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ABSTRACT

Today, machining processes are among the most common and important industrial
operations. Considering the wide applications of the machining processes, the importance
of having an accurate and reliable monitoring system is clear. Therefore, several researches
and studies have been performed to respond to this demand. Despite considerable efforts in
this field, the achievement is not satisfactory and still the request for having an accurate, re-
liable, automatic, inexpensive and robust monitoring algorithm is remained without a good
answer. This study tries to design monitoring algorithms with aforementioned specifica-
tions. The monitoring algorithms predict the amount of tool flank wear in the face milling
process. They are designed based on the pattern recognition concept. The algorithms ana-
lyze signals in four steps: preprocessing, feature extraction, feature selection and classifi-
cation. Descriptors, wavelet transform and S-Transform are applied for feature extraction.
Principal component analysis (PCA) and independent component analysis (ICA) perform
the feature selection step. Neural network (NN), which is an artificial intelligence method,
classifies the data and makes the algorithms intelligent. By combining these methods, five
intelligent algorithms are developed. The results show that the most accurate algorithm be-
tween these five algorithms is the combination of S-Transform, ICA and NN. Results also
confirm the good performance of S-Transform for feature extraction comparing with the
wavelet transform or descriptors. Applying the best designed algorithm, the effect of sen-
sor fusion on the accuracy of algorithm and the ability of monitoring algorithm for working
in different operating conditions are studied as well. It is also shown that the accuracy of
the best designed algorithm for indicating the tool status, sharp or dull, is better than the
accuracy of predicting the value of the tool wear. Applying S-Transform for machining
monitoring and designing five intelligent, practical, inexpensive and accurate algorithms
for tool wear prediction can be considered as the key outcomes of this thesis.
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Chapter 1

Introduction

1.1 Machining processes

Machining processes are cutting operations in which the shape of a stock changed with

removing material and the desired part is produced. The objective of these processes is to

produce parts with desired quality and as productively as possible [1]. Using machining

processes has a long history and their role in manufacturing became more and more com-

mon and important during the time. Today, in different parts of industry many products are

made with machining processes and many new demands are created in the market. Com-

puter numerically controlled (CNC) machines do the machining processes automatically.

The most common machining operations are turning, milling (face and end), and drilling:

• Turning: Turning, as shown in Fig. 1.1, is a material removal process, which is used

to create rotational parts by cutting away unwanted material [3]. Turning operation

is considered as the simplest machining operation. Unlike the other machining pro-

cesses, turning cutters are single cutting edge and also they do not rotate.

• Milling: Face milling, as shown in Fig. 1.2, involves the use of multi-toothed ro-

tating cutters to remove material from the surface of a workpiece [5]. End milling

(Fig. 1.3) uses multi-tooth helical cutters to perform machining on the periphery of
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Figure 1.1: Turning operation [2].

workpieces [5]. End milling usually is in the final stage of the part production and

commonly its duty is to finish the surface of the part. Accordingly, the accuracy of

this operation is very important for production quality.

• Drilling: Drilling, as shown in Fig. 1.4, is a cutting process that uses a drill bit

to cut or enlarge a hole in solid material [8]. This, in general, includes a complex

three dimensional material removal operation [5]. Drilling process is one of the most

commonly used machining processes in industry [9, 10]. For example, up to 50% of

all machining operations in the U.S. involve drilling [11]. In addition, around 40% of

metal removal operations in the aerospace industry involve the drilling process [12].

1.2 Machining process faults

Tool wear, tool breakage, and chatter are the most common faults happen during machining

processes and affect the quality of productions.

• Tool wear: The changes in tool shape during the machining process which caused

by contact between cutting tool and cutting surface or cutting tool and cutting chips,

2



Figure 1.2: Face milling operation [4].

known as tool wear. This phenomenon changes the final workpiece dimension and

quality. Also, it may lead to tool damage and long down time for the maintenance

and increase the cost of production consequently [1]. Two most common tool wears

are: flank wear and crater wear (Fig. 1.5). The moving chip which is in contact with

the part creates crater wear and flank wear is occurred due to friction of the tool on

the workpiece.

• Tool breakage: When a piece of cutting edge fractures abruptly during the machin-

ing process, a tool breakage happens. This phenomenon may happen due to thermal

or mechanical overloading of cutting edge [14]. Tool failure makes 20% of the re-

ported machine tools downtime and they increase the total production cost between

3% to 12% [15].

• Chatter: Chatter is the self-excited vibration of the machine tool that reflects the

instability of the cutting process. Chatter is often a serious limitation for achieving

higher rates of removal, as it adversely affects the surface finish (Fig. 1.6), reduces di-

mensional accuracy, and may damage the tool and machine. Therefore, machine tool

chatter needs to be detected rapidly and corrected before it damages the workpiece,
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Figure 1.3: End milling operation [6].

tool, or the machine.

1.3 Machining process monitoring

In order to respond increasing demands of the market to have more productions in better

quality, cheaper price and in the shorter time, manufactures are investigating innovative so-

lution such as process monitoring. Process monitoring is indicating the state of the process

with measuring parameters like force, vibration, sound, temperature etc. Process monitor-

ing can decrease the cost of machining process by increasing the quality of products and

reducing the tool breakage downtime and maintenance expenses.

Monitoring task has been doing with machine tool operators primarily. For exam-

ple, they visually detect missing or broken tools and also chatter from the generated sound

with the system. The recent monitoring methods are automated monitoring algorithms.

These algorithms use filtered sensor measurements for determining the state of the pro-

cess. Complex processes are monitored with the signal processing methods which ana-

lyze the recorded signals of the systems [1]. Artificial intelligence methods are among the
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Figure 1.4: Drilling operation [7].

most common signal processing techniques which are implemented for process monitor-

ing. They are mostly utilized for pattern recognition and for designing process monitoring

algorithm [1].

In Pattern recognition concept, the monitoring task is performed with classifying

data. The data is analyzed in several consecutive steps. These steps are preprocessing,

feature extraction, feature selection, and data classification respectively. In preprocessing

step, the recorded signals from machining operation is analyzed for removing and filtering

noises. After preprocessing, to extract the information from raw data and reduced the di-

mension of them, each data will be transformed into a reduced representation called feature

vector. This transformation process is called feature extraction. In the next step, if there are

still redundant features in the feature vector which make the calculations time consuming

and complex, the redundant features will be omitted from the feature vector with feature

selection approach. Classification methods categorize feature vectors into the determined

groups and accomplish the monitoring process. Artificial intelligence methods are often

applied in classification step and make the monitoring algorithm intelligent. Figure 1.7

shows the monitoring algorithm which is designed based on the pattern recognition. Next

5



Figure 1.5: Flank and carater wear [13].

Figure 1.6: Chatter [14].

section reports a brief literature review on the process monitoring.

1.4 Literature review

In the field of process monitoring many studies have been conducted during the time. In

many studies signals were analyzed with signal processing and artificial intelligence tech-

niques and the results indicate the status of the systems. Cutting force, vibration, acoustic
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Figure 1.8: Dynamometer [43].

emission (AE), current or power signals are the most common signals applied in these stud-

ies. Cutting force is considered to be the best variable to describe the cutting process [16].

The hidden information in force pattern is useful to evaluate the quality and geometric pro-

file of the cutting surface [17]. Therefore, cutting-force has been used for tool condition

monitoring [12, 15, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,

36, 37, 38] or surface roughness monitoring [39, 40, 41, 42]. Cutting forces increase when

the tool gets dull. Therefore, tool wear can be easily detected by analyzing cutting force

signals. The increase in cutting force due to the tool wear is dependent on the type of wear

as well as the cutting conditions like cutting material, work material, etc. Dynamometer

(Fig. 1.8) has been used to measure the cutting forces in literature. Nevertheless, it has some

drawbacks which make its application limited in industry. First it is an expensive sensor

and it can be easily destroyed in the rush environment of factories. Limited frequency re-

sponse is another weakpoint which affects its application in industry [44, 45, 46]. Vibration

monitoring is mainly applied for surface roughness prediction [47, 48, 49]. It has especially

been used in turning process [47, 50, 51, 52] rather than milling process.Vibration monitor-

ing also has wide application in cutting tool wear prediction. Vibration amplitude usually

7



changes during the machining process due to change of tool condition from sharp to dull.

Until a certain threshold for tool wear, it increases the frictional damping and decreases the

vibrations. This threshold is dependent to the tool and workpiece material and the type of

machining process. Beyond this threshold, tool wear increases the vibration. This increase

is due to the stronger excitation caused by the larger cutting forces [53]. Vibration signals

have also been used for tool breakage monitoring. Tool breakage changes cutting force and

as a result it changes cutting vibrations. Therefore, vibration signals can be good variables

to be analyzed for tool breakage monitoring. Accelerometer (Fig. 1.9) is the sensor for

recording vibration signals. Although vibration signals have wide application in process

monitoring and accelerometer has been applied to the monitoring systems successfully,

there are a number of practical problems for using vibration signals for process monitoring

or measuring the part accuracy [55]:

• The machining speed should be in a specific range.

• The amplitude of the signal is depending on the sensor distance from cutting edge.

Also mounting sensor close to the cutting location increases the variability of the

signal.

• The rush producing environment can strike the accelerometer and damage it or cause

it to read the vibration inaccurately.

Vibration signals also are not accurate and reliable as much as other signals like cutting

forces or AE signals [55]. The recorded signals with dynamometer and AE sensors are

more robust for monitoring surface roughness and production quality. However, the advan-

tage of simplicity and low cost for monitoring systems based on accelerometers have made

them popular.

AE is the energy released in the form of mechanical vibration from a material when

it is under stress. In machining operations this energy can be released from tool, workpiece

or machine body. The stress may be generated by chip deformation, chip fracture, friction

8



Figure 1.9: Accelerometer [54].

existed between chip, workpiece and tool (two by two), tool breakage, flexible deformation

of machine structures and thermal reactions of materials [56]. The frequency spectrum of

AE usually spans the range 10kHz−10MHz [56]. AE sensors (Fig. 1.10) are inexpensive

and easy to install and they also have another positive point related to the frequency range

of AE signals. The frequency range of AE signals is much higher than that of machine

vibrations and environmental noises, which make it easy to distinguish AE signals [58].

In addition to these advantages, it has also some disadvantages which make its applica-

tion limited. AE signals are sensitive to the sensor location and cutting parameters and

also, it is hard to have physical understanding of these signals [59]. Sensory overload can

considerably distort the AE signal, therefore these sensors need to be calibrated carefully

for the range of cutting operation [60]. In the literature there is an argument about using

AE sensors for tool wear diagnosis and replacing the dynamometer with this sensor. Al-

though there are disagreement about tool wear, they all agree that AE sensors are good

choice for cutting tool breakage detection [61, 62, 63]. During tool breakage and fracture

large amount of AE is generated, therefore this signal can be used for cutting tool breakage

detection.

The other sensors which have been used in literature are current sensors. They can

measure machining forces indirectly. Current signals are proportional to the torque pro-

duced with DC motor which is proportional to the cutting forces. The limitations for using

9



Figure 1.10: AE sensor [57].

current sensors are their nonlinear nature and limited sensing bandwidth. Nonlinearity

imposes complicated calibration for using these sensors [56]. Due to limited sensing band-

width, these sensors act as a low pass filter and they are suitable only for detecting slow

events or when a fast response is not essential [45].

In literature different signal processing and artificial intelligence methods have been

implemented for analyzing the recorded signals. For preprocessing analogue or digital fil-

tering and signal segmentation have been used. Filters in sensors suppress high frequency

noise or continuous biases and keep the recorded signal within the range of the frequency

response of the sensor. Digital filtering keeps the sensor information which best corre-

lates with the performance process variable of interest [64, 65]. Signal segmentation is

for extracting the signal information when the process is in steady state. Segmentation

is an optional step in preprocessing [16, 65]. Other signal processing methods in time or

frequency or time-frequency domain have been used for feature extraction. Descriptors

are the simplest features which have been used in some studies. Mean, root mean square

(RMS), power spectral density (PSD) are some of these descriptors. Methods for time-

frequency analysis are fast Fourier transform (FFT), short time Fourier transform (STFT),

wavelet transform and S-Transform. Time-frequency methods can reveal the information

or features of the signals which are hidden for other time–domain signal analysis. FFT is

10



a common method of signal processing in process monitoring research [66, 67]. The aver-

aging natures of the FFT calculations can distort its signal analysis performance when it is

applied for analyzing signals from transient phenomenon like tool breakage [5]. Wavelet

transform has been used in process monitoring widely [61, 63, 68, 69, 70, 71, 72, 73]. Con-

tinuous and discrete wavelet transform have been used for data compression filtering or for

feature extraction. Although many studies have applied wavelet transform for feature ex-

traction, few studies have implemented STFT and S-Transform [74]. These methods have

not been investigated in the field of machining process monitoring while they receive much

more attention in other field of study like medical diagnosis or electrical system monitoring.

Principal component analysis (PCA) is one of the most common methods for feature

selection in process monitoring [75] and has many applications in different fields of study.

Neural network, fuzzy logic, hidden Markov model (HMM) and support vector machine

have been applied for classifying data and predicting the status of process in many stud-

ies. The main artificial intelligence techniques applied for monitoring machining processes

are artificial neural networks (ANN) [21, 22, 23, 24, 25, 26, 28, 34, 35, 47, 67, 72, 76,

77], fuzzy logic systems [21, 24, 47, 76, 78] and neuro-fuzzy inference systems [79, 80].

Other artificial intelligence approaches such as Baysian network (BN) [18, 30, 81], hidden

Markov models [12, 29, 31, 32, 33, 82, 83], evolutionary algorithms [84, 85] or support vec-

tor machines (SVM) [25, 71, 86, 87, 88] are gaining popularity in recent works, although

they have not been widely used before.

As explained before process monitoring and fault diagnosis in the field of machining

process has long history and many studies have been conducted in this field. However, there

are still many unsolved challenges and problems that the researchers have struggled with

them. Many studies are doing process monitoring indirectly. It means that they measure

one parameter to calculate or predict the other parameter that they cannot measure directly.

For example, they measure cutting force signals and analyze them to predict the value of

tool wear. These indirect techniques have their own drawbacks. They are not reliable and
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robust due to the intricacies which the machining processes have and the uncertainty in the

correlation between the process parameters and tool wear [89]. In monitoring approaches

the sensor is key element for recording data. Sensors can rarely be placed at the desired

point, and when located at other locations their performance in recording clear signals

for reliable monitoring decreases [1]. Frequency response limitations of some sensors are

the other difficulties in applying sensors. This limitation becomes more obvious when the

sensor is implementing for chatter detection [1]. The other problem is related to the robust-

ness against varying cutting conditions. The single sensor measurements do not seem to be

robust in this case [1]. In some research, for analyzing the recorded data and making de-

cision about the process status, the recorded data is comparing with an expected threshold.

Analytical model are used to specify these thresholds. Analytical models have their own

advantages and disadvantages. They can calculate the threshold with considering changes

in the machine inputs such as feeds and speeds. However, they are often not accurate and

need to be calibrated for the process. Calculating the expected value of measurements with

empirical methods is simpler and more straightforward, although they would be only suit-

able for particular operations and can not be extrapolated to others [1]. The limitations

of signal processing and artificial intelligence methods which have been used in literature

also should be considered. Some of these methods need time consuming training or huge

dataset for training. Also, some process monitoring algorithms proposed in literature are

dependent on the operating conditions. It means that they just work in special cases or

they have to be trained for any single case. Complexity of machining process is another

barrier in machining operation monitoring. For example, milling process monitoring in-

volved with many difficulties. Complex geometry of milling tool, the interrupted nature

of milling process, and the large periodic components of force and torques make milling

process monitoring complicated [61].
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1.5 Thesis objectives

According to the above literature review, although many studies have been carried out in

the field of process monitoring, there are still many unsolved problems in this field of study.

Considering these shortages and at the same time by increasing the demand for having re-

liable, robust, accurate, practical and inexpensive monitoring methods from the industry,

the need for doing more research in this field is obvious. This research is going to design a

process monitoring algorithm which is more accurate, practical to be used in industry, intel-

ligent, independent from operating conditions and inexpensive. Such an objective is to be

achieved by investigating and developing effective monitoring algorithms with using signal

processing and artificial intelligence methods, based on the pattern recognition. Among the

signal processing methods, S-Transform received poor attention in the field of machining

monitoring. In this thesis machining monitoring algorithm with assisting S-Transform for

feature extraction will be designed and the accuracy of algorithm for predicting the value of

tool wear will be calculated. The accuracy of this algorithm will be compared with the ac-

curacies of other algorithms which use the conventional signal processing methods. In this

way the effect of the S-Transform on the accuracy of algorithm will be investigated and the

most accurate algorithm will be selected for doing some further investigations. The effect

of sensor fusion on the accuracy of algorithms, the ability of the algorithms for working

in different operating conditions and for detecting the sharp tool from the dull one will be

investigated through the rest of the thesis.

1.6 Thesis organization

In this thesis, first a brief explanation about the experimental setup which provides the data

for training the algorithms will come in chapter two. Then in chapter three, the signal pro-

cessing and artificial intelligence methods implemented in this research will be explained.

Chapter four will introduce five monitoring algorithms and with comparing the results, the
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most accurate monitoring algorithm will be selected. It also will discuss about the effect

of S-Transform method on the accuracy of monitoring algorithm. In chapter five the effect

of sensor fusion on the accuracy of algorithm and the ability of algorithm for working in

variant operating conditions will be discussed. The accuracy of algorithm for detecting

the sharp tool from dull one is another topic which will be investigated in chapter five.

Conclusions and suggestions for the possible research works in future come in chapter 6.
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Chapter 2

Experimental dataset

In this study the experimental data has been downloaded from the NASA website [90]. This

dataset includes the recorded signals from runs on a milling machine in different operating

conditions and also flank wear of tools during the recording signals have been measured.

The data has been sampled with three sensors: current, acoustic emission and vibration

sensors. In each cut, tool wear has been measured. The recorded data has been organized

in a MATLAB struct array which is explained in the Table 2.1.

Table 2.2 shows variable parameters: depth of cut, feed and working material. These

16 cases represent 8 operating conditions: every two cases are assigned to one set of oper-

ating conditions. For example cases 1 and 9 have the same operating conditions.

2.1 Experimental setup

Machining center used for making this dataset is a Matsuura MC-510V. The spindle and

table of this machining center make the basic setup of the experiment. Each table and

spindle of this machining center has two sensors: acoustic emission sensor and vibration

sensor. Also one current sensor records the spindle current signals.

The parameters of the experiment have been specified based on the industrial applica-

bility and recommended manufacturers settings. Cutting speed was selected as 200 m/min
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Table 2.1: Struct field names and description [90].

Field name Description

Case Case number (1-16)
run Counter for experimental runs in each case
VB Flank wear, measured after runs
time Duration of experiment (restarts for each case)
DOC Depth of cut (does not vary for each case)
feed Feed (does not vary for each case)
material Material (does not vary for each case)
smcAC Spindle motor alternating current (AC)
smcDC Spindle motor direct current (DC)
vib table Table vibration
vib spindle Spindle vibration
AE table Acoustic emission at table
AE spindle Acoustic emission at spindle

(or 826 rev/min). The selected values for depth of cut, feed and material are as given in

Table 2.2. These choices make 8 different settings. All experiments have been done twice

and the second time with the same parameters and with a second set of inserts. The size of

the workpieces are 483 mm×178 mm×51 mm. Cutting tool was chosen as a 70 mm face

mill with 6 inserts (Fig. 2.1). Based on the recommendation for roughing (Kennametal,

1985), the inserts KC710 was selected. They are coated with multiple layers of titanium

carbide, titanium carbonitride, and titanium nitride (TiC/TiC-N/TiN) in sequence. These

layers improve resistance to cratering and edge wear and they have the advantages of tita-

nium carbide plus reduced face friction.

2.2 Tool wear

As a generally accepted parameter for evaluating tool wear, flank wear (VB) is used as a

measure for tool wear. The VB is defined as the distance from the cutting edge to the end

of the abrasive wear on the flank face of the tool. During the experiment the flank wear was

measured with the help of microscope. For measuring the tool wear the insert was taken
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Table 2.2: Experimental conditions [90].

Case Depth of Cut (mm) Feed (mm/rev) Material

1 1.5 0.5 cast iron
2 0.75 0.5 case iron
3 0.75 0.25 cast iron
4 1.5 0.25 cast iron
5 1.5 0.5 steel
6 1.5 0.25 steel
7 0.75 0.25 steel
8 0.75 0.5 steel
9 1.5 0.5 cast iron
10 1.5 0.25 cast iron
11 0.75 0.25 cast iron
12 0.75 0.5 cast iron
13 0.75 0.25 steel
14 0.75 0.5 steel
15 1.5 0.25 steel
16 1.5 0.5 steel

out of the tool (Fig. 2.2).

2.3 Recorded signals

For each run of milling operation the signals have been recorded with six sensors located

in six different positions. Fig. 2.3–2.6 show a sample of the recorded signals from these

sensors.

As it can be seen in the figures the data recorded in entry and exit area of the sig-

nals are noisy. They suffer from the entry and exit non-stable conditions. Therefore, in

this thesis the recorded data in the area of sample number 3000 to 6000 will be used for

calculations.
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Figure 2.1: Tool and inserts of face mill [90].

Figure 2.2: Tool flank wear (VB) as it is seen on the insert [90].

2.4 Chapter summary

In this chapter the experimental dataset applied in this study has been introduced. The char-

acteristic of machining center, cutting tool, sensors and 8 operating conditions for recording

signals were reported.
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Figure 2.3: Spindle motor current signal (AC).
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Figure 2.4: Acoustic emission signal (spindle).
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Figure 2.5: Acoustic emission signal (table).
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Figure 2.6: Vibration signal (spindle).
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Figure 2.7: Vibration signal (table).
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Chapter 3

Signal processing and artificial

intelligence methods

The applied methods for data analysis in this study will be introduced in this chapter briefly.

The methods are categorized based on their application for pattern recognition in monitor-

ing algorithm. Preprocessing, feature extraction, feature selection and classification are the

steps of monitoring algorithm. The dataset which has been utilized in this study, includes

preprocessed data. Therefore, there is no need for doing the preprocessing again. In the fol-

lowing sections, other steps and the methods which will be implemented for accomplishing

those steps will be explained respectively.

3.1 Feature extraction methods

Feature extraction methods transform the data into a reduced representation of them called

feature vector. Working with feature vectors, instead of the original data, is less time con-

suming and more effective to have accurate results. Many methods have been innovated

and applied for doing feature extraction. Statistical descriptors, continuous wavelet and

S-Transform which will be implemented in this study for feature extraction, are explained

in the following sections.
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3.1.1 Descriptors

Descriptors summarize large, complex datasets (numerically and visually) to express their

essence to the data analyst and to make further processing possible [91]. There are descrip-

tors which measure the central tendency or dispersion of the data. A measure of central

tendency is a typical value around which other figures congregate [92]. It is occasionally

called an average or just the center of the distribution [93]. Geometric mean, harmonic

mean, arithmetic average or mean, 50th percentile or median, trimmed mean, most frequent

value or mode are descriptors which measure the central tendency. These descriptors indi-

cate the location of the center of the distribution, but they do not expose how the items are

spread out on either side of the center. This characteristic, frequency distribution, is called

dispersion. Small dispersion shows high uniformity of the data, while large dispersion in-

dicates less uniformity [92]. In the following, some descriptors which measure the central

tendency and also some descriptors for evaluating dispersion are introduced.

• Measure of central tendency:

– Geometric mean: The geometric mean of a dataset which contains n observa-

tions is the nth root of the product of the values. If x1, x2,· · · , xn are observations

then [92]:

GM = n
√

x1x2 · · ·xn. (3.1)

– Harmonic mean: Harmonic mean is defined as the reciprocal of the arithmetic

average of the reciprocal of the data. If x1, x2,· · · , xn are observations,

HM =
n

n
∑

i=1

1
xi

, (3.2)
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for a frequency distribution [92],

HM =
N

n
∑

i=1
f ( 1

xi
)
. (3.3)

– Arithmetic average (mean): Arithmetic mean is defined as the sum of the data

divided by the number of them. If the variable x assumes n values x1, x2,· · · , xn

then the x̄ is given by [92],

x̄ =
1
n

n

∑
i=1

xi. (3.4)

– 50th percentile (median): Median (X̃) is defined by

X̃ =

⎧⎪⎪⎨
⎪⎪⎩

Xk+1 for odd n = 2k+1,

Xk +Xk+1

2
for even n = 2k,

(3.5)

to be the middle or the average of the two middle data values after sorting. It

is the 50th percentile using the percentile definition. Median is greater than or

equal to at least 50% of data and also is less than or equal at least 50% of data.

The positive point of median is that it is not affected by outlier values and is

stable [94].

– Trimmed mean: The idea for designing r-trimmed mean is to protect the mean

value against a few outliers and it is defined by

Tr =
Xr+1 +Xr+2 + ...+Xn−r−1 +Xn−r

n−2r
. (3.6)

Equation3.6 trims r outliers and averages the remaining values [94].

– Most frequent value (mode): Mode is the value in a distribution, which hap-

pens most frequently. Mode has the most concentration of data around it [92].

It is more useful with discrete or coarsely rounded data [91].
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Table 3.1: First three moment about the mean.

Individual series

First moment about the mean, μ1
∑(x−x̄)

n = 0

Second moment about the mean, μ2
∑(x−x̄)2

n = σ2

Third moment about the mean, μ3
∑(x−x̄)3

n

• Measure of dispersion:

– Interquartile range (IQR): This range is defined by the difference of the third

and first quartiles,

IQR = Q3 −Q1. (3.7)

The larger value of IQR means that the data values are more dispersed [94].

– Mean absolute deviation (MAD): The mean absolute deviation about the sam-

ple median is defined by

MAD =
1
n

n

∑
i=1

|Xi − X̃ |. (3.8)

This definition also can be written with sample mean X̄ too. In this case the

measure would be larger [94]. MAD is also sensitive to outliers but it does not

suffer as much as standard deviation or variance [91].

– Central moment of all orders (moment): Central moments are the arithmetic

mean of various powers of deviations taken from the mean of a distribution [92].

Table 3.1 shows the first three moments.

– Range (R): Range is the difference of the largest and smallest data. In terms of

the order statistics [94]:

R = Xn −X1. (3.9)

– Variance: Variance is calculated by the Eq. 3.10. This descriptor is the most
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commonly used value to measure the spread of data [94].

S2 =

n
∑

i=1
(Xi − X̄)2

n−1
. (3.10)

– Standard deviation (std): The square root of the variance is called the sample

standard deviation [94].

3.1.2 Wavelet transform

Wavelet was first introduced by Morlet [95]. Wavelets are mathematical functions that cut

up data into different frequency components, and then study each component with a reso-

lution matched to its scale. Continuous wavelet transform and discrete wavelet transform

are two types of wavelet transform. Morlet formulized the continuous wavelet transform

(CWT), as shown by Eq. 3.11:

Wx(a,b,ψ) = a−
1
2

∫
x(t)ψ∗(

t −b
a

)dt, (3.11)

where a is the scale parameter, b is the time parameter, ψ(t) is an analyzing or mother

wavelet, and ψ∗(t) is the complex conjugate of ψ(t). For |a|< 1, the wavelet is compressed

version of the mother wavelet and is related mainly to higher frequencies, while for |a| >
1 the output of wavelet transform has a larger time width than the mother wavelet and

correspond to lower frequencies. Therefore, wavelet has a time width which is adapted to

their frequencies. This characteristic of wavelet is the main reason for the success of the

Morlet wavelets in signal processing and time-frequency signal analysis. The resolution

of the wavelet at different scales varies in the time and frequency domains. The resolution

is coarse in the time domain and fine in frequency domain at large scale. When the scale

a is decreasing, the resolution in the time domain becomes finer while the corresponding

value in the frequency domain becomes coarser [95]. Figure 3.1 shows a signal with its
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Figure 3.1: Continuous wavelet transform: A typical signal (a) and its wavelet phase map
(b) (at the time of 1 s, the signals frequency changed and started to increase with time) [96].

continuous wavelet transform [96].

Later, Daubechies with Mallat [97, 98] developed wavelet from continuous to dis-

crete signal analysis. In the discrete wavelet transform (DWT), the scale a and the time b

are discretized as following:

a = am
0 , b = nam

0 b0, (3.12)

where m and n are integers. The discrete ψa,b(t) is:

ψm,n(t) = a
−m

2
0 ψ(a−m

0 t −nb0). (3.13)

The new definition of discrete wavelet transform with the discretization of the scale param-

eter and time parameter is:

Wx(m,n,ψ) = a
−m

2
0

∫
x(t)ψ∗(a−m

0 t −nb0)dt. (3.14)

Discrete wavelet transform also can be considered as a high and low pass filter of discrete

time domain signal (Fig. 3.2). This algorithm is known as Mallat algorithm or Mallat

tree decomposition. x[n] is discrete time domain signal and G0 is low pass filter and H0

is high pass filter. At each decomposition level, H0 produces the detailed information,

d[n], and G0 which is related to the scale, produces the coarse approximation, a[n] [99].

Wavelet transform has different applications. It can be used for multi-scale analysis of
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Figure 3.2: Three-level wavelet decomposition tree [99].

a signal through dilation and translation, so it can extract time-frequency features of a

signal effectively [27]. Therefore, the wavelet transform is suitable for the analysis of

non-stationary signals. Also due to the compact support of the basic functions used in

the wavelet transforms, wavelets have good energy concentration properties and they can

be implemented for fault feature extraction. Other applications of wavelet transform are

signal denoising, system and parameter identification and signal compression.

Wavelet also has some shortcomings. It always suffers from the effects of the bor-

der distortion and energy leakage. Also, the phase spectrum of the wavelet is not robust

to the noise, therefore once a signal is contaminated by noise, its phase spectrum will

change greatly [67]. Additionally, since the definition of wavelet transform is based on

the convolution, the occurrence of the overlapping is expected. The overlapping will cause

undesirable frequency aliasing and bring the interference terms to the scalograms under

certain conditions [67].

3.1.3 S-Transform

S-Transform combines the short-time Fourier transform and the wavelet transform using a

Gaussian window [28] and it overcomes some of their disadvantages. Eq.3.15 shows the
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definition of S-Transform:

S(τ, f ) =
∞∫

−∞

h(t)
| f |√
2π

e
−(τ−t)2 f 2

2 e−i f t2πdt. (3.15)

The S-Transform can be viewed from two different perspectives: as a short-time Fourier

transform with a variable window length, or as a special type of CWT with a Gaussian

mother wavelet modified by adding a phase factor [28]. The Gaussian window is chosen

because it is the most compact in time and frequency. In fact, S-Transform is a special

case of the multiresolution Fourier transform [12]. S-Transform is a generalization of the

Fourier transform to nonstationary time series. The S-Transform localizes the real and

imaginary components of the spectrum independently, localizing the phase spectrum as

well as the amplitude spectrum.

The discrete S-Transform is calculated by taking the advantage of the efficiency of

the FFT and the convolution theorem [12]:

S[ jT,
n

NT
] =

N−1

∑
m=0

H[
m+n
NT

]e
−2π2m2

n2 e
im j2π

N (n �= 0). (3.16)

For n = 0, it is equal to the constant defined as:

S[ jT,0] =
1
N

N−1

∑
m=0

h[mT ], (3.17)

where j, m and n = 0,1, ...,N −1. The sampling of the S-Transform is such that S[ jT, n
NT ]

has a point at each time sample and at each Fourier frequency sample. Before using S-

Transform some preprocessing should be done on actual data: detrending (removing the

very low harmonics), removing edge effects, using the analytic signal, estimating the noise

level and resolution change [100]. S-Transform has the following unique properties [29]:

• A direct connection to the Fourier transform through the inverse S-Transform, and a

direct connection to the time series through the direct signal extraction.
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• Frequency invariant amplitude response.

• Absolutely referenced phase properties.

• Progressive resolution.

Absolutely referenced phase information and also frequency invariant amplitude response

are the weak points for continuous wavelet transform. S-Transform has some drawbacks

too. It requires higher complexity computation. The discrete S-Transform suffers from the

problems related to sampling and finite length, giving rise to implicit periodicity in the time

and frequency domains [74].

S-Transform can be implemented for signal analysis, power system disturbance recog-

nition, system identification, fault diagnosis and condition monitoring.

3.2 Feature selection methods

Applying the most meaningful features in training monitoring algorithm, develops robust

and reliable models for monitoring [101]. These features are selecting through feature

selection techniques. Feature selection is the process of selecting a subset of relevant fea-

tures for using in model construction. Feature selection eliminates redundant or irrelevant

features. Irrelevant features provide no useful information in any context and redundant

features do not have more information than the currently selected features. Feature selec-

tion is a part of feature extraction which is a more general concept compare with feature

selection. Feature extraction creates new features from the original data, whereas feature

selection returns a subset of the features [102]. In this study principal component analysis

(PCA) and independent component analysis (ICA) are implemented for feature selection.
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3.2.1 Principal component analysis (PCA)

Karl Pearson proposed principal component analysis (PCA) in 1901 [103] to analyze prin-

cipal axes theorem in mechanics; later in 1930 Harold Hotelling developed and introduced

PCA independently [104]. PCA is a mathematical procedure which applies an orthogo-

nal transformation to convert the dataset. It changes the dataset which contains a set of

observations of possibly correlated variables into a set of values of linearly uncorrelated

variables called principal components. This transformation also reduces the dimension of

the dataset; the number of principal components is less than or equal to the number of orig-

inal variables. This transformation organizes principal components based on the value of

variance. Principal component with the highest variance is the first component and other

components (which are orthogonal to each other or uncorrelated) will come after that based

on their variance values. PCA can be calculated either by eigenvalue decomposition of a

data covariance (or correlation) matrix or singular value decomposition (SVD) of a data

matrix. Before doing PCA, usually mean centering (and normalizing) the data matrix is

carried out [105]. Today, there are efficient ways for calculating SVD, therefore, it be-

comes the standard method for calculating PCA from a dataset now. In this formulation

SVD of X (a n by p matrix which represent the dataset) expresses this matrix as follows

(all the formulation comes from [106]):

X =UΣW T , (3.18)

in which Σ is called the singular values of X . It is a p-by-p diagonal matrix of positive

numbers σ(k). U , left singular vectors of X , is an n-by-p matrix, the columns of which are

orthogonal unit vectors of length n. W , right singular vectors of X , is a p-by-p matrix and

its columns are orthogonal unit vectors of length p. In terms of this factorization, the XT X ,
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which is the covariance matrix of X , can be written as:

XT X =WΣUTUΣW T =WΣ2W T . (3.19)

Comparing with the eigenvalue and eigenvector of XT X , the right singular vectors W of X

are equivalent to the eigenvectors of XT X , and the singular values σ(k) of X are equal to

the square roots of the eigenvalues of XT X .

Using the singular value decomposition the score matrix T , the full principal compo-

nent decomposition of X , can be written as:

T = XW =UΣW TW =UΣ, (3.20)

so each column of T is made by multiplying the left singular vectors of X and the corre-

sponding singular value. If the first L largest singular values and their singular vectors were

considered:

TL =ULΣL = XWL. (3.21)

The reduced matrix TL would be the nearest possible matrix with rank L to the original

matrix. This matrix between all the transformed data matrices with only L columns, maxi-

mizes the variance in the original data that has been preserved, while minimizing the total

squared reconstruction error ||T −TL||2.

Such dimensionality reduction can be a very useful step for processing high dimen-

sional datasets, while still retaining as much of the variance in the dataset as possible. PCA

has application in many fields, for example, clustering, regression analysis, denoising and

pattern identifying. In clustering, PCA reduces the dimension of dataset and changes the

dataset such as the cluster gets more visible and distinguishable. In regression analysis,

it reduces the number of explanatory variable and by this way it reduces the chance of
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Figure 3.3: Illustration to the concept of principal component analysis [107].

overfitting the model and increases the generalization of conclusions. PCA has an impor-

tant effect on regression analysis when the explanatory variables are correlated. PCA could

have positive role for identifying patterns too. It can express the data with highlighting their

similarities and differences. This is important when the dimension of dataset is high and

finding patterns is hard. The other main advantage of PCA in identifying patterns is that

once patterns in the data were specified, it can compress the data by reducing the number

of dimensions without much loss of information (Fig. 3.3).

3.2.2 Independent component analysis (ICA)

Independent component analysis (ICA) is a mathematical method which reveals hidden

factors of a dataset. ICA defines a generative model for the observed multivariate data. The

dataset usually is a large database of samples. In this method, the data are considered to

be linear mixtures of some unknown variables. The mixing system, the coefficient weights
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Figure 3.4: Comparison between PCA and ICA [110].

multiplied to data, is also unknown. Variables called independent components of the data

are assumed to be non-Gaussian and mutually independent. These independent components

are found by ICA. This method is more powerful than other techniques like PCA, and it is

able to find the hidden factors which other methods cannot [108].

The differences between PCA and ICA can be described by two factors. First, in

PCA, components were organized based on the value of their variances but in ICA, there

is no order of magnitude associated with each component. It means that there is no better

or worst components. Second, the extracted components are invariant to the sign of the

sources [109]. In PCA, principal components are orthogonal to each other, while in ICA,

independent components are not necessarily orthogonal as shown in Fig. 3.4. Following

explains the theoretical formulation of ICA briefly.

A random observed vector X = [X1,X2, · · · ]T is considered in which its m elements

are mixtures of m independent elements of a random vector S = [S1,S2, · · · ]T given by:

X = AS, (3.22)

where A is an m×m mixing matrix. The goal of ICA is to find the unmixing matrix W

which is the inverse of A. That will give Y , the best possible approximation of S:

Y =WX = S, (3.23)
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For applying ICA it is necessary to make five assumptions:

• Statistical independence between each of the sources Si from the sources vector S is

assumed.

• The mixing matrix must be square and full rank. It means that the number of mix-

tures must be equal to the number of sources. Also the mixtures must be linearly

independent from each other.

• In ICA, only source vector S could have stochasticity in the model. The model (the

coefficient weight) should be noise free.

• The data should be centered. It means that the data should have zero mean.

• The source signals should not have a Gaussian probability density function (pdf)

except for one single source that can be Gaussian [109].

ICA finds the independent components by maximizing the statistical independence

of the estimated components. There are different definitions for statistical independency.

Two common definitions of independence for ICA are:

• Minimization of mutual information

• Maximization of non-Gaussianity

The minimization of mutual information (MMI) family of ICA algorithms uses measures

like maximum entropy. The non-Gaussianity family of ICA algorithms, motivated by the

central limit theorem, uses negentropy (measure the distance from normality). It is re-

markable to mention that the typical algorithms, in order to decrease the complexity of the

problem in iterative algorithm, do centering and whitening as preprocessing steps.
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ICA can analyze signals from many different sources like digital images, document

databases, reducing noise in pictures, telecommunication, economic indicators and psy-

chometric measurements. In many cases, the measurements are given as a set of parallel

signals or time series. For these problems blind source separation is used to characterize

them. Typical examples for ICA application are mixtures of simultaneous speech signals

that have been picked up by several microphones, brain waves recorded by multiple sen-

sors, interfering radio signals arriving at a mobile phone, or parallel time series obtained

from some industrial processes.

3.3 Classification methods

Classification identifies that the new observation belongs to which set of specified cate-

gories. Classification works on the basis of a training set of data containing observations

whose category membership is known [111]. Artificial intelligence methods are often ap-

plied in classification step and make the monitoring algorithm intelligent. There are many

artificial methods for classification. In this study artificial neural network is used for data

classification.

3.3.1 Artificial neural netwrok

Artificial neural networks (ANNs) may be defined as structures comprised of densely in-

terconnected adaptive simple processing elements (neurons) that are capable of performing

massively parallel computations for data processing and knowledge representation [112].

Neural networks have been used to solve a wide variety of tasks that are hard to solve using

ordinary rule-based programming [113]. They are used in hardware and software to make

machines, robots and programs intelligent. A neural network typically is defined with three

parameters:

• The activation or transfer functions of layers.
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Figure 3.5: Neuron structure [114].

Figure 3.6: Transfer function of a neuron: logsig [114].

• Its topology which specifies the way its layers are connected.

• The learning or training algorithm of neural network.

Fig. 3.5 shows the model of a neuron with multiple inputs. In this figure P1 to PR are

the elements of input vectors. W1,1 to W1,R are weights and b is the bias related to this neu-

ron and f is transfer function. A transfer function is the function that describes the output

of a neuron given an input or set of inputs [115]. Some most common transfer functions are

log-sigmoid (Fig. 3.6), tan-sigmoid (Fig. 3.7) and purelin (Fig. 3.8) [114]. Neurons make

layers and they are organized based on the topology of network: feed-forward or feed-

back. Feed-forward networks (Fig. 3.9) have directed acyclic graph and feedback networks

(Fig. 3.10) have cycles in their graphs.
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Figure 3.7: Transfer function of a neuron: tansig [114].

Figure 3.8: Transfer function of a neuron: purelin [114].

Learning neural network means finding the best function f for doing a specific de-

sired goal based on the input data. To find this optimal f , a cost function will be defined

and the learning methods try to minimize this cost function. There are three learning meth-

ods: supervised learning, unsupervised learning and reinforcement learning. In supervised

learning, there are given pairs of input and output and the desired goal is to find a function

f which connects them optimally. In this learning method a common cost function is mean

squared error which minimizes the average squared error between network outputs and the

given output values for all the given observations. Backpropagation algorithm for training

neural network is a supervised learning method with mean square cost function. In unsu-

pervised learning, some input data is given to the neural network and a cost function which

could be any function of input data and output of neural network will be considered. The

other method, reinforcement learning, also does not take the input data. In this learning
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Figure 3.9: Feed-forward network [116].

Figure 3.10: Feedback network [117].

method the input data will be generated and the goal is to minimize long-term cost.

Neural networks have wide variety of applications. They are applied for function ap-

proximation, classification and pattern recognition, data processing like filtering and clus-

tering. They also could be used in control and robotics. Neural networks have special

properties like learning ability, generalization, adaptivity and fault tolerance which make

them applicable in different field of applications [118].
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3.4 Chapter summary

In this chapter a brief introduction about the statistical and intelligence methods which will

be used in this study, were explained. The methods were categorized based on their appli-

cation for pattern recognition in monitoring algorithm. For each method a short explanation

about the related technical issues with the application of the method and its properties was

discussed.

40



Chapter 4

Tool wear monitoring algorithms

In this chapter, first, with applying two conventional signal processing methods for feature

extraction in machining monitoring literature, descriptors and wavelet transform, three dif-

ferent monitoring algorithms are designed. In these algorithms neural network has been

used for classification and PCA and ICA for feature selection. The algorithms are trained

and examined with the introduced dataset in Chapter two. Then with using the S-Transform

as feature extraction method, two new monitoring algorithms are developed with the same

dataset, classification and feature selection methods. The accuracies of algorithms are

compared to find the most effective monitoring algorithm and investigate the effect of S-

Transform on the accuracy of algorithm. In this chapter, the dataset for developing the

algorithms are the AC power, table and spindle vibration signals from case 1 and 9. These

two cases have the same operating conditions.

4.1 Algorithm 1: Descriptors-NN

In this algorithm descriptors of each data will be considered as features for expressing

it. For classifying the data, neural network method will be implemented. As it has been

explained in the previous chapter, to express the central tendency and dispersion of the data

the following descriptors are considered here:
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• For measure of central tendency: geometric mean, harmonic mean, arithmetic av-

erage (mean), 50th percentile (median), most frequent value (mode), and trimmed

mean.

• For measure of dispersion: interquartile range, mean absolute deviation (MAD),

central moment of all orders (moment), range, standard deviation (std), and variance.

These descriptors can be simply calculated with MATLAB software. Therefore, here in-

stead of each data, X , which is a 3001× 1 matrix, there is a 12× 1 feature vector. This

feature vector has the benefit of reduced dimension and also keeps the distinctive informa-

tion between the data.

[X ]3001×1
Calculate descriptors−→ [Y ]12×1. (4.1)

The arrays for matrix [Y ] are central tendency (from 1 to 6) and dispersion descriptors (from

7 to 12) respectively. Figures 4.1–4.3 show the value of descriptors for the AC power,

table vibration and spindle vibration signals of case one. Fig. 4.1 shows that descriptor

number five, most frequent value or mode, does not follow a distinctive trend in dataset and

therefore, it cannot help for distinguishing the AC power signals and it is not a good feature

to be in feature vector. Also Fig. 4.2 and 4.3 show that the descriptor number nine, central

moment of all orders or moment, has the same value for all the data and then it cannot be a

good feature for distinguishing the table vibration signals or the spindle vibration signals.

Therefore, the feature vectors with eliminating these descriptors for each type of signals

will be changed to a new feature vector:

[Y ]12×1 → [Z]11×1. (4.2)
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Figure 4.1: Descriptors of AC power signals.

Vectors A, B and C are samples of feature vectors of AC power, table vibration and spindle

vibration signals:

[A] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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, [B] =

⎡
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, [C] =

⎡
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. (4.3)

After feature extraction step and making the dataset, [A]11×26, the data should be

classified. Since the dimension of feature vector is not too large, there is no need for doing

dimension reduction and feature selection and the next step directly is classification. Neural

43



0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

Descriptors number

D
es

cr
ip

to
rs

 v
al

ue

Descriptors of vibration table signals−Case 1

Figure 4.2: Descriptors of table vibration signals.

network is the classification method which will be used here. For categorizing each type

of signal, AC power, table vibration and spindle vibration, one independent net will be

trained. The goal of training neural network is predicting the value of tool wear for each

new data. Therefore, for training this network the input is the signal and the output is the

value of tool wear related to that signal.

For training the neural network, nntool, from MATLAB toolbar has been imple-

mented. The dataset has been divided into two categorizes: training data and test data.

With training data, neural network will be trained. With test data the effictiveness of the

neural network will be evaluated. 20 signals of the dataset of case 1 and 9 are considered

as training signals and 6 signals are the test data. Neural networks are considered as com-

mon feed-forward networks. The input layer of the neural network has 11 neurons which

is equal to the number of input matrix arrays. The output layer gives the value of tool wear

and it has one neuron. Number of hidden layers and their neurons will be specified during

the training process. The training method is Levenberg-Marquardt backpropagation algo-

rithm. Levenberg-Marquardt is a minimization method used for minimizing the errors in

learning algorithm. Mean squared error of the validation data is an indicator for control-

ling the training process. The training will stop when mean squared error is increasing as
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Figure 4.3: Descriptors of spindle vibration signals.

it shows that the generalization ability of the neural network is not improving any more.

Since the goal of networks is to calculate the value of tool wear for signals and being as

close as possible to the exact value of the tool wear, then the average of network error for

calculating the tool wear value for test data can be a good parameter for comparing the

trained networks and choosing the best one. This error is defined as following for each

data:

Error(%) =
|Desired output−Calculated output with network|

Desired output
×100. (4.4)

The neural networks have been trained for all three different types of dataset: AC

power, table vibration and spindle vibration. For all of them the best neural network which

is the final choice, is a network with one hidden layer. For AC power and table vibration

signals, hidden layer has 10 neurons and there are 5 neurons for vibration signal. In all of

them the transfer functions for hidden layer is tan-sigmoid and for output layer is purelin.

As an example, Fig. 4.4 shows a schematic structure of the best trained network for spindle

vibration signals and Fig. 4.5 shows the trend of the training. The calculation of the average

error of this network has come in the Table 4.1. Table 4.2 reports the number of neurons in

hidden layer and the accuracy of the best trained networks for all three types of signals.

45



11 neurons 5 neurons

1 neuron

Figure 4.4: The schematic structure of the best network trained with Algorithm 1 for spin-
dle vibration signals.

Table 4.1: Calculation of the average error of the trained networks with Algorithm 1 for
spindle vibration signals.

Desired output 0.11 0.2 0.29 0.4 0.45 0.47

Calculated output 0.111 0.229 0.318 0.303 0.395 0.411

Error(%) 0.872 14.366 9.594 24.112 12.28 12.455

Average network error(%) 12.28

4.2 Algorithm 2: Wavelet-PCA-NN

In this algorithm continuous wavelet method is doing the feature extraction. Principal

component analysis reduces the dimension of feature vectors and the final feature vectors

will be categorized with neural network.

Applying wavelet transform for analyzing data provides the opportunity of having

time–frequency domain features at the same time. The simplest and oldest wavelet func-

tion, Haar, has been used here for wavelet analysis. This wavelet has the negative and

positive values which is compatible with the available dataset which has negative and pos-

itive values. Also, since this function is not continuous, it is suitable for analyzing the

signals that they may have sudden transition, such as monitoring machining tool breakage

or damage [119]. Wavelet transform for each data is calculated for the scales between 1
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Figure 4.5: The trend of network training with Algorithm 1 for spindle vibration signals.

Table 4.2: Structure parameters and results of the trained networks with Algorithm 1.

Signal Number of neurons Network average error (%) Network accuracy
in hidden layer 100−error (%)

AC power 10 12.68 87.32
Table vibration 10 24.6 75.4
Spindle vibration 5 12.28 87.72

and 100. This range for scales is selected with trial and error. With command cwt in MAT-

LAB, wavelet transform of each input data, [X ]3001×1 is calculated and the output is matrix

[Y ]100×3000. Figures 4.6– 4.8 show the continuous wavelet transform for three signals of

case 1. To have a vector instead of a matrix for each data, mean value of the matrix has

considered as the final feature vector. Since the output of wavelet can be complex values,

in order to do not have complex values in the dataset, absolute values of the feature vectors
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Figure 4.6: Continuous wavelet transform of a AC power signal.

Figure 4.7: Continuous wavelet transform of a table vibration signal.

have been calculated.

[X ]3001×1
cwt−→ [Y ]100×3001

mean−→ [Z]1×3001. (4.5)

Principal component analysis method reduces the dimension of feature vectors to

reduce the unreasonable complexity and time of calculations and also it reduces the re-

quired data for neural network training. Command princomp in MATLAB takes the data

and returns the principal component scores. Component scores are the representation of
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Figure 4.8: Continuous wavelet transform of a spindle vibration signal.

each data in the principal component space. For the present dataset, the matrix of the in-

put signals is [A]26×3001 in which 26 is the number of data in this dataset. The output of

princomp command on this input data is [B]26×3001. This matrix is the representation of

matrix [A]26×3001 in the principal component space. Since for matrix [A]26×3001 number of

observations (rows) is less than the number of variables (columns), 26 < 3001, in matrix

[B]26×3001 the value of columns 26 to 3001 are necessarily zero. Therefore, the database in

new space can be defined with matrix [C]26×25 .

[A]26×3001
PCA−→ [B]26×3001

Delete zero columns−→ [C]26×25. (4.6)

As PCA arranges the principal components based on the largest possible variance, therefore

the most important components for representing data in dataset are the first components in

the output matrix of PCA. By taking the advantage of this characteristic, 5 first compo-

nents are selected from the 25 components specified by PCA. By this way time consuming

and complex calculations in the next step for training complex neural networks are more

reduced. Therefore, the dimension of the dataset is as follows:

[C]26×25→[D]26×5. (4.7)
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Figure 4.9: The schematic structure of the best network trained with Algorithm 2 for spin-
dle vibration signals.

With this dataset three neural networks are trained for three categories of signals:

AC power, table and spindle vibrations. As explained in the previous algorithm, neural

networks are trained by use of nntool toolbar. The dataset has 26 signals, 20 signals for

training and 6 signals for the test data. Considering the final dataset matrix [D]26×5, the

input layers of these networks have five neurons and the output layer have one neuron

which gives the value of tool wear. The networks are feed-forward networks and they

are trained with Levenberg-Marquardt backpropagation algorithm. As same as previous

algorithm mean squared error is an indicator for controlling the training process. Also, the

average of network error for calculating the tool wear value for test data is the scale for

choosing the best trained network.

All the best trained networks for these three types of data, has one hidden layer. The

network transfer function for hidden layer of all networks is tan-sigmoid and for output

layer is purelin. As an example, Fig. 4.9 shows a schematic structure of the best trained

network for spindle vibration signals and Fig. 4.10 shows the trend of training. Table 4.3

reports the number of neurons in hidden layer and the accuracy of the best trained networks

for all three types of signals.
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Figure 4.10: The trend of network training with Algorithm 2 for spindle vibration signals.

Table 4.3: Structure parameters and results of the trained networks with Algorithm 2.

Signal Number of neurons Network average error (%) Network accuracy
in hidden layer 100−error (%)

AC power 3 14.1 85.9
Table vibration 3 21.3 78.7
Spindle vibration 5 13.6 86.4

4.3 Algorithm 3: Wavelet-ICA-NN

This algorithm in feature extraction and classification is similar with the previous one,

except the method used for dimension reduction is the independent component analysis

(ICA). The output of wavelet transform is like before [A]26×3001. ICA method is applied to

this dataset with using a MATLAB code [120] and the dimension of dataset is changed as

follows:

[A]26×3001
ICA−→ [B]26×10. (4.8)
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Figure 4.11: The schematic structure of the best network trained with Algorithm 3 for
spindle vibration signals.

Table 4.4: Structure parameters and results of trained networks with Algorithm 3.

Signal Number of neurons Network average error (%) Network accuracy
in hidden layer 100−error (%)

AC power 3 19.9 80.1
Table vibration 5 17.9 82.1
Spindle vibration 5 6 94

This MATLAB code takes the number of independent components (the dataset will be ex-

pressed with these independent components) as an input data. Here this number is selected

as 10. Therefore, in new representation of dataset, each data is presented with 10 fea-

tures and the feature vector for each data is a 1×10 vector. Feed-forward neural networks

with Levenberg-Marquet backpropagation algorithm are trained. All the networks (the best

trained networks for AC power, table vibration and spindle vibration signals) have one hid-

den layer. The transfer function for hidden layers is tan-sigmoid and for output layer is

purelin. Number of neurons of input layer is 10 (equal to the number of features for repre-

senting each data)and for output layer is one. As an example, Fig. 4.11 shows a schematic

structure of the best trained network for spindle vibration signals and Fig. 4.12 shows the

trend of training. Table 4.4 reports the number of neurons in hidden layer and the accuracy

of the best trained networks for all three types of signals.
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Figure 4.12: The trend of network training with Algorithm 3 for spindle vibration signals.

4.4 Algorithm 4: S-Transform-PCA-NN

After using common signal processing methods in the Algorithms 1-3, in Algorithm 4, 5, S-

Transform is applied to investigate the effect of S-Transform on the accuracy of monitoring

algorithm. In this algorithm S-Transform is applied for feature extraction and principal

component analysis and neural network used for the feature selection and classification as

the second algorithm.

As explained in Chapter 3, S-Transform has its own merits and demerits comparing

with other feature extraction methods like wavelet transform [100]. For making us of the

advantages of S-Transform with the hope of having more accurate results, it is investigated

as Algorithm 4 here. As explained in Chapter 3, S-Transform of signals will be calculated

in a range of frequencies. The available MATLAB code for calculating S-Transform takes

this range of frequencies as an input in addition to the signals [120]. To make sure that the

results of S-Transform return the best features which reflect the differences between signals
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Figure 4.13: wide range frequency S-Transform analysis for a spindle vibration signal.

as much as possible, this range of frequencies should be investigated carefully. To do this,

first few samples of each type of signals are analyzed in a wide range of frequencies. The

results for spindle vibration is reported in Fig. 4.13. As it can be seen in this figure in the

range of frequencies 300−700 (Hz), the result of S-Transform is changing during the time

with changing the situation of the tool status. Therefore, this range of frequencies has been

selected for calculating the S-Transform of the signals. By applying S-Transform for each

input signal there would be a feature matrix as following:

[X ]3001×1
ST−→ [Y ]401×3001. (4.9)

To avoid complex values, absolute value of arrays are used in following calculations. Also,

to form a matrix based on the dataset, for each signal a feature vector is needed. By using

mean value of the feature matrices, they are changed to feature vectors.

[Y ]401×3001
mean−→ [Z]1×3001. (4.10)

By this way, [A]26×3001 is feature vector matrix of the original dataset. The dimension of
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Figure 4.14: The schematic structure of the best network trained with Algorithm 4 for AC
power signals.

this dataset is reduced with PCA method. With MATLAB command princomp which has

been explained before, the new representation of dataset in principal component space is:

[A]26×3001
PCA−→ [B]26×3001, (4.11)

with deleting the zero columns, the reduced dataset becomes:

[B]26×3001−→[C]26×25. (4.12)

Considering 5 first features for describing the data, the dataset will be changed to new

reduced matrix [D]26×5.

[C]26×25−→[D]26×5. (4.13)

Using this dataset three neural networks are trained for calculating the value of tool wear

for AC power, table vibration, and spindle vibration signals. The networks are feed-forward

type and they are trained with Levenberg-Marquet backpropagation algorithm. All the

networks have one hidden layer and the transfer function for hidden layers is tan-sigmoid

and for output layer is purelin. Number of neurons of input layer is 5 (equal to the number

of features in feature vector of each data) and for output layer is one. As an example,

Fig. 4.14 shows a schematic structure of the best trained network for AC power signals and
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Figure 4.15: The trend of network training with Algorithm 4 for AC power signals.

Table 4.5: Structure parameters and results of trained networks with Algorithm 4.

Signal Number of neurons Network average error(%) Network accuracy
in hidden layer 100−error (%)

AC power 5 19.65 80.35
Table vibration 3 18.2 81.8
Spindle vibration 3 12.22 87.78

Fig. 4.15 shows the trend of training. Table 4.5 reports the number of neurons in hidden

layer and the accuracy of the best trained networks for all three types of signals.
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Figure 4.16: The schematic structure of the best network trained with Algorithm 5 for table
vibration signals.

4.5 Algorithm 5: S-Transform-ICA-NN

In this algorithm, different from the previous algorithm which used PCA for feature selec-

tion, ICA method is applied.

[A]26×3001
ICA−→ [B]26×10. (4.14)

Like before, the networks are trained with the new reduced dataset. The input layer of net-

works have 10 neurons and the output layer has one neuron. All networks are feed-forward

type and they are trained with Levenberg-Marquet backpropagation training method. The

transfer functions are chosen as tan-sigmoid and purelin for hidden layer and the output

layer respectively. As an example, Fig. 4.16 shows a schematic structure of the best trained

network for table vibration signals and Fig. 4.17 shows the trend of training. Table 4.6 re-

ports the number of neurons in hidden layer and the accuracy of the best trained networks

for all the three types of signals.
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Figure 4.17: The trend of network training with Algorithm 5 for table vibration signals.

Table 4.6: Structure parameters and results of trained networks with Algorithm 5.

Signal Number of neurons Network average error (%) Network accuracy
in hidden layer 100−error (%)

AC power 5 13.54 86.46
Table vibration 5 15.93 84.07
Spindle vibration 5 11.6 88.4

4.6 Discussion

The above reported results in the tables show that all trained algorithms are highly accurate.

Also based on the results, it can be concluded that the average accuracy of algorithms (the

average of accuracies of three networks trained with one algorithm) are generally increasing

from Algorithms 1 to 5. The accuracies of Algorithms 4 and 5, which they have used S-

Transform as feature extraction method, are equal or more than the accuracies of other

algorithms. It shows that S-Transform compares with descriptors and wavelet transform,

has better performance in extracting the most informative features. Looking at each type
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of signals (AC power, spindle vibration, table vibration) also can find the most accurate

algorithm. For example, the most accurate network for spindle vibration signals has been

trained with the Algorithm 3 with 94% precision. The trained networks with AC power

signals have the best average accuracy comparing with two other types of signals. The

networks trained with table vibration signals have the lowest average accuracy.

For all monitoring algorithms, the training process was fast. In designing monitor-

ing algorithms and training the neural networks, two different datasets have been used for

training and test data. It has increased the generalization ability of the networks. However,

due to some limitations like the small size of dataset or the difference between the experi-

mental conditions which the signals are recorded with real rush industrial environment, the

generalization ability decreases. Most of the monitoring algorithms proposed in the field

of machining monitoring are suffering from these limitations. As it has been explained

before, the training and test data are the recorded signals of case 1 and 9 which has the

same operating conditions. Therefore, the neural networks have been trained for working

in this set of operating conditions and for other set of operating conditions another trained

networks are needed.

In next chapter, Algorithm 5 which has the best average accuracies for all three types

of signals will be used for doing more investigations about its accuracy. First, the effect of

sensor fusion on the accuracy of this algorithm will be evaluated. Then, the algorithm will

be examined for working in different operating conditions and for detecting the sharp tool

from the dull one.
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Chapter 5

Further studies on the accuracy of the

selected algorithm

In the previous chapter, monitoring algorithms have been trained with a single type of sig-

nals recorded in one specific operating conditions (case 1 and 9) and the accuracies of

algorithms have been calculated for measuring the value of tool wear. In this chapter, the

effect of sensor fusion on the results of the Algorithm 5 and its accuracy will be investi-

gated. Also, since the operating conditions can change the pattern of the recorded signals,

the effect of operating conditions like depth of cut, feed and workpiece material on the

accuracy of algorithm will be studied as well. For this purpose different datasets which

are the combination of signals from different operating conditions will be implemented for

training and testing the monitoring algorithm. Finally, instead of just calculating the value

of tool wear, the accuracies of algorithm for detecting the sharp tool from the dull one will

be investigated.

5.1 Effect of sensor fusion on the accuracy of algorithm

Sensor fusion refers to the use of more than one sensor signal in a complementary manner

to provide a more robust prediction of one or more machining attributes [101]. In previous
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chapter, the dataset for training and testing networks was included just one type of signals

and for each type of signals one individual network was trained. In this chapter with sensor

fusion, a dataset which combines the information of two different types of signals will be

used for training and testing the algorithm. For example, instead of just using AC power

signal, spindle vibration signal for the same data is also considered for representing the

data. In this case, for one data, the AC power signal and the spindle vibration signal, both

are analyzed with S-Transform and then the feature vector is made with extracted features

of both of them.

AC power signal = [X ]3001×1
ST-mean−→ [x]401×1,

Spindle vibration signal = [Y ]3001×1
ST-mean−→ [y]401×1,

=⇒ Feature vector of data = f =

⎡
⎢⎣x

y

⎤
⎥⎦

802×1

. (5.1)

After making the feature vectors the new dataset is [A]802×26. With ICA method for feature

selection, the input dataset to neural network is:

[A]802×26
ICA−→ [B]10×26. (5.2)

With the new dataset the neural network is trained. The neural network parameters are the

same as explained in Chapter 4. The algorithm are trained for three pairs of signals:

1- AC power and spindle vibration signals,

2- AC power and table vibration signals,

3- Table vibration and spindle vibration signals.

Tables 5.1–5.3 show the accuracy of the trained algorithm for each pair of signals. In the

tables, the results of individual networks have reported too. Results show that sensor fusion

increase the accuracy of algorithm. Therefore, in case of having sensors available, using

multiple sensors and making dataset with sensor fusion is completely recommended.
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Table 5.1: Accuracy of Algorithm 5 for AC power and spindle vibration sensor fusion.

Dataset AC power, Spindle vibration AC power Spindle vibration

Accuracy (%) 88.36 86.46 88.34

Table 5.2: Accuracy of Algorithm 5 for AC power and table vibration sensor fusion.

Dataset AC power, Table vibration AC power Table vibration

Accuracy (%) 89.54 86.46 84.07

5.2 Effect of variable operating conditions on the accu-

racy of algorithm

Since a machining center works in different operating conditions, therefore, having a mon-

itoring algorithm which can indicate the process status in different operating conditions

would be very valuable to industrial applications. In this section the accuracy and effi-

ciency of Algorithm 5 for monitoring in different operating conditions will be investigated.

For this purpose the dataset for training the algorithm should include signals from all op-

erating conditions that the algorithm is supposed to work under them. Here three different

datasets are considered for the training algorithms. Each of these datasets includes signals

from two set of operating conditions which are different in one condition. For example, the

first dataset includes signals from cases 1, 9, 2 and 10 in which the operating conditions

of cases 1 and 9 are different from 2 and 10. These operating conditions have same feed

and material and different depth of cuts. By training and testing the algorithm using this

dataset the accuracy of the algorithm for working in the operating conditions which have

different depth of cuts will be examined. The results will show the accuracy of algorithm

for working in the conditions which the depth of cut changes. Same as the first dataset,

second and third dataset include signals from different operating conditions and are used

for investigating the accuracies of algorithm when feed or workpiece material change (Ta-

ble 5.4). First dataset is made with the signals from two operating conditions which are

62



Table 5.3: Accuracy of Algorithm 5 for table and spindle vibration sensor fusion.

Dataset Table vibration, Spindle vibration Table vibration Spindle vibration

Accuracy (%) 89.6 84.07 88.34

Table 5.4: Three datasets.

Dataset Cases Difference

1 (1,9),(2,10) Depth of cut
2 (1,9),(4,12) Feed
3 (1,9),(5,13) Work piece material

different in depth of cut as follow:

Signal from cases 1 and 9 = [X ]3001×1
ST-mean−→ [x]401×1,

Dataset made by cases 1 and 9 = [a]401×26,

Signal from cases 2 and 10 = [Y ]3001×1
ST-mean−→ [x]401×1,

Dataset made by cases 2 and 10 = [b]401×23,

First dataset made by cases 1,9,2,10 = A =

[
a b

]
401×49

. (5.3)

Second and third datasets are made like the first one:

Second dataset made by cases 1,9,4,12 = B =

[
a c

]
401×48

, (5.4)

Third dataset made by cases 1,9,5,13 =C =

[
a d

]
401×47

. (5.5)

Algorithm 5 is trained by these three datasets as it has been explained in Chapter 4. The best

accuracies of the best trained networks for these datasets are as Table 5.6. With an overall

look on the table, it can be concluded that the accuracy of a trained algorithm with one of

these three datasets is worse than the algorithm trained to work in one operating condition
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Table 5.5: Datasets prameters.

Cases Depth of cut (mm) Feed (mm/rev) Material

1,9 1.5 0.5 Cast iron
2,10 0.75 0.5 Cast iron

Table 5.6: Accuracy of Algorithm 5 for different operating conditions.

Cases make dataset AC power Spindle vibration Table vibration

cases (1,9) 86.46 88.34 84.07
cases (1,9),(2,10) 75.75 47.8 81.2
cases (1,9),(4,12) 61.72 76.75 73
cases (1,9),(5,13) 58.14 63.03 67

only. This is due to increase the diversity of patterns of the data in the dataset, which make

the distinguishing data and predicting their tool wear harder and more complex. The results

show that the accuracy of algorithm when it works in the condition in which the material

is changing, is worse than other cases which other parameters like feed or depth of cut

change. Also, the algorithm monitors the process more accurate when the depth of cut

changes rather than feed.

5.3 Detecting the sharp and dull tool with the selected al-

gorithm

In designing the previous monitoring algorithms, the goal of monitoring was to predict the

amount of tool wear. Sometimes it is only required to know if a tool is sharp or dull rather

than knowing the amount of tool wear. In definition, sharp tool is a tool which does not

have tool wears more than a specific value, “a” If based on this definition, tool is not a
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sharp tool, it is called dull tool. In the simple way:

⎧⎪⎨
⎪⎩

sharp tool tool wear < a (mm),

dull tool tool wear ≥ a (mm).

(5.6)

The amount of “a” depends on the expected production quality from machining with this

tool. It can also be dependent on the type of machining process and tool material. Since

in the algorithms presented in this study, the amount of flank tool wear is predicted, it is

possible to indicate sharp tool from dull one too. By adding a simple comparison to the

MATLAB code of algorithms, the final value predicted for flank tool wear is compared with

“a”. The output of algorithm indicates if the input signal has been produced with a sharp

tool or with dull one. This code can get “a” as an input too. By this way, the algorithm

would be compatible for doing monitoring in different desired qualities of production. The

output of this algorithm for five supposed test signals is as following:

[
a b c d e

]
Algorithm 5−→

[
sharp sharp dull sharp dull

]
. (5.7)

In this case the accuracy of the algorithm is its ability for distinguishing sharp tool from dull

one. So, the accuracy is expressed with dividing the number of output predicted correctly

to the total number of outputs.

Accuracy (%) =
number of correct predictions

number of total outputs
×100. (5.8)

Therefore, for the above supposed test signals, if the real status of their tools would be as

below: [
a b c d e

]
−→

[
sharp dull dull sharp sharp

]
. (5.9)
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Table 5.7: Tool status.

Data No. 1 2 3 4 5

Predicted flank wear (mm) 0.07 0.2 0.26 0.36 0.51

Predicted tool status Sharp Sharp Sharp Sharp Dull

Real tool status Sharp Sharp Sharp Dull Dull

Then the status of tool for signals “b” and “e” have been detected incorrectly and the accu-

racy of algorithm would be:

Accuracy (%) =
3
5
×100 = 60%. (5.10)

To investigate the accuracy of the algorithm 5 for detecting sharp tool from dull one, as

explained before, it is necessary to specify the value of “a” which is the boundary limit

between sharp and dull first. The range for maximum flank wear for coated carbide tool

which has been utilized here for roughing, is 0.3−0.5 mm [121]. The value “a” is consid-

ered as 0.4 mm which is in the middle of this range. Therefore, the definition of sharp and

dull tool here is: ⎧⎪⎨
⎪⎩

sharp tool tool wear < 0.4 mm,

dull tool tool wear ≥ 0.4 mm.

(5.11)

The results of the first algorithm for some random input data can be expressed in the new

definition as the Table 5.7. The accuracies of Algorithm 5 which was trained with the

datasets include signals from different operating conditions are calculated based on the

new definition and reported in the Table 5.8. The table shows that the algorithm detects

sharp and dull tool with 90% accuracy for the combination of 1, 9, 2 and 10 cases and

with AC power signals. This is more than the accuracy of algorithm for calculating tool

wear which was 75.75%. Comparing these two accuracies shown in the Table 5.8, it can

be easily seen that the accuracies of the algorithms when they are used for detecting sharp

and dull tool is more than when they have been used for calculating the amount of flank
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Table 5.8: Comparing accuracy of detecting tool status with predicting tool wear.

Dataset Signal Accuracy of detecting Accuracy for predicting
sharp and dull tool (%) tool wear (%)

Cases (1,9),(2,10) AC power 90 75.75
Table vibration 70 81.2

Spindle vibration 100 47.8

Cases (1,9),(4,12) AC power 78 61.72
Table vibration 67 73

Spindle vibration 67 66.75

Cases (1,9),(5,13) AC power 75 50.14
Table vibration 87 67

Spindle vibration 75 63.03

tool wear.

5.4 Chapter summary

In this chapter, the effect of sensor fusion on the accuracy of algorithm has been investi-

gated. The results show that sensor fusion increases the accuracy of the algorithm. There-

fore, with increasing the number of sensors, considering the financial limitations, it is pos-

sible to have more accurate algorithm for monitoring machining process and have pro-

ductions with better quality. The ability of algorithm for working in different operating

conditions was another topic which has been studied in this chapter. Investigations show

that in this case the accuracy of algorithm decreases generally. This decrease is more for

material change and less for feed and depth of cut change. Finally, a new definition for tool

status has been proposed. In this definition tool may have one of these two status: sharp

or dull. Tool is sharp if its flank tool wear is less than an indicated value of 0.4 mm as an

example. Also, it is dull if the tool wear is more than 0.4 mm. The results of algorithm

have been expressed in this new definition and the accuracies of algorithm have been re-

ported. Comparing the accuracies of algorithm in this new definition with the accuracies

for calculating tool wear, it can be concluded that the accuracies of proposed algorithm for
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indicating sharp tool from dull tool is more than its accuracies for calculating the amount

of tool wear. Therefore, the selected algorithm is more reliable when it is used for distin-

guishing sharp and dull tools.
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Chapter 6

Conclusion and future works

6.1 Conclusion

Machining processes are among the most common industrial operations utilized everyday

in factories. Therefore, process monitoring and fault diagnosis of machining operations

are very important and useful to the industry. Although considerable research has been

conducted in this field, there is still lack of monitoring algorithm which is reliable, robust,

accurate, inexpensive, automatic, practical and independent from the operating conditions.

This research was planned to reach this goal and design such a monitoring algorithm with

applying and combining conventional signal processing and artificial intelligence methods

in the field of machining monitoring and also with the aid of the new signal processing

method, S-Transform in this field. Five monitoring algorithms were trained by three differ-

ent types of signals: AC power, spindle vibration and table vibration signals. Monitoring

algorithms were designed based on the pattern recognition concept. It includes four steps:

preprocessing, feature extraction, feature selection and classification. All algorithms use

the same classification method which is the neural network. Neural network is one of the

most accurate artificial intelligent methods for data classification. Various methods for fea-

ture extraction and selection were applied. For feature extraction, first, two conventional
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methods in the field of machining monitoring, descriptors and wavelet transform were im-

plemented and then the new method, S-Transform, were used. Although descriptors are

simple features that can be very easily and quickly calculated, the accuracy of the first al-

gorithm is high. In the second and third algorithms, wavelet transform was applied as the

feature extraction method to increase the accuracy of the algorithm with analyzing data in

both time and frequency domains. The results of training show that these two algorithms are

more accurate than the first algorithm. Also, based on the results, it is shown that the third

algorithm is more accurate than the second one. This observation reveals that ICA has bet-

ter efficiency than PCA for selecting the most informative features. To take the advantages

of the S-Transform comparing with the wavelet, it has been applied in Algorithm 4 and

5. In the first step, S-Transform of the input signals was calculated in a wide range of fre-

quencies. The best range of frequencies, which shows the variations of the process situation

better, was selected to be applied in the next steps of the algorithm. The results show that

Algorithm 5, which applies a combination of S-Transform and ICA, is the most accurate

algorithm between the designed algorithms. Also from the result it can be concluded that

S-Transform has the same or better performance in extracting the features comparing with

two other feature extraction methods. In addition to the better performance which increases

the accuracy, S-Transform has other positive points comparing with other feature extraction

methods. For example, comparing with descriptors which analyze the data in time domain,

S-Transform is a time-frequency method and can provide the benefit of seeing the changes

happen in the frequency domain. Despite of descriptors, S-Transform also is robust to the

noise and its performance would be less suffered if more than one fault would be existed.

It also has the absolutely referenced phase information and frequency invariant amplitude

response that the continuous wavelet transform does not have. The better performance for

feature extraction and the other mentioned positive points make S-Transform’s application

to signal processing in machining monitoring research more feasible.

With Algorithm 5, the effect of sensor fusion on the accuracy of algorithm has been
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investigated in Chapter 5. The results confirm that the accuracy of algorithm increases with

applying the sensor fusion. The results of Section 5.2 show that when the datasets include

signals from two sets of operating conditions rather than one set of operating conditions,

the accuracy of algorithm generally decreases. Also, the decrease in accuracy is maximum

when the workpiece material changes. After changing in workpiece material, the change

in feed decreases the accuracy considerably. Depth of cut decreases the accuracy less than

other two parameters. This investigation shows the algorithm is less reliable to work in

variable operating conditions. In the rest of Chapter 5, in order to detect sharp tool from

the dull one, the definition of sharp and dull tool was added to the algorithm. In view of

the results, it can be concluded that the accuracy of the algorithm for indicating the sharp

and dull tool is more than the accuracy for predicting the amount of tool wear. The main

contribution of this study is summarized as follows:

• Applying conventional and new signal processing and artificial intelligence methods

based on the pattern recognition for designing machining process monitoring algo-

rithm.

• Investigating the effect of S-Transform on the accuracy of monitoring algorithm and

comparing its feature extraction performance with two other conventional signal pro-

cessing methods in the field of machining monitoring.

• Using a real benchmark of milling process for training and testing the algorithms and

having the good results in monitoring.

• Investigating the effects of sensor fusion and variable operating conditions on the

accuracy of the best designed algorithm.

• Developing the designed algorithm for detecting the sharp and dull tool.

• Designing practical monitoring algorithm by applying the sensors which they are

practical to use for the industry.
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• Meet the goal of the thesis for designing an accurate, automatic, practical and inex-

pensive monitoring method.

6.2 Future work

Following suggestions can be considered for developing new monitoring algorithms or

improving the accuracy of the existing algorithms in future studies:

• Applying new signal processing methods such as fast S-Transform which possesses

the advantages of S-Transform while it has less complexity and computations for

feature extraction.

• Applying other intelligent methods such as fuzzy logic for signal classification.

• Optimizing the number of features selected by PCA and ICA with optimization meth-

ods.

• Combining the features of two signal processing methods such as Wavelet and S-

Transform for more accurate representation of the data. Using this approach, the

monitoring algorithm can benefit from the both methods.

• Working on the robustness of the algorithm for handling different operating condi-

tions more effectively.

• Application of developed monitoring algorithms to other types of CNC machining

tools and processes.
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