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Abstract

A Crystalline Criterion for Good Reduction on Semi-stable

K3-Surfaces over a p-Adic Field

Jesús Rogelio Pérez Buend́ıa

Mathematics & Statistics

Concordia University

A thesis submitted for the degree of

Doctor of Philosophy

January 2014

In this thesis we prove a p-adic analogous of the Kulikov-Persson-Pinkham classifi-

cation theorem for the central fibre of a degeneration of K3-surfaces in terms of the

nilpotency degree of the monodromy of the family [Persson & Pinkham, 1981].

Namely, let XK be a be a smooth, projective K3-surface which has a mini-

mal semistable model X over OK . If we let Nst be the monodromy operator on

Dst(H
2
ét(XK ,Qp)), then we prove that the degree of nilpotency of Nst determines the

type of the special fibre of X. As a consequence we give a criterion for the good

reduction of the semi-stable K3-surface XK over the p-adic field K in terms of its

p-adic representation H2
ét(XK ,Qp), which is similar to the criterion of good reduction

for p-adic abelian varieties and curves given by [Coleman & Iovita, 1997] and [Iovita

et al., 2013].
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Chapter 1

Introduction

The main object of study of this thesis is the interplay between the geometry of

algebraic varieties and their cohomology. In general it is known that the geometry

of an algebraic variety over a field determines the various cohomology groups with

their extra structure. For example if X is a smooth, proper algebraic variety over the

complex numbers C, then the Hodge structure on its Betti cohomology is pure with

determined weights.

Similarly, if X is a smooth, proper algebraic variety over a p-adic field K, then

its p-adic étale cohomology groups Vi := H i
ét(XK ,Qp) are p-adic GK := Gal(K̄/K)-

representations whose type is determined by the geometry of various integral models

of X. For instance if X has good reduction then the Vi’s are crystalline GK represen-

tations, if X has semi-stable reduction, then the Vi’s are semi-stable representations,

etc.

In general it is not true that the cohomology groups of an algebraic variety deter-

mine their geometric properties, however, for certain very special classes of varieties

it has been known for some time that this might happen.
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Here are some examples:

For Abelian varieties over C we have the Torelli theorem:

Theorem 1.0.1. An abelian variety over C is determined by its periods. More pre-

cisely, if A,A′ are complex polarised abelian varieties, and we have an isomorphism

of Hodge structures

φ : H1(A,Z)→ H1(A′,Z)

then the abelian varieties A and A′ are isomorphic.

Moreover, if A is an Abelian variety over a p-adic field K we have:

Theorem 1.0.2. • A has good reduction if and only if H1
ét(AK ,Qp) is a crys-

talline GK-representation.

• A has semi-stable reduction if and only if H1
ét(AK ,Qp) is a semi-stable GK-

representation.

The class of K3-surfaces is another very interesting class of algebraic varieties

which resembles the class of Abelian varieties. More precisely, they satisfy a Torelli

theorem Looijenga & Peters [1980]:

Theorem 1.0.3 (Weak Torelli Theorem). Two complex K3-surface s X, X ′ are

isomorphic if and only if there exists an isometry from H2(X,Z) to H2(X ′,Z) which

sends H2,0(X,C) to H2,0(X ′,C) (see page 9 and theorem (2.1.6)).

Also, if X→ ∆ is a degeneration of K3-surfaces over the open unit complex disk

∆, we have the important theorem of Kulikov and Persson & Pinkham.

Theorem 1.0.4. (see theorem (3.1.9)) Let π : X→ ∆ be a semi-stable degeneration

of K3-surfaces with all components of the central fibre X0 = π−1(0) =
⋃
Vi algebraic.

2



Let N = log T : H2(Xt,Z)→ H2(Xt,Z) be the monodromy operator. After birational

modification we may assume that π : X→ ∆ is a Kulikov model (definition (3.1.4)).

Then the central fibre X0 is one of the following:

1. (Type I) X0 is a K3-surface and N = 0.

2. (type II) X0 = V0 ∪ V1 · · ·Vr, where V0, Vr are smooth rational, and V1, . . . , Vr−1

are smooth elliptic ruled and Vi ∩ Vj 6= ∅ if and only if j = i± 1. Vi ∩ Vj is then

a smooth elliptic curve and a section of the ruling on Vi, if Vi is elliptic ruled.

N 6= 0 but N2 = 0.

3. (Type III) X0 = ∪Vi, with each V i smooth rational and all double curves are

cycles of rational curves. The dual graph Γ is a triangulation of S2. In this case

N2 6= 0, but N3 = 0.

Remark 1.0.5. Note that in particular X0 is smooth if and only if N = 0.

Let now K be a p-adic field for a prime number p > 3, and let XK be a smooth,

projective K3-surface over K, having a minimal semi-stable model X over the ring of

integers of K. The main result of this thesis is the following theorem theorem (5.1.2):

Theorem 1.0.6. XK has good reduction if and only if H2
ét(XK ,Qp) is a crystalline

GK-representation.

Remark 1.0.7. Matsumoto proves a version of theorem (1.0.6) in [Matsumoto, 2012]

for the case of K3-surfaces coming from Abelian varieties, more precisely for K3-

surfaces with Shioda-Inose structure.

Remark 1.0.8. In fact we prove more, namely let Nst be the monodromy operator

on Dst(H
2
ét(XK ,Qp)). Then the degree of nilpotency of Nst determines the type of

the special fibre of the minimal integral model X of XK , as follows: If Nst = 0

3



then the special fibre X0 is a smooth K3-surface. If Nst 6= 0 but N2
st = 0 then

X0 = V0 ∪ V1 · · ·Vr, where V0, Vr are smooth rational, and V1, . . . , Vr−1 are smooth

elliptic ruled and Vi ∩ Vj 6= ∅ if and only if j = i ± 1. If N2
st 6= 0 but N3

st = 0 then

X0 = ∪Vi, with each V i smooth rational and all double curves are cycles of rational

curves.

In fact our method is more general: let us suppose that A is a class of varieties

over various fields satisfying the following two properties:

1. if X is a scheme over OK such that its generic fibre XK is a smooth, proper

variety in A and its special fibre X̄ is a semi-stable variety over k, then X̄, a log

scheme (with the natural log structure), has global deformations over W (k)[[t]]

of the type described in proposition (3.3.16).

2. if Y is a family of varieties in A over the complex open unit disk ∆, degenerating

exactly at 0, then there is a Kulikov-type theorem saying that: the family is

smooth if and only if the monodromy operator of the log cohomology of its

special fiber vanishes.

Then, following the same steps as in chapter (5) one would be able to prove a

theorem of type theorem (1.0.6) for a variety XK in A over a p-adic field K.

As we have mentioned before, the cohomology dose not always determine the

geometry of the algebraic varieties. For example, it is known that the geometry of

curves is not determined by the structure of their cohomology groups. Nevertheless,

their geometry is determined by the quotients of their unipotent fundamental groups

as follows [Iovita et al., 2013]:

Let K be a finite extension of Qp and suppose that XK is a curve with semi-

stable reduction. Assume also that the genus of XK is larger or equal to 2. For a fix

4



geometric point b of XK let, for every prime l, π(l) be the maximal pro-l quotient of

the geometric étale fundamental group π1(XK̄ , b) of XK and let
{
π

(l)
1 [n]

}
n≥1

be the

lower central series of π
(l)
1 .

Theorem 1.0.9 (Oda). XK has good reduction if and only if for some prime integer

l 6= p the outer representations π
(l)
1 /π

(l)
1 [n] are unramified for all n > 1.

The theorem of Iovita et al. [2013] is a p-adic analogue of theorem (1.0.9).

Theorem 1.0.10. If Gét denotes the unipotent p-adic étale fundamental group of XK̄

for the base point b, then XK has good reduction if and only if Gét is a crystalline

GK-representation.

This raises the very interesting question: given a class of algebraic varieties, are

there combinatorial (linear algebra type) objects attached to them which determine

their geometry? If yes, what are they?

5



Chapter 2

Introduction to K3-Surfaces

2.1 K3-Surfaces

Definition 2.1.1. A compact smooth complex manifold X of dimension 2 is a K3-

surface if:

1. The canonical bundle ωX is trivial.

2. The first Betti number b1(X) := rankH1(X,Z) = 0.

Since we are working with algebraic K3-surfaces, we have that the irregularity

q := dimH1(X,OX) = 2b1 [Beauville, 2011], so we can define also a K3-surface by

asking to have q = 0. Since the irregularity and the canonical divisors are defined for

any algebraic surface (over any field), then we can give a more ad hoc definition of

K3-surface.

Note that since the canonical bundle ωX := ∧2Ω1
X is trivial, there exists a nowhere

vanishing 2-form on X.
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Definition 2.1.2. Let K be any field and let X be a non singular proper algebraic

variety over K of dimension 2. X is a K3 surface if

1. The canonical sheaf ωX is trivial, and

2. The irregularity q = dimK H
1(X,OX) = 0.

Proposition 2.1.3. The Betti numbers of a complex projective K3-surface are b0 =

b4 = 1, b1 = b3 = 0 and b2 = 22; Moreover H2(X,Z) is torsion free.

Proposition 2.1.4. The Hodge diamond of a K3-surface is given by the following

diagram [Barth et al., 1984]:

h0,0

h1,0 h0,1

h2,0, h1,1 h0,2

h2,1 h1,2

h2,2

=

1

q q

pg h1,1 pg

q q

1

=

1

0 0

1 20 1

0 0

1

From the Hodge diamond above we can also read the Betti numbers as the sum of

the numbers of every row by Hodge theory. In particular we see that dimH2(X,Z) =

22.

Proposition 2.1.5. For a K3-surface X the second cohomolology group H2(X,Z)

is a non-degenerated lattice. That is H2(X,Z) is torsion free and together with the

quadratic form induced by the cup product it is a non-degenerated quadratic space.

Moreover we can choose a basis so as to have an isomorphism of lattices:

H2(X,Z) ' U3 ⊕ (−E8)2

7



where U is the standard hyperbolic lattice, whose matrix associated to its quadratic

form is given by ( 0 1
1 0 ), and E8 is the root lattice determined by the Dynkin diagram

E8 (Figure 2.1), that is E8 has 8 generators e1, e2, . . . , e8 in bijection with the points

Figure 2.1: Dynkin diagram E8.

of the diagram in figure 2.1 and BQ(ei, ei) = 2 and BQ(ei, ej) = 0 or −1 according

as the corresponding vertex are unjoined or joined. −E8 is the same but with the

opposite signs. That is ±E8 = Z8 with the quadratic form Figure 2.2.

Figure 2.2: Matrix of the quadratic space E8.

Now we know that H2(X,Z) is a lattice of rank 22 that with the quadratic form

induced by the cup product and Poincaré duality it is unimodular quadratic space.

Finally I want to remark that De Rham’s theorem tells us that

H2(X,C) ' HdR(X/C)

8



and that the cup product corresponds under this isomorphism to

〈ω,ν〉 −→
∫
X

ω ∧ ν.

A very important result on complex K3-surfaces is the Torelli Theorem that we

mention now.

Let X be a complex K3-surface. From the previous sections we know that the

second cohomology group H2(X,Z) together with the quadratic form induced by the

intersection paring (the cup product) ∪ is a quadratic lattice isomorphic to U3 ⊕

(−E8)2.

Moreover by Hodge theory we have that H2(X,Z) is a Hodge structure of weight

2. This is to say that we have a Hodge decomposition:

H2(X,C) ' H0,2 ⊕H1,1 ⊕H0,2

is such that H
2,0

= H0,2 and H1,1 is orthogonal to H0,2 ⊕ H2,0. Also we know that

Hp,q = Hq(X,Ωp) and that h0,2 = h2,0 = 1 and h1,1 = 20.

Torelli’s theorem tells us basically that if the Hodge structures of a K3 surface

are isomorphic then the K3-surfaces are isomorphic. More precisely:

Theorem 2.1.6. Suppose X,X ′ are K3-surfaces and

φ : (H2(X,Z),∪) −→ (H2(X ′,Z),∪)

is a Hodge isometry, that is an isomorphism of lattices such that

φ(H2,0(X)) = H2,0(X ′).

9



Then X is isomorphic to X ′.

The previous theorem is known as the weak Torelli’s theorem. We have a strong

Torelli’s theorem and it is related to the surjectivity of the period map:

Theorem 2.1.7. Let L be the lattice H3 ⊕ (−E8)2. Consider v ∈ L ⊗ C a vector

such that 〈v,v〉 = 0 and 〈v,v〉 > 0. Then there exists a K3-surface X and a marking

of the K3-surface (that is an isomorphism φ : (H2(X,Z),∪) → (L, 〈 , 〉) such that

φC(H2,0(X)) = spanC{v}.

For a reference about Torelli’s theorem ([Looijenga & Peters, 1980]) and for the

general theory of algebraic complex surfaces and in particular for K3-surfaces we

follow ([Barth et al., 1984]).

First we want to study K3-surfaces defined over a p-adic field K or over the

algebraic closure of a finite field.

Let K be a field of characteristic p ≥ 0. By a surface over K we understand

a separated geometrically integral scheme of finite type X → Spec(K) of relative

dimension 2.

Definition 2.1.8. A smooth proper surface X over K is a K3-surface if it has trivial

canonical bundle and its irregularity is zero. In other words a K3 surface over K is

a surface such that

• q = dimK H
1(X,OX) = 0

• ωX = Ω2
X ' OX .

As before ωX denotes the canonical sheaf of X and OX its structural sheaf. The

canonical divisor KX is just the class of divisors associated to the line bundle ωX .

Therefore for a K3-surface we have KX = 0.

10



For a K3 surface over K we have also the same Hodge diamond (2.1.4) as in the

complex case.

Indeed for a K3-surface the Hodge to de Rham spectral sequence

Epq
1 = Hq(X,Ωp

X) =⇒ Hp+q
dR (X/K)

degenerates at E1 because any K3-surface over a field of characteristic p lifts to a

K3-surface of characteristic zero [Deligne & Illusie, 1981]. Then is true for any field

(also see Rizov thesis [Rizov, 2005]). This, together with Poincaré duality, implies

that if as before hq,p = dimK H
q(X,Ωp

X), then we have the usual Hodge diamond for

a K3-surface.

2.2 Some Examples of K3-Surfaces

Example 2.2.1 (Complete intersections). In this example we consider complete in-

tersections on a projective space. Let X be a smooth projective surface which is a

complete intersection of n hypersurfaces of degree d1, . . . , dn in Pn+2 over C.

The adjunction formula tells us that Ω2
X/k
∼= OX(d1, . . . , dn − n− 3). We want X

to be a K3 surface, therefore we need that d1 + . . . + dn = n + 3 in order to have

trivial canonical bundle.

We have the following options for small n:

n = 1 d1 = 4

n = 2 d1 = 2, d2 = 3

n = 3 d1 = d2 = d3 = 2.

11



On the other hand, we have that for a general complete intersection Y of dimension

n, the cohomology groups H i(Y,OM(m)) are equal to 0 for all m ∈ Z and 1 ≤ i ≤ n−1

[Hartshorne, 1977]. Therefore on the cases above we have H1(X,OX) = 0 and X is a

K3 surface. That is to say, a quartic in P3, the complete intersection of a cubic and

a quadric on P4 and the complete intersection of three quadrics in P5 are examples

of K3-surfaces.

Example 2.2.2 (Kummer surfaces). Let A be an abelian surface. Let τ : Y → Y be

an involution (for example the inverse x→ x−1 using the group law on A). Consider

the quotient of A under the action of τ : A/ < τ > which is a normal surface with

24 = 16 singularities (corresponding to the fixed points of τ). Let Ã→ A/ < τ > be

the blow up along the singularities. Then X = Ã is a K3-surface called the Kummer

surface associated to A.

12



Chapter 3

Semi-stable K3-Surfaces

3.1 Kulikov Degeneration’s Theorem

We will briefly describe the Kulikov-Persson-Pinkham’s classification theorem of the

central fibre of a semi-stable family of complex K3-surfaces over the open disk. The

main references are [Morrison, 1984; Nishiguchi, 1983; Persson & Pinkham, 1981].

Denote by ∆ := {z ∈ C : |z| < ε} the open small disk and by ∆∗ the punctured

disk, that is ∆∗ = ∆ \ {0}.

Definition 3.1.1. A degeneration of K3-surfaces is a flat proper holomorphic map

π : Y→ ∆ of relative dimension 2 such that Yt := π−1(t) is a smooth K3-surface for

t 6= 0. We call Y0 := π−1(0) the degenerated fibre or central fibre. We assume that Y

is Kähler.

If we have a fixed K3-surface Y , then a degeneration of Y is a degeneration of

K3-surfaces such that for some t 6= 0, Yt = Y .

Definition 3.1.2. A degeneration π : Y → ∆ is semi-stable if the central fibre Y0

is a reduced divisor with normal crossings, that is the union Y0 = ∪Yi of irreducible

13



components with each Yi smooth and the Yi’s meeting transversally so that locally π

is defined by an equation of the form 0 = x1x2 . . . xk for some k.

Definition 3.1.3. A degeneration π′ : Y′ → ∆ is called a modification of a degen-

eration π : Y → ∆; if there exists a bimeromorphic map ψ : Y → Y′ such that the

diagram commutes:

Y
ψ //

π ��

Y′

π′~~
∆

and the restriction of φ to π−1(∆∗) gives a biholomorphic map

π−1(∆∗)
φ−→ π′−1(∆∗)

over ∆∗.

Thanks to Mumford’s semi-stable reduction theorem, every degeneration can be

made semi-stable after base change and modifications.

Definition 3.1.4. A semi-stable degeneration π : Y→ ∆ of K3-surfaces with trivial

canonical bundle KY ≡ 0 is called a Kulikov model or a good model.

We have the following theorem of Kulikov and Persson-Pinkham [Persson &

Pinkham, 1981] and [Kulikov, 1977]:

Theorem 3.1.5. Let π : Y → ∆ be a semi-stable degeneration of K3-surfaces such

that all components of the special fibre are algebraic. Then there exists a modification

π′ : Y→ ∆ of π : Y→ ∆ which is a Kulikov model.

Given a Kulikov model, Kulikov [Kulikov, 1977] and Persson-Pinkham [Persson

& Pinkham, 1981] give a description of the cohomology of its special fibre in terms

of the monodromy operator acting on cohomology.

14



Let π : Y → ∆ be a degeneration of K3-surfaces, and let π∗ : Y∗ → ∆∗ be the

restriction to the punctured disk. Fix a smooth fibre Y := Yt, which is a K3-surface.

Since π∗ is a fibration, the fundamental group of ∆∗ acts on the cohomology H2(Y,Z).

Definition 3.1.6. The map

T : H2(Y,Z) −→ H2(Y,Z)

induced by the action of π1(∆∗) is called the Picard-Lefschetz transformation.

We have the following theorem of Landman [Landman, 2010]

Theorem 3.1.7. • T is quasi-unipotent, with index of unipotency at most 2. In

other words, there is some k such that

(T k − I)3 = 0.

• If π : Y→ ∆ is semi-stable, then T is unipotent, that is k = 1.

Therefore for a Kulikov model of a K3-surface we have that the Picard-Lefschetz

transformation is unipotent. Moreover we can define the logarithm of T (in the

semi-stable case):

Definition 3.1.8. The Monodromy operator N on H2(Y,Z) is defined as:

N := log T = (T − I)− 1

2
(T − I)2.

N is nilpotent, and the index of unipotency of T coincides with the index of nilpotency

of N ; in particular, T = I if and only if N = 0.

15



The main theorem of this section is the classification theorem of Kulikov [Ku-

likov, 1977] and Persson-Pinkham [Persson & Pinkham, 1981] of the central fibre of

a Kulikov model:

Theorem 3.1.9. Let π : Y → ∆ be a semi-stable degeneration of K3-surfaces with

all components of the central fibre Y0 = π−1(0) =
⋃
Vi algebraic.

Let N = log T : H2(Yt,Z) → H2(Yt,Z) be the monodromy operator. After bira-

tional modifications we may assume that π : Y → ∆ is a Kulikov model. Then the

central fibre Y0 is one of the following:

1. (Type I) Y0 is a K3-surface and N = 0.

2. (type II) Y0 = V0 ∪ V1 · · ·Vr, where V0, Vr are smooth rational, and V1, . . . , Vr−1

are smooth elliptic ruled and Vi ∩ Vj 6= ∅ if and only if j = i± 1. Vi ∩ Vj is then

a smooth elliptic curve and a section of the ruling on Vi, if Vi is elliptic ruled.

N 6= 0 but N2 = 0.

3. (Type III) Y0 = ∪Vi, with each V i smooth rational and all double curves are

cycles of rational curves. The dual graph Γ is a triangulation of S2. In this case

N2 6= 0, but N3 = 0.

The proof of these results uses the Clemens-Schmid exact sequence. An account

of this sequence is the paper [Morrison, 1984] in which as application we have the

proof of the previous theorem.

3.2 Logarithmic Structures

Definition 3.2.1. A monoid is a commutative semi-group with a unit. A morphism

of monoids is required to preserve the unit element. Denote by Mon the category of

16



monoids.

Definition 3.2.2. Let X be a scheme. A pre-log structure on X is a sheaf of monoids

MX (on the étale or Zariski site of X) together with a morphism of sheaves of monoids:

α : MX −→ OX , called the structure morphism, where we consider OX a monoid with

respect to the multiplication.

A pre-log structure is called a log structure if α−1(O∗X) ' O∗X via α.

The pair (X,MX) is called a log scheme and it will be denoted by X log.

We have a functor i from the category of log structure of X to the category of

pre-log structure of X by sending a log structure M in X to itself considered as a

pre-log structure i(M). Vice-versa given a pre-log structure we can construct a log

structure M ls out of it in such a way that ( )ls is left adjoint of i, so j(M) is universal.

(see [Kato, 1989]).

Remark 3.2.3. The category of schemes is a full subcategory of the category of

log.schemes. Indeed, given a scheme X the trivial inclusion O∗X −→ OX gives the

trivial log structure on X, which is, in fact, an initial object in he category of log

structure over X. Also we have the identity map OX −→ OX which gives a different

log structure on X, which is in fact a final object.

To clarify the action of this inclusion on morphisms we need the following defini-

tions.

Definition 3.2.4. Let f : X → Y be a morphism of schemes. Given a log structure

MY on Y we can define a log structure on X, called the inverse image of MY , to be

the log structure associated to the pre-log structure

f−1(MY )→ f−1(OY )→ OX ,
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it is denoted by f ∗(MY ).

Definition 3.2.5. A morphism of log.schemes X∗ −→ Y ∗ consists of a morphism of

underlying schemes f : X → Y and a morphism f b : f ∗MY → MX of log structure

on X.

One of the main examples of interest for us is the following:

Example 3.2.6. Let X be a regular scheme (we can take for example a K3-surface

over K or a proper model of it). Let D be a divisor of X. We can define a log

structure M on X associated to the divisor D as

M(U) :=
{
g ∈ OX(U) : g|U\D ∈ O∗X(U \D)

}
.

Let P be a monoid and R a ring. We denote by R[P ] the monoid algebra. The

natural inclusion P −→ R[P ] induces a pre-log structure on Spec(R[P ]). The as-

sociated log structure is called the canonical log structure on Spec(R[P ]). The log

structure on Spec(R[P ]) is the inverse image of the log structure on Spec(Z[P ]) under

the natural map Spec(R[P ]) −→ Spec(Z[P ]).

Definition 3.2.7. Let (X,MX) be a log scheme and P be a monoid. Denote by PX

the constant sheaf associated to P . A chart for MX is a morphism PX → MX such

that we have an isomorphism between the log structures

P a →MX

where P a is the log structure associated to the pre-log structure given by the map

PX → MX → OX . Equivalently a chart of MX is a morphism X → Spec(Z[P ])
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of log structures, such that its morphism of log structures on X, PX → MX , is an

isomorphism.

Definition 3.2.8. Let f : X −→ Y be a morphism of log schemes. Consider the

constant sheaves PX and QY on X and Y associated to the monoids P and Q respec-

tively. A chart for the morphism f is the data (PX →MX , QY →MY , Q→ P ) such

that:

• The maps PX →MX and QY −→MY are charts of MX and MY .

• We have a commutative diagram:

QX
//

��

PX

��
f ∗MY

//MX

where the top arrow is induced by the map Q→ P .

Remember that given a monoid P we can associate to P an abelian group (the

Grothendieck group) denoted by P gp. Explicitly we have that

P gp = {(p, q) ∈ P × P : (p, q) ∼ (r, s)}

where we say that (p, q) ∼ (r, s) if there exists t ∈ P such that p+ s+ t = q + r + t.

It is a group with addition coordinate-wise and zero the class of (p, p).

We have a canonical map P → P pg sending q → (p, e) where e is the neutral

element of P . This group satisfies the universal property that any morphism of

monoids from P to an abelian group G factors trough P gp in a unique way.
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Definition 3.2.9. A monoid P is called integral if the canonical map P → P gp is

injective. It is called saturated if it is integral and for any p ∈ P gp, if np ∈ P for some

positive integer n, then p ∈ P .

Definition 3.2.10. A log scheme (X,MX) is said to be fine if (étale) locally there

is a chart P →MX with P a finitely generated integral monoid.

The scheme (X,MX) is fine and saturated (fs) if P is also saturated. Equivalently

a log scheme is fs if for any geometric point x̃ → X the monoid Mx̃,X is finitely

generated and saturated.

If moreover P ' N r for some r, then we say that the log structure is locally free.

Definition 3.2.11. A morphism of log schemes f : (X,MX) → (Y,MY ) is called

strict, if the morphism on log structures f ∗MY →MX is an isomorphism.

Definition 3.2.12. A morphism of log schemes ı : (X,MX) → (Y,MY ) is called

a closed immersion (resp. an exact closed immersion) if the underlying morphism

of schemes X → Y is a closed immersion and i∗MY → MX is surjective (resp. an

isomorphism).

Definition 3.2.13. A morphism f : X → Y of fine log schemes is log smooth (re-

spectively log étale) if étale locally (on X and Y ) f admits a chart

(PX →MX , QY →MY , Q→ P ),

such that:

• The kernel and the torsion part of the cokernel (resp. the kernel and the cok-

ernel) of Qgp → P gp are finite groups of order invertible on X.
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• The induced morphism of log schemes

(X,MX) −→ (Y,MY )×Spec(Z[Q])
Spec(Z[P ])

is étale in the classical sense.

Proposition 3.2.14. Let X
f−→ Y

g−→ Z be a morphism of log schemes. Consider the

sheaves of log differentials Λ1
Y/Z, Λ1

X/Y and Λ1
X/Z. Then we have the following:

1. The sequence f ∗Λ1
Y/Z −→ Λ1

X/Z −→ Λ1
X/Y −→ 0 is exact.

2. If f is log smooth, then Λ1
X/Y is a locally free OX-module. Moreover the sequence

0 −→ f ∗Λ1
Y/Z −→ Λ1

X/Y −→ Λ1
X/Z −→ 0

is exact.

3. If g ◦ f is log smooth and the sequence in part (2) is exact and splits locally,

then f is log smooth.

Proof. [Ogus, 2006, sec 2.3].

3.3 Simple Normal Crossing Log K3-Surfaces

We are assuming that all schemes are noetherian and that all morphisms are of finite

type.

Definition 3.3.1. Let k be a field1. A normal crossing variety Y/k over k is a

geometrically connected scheme Y over k, whose irreducible components are geo-

1We are interested in the case k the residue field of a p-adic field K. So in particular we can
consider k perfect (or algebraically closed) of characteristic p.
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metrically irreducible and of the same dimension d, and such that Y is isomorphic

to Spec k[x0, . . . , xd]/(x0 · · · xr)) étale locally over Y , where 0 ≤ r ≤ d is a natural

number that depends on étale neighborhoods.

We denote by Ysing the singular locus of Y . So Ysing := D1 ∪D2 ∪ · · · ∪Dm is a

disjoint union of the m connected components of Ysing. We assume that each Di is

geometrically connected.

Definition 3.3.2. A scheme Z over k is d-semistable if there is an isomorphism

Ext1
OZ

(ΩZ/k,OZ) ' Osing

Definition 3.3.3. By a log point we mean the scheme Spec k with the log structure

induced by the morphism

Nm −→ k; ei 7→ 0; (3.1)

where ei stands for the canonical generator of Nm. Here m is the number of geomet-

rically connected components of Ysing.

Note that for every 1 ≤ i ≤ m we have a log structure on

Spec k[x1, . . . , xd]/(x1 · · ·xr),

which is the one associated to the pre-log structure given by the map

Ni−1 ⊕ Nr+1 ⊕ Nm−i −→ Spec k[x1, . . . , xd]/(x1 · · ·xr)
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such that for the basic elements ej ∈ Nm+r

ej 7→


0 ej ∈ Ni−1

xj ej ∈ Nr+1

0 ej ∈ Nm−i.

(3.2)

Note that this log structure commutes with the log structure over the Spec klog since

we have a commutative diagram

Ni−1 ⊕ N⊕ Nm−i //

��

k

��
Ni−1 ⊕ Nr+1 ⊕ Nm−i // Spec k[x1, . . . , xd]/(x1 · · ·xr)

where the upper horizontal morphism sends ej 7→ 0 for ej ∈ Nm and the left vertical

map is id ⊕ diagonal ⊕ id. Let Y be a proper d-semistable normal crossing variety

over k. We endow Y with the log structure given by:

1. étale locally on the neighborhood of a smooth point of Y , the log structure is

given by the pull back of the log structure of Spec klog;

2. étale locally on the neighborhood of a point of Di, the log structure is the pull

back of the log structure of Spec k[x1, . . . , xd]/(x1 · · · xr) described above.

Definition 3.3.4. We denote Y log/ Spec klog the log scheme described above and we

call it a normal crossing log variety (NCL).

We say that the NCL variety Y log/ Spec klog is simple if the underlying scheme

Y is a simple normal crossing variety, where simple means that all its irreducible

components are smooth and geometrically irreducible (SNCL).
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Now we follow the paper of Kato, F. 1996. Log Smooth Deformation Theory.

Tohoku Mathematical Journal [Kato, 1996].

Let R be a fixed complete noetherian local ring with maximal ideal m and residue

field k. We are mainly interested in the case R = W (k). Let Q be a fine and saturated

(fs) non torsion monoid. Let R[[Q]] be the completion of the monoid ring R[Q] with

respect to the maximal ideal m+R[Q\1]. If the monoid is N, then R[[Q]] is isomorphic

to R[[t]] as a local R-algebra.

Let CR[[Q]] be the category Artinian local R[[Q]]-algebras with residue field k, and

ĈR[[Q]] be the category of pro-objets of CR[[Q]].

Definition 3.3.5. For an object A of CR[[Q]], we endow SpecA with a log structure

whose chart is Q → A. We denote this log scheme by SpecAlog. This data is

equivalent to the following: A is a R-algebra and there is a global chart

SpecAlog −→ (SpecZ[[Q]], Q).

Let β : Spec klog → (SpecZ[[Q]], Q) be a morphism of log.sch induced by a mor-

phism

Q \ {0} → k; q 7→ 0.

Let Y log be a fs log scheme that is log smooth and integral over Spec klog.

Definition 3.3.6. An fs log.sch Y log
A over SpecAlog is called a a charted deformation

of Y log over SpecK log, if Y log
A is a log smooth scheme over SpecAlog and

Y log ' Y log
A ×SpecAlog Spec klog

in the category of the fs log schemes.
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We have that Y log
A is automatically integral over SpecAlog.

The charted deformations of Y log/ SpecAlog define a functor

D(Y log ,β) −→ (Sets).

Then we have the following:

Proposition 3.3.7. If Y is proper, then the functor D(Y log ,β) has a hull.

The proof is in [Kato, 1996].

In our situation of interest, that is when we have a semi-stable model of a K3

surface XK over a local field K (with residue field k), that is a diagram:

XK
//

��

X

��
SpecK // SpecOK

with special fibre X̄ = X ⊗ k. We set Y = X̄. Since Y has a smoothing, that is, Y

lifts to a smooth K3-surface, then it is d-semi-stable [Friedman, 1983] and [Olsson,

2004] then we can endow it with the log structure studied in this chapter. We can take

R = W := W (k) as the ring of Witt vectors with coefficients in k. Then proposition

3.3.7 is telling us that the deformation functor of the special fibre has a hull.

Definition 3.3.8. Let X log/klog be a NCL variety of pure dimension 2. We say that

X log/klog is a normal crossing log K3-surface if the underlying scheme X is a proper

scheme over Spec k and

1. H1(X,OX) = 0

2. Λ2
X/k ' OX .
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Here Λ1
X is the sheaf of logarithmic differentials as in [Kato, 1994a, sec. 5].

Definition 3.3.9. Let X be a proper surface over a field k. Let k be an algebraic

closure of k. X is a combinatorial K3 surface if it satisfies one of the following

conditions:

Type I X is a smooth K3 surface over k.

Type II X ⊗k k = X1 ∪ X2 ∪ · · · ∪ XN is a chain of smooth surfaces with X1 and XN

rational and the other elliptic ruled and two double curves on each of them are

rulings. The dual graph of X ⊗K k is a segment with end points X1 and X2.

Type III X ⊗K k = X1 ∪ X2 ∪ · · · ∪ XN is a chain of smooth surfaces and every Xi is

rational, and the double curves on Xi are rational and form a cycle on Xi.

Under this conditions Nakkajima proves that H1(X,OX) = 0 [Nakkajima, 2000].

By the previous section, X has a log structure whose charts are given by its local

normal crossing components and Λ2
X/k ' OX .

Theorem 3.3.10. Let X be a combinatorial Type II or Type III K3 surface over a

field k. Then Γ(X,Λ1
X/k) = 0.

Proposition 3.3.11. Let X log/ Spec klog be SNCL K3 surface. Then X ⊗k k is a

combinatorial K3 surface.

Definition 3.3.12. We say that a SNCL K3 surface is of type (I, II or III) if X is

of the respective type.

Theorem 3.3.13. Let k be an algebraically closed field of characteristic p > 0. Let

X log be a projective SNCL K3 surface over Spec klog. Then there exists a log smooth
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family Xlog over SpecW [[u1, . . . , um]]log which is a charter deformation of X log (Au-

tomatically Λ2
X/W [[u1,...,um]] is trivial). Where m is the number of geometrically con-

nected components of Xsing. Moreover, the deformation functor has the informa-

tion of the deformations of the log structure associated to the irreducible components

X1, . . . , XN of X̄, in such a way that there exist closed subschemes X1, . . . ,XN , de-

formations of X1, . . . XN respectively, and the log structure on X is the one associated

with X1, . . . ,XN as on page 23.

If X̄ is smooth, that is of type I, then this is the result of Deligne [Deligne &

Illusie, 1981]. If X̄ log is of type I type III, then it is [Nakkajima, 2000, prop. 5.9 and

prop. 6.8].

Nakkajima also give the following corollaries:

Corollary 3.3.14. Let X be a projective SNCL K3 surface over k. The following

holds:

• There exists a projective semi-stable family Y over SpecW whose special fibre

is X.

• There exists a projective semi-stable family Y over Spec k[[t]] whose special fibre

is X.

Corollary 3.3.15. • Let K0 be the fraction field of W (resp. k[[t]]). The generic

fibre XK0 of Y is a smooth K3 surface.

• Let k be a field of characteristic p > 0 and let X log be a projective SNCL K3

surface over Spec klog. Then dimkH
1(X,Λ1

X/k) = 20.

In the argument for the proof, Nakkajima considers the family

X→ SpecW [[u1, . . . , um]]
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and specializes W [[u1, . . . , um]] → W by sending ui → p getting the desired Y →

Spec(W ). Similarly he considers the map

W [[u1, . . . , um]]→ W [[t]]→ W [[t]]/p = k[[t]]

and sends ui → t and then reduces modulo p to get the Y→ Spec(k[[t]]).

These results are Nakkajima’s generalization, for the logarithmic case, of the re-

sults of Deligne [Deligne & Illusie, 1981] and Friedman [Friedman, 1983].

Now we have the following proposition, which is the main result of this chapter:

Proposition 3.3.16. Let p be a prime number and consider K be a finite extension

of K0 = W (k)[1/p] with k algebraically closed. Let XK → Spec(K) be a semi-stable

K3 surface with semi-stable model X → Spec(OK) and projective SNCL (therefore

combinatorial) special fibre X̄ = X ⊗ k → Spec(k).

Then there exists a deformation X → S := Spec(W [[t]]) of X̄ satisfying the fol-

lowing:

• We denote by 0 the point of S ⊗W K0 corresponding to the maximal ideal

t(W [[t]]⊗W K0), then (X⊗W K0)0 is a combinatorial K3-surface over K0 of the

same type of X̄.

• For every point x ∈ S ⊗W K0, with x 6= 0, then (X ⊗W K0)x is a smooth

K3-surface over k(x).

Proof. By theorem (3.3.13) there exists a deformation of X̄:

Xlog −→ S := Spec(W [[u1, u2, . . . , um]])log.

Let S⊗W K0 be the scheme Spec(W [[u1, u2, . . . , um]]⊗W K0)log and let us denote
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by:

(S⊗W K0)sing := {x ∈ (S⊗W K0)|(X⊗W K0)x is singular} .

Denote by Ssing the Zariski closure of (S⊗W K0)sing in S.

Since being singular is a closed condition and (S ⊗W K0)sing ⊂ S ⊗W K0 is a

proper contention, we have that Ssing ⊂ S is a proper closed immersion and therefore

0 ≤ dimSsing ≤ dimS− 1.

Let x0 a closed point of (S⊗W K0)sing such that (X⊗W K0)x0 is a K3-surface over

K0 of the same type of X̄, and let y0 be a closed point of Ssing extending x0.

Let C be a smooth curve in S containing y0 and normal to Ssing. Let

ÔC,y0 ' W [[t]]

denote the completion of the local ring of C at y0 with respect to the maximal ideal

of y0. So we have a natural morphism S := Spec(W [[t]]) → S. Let X → S be the

pull back of X → S with respect to S → S. Then X → S satisfies the desired

properties.

Remark 3.3.17. If X is the minimal semi-stable model for XK (which there exists for

p > 3 [Kawamata, 1993, 1998]), then its special fibre X̄ is automatically a SNCL K3-

surface [Maulik, 2012, sec 4] and [Nakkajima, 2000]. Therefore, if X is the minimal

semi-stable model of XK the previews proposition follows without assuming that its

special fibre X̄ is a SNCL K3-surface.
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Chapter 4

Comparison Isomorphisms for

Logarithmic K3-Surfaces

4.1 p-Adic Hodge Theory

4.1.1 Witt Vectors

Even if we have been using Witt vectors before, I would like to give a fast review of

them, that will be useful to recall the construction of the rings of periods.

Let R be a perfect ring of characteristic p (for example our residue field k).

Definition 4.1.1. A strict p-ring with respect to R is a ring A (as always commutative

and with one) such that p is not nilpotent and A is complete and separated with

respect to the p-adic topology with residue ring A/pA = R.

The ring of Witt vectors with coefficients in R is a strict p-ring with respect to

R, and since R is perfect, it is possible to construct at least one strict p-ring that in

fact is unique, up to unique isomorphism. This ring is the ring of Witt vectors W (R)
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over R. Moreover by uniqueness W is functorial in R, that is, if we have a morphism

φ : R → S then it lifts to a map W (φ) : W (R) −→ W (S). In particular we have a

lift of the Frobenius automorphism of R, also called the Frobenius automorphism.

For example, if R = Fp, then W (Fp) = Zp. In general if F is a finite field, then

W (R) is the ring of integers of the unique unramified extension of Qp whose residue

field is R. As a particular case, we have that if K is a finite extension of Qp (as in

our case of study) and k = OK/πOK is its residue field, then Frac(W (k)) = K0 is

the maximal unramified extension of Qp in K. Another important example is when

R = Fp the algebraic closure of a finite field; in this case W (R) = OQ̂unr
p

. Now we

want to understand the ring structure of W (R).

For x = x0 ∈ R and for every n, choose a lifting x̃n ∈ W (R) whose image in R is

xp
−n

. The sequence {x̃n} converges in W (R).

Definition 4.1.2. We define the Teichmüler map

[ ] : R −→ W (R); x 7→ [x] := lim
n
x̃n.

The elements on the image of this map are called the Teichmüler elements.

In fact the Teichmüler map is multiplicative and it is a section of the natural

projection. It turns out that the Teichmüler elements allow us to write any element

x ∈ W (R) in a unique way as:

x =
∞∑
n=0

pn[xn], xn ∈ R.
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Moreover, given two elements x, y ∈ A we have that

x+ y =
∞∑
n=0

pn[Sn(xn, yn)] and xy =
∞∑
n=0

pn[Pn(xn, yn)]

where Sn, Pn are polynomials in Z[Xp−n

i , Y p−n

i ].

Remark 4.1.3. If R is not perfect, it is still possible to have strict p-rings over R,

however we do not have uniqueness.

The standard reference for the proofs, properties and construction of Witt vectors

is the book of Serre [Serre, 1979].

Definition 4.1.4. A p-adic field is a field K of characteristic 0 which is complete with

respect to a fixed discrete valuation that has a prefect residue field k of characteristic

p.

Given a p-adic field K, we denote by OK its valuation ring, and we fix once and

for all a uniformizer π ∈ OK . Finally denote by CK = K̂. In case k ⊂ Fp we have

that CK = Cp, the field of complex p-adic numbers, that is Cp = Q̂p.

Later we will need to assume that our p-adic field K has algebraically closed

residue field. That is k = k. We fix once and for all an algebraic closure K of K and

we denote by GK := Gal(K/K) its absolute Galois group.

Let µp∞ = lim←−n µpn where µpn :=
{
x ∈ K : xp

n
= 1
}

with morphisms for every

n,m such that n > m:

φm,n : µpm −→ µpn ; x→ xp
n−m

.
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Fix a primitive element ξ ∈ µp∞ that is a sequence of primitive elements

ξ = (1, ξ(1), . . . , ξ(n), . . .)

such that (ξ(n+1))p = ξ(n).

We have the following chain of fields:

K0 ⊂ K ⊂ Kn := K(µpn) ⊂ K∞ := K(µp∞) ⊂ K = K0 ⊂ CK .

If we denote by χ : GK −→ Z∗p the cyclotomic character of GK , that is the homo-

morphism of groups defined by χ(σ) = ξχ(σ) for every σ ∈ GK , we have that the kernel

of χ is exactly HK := Gal(K/K∞) and therefore χ identifies ΓK := Gal(K∞/K) =

GK/HK with the image of χ which is an open subgroup of Z∗p.

Denote by O := W [[Z]]. Consider the W -algebra homomorphism

O −→ OK ; Z → π.

Finally denote by Pπ(Z) the minimal polynomial of π.

4.1.2 p-Adic Representations

The main examples of p-adic representations (for us) are the p-adic étale cohomology

groups of a K3-surface. Indeed, if X is a scheme of finite type over a field K, we

know that the étale cohomlogy groups H i
ét(XK ,Qp) are finitely generated Qp-vector

spaces. Moreover they admit a natural action of GK because we have a natural action

of GK on XK := X ×K Spec(K) and then by functoriality it extends to an action

on H i
ét(XK ,Qp). Remark that since GK is a profinite group, it is in particular a

33



topological group and this action is continuous.

Definition 4.1.5. A p-adic representation of GK of dimension d is a continuous

group homomorphism ρ : GK −→ GL(V ) for a finite dimensional (of dimension d)

Qp-vector space V .

The collection of p-adic representations form a category whose morphisms are

given by Qp-linear and equivariant GK-maps. We denote by RepQp
(GK) the category

of p-adic representations. This category is an abelian category with tensor products.

Example 4.1.6. An important family of p-adic representations of dimension one are

the so called Tate twists of Qp. Precisely, let r ∈ Z and define Qp(r) to be the one

dimensional Qp-vector space Qper with action of GK given by twisting by the r-power

of the cyclotomic character, that is σ(er) = χ(σ)rer for every σ ∈ GK . This is called

the r-th Tate twist of Qp. Moreover if V is another p-adic representation, we can

construct a new p-adic representation by twisting V :

V (r) := V ⊗Qp Qp(r).

This is again a p-adic representation of dimension dimV .

Example 4.1.7. If AK is an abelian variety over K, then the Tate module

Vp := TpA⊗Zp Qp

is a p-adic representation of dimension d = 2 dimA. For example, if AK is an elliptic

curve, then Vp is a p-adic representation of dimension 2.

Example 4.1.8. If XK is a K3-surface over K, then V = H2
ét(XK ,Qp) is a p-adic

representation of dimension 22.
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4.1.3 Rings of Periods

In order to study p-adic representations, Fontaine et al. constructed certain rings

that are known as rings of periods. They are topological Qp-algebras B, together

with an action of GK and depending on B, some additional structures like filtrations,

Frobenius, monodromy operator, etc. He also observed that the BGK -modules DB(B)

defined as

DB(V ) := (B ⊗Qp V )GK

reveal important properties of the p-adic representation V .

The Qp-algebra B is GK-regular if for any b ∈ B such that the line Qpb is GK-

stable, we have that b ∈ B∗. Note that if B is GK regular, then for every b 6= 0 in

GGK the line Qpb is GK-stable, therefore for every b ∈ BGK , b ∈ B∗ and since b−1 is

also in BGK we have that BGK is a field.

If B is GK regular, then we have that dimBGK DB(V ) ≤ dimQp V [Brinon &

Conrad, 2008].

Definition 4.1.9. A p-adic representation V is B-admissible if

dimBGK DB(V ) = dimQp V.

Our final objective will be to construct Bcris and Blog in this section. In order to

define Bcris we first have to talk about another ring of periods: BdR.

4.1.3.1 The Ring of Periods BdR

Let R be the set of sequences x = (x(0), x(1), . . . , x(n), . . .) of elements in OCK
such

that (x(n+1))p = x(n). We endow R with a structure of a ring with product ∗ and sum
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+ laws defined as:

x ∗ y = (x(n)y(n))n∈N and x+ y = (s(n))n∈N

where

s(n) = lim
m→∞

(x(n+m) + y(n+m))p
m

which converge in OCK
. With these operations R is a commutative domain whose

unit element is 1 = (1, 1, . . . , 1). This ring is usually denoted by Ẽ+ = Ẽ+
CK

. Also

note that

p ∗ 1 = lim
m→+∞

(1 + . . .+ 1)︸ ︷︷ ︸
p−times

pm = 0,

thus, R is of characteristic p. The Frobenius x = (x(n)) 7→ xp = ((x(n))p) on R is an

isomorphism, and so, R is perfect ring.

Even more, we have a natural action of Gal(K/K) on R trough its action on OCK

and a valuation defined as: val(x) = val(x(0)). With the topology induced by the

valuation, R is separated and complete with a residue field R/{x|val(x) > 0} ∼= k.

Since R = Ẽ+ is a perfect ring we can consider the Witt vectors Ainf := W (R)

with coefficients in R. Every element of Ainf can be written in a unique way as:

+∞∑
n=0

pn[xn]

where xn ∈ R and [xn] is its multiplicative representative or Teichmüler representative

in W (R) = Ainf . We have a surjection

θ : Ainf → OCK
;

+∞∑
n=0

pn[xn] 7→
+∞∑
n=0

pnx(0)
n .
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Remark that θ([π]) = π and θ([p]) = p and that ker θ is a principal ideal generated

by p−[p], where p := (p(n)) ∈ R is such that p(0) = p, also π ∈ R such that if π = (π(n))

then π(0) = π. Finally note that also the element ξ is in R and that also θ(1− [ξ]) = 0.

The ring Ainf is complete for the topology defined by the ideal (p, ker(θ)) = (p, [p]).

Definition 4.1.10. The ring B+
dR is the completion of Ainf [1/p] with respect to the

ideal ker(θ) = (p− [p]).

We extend the surjection θ : Ainf → OCK
to θ : B+

dR → CK . We have that B+
dR is

a complete ring with a discrete valuation and maximal ideal ker θ = (p− [p])B+
dR and

residue field

B+
dR/ ker(θ) ∼= CK .

We can consider several topologies in B+
dR. We endow B+

dR with the topology so

that pmW (R)+(ker θ)k forms a base of neighbourhoods of 0, where (m, k) ∈ N2. B+
dR

is complete and separated for this topology.

There exists a natural and continuous action of GK in B+
dR through the action on

R and this action commutes with θ.

Qp is identified canonically with the algebraic closure of Qp in B+
dR and the fol-

lowing diagram commutes:

Qp
// B+

dR

θ

��
Qp

// CK .

In fact, in the case where we give Qp the topology induced by B+
dR (which is not

p-adic), Colmez proved that B+
dR is the completion of Qp for this topology, and thus

Qp is dense in B+
dR.
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Definition 4.1.11. We define BdR as the fraction field of B+
dR, that is

BdR := Frac(B+
dR).

We extend naturally θ to BdR and we give to it a filtration defined as FiliBdR :=

(ker(θ))i.

Remark that if x ∈ Fil1(BdR) = ker(θ), is non zero, then BdR = B+
dR[x−1].

Since θ(1−[ξ]) = 0 the element 1−[ξ] is small with respect to the topology on B+
dR

and the logarithm of this element converges in B+
dR, that is, there exists an element

t ∈ B+
dR such that

t = log([ξ]) := −
∞∑
n=1

(1− [ξ])n

n
.

If σ ∈ GK then

σ ∗ t = σ(log([ξ])) = log([ξχ(σ)]) = χ(σ)t.

Moreover since t ∈ Fil1(BdR) we also have that BdR = B+
dR[1/t] and the filtration is

such that FiliBdR = tiB+
dR.

The field BdR satisfies that BGK
dR = K.

Definition 4.1.12. We say that a p-adic representation V is de Rham if V is BdR-

admissible, that is if dimK DdR(V ) = dimV where DdR(V ) := (BdR ⊗Qp V )GK .

4.1.3.2 The Ring of Periods Bcris

We recall the definition of Bcris.

Remember that π ∈ OK is our fixed uniformizer for K.

Acris is the p-adic completion of the divided power envelope of Ainf with respect

to the ideal generated by p and ker(θ). We endow Acris with the p-adic topology and
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the divided power filtration.

Remember that t := log([ξ]).

Definition 4.1.13. We define Bcris as the ring:

Bcris := Acris[1/t]

with the inductive limit topology and filtration given by:

FiliBcris :=
∑
m∈N

t−m Film+iAcris.

We have that BGK
cris = K0. Bcris has a Frobenius φ compatible with the Frobenius

of W and such that φ(t) = pt.

Definition 4.1.14. A p-adic representation V is crystalline, if it is Bcris-admissible,

that is if dimK0 Dcris(V ) = dimQp V , where

Dcris(V ) := (Bcris ⊗Qp V )GK .

So we have that Bcris is an algebra over K0 which is a subring of BdR, GK-stable.

4.1.3.3 The Ring of Periods Bst

Definition 4.1.15. We define Bst as the ring of polynomials Bcris[Y ] on the variable

Y such that:

• We extend the Frobenius φ of Bcris to Bst by letting φ(Y ) = Y p.
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• We extend the action of GK on Bcris by

σ ∗ Y = Y + c(σ)t : for σ ∈ GK

where c(σ) is defined by the formula σ(p1/pn) = p1/pn(ξ(n))c(σ).

• We define a Monodromy operator on it as Nst := −d/dY .

Definition 4.1.16. A p-adic representation V is semistable if it is Bst-admissible.

We have then that Bst is a K0-algebra with an action of GK and containing Bcris.

Moreover we have that BGK
st = K0 and that BNst=0

st = Bcris.

4.1.3.4 The Ring of Periods Blog

We denoted by O = W [[Z]]. We denote by Ocris the p-adic completion of the divided

power envelope of O with respect to the ideal (p, Pπ(Z)), where Pπ(Z) is the minimal

polynomial of π with coefficients on W . We extend the Frobenius of W to O by letting

it act on Z as Z 7→ Zp and the usual Frobenius on W . Finally let ω1
cris/W ' Ocris

dZ
Z

be the continuous log 1-differential forms of Ocris relative to W .

Definition 4.1.17. Define Alog as the p-adic completion of the log divided power

envelope of the morphism ring Ainf ⊗W O with respect to the kernel of the morphism

θ ⊗ θO : Ainf ⊗W O −→ OCK
.

Consider the element u := [π]
Z

. Then we have that Alog is isomorphic to the p-adic

completion Acris {〈V 〉} of the divided power polynomial ring over Acris in the variable
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V by a morphism:

Acris {〈V 〉} −→ Alog; V 7→ [π]

Z
− 1 = u− 1.

Then Alog ' Acris {〈u− 1〉}.

We endow Alog with the p-adic topology and the divided power filtration.

Definition 4.1.18. Remember we used t to denote log([ξ]). We define the ring Blog

as the ring

Blog := Alog[t−1]

with the inductive limit topology and filtration defined by

FilnBlog :=
∑
m∈N

Filn+mAlogt
−m.

We have a Frobenius on Alog that extends the Frobenius on Acris by letting u 7→ up

and we extend it to Blog by letting t 7→ pt.

We have a continuous action on Blog of the group GK acting trivialy on W and

on O, and acting on Ainf through the action on OCK
. Moreover we have a derivation

on Blog

d : Blog −→ Blog
dZ

Z

which is Bcris linear and satisfies d((u− 1)[n]) = (u− 1)[n−1]udZ
Z

[Kato, 1994b].

Definition 4.1.19. The Monodromy operator on Blog is the operator

Nlog : Blog −→ Blog; such that d(f) = Nlog(f)
dZ

Z
.

We can recover the ring Bst from Blog by considering the largest subring of Blog
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in which Nlog acts as a nilpotent operator [Fontaine, 1982].

4.2 p-Adic Comparison Isomorphisms for

K3-Surfaces

In this section I will recall the comparison isomorphism of Andreatta & Iovita for the

special case in which XK is a smooth proper K3-surface over a p-adic field K.

As before we let OK be the ring on integers of K and we fix a uniformizer π ∈ OK .

We also denote by k = OK/πOK the residue field, which we assume to be algebraically

closed.

4.2.0.5 An Admissibility Criterion

We recall the admissibility criterion of [Andreatta & Iovita, 2012, 2.1.1] which is very

similar to the admissibility criteria described above defined by Colmez & Fontaine.

Let M be a finite free BGK
log -module, which is a finite (φ,N)-module. The map

Blog → BdR; Z → π

has image B̄log. We define

V 0
log(M) := (Blog ⊗Blog

M)N=0, φ=1

and

V 1
log(M) := (Blog ⊗B̄log

M)/Fil0(B̄log ⊗BGK
log

M).

Let δ(M) : V 0
log −→ V 1

log(M) be the map given by the composite of the inclusion and
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projection

V 0
log(M) ⊂ Blog ⊗BGK

log

M −→ B̄log ⊗BGK
log

M.

We define Vlog(M) := ker(δ(M)). Then

Proposition 4.2.1. • A filtered (φ,N)-module M over BGK
log is admissible if and

only if Vlog(M) is a finite dimensional Qp-vector space and δ(M) is surjective.

• Moreover, if M is admissible then V := Vlog(M) is a finite dimensional, semi-

stable GK-representation and Dlog(V ) = M .

4.2.0.6 The Comparison Isomorphisms

Let us recall that we fixed a smooth, projective K3-surface XK over a p-adic field K

which has a minimal semi-stable model X over OK . We also suppose that the residue

field k := OK/πOK is algebraically closed of characteristic p > 3.

We consider on X the induced log structure given by its special fibre X̄, which is a

normal crossing divisor and we give to X̄ the pull back log structure as in section (3.2)

denoted by X log and X̄ log as usual.

Let Slog := Spec(W [[t]])log where W = W (k) and the log structure on S is the

induced by the pre log structure N→ W [[t]]; n→ tn. We have seen on (3.3.16) that

the deformation Xlog → Slog of the special fibre X̄ may be chosen such that it has

the properties (3.3.16):

• (X⊗W K0)0 is a combinatorial K3-surface over K0 of the same type of X̄.

• For every point x ∈ S ⊗W K0, with x 6= 0, then (X ⊗W K0)x is a smooth

K3-surface over k(x).
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Remember that Y := (X ⊗W K0)0 is of the same type of X̄, in particular X̄ is

smooth if and only if Y is smooth.

We consider on XK0 = X ⊗W K0 the log structure defined by the divisor with

normal crossings Y→ XK0 and on Y the inverse image log structure.

Denote by D := H2
dR(Y) the log de Rham cohomology of Y/K0. Then D has a

natural structure of filtered, (φ,N)-module over K0 obtained by its identification with

H2
cris(X̄/W )[1/p] with the log crystalline cohomology of X̄ over W . More precisely

the structure of filtered (φ,N)-module of D can be explicitly described as follows:

Let H = H2
dR(X/S) denote the locally free OS-module of relative log de Rham

cohomology of X over S. It is endowed with a log integrable connection ∇, the Gauss-

Manin connection, and a Frobenius φ. Moreover, H can be naturally identified with

H2
cris(X̄/W [[t]])[1/p] therefore we have the identifications:

• H0 := H/tH ' D;

• H0 ⊗K0 K ' H2
dR(XK).

Hence, we have natural identifications DK := D ⊗K0 K ' H2
dR(XK) and so we

define the filtration onDK to be the inverse image of the Hodge filtration onH2
dR(XK).

Moreover we define the p-adic monodromy operator Np on D to be the residue of

∇ modulo tH and the Frobenius φ0 on D to be the reduction modulo tH.

We also denote by V := H2
ét(XK ,Qp); it is a p-adic GK-representation.

In [Andreatta & Iovita, 2012], the following theorem is proved:

Theorem 4.2.2 (Comparison Isomorphisms). [Andreatta & Iovita, 2012, sec. 2.3.9].

V is a semi-stable GK-representation and we have a natural isomorphism of filtered,

(φ,N)-modules: Dst(V ) ' D.
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For the proof, one considers M := D ⊗K0 (BGK
log ) with its induced filtered (φ,N)-

module structure and one proves that:

• M is an admissible filtered (φ,N)-module and

• V and Vlog(M) are isomorphic as GK-representations.

Proposition (4.2.1) now implies that:

Proposition 4.2.3.

Dlog(V ) = M = D ⊗K0 B
GK
log

and so D ' Dst(V ), as filtered, Frobenius, monodromy modules. In particular there

is an identification Np = Nst.
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Chapter 5

The Main Theorem

Assume p > 3 is a fixed prime number. Let K be a p-adic field with algebraically

closed residue field k. That is K is a totally ramified finite extension of the field

K0 = Frac(W (k)). Let OK be the ring of integers of K.

5.1 The Main Theorem

The following theorem is an analogue of the Kulikov; Persson & Pinkham-classification

theorem of the central fibre of a semi-stable degeneration of complex K3-surfaces in

terms of the monodromy, but now over a p-adic field.

The new part of the theorem is that we can distinguish the three possible types of

the special fibre of a semi-stable K3-surface over a p-adic field K, in terms of the (p-

adic) monodromy operator Nst on Dst(H
2
ét(XK ,Qp)). As a consequence of this result,

we get a criterion for the good reduction of the semi-stable K3-surface in terms of

the p-adic representation H2
ét(XK ,Qp) analogous to the Coleman & Iovita-theorem

for abelian varieties and Iovita et al.-theorem for curves.

46



Theorem 5.1.1. Let XK → Spec(K) be a smooth projective K3-surface and let

X → Spec(OK) be a semi-stable minimal model of XK. Let X̄ be the special fibre of

X. We denote Dst = Dst(H
2
ét(XK ,Qp)) and let Nst : Dst → Dst be the monodromy

operator on Dst. Then we have 3 possibilities for the special fibre X̄, distinguished in

terms of the nilpotency degree of the monodromy operator Nst, as follows:

I. Nst = 0 if and only if X̄ is a nonsingular K3 surface.

II. Nst 6= 0 but N2
st = 0 if and only if X̄ = ∪ni=1Vi where the Vi are rational surfaces

and V2, . . . , Vn−1 are elliptic ruled surfaces.

III. N2
st 6= 0 but N3

st = 0 if and only if X̄ = ∪ni=1Vi where all the Vi are rational

surfaces.

Proof. As X → Spec(OK) is a minimal semi-stable model of XK → Spec(K), the

special fibre is a SNCL K3-surface [Maulik, 2012; Nakkajima, 2000], and therefore it

is a combinatorial K3-surface by proposition (3.3.11), i.e. it is of type I, II or III. So

the remaining thing to prove is that we can distinguish these 3 cases in terms of the

nilpotency degree of the monodromy operator Nst.

Step 1. We consider on X the induced log structure given by its special fibre X̄,

which is a normal crossing divisor and we give to X̄ the pull back log structure as in

section (3.2) denoted by X log and X̄ log as usual.

Remember that by proposition (3.3.16) there exists a deformation

X→ S := Spec(W [[t]])

of X̄ such that:

• If we let 0 denote the point of S ⊗W K0 corresponding to the maximal ideal
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t(W [[t]]⊗W K0). Then Y := (X⊗W K0)0 is a combinatorial K3-surface over K0

of the same type of X̄.

• For every point x ∈ S ⊗W K0, with x 6= 0, then (X ⊗W K0)x is a smooth

K3-surface over k(x).

We considered on XK0 := X ⊗W K0 the log structure defined by the divisor with

normal crossings Y→ X⊗W K0 and on Y the inverse image log structure.

Denote by D := H2
dR(Y) the log de Rham cohomology of Y/K0 where K0 =

Frac(W (k)). Then D has a natural structure of filtered, (φ,N)-module over K0

obtained by its identification of H2
cris(X̄/W )[1/p] with the log crystalline cohomology

of X̄ over W .

By proposition (4.2.3), the monodromy operator Nst on Dst(H
2
ét(XK ,Qp)) can be

identified with the residue Np of the Gauss-Manin connection ∇ modulo tH, that is

Np is an endomorphism of H2
dR(Y/S[1/p])).

Step 2. Now fix once and for all an embedding of K0 → C. Consider the base

change of XK0 := X⊗W K0 with respect to the induced embedding W [[t]]⊗W K0 →

C[[t]]. We have a complex family XC := XK0 ⊗ C −→ Spec(C[[t]]) with special fibre

YC = Y ⊗ C → Spec(C) a combinatorial K3-surface and generic fiber a smooth

K3-surface XC((t)). Let S = S[1/p]⊗ C = Spec(C[[t]]).

We endow XC, S, YC with the usual log structures and, we denote them as Xlog
C , Slog,

Y log
C respectively.

Consider now the log de Rham cohomology H2
dR(Xlog

C /Slog), it is a free OS-module

or rank 22 with an integrable logarithmic connection (The log Gauss-Manin connec-

tion):

∇ : H2
dR(Xlog

C /Slog)) −→ H2
dR(Xlog

C /Slog))⊗OS
Λ1

S/C.
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The fibre of H2
dR(Xlog

C /Slog)) at the special point is H2
dR(Y log

C ) that is

H2
dR(Y log

C ) ' H2
dR(Xlog

C /Slog))/tH2
dR(Xlog

C /Slog)).

We also have the operator NC := Rest=0∇ which is a C-linear, nilpotent operator

on H2
dR(Y log

C ).

Let us notice that the pair
(
H2

dR(Y log
C /Clog), NC

)
is the base change to C, via the

embedding K0 ⊂ C, of the pair
(
H2

dR(Ylog/K log
0 ), Np

)
.

Step 3. Now we use [Artin, 1969]:

We associate to the family XC → S = Spec(C[[t]]) above a family of K3-surfaces

Y → ∆, over the complex open unit disk ∆. This family has the property that if

we base change it over S, we obtain a family X′C which is congruent to XC modulo

tmC[[t]] for some large m > 1. It follows that:

• Y|∆−{0} is a smooth projective family of K3-surfaces.

• The central fibre Y0 ' X′0 ' Y an
C .

Here Y an
C denotes the complex analytic variety associated to the complex points of

YC (the usual GaGa functor).

Now we use the Monodromy criterion [Morrison, 1984, pag. 112] given by the

Clemens-Schmidt exact sequence to the family Y → ∆ (this criterion leads to the

proof of the classical Kulikov; Persson & Pinkham-classification theorem, as we can

see in [Morrison, 1984, pag. 113]).

Consider the GaGa functor an sending a complex algebraic Z variety to its as-

sociated complex analytic variety Zan. We let Nan be the monodromy operator on

H2
dR(Y log,an

C ). By [Deligne, 1970] it can be seen, up to non-zero constant, as the
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residue at zero of the Gauss-Manin connection:

∇an : H2
dR(Y/∆log) −→ H2

dR(Y/∆log)⊗ Λ1
Y/∆.

Therefore, Nan can be seen (by the previous analysis) as the residue of the Gauss-

Manin connection ∇′ on H2
dR((X′C)log/Slog). But we have:

H2
dR((X′

C)log/Slog)/tmH2
dR((X′

C)log/Slog) ' H2
dR(Xlog

C /Slog))/tmH2
dR(Xlog

C /Slog)) (5.1)

and ∇′ ≡ ∇ (mod tmC[[t]]).

This implies that the residue of∇an ∇ and∇′ are the same under the identification

H2
dR(Y0) ' H2

dR(Y log,an
C ) ' H2

dR((X′0)log).

In other words Nan = NC, which is the base change to C of Np.

Now we apply the description of Y0 in therms of Nan for the family Y given by

the Clemens-Schmidt exact sequence [Morrison, 1984, pag. 113]. So if Nan = 0 then

Y0 is of type I. If Nan 6= 0 but N2
an = 0 then Y0 is of type II and if N2

an 6= 0 but

N3
an = 0 then Y0 is of type III. Where the type I, type II and type III are as in the

theorem (5.1.1).

Since Y an
C = Y0, then also YC is of the same type, and since Y⊗ C = YC we have

that also Y is of the same type, hence X̄ is of the same type.

Moreover we have seen that NC = Nan = Np = Nst up to constants. Which implies

that we can distinguish the three possible types of X̄ in terms of the nilpotency degree

on Nst as stated in the theorem.

The following theorem, which is in fact a corollary of theorem (5.1.1), is the main

objective of this thesis.
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Theorem 5.1.2. Let XK → Spec(K) be a semi-stable K3-surface over the p-adic

field K with minimal semi-stable integral model X → SpecOK and with projective

special fiber X̄ over the algebraic closed field k = OK/πOK. Let V := H2
ét(XK ,Qp).

Then XK has good reduction (i.e X̄ is smooth), if and only if V is a crystalline

representation of GK := Gal(K̄,K).

Proof. If X̄ is smooth, that is if XK has good reduction, then this is the theorem of

Faltings et al [Faltings, 1988, 1992].

Now assume that V is crystalline representation of GK . Then V is Bcris-admissible,

but theBcris-admissible representations are those semi-stable representations for which

Nst = 0 [Breuil, 1997] or [Conrad, 2010]. So by theorem (5.1.1) X̄ is of type I, that

is, X̄ is smooth and so XK has good reduction.
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