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Abstra
t

Fourier methods for numeri
al solution of FBSDEs.

Polyni
e Oyono Ngou, PhD.

Con
ordia University, 2014.

We present a Fourier analysis approa
h to numeri
al solution of forward-ba
kward sto
has-

ti
 di�erential equations (FBSDEs) and propose two implementations. Using the Euler time

dis
retization for ba
kward sto
hasti
 di�erential equations (BSDEs), Fourier analysis allows

to express the 
onditional expe
tations in
luded in the time dis
retization in terms of Fourier

integrals. The spa
e dis
retization of these integrals then leads to expressions involving dis-


rete Fourier transforms (DFTs) so that the FFT algorithm 
an be used. We qui
kly presents

the 
onvolution method on a uniform spa
e grid. Lo
ally, this �rst implementation produ
es a

trun
ation error, a spa
e dis
retization error and an additional extrapolation error. Even if the

extrapolation error is 
onvergent in time, the resulting absolute error may be high at the bound-

aries of the uniform spa
e grid. In order to solve this problem, we propose a tree-like grid for the

spa
e dis
retization whi
h suppresses the extrapolation error leading to a globally 
onvergent

numeri
al solution for the BSDE. The method is then extended to FBSDEs with bounded 
oe�-


ients, re�e
ted FBSDEs and higher order time dis
retizations of FBSDEs. Numeri
al examples

from �nan
e illustrate its performan
e.
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Introdu
tion

Sin
e 1990, when Pardoux and Peng [96℄ proved the existen
e and uniqueness of solutions of ba
k-

ward sto
hasti
 di�erential equations (BSDEs), resear
h on the subje
t has been proli�
 both

in theory and appli
ations. Pardoux and Peng [97℄ generalized the well-known Feynman-Ka


formula by showing the relationship between BSDEs and quasilinear partial di�erential equa-

tions (PDEs) whereas Antonelli [4℄ introdu
ed forward-ba
kward sto
hasti
 di�erential equations

(FBSDEs) and also established their well-posedness. Another arti
le by Pardoux and Tang [98℄

studies FBSDEs well-posedness and generalizes the result of Pardoux and Peng [97℄ to 
oupled

FBSDEs. The reader may �nd an introdu
tory theory of FBSDEs in Appendix A. This study

addresses spe
i�
ally the problem of numeri
al resolution of FBSDEs whi
h has been an a
tive

area of resear
h for the last two de
ades. The interest in numeri
al solutions for FBSDEs mainly

stems from their various appli
ations, espe
ially in mathemati
al �nan
e, and the la
k of general


losed form solutions.

This short introdu
tion �rst provides indi
ations on the notation used throughout the do
u-

ment. Then a presentation is given on the Euler time dis
retization for BSDEs sin
e we mostly

rely on this s
heme in this study. The introdu
tion ends with a summary of the thesis 
ontent.

Notation

For a �xed terminal time T > 0, 
onsider the 
omplete �ltered probability spa
e (Ω, F , F, P),

so that F = {Ft : t ∈ [0, T ]} where the �ltration is generated by a d-dimensional Brownian

motion {Wt}t∈[0,T ] and F0 
ontains the P-null sets of the σ-algebra F . We shall make use of

the following operators and spa
es through our presentation:

• For any ve
tor x ∈ Rn
, we note the Eu
lidean norm as |x| =

(∑n
i=1 x

2
i

) 1
2
. For a matrix b ∈

R
n×m

, we use the Frobenius norm whi
h veri�es

|b| 12 = Tr(bb∗) where b∗ is the transpose matrix of b. Also, ‖b‖2 represents the spe
tral

norm of b when b is a square matrix.

• Cn(Rm) is the set of n-times di�erentiable real valued fun
tions on Rm
, and Cn

b (R
m)

denotes that the derivatives are absolutely bounded up to order n.

• B(Rm) is the Borel set on R
m
.

• S is the Skorohod set of real valued 
àdlàg fun
tions on [0, T ].

• Lp(Rn) is the spa
e of FT -measurable Rn
-valued random variables X su
h that ‖X‖Lp =

E [|X |p]
1
p <∞ for p ∈ N and L∞

denotes the spa
e of bounded random variables.

• Lp
S(R

n) is the spa
e of Rn
-valued adapted pro
esses X su
h that

‖X‖Lp

S
= E

[
sup

t∈[0,T ]

|Xt|p
] 1

p

<∞,

1



L∞
S denotes the spa
e of bounded pro
esses.

• Lp
I(R

n) is the spa
e of predi
table Rn
-valued pro
esses X su
h that

‖X‖Lp

I
= E



(∫ T

0

|Xt|2 dt
) p

2




1
p

<∞.

For a given sto
hasti
 pro
ess X on (Ω,F), we simplify the notation of the 
onditional expe
ta-

tion with respe
t to Ft as

E

x
t [u(XT )] = E [u(XT )|Xt = x] (I.1)

for any deterministi
 fun
tion u where the 
onditional expe
tation is taken under the physi
al

probability measure P. Additional indi
ations will be given when using an equivalent probability

measure. Also, C and K will denote generi
 
onstants in our various inequalities.

Finally, all numeri
al results in this thesis are produ
ed using a Pentium (R) Dual-Core,

T4200 model pro
essor with 2.0 GHz.

The Euler s
heme

Many numeri
al methods for FBSDEs with Lips
hitz 
oe�
ients presented in Chapter 1 (and

parti
ularly Monte Carlo regression and spa
e dis
retization methods) are based on a time dis-


retization 
alled the Euler s
heme. Those methods only di�er in their approximations of the


onditional expe
tations involved in the time dis
retization. This se
tion intends to present the

main time dis
retization algorithms for (F)BSDEs and the asso
iated 
onvergen
e result.

The Euler s
heme is a time stepping method designed for SDEs and appli
able to BSDEs

and de
oupled FBSDEs with Lips
hitz 
oe�
ients. We shall 
onsider the de
oupled FBSDE of

equation (A.5) with deterministi
 
oe�
ients. The dis
rete time pro
edure that we present was

�rst introdu
ed by Zhang [123, 124℄ followed by Bou
hard and Touzi [20℄ and Hu, Nualart and

Song [61℄ among others. A 
on
ise summary of the method also �gures in the review paper of

Bou
hard, Elie and Touzi [19℄.

Be
ause of the assumption of Lips
hitz 
oe�
ients, the forward SDE dis
retization is usually

performed with an Euler s
heme using a partition π = {0 = t0 < t1 < ... < tn = T } of the

interval [0, T ]. The numeri
al solution {Xπ
t }t∈[0,T ] relies on the values at times nodes de�ned as




Xπ

0 = x0

Xπ
ti+1

= Xπ
ti + a(ti, X

π
ti)∆i + σ(ti, X

π
ti)∆Wi

(I.2)

where ∆i = ti+1 − ti and ∆Wi =Wti+1 −Wti for i = 0, 1, ..., n− 1. We get

Xπ
t = Xπ

ti , t ∈ [ti, ti+1) (I.3)

and this dis
retization yields a strong

1
2 -order 
onvergent solution sin
e the error EX,π on the

forward pro
ess satis�es

E2
X,π := E

[
sup

t∈[0,T ]

|Xt −Xπ
t |2
]
= O(|π|) (I.4)

with Landau notation as shown in Kloeden and Platen [69℄ where |π| is the maximal time step

|π| = max
0≤i<n

∆i. (I.5)

2



An Euler s
heme also helps in dis
retizing the ba
kward pro
ess and leads to the following

time stepping

Y π
ti = Y π

ti+1
+ f(ti, X

π
ti , Y

π
ti , Z

π
ti)∆i − (Zπ)∗ti∆Wi. (I.6)

Taking the 
onditional expe
tations on both sides of equation (I.6) yields

Y π
ti = E

[
Y π
ti+1

|Fti

]
+ f(ti, X

π
ti , Y

π
ti , Z

π
ti)∆i

and if one �rst multiplies both sides of equation (I.6) by the Brownian in
rement ∆Wi and takes

the 
onditional expe
tation after, we get

Zπ
ti =

1

∆i
E

[
Y π
ti+1

∆Wi|Fti

]
.

Those last two equations de�ne the ba
kward algorithm for numeri
al solution of BSDEs





Zπ
tn = 0, Y π

tn = ξπ

Zπ
ti =

1
∆i
E

[
Y π
ti+1

∆Wi|Fti

]

Y π
ti = E

[
Y π
ti+1

|Fti

]
+ f(ti, X

π
ti , Y

π
ti , Z

π
ti)∆i

(I.7)

known as the impli
it Euler s
heme sin
e the value of the approximate forward pro
ess Y π
ti

appears on both sides of the system last equation. We 
hoose ξπ su
h that

‖ξ − ξπ‖2L2 = O(|π|) (I.8)

whi
h is possible, for instan
e, in the Markovian 
ase by taking ξπ = g(Xπ
T ) for 
ontinuous

terminal 
onditions g.

In order to avoid solving a non-linear equation to re
over the ba
kward pro
ess values Y π
ti ,

one may 
onsider an alternative s
heme whi
h is expli
it in the ba
kward pro
ess values





Zπ
tn = 0, Y π

tn = ξπ

Zπ
ti =

1
∆i
E

[
Y π
ti+1

∆Wi|Fti

]

Y π
ti = E

[
Y π
ti+1

+ f(ti, X
π
ti , Y

π
ti+1

, Zπ
ti)∆i|Fti

]
.

(I.9)

and 
alled the expli
it Euler s
heme. The approximate ba
kward and 
ontrol pro
esses are then

de�ned as done previously for the forward pro
ess as

Y π
t = Y π

ti , Z
π
t = Zπ

ti for t ∈ [ti, ti+1). (I.10)

Another expli
it s
heme 
onsists in repla
ing the 
onditional expe
tation of the driver by

the driver values at 
onditional expe
tations from the expli
it s
heme of equation (I.9). This

pro
edure leads to the s
heme





Zπ
tn = 0, Y π

tn = ξπ

Zπ
ti =

1
∆i
E

[
Y π
ti+1

∆Wi|Fti

]
, 0 ≤ i < n

Y π
ti = E

[
Y π
ti+1

|Fti

]
+ f(ti,E

[
Y π
ti+1

|Fti

]
, Zπ

ti)∆i, 0 ≤ i < n.

(I.11)

We will denote the s
heme of equation (I.11) the expli
it Euler s
heme 1 and the s
heme of

equation (I.9) is denoted the expli
it Euler s
heme 2.

The global dis
retization error Eπ in the ba
kward and 
ontrol pro
esses is de�ned as

E2
π := max

0≤i<n
E

[
sup

t∈[ti,ti+1]

∣∣Yt − Y π
ti

∣∣2
]
+

n−1∑

i=0

E

[∫ ti+1

ti

∣∣Zs − Zπ
ti

∣∣2 ds
]

(I.12)
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and, under Lips
hitz 
onditions on the FBSDE 
oe�
ients, admits the bound

E2
π ≤ C

(
|π|+

n−1∑

i=0

E

[∫ ti+1

ti

∣∣Zs − Z̄π
ti

∣∣2 ds
])

(I.13)

where

Z̄π
ti =

1

∆i
Eti

[∫ ti+1

ti

Zsds

]
(I.14)

and the 
onstant C depends exponentially on the Lips
hitz 
onstants due to the usage of the

Gronwall's inequality in the proof. From this equation, a regularity property on the 
ontrol

pro
ess Z is needed to prove the 
onvergen
e of the Euler s
heme.

This regularity result is proved by Zhang [124, 123℄ in the 
ontext of Lips
hitz 
oe�
ients.

Knowing that Z̄π
ti is the proje
tion on the spa
e Fti-measurable random variables, and hen
e

the best Fti-measurable approximation, of {Zt}t∈[0,T ] on the interval [ti, ti+1] we have

n−1∑

i=0

E

[∫ ti+1

ti

∣∣Zs − Z̄π
ti

∣∣2 ds
]

≤
n−1∑

i=0

E

[∫ ti+1

ti

|Zs − Zti |2 ds
]

≤ C |π| (I.15)

from equation (A.18). Consequently, the Euler s
hemes have a dis
retization error of

Eπ = O(|π| 12 ). (I.16)

Summary

Chapter 1 gives an overview of existing numeri
al methods divided in three groups: partial dif-

ferential equation (PDE) based methods, spatial dis
retization based methods and Monte Carlo

regression based methods. Overall, PDE based methods require strong regularity 
ondition on

the FBSDE 
oe�
ient whereas Monte Carlo methods are time 
onsuming. Spatial dis
retization

methods may be seen as a tradeo� between the two other groups of methods.

The purpose of this thesis is the development of a spatial dis
retization method using ana-

lyti
 and numeri
al Fourier te
hniques. These te
hniques have already proved very e�
ient in

various areas su
h as in numeri
al methods for PDEs or in mathemati
al �nan
e. In the 
on-

text of numeri
al methods for FBSDEs, numeri
al Fourier te
hniques have the advantage and

parti
ularity of being spe
tral methods espe
ially in the group of spatial dis
retization methods

for FBSDEs.

Chapter 2 gives the representation of BSDE numeri
al solutions as Fourier integrals and

proposes a �rst implementation of a fast Fourier transform (FFT) based method for BSDEs.

The numeri
al resolution is performed on a uniform grid and a lo
al error analysis reveals a


onsistent method with trun
ation errors under smoothness 
onditions on the BSDE 
oe�
ients.

Numeri
al examples then illustrate the a

ura
y of the method.

Even though the pro
edure in Chapter 2 is 
onsistent and suitable for various appli
ations,

the presen
e of trun
ation errors makes it less a

urate. Chapter 3, whi
h is the 
entral 
hapter

of this thesis, introdu
es an alternative tree-like grid that removes the trun
ation error leading

to a 
onditionally stable and globally 
onvergent method. A simulation method for BSDEs is

then developed and the 
onvergen
e of the approximation is proved.

Chapter 4 fo
uses on the spa
e dis
retization of FBSDEs as an extension of the material of

Chapter 3. In the 
ontext of FBSDEs, we show that the Fourier representation of the BSDE

numeri
al solution is possible and then build a 
onditionally stable and globally 
onvergent

4



method. Nonetheless, the 
omputations have to be performed through matrix multipli
ation

instead of the FFT algorithm as in Chapter 2 and 3 so that Fourier methods are less e�
ient

when applied on FBSDEs .

Finally, Chapter 5 visits the very re
ently proposed Runge-Kutta s
heme for (F)BSDEs.

Runge-Kutta s
hemes are higher order time 
onvergent time stepping methods that improve

the half order 
onvergen
e of the Euler s
heme used in the previous 
hapters. Here also, we


hara
terize the numeri
al solutions and apply the method developed in Chapter 4 (or Chapter 3

in the simple BSDE 
ase). In the more general setting of Runge-Kutta s
hemes, the 
onditional

stability and global 
onvergen
e of the method is established under mild 
onditions on some


hara
teristi
 fun
tions.
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Chapter 1

A literature review of numeri
al

methods for FBSDEs

Solutions to FBSDEs 
an be found through either the four-step s
heme or the method of 
ontin-

uation

1

. In the former method, proposed by Ma, Protter and Yong [79℄, the forward and 
ontrol

pro
esses are expressed expli
itly in terms of a fun
tion whi
h solves a Cau
hy problem for a

quasilinear paraboli
 PDE. Yong [114℄, for the latter method, gives impli
it solutions using the

notion of bridge whi
h identi�es new solutions of FBSDEs from known ones. Hen
e, on one hand

solving a FBSDE expli
itly by means of the four-step s
heme requires an expli
it solution to a

quasilinear PDE, whi
h is not an easy task, and on the other hand the method of 
ontinuation

only gives impli
it solutions. For this reason, numeri
al methods are being developed in order to

seek approximate solutions to FBSDEs. The �rst numeri
al methods to appear were the PDE

based method of Douglas, Ma and Protter [40℄ along with the random time partition s
heme of

Bally [7℄ and the tree based s
heme of Chevan
e [28℄.

The present 
hapter gives an overview of existing numeri
al methods for FBSDEs and is

organized as follows. Se
tion 1.1 deals with the four-step s
heme based methods that numer-

i
ally solve the quasilinear PDE. Spatial dis
retization methods, in
luding quantization tree

methods and multinomial trees, are presented in Se
tion 1.2. Se
tion 1.3 is about Monte Carlo

regression based methods and the �nal se
tion summarizes numeri
al methods for BSDEs with

non-Lips
hitz 
oe�
ients.

1.1 Four-step s
heme based methods

Even if all numeri
al methods for FBSDEs 
an be linked to the four-step s
heme, we 
an 
learly

distinguish those treating the asso
iated quasilinear PDE dire
tly. These methods impose dif-

ferentiability and boundedness 
onstrains on the FBSDE 
oe�
ients in order to ensure the


onvergen
e of the numeri
al s
heme for the PDE. Also, their extension to multidimensional

FBSDEs remains an open problem due to the la
k of algorithms for multidimensional PDEs.

Nonetheless, four-step s
heme based methods 
an 
ompute numeri
al solutions to the most gen-

eral 
oupled FBSDEs. Here, we present those methods a

ording to the type of algorithm used

to solve the PDE numeri
ally.

1

See the book of Ma and Yong [81℄
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1.1.1 Finite di�eren
e methods

In 1996 Douglas, Ma and Protter [40℄ initiated numeri
al methods for FBSDEs. In that pa-

per, the authors rely on the four-step s
heme and solve the quasilinear paraboli
 PDE using a


ombination of 
hara
teristi
s and �nite di�eren
e method.

Two similar types of FBSDE with nonlinear 
oe�
ients are 
onsidered: a �general 
ase�

FBSDE where the di�usion 
oe�
ient of the forward pro
ess does not depend on the 
ontrol

pro
ess and a �spe
ial 
ase� one where, in addition to the di�usion 
oe�
ient of the forward

pro
ess, the forward and ba
kward drifts do not depend on the 
ontrol pro
ess. Thus, the

sto
hasti
 equations are 
oupled in both 
ases and all involved pro
esses (namely the forward

and ba
kward pro
esses, the 
ontrol pro
ess and the Brownian motion) are assumed to be one-

dimensional.

When solving the �spe
ial 
ase� FBSDE





dXt = a(t,Xt, Yt)dt+ σ(t,Xt, Yt)dWt

−dYt = f(t,Xt, Yt)dt− ZtdWt

X0 = x0 , YT = ξ

(1.1.1)

the PDE redu
es to

∂u

∂t
+ a(t, x, u)

∂u

∂x
+

1

2
σ2(t, x, u)

∂2u

∂x2
+ f(t, x, u) = 0 (1.1.2)

whi
h is �rst modi�ed using a time 
hange of variable to get an initial value value problem. A

method of 
hara
teristi
s is then applied and redu
es the quasilinear adve
tion-di�usion PDE

into a di�usion PDE. A �nite di�eren
e s
heme then dis
retizes the resulting PDE with a �rst

order forward di�eren
e in time along the 
hara
teristi
 and a se
ond order 
entral di�eren
e in

spa
e. For a time step of ∆t and a spa
e step of ∆x, this gives a solution uki at time mesh tk

and grid point xi of the form

uki − ūk−1
i

∆t
=

1

2
σ2(tk, xi, u

k−1
i )D2[uki ] + f(tk, xi, u

k−1
i ) (1.1.3)

where ūk−1
i = uk−1(xi−a(tk, xi, uk−1

i )∆t) is the solution value along the 
hara
teristi
 obtained

by interpolation, and

D2[uki ] =
uki+1 − 2uki + uki−1

(∆x)2

stands for the se
ond order �nite di�eren
e for the se
ond derivative. The s
heme produ
es a


onvergent solution with a �rst order lo
al trun
ation error in both time and spa
e.

The availability of a numeri
al solution to the PDE then allows the 
onstru
tion of numeri
al

solutions for the forward and ba
kward SDEs using the four-step s
heme representation of their

solutions and this 
onstru
tion is made possible sin
e the approximate solution to the PDE sat-

is�es the Lips
hitz 
ondition. A forward (or expli
it) Euler s
heme

2

gives a numeri
al solution

to the forward SDE and the approximate solution to the ba
kward SDE is obtained by interpo-

lating the PDE approximate solution at the values of the forward SDE numeri
al solution. This

pro
edure reprodu
es the 
onvergen
e rates of the underlying Euler s
heme. More pre
isely,

we get a half (

1
2 ) order strongly 
onvergent s
heme for the solutions of both the forward and

ba
kward SDE and a �rst order weakly 
onvergent s
heme for the forward SDE solution.

The numeri
al solution for the �general 
ase� FBSDE





dXt = a(t,Xt, Yt, Zt)dt+ σ(t,Xt, Yt)dWt

−dYt = f(t,Xt, Yt, Zt)dt− ZtdWt

X0 = x0 , YT = ξ

(1.1.4)

2

See Kloeden and Platen[69℄.
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where the PDE takes the form

∂u

∂t
+ a

(
t, x, u, σ(t, x, u)

∂u

∂x

)
∂u

∂x
+

1

2
σ2(t, x, u)

∂2u

∂x2
+ f

(
t, x, u, σ(t, x, u)

∂u

∂x

)
= 0, (1.1.5)

seeks not only approximate solutions for the forward and ba
kward pro
esses but also for the


ontrol pro
ess. This requires the implementation of a numeri
al s
heme for the derivative of

the PDE solution. Hen
e, the authors dedu
e a se
ond quasilinear adve
tion-di�usion PDE de-

s
ribing the aforementioned derivative by di�erentiating the initial PDE. The resulting system

of PDEs is then solved by applying the numeri
al s
heme of the �spe
ial 
ase� to ea
h PDE. In-

terpolations on the numeri
al solution of the PDE system help in solving the forward SDE with

an Euler s
heme and 
omputing values for the ba
kward SDE solution and the 
ontrol pro
ess.

Again, the method is half (

1
2 ) order strongly 
onvergent for the triple of pro
esses solution to the

FBSDE and �rst order weakly 
onvergent for the solution of the forward SDE and the 
ontrol

pro
ess.

Milstein and Tretyakov [89, 90℄ also used a �nite di�eren
e method on PDEs to solve FBSDEs

numeri
ally. The algorithms in both papers are based on the four-step s
heme but apply to a

less general type of FBSDEs. In the �rst paper [89℄, the authors 
onsider a 
oupled FBSDE

where the forward 
oe�
ients do not depend on the 
ontrol pro
ess and the driver depends only

linearly on it. The se
ond paper [90℄ generalizes the �rst by introdu
ing the 
ontrol pro
ess in

the forward drift and a nonlinear driver in the 
ontrol pro
ess. The driver has the form

f(t, x, y, z) = f1(t, x, y, z) + f2(t, x, y, z)y + f3(t, x, y, z)z (1.1.6)

and this stru
ture leads to the PDE

∂u

∂t
+ ã

(
t, x, u, σ(t, x, u)

∂u

∂x

)
∂u

∂x

+
1

2
σ2(t, x, u)

∂2u

∂x2
+ f2

(
t, x, u, σ(t, x, u)

∂u

∂x

)
u

+ f1

(
t, x, u, σ(t, x, u)

∂u

∂x

)
= 0 (1.1.7)

where ã = a+ σf3.

One of the major di�eren
es between the approa
h of Milstein and Tretyakov [89, 90℄ and

the one of Douglas, Ma and Protter [40℄ is in the numeri
al resolution of the quasilinear PDE.

Indeed, Milstein and Tretyakov [89, 90℄ 
hose a layer method whi
h is a �rst order numeri
al

algorithm for paraboli
 PDEs grounded on these PDEs probabilisti
 representation. At time

node tk and for a time step of ∆t, the numeri
al solution uk of the PDE in equation (1.1.2) is

given, for instan
e, by

uk(x) =
uk+1(x

+
k ) + uk+1(x

−
k )

2
+ (∆t)f (tk, x, uk+1(x)) (1.1.8)

where

x±k = x+ (∆t)a (tk, x, uk+1(x)) ±
√
∆tσ (tk, x, uk+1(x)) . (1.1.9)

As to the sto
hasti
 part, the forward SDE resolution may 
onsist of an Euler or Milstein

s
heme and the ba
kward and 
ontrol pro
esses are obtained by interpolating the PDE numeri
al

solution. The se
ond major di�eren
e with Douglas, Ma and Protter [40℄ approa
h being that a

�nite di�eren
e on the PDE numeri
al solution approximates the derivative of the PDE solution.

Indeed, the dis
rete operator Dl de�ned as

Dl[uk+1](x) =
uk+1(x

+
k )− uk+1(x

−
k )

2σ (tk, x, uk+1(x))
√
∆t

, (1.1.10)
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whi
h is a 
entral �nite di�eren
e for the �rst derivative in the layer method, may be used to

approximate the derivative in various situations.

The method's rate of mean-square 
onvergen
e is

1
2 for the FBSDE triple solution when an

Euler s
heme dis
retizes the forward SDE and 1 for the forward and ba
kward solutions when

the Milstein s
heme is used. The Milstein s
heme on the forward SDE also yields a �rst order

mean-square 
onvergen
e for the 
ontrol pro
ess if the �nite di�eren
e on the PDE numeri
al

solution is �rst order a

urate.

1.1.2 The spe
tral method

It 
an be noted that, ex
ept for the Milstein and Tretyakov [89, 90℄ method under the Milstein

s
heme with its �rst order 
onvergen
e, numeri
al methods for FBSDEs yield a half order 
on-

vergen
e

3

. In their paper, Ma, Shen and Zhao [80℄ propose a four-step based numeri
al method

with an enhan
ed rate of 
onvergen
e.

A uni-dimensional fully 
oupled FBSDE with 
ontinuously di�erentiable 
oe�
ients is 
on-

sidered. These 
oe�
ients must satisfy further growth and boundedness 
onditions. In parti
-

ular, the forward pro
ess volatility, whi
h does not depend on the 
ontrol pro
ess, must have a

bounded se
ond derivative.

The algorithm is applied to the quasilinear PDE expressed in divergen
e form

∂u

∂t
+ ã

(
t, x, u,

∂u

∂x

)
∂u

∂x
+

∂

∂x

(
1

2
σ2(t, x, u)

∂u

∂x

)
+ f (t, x, u) = 0 (1.1.11)

for some Lips
hitz and bounded fun
tion ã. The dis
retization of this PDE starts with a �rst

order impli
it time stepping that leads to an uni-dimensional ellipti
 equation in spa
e at ea
h

time node, but other time dis
retizations may be 
hosen

4

to rea
h higher orders of a

ura
y. At

time step tk, the solution uk is expressed as

uk −
(
∆t

2

)
∂

∂x

(
σ2(tk, x, uk+1)

∂uk
∂x

)
=

uk+1 + (∆t)

(
ã

(
tk, x, uk+1,

∂uk+1

∂x

)
∂uk+1

∂x
+ f(tk, x, uk+1)

)
. (1.1.12)

The stru
ture of the spa
e domain, and more pre
isely the fa
t that it is the whole real line,

imposes the usage of Hermite polynomials

5

in the spe
tral method. Hen
e, at ea
h time step,

the PDE solution uk and the term σ2(tk, x, uk+1)
∂uk

∂x are interpolated with weighted polynomials

with weight fun
tion

w(x) = e−
1
2x

2

(1.1.13)

and an integration by parts of the ellipti
 ordinary di�erential equation (ODE) gives a variational

equation using Hermite quadrature. The last step for solving the PDE is to �nd the interpolation

weights from the variational equation. The pro
edure produ
es a numeri
al solution

6

with �rst

order a

ura
y in time and spe
tral 
onvergen
e in spa
e.

Con
erning the numeri
al solution to the forward pro
ess, Ma, Shen and Zhao [80℄ propose

three di�erent highly a

urate s
hemes in
luding the �rst order Milstein s
heme and two

3
2 -

strongly 
onsistent s
hemes in addition to the usual expli
it Euler s
heme. In parti
ular, the

Euler s
heme leads to an approximation of the triple of pro
esses whi
h is half order a

urate.

The idea that the method 
onvergen
e rate 
an be improved when using a higher time stepping

3

This in
ludes four-step and Monte Carlo regression based methods as we will see later in this review.

4

The authors mention an alternative Adam�Bashforth s
heme.

5

See Appendix C for a de�nition of Hermite polynomials and more pre
isely equation (C.10).

6

In
luding the solution to the PDE and its derivative.
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method for the PDE and a higher order s
heme for the forward SDE is illustrated with numeri
al

examples. The authors are able to rea
h a

3
2 -order of 
onvergen
e for the FBSDE solution.

1.2 Spatial dis
retization based methods

Quantization based methods aim to weaken the regularity 
onditions imposed on the FBSDE


oe�
ients in PDE based methods. Those methods 
onsist of repla
ing a (
ontinuous) random

variable by a dis
rete one in order to estimate the expe
tations involved in the lo
al representa-

tion of the FBSDE. Hen
e, the methods avoid the dire
t numeri
al treatment of the asso
iated

quasi-linear PDE.

1.2.1 Quantization tree methods

After a time dis
retization of some lo
al representation of FBSDE, quantization tree methods

typi
ally dis
retize the forward pro
ess spa
e at ea
h time node using a quantization grid. A

fun
tion, 
alled the quantizer, proje
ts the values of the forward pro
ess on the grid. Cal
ulating

the 
onditional expe
tations involved in the lo
al representation of the FBSDE then depends on

the availability of transition probabilities at ea
h time step.

In order to avoid solving a PDE numeri
ally, Bally [7℄ developed a method for BSDEs with

a driver depending on the 
ontrol pro
ess but the resolution of the BSDE has to be done at

Poisson random times to prove the method 
onvergen
e. This in
onvenien
e was mainly due to

the unknown path regularity of the 
ontrol pro
ess. Chevan
e [28℄ over
ame the time dis
retiza-

tion randomness by proposing the �rst quantization tree and 
onvergent method for de
oupled

FBSDEs.

Chevan
e [28℄ 
onsiders Markovian 
ases where the ba
kward pro
ess terminal value depends

only on the forward pro
ess terminal value and his method applies if the BSDE driver does not

depend on the 
ontrol pro
ess. Also, the de
oupled FBSDE 
oe�
ients (forward SDE 
oe�
ients,

the driver and the terminal fun
tion) have to satisfy further di�erentiability and boundedness


onditions.

The forward SDE is dis
retized (over a deterministi
 time grid) by a weak Euler s
heme where

the Brownian in
rements are repla
ed by a dis
rete random variable

7

. As to the ba
kward SDE,

its dis
rete lo
al representation uses the driver's upper value. This dis
retization yields a �rst

order absolute error (in time).

In order to 
ompute an approximate solution for the ba
kward equation, Chevan
e [28℄ uses

a �xed spa
e grid for the forward SDE at ea
h time step and the forward pro
ess values on the

spa
e grid are determined with the 
losest neighbor rule as the quantizer. More pre
isely, at

ea
h time step the weak solution values of the forward pro
ess (using the previous time step

proje
tions) are proje
ted on the grid and the proje
tion itself is de�ned for any number as the

least value among the 
losest grid point values to the number. The ba
kward pro
ess values are

then 
omputed (ba
kward in time) by evaluating the BSDE dis
rete lo
al representation using

the forward pro
ess proje
ted values and the transition probabilities provided by the aforemen-

tioned dis
rete random variable. The pro
edure yields a weak solution for the BSDE that is �rst

order a

urate in time and spa
e.

Other quantization tree methods in
lude the methods of Bally and Pages [8℄ and Bally, Pages

and Printems [9℄. The methods are designed for re�e
ted BSDEs (RBSDEs) and parti
ularly for

7

The dis
rete random variable must have zero mean, zero third moment, an unit varian
e and �nite �fth

moment.

10



the problem of pri
ing multidimensional Ameri
an options and require only the usual Lips
hitz


onditions needed for the de
oupled RFBSDE well-posedness. Along with the method, the au-

thors address the problem of optimal grid and transition probability 
hoi
e. Finally, Delarue and

Menozzi [35℄ developed a quantization method for solving paraboli
 PDEs via their probabilisti


representation through 
oupled FBSDEs. An interpolation pro
edure was then proposed by the

same authors in [36℄ as an improvement of the method.

1.2.2 Multinomial trees

Multinomial trees di�er from quantization trees in two main fashions. First, the BSDE is it-

self dis
retized in multinomial methods whereas quantization methods only dis
retize the BSDE

lo
al representation. Also, multinomial trees repla
e the Brownian in
rements that appear in

the dis
rete version of the FBSDE with dis
rete random variables: in quantization methods, the

forward pro
ess is dire
tly targeted.

Indeed, note that Chevan
e dis
retizes only the lo
al representation of the BSDE but not

the BSDE itself be
ause of the unknown regularity of the 
ontrol pro
ess. Hen
e, he does not

provide a numeri
al solution for the 
ontrol pro
ess. The dire
t dis
retization of the BSDE

8

is

later made possible by Briand, Delyon and Memin [21℄ along with Ma, Protter, San Martin and

Torres [78℄ with the proof of its 
onvergen
e with quasi-minimal 
onditions on the BSDE driver

and terminal random variable.

Briand, Delyon and Memin [21℄ and Ma, Protter, San Martin and Torres [78℄ both dis
retize

Brownian in
rements with a symmetri
 Bernoulli distribution leading to a binomial tree. The

method applies to one dimensional problems but 
an be generalized to multidimensional

9

BSDEs.

Nonetheless, one 
an note di�eren
es between the papers regarding the 
onditions of the BSDE


oe�
ients, the 
onverging obje
ts, the type of 
onvergen
e and the indu
ed algorithms. Indeed,

the BSDE driver of Briand, Delyon and Memin [21℄ depends on the 
ontrol pro
ess whereas in

[78℄ it does not but requires 
ontinuity. Also, the �rst paper [21℄ proves 
onvergen
e in probability

for the forward and 
ontrol pro
esses whereas the latter [78℄ proves 
onvergen
e in distribution

for the forward pro
ess and the sto
hasti
 integral of the 
ontrol pro
ess with respe
t to the

Brownian motion. Finally, Briand, Delyon and Memin [21℄ propose only an impli
it method

whereas Ma, Protter, San Martin and Torres[78℄ put forth a suitable expli
it algorithm.

In general, the BSDE is dis
retized on an uniform partition with time step ∆ as

Yti = Yti+1 +∆f(ti, Yti , Zti)−
√
∆Ztiǫi+1 (1.2.1)

where the ǫi are a sequen
e of independent, symmetri
 and dis
rete random variables. Equation

(1.2.1) 
an be numeri
ally solved with the impli
it ba
kward algorithm

Yti = E

[
Yti+1 |Gti

]
+∆f(ti, Yti , Zti) (1.2.2)

Zti =
1√
∆
E

[
Yti+1ǫi+1|Gti

]
(1.2.3)

where G is the dis
rete �ltration generated by the sequen
e of ǫi's. For the expli
it s
heme, one

may 
onsider

Yti = E

[
Yti+1 |Gti

]
+∆f(ti,E

[
Yti+1 |Gti

]
, Zti) (1.2.4)

instead of the expression of equation (1.2.2).

8

By repla
ing the Brownian in
rements in the BSDE with random steps.

9

Bou
hard and Touzi [20℄ 
onsider �questionable� the extension of tree methods to high dimension problems

due to the di�
ulty of su
h extensions.

11



Building on Briand, Delyon and Memin [21, 22℄ and Ma, Protter, San Martin and Torres

[78℄, Peng and Xu [99℄ worked on impli
it and expli
it algorithms for one dimensional BSDEs

and re�e
ted BSDEs (RBSDEs) based on the binomial method and proved their 
onvergen
e

for the ba
kward and 
ontrol pro
esses under minimal 
onditions on the BSDE driver. Finally,

in the paper of Briand, Delyon and Memin [22℄, the approximation of the Brownian motion is

generalized from (s
aled) random walks used in [21℄ to martingales.

1.3 Monte Carlo regression based methods

Simulation methods mostly apply to de
oupled FBSDEs and essentially started with the work

of Zhang [124℄ and his proof of the 
ontrol pro
ess path regularity. This path regularity allows

the implementation of strongly 
onvergent (simulation based) algorithms with a deterministi


time dis
retization and avoid time node randomization as in Bally [7℄, numeri
al treatment of

the quasilinear PDE as in Douglas, Ma and Protter [40℄ or high regularity 
onditions on the

BSDE 
oe�
ients as in [40℄ or [28℄. Moreover, the main advantage of simulation based methods

lies in their e�
ien
y for multidimensional problems.

1.3.1 Ba
kward s
hemes

The numeri
al implementation of Zhang's [124℄ method requires only the usual Lips
hitz 
on-

ditions on the FBSDE 
oe�
ients needed for the problem well-posedness. In parti
ular, some

Lips
hitz regularities

10

are de�ned for the BSDE terminal value fun
tion that is allowed to be

non-Markovian, in the sense that it may depend on the whole forward pro
ess path.

Given a (deterministi
) time partition, the forward SDE des
ribing a (non-homogeneous) Ito

di�usion is numeri
ally integrated with an Euler s
heme whi
h yields a half (12 ) order strongly


onvergent solution. The mean square error (MSE), when valuing the BSDE terminal fun
tion

with the Euler solution of the forward pro
ess, is �rst order 
onvergent in time in 
ase the

terminal fun
tion is Markovian or L1
-Lips
hitz. The MSE is of the order of log(∆t−1)∆t for

time step ∆t in the L∞
-Lips
hitz 
ase.

As to the BSDE itself, Zhang [124℄ dis
retizes it with an expli
it Euler s
heme and the

ba
kward and 
ontrol pro
ess values are re
overed ba
kward in time using the BSDE lo
al

representation. More pre
isely, expe
tations taken on the BSDE dis
retization 
ompute the

approximate adapted solutions of the BSDE. The s
heme is proved to be 
onvergent in the

L2
-sense of Zhang [124℄ and its 
onvergen
e for the ba
kward and 
ontrol pro
esses is strongly

related to the Lips
hitz regularity of the BSDE terminal value fun
tion. Indeed, the s
heme

yields a squared error of the order of log(∆t−1)∆t if either the driver does not depend of the


ontrol pro
ess or the time partition is K-uniform

11

. If in addition the BSDE terminal value

fun
tion is Markovian or L1
-Lips
hitz, then the 
onvergen
e is half order in time (i.e a squared

error of order one). Zhang gives the following general error bound

sup
t∈[0,T ]

∥∥∥Yt − Ŷt

∥∥∥
2

L2
+
∥∥∥Z − Ẑ

∥∥∥
2

L2
I

≤ C
(
|π|+ ‖ξ − ξπ‖2L2

)
(1.3.1)

for a given time partition π, where Ŷ and Ẑ are the BSDE pie
ewise 
onstant numeri
al solutions.

When giving orders of 
onvergen
e for his algorithm, Zhang [124℄ does not provide any

method for the valuation of the expe
tations involved in the BSDE lo
al dis
rete representation

and numeri
al solution so that the order of 
onvergen
e are valid when valuing exa
t expe
ta-

tions. Thus, not only does one still need an approximate method for the expe
tations in order

10

De�nition 2.1 of Zhang [124℄.

11

De�nition 5.2 of Zhang [124℄.

12



to implement the Zhang [124℄ algorithm but the orders of 
onvergen
e have to be updated to

take into a

ount the error indu
ed by the approximation. Two main papers appeared to solve

this problem.

Bou
hard and Touzi [20℄ 
onsider a (de
oupled) FBSDE where the forward pro
ess is a mul-

tidimensional time homogeneous Ito di�usion. The ba
kward pro
ess is taken uni-dimensional

for simpli
ity. As in Zhang [124℄, an expli
it Euler s
heme numeri
ally integrates the forward

SDE but the ba
kward SDE is dis
retized with an expli
it Euler s
heme. Nonetheless, 
ondi-

tional expe
tations still need to be 
omputed in order to approximate the ba
kward and 
ontrol

pro
esses dis
rete lo
al representations.

In order to approximate the expe
tations, Bou
hard and Touzi [20℄ apply a Malliavin 
al
ulus

based regression method whi
h for
es the simulated forward pro
ess values at ea
h time node

to be independent. Hen
e, the forward pro
ess values at ea
h time node have to be simulated

independently of its values at any other time node leading to a parti
ularly time 
onsuming

pro
edure.

For a �xed number N of paths (in the forward pro
ess simulation), the algorithm yields an

Lp
-error of the order ∆t−1

for the ba
kward pro
ess. Hen
e, the method has the undesired

property that errors tend to explode for a �xed number of simulated paths when redu
ing the

time step. The Lp
-error due to the expe
tation approximation multiplies this time stepping error

on the ba
kward pro
ess and is of the order of ∆t−1− d
4pN− 1

2p
, where the forward pro
ess has

dimension d, for a global Lp
-error of the order of ∆t−2− d

4pN− 1
2p
. From this result, the authors

point out that if the number of simulated paths is taken to be n3p+ d
2
, where n is the number of

time steps in an uniform time grid, then one a
hieves a half order global Lp
-
onvergen
e in time

for the ba
kward pro
ess. The arti
le ends with an extension of the method to RBSDEs and a

numeri
al example on an Ameri
an option pri
ing problem.

One of the main disadvantages of the Malliavin weights regression method is its 
ompu-

tational 
omplexity. Crisan, Manolarakis and Touzi [33℄ address this problem and propose a

simpli�
ation of the algorithm in Bou
hard and Touzi [20℄. The simpli�
ation 
onsists in using

alternative Malliavin weights and preserves the method's 
onvergen
e features.

Using similar ideas, Gobet, Lemor and Warin [53℄ proposed another simulation method for

multidimensional de
oupled FBSDEs that does not require independent simulations of the for-

ward pro
ess. Conditions on the FBSDE 
oe�
ients are those needed for well-posedness and,

parti
ularly, the terminal fun
tion is assumed to have the L∞
-Lips
hitz property in the non-

Markovian 
ase. As usual, a forward Euler s
heme approximates for the forward pro
ess.

The ba
kward algorithm for the BSDE is also built on a ba
kward Euler dis
retization and

uses least squares regression to approximate the BSDE solution. At ea
h time step, the ba
k-

ward and 
ontrol pro
esses are represented as linear 
ombinations of some basis fun
tions. The

proje
tion 
oe�
ients for both pro
esses are then determined by minimizing the regression mean

square error with Pi
ard iterations. The authors suggest orthogonal polynomials or hyper
ubes

as 
hoi
es of basis fun
tions.

The (partial) 
onvergen
e study in [53℄, made on the ba
kward and 
ontrol pro
ess, gives a

rather 
omplex expression for the upper bound of the method L2
-squared error. Nonetheless, it

highlights another drawba
k of simulation-based ba
kward s
hemes: the fa
t that errors a

u-

mulate through the iterations sin
e, at any time step, the approximations are 
omputed using

previous ones.

Beside the most used expli
it and impli
it Euler s
hemes for BSDEs, other dis
retization

13



s
hemes 
an be found in the literature. Zhao, Shen and Peng [125℄ introdu
ed θ-s
hemes where

the ba
kward SDE is lo
ally dis
retized with the driver and the 
ontrol pro
ess weighted upper

and lower values. The numeri
al solutions Yti and Zti at mesh time ti then solve the following

system of equations

Yti = Eti

[
Yti+1

]
+∆i

{
(1 − θ1)Eti

[
f(ti+1, Yti+1 , Zti+1)

]

+ θ1f(ti, Yti , Zti)} (1.3.2)

0 = Eti

[
∆WiYti+1

]
+∆i(1 − θ2)Eti

[
f(ti+1, Yti+1 , Zti+1)∆Wi

]

−∆i

{
(1− θ2)Eti

[
Zti+1

]
+ θ2Zti

}
(1.3.3)

where θ1 and θ2 are 
hosen in [0, 1] and may depend on the mesh time ti. The trapezoidal

rule whi
h 
onsists in setting θ1 = 1
2 and θ2 = 1 is known to be se
ond order a

urate for

the ba
kward pro
ess and �rst order a

urate for the 
ontrol pro
ess under di�erentiability and

boundedness 
onditions on the driver and the terminal 
ondition. One may refer to Zhao, Wang

and Peng [126℄ or Li and Zhao [74℄.

More re
ently, Zhao, Zhang and Ju [127℄ 
arried out a multistep s
heme but the 
onditional

expe
tations in their method are valued using Gauss-Hermite quadrature instead of Monte Carlo

regression.

1.3.2 Forward s
hemes

Forward s
hemes were designed by Bender and Denk [10℄ to address the two problems inherent

in simulation-based ba
kward methods: the error explosion for small time steps and the error

a

umulation due to embedded expe
tation approximations.

As in Gobet, Lemor and Warin [53℄, Bender and Denk [10℄ develop a method for multi-

dimensional de
oupled FBSDEs with a non-homogeneous di�usion as the forward pro
ess, a

non-Markovian L∞
-Lips
hitz terminal fun
tion and the usual (and minimal) 
onditions on the

FBSDE 
oe�
ients.

Instead of dis
retizing the BSDE lo
ally, the authors employ Riemann type sums and Pi
ard

iterations on the ba
kward and 
ontrol pro
esses to approximate the ba
kward integral at ea
h

time step. More pre
isely, the approximate ba
kward pro
ess is expressed in terms of the previous

Pi
ard iteration pro
esses and the obtained ba
kward sto
hasti
 integral is dis
retized with

lower Riemann sums. Taking the expe
tation from the subsequent expression preserves the

adaptedness of the numeri
al solutions and gives formulas for the values of the 
urrent Pi
ard

iteration ba
kward and 
ontrol pro
esses at the di�erent time nodes.

The n-th Pi
ard iteration on a time partition π = {0 = t0 < t1 < ... < tN = T } then takes

the form

Y n
ti = Eti


ξπ +

N−1∑

j=i

f(tj , X
π
tj , Y

n−1
tj , Zn−1

tj )∆j




(1.3.4)

Zn
ti = Eti


∆Wi

∆i


ξπ +

N−1∑

j=i

f(tj , X
π
tj , Y

n−1
tj , Zn−1

tj )∆j






(1.3.5)

where Y n−1
tj and Zn−1

tj are the values of the numeri
al solutions obtained in the previous Pi
ard

iteration for the ba
kward and the 
ontrol pro
esses respe
tively.

Even though Pi
ard iterations are the main feature in the method, the algorithm remains

quite e�
ient sin
e, in general, very few iterations are needed to have satisfa
tory results.

The forward pro
ess 
an be simulated with a forward Euler s
heme and the 
onditional ex-

pe
tations involved at ea
h Pi
ard iteration evaluated with a regression method forward through

14



time nodes. The authors use a least squares regression with orthogonal basis fun
tions, as in

Gobet, Lemor and Warin [53℄, to approximate the 
onditional expe
tations.

The algorithm produ
es a numeri
al solution with a half order L2
-
onvergen
e in time when

the 
onditional expe
tations are exa
t whi
h is similar to the result of Zhang [124℄ for ba
kward

methods. More spe
i�
ally, the quadrati
 error is given by

sup
t∈[0,T ]

‖Yt − Y n
t ‖2L2 + ‖Z − Zn‖2L2

I
≤ C

(
|π|+ ‖ξ − ξπ‖2L2 +

(
1

2
+ C |π|

)n)
(1.3.6)

Finally, the pro
edure's 
onvergen
e is also proved in the L2
-sense without spe
i�
ation of the

rate of 
onvergen
e.

Finally, an algorithm using Pi
ard iterations was re
ently 
onstru
ted by Bender and Zhang

[11℄ for weakly 
oupled FBSDEs with 
oe�
ients satisfying monotoni
ity 
onditions.

1.4 Methods for quadrati
 growth BSDEs

If numeri
al methods for FBSDEs with Lips
hitz 
oe�
ients have mainly attra
ted resear
hers,

the non-Lips
hitz 
ases are be
oming a growing interest. Among BSDEs with non-Lips
hitz


oe�
ients, those with quadrati
 growth are 
ertainly the most studied. Sin
e the proof of their

well-posedness by Kobylanski [70℄ for bounded terminal 
onditions, the studies of Briand and

Hu [24℄ extended the result to unbounded terminal 
onditions with exponential moments and


onvex driver.

Nonetheless, numeri
al methods for quadrati
 BSDEs are available only in the bounded

terminal value 
ase. This 
omes from the fa
t that the martingale de�ned by the Ito-integral

of the 
ontrol pro
ess (Z •W )t =
∫ t

0
ZsdWs does not ne
essary 
onserve its the BMO property

when the terminal 
ondition is unbounded, making the derivation of regularity and 
onvergen
e

results arduous in that 
ase.

Furthermore, numeri
al resolution of quadrati
 BSDEs fa
es a major obsta
le even in the

bounded terminal 
ondition 
ase. Indeed, the existing time dis
retization methods, and parti
-

ularly the Euler s
heme, fail to 
onverge for general quadrati
 BSDEs.

Imkeller and Dos Reis [65℄ try to over
ome those di�
ulties by proposing a method that

applies to de
oupled FBSDEs with bounded terminal 
ondition and di�erentiable 
oe�
ients.

First, the authors prove the required path regularities for the solutions of quadrati
 BSDEs.

Their numeri
al method relies on a trun
ation of the driver whi
h redu
es the problem from a

quadrati
 framework to a Lips
hitz one. Hen
e, the 
lassi
al time dis
retization 
an be used on

the modi�ed BSDE.

For one-dimensional BSDEs, a family of di�erentiable trun
ation fun
tions hn : R → R is

de�ned su
h that hn(z) is simultaneously bounded by |z| and the integer n + 1. Then, any

numeri
al method for FBSDEs with Lips
hitz 
oe�
ients 
an be applied to the approximated

BSDE

−dY n
t = f(t,Xt, Y

n
t , hn(Z

n
t ))dt− Zn

t dWt

where the 
ontrol pro
ess is repla
ed by its trun
ated value in the BSDE driver.

Sin
e 
lassi
al algorithms already 
onverge for the trun
ated BSDE, the method's global


onvergen
e depends on the 
onvergen
e of the trun
ated BSDE solution to the a
tual solution.

Thanks to the BMO property of the pro
ess Z •W , a 
onvergen
e rate is provided and is given,

for any β > 0 and p ∈ N
∗
, by the following error bound

‖Y n − Y ‖2p
L2p

S

+ ‖Zn − Z‖2p
L2p

I

≤ Dβn
− β

2q
(1.4.1)
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where Dβ and q are given 
onstants.

The authors point out the la
k of e�
ien
y of the trun
ation approa
h. Indeed, the method's


onvergen
e is assured when the time step ∆t is inversely proportional to the exponential of the

Lips
hitz 
onstant related to the trun
ated driver. More pre
isely, the global error, in
luding

the dis
retization error, is bounded by

Dβ

(
1

nβ
+
eCn2

N

)

where N is the number of time steps and C > 0 is related to the Lips
hitz 
onstant of the driver.

Hen
e, one needs to 
onsider more time steps when this Lips
hitz 
onstant slightly in
reases, so

to say when one tries to get a slightly better approximation through trun
ation.

Re
ently, another numeri
al algorithm was proposed by Ri
hou [103℄. It solves for de
oupled

FBSDE with bounded terminal values and a forward volatility that is only a fun
tion of time

on an nonuniform time grid. The main feature of Ri
hou's approa
h is the Hölder 
ontinuity of

the terminal value fun
tion.
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Chapter 2

Convolution method for BSDEs

In this 
hapter, we implement a quadrature method for numeri
al solution of BSDEs. An Euler

s
heme dis
retizes the equation and we apply an FFT (Fast Fourier Transform) algorithm to

value the 
onditional expe
tations indu
ed by the time dis
retization. Hen
e, the approa
h is

a typi
al spatial dis
retization method with the feature that the FFT algorithm serves as an

alternative to trees and quantization when 
omputing the quadratures.

The FFT algorithm 
omputes the (inverse) dis
rete Fourier transform (DFT) of a given

fun
tion and is widely used in various �elds, and parti
ularly in spe
tral and pseudo-spe
tral

methods for PDEs. In addition to its �exibility, one of its main advantages is its e�
ien
y as

the FFT algorithm 
omputes the values of the dis
rete Fourier transform of n fun
tion values

in O(n log(n)) operations.

Two interesting �nan
ial appli
ations of the algorithm are those of Carr and Madan [26℄ and

Lord et al. [76℄. These two papers employ the FFT algorithm to 
ompute quadratures in the


ontext of option pri
ing under Lévy pro
esses. The �rst paper deals with European options

whereas the latter treats Ameri
an options. Our approa
h is mu
h 
loser to the one of Lord

et al. [76℄ sin
e the numeri
al resolution of the BSDE is also made by dynami
 programming

through the Euler s
heme.

2.1 Preliminaries

In this 
hapter, we study the numeri
al solution of BSDEs of the form

Yt = g(WT ) +

∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

Z∗
sdWs (2.1.1)

where W is a d-dimensional Brownian motion with driver f : [0, T ]×R×Rd → R and terminal


ondition g : Rd → R. Conditions on f and g are given in se
tion A.1 of appendix A. In addition,

Proposition A.2 assures the well-posedness of su
h BSDEs.

It is known

1

from Pardoux and Peng [96℄ that if the Cau
hy problem to the di�usion PDE





∂u
∂t + 1

2

∑d
i=1

∂2u
∂x2

i

+ f(t, u,∇u) = 0, (t, x) ∈ [0, T )× Rd

u(T, x) = g(x)
(2.1.2)

has a unique solution then the solution (Y, Z) for the BSDE admits the representation

Yt = u(t,Wt) (2.1.3)

1

See se
tion A.2.2 in the appendix.
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Zt = ∇u(t,Wt). (2.1.4)

This representation plays an important role in the sequel, sin
e the 
onvolution method impli
itly

solves the PDE of equation (2.1.2).

2.2 Convolution for BSDEs

In this se
tion, we present the main ideas behind the 
onvolution method. More pre
isely, we

build numeri
al approximations to the BSDE of equation (2.1.1), using a time dis
retization

of the BSDE. Thereafter, we give some useful properties of these solutions. For simpli
ity, we

develop the method in the one dimensional 
ase, i.e d = 1.

2.2.1 The approximate solutions and their properties

The starting point of the 
onvolution method for BSDEs is the Euler s
heme. We will mainly


onsider its expli
it version whi
h takes the form





Zπ
tn = 0, Y π

tn = ξπ

Zπ
ti =

1
∆i
E

[
Y π
ti+1

∆Wi|Fti

]

Y π
ti = E

[
Y π
ti+1

|Fti

]
+ f(ti,E

[
Y π
ti+1

|Fti

]
, Zπ

ti)∆i

(2.2.1)

on a time mesh π = {t0 = 0 < t1 < ... < tn = T } and refer to it as the Euler s
heme 1. A

similar version of the Euler s
heme was already proposed by Peng and Xu [99℄ in the 
ontext

of binomial trees with the di�eren
e that the authors 
ompute the expe
tations after the spa
e

dis
retization and, hen
e, with a dis
rete �ltration.

Sin
e the Brownian motion W is a Markov pro
ess, we de�ne the approximate gradient

u̇i : R → R at time mesh ti, i = 0, 1, ..., n− 1 as

u̇i(x) =
1

∆i
E

[
Y π
ti+1

∆Wi|Wti = x
]

(2.2.2)

so that the approximate 
ontrol pro
ess is given by

Zπ
ti = u̇i(Wti). (2.2.3)

We let the intermediate solution ũi : R → R at time ti take the form

ũi(x) = E

[
Y π
ti+1

|Wti = x
]
. (2.2.4)

Consequently, an approximate solution of the PDE of equation (2.1.2) at mesh time ti 
onsists

of a real-valued fun
tion ui : R → R satisfying

Y π
ti = ui(Wti) (2.2.5)


an be de�ned as

ui(x) = ũi(x) + ∆if(ti, ũi(x), u̇i(x)) (2.2.6)

where

u̇i(x) =
1

∆i

∫ ∞

−∞
(y − x)ui+1(y)h(y|x)dy (2.2.7)

ũi(x) =

∫ ∞

−∞
ui+1(y)h(y|x)dy (2.2.8)
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for i = 0, 1, ..., n− 1 and un(x) = g(x). Note that u̇i is the approximate solution for the gradient

of the PDE solution ∇u at mesh time ti. Similar expressions are obtained by Delarue and

Menozzi [35℄ in the 
ontext of FBSDEs and quasi-linear PDEs.

Also, the fun
tion h is the density fun
tion of Wti+1 
onditional on the value of Wti . By the

stationary and the independen
e of Brownian in
rements, we have that

h(y|x) = h(y − x). (2.2.9)

As in Lord et al. [76℄, the relation of equation (2.2.9) plays a 
entral role in the 
onvolution

method sin
e it allows us to express the fun
tions ũi and u̇i as 
onvolutions. This, in addition,

simpli�es the appli
ation of Fourier transforms and hen
e the 
omputation of the integrals of

equations (2.2.7) and (2.2.8) via the DFT as we shall see in the sequel. Indeed

h(x) = (2π∆i)
− 1

2 exp

(
− x2

2∆i

)
(2.2.10)

sin
e in
rements of a Brownian motion are normally distributed.

The impli
it Euler s
heme 
an also be 
onsidered in this analysis, only the expression for the

approximate solution di�ers. Indeed when the BSDE is dis
retized with the time stepping





Zπ
tn = 0, Y π

tn = ξπ

Zπ
ti =

1
∆i
E

[
Y π
ti+1

∆Wi|Fti

]

Y π
ti = E

[
Y π
ti+1

|Fti

]
+ f(ti, Y

π
ti , Z

π
ti)∆i

(2.2.11)

the approximate solution has ui the impli
it form

ui(x) = ũi(x) + ∆if(ti, ui(x), u̇i(x)). (2.2.12)

The approximate gradient u̇i and the intermediate solution ũi satisfy equations (2.2.7) and (2.2.8)

respe
tively. The impli
it representation of equation (2.2.12) is solvable for the approximate

solution ui when

|π|K < 1 (2.2.13)

where K is the Lips
hitz 
onstant of the driver f . In this 
ase, the expli
it and impli
it s
hemes

produ
e solutions with similar properties. For this reason, we mainly fo
us the analysis on the

expli
it Euler s
heme 1.

The solution (Y π
i , Z

π
i ) and (ui, u̇i), i = 0, 1, ..., n− 1, display important properties that are

worth mentioning. These properties are easily extensible to the multidimensional 
ase even

though we present them in the one-dimensional setting. The next lemma des
ribes the integra-

bility property of the solution (Y π
i , Z

π
i ).

Lemma 2.1. Suppose the 
onditions of Assumption A.2 are satis�ed and p ≥ 2. Then there

exists a positive 
onstant Cπ > 0 depending on the Lips
hitz 
onstant K, the time horizon T ,

the partition π su
h that

sup
i

‖Y π
i ‖Lp + sup

i
∆

1
2

i ‖Zπ
i ‖Lp ≤ Cπ

(
‖ξ‖Lp + T sup

t∈[0,T ]

|f(t, 0, 0)|
)
. (2.2.14)

Hen
e, if ξ = g(WT ) ∈ Lp
and f(., 0, 0) ∈ C

Y π
i ∈ Lp

and Zπ
i ∈ Lp.

Proof. Let's �rst note that for 2 ≤ p <∞

‖Zπ
i ‖pLp =

1

∆p
i

E

[∣∣
Eti

[
Y π
i+1∆Wi

]∣∣p]

19



≤ 1

∆p
i

E

[
∆

p
2

i

∣∣
Eti

[
(Y π

i+1)
2
]∣∣ p2
]
(by the Cau
hy-S
hwartz inequality),

≤ ∆
− p

2
i E

[
Eti

[∣∣Y π
i+1

∣∣p]]
(by Jensen's inequality),

= ∆
− p

2

i E

[∣∣Y π
i+1

∣∣p]

= ∆
− p

2

i

∥∥Y π
i+1

∥∥p
Lp . (2.2.15)

Also, letting Ỹ π
i = Eti

[
Y π
i+1

]
, we have

∥∥∥Ỹ π
i

∥∥∥
p

Lp
= E

[∣∣
Eti

[
Y π
i+1

]∣∣p]

≤ E

[
Eti

[∣∣Y π
i+1

∣∣p]]
(by Jensen's inequality),

=
∥∥Y π

i+1

∥∥p
Lp . (2.2.16)

Sin
e, by the Lips
hitz property of the driver f ,

|Y π
i | ≤

∣∣∣Ỹ π
i

∣∣∣+∆iK
(∣∣∣Ỹ π

i

∣∣∣+ |Zπ
i |
)
+∆i sup

t∈[0,T ]

|f(t, 0, 0)|

where K is the Lips
hitz 
onstant of f . Hen
e, we have that

‖Y π
i ‖Lp ≤

∥∥∥Ỹ π
i

∥∥∥
Lp

+∆iK
(∥∥∥Ỹ π

i

∥∥∥
Lp

+ ‖Zπ
i ‖Lp

)
+∆i sup

t∈[0,T ]

|f(t, 0, 0)|

(using Minkowsky inequality),

≤ (1 + ∆iK +∆
1
2

i K)
∥∥Y π

i+1

∥∥
Lp +∆i sup

t∈[0,T ]

|f(t, 0, 0)|

(using inequalities (2.2.15) and (2.2.16)),

≤
n−1∏

j=i

(1 + ∆jK +∆
1
2
i K)

(
‖ξ‖Lp + T sup

t∈[0,T ]

|f(t, 0, 0)|
)

(by Gronwall's Lemma),

≤ exp

(
KT +K

n−1∑

i=0

∆
1
2

i

)(
‖ξ‖Lp + T sup

t∈[0,T ]

|f(t, 0, 0)|
)

≤ 1

2
Cπ

(
‖ξ‖Lp + T sup

t∈[0,T ]

|f(t, 0, 0)|
)

(2.2.17)

From the inequalities of equation (2.2.17) and (2.2.15) we have

∆
1
2

i ‖Zπ
i ‖Lp ≤ 1

2
Cπ

(
‖ξ‖Lp + T sup

t∈[0,T ]

|f(t, 0, 0)|
)
. (2.2.18)

Taking the supremum on the left hand side of (2.2.17) and (2.2.18) then leads to the result of

equation (2.2.14) for 2 ≤ p <∞. Finally, taking the limit as p→ ∞ gives the result in the 
ase

p = ∞ and 
ompletes the proof.

As to the approximate solution (ui, u̇i), we �rst present their di�erentiability properties. This

property will be used in the error analysis of the 
onvolution method.

Lemma 2.2. If the driver f ∈ C1,2,2
is twi
e di�erentiable in the ba
kward and 
ontrol variables

and the driver g ∈ C2
is also twi
e di�erentiable then the approximate solution ui ∈ C2

and the

approximate gradient u̇i ∈ C2
are both twi
e di�erentiable for i = 0, 1, ..., n− 1.

Proof. The result follows by applying Leibniz's integral rule su

essively.

It is important to ensure the approximate solution (ui, u̇i) is 
lose enough to the PDE so-

lution u and its gradient ∇u. The next lemma des
ribes the error indu
ed by the BSDE time

dis
retization through equations (2.2.6), (2.2.8) and (2.2.7). It holds sin
e we know from Zhang

[124, 123℄ that the time dis
retization of the BSDEs yields a �rst order (quadrati
) error term.
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Lemma 2.3. Under the 
onditions of Assumption A.2, we have that

max
0≤i<n

E

[

sup
t∈[ti,ti+1]

|u(t,Wt)− ui(Wti)|
2

]

+
n−1
∑

i=0

E

[
∫ ti+1

ti

|∇u(t,Wt)− u̇i(Wti)|
2
ds

]

= O(|π|) (2.2.19)

for any time dis
retization π = {0 = t0 < t1 < ... < tn = T }.

Equations (2.2.6) and (2.2.8), along with the expression of the density of equation (2.2.9),

show that the intermediate solution ũi and the approximate gradient u̇i are su

essive 
onvolution

transformations. More spe
i�
ally, they are (generalized) Gauss-Weierstrass transforms sin
e

the kernel h is the Gaussian density. We give a qui
k introdu
tion to the Gauss-Weierstrass

transform in Appendix D. This presentation stems from the impressive literature on 
onvolution

transformations. The books of Hirshman and Widder [60℄ or Zemanian [120℄, for instan
e, are

dedi
ated to the subje
t and also to the parti
ular 
ase of Gauss-Weierstrass transform. In

addition, Appendix E 
ontains an introdu
tion to Fourier analysis that is used in the sequel.

2.2.2 Constru
tion of the 
onvolution method

For a dampening parameter α ∈ R and any fun
tion f , we de�ne the fun
tion fα
as

fα(x) = e−αxf(x). (2.2.20)

Taking the Fourier transform of ũαi gives

F[ũαi ](ν) =

∫ ∞

−∞
e−iνxe−αx

∫ ∞

−∞
ui+1(y)h(y − x)dydx

=

∫ ∞

−∞
e−iνx

∫ ∞

−∞
uαi+1(y)e

α(y−x)h(y − x)dydx

= F[uαi+1](ν)F[e
−αzh(−z)](ν) (2.2.21)

using the 
onvolution theorem of Proposition E.5. Moreover

F[e−αzh(−z)](ν) =

∫ ∞

−∞
e−iνze−αzh(−z)dz

=

∫ ∞

−∞
ei(ν−iα)xh(x)dx

after the 
hange of variable x = −z,
= φ(ν − iα) (2.2.22)

where

φ(ν) = exp

(
−1

2
∆iν

2

)
(2.2.23)

is the 
hara
teristi
 fun
tion of the density h.

The equality of equation (2.2.22) is well-de�ned sin
e |φ(ν − iα)| < ∞ for any α ∈ R.

Nonetheless, the stru
ture of the terminal 
ondition g (and more generally, the pre
eding ap-

proximation ui+1) will have a major impa
t in the 
hoi
e of the dampening parameter α. Indeed,

the equations (2.2.21) and (2.2.22) then lead to

F[ũαi ](ν) = F[uαi+1](ν)φ(ν − iα) (2.2.24)

and hen
e the parameter α must be 
hosen so that the dampened fun
tions uαi , i = 0, 1, ..., n,

are integrable and admit Fourier transforms.
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Using the same approa
h, the Fourier transform of u̇αi gives

F[u̇αi ](ν) = − 1

∆i
F[uαi+1](ν)F[ze

−αzh(−z)](ν)

= − i

∆i
F[uαi+1](ν)

∂

∂ν
F[e−αzh(−z)](ν)

= − i

∆i
F[uαi+1](ν)

∂

∂ν
φ(ν − iα)

= (α+ iν)F[uαi+1](ν)φ(ν − iα). (2.2.25)

where the se
ond equality holds by Proposition E.4.

From equations (2.2.24) and (2.2.25), we re
over the fun
tions ũi and u̇i by taking the inverse

Fourier transform and adjusting for the dampening fa
tor

ũi(x) = eαxF−1
[
F[uαi+1](ν)φ(ν − iα)

]
(x) (2.2.26)

u̇i(x) = eαxF−1
[
(α+ iν)F[uαi+1](ν)φ(ν − iα)

]
(x). (2.2.27)

It is possible to 
onstru
t an alternative expli
it 
hara
terization of the BSDE numeri
al

solution. One may 
onsider dire
tly the expli
it Euler s
heme





Zπ
tn = 0, Y π

tn = ξπ

Zπ
ti =

1
∆i
E

[
Y π
ti+1

∆Wi|Fti

]

Y π
ti = E

[
Y π
ti+1

+ f(ti, Y
π
ti+1

, Zπ
ti)∆i|Fti

] (2.2.28)

to de�ne the approximate solution of the PDE of equation (2.1.2). We refer to this s
heme as

the expli
it Euler s
heme 2. In this 
ase, the approximate solution and the approximate gradient


onsist of fun
tions vi and v̇i at mesh time ti whi
h take the form

vi(x) =

∫ ∞

−∞
ṽi+1(y)h(y − x)dy (2.2.29)

where

ṽi+1(x) = vi+1(x) + ∆if(ti, vi+1(x), v̇i(x)), (2.2.30)

v̇i(x) =

∫ ∞

−∞
(y − x)vi+1(y)h(y − x)dy (2.2.31)

for i = 0, 1, ..., n − 1 and vn(x) = g(x). Following the steps of the previous 
hara
terization,

these equations naturally lead to

vi(x) = eαxF−1
[
F[ṽαi+1](ν)φ(ν − iα)

]
(x) (2.2.32)

v̇i(x) = eαxF−1
[
(α+ iν)F[vαi+1](ν)φ(ν − iα)

]
(x). (2.2.33)

In this 
ase, both vαi and ṽαi for i = 0, 1, ..., n− 1 along with the dampened terminal 
ondition

are assumed to be integrable so that they admit Fourier transforms.

2.3 Implementation

As seen in Se
tion 2.2, the numeri
al approximations of the BSDE solution 
an be expressed

in terms of 
onvolutions representing the 
onditional expe
tations involved in the expli
it and

impli
it Euler s
hemes. We present, in this se
tion, the numeri
al te
hniques whi
h will allow

us to 
ompute the quadratures in the solution expressions.
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2.3.1 Spa
e dis
retization

From equations (2.2.26), (2.2.27),(2.2.32) and (2.2.33) one noti
es that 
omputing the approxi-

mate solutions ui and vi at mesh time ti redu
es to 
omputing a fun
tion θ : R → R depending

of two fun
tions ψ : C → C and η : R → R in the following manner

θ(x) =
1

2π

∫ ∞

−∞
eiνxη̂α(ν)ψ(ν)dν (2.3.1)

if we drop the dampening fa
tor eαx. 2

This integral is numeri
ally 
omputed by dis
retizing the Fourier spa
e with an uniform grid

of N + 1 points {νi}Ni=0 on the interval [−L
2 ,

L
2 ] of length L , where N is even, su
h that

νi = ν0 + i∆ν (2.3.2)

where ν0 = −L
2 and ∆ν = L

N . Hen
e, for any x ∈ R

θ(x) ≈ 1

2π

∫ L
2

−L
2

eiνxη̂α(ν)ψ(ν)dν

≈ ∆ν

2π

N−1∑

i=0

eiνixη̂α(νi)ψ(νi) (2.3.3)

where the integral is approximated using lower Riemann sums and

η̂α(νi) =

∫ ∞

−∞
e−ixνiηα(x)dx =

∫ ∞

−∞
e−ixνie−αxη(x)dx. (2.3.4)

This last integral is also 
omputed using a uniform grid of N + 1 points {xj}Nj=0 su
h that

xj = x0 + j∆x (2.3.5)

where ∆x is 
hosen so that the Nyquist relation

3

is satis�ed, i.e

∆x =
2π

L
. (2.3.6)

We approximate the integral of equation (2.3.4) by �rst restri
ting the integration interval to

[x0, xN ] = [− l
2 ,

l
2 ] and then applying a 
omposite quadrature rule with weights {wi}Ni=0 so that

η̂α(νi) ≈
∫ xN

x0

e−ixνiηα(x)dx (2.3.7)

≈ ∆x

N∑

j=0

wje
−ixjνiηα(xj)

= ∆x · e−ix0νi

N∑

j=0

wje
−iji 2π

N e−ijν0∆xηα(xj)

= ∆x · e−ix0νi




N−1∑

j=0

wje
−iji 2π

N e−ijν0∆xηα(xj) + wNη
α(xN )




sin
e N is even. Assuming that

ηα(x0) = ηα(xN ), (2.3.8)

2

For a suitable fun
tion η, the transform de�ning the fun
tion θ 
an be interpreted as dampened 
onditional

expe
tation of η or ∇η depending of the fun
tion ψ.
3

In its expli
it form, we have ∆ν ·∆x = 2π
N
. One may then 
hoose ∆x �rst and retrieve ∆ν form the Nyquist

relation.
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we have, for i = 0, 1, ..., N − 1,

η̂α(νi) ≈
2π

∆ν
e−ix0νiD

[
{(−1)jw̃jη

α(xj)}N−1
j=0

]
i

(2.3.9)

sin
e e−iν0∆x = −1 with

w̃j = wj + δN−j,NwN (2.3.10)

where δi,j stands for the Krone
ker's delta.

A similar approa
h 
an be found in Lord et al. [76℄ who enhan
e the dis
rete Fourier transform

with a 
omposite trapezoidal quadrature rule to 
ompute this last integral. However, the authors

omit the assumption of equation (2.3.8) leading to 
onsiderable numeri
al errors, espe
ially

around the boundaries of the restri
ted domain [x0, xN ].

Note that

(α + iν)F[ηα](ν) = F

[
αηα +

∂ηα

∂x

]
(ν)

and hen
e, when using ψ(ν) = (α + iν)φ(ν − iα), the Fourier 
oe�
ients of the derivative

∂ηα

∂x

are impli
itly 
onsidered. For this reason, we also assume that

∂ηα

∂x
(x0) =

∂ηα

∂x
(xN ) (2.3.11)

for a di�erentiable fun
tion η.

The values of the fun
tion θ are 
omputed at the grid points {xk}N−1
k=0 by 
ombining equations

(2.3.3) and (2.3.9)

θ(xk) ≈
N−1∑

j=0

eiνjxkψ(νj)e
−ix0νjD

[
{(−1)iw̃iη

α(xi)}N−1
i=0

]
j

= eikν0∆x
N−1∑

j=0

eijk
2π
N ψ(νj)D

[
{(−1)iw̃iη

α(xi)}N−1
i=0

]
j

= (−1)kD−1

[{
ψ(νj)D

[
{(−1)iw̃iη

α(xi)}N−1
i=0

]
j

}N−1

j=0

]

k

. (2.3.12)

Sin
e we use the DFT, the underlying trigonometri
 (and hen
e periodi
) interpolation allows

us to set

θ(xN ) = θ(x0). (2.3.13)

We shall see, in the following sub-se
tion how to adjust the method to 
onsider fun
tions that

do not satisfy the 
onditions of equations (2.3.8) and (2.3.11).

2.3.2 Numeri
al 
onsiderations

The integrability 
ondition on the dampened approximate solutions (uαi , v
α
i and ṽαi ), parti
ularly

on the terminal value fun
tion gα, may seem too 
onstraining sin
e it narrows the s
ope of

BSDEs that 
an be numeri
ally solved by the method. In fa
t, the 
ondition has no e�e
t on

the numeri
al method sin
e we are performing a domain trun
ation when valuing numeri
ally

the Fourier transform of the dampened approximate solutions by the DFT in equation (2.3.7).

Indeed, this integral trun
ation imposes an integrability 
ondition only on the trun
ated fun
tion

Ξ(x) = ηα(x)1[x0,xn](x) (2.3.14)

where

1A(x) =




1 if x ∈ A

0 if x /∈ A
(2.3.15)
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is the indi
ator fun
tion. The pro
edure is equivalent to solving the BSDE on the restri
ted

domain [x0, xN ].

An important step in the 
onvolution method for BSDEs presented here is the 
hoi
e of

the parameter α used for dampening purposes. As already mentioned, the optimal dampening

parameter strongly depends on the stru
ture of the fun
tion η and will 
onsiderably improve

the a

ura
y of the approximation of equation (2.3.9). Indeed, the DFT algorithm gives better

results when α is 
hosen su
h that

ηα(x0) = ηα(xN ). (2.3.16)

Sin
e we intend to solve not only for the PDE solution u but also for its derivative ∇u, we also
need

∂ηα

∂x
(x0) =

∂ηα

∂x
(xN ) (2.3.17)

where we assume that the fun
tion η is di�erentiable at least at the boundaries of the restri
ted

domain.

Note that, even for very simple terminal value fun
tions g the 
ondition of equation (2.3.16)

may be impossible to satisfy. A straightforward example is provided by the fun
tion g(x) = x on

the interval [x0, xN ] = [−1, 1]. In order to address this problem, we slightly modify the fun
tion

η by adding a linear fun
tion to get the modi�ed dampened fun
tion ηαβ,κ de�ned as

ηαβ,κ(x) = e−αx(η(x) + βx+ κ). (2.3.18)

The following lemma gives the optimal 
hoi
e for the dampening parameter α ∈ R, and the


oe�
ients β ∈ R and κ ∈ R.

Lemma 2.4. Suppose the real fun
tion η ∈ C1[a, b] is di�erentiable with

∂η

∂x
(a) 6= ∂η

∂x
(b)

and let ηαβ,κ be its dampened and modi�ed fun
tion as de�ned in equation (2.3.18). Then

α =
1

b − a
log

(
∂η
∂x (b) + β
∂η
∂x (a) + β

)
, (2.3.19)

κ =
e−αb(η(b) + βb)− e−αa(η(a) + βa)

e−αa − e−αb
(2.3.20)

solve the system of nonlinear equations




ηαβ,κ(a) = ηαβ,κ(b)
∂ηα

β,κ

∂x (a) =
∂ηα

β,κ

∂x (b)
(2.3.21)

for any β /∈ { ∂η
∂x (a),

∂η
∂x (b)}. If, in addition,

β > max

(
|∂η
∂x

(b)|, |∂η
∂x

(a)|
)

(2.3.22)

then also α ∈ R and κ ∈ R.

Proof. The �rst equation of the system (2.3.21) gives (2.3.20) in a straightforward manner. Sin
e

η is di�erentiable, ηαβ,κ is also di�erentiable and

∂ηαβ,κ
∂x

(x) = −αηαβ,κ(x) + e−αx

(
∂η

∂x
(x) + β

)

and the system (2.3.21) leads to (2.3.19). Clearly, if the inequality (2.3.22) holds then both

∂η
∂x (b) + β and

∂η
∂x(a) + β are stri
tly positive and α ∈ R.
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The transform of equation (2.3.18) may seem over parametrized sin
e we use three param-

eters to satisfy only two 
onditions. However, using only two parameters may lead to 
omplex

parameters or to an in
onsistent system.

Remark 2.5. When implementing the method, the values of derivative

∂η
∂x at x0 and xN 
an

be approximated by �nite di�eren
e. We use the se
ond order forward (resp. ba
kward) �nite

di�eren
e when estimating

∂η
∂x (x0) (resp.

∂η
∂x (xN )) as follows

∂η

∂x
(x0) =

−3η(x0) + 4η(x1)− η(x2)

2∆x
+O(∆x2) (2.3.23)

∂η

∂x
(xN ) =

3η(xN )− 4η(xN−1) + η(xN−2)

2∆x
+O(∆x2). (2.3.24)

Also, one needs a positive 
onstant, whi
h represent the minimal slope allowed in the linear

transform βx + κ, say ǫ > 0, as an input. Set

β = ǫ+max

(
|∂η
∂x

(xN )|, |∂η
∂x

(x0)|
)
. (2.3.25)

Whenever

∂η
∂x(xN ) = ∂η

∂x0
(b), one 
an set α = κ = 0 and

β = −η(xN )− η(x0)

xN − x0
. (2.3.26)

Under the transformation of equation (2.3.18 ), the 
omputation of our approximate solution

is not signi�
antly more 
omplex. One just has to make simple adjustments for the 
oe�
ient

β ∈ R and κ ∈ R. For both Euler s
hemes of equations (2.2.1) and (2.2.28), properties of the


onditional expe
tation allows the adjustments and the following theorem gives their essen
e.

Theorem 2.6. Let η : [a, b] → R be an integrable fun
tion and de�ne ηβ,α : [a, b] → R as

ηβ,κ(x) = η(x) + βx+ κ

su
h that ηαβ,κ is the dampened and modi�ed fun
tion of η a

ording to equation (2.3.18). Then

the fun
tion θ : [a, b] → R of equation (2.3.1) admits the alternative representation

θ(x) =
1

2π

∫ ∞

−∞
eiνxη̂αβ,κ(ν)ψ(ν)dν − e−αxβ (2.3.27)

if ψ(ν) = (α+ iν)φ(ν − iα) or

θ(x) =
1

2π

∫ ∞

−∞
eiνxη̂αβ,κ(ν)ψ(ν)dν − e−αx(βx + κ) (2.3.28)

if ψ(ν) = φ(ν − iα) .

Proof. First, let ψ(ν) = (α+ iν)φ(ν − iα). By de�nition, we know that

θ(x) =
1

2π

∫ ∞

−∞
eiνxη̂α(ν)ψ(ν)dν

=
e−αx

∆i
E

[
η(Wti+1 )∆Wi|Wti = x

]

=
e−αx

∆i

(
E

[(
η(Wti+1) + βWti+1 + κ

)
∆Wi|Wti = x

]
− β∆i

)

=
e−αx

∆i
E

[
ηβ,κ(Wti+1)∆Wi|Wti = x

]
− e−αxβ

=
1

2π

∫ ∞

−∞
eiνxη̂αβ,κ(ν)ψ(ν)dν − e−αxβ.
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Similarly, if ψ(ν) = φ(ν − iα), we have

θ(x) =
1

2π

∫ ∞

−∞
eiνxη̂α(ν)ψ(ν)dν

= e−αx
E

[
η(Wti+1)|Wti = x

]

= e−αx
E

[
ηβ,κ(Wti+1)|Wti = x

]
− e−αx(βx+ κ)

=
1

2π

∫ ∞

−∞
eiνxη̂αβ,κ(ν)ψ(ν)dν − e−αx(βx+ κ).

The solution for the 
ontrol pro
ess Zπ
ti satis�es

Zπ
ti =

1

∆i
Eti

[(
Y π
ti+1

+ βWti+1 + κ
)
∆Wi

]
− β (2.3.29)

for any 
onstants β, κ ∈ R and at any time step ti, i = 0, 1, ..., n− 1. Its 
onditional expe
tation

must be shifted downward by β when using the transform fun
tion ηαβ,κ instead of ηα. Thus,

equation (2.3.1) 
an be repla
ed by

θ(x) =
1

2π

∫ ∞

−∞
eiνxη̂α(ν)ψ(ν)dν

=
1

2π

∫ ∞

−∞
eiνxη̂αβ,κ(ν)ψ(ν)dν − e−αxβ (2.3.30)

whenever ψ(ν) = (α + iν)φ(ν − iα) and the integral of this last equation is 
omputed by the

method presented in equation (2.3.12) after optimizing for α, β and κ.

Moreover, for any Fti+1-measurable random variable Y we have

Eti [Y ] = Eti

[
Y + βWti+1 + κ

]
− βWti − κ. (2.3.31)

For both proposed s
hemes, the 
onditional expe
tations involved in the expression of the forward

solution Y π
ti must be 
orre
ted by the linear fun
tion βx+κ. Equivalently, the relation of equation

(2.3.1) is repla
ed by

θ(x) =
1

2π

∫ ∞

−∞
eiνxη̂α(ν)ψ(ν)dν

=
1

2π

∫ ∞

−∞
eiνxη̂αβ,κ(ν)ψ(ν)dν − e−αx(βx + κ) (2.3.32)

whenever ψ(ν) = φ(ν− iα) where the integral of the last equation is 
omputed with the method

of equation (2.3.12).

As to the interval length of the frequen
y domain L, we set it large enough so that the value

of the 
hara
teristi
 fun
tion φ is approximately zero (0) at the boundaries of the trun
ated

frequen
y domain [−L
2 ,

L
2 ]. Ideally, the trun
ated real spa
e [x0, xN ] is 
entered around zero (0)

or more generally around the initial value of the Brownian motion {Wt}t∈[0,T ].

The stru
ture of the BSDE driver f may have an undesirable e�e
t on the algorithm, spe
ially

when it is a non-smooth fun
tion. This problem 
an be solved simply by redu
ing the time step

∆i. As a general rule, the larger is the Lips
hitz 
onstant of the driver f , the smaller should the

time step ∆i be. Due to the e�
ien
y of the DFT algorithm, the method is well adapted for

relatively large values of n, the number of time steps.

Many quadrature rules are available to 
ompute the approximate solution and approximate

gradient values. One may use the 
omposite trapezoidal rule with weights of the form

wi = 1− 1

2
(δ0,i + δN,i) , i = 0, 1, ..., N (2.3.33)
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leading to w̃i = 1. The 
omposite Simpson rule will improve a

ura
y in presen
e of a smooth

driver f .

Finally, the implementation of the 
onvolution method gives the approximation values {uik}Nk=0

and {u̇ik}Nk=0 to the approximate solutions ui and u̇i for i = 0, 1, 2, ..., n− 1. The detailed algo-

rithm is as follows:

Algorithm 2.1. Convolution Method

1. Dis
retize the restri
ted real spa
e [− l
2 ,

l
2 ] and the restri
ted Fourier spa
e [−L

2 ,
L
2 ] with N

spa
e steps so to have the real spa
e nodes {xk}Nk=0 and the Fourier spa
e nodes {νk}Nk=0

2. Set un(xk) = g(xk)

3. For any i from n− 1 to 0

(a) Compute α, β and κ, de�ned in equation (2.3.18), su
h that

η = (ui+1)
α
β,κ (2.3.34)

and η satis�es the boundary 
onditions.

(b) Compute θ(xk) through equation (2.3.12) for k = 0, 1, ..., N with

ψ(ν) = φ(ν − iα) (2.3.35)

and retrieve the values ũik as

ũik = eαxkθ(xk)− (βxk + κ) (2.3.36)

through Theorem 2.6.

(
) Compute θ(xik) through equation (2.3.12) for k = 0, 1, ..., N with

ψ(ν) = (α+ iν)φ(ν − iα) (2.3.37)

and retrieve the values u̇ik as

u̇ik = eαxkθ(xk)− β (2.3.38)

through Theoreom 2.6.

(d) Compute the values uik as

uik = ũik +∆if(ti, ũik, u̇ik) (2.3.39)

for k = 0, 1, ..., NiN through equation (2.2.6) when using the expli
it Euler s
heme 1

or as

uik = ũik +∆if(ti, uik, u̇ik) (2.3.40)

through equation (2.2.12) under the impli
it Euler s
heme.

Under the impli
it Euler s
heme, the node values uik for the approximate solution solve a

non-linear system of equation (2.2.12). For small time steps, and parti
ularly if the 
ondition

of equation (2.2.13) is satis�ed, the node values uik 
an be 
omputed iteratively using Pi
ard

iterations. When the node values are available under the impli
it or expli
it Euler s
heme,

an approximate solution to the BSDE 
onsists of a (linear) interpolation of a Brownian path

values through the node values {uik}Nk=0 and {u̇ik}Nk=0 for i = 0, 1, 2, ..., n− 1. The problem of

simulation is treated with more details in Chapter 3. the next se
tion deals with the problem

spa
e dis
retization errors.
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2.4 Lo
al spa
e dis
retization error

The 
onvolution method indu
es two (2) main types of error. Aside from the time dis
retization

error Eπ that we already dis
ussed in the introdu
tion, we have a spa
e dis
retization error.

We fo
uses on the study of this last error term. We limit the error analysis to the 
onvolution

method on the expli
it Euler s
heme 1 sin
e equivalent results are easily obtained for expli
it

Euler s
heme 2 and the impli
it Euler s
heme using the same te
hniques. When 
onsidering

the impli
it s
heme, the 
ondition of equation (2.2.13) must be satis�ed to assure existen
e and

uniqueness of the impli
it approximate solution ui.

Throughout the se
tion, {uik}Nk=0, {ũik}Nk=0 and {u̇ik}Nk=0 denote the numeri
al solution of

equation (2.3.12) obtained from the 
onvolution method at time mesh ti given the solution ui+1

at time ti+1, i = 0, 1, ..., n−1. The 
onvolution method indu
es a spa
e dis
retization error when

approximating the values of ui(xk) and u̇i(xk) by uik and u̇ik respe
tively. We will parti
ularly

des
ribe the lo
al behavior of this error term. We de�ne it as

Eik := |ui(xk)− uik|+ |u̇i(xk)− u̇ik| . (2.4.1)

The following theorem gives an error bound for the spa
e dis
retization error under smooth-

ness 
onditions on the BSDE 
oe�
ients f and g.

Theorem 2.7. Suppose f ∈ C1,2,2
and g ∈ C2

. Then for any i = 0, 1, ..., n−1 and k = 0, 1, ..., N ,

the 
onvolution method applied on the trun
ated interval

[
− l

2 ,
l
2

]
yields a (lo
al) dis
retization

error of the form

Eik = χ(xk) +O (∆x) +O
(
e−K∆−1

i
l2
)

(2.4.2)

where the extrapolation error χ sati�es

|χ(xk)| ≤ C

(∫ l
2

l
2−|xk|

h(y)dy

) 1
2

(2.4.3)

for some positive 
onstants C,K > 0 depending on the driver f , the terminal fun
tion g and T

when using the trapezoidal quadrature rule.

Proof. Suppose the solution ui+1 at time ti+1 is known. Sin
e f ∈ C1,2,2
and g ∈ C2

, it is easily

shown that ui+1 ∈ C2
. Also, we know from Zhang [124℄ and Bou
hard and Touzi [20℄ that

Y π
ti+1

= ui+1(Wti+1 ) is square integrable so that ui+1 is square integrable (with respe
t to the

Gaussian density).

In the light of Theorem 2.6, we 
an limit ourselves to the 
ase where

ui+1

(
− l

2

)
= ui+1

(
l

2

)
and

∂ui+1

∂x

(
− l

2

)
=
∂ui+1

∂x

(
l

2

)

so that α = β = κ = 0. Let {ck}∞k=−∞ be the Fourier 
oe�
ients of ui+1 on

[
− l

2 ,
l
2

]
. We have

that

ũi(xk) =

∫

|y−xk|≤ l
2

ui+1(y)h(y − xk)dy +

∫

|y−xk|> l
2

ui+1(y)h(y − xk)dy

=

∫

|y|≤ l
2

ui+1(xk + y)h(y)dy +

∫

|y|> l
2

ui+1(xk + y)h(y)dy

where

∫

|y|> l
2

ui+1(xk + y)h(y)dy = E

[
ui+1(xk +∆Wn−1)1R\[− l

2 ,
l
2 ]
(∆Wn−1)

]
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= O
(
e−Kl2

)

for some 
onstantK > 0 whi
h is inversely proportional to ∆i by Cau
hy-S
hwartz and Cherno�

inequalities sin
e the solution ui+1 is square integrable. Hen
e

ũi(xk) =

∫

|y|≤ l
2

T∞(xk + y)h(y)dy

+

∫

|y|≤ l
2

(ui+1(xk + y)− T∞(xk + y))h(y)dy

+O
(
e−Kl2

)
(2.4.4)

where T∞(x) =
∑∞

k=−∞ cke
ik 2π

l
x
for x ∈ R. So that, on one hand, we have

∫

|y|≤ l
2

T∞(xk + y)h(y)dy

=

∞∑

j=−∞
cje

ij 2π
l
xkφ

(
j
2π

l

)
−
∫

|y|> l
2

T∞(xk + y)h(y)dy

=

N
2 −1∑

j=−N
2

cje
ij 2π

l
xkφ

(
j
2π

l

)
−
∫

|y|> l
2

T∞(xk + y)h(y)dy +O(∆x)

(by Proposition E.6),

=

N
2 −1∑

j=−N
2

φ

(
j
2π

l

)
cje

ij 2π
l
xk +O(∆x) +O

(
e−Kl2

)

(by boundedness of T∞ and Cherno� inequalities),

= (−1)k
N−1∑

j=0

φ(νj)(−1)j−
N
2 cj−N

2
ei

2π
N

jk +O(∆x) +O
(
e−Kl2

)

= (−1)k
N−1∑

j=0

φ(νj)D
[
{(−1)sui+1(xs)}N−1

s=0

]
j
ei

2π
N

jk

+ O(∆x) +O
(
e−Kl2

)
(by Proposition E.8),

= ũik +O(∆x) +O
(
e−Kl2

)
.

On the other hand, assuming xk ≥ 0 without loss of generality, let's de�ne χ0 as

χ0(xk) =

∫

|y|≤ l
2

(ui+1(xk + y)− T∞(xk + y))h(y)dy

=

∫ l
2

l
2
−xk

(ui+1(xk + y)− ui+1(xk + y − l))h(y)dy

sin
e T∞ is periodi
 and T∞(x) = ui+1(x) on the interval [− l
2 ,− l

2 ]. Equation (2.4.4) them

be
omes

ũi(xk) = ũik + χ0(xk) +O(∆x) +O
(
e−Kl2

)
(2.4.5)

and we noti
e that, by the 
ontinuity of ui+1,

|χ0(xk)| ≤ C0

∫ l
2

l
2−|xk|

h(y)dy (2.4.6)

for some positive 
onstant C0 > 0 whi
h is independent of ∆i.

Similarly

u̇i(xk) =
1

∆i

∫

|y|≤ l
2

ui+1(xk + y)yh(y)dy +
1

∆i

∫

|y|> l
2

ui+1(xk + y)yh(y)dy
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where

1

∆i

∫

|y|> l
2

ui+1(xk + y)yh(y)dy

=
1

∆i
E

[
ui+1(xk +∆Wn−1)∆Wn−11R\[− l

2 ,
l
2 ]
(∆Wn−1)

]

≤ K

∆i
E

[
(∆Wn−1)

21
R\[− l

2 ,
l
2 ]
(∆Wn−1)

] 1
2

(by Chau
hy-S
hwartz inequality),

= O
(
∆i

− 1
2 e−K∆i

−1l2
)

(by su

essively applying Cau
hy-S
hwartz and Cherno� inequalities),

= O
(
e−

1
2K∆i

−1l2
)
.

Hen
e

u̇i(xk) =
1

∆i

∫

|y|≤ l
2

T∞(xk + y)yh(y)dy +O
(
e−K∆i

−1l2
)

+
1

∆i

∫

|y|≤ l
2

(ui+1(xk + y)− T∞(xk + y)) yh(y)dy. (2.4.7)

Letting c′j = ij 2πl cj , we have

1

∆i

∫

|y|≤ l
2

T∞(xk + y)yh(y)dy

=

∞∑

j=−∞
c′jeij

2π
l
xkφ

(
j
2π

l

)
− 1

∆i

∫

|y|> l
2

T∞(xk + y)yh(y)dy

=

N
2 −1∑

j=−N
2

c′jeij
2π
l
xkφ

(
j
2π

l

)
− 1

∆i

∫

|y|> l
2

T∞(xk + y)yh(y)dy +O(∆x)

=

N
2 −1∑

j=−N
2

φ

(
j
2π

l

)
c′jeij

2π
l
xk +O(∆x) +O

(
e−K∆i

−1l2
)

(by boundedness of T∞ and Cherno� inequality),

= (−1)k
N−1∑

j=0

φ(νj)(−1)j−
N
2 c′j−N

2
ei

2π
N

jk +O(∆x) +O
(
e−K∆i

−1l2
)

= (−1)k
N−1∑

j=0

iνjφ(νj)D
[
{(−1)sui+1(xs)}N−1

s=0

]
j
ei

2π
N

jk

+ O(∆x) +O
(
e−K∆i

−1l2
)
(by Proposition E.8),

= u̇ik +O(∆x) +O
(
e−K∆i

−1l2
)
. (2.4.8)

By equations (2.4.7) and (2.4.8)

u̇i(xk) = u̇ik + χ1(xk) +O (∆x) +O
(
e−K∆i

−1l2
)

(2.4.9)

where K > 0 and, letting υ(y) = ui+1(xk + y)− T∞(xk + y),

χ1(xk) = ∆−1
i

∫

|y|≤ l
2

yυ(y)h(y)dy

= ∆−1
i

∫

|y|≤ l
2

y2
υ(y)− υ(0)

y
h(y)dy

= ∆−1
i

∫

|y|≤ l
2

y2
(
∂υ

∂x
(y) +

∂2υ

∂x2
(ξ)y

)
h(y)dy (for some ξ ∈

[
− l

2
,
l

2

]
),
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= ∆−1
i

∫

|y|≤ l
2

y2
∂υ

∂x
(y)h(y)dy (by symmetry),

= ∆−1
i

∫

|y|≤ l
2

y2
(
∂ui+1

∂x
(xk + y)− ∂T∞

∂x
(xk + y)

)
h(y)dy.

Sin
e

∂T∞

∂x is the Fourier expansion of

∂ui+1

∂x , we get

|χ1(xk)| ≤ C1∆
−1
i

∫ l
2

l
2−|xk|

y2h(y)dy

≤ C1

(∫ l
2

l
2−|xk|

h(y)dy

) 1
2

(2.4.10)

by the boundedness of

∂ui+1

∂x and Chau
hy-S
hwartz inequality, for some 
onstant C1 > 0.

The Lips
hitz property of the driver f 
ompletes the proof from the relations in equations

(2.4.5), (2.4.6), (2.4.9) and (2.4.10).

Theorem 2.7 de
omposes the spatial dis
retization error in three parts: the trun
ation error,

the dis
retization error and the extrapolation error. Most PDE based and spatial dis
retization

based methods for BSDEs fail in giving a bound for the error due to trun
ation. The error

analysis shows that the trun
ation error O(e−K∆−1
i

l2) has a spe
tral 
onvergen
e of index 2

when applying the 
onvolution method. Also, the dis
retization error O (∆x), of �rst order, is

similar to other PDE based methods su
h as Douglas et al. [40℄ or Milstein and Tretyakov [90℄.

It is important to noti
e that the 
onvolution method presented here is a (Fourier) spe
tral

as shown in the proof of Theorem 2.7. Hen
e, the spa
e dis
retization error is a
tually also

spe
tral when the BSDE 
oe�
ients are smooth f ∈ C∞
and g ∈ C∞

. The proof of Theorem

2.7 produ
es only a �rst order spa
e dis
retization error sin
e the smoothness of the BSDE


oe�
ients is restri
ted to the se
ond order di�erentiability.

The extrapolation error χ is spe
i�
 to the 
onvolution method implemented using the DFT.

Equation (2.4.3) shows that errors appear and may a

umulate around the boundaries of the

trun
ated domain. Nonetheless, the trun
ation error is mainly time related through the density

h and 
an be 
on�ned at the boundaries for �ne time dis
retizations as shown in the following


orollary.

Corollary 2.8. Under the 
onditions of Theorem 2.7,

lim
|π|→0

χ(xk) = 0 (2.4.11)

for any xk ∈
(
− l

2 ,
l
2

)
.

Proof. If xk = 0 then equation (2.4.3) gives |χ(0)| ≤ 0 and the result holds. If xk 6= 0 and

xk ∈
(
− l

2 ,
l
2

)
, then

lim
|π|→0

(∫ l
2

l
2−|xk|

h(y)dy

) 1
2

=

(
lim

|π|→0

∫ l
2

l
2−|xk|

h(y)dy

) 1
2

=

(
lim

∆i→0

∫ l
2

l
2−|xk|

h(y)dy

) 1
2

=

(∫ l
2

l
2−|xk|

δ(y)dy

) 1
2

(where δ is the Dira
 delta fun
tion),

= 0

sin
e 0 /∈
[
l
2 − |xk| , l

2

]
. Equation (2.4.3) then leads to the result.
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2.5 Extensions

Various simple extensions 
an be made of the 
onvolution method. One of the most important

one is re�e
ted BSDEs. We also 
onsider the 
onvolution method under arithmeti
 Brownian

motion. These 
ases have interesting appli
ations in mathemati
al �nan
e, espe
ially for option

pri
ing.

2.5.1 Re�e
ted BSDEs

Euler s
hemes have been 
onstru
ted for re�e
ted BSDE with 
ontinuous barrier whi
h make

it possible the appli
ation of the 
onvolution method to su
h BSDEs. Consider the solution

(Y, Z,A) of the system





−dYt = f(t, Yt, Zt, )dt+ dAt − ZtdWt

Yt ≥ Bt , dAt ≥ 0 , ∀t ∈ [0, T ]
∫ T

0
(Yt −Bt)dAt = 0 , YT = g(WT )

(2.5.1)

where the lower barrier is a deterministi
 fun
tion B : [0, T ]×R → R of time and the Brownian

motion

Bt = B(t,Wt). (2.5.2)

This RBSDE is asso
iated to the following obsta
le problem





∂u
∂t + 1

2
∂2u
∂x2 + f(t, x, u,∇u) = 0,

u(t, x) ≥ B(t, x), (t, x) ∈ [0, T ]× R

u(T, x) = g(x), x ∈ R

(2.5.3)

as established by El Karoui et al. [45℄. An adaption of the Euler s
heme 1 provides the numeri
al

solution to the re�e
ted BSDE through the equations





Zπ
tn = 0, Y π

tn = ξπ

Zπ
ti =

1
∆i
E

[
Y π
ti+1

∆Wi|Fti

]

∆Aπ
ti =

(
E

[
Y π
ti+1

|Fti

]
+ f(ti,E

[
Y π
ti+1

|Fti

]
, Zπ

ti)∆i −B(ti,Wti)
)−

Y π
ti = E

[
Y π
ti+1

|Fti

]
+ f(ti,E

[
Y π
ti+1

|Fti

]
, Zπ

ti)∆i +∆Aπ
ti

(2.5.4)

where for any number x ∈ R, x− = max(0,−x).
The problems of time dis
retization of RBSDEs and their 
onvergen
e were treated in

Bou
hard and Chassagneux [18℄ for the impli
it Euler s
heme. Peng and Xu [99℄ proposed

an equivalent s
heme with a dis
rete �ltration and proved its 
onvergen
e under a binomial

method. This s
heme is easily solved with a 
onvolution method by noti
ing that the approxi-

mate solution ui, the approximate gradient u̇i and the approximate re�e
tion ūi at mesh time

ti 
an be written as

ui(x) = ũi(x) + ∆if(ti, ũi(x), u̇i(x)) + ∆ūi(x) (2.5.5)

where

u̇i(x) =
1

∆i

∫ ∞

−∞
(y − x)ui+1(y)h(y|x)dy (2.5.6)

ũi(x) =

∫ ∞

−∞
ui+1(y)h(y|x)dy (2.5.7)

∆ūi(x) := ūi+1(x) − ūi(x)
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= [ũi(x) + ∆if(ti, ũi(x), u̇i(x)) −B(ti, x)]
−

(2.5.8)

for i = 0, 1, ..., n− 1 and un(x) = g(x). The 
omputation of the approximated gradient u̇i and

the intermediate solution ũi is identi
al to the non-re�e
ted 
ase exposed in Se
tion 2.3.

One 
an also build an alternative s
heme from the expli
it Euler s
heme 2 as follows





Zπ
tn = 0, Y π

tn = ξπ

Zπ
ti =

1
∆i
E

[
Y π
ti+1

∆Wi|Fti

]

∆Aπ
ti =

(
E

[
Y π
ti+1

+ f(ti, Y
π
ti+1

, Zπ
ti)∆i|Fti

]
−B(ti,Wti)

)−

Y π
ti = E

[
Y π
ti+1

+ f(ti, Y
π
ti+1

, Zπ
ti)∆i|Fti

]
+∆Aπ

ti .

(2.5.9)

and de�ne the approximate solution vi, the approximate gradient v̇i and the approximate re�e
-

tion v̄i as

vi(x) =

∫ ∞

−∞
ṽi+1(y)h(y − x)dy +∆v̄i(x) (2.5.10)

where

ṽi+1(x) = vi+1(x) + ∆if(ti, vi+1(x), v̇i(x)) and (2.5.11)

v̇i(x) =

∫ ∞

−∞
(y − x)vi+1(y)h(y − x)dy (2.5.12)

∆v̄i(x) := v̄i+1(x)− v̄i(x)

= [ṽi+1(x)−B(ti, x)]
−

(2.5.13)

for i = 0, 1, ..., n− 1 and vn(x) = g(x).

One may even 
onsider another s
heme proposed by Peng and Xu [99℄ based on the penal-

ization method used by El Karoui et al.[45℄ to proved re�e
ted BSDEs well-posedness. But sin
e

the penalization method relies on estimates that approa
hes the RBSDE solution from below,

the s
heme ne
essarily under-estimates the RBSDE solution.

Alternative to the Euler s
heme itself 
an be found in the θ−s
hemes of Zhao, Shen and Peng

[125℄. We already gave a des
ription of these latter s
hemes in equations (1.3.2) and (1.3.3) to

whi
h a re�e
ted feature 
an easily be added.

2.5.2 Arithmeti
 Brownian motion

We 
an extend the 
onvolution method to 
onsider an arithmeti
 Brownian motion

Xt = x0 + µt+ σWt (2.5.14)

as the forward pro
ess and solve for a Cau
hy problem to an adve
tion-di�usion equation





∂u
∂t + µ∂u

∂x + 1
2σ

2 ∂2u
∂x2 + f(t, x, u, σ∇u) = 0 , (t, x) ∈ [0, T )× R

u(T, x) = g(x), x ∈ R.
(2.5.15)

to whi
h an obsta
le 
an be added when in the presen
e of a re�e
ted BSDE. The forward pro
ess

in
rements are indeed stationary, independent and normally distributed with density

h(x) =
1

(2π∆i)
1
2σ

exp

(
− (x− µ∆i)

2

2σ2∆i

)
. (2.5.16)

and 
hara
teristi
 fun
tion

φ(ν) = e∆i(iµν− 1
2σ

2ν2). (2.5.17)

The development of the 
onvolution method in this 
ase also leads to transforms identi
al to

equation (2.3.1) with ψ(ν) = φ(ν − iα) when 
omputing the approximate solutions vi or the
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intermediate solutions ũi and ψ(ν) = σ(α + iν)φ(ν − iα) when 
omputing the approximate

gradients u̇i and v̇i. In our 
odes, the approximate gradients u̇ and v̇ are a
tually estimates for

σ∇u = σ ∂u
∂x but the s
hemes 
an easily be modi�ed so as to estimate the gradient ∇u dire
tly.

The equivalen
es

θ(x) =
1

2π

∫ ∞

−∞
eiνxη̂α(ν)ψ(ν)dν

=
1

2π

∫ ∞

−∞
eiνxη̂αβ,κ(ν)ψ(ν)dν − e−αx(β(x+ µ∆i) + κ) (2.5.18)

when ψ(ν) = φ(ν − iα) and

θ(x) =
1

2π

∫ ∞

−∞
eiνxη̂α(ν)ψ(ν)dν

=
1

2π

∫ ∞

−∞
eiνxη̂αβ,κ(ν)ψ(ν)dν − e−αxβσ (2.5.19)

when ψ(ν) = σ(α + iν)φ(ν − iα) of Theorem 2.6 still holds.

2.6 Numeri
al results

The 
onvolution approa
h to BSDEs presented in this 
hapter 
an be used in various appli
a-

tions where a (numeri
al) solution to a PDE or a BSDE is needed. Here, we give examples of

appli
ations in numeri
al solution to PDEs, simulation of (R)BSDEs and option pri
ing in a

one-dimensional framework.

2.6.1 Simulation of (R)BSDEs

The availability of a numeri
al solution to the PDE underlying the BSDE 
learly makes it easy

to simulate the BSDE itself. Many authors, in
luding Douglas, Ma and Protter [40℄ and Milstein

and Tretyakov [89, 90℄, put forth a PDE approa
h to solve (
oupled) FBSDEs numeri
ally as

dis
ussed in Chapter 1. The 
onvolution method, along with the binomial tree method of Peng

and Xu [99℄, is a lighter and more suitable method for the less general 
ase of BSDEs.

We shall �rst 
onsider the one-dimensional linear BSDE with generator

f(t, y, z) = ay + bz + c (2.6.1)

with a, b and c being real numbers. These BSDEs were already treated in Peng and Xu [99℄

where the authors indi
ate that the initial value for the forward pro
ess Y of su
h a BSDE is

given by

Y0 = e(a−
1
2 b

2)T
E

[
g(WT )e

bWT
]
+
c

a

(
eaT − 1

)
. (2.6.2)

where we take a maturity T = 1,

g(x) = |x|, (2.6.3)

as the terminal 
ondition and a = −1, b = 2 and c = 1 for the sake of this example.

The PDE is solved on the restri
ted, real spa
e domain [x0, xN ] = [−10, 10] with N = 212

grid points. The number of time steps n is set to 1000 and the minimal slope to ǫ = 5.

When simulating the BSDE, the restri
ted real spa
e domain plays a key role sin
e it has

to 
ontain the path values of the Brownian motion. One way to sele
t the domain is by taking

it large enough so that the probability that the Brownian motion �nishes in the restri
ted

domain approa
hes one (1). Indeed, the larger the restri
ted domain, the larger is the number
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Figure 2.6.1: Numeri
al solution to the linear PDE.

The surfa
es are obtained with the 
onvolution method applied on S
heme 1 on the restri
ted domain

[x0, xN ] = [−10, 10] with N = 212 grid points, n = 500 time steps and a minimal slope of ǫ = 5.

Table 2.6.1: Estimates for the initial value of the linear BSDE forward pro
ess.

n (number of time steps) 100 500 1000 2000

Convolution (S
heme 1) 1.3785 1.3750 1.3746 1.3743

Convolution (S
heme 2) 1.3777 1.3748 1.3745 1.3743

Trinomial tree (S
heme 1) 1.3785 1.3750 1.3746 1.3743

For the 
onvolution method, the estimates are valued on the restri
ted domain [x0, xN ] = [−10, 10] with 212

grid points and a minimal slope of ǫ = 5.

of grid points N sin
e the spa
e step ∆x must be small enough for the numeri
al solution of

the PDE to dete
t the variation in the Brownian motion paths. When the Brownian motion

takes intermediate values that are not on the spa
e grids, the 
orresponding values for the BSDE

solution 
an be interpolated (linearly) from the PDE solutions. The numeri
al solutions for the

PDE (approximate solution and gradient) are presented in Figure 2.6.1.

A Monte Carlo method gives an estimate of 1.3745 with a standard deviation 0.0045 for the

initial value of the forward pro
ess Y0 using equation (2.6.2) and 5× 106 traje
tories. With this

estimate as a ben
hmark, Table 2.6.1 displays the values obtained with the 
onvolution method

on the se
ond s
heme where only the number of time steps is 
hanged among the spe
i�ed inputs.

Additional results obtained with a trinomial tree method are presented for 
omparison. As one


an see, both the 
onvolution and the trinomial tree estimates 
lose up on �ner time grids.

Figure 2.6.2 shows three (3) simulated paths for the Brownian motion W and the 
orre-

sponding simulated paths for the forward pro
ess Y and the 
ontrol pro
ess Z. Paths for the

ba
kward and 
ontrol pro
esses (Yt and Zt respe
tively) are simulated using the solution from

the 
onvolution method applied on S
heme 1 on the restri
ted domain [x0, xN ] = [−10, 10] with

N = 212 grid points, n = 1000 time steps and a minimal slope of ǫ = 5. The same number of time

steps is used to simulate the Brownian paths (Wt). An advantage of the 
onvolution method

over tree based methods is the simpli�
ation of the simulation pro
edure sin
e the Brownian

path does not have to be approximated by s
aled random walk as in Peng and Xu [99℄.
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Figure 2.6.2: Path simulation for the BSDE solution.
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It is possible to simulate re�e
ted BSDEs in a similar manner. If we 
onsider the re�e
ted

BSDE with the same driver and terminal 
ondition as in the previous non-re�e
ted and linear


ase and set the re�e
ting barrier to be

B(t, x) = g(x) = |x| , (t, x) ∈ [0, T ]× R, (2.6.4)

then we get the approximate solution and the approximate gradient displayed in Figure 2.6.3.

In order to simulate the re�e
ting pro
ess A, we 
ompute the re�e
tion in
rements from

equation (2.5.8) at ea
h time step along the Brownian path. Summing those in
rements then

gives the 
orresponding path values for the re�e
ting pro
ess. Three (3) simulated Brownian

paths and their 
ounterparts for the RBSDE solution are plotted in Figure 2.6.6. Paths for the

ba
kward, 
ontrol and re�e
ting pro
esses (Yt, Zt and At respe
tively) are simulated using the

solution from the 
onvolution method applied on S
heme 1 on the restri
ted domain [x0, xN ] =

[−10, 10] with N = 212 grid points, n = 1000 time steps and a minimal slope of ǫ = 5. We

naturally use n = 1000 time steps to simulate the Brownian paths (Wt).

The 
onvolution method returns a forward pro
ess initial values of Y0 = 1.3820 for both

S
hemes 1 and 2 with the spe
i�ed inputs. Those estimates are identi
al to the approximation

given by the trinomial tree method (S
heme 2) with the same number of time steps n = 1000 as

the 
onvolution methods.

2.6.2 Option pri
ing under Bla
k-S
holes model

Through option pri
ing problems, we will parti
ularly treat the 
ase of BSDEs with non-linear

drivers that was not 
onsidered in the previous examples. An introdu
tion to �nan
ial appli
a-

tions of BSDEs, parti
ularly to imperfe
t markets and Ameri
an option problems, 
an be found

in El Karoui and Quenez [48℄, El Karoui, Pardoux and Quenez [46℄ or El Karoui, Peng and

Quenez [47℄. Also the 
elebrated papers of Bla
k and S
holes [17℄ and Merton [88℄ 
onstitute

the �nan
ial basis in this se
tion.

For the market model 
onsisting of a single risky asset (or sto
k) {St}t∈[0,T ] with the dynami


St = eXt
(2.6.5)

where the pro
ess {Xt}t∈[0,T ] represents the sto
k return, we pri
e an European 
all option with

maturity T = 1 and strike pri
e K under a lending rate of r = 0.01 and a borrowing rate R.
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Figure 2.6.3: Numeri
al solution to the linear PDE with obsta
le.

The surfa
es are obtained with the 
onvolution method applied on S
heme 1 on the restri
ted domain

[x0, xN ] = [−10, 10] with N = 212 grid points, n = 500 time steps and a minimal slope of ǫ = 5.

Figure 2.6.4: Path simulation for the re�e
ted BSDE solution.
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Figure 2.6.5: Absolute errors on Ameri
an 
all option pri
es and deltas.
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Estimates were obtained by applying the 
onvolution method (S
heme 1) on the restri
ted domain

[x0, xN ] = X0 + [−5, 5] with N = 212 grid points, n = 1000 time steps and a minimal slope of ǫ = 5. The option

has stike pri
e K = S0 = 100 with R = r = 0.01.

The return pro
ess is an arithmeti
 Brownian motion

Xt = X0 +

(
µ− 1

2
σ2

)
t+ σWt (2.6.6)

su
h that the sto
k has an initial value of S0 = eX0 = 100, an expe
ted return rate of µ = 0.05

and a volatility of σ = 0.2.

The 
all option pri
e then follows a BSDE with the return pro
ess {Xt}t∈[0,T ] as the forward

pro
ess, the driver

f(t, y, z) = −ry −
(
µ− r

σ

)
z + (R− r)

(
y − z

σ

)−
(2.6.7)

and the terminal fun
tion

g(x) = (ex −K)
+

(2.6.8)

under those imperfe
t market 
onditions.

When the borrowing rate equals the lending rate R = r = 0.01, the European and Ameri
an


all options have the same pri
e. Figure 2.6.5 shows the stru
ture of the absolute error on sto
k

option pri
es and deltas where the true values are 
omputed using the Bla
k-S
holes formula.

As expe
ted the errors are ampli�ed at the boundaries of the trun
ated domain, but also for

around-the-money options in a lesser extend due to the non-smoothness of the terminal fun
tion

g. In addition, out-of-the-money options have smaller absolute errors 
ompared to in-the-money

options and option pri
es also presents smaller absolute errors 
ompare to option deltas.

The Bla
k-S
holes formula gives 
all option pri
es of 4.6101, 8.4333 and 14.1929 at strike

pri
es K = 110, 100 and 90 respe
tively. Also, the true values for the option deltas are 0.7507,

0.5596 and 0.3720 when the strike pri
e is K = 90, 100 and 110 respe
tively. Table 2.6.2 gives

the pri
e estimates with both 
onvolution s
hemes and the trinomial tree method using di�erent

time steps and the indi
ated strike pri
es. Also, Table 2.6.3 
ontains the relative errors for the

option deltas obtained from the approximate gradient by

Delta =
u̇0(X0)

σS0
(2.6.9)

when using S
heme 1 or

Delta =
v̇0(X0)

σS0
(2.6.10)

for S
heme 2. A similar 
omputation allows to obtain the option deltas from the trinomial tree

approa
h.
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Table 2.6.2: Relative errors (in per
entage) for Ameri
an 
all option pri
es on non-dividend-

paying sto
k with no market fri
tions.

K (Strike) n=500 n=1000 n=2000 n=5000

Convolution

(S
heme 1)

110 0.0456 0.0217 0.0108 0.0043

100 0.0178 0.0095 0.0047 0.0024

90 0.0049 0.0028 0.0014 0.0007

Convolution

(S
heme 2)

110 0.0087 0.0239 0.0022 0.0001

100 0.0059 0.0024 0.0012 0.0007

90 0.0028 0.0014 0.0007 0.0004

Trinomial tree

(S
heme 1)

110 0.0065 0.0369 0.0087 0.0022

100 0.0356 0.0012 0.0047 0.0024

90 0.0007 0.0028 0.0021 0.0007

For the 
onvolution method, the option pri
es are valued on the restri
ted domain [x0, xN ] = X0 + [−5, 5] with

N = 212 grid points and a minimal slope of ǫ = 5. Both the lending and the borrowing rates are taken equal

R = r = 0.01.

Table 2.6.3: Relative errors (in per
entage) for the Ameri
an 
all option deltas on non-dividend-

paying sto
k with no market fri
tions.

K (Strike) 90 100 110

Convolution (S
heme 1) 0.0133 0.0010 0.2414

Convolution (S
heme 2) 0.0133 0.0010 0.2414

Trinomial tree (S
heme 1) 0.0133 0.0010 0.2414

For the 
onvolution method, the option deltas are valued on the restri
ted domain [x0, xN ] = X0 + [−5, 5] with

N = 212 grid points and a minimal slope of ǫ = 5. The number of time steps is set to n = 2000 for all three

methods. The borrowing and lending rates are equal R = r = 0.01.

The results of Table 2.6.2 and 2.6.3 show the a

ura
y of the 
onvolution method on a RBSDE

with a smooth linear driver. Indeed, the relative error per
entages remain low (less than 0.3%)

for the estimated option pri
es and deltas. However, out-the-money option estimates seem to

display the largest relative errors. In the same order of idea, option deltas have larger relative

errors 
ompared to option pri
es whi
h 
on�rms the observations on Figure 2.6.5. Overall,

the pre
ision of the 
onvolution method is similar to the trinomial method sin
e both methods

display similar relative errors.

For a borrowing rate of R = 0.03 (di�erent from the lending rate r = 0.01), the Bla
k-

S
holes formula does not apply but the 
onvolution method is able to produ
e the pri
e and

delta surfa
es for option along with estimates. Surfa
es are displayed in Figure 2.6.6 for the

at-the-money European 
all option. Table 2.6.4 gives the at-the-money European option pri
e

estimates with di�erent time dis
retizations. Table 2.6.5 
ompletes the information on option

pri
e with out-of-the-money European option pri
es. All three methods (
onvolution method

on S
heme 1 and 2 and the trinomial method) return identi
al delta values as 
an be seen on

Table 2.6.6 when applied with n = 2000 time steps. The similarity in the estimates given by the


onvolution method and the trinomial method is an indi
ation of the good performan
e of the


onvolution in non-smooth and non-linear driver 
ases.
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Table 2.6.4: At-the-money 
all option pri
es under imperfe
t market 
onditions.

n (number of time steps) 500 1000 2000 5000

Convolution (S
heme 1) 9.4132 9.4133 9.4133 9.4134

Convolution (S
heme 2) 9.4127 9.4131 9.4132 9.4133

Trinomial tree (S
heme 1) 9.4107 9.4136 9.4130 9.4132

For the 
onvolution method, the estimates are valued on the restri
ted domain [x0, xN ] = X0 + [−5, 5] with

N = 212 grid points and a minimal slope of ǫ = 5. The risk free rates are R = 0.03 when borrowing and

r = 0.01 when lending and the option strike pri
e is K = S0 = 100.

Figure 2.6.6: At-the-money European 
all option pri
e and delta surfa
es.

Surfa
es were obtained by trun
ating the approximate solution and grandient of the 
onvolution method

(S
heme 1) on the restri
ted domain [x0, xN ] = X0 + [−5, 5] with N = 212 grid points, n = 1000 time steps and

a minimal slope of ǫ = 5. The option has stike pri
e K = S0 = 100 with R = 0.03 and r = 0.01.

The option pri
ing 
an be made using a Monte Carlo method su
h as the forward s
heme

of Bender and Denk [10℄. But in the 
ontext of uni-dimensional BSDEs, Monte Carlo methods

will generally be heavier than spa
e dis
retization methods. As an illustration, the 
onvolution

method on both S
heme 1 and 2 runs in approximately 4.4 se
onds when pri
ing the option of

Table 2.6.4 with n = 1000 time steps. On the other hand, the trinomial tree method runs in

0.25 se
ond. As to the forward s
heme, it runs in 18 se
onds with only n = 20 time steps

4

.

Fifty (50) independent valuations with the Monte Carlo method give a 95% 
on�den
e interval

of [9.3972, 9.4222] whi
h in
ludes all estimates of Table 2.6.4. Hen
e, the 
onvolution method is

faster that Monte Carlo methods but slower than the trinomial (or binomial) method.

The Ameri
an 
all options, whi
h solves a re�e
ted BSDE with the barrier fun
tion

B(t, x) = g(x) = (ex −K)+ , (t, x) ∈ [0, T ]× R (2.6.11)

essentially have the same pri
e as their European 
ounterparts under the market 
onditions

stated above sin
e our risky asset {St}t∈[0,T ] pays no dividend and, hen
e, the early exer
ise

premium is null. This 
an be seem numeri
ally by simulating sample paths for the 
orresponding

4

We also used the 7 �rst power fun
tions and 100000 paths to generate the estimates. The Pi
ard iterations

are stopped whenever the di�eren
e in two 
onse
utive pri
es is less than 10−4
for a maximum number of 10

integrations.
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Table 2.6.5: Out-of-the-money European 
all option pri
es under imperfe
t market 
onditions.

K (Strike) n = 500 n = 1000 n = 2000 n = 5000

Convolution

(S
heme 1)

110 5.2932 5.2933 5.2933 5.2934

90 15.4290 15.4291 15.4291 15.4292

Convolution

(S
heme 2)

110 5.2924 5.2929 5.2931 5.2933

90 15.4289 15.4291 15.4292 15.4292

Trinomial tree

(S
heme 1)

110 5.2933 5.2918 5.2938 5.2935

90 15.4295 15.4297 15.4295 15.4293

For the 
onvolution method, the option pri
es are valued on the restri
ted domain [x0, xN ] = X0 + [−5, 5] with

212 grid points and a minimal slope of ǫ = 5. The risk free rates are R = 0.03 and r = 0.01.

Table 2.6.6: European 
all option deltas under imperfe
t market 
onditions.

K (Strike) 90 100 110

Convolution (S
heme 1) 0.7814 0.5987 0.4104

Convolution (S
heme 2) 0.7814 0.5987 0.4104

Trinomial tree (S
heme 1) 0.7814 0.5987 0.4104

For the 
onvolution method, the option deltas are valued on the restri
ted domain [x0, xN ] = X0 + [−5, 5] with

N = 212 grid points and a minimal slope of ǫ = 5. The number of time steps is set to n = 2000 for all three

methods. The risk free rates are R = 0.03 and r = 0.01.

RBSDE solution. On Figure 2.6.7, one noti
es that the 
ost for hedging the (at-the-money)

Ameri
an option is negligible either the option �nishes in or out the money. Similar results are

obtained for in and out-of-the-money Ameri
an 
all options.

If we introdu
e a dividend rate of δ = 0.035 under imperfe
t market 
onditions (R = 0.03

and r = 0.01), the forward (return) pro
ess takes the form

Xt = X0 +

(
µ− δ − 1

2
σ2

)
t+ σWt. (2.6.12)

The European and Ameri
an option pri
es di�er and the Bla
k-S
holes formula does not apply.

Table 2.6.7 
ompares the European and Ameri
an 
all option pri
es under the 
onvolution and

the trinomial method at di�erent strike pri
es. Table 2.6.8 does the same exer
ise for option

deltas.

If the deltas 
omputed with the 
onvolution and the trinomial method are identi
al, the


onvolution method gives slightly higher option pri
es 
ompared to the trinomial method. This

di�eren
e in option pri
es between both methods may �nd its explanation in the extrapolation

errors generated by the 
onvolution method or in the non-smoothness of the option pri
e and

delta fun
tions.

Nonetheless, the di�eren
e between European and Ameri
an option pri
es shows that the


onvolution method 
aptures the re�e
ting e�e
t. This di�eren
e between both option pri
es


an be visualized on Figure 2.6.8. Finally, Figure 2.6.9 shows the typi
al sample paths for the

Ameri
an option where the re�e
ting pro
ess At (hedging 
ost) is now non-zero for in-the-money

path indi
ating a di�eren
e in pri
e with the European 
all option.
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Figure 2.6.7: Sample paths for the Ameri
an 
all option on non-dividend-paying sto
k.
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Paths are simulated using the solution from the 
onvolution method applied on S
heme 1 on the restri
ted

domain [x0, xN ] = X0 + [−5, 5] with N = 212 grid points, n = 1000 time steps and ǫ = 5. We used n = 1000

time steps to simulate the sto
k pri
e (St). Also, the Ameri
an option, with stike K = S0 = 100, was pri
ed

under imperfe
t market 
onditions: R = 0.03 and r = 0.01.

Table 2.6.7: European and Ameri
an 
all option pri
es on dividend-paying sto
k.

K (Strike) European Ameri
an

Convolution (S
heme 1)

110 3.9963 4.0322

100 7.4712 7.5610

90 12.8339 13.0505

Convolution (S
heme 2)

110 3.9962 4.0321

100 7.4712 7.5609

90 12.8339 13.0505

Trinomial tree (S
heme 1)

110 3.9958 4.0317

100 7.4716 7.5614

90 12.8333 13.0500

For the 
onvolution method, the option deltas are valued on the restri
ted domain [x0, xN ] = X0 + [−5, 5] with

N = 212 grid points and a minimal slope of ǫ = 5. The number of time steps is set to n = 2000 for all three

methods. The risk free rates are R = 0.03 and r = 0.01. The dividend yield is δ = 0.035.
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Table 2.6.8: European and Ameri
an 
all option deltas on dividend-paying sto
k.

K (Strike) European Ameri
an

Convolution (S
heme 1)

110 0.3322 0.3362

100 0.5117 0.5207

90 0.7014 0.7203

Convolution (S
heme 2)

110 0.3322 0.3363

100 0.5117 0.5207

90 0.7014 0.7204

Trinomial tree (S
heme 1)

110 0.3322 0.3362

100 0.5117 0.5207

90 0.7014 0.7204

For the 
onvolution method, the option deltas are valued on the restri
ted domain [x0, xN ] = X0 + [−5, 5] with

N = 212 grid points and a minimal slope of ǫ = 5. The number of time steps is set to n = 2000 for all three

methods. The risk free rates are R = 0.03 and r = 0.01. The dividend yield is δ = 0.035.

Figure 2.6.8: Di�eren
e in pri
e between the Ameri
an and European 
all options on dividend-

paying sto
k.

Surfa
es was obtained by trun
ating the approximate solutions of the 
onvolution method (S
heme 1) on the

restri
ted domain [x0, xN ] = X0 + [−5, 5] with N = 212 grid points, n = 1000 time steps and a minimal slope of

ǫ = 5. The option has stike pri
e K = S0 = 100 with R = 0.03, r = 0.01 and δ = 0.035.
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Figure 2.6.9: Sample paths for the Ameri
an 
all option on dividend-paying sto
k.
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Paths are simulated using the solution from the 
onvolution method applied on S
heme 1 on the restri
ted

domain [x0, xN ] = X0 + [−5, 5] with N = 212 grid points, n = 1000 time steps and a minimal slope of ǫ = 5.

The option has stike pri
e K = S0 = 100 with R = 0.03, r = 0.01 and δ = 0.035.

Overall, the 
onvolution method implemented on a uniform grid gives satisfa
tory results.

The numeri
al results shows the method's a

ura
y even on BSDEs with unbounded terminal


onditions and non-smooth 
oe�
ients. Nonetheless, the error analysis indi
ates the presen
e of

a trun
ation error. Sin
e the trun
ation error depends on the time dis
retization and not on the

spa
e dis
retization, a more suitable spa
e dis
retization 
an suppress it. The following 
hapter

investigates the issue.
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Chapter 3

Alternative dis
retization of


onvolution

This 
hapter proposes an alternative dis
retization of the 
onvolution method developed in

Chapter 2. This alternative dis
retization is motivated by the absen
e of 
onvergen
e of the


onvolution s
heme in the previous 
hapter. The non-
onverging error term is due to an extrap-

olation that o

urs for most spa
e nodes. This error term is larger for the spa
e nodes around

the boundaries of the restri
ted domain as shown in the error analysis of the previous 
hapter.

In order to avoid extrapolation, we work with two di�erent restri
ted domains. The �rst

domain dis
retizes the Brownian in
rement and the se
ond dis
retizes the spatial domain on

whi
h the BSDE solution is de�ned. The s
heme then 
ombines both dis
retizations by 
hoosing

the same spa
e step for ea
h of them. The FFT algorithm is on
e again used to perform the

quadratures so to maintain the algorithm's e�
ien
y. If the pro
edure for
es the 
ontra
tion

of the spa
e grid through times steps, we are able to build a spa
e grid suitable for simulation

whi
h assures 
onvergen
e.

3.1 Alternative dis
retization

We shall illustrate the alternative dis
retization with the expli
it Euler s
heme 1 with the ap-

proximate solutions of equations (2.2.6), (2.2.7) and (2.2.8). On the time mesh π = {t0 = 0 <

t1 < ... < tn = T } su
h that

∆i = ti+1 − ti, i = 0, 1, ..., n− 1, (3.1.1)

these equations may be written as

ui(x) = ũi(x) + ∆if(ti, ũi(x), u̇i(x)) (3.1.2)

where

u̇i(x) =
1

∆i

∫ ∞

−∞
yui+1(x+ y)h(y)dy (3.1.3)

ũi(x) =

∫ ∞

−∞
ui+1(x+ y)h(y)dy (3.1.4)

after a 
hange of variable for i = 0, 1, ..., n − 1 and un(x) = g(x). Under the impli
it Euler

s
heme, equation (3.1.2) may be repla
ed by

ui(x) = ũi(x) + ∆if(ti, ui(x), u̇i(x)) (3.1.5)

with the additional the 
ondition of equation (2.2.13) on the time dis
retization.
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3.1.1 Alternative transform

In order to 
ompute the 
onvolutions of equations (3.1.3) and (3.1.4) with the FFT algorithm, the

main requirement was that the fun
tion values and the derivative values mat
h at the boundaries

of the trun
ated domain. In Chapter 2, we used a transform to meet that requirement. Given

a fun
tion η : [a, b] → R and η ∈ C1
, we 
onsidered the transform

ηαβ,κ(x) = e−αx(η(x) + βx+ κ) (3.1.6)

and the 
oe�
ients α, β and κ were 
hosen su
h that




ηαβ,κ(a) = ηαβ,κ(b)
∂ηα

β,κ

∂x (a) =
∂ηα

β,κ

∂x (b).
(3.1.7)

The transform in equation (3.1.6) presents two main disadvantages. First, it uses three


oe�
ients when only two 
onditions need to be satis�ed, leaving the third 
oe�
ient almost

free. Hen
e, we require a simpli�ed transform with only two 
oe�
ients. Also, the transform

depends exponentially on the dampening 
oe�
ient α. A linear dependen
e in the 
oe�
ients

is more suitable so that the error indu
ed is also linear.

We propose the alternative transform

ηα,β(x) := η0β,0 + αx2 = η(x) + αx2 + βx (3.1.8)

satisfying 


ηα,β(a) = ηα,β(b)

∂ηα,β

∂x (a) = ∂ηα,β

∂x (b).
(3.1.9)

The following lemma gives a method to sele
t the 
oe�
ients α and β for the transform of

equation (3.1.8).

Lemma 3.1. Suppose the real fun
tion η ∈ C1[a, b] is di�erentiable and let ηα,β be its trans-

formed fun
tion as de�ned in equation (3.1.8). Then

α =
∂η
∂x(a)−

∂η
∂x (b)

2(b− a)
, (3.1.10)

β =
η(a)− η(b)

(b − a)
− α(b + a) (3.1.11)

solve the system of linear equations de�ned by the 
onditions of equation (3.1.9).

Proof. The �rst equation of the system (3.1.9) gives (3.1.10) in a straightforward manner. Equa-

tion (3.1.11) is given by the se
ond equation of the system.

A major feature of the transform in equation (3.1.8) is the absen
e of dampening. Thus, the


onvolutions on S
heme I are represented as

ũi(x) = F−1 [F[ui+1](ν)φ(ν)] (x) (3.1.12)

u̇i(x) = F−1 [iνF[ui+1](ν)φ(ν)] (x) (3.1.13)

whenever ui+1, i = 1, 2, ..., n is integrable from equations (2.2.26) and (2.2.27). Numeri
ally,

the trun
ation solves the integrability problem so that dampening is not needed. Hen
e, non-

integrable fun
tions 
an be treated as already indi
ated in Subse
tion 2.3.2.

The next theorem gives the representation of 
onvolution under the transform of equation

(3.1.8).
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Theorem 3.2. Let η : [a, b] → R be an integrable and di�erentiable fun
tion and let ηα,β be its

transformed fun
tion as de�ned in equation (3.1.8). Then the fun
tion θ : [a, b] → R given by

θ(x) = F−1 [F[η](ν)ψ(ν)] (x) (3.1.14)

admits the alternative representation

θ(x) =
1

2π

∫ ∞

−∞
eiνxη̂α,β(ν)ψ(ν)dν − (2αx + β) (3.1.15)

if ψ(ν) = iνφ(ν) or

θ(x) =
1

2π

∫ ∞

−∞
eiνxη̂αβ,κ(ν)ψ(ν)dν − α(x2 +∆i)− βx (3.1.16)

if ψ(ν) = φ(ν) .

Proof. First, let ψ(ν) = iνφ(ν). By de�nition, we know that

θ(x) =
1

2π

∫ ∞

−∞
eiνxη̂(ν)ψ(ν)dν

=
1

∆i
E

[
η(Wti+1)∆Wi|Wti = x

]

=
1

∆i
E

[(
ηα,β(Wti+1)− αW 2

ti+1
− βWti+1

)
∆Wi|Wti = x

]

=
1

∆i
E

[(
ηα,β(Wti+1)− α(Wti +∆Wi)

2 − βWti+1

)
∆Wi|Wti = x

]

=
1

∆i
E

[
ηα,β(Wti+1)∆Wi|Wti = x

]
− (2αx+ β)

=
1

2π

∫ ∞

−∞
eiνxη̂α,β(ν)ψ(ν)dν − (2αx+ β).

Similarly, if ψ(ν) = φ(ν), we have

θ(x) =
1

2π

∫ ∞

−∞
eiνxη̂(ν)ψ(ν)dν

= E

[
η(Wti+1 )|Wti = x

]

= E

[
ηα,β(Wti+1)|Wti = x

]
− α(x2 +∆i)− βx

=
1

2π

∫ ∞

−∞
eiνxη̂α,β(ν)ψ(ν)dν − α(x2 +∆i)− βx.

As in Chapter 2, the values of the derivatives 
an be approximated by �nite di�eren
es.

Another approa
h is to use the approximation of the derivative given by the 
onvolution method.

3.1.2 Alternative grid

The dis
retization proposed in this 
hapter 
onsiders a �xed spa
e grid for the integrated variable

y in equations (3.1.3) and (3.1.4) whi
h represents the Brownian in
rement. This variable is

restri
ted on the interval of length l > 0 
entered at zero (0) with an even number N ∈ N∗
of

steps. Hen
e, the spa
e step is given by

∆x =
l

N
. (3.1.17)

This spa
e is then used for the grid dis
retizing the domain variable x whi
h represents the

Brownian pro
ess itself. At ea
h time node ti, i = 0, 1, 2, ..., n, the spatial domain is restri
ted

on an interval of length Nil where Ni ∈ N is a positive integer with

Ni = N0 + i. (3.1.18)
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In order to maintain a spa
e step of ∆x at ea
h time step, we dis
retize the spatial domain with

NiN spa
e steps. Sin
e we 
enter the spatial domain at W0 = 0, we get the spa
e nodes

xik = −Nil

2
+ k∆x, k = 0, 1, ..., NiN (3.1.19)

at mesh time ti. In parti
ular, if N0 = 0 then the spa
e grid at mesh time t0 is 
omposed of the

single point

x00 =W0. (3.1.20)

More pre
isely, we start the spa
e grid at mesh time t0 with (N0N + 1) points. Then at

ea
h times step, we add N new points to the spa
e grid of the previous time step. Moreover,

those new N points are equally distributed at both boundaries of the previous restri
ted spa
e

domain. These ideas are re�e
ted in the relationship between spa
e nodes of 
onse
utive spa
e

grids sin
e

xik = xi+1,k+N
2
, k = 0, 1, ..., NiN. (3.1.21)

Figure 3.1.1 gives examples of alternative grids using di�erent parameter values.

This approa
h already underlies tree based methods to a lesser extent however the present

dis
retization o�ers more �exibility. Whereas the number of spa
e grid points at mesh time

t0 is limited to 1 in multinomial methods, it 
an be sele
ted almost freely in this alternate

dis
retization. Also, the number N + 1 of nodes on the Brownian in
rement restri
ted domain


an be 
ompared to the number of bran
hes in a multinomial method. Hen
e, this alternative

dis
retization 
an be seen as a re
ombining tree with N + 1 bran
hes and N0N + 1 initial grid

points sin
e we use a �xed spa
e step ∆x.

The Fourier relations of equations (3.1.12) and (3.1.13) 
all for a dis
retization of the Fourier

spa
e as well. At ea
h mesh time ti, i = 1, 2, ..., n, the Fourier spa
e is restri
ted on an interval

of length L 
entered at zero (0) and dis
retized with NiN spa
e steps. The equidistant nodes

are thus of the form

νik = −L
2
+ k∆νi, k = 0, 1, ..., NiN (3.1.22)

where ∆νi =
L

NiN
. The Nyquist relation holds whenever L is su
h that

Ll = 2πN. (3.1.23)

For a �xed time mesh, the length of the Brownian in
rement restri
ted interval l, the number

of spa
e steps of this interval N and the number N0 
ompletely de�nes the spa
e grid des
ribed

above.

3.1.3 Numeri
al implementation

In this 
hapter, we seek numeri
al approximations of equations (3.1.12) and (3.1.13) at ea
h

mesh time ti, i = 0, 1, ..., n− 1. At time ti, we use the generi
 fun
tions θi : R → R, ψ : R → C

and θi+1 : R → R su
h that

θi(x) =
1

2π

∫ ∞

−∞
eiνxθ̂i+1(ν)ψ(ν)dν. (3.1.24)

We assume that the fun
tion θi+1 satis�es the boundary value equalities

θi+1

(
−Ni+1l

2

)
= θi+1

(
Ni+1l

2

)
(3.1.25)

∂θi+1

∂x

(
−Ni+1l

2

)
=

∂θi+1

∂x

(
Ni+1l

2

)
. (3.1.26)
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Figure 3.1.1: Examples of alternative grids with di�erent values of N0 and N .

(a) N0 = 0 and N = 2.
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Hen
e, the Fourier integral

θ̂i+1(ν) =

∫ ∞

−∞
e−iνxθi+1(x)dx (3.1.27)

is restri
ted on the interval [−Ni+1l
2 , Ni+1l

2 ] and dis
retized using the grid points {xi+1,k}Ni+1N
k=0

with a quadrature rule with weights {wk}Ni+1N
k=0 . As to the inverse Fourier integral of equation

(3.1.24) we restri
t it on the interval [−L
2 ,

L
2 ] and dis
retize it with lower Riemann sums.

Following the steps of Se
tion 2.3.1, the values of the fun
tion θi on the grid points {xi+1,k}Ni+1N−1
k=0

are given by

θi(xi+1,k) ≈ (−1)kD−1
[
{ψ(νi+1,j)D[θi+1]j}Ni+1N−1

j=0

]
k

(3.1.28)

where

D[θi+1]j = D

[
{(−1)sw̃sθi+1(xi+1,s)}Ni+1N−1

s=0

]
j

(3.1.29)

and the weights {w̃j}Ni+1N−1
j=0 are de�ned as in equation (2.3.10). Consequently, equation (3.1.21)

gives

θi(xik) ≈ (−1)k+
N
2 D−1

[
{ψ(νi+1,j)D[θi+1]j}Ni+1N−1

j=0

]
k+N

2

(3.1.30)

for k = 0, 1, ..., NiN .

Due to the absen
e of dampening, we 
hose

ψ(ν) = φ(ν) (3.1.31)

when 
omputing the approximate solution ui and

ψ(ν) = iνφ(ν) (3.1.32)

when 
omputing the approximate gradient u̇i for i = 0, 1, ..., n− 1.

The ba
kward algorithm on the alternative grid is not signi�
antly more 
omplex than the

regular grid of Chapter 2. One simply needs to take into a

ount the domain 
ontra
tion

through time steps and dis
retize the Fourier spa
e a

ordingly. The following algorithm details

the numeri
al pro
edure on the alternative grid.

Algorithm 3.1. Convolution Method on Alternative Grid

1. Dis
retize the restri
ted real spa
e [−Nnl
2 , Nnl

2 ] and the restri
ted Fourier spa
e [−L
2 ,

L
2 ]

with NnN spa
e steps so to have the real spa
e nodes {xnk}NnN
k=0 and {νnk}NnN

k=0

2. Value un(xnk) = g(xnk)

3. For any i from n− 1 to 0

(a) Compute α and β de�ning the transform of equation (3.1.8), su
h that

θi+1 = (ui+1)
α,β

(3.1.33)

and θi+1 satis�es the boundary 
onditions of equations (3.1.25) and (3.1.26).

(b) Compute θi(xik) through equation (3.1.30) for k = 0, 1, ..., NiN with

ψ(ν) = φ(ν) (3.1.34)

and retrieve the values ũik as

ũik = θi(xik)− α(x2i,k −∆i)βxi,k. (3.1.35)
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(
) Compute θi(xik) through equation (3.1.30) for k = 0, 1, ..., NiN with

ψ(ν) = iνφ(ν) (3.1.36)

and retrieve the values u̇ik as

u̇ik = θi(xik)− (2αxik + β) . (3.1.37)

(d) Compute the values uik as

uik = ũik +∆if(ti, ũik, u̇ik) (3.1.38)

for k = 0, 1, ..., NiN through equation (3.1.2) when using the expli
it Euler s
heme 1

or as

uik = ũik +∆if(ti, uik, u̇ik) (3.1.39)

through equation (3.1.5) under the impli
it Euler s
heme.

(e) Update the real spa
e grid with equation (3.1.21) and the Fourier spa
e grid by dis-


retizing the interval [−L
2 ,

L
2 ] with NiN spa
e steps so to have the real spa
e nodes

{xik}NiN
k=0 and {νik}NiN

k=0 .

The algorithm produ
es the numeri
al solutions {uik}NiN
k=0 , {ũik}NiN

k=0 and {u̇ik}NiN
k=0 , i =

0, 1, ..., n− 1. The next se
tion deals with error 
onsiderations under the alternative dis
retiza-

tion.

3.2 Error analysis

First, we give a bound for the lo
al dis
retization error. Let {uik}NiN
k=0 , {ũik}NiN

k=0 and {u̇ik}NiN
k=0

denote the numeri
al solutions obtained from the 
onvolution method at time mesh ti given the

solution ui+1 at time ti+1. For the 
onvolution method on the alternative grid, we de�ned the

lo
al dis
retization error as

Eik := |ui(xk)− uik|+ |u̇i(xk)− u̇ik| (3.2.1)

for i = 0, 1, ..., n− 1 and k = 0, 1, ..., NiN .

Theorem 3.3. Suppose that the driver f ∈ C1,2,2
and the terminal 
ondition g ∈ C2

. Then the


onvolution method yields a dis
retization error of the form

Eik = O (∆x) +O
(
e−K|∆i|−1l2

)
(3.2.2)

for some 
onstant K > 0 on the alternative grid and under the trapezoidal quadrature rule.

Proof. The proof of this result is similar to the proof of Theorem 2.7 and strongly relies on

the ideas developped in Appendix E.3. We suppose the solution ui+1 at time ti+1 is known.

The solution ui+1 ∈ C2
is twi
e di�erentiable sin
e f ∈ C1,2,2

and g ∈ C2
. Also, ui+1 is square

integrable with respe
t to the Gaussian density.

As in Theorem 2.7, we limit ourselves to the 
ase where

ui+1

(
−Ni+1l

2

)
= ui+1

(
Ni+1l

2

)
and

∂ui+1

∂x

(
−Ni+1l

2

)
=
∂ui+1

∂x

(
Ni+1l

2

)

so that the 
oe�
ients of the transform are α = β = 0. Let Ti be the Fourier polynomial

interpolating ui+1 on

[
−Ni+1l

2 , Ni+1l
2

]
su
h that

Ti(x) := TNNi+1[ui+1](x), x ∈ R. (3.2.3)
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We have that

ũi(xik) =

∫

|y|≤ l
2

ui+1(xik + y)h(y)dy +

∫

|y|> l
2

ui+1(xik + y)h(y)dy

where

∫

|y|> l
2

ui+1(xik + y)h(y)dy = O
(
e−Kl2

)

for some 
onstant K > 0 whi
h is inversely proportional to ∆i by the Cau
hy-S
hwartz and

Cherno� inequalities sin
e the solution ui+1 is square integrable. Hen
e

ũi(xik) =

∫

|y|≤ l
2

ui+1(xik + y)h(y)dy +O
(
e−Kl2

)

=

∫

|y|≤ l
2

Ti(xik + y)h(y)dy +O (∆x) +O
(
e−Kl2

)

(by Proposition E.10),

=

∫

R

Ti(xik + y)h(y)dy −
∫

|y|> l
2

Ti(xik + y)h(y)dy

+O (∆x) +O
(
e−Kl2

)

=

∫

R

Ti(xik + y)h(y)dy +O (∆x) +O
(
e−Kl2

)

(by Cherno�'s inequality, sin
e Ti is bounded),

=

∫

R

Ni+1N

2 −1∑

j=−Ni+1N

2

dje
ij 2π

Ni+1l
(xi,k+y)

h(y)dy +O(∆x) +O
(
e−Kl2

)

=

Ni+1N

2 −1∑

j=−Ni+1N

2

dje
ij 2π

Ni+1l
xi,kφ

(
j

2π

Ni+1l

)
+O(∆x) +O

(
e−Kl2

)

=

Ni+1N

2 −1∑

j=−Ni+1N

2

dje
ij 2π

Ni+1l
x
i+1,k+N

2 φ

(
j

2π

Ni+1l

)
+O(∆x) +O

(
e−Kl2

)

= (−1)k+
N
2

Ni+1N−1∑

j=0

φ(νi+1,j)(−1)j−
Ni+1N

2 d
j−Ni+1N

2

e
i 2π
Ni+1N

j(k+N
2 )

+ O(∆x) +O
(
e−Kl2

)

= (−1)k+
N
2

Ni+1N−1∑

j=0

φ(νi+1,j)D[ui+1]je
i 2π
Ni+1N

j(k+N
2 )

+ O(∆x) +O
(
e−Kl2

)

(by Proposition E.9 when using the trapezoidal quadrature rule),

= ũik +O(∆x) +O
(
e−Kl2

)
.

Similar te
hniques show that

u̇i(xk) = u̇ik +O (∆x) +O
(
e−Kl2

)
(3.2.4)

where K > 0 is inversely proportional to ∆i. The Lips
hitz property of the driver f 
ompletes

the proof.

As expe
ted, the alternative dis
retization improves the lo
al error bound by eliminating

extrapolation errors. The result of Theorem 3.3 establishes the 
onsisten
y of the 
onvolution
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method with respe
t to the approximate fun
tions ui and gradients u̇i. Hen
e, the 
onvolution

method is 
onsistent to the PDE solution u and its derivative

∂u
∂x sin
e the time dis
retization is

itself 
onvergent.

Furthermore, the absen
e of extrapolation errors in the lo
al dis
retization allows us to

develop a bound for the global dis
retization error. The following 
orollary proves helpful when

deriving the global dis
retization error bound.

Corollary 3.4. Under the 
onditions of Theorem 3.3,

sup
i,k

Ei,k = O(∆x) +O
(
e−C|π|−1l2

)
(3.2.5)

where C > 0 and |π| = supi∆i.

We de�ne the global error as

El,∆x := sup
i,k

eik + sup
i,k

ėik (3.2.6)

where

eik = |un−i(xk)− un−i,k| (3.2.7)

and

ėik = |u̇n−i(xk)− u̇n−i,k| (3.2.8)

for i = 1, ..., n with e0,k = ė0,k = 0. The next theorem des
ribes the stability and 
onvergen
e

properties of the 
onvolution method.

Theorem 3.5. Suppose the 
onditions of Theorem 3.3 are satis�ed. If the dis
retization is su
h

that

sup
i

max

(
∆x√
2π∆i

,
∆x

π∆i

)
≤ 1 (3.2.9)

then the 
onvolution method is stable and the global dis
retization error El,∆x satis�es

El,∆x = O(∆x) +O
(
e−C|π|−1l2

)
(3.2.10)

where C > 0.

Proof. First note that from the de�nitions of equations (3.2.1) and (3.2.7)

eik ≤ En−i,k + |un−i,k − un−i,k|
≤ En−i,k + (1 +∆iK) |ũn−i,k − ũn−i,k|

+ ∆iK |u̇n−i,k − u̇n−i,k| (3.2.11)

where K > 0 is the Lips
hitz 
onstant of the driver f . Also, we have that

ėik ≤ En−i,k + |u̇n−i,k − u̇n−i,k| . (3.2.12)

from equations (3.2.1) and (3.2.8).

Furthermore, the 
onstru
tion of the 
onvolution method gives

|ũi,k − ũi,k| ≤
∣∣∣∣D−1

[
{φ(νi+1,j)D[ui+1 − ui+1,s]j}Ni+1N−1

j=0

]
k+N

2

∣∣∣∣+ Ei,k

(by Theorem 3.3 sin
e the transform fun
tion is given),

≤ 1

Ni+1N




Ni+1N−1∑

j=0

φ(νi+1,j)


 sup

k
|ui+1(xi,k)− ui+1,k|+ Ei,k

(using the matrix-ve
tor representation of DFTs),
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≤ 1

Ni+1N




Ni+1N−1∑

j=0

φ(νi+1,j)


 sup

k
en−i−1,k + Ei,k

≤ (∆νi+1)
−1

Ni+1N

(∫

R

φ(x)dx

)
sup
k
en−i−1,k + Ei,k

=
∆x

(2π∆i)
1
2

sup
k
en−i−1,k + Ei,k. (3.2.13)

Similarly,

|u̇i,k − u̇i,k| ≤
∣∣∣∣D−1

[
{ψ(νi+1,j)D[ui+1 − ui+1,s]j}Ni+1N−1

j=0

]
k+N

2

∣∣∣∣+ Ei,k

(by Theorem 3.3 sin
e the transform fun
tion is given),

≤ 1

Ni+1N




Ni+1N−1∑

j=0

|νi+1,j |φ(νi+1,j)


 sup

k
en−i−1,k + Ei,k

(using the matrix representation of DFTs),

≤ (∆νi+1)
−1

Ni+1N

(∫

R

|x| φ(x)dx
)
sup
k
en−i−1,k + Ei,k

=
∆x

π∆i
sup
k
en−i−1,k + Ei,k. (3.2.14)

Then, 
ombining the inequalities of equations (3.2.11), (3.2.13) and (3.2.14) leads to

ei,k ≤ C0Ei,k + (1 + 2∆iK)max

(
∆x√
2π∆i

,
∆x

π∆i

)
sup
k
ei−1,k

≤ C0 sup
i,k

Ei,k + (1 + 2∆iK)max

(
∆x√
2π∆i

,
∆x

π∆i

)
sup
k
ei−1,k

where C0 > 0 and K > 0 is the Lips
hitz 
onstant of the driver f . So that

sup
k
ei,k ≤ C0 sup

i,k
Ei,k + (1 + 2∆iK)max

(
∆x√
2π∆i

,
∆x

π∆i

)
sup
k
ei−1,k

≤ C0 sup
i,k

Ei,k + (1 + 2∆iK)ζ sup
k
ei−1,k (3.2.15)

for some positive number ζ satisfying

sup
i

max

(
∆x√
2π∆i

,
∆x

π∆i

)
≤ ζ ≤ 1.

From the inequality of equation (3.2.15), Gronwall's Lemma yields

sup
k
ei,k ≤ C0e

2TK sup
i,k

Ei,k (3.2.16)

for i = 0, 1, ..., n knowing that e0,k = 0. Hen
e, the 
onvolution method is stable for the

approximate solution ui sin
e its error at any time step is absolutely bounded.

The inequalities of equations (3.2.12), (3.2.14) and (3.2.16) lead to

sup
k
ėi,k ≤

(
C1 +

∆x

π∆i
C0e

2TK

)
sup
i,k

Ei,k

≤
(
C1 + C0e

2TK
)
sup
i,k

Ei,k (3.2.17)

for a positive 
onstant C1 > 0. Hen
e, the 
onvolution method is also stable for the approximate

gradient u̇i.

The result of equation (3.2.10) follows by taking the supremum on the left hand sides of

equations (3.2.16) and (3.2.17) other time steps and applying Corollary 3.4.
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Similar to most expli
it methods for PDEs

1

, the 
onvolution method displays a stability


ondition des
ribed in equation (3.2.9). This 
ondition is a
tually weaker 
ompared to other

methods, espe
ially the expli
it �nite di�eren
e method sin
e the 
ondition is easily satis�ed. In

general, Theorem 3.5 shows that the 
onvolution method 
onverges when the spa
e dis
retization

is relatively as �ne as the time dis
retization and/or the square root of the time dis
retization.

Other numeri
al methods for BSDEs, and parti
ularly Monte Carlo based method, have a

stability and 
onvergen
e 
ondition. Indeed, error explosion o

urs for �ne time dis
retizations

in the ba
kward methods of Gobet et al. [53℄ and Bou
hard and Touzi [20℄. In order to maintain

stability and 
onvergen
e, the spa
e dis
retization has to be re�ned by in
reasing the number of

simulated paths.

The next 
orollary gives a method of dis
retization to produ
e a 
onvergent s
heme. It also


on�rms that the major variables that impa
t 
onvergen
e are the maximal time step |π| and
the spa
e step ∆x. The length of the trun
ated domain l has but a negligible e�e
t on the global

error El,∆x for �ne time dis
retizations. Nonetheless, large values of l are preferable to improve

speed of 
onvergen
e but also for simulation reasons as we shall see in Se
tion 3.3.

Corollary 3.6. If the spa
e dis
retization is su
h that

∆x ≤
√
2π min

0≤i<n
∆i (3.2.18)

then the 
ondition of equation (3.2.9) holds and the 
onvolution method applied on S
heme 1


onverges on the alternative grid as |π| → 0.

Proof. Assume without loss of generality that |π| < 1 then we have that

max

(
∆x√
2π∆i

,
∆x

π∆i

)
<

∆x√
2π∆i

≤ 1

for i = 0, 1, 2, ..., n− 1 where the last inequality holds by equation (5.3.9). Hen
e, the stability


ondition of equation (3.2.9) holds.

Clearly |π|+∆x→ 0, and 
onsequently El,∆x → 0 by Theorem 3.5, as |π| → 0.

As already mentioned in Chapter 2, the impli
it Euler s
heme will provide numeri
al so-

lutions with similar properties as those developed in Theorem 3.3 and Theorem 3.5. Indeed,

the 
onvergen
e properties under the impli
it Euler s
heme 
an be established when the time

dis
retization satisfy the 
ondition

|π|K < 1 (3.2.19)

where K is the Lips
hitz 
onstant of the driver f . The numeri
al solution to the BSDE is

expli
itly de�ned in the next se
tion.

3.3 Simulation of BSDEs

The availability of approximations for the fun
tions ui and u̇i , i = 0, 1, 2, .., n allows us to

simulate the BSDE. A numeri
al approximation of the BSDE solution 
an indeed be 
onstru
ted

1

For instan
e, the expli
it �nite di�eren
e method on the heat equation

∂u

∂t
=
∂2u

∂x2
.

The spa
e step ∆x and the time step ∆ have to satisfy an a stability and 
onvergen
e 
ondition of the form

∆ ≤ 1

2
∆x2

as shown by the Von Neumann stability analysis of the s
heme in Tveito and Winther [110℄, page 132.
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from the numeri
al solution of the approximate solution {uik}NiN
k=0 and the approximate gradient

{u̇ik}NiN
k=0 , i = 0, 1, 2, ..., n. The approa
h is similar to most four step s
heme (or PDE) based

methods for solving BSDEs.

Let (Ui, U̇i) be the extended solution at time mesh ti de�ned on the trun
ated interval

Ii = [−1

2
Nil,

1

2
Nil]. (3.3.1)

More pre
isely, Ui : Ii → R (resp. U̇i : Ii → R) is the fun
tion obtained by linearly interpolating

the approximate solution {uik}NiN
k=0 (resp. the approximate gradient {u̇ik}NiN

k=0 ) on the spa
e

grid

2

. Hen
e, if x ∈ [xik, xi,k+1] and N0 > 0 then

Ui(x) = uik +
ui,k+1 − uik
xi,k+1 − xik

(x− xik) (3.3.2)

and similarly

U̇i(x) = u̇ik +
u̇i,k+1 − u̇ik
xi,k+1 − xik

(x− xik) (3.3.3)

for i = 0, 1, ..., n− 1 and k = 0, 1, ..., NiN − 1. In the parti
ular 
ase where N0 = 0, we set

U0(x) = u00δx,0 (3.3.4)

U̇0(x) = u̇00δx,0 (3.3.5)

so that there is no interpolation at time t0 = 0.

An extended solution for the approximate solution was also de�ned by Douglas et al. [40℄

using linear interpolation. Nonetheless, Douglas et al. [40℄ 
onsider extensions on both time and

spa
e. Also, the trun
ation inherent to the 
onvolution method for
es us to set the extended

solution to a graveyard value outside the spa
e grid. Here, we set it as zero (0) but the boundary

values of the numeri
al solution 
an be used.

An important feature of the extension is that it does not introdu
e an additional error term

sin
e the interpolation error is of a lesser order (in spa
e) than the global dis
retization error

El,∆x. The following theorem gives the interpolation (quadrati
) error bound.

Theorem 3.7. Suppose the driver f ∈ C1,2,2
, the terminal 
ondition g ∈ C2

and the stability

and 
onvergen
e 
ondition of equation (3.2.9) is satis�ed. Then

sup
i

sup
x∈Ii

|ui(x) − Ui(x)|2 + sup
i

sup
x∈Ii

∣∣∣u̇i(x)− U̇i(x)
∣∣∣
2

= O(∆x2) +O
(
e−C|π|−1l2

)
(3.3.6)

where C > 0.

Proof. First note that sin
e f ∈ C1,2,2
and g ∈ C2

, we have that ui ∈ C2
and u̇i ∈ C2

are both

twi
e di�erentiable (using the Leibniz integral rule re
ursively). Hen
e, for x ∈ [xik, xi,k+1]

ui(x) − Ui(x) = ui(x)− uik − ui,k+1 − uik
xi,k+1 − xik

(x − xik)

= ui(x)− ui(xik)−
ui(xi,k+1)− ui(xik)

xi,k+1 − xik
(x − xik)

+ O(∆x) +O
(
e−C|π|−1l2

)

2

The numeri
al solutions {uik}NiN

k=0 and {u̇ik}NiN

k=0 are a
tually 
omplex numbers. Sin
e they approximate real

values, their imaginary parts are of the order of the global dis
retization error El,∆x and hen
e negligible. For

this reason, we de�ne the fun
tions Ui and U̇i as real-valued fun
tions using the proje
tion of the approximate

solutions onto the real line.
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(by Theorem 3.5),

= O(∆x2) +O(∆x) +O
(
e−C|π|−1l2

)

(sin
e ui is twi
e di�erentiable),

= O(∆x) +O
(
e−C|π|−1l2

)
.

If N0 = 0, the last equation obviously holds at x = 0.

Clearly,

sup
i

sup
x∈Ii

|ui(x)− Ui(x)|2 = O(∆x2) +O
(
e−C|π|−1l2

)
(3.3.7)

sin
e the Ii are bounded intervals.

The same te
hniques show that

sup
i

sup
x∈Ii

∣∣∣u̇i(x)− U̇i(x)
∣∣∣
2

= O(∆x2) +O
(
e−C|π|−1l2

)
(3.3.8)

and the result follows.

The approximation of the BSDE solution (Y, Z) is then given by the 
ouple (y, z) de�ned on

[0, T ) as

yt =

n−1∑

i=0

Ui(Wti)1[ti,ti+1)(t) (3.3.9)

zt =

n−1∑

i=0

U̇i(Wti)1[ti,ti+1)(t) (3.3.10)

where {Wt}t∈[0,T ] is a standard Brownian motion. By the de�nition of (y, z) and the 
ontinuity

of linear interpolations, and hen
e of the extended fun
tions Ui : Ii → R and U̇i : Ii → R, we

obtain the following 
orollary.

Corollary 3.8. The pro
esses (y, z) are both F−adapted, 
àdlàg and 
onstant on any interval

[ti, ti+1), i = 0, 1, ..., n− 1. Moreover,

(y, z) ∈ L∞
S (R2) (3.3.11)

i.e the pro
esses are bounded.

The (quadrati
) error on the BSDE solution is de�ned as

E2
π,l,∆x := max

0≤i<n
E

[
sup

t∈[ti,ti+1)

|Yt − yt|2
]
+

n−1∑

i=0

E

[∫ ti+1

ti

|Zs − zs|2 ds
]

(3.3.12)

and 
hara
terized in the next theorem.

Theorem 3.9. Suppose the driver f ∈ C1,2,2
, the terminal 
ondition g ∈ C2

, the stability and


onvergen
e 
ondition of equation (3.2.9) is satis�ed and

ξ = g(WT ) ∈ L4
(3.3.13)

then

E2
π,l,∆x = O(|π|) +O(∆x2) +O

(
e−C(N0+1)2l2 + e−C|π|−1l2

)
(3.3.14)

where C > 0.
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Proof. We have that

E2
π,l,∆x ≤ 2E2

π + 2 max
0≤i<n

E

[
sup

t∈[ti,ti+1]

∣∣Y π
ti − yt

∣∣2
]

+ 2

n−1∑

i=0

E

[∫ ti+1

ti

∣∣Zπ
ti − zs

∣∣2 ds
]

≤ 2 max
0≤i<n

E

[
sup

t∈[ti,ti+1)

∣∣Y π
ti − yt

∣∣2
]
+ 2

n−1∑

i=0

E

[∫ ti+1

ti

∣∣Zπ
ti − zs

∣∣2 ds
]

+ C1 |π| (by the result of equation I.16),

= 2 max
0≤i<n

E

[∣∣Y π
ti − yti

∣∣2
]
+ 2

n−1∑

i=0

∆iE

[∣∣Zπ
ti − zti

∣∣2
]
+ C1 |π|

≤ 2 max
0≤i<n−1

E

[
|ui(Wti)− Ui(Wti)|2 1Ii

(Wti )
]

+ 2
n−1∑

i=0

∆iE

[∣∣∣u̇i(Wti)− U̇i(Wti)
∣∣∣
2

1Ii
(Wti)

]

+ 2 max
0≤i<n−1

E

[∣∣Y π
ti

∣∣2 1R\Ii
(Wti)

]
+ 2

n−1∑

i=0

∆iE

[∣∣Zπ
ti

∣∣2 1R\Ii
(Wti)

]

+ C1 |π|

≤ 2 max
0≤i<n

sup
x∈Ii

|ui(x)− Ui(x)|2 + 2T max
0≤i<n−1

sup
x∈Ii

∣∣∣u̇i(x) − U̇i(x)
∣∣∣
2

+ 2 max
0≤i<n

E

[∣∣Y π
ti

∣∣2 1R\Ii
(Wti)

]
+ 2

n−1∑

i=0

∆iE

[∣∣Zπ
ti

∣∣2 1R\Ii
(Wti)

]

+ C1 |π|

= 2 max
0≤i<n

E

[∣∣Y π
ti

∣∣2 1R\Ii
(Wti)

]
+ 2

n−1∑

i=0

∆iE

[∣∣Zπ
ti

∣∣2 1R\Ii
(Wti )

]

+ C1 |π|+ C2∆x
2 + C3e

−C4|π|−1l2

(by Theorem 3.7),

≤ 2 max
0≤i<n

E

[∣∣Y π
ti

∣∣2 1R\Ii
(Wti )

]
+ 2T max

0≤i<n
E

[∣∣Zπ
ti

∣∣2 1R\Ii
(Wti )

]

+ C1 |π|+ C2∆x
2 + C3e

−C4|π|−1l2

≤ 2 max
1≤i<n

E

[∣∣Y π
ti

∣∣2 1R\Ii
(Wti )

]
+ 2T max

1≤i<n
E

[∣∣Zπ
ti

∣∣2 1R\Ii
(Wti )

]

+ C1 |π|+ C2∆x
2 + C3e

−C4|π|−1l2

(sin
e W0 ∈ I0),
≤ C1 |π|+ C2∆x

2 + C3e
−C4|π|−1l2 + C5 max

1≤i<n
E

[
1R\Ii

(Wti)
] 1

2

(by the Cau
hy-S
hwartz inequality and Lemma 2.1),

≤ C1 |π|+ C2∆x
2 + C3e

−C4|π|−1l2 + C5 max
1≤i<n

e−C6ti
−1N2

i l
2

(by Cherno�'s inequality),

≤ C1 |π|+ C2∆x
2 + C3e

−C4|π|−1l2 + C5e
−C6T

−1(N0+1)2l2 .

This last inequality is equivalent to the result.

As shown in Theorem 3.9, three di�erent error terms 
ompose the simulation (quadrati
)

error E2
|π|,l,∆x: the time dis
retization error, the spa
e dis
retization error and the trun
ation

error. The time dis
retization error appears naturally knowing that the 
onvolution method is

based on an expli
it Euler s
heme and is of �rst order as is the original Euler s
heme. The spa
e

59



dis
retization error, of se
ond order, results from both the global dis
retization error El,∆x and

the quadrati
 form of the simulation error. The trun
ation error is in�uen
ed by the probability

that the Brownian motion path exits the spa
e grid at a given time step. It remains spe
tral of

index 2 with respe
t to the trun
ation length l, and to some extent with respe
t to the length of

the trun
ated domain at the �rst time step (N0 + 1)l. Thus, in
reasing N0 improves the speed

of 
onvergen
e. However, 
onvergen
e is assured for large values of l as long as the assumptions

of Theorem 3.9 are satis�ed.

In parti
ular, the 
ondition of equation (3.3.13) and its use in the proof of Theorem 3.9

indi
ate that the simulation error E2
|π|,l,∆x is 
ontrollable outside the spa
e grid when the ap-

proximate ba
kward pro
ess Y π
ti and the approximate 
ontrol pro
ess Zπ

ti are in L4
. These


onditions are satis�ed for a large range of BSDEs in
luding BSDEs with terminal fun
tion g of

exponential growth su
h that

|g(x)| ≤ Cep|x|, x ∈ R (3.3.15)

for some 
onstants C > 0 and p ≥ 0. Unfortunately, the BSDE well-posedness does not require

the 
ondition of equation (3.3.13). Thus, the 
onvolution method may not 
onverge for some

well-posed BSDEs in the sense of the simulation error E2
|π|,l,∆x in equation (3.3.12).

We 
an de�ne an alternate simulation error by dis
arding the o

urren
es of the Brownian

motion outside the alternative grid. Then, the alternate simulation (quadrati
) error Ē2
|π|,l,∆x is

Ē2
|π|,l,∆x := max

0≤i<n
E

[
sup

t∈[ti,ti+1)

|Yt − yt|2 1Ii
(Wti)

]

+

n−1∑

i=0

E

[∫ ti+1

ti

|Zs − zs|2 1Ii
(Wti)ds

]
. (3.3.16)

From the proof of Theorem 3.9, the following 
orollary stands.

Corollary 3.10. Suppose the driver f ∈ C1,2,2
, the terminal 
ondition g ∈ C2

and the stability

and 
onvergen
e 
ondition of equation (3.2.9) is satis�ed, then

Ē2
π,l,∆x = O(|π|) +O(∆x2) +O

(
e−C|π|−1l2

)
(3.3.17)

where C > 0.

3.4 Extensions

In this se
tion, we dis
uss further extensions of the 
onvolution method on the alternative grid.

These extensions in
lude Re�e
ted BSDEs and also BSDES based on an arithmeti
 Brownian

motion.

3.4.1 Simulation of RBSDEs

We de�ned, in Se
tion 2.5, expli
it s
hemes for the RBSDEs





−dYt = f(t, Yt, Zt, )dt+ dAt − ZtdWt

Yt ≥ Bt , dAt ≥ 0 , ∀t ∈ [0, T ]
∫ T

0 (Yt −Bt)dAt = 0 , YT = g(XT )

(3.4.1)

where

Bt = B(t,Wt) (3.4.2)
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for a deterministi
 fun
tion B : [0, T ]× R → R. The time dis
retization of the RBSDE through

Euler s
heme 1 is essentially equivalent to

ui(x) = ũi(x) + ∆if(ti, ũi(x), u̇i(x)) + ∆ūi(x) (3.4.3)

with

u̇i(x) =
1

∆i

∫ ∞

−∞
(y − x)ui+1(x+ y)h(y)dy (3.4.4)

ũi(x) =

∫ ∞

−∞
ui+1(x+ y)h(y)dy (3.4.5)

∆ūi(x) = [ũi(x) + ∆if(ti, ũi(x), u̇i(x))−B(ti, x)]
−

(3.4.6)

for i = 0, 1, ..., n− 1 and un(x) = g(x).

The 
onvolution method on the alternative grid provides numeri
al estimates for the approx-

imate solution {uik}NiN
k=0 , the approximate gradient {u̇ik}NiN

k=0 and the approximate in
rement

{∆ūik}NiN
k=0 , i = 0, 1, ..., n − 1. We de�ne the extended fun
tions Ui and U̇i as in equations

(3.3.2) and (3.3.3). An additional extended fun
tion ∆Ūi : Ii → R is de�ned by linearly interpo-

lating the values {∆ūik}NiN
k=0 on the spa
e grid at time mesh ti. Hen
e, for any x ∈ [xik, xi,k+1],

∆Ūi(x) = ∆ūik +
∆ūi,k+1 −∆ūik
xi,k+1 − xik

(x− xik) (3.4.7)

for i = 0, 1, .., n− 1. When N0 = 0, we simply have

∆Ū0(x) = ∆ū00δx,0. (3.4.8)

A numeri
al approximation of the RBSDE solution (Y, Z,A) 
onsists of the triplet (y, z, a)

where

yt =
n−1∑

i=0

Ui(Wti)1[ti,ti+1)(t) (3.4.9)

zt =
n−1∑

i=0

U̇i(Wti)1[ti,ti+1)(t) (3.4.10)

at =
n−1∑

i=0

∆Ūi(Wti)1[ti,T )(t) (3.4.11)

and {Wt}t∈[0,T ] is a standard Brownian motion. By de�nition, the triple of pro
esses {(yt, zt, at)}t∈[0,T )

is F−adapted and 
àdlàg. Both pro
esses {yt}t∈[0,T ) and {zt}t∈[0,T ) are in L
∞
S (bounded) whereas

the pro
ess {at}t∈[0,T ) is non-de
reasing.

3.4.2 Arithmeti
 Brownian motion

When the forward pro
ess is the arithmeti
 Brownian motion X

Xt = x0 + µt+ σWt, (3.4.12)

the BSDE solution is asso
iated to the Cau
hy problem on the adve
tion-di�usion equation





∂u
∂t + µ∂u

∂x + 1
2σ

2 ∂2u
∂x2 + f(t, x, u, σ∇u) = 0 , (t, x) ∈ [0, T )× R

u(T, x) = g(x), x ∈ R.
(3.4.13)

We already mentioned in Chapter 2 that the forward pro
ess in
rements are indeed stationary,

independent and normally distributed with density

h(x) =
1

(2π∆i)
1
2σ

exp

(
− (x− µ∆i)

2

2σ2∆i

)
. (3.4.14)
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and 
hara
teristi
 fun
tion

φ(ν) = e∆i(iµν− 1
2σ

2ν2). (3.4.15)

In this 
ase, the 
onvolution method is applied with ψ(ν) = φ(ν) when 
omputing the

intermediate solutions ũi and with ψ(ν) = iνφ(ν) when 
omputing the approximate gradient u̇i.

Though, we approximate the approximate gradient through the quantity σ∇u = σ ∂u
∂x and hen
e

use ψ(ν) = iσνφ(ν) in our implementation.

The equivalen
es of 
onvolution representation under the transform of equation (3.1.8) are

given by

θ(x) =
1

2π

∫ ∞

−∞
eiνxη̂(ν)ψ(ν)dν

=
1

2π

∫ ∞

−∞
eiνxη̂α,β(ν)ψ(ν)dν

−α
[
(x+ µ∆i)

2 + σ2∆i

]
− β(x + µ∆i) (3.4.16)

when ψ(ν) = φ(ν) and

θ(x) =
1

2π

∫ ∞

−∞
eiνxη̂(ν)ψ(ν)dν

=
1

2π

∫ ∞

−∞
eiνxη̂α,β(ν)ψ(ν)dν

−σ [2α(x+ µ∆i) + β] (3.4.17)

when ψ(ν) = iσνφ(ν). The 
omputation of the approximate solution ui and the approximate

gradient u̇i as well as the BSDE simulation are done as des
ribed in the previous se
tions.

3.4.3 The Euler s
heme 2

As stated in Chapter 2, the approximate solution vi and the approximate gradient v̇i satisfy

vi(x) =

∫ ∞

−∞
ṽi+1(x+ y)h(y)dy (3.4.18)

where

ṽi+1(x) = vi+1(x) + ∆if(ti, vi+1(x), v̇i(x)) , (3.4.19)

v̇i(x) =

∫ ∞

−∞
(y − x)vi+1(x+ y)h(y)dy (3.4.20)

for i = 0, 1, ..., n− 1 and vn(x) = g(x) under the expli
it Euler s
heme 2.

In this setting, one noti
es that two su

essive 
onditional expe
tations have to be 
omputed

at ea
h time step through these equations. In order to maintain a

ura
y as des
ribed in Se
tion

3.2, a total of 2N points have to be dis
arded on the spa
e grid at ea
h time step

3

. As a 
ompar-

ison, only N points are lost in the alternative grid presented above. Thus, the implementation

of Euler s
heme 2 is more 
omputationally demanding 
ompared to the Euler s
heme 1.

Nonetheless, it is possible to implement the Euler s
heme 2 on the alternative grid of Se
tion

3.1. Indeed, a simple algorithm 
onsists in using all values of the approximate gradient 
omputed

through equation (3.4.20) in the intermediate solution of equation (3.4.19). Hen
e, only N points

are dis
arded from the spa
e grid when 
omputing the approximate solution with equation

(3.4.18). As a 
onsequen
e, the Euler s
heme 2 will display an additional extrapolation error,

3N points are dis
arded after 
omputing equation (3.4.20) and N other points when 
omputing equation

(3.4.18) whi
h in
ludes the solution of (3.4.20).
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espe
ially at the boundaries on the trun
ated domain. The 
omplete algorithm is given in

Algorithm 3.2.

Indeed, simple adaptations of Algorithm 3.2 allow us to solve for RBSDEs and/or for arith-

meti
 Brownian motion. These modi�
ation were already dis
ussed in the beginning of this

se
tion. Also, the simulation of (R)BSDEs follows naturally in the setting of S
heme 2 from the

presentation of the numeri
al solution for S
heme 1.

Algorithm 3.2. Convolution Method on Alternative Grid (s
heme 2)

1. Dis
retize the restri
ted real spa
e [−Nnl
2 , Nnl

2 ] and the restri
ted Fourier spa
e [−L
2 ,

L
2 ]

with NnN spa
e steps so to have the real spa
e nodes {xnk}NnN
k=0 and {νnk}NnN

k=0

2. Value vn(xnk) = g(xnk)

3. For any i from n− 1 to 0

(a) Compute α and β de�ning the transform of equation (3.1.8), su
h that

θi+1 = (vi+1)
α,β

(3.4.21)

and θi+1 satis�es the boundary 
onditions of equations (3.1.25) and (3.1.26).

(b) Compute θi(xi+1,k) through equation (3.1.28) for k = 0, 1, ..., Ni+1N with

ψ(ν) = iνφ(ν) (3.4.22)

and retrieve the values v̇ik as

v̇ik = θi(xi+1,k)− (2αxi+1,k + β) . (3.4.23)

(
) Compute the values ṽi+1,k as

ṽi+1,k = vi+1,k +∆if(ti, vi+1,k, v̇ik) (3.4.24)

for k = 0, 1, ..., Ni+1N through equation (3.4.19).

(d) Compute α and β de�ning the transform of equation (3.1.8), su
h that

θi+1 = (ṽi+1)
α,β

(3.4.25)

and θi+1 satis�es the boundary 
onditions of equations (3.1.25) and (3.1.26).

(e) Compute θi(xik) through equation (3.1.30) for k = 0, 1, ..., NiN with

ψ(ν) = φ(ν) (3.4.26)

and retrieve the values vik as

ṽik = θi(xik)− α(x2i,k −∆i)βxi,k. (3.4.27)

(f) Update the real spa
e grid with equation (3.1.21) and the Fourier spa
e grid by dis-


retizing the interval [−L
2 ,

L
2 ] with NiN spa
e steps so to have the real spa
e nodes

{xik}NiN
k=0 and {νik}NiN

k=0 .

3.5 Numeri
al results

The numeri
al results on the alternative grid stands as a 
omplement of the results presented in

Se
tion 2.6. We intend to demonstrate the absen
e of extrapolation error and give illustrations

of the (spa
e and time) 
onvergen
e order on the alternative grid. Sin
e the trun
ation error is

demonstrated to be of spe
tral order, it 
an be easily set to the order of epsilon ma
hine

4

and,

hen
e, be 
onsidered negligible.

4

We use a double pre
ision arithmeti
 with epsilon ma
hine ǫ = 2.2204 × 10−16
.
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3.5.1 Spa
e and time 
onvergen
e order

In Appendix D, we develop 
losed form expressions for the approximate solution of the BSDE

with driver

f(t, y, z) = ay + bz (3.5.1)

and terminal 
ondition

g(x) = eϕx. (3.5.2)

Equations (D.14) and (D.15) give the ba
kward and 
ontrol pro
ess true solutions and equations

(D.16) and (D.17) give the approximate solutions after time dis
retization. It 
learly follows

from these equations that the time dis
retization is 
onvergent as expe
ted. We would like to

test the 
onvergen
e of the numeri
al solutions to the true solutions u and ∇u and also to the

approximate solutions ui and u̇i, i = 0, 1, ..., n− 1.

We solve the BSDE with terminal time T = 0.1 and 
oe�
ient parameters a = 3, b = −5 and

ϕ = 0.15 on uniform time meshes with ∆ = T
n and spa
e grids with N0 = 0. For a given time

mesh with n time steps and a spa
e grid with interval length l and N spa
e steps, we 
ompute

two di�erent errors. On one hand, the error of the numeri
al solutions with respe
t to the true

solutions is 
omputed as

ETrue = max
0≤i<n

max
0≤k≤NNi

|u(ti, xik)− uik|

+ max
0≤i<n

max
0≤k≤NNi

|∇u(ti, xik)− u̇ik| . (3.5.3)

On the other hand, the error of the numeri
al solutions with respe
t to the approximate solutions

is given by

EApp = max
0≤i<n

max
0≤k≤NNi

|ui(xik)− uik|

+ max
0≤i<n

max
0≤k≤NNi

|u̇i(xik)− u̇ik| . (3.5.4)

We hen
e 
onsider the maximal absolute error of the numeri
al solutions with S
heme 1 over

the entire grid on the solution u and its gradient ∇u.
The error of the numeri
al solutions with respe
t to the approximate solutions (EApp) is 
er-

tainly the most important one sin
e it indi
ates the a

ura
y of the 
onvolution method when


omputing the 
onditional expe
tations appearing in the Euler s
heme. On the alternative grid,

this error term in
ludes the spa
e dis
retization error and the trun
ation error as shown in The-

orem 3.5. We will use the error EApp to analyze the spatial 
onvergen
e of the method. As

to the error of the numeri
al solutions with respe
t to the true solutions (ETrue), it in
orpo-

rates the underlying time dis
retization error and 
an be used to analyze the e�e
t of the time

dis
retization pro
edure.

In order to perform a spatial 
onvergen
e analysis, we set n = 20 and we 
hoose l large

enough so that the trun
ation error 
an be negle
ted. More pre
isely, we set

l = 25
√
∆ (3.5.5)

and the trun
ation error is of the order of e−252C
whi
h is expe
ted to be 
losed to ma
hine

error for the 
onstant C > 0. The BSDE is then solved for di�erent spa
e dis
retizations with

N = 2j , j ∈ {1, 2, 3, 4, 5, 6}. Figure 3.5.1 shows the log-log plot of the maximal errors EApp and

ETrue for ea
h of the spa
e dis
retizations.

A �rst observation on Figure 3.5.1 is that the error with respe
t to the true solutions ETrue

does not 
hange throughout the di�erent spa
e dis
retizations. This indi
ates that the time

dis
retization error remains 
onstant sin
e we 
hose a 
onstant time step (n = 20 ) for ea
h of
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Table 3.5.1: Relative errors (in per
entage) on the alterntive grid for European put option pri
es

K (Strike) n=50 n=100 n=200 n=500

Convolution

(S
heme 1)

110 0.0149 0.0746 0.0335 0.0083

100 0.6537 0.3269 0.1639 0.0660

90 1.0993 0.0635 0.2549 0.0416

Convolution

(S
heme 2)

110 0.1102 0.0268 0.0095 0.0013

100 0.7450 0.3730 0.1871 0.0753

90 1.00745 0.0525 0.2494 0.0398

Trinomial tree

(S
heme 1)

110 0.0830 0.0646 0.0200 0.0087

100 0.1891 0.0990 0.0501 0.0374

90 0.0388 0.3072 0.1035 0.0324

The 
onvolution method on the alternative grid is performed with a uniform time mesh and parameters N0 = 5,

l = 15
√
∆σ and N = 23. All methods use a uniform time mesh.

where the return pro
ess {Xt}t∈[0,T ] satis�es

Xt = X0 +

(
µ− 1

2
σ2

)
t+ σWt (3.5.12)

with initial pri
e S0 = eX0 = 100, volatility σ = 0.2 and expe
ted return µ = 0.05. In addition,

the market o�ers a lending rate of r = 0.01. Under these 
onditions, a European put option

with strike pri
e K solves the BSDE with linear driver

f(t, y, z) = −ry −
(
µ− r

σ

)
z (3.5.13)

and the non-smooth terminal fun
tion

g(x) = (K − ex)
+
. (3.5.14)

The maturity of all 
onsidered options is T = 1.

At strike pri
es K = 110, 100 and 90, the Bla
k-S
holes formula returns put option pri
es

of 13.5156, 7.4383 and 3.2974 respe
tively and option deltas of −0.2655, −0.4404 and −0.6468

respe
tively. Table 3.5.1 and Table 3.5.2 give the relative errors for various time dis
retizations

produ
ed by the estimates from the 
onvolution methods on the alternative grid. For 
omparison

purposes, these tables also 
ontain the relative errors of the estimates from the trinomial method

as presented in Appendix C. Sin
e the numeri
al results in Se
tion 2.6.2 indi
ate satisfa
tory

pre
ision for relatively 
oarse time grids, we limit the number of time steps to n = 500. As

expe
ted, the relative error de
reases when the number of time steps in
reases so that the

pre
ision of the 
onvolution method is improved on �ner time grids when using an alternative

spa
e grid.

Overall, the 
onvolution and trinomial methods give similar results sin
e they produ
e similar

relative errors parti
ularly for �ne time dis
retizations. Nonetheless, the error on at-the-money

option pri
es are slightly higher than those on out-of-the money and in-the-money option pri
es

under the 
onvolution method. As to option deltas, out-of-the money options have higher errors

than in-the-money options. Those observations are 
onsequen
es of the non-smoothness of the

terminal 
ondition g and the way errors di�use through the approximation solution and the

approximate gradient under the 
onvolution method on the alternative grid.
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Table 3.5.2: Relative errors (in per
entage) on the alternative grid for European put option

deltas.

K (Strike) n=50 n=100 n=200 n=500

Convolution

(S
heme 1)

110 0.1039 0.1063 0.0506 0.0172

100 0.2244 0.1113 0.0553 0.0219

90 0.7750 0.2329 01808 0.0332

Convolution

(S
heme 2)

110 0.1532 0.1311 0.0633 0.0226

100 0.3849 0.1924 0.0965 0.0389

90 0.9876 0.3503 0.2413 0.0583

Trinomial tree

(S
heme 1)

110 0.1865 0.0243 0.0424 0.0132

100 0.2657 0.1264 0.0596 0.0240

90 0.4370 0.3030 0.0680 0.0385

The 
onvolution method on the alternative grid is performed with parameters N0 = 5, l = 15
√
∆σ and N = 23.

All methods use a uniform time mesh.

Figure 3.5.3: Absolute errors at the European put option maturity.
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Errors were 
omputed using the numeri
al solutions (S
heme 1) on the alternative grid with parameters

l = 6
√
∆σ, N0 = 10 and N = 25. The uniform time mesh has n = 100 time steps.
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Figure 3.5.4: Absolute errors at the European put option issuan
e.
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Errors were 
omputed using the numeri
al solutions (S
heme 1) on the alternative grid with parameters

l = 6
√
∆σ, N0 = 10 and N = 25. The uniform time mesh has n = 100 time steps.

As already mentioned, the 
onvolution method uses Fourier series interpolation whi
h has a

parti
ular behavior when applied to non-smooth fun
tions. It is well-known that trigonometri


interpolations display high os
illations around the dis
ontinuities of the interpolated fun
tion.

Those high os
illations are known as the Gibbs phenomenon and 
an be observed in the 
onvo-

lution method on the alternative grid. Figure 3.5.3 illustrates the Gibbs phenomenon in option

pri
es and option deltas when the (at-the-money) option is 
lose to maturity. If the os
illations

seem to be higher for option deltas, they are more persistent for option pri
es. Indeed, os
il-

lations disappear in option deltas 
lose to the option issuan
e as shown in Figure 3.5.4. Also,

Figure 3.5.4 indi
ates that the error indu
ed by the Gibbs phenomenon di�use along the point

of dis
ontinuity through time steps sin
e the errors in option pri
es at the option issuan
e are


learly higher when the option is at-the-money.

Of 
ourse, the presen
e of the Gibbs phenomenon is independent of the grid used under the


onvolution method. Hen
e, this analysis also holds for the uniform spa
e grid of Chapter 2.

However, the presen
e of the extrapolation error on a uniform grid makes the analysis more


ompli
ated sin
e this error globally dominates the spa
e dis
retization error whi
h 
ontains the

error indu
ed by the Gibbs phenomenon.

We 
on
lude this se
tion with the numeri
al resolution of RBSDEs using the 
onvolution

method through Ameri
an put option pri
ing. The barrier in this 
ase is given as usual by

B(t, x) = g(x), (t, x) ∈ [0, T ]× R. (3.5.15)

Table 3.5.3 shows at-the-money Ameri
an put option pri
e and delta estimates from the 
onvo-

lution and the trinomial methods. The estimates from both methods remain similar whi
h is an

indi
ation of the 
onvolution method a

ura
y for RBSDEs on the alternative grid. Similarly,

the regularity of the pri
e and delta surfa
es of Figure 3.5.5 gives an idea of the stability of

the numeri
al solutions for RBSDEs from the 
onvolution method. Finally, this regularity and

a

ura
y allows for a reliable path simulation for (R)BSDEs as illustrated in Figure 3.5.6.

The implementation of the 
onvolution method on the alternative grid produ
es a lo
al dis-


retization error exempt of trun
ation errors. The BSDE numeri
al solution was formally de�ned

and a global error analysis was 
ondu
ted. The numeri
al results presented in this se
tions also
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Table 3.5.3: Ameri
an put option pri
e and delta estimates

K (Strike) Pri
e Delta

Convolution (S
heme 1)

110 13.6860 -0.6402

100 7.5115 -0.4466

90 3.3234 -0.2518

Convolution (S
heme 2)

110 13.6855 -0.6402

100 7.5112 -0.4465

90 3.3235 -0.2517

Trinomial tree (S
heme 1)

110 13.6860 -0.6402

100 7.5135 -0.4465

90 3.3239 -0.2518

Estimates were 
omputed using the numeri
al solutions (S
heme 1) on the alternative grid with parameters

l = 15
√
∆σ, N0 = 5 and N = 23. The uniform time mesh has n = 1000 time steps for all methods.

Figure 3.5.5: At-the-money Ameri
an put option pri
e and delta surfa
es.

The surfa
es are obtained using the numeri
al solutions (S
heme 1) on the alternative grid with parameters

l = 6
√
∆σ, N0 = 10 and N = 25. The uniform time mesh has n = 100 time steps.
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Figure 3.5.6: Path simulation for the at-the-money Ameri
an put option.
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The paths are interpolated from the numeri
al solutions (S
heme 1) on the alternative grid with parameters

l = 6
√
∆σ, N0 = 10 and N = 25. The uniform time mesh has n = 100 time steps.


on�rm the theoreti
al results developed in the error analysis. However, the 
onvolution is lim-

ited to the BSDE 
ase. Hen
e, the following se
tion extends the results to the more general

FBSDE framework.
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Chapter 4

A Fourier interpolation method for

FBSDEs

An important and interesting extension of the 
onvolution method 
onsists in applying it to

FBSDEs. Unfortunately, the 
onvolution representation of our approximate solutions, as devel-

oped and used in Chapters 2 and 3, are unavailable in the FBSDE 
ase. The reason for this

in
onvenien
e is that the forward pro
ess in a general FBSDE setting, even though a Markovian

pro
ess, does not have independent in
rements. Hen
e the distribution fun
tion of the forward

pro
ess in
rement does not depend ex
lusively on the in
rement, but also on the pro
ess's last

position.

In this 
hapter, we shall use some of the ideas introdu
ed in the previous 
hapters in order

to build a numeri
al method for FBSDEs. The main purpose is to obtain a numeri
al solution

on a uniform spa
e grid as �exible as the one in Chapter 3 and resulting in a 
onvergent s
heme.

The majority of spa
e dis
retization and PDE methods for FBSDEs fail in produ
ing a uniform

spa
e grid whi
h makes the implementation of those methods quite 
hallenging. Milstein and

Tretyakov [89, 90℄ and Delarue and Menozzi [35, 36℄ are notable examples. The reason for the

extend usage of non-uniform spa
e grids stems from the non-stationarity of the forward pro
ess

1

.

Nonetheless, a uniform spa
e grid seems to be easier to handle and more suitable for simulation.

4.1 Preliminaries

As already indi
ated, we work on the 
omplete �ltered probability spa
e (Ω, F , F, P) where the

�ltration F = {Ft : t ∈ [0, T ]} is generated by a d-dimensional Brownian motion {Wt}t∈[0,T ].

The general FBSDE for whi
h we seek a numeri
al solution is a system of the form





dXt = a(t,Xt)dt+ σ(t,Xt)dWt

−dYt = f(t,Xt, Yt, Zt)dt− Z∗
t dWt

X0 = x0 , YT = ξ

(4.1.1)

where the forward drift a : [0, T ]× Rd → Rd
, the forward volatility σ : [0, T ]× Rd → Rd×d

, the

driver f : [0, T ]× Rd × R × Rd → R are deterministi
 fun
tions. The initial 
ondition x0 ∈ Rd

and the terminal 
ondition takes the Markovian form ξ = g(XT ) where g : Rd → R.

We assume the usual Lips
hitz and growth 
onditions on de
oupled FBSDE 
oe�
ients. The

following Assumption gives the details.

1

In the weak sense.
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Assumption 4.1.1. There exist positive 
onstants K1, K2 K3, and K4 su
h that the 
oe�
ients

of the FBSDE (4.1.1) satisfy

|a(t, x1)− a(t, x2)| ≤ K1 |x1 − x2| (4.1.2)

‖σ(t, x1)− σ(t, x2)‖2 ≤ K1 |x1 − x2| (4.1.3)

|a(t, x)|+ ‖σ(t, x)‖2 ≤ K2 (4.1.4)

|f(t, x1, y, z)− f(t, x2, y, z)| ≤ K1 |x1 − x2| (4.1.5)

|f(t, x, y1, z1)− f(t, x, y2, z2)| ≤ K1 (|y1 − y2|+ |z1 − z2|) (4.1.6)

|f(t, x, y, z)| ≤ K3(1 + |x|+ |y|+ |z|) (4.1.7)

for any t ∈ [0, T ], x, x1, x2 ∈ Rd
, y, y1, y2 ∈ R, z, z1, z2 ∈ Rd

.

Moreover σ2 := σσ∗
is (uniformly) invertible, 
ontinuous and bounded

∥∥(σ2(t, x))−1
∥∥
2
≤ K4 (4.1.8)

for any t ∈ [0, T ], x ∈ Rd
.

In addition, the terminal value is square integrable

‖ξ‖2L2 := E
[
|g(XT )|2

]
<∞. (4.1.9)

A solution of the system of sto
hasti
 di�erential equations (4.1.1) is a triple of pro
esses

(X,Y, Z) where the forward pro
ess X ∈ L2
S(R

d) is adapted and square integrable. In addition,

the ba
kward pro
ess Y ∈ L2
S(R) and the 
ontrol pro
ess Z ∈ L2

I(R
d) are also adapted and

square integrable.

The problem of well-posedness for the systems of sto
hasti
 di�erential equations (4.1.1) has

been widely studied. The existen
e and uniqueness result of the forward pro
ess X is established

through SDE theory. Pardoux and Peng [96℄ proved the well-posedness of the ba
kward SDE.

As indi
ated by Pardoux and Peng [97℄, the FBSDE of equation (4.1.1) is asso
iated with

the following Cau
hy problem on a quasilinear (paraboli
) PDE





∂u
∂t + Lu+ f(t, x, u, σ∗(t, x)∇u) = 0, (t, x) ∈ [0, T )× Rd

u(T, x) = g(x), x ∈ Rd
(4.1.10)

where

Lu =

d∑

i=1

ai(t, x)
∂u

∂xi
+

1

2

d∑

i,j=1

σ2
ij(t, x)

∂2u

∂xi∂xj
. (4.1.11)

The FBSDE solution 
an hen
e be expressed in terms of the PDE solution u as

Xt = x0 +

∫ t

0

a(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs (4.1.12)

Yt = u(t,Xt) (4.1.13)

Zt = σ∗(t,Xt)∇u(t,Xt). (4.1.14)

through the four step s
heme of Ma, Protter and Yong [79℄.

4.2 Numeri
al implementation

We develop the numeri
al implementation of the Fourier interpolation method method. In

this se
tion, the basi
s on the time and spa
e dis
retizations are given. The presentation gives

Fourier representation of numeri
al solution in the general multidimensional 
ase. The numeri
al

implementation however is restri
ted to the one-dimensional 
ase.
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4.2.1 Time dis
retization and Fourier representation

As usual, the starting point is the expli
it Euler s
heme 1 applied to the FBSDE of equation

(4.1.1). On the time mesh π = {t0 = 0 < t1 < ... < tn = T } with time steps

∆i = ti+1 − ti, i = 0, 1, ..., n− 1, (4.2.1)

the time dis
retization takes the form





Xπ
0 = x0

Xπ
ti+1

= Xπ
ti + a(ti, X

π
ti)∆i + σ(ti, X

π
ti)∆Wi

Zπ
tn = 0, Y π

tn = ξπ

Zπ
ti =

1
∆i
E

[
Y π
ti+1

∆Wi|Fti

]

Y π
ti = E

[
Y π
ti+1

|Fti

]
+ f(ti, X

π
ti ,E

[
Y π
ti+1

|Fti

]
, Zπ

ti)∆i

(4.2.2)

where ∆Wi =Wti+1 −Wti . First note that

σ(ti, X
π
ti)Z

π
ti =

1

∆i
E

[
Y π
ti+1

σ(ti, X
π
ti)∆Wi|Fti

]

=
1

∆i
E

[
Y π
ti+1

(∆Xπ
i −∆ia(ti, X

π
ti))|Fti

]
(4.2.3)

with ∆Xπ
i = Xπ

ti+1
−Xπ

ti . Hen
e, the approximate solution ui at mesh time ti 
an be written as

ui(x) = ũi(x) + ∆if(ti, x, ũi(x), u̇i(x)) (4.2.4)

where the intermediate solution ũi and the approximate gradient u̇i at mesh time ti satisfy

ũi(x) = E

[
Y π
ti+1

|Xπ
ti = x

]

=

∫

Rd

ui+1(x+ y)hi(y|x)dy (4.2.5)

σ(ti, x)u̇i(x) =
1

∆i
E

[
Y π
ti+1

σ(ti, X
π
ti)∆Wi|Xπ

ti = x
]

=
1

∆i

∫

Rd

(y −∆ia(ti, x))ui+1(x + y)hi(y|x)dy (4.2.6)

for i = 0, 1, ..., n− 1 and un(x) = g(x). Moreover, the fun
tion hi is the 
onditional density of

the dis
rete forward in
rement ∆Xπ
i given an initial position of Xπ

ti = x at mesh time ti. From

the Euler s
heme in equation (4.2.2), hi is the density of a Gaussian random variable with mean

∆ia(ti, x) and varian
e-
ovarian
e matrix ∆iσ
2(ti, x).

The density is expli
itly given by

hi(y|x) = (2π)−
d
2

∥∥∆iσ
2(ti, x)

∥∥− 1
2

2
exp

(
− 1

2∆i
y∗(σ2(ti, x))

−1y

)
(4.2.7)

where y = y −∆ia(ti, x) with 
hara
teristi
 fun
tion

φi(ν, x) = ei∆iν
∗a(ti,x)− 1

2∆iν
∗σ2(ti,x)ν. (4.2.8)

The density fun
tion hi and the 
hara
teristi
 fun
tion φi satisfy the relation

hi(y|x) =
1

(2π)d

∫

Rd

e−iν∗yφi(ν, x)dν. (4.2.9)

Consequently, they also satisfy

yhi(y|x) = − 1

(2π)d

∫

Rd

e−iν∗yi∇νφi(ν, x)dν
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= ∆ia(ti, x)hi(y|x)

+
∆iσ

2(ti, x)

(2π)d

∫

Rd

e−iν∗yiνφi(ν, x)dν (4.2.10)

where the �rst equality holds by Proposition E.4.

Hen
e, assuming ui+1 is (Lebesque) integrable, equation (4.2.5) leads to

ũi(x) =
1

(2π)d

∫

Rd

ui+1(x+ y)

∫

Rd

e−iν∗yφi(ν, x)dνdy

(using the relation of equation (4.2.9)),

=
1

(2π)d

∫

Rd

∫

Rd

e−iν∗yui+1(x + y)φi(ν, x)dydν

=
1

(2π)d

∫

Rd

eiν
∗xF[ui+1](ν)φi(ν, x)dν

= F−1[F[ui+1](ν)φi(ν, x)](x). (4.2.11)

Sin
e σ(t, x) is a full rank matrix, equation (4.2.6) is equivalent to

u̇i(x) =
σ∗(ti, x)

(2π)d

∫

Rd

ui+1(x+ y)

∫

Rd

e−iν∗yiνφi(ν, x)dνdy

(using the relation of equation (4.2.10)),

=
σ∗(ti, x)

(2π)d

∫

Rd

∫

Rd

e−iν∗yui+1(x+ y)iνφi(ν, x)dydν

=
σ∗(ti, x)

(2π)d

∫

Rd

eiν
∗xF[ui+1](ν)iνφi(ν, x)dν

= σ∗(ti, x)F
−1[F[ui+1](ν)iνφi(ν, x)](x). (4.2.12)

We use the Fourier representations in equations (4.2.4), (4.2.11) and (4.2.12) in the implemen-

tation of the method under the expli
it Euler s
heme 1. Equation (4.2.4) 
an be repla
ed by

ui(x) = ũi(x) + ∆if(ti, x, ui(x), u̇i(x)) (4.2.13)

under the impli
it Euler s
heme. In this 
ase, the 
ondition on the time dis
retization of equation

(2.2.13) has to be satis�ed.

If the forward pro
ess X admits the 
onditional 
hara
teristi
 fun
tion

φt(ν, x, τ) = E

[
eiν

∗(Xt+τ−Xt)|Xt = x
]
, (4.2.14)

then the 
onditional 
hara
teristi
 fun
tion may be used in the 
onvolution method. The pro-


edure leads to the expressions

ũi(x) = F−1[F[ui+1](ν)φti (ν, x,∆i)](x) (4.2.15)

u̇i(x) = σ∗(ti, x)F
−1[F[ui+1](ν)iνφti (ν, x,∆i)](x) (4.2.16)

for the intermediate solution and the approximation gradient in pla
e of equations (4.2.11) and

(4.2.12). By using the 
onditional 
hara
teristi
 fun
tion, we are 
onsidering the true distribution

the forward in
rement ∆Xi = Xti+1 − Xti instead of the Gaussian distribution of its Euler

dis
retization ∆Xπ
i in the 
onditional expe
tations.

4.2.2 Spa
e dis
retization

Before dis
retizing the Fourier integrals in the one-dimensional 
ase d = 1, we �rst 
onsider the

behavior of the relations in equations (4.2.11) and (4.2.12) under the alternative transform. The

next theorem gives the result and its proof is essentially similar to the proof of Theorem 3.2.
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Theorem 4.1. Let uα,βi+1 be the alternative transform de�ned in equation (3.1.8) of the approx-

imate solution ui+1. Then the intermediate solution ũi and the approximate gradient u̇i in

equations (4.2.5) and (4.2.6) satisfy

ũi(x) = F−1[F[uα,βi+1](ν)φ(ν, x)](x)

−α[(x+∆ia(ti, x))
2 +∆iσ

2(ti, x)]

−β(x+∆ia(ti, x)) (4.2.17)

u̇i(x) = σ(ti, x)F
−1[F[uα,βi+1](ν)iνφ(ν, x)](x)

−σ(ti, x)[2α(x +∆ia(ti, x)) + β]. (4.2.18)

As usual, we sele
t the parameters α and β su
h that the fun
tion uα,βi+1 and its derivative

values are equal at the boundaries of a given interval through the method of Lemma 3.1. Con-

sequently, it su�
es to 
ompute the values of a generi
 fun
tion θi : R → R at ea
h time step ti

verifying

θi(x) =
1

2π

∫ ∞

−∞
eiνxθ̂i+1(ν)ψ(ν, x)dν. (4.2.19)

with ψ : R2 → C and θi+1 : R → R. We may assume that θi+1 satis�es the value and derivative


onditions at the boundaries of a given interval.

The spa
e dis
retization is performed with an alternative grid as des
ribed in Chapter 3. In

this 
ase, the alternative grid dis
retizes the forward pro
ess X and not the Brownian motion

as in the previous 
hapter. The grid is de�ned by the in
rement interval length l > 0, its (even)

number of spa
e steps N > 0 and the initial number of intervals N0 > 0 at mesh time t0. The

grid 
an be easily built su
h that the initial forward value x0 is a grid point at the initial time

step t0 i.e

x0 ∈ {x0,k : k = 0, 1, ..., NN0}. (4.2.20)

We assume that the grid is 
entered at the initial value of the forward pro
ess X0 = x0. This

requirement simpli�es the error analysis even though a shifted grid does not alter the 
onvergen
e

results. Moreover, a shifted grid may be useful to take into a

ount the presen
e of a drift in

the forward pro
ess X or a known 
onstraint on the support of its a
tual transition density.

Hen
e, assuming that

θi+1 (xi+1,0) = θi+1

(
xi+1,NNi+1

)
(4.2.21)

∂θi+1

∂x
(xi+1,0) =

∂θi+1

∂x

(
xi+1,NNi+1

)
. (4.2.22)

and following the dis
retization steps of Se
tion 1.2 or Se
tion 3.1, we have

θi(xik) ≈ (−1)k+
N
2 D−1

[
{ψ(νi+1,j , xik)D[θi+1]j}Ni+1N−1

j=0

]
k+N

2

(4.2.23)

for k = 0, 1, ..., NiN . In addition,

D[θi+1]j = D

[
{(−1)sw̃sθi+1(xi+1,s)}Ni+1N−1

s=0

]
j
. (4.2.24)

where the weights {w̃j}Ni+1N−1
j=0 are as in equation (2.3.10).

In equation (4.2.23), the generi
 fun
tion ψ depends on the spa
e node xik. If the relation

generalizes for all spa
e nodes xik, k = 0, 1, ..., NiN , the fun
tion values θi(xik), k = 0, 1, ..., NiN ,


an not be 
omputed with a single dire
t FFT pro
edure. Instead, a separate FFT pro
edure

using the values of the generi
 fun
tion ψ at xik is needed to 
ompute the fun
tion value θi(xik).

Nonetheless the ve
tor-matrix representation of the FFT pro
edure in equation (4.2.23) allows

the 
omputation of all fun
tion values θi(xik) with a matrix multipli
ation.
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In the ve
tor-matrix representation, equation (4.2.23) write

θi(xik) = (−1)k+
N
2 F̂k+N

2
Ψ(xik)D[θi+1] (4.2.25)

where F̂k+N
2
is the (k + N

2 )th row of the Ni+1N dimension inverse FFT matrix F̂ and Ψ(xik)

is the Ni+1N dimension diagonal matrix built with the values {ψ(νi+1,j , xik)}Ni+1N−1
j=0 . Let Θ(i)

be the NiN dimension ve
tor of the fun
tion values θi(xik) su
h that

Θ
(i)
1+k = θi(xik) (4.2.26)

for k = 0, 1, ..., NiN . The matrix representation gives

Θ(i) = Ψ̂(i)
D[θi+1] (4.2.27)

where Ψ̂(i)
is the (NiN + 1)×Ni+1N matrix su
h that

Ψ̂
(i)
1+k,1+j = (−1)k+

N
2 ω̄

j(k+N
2 )

i ψ(νi+1,j , xik) (4.2.28)

with ω̄i = ei2π(Ni+1N)−1

, k = 0, 1, ..., NiN and j = 0, 1, ..., Ni+1N − 1.

The algorithm for this Fourier interpolation method for (de
oupled) FBSDEs is essentially

similar to Algorithm 3.1. One just has to adapt the methods of 
omputation by using the

equations introdu
ed in this se
tion.

4.3 Error analysis

The error analysis for the Fourier interpolation method follows the ideas of Chapter 3. As in

Se
tion 3.2, Fourier interpolation is used to derive a lo
al dis
retization error whi
h naturally

leads to a global dis
retization error under a stability 
ondition. From the global error bound,

the simulation error is obtained using the time dis
retization error of Zhang [124℄ or Bou
hard

and Touzi [20℄ as in Se
tion 3.3. We fo
us the analysis as usual on the expli
it Euler s
heme 1.

The next theorem gives a bound for the lo
al dis
retization error de�ned in equation (3.2.1).

Theorem 4.2. Suppose that the driver f ∈ C1,2,2
and the terminal 
ondition g ∈ C2

and

Assumption 4.1.1 is satis�ed. Then the Fourier interpolation method yields a dis
retization

error of the form

Eik = O (∆x) +O
(
e−K|∆i|−1l2

)
(4.3.1)

for some 
onstant K > 0 on the alternative grid and under the trapezoidal quadrature rule.

Proof. Following the steps of Theorem 3.3, the trun
ation error relies on the expression

∫

|y|> l
2

h(y|xi,k)dy = P

[
|∆Xπ

i | >
l

2

∣∣Xπ
ti = xi,k

]

= P

[(
∆Xπ

i

σ(ti, xi,k)
√
∆i

)2

>
l2

4σ2(ti, xi,k)∆i

∣∣Xπ
ti = xi,k

]
.

Let ζ = l2

4σ2(ti,xi,k)∆i
and knowing that the random variable

(
∆Xπ

i

σ(ti,xi,k)
√
∆i

)2
follows a non-


entral 
hi-square distribution with one (1) degree of freedom and non-
entrality parameter

λ =
(

a(ti,xi,k)
σ(ti,xi,k)

)2
∆i, we have

∫

|y|> l
2

h(y|xi,k)dy ≤ inf
0<s< 1

2

(1− 2s)−
1
2 e−sζ+ λs

1−2s

(by Cherno�'s inequality)
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< Ce−sζ

(sin
e λ is bounded by Assumption 4.1.1),

< Ce−
s
4 (σ

2(ti,xi,k)∆i)
−1l2

< Ce−
sK
4 (∆i)

−1l2

for some 
onstants C,K > 0 and s ∈ (0, 12 ) where the last inequality holds sin
e σ−2
is also

bounded from bellow.

This last inequality 
hara
terizes the trun
ation error. The Fourier interpolation then gives

the �rst order spa
e dis
retization error and the Lips
hitz property of the driver f 
ompletes the

proof.

Theorem 4.2 implies that the stru
ture of the lo
al dis
retization error does not 
hange when

solving a FBSDE with bounded forward 
oe�
ients on the alternative grid. The lo
al spa
e

dis
retization error is still of �rst order and the spa
e trun
ation error of spe
tral order with

index 2. The boundedness of the forward drift a and volatility σ plays a key role in maintaining

these 
onvergen
e properties for the Fourier interpolation method. Also, the global dis
retization

error de�ned in equation (3.2.6) displays the same stru
ture in our FBSDE 
ase under a slightly

di�erent stability 
ondition that takes into a

ount the presen
e of bounded forward pro
ess


oe�
ients. The next theorem states the result.

Theorem 4.3. Suppose the 
onditions of Theorem 4.2 are satis�ed. If the spa
e dis
retization

is su
h that

sup
i

max

(
K

1
2
4 ∆x√
2π∆i

,
K4∆x

π∆i

)
≤ 1 (4.3.2)

then the Fourier interpolation method is stable and the global dis
retization error El,∆x satis�es

El,∆x = O(∆x) +O
(
e−C|π|−1l2

)
(4.3.3)

where C > 0 and K4 is the upper bound of equation (4.1.8).

Proof. In the proof of Theorem 3.3, we established that

eik ≤ En−i,k + |un−i,k − un−i,k|
≤ En−i,k + (1 +∆iK) |ũn−i,k − ũn−i,k|

+ ∆iK |u̇n−i,k − u̇n−i,k| (4.3.4)

ėik ≤ En−i,k + |u̇n−i,k − u̇n−i,k| . (4.3.5)

In the FBSDE 
ase presented in this 
hapter, and assuming that the values of the fun
tion ui+1

and the sequen
e {ui+1,s}Ni+1N
s=0 mat
h at the boundaries of the trun
ated interval,

|ũi,k − ũi,k| ≤
∣∣∣∣D−1

[
{φ(νi+1,j)D[ui+1 − ui+1,s]j}Ni+1N−1

j=0

]
k+N

2

∣∣∣∣

≤ 1

Ni+1N




Ni+1N−1∑

j=0

|φ(νi+1,j , xik)|


 sup

k
|ui+1(xik)− ui+1,k|

(using the matrix-ve
tor representation of DFTs),

≤ 1

Ni+1N




Ni+1N−1∑

j=0

|φ(νi+1,j , xik)|


 sup

k
en−i−1,k

≤ (∆νi+1)
−1

Ni+1N

(∫

R

|φ(ν, xik)| dν
)
sup
k
en−i−1,k
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=
∆x

(2πσ2(ti, xik)∆i)
1
2

sup
k
en−i−1,k

≤ K
1
2
4 ∆x

(2π∆i)
1
2

sup
k
en−i−1,k. (4.3.6)

where the last inequality holds by Assumption 4.1.1. Similarly,

|u̇i,k − u̇i,k| ≤
∣∣∣∣D−1

[
{ψ(νi+1,j , xik)D[ui+1 − ui+1,s]j}Ni+1N−1

j=0

]
k+N

2

∣∣∣∣

≤ 1

Ni+1N




Ni+1N−1∑

j=0

|iνi+1,jφ(νi+1,j , xik)|


 sup

k
en−i−1,k

(using the matrix representation of DFTs),

≤ (∆νi+1)
−1

Ni+1N

(∫

R

|νφ(ν, xik)| dν
)
sup
k
en−i−1,k

=
∆x

πσ2(ti, xik)∆i
sup
k
en−i−1,k

≤ K4∆x

π∆i
sup
k
en−i−1,k. (4.3.7)

The rest of the proof is identi
al to the proof of Theorem 3.3. The inequalities of equations

(4.3.4), (4.3.6) and (4.3.7) lead to

ei,k ≤ C0Ei,k + (1 + 2∆iK)max

(
∆x√
2π∆i

,
∆x

π∆i

)
sup
k
ei−1,k

≤ C0 sup
i,k

Ei,k + (1 + 2∆iK)max

(
∆x√
2π∆i

,
∆x

π∆i

)
sup
k
ei−1,k

where C0 > 0 and K > 0 is the Lips
hitz 
onstant of the driver f . Consequently,

sup
k
ei,k ≤ C0 sup

i,k
Ei,k + (1 + 2∆iK)max

(
∆x√
2π∆i

,
∆x

π∆i

)
sup
k
ei−1,k

≤ C0 sup
i,k

Ei,k + (1 + 2∆iK)ζ sup
k
ei−1,k (4.3.8)

for some positive number ζ satisfying

sup
i

max

(
K

1
2
4 ∆x√
2π∆i

,
K4∆x

π∆i

)
≤ ζ ≤ 1.

and the Gronwall's Lemma yields

sup
k
ei,k ≤ C0e

2TK sup
i,k

Ei,k (4.3.9)

from the inequality of equation (4.3.8) for i = 0, 1, ..., n knowing that e0,k = 0. The last equation

establishes the stability of the Fourier interpolation method for the approximate solution ui sin
e

its error at any time step is absolutely bounded.

The inequalities of equations (4.3.5), (4.3.7) and (4.3.9) lead to

sup
k
ėi,k ≤

(
C1 +

∆x

π∆i
C0e

2TK

)
sup
i,k

Ei,k

≤
(
C1 + C0e

2TK
)
sup
i,k

Ei,k (4.3.10)

for a positive 
onstant C1 > 0. Hen
e, the 
onvolution method is also stable for the approximate

gradient u̇i.

The result of equation (4.3.3) follows by taking the supremum on the left hand sides of

equations (4.3.9) and (4.3.10) other time steps and applying Theorem 4.2.
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Let (Ui, U̇i) be the extended solution at time mesh ti as de�ned at equations (3.3.2) and

(3.3.3). The numeri
al solution {(xt, yt, zt)}t∈[0,T ) to the FBSDE (4.1.1) takes the form

xt =

n−1∑

i=0

Xπ
ti1[ti,ti+1)(t) (4.3.11)

yt =

n−1∑

i=0

Ui(X
π
ti)1[ti,ti+1)(t) (4.3.12)

zt =

n−1∑

i=0

U̇i(X
π
ti)1[ti,ti+1)(t) (4.3.13)

on the time interval [0, T ). The quadrati
 error on the FBSDE solution is

E2
π,l,∆x := max

0≤i<n
E

[
sup

t∈[ti,ti+1)

|Xt − xt|2
]
+ max

0≤i<n
E

[
sup

t∈[ti,ti+1)

|Yt − yt|2
]

+

n−1∑

i=0

E

[∫ ti+1

ti

|Zs − zs|2 ds
]

(4.3.14)

and the next theorem, inspired by Theorem 3.9, des
ribes its error bound.

Theorem 4.4. Suppose the driver f ∈ C1,2,2
, the terminal 
ondition g ∈ C2

, the stability and


onvergen
e 
ondition of equation (3.2.9) is satis�ed and

ξ = g(XT ) ∈ L4
(4.3.15)

then

E2
π,l,∆x = O(|π|) +O(∆x2) +O

(
e−C(N0+1)2l2 + e−C|π|−1l2

)
(4.3.16)

where C > 0.

Proof. Sin
e the quadrati
 error of the Euler s
heme on the forward pro
ess is of �rst order in

time we 
learly have

max
0≤i<n

E

[
sup

t∈[ti,ti+1)

|Xt − xt|2
]
= O(|π|). (4.3.17)

As to the ba
kward part, the proof follows the steps of Theorem 3.9. The Euler s
heme also gives

a quadrati
 error of �rst order in time for the ba
kward and 
ontrol pro
esses. The quadrati


spa
e dis
retization error and the spe
tral spa
e trun
ation error are 
onsequen
es of Theorem

4.3.

The error due the simulation on a �nite grid redu
es to the expressionmax1≤i<nE
[
1R\Ii

(Xπ
ti)
]

whenever g(XT ) ∈ L4
. Sin
e the intervals Ii are 
entered at X0, we further have

max
1≤i<n

E

[
1R\Ii

(Xπ
ti)
]

≤ max
1≤i<n

P

[
Xπ

ti ≥ X0 +Ni
l

2

]

+ max
1≤i<n

P

[
Xπ

ti ≤ X0 −Ni
l

2

]

≤ max
0<i<n

inf
s>0

e−s(X0+Ni
l
2 )Mti(s)

+ max
0<i<n

inf
s>0

es(X0−Ni
l
2 )Mti(−s)

by Cherno�'s inequality where Mti is the moment generating fun
tion of Xπ
ti . The moment

generating fun
tion Mti satis�es

Mti(s) = E

[
esX

π
ti

]
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= E

[
e
sXπ

ti−1
Eti

[
e
s
(

Xπ
ti
−Xπ

ti−1

)
]]

= E

[
e
sXπ

ti−1φi−1(−is,Xπ
ti−1

)
]

≤ e
1
2∆i−1K

2
2s

2+∆i−1K2|s|
E

[
e
sXπ

ti−1

]

(by Assumption 4.1.1),

≤ esX0e
1
2 tiK

2
2s

2+tiK2|s|

(after a re
ursion),

≤ esX0e
1
2TK2

2s
2+TK2|s|

for any s ∈ R, so that

max
1≤i<n

E

[
1R\Ii

(Xπ
ti)
]

≤ 2 max
0<i<n

inf
s>0

e−sNi
l
2 e

1
2TK2

2s
2+TK2s

≤ 2 max
0<i<n

e
− 1

2TK2
2
(TK2−Ni

l
2 )

2

≤ K max
0<i<n

e−CN2
i l

2

≤ Ke−C(N0+1)2l2 .

Overall, the boundedness of the forward drift a and volatility σ is 
ru
ial in the Fourier

interpolation method. Not only does it allow us to derive a bound for the lo
al trun
ation error

in Theorem 4.2 but it also leads to the method's global stability as shown by equation (4.3.2).

The proof of Theorem 4.4 also indi
ates that the boundedness of the forward 
oe�
ients is

ne
essary for the 
ontrol of the simulation error.

The Fourier interpolation method 
an obviously be extended to re�e
ted FBSDEs following

the pro
edure of Se
tion 3.4.1. For a re�e
ted FBSDE with a lower barrier of the form





dXt = a(t,Xt)dt+ σ(t,Xt)dWt

−dYt = f(t,Xt, Yt, Zt, )dt+ dAt − ZtdWt

Yt ≥ Bt , dAt ≥ 0 , ∀t ∈ [0, T ]
∫ T

0
(Yt −Bt)dAt = 0

X0 = x0 , YT = g(XT )

(4.3.18)

where

Bt = B(t,Xt) (4.3.19)

we may de�ne the approximate solutions of the re�e
ted FBSDE as

ui(x) = ũi(x) + ∆if(ti, x, ũi(x), u̇i(x)) + ∆ūi(x) (4.3.20)

u̇i(x) =
1

∆i

∫ ∞

−∞
(y − x)ui+1(x+ y)h(y|x)dy (4.3.21)

ũi(x) =

∫ ∞

−∞
ui+1(x+ y)h(y|x)dy (4.3.22)

∆ūi(x) = [ũi(x) + ∆if(ti, x, ũi(x), u̇i(x)) −B(ti, x)]
−

(4.3.23)

for i = 0, 1, ..., n − 1 and un(x) = g(x). The Fourier interpolation method presented in this


hapter allows us to 
ompute the values of numeri
al solutions uik and u̇ik for the ba
kward

and 
ontrol pro
esses. The values for numeri
al solution of the re�e
ting pro
ess ∆ūik follow

naturally. De�ning the extended fun
tions Ui, U̇i and ∆Ūi as in equations (3.3.2), (3.3.3) and
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(3.4.7) respe
tively, the numeri
al solution (x, y, z, a) of the re�e
ted FBSDE solution (X,Y, Z,A)

write

xt =
n−1∑

i=0

Xπ
ti1[ti,ti+1)(t) (4.3.24)

yt =
n−1∑

i=0

Ui(X
π
ti)1[ti,ti+1)(t) (4.3.25)

zt =
n−1∑

i=0

U̇i(X
π
ti)1[ti,ti+1)(t) (4.3.26)

at =
n−1∑

i=0

∆Ūi(X
π
ti)1[ti,T )(t). (4.3.27)

For this 
hapter, we will omit the numeri
al results. The material presented here is a gener-

alization of Chapter 3 . Hen
e, the numeri
al results from the previous 
hapters and the error

analysis 
ondu
ted in this one already give an insight of the Fourier interpolation method per-

forman
e. Also, the present 
hapter 
an be viewed as a spe
ial 
ase of the following 
hapter

so that the numeri
al results provided in Chapter 5 
on�rm the error analysis on the method

presented here.
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Chapter 5

Dis
retization of FBSDEs with

Runge-Kutta s
hemes

Runge-Kutta s
hemes, introdu
ed by Chassagneux and Crisan [27℄, are a re
ent development of

time dis
retization methods for FBSDEs. They are themselves an extension of the well-known

Runge-Kutta methods for ODEs to FBSDEs. Hen
e, the s
hemes produ
e numeri
al solutions

of higher order of 
onvergen
e and their properties are studied in Chassagneux and Crisan [27℄

on a de
oupled FBSDE. More pre
isely, the authors provide a dis
retization of the ba
kward

SDE assuming that a dis
retization of the forward SDE is available.

In this 
hapter, we develop a Fourier method for the numeri
al solution of one-dimensional

BSDEs using Runge-Kutta s
hemes. The main ideas leading to BSDE numeri
al solutions were

already introdu
ed in Chapter 3. Hen
e, we shall use the Fourier transform representations of

the various 
onditional expe
tations involved in the Runge-Kutta s
hemes to de�ne approximate

solutions to the BSDE. These approximate solutions are then 
omputed on an alternative grid

using the FFT algorithm in order to retrieve higher order 
onvergent numeri
al solutions.

5.1 Runge-Kutta s
hemes

This se
tion gives the formal de�nition of Runge-Kutta s
hemes. We also propose simple as-

sumptions on the time dis
retization of the forward SDE whi
h lead to a simpli�
ation of the

s
heme expressions.

5.1.1 Time dis
retization

In the general setting, the FBSDE 
onsidered is of the form





dXt = a(Xt)dt+ σ(Xt)dWt

−dYt = f(Yt, Zt)dt− Z∗
t dWt

X0 = x0 , YT = g(XT )

(5.1.1)

where W is a d−dimensional Brownian motion. The forward drift a : Rd → Rd
, the forward

volatility σ : Rd → Rd×d
, the driver f : R × Rd → R and the terminal fun
tion g : Rd → R

are all deterministi
 fun
tions. It is always possible to generalize the system to 
onsider time

dependent 
oe�
ients.
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Assumption 5.1.1. In addition to the usual Lips
hitz and linear growth 
onditions

1

, we suppose

that all 
oe�
ients are bounded. In parti
ular, the ba
kward drift f ∈ Cm
b and the terminal

fun
tion g ∈ Cm
b with m ≥ 2 are at least twi
e di�erentiable.

The BSDE is dis
retized on the time partition π = {0 = t0 < t1 < ... < tn = T } as usual

with su

essive time steps

∆i = ti+1 − ti , i = 0, 1, ..., n− 1

and maximal time step

|π| := max
0≤i<n

∆i. (5.1.2)

Let q ∈ N∗
, we 
onsider the q-stage Runge-Kutta s
heme giving the following numeri
al solution

at mesh time ti

Zπ
ti = Eti


Hϕ1

ti,∆i
Y π
ti+1

+∆i

q∑

j=1

βjH
ϕ1

ti,(1−γj)∆i
f(Y π

i,j , Z
π
i,j)




(5.1.3)

Y π
ti = Eti


Y π

ti+1
+∆i

q+1∑

j=1

αjf(Y
π
i,j , Z

π
i,j)




(5.1.4)

for a set positive 
oe�
ients {γj}q+1
j=1 su
h that 0 = γ1 < ... < γq+1 = 1. The intermediate

solutions {(Y π
i,j , Z

π
i,j)}qj=2 take the form

Zπ
i,j = Eti,j

[
H

ϕj

ti,j ,γj∆i
Y π
ti+1

+∆i

j−1∑

k=1

βjkH
ϕj

ti,j ,(γj−γk)∆i
f(Y π

i,k, Z
π
i,k)

]

(5.1.5)

Y π
i,j = Eti,j

[
Y π
ti+1

+∆i

j∑

k=1

αjkf(Y
π
i,k, Z

π
i,k)

]
(5.1.6)

where

ti,j = ti + (1 − γj)∆i, 1 ≤ j ≤ q + 1 (5.1.7)

with (Y π
i,1, Z

π
i,1) = (Y π

ti+1
, Zπ

ti+1
), (Y π

i,q+1, Z
π
i,q+1) = (Y π

ti , Z
π
ti) and terminal 
ondition

(Ytn , Ztn) = (g(XT ), σ
∗(XT )∇g(XT )). (5.1.8)

The 
oe�
ients {αj}q+1
j=1 , {βj}qj=1, {αjk : 1 ≤ j ≤ q, 1 ≤ k ≤ j} and {βjk : 1 ≤ j ≤ q, 1 ≤ k < j}

are all positive and satisfy

q+1∑

j=1

αj = 1 (5.1.9)

βjj = 0, 1 ≤ j ≤ q, (5.1.10)

j∑

k=1

αjk =

j−1∑

k=1

βjk = γj , 1 < j ≤ q. (5.1.11)

Let Bm
denote the set of 
ontinuous and bounded fun
tions on [0, 1] su
h that

Bm := {φ ∈ Cb :
∫ 1

0

skφ(s)ds = δ0,k, k ≤ m and k,m ∈ N
∗}. (5.1.12)

The sto
hasti
 
oe�
ient Hϕ
t,∆ with t ∈ [0, T ) and ∆ > 0 is de�ned as

Hϕ
t,∆ :=

1

∆

∫ t+∆

t

ϕ

(
s− t

∆

)
dWs (5.1.13)

1

See Assumption 4.1.1.
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with ϕ ∈ Bm
for some m ∈ N∗

.

The global error of the q−stage Runge-Kutta s
heme Eπ is de�ned as

E2
π := max

0≤i<n

∥∥Yti − Y π
ti

∥∥2
L2 +

n−1∑

i=0

∆i

∥∥Zti − Zπ
ti

∥∥2
L2

= max
0≤i<n

E

[∣∣Yti − Y π
ti

∣∣2
]
+

n−1∑

i=0

∆iE

[∣∣Zti − Zπ
ti

∣∣2
]

(5.1.14)

and is hen
e weaker than the error Eπ 
onsidered for the Euler s
heme. Nonetheless, the global

error Eπ is easier to handle sin
e it is strongly related to the lo
al time dis
retization error.

The s
heme 
an be represented by the following tableau

γ1 α1,1 0 . . . 0 0 β1,1 0 . . . 0

γ2 α2,1 α2,2 . . . 0 0 β2,1 β2,2 . . . 0
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

γq αq,1 αq,2 . . . αq,q 0 βq,1 βq,2 . . . βq,q

γq+1 α1 α2 . . . αq αq+1 β1 β2 . . . βq

One 
an observe that if αq+1 = 0 and αjj = 0, 1 < j ≤ q, then the q-stage Runge-Kutta

s
heme is expli
it. Otherwise, the s
heme is impli
it. For instan
e, the Runge-Kutta s
hemes

with tableau

0 0 0 0

1 0 1 1

and the s
heme with tableau

0 0 0 0

1 1
2

1
2 1

known as the Crank-Ni
holson s
heme 
onstitute 1−stage impli
it Runge-Kutta s
hemes. The

only 1−stage expli
it Runge-Kutta s
heme admits the tableau

0 0 0 0

1 1 0 1

In Chassagneux and Crisan [27℄, the impli
it and the expli
it 1−stage Runge-Kutta s
hemes

are shown to be one-half (12 ) order 
onvergent. The Crank-Ni
holson s
heme, already studied in

Crisan and Manolarakis [31℄, presents a �rst order of 
onvergen
e. Noti
e that the Euler s
hemes

used in the previous 
hapters are not 1−stage Runge-Kutta s
hemes sin
e they do not lead to

any 
onsistent tableau. Nonetheless, their stru
ture is equivalent to the expli
it 1−stage Runge-
Kutta s
heme and both s
hemes display the same half (12 ) order of 
onvergen
e. The following

tableau gives a example of expli
it 2-stage Runge-Kutta s
hemes of �rst order of 
onvergen
e

for γ2 ∈ (0, 1] and β1 ∈ [0, 1].

0 0 0 0 0 0

γ2 γ2 0 0 γ2 0

1 1− 1
2γ2

1
2γ2

0 β1 1− β1

5.1.2 Further simpli�
ation

From the q-stage Runge-Kutta s
heme for BSDEs, one noti
es that we have at least 2q 
onditional

expe
tations to 
ompute at ea
h time step. These 
onditional expe
tations 
an be simpli�ed and

made more suitable for numeri
al implementation if we 
onsider a reasonable time dis
retization

of the forward SDE. Hen
e, we make the following assumption that we will use throughout the


hapter.
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Assumption 5.1.2. (1). The forward SDE is dis
retized with the pie
ewise 
onstant pro
ess

Xπ
su
h that for t ∈ [ti, ti+1) we have

Xπ
t = Xπ

ti (5.1.15)

pathwise.

(2). The forward SDE time dis
retization with global error EX,π is of order m > 0 i.e

E2
X,π := max

0≤i≤n

∥∥Xti −Xπ
ti

∥∥2
L2 = O(|π|2m). (5.1.16)

The 
onditions of Assumption 5.1.2 are not hard to meet. Many higher order time dis
retiza-

tions for forward SDEs satisfying the 
onditions for a given order m > 0 are indeed available.

Appendix B stands as an introdu
tion to It�-Taylor expansion based s
hemes as an example and

a more 
omplete presentation of these s
hemes 
an be found in Kloeden and Platen [69℄ among

others. The next theorem gives a simpli�
ation of the BSDE time dis
retization expressions.

Theorem 5.1. Under Assumption 5.1.2 (1), the solution of the q-stage Runge-Kutta s
heme

satis�es

{(Y π
i,j , Z

π
i,j)}q+1

j=2 ∈ Fti (5.1.17)

for 0 ≤ i < n. Consequently, we 
an write

Zπ
i,j = Eti

[
H

ϕj

ti,j ,γj∆i

(
Y π
ti+1

+∆iβj,1f(Y
π
ti+1

, Zπ
ti+1

)
)]

(5.1.18)

Y π
i,j = Eti

[
Y π
ti+1

+∆iαj,1f(Y
π
ti+1

, Zπ
ti+1

)
]

+∆i

j∑

k=2

αjkf(Y
π
i,k, Z

π
i,k) (5.1.19)

for 0 ≤ i < n and 1 < j ≤ q + 1 where ϕq+1 = ϕ1, βq+1,1 = β1 and αq+1,k = αk.

Proof. Clearly (Y π
i,q+1, Z

π
i,q+1) = (Y π

ti , Z
π
ti) ∈ Fti from equations (5.1.3) and (5.1.4). For 1 < j ≤

q and 0 ≤ i < n, we have

Y π
i,j = E

[
Y π
ti+1

+∆i

j∑

k=1

αjkf(Y
π
i,k, Z

π
i,k) |Xπ

ti,j

]

(starting from equation (5.1.6)),

= E

[
Y π
ti+1

+∆i

j∑

k=1

αjkf(Y
π
i,k, Z

π
i,k) |Xπ

ti

]

(by Assumption 5.1.2 sin
e ti,j ∈ [ti, ti+1)),

= Eti

[
Y π
ti+1

+∆i

j∑

k=1

αjkf(Y
π
i,k, Z

π
i,k)

]

so that Y π
i,j ∈ Fti . Similar arguments also show that Zπ

i,j ∈ Fti starting from equation (5.1.5).

Sin
e{(Y π
i,j , Z

π
i,j)}q+1

j=2 ∈ Fti , we naturally get equation (5.1.19) from equations (5.1.6) and

(5.1.4) . In addition, knowing that

Eti

[
H

ϕj

ti,j ,(γi−γk)∆i

]
= 0 , 1 < k < j (5.1.20)

leads to equation (5.1.18) from equations (5.1.5) and (5.1.3).

As a 
onsequen
e of Assumption 5.1.2, if the q−stage Runge-Kutta s
heme and the forward

SDE time dis
retization are of order m > 0 then error of the FBSDE numeri
al solution de�ned

as EX,π+Eπ is of order m. We must hen
e 
hoose the Runge-Kutta s
heme and the SDE s
heme

a

ordingly.
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5.2 Fourier transform representations

We develop the Fourier representation of our approximate solution for the BSDE under various

time dis
retizations for the forward SDE. First we fo
us on the simple framework of BSDEs then

we 
onsider the FBSDE 
ase. For impli
it Runge-Kutta s
hemes, we assume that

|π|K < 1 (5.2.1)

where K is the Lips
hitz 
onstant of the driver f for well-posedness reasons.

5.2.1 The BSDE 
ase

In the 
ontext of BSDEs where the forward pro
ess is simply a Brownian motion

2

Yt = g(WT ) +

∫ T

t

f(Ys, Zs)ds+

∫ T

t

ZsdWs, (5.2.2)

the Euler time dis
retization satis�es Assumption 5.1.2 at any order of 
onvergen
e m > 0.

Indeed, the Euler s
heme is exa
t at any time node for a Brownian motion. We 
an then used

the result of Theorem 5.1 with any Runge-Kutta s
heme for BSDE without limiting the s
heme


onvergen
e order.

Following Theorem 5.1, the intermediate solution {(ui,j, u̇i,j)}q+1
j=2 at mesh time ti, 0 ≤ i < n,

are given by

u̇i,j(x) = E

[
H

ϕj

ti,j ,γj∆i
ũi+1(Wti+1 , βj,1)|Wti = x

]
(5.2.3)

ui,j(x) = E

[
ũi+1(Wti+1 , αj,1)|Wti = x

]
+∆i

j∑

k=2

αjkf(ui,k(x), u̇i,k(x)) (5.2.4)

for 1 < j ≤ q + 1 with ϕq+1 = ϕ1, βq+1,1 = β1 and αq+1,k = αk . The approximate solution ui

and approximate gradient u̇i at mesh time ti, 0 ≤ i < n, are then

ui(x) = ui,q+1(x) (5.2.5)

u̇i(x) = u̇i,q+1(x) (5.2.6)

with

ũi+1(x, α) = ui+1(x) + ∆iαf(ui+1(x), u̇i+1(x)) (5.2.7)

and

un(x) = g(x) (5.2.8)

u̇n(x) = ∇g(x). (5.2.9)

From the analysis performed in Chapter 2 and Chapter 3, equation (5.2.4) naturally leads to

ui,j(x) = F−1 [F [ũi+1(., αj,1)] (ν)φ(ν)] (x) + ∆i

j∑

k=2

αjkf(ui,k(x), u̇i,k(x)) (5.2.10)

when ũi+1(., α) is Lebesgue integrable where φ is 
hara
teristi
 fun
tion on the Brownian in
re-

ment

φ(ν) = exp

(
−1

2
∆iν

∗ν

)
(5.2.11)

Moreover, if the fun
tion ũ(., β) ∈ C1
is di�erentiable, equation (5.2.3) gives

u̇i,j(x) =
1

γj∆i
E

[
∇ũi+1(Wti+1 , βj,1)

∫ ti+1

ti,j

ϕj

(
s− ti,j
γj∆i

)
ds|Wti = x

]

2

This 
an be extended to arithmeti
 Brownian motion and Brownian motion with time dependent 
oe�
ients.
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(by the duality formula),

= E

[
∇ũi+1(Wti+1 , βj,1)|Wti = x

]

= F−1 [F [∇ũi+1(.;βj,1)] (ν)φ(ν)] (x)

(when ∇ũi+1(., β) is Lebesque integrable),

= F−1 [iνF[ũi+1(.;βj,1)](ν)φ(ν)] (x) (5.2.12)

where the last inequality holds by Proposition E.4.

Equations (5.2.10) and (5.2.12) 
hara
terize the Fourier transform representation of q−stage
Runge-Kutta s
hemes. It is important to note that these expressions do not depend on the

fun
tion ϕj . As a 
onsequen
e their 
hoi
e is irrelevant under Fourier methods in the BSDE


ase even though they play a key role in the 
onvergen
e of Runge-Kutta s
hemes. When using

the Fourier representations, one 
an always assume that the fun
tions ϕj are 
onsistent with the


onvergen
e order of the Runge-Kutta s
heme. In addition, the expressions for the 
onditional

expe
tations are essentially similar to those developed in Chapter 3.

5.2.2 The FBSDE 
ase

Runge-Kutta s
hemes for FBSDEs require higher order time dis
retizations for SDE for 
onver-

gen
e reasons. In order to develop Fourier representations of the FBSDE numeri
al solutions,

another requirement is the availability of expli
it 
onditional 
hara
teristi
 fun
tions. We hen
e

make the following additional assumption on the forward SDE time dis
retization.

Assumption 5.2.1. The forward SDE time dis
retization admits the 
onditional 
hara
teristi


fun
tions φi : R
d × Rd → C

φi(ν, x) = E

[
e
iν∗

(

Xπ
ti+1

−Xπ
ti

)

|Xπ
ti = x

]
(5.2.13)

and Φi,j : R
d × Rd → Cd

Φi,j(ν, x) = E

[
H

ϕj

ti,j ,γj∆i
e
iν∗

(

Xπ
ti+1

−Xπ
ti

)

|Xπ
ti = x

]
(5.2.14)

for 0 ≤ i < n and 1 < j ≤ q + 1 with ϕq+1 = ϕ1.

In this setting, and letting the terminal 
onditions be

un(x) = g(x) (5.2.15)

u̇n(x) = σ∗(x)∇g(x), (5.2.16)

the intermediate solutions ui,j at time step ti, 0 ≤ i < n and 1 < j ≤ q + 1 are given by

ui,j(x) = E

[
ũi+1(X

π
ti+1

;αj,1)|Xπ
ti = x

]
+∆i

j∑

k=2

αjkf(ui,k(x), u̇i,k(x))

= E

x
ti

[
1

(2π)d

∫

Rd

e
iν∗Xπ

ti+1F [ũi+1(.;αj,1)] (ν)dν

]

+∆i

j∑

k=2

αjkf(ui,k(x), u̇i,k(x))

=
1

(2π)d

∫

Rd

E

x
ti

[
e
iν∗Xπ

ti+1

]
F [ũi+1(.;αj,1)] (ν)dν

+∆i

j∑

k=2

αjkf(ui,k(x), u̇i,k(x))
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(using Fubini's theorem),

=
1

(2π)d

∫

Rd

eiν
∗xφi(ν, x)F [ũi+1(.;αj,1)] (ν)dν

+∆i

j∑

k=2

αjkf(ui,k(x), u̇i,k(x))

= F−1 [F [ũi+1(.;αj,1)] (ν)φi(ν, x)] (x) + ∆i

j∑

k=2

αjkf(ui,k(x), u̇i,k(x)) (5.2.17)

whenever ũi+1(., α) is Lebesgue integrable.

As to the intermediate solutions u̇i,j , 0 ≤ i < n and 1 < j ≤ q + 1, we have

u̇i,j(x) = E

[
H

ϕj

ti,j ,γj∆i
ũi+1(X

π
ti+1

;βj,1)|Xπ
ti = x

]

= E

x
ti

[
H

ϕj

ti,j ,γj∆i

1

(2π)d

∫

Rd

e
iν∗Xπ

ti+1F [ũi+1(.;βj,1)] (ν)dν

]

=
1

(2π)d

∫

Rd

E

x
ti

[
H

ϕj

ti,j ,γj∆i
e
iν∗Xπ

ti+1

]
F [ũi+1(.;βj,1)] (ν)dν

(using Fubini's theorem),

=
1

(2π)d

∫

Rd

eiν
∗xΦi,j(ν, x)F [ũi+1(.;βj,1)] (ν)dν

= F−1 [F [ũi+1(.;αj,1)] (ν)Φi,j(ν, x)] (x) (5.2.18)

for an integrable fun
tion ũi+1(., α). In addition, letting DsX
π
ti+1

be the Malliavin derivative of

Xπ
ti+1

given Xπ
ti = x, we have

Φi,j(ν, x) = E

[
H

ϕj

ti,j ,γj∆i
e
iν∗

(

Xπ
ti+1

−Xπ
ti

)

|Xπ
ti = x

]

= iνEx
ti

[(
1

γj∆i

∫ ti+1

ti,j

DsX
π
ti+1

ϕj

(
s− ti,j
γj∆i

)
ds

)
e
iν∗

(

Xπ
ti+1

−Xπ
ti

)

]

(by the duality formula),

= iνEx
ti

[
Hi,je

iν∗

(

Xπ
ti+1

−Xπ
ti

)
]

(5.2.19)

with

Hi,j =
1

γj∆i

∫ ti+1

ti,j

DsX
π
ti+1

ϕj

(
s− ti,j
γj∆i

)
ds. (5.2.20)

Even if the expressions in equations (5.2.17) and (5.2.18) appear too general, they are im-

plementable with the Fourier interpolation method on the alternative grid in various parti
ular


ases. Indeed some SDE time dis
retizations allow us to retrieve not only the 
hara
teristi
s

φi and Φi,j and also the Fourier representation under the alternative transform. In the sequel,

we give two notable examples with It�-Taylor expansion s
hemes for the forward SDE in the

one-dimensional 
ase. As already mentioned, an introdu
tion to these s
hemes 
an be found in

Appendix B. We shall mainly fo
us on half order and �rst order s
hemes.

Half order It�-Taylor s
hemes

The Euler s
heme 
onstitute the main example of half order It�-Taylor s
heme sin
e

Xπ
ti+1

= Xπ
ti + a(Xπ

ti)∆i + σ(Xπ
ti)∆Wi

= Xπ
ti +

∑

ı∈A 1
2
\{∅}

Fı(X
π
ti)I

ı
ti,ti+1
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where F(0)(x) = a(x), F(1)(x) = σ(x). In addition, we have that, for s ∈ (ti, ti+1),

DsI
(0)
ti,ti+1

= 0 (5.2.21)

and

DsI
(1)
ti,ti+1

= 1. (5.2.22)

Hen
e,

DsX
π
ti+1

= F(1)(x) (5.2.23)

so we get, from equation (5.2.19), that

Φi,j(ν, x) = iνF(1)(x)E

[
e
iν
(

Xπ
ti+1

−Xπ
ti

)
]
(sin
e ϕj ∈ B0

),

= F(1)(x)iνφi(ν, x). (5.2.24)

The 
onditional 
hara
teristi
 fun
tion is expli
itly given by

φi(ν, x) = exp

{
∆i

(
iF(0)(x)ν − 1

2
F 2
(1)(x)ν

2

)}
(5.2.25)

sin
e the in
rement has a Gaussian distribution.

Equations (5.2.17) and (5.2.18) along with the 
hara
teristi
s of equations (5.2.25) and

(5.2.24) de�ne the Fourier method under half order It�-Taylor s
hemes for SDEs and the method

is implementable with the pro
edure given in Chapter 3. The following theorem generalizes the

result of Lemma 4.1 to half order It�-Taylor s
hemes under Runge-Kutta s
hemes.

Theorem 5.2. Let ũα,βi+1(., y) be the alternative transform de�ned in equation (3.1.8) of the ap-

proximate solution ũi+1(., y). Then the intermediate solutions ui,j and u̇i,j in equations (5.2.17)

and (5.2.18) satisfy

ui,j(x) = F−1[F[ũα,βi+1(., αj,1)](ν)φi(ν, x)](x)

−α[(x+∆iF(0)(x))
2 +∆iF

2
(1)(x)] − β(x+∆iF(0)(x))

+∆i

j∑

k=2

αjkf(ui,k(x), u̇i,k(x)) (5.2.26)

u̇i,j(x) = F(1)(x)F
−1[F[ũα,βi+1(., βj,1)](ν)iνφi(ν, x)](x)

−F(1)(x)[2α(x +∆iF(0)(x)) + β]. (5.2.27)

under a half order It�-Taylor s
heme.

First order It�-Taylor s
hemes

Consider the �rst order s
heme

Xπ
ti+1

= Xπ
ti +

∑

ı∈A1\{∅}
Fı(X

π
ti)I

ı
ti,ti+1

= Xπ
ti +

∑

ı∈A 1
2
\{∅}

Fı(X
π
ti)I

ı
ti,ti+1

+ F(1,1)(X
π
ti)I

(1,1)
ti,ti+1

.

Then knowing that, for s ∈ (ti, ti+1),

DsI
(1,1)
ti,ti+1

= I
(1)
ti,s + I

(1)
s,ti+1

(using the fundamental theorem of 
al
ulus),

= I
(1)
ti,ti+1

, (5.2.28)
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the Malliavin derivative of the dis
retized forward pro
ess is given by

DsX
π
ti+1

= F(1)(x) + F(1,1)(x)I
(1)
ti,ti+1

. (5.2.29)

Equation (5.2.19) leads to

Φi,j(ν, x) = iνF(1)(x)E

[
e
iν
(

Xπ
ti+1

−Xπ
ti

)

|Xπ
ti = x

]

+ iνF(1,1)(x)E
x
ti

[
I
(1)
ti,ti+1

e
iν
(

Xπ
ti+1

−Xπ
ti

)
]

(sin
e ϕj ∈ B0
),

= F(1)(x)iνφi(ν, x)

+ iνF(1,1)(x)E
x
ti

[
I
(1)
ti,ti+1

e
iν
(

Xπ
ti+1

−Xπ
ti

)
]

= F(1)(x)iν(1 + ζi(ν, x))φi(ν, x) (5.2.30)

with

ζi(ν, x) =
iνF(1,1)(x)∆i

1− iνF(1,1)(x)∆i
(5.2.31)

sin
e

F(1,1)(x)E
x
ti

[
I
(1)
ti,ti+1

e
iν
(

Xπ
ti+1

−Xπ
ti

)
]

= F(1)(x)F(1,1)(x)∆iE
x
ti

[
iνe

iν
(

Xπ
ti+1

−Xπ
ti

)
]

+F 2
(1,1)(x)∆iE

x
ti

[
iνI

(1)
ti,ti+1

e
iν
(

Xπ
ti+1

−Xπ
ti

)
]

using the duality formula, so that

F(1,1)(x)E
x
ti

[
I
(1)
ti,ti+1

e
iν
(

Xπ
ti+1

−Xπ
ti

)
]

= F(1)(x)ζi(ν, x)E
x
ti

[
e
iν
(

Xπ
ti+1

−Xπ
ti

)
]

= F(1)(x)ζi(ν, x)φi(ν, x). (5.2.32)

Equations (5.2.17) and (5.2.18) along with the expression in equation (5.2.30) 
hara
terize

the method under �rst order dis
retizations on the forward pro
ess when the 
hara
teristi
 φi

is available. The pro
edure introdu
ed in Chapter 4 allows to do the 
omputations given the


hara
teristi
s φi and Φi,j using the following theorem.

Theorem 5.3. Let ũα,βi+1(., y) be the alternative transform de�ned in equation (3.1.8) of the ap-

proximate solution ũi+1(., y). Then the intermediate solutions ui,j and u̇i,j in equations (5.2.17)

and (5.2.18) satisfy

ui,j(x) = F−1[F[ũα,βi+1(., αj,1)](ν)φi(ν, x)](x)

−α
[
(x+∆iF0(x))

2 +∆iF
2
(1)(x) +

1

2
∆2

iF
2
(1,1)(x)

]

−β(x+∆iF0(x))

+∆i

j∑

k=2

αjkf(ui,k(x), u̇i,k(x)) (5.2.33)

u̇i,j(x) = F(1)(x)F
−1[F[ũα,βi+1(., βj,1)](ν)iν(1 + ζi(ν, x))φi(ν, x)](x)

−F(1)(x)
[
2α
(
x+∆iF0(x) + ∆iF(1,1)(x)

)
+ β

]
. (5.2.34)

under a �rst order It�-Taylor s
heme.
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Proof. By the de�nition of the alternative transform, we must have that

ui,j(x) = F−1[F[ũα,βi+1(., αj,1)](ν)φi(ν, x)](x)

−Ex
ti

[
α(Xπ

ti+1
)2 + βXπ

ti+1

]

+∆i1{j>2}

j−1∑

k=2

αjkf(ui,k(x), u̇i,k(x)). (5.2.35)

Noti
e that

E

x
ti

[
Xπ

ti+1

]
= x+∆iF(0)(x) (5.2.36)

and

E

x
ti

[
(Xπ

ti+1
)2
]

= E

x
ti

[
Xπ

ti+1

]2
+Varxti [X

π
ti+1

]

= (x +∆iF(0)(x))
2

+Ex
ti

[(
F(1)(x)I

(1)
ti,ti+1

+ F(1,1)(x)I
(1,1)
ti,ti+1

)2]

= (x +∆iF(0)(x))
2

+∆iF
2
(1)(x) +

1

2
∆2

iF
2
(1,1)(x) (5.2.37)

knowing that E

x
ti

[(
I
(1)
ti,ti+1

)2]
= ∆i, E

x
ti

[(
I
(1,1)
ti,ti+1

)2]
= 1

2∆
2
i and

E

x
ti

[
I
(1)
ti,ti+1

I
(1,1)
ti,ti+1

]
= 0. Equations (5.2.35), (5.2.36) and (5.2.37) lead to the expression for

ui,j in equation (5.2.33).

The de�nition of the alternative transform also requires

u̇i,j(x) = F(1)(x)F
−1[F[ũα,βi+1(., βj,1)](ν)iν(1 + ζi(ν, x))φ1(ν, x)](x)

−Ex
ti

[
H

ϕj

ti,j ,γj∆i
(α(Xπ

ti+1
)2 + βXπ

ti+1
)
]

= F(1)(x)F
−1[F[ũα,βi+1(., βj,1)](ν)iν(1 + ζi(ν, x))φ1(ν, x)](x)

−F(1)(x)E
x
ti

[
2α(Xπ

ti+1
) + β

]

−F(1,1)(x)E
x
ti

[
I
(1)
ti,ti+1

(
2α(Xπ

ti+1
) + β

)]

(using the duality formula),

= F(1)(x)F
−1[F[ũα,βi+1(., βj,1)](ν)iν(1 + ζi(ν, x))φ1(ν, x)](x)

−F(1)(x)
[
2α
(
x+∆iF(0)(x) + ∆iF(1,1)(x)

)
+ β

]
(5.2.38)

using the duality formula on
e again.

One noti
es that when using the half and �rst order It�-Taylor s
hemes, the Fourier repre-

sentations do not depend on the s
aling fun
tions ϕj sin
e the 
hara
teristi
 Φi,j do not depend

on them. In general, the expression for the 
hara
teristi
 Φi,j in equations (5.2.19) and (5.2.20)

tells that if the forward SDE time dis
retization is su
h that the Malliavin derivative DsX
π
ti+1

is independent of s ∈ [ti, ti+1) then the Fourier representations are independent of the s
aling

fun
tions ϕj . This is due to the fa
t that the s
aling fun
tion ϕj are at least in B0
, i.e they

integrate to 1.

5.3 Error analysis

We denote by {ui,j,k}NiN
k=0 and {u̇i,j,k}NiN

k=0 the intermediate numeri
al solutions obtained at mesh

time ti, i = 0, 1, ..., n−1 and stage j, 1 < j ≤ q+1, from the pro
edure of Chapter 4 when using
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a q−stage Runge-Kutta s
heme. In addition, {ui,j,k}NiN
k=0 and {u̇i,j,k}NiN

k=0 are the intermediate

numeri
al solutions obtained at the intermediate stage j, 1 < j ≤ q + 1, of the mesh time ti

given the exa
t solutions ui+1 and u̇i+1 at time ti+1. We have from the notation previously used

that the numeri
al solution at mesh time ti is given by

ui,k = ui,q+1,k (5.3.1)

u̇i,k = u̇i,q+1,k (5.3.2)

and 
omputed from the intermediate solutions {ũi,k}NiN
k=0 , 0 < i ≤ n where ũn,k = ũn(xn,k).

When the exa
t solutions ui+1 and u̇i+1 are known at ti+1, we also write

ui,k = ui,q+1,k (5.3.3)

u̇i,k = u̇i,q+1,k. (5.3.4)

The lo
al (spa
e) dis
retization error has the form

Eik := |ui(xk)− ui,k|+ |u̇i(xk)− u̇i,k| (5.3.5)

for i = 0, 1, ..., n− 1 and k = 0, 1, ..., NiN . The following assumptions prove 
ru
ial in the error

analysis that fo
uses ex
lusively on the one-dimensional 
ase d = 1 and expli
it Runge-Kutta

s
hemes even though the results 
an be generalized to impli
it Runge-Kutta s
hemes when the


ondition of equation (5.2.1) is satis�ed.

Assumption 5.3.1. There are positive 
onstants p0, s0 ,K0 and C0 > 0 su
h that

max(|φi(is0, x)| , |φi(−is0, x)|) ≤ eK0∆i
(5.3.6)

and, hen
e, the dis
rete version of the forward pro
ess has 
onditional exponential moments. In

adddition, ∫

Rd

|φi(ν, x)| dν + max
1<j≤q+1

∫

Rd

|Φi,j(ν, x)| dν ≤ C0∆
−p0

i . (5.3.7)

The next theorem gives a des
ription of the lo
al (spa
e) dis
retization error bound where

we assume that the time dis
retization is given.

Theorem 5.4. Suppose that Assumptions 5.1.1, 5.1.2, 5.2.1 and 5.3.1 are satis�ed. Then the

Fourier interpolation method yields a lo
al spa
e dis
retization error of the form

sup
i,k

Eik = O (∆x) +O
(
e−Kl

)
(5.3.8)

for some 
onstant K > 0 on the alternative grid and under the trapezoidal quadrature rule for

any expli
it q-stage Runge-Kutta s
heme.

Proof. On
e again, we follow the steps in the proof of Theorem 3.3. The trun
ation error when


omputing the numeri
al solutions u̇i,j,k is

E

xik

ti

[
H

ϕj

ti,j ,γj∆i
ũi+1(X

π
ti+1

;βj,1)1|∆Xπ
i |> l

2

]

< KExik

ti

[∣∣∣Hϕj

ti,j ,γj∆i

∣∣∣ 1|∆Xπ
i |> l

2

]

(by boundedness of the BSDE 
oe�
ients),

< KExik

ti

[(
H

ϕj

ti,j ,γj∆i

)2] 1
2

E

xik

ti

[
1|∆Xπ

i |> l
2

] 1
2

(by the Cau
hy-S
hwartz inequality)

= KExik

ti

[∫ ti+1

ti,j

(
1

γj∆i
ϕj

(
s− ti,j
γj∆i

))2

ds

] 1
2

E

xik

ti

[
1|∆Xπ

i |> l
2

] 1
2
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(by It� isometry)

< K∆
− 1

2

i E

xik

ti

[
1|∆Xπ

i |> l
2

] 1
2

(by the boundedness of fun
tions ϕj),

≤ K∆
− 1

2
i

(
inf
s>0

e−s l
2φi(−is) + inf

s>0
e−s l

2φi(is)

) 1
2

(by Cherno�'s inequality)

< K∆
− 1

2
i e−s0

l
4+

1
2K0∆i

< Ke−s0
l
4

using Assumption 5.2.1. The Fourier interpolation leads to a �rst order spa
e dis
retization

error by the twi
e di�erentiability of the driver f and the terminal 
ondition g when 
omputing

the numeri
al solutions u̇i,j,k.

The same statements hold for the numeri
al solutions ui,2,k using identi
al arguments. By

re
ursion and using the Lips
hitz property of the driver f , the statements hold for ui,j,k, 1 <

j ≤ q+1. Sin
e the mesh time ti and the spa
e node xik are arbitrary, the spa
e trun
ation and

dis
retization error bounds hold for any i and k.

Lo
ally, the trun
ation error remains spe
tral. Nonetheless, it is just of index 1 in this

general setting where the 
onditional 
hara
teristi
 fun
tion φi is unspe
i�ed. In Chapter 3

and 4, the quadrati
 exponential form of the 
hara
teristi
 fun
tion is the main reason for the

spe
tral 
onvergen
e of index 2 in the trun
ation error. The spa
e dis
retization error though

is un
hanged with �rst order due to the se
ond order di�erentiability of the BSDE 
oe�
ients.

Indeed, the Fourier interpolation produ
es a spa
e dis
retization error with a higher order when

the driver f and the terminal fun
tion g have the required smoothness. We already illustrated

the phenomenon in the numeri
al results of Se
tion 3.5.1. In general, if f ∈ Cm+1
b and g ∈ Cm+1

b ,

we 
an expe
t a spa
e dis
retization error of order m whi
h is the 
onvergen
e order of the

underlying Fourier interpolation.

We now turn to the global spa
e dis
retization error El,∆x as de�ned in equation (3.2.6).

The next theorem gives its error bound.

Theorem 5.5. Suppose the 
onditions of Theorem 5.4 are satis�ed. If the dis
retization is su
h

that

sup
i

{
C0∆x

π∆p0

i

}
≤ 1 (5.3.9)

then the Fourier interpolation method is stable and yields a global dis
retization error El,∆x of

the form

El,∆x = O(∆x) +O
(
e−Kl

)
(5.3.10)

where K > 0 for any expli
it q-stage Runge-Kutta s
heme.

Proof. From the de�nition of the global spa
e dis
retization error, we may write

eik ≤ En−i,k + |un−i,k − un−i,k| (5.3.11)

ėik ≤ En−i,k + |u̇n−i,k − u̇n−i,k| . (5.3.12)

Let's assume the boundary values of the fun
tion ũi+1 and the sequen
e ũi+1,s are mat
hed on

the alternative grid so that we don't have to treat the alternative transform. Under an expli
it

q−stage Runge-Kutta s
heme, we have

|u̇i,j,k − u̇i,j,k| =

∣∣∣∣D−1
[
{Φi,j(νi+1,m, xik)D[ũi+1 − ũi+1,s]m}Ni+1N−1

m=0

]
k+N

2

∣∣∣∣
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≤
∑Ni+1N−1

m=0 |Φi,j(νi+1,m, xik)|
Ni+1N

sup
k

|ũi+1(xik, β1,j)− ũi+1,k|

≤ ∆x

2π

(∫

Rd

|Φi,j(ν, xi,k)| dν
)
sup
k

|ũi+1(xik, β1,j)− ũi+1,k|

≤ C0∆x

2π∆p0

i

sup
k

|ũi+1(xik, β1,j)− ũi+1,k|

(using Assumption 5.3.1),

≤ C0∆x

2π∆p0

i

(1 + ∆iK) sup
k
en−i−1,k

+
C0∆x

2π∆p0

i

∆iK sup
k
ėn−i−1,k

(sin
e f is Lips
hitz and β1,j is bounded),

≤ C0∆x

2π∆p0

i

(1 + ∆iK) sup
k
en−i−1,k

+
C0∆x

2π∆p0

i

(1 + ∆iK) sup
k
ėn−i−1,k. (5.3.13)

Similarly, we get

|ui,2,k − ui,2,k| ≤
∣∣∣∣D−1

[
{φi(νi+1,m, xik)D[ũi+1 − ũi+1,s]m}Ni+1N−1

m=0

]
k+N

2

∣∣∣∣

≤ ∆x

2π

(∫

Rd

|φi(ν, xi,k)| dν
)
sup
k

|ũi+1(xik, α1,2)− ũi+1,k|

≤ C0∆x

2π∆p0

i

sup
k

|ũi+1(xik, α1,2)− ũi+1,k|

(using Assumption 5.3.1),

≤ C0∆x

2π∆p0

i

(1 + ∆iK) sup
k
en−i−1,k

+
C0∆x

2π∆p0

i

(1 + ∆iK) sup
k
ėn−i−1,k

so that we get

|ui,j,k − ui,j,k| ≤ C0∆x

2π∆p0

i

(1 + ∆iK) sup
k
en−i−1,k

+
C0∆x

π∆p0

i

(1 + ∆iK) sup
k
ėn−i−1,k (5.3.14)

re
ursively for 1 < j ≤ q+1 using the Lips
hitz property of the driver f and the boundedness of

the Runge-Kutta 
oe�
ients. Equations (5.3.11) and (5.3.12) 
ombined with equations (5.3.14)

and (5.3.13) lead to

sup
k
ei,k + sup

k
ėi,k ≤ 2 sup

i,k
Eik

+
C0∆x

π∆p0

i

(1 + ∆n−iK)

(
sup
k
ei−1,k + sup

k
ėi−1,k

)

≤ 2 sup
i,k

Eik + ζ(1 + ∆n−iK)

(
sup
k
ei−1,k + sup

k
ėi−1,k

)

where

sup
i

{
C0∆x

π∆p0

i

}
≤ ζ ≤ 1.

Gronwall's Lemma then yields

sup
k
ei,k + sup

k
ėi,k ≤ 2eTK sup

i,k
Eik (5.3.15)
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so that the s
heme is stable. The result of equation (5.3.10) follows by taking the supremum on

the left hand side of equation (5.3.15) other time step and applying Theorem 5.4.

In this general 
ase, the global dis
retization error maintains the stru
ture of the lo
al dis-


retization error under a stability 
ondition. Equation (5.3.9) indi
ates that the spa
e dis
retiza-

tion has to be relatively as �ne as the time dis
retization to ensure stability. Hen
e, stability 
an

always be rea
hed for any time dis
retization by re�ning the spa
e dis
retization. However, the

stru
ture of the 
hara
teristi
 fun
tions φi and Φij determines the relative re�nement needed

for the spa
e dis
retization.

The simulation of FBSDEs is not di�erent from Chapter 3 and 4. Letting (Ui, U̇i) be the

extended solution at time mesh ti of equations (3.3.2) and (3.3.3), we de�ne the approximate

pro
esses (x, y, z) as

xt =
n−1∑

i=0

Xπ
ti1[ti,ti+1)(t) (5.3.16)

yt =
n−1∑

i=0

Ui(X
π
ti)1[ti,ti+1)(t) (5.3.17)

zt =
n−1∑

i=0

U̇i(X
π
ti)1[ti,ti+1)(t) (5.3.18)

for t ∈ [0, T ). The boundedness of ba
kward and 
ontrol pro
ess solutions {yt}t∈[0,T ) and

{zt}t∈[0,T ) was established in Chapter 3 (Corollary 3.8) and holds in the Runge-Kutta framework.

We will instead fo
us on the simulation error Eπ,l,∆x de�ned as

E2
π,l,∆x := max

0≤i<n
‖Xti − xti‖2L2 + max

0≤i<n
‖Yti − yti‖2L2 +

n−1∑

i=0

∆i ‖Zti − zti‖2L2 . (5.3.19)

The next theorem des
ribes the error bound.

Theorem 5.6. Suppose that Assumptions 5.1.1, 5.1.2, 5.2.1 and 5.3.1 are satis�ed. If the

stability and 
onvergen
e 
ondition of equation (5.3.9) holds and both the forward dis
retization

and q-stage Runge-Kutta s
heme are of order m > 0 then

E2
π,l,∆x = O(|π|2m) +O(∆x2) +O

(
e−C(N0+1)l + e−Cl

)
(5.3.20)

where C > 0.

Proof. The proof is essentially similar to the proof of Theorem 3.9. Sin
e we assume that both

the forward and the ba
kward s
hemes are of order m > 0 the time dis
retization error O(|π|2m)

is obviously of order m. Also the spa
e dis
retization error O(∆x2) and the spa
e trun
ation

error O(e−Cl) follow from Theorem 5.5 and the quadrati
 nature of the simulation error.

Sin
e the driver f and the terminal fun
tion g are bounded, the remaining error term is

related to

max
0<i<n

E

[
1R\Ii

(Xπ
ti)
]

≤ max
0<i<n

inf
s>0

e−s(X0+Ni
l
2 )φti(−is)

+ max
0<i<n

inf
s>0

es(X0−Ni
l
2 )φti(is)

by Cherno�'s inequality where φti is the 
hara
teristi
 fun
tion of Xπ
ti . It is shown by re
ursion

and using Assumption 5.3.1 that

φti(−is0) ≤ eK0T+s0X0

φti(is0) ≤ eK0T−s0X0 .
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Hen
e,

max
0<i<n

E

[
1R\Ii

(Xπ
ti)
]

≤ 2eK0T max
0<i<n

e−s0Ni
l
2

≤ 2eK0T e−s0(N0+1) l
2 .

A simple extension of q-stage Runge-Kutta s
hemes to re�e
ted FBSDE 
onsists in applying

the re�e
tion at the last stage and for all time nodes ti. Let's 
onsider the system





dXt = a(t,Xt)dt+ σ(t,Xt)dWt

−dYt = f(t,Xt, Yt, Zt, )dt+ dAt − ZtdWt

Yt ≥ Bt , dAt ≥ 0 , ∀t ∈ [0, T ]
∫ T

0 (Yt −Bt)dAt = 0

X0 = x0 , YT = g(XT )

(5.3.21)

where

Bt = B(t,Xt). (5.3.22)

The numeri
al solution of a q−stage Runge-Kutta s
heme 
an be de�ned as

ui(x) = ui,q+1(x) + ∆ūi(x) (5.3.23)

u̇i(x) = u̇i,q+1(x) (5.3.24)

∆ūi(x) = [ui,q+1(x)−B(ti, x)]
−

(5.3.25)

instead of equations (5.2.5) and (5.2.6). The intermediate solutions uij and u̇ij , 1 < j ≤ q + 1,

are de�ned as previously and their numeri
al values may be given by the Fourier method on

the alternative grid. From there, the simulation a numeri
al solution (x, y, z, a) for the re�e
ted

FBSDE is 
ondu
ted through the equations

xt =

n−1∑

i=0

Xπ
ti1[ti,ti+1)(t) (5.3.26)

yt =

n−1∑

i=0

Ui(X
π
ti)1[ti,ti+1)(t) (5.3.27)

zt =

n−1∑

i=0

U̇i(X
π
ti)1[ti,ti+1)(t) (5.3.28)

at =

n−1∑

i=0

∆Ūi(X
π
ti)1[ti,T )(t) (5.3.29)

where the extended solutions Ui, U̇i and ∆Ūi are as in equations (3.3.2), (3.3.3) and (3.4.7)

respe
tively.

5.4 Appli
ation to 
ommodity derivatives

We test the 
onvergen
e properties of the Fourier interpolation method on Runge-Kutta s
hemes

with a problem of 
ommodity derivative pri
ing under a model proposed by Lu
ia and S
hwartz

[77℄. We shall test the method's 
onvergen
e and behavior on smooth and unbounded FBSDE


oe�
ients. The non-smoothness of BSDE 
oe�
ients a�e
ts only the spa
e dis
retization error

and was already studied in Chapter 3. Also, the unbounded 
oe�
ient framework in
ludes
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the bounded 
oe�
ient 
ase so that the ideas developed here also hold for bounded 
oe�
ient

FBSDEs.

The 
ommodity spot pri
e X is de�ned by

Xt = eS(t)+Vt
(5.4.1)

where the deterministi
 fun
tion S : R+ → R represents the seasonality 
omponent of the


ommodity and V is the pri
e di�usion following an Ornstein-Uhlenbe
k pro
ess a

ording to

the Vasi
ek [111℄ model

dVt = −κVtdt+ σdWt. (5.4.2)

As indi
ated by Lu
ia and S
hwartz [77℄, the 
ommodity spot pri
e X satis�es the sto
hasti


di�erential equation

dXt = κ(θ(t)− lnXt)Xtdt+ σXtdWt (5.4.3)

where

θ(t) =
1

κ

(
σ2

2
+
dS

dt
(t)

)
+ S(t). (5.4.4)

We 
onsider the 
ommodity pri
e as our forward pro
ess through equation (5.4.3).

When the risk free rate r and the market pri
e of risk λ are both 
onstant, the forward (or

future) pri
e Ft,T := Yt = u(t,Xt) with maturity T > 0 at time t < T is given by

Yt = E

Q
t [XT ]

= eS(T )+(lnXt−S(t))e−κ(T−t)−σλ
κ

h(T−t,κ)+σ2

4κ
h(T−t,2κ)

(5.4.5)

with

h(τ, κ) = 1− e−κτ
(5.4.6)

where the expe
tation is taken under the equivalent risk measure Q. It 
an be shown that the

forward pri
e solves a BSDE with linear driver

f(t, y, z) = −λz (5.4.7)

and terminal 
ondition

g(x) = x. (5.4.8)

Options on forward 
ontra
ts 
an also be represented in form of BSDEs in this spot pri
e model

but we limit our analysis to forward pri
e estimation. From equation (5.4.5) the 
ontrol pro
ess

(or equivalently the forward pri
e delta) is given by

Zt = σXt∇u(t,Xt)

= σe−κ(T−t)u(t,Xt). (5.4.9)

The adjustment speed of the di�usion pro
ess is κ = 1.5 and the volatility of the di�usion is

set to be σ = 0.065. The seasonality 
omponent is given by

S(t) = ln P̄ + 0.05 sin(2πt) (5.4.10)

and the initial spot pri
e by

X0 = P̄ eV0 = 0.95P̄ (5.4.11)

where we normalize the real value

3

of the 
ommodity P̄ = 1. Also, the maturity of the forward


ontra
t is T = 0.25 and we suppose a market pri
e of risk of λ = 0.25.

3

The real value P̄ 
an be 
onsidered as the produ
tion 
ost (per unit) of the 
ommodity.
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The FBSDE is solved on an alternative grid 
entered at X0 with a uniform time mesh. For

a given number of time steps n and the initial number N0 = 1 of intervals, the length of an

in
rement interval is set as

l =
1.8

N0 + n
(5.4.12)

so that the trun
ated interval at time tn has length 1.8. This restri
tion keeps the spa
e nodes

in the upper half plane knowing that the 
ommodity pri
e is a positive pro
ess. Moreover, the

number of spa
e steps on an in
rement interval is N = 2.

We numeri
ally solve the BSDE with the expli
it 1−stage Runge-Kutta s
heme of half order

and an expli
it 2−stage Runge-Kutta s
heme of �rst order. Under the expli
it 1−stage s
heme,

the 
ommodity pri
e is dis
retized with an Euler s
heme whereas a Milstein s
heme is used

for the forward pro
ess X under the expli
it 2−stage Runge-Kutta s
heme. Note that for the

Milstein s
heme,

F(1,1)(x) = σ2x (5.4.13)

and

I
(1,1)
ti,ti+1

=
1

2
(∆W 2

i −∆i) (5.4.14)

and we estimate the 
hara
teristi
 fun
tion with a Gaussian 
hara
teristi


φi(ν, x) = exp

{
∆i

(
iF(0)(x)ν − 1

2

(
F 2
(1)(x) +

1

2
∆iF

2
(1,1)(x)

)
ν2
)}

. (5.4.15)

In addition, we use an expli
it 2−stage Runge-Kutta s
heme with tableau

0 0 0 0 0 0
2
3

2
3 0 0 2

3 0

1 1
4

3
4 0 1 0

Under both FBSDE dis
retizations, we 
ompute two di�erent types of error. The �rst error

ETrue evaluates the maximal absolute error of the numeri
al solution with respe
t to the true

solution

ETrue = max
0≤i<n

max
0≤k≤NNi

|u(ti, xik)− uik|

+ max
0≤i<n

max
0≤k≤NNi

|u̇(ti, xik)− u̇ik| (5.4.16)

where

u̇(t, x) = σx∇u(t, x) = σe−κ(T−t)u(t, x). (5.4.17)

The se
ond error ESim approximates the simulation error Eπ,l,∆x. Given the numeri
al solution

{Xπ
ti,j}mj=1 , i = 0, 1, ..., n− 1 with m > 0 simulated paths for the forward pro
ess, we 
ompute

the numeri
al solution {(yti,j, zti,j)}mj=1 of the ba
kward pro
ess through equations (5.3.17) and

(5.3.18). The error ESim hen
e writes as

ESim =
1

m

m∑

j=1

max
0≤i<n

∣∣u(ti, Xπ
ti,j)− yti,j

∣∣

+
1

m

m∑

j=1

(
n−1∑

i=0

∆i(u̇(ti, X
π
ti,j)− zti,j)

2

) 1
2

. (5.4.18)

We systemati
ally use m = 1000 paths. Even if the errors ETrue and ESim may be of the

same order, they are interpreted di�erently. The error ETrue gives the behavior of the maximal

approximation error on the grid whereas ESim gives the behavior of the error on the relevant

part of grid when solving the FBSDE numeri
ally. Figure 5.4.1 displays the errors under the
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expli
it 1−stage Runge-Kutta s
heme with n ∈ {5, 10, 20, 50, 100} and Figure 5.4.2 shows the

errors under the expli
it 2−stage s
heme.

The error graphs of Figures 5.4.1 and 5.4.2 look almost identi
al and 
on�rm that the 2−stage
s
heme is of �rst order and the 1−stage s
heme of (at least) half order. The extra-e�
ien
y of

the 1−stage s
heme may be attributed in this parti
ular 
ase to the simpli
ity of the driver f

and the terminal 
ondition g.

In Figure 5.4.3, we present the absolute errors along the simulated paths for the BSDE

solution. One noti
es that the maximal errors o

ur at the initial time t0 = 0 for the forward

pri
e (Yt) and at maturity T = 0.25 for the 
ontrol pro
ess (Zt). Nonetheless, the simulation

errors are of the same order (10−4
) for both pro
esses. This information is 
on�rmed by the


ontour plot of Figure 5.4.4 not only along the simulated paths but on the entire grid.

Moreover, the 
ontour plot gives indi
ation on the sour
e of errors. Indeed, Figure 5.4.4

shows that the maximal errors mainly o

ur for the upper spa
e node values on the alternative

grid and they de
rease for lower spa
e node values. This is due to the unbounded nature of the

spot pri
e pro
ess 
oe�
ients. Sin
e the volatility of the spot pri
e is a positive and in
reasing

fun
tion of the spot pri
e

4

, higher spot pri
e values lead to higher lo
al volatility. Hen
e, the

�xed length of in
rement interval l may not be su�
iently large to ensure a

ura
y for higher

spa
e node values. In general, the phenomenon is ampli�ed with the magnitude of the forward

pro
ess 
oe�
ients as illustrated in the 
ontour plot of Figure 5.4.5 where we 
hoose a higher

value for the volatility σ and keep the other parameters un
hanged. Similar results 
an be

obtained by sele
ting a higher value for the speed of adjustment κ as shown in Figure 5.4.6 .

We end this 
hapter with an e�
ien
y study of our s
hemes. Using the parameters initially

given, the BSDE is solved on a uniform time grid with n ∈ {10, 20, 40, 50, 60, 80, 100} time steps

and N ∈ {2, 22, 23, 24} spa
e steps and value the 
omputation time. Figure 5.4.7 displays the

results. First note that sin
e the Fourier interpolation method of Chapter 4 performs matrix

multipli
ations, it is mu
h slower than the 
onvolution method of Chapter 3. As a 
omparison,

the 
onvolution method runs in less than half a se
ond of CPU time on the grids 
onsidered in

Figure 5.4.7 and using the same 
omputing devi
e.

As shown in Figure 5.4.7, the 
omputation time of Fourier interpolation method in
reases

with the number of time steps leading to a tradeo� between 
omputation speed and a

ura
y.

The exponential nature of the 
urves suggests that preferen
e has to be given to the 
oarsest time

dis
retization providing a satisfa
tory level of a

ura
y. Similarly, the 
omputation time also

in
rease drasti
ally with the number N of spa
e steps. Coarse spa
e grid insuring a

ura
y are

hen
e also preferable. Sin
e a total number of 2q 
onditional expe
tations are 
omputed under

a q-stage Runge-Kutta s
heme, we 
an expe
t the 1-stage s
heme to run twi
e as fast as the

2-stage s
heme. This is 
on�rmed on Figure 5.4.7, espe
ially when looking at the 
omputation

times for n = 100.

4

See equation (5.4.3).
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Figure 5.4.3: Simulation errors using the 2-stage Runge-Kutta s
heme.
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The numeri
al solution is obtained on a time mesh with n = 100 time steps and returns an forward pri
e of

1.0121 and initial value of 0.0453 for the 
ontrol pro
ess. The exa
t values are 1.0123 and 0.0452 respe
tively.

Figure 5.4.4: Contour plot of errors using the 2-stage Runge-Kutta s
heme.
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The numeri
al solution is obtained on a time mesh with n = 100 time steps and returns an forward pri
e of

1.0121 and initial value of 0.0453 for the 
ontrol pro
ess. The exa
t values are 1.0123 and 0.0452 respe
tively.
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Figure 5.4.5: Errors using the 2-stage Runge-Kutta s
heme with σ = 0.08.
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The numeri
al solution is obtained on a time mesh with n = 100 time steps and returns an forward pri
e of

1.0115 and initial value of 0.0558 for the 
ontrol pro
ess. The exa
t values are 1.0119 and 0.0556 respe
tively.

Figure 5.4.6: Errors using the 2-stage Runge-Kutta s
heme with κ = 3.
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The numeri
al solution is obtained on a time mesh with n = 100 time steps and returns an forward pri
e of

1.0238 and initial value of 0.0316 for the 
ontrol pro
ess. The exa
t values are 1.0257 and 0.0315 respe
tively.
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Figure 5.4.7: CPU time (in se
onds) of Runge-Kutta s
hemes.
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Con
lusion

The present thesis investigated the appli
ation of Fourier methods to numeri
al solutions of

FBSDEs. In general, the method proposed 
onsists of expressing the solution from a BSDE time

dis
retization in terms of Fourier integrals using some available 
hara
teristi
 fun
tions. The

Fourier integrals are then dis
retized over a uniform spa
e grid. In parti
ular, the alternative

grid of Chapter 3 produ
es a 
onsistent, stable and globally 
onvergent FFT based method for

BSDEs using the Euler time dis
retization.

The results of Chapter 3 were extended to the FBSDE 
ase and, in this framework, bounded-

ness 
onditions are ne
essary on the forward pro
ess 
oe�
ients to ensure 
onsisten
y, stability

and 
onvergen
e. Even if the method is still based on Fourier analysis, a matrix multipli
ation

is need in the FBSDE 
ase sin
e the in
rement of the forward pro
ess are not ne
essarily inde-

pendent. The matrix multipli
ation may lead to e�
ien
y problems espe
ially on �ne time and

spa
e grids.

While the Euler s
heme 
onstitutes the primary time dis
retization for BSDEs used in this

thesis, we fo
us on higher order Runge-Kutta s
hemes in Chapter 5. In this general framework,

we expli
itly de�ne the 
hara
teristi
 fun
tions and perform the error analysis a

ordingly. Under

some integrability 
onditions on the 
hara
teristi
s, the Fourier interpolation based method is


onsistent, stable and globally 
onvergent.

We mainly illustrate the 
onvergen
e and e�
ien
y properties of the Fourier method with

derivative pri
ing examples from mathemati
al �nan
e. Option pri
ing problems under the

Bla
k and S
holes model are 
onsidered in Chapter 2 and Chapter 3. The numeri
al example of

Chapter 5 deals with a 
ommodity modeling problem.

The thesis proposes a numeri
al implementation of the method only in the one-dimensional


ase. Hen
e, the extension of the method to the multidimensional framework is of importan
e.

The de�nition of an alternative transform to mimi
 periodi
ity seems to be the only requirement

for 
onvergen
e in the multidimensional 
ase. However, e�
ien
y may be problemati
 espe
ially

when the method is applied to FBSDEs.

It may also be interesting to investigate alternative basis fun
tions. Indeed, Fourier basis

fun
tions have well known disadvantages su
h as their la
k of lo
alization or their non-
ausality.

As an alternative to Fourier basis fun
tions, wavelets 
an be used and produ
e e�
ient algorithms

in the one-dimensional and the multidimensional framework for the BSDE and FBSDE 
ases.

Sin
e Runge-Kutta methods for BSDEs are quite re
ent, the problem of their implementa-

tion o�ers many resear
h opportunities. An interesting area of resear
h 
ould be the Fourier

representation of BSDE solutions under higher order time dis
retization for the forward pro
ess.

Also, Monte-Carlo and spatial dis
retization based methods 
an be extended to these s
hemes

with relative ease. Finally, (higher order) time dis
retizations for FBSDEs with non-Lips
hitz


oe�
ients are still an open problem.
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Appendix

A Elements of FBSDE theory

Forward ba
kward sto
hasti
 di�erential equations (FBSDEs) are quite re
ent mathemati
al

obje
ts. Many interesting results have been proved 
on
erning their existen
e, uniqueness and

properties. Some of those properties are parti
ularly important for numeri
al simulation.

This appendix serves as an introdu
tion to the theory of FBSDEs with Lips
hitz 
oe�
ients.

We 
over the existen
e and uniqueness results in Se
tion A.1 and present major properties of

FBSDEs in Se
tion A.2.

A.1 Classi�
ation of FBSDEs

From the well-known 
lassi
al theory of sto
hasti
 di�erential equation (SDE), see Kloeden and

Platen [69℄ or Øksendal [94℄, we 
onsider a forward pro
ess satisfying




dXt = a(t,Xt)dt+ σ(t,Xt)dWt

X0 = x0
(A.1)

where a : [0, T ]×Rd → Rd
is the forward drift 
oe�
ient, σ : [0, T ]×Rd → Rd×d

is the forward

di�usion (or volatility) 
oe�
ient. Both 
oe�
ients are assumed to be deterministi


12

fun
tions.

The F0-measurable random variable x0 ∈ Rd
de�nes the initial 
ondition and is assumed to be


onstant. The SDE is interpreted as the integral equation

Xt = x0 +

∫ t

0

a(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs, (A.2)

with t ∈ [0, T ]. In addition, we assume that both 
oe�
ients a and σ along with the initial


ondition x0 satisfy the regularity 
onditions listed below.

Assumption A.1. (on the forward SDE 
oe�
ients).

H1. The 
oe�
ients a and σ are uniformly Lips
hitz 
ontinuous in the spa
e variable. Thus,

there exists K > 0 so that

|a(t, x)− a(t, y)|+ |σ(t, x)− σ(t, y)| ≤ K |x− y|

for t ∈ [0, T ] and x, y ∈ Rd
.

H2. The 
oe�
ients a and σ have linear growth. Thus, there exists K > 0 su
h that

|a(t, x)|+ |σ(t, x)| ≤ K(1 + |x|)

for t ∈ [0, T ] and x ∈ R
d
.

12

It is indeed possible to 
onsider sto
hasti
 
oe�
ients.
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For sto
hasti
 
oe�
ients, the inequalities of assumptions (H1) and (H2) hold almost surely

and the 
oe�
ients have to satisfy additional measurability and square integrability 
onditions.

Expli
itly, the fun
tional a : Ω× [0, T ]×Rd → Rd
and σ : Ω× [0, T ]×Rd → Rd

are measurable

with respe
t to P ⊗ B(Rd) (where P is a σ-algebra on Ω × [0, T ]) and square integrable with

respe
t to dP× dt, with

E

[∫ t

0

{
|a(t, 0)|2 + |σ(t, 0)|2

}
dt

]
<∞.

The solution of the forward SDE of equation (A.1) is an adapted and 
ontinuous pro
ess

{Xt}t∈[0,T ] ∈ L2
S . The following proposition, due to It� and proved in Kloeden and Platen [69℄,

states the forward SDE well-posedness.

Proposition A.1. Under assumptions (H1) and (H2), the forward sto
hasti
 di�erential equa-

tion given by equation (A.1) admits a unique (strong) solution X = {Xt}t∈[0,T ].

Instead of an initial 
ondition, we may 
onsider an equation evolving ba
kward in time from

a terminal 
ondition formally given by




−dYt = f(t, Yt, Zt)dt− Z∗

t dWt

YT = ξ.
(A.3)

Equation (A.3) is 
alled a ba
kward sto
hasti
 di�erential equation (BSDE). The 
orresponding

integral equation takes the form

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

Z∗
sdWs, (A.4)

with t ∈ [0, T ]. We shall suppose, for simpli
ity, that the ba
kward pro
ess {Yt}t∈[0,T ] is uni-

dimensional. The (deterministi
) fun
tion

f : [0, T ]× R× R
d → R

stands for the ba
kward pro
ess driver (or generator), the FT -measurable random variable ξ

de�nes the terminal 
ondition, and the adapted pro
ess {Zt}t∈[0,T ] taking values in Rd
is 
alled

the 
ontrol pro
ess.

In order to ensure existen
e and uniqueness, the driver f and the terminal 
ondition ξ satisfy

the following regularity 
onditions:

Assumption A.2. (on the ba
kward SDE 
oe�
ients).

H3. The driver f is uniformly Lips
hitz 
ontinuous in the spa
e variables, i.e there exists K > 0

su
h that

|f(t, y1, z1)− f(t, y2, z2)| ≤ K(|y1 − y2|+ |z1 − z2|).

H4. The terminal 
ondition ξ is square integrable, i.e ξ ∈ L2
.

When the driver is sto
hasti
 then it must be measurable with respe
t to P ⊗B(R)⊗B(Rd)

and square integrable with respe
t to dP× dt

E

[∫ T

0

|f(t, 0, 0)|2 dt
]
<∞.

Also, the inequality of assumption (H3) holds P−almost surely.

A pair of adapted pro
esses (Y, Z) is 
alled a solution of the BSDE of equation (A.3) if it

satis�es equation (A.3), the pro
ess {Yt}t∈[0,T ] ∈ L2
S is 
ontinuous and {Zt}t∈[0,T ] ∈ L2

I .

Pardoux and Peng [96℄ proved an existen
e and uniqueness result for the BSDE.
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Proposition A.2. Under assumptions (H3) and (H4), the ba
kward sto
hasti
 di�erential equa-

tion given by equation (A.3) admits a unique solution (Y, Z).

A de
oupled forward-ba
kward sto
hasti
 di�erential equation is obtained by 
ombining a

forward SDE and a ba
kward SDE in the following manner





dXt = a(t,Xt)dt+ σ(t,Xt)dWt

−dYt = f(t,Xt, Yt, Zt)dt− ZtdWt

X0 = x0, YT = ξ

(A.5)

where the forward 
oe�
ients a and σ do not depend upon the solution of the ba
kward equation

(Y, Z) but the measurable driver

f : [0, T ]× R
d × R× R

d → R

may depend on the forward pro
ess X .

The terminal 
ondition ξ is said to be Markovian if it 
an be written as a fun
tional of the

forward pro
ess terminal value, i.e

ξ = g(XT ) (A.6)

for some fun
tion g : Rd → R and non-Markovian if the fun
tional involves other state variables.

In this last 
ase we simply write ξ = G(X) with

G : Sd → R (A.7)

su
h that |G(0)| ≤ K for some 
onstant K > 0 where 0 is the zero-valued ve
tor fun
tion on

[0, T ]. The fun
tional G is said to be L∞
-Lips
hitz if there exists a 
onstant K > 0 su
h that

|G(x)−G(y)| ≤ K sup
t∈[0,T ]

|x(t) − y(t)| (A.8)

and L1
-Lips
hitz if there exists a 
onstant K > 0 su
h that

|G(x)−G(y)| ≤ K

∫ T

0

|x(t) − y(t)| dt (A.9)

for x, y ∈ Sd
.

As to the solution to the de
oupled FBSDE, it 
onsists of a triple of pro
esses (X,Y, Z)

and its existen
e and uniqueness naturally follow from Propositions A.1 and A.2 after simple

adaptations of hypothesis (H3) for a sto
hasti
 driver.

When the driver f is independent of the 
ontrol pro
ess Z = {Zt}t∈[0,T ], one 
an rewrite the

ba
kward equation using an expe
tation representation as

Yt = E

[
ξ +

∫ T

t

f(s,Xs, Ys)ds

∣∣∣∣∣Ft

]
(A.10)

with t ∈ [0, T ] and the 
ontrol pro
ess Z = {Zt}t∈[0,T ] 
an then be obtained through the mar-

tingale representation theorem.

Also, many spe
ial 
ases of 
oupled forward-ba
kward di�erential equations have been 
on-

sidered. The most general 
ase takes the form





dXt = a(t,Xt, Yt, Zt)dt+ σ(t,Xt, Yt, Zt)dWt

−dYt = f(t,Xt, Yt, Zt)dt− ZtdWt

X0 = x0 , YT = ξ

(A.11)
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where both forward 
oe�
ients depend on the pair of pro
esses solution of the ba
kward equation.

Pardoux and Tang [98℄ have proved the FBSDE well-posedness, i.e, existen
e and unique-

ness for the FBSDE solution (X,Y, Z) in three sub-
ases with a probabilisti
 approa
h under

monotoni
ity 
ondition and sto
hasti
 
oe�
ients. In parti
ular, the Markovian 
ase where the

forward volatility σ : [0, T ]×Rd×R → Rd×d
is independent of the 
ontrol pro
ess Z = {Zt}t∈[0,T ]

is treated.

In the general situation of equation (A.11), the four step s
heme of Ma, Protter and Yong

[79℄ provides 
onditions for the well-posedness of a FBSDE with deterministi
 
oe�
ients. Also,

the method of 
ontinuation of Yong [114℄ 
onstitutes an alternative method to show FBSDE

well-posedness in the random 
oe�
ient 
ase.

An important variation of BSDEs is the 
lass of re�e
ted BSDEs (RBSDEs) introdu
ed by

El Karoui et al. [45℄. They are obtained by imposing boundary 
onditions on 
lassi
al BSDEs

and de�ned by the dynami
s




−dYt = f(t, Yt, Zt)dt− ZtdWt + dAt

YT = ξ
(A.12)

where the re�e
ting pro
ess {At}t∈[0,T ] is a in
reasing pro
ess allowing the forward pro
ess to

satisfy the boundary 
ondition.

The solution of the di�erential equation 
onsists of a square integrable forward pro
ess Y

satisfying the boundary 
ondition, the 
ontrol pro
ess Z and a bounded variation pro
ess A

whi
h satis�es minimality 
onditions. One may refer to Ma and Yong [81℄ for existen
e and

uniqueness results or El Karoui, Pardoux and Quenez [46℄ for appli
ations to Ameri
an option

pri
ing.

A.2 Properties of solutions to FBSDEs

Additional theoreti
al results, whi
h play a key role in numeri
al methods for solutions of FB-

SDEs, are available. We present them for FBSDEs with Lips
hitz 
oe�
ients but equivalent

results exist non-Lips
hitz 
ases. In the following subse
tions, we present the relation between

FBSDEs and quasilinear partial di�erential equations (PDEs) and also results on moment esti-

mates of FBSDE solutions.

A.2.1 A priori estimates and regularity of solutions

The triple solution (X,Y, Z) of the FBSDE whose 
oe�
ients are allowed to be sto
hasti
 embeds

some regularity properties that are worth mentioning. First, we have the following moment

estimates for the forward pro
ess.

Proposition A.3. For any p ≥ 2, there exists a 
onstant C depending on the time horizon T ,

the Lips
hitz 
onstant K and p su
h that the unique solution {Xt}t∈[0,T ] of the forward SDE of

equation (A.1) with Lips
hitz (and measurable square integrable) 
oe�
ients a and b satis�es

E

[
sup

t∈[0,T ]

|Xt|p
]

≤ CE

[
|x0|p +

∫ T

0

|a(t, 0)|p + |σ(t, 0)|p dt
]

(A.13)

E [|Xt −Xs|p] ≤ CE

[
|x0|p + sup

t∈[0,T ]

|a(t, 0)|p + sup
t∈[0,T ]

|b(t, 0)|p
]
|t− s|p/2 .

(A.14)

for any x ∈ Rd
and s, t ∈ [0, T ].
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Moment estimates, from El Karoui, Peng and Quenez [47℄, are also available for solutions of

BSDEs.

Proposition A.4. For any p ≥ 2, there exist a 
onstant C depending on the time horizon T ,

the Lips
hitz 
onstant K and p su
h that the unique solution (Y, Z) of the BSDE of equation

(A.3) with Lips
hitz (and measurable square integrable) driver veri�es, for s, t ∈ [0, T ],

E

[
sup

t∈[0,T ]

|Yt|p
]
+E



(∫ T

0

|Zt|2 dt
)p/2




≤ CE

[
|ξ|p +

∫ T

0

|f(t, 0, 0)|p dt
]
, (A.15)

E [|Yt − Ys|p]

≤ CE

[(
|ξ|p + sup

t∈[0,T ]

|f(t, 0, 0)|p
)
|t− s|p−1

+

(∫ t

s

|Zu|2 du
)p/2

]
.

(A.16)

We now state a result on the stability property of the FBSDE solution and its 
ontinuous

dependen
e to the FBSDE 
oe�
ients.

Proposition A.5. Suppose (Xδ, Y δ, Zδ) is the solution of the perturbed de
oupled FBSDE with

initial value xδ0, terminal 
ondition ξδ and 
oe�
ients aδ, σδ
and f δ

satisfying the Lips
hitz


onditions su
h that xδ0 → x0 as δ → 0 and

lim
δ→0

E

[∣∣aδ(t, x)− a(t, x)
∣∣2 +

∣∣σδ(t, x)− σ(t, x)
∣∣2
]

= 0,

lim
δ→0

E

[∣∣ξδ − ξ
∣∣2 +

∣∣f δ(t, y, z)− f(t, y, z)
∣∣2
]

= 0.

Then, we have that

lim
δ→0

E

[
sup

t∈[0,T ]

∣∣Xδ
t −Xt

∣∣2 + sup
t∈[0,T ]

∣∣Y δ
t − Yt

∣∣2 +
∫ T

0

∣∣Zδ
t − Zt

∣∣2 dt
]
= 0. (A.17)

Pardoux and Tang [98℄ obtained results similar to Propositions A.3, A.4 and A.5 for p = 2

in di�erent 
oupled 
ases. Proofs of well-posedness of uni-dimensional BSDEs usually rely on

an important property whi
h is slightly stronger than the previous proposition and given by the


omparison theorem bellow. The proof of this proposition and the proposition itself �gure in El

Karoui, Peng and Quenez [47℄.

Proposition A.6. Let (Y i, Zi) be the unique solution to the BSDE of equation (A.3) with driver

f i
and terminal value ξi for i = 1, 2. If the following inequalities hold

• ξ1 ≥ ξ2, P-a.s

• δft = f1(t, y, z)− f2(t, y, z) ≥ 0, dP× dt-a.s and for all y ∈ R and z ∈ Rd

then Y 1
t ≥ Y 2

t almost surely for any time t ∈ [0, T ].

Also, a path regularity property for the 
ontrol pro
ess Z was proved by Zhang [123, 124℄.

The result is 
entral when proving 
onvergen
e of FBSDE time dis
retizations.

Proposition A.7. Suppose the terminal fun
tion G is L∞
-Lips
hitz and the 
ontrol pro
ess Z

is 
àdlàg. Then, there is a 
onstant C depending on T and K only su
h that, for any partition

π = {0 = t0 < t1 < ... < tn = T } of [0, T ], we have

n∑

i=1

E

[∫ ti

ti−1

∣∣Zt − Zti−1

∣∣2 + |Zt − Zti |2 dt
]
≤ C(1 + |x0|2) |π| , (A.18)

where |π| = max1≤i≤n |ti − ti−1| is the partition maximal time step.
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When the FBSDE 
oe�
ients are deterministi
, the 
ontrol pro
ess Z displays 
àdlàg paths

for L∞
-Lips
hitz terminal fun
tions and 
ontinuous paths for L1

-Lips
hitz terminal fun
tions as

shown by Ma and Zhang[82℄. A more re
ent result due to Gobet and Makhlouf [54℄ extends the


ontrol pro
ess regularity to irregular Markovian terminal fun
tion g lying in the spa
e

L2,α =

{
g : E

[
g(XT )

2
]
+ sup

t∈[0,T ]

E [g(XT )−Et [g(XT )]]
2

(T − t)α
<∞

}
(A.19)

for α ∈ (0, 1].

A.2.2 Relation to quasilinear PDEs

The solution (X,Y, Z) of a FBSDE depends on the 
onne
tions between its 
omponents sin
e, for

instan
e, 
oe�
ients of one of the FBSDE equations may depend on a 
omponent des
ribed by

the other equation. This 
onne
tion is 
learly established for 
oupled FBSDEs with deterministi



oe�
ients and Markovian terminal 
ondition, i.e for the general situation of equation (A.11)

with the terminal 
ondition of equation (A.6). In this 
ase, the FBSDE is linked to the quasilinear

paraboli
 PDE





∂u
∂t + Lu + f(t, x, u, z(t, x, u,∇u)) = 0, (t, x) ∈ [0, T )× Rd

u(T, x) = g(x), x ∈ Rd
(A.20)

where ∇ :=
(

∂
∂x1

, ..., ∂
∂xd

)
represents the gradient operator,

z : [0, T ]× R
d × R× R

d → R
d

is a fun
tion su
h that

z(t, x, y, p) = pσ(t, x, y, z(t, x, y, p)), (A.21)

and

Lu =

d∑

i=1

ai(t, x, u, z(t, x, u,∇u))
∂u

∂xi

+
1

2

d∑

i,j=1

bij(t, x, u, z(t, x, u,∇u))
∂2u

∂xi∂xj
(A.22)

with b = σσ∗
.

Under various 
onditions on the existen
e, uniqueness and regularity of solutions to both

equations (A.20) and (A.21), it 
an be shown

13

that the triple of pro
esses (X,Y, Z) satis�es

Xt = x0 +

∫ t

0

ã(s,Xt)ds+

∫ t

0

σ̃(t,Xt)dWt (A.23)

where ã : [0, T ]× Rd → Rd
and σ̃ : [0, T ]× Rd → Rd×d

are given by

ã(t, x) = a(t, x, u(t, x), z(t, x, u(t, x),∇u(t, x))),
σ̃(t, x) = σ(t, x, u(t, x), z(t, x, u(t, x),∇u(t, x)))

and the two remaining solution pro
esses are de�ned as

Yt = u(t,Xt), (A.24)

Zt = z(t,Xt, u(t,Xt),∇u(t,Xt)). (A.25)

This result leads to a pro
edure, introdu
ed by Ma, Yong and Protter [79℄, for solving 
oupled

FBSDEs 
alled the four step s
heme that goes as follows:

13

See Ma, Yong and Protter [79℄ or Ma and Yong [81℄ in Chapter 4, Theorem 1.1 for proof.
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Four Step Method.

1. Find the fun
tion z : [0, T ]× Rd × R× Rd → Rd
de�ned by equation (A.21).

2. Solve the nonlinear PDE of equation (A.20) using the fun
tion z to get the fun
tion u :

[0, T ]× R
d → R.

3. Solve the forward SDE of equation (A.23) to get the forward pro
ess X.

4. De�ne the pro
esses Y and Z a

ording to equations (A.24) and (A.25) respe
tively using

the fun
tions u and z and the forward pro
ess X.

B Time dis
retization of SDEs

The formal de�nition of higher order time dis
retizations uses the multi-index notation and iter-

ated Brownian integral presented in Chapter 5 of Kloeden an Platen [69℄ and also in Chassagneux

and Crisan [27℄. The set M of multi-indi
e with entries in {0, ..., d} is given by

M := {∅}
⋃

∪∞
j=1{0, ..., d}j (B.1)

and for any multi-index ı ∈ M the measures ℓ and ℓ̄ return the length and the number of zero of

the multi-index respe
tively with ℓ(∅) = 0. Moreover, −ı (resp. ı−) is the multi-index obtained

by deleting the �rst (resp. last) entry of ı and (j)m refers to the multi-index of length m > 0

whose entries are identi
al and equal to j ∈ {0, ..., d}. A hierar
hi
al set A ⊂ M is a set of

multi-indi
e su
h that

sup
ı
ℓ(ı) <∞ and − ı ∈ A, ∀ı ∈ A\{∅}.

For instan
e, it is easily shown that the set

Am = {ı : ℓ(ı) + ℓ̄(ı) ≤ 2m or ℓ(ı) = ℓ̄(ı) = m+
1

2
, 2m ∈ N

∗}

is a hierar
hi
al set. We de�ne the iterated Brownian integral Iıs,t with index ı of length ℓ(ı) = l

re
ursively as

Iıs,t :=





1 , if l = 0
∫ t

s
Iı−s,udu , if l > 0 and ıl = 0

∫ t

s I
ı−
s,udW

j
u , if l > 0 and ıl = j, 1 ≤ j ≤ d.

(B.2)

On a time partition π = {0 = t0 < t1 < ... < tn = T } of [0, T ], a strong order s
heme for the

forward pro
ess de�ned by the SDE (A.1) then has the form

Xπ
ti+1

= Xπ
ti+1

+
∑

ı∈Am\{∅}
Fı(X

π
ti)I

ı
ti,ti+1

(B.3)

for some bounded fun
tions Fı : Rd → Rd
related to the SDE 
oe�
ients a and σ. General

strong s
hemes are interesting mainly for their 
onvergen
e properties. Kloeden and Platen

[69℄ (Theorem 11.5.1, page 391) show that a strong s
heme built with the hierar
hi
al set Am


onverges with order m i.e

E2
X,π := max

0≤i≤n

∥∥Xti −Xπ
ti

∥∥2
L2

= O(|π|2m). (B.4)
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C Gauss quadrature approa
h to BSDEs

Instead of the 
onvolution approa
h of Chapter 2 and Chapter 3, a Gauss quadrature 
an be used

to 
ompute the 
onditional expe
tations involved in the numeri
al solution of BSDEs. In this

se
tion, we present the method in the deterministi
 and sto
hasti
 points of view. Nonetheless,

both approa
hes are equivalent in pra
ti
e sin
e the resolution of the sto
hasti
 approa
h is made

through the deterministi
 approa
h presented bellow.

C.1 Deterministi
 approa
h

Starting from the Euler time dis
retization, we develop a deterministi
 algorithm for the approx-

imate solution ui and the approximate gradient u̇i in Chapter 2. At time step ti, the solutions

may be written as

ui(x) = ũi(x) + ∆if(ti, ũi(x), u̇i(x)) (C.1)

where

u̇i(x) =
1

∆i

∫ ∞

−∞
yui+1(x+ y)h(y)dy (C.2)

ũi(x) =

∫ ∞

−∞
ui+1(x+ y)h(y)dy (C.3)

for i = 0, 1, ..., n− 1 and un(x) = g(x).

The presen
e of the Gaussian density h in equation C.2 and C.3 allows the usage of Gaussian

quadrature based numeri
al method. Indeed, knowing the Gaussian density h has the form

h(x) = (2π∆i)
− 1

2 exp

(
− x2

2∆i

)
, (C.4)

equations C.2 and C.3 
an be written as

u̇i(x) = (2π∆i)
− 1

2

∫ ∞

−∞
yui+1

(
x+ y

√
∆i

)
e−

1
2y

2

dy (C.5)

ũi(x) = (2π)−
1
2

∫ ∞

−∞
ui+1

(
x+ y

√
∆i

)
e−

1
2y

2

dy (C.6)

after a 
hange of variable. The approximate solution and gradient values 
an hen
e be ap-

proximated lo
ally with a Gauss-Hermite quadrature. For a 
on
ise introdu
tion to Gaussian

quadratures, one may refer to Chapter 9 of Kress [71℄, Chapter 6 of Kiusalaas [72℄, Chapter 4

of Burden and Faires [25℄, Chapter 3 of Moin [91℄, Chapter 5 of Sauer [106℄ or Chapter 8 of

Hildebrand [58℄ among many others.

At a parti
ular spa
e position x ∈ R, the intermediate solution ũi and the approximate

gradient u̇i at time mesh ti may be 
omputed with the N−points Gauss-Hermite quadrature

with N > 1 as

ũi(x) =

N∑

j=1

wjui+1(x+ yj
√
∆i) + E0 (C.7)

u̇i(x) =
1√
∆i

N∑

j=1

wjyjui+1(x+ yj
√

∆i) + E1. (C.8)

where E0 and E1 stand for the integration errors. In addition, the integration nodes {yj}Nj=1

and weights {wj}Nj=1 are retrieved from the Nth order polynomial of the family of orthogonal

polynomials with weight fun
tion w(x) = e−
1
2x

2

.
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Suppose the polynomials Hn of degree n ∈ N satisfy

∫

R

Hn(x)Hm(x)w(x)dx = 0, n 6= m. (C.9)

Then {Hn}n∈N is said to be a family of orthogonal polynomials with weight fun
tion w : I → R

for some interval I. The literature on orthogonal polynomials is 
onsiderable, we will limit

ourselves to Szegö [109℄ or Stahl and Totik [108℄ for a theoreti
al approa
h and Mar
ellán and

Van Ass
he [86℄ or Gauts
hi, Golub and Opfer [51℄ for appli
ations. A �rst property of interest

for orthogonal polynomials has to do with their zeros and is stated in the next proposition. The

statement may be found in Szegö [109℄ (Theorem 3.3.1, page 44).

Proposition C.1. The zeros of the orthogonal polynomials Hn are real, distin
t and lo
ated in

the interior of the interval I.

In our 
ase, the orthogonal polynomials {Hn}n∈N are the (probabilisti
) Hermite polynomials

sin
e the weight fun
tion is w(x) = e−
1
2x

2

. The Hermite polynomials admits the representation

Hn(x) = (−1)ne
1
2x

2 dn

dxn
e−

1
2x

2

(C.10)

and the re
urren
e formula

Hn+1(x) = xHn(x) − nHn−1(x) (C.11)

with initial polynomials H−1(x) = 0 and H0(x) = 1.

When performing the Gauss-Hermite quadrature, the nodes {yj}Nj=1 and weights {wj}Nj=1

are 
hosen su
h that any polynomial of degree 2N − 1 or less is integrated exa
tly by the

approximation. As a 
onsequen
e, the following proposition holds and is an adaptation of the

results of Hildebrand [58℄ (pp. 388-390).

Proposition C.2. The nodes {yj}Nj=1 of the Gauss-Hermite quadrature are the N real and

disti
t zeros of the orthogonal polynomial HN . Also, the weights satisfy

wj =
(N − 1)!

N [Hn−1(yj)]2
(C.12)

for j = 1, 2, ..., N .

Another interesting feature of the weights wi is that they sum to one (1). Indeed

N∑

j=1

wi =

∫

R

(2π)−
1
2 e−

1
2x

2

dx = 1

sin
e 
onstant fun
tions are integrated exa
tly. The error terms E0 and E1 admits the bound

given in the following proposition whi
h is also adapted from Hildebrand [58℄ (pages 388-390).

Proposition C.3. If un+1 ∈ C2N
, then

E0 = u
(2N)
i+1 (ζ)

∆N
√
2πN !

(2N)!
(C.13)

and

E1 =
(
∆

1
2 ζu

(2N)
i+1 (ζ) + (2N)u

(2N−1)
i+1 (ζ)

) ∆N−1
√
2πN !

(2N)!
(C.14)

for some ζ ∈ R.

Hen
e, estimates of the approximate solutions ui and the approximate gradient u̇i, i =

0, 1, ..., n − 1, may be 
omputed using a 
lassi
al multinomial tree with N bran
hes through

equations C.1, C.7 and C.8. For N = 2 and N = 3, the multinomial tree re
ombines whi
h eases

the implementation of the Gauss-Hermite method.
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C.2 Sto
hasti
 approa
h

Following Briand, Delyon and Mémin [21℄ and Peng and Xu [99℄, the BSDE

Yt = g(WT ) +

∫ T

t

f(s, Ys, Zs)ds+

∫ T

t

ZsdWs (C.15)

is dis
retized on the time mesh π = {t0 = 0 < t1 < ... < tn = T } with a number n of time steps

and ti = i∆ where ∆ = T
n . The dis
retization then gives the dis
rete time BSDE

Y π
ti = Y π

ti+1
+∆f(ti, Y

π
ti , Z

π
ti)−

√
∆Zπ

tiǫi+1 , i = 0, 1, ..., n− 1 (C.16)

where {ǫi}ni=1 is a sequen
e of dis
rete independent and identi
ally distributed random variables

su
h that ǫi ∈ Fti . The Gauss-Hermite quadrature approa
h gives a systemati
 way to de�ne the

random variable ǫi. Indeed, one may sele
t them so that their probability distribution fun
tion

is given by

fN (y) =
N∑

j=1

wjδ(y − yj) , y ∈ R (C.17)

leading to the probability measure

P [ǫi ∈ A] =

N∑

j=1

wjδyj
(A) , A ⊆ R (C.18)

where δ is the Dira
 delta fun
tion and δx is the Dira
 delta measure. Hen
e, ǫi takes the value

yj with probability wj . The following proposition holds sin
e the Gauss-Hermite quadrature

integrates monomials of degree less that 2N exa
tly.

Proposition C.4. The �rst 2N − 1 moments of ǫi are those of a standard normal distribution.

Let {Wπ
t }t∈[0,T ] be the adapted pro
ess de�ned as

Wπ
t =

√
∆

⌊t∆−1⌋∑

i=1

ǫi , (C.19)

then the dis
rete BSDE terminal value is given by

Y π
T = g(Wπ

T ). (C.20)

The next proposition des
ribes how the s
ale random walk {Wπ
t }t∈[0,T ] may be used to approx-

imate the standard Brownian motion in this 
ontext.

Proposition C.5. Suppose that for a sequen
e {kn}n∈N where 0 ≤ kn ≤ 1 and limn→∞ kn = 0,

∆− 1
2
E [ǫi∆Wj ] = δi,j(1 − kn), i, j = 1, 2, ..., n. (C.21)

Then the adapted pro
ess {Wπ
t }t∈[0,T ] is su
h that

sup
t∈[0,T ]

|Wπ
t −Wt| → 0 (C.22)

as n→ ∞, where the 
onvergen
e holds in probability.

Proof. First noti
e that the pro
ess {Wπ
t }t∈[0,T ] is a martingale, so that

|Wπ
t −Wt| is a sub-martingale by Jensen inequality. Also, for any ε > 0

P

[
sup

t∈[0,T ]

|Wπ
t −Wt| > ε

]
≤ ε−2

E

[
|Wπ

T −WT |2
]
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by Doob's inequality, where

E

[
|Wπ

T −WT |2
]

= E

[
(Wπ

T )
2
]
− 2E [Wπ

TWT ] +E

[
(WT )

2
]

= ∆

n∑

i=1

E

[
ǫ2i
]
− 2

√
∆E



(

n∑

i=1

ǫi

)


n∑

j=1

∆Wj




+ T

= 2T − 2
√
∆E

[
n∑

i=1

ǫi∆Wi

]

= 2T − 2T (1− kn)

= 2Tkn.

From this last equation, we have that P
[
supt∈[0,T ] |Wπ

t −Wt| > ε
]
→ 0 as n→ ∞.

For any t ∈ [0, T ], we extend the dis
rete solution su
h that

Y π
t = Y π

ti , t ∈ [ti, ti+1) (C.23)

Zπ
t = Zπ

ti , t ∈ [ti, ti+1). (C.24)

The following proposition holds as a 
onsequen
e of Proposition C.5 and Theorem 2.1 of Briand,

Delyon and Mémin [21℄.

Proposition C.6. Suppose that Assumption A.2 holds, g ∈ Cb and the 
ondition of equation

(C.21) holds. Then

sup
t∈[0,T ]

|Y π
t − Yt|+

∫ T

0

|Zπ
t − Zt|2 dt → 0 (C.25)

as n→ ∞, where the 
onvergen
e holds in probability.

The boundedness of the terminal 
ondition g is required only to ensure the 
onvergen
e in

mean of g(Wπ
T ) and g

2(Wπ
T ) to g(WT ) and g

2(WT ) respe
tively. This 
onvergen
e in mean then

allows to meet the requirements of Theorem 2.1 in Briand, Delyon and Mémin [21℄.

In general, the BSDE is then numeri
ally solved with the expli
it s
heme of equations (1.2.4)

and (1.2.3). A parti
ular 
ase of this general (Gauss-Hermite) multinomial approa
h is the

binomial method of Peng and Xu [99℄ where ǫi has the distribution fun
tion

f2(y) =
1

2
(δ(y − 1) + δ(y + 1)) . (C.26)

In the trinomial approa
h that we use in Chapter 2, the distribution of the dis
rete in
rements

ǫi is given by

f3(y) =
2

3
δ(y) +

1

6

(
δ(y −

√
3) + δ(y +

√
3)
)
. (C.27)

D The Gauss-Weierstrass transform

The 
onvolution method starts with expressions of the approximate solutions in integral forms.

For the expli
it Euler s
heme 1 and the impli
it Euler s
heme, the intermediate solution ũi

and the intermediate gradient u̇i at time mesh ti are 
onvolution transformations. Convolution

transformations are spe
ial 
ases of integral transformations and have been extensively studied

and applied. The books of Hirs
hman and Widder [60℄ summarizes the theory and appli
ations

range from signal pro
essing to probability and statisti
s.

In our 
ase, the 
onvolution integrals involved in the approximate solutions are parti
ularly

Gauss-Weierstrass transformations. Hirs
hman and Widder [60℄ give an overview in Chapter

8 of their book. Additional results may be found in authors su
h as Hille [59℄, Widder [113℄,

Bilodeau [14, 13℄, Zemanian [118, 119℄ among others.
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D.1 De�nition and 
onne
tion to BSDEs

Let's 
onsider the Gaussian density ht with

ht(x) = (2πt)−
1
2 e−

x2

2t
, t > 0, x ∈ R. (D.1)

For a real valued fun
tion g : R → R, the Weierstrass transform of g 
an be de�ned as the

fun
tion u : R → R

u(x) = e
1
2D

2

g(x)

:=

∫

R

g(y)h1(x− y)dy (D.2)

whenever the integral 
onverges where D := d
dx is the �rst order di�erential operator. Hen
e,

u is the 
onvolution transform of g with kernel h1. The literature usually de�nes the transform

at s
ale t = 2, we use s
ale t = 1 for 
onvenien
e purposes to suit our approximate solution

expressions.

The generalized Gauss-Weierstrass transform 
onsiders kernel at di�erent s
ales t > 0 and

may be de�ned as

u(t, x) = e
t
2D

2

g(x)

:=

∫

R

g(y)ht(x− y)dy. (D.3)

The literature has fo
used mainly on the inversion problem for the Gauss-Weierstrass trans-

form. For entire real valued fun
tions u on R su
h that the 
omplex extension u(x+ iy) satis�es

some analyti
al and growth 
onditions, Hirshman and Widder [60℄ (Theorem 3.2, page 180) show

that the inverse Gauss-Weierstrass transform of u is given by

e−
t
2D

2

u(x) =

∫

R

ht(y)u(x+ iy)dy. (D.4)

Hen
e, an entire fun
tion u (satisfying analyti
al and growth 
onditions) 
an be represented as

the Gauss-Weierstrass transform of g where

g(x) = e−
1
2D

2

u(x). (D.5)

Theorem 13.3 (page 207) of Hirshman and Widder [60℄ gives a growth 
ondition on the inverse

Gauss-Weierstrass transform g. One must have that

|g(x)| < Meax
2

(D.6)

for some 
onstant M > 0 and −∞ < a < 1
2 in our 
ase.

The Gauss-Weierstrass transform has strong links with di�usion PDE. Noti
e the kernel ht

of equation (D.1) is the Green's fun
tion asso
iated to the di�usion operator

L =
∂

∂t
− 1

2

∂2

∂x2
.

Hen
e, the fun
tion u(T − t, x) = e
T−t
2 D2

g(x) is the solution to the Cau
hy problem





∂u
∂t + 1

2
∂2u
∂x2 = 0, (t, x) ∈ [0, T )× R

u(T, x) = g(x), x ∈ R.
(D.7)

This PDE is itself asso
iated to the BSDE with null driver and terminal 
ondition g.

The approximate solutions for our BSDE admit representations in term of Gauss-Weierstrass

transform. The following proposition sums up the idea in the one-dimensional 
ase for the Euler

s
heme 1 and holds for the impli
it Euler s
heme. Similar expressions 
an be developed for the

Euler s
heme 2.
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Proposition D.1. For the Euler s
heme 1, the intermediate solution ũi and the approximate

gradient u̇i at mesh time ti satisfy

ũi(x) = e
∆i
2 D2

ui+1(x) (D.8)

u̇i(x) = Dũi(x) =
dũi
dx

(x) (D.9)

for i = 0, 1, ...n− 1.

Proof. The representation of equation (D.8) follows obviously from the integral representation

of the intermediate solution ũi in equation (2.2.8) given equation (2.2.9) holds. Also, di�erenti-

ating the intermediate solution integral in equation (2.2.8) leads to equation (D.9) assuming the

di�erential and integral operators 
an be inter
hanged.

The proposition shows that the approximation solutions for BSDEs are obtained by solving

a di�usion PDE with null driver between 
onse
utive mesh times.

For some input fun
tions g, the Gauss-Weierstrass transform is known in 
losed form. These

input fun
tions in
lude Hermite polynomials, exponential fun
tions and Gaussian fun
tions

with s
ale parameter stri
tly less than

1
2 . Hirshman and Widder [60℄ gives a table of di�er-

ent transforms on page 178 using an alternative de�nition of the Gauss-Weierstrass transform.

The orthogonality of Hermite polynomials also leads to interesting series expansions for Gauss-

Weierstrass transforms whi
h 
an be used to represent approximate solutions for BSDEs. Ele-

ments on this subje
t may be found in Hille [59℄ or Bilodeau [14℄.

D.2 Closed forms for approximate solutions

We next give an example where the numeri
al solutions for BSDEs 
an be developed in 
losed

form. We will limit to linear BSDEs with drivers of the form

f(t, y, z) = ay + bz (D.10)

and terminal 
ondition g : R → R. It is well-known in this linear 
ase that the ba
kward pro
ess

is given (see El Karoui, Peng and Quenez [47℄)

Yt = Et

[
g(WT )Γ

t
T

]
(D.11)

where, for s ≥ t,

Γt
s = e(a−

1
2 b

2)(s−t)+b(Ws−Wt). (D.12)

If we set, for any ϕ ∈ R,

g(x) = eϕx
(D.13)

then the BSDE solution 
an be represented as

Yt = e(a+bϕ+ 1
2ϕ

2)(T−t)g(Wt) (D.14)

Zt = ϕe(a+bϕ+ 1
2ϕ

2)(T−t)g(Wt). (D.15)

The approximate solutions for the BSDE derived from the Euler s
heme 1 on an equidistant

time grid π = {0 = t1 < t2 < ... < tn = T } with time step ∆ = T
n is

ui(x) = (1 + a∆+ bϕ∆)n−ie
1
2ϕ

2(T−ti)g(x) (D.16)

u̇i(x) = ϕ(1 + a∆+ bϕ∆)n−i−1e
1
2ϕ

2(T−ti)g(x) (D.17)

i = 0, 1, ..., n− 1. This numeri
al solution may be obtained by indu
tion using Proposition D.1

and knowing that the Gauss-Weierstrass transform of g is e
t
2D

2

g(x) = e
1
2ϕ

2tg(x).

118



E Elements of Fourier analysis

Fourier analysis studies fun
tion representations as trigonometri
 series. It has been a topi
 of

resear
h sin
e Joseph Fourier's work on the appli
ation of Fourier series to the heat equation in

the beginning of the nineteenth 
entury. In addition to partial di�erential equations, appli
ations

of Fourier analysis now in
lude signal pro
essing, probability theory or �nan
e among others.

For the main theoreti
al tool in the 
onvolution method of Chapters 2 and 3 is Fourier analysis,

this appendix aims to be an overview of the subje
t. Many books are also available on theoreti
al

or pra
ti
al aspe
ts of Fourier analysis. Many results in this appendix 
an be found in the books

of Vretblad [112℄, Edwards [43℄, Bernatz [12℄ and Plato [101℄ for instan
e.

Se
tion E.1 presents 
omplex Fourier series and their basi
 properties. Results of the Fourier

transform are given in Se
tion E.2 and Se
tion E.3 deals with Fourier series approximation and

its relationship with the dis
rete Fourier transform (DFT).

E.1 Fourier series expansion

Let h : R → C be a 
omplex-valued fun
tion de�ned on the real line. Suppose in addition that

the following assumption holds.

Assumption E.1. The fun
tion h : R → C is periodi
 with period 2π and integrable on [−π, π]
with ∫ π

−π

|h(t)| dt <∞. (E.1)

The 
omplex Fourier series asso
iated with the fun
tion h is the expansion of the form

∞∑

k=−∞
cke

ikx
(E.2)

where the Fourier 
oe�
ients are de�ned as

ck =
1

2π

∫ π

−π

h(t)e−iktdt (E.3)

and i =
√
−1 is the imaginary unit.

Another Fourier series expansion that is widely used is the real Fourier series whi
h is the

expansion of the form

1

2
a0 +

∞∑

k=1

(ak cos(kx) + bk sin(kx)) (E.4)

where the (real) Fourier 
oe�
ients are

ak =
1

π

∫ π

−π

h(t) cos(kt)dt (E.5)

bk =
1

π

∫ π

−π

h(t) sin(kt)dt. (E.6)

The equivalen
e between the 
omplex and the real Fourier series expansions 
an be established

by observing the relationship between their respe
tive 
oe�
ients. Indeed, it's easily shown that

ak = ck + c−k and bk = i(ck − c−k). (E.7)

For this reason, we fo
us on the 
omplex Fourier series of equation (E.2) in the rest of this

appendix.

Some of the most important issues with Fourier series expansion are the study of their


onvergen
e and uniqueness. Sin
e the fun
tion h is assumed periodi
 with period 2π, one 
an
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limit the study of its Fourier series on the interval [−π, π]. Unfortunately, the integrability


ondition of Assumption E.1 gives only very little information on the Fourier 
oe�
ients and


onsequently on the 
onvergen
e of the Fourier series. The next proposition illustrates this idea

and it 
an be found in Vretblad [112℄ (Lemma 4.1, page 79).

Proposition E.1. Suppose h satis�es Assumpion E.1 then the sequen
e of Fourier 
oe�
ients

{ck}k∈Z is bounded with

|ck| ≤
1

2π

∫ π

−π

|h(t)| dt (E.8)

and 
onverges to zero ( 0)

lim
|k|→∞

ck = 0. (E.9)

Indeed, the 
onvergen
e of Fourier 
oe�
ients to zeros (0) does not ensure the 
onvergen
e of

the series expansion. Moreover, 
onvergen
e of the Fourier series expansion does not guarantee

its 
onvergen
e to the fun
tion h. Hen
e, further smoothness assumptions have to be made on

the fun
tion h as shown by the following proposition. The proposition is stated in Vretblad [112℄

(Theorem 4.2, page 83) and ideas of its proof 
an be found in the same referen
e or in Edwards

[43℄.

Proposition E.2. Assume the fun
tion h satis�es Assumption E.1 and admits the Fourier


oe�
ients {ck}k∈Z su
h that the serie of Fourier 
oe�
ients 
onverges absolutely

∞∑

k=−∞
|ck| <∞. (E.10)

If h is 
ontinuous then the Fourier series of equation (E.2) 
onverges uniformly to h on

[−π, π].

A result similar to Proposition E.2 (Carleson's theorem) uses less 
onstraints on fun
tion

h. It 
an a
tually be shown that the Fourier series expansion of a 
ontinuous and integrable

fun
tion h 
onverges to h almost everywhere on [−π, π] in the Lebesque sense. Almost everywhere


onvergen
e also holds if h ∈ Lp([−π, π]) with p > 1.

Continuity also guarantees uniqueness of the Fourier series expansion (See Corollary 4.1, page

84 of Vretblad [112℄). Hen
e, for a 
ontinuous fun
tion h satisfying Assumption E.1 we 
an write

h(x) =
∞∑

k=−∞
cke

ikx
, x ∈ [−π, π] (E.11)

where the equality holds almost everywhere in the Lebesque sense.

An interesting result gives a des
ription of Fourier 
oe�
ients when the fun
tion h is di�er-

entiable. We state it as in Vretblad [112℄ (Theorem 4.4 page 85).

Proposition E.3. If h ∈ Cm[−π, π] then

|ck| ≤M |k|−m
(E.12)

for some 
onstant M .

It is possible to de�ne the Fourier series of the periodi
 fun
tion h with period b − a on

a general interval [a, b] by a 
hange of variable. All results exposed previously holds and the

expansion takes the form

h(x) =

∞∑

k=−∞
cke

ik 2π
b−a

x
(E.13)

where the 
omplex 
oe�
ients are given by

ck =
1

b− a

∫ b

a

h(t)e−ik 2π
b−a

tdt. (E.14)

120



E.2 Fourier transform

The Fourier transform of an integrable fun
tion h : Rd → C with

∫

Rd

|h(t)| dt <∞ (E.15)

is the fun
tion ĥ : Rd → C de�ned as

ĥ(ν) := F[h](ν) =

∫

Rd

e−iν∗xh(x)dx. (E.16)

The inverse Fourier transform re
overs the fun
tion h from its Fourier transform ĥ through the

relation

h(x) := F−1[ĥ](x) =
1

(2π)d

∫

Rd

eiν
∗xĥ(ν)dν. (E.17)

Among the various properties of the Fourier transform (and its inverse transform) su
h as

linearity and relations under shifting and s
aling, two of them are of parti
ular importan
e in

Chapter 2 and throughout the thesis. We present these properties in the one-dimensional 
ase

sin
e they 
an easily generalized. The �rst relates the initial fun
tion with the derivatives of its

Fourier transform.

Proposition E.4. Let ĥ , the Fourier transform of the fun
tion h, be di�erentiable. Then

F[xh(x)](ν) = i
∂ĥ

∂ν
(ν) (E.18)

and

F[
∂h

∂x
(x)](ν) = iνĥ(ν). (E.19)

Proof. For the �rst part of the proposition, we have that

∂ĥ

∂ν
(ν) =

∂

∂ν

∫ ∞

−∞
e−iνxh(x)dx

=

∫ ∞

−∞

∂

∂ν
e−iνxh(x)dx,

assuming the integral and the di�erential operators 
an be inter
hanged, so that

∂ĥ

∂ν
(ν) = −i

∫ ∞

−∞
e−iνxxh(x)dx

= −iF [xh(x)] (ν).

As to the se
ond part, we have

iνĥ(ν) =

∫ ∞

−∞
iνe−iνxh(x)dx

= −
∫ ∞

−∞

(
∂

∂x
e−iνx

)
h(x)dx

=

∫ ∞

−∞
e−iνx ∂h

∂x
(x)dx − e−iνxh(x)

∣∣∞
−∞

(applying the intregration by part formula),

= F

[
∂h

∂x
(x)

]
(ν)

whenever h is integrable.

The se
ond property is the well known 
onvolution theorem whi
h de�ne the Fourier trans-

form of a 
onvolution of two fun
tions as the produ
t of the individual Fourier transforms.
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Proposition E.5. (Convolution theorem) Let h ∗ k be the 
onvolution of the fun
tions h

and k i.e

(h ∗ k)(x) =
∫ ∞

−∞
h(x− t)k(t)dt

then

F[h ∗ k] = F[h]F[k]. (E.20)

Proof. The proof is straightforward,

F[h ∗ k](ν) =

∫ ∞

−∞
e−iνx

∫ ∞

−∞
h(x− t)k(t)dtdx

=

∫ ∞

−∞

∫ ∞

−∞
e−iνxh(x− t)k(t)dxdt.

The 
hange of variable z = x− t then gives

F[h ∗ k](ν) =

∫ ∞

−∞

∫ ∞

−∞
e−iν(z+t)h(z)k(t)dzdt

=

∫ ∞

−∞
e−iνzh(z)dz

∫ ∞

−∞
e−iνtk(t)dt.

E.3 Fourier series and the dis
rete Fourier transform

In order to approximate a fun
tion with Fourier series, on may 
onsider trun
ating the Fourier

series expansion. Proposition E.3 naturally leads to a result on this pro
edure. Hen
e, the proof

of the following theorem is mainly based on the 
onvergen
e of hyper-harmoni
 series.

Proposition E.6. Suppose the fun
tion u satis�es Assumpsion E.1 and admits the Fourier

series expansion

u(x) =

∞∑

k=−∞
cke

ikx
, x ∈ [−π, π] . (E.21)

If h ∈ Cm+1[−π, π] with m ≥ 1 then for any N ∈ N∗

u(x) =

N−1∑

k=−N

cke
ikx +O(N−m). (E.22)

Proof. Let eN be su
h that u(x) =
∑N−1

k=−N cke
ikx + eN . Then by Proposition E.3

|eN | ≤ 2M

∞∑

k=N

k−m−1

= 2MN−m−1
∞∑

k=0

(
1 +

k

N

)−m−1

= 2MN−m−1
∞∑

n=1

N−1∑

k=0

(
n+

k

N

)−m−1

≤ 2MN−m
∞∑

n=1

n−m−1

= CN−m

for some 
onstant C > 0 and for any m ≥ 1.
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For an approximation by Fourier series trun
ation to be useful, the Fourier 
oe�
ients in-

volved in the trun
ated series must be available. Deriving analyti
al formulas for the Fourier


oe�
ients of a given fun
tion is usually a very tedious task. Hen
e, approximating the 
oe�-


ients appears mu
h more suitable.

The dis
rete Fourier transform (DFT) transforms a set of real or 
omplex numbers {xj}N−1
j=0

into another set {x̂j}N−1
j=0 through the relation

x̂k := D[x]k =
1

N

N−1∑

j=0

e−ijk 2π
N xj (E.23)

for k = 0, 1, ..., N − 1. The inverse DFT performs the re
ipro
al operation by 
omputing the set

of numbers {xj}N−1
j=0 using the numbers {x̂j}N−1

j=0 as

xk := D−1[x̂]k =

N−1∑

j=0

eijk
2π
N x̂j (E.24)

for k = 0, 1, ..., N − 1.

The DFT and inverse DFT operations 
an be represented in a matrix and/or ve
tor form.

In parti
ular, the DFT takes the form




x̂0
.

.

.

x̂N−1


 =

1

N
F




x0
.

.

.

xN−1


 (E.25)

where F is a Vandermonde matrix,

F =




1 1 1 . . . 1

1 ω ω2 . . . ωN−1

1 ω2 ω4 . . . ω2(N−1)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1 ωN−1 ω2(N−1) . . . ω(N−1)(N−1)




(E.26)

with ω = e−
2π
N

i
. The inverse DFT is represented a

ordingly by




x0
.

.

.

xN−1


 = F̂




x̂0
.

.

.

x̂N−1


 (E.27)

where F̂ satis�es

F̂ =

[
1

N
F

]−1

= FH . (E.28)

i.e, F̂ is the Hermitian transpose of F .

This matrix-ve
tor representation is useful in many 
ases and espe
ially in the proof of energy


onservation properties of the DFT. The following proposition, known as the Parseval's theorem,

is an illustration.

Proposition E.7. Let the senquen
e x̂ =
[
x̂0 . . . x̂N−1

]∗
be the dis
rete Fourier transform

of x =
[
x0 . . . xN−1

]∗
, then

|x̂|2 =
1

N
|x|2 . (E.29)
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Proof. Let ‖.‖2 be the indu
ed Eu
lidean norm on 
omplex matri
es A ∈ Cn×m
. We know that

‖A‖2 = r(AHA) (E.30)

where, for a square matrix M ∈ Cm×m
, r(M) is the spe
tral radius of M .

Note that, from equation (E.25), we have

|x̂|2 ≤ 1

N2
‖F‖2 |x|

2

≤ 1

N2
r(FHF ) |x|2

≤ 1

N2
r(NIN×N ) |x|2 (by equation (E.28)),

≤ 1

N
|x|2 . (E.31)

Also, from equation (E.27), we have

1

N
|x|2 ≤ 1

N

∥∥∥F̂
∥∥∥
2
|x̂|2

≤ 1

N
r(FHF ) |x̂|2

≤ 1

N
r(NIN×N ) |x̂|2 (by equation (E.28)),

≤ |x̂|2 . (E.32)

Both equations (E.31) and (E.32) then lead to the result.

The DFT is strongly related to Fourier series and trigonometri
 approximation. If we 
onsider

a integrable real fun
tion h : [a, b] → R su
h that h(a) = h(b) and h admits the 
omplex Fourier

series expansion

h(x) =

∞∑

k=−∞
cke

ik 2π
b−a

x
(E.33)

on the interval [a, b]. The DFT allows to approximate the 
oe�
ients ck given a sampling of the

fun
tion h at equidistant nodes through the following proposition that 
an be found in Plato

[101℄.

Proposition E.8. Let {h(xk)}N−1
k=0 be the values at equidistant nodes {xk}N−1

k=0 of a real fun
tion

h. Assume that the fun
tion h ∈ C2([a, b]) is twi
e di�erentiable on [a, b] with h(a) = h(b) and

xk = a+ k∆ where ∆ = b−a
N where N is even. Then

ck−N
2
= e−i(k−N

2 ) 2π
b−a

a
D[{(−1)ih(xi)}N−1

i=0 ]k +O(∆2) , (E.34)

for k = 0, 1, ..., N − 1.

Proof. Under the 
onditions of this proposition, the DFT is simply a 
omposite trapezoidal

quadrature whi
h yields a se
ond order error.

Instead of a Fourier series trun
ation to approximate a fun
tion u, a better approa
h is an

interpolation with trigonometri
 polynomials. For any even integer N , the real valued fun
tion

h : [a, b] → R 
an be interpolated by a trigonometri
 polynomial TN [h] of the form

TN [h](x) =

N
2
−1∑

k=−N
2

dke
ik 2π

b−a
x

(E.35)

at equidistant nodes {xk}N−1
k=0 su
h that

TN [h](xk) = h(xk) , k = 0, 1, ..., N − 1. (E.36)

The Fourier 
oe�
ients {dk}n−1
k=−n are exa
tly 
omputed by a DFT.
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Proposition E.9. Supposed the trigonometri
 polynomial TN [h] interpolates the real valued

fun
tion h : [a, b] → R at the nodes {xk}N−1
k=0 with x0 = a and xi = xi−1 + b−a

N su
h that the

relations of equation (E.36) hold. Then, the Fourier 
oe�
ients are given by

ei(k−
N
2 ) 2π

b−a
adk−N

2
= D[{(−1)ih(xi)}N−1

i=0 ]k , (E.37)

for any k = 0, ..., N − 1.

Proof. Let's note that for i = 0, 1, ..., N − 1,

h(xi) =

N
2 −1∑

k=−N
2

dke
ik 2π

b−a
xi

=

N−1∑

k=0

dk−N
2
ei(k−

N
2 ) 2π

b−a
xi

=

N−1∑

k=0

dk−N
2
ei(k−

N
2 ) 2π

b−a
aeiki

2π
N e−iiπ,

so that

(−1)ih(xi) = D−1

[{
dk−N

2
ei(k−

N
2 ) 2π

b−a
a
}N−1

k=0

]

i

sin
e e−iiπ = (−1)i. Taking the DFT gives the result.

An error bound is available for the trigonometri
 interpolation previously de�ned. It su�
es

to 
ombine the result of Propositions E.6 and E.8 to have a proof of the following proposition.

Proposition E.10. If the fun
tion h ∈ C2([a, b]) satis�es Assumtions E.1, then the trigonomet-

ri
 polynomial TN [h] interpolating h as de�ned in equations (E.35) and (E.36) satis�es

h(x) = TN [h](x) +O(∆x) (E.38)

for any x ∈ [a, b] where ∆x = b−a
N .

Let's noti
e that the error bound in Proposition E.10 is given in the L1
-norm. A variation of

this result exists with the L2
-norm and the error term is, in that 
ase, of se
ond order under an

additional square integrability 
ondition on the fun
tion se
ond derivative (Plato [101℄, Theorem

3.10, page 46). The previous proposition 
an be generalized for smooth fun
tions. It 
an indeed

be shown that for any (periodi
) fun
tion h ∈ Cm+1([a, b]), the trigonometri
 interpolation error

is of order m.
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