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ABSTRACT  

Dynamically Reconfigurable Active Cache Modeling 

Ali Barzegar 

This thesis presents a novel dynamically reconfigurable active L1 instruction and data cache 

model, called DRAC. Employing cache, particularly L1, can speed up memory accesses, reduce 

the effects of memory bottleneck and consequently improve the system performance; however, 

efficient design of a cache for embedded systems requires fast and early performance modeling. 

Our proposed model is cycle accurate instruction and data cache emulator that is designed as 

an on-chip hardware peripheral on FPGA. The model can also be integrated into multicore 

emulation system and emulate multiple caches of the cores. DRAC model is implemented on 

Xilinx Virtex 5 FPGA and validated using several benchmarks. Our experimental results show 

the model can accurately estimate the execution time of a program both as a standalone and 

multicore cache emulator. We have observed 2.78% average error and 5.06% worst case error 

when DRAC is used as a standalone cache model in a single core design. We also observed 

100% relative accuracy in design space exploration and less than 13% absolute worst case 

timing estimation error when DRAC is used as multicore cache emulator.   
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CHAPTER 1 

1 Introduction 

According to Moore’s law, the number of transistors in integrated circuits would double 

approximately every two years [1]. Due to diminishing transistor size, Moore’s law is still 

holding valid. As a result, the number of integrated modules inside a chip has increased, which 

has made the integration of several cores feasible [2]. A multi-core processor is composed of 

several cores communicating through a communication media like buses, point-to-point links, 

and cross-bars. 

 

Figure 1.1 Performance of multicore and single core chips over the years [3] 

Each core of a multicore embedded processor might not be as fast as a high performance 

single core processor but, the distribution of the work over different cores enables improvement 

of the overall system performance [3]. Figure 1.1 compares the performance of an Intel single 

core and multi-core by running the SPECint2000 and SPECfp2000 benchmarks. It is obvious 

that the relative performance of multicores has increased significantly over the past few years. 



Overall system performance is not only influenced by processor speed, it is also drastically 

affected by memory access speed. The gap between the processor and the main memory 

performance is a challenging issue in computer architecture. To address this problem, Memory 

hierarchy is introduced. 

 

Figure 1.2 Memory hierarchy in computer architecture 

Figure 1.2 presents a simple hierarchy that includes registers, three levels of cache, main 

memory, and disk storage. Cache, specifically, is a fast and relatively small memory used for 

keeping instructions and data. Data is moved from the slower/larger memory to the 

faster/smaller memory to decrease the access time in repetitive accesses. Recently, different 

levels of the cache are introduced to reduce the accesses to the main memory even further.  

Memory management in multi-core processors becomes more challenging than 

conventional single-core processors. The memory management challenge refers to provide a 

consistent view of memory with various cache hierarchies. This consistency is harder to achieve 

in multi-core processors where cache hierarchy of several cores should be consistent. In 



addition to cache consistency problem, the number of pins on the chip remains almost constant 

with adding more cores. Therefore, adding more off-chip memory is not feasible and using one 

off-chip memory for all cores may increase access time. To overcome pin constrain challenge, 

the number of main memory accesses is expected to be minimized. 

1.1 Motivation 

Prior to a single or multicore system implementation, it is general practice to build a 

prototype of the system. Though prototyping, the designer is capable of testing and exploring 

design options in order to avoid unexpected problems and to optimize the system. In addition, 

for early system validation and determining the functional accuracy of the design, it is necessary 

to have a model of instruction and data cache; a model that is highly accurate and can simulate 

the cache in high speed.  

Trends toward multicore processing lead us to extend the cache model to emulate multiple 

caches of the cores. Level 1 (L1) cache modeling for multicore emulation is more involved than 

implementing a built-in regular cache in the physical core. The cache model should be capable 

of simulating different caches of the virtual cores by dynamically changing its context. The 

model also should be dynamically reconfigurable, so the time required time for emulating 

different configurations be reduced.  

The target caches to be modeled, both in single and multi-core systems, are instruction and 

data, L1, direct mapped, with write-through policy caches since 

• To achieve the best performance of a system, it is necessary to have both instruction 

and data caches. As a result, the target system has instruction cache as well as data 

cache.  



• L1 cache has a great impact on the system performance since it is the closest level 

of cache to the processor. Embedded systems might use only the primary level (L1) 

of cache in order to reduce the complexity and cost of production; hence, we only 

targeted L1 cache. 

• Direct mapped caches use less logic than set-associative and full-associative caches; 

therefore, direct mapped cache consumes less power than other associative caches, 

and is preferable in simpler embedded systems. 

• Write-through writing policy in data cache ensures that the cache-store remains 

consistent. It is important to keep data consistent during multicore emulation, so 

write-through policy was chosen for the writing policy.  

1.2 System Prototyping 

Prototyping is the procedure of building a model of a system in order to check for flaws and 

to optimize the product before manufacture. Virtual and FPGA Prototyping are common 

techniques that can be used for early system validation. 

1.2.1 Virtual Prototyping 

Virtual Prototyping provides an early, abstract functional model of the hardware. This 

technique uses software simulation libraries and tools to build a software model of the design. 

Designers use virtual prototyping to test, optimize, validate and verify their design in a software 

framework. Virtual prototyping uses a computer software-based model of a system or 

component to avoid early system problems and reduce time-to-market.  



Virtual prototyping involves producing a platform or a set of functional models for different 

system components such as processor, memory, or bus. These techniques offer the designers a 

low cost tool on a computer that benefits from scalability, flexibility, and ease of debugging; 

however, current virtual prototyping tools [4], [5] compromise cycle-accuracy for simulation 

speed. Virtual prototyping is performed according to a functional model of the system. This 

model accelerate the simulation and evaluation of the system but it sacrifices the accuracy for 

the speed. 

1.2.2 FPGA Prototyping 

FPGA prototyping refers to the process of verifying the functionality and performance of 

the prototype by implementing the design on a field programmable gate array (FPGA).  FPGA 

prototyping involves instantiating processor cores, bus, memory, and the peripherals on a chip. 

FPGA prototypes are typically, several orders of magnitude faster than cycle accurate virtual 

prototypes, while still providing cycle accuracy and almost at-speed simulation of the target 

design. This technique is also the pre-silicon stage of SoC and ASIC design in order to avoid 

expensive silicon re-spin. Although the speed of FPGAs are lower than ASIC chips, the 

configurability of FPGA distinguishes them over ASIC technology. 

The main drawback of FPGAs is the lack of scalability. Since most of the design is 

implemented by the logic gates and the logic gates are limited on FPGA, it is hard to implement 

several design on a single FPGA chip. Besides, debugging of a design on FPGA is difficult and 

time consuming in multicore design. As much as the number of cores increases, the complexity 

of the design increases.  



 

(a) System with built-in cache   (b) System with DRAC model 

Figure 1.3 Cache modeling in single core design  

1.3 Methodology 

Figure 1.3 presents the methodology of DRAC in a single core design. Figure 1.3 (a) shows 

the overview of a single processor system with built-in data and instruction cache.  The memory 

controller, DRAM, and peripherals such as timer and debugger module are also implemented 

in the design. The communication between the cache, processor and main memory is through 

cache link interconnection. The target built-in cache is a level 1 (L1) direct mapped cache. 

Direct mapping allows simple and fast speculation of the information. L1 cache also has the 

greatest impact on the system performance. Figure 1.3 (b) illustrates the modeled system with 

instruction and data DRAC. We excluded both built-in instruction and data cache (IBIC and 

DBIC) and implemented DARC emulator instead. The cache is controlled in software by the 

driver that is provided with the model. It can be simply enabled, disabled, or reconfigured 

during program execution time. 



 

Figure 1.4 Full FPGA prototype of a multicore design  

Figure 1.4 shows the full FPGA prototype of a target multicore design. In this design, 

processors running in parallel and have separate accesses to the main memory provided by 

Multi Port Memory Controller (MPMC). Each processor has its own separate L1 instruction 

and data cache. Hybrid prototyping, which is a promising prototyping technique, targets the 

multicore design, and emulates the system on a single physical core depicted in Figure 1.3 (b). 

Hybrid prototyping provides the benefits of scalability of virtual prototyping, as well as the 

cycle-accuracy and speed of FPGA prototyping 

The key idea is a Multicore Emulation Kernel (MEK), which is a software layer that 

executes on a single target core that is physically implemented in FPGA. The MEK 

dynamically schedules different tasks running on independent cores on a single physical target 

core, to simulate software execution on a multicore platform. The MEK manages the state of 

the individual cores and the logical simulation times. The original hybrid prototyping system 

uses Block RAM (BRAM) for the program and data, since it does not support memory 

hierarchy. This work extends hybrid prototyping by supporting memory hierarchy consisting 

of L1 cache, and off chip main memory, implemented in DRAM.  



L1 cache modeling for hybrid prototyping is more involved than implementing a built-in 

regular cache in the physical core. The cache model should be capable of simulating different 

caches of the virtual cores by dynamically changing its context. We proposed a Dynamically 

Reconfigurable Active Cache (DRAC) model to support multiple L1 cache contexts. DRAC is 

designed as a run-time configurable cache.  

DRAC is also designed as an active cache model. It actively interacts with the target system 

and provides required instruction and data for the processor. Similar to BIC, DRAC uses 

BRAM for data and tag memory; hence, it speeds up the system performance in compare to the 

system without cache. Upon a memory request, DRAC fetches the regarding instruction or data 

from the main memory, keeps a copy of the information in data memory, updates the tag 

memory, and delivers the information to the processor. On the next access to the same address 

location, DRAC retrieves the information from its data memory and decreases the fetch time. 

The active behavior of DRAC also provides the model the ability to control memory transaction 

latency over the bus. In order to model BIC behavior, DRAC injects extra cycles in the required 

cases to scale the memory transaction latencies. Thereby, the execution time will be a linear 

factor of the system with BIC.  

The run-time configurability of DRAC provides MEK the ability to change the cache 

configuration during program execution. The configurability has to be run-time since the 

emulation process is fully controlled by the MEK software. The MEK can change the cache 

configurations, like the size of the cache, depending on the emulated core’s configuration. 

Therefore, it is possible to have different cache contexts and configurations for each core.  

 

 



1.4 Related Work 

There are different approaches to model the cache behavior. Cache modeling can be broadly 

divided into software-based and hardware-based modeling techniques. Each has its advantages 

and drawbacks. In following section, we discuss some of these techniques.  

1.4.1 Software Cache Modeling 

Software models are developed in a software environment on a host computer. They support 

a high degree of configurability; however, software-based simulators compromise accuracy for 

simulation speed, and vice versa. Since software models are running on host computer and there 

are plenty of resources on computer, software models promotes scalability and flexibility in 

cache modeling. 

1.4.1.1 Trace driven simulators  

 Trace driven simulation has been one of the popular cache modeling approaches for many 

years. Trace driven simulators consist of three stages: trace collection, trace reduction, and trace 

processing. They extract the memory traces through the software, and use the extracted data to 

simulate the behavior of the cache.  These simulators are developed in a software environment 

and offer a good degree of configurability, however they suffer lack of accuracy. Since the 

entire performance of the cache is not visible in this technique, it is difficult to determine the 

error. Processing the traces can also be time consuming which is not desired for design space 

exploration. 

The early trace driven cache simulator proposed by Denning [7] collected memory 

references based on their independent probability. This model does not consider the locality of 

memory references inherent in a real trace. Dinero IV [8] is another simulator based on trace 



collecting written in C language. This technique needs repetitive simulations to reach to higher 

accuracy and is not eligible for multicore processing. MMCacheSim [9] is a highly configurable 

matrix multiplication cache simulator that can be used in multicore processing system. This 

model that is developed in java, simulates the execution time and number of cache misses on 

processor with different cache sizes, lines, levels, associativity, and replacement policies. Like 

other trace driven simulators, this model suffers from lack of accuracy. 

1.4.1.2 Transaction Level Modeling 

Transaction-level modeling (TLM) is a high-level approach to model cache behavior. This 

is a widely used technique for abstracting the system behavior in both processing and memory 

level. TLM modeling is the response to increase the software simulation speed by abstracting 

communication details. TLM models extract the memory access information and abstract them 

into cache models. This software simulation technique faces two major challenges: the 

accuracy, and system performance. Such these simulators, are not accurate enough since they 

cannot statistically resolve addresses during source code instrumentation. Cache modeling 

brings large overhead in simulation performance and reduces the speed.  

Statistical models [4] randomly generate cache misses according to certain miss rates. Such 

these models, are not able to catch entire data access pattern of a specific program, therefore 

they are not accurate. Another type of TLM simulators use the same addresses as host data [10], 

[11], [12]. In these simulators it is assumed that locality of reference is similar to the host and 

target memory; otherwise, the simulator is not accurate. Beside this challenge, the memory 

accesses would not be visible in source code. 

Hybrid source Level Simulation data cache simulator [13] is another method to make TLM 

cache models faster and more accurate. This technique combines the statistical analysis of data 



flow in machine code with high abstract source level simulation of the application. The main 

drawback of this technique is the need for repetitive simulation for increasing the accuracy of 

the simulator. This reduces the simulation speed and creates an overhead due to binary 

translation. Moreover, this approaches does not take multicore processing into account. The 

cache supports only single core designs. 

Zhonglei Wang et al. [14] proposed a method to increase the accuracy of TLM cache 

modeling and accelerate both instruction and data caches. Since data addresses cannot be 

resolved at compile time, there is always difficulty in data cache modeling in TLM. Their 

proposed model addresses this problem and increases the data cache accuracy. The model 

support multicore processing; however, in lower cache sizes, the accuracy and the system 

performance decreases.  

1.4.1.3 Single pass simulators 

Single pass cache simulators are introduced in order to reduce the number of required 

simulations. Such methods are able to simulate different cache designs in a single pass through 

the benchmark traces by evaluating multiple cache configurations simultaneously. Based on 

data structures and the methodology, single pass simulators divide into two categories: Stack-

based algorithms, and tree-based algorithms. Mattson et al. [15] proposed the earliest stack-

based algorithms for fully-associative caches. In order to include the set-associativity, direct 

mapped policy, and to reduce the simulation time, Hill and Smith [16] extended the model. 

However, their technique have a comparably high simulation time.  

To reduce the processing time, tree algorithm was introduced. This signal pass simulation 

algorithm stores the data accesses in a more efficient way than stack-based algorithm. Sugumar 

and Abraham [17] proposed a model that reduced the processing time by specializing the cache 



parameters being varied. All the mentioned single pass simulators only support one level of 

cache. T-SPaCS [18] supports two levels of instruction cache. This cache model uses a stack-

based algorithms to model L1 and L2 caches. The main drawback of this model is the 

complexity of the model, and simulating exclusively instruction cache.  

Janapsatya et al. [19] proposed a simulation algorithm to reduce the complexity and 

simulation time of the cache model. This model is categorized as tree-based single pass 

simulators and is capable of rapidly find the L1 cache miss rate for an application. It is also a 

good model to quickly explore different cache parameters from a single read of a large program 

trace. The main problem of this technique is the long simulation time (2.5 days for 268 cache 

configuration). All discussed single pass simulators are only capable of being used in a single 

core design, and are not applicable for multicore emulation.   

1.4.2 Hardware Cache Modeling 

Hardware cache models are introduced to address the simulation speed and accuracy issues 

of software simulators. Although software platforms provide flexibility and scalability for 

cache modeling, they are suffering from cycle accuracy and simulation speed. As software 

models get more complicated, longer simulation time is needed to perform the modeling. 

Increasing the complexity of the design in multicore processing systems and the need for more 

accurate cache models have lead the designers to develop cache models in hardware. FPGA 

technology is commonly used for hardware modeling. This technology promotes fast and 

accurate platform for online evaluation of the model. Hardware cache models can be classified 

into passive and active emulators. 

 



1.4.2.1 Passive cache emulators 

Most of the FPGA-based emulators are passive models. Passive emulators are like hardware 

monitors and bus probes. They are connected to the processor bus and collect transaction traces 

over the bus. Based on the statistics generated from these data traces, the target cache is 

modeled. Such models do not sacrifice the speed for the accuracy. They perform at-speed 

simulation since the embedded software is executed on the actual soft or hard core processor. 

This way the accuracy and the speed increase. Passive emulators also provide monitoring of 

the traces over the simulation. Therefore, the embedded designer is capable of observing the 

memory transaction and simply validate system functionality. Having all these advantages, 

passive models do not provide full system performance. Since the results in passive models are 

only depended on the system statistics, it is not possible to observe the entire system behavior 

and the effect of cache on the system.   

Yoon et al. [20] proposed RACFCS cache model that can generate the accurate and long 

traces to simulate cache. This cache emulator is based on trace collecting on the fly. It directly 

connects to the processors output pins and stores address references, data, and control signals. 

RACFCS configurability and programmability are the main advantages of this model. The 

simulation speed is acceptable in this model (110 minutes for all SPEC benchmark), however 

there is no discussion about the accuracy in their research.  

MemorIES design by Nanda et al. [21] is an online cache emulator that supports different 

cache sizes, associativity, line sizes, attributes, and cache writing algorithms in real-time. It 

consists of several FPGA boards and DRAM memory. It sits on a symmetric multiprocessor 

(SMP) bus, passively monitors all the bus transactions, and emulate shared L3 cache. There is 

a controller board that plugs into the memory bus of the host system and trace transactions. 



Based on these information, the emulator generates cache statistics such as hit ratio, read/write 

ratio, and amount of cache-to-cache interventions. MemorIES is specifically designed for IBM 

S70 class RS/6000 or AS/400 servers.  

Ravishankar and Abdi [22] proposed P-cache that is an L1 data cache emulator. P-cache is 

an FPGA-based passive model that is connected to the processor bus and probes memory traces. 

It provides cycle-accuracy and observability over software debugging and analysis. P-cache 

model also supports different configurations like different cache sizes, line sizes, and writing 

policies, but the configurability is static. The model it is not a dynamic cache model. It should 

be synthesized after changing each configuration. Furthermore, the experimental results are 

only based on target system statics and the model does not provide any information about 

system performance. Besides, it is not possible not use this model in the multicore emulation 

system since it only support one cache context. 

1.4.2.2 Active cache emulators 

Active cache emulators are introduced to model the entire performance of the cache. Such 

emulators actively interact with the processor and the main memory. The active emulators are 

complementary for passive cache emulators. They are not only tracing the memory transaction 

over the bus, they also provide instructions or data for the target processor and act as an actual 

cache. The system using active emulator experiences similar hit and miss latencies to the built-

in cache. Hence, the system speed up/down due to cache behavior is observable by the 

emulator. Like other FPGA-based emulators, active models can perform at-speed emulation 

and reduce the simulation time. Moreover, the accuracy is slightly better than passive emulators 

since the cached is modeled in more detail. 



PHA$E developed by Chalainanont Et al. [23] is a real time L3 cache simulator that is 

capable of being used in Pentium-based system hosts. This hardware simulator implemented 

on Xilinx XC2V1000 FPGAs supports different cache configurations and set associativity. This 

model is useful for investigating cache hierarchy efficacy due to its real-time capability and 

programmable feature. However, it cannot be used in a multicore emulation system since it is 

specifically designed for a single core system.  

RMP [24] is a FPGA-based emulator using rapid-prototyping methodology for 

multiprocessor system emulation. It consists of several FPGA boards that each emulates a 

single processor. In RMP, the entire hardware of the target machine, including the cache, is 

emulated by the platform. Two level of cache is implemented in system. The first level is a 

direct mapped write-through with block size of 16 bytes, and the second level is a two-way set-

associative write-back cache and block size of 16 bytes. RAMP [25] is another FPGA based 

emulator that supports the instantiation and integration of hundreds of cores. Similar to RMP, 

RAMP emulates the entire target system including cache. Both RMP and RAMP emulators 

suffer from high cost and design time for such full system prototyping. 

Active Cache Emulator (ACE) proposed by Nurvitadhi et al. [26] is another active cache 

emulator. ACE is an FPGA-based emulator that models an L3 cache actively in real-time. It 

provides feedback to its host, by injecting time delays to the memory transactions. So, it seems 

the system experiences hit or miss of the actual cache. ACE architecture is specifically designed 

to interface with a front-side bus (FSB) of a typical Pentium-based PC system. It emulates an 

eight-way write back cache, and sits on the processors slot. Besides all ACE advantages, it is 

specifically designed for a typical Pentium-based PC system. 



Table 1.1 Comparison of different cache modeling techniques  

 
 

  Feature 
 

Model 
Accuracy 

Simulation 
Speed 

Run-time 
Configurability 

Multicore 
Emulation 
Support 

Software 
Modeling 

Trace Driven × ×   

TLM ×    

Single Pass 
Through 

 ×  × 

Hardware 
Modeling 

Passive   ×  

Active     

 

Table 1 compares different cache modeling techniques and summarizes each technique’s 

capability. DRAC model is designed as an active cache emulator. It offers the emulation speed 

of active models, the observability of passive models, and run-time configurability of software 

models to support multiple cache contexts. 

1.5 Thesis Contribution  

This thesis presents a novel dynamically reconfigurable active instruction and data cache 

model which supports hybrid prototyping technique. Proposed DRAC emulator is ready to be 

used in multicore emulation kernel.  

The main contributions of this work are, 

• Introducing a standalone cycle-accurate L1 instruction and data cache model on the 

FPGA. DRAC that is designed as an active cache emulator, provides functional and 

cycle accuracy as well as system observability. 

• Improving simulation speed in compare to other software simulators and passive 

hardware emulation techniques. Implementing DRAC on the FPGA and utilizing 



on-chip BRAM as data and tag memory for the cache, significantly speeds up the 

simulation speed. 

• Parameterizing the cache timing model in order to make it a general cache model 

that can work with different processors and memory buses.  

• Extending the cache model to be a run-time reconfigurable emulator and supporting 

multiple cache contexts. Since multicore emulation process is controlled by the 

software layer in hybrid prototyping, DRAC’s configurability and its cache context 

can be changed during program execution.  

• Extending the hybrid prototyping system to be scalable to realistic multicore designs 

with cache hierarchy. Thereby, it is possible to run large size multi-thread 

applications and study design space exploration.  

1.6 Thesis Outline  

The rest of this thesis is organized in 5 chapters. Chapter 2 introduces DRAC design as a 

standalone cache model and provides the detailed architecture. Chapter 3 explains how DRAC 

emulator is extended to be used in hybrid prototyping. This chapter takes a closer look at hybrid 

prototyping methodology, multicore emulation kernel, and the system design. Chapter 4 

presents the timing model of DRAC and the approach used for execution time estimation. 

DRAM behavior and its effect on the cache is studied in this chapter. Chapter 5 shows the 

experimental results of DRAC as a standalone cache model and as a multicore cache emulator 

in hybrid prototyping.  At the end of this chapter, design exploration is discussed and different 

designs are compared to each other. Finally, chapter 6 concludes our work and presents the 

future work. 



CHAPTER 2 

2 DRAC Model 

DRAC is a cycle-accurate data and instruction cache model. It can model cache of a single 

core design, as well as emulating different caches of a multicore design. The design architecture 

of DRAC makes it an on-chip peripheral cache model that can work with most of the 

processors. Through some changes in the interface, it is possible to customize it for different 

processors.  

DARC is implemented as an interface between the processor and the main memory. It 

receives memory accesses from the processor, processes the requests, and delivers the 

instructions and data, as needed. Therefore, it actively interacts with the system. The active 

behavior of the emulator provides the feedback for the emulator to inject necessary time delays. 

By adding these time delays, the program’s execution time, when using DRAC, will be a 

multiple of the execution time with built-in cache. 

 

 

 

 

 

 

 

 



 

2.1 DRAC Interface 

In bus architecture, master/slave is a model of communication for the devices on the system 

bus. The master devices connected to the bus are able to initiate transactions, while the slave 

devices can only respond to the transaction requests.  DRAC is as a slave peripheral on the 

processor side, and master on the memory controller side to the processor bus. Bus mastering 

provides the full control of DRAC over the main memory. 

 

Figure 2.1 DRAC interface and its input and output signals 

Figure 2.1 shows the interface between DRAC and the processor bus. Since DRAC actively 

interacts with the modeled system, it is designed as a dual port peripheral. The input and output 

signals on the both sides are Address Bus, Address Valid, Read/Write, and the Address 

Acknowledgement. For any read or transaction, the processor put the desired address on the 

Address Bus and set the Address Valid signal high to inform DRAC that there is a request from 

the processor. DRAC is sensitive to Address Valid signal on the processor side; whenever 



detecting the request, it initiates the fetch process. The fetch process starts by setting Address 

Valid signal on the main memory side high, and putting the regarding address on the Address 

Bus. The main memory performs the memory transaction and set the Address Acknowledgment 

signal high, saying the transaction is over. When DRAC detects the Address Acknowledgment 

signal from the main memory, it sets the Address Acknowledgment signal on the processor side 

high to inform the processor the data is written or fetched to/from the main memory.  

2.2 DRAC Architecture 

 

Figure 2.2 Top level design of DRAC 

Figure 2.2 presets the top level architecture of DRAC. DRAC consists of several modules 

such as Bridge/Cache Arbitrator, Bus Bridge, Control Status Register, and tag and data 

memory. It connects to the processor from one side, and to the main memory on the other side.  



2.2.1 Control Status Register (CSR) 

CSR is a 32 bit control register that resets, enables/disables, sets the size of the cache, and 

changes the mode of DRAC to swap mode (swap will be discussed in the next chapter). This 

register is the controlled by the processor. In every clock cycles, DRAC always checks this 

register to set its status. Since it is possible to write a value into CSR register during program 

execution time, the configuration of DRAC can be changed on program run-time. DRAC is 

sensitive to any change of CSR value; depending on CSR value, DRAC changes its status. 

2.2.2 Bridge/Cache Arbitrator & Bus Bridge 

DRAC is placed between the processor and the memory controller; therefore, all memory 

transactions are through DRAC. The active behavior of DRAC requires it to have an extra 

module beside the cache, which is called Bus Bridge. This module is responsible for 

establishing the connection between the processor and the off-chip DDR memory when the 

cache is inactive. The transactions received by the bridge are decoded on the processor side of 

the bridge. The Bus Bridge, then, generate the necessary sequence of signals to perform the 

transaction on MPMC side.   

The Bridge/Cache arbitrator dedicates the processor bus to the Cache Module or the Bus 

Bridge according to CSR value. The arbitrator multiplexes the address bus, data bus, and 

controlling signals between the Cache Module and the Bus Bridge. When the cache is disabled, 

the cache module is bypassed and the bus is dedicated to the Bus Bridge. Since the processor 

has to have a direct access to the main memory at the system start-up, DRAC is on bridge mode 

by default. Once the proper value is written to the CSR, the arbitrator assigns the bus to the 

Cache Module; Thereby, the cache takes care of memory transactions.  

 



2.2.3 Cache Module 

Cache Module is mainly composed of a controller and two Block RAMs as data and tag 

memory. 

 

Figure 2.3 Flow chart of the cache with write through policy 

Figure 2.3 presents the flow chart of the cache operation. DRAC is supposed to be a direct 

mapped, 4-word cache block size, with write through policy. In every write and read request, 

first the tag memory is checked; if the data is in the cache, it is a hit case, otherwise it is a miss. 

Since the writing policy is write through, the data is updated both in the cache and the main 



memory on write hit cases. On write miss cases, the data will be written directly in the main 

memory. In case of a read miss, the corresponding memory block in the main memory will be 

fetched and returned to the processor. On a read hit, the corresponding data will be delivered 

from the cache data memory. 

 

Figure 2.4 Data retrieval process in DRAC 

Figure 2.4 shows the data and tag memory that holds up to 2048 words or 8K Byte; memory 

address is 32 bits. When a memory request is generated, the tag from the cache is compared to 

the most significant bits of the address to determine whether the entry is in the cache or not. If 

the tag and the most significant 20 bits of the address are equal, it is a hit case and data is 

returned to the processor; otherwise, the memory block, which consists of 4 words, is fetched 



from the main memory. Since DRAC is supposed to be direct mapped cache, there is no 

replacement policy in the cache design.  

Data and tag memory are made up on chip BRAM on the FPGA. DRAC is designed as a 

size variable cache. It can be set to five different cache sizes: 256B, 1KB, 2KB, 4KB, and 8KB. 

Depending on CSR value, DRAC can be set to each one of the configurations. To have different 

size configurations on run-time, we dedicated 16KB of BRAMs for data and tag memory; we, 

then, utilize a part of the BRAMs as per the cache size requirement. It is the responsibility of 

the cache controller responsibility to assign allocate amount of BRAM for different cache sizes.  

 

Figure 2.5 Finite state machine of cache controller 



The cache controller is key module of DRAC, which is used in both data and instruction 

cache models. The only difference between the data and the instruction cache is read-only. In 

order to simplify DRAC design, we used the same controller for both instruction and data. 

Figure 2.5 demonstrates the cache controller’s finite state machine (FSM). 

 Cache Controller always checks the CSR value before any memory transaction. If CSR is 

set to cache enable, the FSM in cache controller is triggered and the state is changed to address 

check. In this state, the module checks the Address valid Bit (Addr_valid) signal on the bus in 

every clock cycle; if it is detected, then the controller checks R/W signal and goes to Read or 

Write state. In both Read and Write states, the cache module first checks the tag memory in 

order to locate the memory block in the cache. In the read state, if the data is found in the cache, 

it is a hit case, and the cache retrieves the data from its own data memory to the processor; 

otherwise, it is a miss case and the cache should fetch the regarding memory block from the 

main memory. The controller’s last state is Add Delay Time. This state inserts delays depending 

on our timing model. The algorithm will be discussed in next section. DRAC is assumed to be 

a write-through cache. Hence, in the case of write, it updates both the cache and the main 

memory. At the end of each transaction, DRAC sets the acknowledgment signal in the 

processor’s bus, to inform the processor the memory transaction is done. 

2.3 DRAC Features  

DRAC active behavior speeds up the simulation process by providing instruction and data 

for the processor in repetitive accesses. The parametric design of the model makes it generic 

enough to work with most buses. The run-time configurability makes it flexible enough for the 

embedded designer to quickly explore different design options and to change the cache size 

during program execution time.   



CHAPTER 3 

3 DRAC Extension for Hybrid Prototyping 

The DRAC model includes the functionality of a standalone cycle-accurate data and 

instruction cache, and additional logic to support multicore hybrid prototyping. The hybrid 

prototyping technique simulates multicore system using an emulation kernel on top of a single 

physical instance of a core. Thus, a single cache that is capable of switching its context over 

different virtual cores is needed. To realize this concept, an extra module has been implemented 

in the cache that can swap the cache contents across different virtual cores. Each virtual core’s 

cache can be configured independently; however, this requires DRAC to change its 

configuration during run-time. The run-time configurability of DRAC provides the emulation 

kernel to change the configuration of the cache. 

  (a) A multicore design        (b) Equivalent hybrid prototype    

Figure 3.1 Hybrid prototype structure for a two core design         



3.1  Methodology 

Figure 3.1 presents the layered structured of a multicore design and its hybrid prototype. In 

the target design, which is shown in Figure 3.1 (a), T1 and T2 are tasks running on separate 

cores. Each core has its own L1 cache and separate memory space on DDR. The 

communication between the cores is performed using FIFO-based communication channels. 

Hybrid prototyping introduces an additional software layer on top of an emulation core. Figure 

3.1 (b) illustrates the hybrid prototype that incorporates the MEK. The emulation core and the 

main memory in hybrid prototyping are of the same type as that used in the multicore design. 

However the built-in caches have been replaced by DRAC models. DRAC is customized to 

support different cache contexts for the two cores. For each cache context, a separate space on 

DDR is dedicated as cache image. Before the MEK starts emulating a core, it loads the 

corresponding cache image from DDR to DRAC. Similarly, after the MEK stops emulating a 

core, it saves the corresponding cache image to DDR. Hence the cache images are swapped in 

DRAC, when the MEK switches from one core to another. 

Hybrid prototyping offers the designer to develop virtual platforms over the real-world 

connected FPGAs. The MEK platform created based on hybrid prototyping technique.  It 

emulates the execution of any multi-tasking C/C++ application on a single core design. The 

MEK provides a simple environment for the embedded designers to test and explore their 

design without the knowledge of multiple cores configuration or the data path among the cores. 

The accuracy of hybrid prototyping is 100% since the application is running on the same core 

as it is targeted for.  

 



`  

(a) Emulation of Tasks  (b) Possible emulation schedules 

      on two different cores 

Figure 3.2 Simple example of simulation with MEK 

The MEK layer dynamically schedules multiple tasks and simulates the execution time of a 

full FPGA multicore system. The MEK and DRAC model support the context switch among 

different tasks. The emulator dynamically saves the context (program, stack pointers, registers, 

and state of the instruction and data caches) of the yielded task and loads the context of the 

active task.  During kernel call the cache is completely disabled and is not polluted by the 

emulator. Figure 3.2 (a) illustrates the execution behavior of two tasks running on a 2core 

design. Task T1 executes for t11 time, notifies the global event e, and continues the execution 

to the end for t12 time. Meanwhile, C2 executes task T2 for t21 time, and waits for the global 

event e. After T2 gets notified, it continues execution for t22 period and terminates. Both cores 

are simulated on an emulation host core (EC) which is the same type as c1 and c2.   



Figure 3.2 (b) shows two possible simulation schedules on EC. A task may be in four 

possible states: RUNNING, READY, BLOCKED or TERMINATED. The MEK maintains the 

logical times, lt1 and lt2, on C1 and C2, respectively.  The logical   time for a core is the time 

until which the core has been simulated. At logical time 0, the MEK may pick either C1 or C2 

to simulate first. If the MEK schedules C1 to be simulated first, it runs T1 on EC until e is 

notified. The MEK saves the event’s notification and its logical timestamp t11. Since event 

notification is non-blocking in a discrete event model, the MEK allows T1 to execute until it is 

terminated. Then, the MEK does a context switch (CS). During CS the contents of the data and 

instruction cache is saved in the main memory. Since it is the first CS, the cache is flushed and 

C2 runs T2 from its logical time 0 until it reaches wait(e) at logical time t21. At this point the 

MEK checks for any notifications of e that were made after logical time t21. Indeed, since 

t11>t21, the MEK finds that e was notified by T1 before T2 executed wait(e). Therefore, the 

MEK updates the logical time of C2 to t11 to model T2 being blocked on the wait from t21 to 

t11. Finally, T2 is resumed and runs to completion.  

If the MEK schedules C2 to be simulated first (Case 2), it runs T2 on EC from C2's logical 

time 0 until it reaches wait(e) at C2's logical time t21. Since no notifications of e are found, the 

MEK stores the wait on e with timestamp t21, and blocks T2. It then does a context switch from 

C2 to C1. It saves T2 cache contents in the main memory and flush the cache since T1 is not 

been started yet. To emulate C1, the MEK runs T1 from C1's logical time 0 until the notification 

of e at C1’s logical time t11. Upon notification, the MEK checks if there are any pending waits 

on e at or before logical time t11. Indeed, task T2 is blocked since C2's logical time t21 (< t11) 

on e. Therefore, the MEK unblocks T2 and updates C2's logical time to t11 in order to account 

for the blocking time. The MEK continues simulating C1 until termination of T1, followed by 



a context switch to C2. The kernel swaps T1 cache with T2 cache contents. The kernel saves 

T1 cache contents, and loads T2 data and instruction cache images from the main memory. 

MEK continues C2 simulation until termination of T2. 

3.2 Architecture 

In order to realize the swap we implanted another module beside the cache controller, called 

Swap Controller.  

 

Figure 3.3 Modified design of DRAC including Swap Controller 

Figure 3.3 presents the design architecture of DRAC with the Swap Controller added to the 

design. Similar to the cache controller, swap controller has also access to the tag and data 

memory. The swap controller is responsible for switching the cache context among different 

cores. It is also responsible for stalling the processor during the swap transaction. The swap 



controller is activated by writing the proper value into CSR register. When the swap is activated 

by the processor, the swap controller locks the data and tag memory and does not allow the 

processor pollutes the cache contents.  

3.2.1 Swap Module 

The cache swap feature is the ability of the cache to save a copy of itself on the off-chip 

DDR memory and to load it later automatically. The swap module is responsible for switching 

the cache context from one core to another during run-time. Whenever a swap is triggered by 

the MEK, DRAC stalls the processor and saves the current cache context to the main memory, 

line by line. The cache context of the next core to be simulated is, subsequently, loaded.  

Figure 3.4 FSM of Swap Controller (Swap Mode) 

Figure 3.4 illustrates the finite state machine of the swap controller. Similar to the cache 

controller, the swap controller has a CSR Check state as an initial state. The swap trigger is 



detected in this state. Whenever MEK requires the cache to be swapped, it writes a certain 

value, which will be explained in the next section, into the CSR to start the process. Depending 

on the CSR value, the controller will save or load the cache state. As explained earlier, space 

in the DDR memory has been allocated for each core, depending on the cache size. The. 

Initialize state determines the starting and the ending address locations of each core’s cache.  

If the processor issues the save cache state command, the controller goes to Read from Cache 

state, reads the first line of the cache, and writes it into main memory. It continues this process 

until all cache lines are written to the main memory. On the other hand, if the processor’s 

command is load, the controller goes to Read from DDR2 state, reads all previously saved 

contents of the cache from main memory, and writes them into the cache. There is a stall state 

in swap’s FSM that ensures the data is safely resided in the cache or the main memory.  

Some processors, like MicroBlaze, do not support sleep or idle mode. Hence, we stalled the 

processor in another way. Since DRAC is used as instruction cache and lies between the 

processor and the main memory, it is possible to give any desired instruction to the processor 

instead of real instructions. Therefore, whenever swap is enabled and the processor is 

requesting instructions during swap, we give the machine code of relative branch to the same 

Program Counter (PC). 

PC  PC + 0 

As long the cache is operating the swap action, the processor is jumping to the same PC, so 

it seems the processor is stalled. Once DRAC swap all the current cache contents with the next 

cache contents, the swap operation is done and emulator goes back to the normal operation. It 

gives the real instructions to the processor, and the program continues the execution. 

 



 

 

 

Figure 3.5 Process of a save or load transaction between cache and DDR 

Figure 3.5 shows the schematic view of a load or save transaction and their addresses on the 

DDR. In the save case, first the tag memory will be written to the main memory from the 

starting address of 0xXXXX0000 to 0xXXXX02FC; subsequently, the data memory from will 

be saved from the starting address of 0xXXXX1000 to 0xXXXX17FC in the 8kB cache size 

case. The ending addresses will be changed depending on the cache size. In the load case, the 

cache contents will be loaded from DDR from the starting to the ending address. DRAC 

supports different caches of the virtual cores. For each core we dedicated a separate address 

space. The next core space on the DDR starts from 0xXXXX2000 address to 0xXXXX37FC, 

and so on.  

 



3.3 DRAC Software Driver 

As explained earlier, the MEK platform is a software layer on top a physical processor. Since 

the MEK should be able to control the cache, we developed a software driver for the DRAC. 

MEK is able to communicate with DRAC through writing the proper value into the CSR.  As 

a result, we created simple macros for the MEK to control the cache. 

Listing 3.1 DRAC Driver 
#define enable_cache {\ 
 XIo_Out32(Cache_CSR_Address ,Cache_Enable_Value);\ 
} 
#define disable_cache {\ 
 XIo_Out32(Cache_ CSR _Address,Cache_Disable_Value);\ 
}
#define reset_cache {\ 
 XIo_Out32(Cache_ CSR _Address,Cache_Reset_Value);\ 
 disable_cache\ 
}
#define Cache_Swap(c1, c2) {\ 
 save_cache(c2);\ 
 load_cache(c1);\ 
 reset_cache;\ 
}  

 

Listing 3.1 presents the Enable, Disable, Reset, and swap macros that MEK uses for 

commanding DRAC.  

Listing 3.2 Save Macro 
#define save_cache(c1){ 
 if(c1 == 0) 
  XIo_Out32(Cache_ CSR _Address,Core1_Save_Value); 
 else if(c1 == 1) 
  XIo_Out32(Cache_ CSR _Address,Core2_Save_Value); 
 else if(c1 == 2) 
  XIo_Out32(Cache_ CSR _Address,Core3_Save_Value); 
 else if(c1 == 3) 
  XIo_Out32(Cache_ CSR _Address,Core4_Save_Value); 
 else if(c1 == 4) 
  XIo_Out32(Cache_ CSR _Address,Core5_Save_Value); 
 XIo_Out32(Cache_ CSR _Address,Swap_Trigger _Value); 
 asm("nop"); 
 asm("nop"); 
} 

  



Listing 3.3 Load Macro
#define load_cache(c1){ 
 if(c1 == 0) 
  XIo_Out32(Cache_ CSR _Address,Core1_Load_Value); 
 else if(c1 == 1) 
  XIo_Out32(Cache_ CSR _Address,Core2_Load_Value); 
 else if(c1 == 2) 
  XIo_Out32(Cache_ CSR _Address,Core3_Load_Value); 
 else if(c1 == 3) 
  XIo_Out32(Cache_ CSR _Address,Core4_Load_Value); 
 else if(c1 == 4) 
  XIo_Out32(Cache_ CSR _Address,Core5_Load_Value); 
 XIo_Out32(Cache_ CSR _Address,Swap_Trigger_Value); 
 asm("nop"); 
 asm("nop"); 
} 

 

Table 3.1 - Swap save and load variable and values 

Variable Value Variable Value 

Cache_Enable_Value 0xaaaaaaaa Cache_Reset_Value 0x33333333 

Cache_Disable_Value 0x00000000 Swap_Trigger_Value 0x11111111 

Core1_Save_Value 0x00000000 Core1_Load_Value 0x00000001 

Core2_Save_Value 0x00000002 Core2_Load_Value 0x00000003 

Core3_Save_Value 0x00000004 Core3_Load_Value 0x00000005 

Core4_Save_Value 0x00000006 Core4_Load_Value 0x00000007 

Core5_Save_Value 0x00000008 Core5_Load_Value 0x00000009 

 

Listing 3.2 and 3.3, present the load and save macros of DRAC. Table 3.1 defines the values 

that should be written into CSR to set the status of the cache.  In each of save or load functions, 

first the number of virtual core for the cache is defined, after, the swap is triggered by writing 

the value Swap_Trigger_Value into the CSR. There are also two no operation (nop) assembly 

commands in the last lines of load and save macro. DRAC put the processor in the nop 

command loop until the swap is done.  



CHAPTER 4 

4 Timing Model 

This research is an effort to estimate the execution time of a program on an embedded system 

with built-in instruction and data cache. This execution time is mainly depended on the behavior 

of the cache, data link interconnections, and off-chip memory. DRAC is designed as an active 

and parameterized cache model. Since DRAC actively interacts with the modeled system, it is 

possible to model the behavior of the built-in cache, interconnections, and DRAM as the main 

memory, all in a cache model.  In this chapter, we present timing model of the system, using 

the example of a MicroBlaze based system [27]. 

4.1 Bus Characteristic  

Bus is the communication system that transfers data between different components of the 

system. Each bus has certain set of rules, governing how it works; these rules are called bus 

protocol. The bus protocol includes the specification of the bus, and all attached peripherals 

must obey the protocol. Two different buses have been used in our emulation system. The target 

system utilizes XCL bus, and the modeled system uses PLB in order to establish the 

communication among the processor, the cache, and the main memory. These two buses have 

different characteristics that affect the execution time of the program. For example, XCL is a 

point to point connection while PLB is a shared bus that supports multiple master and slave 

devices. In following subsections, PLB and XCL bus protocols will be introduced. We used 

ChipScope Pro [28] bus analyzer to observe the memory behavior and obtain the memory 

parameters in all the experiments.  



4.1.1  PLB Bus 

 

Figure 4.1 Read operation from off-chip DDR memory via PLB 

PLB is a high-performance bus interface that is used to access data. Figure 4.1 presents a 

read request transaction from the processor to the main memory over PLB bus. The address 

cycle request has three phases: request, transfer, and address acknowledgment. When a master 

device requests a data transaction from the main memory (point O on Figure 4.1), 

PLB_PAValid signal goes high, showing there is a memory access request. At the same time 

PLB_RNW signal goes high to indicate the request is a read request. In the second phase, the 

main memory set PLB_SaddrAck (slave address acknowledgement) signal high for a single 

cycle to show it has received the memory request and is processing that request. After certain 

amount of time, at the point of X of Figure 4.1, the data is delivered to the processor by setting 

PLB_SrdDAck (slave read acknowledgment) signal high for a single cycle. The duration of a 

read request over the PLB (the time interval between point O and point X in Figure 4.1) without 

any cache in between, is 29 cycles. The main reason for this delay is the column address latency 

that is imposed by the main memory. Similar to the read request the write request has also the 

same three phase as the read request.  This latency for a write transaction over the PLB is 11 

cycles. 



4.1.2  XCL Bus 

XCL bus is a high performance FSL FIFO based point to point data link that provides the 

direct access of the processor the main memory. This interface is available for the MicroBlaze 

processor when using built in cache. 

 

Figure 4.2 Read miss latency with built-in cache via XCL 

Figure 4.2 presents a data read request transaction from the cache to the main memory over 

XCL. XCL can handle 4 or 8-word cache lines during each fetch. In read case, the information 

is requested by raising DCACHE_FSL_OUT_WRITE signal for a single clock cycle. When the 

data is ready, the main memory raises the FSL_S_Exists high to show data exits on the 

FSL_S_Data. In write through policy, the communication protocol over XCL is IXCL and 

DXCL. According to this protocol, each cache line is expected to start with the critical word 

first and 3 words follow the first word. Each write in this policy results in a write over cache 

link regardless of existence of this data in the cache. The write to the main memory is 

complicated since there is a buffering policy in the main memory. In following sections, the 

write will be investigated in more detail.  



4.2 Cache Modeling 

DRAC is designed as an active cache emulator. It actively interacts with the modeled system 

and estimates the execution time of a program. DRAC saves the data as well as tag on BRAM 

implemented on the FPGA. This behavior reduces the execution time of programs as compared 

to the system without cache. Since the built-in cache is using XCL bus for communication and 

this bus is optimized for the built-in cache, the execution time of the program with built-in 

cache is faster than the same program with DRAC. It must be noted, our concern is not only 

the simulation speed, but also the accuracy of the timing estimation.  

As discussed in the section 3.2.3, the cache controller has an add delay time state that models 

the timing. In order to model the built-in cache, we add extra cycles to certain DRAC 

transactions such that all the DRAC delays are a multiple of corresponding built-in cache 

delays, by the same factor. As a result, the program’s execution time, when using DRAC, will 

be a multiple of the execution time with built-in cache. For example, if a processor with built-

in cache executes a program in x Clock cycles, the proposed model will execute the same 

program in n × x Clock cycles, which "n" is the linear scaling factor: 

Modeled Clock cycles= n × Real Clock cycle 

For hybrid prototyping, we excluded built-in caches, and used DRAC instead. DRAC is 

designed as a master IP core that can be utilized as data or instruction cache. Since DRAC is 

simply a peripheral to MicroBlaze, it is connected to processor local bus (PLB).  Being a 

peripheral, enables DRAC to connect to different processor types by some changes in the 

interface.  



 

Figure 4.3 Read hit latency with built-in cache 

 

Figure 4.4 Read hit latency with DRAC model 

Figure 4.5 and 4.6 present the snap shot of a hit latency in built-in cache and DRAC model. 

As can be seen, the hit time for the MicroBlaze built-in cache is 1 cycle, while this time is 12 

cycles for DRAC over PLB. Therefore, we have defined our scaling factor as 12. It means every 

memory transaction in DRAC will incur 12 times the delay of the corresponding transactions 

with the MicroBlaze built-in cache. 



 

Figure 4.5 Read miss latency with DRAC model 

The other factor that defines cache performance is read miss time. The average miss time 

latency for the MicroBlaze built-in cache to bring 4 words of data is 29 cycles, as shown in 

Figure 4.2. This miss time is 149 cycles in DRAC without adding any extra cycles.  In order to 

model read miss time, the emulator inserts 199 cycles to make read miss latency 12×29 cycles. 

Figure 4.7 shows the read miss time of DRAC after modeling.  

 

Figure 4.6 write operation latency with built-in cache 



 

Figure 4.7 write operation latency with built-in cache 

The write operation is another factor that impacts the system performance. DRAC models 

the write-through cache policy. Hence, in every write transaction the main memory will be 

updated. Figure 4.8 demonstrates a single write operation in the built-in cache, and Figure 4.9 

shows the write operation to the same location (0x90000000) in DRAC. A single write 

operation in the built-in cache takes 2 cycles. This write operation takes 2×12=24 cycles in 

DRAC after modeling; which is a factor of 12. 

Writing into on-chip BRAM is quite simple and predictable; however, the write operation 

to the main memory, which in our case is DRAM, is quite complex. The complexity comes 

from the buffers that are implemented in the DRAM memory controller. This complexity is not 

clear in a single write; however, if there are more than a single write to the main memory, the 

buffering shows its effect. Therefore, in order to model every write operation scenarios in 

DRAC, we first need to model DRAM.  

 

 



4.3 DRAM Modeling 

The connection of DDR2 memory to the system is established by Multi-Port Memory 

Controller (MPMC). MPMC provides separate accesses to the main memory for different 

modules in the system. It shares single off-chip DDR2 memory between multiple devices. We 

have two kinds of memory transactions in the system: read and write. The effect of multiple 

reads from different ports of MPMC is negligible since reading from the memory does not 

affect the saved data. The write delays behave differently, though. For a write into the main 

memory, MPMC stalls other memory transactions to make sure that the memory is in a 

consistent state. Therefore, if there is a write into a port of MPMC, the read or write access time 

of other ports will increase. 

 

Figure 4.8 Effect of a single write on the instruction fetch time in built-in cache 



Figure 4.10 shows how a single write of the built-in data cache 

(DCACHE_FSL_OUT_WRITE), which is circled in the figure, increases the fetch time of an 

instruction (ICACHE_FSL_OUT_DATA) and the programs execution time (Trace_PC). 

MPMC uses buffering technique in order to reduce the write time latency. In case of a single 

write, MPMC processes the write transactions in the background while it handles other read 

accesses. Buffering offers the system a better performance, although it creates irregularity in 

successive or multiple memory transactions. In case of successive writes into a single port, the 

write operation time will be different depending on the number of consecutive writes in that 

port. The first write will take the least, and the last write will take the most operation time. The 

read time will also be affected by the successive writes of the other port. If the number of 

consecutive writes increases, the read access time of the other port will also increase. 

 

Figure 4.9 Effect of consecetive writes in built-in cache 

Figure 4.11 presents two consecutive writes with the built-in cache. Part A and B of the 

figure indicate the first write operation (part A) and execution (part B) time which takes 2 

cycles. Part C and D of the picture shows the write (part C) and exaction (part D) time of the 

second consecutive write operation, which takes 4 cycles.  



 

Figure 4.10 Effect of three consecutive writes in DRAC model 

Figure 4.12 shows the screen shot of three consecutive writes in DRAC model. The first 

write (part A) takes 2×12 cycles, the second consecutive write takes 4×12 cycles, and the third 

consecutive write takes 5×12 cycles. DRAC detects all these parameter and applies the effect. 

 

Figure 4.11 Effect of multiple writes in different port of MPMC with built-in cache 



Figure 4.13 shows how the write time latency of a MicroBlaze core increases when other 

cores trying to write into MPMC. Figure 4.13 (A) presents memory transactions of a particular 

program with certain amount of writes on a single core design, while Figure 4.13 (B) presents 

the same program running on the first core of a multicore design and other cores have writes 

into the MPMC (the write transactions are circled in the figure). It should be noted, the cores 

are independent to each other and do not communicate to each other.   

In multicore emulation with hybrid prototyping, only one core is simulated at a time. Hence, 

it is not possible to predict the exact behavior of the other cores during simulation. This effect 

causes the predicted execution time to be less than what is expected. In order to decrease this 

effect, we introduce a multiplication factor fm, which models the multiple write effect.  To 

determine fm, we tested different multicore designs with all the cores running in parallel. We 

observed that the multiple write effect depends on the number, density, and distribution of 

writes over different cores. As much as number of writes, and number of cores increases the 

effect gets more severe. As a result, we executed a sample software code with different write 

distributions on multiple cores running in parallel.  

Listing 4.1 Sample code for multiple port write test
Task1 
for i=0 to 1000 
nop; 
DDR write 
nop; 
DDR write 
end for 
 

Task2: 
for i=0 to n (n is variable) 
nop; 
DDR write 
nop; 
DDR write 
nop; 
DDR write 
end for 

 

Table 4.1 Multiple write factor for different number of cores 

Number of 
cores 2 3 4 

fm 4 9 12 

 



Listing 4.1 shows this sample code for a 2core design. Both task1 and task2 have a normal 

distribution of writes. In each experiment, we kept the write density of core 1 constant, and 

changed the write density of the other core, then observed how the core 1 execution time is 

changing. We test different write densities from the best case, which there is no write on the 

second core, to the worst case, which there is almost 100% write density. We examined 

different number of cores, and found an average fm value for each core. Table 4.1 presents the 

values of fm for different number of cores. 

Table 4.2: Effect of multiple writes to MPMC (Numbers in clock cycles) 

 

Previously, it was mentioned the DRAC model scales its delays to be a multiple of built-in 

cache delays. Besides hit and miss time latencies, DRAC also models the successive and 

multiple write delays. Table 4.2 presents the write and read access parameters of the built-n 

cache, and the modeled parameter values of DRAC. In the single core design, the instruction 

and the data cache are utilizing separate ports of MPMC. Since there is no write into MPMC in 

the instruction cache, the read access time of the instruction cache is only effected by data cache 

writes. In the multicore design, there are more than one data caches that write into MPMC. 

Hence, the effect of multiple writes will be more severe in higher number of cores.

Number of consecutive 
writes to port 0 

0 1 2 3 >=4 

Number of cycles to write 
to MPMC port 0 in BIC 

0 2 4 5 11 

Number of cycles to write 
to MPMC port 0 in DRAC 

0 2*12*fm 4*12*fm 5*12*fm 11*12*fm 

Number of cycles to read 
from MPMC port 1 in BIC 

29 42 53 65 79 

Number of cycles to read 
from MPMC port 1 in DRAC 

29*12*fm 42*12*fm 53*12*fm 65*12*fm 79*12*fm 



CHAPTER 5 

5 Experimental Result 

We developed DRAC model for the MicroBlaze soft processor implemented on a Virtex5 

FPGA. Since DRAC is designed as a cache model in single core design, and a cache emulator 

in multicore design, we tested DRAC in both single and hybrid multicore designs. We also 

created full-FPGA single and multicore designs using MicroBlaze built-in cache as the 

reference for our hybrid estimation timings. As explained in the introduction, the target cache 

is set to direct mapped, 4 word cache line size, and write through writing policy. DRAC design 

is coded in VHDL language and evaluated by Xilinx EDK software [29] on ML507 Evaluation 

board. VHDL code of DRAC design is presented in the Appendix. The system clock is 

operating at frequency of 125MHz for all different designs. 

5.1 Standalone Accuracy 

Prior to use DRAC in hybrid prototyping, we evaluated the standalone model in a single 

core design. In order to check the functionality and timing accuracy of the standalone 

instruction and data DRAC model, we ran JPEG Encoder, Quicksort, and Dhrystone 

benchmarks for different cache sizes in a single core design. The closest model to DRAC is 

pCache [20], that is a data cache emulator implemented on FPGA. We used the same 

benchmarks as pCache and observed the average estimation accuracy improved 8.96% in 

Dhrystone and 2.57% in JPEG Encoder benchmark. 



Figure 5.1 Execution time estimation of JPEG encoder benchmark in single core design  

Figure 5.2 Execution time estimation of quicksort benchmark in single core design 

 

Figure 5.3 Execution time estimation of dhrystone benchmark in single core design 

Avg.Error:    1.53% 
Worst case: -2.90%  

Avg.Error:    4.65% 
Worst case: -5.06%  

Avg.Error:    2.14% 
Worst case: 2.63%  



Figure 5.1, 5.2, and 5.3 demonstrates the execution time of different benchmarks running on 

the system with built-in cache, and with DRAC model. For all the experiments five different 

cache sizes have been chosen.  

Table 5.1 Execution time estimation of different benchmarks in single core design 

Benchmark 
Cache 
Size 

TBIC  
(Million 
Cycles) 

TDRAC     
(Million 
Cycles) 

Error % 

JPEG 

256B 48.63 48.05 -1.18 

1KB 23.19 23.31 0.49 

2KB 18.11 17.91 -1.10 

4KB 13.72 13.45 -1.98 

8KB 12.55 12.18 -2.90 

Quicksort 

256B 13.83 13.13 -5.06 

1KB 12.27 11.72 -4.48 

2KB 9.76 9.32 -4.59 

4KB 6.28 5.99 -4.61 

8KB 6.28 5.99 -4.61 

Dhrystone 

256B 22.25 22.79 2.41 

1KB 8.79 9.02 2.63 

2KB 7.90 8.05 1.90 

4KB 7.90 8.05 1.90 

8KB 7.90 8.05 1.90 

 

 The result values for different cases is shown in Table 5.1.  We observed an average 

estimation time error of 2.78% and the worst-case estimation error is only 5.06%, thereby 

demonstrating the accuracy of DRAC as a standalone cache model. 

 

 



5.2 Accuracy in Hybrid 

In order to evaluate and verify the accuracy of DRAC emulator in the hybrid design, we 

created different multicore in the full FPGA design and the hybrid prototype, ranging from 1 

to 4 cores. Each core is running in parallel with different tasks. These tasks can have 

communication to each other.  In the full FPGA design, cores are connected to each other with 

FIFOs. FIFOs are FSL based channel that provide the communication link for the cores running 

in the parallel.  

5.2.1 JPEG Encoder Benchmark 

The benchmark used for testing the prototype is JPEG encoder. JPEG is a popular image 

compression technique that fits well into multi-processing system. The JPEG encoder divides 

the image into 8 by 8 pixel blocks. To compress the image, the encoder applies number of 

operations on these blocks. These operation includes ReadBMP, DCT, Quantization, ZigZag, 

and Huffman Encoding.  

 

Figure 5.4 JPEG encoding process and its tasks 

Figure 5.4 shows the JPEG encoding process and the order of the tasks. All the tasks are 

independent to each other and the communication is through 64bit FIFO channels. The 

operations are done one after the other. This makes the JPEG encoder a suitable program as 

benchmark for multicore processing system. Each task can be mapped to a core, and the FIFO 



channel can be realized by FSL links in full FPGA prototyping. In hybrid prototyping, the MEK 

platform emulates the cores and the channels, and runs the same JPEG encoder benchmark.  

5.2.2 Timing Results 

There are two timers implemented on each core in full FPGA prototype. The first timer 

calculates the actual busy-time of a core regardless of that core’s waiting time on blocking reads 

or writes. The second measures the total execution time including program execution time and 

the processor’s waiting times on FSL. In hybrid design, there are also two timers. One timer is 

used by the MEK, to simulate the busy-time and the total execution time of each core; the other 

timer calculates the total simulation time, including the swap time, the total execution time of 

the tasks, and the MEK software.  

We created 15 different multicore designs for different JPEG encoder mappings. There are 

four possible of five JPEG task mappings for a 2 core design, six possible JPEG task mappings 

for a 3core design, and four possible JPEG task mappings in a 4core design. Since MPMC ports 

are limited to eight ports and each core consumes two ports, we cannot have more than 4 cores 

running in parallel in full FPGA Prototyping. We also obtained the estimation time of the same 

mapping in Hybrid Prototyping and calculated the error percentage.  

The mapping values represent number of JPEG encoder tasks that have mapped to each core. 

For example, in the 2 core design, mapping 4-1 means that the first four tasks of JPEG encoder 

(ReadBMP, DCT, Quantization, ZigZag) have been mapped to the first core, and the last task 

(Huffman) of JPEG encoder to the second core. 



 

Figure 5.5 Busy-time estimation of a 2 core design with 4-1 JPEG mapping  

Figure 5.5 presents the busy-time of a 2 core design for different cache sizes. Four tasks 

have been mapped to the first core, and one task to the second core. The relative accuracy with 

cache size increment is 100%. The average estimation error is 5.14% and worst case busy-time 

estimation error is for the second core in 1k design, which is 11.60%.  

 

Figure 5.6 Busy-time estimation of a 2 core design with 3-2 JPEG mapping 

Figure 5.6 demonstrates the busy-time of a 2 core design for different cache sizes. Three 

tasks have been mapped to the first core, and two tasks to the second core. The relative accuracy 

with cache size increment is 100%. The average estimation error is 4.86% and worst case busy-

time estimation error is for the second core in 1k design, which is 8.61%.  



  

Figure 5.7 Busy-time estimation of a 2 core design with 2-3 JPEG mapping 

Figure 5.7 shows the busy-time of a 2 core design for different cache sizes. Two tasks have 

been mapped to the first core, and three tasks to the second core. The relative accuracy with 

cache size increment is 100%. The average estimation error is 5.10% and worst case busy-time 

estimation error is for the second core in 1k cache size design, which is 12.08%. 

 

Figure 5.8 Busy-time estimation of a 2 core design with 1-4 JPEG mapping 

Figure 5.8 illustrates the busy time of a 2 core design for different cache sizes. One task has 

been mapped to the first core, and four tasks to the second core. The relative accuracy with 

cache size increment is 100%. The average estimation error is 14.20% and worst case busy-

time estimation error is for the first core in 2k cache size design, which is 23.77%.  



 

Figure 5.9 Busy-time estimation of a 3 core design with 1-1-3 JPEG mapping 

Figure 5.9 shows the busy time of a 3 core design for different cache sizes. One task has 

been mapped to the first core, one task to the second core, and three tasks to the third core. The 

relative accuracy with cache size increment is 100%. The average estimation error is 11.27% 

and worst case estimation error is for the first core in 4k cache size design, which is 28.11%.  

  

Figure 5.10 Busy-time estimation of a 3 core design with 1-2-2 JPEG mapping 

Figure 5.10 presents the busy time of a 3 core design for different cache sizes. One task has 

been mapped to the first core, two tasks to the second core, and two tasks to the third core. The 

relative accuracy with cache size increment is 100%. The average estimation error is 16.67% 

and worst case estimation error is for the first core in 256B cache size design, which is 37.88%.  



 

Figure 5.11 Busy-time estimation of a 3 core design with 1-3-1 JPEG mapping 

Figure 5.11 presents the busy time of a 3 core design for different cache sizes. One task has 

been mapped to the first core, three tasks to the second core, and one task to the third core. The 

relative accuracy with cache size increment is 100%. The average estimation error is 17.69% 

and worst case estimation error is for the first core in 256B cache size design, which is 36.88%.  

  

Figure 5.12 Busy-time estimation of a 3 core design with 2-2-1 JPEG mapping 

Figure 5.12 shows the busy time of a 3 core design for different cache sizes. Two tasks have 

been mapped to the first core, two tasks to the second core, and one task to the third core. The 

relative accuracy with cache size increment is 100%. The average estimation error is 2.79% 

and worst case estimation error is for the third core in 256B cache size design, which is 6.71%.  



  

Figure 5.13 Busy-time estimation of a 3 core design with 2-1-2 JPEG mapping 

Figure 5.13 demonstrates the busy time of a 3 core design for different cache sizes. Two 

tasks have been mapped to the 1st core, one task to the 2nd core, and two tasks to the 3rd core. 

The relative accuracy with cache size increment is 100%. The average estimation error is 3.89% 

and worst case estimation error is for the 2nd core in 256B cache size design, which is 7.49%.  

 

Figure 5.14 Busy-time estimation of a 3 core design with 3-1-1 JPEG mapping 

Figure 5.14 illustrates the busy time of a 3 core design for different cache sizes. Three tasks 

have been mapped to the first core, one task to the second core, and one task to the third core. 

The relative accuracy with cache size increment is 100%. The average estimation error is 

12.48% and worst case estimation error is for the 2nd core in 4KB cache size, which is 25.45%.  



 

Figure 5.15 Busy-time estimation of a 4 core design with 1-1-1-2 JPEG mapping 

Figure 5.15 shows the busy time of a 4 core design for different cache sizes. One task has 

been mapped to the 1st core, one task to the 2nd core, one to the 3rd core, and two tasks to the 4th 

core. The relative accuracy with cache size increment is 100%. The average estimation error is 

13.34% and worst case estimation error is for the 1st core in 256B cache size, which is 31.09%.  

  

Figure 5.16 Busy-time estimation of a 4 core design with 1-1-2-1 JPEG mapping 

Figure 5.16 presents the busy time of a 4 core design for different cache sizes. One task has 

been mapped to the 1st core, one task to the 2nd core, two tasks to the 3rd core, and one task to 

the 4th core. The relative accuracy with cache size increment is 100%. The average estimation 

error is 13.28% and worst case error is for the 1st core in 1KB cache size, which is 31.05%.  



 

Figure 5.17 Busy-time estimation of a 4 core design with 1-2-1-1 JPEG mapping 

Figure 5.17 illustrates the busy time of a 4 core design for different cache sizes. One task 

has been mapped to the 1st core, two tasks to the 2nd core, one task to the 3rd core, and one task 

to the 4th core. The relative accuracy with cache size increment is 100%. The average estimation 

error is 19.40% and worst case error is for the 3rd core in 1KB cache size, which is 38.18%. 

  

Figure 5.18 Busy-time estimation of a 4 core design with 2-1-1-1 JPEG mapping 

Figure 5.18 demonstrates the busy-time of a 4 core design for different cache sizes. Two 

tasks have been mapped to the 1st core, one task to the 2nd core, one task to the 3rd core, and one 

task to the 4th core. The relative accuracy with cache size increment is 100%. The average 

estimation error is 11.71% and worst case error is for the 4th core in 8KB cache size, which is 

34.48%. 



Table 5.2 Busy-time error for different JPEG mappings 

 

 

 

 

 

 

 

 

 

Table 5.2 summarizes the busy-time estimation error for different number of cores, JPEG 

task mappings, and five different cache sizes. The average busy-time estimation error is 10.84% 

for all the experiment and the worst case estimation time error is 39.88% which is for the first 

core of the 3 core design with mapping of 1-2-2 and the cache size of 256B. 

The busy-time error is worse when the load of a core is significantly low in compare to the 

others cores.  This means the cores with the highest loads affect severely on low load cores. 

The source of this error is the multiple write effect discussed in section 4.3. Before applying 

our compensation algorithm for multiple write effects of DDR2, our worst case error was 66% 

in 3th core of 4 core emulation, with 1-2-1-1 mapping, and 1kB of data and instruction cache. 

Through the proposed compensation algorithm, we decreased the error to 38.18% in that case. 

Number 
of cores 

Mapping 
Average 

Error 

Worst-case 

Error Core Cache Size 

2core 

4-1 5.14% 11.60% 2nd 1kB 
3-2 4.86% 8.61% 1st 1kB 

2-3 5.10% 12.08% 2nd 1kB 

1-4 14.20% 23.77% 1st 2kB 

3core 

1-1-3 11.27% 28.22% 1st 4kB 
1-2-2 16.67% 39.88% 1st 256B 

1-3-1 17.69% 36.88% 1st 256B 

2-2-1 2.79% 6.71% 3rd 256B 

2-1-2 3.89% 7.49% 2nd 256B 

3-1-1 12.48% 25.45% 2nd 4kB 

4core 

1-1-1-2 13.34% 31.09% 1st 256B 

1-1-2-1 13.28% 31.05% 1st 1kB 

1-2-1-1 19.40% 38.18% 3rd 1kB 

2-1-1-1 11.71% 34.48% 4th 8kB 



Total execution time of the tasks are an important factor to compere different designs. As 

explained earlier, the total execution time includes the FSL waiting due to FIFO’s blocking 

read or write effect as well as program’s execution time. 

 

Figure 5.19 Total execution time estimation of a 2core design for different JPEG mapping 

Figure 5.19 presents the total execution time of 2core design for all possible JPEG encoder 

mapping and cache sizes. The average total execution time error for 2core design is 4.20% and 

the worst case estimation error is 12.3% which belongs to 2-3 JPEG mapping and 4K cache 

size design.   

 

Figure 5.20 Total execution time estimation of a 3core design for different JPEG mapping 



Figure 5.20 shows the total execution time of 3core design for all possible JPEG encoder 

mapping and cache sizes. The average total execution time error for 3core design is 4.29% and 

the worst case estimation error is 10.8% which belongs to 3-1-1 JPEG mapping and 8K cache 

size design.   

 

Figure 5.21 Total execution time estimation of a 4core design for different JPEG mapping 

Figure 5.21 illustrates the total execution time of 4core design for all possible JPEG encoder 

mapping and cache sizes. The average total execution time error for 4core design is 8.82% and 

the worst case estimation error is 12.98% which belongs to 1-1-1-2 JPEG mapping and 4K 

cache size design.   

Table 5.4 shows the average and worst case total execution estimation error for different 

JPEG mapping and cache sizes. The total average execution time error is 5.56% and the worst 

case error is 12.98 in 4core design, 1-1-1-2 JPEG mapping, and the cache size of 4KB.  

 

 



Table 5.3 Total execution time error for different JPEG mappings 

 

 

5.3 Simulation Speed 

As mentioned earlier, there is a timer for calculating the total simulation time. It starts at the 

first of the simulation, and stops at the end of the program. The total simulation time of the 

MEK can be seen in Figure 5.22. 

 

Figure 5.22 Total Simulation time in Seconds for different number of cores in Hybrid design 

Number    
of cores 

Mapping 
Average 

Error 

Worst-case 

Error Cache Size 

2core 

4-1 3.17% 6.76% 1 KB 

3-2 4.24% 8.56% 1 KB 

2-3 3.50% 12.3% 4 KB 

1-4 5.88% 10.2% 1 KB 

3core 

1-1-3 4.50% 7.24% 8 KB 

1-2-2 2.73% 4.34% 4 KB 

1-3-1 3.76% 7.81% 1 KB 

2-2-1 3.24% 6.73% 256 B 

2-1-2 4.76% 6.92% 256 B 

3-1-1 6.76% 10.8% 8 KB 

4core 

1-1-1-2 12.24% 12.98% 4 KB 

1-1-2-1 10.80% 12.55% 4 KB 

1-2-1-1 5.96% 9.78% 2 KB 

2-1-1-1 6.27% 9.09% 8 KB 



 

Table 5.4 Swap time consumption for different sizes 

Cache Size Save (Cycles) Load (Cycles) 
Total Swap Time 

(Cycles) 

256B 2467 3831 6298 

1k 8499 13725 22224 

2k 16477 26957 43434 

4k 32513 53343 85856 

8k 64521 106123 170644 
 

The values are obtained for all task mappings and all 5 different cache sizes ranging from 

256B to 8KB. Because the MEK is running on off-chip DDR2 SDRAM memory, and the swap 

is also running during the simulation, the timing is quite high in comparison to MEK running 

on BRAM. The simulation time increases by increasing the number of cores, since number of 

cache swaps increase. During simulation, both instruction and data cache is disabled, and the 

cache is enabled only when a task is running. Because of this, cache size increment effect is not 

significant in total simulation time. Even in some cases, the cache size increment results in 

higher simulation timing. The reason is that if the cache size increases, the swap time increases 

as well. Table 5.4 reports the time consumption for a load/save from/to DDR2 to/from the 

cache, and total swap (Load + Save). 

5.4 DRAC Resource Usage 

Each design consumes a certain amount IO, and occupies a portion of FPGA area             

during implementation. For different cache sizes, we have obtained resource usage. 

 



Table 5.5 Resources usage of Built-in Cache (BIC) and DRAC for different cache sizes 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.5 presents resources usage of single core design with different sizes of the built-in 

cache and DRAC cache emulator. As can be observed, as much the size of the cache increases 

the amount of BRAM used on the FPGA increases as well; however, other logic resources 

remains the same. Although DRAC consumes more resources on FPAG than built-in cache, it 

promotes run-time configurability. The design with built-in cache must be re-synthesized once 

for any configuration change like cache size, but the emulation system with DRAC can simulate 

any configuration with only one time synthesis. 

 

5.5 Power and Energy Analysis 

Beside the speed of the system, power consumption is the other main factor for the designer 

to choose the best design in multicore processing. The main components that consume the most 

of the power are the processor, built-in cache, and off-chip main memory.  

Design 
Resources Usage Percentage 

LUT Reg. BRAM Slice Bonded IO 

 I&D 256B 
Built-in  

12% 14% 14% 29% 18% 

 I&D 1KB  
Built-in  

12% 14% 14% 29% 18% 

 I&D 2KB  
Built-in 

12% 14% 16% 29% 18% 

 I&D 4KB  
Built-in 

12% 14% 18% 29% 18% 

 I&D 8KB  
Built-in 

12% 14% 21% 29% 18% 

 I&D Variable 
Size DRAC 

22% 33% 23% 53% 18% 



 

Figure 5.23 Power consumption for different cache sizes in Watts 

Figure 5.23 demonstrates the total power consumption of the system for different number 

of cores and cache sizes. As can be seen, the cache size increment results in more BRAM 

utilization and more power consumption. On the other hand, adding more cores to the system 

and using more ports of MPMC increases the power consumption as well. 

 

Figure 5.24 Energy consumption for different cache sizes and JPEG mappings in mJoules  



In multicore systems, power consumption is different core by core, depending on the task 

running on each core. Energy is the best way to measure the system performance in terms of 

power and time. The busy-time of a task is the time for a core to execute a task without 

considering blocking data transfer among different cores. The processor is on idle during 

blocking reads or writes, hence it consumes negligible amount of energy. Because of this fact, 

we multiplied the total power consumption of each core to the total busy-time of all cores and 

obtained the energy consumption for different task mappings. Figure 5.24 demonstrates the 

energy consumption for all possible JPEG encoder designs and cache sizes.  

5.6 Design Exploration 

Two of the most important factors that define system efficiency, are the speed and energy 

consumption of the system. 

 

Figure 5.25 Design exploration of JPEG for different task mapping and cache sizes in terms 

of energy & speed in Full FPGA prototyping 



Figure 5.25 plots all the full FPGA multicore designs from 2 to 4 cores with all possible 

JPEG Encoder mappings, and five different cache sizes execution time versus energy 

consumption. Each point is a design with certain mapping and the cache size. As it is circled 

on the figure, the best designs are the one that consume less energy and execute the program in 

the shortest time. For example, the best design in JPEG Encoder is a 2 core design with 2k 

cache size and the mapping of 2 tasks in the first core and 3 tasks in the second core.  

The MEK provides a simple environment for the designer to choose the best design among 

the others, without having the full FPGA multicore prototype. The consistency of the results, 

100% relative accuracy among different cache sizes and different task mapping, make the MEK 

a powerful tool to compare different designs. 

 

Figure 5.26 Design exploration of JPEG for different task mapping and cache sizes in terms 

of energy & speed in Hybrid prototyping 

 



Figure 5.26 presents energy versus execution time for all JPEG Encoder possible mapping 

and the cache sizes, predicted by the MEK. The correlation of  the MEK results and the full 

FPGA results is clear. In both Figure 5.25 and 5.26, the best design is the 2core design with 2k 

instruction and data cache with 3-2 JPEG mapping. This confirms the accuracy and reliabality 

of the MEK with cache. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 6 

6 Conclusion and Future work 

In this thesis, we presented DRAC instruction and data cache model that can be used in 

hybrid prototyping. Standalone accuracy, run-time configurability, and multiple cache context 

support of DRAC, make it an ideal cache emulator in multicore emulation systems. DRAC 

model is capable of emulating instruction and data caches of many virtual cores, as well as 

modeling cache in a single core design. Designing DRAC as an active cache emulator increases 

the accuracy and detail of the model. Additionally, parametric design of DRAC allows the 

model to be integrated with different processors.  

Adopting hybrid prototyping idea and utilizing DRAC model, embedded designers are able 

to analyze, verify, and optimize their multicore design with cache design without the need for 

full system prototyping. Such full system prototyping can be complex to be designed and time 

consuming for the designer to explore different design options. Therefore, hybrid prototypes 

increase the productivity for both software embedded designer and hardware multicore 

designer. 

In the future, we will extend DRAC model to support the following, 

• Write back writing policy – This writing policy increases the performance of data 

cache by decreasing the cache refereeing to main memory. In order to implement the 

write back policy, the cache controller should be extended.  

• Set Associativity – Set associativity determines the replacement policy of a 

particular entry of the cache. Now, DRAC is one-way associative or direct mapped 



cache, but in the future it will support different associativity. Although the model 

becomes more complex, the state of the art in computer architecture is multi-way 

associativity.  

• Different cache levels – Designing the cache in multiple levels is another way to 

optimize system performance; however, managing different cache levels is a great 

challenge in multicore processing. In future, DRAC model will be extended to 

support L2 and L3 caches. 
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2 Appendix 

VHDL CODE of DRAC 

use ieee.std_logic_1164.all; 
 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
USE ieee.std_logic_arith.all; 
use IEEE.std_logic_unsigned.all;  
 
library proc_common_v3_00_a; 
use proc_common_v3_00_a.proc_common_pkg.all; 
use proc_common_v3_00_a.ipif_pkg.all; 
 
library UNISIM; 
use UNISIM.VCOMPONENTS.ALL; 
 
entity DRAC is  
  generic 
  ( 
    -- ADD USER GENERICS BELOW THIS LINE --------------- 
    --USER generics added here 
    -- ADD USER GENERICS ABOVE THIS LINE --------------- 
 
    -- DO NOT EDIT BELOW THIS LINE --------------------- 
    -- Bus protocol parameters, do not add to or delete 
    C_BRIDGE_BASEADDR      : std_logic_vector(0 TO 31) := X"FFFFFFFF";   
      C_BRIDGE_HIGHADDR      : std_logic_vector(0 TO 31) := X"00000000"; 
   
    C_SPLB_AWIDTH                : integer              := 32; 
    C_SPLB_DWIDTH    : integer              := 32; 
    C_MPLB_AWIDTH               : integer              := 32; 
    C_MPLB_DWIDTH                : integer              := 32; 
    C_SPLB_NUM_MASTERS         : integer             := 84;  
    C_MPLB_NATIVE_DWIDTH   : integer              := 32 
    -- DO NOT EDIT ABOVE THIS LINE --------------------- 
  ); 
 port ( 

CR_out         : out std_logic_vector (0 to 15); 
CW_out         : out std_logic_vector (0 to 3); 
write_out    : out std_logic; 
miss_in          : in std_logic; 
miss_out           : out std_logic; 
RData_valid_in    : in std_logic; 
RData_valid_out    : out std_logic; 
Trace_PC    : in std_logic_vector (0 to 31);   
Swap_in     : in std_logic; 
Swap_out    : out std_logic; 
MPLB_Clk           : in std_logic; 

      SPLB_Rst         : in std_logic; 
      -- PLBv46 Bus Slave signals 
      PLB_ABus              : in std_logic_vector(0 to C_SPLB_AWIDTH-1); 
      PLB_PAValid       : in std_logic; 
      PLB_RNW             : in std_logic; 
      PLB_wrDBus         : in std_logic_vector(0 to C_SPLB_DWIDTH-1); 
   PLB_BE     : in std_logic_vector(0 to 3); 
 
      -- Slave Response Signals 
      Sl_addrAck          : out std_logic; 
      Sl_SSize          : out std_logic_vector(0 to 1); 
      Sl_wait           : out std_logic; 
      Sl_rearbitrate     : out std_logic; 
      Sl_wrDAck          : out std_logic; 
      Sl_wrComp         : out std_logic; 
      Sl_wrBTerm      : out std_logic; 



      Sl_rdDBus           : out std_logic_vector(0 to C_SPLB_DWIDTH-1); 
      Sl_rdWdAddr        : out std_logic_vector(0 to 3); 
      Sl_rdDAck          : out std_logic; 
      Sl_rdComp          : out std_logic; 
      Sl_rdBTerm         : out std_logic; 
      Sl_MBusy           : out std_logic_vector (0 to C_SPLB_NUM_MASTERS-1); 
      Sl_MWrErr          : out std_logic_vector (0 to C_SPLB_NUM_MASTERS-1); 
      Sl_MRdErr          : out std_logic_vector (0 to C_SPLB_NUM_MASTERS-1); 
      Sl_MIRQ          : out std_logic_vector (0 to C_SPLB_NUM_MASTERS-1); 
  IP2Bus_MstRd_Req            : out std_logic; 
     IP2Bus_MstWr_Req             : out std_logic; 
     IP2Bus_Mst_Addr               : out std_logic_vector(0 to C_MPLB_AWIDTH-1); 
     IP2Bus_Mst_BE                 : out std_logic_vector(0 to (C_MPLB_NATIVE_DWIDTH/8) -1);      
     IP2Bus_Mst_Lock              : out std_logic; 
     IP2Bus_Mst_Reset             : out std_logic; 
      
     -- IP Request Status Reply 
     Bus2IP_Mst_CmdAck            : In std_logic; 
     Bus2IP_Mst_Cmplt             : In std_logic; 
     Bus2IP_Mst_Error             : In std_logic; 
     Bus2IP_Mst_Rearbitrate        : In std_logic; 
     Bus2IP_Mst_Cmd_Timeout       : In std_logic; 
 
    -- IPIC Read data   
     Bus2IP_MstRd_d               : In std_logic_vector(0 to C_MPLB_NATIVE_DWIDTH-1);  
     Bus2IP_MstRd_src_rdy_n       : In std_logic; 
      
    -- IPIC Write data   
     IP2Bus_MstWr_d               : out std_logic_vector(0 to C_MPLB_NATIVE_DWIDTH-1);  
     Bus2IP_MstWr_dst_rdy_n       : In  std_logic; 

    
   --------------------------- 
    IP2Bus1_MstRd_Req            : out std_logic; 

       IP2Bus1_MstWr_Req           : out std_logic; 
       IP2Bus1_Mst_Addr              : out std_logic_vector(0 to C_MPLB_AWIDTH-1); 
       IP2Bus1_Mst_BE                : out std_logic_vector(0 to (C_MPLB_NATIVE_DWIDTH/8) -1);      
       IP2Bus1_Mst_Lock             : out std_logic; 
       IP2Bus1_Mst_Reset            : out std_logic; 
      
       -- IP Request Status Reply 
       Bus2IP1_Mst_CmdAck           : In std_logic; 
       Bus2IP1_Mst_Cmplt            : In std_logic; 
       Bus2IP1_Mst_Error            : In std_logic; 
       Bus2IP1_Mst_Rearbitrate       : In std_logic; 
       Bus2IP1_Mst_Cmd_Timeout     : In std_logic; 
      
      -- IPIC Read data   
       Bus2IP1_MstRd_d              : In std_logic_vector(0 to C_MPLB_NATIVE_DWIDTH-1);  
       Bus2IP1_MstRd_src_rdy_n      : In std_logic; 
      
      -- IPIC Write data   
       IP2Bus1_MstWr_d             : out std_logic_vector(0 to C_MPLB_NATIVE_DWIDTH-1);  
       Bus2IP1_MstWr_dst_rdy_n       : In  std_logic 

 ); 
 

end entity DRAC; 
 
architecture Behavioral of PLB_Bridge is  

 signal PLB_BE_temp :std_logic_vector(0 to 3); 
 type state_type is (stall, First, Second_Bridge, Third_Bridge, forth_Bridge,f ifth_Bridge, Second_Reg, Third_Reg, forth_Reg,   

   fifth_Reg, Cache_Write, Cache_Read, Second_Cache, Cache_DDR_Read1,Cache_DDR_Read2,Cache_DDR_Read3); 
 
 type swap_type is (init, run, time_to_stable, time_to_stable2, cache_to_ram1_1, cache_to_ram1_2, cache_to_ram2_1,  

  cache_to_ram2_2, cache_to_ram3, ram_to_cache1_1, ram_to_cache1_2, ram_to_cache2, ram_to_cache3); 
 
 type rst_type is (start,stop,idle,incr); 
 signal rst_state :rst_type :=idle; 
 signal swap : swap_type :=init; 
 signal current_state : state_type := First; 



 signal Sl_rdDBus_i      :std_logic_vector(0 to C_SPLB_DWIDTH-1); 
 signal reg1,reg2,reg3,reg4,reg5,reg6,reg7,reg8,reg9,Address,tag_image_temp,write_coef :std_logic_vector(0 to 31); 
 signal RNW,write_en     :std_logic;  
 signal DO_i1,DO_i2 :  STD_LOGIC_VECTOR (0 to 31):=(others=> '0'); 
 signal ADDR_i1,ADDR_i2,adr_swap : STD_LOGIC_VECTOR (0 to 10):=(others=> '0'); 
 signal DI_i1,DI_i2,data_temp,PLB_wrDBus_temp,PLB_ABus_temp :  STD_LOGIC_VECTOR (0 to 31):=(others=> '0'); 
 signal EN_i1,EN_i2 :  STD_ULOGIC:='0'; 
 signal SSR_i : STD_ULOGIC:='0'; 
 signal WE_i1,WE_i2     :  STD_ULOGIC:='0'; 
 signal SRM_flag, SRM_Timeflag    :  STD_LOGIC:='0'; 
 signal SM_Cnt        : STD_LOGIC_VECTOR (0 to 3):=(others=> '0'); 
 signal image_hit_flag     : STD_LOGIC_VECTOR (0 to 4):=(others=> '0'); 
 signal Trace_PC_temp     : STD_LOGIC_VECTOR (0 to 31):=(others=> '0'); 
 signal write_enable,write_end,read_end,miss,InstAcc,dataAcc,dmissoverhead_out  : std_logic := '0'; 

  signal write_flag       : std_logic:= '0'; 
  signal swap_en,swap_done       : std_logic := '0';  
 

component  BRAM8 is 
  port ( 
    DO : out STD_LOGIC_VECTOR (0 to 31); 
       ADDR : in STD_LOGIC_VECTOR (0 to 10); 
       CLK : in STD_ULOGIC; 
       DI : in STD_LOGIC_VECTOR (0 to 31); 
      EN : in STD_ULOGIC; 
      WE : in STD_ULOGIC 
  ); 

 end component; 
 
 

begin 
  RAMB8_0 :  BRAM8 
 port map ( 
  DO => DO_i1, 
  ADDR => Addr_i1, 
  CLK => MPLB_Clk, 
  DI => DI_i1, 
  EN => EN_i1, 
  WE => WE_i1 
 ); 
   
 RAMB8_1 :  BRAM8 
  port map ( 
   DO => DO_i2, 
   ADDR => Addr_i2, 
   CLK => MPLB_Clk, 
   DI => DI_i2, 
   EN => EN_i2, 
   WE => WE_i2 

  ); 
  
 
 

IP2BUS_DATA_MUX_PROC : process( MPLB_Clk,SPLB_Rst,PLB_PAValid ) is 
 
 variable adr   : STD_LOGIC_VECTOR (0 to 10) :=(others => '0') ; 
 variable cache_read_reg :std_logic_vector(0 to 31):=(others => '0') ; 
 variable swap_run  :std_logic:='0' ; 
 variable delay_time,delay_time2,delay_time3,cnt,Wcnt,cnt2,image_cnt_stable   :integer range 0 to 4095 := 0; 
 variable XC :integer range 0 to 127 := 1; 
 variable XC150, XC220, XC270, XC370, XC470, XC600, XC5, XCIhit, XC20, XCR30, XC50, XCR50, XC30, XC40, XC80, 

                XCR1, XCR5, XC100, XC200, XCDhit, XC_nextwrite, XCD220, XCD270  :integer range 0 to 2047 := 1; 
 variable cnt1,mem_temp,tag_temp,image_address,temp   :std_logic_vector(0 to 31) :=(others=> '0'); 
 variable tag      :std_logic_vector(0 to 23) :=(others=> '0'); 
 variable RMC,RHC,WMC,WHC    :std_logic_vector(0 to 31):= (others=> '0'); 
 variable Chit,CW,BC,CWS,CR     : integer range 0 to 4095; 
 variable int_index1,int_index2    : integer range 0 to 63; 
 variable address_temp3     : STD_LOGIC_VECTOR (0 to 27); 
 variable address_temp2     : STD_LOGIC_VECTOR (0 to 1); 
 variable address_temp1     : STD_LOGIC_VECTOR (0 to 6); 
 variable Adr_swap1,Adr_swap2,Adr_swap1_cnt,Adr_swap2_cnt     : STD_LOGIC_VECTOR (0 to 11) := (others=>'0'); 



 variable Adr_swap3,image_address_temp,image_address_tag    : STD_LOGIC_VECTOR (0 to 3) := (others=>'0'); 
 variable branch_flag,write1,writeflag,missflag   : STD_LOGIC := '0'; 
 variable writetime,misstime      : STD_LOGIC_VECTOR (0 to 31); 
 
 begin  
            if SPLB_Rst = '1' then 
  delay_time := 0; 
  delay_time2 := 0; 
  delay_time3 := 0; 
  cnt_image_update := 0; 
  image_hit_flag <= (others => '0');  
  image_address_tag := (others => '0');  
  image_address := (others => '0'); 
  image_address_temp := "0001"; 
  image_cnt_stable := 0; 
  cnt_image := 0; 
  PLB_wrDBus_temp <= (others => '0'); 
  PLB_ABus_temp <= (others => '0'); 
  swap_run := '0'; 
  cache_read_reg := (others => '0'); 
  PLB_BE_temp <=  (others => '0'); 
  mem_temp := (others => '0'); 
  tag_temp := (others => '0'); 
  data_temp <= (others => '0'); 
  cnt2 := 0; 
  swap_en <= '0'; 
  Adr_swap1 := (others => '0'); 
  Adr_swap1_cnt := (others => '0'); 
  Adr_swap2 := (others => '0'); 
  Adr_swap2_cnt := (others => '0'); 
  swap <= init;    
  swap_done <= '0'; 
  address <= (others => '0'); 
  int_index1 := 0; 
  int_index2 := 0; 
  RMC := (others=> '0'); 
  RHC := (others=> '0'); 
  WMC := (others=> '0'); 
  WHC := (others=> '0'); 
  write_en <= '0';   
  Addr_i1 <= (others=> '0'); 
  Addr_i2 <= (others=> '0'); 
  DI_i1 <= (others=> '0'); 
  DI_i2 <= (others=> '0');    
  SSR_i  <= '0'; 
  cnt1 := (others =>'0'); 
  WE_i1 <= '0'; 
  EN_i1 <= '0'; 
  WE_i2 <= '0'; 
  EN_i2 <= '0'; 
  DI_i2 <= (others=> '0'); 
  Address_temp1 := (others => '0');  
  Address_temp2 := (others => '0');  
  Address_temp3 := (others => '0');  
  RNW <= '0'; 
  cnt := 0; 
  Sl_addrAck <= '0'; 
  Sl_SSize <= (others => '0'); 
  Sl_wait <= '0'; 
  Sl_rearbitrate <= '0'; 
  Sl_wrDAck <= '0'; 
  Sl_wrComp <= '0'; 
  Sl_wrBTerm <= '0'; 
  Sl_rdDBus <= (others => '0'); 
  Sl_rdWdAddr <= (others => '0'); 
  Sl_rdDAck  <= '0'; 
  Sl_rdComp <= '0'; 
  Sl_rdBTerm <= '0'; 
  Sl_MBusy <= (others => '0'); 
  Sl_MWrErr <= (others => '0'); 



  Sl_MRdErr <= (others => '0'); 
  Sl_MIRQ <= (others => '0'); 
  IP2Bus_MstRd_Req <= '0'; 
  IP2Bus_MstWr_Req <= '0'; 
  IP2Bus_Mst_Addr <= (others => '0'); 
  IP2Bus_Mst_BE <= (others => '0'); 
  IP2Bus_Mst_Lock <= '0'; 
  IP2Bus1_MstRd_Req <= '0'; 
  IP2Bus1_MstWr_Req <= '0'; 
  IP2Bus1_Mst_Addr <= (others => '0'); 
  IP2Bus1_Mst_BE <= (others => '0'); 
  IP2Bus1_Mst_Lock <= '0'; 
  Sl_rdDBus_i <= (others => '0'); 
  reg1 <= (others => '0'); 
  reg2 <= (others => '0'); 
  reg3 <= (others => '0'); 
  reg4 <= (others => '0'); 
  reg5 <= (others => '0'); 
  reg6 <= (others => '0'); 
  reg7 <= (others => '0'); 
  reg8 <= (others => '0'); 
  reg9 <= (others => '0'); 
  rst_state <= idle; 
  SM_Cnt <= "0000"; 
  SRMC := (others=> '0'); 
  SRM_Timeflag <= '0'; 
  SRM_flag <= '0'; 
  Trace_PC_temp <= (others => '0'); 
  WCC := (others => '0'); 
  Trace_PC_temp <= (others => '0'); 
 
 elsif rising_edge(MPLB_Clk) then    
  write_out <= PLB_PAValid and (not PLB_RNW);  
  miss_out <= miss;  
  RData_valid_out <= (PLB_PAValid);    
  if writeflag = '1' then 
   writetime := writetime + 1; 
  end if; 
    
  if missflag = '1' then 
   misstime := misstime + 1; 
  end if; 
    
  if ((C_BRIDGE_BASEADDR (0 to 11) = x"c1c")or (C_BRIDGE_BASEADDR (0 to 11) = x"c3c") or  

   (C_BRIDGE_BASEADDR (0 to 11) = x"c5c")) then       
   InstAcc <= '1'; 
   DataAcc <= '0'; 
   RData_valid_out <= dmissoverhead_out; 
  elsif ((C_BRIDGE_BASEADDR (0 to 11) = x"c0c")or (C_BRIDGE_BASEADDR (0 to 11) = x"c2c") or  

   (C_BRIDGE_BASEADDR (0 to 11) = x"c4c")) then    
   InstAcc <= '0'; 
   DataAcc <= '1'; 
  end if;  
   
  if (reg1(4 to 31) = x"3333333") then 
   RMC := (others=> '0'); 
   RHC := (others=> '0'); 
   WHC := (others=> '0'); 
   WMC := (others=> '0'); 
  elsif reg1(4 to 31) = x"1111111" then 
   swap_en <= '1';     
   if DataAcc = '1' then 
    Swap_out <= '1'; 
    swap_run := '0'; 
   else 
    Swap_out <= '0'; 
    swap_run := '1'; 
   end if; 
   case reg1 (0 to 3) is 
   when "0001" => 



    Adr_swap1_cnt := "000000010000"; 
    Adr_swap2_cnt := "000001000000"; 
  
 
   when "0010" => 
    Adr_swap1_cnt := "000001000000"; 
   Adr_swap2_cnt := "000100000000"; 
      
   when "0011" => 
    Adr_swap1_cnt := "000010000000"; 
    Adr_swap2_cnt := "001000000000"; 
       
   when "0100" => 
    Adr_swap1_cnt := "000100000000"; 
    Adr_swap2_cnt := "010000000000"; 
       
   when "0101" => 
    Adr_swap1_cnt := "001000000000"; 
    Adr_swap2_cnt := "100000000000"; 
       
   when others => 
    Adr_swap1_cnt := "001000000000"; 
    Adr_swap2_cnt := "100000000000";     

  
   end case; 
   IP2Bus1_Mst_BE <= "1111";   
   EN_i1 <= '1'; 
   EN_i2 <= '1'; 
   Addr_i1 <= (others => '0'); 
   Addr_i2 <= (others => '0'); 
  end if; 
  case rst_state is 
  when idle => 
   rst_state <= start; 
   adr := (others => '0'); 
     
  when start => 
   rst_state <= incr; 
   DI_i1 <= (others => '0'); 
   DI_i2 <= (others =>'0'); 
--   SSR_i <= '1'; 
   Addr_i1 <= adr; 
   Addr_i2 <= adr; 
   EN_i1 <= '1'; 
   EN_i2 <= '1'; 
   WE_i1 <= '1'; 
   WE_i2 <= '1'; 
      
  when incr => 
   if cnt = 1 then 
    cnt := 0; 
    if adr = "11111111111" then      
     rst_state <= stop;       
    else 
     adr := adr+1; 
     rst_state <= start; 
    end if; 
   else 
    cnt := cnt +1; 
   end if; 
      
  when stop => 
   rst_state <= stop; 
    
  when others => 
   rst_state <= stop; 

   end case; 
 

  case current_state is  
  when First =>      



   SSR_i <= '0'; 
   Sl_rdDAck <= '0';    
   Sl_rdComp <= '0';   
   Sl_rdDBus <= (others => '0'); 
   Sl_wrDAck <= '0';     
   Sl_wrComp <= '0';  
   Sl_MBusy <= (others => '0'); 
   Sl_rdDBus <= (others => '0');      
   if ((PLB_PAValid = '1') and (PLB_ABus (0 to 19) = C_BRIDGE_BASEADDR (0 to 19))) then 
    Sl_wait <= '1'; 
    current_state <= Second_Reg; 
    if (PLB_RNW = '0') then 
    RNW <= '0'; 
    case PLB_ABus (16 to 31) is  
    when x"0000" => 
     reg1 <= PLB_wrDBus;  
    when x"0004" => 
     reg2 <= C_BRIDGE_BASEADDR (0 to 27) & PLB_wrDBus(28 to 31); 
    when x"00F0" => 
     write_coef <= PLB_wrDBus;      
    when x"0080" => 
     XCR1 := conv_integer(PLB_wrDBus (20 to 31)); 
    when x"0084" => 
     XCR30 := conv_integer(PLB_wrDBus (20 to 31));    
    when x"0088" => 
     XCR5 := conv_integer(PLB_wrDBus (20 to 31));  
    when x"008C" => 
     XC80 := conv_integer(PLB_wrDBus (20 to 31)); 
    when x"0090" => 
     XC20 := conv_integer(PLB_wrDBus (20 to 31)); 
    when x"0094" => 
     XC50 := conv_integer(PLB_wrDBus (20 to 31)); 
    when x"0098" => 
     XC200 := conv_integer(PLB_wrDBus (20 to 31)); 
    when x"009C" => 
     XCR50 := conv_integer(PLB_wrDBus (20 to 31));  
    when x"00A0" => 
     XC5 := conv_integer(PLB_wrDBus (20 to 31)); 
    when x"00A4" => 
     XCIhit := conv_integer(PLB_wrDBus (20 to 31)); 
    when x"00A8" => 
     XC30 := conv_integer(PLB_wrDBus (20 to 31)); 
    when x"00AC" => 
     XC40 := conv_integer(PLB_wrDBus (20 to 31)); 
    when x"00B0" => 
     XC100 := conv_integer(PLB_wrDBus (20 to 31)); 
    when x"00B4" => 
     XC150 := conv_integer(PLB_wrDBus (20 to 31)); 
    when x"00B8" => 
     XC220 := conv_integer(PLB_wrDBus (20 to 31)); 
    when x"00BC" => 
     XC270 := conv_integer(PLB_wrDBus (20 to 31)); 
    when x"00C0" => 
     XC370 := conv_integer(PLB_wrDBus (20 to 31)); 
    when x"00C4" => 
     XC470 := conv_integer(PLB_wrDBus (20 to 31));  
    when x"00C8" => 
     XC600 := conv_integer(PLB_wrDBus (20 to 31)); 
    when x"00d8" => 
     XCD220 := conv_integer(PLB_wrDBus (20 to 31));    
    when others => 
     null; 

     end case; 
   else  
    RNW <= '1'; 

    end if;  
  elsif ((PLB_PAValid = '1') and (PLB_ABus (0 to 3) = "1001")) then     
   Sl_wait <= '1';       
   if (swap_run = '1' or Swap_in = '1') then  
    En_i1 <= '1'; 



    En_i2 <= '1'; 
    if cnt = 10 then 
     Sl_rdDBus_i <= x"b8000000";     

         
     current_state <= forth_Bridge; 
     Sl_addrAck <= '1'; 
     cnt := 0; 
    else  
     cnt := cnt +1; 
    end if;       

    else  
    case reg1 (0 to 3) is 
    when "0001" => 
     Addr_i1 <=  "0000000" & PLB_ABus(24 to 27); 
     Addr_i2 <= "00000" & PLB_ABus(24 to 29); 
     address(4 to 27) <= PLB_ABus(4 to 27); 
     address(0 to 3) <= (others => '0'); 
          
    when "0010" => 
     Addr_i1 <=  "00000" & PLB_ABus(22 to 27); 
     Addr_i2 <= "000" & PLB_ABus(22 to 29); 
     address(4 to 27) <= PLB_ABus(4 to 27); 
     address(0 to 3) <= (others => '0'); 
         
    when "0011" => 
     Addr_i1 <=  "0000" & PLB_ABus(21 to 27); 
     Addr_i2 <= "00" & PLB_ABus(21 to 29); 
     address(4 to 27) <= PLB_ABus(4 to 27); 
     address(0 to 3) <= (others => '0'); 
         
    when "0100" => 
     Addr_i1 <=  "000" & PLB_ABus(20 to 27); 
     Addr_i2 <= "0" & PLB_ABus(20 to 29); 
     address(4 to 27) <= PLB_ABus(4 to 27); 
     address(0 to 3) <= (others => '0'); 
          
    when "0101" => 
     Addr_i1 <=  "00" & PLB_ABus(19 to 27); 
     Addr_i2 <= PLB_ABus(19 to 29); 
     address(4 to 27) <= PLB_ABus(4 to 27); 
     address(0 to 3) <= (others => '0'); 
 
    when others => 
     Addr_i1 <=  "00" & PLB_ABus(19 to 27); 
     Addr_i2 <= PLB_ABus(19 to 29); 
     address(4 to 27) <= PLB_ABus(4 to 27); 
     address(0 to 3) <= (others => '0'); 

     end case; 
    if ((reg1(4 to 31) = x"aaaaaaa") and (PLB_RNW = '1'))then    
     if ((InstAcc = '1')) then 
      delay_time3 := 0; 
     else 
      delay_time3 := 0; 
      delay_time2 := XCD220; 
     end if; 
      delay_time := 1; 
      WE_i1 <= '0'; 
      EN_i1 <= '1'; 
      WE_i2 <= '0'; 
      EN_i2 <= '1'; 

       current_state <= Second_cache; 
    else 
     if PLB_RNW = '1' then 
      IP2Bus_MstRd_Req <= '1';  
      current_state <= Second_Bridge;  
      IP2Bus_Mst_Addr <= PLB_ABus; 
      IP2Bus_Mst_BE <= PLB_BE; 
      IP2Bus_Mst_Lock <= '0'; 

      else 
      PLB_BE_temp <= PLB_BE; 



      PLB_wrDBus_temp <= PLB_wrDBus; 
      PLB_ABus_temp <= PLB_ABus; 
      address(4 to 27) <= PLB_ABus(4 to 27); 
      address(0 to 3) <= (others => '0'); 
      cnt_image := 0;      
      EN_i1 <= '1'; 
      EN_i2 <= '1'; 
      WE_i1 <= '0'; 

       WE_i2 <= '0'; 
       current_state <= Second_cache; 

     end if; 
    end if; 
   end if; 
       
  else  
   current_state <= First;      

   end if; 
 

  when Second_Cache =>        
   if cnt = delay_time then 
    tag_temp := DO_i1; 
    mem_temp := DO_i2; 
    cnt :=0; 
    if PLB_RNW = '1' then 
     RNW <= '1'; 
     current_state <= Cache_Read; 
    else 
     RNW <= '0'; 
     current_state <= Cache_Write; 
    end if;    
   else  
    cnt := cnt +1; 
    current_state <= Second_Cache; 

    end if; 
  when Cache_Read => 
   if ((tag_temp(0 to 3)="1111") and (address(4 to 27) = tag_temp(4 to 27))) then  
    RHC := RHC +1; 
    if (InstAcc = '1') then 
     Chit := Chit + 1;       
     if BC = 0 then 
      if ((Chit = 1) and ((mem_temp (0 to 5)  = "110100") or   

       (mem_temp (0 to 5)  = "111100") or (mem_temp (0 to 5)  = "110101") or 
       (mem_temp (0 to 5)  = "111101") or (mem_temp (0 to 5)  = "111110") or 
       (mem_temp (0 to 5)  = "110110"))) then 

       CWS := 0; 
       delay_time2 := (XC270) ; 
       CW := 1; 
       CW_out <= x"1"; 
      elsif ((CW = 0) and ((mem_temp (0 to 5)  = "110100") or  

       (mem_temp (0 to 5)  = "111100") or (mem_temp (0 to 5)  = "110101") or 
       (mem_temp (0 to 5)  = "111101") or (mem_temp (0 to 5)  = "111110") or 
       (mem_temp (0 to 5)  = "110110"))) then 

       CWS := 0;  
       CW := 1; 
       CW_out <= x"1"; 
      elsif ((CW = 1) and ((mem_temp (0 to 5)  = "110100") or  

       (mem_temp (0 to 5)  = "111100") or (mem_temp (0 to 5)  = "110101") or 
       (mem_temp (0 to 5)  = "111101") or (mem_temp (0 to 5)  = "111110") or 
       (mem_temp (0 to 5)  = "110110"))) then 

       if (CWS = 0) then 
        delay_time2 := (XC370); 
       else 
        delay_time2 := (XC270) ; 
       end if; 
       CW := 2; 
       CW_out <= x"2"; 
      elsif ((CW = 2) and ((mem_temp (0 to 5)  = "110100") or  

       (mem_temp (0 to 5)  = "111100") or (mem_temp (0 to 5)  = "110101") or 
       (mem_temp (0 to 5)  = "111101") or (mem_temp (0 to 5)  = "111110") or 
       (mem_temp (0 to 5)  = "110110"))) then 



       if (CWS = 0) then 
        writeflag :='1'; 
        delay_time3 := XC40; 
        delay_time2 := (XC470) ; 
       else 
        delay_time2 := (XC370); 
        CWS := 2; 
       end if; 
       CW := 3; 
       CW_out <= x"3"; 
      elsif ((CW = 3) and ((mem_temp (0 to 5)  = "110100") or 

       (mem_temp (0 to 5)  = "111100") or (mem_temp (0 to 5)  = "110101") or 
       (mem_temp (0 to 5)  = "111101") or (mem_temp (0 to 5)  = "111110") or 
       (mem_temp (0 to 5)  = "110110"))) then 

       if (CWS = 0) then 
        writeflag :='1'; 
        delay_time3 := XC50; 
        delay_time2 := (XC600) ; 
       elsif (CWS = 2) then 
        writeflag :='1'; 
        delay_time3 := XC40; 
        delay_time2 := (XC470) ; 
       else 
        delay_time2 := (XC470) ; 
        CWS := 2; 
       end if; 
        CW := 4;  
        CW_out <= x"4"; 
      elsif ((CW = 4) and ((mem_temp (0 to 5)  = "110100") or  

       (mem_temp (0 to 5)  = "111100") or (mem_temp (0 to 5)  = "110101") or 
       (mem_temp (0 to 5)  = "111101") or (mem_temp (0 to 5)  = "111110") or 
       (mem_temp (0 to 5)  = "110110"))) then 

       if (CWS = 0) then 
        delay_time3 := XC100; 
        elsif (CWS = 2) then 
        delay_time3 := XC50;  
       end if; 
        writeflag :='1'; 
        CWS := 0; 
        delay_time2 := (XC370) ; 
        CW := 4; 
        CW_out <= x"4"; 
      elsif ((CW = 5) and ((mem_temp (0 to 5)  = "110100") or  

       (mem_temp (0 to 5)  = "111100") or (mem_temp (0 to 5)  = "110101") or 
       (mem_temp (0 to 5)  = "111101") or (mem_temp (0 to 5)  = "111110") or 
       (mem_temp (0 to 5)  = "110110"))) then 

       CW := 6; 
       CW_out <= x"6"; 
       CWS := 0; 
       delay_time2 := (XC220) ; 
      elsif ((CW = 6) and ((mem_temp (0 to 5)  = "110100") or  

       (mem_temp (0 to 5)  = "111100") or (mem_temp (0 to 5)  = "110101") or 
       (mem_temp (0 to 5)  = "111101") or (mem_temp (0 to 5)  = "111110") or 
       (mem_temp (0 to 5)  = "110110"))) then 

       CW := 7; 
       CW_out <= x"7"; 
       if (CWS = 0) then 
        delay_time3 := (XC80) ; 
        writeflag :='1'; 
       end if; 
       delay_time2 := (XC370) ; 
      elsif ((CW = 7) and ((mem_temp (0 to 5)  = "110100") or  

       (mem_temp (0 to 5)  = "111100") or (mem_temp (0 to 5)  = "110101") or 
       (mem_temp (0 to 5)  = "111101") or (mem_temp (0 to 5)  = "111110") or 
       (mem_temp (0 to 5)  = "110110"))) then 

       CW := 7; 
       CW_out <= x"7"; 
       if (CWS = 0) then 
        delay_time3 := (XC100) ; 
       else 



        delay_time3 := (XC80) ; 
       end if; 
       writeflag :='1'; 
       delay_time2 := (XC370) ; 
       CWS := 0;   
      else  
       if (mem_temp (0 to 5)  = "101110") then 
        BC := 1; 
       end if; 
       CWS := CWS +1;  
       if (CWS > 15) then 
        CW := 0; 
        CW_out <= x"0"; 
       elsif ((CWS /= 1) and (CW = 4 or CW = 5 or CW = 7)) then 
        CW := 5; 
        CW_out <= x"5"; 
       elsif ((CWS /= 1)) then 
        CW := 0; 
        CW_out <= x"0"; 
       elsif (CW = 1) then 
        writeflag :='1'; 
        write1 :='1'; 
        CR := 0;  
        CW := 2; 
        CW_out <= x"2"; 
       elsif ((CW = 2)) then 
        writeflag :='1'; 
        delay_time3 := XC40;  
        CW := 3; 
        CR := 0; 
        CW_out <= x"3"; 
       elsif ((CW = 3)) then 
        writeflag :='1'; 
        delay_time3 := XC50;  
        CW := 4; 
        CR := 0; 
        CW_out <= x"4"; 
       elsif ((CW = 4)) then 
        writeflag :='1'; 
        CR := 0; 
        CW := 4; 
        CW_out <= x"4"; 
        delay_time3 := (XC100) ; 
       elsif ((CW = 6)) then 
        writeflag :='1'; 
        write1 :='1'; 
        CW := 7; 
        CR := 3; 
        CW_out <= x"7"; 
       elsif ((CW = 7)) then 
        writeflag :='1'; 
        CW := 7; 
        CW_out <= x"7"; 
        CR := 3; 
        delay_time3 := (XC100) ; 
       end if; 
      elsif BC = 1 then 
       BC := 2; 
      else 
       BC := 0; 
      end if; 
     end if; 
      current_state <= data_stall; 
      Sl_rdDBus_i <= mem_temp; 
    else 
     if DataAcc = '1' then 
      miss <= '1'; 
      delay_time2 := XCD220; 
      missflag := '0'; 
     else 



      missflag := '1'; 
      miss <= '0'; 
     end if;  
         
     EN_i1 <= '1'; 
     WE_i1 <= '1'; 
     DI_i1 <=  "1111"& address(4 to 27)& "0000";  
     RMC := RMC +1; 
     current_state <= Cache_DDR_Read1 ; 
     IP2Bus_MstRd_Req <= '1'; 
     IP2Bus_Mst_Addr <= PLB_ABus(0 to 27) &"0000"; 
     IP2Bus_Mst_BE <= PLB_BE; 
     IP2Bus_Mst_Lock <= '0'; 
     address_temp3 := PLB_ABus(0 to 27); 
     address_temp2 := "00"; 

     end if; 
    end if; 
 

  when stall => 
   if cnt = delay_time2 then 
    cnt := 0; 
    current_state <= Cache_DDR3; 
    Sl_addrAck <= '1'; 
    missflag := '0'; 
    Chit := 0; 
    if ((InstACC = '1') and ((Sl_rdDBus_i (0 to 5)  = "110100") or (Sl_rdDBus_i (0 to 5)  = "111100") 

     or (Sl_rdDBus_i (0 to 5)  = "110101") or (Sl_rdDBus_i (0 to 5)  = "111101") or   
     (Sl_rdDBus_i (0 to 5)  = "111110") or (Sl_rdDBus_i (0 to 5)  = "110110"))) then 

     delay_time2 := (XC270); 
     CW := 1; 
     CR := 0; 
     CW_out <= x"1"; 
     CWS := 0; 
    else 
     delay_time2 := (XC150); 
     CW := 0; 
     CW_out <= x"0"; 
     BC := 0; 
     CWS := 0; 
    end if;  
   else 
    cnt := cnt+1; 
    current_state <= stall; 

    end if; 
 

  when Cache_DDR_Read1 => 
   if ( Bus2IP_Mst_CmdAck = '1') then  
    current_state <= Cache_DDR_Read2; 
   elsif ( Bus2IP_Mst_Cmplt = '1' ) then  
    EN_i2 <= '1'; 
    WE_i2 <= '1'; 
    IP2Bus_MstRd_Req <= '0';  
    Addr_i2 <= Addr_i1(2 to 10) & address_temp2; 
    DI_i2 <= Bus2IP_MstRd_d; 
    if address_temp2 = PLB_ABus(28 to 29) then 
     Sl_rdDBus_i <= Bus2IP_MstRd_d; 
    end if; 
    if (address_temp2 = "11" ) then 
     current_state <= stall;       
    else 
     current_state <= Cache_DDR_Read3; 
    end if; 
   else 
    WE_i2 <= '0';       
    current_state <= Cache_DDR_Read1;  

    end if; 
 

  when Cache_DDR_Read2 => 
   if ( Bus2IP_Mst_Cmplt = '1' ) then  
    EN_i2 <= '1'; 



    WE_i2 <= '1'; 
    IP2Bus_MstRd_Req <= '0';  
    Addr_i2 <= Addr_i1(2 to 10) & address_temp2; 
    DI_i2 <= Bus2IP_MstRd_d; 
    if address_temp2 = PLB_ABus(28 to 29) then 
     Sl_rdDBus_i <= Bus2IP_MstRd_d; 
    end if; 
    if (address_temp2 = "11") then 
     current_state <= stall;       
    else 
     current_state <= Cache_DDR_Read3; 
    end if; 
   else 
    WE_i2 <= '0';  
    current_state <= Cache_DDR_Read2; 
   end if;  
 
  when data_stall =>  
   if write1 = '1' then 
    delay_time3 := XCIhit; 
   end if; 
   if (RData_valid_in = '0' and miss_in = '0') or (Chit < 4) then 
    if cnt = delay_time3 then 
     writeflag := '0'; 
     missflag := '0'; 
     write1 := '0'; 
     cnt := 0; 
     current_state <= Cache_DDR3; 
     Sl_addrAck <= '1'; 
     branch_flag := '0'; 
    else  
     cnt := cnt +1; 
     current_state <= data_stall; 
    end if; 
   elsif miss_in = '1' then 
    missflag := '1'; 
    CW := 0; 
    CWS := 0; 
    delay_time3 := XCR1; 
    current_state <= data_stall; 
   else 
    current_state <= data_stall; 
   end if; 
  when Cache_Write =>  
   if ((tag_temp(0 to 3)="1111") and (address(4 to 27) = tag_temp(4 to 27))) then 
    case PLB_BE_temp is 
    when "0001" => 
     EN_i2 <= '1'; 
     WE_i2 <= '1'; 
     DI_i2 (0 to 23)<= mem_temp(0 to 23); 
     DI_i2(24 to 31) <= PLB_wrDBus_temp(24 to 31); 
  
    when "0010" => 
     EN_i2 <= '1'; 
     WE_i2 <= '1'; 
     DI_i2 (0 to 15)<= mem_temp(0 to 15); 
     DI_i2(16 to 23) <= PLB_wrDBus_temp(16 to 23); 
     DI_i2 (24 to 31)<= mem_temp(24 to 31); 
          
    when "0011"=>  
     EN_i2 <= '1'; 
     WE_i2 <= '1'; 
     DI_i2 (0 to 15)<= mem_temp(0 to 15); 
     DI_i2(16 to 31) <= PLB_wrDBus_temp(16 to 31); 
          
    when"0100" => 
     EN_i2 <= '1'; 
     WE_i2 <= '1'; 
     DI_i2 (0 to 7)<= mem_temp(0 to 7); 
     DI_i2(8 to 15) <= PLB_wrDBus_temp(8 to 15); 



     DI_i2 (16 to 31)<= mem_temp(16 to 31); 
          
    when "0101" => 
     EN_i2 <= '1'; 
     WE_i2 <= '1'; 
     DI_i2 (0 to 7)<= mem_temp(0 to 7); 
     DI_i2(8 to 15) <= PLB_wrDBus_temp(8 to 15); 
     DI_i2 (16 to 23)<= mem_temp(16 to 23); 
     DI_i2(24 to 31) <= PLB_wrDBus_temp(24 to 31); 
          
    when "0110"=> 
     EN_i2 <= '1'; 
     WE_i2 <= '1'; 
     DI_i2 (0 to 7)<= mem_temp(0 to 7); 
     DI_i2(8 to 23) <= PLB_wrDBus_temp(8 to 23); 
     DI_i2(24 to 31) <= mem_temp(24 to 31); 
          
    when "0111"=> 
     EN_i2 <= '1'; 
     WE_i2 <= '1'; 
     DI_i2 (0 to 7)<= mem_temp(0 to 7); 
     DI_i2(8 to 31) <= PLB_wrDBus_temp(8 to 31); 
          
    when "1000"=> 
     EN_i2 <= '1'; 
     WE_i2 <= '1'; 
     DI_i2(0 to 7) <= PLB_wrDBus_temp(0 to 7); 
     DI_i2(8 to 31) <= mem_temp(8 to 31); 
          
    when "1001"=> 
     EN_i2 <= '1'; 
     WE_i2 <= '1'; 
     DI_i2(0 to 7) <= PLB_wrDBus_temp(0 to 7); 
     DI_i2(8 to 23) <= mem_temp(8 to 23); 
     DI_i2(24 to 31) <= PLB_wrDBus_temp(24 to 31); 
          
    when "1010"=> 
     EN_i2 <= '1'; 
     WE_i2 <= '1'; 
     DI_i2(0 to 7) <= PLB_wrDBus_temp(0 to 7); 
     DI_i2(8 to 15) <= mem_temp(8 to 15); 
     DI_i2(16 to 23) <= PLB_wrDBus_temp(16 to 23); 
     DI_i2(23 to 31) <= mem_temp(23 to 31); 
          
    when "1011"=>  
     EN_i2 <= '1'; 
     WE_i2 <= '1'; 
     DI_i2(0 to 7) <= PLB_wrDBus_temp(0 to 7); 
     DI_i2(8 to 15) <= mem_temp(8 to 15); 
     DI_i2(16 to 31) <= PLB_wrDBus_temp(16 to 31);  
          
    when "1100"=>  
     EN_i2 <= '1'; 
     WE_i2 <= '1'; 
     DI_i2(0 to 15) <= PLB_wrDBus_temp(0 to 15); 
     DI_i2(16 to 31) <= mem_temp(16 to 31); 
          
    when "1101"=>  
     EN_i2 <= '1'; 
     WE_i2 <= '1'; 
     DI_i2(0 to 15) <= PLB_wrDBus_temp(0 to 15);  
     DI_i2(16 to 23) <= mem_temp(16 to 23); 
     DI_i2(24 to 31) <= PLB_wrDBus_temp(24 to 31); 
          
    when "1110" => 
     EN_i2 <= '1'; 
     WE_i2 <= '1'; 
     DI_i2(0 to 23) <= PLB_wrDBus_temp(0 to 23);  
     DI_i2(24 to 31) <= mem_temp(24 to 31); 
          



    when "1111" => 
     EN_i2 <= '1'; 
     WE_i2 <= '1'; 
     DI_i2 <= PLB_wrDBus_temp; 
    when others => 
     EN_i2 <= '0'; 
     WE_i2 <= '0'; 
    end case;       
   end if; 
   IP2Bus_MstWr_d <= PLB_wrDBus_temp; 
   IP2Bus_Mst_Addr <= PLB_ABus_temp; 
   IP2Bus_Mst_BE <= PLB_BE_temp; 
   IP2Bus_Mst_Lock <= '0'; 
   IP2Bus_MstWr_Req <= '1'; 
   if reg1(4 to 31) = x"aaaaaaa" then 
    WHC := WHC +1;  
   end if; 
   current_state <= Second_Bridge; 
 
  when Cache_DDR3 => 
   WE_i1 <= '0';  
   WE_i2 <= '0'; 
   En_i1 <= '0';  
   En_i2 <= '0';  
   Sl_MBusy(0) <= '1';  
   Sl_addrAck <= '0';  
   Sl_wait <= '0'; 
   current_state <= Cache_DDR4; 
 
  when Cache_DDR4 => 
   read_end <= '1'; 
   miss <= '0'; 
   if PLB_RNW = '1' then 
    Sl_rdDAck <= '1';   
    Sl_rdComp <= '1'; 
    Sl_rdDBus <= Sl_rdDBus_i; 
    if SRM_flag ='1' then 
     SM_Cnt <= "0000"; 
    end if; 
        
   else  
    Sl_wrDAck <= '1';     
    _wrComp <= '1';  
   end if; 
   current_state <= first; 
----------------------------------------------------------------------------------      
--------------------------------End---Cache-----------------------------------       
----------------------------------------------------------------------------------       
          
 
 ----------------------------------------------------------------------------------      
-----------------------------Slave Register------------------------------------       
 ---------------------------------------------------------------------------------- 
   when Second_Reg => 
    if cnt = 12 then 
     current_state <= third_Reg; 
     cnt := 0; 
     else 
     current_state <= Second_Reg; 
     cnt := cnt +1; 
     end if; 
      
   when third_Reg => 
    if (RNW = '1') then 
     if  PLB_ABus(24 to 31) = x"00" then 
      Sl_rdDBus_i <= reg1; 
     elsif PLB_ABus(24 to 31) = x"04" then 
      Sl_rdDBus_i <= reg2; 
     elsif PLB_ABus(24 to 31) = x"08" then 
      Sl_rdDBus_i <= reg3; 



     elsif PLB_ABus(24 to 31) = x"0c" then 
      Sl_rdDBus_i <= reg4;      
     elsif PLB_ABus(24 to 31) = x"30" then 
      Sl_rdDBus_i <= reg5; 
     elsif PLB_ABus(24 to 31) = x"34" then 
      Sl_rdDBus_i <= reg6; 
     elsif PLB_ABus(24 to 31) = x"10" then 
      Sl_rdDBus_i <= tag_temp; 
     elsif PLB_ABus(24 to 31) = x"14" then 
      Sl_rdDBus_i <= mem_temp; 
     elsif PLB_ABus(24 to 31) = x"20" then 
      Sl_rdDBus_i <= reg5;  
     elsif PLB_ABus(24 to 31) = x"24" then 
      Sl_rdDBus_i <= reg6; 
     elsif PLB_ABus(24 to 31) = x"28" then 
      Sl_rdDBus_i <= reg7; 
     elsif PLB_ABus(24 to 31) = x"40" then 
      Sl_rdDBus_i <= reg8; 
     elsif PLB_ABus(24 to 31) = x"44" then 
      Sl_rdDBus_i <= reg9;   
     elsif PLB_ABus(24 to 31) = x"48" then 
      Sl_rdDBus_i <= reg10;  
     elsif PLB_ABus(24 to 31) = x"4c" then 
      Sl_rdDBus_i <= reg11; 
     elsif PLB_ABus(24 to 31) = x"50" then 
      Sl_rdDBus_i <= reg21; 
     elsif PLB_ABus(24 to 31) = x"54" then 
      Sl_rdDBus_i <= reg22;  
     elsif PLB_ABus(24 to 31) = x"58" then 
      Sl_rdDBus_i <= reg23;  
     elsif PLB_ABus(24 to 31) = x"5c" then 
      Sl_rdDBus_i <= reg24; 
     elsif PLB_ABus(24 to 31) = x"f0" then 
      Sl_rdDBus_i <= write_coef;  
     elsif PLB_ABus(24 to 31) = x"60" then 
      Sl_rdDBus_i <= misstime;  
     elsif PLB_ABus(24 to 31) = x"64" then 
      Sl_rdDBus_i <= writetime;   
     end if; 
    end if; 
    Sl_addrAck <= '1'; 
    current_state <= Forth_Reg; 
     
   when Forth_Reg => 
    Sl_MBusy(0) <= '1';  
    Sl_addrAck <= '0';  
    Sl_wait <= '0'; 
    current_state <= Fifth_Reg; 
      
   when Fifth_Reg => 
    if RNW = '1' then 
     Sl_rdDAck <= '1';   
     Sl_rdComp <= '1'; 
     Sl_rdDBus <= Sl_rdDBus_i; 
    else  
     Sl_wrDAck <= '1';     
     Sl_wrComp <= '1';  
    end if; 
    current_state <= first; 
        
      
 ----------------------------------------------------------------------------------      
 ----------------------------------End--Slave Register----------------------- 
 ----------------------------------------------------------------------------------    
 
---------------------------------------------------------------------------------      
 -----------------------------------Bridge------------------------------------- 
 --------------------------------------------------------------------------------- 
   when Second_Bridge => 
    if ( Bus2IP_Mst_CmdAck = '1' and Bus2IP_Mst_Cmplt = '0' ) then 



      current_state <= third_Bridge; 
    elsif ( Bus2IP_Mst_Cmplt = '1' ) then 
       if PLB_RNW ='1' then 
       Sl_rdDBus_i <= Bus2IP_MstRd_d; 
       end if; 
       Sl_addrAck <= '1'; 
       current_state <= forth_Bridge; 
       IP2Bus_MstWr_Req <= '0'; 
       IP2Bus_MstRd_Req <= '0'; 
    else 
      current_state <= Second_Bridge; 
    end if;     
 
   when third_Bridge => 
    if ( Bus2IP_Mst_Cmplt = '1' ) then 
     if PLB_RNW ='1' then 
      Sl_rdDBus_i <= Bus2IP_MstRd_d;  
     end if;  
     current_state <= forth_Bridge; 
     Sl_addrAck <= '1';  
     IP2Bus_MstWr_Req <= '0'; 
     IP2Bus_MstRd_Req <= '0';  
    else 
     current_state <= third_Bridge; 
    end if;     
      
   when forth_Bridge =>        

     Sl_MBusy(0) <= '1';  
    Sl_addrAck <= '0';  
    Sl_wait <= '0'; 
    current_state <= fifth_Bridge; 
       
       
   when fifth_Bridge =>        
    WE_i1 <= '0'; 
    WE_i2 <= '0'; 
    if PLB_RNW = '1' then 
     Sl_rdDAck <= '1';   
     Sl_rdComp <= '1'; 
     Sl_rdDBus <= Sl_rdDBus_i; 
    else 
     Sl_wrDAck <= '1';     
     Sl_wrComp <= '1';  
    end if; 
    current_state <= first; 
 ----------------------------------------------------------------------------------      

  ------------------------------End  Bridge------------------------------------- 
   ---------------------------------------------------------------------------------- 

   when others => 
    current_state <= First; 
   end case; 

 
 

----------------------------------------------------------------------------------      
 ------------------------------Swap Madule----------------------------------- 
  ---------------------------------------------------------------------------------- 

 case swap is  
  when init => 
   if swap_en = '1' then 
    Adr_swap1 := (others => '0'); 
    Adr_swap2 := (others => '0'); 
    Addr_i1 <= (others => '0'); 
    Addr_i2 <= (others => '0'); 
    swap <= run; 
   else   
    swap_run := '0'; 
    Swap_out <= '0'; 
    swap <= init; 
    IP2Bus1_MstWr_Req <= '0'; 
    IP2Bus1_MstRd_Req <= '0'; 



    Adr_swap1 := (others => '0'); 
    Adr_swap2 := (others => '0'); 
   end if;  
     
   when run =>      
    if reg2 (0 to 11) = x"c4c" then 
     adr_swap3 (0) := '0'; 
    else 
     adr_swap3 (0) := '1'; 
    end if; 
    if reg2(28 to 31) = "0000" then 
     swap <= cache_to_ram1_1; 
     adr_swap3 (1 to 3) := "000"; 
    elsif reg2 (28 to 31) = "0001" then 
     swap <= ram_to_cache1_1; 
     adr_swap3 (1 to 3) := "000"; 
    elsif reg2 (28 to 31) = "0010" then 
     swap <= cache_to_ram1_1; 
     adr_swap3 (1 to 3) := "001"; 
    elsif reg2 (28 to 31) = "0011" then 
     swap <= ram_to_cache1_1; 
     adr_swap3 (1 to 3) := "001";  
    elsif reg2 (28 to 31) = "0100" then 
     swap <= cache_to_ram1_1; 
     adr_swap3 (1 to 3) := "010"; 
    elsif reg2 (28 to 31) = "0101" then 
     swap <= ram_to_cache1_1; 
     adr_swap3 (1 to 3) := "010";   
    elsif reg2 (28 to 31) = "0110" then 
     swap <= cache_to_ram1_1; 
     adr_swap3 (1 to 3) := "011"; 
    elsif reg2 (28 to 31) = "0111" then 
     swap <= ram_to_cache1_1; 
     adr_swap3 (1 to 3) := "011";  
    elsif reg2(28 to 31) = "1000" then 
     swap <= cache_to_ram1_1; 
     adr_swap3 (1 to 3) := "100"; 
    elsif reg2 (28 to 31) = "1001" then 
     swap <= ram_to_cache1_1; 
     adr_swap3 (1 to 3) := "100";  
    else  
     swap <= init; 
    end if; 
  
  when cache_to_ram1_1 =>  
   reg1 <= (others => '0'); 
   swap_en <= '0'; 
   IP2Bus1_MstWr_Req <= '1'; 
   IP2Bus1_MstWr_d <= DO_i2; 
   IP2Bus1_Mst_Addr <= x"92" &"000" & adr_swap3 &"1000" & Adr_swap2 (1 to 11)& "00"; 
   swap <= cache_to_ram2_1;    
   
  when cache_to_ram1_2 => 
   if Adr_swap1 = Adr_swap1_cnt then  
    swap <= init; 
    swap_done <= '1'; 
   else 
    IP2Bus1_MstWr_Req <= '1'; 
    IP2Bus1_MstWr_d <= DO_i1; 
    IP2Bus1_Mst_Addr <=x"92" &"000" & adr_swap3 &"0000" & Adr_swap1 (1 to 11)& "00"; 
    swap <= cache_to_ram2_2; 
   end if; 
 
    
  when cache_to_ram2_1 =>  
   if ( Bus2IP1_Mst_CmdAck = '1' and Bus2IP1_Mst_Cmplt= '0') then  
    swap <= cache_to_ram3;  
    Adr_swap2 := Adr_swap2 +1; 
    Addr_i2 <= Adr_swap2(1 to 11); 
   elsif Bus2IP1_Mst_Cmplt = '1' then  



    IP2Bus1_MstWr_Req <= '0'; 
    swap <= time_to_stable; 
   else  
    swap <= cache_to_ram2_1;      

  
   end if;  
    
  when cache_to_ram2_2 =>  
   if ( Bus2IP1_Mst_CmdAck = '1' and Bus2IP1_Mst_Cmplt= '0') then  
    swap <= cache_to_ram3;  
    Adr_swap1 := Adr_swap1 +1; 
    Addr_i1 <= Adr_swap1(1 to 11); 
   elsif Bus2IP1_Mst_Cmplt = '1' then 
    IP2Bus1_MstWr_Req <= '0'; 
    swap <= time_to_stable; 
   else  
    swap <= cache_to_ram2_2;      

  
   end if; 
  
  when cache_to_ram3 => 
   if ( Bus2IP1_Mst_Cmplt = '1' ) then 
    IP2Bus1_MstWr_Req <= '0'; 
    swap <= time_to_stable; 
   else  
    swap <= cache_to_ram3; 
   end if; 
    
  when time_to_stable => 
   if cnt2 = 12 then 
    cnt2 := 0; 
    if Adr_swap2 = Adr_swap2_cnt then  
     swap <= cache_to_ram1_2; 
    else 
     swap <= cache_to_ram1_1;      
    end if; 
   else  
    cnt2 := cnt2+1; 
    swap<= time_to_stable; 
   end if; 
    
  when ram_to_cache1_1 => 
   reg1 <= (others => '0'); 
   swap_en <= '0'; 
   if Adr_swap2 = Adr_swap2_cnt then 
    swap <= ram_to_cache1_2; 
    swap_done <= '1'; 
    WE_i1<= '0'; 
    WE_i2<= '0'; 
   else  
    IP2Bus1_MstRd_Req <= '1'; 
    IP2Bus1_Mst_Addr <= x"92" &"000" & adr_swap3 &"1000" & Adr_swap2 (1 to 11)& "00"; 
    swap <= ram_to_cache2; 
    Addr_i2 <= Adr_swap2(1 to 11); 
   end if; 
 
  when ram_to_cache1_2 => 
   if Adr_swap1 = Adr_swap1_cnt then 
    swap <= init; 
    swap_done <= '1'; 
    WE_i1<= '0'; 
    WE_i2<= '0'; 
   else     
    IP2Bus1_MstRd_Req <= '1'; 
    IP2Bus1_Mst_Addr <= x"92" &"000" & adr_swap3 &"0000" & Adr_swap1 (1 to 11)& "00"; 
    swap <= ram_to_cache2; 
    Addr_i1 <= Adr_swap1(1 to 11); 
   end if; 
    
 



  when ram_to_cache2 => 
   WE_i1<= '0'; 
   WE_i2<= '0';    
   if ( Bus2IP1_Mst_CmdAck = '1' and Bus2IP1_Mst_Cmplt = '0') then   

    
    swap <= ram_to_cache3;  
   elsif ( Bus2IP1_Mst_Cmplt = '1' ) then   
    IP2Bus1_MstRd_Req <= '0'; 
    swap <= time_to_stable2; 
    data_temp <= Bus2IP1_MstRd_d;    
    swap <= time_to_stable2; 
   else  
    swap <= ram_to_cache2;      

  
   end if; 
 
      
  when ram_to_cache3 => 
   if ( Bus2IP1_Mst_Cmplt = '1' ) then 
    IP2Bus1_MstRd_Req <= '0'; 
    swap <= time_to_stable2; 
    data_temp <= Bus2IP1_MstRd_d;    
    swap <= time_to_stable2; 
   else 
    swap <= ram_to_cache3; 
   end if; 
    
    
  when time_to_stable2 => 
   if cnt2 = 5 then 
    cnt2 := 0; 
    if Adr_swap2 = Adr_swap2_cnt then  
     WE_i2<= '0'; 
     swap <= ram_to_cache1_2; 
     DI_i1 <= data_temp; 
     WE_i1 <= '1'; 
     Adr_swap1 := Adr_swap1 +1; 
    else 
     swap <= ram_to_cache1_1; 
     DI_i2 <= data_temp; 
     WE_i1<= '0'; 
     WE_i2 <= '1'; 
     Adr_swap2 := Adr_swap2 +1; 
    end if;     
   else 
    swap <= time_to_stable2; 
    cnt2 := cnt2 +1; 
   end if; 
    
  when others => 
   swap <= init; 
 end case;   
 
end if; 
  
end process IP2BUS_DATA_MUX_PROC; 
     
  
 Sl_SSize <= "00";    
 Sl_rearbitrate <= '0';    
 Sl_wrBTerm <= '0';    
 Sl_rdWdAddr <= (others => '0'); 
 Sl_rdBTerm <= '0';   
 Sl_MBusy(1 to C_SPLB_NUM_MASTERS-1) <= (others => '0'); 
 Sl_MWrErr (0 to C_SPLB_NUM_MASTERS-1)<= (others => '0'); 
 Sl_MIRQ(0 to C_SPLB_NUM_MASTERS-1) <= (others => '0');    
 IP2Bus_Mst_Reset <= SPLB_Rst; 
  

end Behavioral;  


