] or Chapter 8 of
Hildebrand [58] among many others.

At a particular space position z € R, the intermediate solution @; and the approximate
gradient u; at time mesh ¢; may be computed with the N—points Gauss-Hermite quadrature
with V> 1 as

di(z) = Z wjui (7 + Y,/ D) + Eo (C.7)
J*]- N
’LLZ(ZL') = —F Z wjyjui+1(z + Yj \/E) + El. (08)

VA;

j=1

where Ey and FE; stand for the integration errors. In addition, the integration nodes {yj}j-vzl
and weights {w; }§V:1 are retrieved from the Nth order polynomial of the family of orthogonal

polynomials with weight function w(x) = 377,

113



Suppose the polynomials H,, of degree n € N satisfy
/ H,(z)Hp,(z)w(z)dx =0, n # m. (C.9)
R

Then {H, }nen is said to be a family of orthogonal polynomials with weight function w : Z — R
for some interval Z. The literature on orthogonal polynomials is considerable, we will limit
ourselves to Szeg6 [109] or Stahl and Totik [108] for a theoretical approach and Marcellan and
Van Assche [86] or Gautschi, Golub and Opfer [51] for applications. A first property of interest
for orthogonal polynomials has to do with their zeros and is stated in the next proposition. The
statement may be found in Szegd [109] (Theorem 3.3.1, page 44).

Proposition C.1. The zeros of the orthogonal polynomials H, are real, distinct and located in

the interior of the interval Z.

In our case, the orthogonal polynomials { H,, },cn are the (probabilistic) Hermite polynomials

since the weight function is w(z) = e~2%", The Hermite polynomials admits the representation

2 d" 2
Hp(z) = (=1)"e3" dx—ne*%z (C.10)
and the recurrence formula
Hp1(z) = 2Hy(z) — nHy—1(x) (C.11)

with initial polynomials H_;(z) = 0 and Hy(z) = 1.

When performing the Gauss-Hermite quadrature, the nodes {y;}}_, and weights {w;},
are chosen such that any polynomial of degree 2N — 1 or less is integrated exactly by the
approximation. As a consequence, the following proposition holds and is an adaptation of the
results of Hildebrand [58] (pp. 388-390).

Proposition C.2. The nodes {yj}j-vzl of the Gauss-Hermite quadrature are the N real and
distict zeros of the orthogonal polynomial Hy. Also, the weights satisfy

(N —1)!

w; = W (0.12)

forj=1,2,...,N.

Another interesting feature of the weights w; is that they sum to one (1). Indeed

N
Zwi = /(27T)75675I de =1
j=1 R
since constant functions are integrated exactly. The error terms Fy and F; admits the bound
given in the following proposition which is also adapted from Hildebrand [58] (pages 388-390).
Proposition C.3. If u,.1 € C?V, then
ANV2rN!

Ey = ulY(0) 2N (C.13)
and AN |
1 _ V27 N!

By = (A3 + @M 0) T (C.14)

for some ¢ € R.

Hence, estimates of the approximate solutions u; and the approximate gradient a;, i =
0,1,...,n — 1, may be computed using a classical multinomial tree with N branches through
equations C.1, C.7 and C.8. For N = 2 and N = 3, the multinomial tree recombines which eases
the implementation of the Gauss-Hermite method.
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C.2 Stochastic approach

Following Briand, Delyon and Mémin [21] and Peng and Xu [99], the BSDE

T T
Y}:g(WT)—i-/ f(s,S/s,Zs)ds+/ Z.dW, (C.15)
t t

is discretized on the time mesh 7 = {to =0 < t; < ... < t, = T} with a number n of time steps
and t; = 1A where A = % The discretization then gives the discrete time BSDE

}/tﬂ' Y s

i Tt

+Af(t, Y ZT) = VAZ €1 ,i=0,1,.,n— 1 (C.16)

where {¢;}1_, is a sequence of discrete independent and identically distributed random variables
such that ¢; € F;,. The Gauss-Hermite quadrature approach gives a systematic way to define the
random variable ¢;. Indeed, one may select them so that their probability distribution function
is given by

N
fn(y) =ij5(y—yj) ,y€R (C.17)

leading to the probability measure
N
Ple; € A=) w;d, (A), ACR (C.18)
j=1

where ¢ is the Dirac delta function and ¢, is the Dirac delta measure. Hence, ¢; takes the value
y; with probability w;. The following proposition holds since the Gauss-Hermite quadrature
integrates monomials of degree less that 2N exactly.

Proposition C.4. The first 2N — 1 moments of €; are those of a standard normal distribution.
Let {W[ }1c[0,r) be the adapted process defined as
[tA~t)

Wi =VA > e, (C.19)
=1

then the discrete BSDE terminal value is given by
Y7 = g(W). (C-20)

The next proposition describes how the scale random walk {W/ };c(o,7] may be used to approx-
imate the standard Brownian motion in this context.

Proposition C.5. Suppose that for a sequence {ky}nen where 0 < k, <1 and lim, o0 kn, =0,
ATIE[AW,] = 6,1 —ky), i,j =1,2,...,n. (C.21)
Then the adapted process {W] }icjo,1) is such that

sup |WJ[ =W —0 (C.22)
t€[0,T]

as n — oo, where the convergence holds in probability.
Proof. First mnotice that the process {W/}icior) is a martingale, so that

|W[ — W;| is a sub-martingale by Jensen inequality. Also, for any ¢ > 0

P| sup [WF—W,|>e| <c2E [|WZA — Wyl
t€[0,T]
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by Doob’s inequality, where
E [|W7 - Wrl’]
= E[(W[)’] - 2E[WiWr] +E [(Wr)?]

= A) E[¢] -2VAE (Zq) AW; || +T
i=1 j=1

=1

= 2T -2VAE |> &AW,

i=1
= 2T —2T(1— k)

= Tk,

From this last equation, we have that P [Supte[O,T] W7 —Wy| >e| - 0asn— oo. O

For any t € [0, T], we extend the discrete solution such that
V" o= Y7 t€ [titiva) (C.23)
ZZT = ZZ: ,te [ti,ti-i-l)- (024)

The following proposition holds as a consequence of Proposition C.5 and Theorem 2.1 of Briand,
Delyon and Mémin [21].

Proposition C.6. Suppose that Assumption A.2 holds, g € C, and the condition of equation
(C.21) holds. Then
T
sup |Yt7rfYt|+/ |Zf—Zt|2dt%0 (C.25)
t€[0,T] 0
as n — oo, where the convergence holds in probability.

The boundedness of the terminal condition g is required only to ensure the convergence in
mean of g(WZ) and ¢g*(WZE) to g(Wr) and g?(Wr) respectively. This convergence in mean then
allows to meet the requirements of Theorem 2.1 in Briand, Delyon and Mémin [21].

In general, the BSDE is then numerically solved with the explicit scheme of equations (1.2.4)
and (1.2.3). A particular case of this general (Gauss-Hermite) multinomial approach is the
binomial method of Peng and Xu [99] where ¢; has the distribution function

1
fo(y) = 5 (0(y = 1) +(y + 1)) (C.26)
In the trinomial approach that we use in Chapter 2, the distribution of the discrete increments
€; is given by
1

o) = 20(0) + 5 (5 — VB) + (5 +VB) . (C27)

D The Gauss-Weierstrass transform

The convolution method starts with expressions of the approximate solutions in integral forms.
For the explicit Euler scheme 1 and the implicit Euler scheme, the intermediate solution ;
and the intermediate gradient ; at time mesh ¢; are convolution transformations. Convolution
transformations are special cases of integral transformations and have been extensively studied
and applied. The books of Hirschman and Widder [60] summarizes the theory and applications
range from signal processing to probability and statistics.

In our case, the convolution integrals involved in the approximate solutions are particularly
Gauss-Weierstrass transformations. Hirschman and Widder [60] give an overview in Chapter
8 of their book. Additional results may be found in authors such as Hille [59], Widder [113],
Bilodeau [14, 13], Zemanian [118, 119] among others.
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D.1 Definition and connection to BSDEs

Let’s consider the Gaussian density h; with
hi(z) = (271’25)7%67%, t>0,z€eR. (D.1)

For a real valued function g : R — R, the Weierstrass transform of g can be defined as the
function v : R - R

u@) = ei”g(a)

- / o(y)ha(z — y)dy (D.2)

whenever the integral converges where D := % is the first order differential operator. Hence,
u is the convolution transform of g with kernel h;. The literature usually defines the transform
at scale t = 2, we use scale t = 1 for convenience purposes to suit our approximate solution
expressions.

The generalized Gauss-Weierstrass transform considers kernel at different scales ¢ > 0 and

may be defined as

- / o(w)ha(z — v)dy. (D.3)

The literature has focused mainly on the inversion problem for the Gauss-Weierstrass trans-
form. For entire real valued functions u on R such that the complex extension u(x + iy) satisfies
some analytical and growth conditions, Hirshman and Widder [60] (Theorem 3.2, page 180) show
that the inverse Gauss-Weierstrass transform of u is given by

=5D%y(z) = t(yu(x +1i . .
57u(a) = [ hluta +in)dy (D.4)

Hence, an entire function u (satisfying analytical and growth conditions) can be represented as
the Gauss-Weierstrass transform of g where

glx) = e P u(x). (D.5)
Theorem 13.3 (page 207) of Hirshman and Widder [60] gives a growth condition on the inverse
Gauss-Weierstrass transform g. One must have that

lg(z)| < Meo™” (D.6)

for some constant M > 0 and —oco < a < % in our case.
The Gauss-Weierstrass transform has strong links with diffusion PDE. Notice the kernel h;
of equation (D.1) is the Green’s function associated to the diffusion operator

_0 19
ot 2022
D2

Hence, the function u(T —t,z) = e Tt g(x) is the solution to the Cauchy problem

du 10%u _
gu 1 19w — 0, (t,x) € [0,T) xR (D.7)

u(T,z) = g(z), z € R.
This PDE is itself associated to the BSDE with null driver and terminal condition g.
The approximate solutions for our BSDE admit representations in term of Gauss-Weierstrass
transform. The following proposition sums up the idea in the one-dimensional case for the Euler

scheme 1 and holds for the implicit Euler scheme. Similar expressions can be developed for the
Euler scheme 2.
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Proposition D.1. For the Euler scheme 1, the intermediate solution @; and the approximate

gradient U; at mesh time t; satisfy

i(z) = e%DZUHI(Qf) (D.8)
() = D) = S () (D.9)

fori=0,1,..n—1.

Proof. The representation of equation (D.8) follows obviously from the integral representation
of the intermediate solution ; in equation (2.2.8) given equation (2.2.9) holds. Also, differenti-
ating the intermediate solution integral in equation (2.2.8) leads to equation (D.9) assuming the

differential and integral operators can be interchanged. |

The proposition shows that the approximation solutions for BSDEs are obtained by solving
a diffusion PDE with null driver between consecutive mesh times.

For some input functions g, the Gauss-Weierstrass transform is known in closed form. These
input functions include Hermite polynomials, exponential functions and Gaussian functions
with scale parameter strictly less than 1. Hirshman and Widder [60] gives a table of differ-
ent transforms on page 178 using an alternative definition of the Gauss-Weierstrass transform.
The orthogonality of Hermite polynomials also leads to interesting series expansions for Gauss-
Weierstrass transforms which can be used to represent approximate solutions for BSDEs. Ele-

ments on this subject may be found in Hille [59] or Bilodeau [14].

D.2 Closed forms for approximate solutions

We next give an example where the numerical solutions for BSDEs can be developed in closed
form. We will limit to linear BSDEs with drivers of the form

flt,y,2) = ay + bz (D.10)

and terminal condition g : R — R. It is well-known in this linear case that the backward process

is given (see El Karoui, Peng and Quenez [47])

Yi = E, [g(Wr)T%] (D.11)
where, for s > t,
Tt = (=30 (s=0+b(W—Wi) (D.12)
If we set, for any ¢ € R,
g(z) = e*” (D.13)

then the BSDE solution can be represented as

Y, = €(a+bw+%¢2)(T—t)g(Wt) (D.14)
Zy = pelattetse)(T=) gy, (D.15)

The approximate solutions for the BSDE derived from the Euler scheme 1 on an equidistant
time grid # = {0 =1 < t3 < ... < t, =T} with time step A = % is

u;(x) (14 aA+ b(pA)"_ie%‘f(T_ti)g(:E) (D.16)
Wi(x) = o(1+al+bpA)y"~i=tese (T=t) () (D.17)

1 =20,1,...,n — 1. This numerical solution may be obtained by induction using Proposition D.1

and knowing that the Gauss-Weierstrass transform of g is €%ng($) = e%‘/’2tg(:z:).
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E Elements of Fourier analysis

Fourier analysis studies function representations as trigonometric series. It has been a topic of
research since Joseph Fourier’s work on the application of Fourier series to the heat equation in
the beginning of the nineteenth century. In addition to partial differential equations, applications
of Fourier analysis now include signal processing, probability theory or finance among others.
For the main theoretical tool in the convolution method of Chapters 2 and 3 is Fourier analysis,
this appendix aims to be an overview of the subject. Many books are also available on theoretical
or practical aspects of Fourier analysis. Many results in this appendix can be found in the books
of Vretblad [112], Edwards [43], Bernatz [12] and Plato [101] for instance.

Section E.1 presents complex Fourier series and their basic properties. Results of the Fourier
transform are given in Section E.2 and Section E.3 deals with Fourier series approximation and
its relationship with the discrete Fourier transform (DFT).

E.1 Fourier series expansion

Let h: R — C be a complex-valued function defined on the real line. Suppose in addition that
the following assumption holds.

Assumption E.1. The function h : R — C is periodic with period 2w and integrable on [—m, 7]
with

/W Ih(t)) dt < . (B.1)

The complex Fourier series associated with the function A is the expansion of the form

oo

Z cpelh? (E.2)

k=—o00
where the Fourier coefficients are defined as
1 T

:% -

ck h(t)e *tdt (E.3)
and i = v/—1 is the imaginary unit.
Another Fourier series expansion that is widely used is the real Fourier series which is the
expansion of the form
1 [e ]
S0+ ; (ax cos(kx) + by sin(kx)) (E.4)

where the (real) Fourier coefficients are

ap = %/W h(t) cos(kt)dt (E.5)
b = % / " n(t) sin(kt)dt. (E.6)

The equivalence between the complex and the real Fourier series expansions can be established

by observing the relationship between their respective coefficients. Indeed, it’s easily shown that
ar = ¢ + c—p and by = i(Ck — C_k). (E7)

For this reason, we focus on the complex Fourier series of equation (E.2) in the rest of this
appendix.
Some of the most important issues with Fourier series expansion are the study of their

convergence and uniqueness. Since the function h is assumed periodic with period 27, one can
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limit the study of its Fourier series on the interval [—m,n]. Unfortunately, the integrability
condition of Assumption E.1 gives only very little information on the Fourier coefficients and
consequently on the convergence of the Fourier series. The next proposition illustrates this idea
and it can be found in Vretblad [112] (Lemma 4.1, page 79).

Proposition E.1. Suppose h satisfies Assumpion E.1 then the sequence of Fourier coefficients
{ck}kez is bounded with

1 ™
< — h(t)|dt E.8
< 5= [ 1) (E8)
and converges to zero (0)
lim ¢ = 0. (E.9)
|k]—o00

Indeed, the convergence of Fourier coefficients to zeros (0) does not ensure the convergence of
the series expansion. Moreover, convergence of the Fourier series expansion does not guarantee
its convergence to the function h. Hence, further smoothness assumptions have to be made on
the function h as shown by the following proposition. The proposition is stated in Vretblad [112]
(Theorem 4.2, page 83) and ideas of its proof can be found in the same reference or in Edwards
[43].

Proposition E.2. Assume the function h satisfies Assumption E.1 and admits the Fourier
coefficients {ci }rez such that the serie of Fourier coefficients converges absolutely

o0

D> ek < oo (E.10)

k=—0o0

If h is continuous then the Fourier series of equation (E.2) converges uniformly to h on

[—7, 7).

A result similar to Proposition E.2 (Carleson’s theorem) uses less constraints on function
h. It can actually be shown that the Fourier series expansion of a continuous and integrable
function h converges to h almost everywhere on [—, 7] in the Lebesque sense. Almost everywhere
convergence also holds if h € LP([—n, n]) with p > 1.

Continuity also guarantees uniqueness of the Fourier series expansion (See Corollary 4.1, page

84 of Vretblad [112]). Hence, for a continuous function h satisfying Assumption E.1 we can write
h(z) = Z et x € [~ 7] (E.11)

where the equality holds almost everywhere in the Lebesque sense.
An interesting result gives a description of Fourier coefficients when the function h is differ-
entiable. We state it as in Vretblad [112] (Theorem 4.4 page 85).

Proposition E.3. If h € C™[—n, x| then
jexl < M K™ (E.12)
for some constant M.

It is possible to define the Fourier series of the periodic function A with period b — a on
a general interval [a,b] by a change of variable. All results exposed previously holds and the

expansion takes the form

h(z) = Y cpelkozas (E.13)
k=—oc0
where the complex coefficients are given by
1P e2n
oL = bfa/a h(t)e™""v=atdt. (E.14)
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E.2 Fourier transform

The Fourier transform of an integrable function h : R¢ — C with
|h(t)] dt < oo (E.15)
Rd

is the function A : RY — C defined as
h(v) = F[h(v) = / eV Th(z)dx. (E.16)
Rd

The inverse Fourier transform recovers the function & from its Fourier transform & through the
relation

hz) = 51 h)(z) = # /R ) (E.17)

Among the various properties of the Fourier transform (and its inverse transform) such as
linearity and relations under shifting and scaling, two of them are of particular importance in
Chapter 2 and throughout the thesis. We present these properties in the one-dimensional case
since they can easily generalized. The first relates the initial function with the derivatives of its
Fourier transform.

Proposition E.4. Let h , the Fourier transform of the function h, be differentiable. Then

oh
Slzh(2)l(v) =iz () (E.18)
and
oh L os
315 ()](v) = ivh(v). (E.19)
Proof. For the first part of the proposition, we have that
T = [ e

= / —e_‘”””h (x)dz,

assuming the integral and the differential operators can be interchanged, so that

ivh(v) = / ive e (z)dx
~ 9 —ivx
= 7/—00 (ae >h(z)dz
> —ivx oh —11/1

(applying the intregration by part formula),
oh
- 5|0
whenever h is integrable. O

The second property is the well known convolution theorem which define the Fourier trans-
form of a convolution of two functions as the product of the individual Fourier transforms.
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Proposition E.5. (Convolution theorem) Let h x k be the convolution of the functions h

and k i.e

(h+ k)(z) = /m h(z — t)k(t)dt

then _
S[h * k] = T[h]S[k].

/_O; oz /_O; h(z — t)k(t)dtdz
/O; /O; e h(x — t)k(t)dadt.

The change of variable z = x — ¢ then gives

Proof. The proof is straightforward,

lh k] (v)

Shk() = / / S ) () dzd

- [m e W h(2)dz [m e Wik(t)dt.

E.3 Fourier series and the discrete Fourier transform

(E.20)

In order to approximate a function with Fourier series, on may consider truncating the Fourier

series expansion. Proposition E.3 naturally leads to a result on this procedure. Hence, the proof

of the following theorem is mainly based on the convergence of hyper-harmonic series.

Proposition E.6. Suppose the function u satisfies Assumpsion E.1 and admits the Fourier

series expansion

oo
Z et x € [—m 7.

k=—o0
If h € ™ —7, 7] with m > 1 then for any N € N*
N-1
u(zr) = Z ke L O(N™™).

k=—N

Proof. Let ex be such that u(z) = chv:N cxe?*® + en. Then by Proposition E.3

len| < QMZk_m_l

2MNm1i< >
k=0
N

I

=

=

3
HM8
ingk
A~

3
~
:

A
=
2
3
1 [M]8
3
7

|

Q

b
3

for some constant C' > 0 and for any m > 1.
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For an approximation by Fourier series truncation to be useful, the Fourier coefficients in-
volved in the truncated series must be available. Deriving analytical formulas for the Fourier
coefficients of a given function is usually a very tedious task. Hence, approximating the coeffi-
cients appears much more suitable.

The discrete Fourier transform (DFT) transforms a set of real or complex numbers {z; };V:_Ol

into another set {; }jV:j)l through the relation
| N1
AL _ —ijk2z
T = Dzx]p = N Z% e N g5 (E.23)
=

for k =0,1,..., N — 1. The inverse DFT performs the reciprocal operation by computing the set

of numbers {z; };V;Ol using the numbers {%; }?:01 as
N-1
51,27
T = DR = Z eIFN i) (E.24)
=0

for k=0,1,....,N — 1.
The DFT and inverse DFT operations can be represented in a matrix and/or vector form.
In particular, the DFT takes the form

i) i)
1
= _F : E.25
“Fl (E.25)
Tn-1 TN-1
where F' is a Vandermonde matrix,
1 1 1
w w? ... whN-1
F= w? w? . w2V-1) (E.26)
1 WwN-1 L2v=1) (N=1)(N-1)
with w = e~ %1, The inverse DFT is represented accordingly by
i) io
= F : (E.27)
TN-1 TN-1
where F satisfies )
. 1 -
F= {NF} = FH, (E.28)

i.e, F is the Hermitian transpose of F.
This matrix-vector representation is useful in many cases and especially in the proof of energy
conservation properties of the DFT. The following proposition, known as the Parseval’s theorem,

is an illustration.

Proposition E.7. Let the senquence X = [ To ... IN_1 } be the discrete Fourier transform
ofx=1| 29 ... xN_1 | , then

(E.29)
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Proof. Let ||.||, be the induced Euclidean norm on complex matrices A € C"*™. We know that
14]l; = r(A™4) (E.30)

where, for a square matrix M € C™*™, r(M) is the spectral radius of M.

Note that, from equation (E.25), we have

. 1
%7 < IFl X
1
< WT(FHF) x/”
1
< 3N Inww) x> (by equation (E.28)),
1
< 5 x|?. (E.31)
Also, from equation (E.27), we have
1 1.
A G A
N N 2
< TR RP
1
< Nr(NfoN)m? (by equation (E.28)),
< [%). (E.32)
Both equations (E.31) and (E.32) then lead to the result. O

The DFT is strongly related to Fourier series and trigonometric approximation. If we consider
a integrable real function A : [a,b] — R such that h(a) = h(b) and h admits the complex Fourier
series expansion
h(z)= Y cpeltr=er (E.33)
k=—o0
on the interval [a,b]. The DFT allows to approximate the coefficients ¢, given a sampling of the

function h at equidistant nodes through the following proposition that can be found in Plato
[101].

Proposition E.8. Let {h(z;)};_, be the values at equidistant nodes {xx}5 ' of a real function
h. Assume that the function h € C*([a,b]) is twice differentiable on [a,b] with h(a) = h(b) and

zr = a+ kA where A = b_T“ where N is even. Then
ey = e T RED (1) R Tk + (A7) (E:34)

fork=0,1,.... N — 1.

Proof. Under the conditions of this proposition, the DFT is simply a composite trapezoidal

quadrature which yields a second order error. [l

Instead of a Fourier series truncation to approximate a function u, a better approach is an
interpolation with trigonometric polynomials. For any even integer N, the real valued function
h:[a,b] = R can be interpolated by a trigonometric polynomial Tn[h] of the form

!
Tn[h)(z) = > dpe=e" (E.35)
k=—%
at equidistant nodes {z;}, ;' such that
Tn[h)(zx) = h(xg) , k=0,1,..,N — 1. (E.36)

The Fourier coefficients {d;,}?~"  are exactly computed by a DFT.
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Proposition E.9. Supposed the trigonometric polynomial Tx[h] interpolates the real valued
function R : [a,b] — R at the nodes {xx}p " with x9 = a and x; = x;_1 + b2 such that the
relations of equation (E.36) hold. Then, the Fourier coefficients are given by

B, = D{(-1) )}k (E.37)
for any k=0,... N —1.

Proof. Let’s note that for i =0,1,.... N — 1

81
h(zi) = dyetF 7T
k=—%
N-1
= dk__ﬂei(k_% 1)2—‘”-111Z
k=0 ’
N-1
dy_ x M= F) g a ik o —iim
— N Y
k=0 ’
so that N1
. _ s Ny 2m -
- 1
since e~ = (—1). Taking the DFT gives the result. O

An error bound is available for the trigonometric interpolation previously defined. It suffices
to combine the result of Propositions E.6 and E.8 to have a proof of the following proposition.

Proposition E.10. If the function h € C?([a,b]) satisfies Assumtions E.1, then the trigonomet-
ric polynomial T [h] interpolating h as defined in equations (E.35) and (E.36) satisfies

h(z) = Tx[h](z) + O(Ax) (E.38)

b—a
for any x € [a,b] where Ax = 232,

Let’s notice that the error bound in Proposition E.10 is given in the L!-norm. A variation of
this result exists with the L2-norm and the error term is, in that case, of second order under an
additional square integrability condition on the function second derivative (Plato [101], Theorem
3.10, page 46). The previous proposition can be generalized for smooth functions. It can indeed
be shown that for any (periodic) function h € C™*([a, b]), the trigonometric interpolation error
is of order m.
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