
DYNAMICALLY RECONFIGURABLE ACTIVE CACHE

MODELING

ALI BARZEGAR

A Thesis

in

The Department

Of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements for the

Degree of Master of Applied Science (Electrical and Computer Engineering)

at

Concordia University

Montréal, Québec, Canada

January 2014

© ALI BARZEGAR, 2014

CONCORDIA UNIVERSITY
SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By: Ali Barzegar

Entitled: “Dynamically Reconfigurable Active Cache Modeling”

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Electrical and Computer Engineering)

Complies with the regulations of this University and meets the accepted standards with
respect to originality and quality.

Signed by the final examining committee:

 __ Chair

 Dr. Zahangir Kabir

 __ Examiner,

External

 Dr. Chadi Assi To the Program

 __ Examiner

 Dr. Otmane Ait Mohamed

 __ Supervisor

 Dr. Samar Abdi

Approved by:
 Dr. W. E. Lynch, Chair
 Department of Electrical and Computer Engineering

 January 2014

 Dr. Christopher Trueman
 Dean, Faculty of Engineering and
 Computer Science

ABSTRACT

Dynamically Reconfigurable Active Cache Modeling

Ali Barzegar

This thesis presents a novel dynamically reconfigurable active L1 instruction and data cache

model, called DRAC. Employing cache, particularly L1, can speed up memory accesses, reduce

the effects of memory bottleneck and consequently improve the system performance; however,

efficient design of a cache for embedded systems requires fast and early performance modeling.

Our proposed model is cycle accurate instruction and data cache emulator that is designed as

an on-chip hardware peripheral on FPGA. The model can also be integrated into multicore

emulation system and emulate multiple caches of the cores. DRAC model is implemented on

Xilinx Virtex 5 FPGA and validated using several benchmarks. Our experimental results show

the model can accurately estimate the execution time of a program both as a standalone and

multicore cache emulator. We have observed 2.78% average error and 5.06% worst case error

when DRAC is used as a standalone cache model in a single core design. We also observed

100% relative accuracy in design space exploration and less than 13% absolute worst case

timing estimation error when DRAC is used as multicore cache emulator.

ACKNOWLEDGEMENTS

 First of all, I would like to express my deepest appreciation to my supervisor, Dr. Samar

Abdi, for giving me the opportunity to experience the adventure of researching in his lab.

Without his guidance, mentoring, and knowledge, this thesis would not have been completed.

Further, I would like to thank him again for supporting me during the research and teaching me

life lessons.

Secondly, I would like to thank all my teachers and professors that helped me build my

background for conducting my research. I am also thankful for examining committee members,

Dr. Chadi Assi and Dr. Otmane Ait Mohamed, for reviewing my thesis and for giving me

comments and suggestions.

In addition, a great thank you to all my fellow researchers in the embedded systems lab at

Concordia University: Ehsan, Kazem, Richard, Partha, Paul, Karim, Shafigh and Zaid for your

help and support. I had memorable times with you guys in this office that I will never forget.

Thank you very much for tolerating me when I was talking too much in the office.

 Last but not least, I would like to thank my wonderful family and friends for supporting me

during my studies. I especially thank my parents, brothers, and sisters who never let me down

in my life.

Dedicated to my family

and,

in memory of my great father who will always be alive in my mind

CONTENTS

List of Tables .. viii

List of Listings .. ix

List of Figures .. x

List of Acronyms ... xii

1 Introduction ... 1

1.1 Motivation ... 3

1.2 System Prototyping .. 4

1.2.1 Virtual Prototyping .. 4

1.2.2 FPGA Prototyping ... 5

1.3 Methodology .. 6

1.4 Related Work ... 9

1.4.1 Software Cache Modeling ... 9

1.4.1.1 Trace driven simulators ... 9

1.4.1.2 Transaction Level Modeling .. 10

1.4.1.3 Single pass simulators .. 11

1.4.2 Hardware Cache Modeling .. 12

1.4.2.1 Passive cache emulators .. 13

1.4.2.2 Active cache emulators .. 14

1.5 Thesis Contribution ... 16

1.6 Thesis Outline .. 17

2 DRAC Model ... 18

2.1 DRAC Interface ... 19

2.2 DRAC Architecture ... 20

2.2.1 Control Status Register (CSR) ... 21

2.2.2 Bridge/Cache Arbitrator & Bus Bridge ... 21

2.2.3 Cache Module .. 22

2.3 DRAC Features .. 25

3 DRAC Extension for Hybrid Prototyping ... 26

3.1 Methodology .. 27

3.2 Architecture ... 30

3.2.1 Swap Module ... 31

3.3 DRAC Software Driver ... 34

4 Timing Model .. 36

4.1 Bus Characteristic .. 36

4.1.1 PLB Bus ... 37

4.1.2 XCL Bus .. 38

4.2 Cache Modeling ... 39

4.3 DRAM Modeling ... 43

5 Experimental Result... 48

5.1 Standalone Accuracy ... 48

5.2 Accuracy in Hybrid.. 51

5.2.1 JPEG Encoder Benchmark .. 51

5.2.2 Timing Results ... 52

5.3 Simulation Speed ... 63

5.4 DRAC Resource Usage ... 64

5.5 Power and Energy Analysis ... 65

5.6 Design Exploration .. 67

6 Conclusion and Future work .. 70

References ... 72

Appendix ... 76

VHDL Code of DRAC .. 76

List of Tables

Table 1.1 Comparison of different cache modeling techniques .. 16
Table 3.1 - Swap save and load variable and values ... 35
Table 4.1 Multiple write factor for different number of cores ... 46
Table 4.2: Effect of multiple writes to MPMC (Numbers in clock cycles) ... 47
Table 5.1 Execution time estimation of different benchmarks in a single core design 50
Table 5.2 Busy-time error for different JPEG mappings ... 60
Table 5.3 Total execution time error for different JPEG mappings .. 63
Table 5.4 Swap time consumption for different sizes ... 64
Table 5.5 Resources usage of Built-in Cache (BIC) and DRAC for different cache sizes 65

List of Listings

Listing 3.1 DRAC Driver .. 34
Listing 3.2 Save Macro .. 34
Listing 3.3 Load Macro ... 35
Listing 4.1 Sample code for multiple port write test ... 46

List of Figures

Figure 1.1 Performance of multicore and single core chips over the years ... 1
Figure 1.2 Memory hierarchy in computer architecture .. 2
Figure 1.3 Cache modeling in single core design .. 6
Figure 1.4 Full FPGA prototype of a multicore design ... 7
Figure 2.1 DRAC interface and its input and output signals ... 19
Figure 2.2 Top level design of DRAC ... 20
Figure 2.3 Flow chart of the cache with write through policy ... 22
Figure 2.4 Data retrieval process in DRAC ... 23
Figure 2.5 Finite state machine of cache controller ... 24
Figure 3.1 Hybrid prototype structure for a two core design ... 26
Figure 3.2 Simple example of simulation with MEK .. 28
Figure 3.3 Modified design of DRAC including Swap Controller .. 30
Figure 3.4 FSM of Swap Controller (Swap Mode) ... 31
Figure 3.5 Process of a save or load transaction between cache and DDR ... 33
Figure 4.1 Read operation from off-chip DDR memory via PLB ... 37
Figure 4.2 Read miss latency with built-in cache via XCL ... 38
Figure 4.5 Read hit latency with built-in cache ... 40
Figure 4.6 Read hit latency with DRAC model ... 40
Figure 4.7 Read miss latency with DRAC model .. 41
Figure 4.8 write operation latency with built-in cache .. 41
Figure 4.9 write operation latency with built-in cache .. 42
Figure 4.10 Effect of a single write on the instruction fetch time in built-in cache 43
Figure 4.11 Effect of consecetive writes in built-in cache .. 44
Figure 4.12 Effect of three consecutive writes in DRAC model ... 45
Figure 4.13 Effect of multiple writes in different port of MPMC with built-in cache 45
Figure 5.1 Execution time estimation of JPEG encoder benchmark in single core design 49
Figure 5.2 Execution time estimation of quicksort benchmark in single core design 49
Figure 5.3 Execution time estimation of dhrystone benchmark in single core design 49
Figure 5.4 JPEG encoding process and its tasks .. 51
Figure 5.5 Busy-time estimation of a 2 core design with 4-1 JPEG mapping 53
Figure 5.6 Busy-time estimation of a 2 core design with 3-2 JPEG mapping 53
Figure 5.7 Busy-time estimation of a 2 core design with 2-3 JPEG mapping 54
Figure 5.8 Busy-time estimation of a 2 core design with 1-4 JPEG mapping 54
Figure 5.9 Busy-time estimation of a 3 core design with 1-1-3 JPEG mapping 55
Figure 5.10 Busy-time estimation of a 3 core design with 1-2-2 JPEG mapping 55
Figure 5.11 Busy-time estimation of a 3 core design with 1-3-1 JPEG mapping 56
Figure 5.12 Busy-time estimation of a 3 core design with 2-2-1 JPEG mapping 56
Figure 5.13 Busy-time estimation of a 3 core design with 2-1-2 JPEG mapping 57
Figure 5.14 Busy-time estimation of a 3 core design with 3-1-1 JPEG mapping 57
Figure 5.15 Busy-time estimation of a 4 core design with 1-1-1-2 JPEG mapping 58
Figure 5.16 Busy-time estimation of a 4 core design with 1-1-2-1 JPEG mapping 58
Figure 5.17 Busy-time estimation of a 4 core design with 1-2-1-1 JPEG mapping 59

Figure 5.18 Busy-time estimation of a 4 core design with 2-1-1-1 JPEG mapping 59
Figure 5.19 Total execution time estimation of a 2core design for different JPEG mapping 61
Figure 5.20 Total execution time estimation of a 3core design for different JPEG mapping 61
Figure 5.21 Total execution time estimation of a 4core design for different JPEG mapping 62
Figure 5.22 Total Simulation time in Seconds for different number of cores in Hybrid design 63
Figure 5.23 Power consumption for different cache sizes in Watts .. 66
Figure 5.24 Energy consumption for different cache sizes and JPEG mappings in mJoules 66
Figure 5.25 Design exploration of JPEG for different task mapping and cache sizes in terms of
energy & speed in Full FPGA prototyping .. 67
Figure 5.26 Design exploration of JPEG for different task mapping and cache sizes in terms of
energy & speed in Hybrid prototyping .. 68

List of Acronyms

ASIC Application Specific Integrated Circuit

BIC Built In Cache

BRAM Block Random Access Memory

CSR Control Status Register

DCACHE Data Cache

DDR Double Data Rate

DRAC Dynamically Reconfigurable Active Cache

DRAM Dynamic Random Access Memory

DXCL Data-Xilinx Cache Link

EDK Embedded Development Kit

FSL Fast Simplex Link

FSM Finite State Machine

ICACHE Instruction Cache

IXCL Instruction -Xilinx Cache Link

JTAG Joint Test Action Group

L 1/2/3

MDM

Level 1/2/3

MicroBlaze Debug Module

MEK Multicore Emulation Kernel

MPMC

NOP

PC

Multi-Port Memory Controller

No Operation

Program Counter

PLB Processor Local Bus

Read/Write

RNW

Read or Write

Read Not Write

SOC System On Chip

TLM Transaction Level Modeling

CHAPTER 1

1 Introduction

According to Moore’s law, the number of transistors in integrated circuits would double

approximately every two years [1]. Due to diminishing transistor size, Moore’s law is still

holding valid. As a result, the number of integrated modules inside a chip has increased, which

has made the integration of several cores feasible [2]. A multi-core processor is composed of

several cores communicating through a communication media like buses, point-to-point links,

and cross-bars.

Figure 1.1 Performance of multicore and single core chips over the years [3]

Each core of a multicore embedded processor might not be as fast as a high performance

single core processor but, the distribution of the work over different cores enables improvement

of the overall system performance [3]. Figure 1.1 compares the performance of an Intel single

core and multi-core by running the SPECint2000 and SPECfp2000 benchmarks. It is obvious

that the relative performance of multicores has increased significantly over the past few years.

Overall system performance is not only influenced by processor speed, it is also drastically

affected by memory access speed. The gap between the processor and the main memory

performance is a challenging issue in computer architecture. To address this problem, Memory

hierarchy is introduced.

Figure 1.2 Memory hierarchy in computer architecture

Figure 1.2 presents a simple hierarchy that includes registers, three levels of cache, main

memory, and disk storage. Cache, specifically, is a fast and relatively small memory used for

keeping instructions and data. Data is moved from the slower/larger memory to the

faster/smaller memory to decrease the access time in repetitive accesses. Recently, different

levels of the cache are introduced to reduce the accesses to the main memory even further.

Memory management in multi-core processors becomes more challenging than

conventional single-core processors. The memory management challenge refers to provide a

consistent view of memory with various cache hierarchies. This consistency is harder to achieve

in multi-core processors where cache hierarchy of several cores should be consistent. In

addition to cache consistency problem, the number of pins on the chip remains almost constant

with adding more cores. Therefore, adding more off-chip memory is not feasible and using one

off-chip memory for all cores may increase access time. To overcome pin constrain challenge,

the number of main memory accesses is expected to be minimized.

1.1 Motivation

Prior to a single or multicore system implementation, it is general practice to build a

prototype of the system. Though prototyping, the designer is capable of testing and exploring

design options in order to avoid unexpected problems and to optimize the system. In addition,

for early system validation and determining the functional accuracy of the design, it is necessary

to have a model of instruction and data cache; a model that is highly accurate and can simulate

the cache in high speed.

Trends toward multicore processing lead us to extend the cache model to emulate multiple

caches of the cores. Level 1 (L1) cache modeling for multicore emulation is more involved than

implementing a built-in regular cache in the physical core. The cache model should be capable

of simulating different caches of the virtual cores by dynamically changing its context. The

model also should be dynamically reconfigurable, so the time required time for emulating

different configurations be reduced.

The target caches to be modeled, both in single and multi-core systems, are instruction and

data, L1, direct mapped, with write-through policy caches since

• To achieve the best performance of a system, it is necessary to have both instruction

and data caches. As a result, the target system has instruction cache as well as data

cache.

• L1 cache has a great impact on the system performance since it is the closest level

of cache to the processor. Embedded systems might use only the primary level (L1)

of cache in order to reduce the complexity and cost of production; hence, we only

targeted L1 cache.

• Direct mapped caches use less logic than set-associative and full-associative caches;

therefore, direct mapped cache consumes less power than other associative caches,

and is preferable in simpler embedded systems.

• Write-through writing policy in data cache ensures that the cache-store remains

consistent. It is important to keep data consistent during multicore emulation, so

write-through policy was chosen for the writing policy.

1.2 System Prototyping

Prototyping is the procedure of building a model of a system in order to check for flaws and

to optimize the product before manufacture. Virtual and FPGA Prototyping are common

techniques that can be used for early system validation.

1.2.1 Virtual Prototyping

Virtual Prototyping provides an early, abstract functional model of the hardware. This

technique uses software simulation libraries and tools to build a software model of the design.

Designers use virtual prototyping to test, optimize, validate and verify their design in a software

framework. Virtual prototyping uses a computer software-based model of a system or

component to avoid early system problems and reduce time-to-market.

Virtual prototyping involves producing a platform or a set of functional models for different

system components such as processor, memory, or bus. These techniques offer the designers a

low cost tool on a computer that benefits from scalability, flexibility, and ease of debugging;

however, current virtual prototyping tools [4], [5] compromise cycle-accuracy for simulation

speed. Virtual prototyping is performed according to a functional model of the system. This

model accelerate the simulation and evaluation of the system but it sacrifices the accuracy for

the speed.

1.2.2 FPGA Prototyping

FPGA prototyping refers to the process of verifying the functionality and performance of

the prototype by implementing the design on a field programmable gate array (FPGA). FPGA

prototyping involves instantiating processor cores, bus, memory, and the peripherals on a chip.

FPGA prototypes are typically, several orders of magnitude faster than cycle accurate virtual

prototypes, while still providing cycle accuracy and almost at-speed simulation of the target

design. This technique is also the pre-silicon stage of SoC and ASIC design in order to avoid

expensive silicon re-spin. Although the speed of FPGAs are lower than ASIC chips, the

configurability of FPGA distinguishes them over ASIC technology.

The main drawback of FPGAs is the lack of scalability. Since most of the design is

implemented by the logic gates and the logic gates are limited on FPGA, it is hard to implement

several design on a single FPGA chip. Besides, debugging of a design on FPGA is difficult and

time consuming in multicore design. As much as the number of cores increases, the complexity

of the design increases.

(a) System with built-in cache (b) System with DRAC model

Figure 1.3 Cache modeling in single core design

1.3 Methodology

Figure 1.3 presents the methodology of DRAC in a single core design. Figure 1.3 (a) shows

the overview of a single processor system with built-in data and instruction cache. The memory

controller, DRAM, and peripherals such as timer and debugger module are also implemented

in the design. The communication between the cache, processor and main memory is through

cache link interconnection. The target built-in cache is a level 1 (L1) direct mapped cache.

Direct mapping allows simple and fast speculation of the information. L1 cache also has the

greatest impact on the system performance. Figure 1.3 (b) illustrates the modeled system with

instruction and data DRAC. We excluded both built-in instruction and data cache (IBIC and

DBIC) and implemented DARC emulator instead. The cache is controlled in software by the

driver that is provided with the model. It can be simply enabled, disabled, or reconfigured

during program execution time.

Figure 1.4 Full FPGA prototype of a multicore design

Figure 1.4 shows the full FPGA prototype of a target multicore design. In this design,

processors running in parallel and have separate accesses to the main memory provided by

Multi Port Memory Controller (MPMC). Each processor has its own separate L1 instruction

and data cache. Hybrid prototyping, which is a promising prototyping technique, targets the

multicore design, and emulates the system on a single physical core depicted in Figure 1.3 (b).

Hybrid prototyping provides the benefits of scalability of virtual prototyping, as well as the

cycle-accuracy and speed of FPGA prototyping

The key idea is a Multicore Emulation Kernel (MEK), which is a software layer that

executes on a single target core that is physically implemented in FPGA. The MEK

dynamically schedules different tasks running on independent cores on a single physical target

core, to simulate software execution on a multicore platform. The MEK manages the state of

the individual cores and the logical simulation times. The original hybrid prototyping system

uses Block RAM (BRAM) for the program and data, since it does not support memory

hierarchy. This work extends hybrid prototyping by supporting memory hierarchy consisting

of L1 cache, and off chip main memory, implemented in DRAM.

L1 cache modeling for hybrid prototyping is more involved than implementing a built-in

regular cache in the physical core. The cache model should be capable of simulating different

caches of the virtual cores by dynamically changing its context. We proposed a Dynamically

Reconfigurable Active Cache (DRAC) model to support multiple L1 cache contexts. DRAC is

designed as a run-time configurable cache.

DRAC is also designed as an active cache model. It actively interacts with the target system

and provides required instruction and data for the processor. Similar to BIC, DRAC uses

BRAM for data and tag memory; hence, it speeds up the system performance in compare to the

system without cache. Upon a memory request, DRAC fetches the regarding instruction or data

from the main memory, keeps a copy of the information in data memory, updates the tag

memory, and delivers the information to the processor. On the next access to the same address

location, DRAC retrieves the information from its data memory and decreases the fetch time.

The active behavior of DRAC also provides the model the ability to control memory transaction

latency over the bus. In order to model BIC behavior, DRAC injects extra cycles in the required

cases to scale the memory transaction latencies. Thereby, the execution time will be a linear

factor of the system with BIC.

The run-time configurability of DRAC provides MEK the ability to change the cache

configuration during program execution. The configurability has to be run-time since the

emulation process is fully controlled by the MEK software. The MEK can change the cache

configurations, like the size of the cache, depending on the emulated core’s configuration.

Therefore, it is possible to have different cache contexts and configurations for each core.

1.4 Related Work

There are different approaches to model the cache behavior. Cache modeling can be broadly

divided into software-based and hardware-based modeling techniques. Each has its advantages

and drawbacks. In following section, we discuss some of these techniques.

1.4.1 Software Cache Modeling

Software models are developed in a software environment on a host computer. They support

a high degree of configurability; however, software-based simulators compromise accuracy for

simulation speed, and vice versa. Since software models are running on host computer and there

are plenty of resources on computer, software models promotes scalability and flexibility in

cache modeling.

1.4.1.1 Trace driven simulators

 Trace driven simulation has been one of the popular cache modeling approaches for many

years. Trace driven simulators consist of three stages: trace collection, trace reduction, and trace

processing. They extract the memory traces through the software, and use the extracted data to

simulate the behavior of the cache. These simulators are developed in a software environment

and offer a good degree of configurability, however they suffer lack of accuracy. Since the

entire performance of the cache is not visible in this technique, it is difficult to determine the

error. Processing the traces can also be time consuming which is not desired for design space

exploration.

The early trace driven cache simulator proposed by Denning [7] collected memory

references based on their independent probability. This model does not consider the locality of

memory references inherent in a real trace. Dinero IV [8] is another simulator based on trace

collecting written in C language. This technique needs repetitive simulations to reach to higher

accuracy and is not eligible for multicore processing. MMCacheSim [9] is a highly configurable

matrix multiplication cache simulator that can be used in multicore processing system. This

model that is developed in java, simulates the execution time and number of cache misses on

processor with different cache sizes, lines, levels, associativity, and replacement policies. Like

other trace driven simulators, this model suffers from lack of accuracy.

1.4.1.2 Transaction Level Modeling

Transaction-level modeling (TLM) is a high-level approach to model cache behavior. This

is a widely used technique for abstracting the system behavior in both processing and memory

level. TLM modeling is the response to increase the software simulation speed by abstracting

communication details. TLM models extract the memory access information and abstract them

into cache models. This software simulation technique faces two major challenges: the

accuracy, and system performance. Such these simulators, are not accurate enough since they

cannot statistically resolve addresses during source code instrumentation. Cache modeling

brings large overhead in simulation performance and reduces the speed.

Statistical models [4] randomly generate cache misses according to certain miss rates. Such

these models, are not able to catch entire data access pattern of a specific program, therefore

they are not accurate. Another type of TLM simulators use the same addresses as host data [10],

[11], [12]. In these simulators it is assumed that locality of reference is similar to the host and

target memory; otherwise, the simulator is not accurate. Beside this challenge, the memory

accesses would not be visible in source code.

Hybrid source Level Simulation data cache simulator [13] is another method to make TLM

cache models faster and more accurate. This technique combines the statistical analysis of data

flow in machine code with high abstract source level simulation of the application. The main

drawback of this technique is the need for repetitive simulation for increasing the accuracy of

the simulator. This reduces the simulation speed and creates an overhead due to binary

translation. Moreover, this approaches does not take multicore processing into account. The

cache supports only single core designs.

Zhonglei Wang et al. [14] proposed a method to increase the accuracy of TLM cache

modeling and accelerate both instruction and data caches. Since data addresses cannot be

resolved at compile time, there is always difficulty in data cache modeling in TLM. Their

proposed model addresses this problem and increases the data cache accuracy. The model

support multicore processing; however, in lower cache sizes, the accuracy and the system

performance decreases.

1.4.1.3 Single pass simulators

Single pass cache simulators are introduced in order to reduce the number of required

simulations. Such methods are able to simulate different cache designs in a single pass through

the benchmark traces by evaluating multiple cache configurations simultaneously. Based on

data structures and the methodology, single pass simulators divide into two categories: Stack-

based algorithms, and tree-based algorithms. Mattson et al. [15] proposed the earliest stack-

based algorithms for fully-associative caches. In order to include the set-associativity, direct

mapped policy, and to reduce the simulation time, Hill and Smith [16] extended the model.

However, their technique have a comparably high simulation time.

To reduce the processing time, tree algorithm was introduced. This signal pass simulation

algorithm stores the data accesses in a more efficient way than stack-based algorithm. Sugumar

and Abraham [17] proposed a model that reduced the processing time by specializing the cache

parameters being varied. All the mentioned single pass simulators only support one level of

cache. T-SPaCS [18] supports two levels of instruction cache. This cache model uses a stack-

based algorithms to model L1 and L2 caches. The main drawback of this model is the

complexity of the model, and simulating exclusively instruction cache.

Janapsatya et al. [19] proposed a simulation algorithm to reduce the complexity and

simulation time of the cache model. This model is categorized as tree-based single pass

simulators and is capable of rapidly find the L1 cache miss rate for an application. It is also a

good model to quickly explore different cache parameters from a single read of a large program

trace. The main problem of this technique is the long simulation time (2.5 days for 268 cache

configuration). All discussed single pass simulators are only capable of being used in a single

core design, and are not applicable for multicore emulation.

1.4.2 Hardware Cache Modeling

Hardware cache models are introduced to address the simulation speed and accuracy issues

of software simulators. Although software platforms provide flexibility and scalability for

cache modeling, they are suffering from cycle accuracy and simulation speed. As software

models get more complicated, longer simulation time is needed to perform the modeling.

Increasing the complexity of the design in multicore processing systems and the need for more

accurate cache models have lead the designers to develop cache models in hardware. FPGA

technology is commonly used for hardware modeling. This technology promotes fast and

accurate platform for online evaluation of the model. Hardware cache models can be classified

into passive and active emulators.

1.4.2.1 Passive cache emulators

Most of the FPGA-based emulators are passive models. Passive emulators are like hardware

monitors and bus probes. They are connected to the processor bus and collect transaction traces

over the bus. Based on the statistics generated from these data traces, the target cache is

modeled. Such models do not sacrifice the speed for the accuracy. They perform at-speed

simulation since the embedded software is executed on the actual soft or hard core processor.

This way the accuracy and the speed increase. Passive emulators also provide monitoring of

the traces over the simulation. Therefore, the embedded designer is capable of observing the

memory transaction and simply validate system functionality. Having all these advantages,

passive models do not provide full system performance. Since the results in passive models are

only depended on the system statistics, it is not possible to observe the entire system behavior

and the effect of cache on the system.

Yoon et al. [20] proposed RACFCS cache model that can generate the accurate and long

traces to simulate cache. This cache emulator is based on trace collecting on the fly. It directly

connects to the processors output pins and stores address references, data, and control signals.

RACFCS configurability and programmability are the main advantages of this model. The

simulation speed is acceptable in this model (110 minutes for all SPEC benchmark), however

there is no discussion about the accuracy in their research.

MemorIES design by Nanda et al. [21] is an online cache emulator that supports different

cache sizes, associativity, line sizes, attributes, and cache writing algorithms in real-time. It

consists of several FPGA boards and DRAM memory. It sits on a symmetric multiprocessor

(SMP) bus, passively monitors all the bus transactions, and emulate shared L3 cache. There is

a controller board that plugs into the memory bus of the host system and trace transactions.

Based on these information, the emulator generates cache statistics such as hit ratio, read/write

ratio, and amount of cache-to-cache interventions. MemorIES is specifically designed for IBM

S70 class RS/6000 or AS/400 servers.

Ravishankar and Abdi [22] proposed P-cache that is an L1 data cache emulator. P-cache is

an FPGA-based passive model that is connected to the processor bus and probes memory traces.

It provides cycle-accuracy and observability over software debugging and analysis. P-cache

model also supports different configurations like different cache sizes, line sizes, and writing

policies, but the configurability is static. The model it is not a dynamic cache model. It should

be synthesized after changing each configuration. Furthermore, the experimental results are

only based on target system statics and the model does not provide any information about

system performance. Besides, it is not possible not use this model in the multicore emulation

system since it only support one cache context.

1.4.2.2 Active cache emulators

Active cache emulators are introduced to model the entire performance of the cache. Such

emulators actively interact with the processor and the main memory. The active emulators are

complementary for passive cache emulators. They are not only tracing the memory transaction

over the bus, they also provide instructions or data for the target processor and act as an actual

cache. The system using active emulator experiences similar hit and miss latencies to the built-

in cache. Hence, the system speed up/down due to cache behavior is observable by the

emulator. Like other FPGA-based emulators, active models can perform at-speed emulation

and reduce the simulation time. Moreover, the accuracy is slightly better than passive emulators

since the cached is modeled in more detail.

PHA$E developed by Chalainanont Et al. [23] is a real time L3 cache simulator that is

capable of being used in Pentium-based system hosts. This hardware simulator implemented

on Xilinx XC2V1000 FPGAs supports different cache configurations and set associativity. This

model is useful for investigating cache hierarchy efficacy due to its real-time capability and

programmable feature. However, it cannot be used in a multicore emulation system since it is

specifically designed for a single core system.

RMP [24] is a FPGA-based emulator using rapid-prototyping methodology for

multiprocessor system emulation. It consists of several FPGA boards that each emulates a

single processor. In RMP, the entire hardware of the target machine, including the cache, is

emulated by the platform. Two level of cache is implemented in system. The first level is a

direct mapped write-through with block size of 16 bytes, and the second level is a two-way set-

associative write-back cache and block size of 16 bytes. RAMP [25] is another FPGA based

emulator that supports the instantiation and integration of hundreds of cores. Similar to RMP,

RAMP emulates the entire target system including cache. Both RMP and RAMP emulators

suffer from high cost and design time for such full system prototyping.

Active Cache Emulator (ACE) proposed by Nurvitadhi et al. [26] is another active cache

emulator. ACE is an FPGA-based emulator that models an L3 cache actively in real-time. It

provides feedback to its host, by injecting time delays to the memory transactions. So, it seems

the system experiences hit or miss of the actual cache. ACE architecture is specifically designed

to interface with a front-side bus (FSB) of a typical Pentium-based PC system. It emulates an

eight-way write back cache, and sits on the processors slot. Besides all ACE advantages, it is

specifically designed for a typical Pentium-based PC system.

Table 1.1 Comparison of different cache modeling techniques

 Feature

Model
Accuracy

Simulation
Speed

Run-time
Configurability

Multicore
Emulation
Support

Software
Modeling

Trace Driven × ×

TLM ×

Single Pass
Through

 × ×

Hardware
Modeling

Passive ×

Active

Table 1 compares different cache modeling techniques and summarizes each technique’s

capability. DRAC model is designed as an active cache emulator. It offers the emulation speed

of active models, the observability of passive models, and run-time configurability of software

models to support multiple cache contexts.

1.5 Thesis Contribution

This thesis presents a novel dynamically reconfigurable active instruction and data cache

model which supports hybrid prototyping technique. Proposed DRAC emulator is ready to be

used in multicore emulation kernel.

The main contributions of this work are,

• Introducing a standalone cycle-accurate L1 instruction and data cache model on the

FPGA. DRAC that is designed as an active cache emulator, provides functional and

cycle accuracy as well as system observability.

• Improving simulation speed in compare to other software simulators and passive

hardware emulation techniques. Implementing DRAC on the FPGA and utilizing

on-chip BRAM as data and tag memory for the cache, significantly speeds up the

simulation speed.

• Parameterizing the cache timing model in order to make it a general cache model

that can work with different processors and memory buses.

• Extending the cache model to be a run-time reconfigurable emulator and supporting

multiple cache contexts. Since multicore emulation process is controlled by the

software layer in hybrid prototyping, DRAC’s configurability and its cache context

can be changed during program execution.

• Extending the hybrid prototyping system to be scalable to realistic multicore designs

with cache hierarchy. Thereby, it is possible to run large size multi-thread

applications and study design space exploration.

1.6 Thesis Outline

The rest of this thesis is organized in 5 chapters. Chapter 2 introduces DRAC design as a

standalone cache model and provides the detailed architecture. Chapter 3 explains how DRAC

emulator is extended to be used in hybrid prototyping. This chapter takes a closer look at hybrid

prototyping methodology, multicore emulation kernel, and the system design. Chapter 4

presents the timing model of DRAC and the approach used for execution time estimation.

DRAM behavior and its effect on the cache is studied in this chapter. Chapter 5 shows the

experimental results of DRAC as a standalone cache model and as a multicore cache emulator

in hybrid prototyping. At the end of this chapter, design exploration is discussed and different

designs are compared to each other. Finally, chapter 6 concludes our work and presents the

future work.

CHAPTER 2

2 DRAC Model

DRAC is a cycle-accurate data and instruction cache model. It can model cache of a single

core design, as well as emulating different caches of a multicore design. The design architecture

of DRAC makes it an on-chip peripheral cache model that can work with most of the

processors. Through some changes in the interface, it is possible to customize it for different

processors.

DARC is implemented as an interface between the processor and the main memory. It

receives memory accesses from the processor, processes the requests, and delivers the

instructions and data, as needed. Therefore, it actively interacts with the system. The active

behavior of the emulator provides the feedback for the emulator to inject necessary time delays.

By adding these time delays, the program’s execution time, when using DRAC, will be a

multiple of the execution time with built-in cache.

2.1 DRAC Interface

In bus architecture, master/slave is a model of communication for the devices on the system

bus. The master devices connected to the bus are able to initiate transactions, while the slave

devices can only respond to the transaction requests. DRAC is as a slave peripheral on the

processor side, and master on the memory controller side to the processor bus. Bus mastering

provides the full control of DRAC over the main memory.

Figure 2.1 DRAC interface and its input and output signals

Figure 2.1 shows the interface between DRAC and the processor bus. Since DRAC actively

interacts with the modeled system, it is designed as a dual port peripheral. The input and output

signals on the both sides are Address Bus, Address Valid, Read/Write, and the Address

Acknowledgement. For any read or transaction, the processor put the desired address on the

Address Bus and set the Address Valid signal high to inform DRAC that there is a request from

the processor. DRAC is sensitive to Address Valid signal on the processor side; whenever

detecting the request, it initiates the fetch process. The fetch process starts by setting Address

Valid signal on the main memory side high, and putting the regarding address on the Address

Bus. The main memory performs the memory transaction and set the Address Acknowledgment

signal high, saying the transaction is over. When DRAC detects the Address Acknowledgment

signal from the main memory, it sets the Address Acknowledgment signal on the processor side

high to inform the processor the data is written or fetched to/from the main memory.

2.2 DRAC Architecture

Figure 2.2 Top level design of DRAC

Figure 2.2 presets the top level architecture of DRAC. DRAC consists of several modules

such as Bridge/Cache Arbitrator, Bus Bridge, Control Status Register, and tag and data

memory. It connects to the processor from one side, and to the main memory on the other side.

2.2.1 Control Status Register (CSR)

CSR is a 32 bit control register that resets, enables/disables, sets the size of the cache, and

changes the mode of DRAC to swap mode (swap will be discussed in the next chapter). This

register is the controlled by the processor. In every clock cycles, DRAC always checks this

register to set its status. Since it is possible to write a value into CSR register during program

execution time, the configuration of DRAC can be changed on program run-time. DRAC is

sensitive to any change of CSR value; depending on CSR value, DRAC changes its status.

2.2.2 Bridge/Cache Arbitrator & Bus Bridge

DRAC is placed between the processor and the memory controller; therefore, all memory

transactions are through DRAC. The active behavior of DRAC requires it to have an extra

module beside the cache, which is called Bus Bridge. This module is responsible for

establishing the connection between the processor and the off-chip DDR memory when the

cache is inactive. The transactions received by the bridge are decoded on the processor side of

the bridge. The Bus Bridge, then, generate the necessary sequence of signals to perform the

transaction on MPMC side.

The Bridge/Cache arbitrator dedicates the processor bus to the Cache Module or the Bus

Bridge according to CSR value. The arbitrator multiplexes the address bus, data bus, and

controlling signals between the Cache Module and the Bus Bridge. When the cache is disabled,

the cache module is bypassed and the bus is dedicated to the Bus Bridge. Since the processor

has to have a direct access to the main memory at the system start-up, DRAC is on bridge mode

by default. Once the proper value is written to the CSR, the arbitrator assigns the bus to the

Cache Module; Thereby, the cache takes care of memory transactions.

2.2.3 Cache Module

Cache Module is mainly composed of a controller and two Block RAMs as data and tag

memory.

Figure 2.3 Flow chart of the cache with write through policy

Figure 2.3 presents the flow chart of the cache operation. DRAC is supposed to be a direct

mapped, 4-word cache block size, with write through policy. In every write and read request,

first the tag memory is checked; if the data is in the cache, it is a hit case, otherwise it is a miss.

Since the writing policy is write through, the data is updated both in the cache and the main

memory on write hit cases. On write miss cases, the data will be written directly in the main

memory. In case of a read miss, the corresponding memory block in the main memory will be

fetched and returned to the processor. On a read hit, the corresponding data will be delivered

from the cache data memory.

Figure 2.4 Data retrieval process in DRAC

Figure 2.4 shows the data and tag memory that holds up to 2048 words or 8K Byte; memory

address is 32 bits. When a memory request is generated, the tag from the cache is compared to

the most significant bits of the address to determine whether the entry is in the cache or not. If

the tag and the most significant 20 bits of the address are equal, it is a hit case and data is

returned to the processor; otherwise, the memory block, which consists of 4 words, is fetched

from the main memory. Since DRAC is supposed to be direct mapped cache, there is no

replacement policy in the cache design.

Data and tag memory are made up on chip BRAM on the FPGA. DRAC is designed as a

size variable cache. It can be set to five different cache sizes: 256B, 1KB, 2KB, 4KB, and 8KB.

Depending on CSR value, DRAC can be set to each one of the configurations. To have different

size configurations on run-time, we dedicated 16KB of BRAMs for data and tag memory; we,

then, utilize a part of the BRAMs as per the cache size requirement. It is the responsibility of

the cache controller responsibility to assign allocate amount of BRAM for different cache sizes.

Figure 2.5 Finite state machine of cache controller

The cache controller is key module of DRAC, which is used in both data and instruction

cache models. The only difference between the data and the instruction cache is read-only. In

order to simplify DRAC design, we used the same controller for both instruction and data.

Figure 2.5 demonstrates the cache controller’s finite state machine (FSM).

 Cache Controller always checks the CSR value before any memory transaction. If CSR is

set to cache enable, the FSM in cache controller is triggered and the state is changed to address

check. In this state, the module checks the Address valid Bit (Addr_valid) signal on the bus in

every clock cycle; if it is detected, then the controller checks R/W signal and goes to Read or

Write state. In both Read and Write states, the cache module first checks the tag memory in

order to locate the memory block in the cache. In the read state, if the data is found in the cache,

it is a hit case, and the cache retrieves the data from its own data memory to the processor;

otherwise, it is a miss case and the cache should fetch the regarding memory block from the

main memory. The controller’s last state is Add Delay Time. This state inserts delays depending

on our timing model. The algorithm will be discussed in next section. DRAC is assumed to be

a write-through cache. Hence, in the case of write, it updates both the cache and the main

memory. At the end of each transaction, DRAC sets the acknowledgment signal in the

processor’s bus, to inform the processor the memory transaction is done.

2.3 DRAC Features

DRAC active behavior speeds up the simulation process by providing instruction and data

for the processor in repetitive accesses. The parametric design of the model makes it generic

enough to work with most buses. The run-time configurability makes it flexible enough for the

embedded designer to quickly explore different design options and to change the cache size

during program execution time.

CHAPTER 3

3 DRAC Extension for Hybrid Prototyping

The DRAC model includes the functionality of a standalone cycle-accurate data and

instruction cache, and additional logic to support multicore hybrid prototyping. The hybrid

prototyping technique simulates multicore system using an emulation kernel on top of a single

physical instance of a core. Thus, a single cache that is capable of switching its context over

different virtual cores is needed. To realize this concept, an extra module has been implemented

in the cache that can swap the cache contents across different virtual cores. Each virtual core’s

cache can be configured independently; however, this requires DRAC to change its

configuration during run-time. The run-time configurability of DRAC provides the emulation

kernel to change the configuration of the cache.

 (a) A multicore design (b) Equivalent hybrid prototype

Figure 3.1 Hybrid prototype structure for a two core design

3.1 Methodology

Figure 3.1 presents the layered structured of a multicore design and its hybrid prototype. In

the target design, which is shown in Figure 3.1 (a), T1 and T2 are tasks running on separate

cores. Each core has its own L1 cache and separate memory space on DDR. The

communication between the cores is performed using FIFO-based communication channels.

Hybrid prototyping introduces an additional software layer on top of an emulation core. Figure

3.1 (b) illustrates the hybrid prototype that incorporates the MEK. The emulation core and the

main memory in hybrid prototyping are of the same type as that used in the multicore design.

However the built-in caches have been replaced by DRAC models. DRAC is customized to

support different cache contexts for the two cores. For each cache context, a separate space on

DDR is dedicated as cache image. Before the MEK starts emulating a core, it loads the

corresponding cache image from DDR to DRAC. Similarly, after the MEK stops emulating a

core, it saves the corresponding cache image to DDR. Hence the cache images are swapped in

DRAC, when the MEK switches from one core to another.

Hybrid prototyping offers the designer to develop virtual platforms over the real-world

connected FPGAs. The MEK platform created based on hybrid prototyping technique. It

emulates the execution of any multi-tasking C/C++ application on a single core design. The

MEK provides a simple environment for the embedded designers to test and explore their

design without the knowledge of multiple cores configuration or the data path among the cores.

The accuracy of hybrid prototyping is 100% since the application is running on the same core

as it is targeted for.

`

(a) Emulation of Tasks (b) Possible emulation schedules

 on two different cores

Figure 3.2 Simple example of simulation with MEK

The MEK layer dynamically schedules multiple tasks and simulates the execution time of a

full FPGA multicore system. The MEK and DRAC model support the context switch among

different tasks. The emulator dynamically saves the context (program, stack pointers, registers,

and state of the instruction and data caches) of the yielded task and loads the context of the

active task. During kernel call the cache is completely disabled and is not polluted by the

emulator. Figure 3.2 (a) illustrates the execution behavior of two tasks running on a 2core

design. Task T1 executes for t11 time, notifies the global event e, and continues the execution

to the end for t12 time. Meanwhile, C2 executes task T2 for t21 time, and waits for the global

event e. After T2 gets notified, it continues execution for t22 period and terminates. Both cores

are simulated on an emulation host core (EC) which is the same type as c1 and c2.

Figure 3.2 (b) shows two possible simulation schedules on EC. A task may be in four

possible states: RUNNING, READY, BLOCKED or TERMINATED. The MEK maintains the

logical times, lt1 and lt2, on C1 and C2, respectively. The logical time for a core is the time

until which the core has been simulated. At logical time 0, the MEK may pick either C1 or C2

to simulate first. If the MEK schedules C1 to be simulated first, it runs T1 on EC until e is

notified. The MEK saves the event’s notification and its logical timestamp t11. Since event

notification is non-blocking in a discrete event model, the MEK allows T1 to execute until it is

terminated. Then, the MEK does a context switch (CS). During CS the contents of the data and

instruction cache is saved in the main memory. Since it is the first CS, the cache is flushed and

C2 runs T2 from its logical time 0 until it reaches wait(e) at logical time t21. At this point the

MEK checks for any notifications of e that were made after logical time t21. Indeed, since

t11>t21, the MEK finds that e was notified by T1 before T2 executed wait(e). Therefore, the

MEK updates the logical time of C2 to t11 to model T2 being blocked on the wait from t21 to

t11. Finally, T2 is resumed and runs to completion.

If the MEK schedules C2 to be simulated first (Case 2), it runs T2 on EC from C2's logical

time 0 until it reaches wait(e) at C2's logical time t21. Since no notifications of e are found, the

MEK stores the wait on e with timestamp t21, and blocks T2. It then does a context switch from

C2 to C1. It saves T2 cache contents in the main memory and flush the cache since T1 is not

been started yet. To emulate C1, the MEK runs T1 from C1's logical time 0 until the notification

of e at C1’s logical time t11. Upon notification, the MEK checks if there are any pending waits

on e at or before logical time t11. Indeed, task T2 is blocked since C2's logical time t21 (< t11)

on e. Therefore, the MEK unblocks T2 and updates C2's logical time to t11 in order to account

for the blocking time. The MEK continues simulating C1 until termination of T1, followed by

a context switch to C2. The kernel swaps T1 cache with T2 cache contents. The kernel saves

T1 cache contents, and loads T2 data and instruction cache images from the main memory.

MEK continues C2 simulation until termination of T2.

3.2 Architecture

In order to realize the swap we implanted another module beside the cache controller, called

Swap Controller.

Figure 3.3 Modified design of DRAC including Swap Controller

Figure 3.3 presents the design architecture of DRAC with the Swap Controller added to the

design. Similar to the cache controller, swap controller has also access to the tag and data

memory. The swap controller is responsible for switching the cache context among different

cores. It is also responsible for stalling the processor during the swap transaction. The swap

controller is activated by writing the proper value into CSR register. When the swap is activated

by the processor, the swap controller locks the data and tag memory and does not allow the

processor pollutes the cache contents.

3.2.1 Swap Module

The cache swap feature is the ability of the cache to save a copy of itself on the off-chip

DDR memory and to load it later automatically. The swap module is responsible for switching

the cache context from one core to another during run-time. Whenever a swap is triggered by

the MEK, DRAC stalls the processor and saves the current cache context to the main memory,

line by line. The cache context of the next core to be simulated is, subsequently, loaded.

Figure 3.4 FSM of Swap Controller (Swap Mode)

Figure 3.4 illustrates the finite state machine of the swap controller. Similar to the cache

controller, the swap controller has a CSR Check state as an initial state. The swap trigger is

detected in this state. Whenever MEK requires the cache to be swapped, it writes a certain

value, which will be explained in the next section, into the CSR to start the process. Depending

on the CSR value, the controller will save or load the cache state. As explained earlier, space

in the DDR memory has been allocated for each core, depending on the cache size. The.

Initialize state determines the starting and the ending address locations of each core’s cache.

If the processor issues the save cache state command, the controller goes to Read from Cache

state, reads the first line of the cache, and writes it into main memory. It continues this process

until all cache lines are written to the main memory. On the other hand, if the processor’s

command is load, the controller goes to Read from DDR2 state, reads all previously saved

contents of the cache from main memory, and writes them into the cache. There is a stall state

in swap’s FSM that ensures the data is safely resided in the cache or the main memory.

Some processors, like MicroBlaze, do not support sleep or idle mode. Hence, we stalled the

processor in another way. Since DRAC is used as instruction cache and lies between the

processor and the main memory, it is possible to give any desired instruction to the processor

instead of real instructions. Therefore, whenever swap is enabled and the processor is

requesting instructions during swap, we give the machine code of relative branch to the same

Program Counter (PC).

PC PC + 0

As long the cache is operating the swap action, the processor is jumping to the same PC, so

it seems the processor is stalled. Once DRAC swap all the current cache contents with the next

cache contents, the swap operation is done and emulator goes back to the normal operation. It

gives the real instructions to the processor, and the program continues the execution.

Figure 3.5 Process of a save or load transaction between cache and DDR

Figure 3.5 shows the schematic view of a load or save transaction and their addresses on the

DDR. In the save case, first the tag memory will be written to the main memory from the

starting address of 0xXXXX0000 to 0xXXXX02FC; subsequently, the data memory from will

be saved from the starting address of 0xXXXX1000 to 0xXXXX17FC in the 8kB cache size

case. The ending addresses will be changed depending on the cache size. In the load case, the

cache contents will be loaded from DDR from the starting to the ending address. DRAC

supports different caches of the virtual cores. For each core we dedicated a separate address

space. The next core space on the DDR starts from 0xXXXX2000 address to 0xXXXX37FC,

and so on.

3.3 DRAC Software Driver

As explained earlier, the MEK platform is a software layer on top a physical processor. Since

the MEK should be able to control the cache, we developed a software driver for the DRAC.

MEK is able to communicate with DRAC through writing the proper value into the CSR. As

a result, we created simple macros for the MEK to control the cache.

Listing 3.1 DRAC Driver
#define enable_cache {\
 XIo_Out32(Cache_CSR_Address ,Cache_Enable_Value);\
}
#define disable_cache {\
 XIo_Out32(Cache_ CSR _Address,Cache_Disable_Value);\
}
#define reset_cache {\
 XIo_Out32(Cache_ CSR _Address,Cache_Reset_Value);\
 disable_cache\
}
#define Cache_Swap(c1, c2) {\
 save_cache(c2);\
 load_cache(c1);\
 reset_cache;\
}

Listing 3.1 presents the Enable, Disable, Reset, and swap macros that MEK uses for

commanding DRAC.

Listing 3.2 Save Macro
#define save_cache(c1){
 if(c1 == 0)
 XIo_Out32(Cache_ CSR _Address,Core1_Save_Value);
 else if(c1 == 1)
 XIo_Out32(Cache_ CSR _Address,Core2_Save_Value);
 else if(c1 == 2)
 XIo_Out32(Cache_ CSR _Address,Core3_Save_Value);
 else if(c1 == 3)
 XIo_Out32(Cache_ CSR _Address,Core4_Save_Value);
 else if(c1 == 4)
 XIo_Out32(Cache_ CSR _Address,Core5_Save_Value);
 XIo_Out32(Cache_ CSR _Address,Swap_Trigger _Value);
 asm("nop");
 asm("nop");
}

Listing 3.3 Load Macro
#define load_cache(c1){
 if(c1 == 0)
 XIo_Out32(Cache_ CSR _Address,Core1_Load_Value);
 else if(c1 == 1)
 XIo_Out32(Cache_ CSR _Address,Core2_Load_Value);
 else if(c1 == 2)
 XIo_Out32(Cache_ CSR _Address,Core3_Load_Value);
 else if(c1 == 3)
 XIo_Out32(Cache_ CSR _Address,Core4_Load_Value);
 else if(c1 == 4)
 XIo_Out32(Cache_ CSR _Address,Core5_Load_Value);
 XIo_Out32(Cache_ CSR _Address,Swap_Trigger_Value);
 asm("nop");
 asm("nop");
}

Table 3.1 - Swap save and load variable and values

Variable Value Variable Value

Cache_Enable_Value 0xaaaaaaaa Cache_Reset_Value 0x33333333

Cache_Disable_Value 0x00000000 Swap_Trigger_Value 0x11111111

Core1_Save_Value 0x00000000 Core1_Load_Value 0x00000001

Core2_Save_Value 0x00000002 Core2_Load_Value 0x00000003

Core3_Save_Value 0x00000004 Core3_Load_Value 0x00000005

Core4_Save_Value 0x00000006 Core4_Load_Value 0x00000007

Core5_Save_Value 0x00000008 Core5_Load_Value 0x00000009

Listing 3.2 and 3.3, present the load and save macros of DRAC. Table 3.1 defines the values

that should be written into CSR to set the status of the cache. In each of save or load functions,

first the number of virtual core for the cache is defined, after, the swap is triggered by writing

the value Swap_Trigger_Value into the CSR. There are also two no operation (nop) assembly

commands in the last lines of load and save macro. DRAC put the processor in the nop

command loop until the swap is done.

CHAPTER 4

4 Timing Model

This research is an effort to estimate the execution time of a program on an embedded system

with built-in instruction and data cache. This execution time is mainly depended on the behavior

of the cache, data link interconnections, and off-chip memory. DRAC is designed as an active

and parameterized cache model. Since DRAC actively interacts with the modeled system, it is

possible to model the behavior of the built-in cache, interconnections, and DRAM as the main

memory, all in a cache model. In this chapter, we present timing model of the system, using

the example of a MicroBlaze based system [27].

4.1 Bus Characteristic

Bus is the communication system that transfers data between different components of the

system. Each bus has certain set of rules, governing how it works; these rules are called bus

protocol. The bus protocol includes the specification of the bus, and all attached peripherals

must obey the protocol. Two different buses have been used in our emulation system. The target

system utilizes XCL bus, and the modeled system uses PLB in order to establish the

communication among the processor, the cache, and the main memory. These two buses have

different characteristics that affect the execution time of the program. For example, XCL is a

point to point connection while PLB is a shared bus that supports multiple master and slave

devices. In following subsections, PLB and XCL bus protocols will be introduced. We used

ChipScope Pro [28] bus analyzer to observe the memory behavior and obtain the memory

parameters in all the experiments.

4.1.1 PLB Bus

Figure 4.1 Read operation from off-chip DDR memory via PLB

PLB is a high-performance bus interface that is used to access data. Figure 4.1 presents a

read request transaction from the processor to the main memory over PLB bus. The address

cycle request has three phases: request, transfer, and address acknowledgment. When a master

device requests a data transaction from the main memory (point O on Figure 4.1),

PLB_PAValid signal goes high, showing there is a memory access request. At the same time

PLB_RNW signal goes high to indicate the request is a read request. In the second phase, the

main memory set PLB_SaddrAck (slave address acknowledgement) signal high for a single

cycle to show it has received the memory request and is processing that request. After certain

amount of time, at the point of X of Figure 4.1, the data is delivered to the processor by setting

PLB_SrdDAck (slave read acknowledgment) signal high for a single cycle. The duration of a

read request over the PLB (the time interval between point O and point X in Figure 4.1) without

any cache in between, is 29 cycles. The main reason for this delay is the column address latency

that is imposed by the main memory. Similar to the read request the write request has also the

same three phase as the read request. This latency for a write transaction over the PLB is 11

cycles.

4.1.2 XCL Bus

XCL bus is a high performance FSL FIFO based point to point data link that provides the

direct access of the processor the main memory. This interface is available for the MicroBlaze

processor when using built in cache.

Figure 4.2 Read miss latency with built-in cache via XCL

Figure 4.2 presents a data read request transaction from the cache to the main memory over

XCL. XCL can handle 4 or 8-word cache lines during each fetch. In read case, the information

is requested by raising DCACHE_FSL_OUT_WRITE signal for a single clock cycle. When the

data is ready, the main memory raises the FSL_S_Exists high to show data exits on the

FSL_S_Data. In write through policy, the communication protocol over XCL is IXCL and

DXCL. According to this protocol, each cache line is expected to start with the critical word

first and 3 words follow the first word. Each write in this policy results in a write over cache

link regardless of existence of this data in the cache. The write to the main memory is

complicated since there is a buffering policy in the main memory. In following sections, the

write will be investigated in more detail.

4.2 Cache Modeling

DRAC is designed as an active cache emulator. It actively interacts with the modeled system

and estimates the execution time of a program. DRAC saves the data as well as tag on BRAM

implemented on the FPGA. This behavior reduces the execution time of programs as compared

to the system without cache. Since the built-in cache is using XCL bus for communication and

this bus is optimized for the built-in cache, the execution time of the program with built-in

cache is faster than the same program with DRAC. It must be noted, our concern is not only

the simulation speed, but also the accuracy of the timing estimation.

As discussed in the section 3.2.3, the cache controller has an add delay time state that models

the timing. In order to model the built-in cache, we add extra cycles to certain DRAC

transactions such that all the DRAC delays are a multiple of corresponding built-in cache

delays, by the same factor. As a result, the program’s execution time, when using DRAC, will

be a multiple of the execution time with built-in cache. For example, if a processor with built-

in cache executes a program in x Clock cycles, the proposed model will execute the same

program in n × x Clock cycles, which "n" is the linear scaling factor:

Modeled Clock cycles= n × Real Clock cycle

For hybrid prototyping, we excluded built-in caches, and used DRAC instead. DRAC is

designed as a master IP core that can be utilized as data or instruction cache. Since DRAC is

simply a peripheral to MicroBlaze, it is connected to processor local bus (PLB). Being a

peripheral, enables DRAC to connect to different processor types by some changes in the

interface.

Figure 4.3 Read hit latency with built-in cache

Figure 4.4 Read hit latency with DRAC model

Figure 4.5 and 4.6 present the snap shot of a hit latency in built-in cache and DRAC model.

As can be seen, the hit time for the MicroBlaze built-in cache is 1 cycle, while this time is 12

cycles for DRAC over PLB. Therefore, we have defined our scaling factor as 12. It means every

memory transaction in DRAC will incur 12 times the delay of the corresponding transactions

with the MicroBlaze built-in cache.

Figure 4.5 Read miss latency with DRAC model

The other factor that defines cache performance is read miss time. The average miss time

latency for the MicroBlaze built-in cache to bring 4 words of data is 29 cycles, as shown in

Figure 4.2. This miss time is 149 cycles in DRAC without adding any extra cycles. In order to

model read miss time, the emulator inserts 199 cycles to make read miss latency 12×29 cycles.

Figure 4.7 shows the read miss time of DRAC after modeling.

Figure 4.6 write operation latency with built-in cache

Figure 4.7 write operation latency with built-in cache

The write operation is another factor that impacts the system performance. DRAC models

the write-through cache policy. Hence, in every write transaction the main memory will be

updated. Figure 4.8 demonstrates a single write operation in the built-in cache, and Figure 4.9

shows the write operation to the same location (0x90000000) in DRAC. A single write

operation in the built-in cache takes 2 cycles. This write operation takes 2×12=24 cycles in

DRAC after modeling; which is a factor of 12.

Writing into on-chip BRAM is quite simple and predictable; however, the write operation

to the main memory, which in our case is DRAM, is quite complex. The complexity comes

from the buffers that are implemented in the DRAM memory controller. This complexity is not

clear in a single write; however, if there are more than a single write to the main memory, the

buffering shows its effect. Therefore, in order to model every write operation scenarios in

DRAC, we first need to model DRAM.

4.3 DRAM Modeling

The connection of DDR2 memory to the system is established by Multi-Port Memory

Controller (MPMC). MPMC provides separate accesses to the main memory for different

modules in the system. It shares single off-chip DDR2 memory between multiple devices. We

have two kinds of memory transactions in the system: read and write. The effect of multiple

reads from different ports of MPMC is negligible since reading from the memory does not

affect the saved data. The write delays behave differently, though. For a write into the main

memory, MPMC stalls other memory transactions to make sure that the memory is in a

consistent state. Therefore, if there is a write into a port of MPMC, the read or write access time

of other ports will increase.

Figure 4.8 Effect of a single write on the instruction fetch time in built-in cache

Figure 4.10 shows how a single write of the built-in data cache

(DCACHE_FSL_OUT_WRITE), which is circled in the figure, increases the fetch time of an

instruction (ICACHE_FSL_OUT_DATA) and the programs execution time (Trace_PC).

MPMC uses buffering technique in order to reduce the write time latency. In case of a single

write, MPMC processes the write transactions in the background while it handles other read

accesses. Buffering offers the system a better performance, although it creates irregularity in

successive or multiple memory transactions. In case of successive writes into a single port, the

write operation time will be different depending on the number of consecutive writes in that

port. The first write will take the least, and the last write will take the most operation time. The

read time will also be affected by the successive writes of the other port. If the number of

consecutive writes increases, the read access time of the other port will also increase.

Figure 4.9 Effect of consecetive writes in built-in cache

Figure 4.11 presents two consecutive writes with the built-in cache. Part A and B of the

figure indicate the first write operation (part A) and execution (part B) time which takes 2

cycles. Part C and D of the picture shows the write (part C) and exaction (part D) time of the

second consecutive write operation, which takes 4 cycles.

Figure 4.10 Effect of three consecutive writes in DRAC model

Figure 4.12 shows the screen shot of three consecutive writes in DRAC model. The first

write (part A) takes 2×12 cycles, the second consecutive write takes 4×12 cycles, and the third

consecutive write takes 5×12 cycles. DRAC detects all these parameter and applies the effect.

Figure 4.11 Effect of multiple writes in different port of MPMC with built-in cache

Figure 4.13 shows how the write time latency of a MicroBlaze core increases when other

cores trying to write into MPMC. Figure 4.13 (A) presents memory transactions of a particular

program with certain amount of writes on a single core design, while Figure 4.13 (B) presents

the same program running on the first core of a multicore design and other cores have writes

into the MPMC (the write transactions are circled in the figure). It should be noted, the cores

are independent to each other and do not communicate to each other.

In multicore emulation with hybrid prototyping, only one core is simulated at a time. Hence,

it is not possible to predict the exact behavior of the other cores during simulation. This effect

causes the predicted execution time to be less than what is expected. In order to decrease this

effect, we introduce a multiplication factor fm, which models the multiple write effect. To

determine fm, we tested different multicore designs with all the cores running in parallel. We

observed that the multiple write effect depends on the number, density, and distribution of

writes over different cores. As much as number of writes, and number of cores increases the

effect gets more severe. As a result, we executed a sample software code with different write

distributions on multiple cores running in parallel.

Listing 4.1 Sample code for multiple port write test
Task1
for i=0 to 1000
nop;
DDR write
nop;
DDR write
end for

Task2:
for i=0 to n (n is variable)
nop;
DDR write
nop;
DDR write
nop;
DDR write
end for

Table 4.1 Multiple write factor for different number of cores

Number of
cores 2 3 4

fm 4 9 12

Listing 4.1 shows this sample code for a 2core design. Both task1 and task2 have a normal

distribution of writes. In each experiment, we kept the write density of core 1 constant, and

changed the write density of the other core, then observed how the core 1 execution time is

changing. We test different write densities from the best case, which there is no write on the

second core, to the worst case, which there is almost 100% write density. We examined

different number of cores, and found an average fm value for each core. Table 4.1 presents the

values of fm for different number of cores.

Table 4.2: Effect of multiple writes to MPMC (Numbers in clock cycles)

Previously, it was mentioned the DRAC model scales its delays to be a multiple of built-in

cache delays. Besides hit and miss time latencies, DRAC also models the successive and

multiple write delays. Table 4.2 presents the write and read access parameters of the built-n

cache, and the modeled parameter values of DRAC. In the single core design, the instruction

and the data cache are utilizing separate ports of MPMC. Since there is no write into MPMC in

the instruction cache, the read access time of the instruction cache is only effected by data cache

writes. In the multicore design, there are more than one data caches that write into MPMC.

Hence, the effect of multiple writes will be more severe in higher number of cores.

Number of consecutive
writes to port 0

0 1 2 3 >=4

Number of cycles to write
to MPMC port 0 in BIC

0 2 4 5 11

Number of cycles to write
to MPMC port 0 in DRAC

0 2*12*fm 4*12*fm 5*12*fm 11*12*fm

Number of cycles to read
from MPMC port 1 in BIC

29 42 53 65 79

Number of cycles to read
from MPMC port 1 in DRAC

29*12*fm 42*12*fm 53*12*fm 65*12*fm 79*12*fm

CHAPTER 5

5 Experimental Result

We developed DRAC model for the MicroBlaze soft processor implemented on a Virtex5

FPGA. Since DRAC is designed as a cache model in single core design, and a cache emulator

in multicore design, we tested DRAC in both single and hybrid multicore designs. We also

created full-FPGA single and multicore designs using MicroBlaze built-in cache as the

reference for our hybrid estimation timings. As explained in the introduction, the target cache

is set to direct mapped, 4 word cache line size, and write through writing policy. DRAC design

is coded in VHDL language and evaluated by Xilinx EDK software [29] on ML507 Evaluation

board. VHDL code of DRAC design is presented in the Appendix. The system clock is

operating at frequency of 125MHz for all different designs.

5.1 Standalone Accuracy

Prior to use DRAC in hybrid prototyping, we evaluated the standalone model in a single

core design. In order to check the functionality and timing accuracy of the standalone

instruction and data DRAC model, we ran JPEG Encoder, Quicksort, and Dhrystone

benchmarks for different cache sizes in a single core design. The closest model to DRAC is

pCache [20], that is a data cache emulator implemented on FPGA. We used the same

benchmarks as pCache and observed the average estimation accuracy improved 8.96% in

Dhrystone and 2.57% in JPEG Encoder benchmark.

Figure 5.1 Execution time estimation of JPEG encoder benchmark in single core design

Figure 5.2 Execution time estimation of quicksort benchmark in single core design

Figure 5.3 Execution time estimation of dhrystone benchmark in single core design

Avg.Error: 1.53%
Worst case: -2.90%

Avg.Error: 4.65%
Worst case: -5.06%

Avg.Error: 2.14%
Worst case: 2.63%

Figure 5.1, 5.2, and 5.3 demonstrates the execution time of different benchmarks running on

the system with built-in cache, and with DRAC model. For all the experiments five different

cache sizes have been chosen.

Table 5.1 Execution time estimation of different benchmarks in single core design

Benchmark
Cache
Size

TBIC
(Million
Cycles)

TDRAC
(Million
Cycles)

Error %

JPEG

256B 48.63 48.05 -1.18

1KB 23.19 23.31 0.49

2KB 18.11 17.91 -1.10

4KB 13.72 13.45 -1.98

8KB 12.55 12.18 -2.90

Quicksort

256B 13.83 13.13 -5.06

1KB 12.27 11.72 -4.48

2KB 9.76 9.32 -4.59

4KB 6.28 5.99 -4.61

8KB 6.28 5.99 -4.61

Dhrystone

256B 22.25 22.79 2.41

1KB 8.79 9.02 2.63

2KB 7.90 8.05 1.90

4KB 7.90 8.05 1.90

8KB 7.90 8.05 1.90

 The result values for different cases is shown in Table 5.1. We observed an average

estimation time error of 2.78% and the worst-case estimation error is only 5.06%, thereby

demonstrating the accuracy of DRAC as a standalone cache model.

5.2 Accuracy in Hybrid

In order to evaluate and verify the accuracy of DRAC emulator in the hybrid design, we

created different multicore in the full FPGA design and the hybrid prototype, ranging from 1

to 4 cores. Each core is running in parallel with different tasks. These tasks can have

communication to each other. In the full FPGA design, cores are connected to each other with

FIFOs. FIFOs are FSL based channel that provide the communication link for the cores running

in the parallel.

5.2.1 JPEG Encoder Benchmark

The benchmark used for testing the prototype is JPEG encoder. JPEG is a popular image

compression technique that fits well into multi-processing system. The JPEG encoder divides

the image into 8 by 8 pixel blocks. To compress the image, the encoder applies number of

operations on these blocks. These operation includes ReadBMP, DCT, Quantization, ZigZag,

and Huffman Encoding.

Figure 5.4 JPEG encoding process and its tasks

Figure 5.4 shows the JPEG encoding process and the order of the tasks. All the tasks are

independent to each other and the communication is through 64bit FIFO channels. The

operations are done one after the other. This makes the JPEG encoder a suitable program as

benchmark for multicore processing system. Each task can be mapped to a core, and the FIFO

channel can be realized by FSL links in full FPGA prototyping. In hybrid prototyping, the MEK

platform emulates the cores and the channels, and runs the same JPEG encoder benchmark.

5.2.2 Timing Results

There are two timers implemented on each core in full FPGA prototype. The first timer

calculates the actual busy-time of a core regardless of that core’s waiting time on blocking reads

or writes. The second measures the total execution time including program execution time and

the processor’s waiting times on FSL. In hybrid design, there are also two timers. One timer is

used by the MEK, to simulate the busy-time and the total execution time of each core; the other

timer calculates the total simulation time, including the swap time, the total execution time of

the tasks, and the MEK software.

We created 15 different multicore designs for different JPEG encoder mappings. There are

four possible of five JPEG task mappings for a 2 core design, six possible JPEG task mappings

for a 3core design, and four possible JPEG task mappings in a 4core design. Since MPMC ports

are limited to eight ports and each core consumes two ports, we cannot have more than 4 cores

running in parallel in full FPGA Prototyping. We also obtained the estimation time of the same

mapping in Hybrid Prototyping and calculated the error percentage.

The mapping values represent number of JPEG encoder tasks that have mapped to each core.

For example, in the 2 core design, mapping 4-1 means that the first four tasks of JPEG encoder

(ReadBMP, DCT, Quantization, ZigZag) have been mapped to the first core, and the last task

(Huffman) of JPEG encoder to the second core.

Figure 5.5 Busy-time estimation of a 2 core design with 4-1 JPEG mapping

Figure 5.5 presents the busy-time of a 2 core design for different cache sizes. Four tasks

have been mapped to the first core, and one task to the second core. The relative accuracy with

cache size increment is 100%. The average estimation error is 5.14% and worst case busy-time

estimation error is for the second core in 1k design, which is 11.60%.

Figure 5.6 Busy-time estimation of a 2 core design with 3-2 JPEG mapping

Figure 5.6 demonstrates the busy-time of a 2 core design for different cache sizes. Three

tasks have been mapped to the first core, and two tasks to the second core. The relative accuracy

with cache size increment is 100%. The average estimation error is 4.86% and worst case busy-

time estimation error is for the second core in 1k design, which is 8.61%.

Figure 5.7 Busy-time estimation of a 2 core design with 2-3 JPEG mapping

Figure 5.7 shows the busy-time of a 2 core design for different cache sizes. Two tasks have

been mapped to the first core, and three tasks to the second core. The relative accuracy with

cache size increment is 100%. The average estimation error is 5.10% and worst case busy-time

estimation error is for the second core in 1k cache size design, which is 12.08%.

Figure 5.8 Busy-time estimation of a 2 core design with 1-4 JPEG mapping

Figure 5.8 illustrates the busy time of a 2 core design for different cache sizes. One task has

been mapped to the first core, and four tasks to the second core. The relative accuracy with

cache size increment is 100%. The average estimation error is 14.20% and worst case busy-

time estimation error is for the first core in 2k cache size design, which is 23.77%.

Figure 5.9 Busy-time estimation of a 3 core design with 1-1-3 JPEG mapping

Figure 5.9 shows the busy time of a 3 core design for different cache sizes. One task has

been mapped to the first core, one task to the second core, and three tasks to the third core. The

relative accuracy with cache size increment is 100%. The average estimation error is 11.27%

and worst case estimation error is for the first core in 4k cache size design, which is 28.11%.

Figure 5.10 Busy-time estimation of a 3 core design with 1-2-2 JPEG mapping

Figure 5.10 presents the busy time of a 3 core design for different cache sizes. One task has

been mapped to the first core, two tasks to the second core, and two tasks to the third core. The

relative accuracy with cache size increment is 100%. The average estimation error is 16.67%

and worst case estimation error is for the first core in 256B cache size design, which is 37.88%.

Figure 5.11 Busy-time estimation of a 3 core design with 1-3-1 JPEG mapping

Figure 5.11 presents the busy time of a 3 core design for different cache sizes. One task has

been mapped to the first core, three tasks to the second core, and one task to the third core. The

relative accuracy with cache size increment is 100%. The average estimation error is 17.69%

and worst case estimation error is for the first core in 256B cache size design, which is 36.88%.

Figure 5.12 Busy-time estimation of a 3 core design with 2-2-1 JPEG mapping

Figure 5.12 shows the busy time of a 3 core design for different cache sizes. Two tasks have

been mapped to the first core, two tasks to the second core, and one task to the third core. The

relative accuracy with cache size increment is 100%. The average estimation error is 2.79%

and worst case estimation error is for the third core in 256B cache size design, which is 6.71%.

Figure 5.13 Busy-time estimation of a 3 core design with 2-1-2 JPEG mapping

Figure 5.13 demonstrates the busy time of a 3 core design for different cache sizes. Two

tasks have been mapped to the 1st core, one task to the 2nd core, and two tasks to the 3rd core.

The relative accuracy with cache size increment is 100%. The average estimation error is 3.89%

and worst case estimation error is for the 2nd core in 256B cache size design, which is 7.49%.

Figure 5.14 Busy-time estimation of a 3 core design with 3-1-1 JPEG mapping

Figure 5.14 illustrates the busy time of a 3 core design for different cache sizes. Three tasks

have been mapped to the first core, one task to the second core, and one task to the third core.

The relative accuracy with cache size increment is 100%. The average estimation error is

12.48% and worst case estimation error is for the 2nd core in 4KB cache size, which is 25.45%.

Figure 5.15 Busy-time estimation of a 4 core design with 1-1-1-2 JPEG mapping

Figure 5.15 shows the busy time of a 4 core design for different cache sizes. One task has

been mapped to the 1st core, one task to the 2nd core, one to the 3rd core, and two tasks to the 4th

core. The relative accuracy with cache size increment is 100%. The average estimation error is

13.34% and worst case estimation error is for the 1st core in 256B cache size, which is 31.09%.

Figure 5.16 Busy-time estimation of a 4 core design with 1-1-2-1 JPEG mapping

Figure 5.16 presents the busy time of a 4 core design for different cache sizes. One task has

been mapped to the 1st core, one task to the 2nd core, two tasks to the 3rd core, and one task to

the 4th core. The relative accuracy with cache size increment is 100%. The average estimation

error is 13.28% and worst case error is for the 1st core in 1KB cache size, which is 31.05%.

Figure 5.17 Busy-time estimation of a 4 core design with 1-2-1-1 JPEG mapping

Figure 5.17 illustrates the busy time of a 4 core design for different cache sizes. One task

has been mapped to the 1st core, two tasks to the 2nd core, one task to the 3rd core, and one task

to the 4th core. The relative accuracy with cache size increment is 100%. The average estimation

error is 19.40% and worst case error is for the 3rd core in 1KB cache size, which is 38.18%.

Figure 5.18 Busy-time estimation of a 4 core design with 2-1-1-1 JPEG mapping

Figure 5.18 demonstrates the busy-time of a 4 core design for different cache sizes. Two

tasks have been mapped to the 1st core, one task to the 2nd core, one task to the 3rd core, and one

task to the 4th core. The relative accuracy with cache size increment is 100%. The average

estimation error is 11.71% and worst case error is for the 4th core in 8KB cache size, which is

34.48%.

Table 5.2 Busy-time error for different JPEG mappings

Table 5.2 summarizes the busy-time estimation error for different number of cores, JPEG

task mappings, and five different cache sizes. The average busy-time estimation error is 10.84%

for all the experiment and the worst case estimation time error is 39.88% which is for the first

core of the 3 core design with mapping of 1-2-2 and the cache size of 256B.

The busy-time error is worse when the load of a core is significantly low in compare to the

others cores. This means the cores with the highest loads affect severely on low load cores.

The source of this error is the multiple write effect discussed in section 4.3. Before applying

our compensation algorithm for multiple write effects of DDR2, our worst case error was 66%

in 3th core of 4 core emulation, with 1-2-1-1 mapping, and 1kB of data and instruction cache.

Through the proposed compensation algorithm, we decreased the error to 38.18% in that case.

Number
of cores

Mapping
Average

Error

Worst-case

Error Core Cache Size

2core

4-1 5.14% 11.60% 2nd 1kB
3-2 4.86% 8.61% 1st 1kB

2-3 5.10% 12.08% 2nd 1kB

1-4 14.20% 23.77% 1st 2kB

3core

1-1-3 11.27% 28.22% 1st 4kB
1-2-2 16.67% 39.88% 1st 256B

1-3-1 17.69% 36.88% 1st 256B

2-2-1 2.79% 6.71% 3rd 256B

2-1-2 3.89% 7.49% 2nd 256B

3-1-1 12.48% 25.45% 2nd 4kB

4core

1-1-1-2 13.34% 31.09% 1st 256B

1-1-2-1 13.28% 31.05% 1st 1kB

1-2-1-1 19.40% 38.18% 3rd 1kB

2-1-1-1 11.71% 34.48% 4th 8kB

Total execution time of the tasks are an important factor to compere different designs. As

explained earlier, the total execution time includes the FSL waiting due to FIFO’s blocking

read or write effect as well as program’s execution time.

Figure 5.19 Total execution time estimation of a 2core design for different JPEG mapping

Figure 5.19 presents the total execution time of 2core design for all possible JPEG encoder

mapping and cache sizes. The average total execution time error for 2core design is 4.20% and

the worst case estimation error is 12.3% which belongs to 2-3 JPEG mapping and 4K cache

size design.

Figure 5.20 Total execution time estimation of a 3core design for different JPEG mapping

Figure 5.20 shows the total execution time of 3core design for all possible JPEG encoder

mapping and cache sizes. The average total execution time error for 3core design is 4.29% and

the worst case estimation error is 10.8% which belongs to 3-1-1 JPEG mapping and 8K cache

size design.

Figure 5.21 Total execution time estimation of a 4core design for different JPEG mapping

Figure 5.21 illustrates the total execution time of 4core design for all possible JPEG encoder

mapping and cache sizes. The average total execution time error for 4core design is 8.82% and

the worst case estimation error is 12.98% which belongs to 1-1-1-2 JPEG mapping and 4K

cache size design.

Table 5.4 shows the average and worst case total execution estimation error for different

JPEG mapping and cache sizes. The total average execution time error is 5.56% and the worst

case error is 12.98 in 4core design, 1-1-1-2 JPEG mapping, and the cache size of 4KB.

Table 5.3 Total execution time error for different JPEG mappings

5.3 Simulation Speed

As mentioned earlier, there is a timer for calculating the total simulation time. It starts at the

first of the simulation, and stops at the end of the program. The total simulation time of the

MEK can be seen in Figure 5.22.

Figure 5.22 Total Simulation time in Seconds for different number of cores in Hybrid design

Number
of cores

Mapping
Average

Error

Worst-case

Error Cache Size

2core

4-1 3.17% 6.76% 1 KB

3-2 4.24% 8.56% 1 KB

2-3 3.50% 12.3% 4 KB

1-4 5.88% 10.2% 1 KB

3core

1-1-3 4.50% 7.24% 8 KB

1-2-2 2.73% 4.34% 4 KB

1-3-1 3.76% 7.81% 1 KB

2-2-1 3.24% 6.73% 256 B

2-1-2 4.76% 6.92% 256 B

3-1-1 6.76% 10.8% 8 KB

4core

1-1-1-2 12.24% 12.98% 4 KB

1-1-2-1 10.80% 12.55% 4 KB

1-2-1-1 5.96% 9.78% 2 KB

2-1-1-1 6.27% 9.09% 8 KB

Table 5.4 Swap time consumption for different sizes

Cache Size Save (Cycles) Load (Cycles)
Total Swap Time

(Cycles)

256B 2467 3831 6298

1k 8499 13725 22224

2k 16477 26957 43434

4k 32513 53343 85856

8k 64521 106123 170644

The values are obtained for all task mappings and all 5 different cache sizes ranging from

256B to 8KB. Because the MEK is running on off-chip DDR2 SDRAM memory, and the swap

is also running during the simulation, the timing is quite high in comparison to MEK running

on BRAM. The simulation time increases by increasing the number of cores, since number of

cache swaps increase. During simulation, both instruction and data cache is disabled, and the

cache is enabled only when a task is running. Because of this, cache size increment effect is not

significant in total simulation time. Even in some cases, the cache size increment results in

higher simulation timing. The reason is that if the cache size increases, the swap time increases

as well. Table 5.4 reports the time consumption for a load/save from/to DDR2 to/from the

cache, and total swap (Load + Save).

5.4 DRAC Resource Usage

Each design consumes a certain amount IO, and occupies a portion of FPGA area

during implementation. For different cache sizes, we have obtained resource usage.

Table 5.5 Resources usage of Built-in Cache (BIC) and DRAC for different cache sizes

Table 5.5 presents resources usage of single core design with different sizes of the built-in

cache and DRAC cache emulator. As can be observed, as much the size of the cache increases

the amount of BRAM used on the FPGA increases as well; however, other logic resources

remains the same. Although DRAC consumes more resources on FPAG than built-in cache, it

promotes run-time configurability. The design with built-in cache must be re-synthesized once

for any configuration change like cache size, but the emulation system with DRAC can simulate

any configuration with only one time synthesis.

5.5 Power and Energy Analysis

Beside the speed of the system, power consumption is the other main factor for the designer

to choose the best design in multicore processing. The main components that consume the most

of the power are the processor, built-in cache, and off-chip main memory.

Design
Resources Usage Percentage

LUT Reg. BRAM Slice Bonded IO

 I&D 256B
Built-in

12% 14% 14% 29% 18%

 I&D 1KB
Built-in

12% 14% 14% 29% 18%

 I&D 2KB
Built-in

12% 14% 16% 29% 18%

 I&D 4KB
Built-in

12% 14% 18% 29% 18%

 I&D 8KB
Built-in

12% 14% 21% 29% 18%

 I&D Variable
Size DRAC

22% 33% 23% 53% 18%

Figure 5.23 Power consumption for different cache sizes in Watts

Figure 5.23 demonstrates the total power consumption of the system for different number

of cores and cache sizes. As can be seen, the cache size increment results in more BRAM

utilization and more power consumption. On the other hand, adding more cores to the system

and using more ports of MPMC increases the power consumption as well.

Figure 5.24 Energy consumption for different cache sizes and JPEG mappings in mJoules

In multicore systems, power consumption is different core by core, depending on the task

running on each core. Energy is the best way to measure the system performance in terms of

power and time. The busy-time of a task is the time for a core to execute a task without

considering blocking data transfer among different cores. The processor is on idle during

blocking reads or writes, hence it consumes negligible amount of energy. Because of this fact,

we multiplied the total power consumption of each core to the total busy-time of all cores and

obtained the energy consumption for different task mappings. Figure 5.24 demonstrates the

energy consumption for all possible JPEG encoder designs and cache sizes.

5.6 Design Exploration

Two of the most important factors that define system efficiency, are the speed and energy

consumption of the system.

Figure 5.25 Design exploration of JPEG for different task mapping and cache sizes in terms

of energy & speed in Full FPGA prototyping

Figure 5.25 plots all the full FPGA multicore designs from 2 to 4 cores with all possible

JPEG Encoder mappings, and five different cache sizes execution time versus energy

consumption. Each point is a design with certain mapping and the cache size. As it is circled

on the figure, the best designs are the one that consume less energy and execute the program in

the shortest time. For example, the best design in JPEG Encoder is a 2 core design with 2k

cache size and the mapping of 2 tasks in the first core and 3 tasks in the second core.

The MEK provides a simple environment for the designer to choose the best design among

the others, without having the full FPGA multicore prototype. The consistency of the results,

100% relative accuracy among different cache sizes and different task mapping, make the MEK

a powerful tool to compare different designs.

Figure 5.26 Design exploration of JPEG for different task mapping and cache sizes in terms

of energy & speed in Hybrid prototyping

Figure 5.26 presents energy versus execution time for all JPEG Encoder possible mapping

and the cache sizes, predicted by the MEK. The correlation of the MEK results and the full

FPGA results is clear. In both Figure 5.25 and 5.26, the best design is the 2core design with 2k

instruction and data cache with 3-2 JPEG mapping. This confirms the accuracy and reliabality

of the MEK with cache.

CHAPTER 6

6 Conclusion and Future work

In this thesis, we presented DRAC instruction and data cache model that can be used in

hybrid prototyping. Standalone accuracy, run-time configurability, and multiple cache context

support of DRAC, make it an ideal cache emulator in multicore emulation systems. DRAC

model is capable of emulating instruction and data caches of many virtual cores, as well as

modeling cache in a single core design. Designing DRAC as an active cache emulator increases

the accuracy and detail of the model. Additionally, parametric design of DRAC allows the

model to be integrated with different processors.

Adopting hybrid prototyping idea and utilizing DRAC model, embedded designers are able

to analyze, verify, and optimize their multicore design with cache design without the need for

full system prototyping. Such full system prototyping can be complex to be designed and time

consuming for the designer to explore different design options. Therefore, hybrid prototypes

increase the productivity for both software embedded designer and hardware multicore

designer.

In the future, we will extend DRAC model to support the following,

• Write back writing policy – This writing policy increases the performance of data

cache by decreasing the cache refereeing to main memory. In order to implement the

write back policy, the cache controller should be extended.

• Set Associativity – Set associativity determines the replacement policy of a

particular entry of the cache. Now, DRAC is one-way associative or direct mapped

cache, but in the future it will support different associativity. Although the model

becomes more complex, the state of the art in computer architecture is multi-way

associativity.

• Different cache levels – Designing the cache in multiple levels is another way to

optimize system performance; however, managing different cache levels is a great

challenge in multicore processing. In future, DRAC model will be extended to

support L2 and L3 caches.

1 References

G. E. Moore, "Cramming more components onto integrated circuits," Electronics

Magazine, vol. 38, p. 114 ff, April 1965.

[2] R. Hiremane, "From Moore’s Law to Intel Innovation—Prediction to,"

Technology@Intel, pp. 1-9, April 2005.

D. Geer, "Chip makers turn to multicore processors," IEEE Computer, vol. 38, p. 11–

13, May 2005.

Y. Hwang, S. Abdi and D. Gajski, "Cycle approximate retargettable performance

estimation at the transaction level," in DATE, Munich, Germany, Mar 2008.

Z. Wang and A. Herkersdorf, "An Efficient Approach for System-Level Timing

Simulation of Compiler-Optimized Embedded Software," in Proceedings of the 46th

Annual Design Automation Conference (DAC’09), San Francisco, California, July 2009.

E. Saboori and S. Abdi, "Hybrid Prototyping of Multicore Embedded Systems," in

DATE, Grenoble, France, 2013.

P. Denning and S. Schwartz, "Properties of the Working-Set Model," Communications

of the ACM, vol. 15, no. 3, pp. 191-198, March 1972.

J. Edler and M. Hill, "Dinero IV Trace-Driven Uniprocessor Cache Simulator," 2012.

[Online]. Available: http://pages.cs.wisc.edu/~markhill/DineroIV/.

B. Atanasovski, S. Ristov, M. Gusev and N. Anchev, "MMCacheSim: A Highly

Configurable Matrix Multiplication Cache Simulator," in ICT Innovations, 2012.

T. Kempf, k. Karuri, G. Ascheid, R. Leupers and H. Meyr, "A SW performance

estimation framework for early system-," in DATE, 2006.

Z. Wang and A. Herkersdorf, "An Efficient Approach for System-Level Timing

Simulation of Compiler-Optimized Embedded Software," in Proceedings of the 46th

Annual Design Automation Conference (DAC’09), San Francisco, California, July 2009.

E. Cheung, H. Hsieh and F. Balarin, "Memory subsystem simulation in software tlm/t

models," in Proceedings of the 2009 Asia and South Pacific Design Automation

Conference , ser. ASP-DAC ’09, 2009.

S. Stattelmann, G. Gebhard, C. Cullmann, O. Bringmann and W. Rosenstiel, "Hybrid

source-level simulation of data caches using abstract cache models," in Design,

Automation & Test in Europe Conference & Exhibition (DATE), Dresden, Germany,

2012.

Z. Wang and A. Herkersdorf, "An efficient approach for system-level timing

simulation of compiler-optimized embedded software," in Design Automation

Conference, 2009. DAC '09. 46th ACM/IEEE, San Francisco, CA, July 2009.

R. L. Mattson, J. Gecsei, D. R. Slutz and I. L. Traiger, "Evaluation techniques for

storage hierarchies," in IBM Systems Journal, 1970.

M. D. Hill and A. J. Smith, "Evaluating associativity in CPU caches," in IEEE Trans.

Comput, 1989.

R. Sugumar and S. Abraham, "Efficient simulation of multiple cache configurations

using binomial trees," in Tech. Report, 1991.

W. Zang and A. Gordon-Ross, "T-SPaCS – a Two-level Single-pass Cache Simulation

Methodology," in Proc. 16th Asia and South Pacific Design Automation Conference , Jan.

2011.

A. Janapsatya, A. Ignjatovic and S. Parameswaran, "Finding optimal L1 cache

configuration for embedded systems," in Design Automation, 2006. Asia and South

Pacific Conference on, 10.1109/ASPDAC.2006.1594753, Jan 2006.

H. Yoon , G. Park, K. Lee , T. Han, S. Kim and S. Yang, "Reconfigurable Address

Collector and Flying Cache Simulator," in High Performance Computing on the

Information Superhighway, 1997. HPC Asia '97, Seoul, 1997.

A. Nanda, K. Mak, K. Sugavanam, R. K. Sahoo, V. Soundararajan and T. B. Smith,

"MemorIES: A programmable, real-time hardware emulation tool for multiprocessor

server design," in Proc. Conf. Arch. Support Program. Lang. Operat. Syst., 2000.

P. Ravishankar and A. Samar, "pCache: An Observable L1 Data Cache Model for

FPGA Prototyping of Embedded Systems," in Digital System Design (DSD), 2013

Euromicro Conference on, 2013.

N. Chalainanont, E. Nurvitadhi, R. Morrison, L. Su, K. Chow, S. L. Lu and K. Lai,

"Real-time L3 cache simulations using the programmable hardware-assisted cache

emulator (PHA$E)," in the 6th Ann. Workshop Workload Characterization, Madrid,

Spain, 2003.

L. A. Barroso, S. Iman, J. Jeong, K. Oner, K. Ramamurthy and M. Dubois, "RPM: A

rapid prototyping engine for multiprocessor systems," in IEEE Comput. Mag., Feb. 1995.

J. Wawrzynek and et al., "RAMP: Research Accelerator for Multiple Processors," in

Micro, IEEE, 2007.

E. Nurvitadhi, J. Hong and S. Lu, "Active Cache Emulator," vol. 16, no. 3, pp. 229 -

240, March 2008.

X. Inc., "MicroBlaze Processor Reference Guide," [Online]. Available:

http://www.xilinx.com.

X. Inc., "ChipScope Pro and the Serial I/O Toolkit," [Online]. Available:

http://www.xilinx.com/tools/cspro.htm.

X. Inc., "Platform Studio and the Embedded Development Kit (EDK)," [Online].

Available: http://www.xilinx.com/tools/platform.htm.

2 Appendix

VHDL CODE of DRAC

use ieee.std_logic_1164.all;

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
USE ieee.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

library proc_common_v3_00_a;
use proc_common_v3_00_a.proc_common_pkg.all;
use proc_common_v3_00_a.ipif_pkg.all;

library UNISIM;
use UNISIM.VCOMPONENTS.ALL;

entity DRAC is
 generic
 (
 -- ADD USER GENERICS BELOW THIS LINE ---------------
 --USER generics added here
 -- ADD USER GENERICS ABOVE THIS LINE ---------------

 -- DO NOT EDIT BELOW THIS LINE ---------------------
 -- Bus protocol parameters, do not add to or delete
 C_BRIDGE_BASEADDR : std_logic_vector(0 TO 31) := X"FFFFFFFF";
 C_BRIDGE_HIGHADDR : std_logic_vector(0 TO 31) := X"00000000";

 C_SPLB_AWIDTH : integer := 32;
 C_SPLB_DWIDTH : integer := 32;
 C_MPLB_AWIDTH : integer := 32;
 C_MPLB_DWIDTH : integer := 32;
 C_SPLB_NUM_MASTERS : integer := 84;
 C_MPLB_NATIVE_DWIDTH : integer := 32
 -- DO NOT EDIT ABOVE THIS LINE ---------------------
);
 port (

CR_out : out std_logic_vector (0 to 15);
CW_out : out std_logic_vector (0 to 3);
write_out : out std_logic;
miss_in : in std_logic;
miss_out : out std_logic;
RData_valid_in : in std_logic;
RData_valid_out : out std_logic;
Trace_PC : in std_logic_vector (0 to 31);
Swap_in : in std_logic;
Swap_out : out std_logic;
MPLB_Clk : in std_logic;

 SPLB_Rst : in std_logic;
 -- PLBv46 Bus Slave signals
 PLB_ABus : in std_logic_vector(0 to C_SPLB_AWIDTH-1);
 PLB_PAValid : in std_logic;
 PLB_RNW : in std_logic;
 PLB_wrDBus : in std_logic_vector(0 to C_SPLB_DWIDTH-1);
 PLB_BE : in std_logic_vector(0 to 3);

 -- Slave Response Signals
 Sl_addrAck : out std_logic;
 Sl_SSize : out std_logic_vector(0 to 1);
 Sl_wait : out std_logic;
 Sl_rearbitrate : out std_logic;
 Sl_wrDAck : out std_logic;
 Sl_wrComp : out std_logic;
 Sl_wrBTerm : out std_logic;

 Sl_rdDBus : out std_logic_vector(0 to C_SPLB_DWIDTH-1);
 Sl_rdWdAddr : out std_logic_vector(0 to 3);
 Sl_rdDAck : out std_logic;
 Sl_rdComp : out std_logic;
 Sl_rdBTerm : out std_logic;
 Sl_MBusy : out std_logic_vector (0 to C_SPLB_NUM_MASTERS-1);
 Sl_MWrErr : out std_logic_vector (0 to C_SPLB_NUM_MASTERS-1);
 Sl_MRdErr : out std_logic_vector (0 to C_SPLB_NUM_MASTERS-1);
 Sl_MIRQ : out std_logic_vector (0 to C_SPLB_NUM_MASTERS-1);
 IP2Bus_MstRd_Req : out std_logic;
 IP2Bus_MstWr_Req : out std_logic;
 IP2Bus_Mst_Addr : out std_logic_vector(0 to C_MPLB_AWIDTH-1);
 IP2Bus_Mst_BE : out std_logic_vector(0 to (C_MPLB_NATIVE_DWIDTH/8) -1);
 IP2Bus_Mst_Lock : out std_logic;
 IP2Bus_Mst_Reset : out std_logic;

 -- IP Request Status Reply
 Bus2IP_Mst_CmdAck : In std_logic;
 Bus2IP_Mst_Cmplt : In std_logic;
 Bus2IP_Mst_Error : In std_logic;
 Bus2IP_Mst_Rearbitrate : In std_logic;
 Bus2IP_Mst_Cmd_Timeout : In std_logic;

 -- IPIC Read data
 Bus2IP_MstRd_d : In std_logic_vector(0 to C_MPLB_NATIVE_DWIDTH-1);
 Bus2IP_MstRd_src_rdy_n : In std_logic;

 -- IPIC Write data
 IP2Bus_MstWr_d : out std_logic_vector(0 to C_MPLB_NATIVE_DWIDTH-1);
 Bus2IP_MstWr_dst_rdy_n : In std_logic;

 IP2Bus1_MstRd_Req : out std_logic;

 IP2Bus1_MstWr_Req : out std_logic;
 IP2Bus1_Mst_Addr : out std_logic_vector(0 to C_MPLB_AWIDTH-1);
 IP2Bus1_Mst_BE : out std_logic_vector(0 to (C_MPLB_NATIVE_DWIDTH/8) -1);
 IP2Bus1_Mst_Lock : out std_logic;
 IP2Bus1_Mst_Reset : out std_logic;

 -- IP Request Status Reply
 Bus2IP1_Mst_CmdAck : In std_logic;
 Bus2IP1_Mst_Cmplt : In std_logic;
 Bus2IP1_Mst_Error : In std_logic;
 Bus2IP1_Mst_Rearbitrate : In std_logic;
 Bus2IP1_Mst_Cmd_Timeout : In std_logic;

 -- IPIC Read data
 Bus2IP1_MstRd_d : In std_logic_vector(0 to C_MPLB_NATIVE_DWIDTH-1);
 Bus2IP1_MstRd_src_rdy_n : In std_logic;

 -- IPIC Write data
 IP2Bus1_MstWr_d : out std_logic_vector(0 to C_MPLB_NATIVE_DWIDTH-1);
 Bus2IP1_MstWr_dst_rdy_n : In std_logic

);

end entity DRAC;

architecture Behavioral of PLB_Bridge is

 signal PLB_BE_temp :std_logic_vector(0 to 3);
 type state_type is (stall, First, Second_Bridge, Third_Bridge, forth_Bridge,f ifth_Bridge, Second_Reg, Third_Reg, forth_Reg,

 fifth_Reg, Cache_Write, Cache_Read, Second_Cache, Cache_DDR_Read1,Cache_DDR_Read2,Cache_DDR_Read3);

 type swap_type is (init, run, time_to_stable, time_to_stable2, cache_to_ram1_1, cache_to_ram1_2, cache_to_ram2_1,

 cache_to_ram2_2, cache_to_ram3, ram_to_cache1_1, ram_to_cache1_2, ram_to_cache2, ram_to_cache3);

 type rst_type is (start,stop,idle,incr);
 signal rst_state :rst_type :=idle;
 signal swap : swap_type :=init;
 signal current_state : state_type := First;

 signal Sl_rdDBus_i :std_logic_vector(0 to C_SPLB_DWIDTH-1);
 signal reg1,reg2,reg3,reg4,reg5,reg6,reg7,reg8,reg9,Address,tag_image_temp,write_coef :std_logic_vector(0 to 31);
 signal RNW,write_en :std_logic;
 signal DO_i1,DO_i2 : STD_LOGIC_VECTOR (0 to 31):=(others=> '0');
 signal ADDR_i1,ADDR_i2,adr_swap : STD_LOGIC_VECTOR (0 to 10):=(others=> '0');
 signal DI_i1,DI_i2,data_temp,PLB_wrDBus_temp,PLB_ABus_temp : STD_LOGIC_VECTOR (0 to 31):=(others=> '0');
 signal EN_i1,EN_i2 : STD_ULOGIC:='0';
 signal SSR_i : STD_ULOGIC:='0';
 signal WE_i1,WE_i2 : STD_ULOGIC:='0';
 signal SRM_flag, SRM_Timeflag : STD_LOGIC:='0';
 signal SM_Cnt : STD_LOGIC_VECTOR (0 to 3):=(others=> '0');
 signal image_hit_flag : STD_LOGIC_VECTOR (0 to 4):=(others=> '0');
 signal Trace_PC_temp : STD_LOGIC_VECTOR (0 to 31):=(others=> '0');
 signal write_enable,write_end,read_end,miss,InstAcc,dataAcc,dmissoverhead_out : std_logic := '0';

 signal write_flag : std_logic:= '0';
 signal swap_en,swap_done : std_logic := '0';

component BRAM8 is
 port (
 DO : out STD_LOGIC_VECTOR (0 to 31);
 ADDR : in STD_LOGIC_VECTOR (0 to 10);
 CLK : in STD_ULOGIC;
 DI : in STD_LOGIC_VECTOR (0 to 31);
 EN : in STD_ULOGIC;
 WE : in STD_ULOGIC
);

 end component;

begin
 RAMB8_0 : BRAM8
 port map (
 DO => DO_i1,
 ADDR => Addr_i1,
 CLK => MPLB_Clk,
 DI => DI_i1,
 EN => EN_i1,
 WE => WE_i1
);

 RAMB8_1 : BRAM8
 port map (
 DO => DO_i2,
 ADDR => Addr_i2,
 CLK => MPLB_Clk,
 DI => DI_i2,
 EN => EN_i2,
 WE => WE_i2

);

IP2BUS_DATA_MUX_PROC : process(MPLB_Clk,SPLB_Rst,PLB_PAValid) is

 variable adr : STD_LOGIC_VECTOR (0 to 10) :=(others => '0') ;
 variable cache_read_reg :std_logic_vector(0 to 31):=(others => '0') ;
 variable swap_run :std_logic:='0' ;
 variable delay_time,delay_time2,delay_time3,cnt,Wcnt,cnt2,image_cnt_stable :integer range 0 to 4095 := 0;
 variable XC :integer range 0 to 127 := 1;
 variable XC150, XC220, XC270, XC370, XC470, XC600, XC5, XCIhit, XC20, XCR30, XC50, XCR50, XC30, XC40, XC80,

 XCR1, XCR5, XC100, XC200, XCDhit, XC_nextwrite, XCD220, XCD270 :integer range 0 to 2047 := 1;
 variable cnt1,mem_temp,tag_temp,image_address,temp :std_logic_vector(0 to 31) :=(others=> '0');
 variable tag :std_logic_vector(0 to 23) :=(others=> '0');
 variable RMC,RHC,WMC,WHC :std_logic_vector(0 to 31):= (others=> '0');
 variable Chit,CW,BC,CWS,CR : integer range 0 to 4095;
 variable int_index1,int_index2 : integer range 0 to 63;
 variable address_temp3 : STD_LOGIC_VECTOR (0 to 27);
 variable address_temp2 : STD_LOGIC_VECTOR (0 to 1);
 variable address_temp1 : STD_LOGIC_VECTOR (0 to 6);
 variable Adr_swap1,Adr_swap2,Adr_swap1_cnt,Adr_swap2_cnt : STD_LOGIC_VECTOR (0 to 11) := (others=>'0');

 variable Adr_swap3,image_address_temp,image_address_tag : STD_LOGIC_VECTOR (0 to 3) := (others=>'0');
 variable branch_flag,write1,writeflag,missflag : STD_LOGIC := '0';
 variable writetime,misstime : STD_LOGIC_VECTOR (0 to 31);

 begin
 if SPLB_Rst = '1' then
 delay_time := 0;
 delay_time2 := 0;
 delay_time3 := 0;
 cnt_image_update := 0;
 image_hit_flag <= (others => '0');
 image_address_tag := (others => '0');
 image_address := (others => '0');
 image_address_temp := "0001";
 image_cnt_stable := 0;
 cnt_image := 0;
 PLB_wrDBus_temp <= (others => '0');
 PLB_ABus_temp <= (others => '0');
 swap_run := '0';
 cache_read_reg := (others => '0');
 PLB_BE_temp <= (others => '0');
 mem_temp := (others => '0');
 tag_temp := (others => '0');
 data_temp <= (others => '0');
 cnt2 := 0;
 swap_en <= '0';
 Adr_swap1 := (others => '0');
 Adr_swap1_cnt := (others => '0');
 Adr_swap2 := (others => '0');
 Adr_swap2_cnt := (others => '0');
 swap <= init;
 swap_done <= '0';
 address <= (others => '0');
 int_index1 := 0;
 int_index2 := 0;
 RMC := (others=> '0');
 RHC := (others=> '0');
 WMC := (others=> '0');
 WHC := (others=> '0');
 write_en <= '0';
 Addr_i1 <= (others=> '0');
 Addr_i2 <= (others=> '0');
 DI_i1 <= (others=> '0');
 DI_i2 <= (others=> '0');
 SSR_i <= '0';
 cnt1 := (others =>'0');
 WE_i1 <= '0';
 EN_i1 <= '0';
 WE_i2 <= '0';
 EN_i2 <= '0';
 DI_i2 <= (others=> '0');
 Address_temp1 := (others => '0');
 Address_temp2 := (others => '0');
 Address_temp3 := (others => '0');
 RNW <= '0';
 cnt := 0;
 Sl_addrAck <= '0';
 Sl_SSize <= (others => '0');
 Sl_wait <= '0';
 Sl_rearbitrate <= '0';
 Sl_wrDAck <= '0';
 Sl_wrComp <= '0';
 Sl_wrBTerm <= '0';
 Sl_rdDBus <= (others => '0');
 Sl_rdWdAddr <= (others => '0');
 Sl_rdDAck <= '0';
 Sl_rdComp <= '0';
 Sl_rdBTerm <= '0';
 Sl_MBusy <= (others => '0');
 Sl_MWrErr <= (others => '0');

 Sl_MRdErr <= (others => '0');
 Sl_MIRQ <= (others => '0');
 IP2Bus_MstRd_Req <= '0';
 IP2Bus_MstWr_Req <= '0';
 IP2Bus_Mst_Addr <= (others => '0');
 IP2Bus_Mst_BE <= (others => '0');
 IP2Bus_Mst_Lock <= '0';
 IP2Bus1_MstRd_Req <= '0';
 IP2Bus1_MstWr_Req <= '0';
 IP2Bus1_Mst_Addr <= (others => '0');
 IP2Bus1_Mst_BE <= (others => '0');
 IP2Bus1_Mst_Lock <= '0';
 Sl_rdDBus_i <= (others => '0');
 reg1 <= (others => '0');
 reg2 <= (others => '0');
 reg3 <= (others => '0');
 reg4 <= (others => '0');
 reg5 <= (others => '0');
 reg6 <= (others => '0');
 reg7 <= (others => '0');
 reg8 <= (others => '0');
 reg9 <= (others => '0');
 rst_state <= idle;
 SM_Cnt <= "0000";
 SRMC := (others=> '0');
 SRM_Timeflag <= '0';
 SRM_flag <= '0';
 Trace_PC_temp <= (others => '0');
 WCC := (others => '0');
 Trace_PC_temp <= (others => '0');

 elsif rising_edge(MPLB_Clk) then
 write_out <= PLB_PAValid and (not PLB_RNW);
 miss_out <= miss;
 RData_valid_out <= (PLB_PAValid);
 if writeflag = '1' then
 writetime := writetime + 1;
 end if;

 if missflag = '1' then
 misstime := misstime + 1;
 end if;

 if ((C_BRIDGE_BASEADDR (0 to 11) = x"c1c")or (C_BRIDGE_BASEADDR (0 to 11) = x"c3c") or

 (C_BRIDGE_BASEADDR (0 to 11) = x"c5c")) then
 InstAcc <= '1';
 DataAcc <= '0';
 RData_valid_out <= dmissoverhead_out;
 elsif ((C_BRIDGE_BASEADDR (0 to 11) = x"c0c")or (C_BRIDGE_BASEADDR (0 to 11) = x"c2c") or

 (C_BRIDGE_BASEADDR (0 to 11) = x"c4c")) then
 InstAcc <= '0';
 DataAcc <= '1';
 end if;

 if (reg1(4 to 31) = x"3333333") then
 RMC := (others=> '0');
 RHC := (others=> '0');
 WHC := (others=> '0');
 WMC := (others=> '0');
 elsif reg1(4 to 31) = x"1111111" then
 swap_en <= '1';
 if DataAcc = '1' then
 Swap_out <= '1';
 swap_run := '0';
 else
 Swap_out <= '0';
 swap_run := '1';
 end if;
 case reg1 (0 to 3) is
 when "0001" =>

 Adr_swap1_cnt := "000000010000";
 Adr_swap2_cnt := "000001000000";

 when "0010" =>
 Adr_swap1_cnt := "000001000000";
 Adr_swap2_cnt := "000100000000";

 when "0011" =>
 Adr_swap1_cnt := "000010000000";
 Adr_swap2_cnt := "001000000000";

 when "0100" =>
 Adr_swap1_cnt := "000100000000";
 Adr_swap2_cnt := "010000000000";

 when "0101" =>
 Adr_swap1_cnt := "001000000000";
 Adr_swap2_cnt := "100000000000";

 when others =>
 Adr_swap1_cnt := "001000000000";
 Adr_swap2_cnt := "100000000000";

 end case;
 IP2Bus1_Mst_BE <= "1111";
 EN_i1 <= '1';
 EN_i2 <= '1';
 Addr_i1 <= (others => '0');
 Addr_i2 <= (others => '0');
 end if;
 case rst_state is
 when idle =>
 rst_state <= start;
 adr := (others => '0');

 when start =>
 rst_state <= incr;
 DI_i1 <= (others => '0');
 DI_i2 <= (others =>'0');
-- SSR_i <= '1';
 Addr_i1 <= adr;
 Addr_i2 <= adr;
 EN_i1 <= '1';
 EN_i2 <= '1';
 WE_i1 <= '1';
 WE_i2 <= '1';

 when incr =>
 if cnt = 1 then
 cnt := 0;
 if adr = "11111111111" then
 rst_state <= stop;
 else
 adr := adr+1;
 rst_state <= start;
 end if;
 else
 cnt := cnt +1;
 end if;

 when stop =>
 rst_state <= stop;

 when others =>
 rst_state <= stop;

 end case;

 case current_state is
 when First =>

 SSR_i <= '0';
 Sl_rdDAck <= '0';
 Sl_rdComp <= '0';
 Sl_rdDBus <= (others => '0');
 Sl_wrDAck <= '0';
 Sl_wrComp <= '0';
 Sl_MBusy <= (others => '0');
 Sl_rdDBus <= (others => '0');
 if ((PLB_PAValid = '1') and (PLB_ABus (0 to 19) = C_BRIDGE_BASEADDR (0 to 19))) then
 Sl_wait <= '1';
 current_state <= Second_Reg;
 if (PLB_RNW = '0') then
 RNW <= '0';
 case PLB_ABus (16 to 31) is
 when x"0000" =>
 reg1 <= PLB_wrDBus;
 when x"0004" =>
 reg2 <= C_BRIDGE_BASEADDR (0 to 27) & PLB_wrDBus(28 to 31);
 when x"00F0" =>
 write_coef <= PLB_wrDBus;
 when x"0080" =>
 XCR1 := conv_integer(PLB_wrDBus (20 to 31));
 when x"0084" =>
 XCR30 := conv_integer(PLB_wrDBus (20 to 31));
 when x"0088" =>
 XCR5 := conv_integer(PLB_wrDBus (20 to 31));
 when x"008C" =>
 XC80 := conv_integer(PLB_wrDBus (20 to 31));
 when x"0090" =>
 XC20 := conv_integer(PLB_wrDBus (20 to 31));
 when x"0094" =>
 XC50 := conv_integer(PLB_wrDBus (20 to 31));
 when x"0098" =>
 XC200 := conv_integer(PLB_wrDBus (20 to 31));
 when x"009C" =>
 XCR50 := conv_integer(PLB_wrDBus (20 to 31));
 when x"00A0" =>
 XC5 := conv_integer(PLB_wrDBus (20 to 31));
 when x"00A4" =>
 XCIhit := conv_integer(PLB_wrDBus (20 to 31));
 when x"00A8" =>
 XC30 := conv_integer(PLB_wrDBus (20 to 31));
 when x"00AC" =>
 XC40 := conv_integer(PLB_wrDBus (20 to 31));
 when x"00B0" =>
 XC100 := conv_integer(PLB_wrDBus (20 to 31));
 when x"00B4" =>
 XC150 := conv_integer(PLB_wrDBus (20 to 31));
 when x"00B8" =>
 XC220 := conv_integer(PLB_wrDBus (20 to 31));
 when x"00BC" =>
 XC270 := conv_integer(PLB_wrDBus (20 to 31));
 when x"00C0" =>
 XC370 := conv_integer(PLB_wrDBus (20 to 31));
 when x"00C4" =>
 XC470 := conv_integer(PLB_wrDBus (20 to 31));
 when x"00C8" =>
 XC600 := conv_integer(PLB_wrDBus (20 to 31));
 when x"00d8" =>
 XCD220 := conv_integer(PLB_wrDBus (20 to 31));
 when others =>
 null;

 end case;
 else
 RNW <= '1';

 end if;
 elsif ((PLB_PAValid = '1') and (PLB_ABus (0 to 3) = "1001")) then
 Sl_wait <= '1';
 if (swap_run = '1' or Swap_in = '1') then
 En_i1 <= '1';

 En_i2 <= '1';
 if cnt = 10 then
 Sl_rdDBus_i <= x"b8000000";

 current_state <= forth_Bridge;
 Sl_addrAck <= '1';
 cnt := 0;
 else
 cnt := cnt +1;
 end if;

 else
 case reg1 (0 to 3) is
 when "0001" =>
 Addr_i1 <= "0000000" & PLB_ABus(24 to 27);
 Addr_i2 <= "00000" & PLB_ABus(24 to 29);
 address(4 to 27) <= PLB_ABus(4 to 27);
 address(0 to 3) <= (others => '0');

 when "0010" =>
 Addr_i1 <= "00000" & PLB_ABus(22 to 27);
 Addr_i2 <= "000" & PLB_ABus(22 to 29);
 address(4 to 27) <= PLB_ABus(4 to 27);
 address(0 to 3) <= (others => '0');

 when "0011" =>
 Addr_i1 <= "0000" & PLB_ABus(21 to 27);
 Addr_i2 <= "00" & PLB_ABus(21 to 29);
 address(4 to 27) <= PLB_ABus(4 to 27);
 address(0 to 3) <= (others => '0');

 when "0100" =>
 Addr_i1 <= "000" & PLB_ABus(20 to 27);
 Addr_i2 <= "0" & PLB_ABus(20 to 29);
 address(4 to 27) <= PLB_ABus(4 to 27);
 address(0 to 3) <= (others => '0');

 when "0101" =>
 Addr_i1 <= "00" & PLB_ABus(19 to 27);
 Addr_i2 <= PLB_ABus(19 to 29);
 address(4 to 27) <= PLB_ABus(4 to 27);
 address(0 to 3) <= (others => '0');

 when others =>
 Addr_i1 <= "00" & PLB_ABus(19 to 27);
 Addr_i2 <= PLB_ABus(19 to 29);
 address(4 to 27) <= PLB_ABus(4 to 27);
 address(0 to 3) <= (others => '0');

 end case;
 if ((reg1(4 to 31) = x"aaaaaaa") and (PLB_RNW = '1'))then
 if ((InstAcc = '1')) then
 delay_time3 := 0;
 else
 delay_time3 := 0;
 delay_time2 := XCD220;
 end if;
 delay_time := 1;
 WE_i1 <= '0';
 EN_i1 <= '1';
 WE_i2 <= '0';
 EN_i2 <= '1';

 current_state <= Second_cache;
 else
 if PLB_RNW = '1' then
 IP2Bus_MstRd_Req <= '1';
 current_state <= Second_Bridge;
 IP2Bus_Mst_Addr <= PLB_ABus;
 IP2Bus_Mst_BE <= PLB_BE;
 IP2Bus_Mst_Lock <= '0';

 else
 PLB_BE_temp <= PLB_BE;

 PLB_wrDBus_temp <= PLB_wrDBus;
 PLB_ABus_temp <= PLB_ABus;
 address(4 to 27) <= PLB_ABus(4 to 27);
 address(0 to 3) <= (others => '0');
 cnt_image := 0;
 EN_i1 <= '1';
 EN_i2 <= '1';
 WE_i1 <= '0';

 WE_i2 <= '0';
 current_state <= Second_cache;

 end if;
 end if;
 end if;

 else
 current_state <= First;

 end if;

 when Second_Cache =>
 if cnt = delay_time then
 tag_temp := DO_i1;
 mem_temp := DO_i2;
 cnt :=0;
 if PLB_RNW = '1' then
 RNW <= '1';
 current_state <= Cache_Read;
 else
 RNW <= '0';
 current_state <= Cache_Write;
 end if;
 else
 cnt := cnt +1;
 current_state <= Second_Cache;

 end if;
 when Cache_Read =>
 if ((tag_temp(0 to 3)="1111") and (address(4 to 27) = tag_temp(4 to 27))) then
 RHC := RHC +1;
 if (InstAcc = '1') then
 Chit := Chit + 1;
 if BC = 0 then
 if ((Chit = 1) and ((mem_temp (0 to 5) = "110100") or

 (mem_temp (0 to 5) = "111100") or (mem_temp (0 to 5) = "110101") or
 (mem_temp (0 to 5) = "111101") or (mem_temp (0 to 5) = "111110") or
 (mem_temp (0 to 5) = "110110"))) then

 CWS := 0;
 delay_time2 := (XC270) ;
 CW := 1;
 CW_out <= x"1";
 elsif ((CW = 0) and ((mem_temp (0 to 5) = "110100") or

 (mem_temp (0 to 5) = "111100") or (mem_temp (0 to 5) = "110101") or
 (mem_temp (0 to 5) = "111101") or (mem_temp (0 to 5) = "111110") or
 (mem_temp (0 to 5) = "110110"))) then

 CWS := 0;
 CW := 1;
 CW_out <= x"1";
 elsif ((CW = 1) and ((mem_temp (0 to 5) = "110100") or

 (mem_temp (0 to 5) = "111100") or (mem_temp (0 to 5) = "110101") or
 (mem_temp (0 to 5) = "111101") or (mem_temp (0 to 5) = "111110") or
 (mem_temp (0 to 5) = "110110"))) then

 if (CWS = 0) then
 delay_time2 := (XC370);
 else
 delay_time2 := (XC270) ;
 end if;
 CW := 2;
 CW_out <= x"2";
 elsif ((CW = 2) and ((mem_temp (0 to 5) = "110100") or

 (mem_temp (0 to 5) = "111100") or (mem_temp (0 to 5) = "110101") or
 (mem_temp (0 to 5) = "111101") or (mem_temp (0 to 5) = "111110") or
 (mem_temp (0 to 5) = "110110"))) then

 if (CWS = 0) then
 writeflag :='1';
 delay_time3 := XC40;
 delay_time2 := (XC470) ;
 else
 delay_time2 := (XC370);
 CWS := 2;
 end if;
 CW := 3;
 CW_out <= x"3";
 elsif ((CW = 3) and ((mem_temp (0 to 5) = "110100") or

 (mem_temp (0 to 5) = "111100") or (mem_temp (0 to 5) = "110101") or
 (mem_temp (0 to 5) = "111101") or (mem_temp (0 to 5) = "111110") or
 (mem_temp (0 to 5) = "110110"))) then

 if (CWS = 0) then
 writeflag :='1';
 delay_time3 := XC50;
 delay_time2 := (XC600) ;
 elsif (CWS = 2) then
 writeflag :='1';
 delay_time3 := XC40;
 delay_time2 := (XC470) ;
 else
 delay_time2 := (XC470) ;
 CWS := 2;
 end if;
 CW := 4;
 CW_out <= x"4";
 elsif ((CW = 4) and ((mem_temp (0 to 5) = "110100") or

 (mem_temp (0 to 5) = "111100") or (mem_temp (0 to 5) = "110101") or
 (mem_temp (0 to 5) = "111101") or (mem_temp (0 to 5) = "111110") or
 (mem_temp (0 to 5) = "110110"))) then

 if (CWS = 0) then
 delay_time3 := XC100;
 elsif (CWS = 2) then
 delay_time3 := XC50;
 end if;
 writeflag :='1';
 CWS := 0;
 delay_time2 := (XC370) ;
 CW := 4;
 CW_out <= x"4";
 elsif ((CW = 5) and ((mem_temp (0 to 5) = "110100") or

 (mem_temp (0 to 5) = "111100") or (mem_temp (0 to 5) = "110101") or
 (mem_temp (0 to 5) = "111101") or (mem_temp (0 to 5) = "111110") or
 (mem_temp (0 to 5) = "110110"))) then

 CW := 6;
 CW_out <= x"6";
 CWS := 0;
 delay_time2 := (XC220) ;
 elsif ((CW = 6) and ((mem_temp (0 to 5) = "110100") or

 (mem_temp (0 to 5) = "111100") or (mem_temp (0 to 5) = "110101") or
 (mem_temp (0 to 5) = "111101") or (mem_temp (0 to 5) = "111110") or
 (mem_temp (0 to 5) = "110110"))) then

 CW := 7;
 CW_out <= x"7";
 if (CWS = 0) then
 delay_time3 := (XC80) ;
 writeflag :='1';
 end if;
 delay_time2 := (XC370) ;
 elsif ((CW = 7) and ((mem_temp (0 to 5) = "110100") or

 (mem_temp (0 to 5) = "111100") or (mem_temp (0 to 5) = "110101") or
 (mem_temp (0 to 5) = "111101") or (mem_temp (0 to 5) = "111110") or
 (mem_temp (0 to 5) = "110110"))) then

 CW := 7;
 CW_out <= x"7";
 if (CWS = 0) then
 delay_time3 := (XC100) ;
 else

 delay_time3 := (XC80) ;
 end if;
 writeflag :='1';
 delay_time2 := (XC370) ;
 CWS := 0;
 else
 if (mem_temp (0 to 5) = "101110") then
 BC := 1;
 end if;
 CWS := CWS +1;
 if (CWS > 15) then
 CW := 0;
 CW_out <= x"0";
 elsif ((CWS /= 1) and (CW = 4 or CW = 5 or CW = 7)) then
 CW := 5;
 CW_out <= x"5";
 elsif ((CWS /= 1)) then
 CW := 0;
 CW_out <= x"0";
 elsif (CW = 1) then
 writeflag :='1';
 write1 :='1';
 CR := 0;
 CW := 2;
 CW_out <= x"2";
 elsif ((CW = 2)) then
 writeflag :='1';
 delay_time3 := XC40;
 CW := 3;
 CR := 0;
 CW_out <= x"3";
 elsif ((CW = 3)) then
 writeflag :='1';
 delay_time3 := XC50;
 CW := 4;
 CR := 0;
 CW_out <= x"4";
 elsif ((CW = 4)) then
 writeflag :='1';
 CR := 0;
 CW := 4;
 CW_out <= x"4";
 delay_time3 := (XC100) ;
 elsif ((CW = 6)) then
 writeflag :='1';
 write1 :='1';
 CW := 7;
 CR := 3;
 CW_out <= x"7";
 elsif ((CW = 7)) then
 writeflag :='1';
 CW := 7;
 CW_out <= x"7";
 CR := 3;
 delay_time3 := (XC100) ;
 end if;
 elsif BC = 1 then
 BC := 2;
 else
 BC := 0;
 end if;
 end if;
 current_state <= data_stall;
 Sl_rdDBus_i <= mem_temp;
 else
 if DataAcc = '1' then
 miss <= '1';
 delay_time2 := XCD220;
 missflag := '0';
 else

 missflag := '1';
 miss <= '0';
 end if;

 EN_i1 <= '1';
 WE_i1 <= '1';
 DI_i1 <= "1111"& address(4 to 27)& "0000";
 RMC := RMC +1;
 current_state <= Cache_DDR_Read1 ;
 IP2Bus_MstRd_Req <= '1';
 IP2Bus_Mst_Addr <= PLB_ABus(0 to 27) &"0000";
 IP2Bus_Mst_BE <= PLB_BE;
 IP2Bus_Mst_Lock <= '0';
 address_temp3 := PLB_ABus(0 to 27);
 address_temp2 := "00";

 end if;
 end if;

 when stall =>
 if cnt = delay_time2 then
 cnt := 0;
 current_state <= Cache_DDR3;
 Sl_addrAck <= '1';
 missflag := '0';
 Chit := 0;
 if ((InstACC = '1') and ((Sl_rdDBus_i (0 to 5) = "110100") or (Sl_rdDBus_i (0 to 5) = "111100")

 or (Sl_rdDBus_i (0 to 5) = "110101") or (Sl_rdDBus_i (0 to 5) = "111101") or
 (Sl_rdDBus_i (0 to 5) = "111110") or (Sl_rdDBus_i (0 to 5) = "110110"))) then

 delay_time2 := (XC270);
 CW := 1;
 CR := 0;
 CW_out <= x"1";
 CWS := 0;
 else
 delay_time2 := (XC150);
 CW := 0;
 CW_out <= x"0";
 BC := 0;
 CWS := 0;
 end if;
 else
 cnt := cnt+1;
 current_state <= stall;

 end if;

 when Cache_DDR_Read1 =>
 if (Bus2IP_Mst_CmdAck = '1') then
 current_state <= Cache_DDR_Read2;
 elsif (Bus2IP_Mst_Cmplt = '1') then
 EN_i2 <= '1';
 WE_i2 <= '1';
 IP2Bus_MstRd_Req <= '0';
 Addr_i2 <= Addr_i1(2 to 10) & address_temp2;
 DI_i2 <= Bus2IP_MstRd_d;
 if address_temp2 = PLB_ABus(28 to 29) then
 Sl_rdDBus_i <= Bus2IP_MstRd_d;
 end if;
 if (address_temp2 = "11") then
 current_state <= stall;
 else
 current_state <= Cache_DDR_Read3;
 end if;
 else
 WE_i2 <= '0';
 current_state <= Cache_DDR_Read1;

 end if;

 when Cache_DDR_Read2 =>
 if (Bus2IP_Mst_Cmplt = '1') then
 EN_i2 <= '1';

 WE_i2 <= '1';
 IP2Bus_MstRd_Req <= '0';
 Addr_i2 <= Addr_i1(2 to 10) & address_temp2;
 DI_i2 <= Bus2IP_MstRd_d;
 if address_temp2 = PLB_ABus(28 to 29) then
 Sl_rdDBus_i <= Bus2IP_MstRd_d;
 end if;
 if (address_temp2 = "11") then
 current_state <= stall;
 else
 current_state <= Cache_DDR_Read3;
 end if;
 else
 WE_i2 <= '0';
 current_state <= Cache_DDR_Read2;
 end if;

 when data_stall =>
 if write1 = '1' then
 delay_time3 := XCIhit;
 end if;
 if (RData_valid_in = '0' and miss_in = '0') or (Chit < 4) then
 if cnt = delay_time3 then
 writeflag := '0';
 missflag := '0';
 write1 := '0';
 cnt := 0;
 current_state <= Cache_DDR3;
 Sl_addrAck <= '1';
 branch_flag := '0';
 else
 cnt := cnt +1;
 current_state <= data_stall;
 end if;
 elsif miss_in = '1' then
 missflag := '1';
 CW := 0;
 CWS := 0;
 delay_time3 := XCR1;
 current_state <= data_stall;
 else
 current_state <= data_stall;
 end if;
 when Cache_Write =>
 if ((tag_temp(0 to 3)="1111") and (address(4 to 27) = tag_temp(4 to 27))) then
 case PLB_BE_temp is
 when "0001" =>
 EN_i2 <= '1';
 WE_i2 <= '1';
 DI_i2 (0 to 23)<= mem_temp(0 to 23);
 DI_i2(24 to 31) <= PLB_wrDBus_temp(24 to 31);

 when "0010" =>
 EN_i2 <= '1';
 WE_i2 <= '1';
 DI_i2 (0 to 15)<= mem_temp(0 to 15);
 DI_i2(16 to 23) <= PLB_wrDBus_temp(16 to 23);
 DI_i2 (24 to 31)<= mem_temp(24 to 31);

 when "0011"=>
 EN_i2 <= '1';
 WE_i2 <= '1';
 DI_i2 (0 to 15)<= mem_temp(0 to 15);
 DI_i2(16 to 31) <= PLB_wrDBus_temp(16 to 31);

 when"0100" =>
 EN_i2 <= '1';
 WE_i2 <= '1';
 DI_i2 (0 to 7)<= mem_temp(0 to 7);
 DI_i2(8 to 15) <= PLB_wrDBus_temp(8 to 15);

 DI_i2 (16 to 31)<= mem_temp(16 to 31);

 when "0101" =>
 EN_i2 <= '1';
 WE_i2 <= '1';
 DI_i2 (0 to 7)<= mem_temp(0 to 7);
 DI_i2(8 to 15) <= PLB_wrDBus_temp(8 to 15);
 DI_i2 (16 to 23)<= mem_temp(16 to 23);
 DI_i2(24 to 31) <= PLB_wrDBus_temp(24 to 31);

 when "0110"=>
 EN_i2 <= '1';
 WE_i2 <= '1';
 DI_i2 (0 to 7)<= mem_temp(0 to 7);
 DI_i2(8 to 23) <= PLB_wrDBus_temp(8 to 23);
 DI_i2(24 to 31) <= mem_temp(24 to 31);

 when "0111"=>
 EN_i2 <= '1';
 WE_i2 <= '1';
 DI_i2 (0 to 7)<= mem_temp(0 to 7);
 DI_i2(8 to 31) <= PLB_wrDBus_temp(8 to 31);

 when "1000"=>
 EN_i2 <= '1';
 WE_i2 <= '1';
 DI_i2(0 to 7) <= PLB_wrDBus_temp(0 to 7);
 DI_i2(8 to 31) <= mem_temp(8 to 31);

 when "1001"=>
 EN_i2 <= '1';
 WE_i2 <= '1';
 DI_i2(0 to 7) <= PLB_wrDBus_temp(0 to 7);
 DI_i2(8 to 23) <= mem_temp(8 to 23);
 DI_i2(24 to 31) <= PLB_wrDBus_temp(24 to 31);

 when "1010"=>
 EN_i2 <= '1';
 WE_i2 <= '1';
 DI_i2(0 to 7) <= PLB_wrDBus_temp(0 to 7);
 DI_i2(8 to 15) <= mem_temp(8 to 15);
 DI_i2(16 to 23) <= PLB_wrDBus_temp(16 to 23);
 DI_i2(23 to 31) <= mem_temp(23 to 31);

 when "1011"=>
 EN_i2 <= '1';
 WE_i2 <= '1';
 DI_i2(0 to 7) <= PLB_wrDBus_temp(0 to 7);
 DI_i2(8 to 15) <= mem_temp(8 to 15);
 DI_i2(16 to 31) <= PLB_wrDBus_temp(16 to 31);

 when "1100"=>
 EN_i2 <= '1';
 WE_i2 <= '1';
 DI_i2(0 to 15) <= PLB_wrDBus_temp(0 to 15);
 DI_i2(16 to 31) <= mem_temp(16 to 31);

 when "1101"=>
 EN_i2 <= '1';
 WE_i2 <= '1';
 DI_i2(0 to 15) <= PLB_wrDBus_temp(0 to 15);
 DI_i2(16 to 23) <= mem_temp(16 to 23);
 DI_i2(24 to 31) <= PLB_wrDBus_temp(24 to 31);

 when "1110" =>
 EN_i2 <= '1';
 WE_i2 <= '1';
 DI_i2(0 to 23) <= PLB_wrDBus_temp(0 to 23);
 DI_i2(24 to 31) <= mem_temp(24 to 31);

 when "1111" =>
 EN_i2 <= '1';
 WE_i2 <= '1';
 DI_i2 <= PLB_wrDBus_temp;
 when others =>
 EN_i2 <= '0';
 WE_i2 <= '0';
 end case;
 end if;
 IP2Bus_MstWr_d <= PLB_wrDBus_temp;
 IP2Bus_Mst_Addr <= PLB_ABus_temp;
 IP2Bus_Mst_BE <= PLB_BE_temp;
 IP2Bus_Mst_Lock <= '0';
 IP2Bus_MstWr_Req <= '1';
 if reg1(4 to 31) = x"aaaaaaa" then
 WHC := WHC +1;
 end if;
 current_state <= Second_Bridge;

 when Cache_DDR3 =>
 WE_i1 <= '0';
 WE_i2 <= '0';
 En_i1 <= '0';
 En_i2 <= '0';
 Sl_MBusy(0) <= '1';
 Sl_addrAck <= '0';
 Sl_wait <= '0';
 current_state <= Cache_DDR4;

 when Cache_DDR4 =>
 read_end <= '1';
 miss <= '0';
 if PLB_RNW = '1' then
 Sl_rdDAck <= '1';
 Sl_rdComp <= '1';
 Sl_rdDBus <= Sl_rdDBus_i;
 if SRM_flag ='1' then
 SM_Cnt <= "0000";
 end if;

 else
 Sl_wrDAck <= '1';
 _wrComp <= '1';
 end if;
 current_state <= first;
--
--------------------------------End---Cache-----------------------------------
--

 --
-----------------------------Slave Register------------------------------------
 --
 when Second_Reg =>
 if cnt = 12 then
 current_state <= third_Reg;
 cnt := 0;
 else
 current_state <= Second_Reg;
 cnt := cnt +1;
 end if;

 when third_Reg =>
 if (RNW = '1') then
 if PLB_ABus(24 to 31) = x"00" then
 Sl_rdDBus_i <= reg1;
 elsif PLB_ABus(24 to 31) = x"04" then
 Sl_rdDBus_i <= reg2;
 elsif PLB_ABus(24 to 31) = x"08" then
 Sl_rdDBus_i <= reg3;

 elsif PLB_ABus(24 to 31) = x"0c" then
 Sl_rdDBus_i <= reg4;
 elsif PLB_ABus(24 to 31) = x"30" then
 Sl_rdDBus_i <= reg5;
 elsif PLB_ABus(24 to 31) = x"34" then
 Sl_rdDBus_i <= reg6;
 elsif PLB_ABus(24 to 31) = x"10" then
 Sl_rdDBus_i <= tag_temp;
 elsif PLB_ABus(24 to 31) = x"14" then
 Sl_rdDBus_i <= mem_temp;
 elsif PLB_ABus(24 to 31) = x"20" then
 Sl_rdDBus_i <= reg5;
 elsif PLB_ABus(24 to 31) = x"24" then
 Sl_rdDBus_i <= reg6;
 elsif PLB_ABus(24 to 31) = x"28" then
 Sl_rdDBus_i <= reg7;
 elsif PLB_ABus(24 to 31) = x"40" then
 Sl_rdDBus_i <= reg8;
 elsif PLB_ABus(24 to 31) = x"44" then
 Sl_rdDBus_i <= reg9;
 elsif PLB_ABus(24 to 31) = x"48" then
 Sl_rdDBus_i <= reg10;
 elsif PLB_ABus(24 to 31) = x"4c" then
 Sl_rdDBus_i <= reg11;
 elsif PLB_ABus(24 to 31) = x"50" then
 Sl_rdDBus_i <= reg21;
 elsif PLB_ABus(24 to 31) = x"54" then
 Sl_rdDBus_i <= reg22;
 elsif PLB_ABus(24 to 31) = x"58" then
 Sl_rdDBus_i <= reg23;
 elsif PLB_ABus(24 to 31) = x"5c" then
 Sl_rdDBus_i <= reg24;
 elsif PLB_ABus(24 to 31) = x"f0" then
 Sl_rdDBus_i <= write_coef;
 elsif PLB_ABus(24 to 31) = x"60" then
 Sl_rdDBus_i <= misstime;
 elsif PLB_ABus(24 to 31) = x"64" then
 Sl_rdDBus_i <= writetime;
 end if;
 end if;
 Sl_addrAck <= '1';
 current_state <= Forth_Reg;

 when Forth_Reg =>
 Sl_MBusy(0) <= '1';
 Sl_addrAck <= '0';
 Sl_wait <= '0';
 current_state <= Fifth_Reg;

 when Fifth_Reg =>
 if RNW = '1' then
 Sl_rdDAck <= '1';
 Sl_rdComp <= '1';
 Sl_rdDBus <= Sl_rdDBus_i;
 else
 Sl_wrDAck <= '1';
 Sl_wrComp <= '1';
 end if;
 current_state <= first;

 --
 ----------------------------------End--Slave Register-----------------------
 --

 -----------------------------------Bridge-------------------------------------

 when Second_Bridge =>
 if (Bus2IP_Mst_CmdAck = '1' and Bus2IP_Mst_Cmplt = '0') then

 current_state <= third_Bridge;
 elsif (Bus2IP_Mst_Cmplt = '1') then
 if PLB_RNW ='1' then
 Sl_rdDBus_i <= Bus2IP_MstRd_d;
 end if;
 Sl_addrAck <= '1';
 current_state <= forth_Bridge;
 IP2Bus_MstWr_Req <= '0';
 IP2Bus_MstRd_Req <= '0';
 else
 current_state <= Second_Bridge;
 end if;

 when third_Bridge =>
 if (Bus2IP_Mst_Cmplt = '1') then
 if PLB_RNW ='1' then
 Sl_rdDBus_i <= Bus2IP_MstRd_d;
 end if;
 current_state <= forth_Bridge;
 Sl_addrAck <= '1';
 IP2Bus_MstWr_Req <= '0';
 IP2Bus_MstRd_Req <= '0';
 else
 current_state <= third_Bridge;
 end if;

 when forth_Bridge =>

 Sl_MBusy(0) <= '1';
 Sl_addrAck <= '0';
 Sl_wait <= '0';
 current_state <= fifth_Bridge;

 when fifth_Bridge =>
 WE_i1 <= '0';
 WE_i2 <= '0';
 if PLB_RNW = '1' then
 Sl_rdDAck <= '1';
 Sl_rdComp <= '1';
 Sl_rdDBus <= Sl_rdDBus_i;
 else
 Sl_wrDAck <= '1';
 Sl_wrComp <= '1';
 end if;
 current_state <= first;
 --

 ------------------------------End Bridge-------------------------------------
 --

 when others =>
 current_state <= First;
 end case;

--
 ------------------------------Swap Madule-----------------------------------
 --

 case swap is
 when init =>
 if swap_en = '1' then
 Adr_swap1 := (others => '0');
 Adr_swap2 := (others => '0');
 Addr_i1 <= (others => '0');
 Addr_i2 <= (others => '0');
 swap <= run;
 else
 swap_run := '0';
 Swap_out <= '0';
 swap <= init;
 IP2Bus1_MstWr_Req <= '0';
 IP2Bus1_MstRd_Req <= '0';

 Adr_swap1 := (others => '0');
 Adr_swap2 := (others => '0');
 end if;

 when run =>
 if reg2 (0 to 11) = x"c4c" then
 adr_swap3 (0) := '0';
 else
 adr_swap3 (0) := '1';
 end if;
 if reg2(28 to 31) = "0000" then
 swap <= cache_to_ram1_1;
 adr_swap3 (1 to 3) := "000";
 elsif reg2 (28 to 31) = "0001" then
 swap <= ram_to_cache1_1;
 adr_swap3 (1 to 3) := "000";
 elsif reg2 (28 to 31) = "0010" then
 swap <= cache_to_ram1_1;
 adr_swap3 (1 to 3) := "001";
 elsif reg2 (28 to 31) = "0011" then
 swap <= ram_to_cache1_1;
 adr_swap3 (1 to 3) := "001";
 elsif reg2 (28 to 31) = "0100" then
 swap <= cache_to_ram1_1;
 adr_swap3 (1 to 3) := "010";
 elsif reg2 (28 to 31) = "0101" then
 swap <= ram_to_cache1_1;
 adr_swap3 (1 to 3) := "010";
 elsif reg2 (28 to 31) = "0110" then
 swap <= cache_to_ram1_1;
 adr_swap3 (1 to 3) := "011";
 elsif reg2 (28 to 31) = "0111" then
 swap <= ram_to_cache1_1;
 adr_swap3 (1 to 3) := "011";
 elsif reg2(28 to 31) = "1000" then
 swap <= cache_to_ram1_1;
 adr_swap3 (1 to 3) := "100";
 elsif reg2 (28 to 31) = "1001" then
 swap <= ram_to_cache1_1;
 adr_swap3 (1 to 3) := "100";
 else
 swap <= init;
 end if;

 when cache_to_ram1_1 =>
 reg1 <= (others => '0');
 swap_en <= '0';
 IP2Bus1_MstWr_Req <= '1';
 IP2Bus1_MstWr_d <= DO_i2;
 IP2Bus1_Mst_Addr <= x"92" &"000" & adr_swap3 &"1000" & Adr_swap2 (1 to 11)& "00";
 swap <= cache_to_ram2_1;

 when cache_to_ram1_2 =>
 if Adr_swap1 = Adr_swap1_cnt then
 swap <= init;
 swap_done <= '1';
 else
 IP2Bus1_MstWr_Req <= '1';
 IP2Bus1_MstWr_d <= DO_i1;
 IP2Bus1_Mst_Addr <=x"92" &"000" & adr_swap3 &"0000" & Adr_swap1 (1 to 11)& "00";
 swap <= cache_to_ram2_2;
 end if;

 when cache_to_ram2_1 =>
 if (Bus2IP1_Mst_CmdAck = '1' and Bus2IP1_Mst_Cmplt= '0') then
 swap <= cache_to_ram3;
 Adr_swap2 := Adr_swap2 +1;
 Addr_i2 <= Adr_swap2(1 to 11);
 elsif Bus2IP1_Mst_Cmplt = '1' then

 IP2Bus1_MstWr_Req <= '0';
 swap <= time_to_stable;
 else
 swap <= cache_to_ram2_1;

 end if;

 when cache_to_ram2_2 =>
 if (Bus2IP1_Mst_CmdAck = '1' and Bus2IP1_Mst_Cmplt= '0') then
 swap <= cache_to_ram3;
 Adr_swap1 := Adr_swap1 +1;
 Addr_i1 <= Adr_swap1(1 to 11);
 elsif Bus2IP1_Mst_Cmplt = '1' then
 IP2Bus1_MstWr_Req <= '0';
 swap <= time_to_stable;
 else
 swap <= cache_to_ram2_2;

 end if;

 when cache_to_ram3 =>
 if (Bus2IP1_Mst_Cmplt = '1') then
 IP2Bus1_MstWr_Req <= '0';
 swap <= time_to_stable;
 else
 swap <= cache_to_ram3;
 end if;

 when time_to_stable =>
 if cnt2 = 12 then
 cnt2 := 0;
 if Adr_swap2 = Adr_swap2_cnt then
 swap <= cache_to_ram1_2;
 else
 swap <= cache_to_ram1_1;
 end if;
 else
 cnt2 := cnt2+1;
 swap<= time_to_stable;
 end if;

 when ram_to_cache1_1 =>
 reg1 <= (others => '0');
 swap_en <= '0';
 if Adr_swap2 = Adr_swap2_cnt then
 swap <= ram_to_cache1_2;
 swap_done <= '1';
 WE_i1<= '0';
 WE_i2<= '0';
 else
 IP2Bus1_MstRd_Req <= '1';
 IP2Bus1_Mst_Addr <= x"92" &"000" & adr_swap3 &"1000" & Adr_swap2 (1 to 11)& "00";
 swap <= ram_to_cache2;
 Addr_i2 <= Adr_swap2(1 to 11);
 end if;

 when ram_to_cache1_2 =>
 if Adr_swap1 = Adr_swap1_cnt then
 swap <= init;
 swap_done <= '1';
 WE_i1<= '0';
 WE_i2<= '0';
 else
 IP2Bus1_MstRd_Req <= '1';
 IP2Bus1_Mst_Addr <= x"92" &"000" & adr_swap3 &"0000" & Adr_swap1 (1 to 11)& "00";
 swap <= ram_to_cache2;
 Addr_i1 <= Adr_swap1(1 to 11);
 end if;

 when ram_to_cache2 =>
 WE_i1<= '0';
 WE_i2<= '0';
 if (Bus2IP1_Mst_CmdAck = '1' and Bus2IP1_Mst_Cmplt = '0') then

 swap <= ram_to_cache3;
 elsif (Bus2IP1_Mst_Cmplt = '1') then
 IP2Bus1_MstRd_Req <= '0';
 swap <= time_to_stable2;
 data_temp <= Bus2IP1_MstRd_d;
 swap <= time_to_stable2;
 else
 swap <= ram_to_cache2;

 end if;

 when ram_to_cache3 =>
 if (Bus2IP1_Mst_Cmplt = '1') then
 IP2Bus1_MstRd_Req <= '0';
 swap <= time_to_stable2;
 data_temp <= Bus2IP1_MstRd_d;
 swap <= time_to_stable2;
 else
 swap <= ram_to_cache3;
 end if;

 when time_to_stable2 =>
 if cnt2 = 5 then
 cnt2 := 0;
 if Adr_swap2 = Adr_swap2_cnt then
 WE_i2<= '0';
 swap <= ram_to_cache1_2;
 DI_i1 <= data_temp;
 WE_i1 <= '1';
 Adr_swap1 := Adr_swap1 +1;
 else
 swap <= ram_to_cache1_1;
 DI_i2 <= data_temp;
 WE_i1<= '0';
 WE_i2 <= '1';
 Adr_swap2 := Adr_swap2 +1;
 end if;
 else
 swap <= time_to_stable2;
 cnt2 := cnt2 +1;
 end if;

 when others =>
 swap <= init;
 end case;

end if;

end process IP2BUS_DATA_MUX_PROC;

 Sl_SSize <= "00";
 Sl_rearbitrate <= '0';
 Sl_wrBTerm <= '0';
 Sl_rdWdAddr <= (others => '0');
 Sl_rdBTerm <= '0';
 Sl_MBusy(1 to C_SPLB_NUM_MASTERS-1) <= (others => '0');
 Sl_MWrErr (0 to C_SPLB_NUM_MASTERS-1)<= (others => '0');
 Sl_MIRQ(0 to C_SPLB_NUM_MASTERS-1) <= (others => '0');
 IP2Bus_Mst_Reset <= SPLB_Rst;

end Behavioral;

