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ABSTRACT 

Structural Health Monitoring of Truss Structures 

 Using Statistical Approach 

Mahdi Saffari Farsani 

 

Structural Health Monitoring (SHM) has drawn attention of many researchers 

recently. The reason is its huge effect on reduction in maintenance costs as well as 

increasing reliability of mechanical devices.  

In this thesis the concept of SHM is explained and a damage detection methodology 

is proposed using Auto Regressive (AR) parameters for truss type structures.  

The AR parameters of a healthy case are assumed to be the reference baseline data. 

A Damage Index is then defined to be the standard deviation of any other unknown signal 

from the baseline data. The proposed index provides an effective tool to detect the 

damage in the structure.  

Sensor arrangement optimization has been performed as another part of this thesis 

which is a study on finding the optimum sensor arrangement to interrogate the most 

useful data given a limited number of sensors.  

The localization process needs data classification techniques and has been 

conducted using Support Vector Machine (SVM) in this research for the first time. It is 
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shown that SVM can successfully classify different signals that are extracted from a 3D 

sample truss structure. This accomplished through generating large sets of simulated data 

forwarded to SVM tool to construct a Meta model which further is used to predict the 

unknown signals and find the most correlated “known” category and reports its case label 

as the best match for the “unknown” signal.  

At the end, an extensive sensitivity analysis has been performed to study the effect 

of parameter changes to the detection and localization processes.  
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CHAPTER 1 

1                                        INTRODUCTION 

1.1 Motivation and objectives 

 

Structural Health Monitoring (SHM) has attracted many researchers and engineers 

in many academic and technological centers and thousands of articles have been 

published in this area. The motivation to this huge effort in both universities and 

companies lies in several reasons like: 

 Improving safety matters, 

 Costs of inspection procedure, 

 Probable significant damage in expensive structures due to failure in a small 

member, 

 Man-hour required to do inspection, 

 Monitoring and consequent costs and lots more. 

 Also many scheduled and unscheduled maintenance and inspection operations are 

being done which cause ever increasing costs, in addition to indirect costs of overhauls 
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and not in service equipment. These conditions have guided scientists and engineers to 

seek for new solutions to reduce costs and time of inspections [1].  

The objectives of this study are to address some of these concerns in the damage 

detection and localization phases in the truss structures. This study approaches to the 

problem statistically as one of the existing tools in damage identification literature.   The 

objectives of the current research could be summarized as: 

 Finding a signal based SHM method to detect the damage in truss structures 

with the optimum number of installed sensors, 

 Investigating about the optimum sensor placement in truss structures for a 

known damage location, 

 Damage localization based on a training data pool and building a prediction 

Meta model to classify and categorize obtained signals and label them with the 

correct damage location. 

 Sensitivity analysis of the proposed method and studying different parameter 

changes on the procedure performance  

1.2 Literature review 

 

The concept of SHM cannot be explained unless the definition of damage is introduced. 

Damage could be defined as any changes in the system that adversely affects its present 

or future performance. Damage is meaningful when two different states of a system are 

compared. One of which is assumed to be the reference state. The reference state is called 

also the healthy state or pristine state of the system [2]. The concept of damage is very 

diverse, and there are many different types of damages in different areas of technology. 
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For example, crack initiation in aircraft fuselage and body structures, are of major 

interest. Also fuel leak, over temperature, impact damage, bonding failure, composite 

delaminations, leading edge mass loss and corrosion are other usual damage types that 

are ranked from top to down in aircrafts [3]. In rotary equipment, shaft misalignment, rub 

or an undesired contact between rotary and stationary parts, shaft unbalance, shaft crack 

initiation and failure of rolling element bearing occur more frequently [4]. Therefore, to 

investigate the damage identification, one requires to clearly define the area of interest 

and type of damage encountered.  

This literature review focuses on the study of structural and mechanical systems.  In 

current study the damage is defined as any changes in material or geometrical properties 

such as system connectivity, cross section reduction and crack initiation or boundary 

condition that have any effect on system performance. In this literature review, a brief 

review of various methods of crack growth identification in structures using vibration 

based methods is provided. Vibration based methods rely on structure excitation, data 

acquisition and interpretation. 

Damage identification of structures is one of the major sections of SHM and 

includes damage detection, localization, size estimation and calculating the rest of the 

structure life. Localization has different meanings depending on the context. For example 

isolation of a faulty member in a truss structure or the coordinate estimation of the 

damaged zone in an integrated structure like plate and shell [5]. Traditional 

Nondestructive Testing & Evaluation (NDT&E) techniques include dye penetration, 

radiographs, magnetic field, eddy current and acoustic or ultrasonic methods are in their 
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mature stages and currently are being used in different industries as inspection tools. 

These techniques have some limitations and disadvantages [6]: 

 The affected zone must be estimated to a good extent prior test, 

 The affected zone have to be accessible and out of reach areas may be remain 

untested, 

 Methods may require the main equipment halted or a member removed from its 

position, 

 Skilled worker is required to take reliable results, 

 Sometimes damages only indicate their occurrence under working condition, and 

online, not offline. 

To remove these limitations people are continuously seeking for better solutions to 

make structures more reliable and to make down times less as possible. SHM and 

consequently real time monitoring and damage identification needs data acquisition 

techniques in automated manner. Also fast enough algorithms are required to interpret 

obtained signals from sensors installed on the structures [7]. Figure 1-1 illustrates a 

comparison between SHM and NDT and also damage identification phases. 

 
Figure  1-1: SHM, NDT&E and damage identification process overview [6] 
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1.3 Damage identification techniques 

 

Damage identification includes detection, location, sizing and eventually prognosis. 

Several approaches have been into consideration to study these outlines which can be 

mainly classified into model based techniques and signal based techniques. Model based 

techniques require accurate modeling of the structure in both healthy and damaged status.   

The model based techniques mostly rely on accurate finite element modeling and 

analysis. Model updating based damage identification [8-10], mode shape curvature and 

strain energy measurement are examples of model based damage identification process. 

On the other hand, signal based approach is also well developed. In this approach, 

structural excitation and sensor data measurement and interpretation are the tools to 

investigate and judge the structure status. Wave propagation, acoustic emission, wavelet 

and Fourier analysis are examples of signal based approach.  

 Figure 1-2 shows the general classifications for damage identification methods. 

 

Figure  1-2: Distinction between model and signal based methods [6] 



6 

 

 

1.4 Modal analysis 

 

Vibration based techniques usually use modal properties like frequencies, 

frequency response functions (FRF), mode shapes, damping ratios, transmissibility 

function and mode shape curvature methods to characterize damage in structures. When 

damage occurs in a structural member of a system it changes the dynamic properties of 

the system including stiffness, mass or damping which subsequently affect the modal 

parameters such as natural frequencies and mode shapes of the system. By correlating 

these changes to modal properties of the healthy structure one can diagnose the status of 

the structure. Damage is identified, when changes in modal properties is observed 

comparing to the healthy structure after testing a specimen [11-14]. 

 

Modal measurements are acquired by active or passive excitation. Active excitation 

uses actuators like PZT transducers or shakers while passive excitation, is the modal 

properties measurement using the system operational condition. For instance an aircraft is 

excited during landing due to impact exerted to the structure and so it bears passive 

excitation and no extra energy is required to interrogate the structure. 

 

Usually cracks does not change mass and damping factor but they reduce stiffness 

of the structure to a plausible extent. In the following three important methods which 

utilizes the modal parameters for damage identification are briefly discussed. 
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1.4.1 Mode shape curvature method 

 

Once the mode shapes of damaged and corresponding pristine structures are 

distinguished (       respectively), the curvature of every point   in the structure is 

numerically approximated as: 

  
   

             

  
 

Where h is the distance between the measurement points       and      [15], 

The largest absolute computed difference between the mode shapes of the damaged and 

pristine structure is an indicator of the location of damage,      |  
      |. The main 

idea is that the second derivative or curvature of the mode shape is more sensitive to 

small perturbations than the mode shape itself. Also in beam and plate type structures the 

changes in curvature could be related to strain energy which is known as a sensitive 

damage indicator (see section 2.1.3). The largest value of      could be an indicator for 

damage at a certain point [16].  

1.4.2 Damage Index 

 

A Damage Index is defined based on the changes of the  th
 mode curvature at 
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pristine and damaged structures respectively.   (location  ) and   (location    ) denote 
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a portion of structure where damage is being studied. The second derivative of a mode 

shape in a location is exactly the same as acceleration of that point. 

Typically a cubic polynomial curve fitting technique on measured data gives an 

estimation of mode shapes, and if more than one mode is employed, the DI will be the 

summation of each damage index corresponding to that mode 

 j jiiv ,  

Changes in the damage index and relating these changes with the potential 

locations are then assessed by statistical methods. Normal distribution of damage indices 

in different locations is extracted and DI values which are two or more standard deviation 

away from the mean DI value are reported to be most probable location of damage [17]. 

These methods were further extended utilizing Frequency Response Function 

(FRF) instead of mode shape data. It is claimed that this method can detect, localize and 

assess damage extent and the theory is fostered with some experimental results [7].   

Nevertheless development of suitable damage metrics and identification algorithms is 

still a challenging issue for further research work. Damage index as a scalar quantity is a 

damage metric that gives a criterion to judge the extent of damage of a structure [5]. 

Although these methods are well applicable in some cases but are not applicable to 

the cases where sizes of cracks are very small relative to the structure, or the crack is 

somewhere in a wide area of the structure. The main reason is that small cracks do not 

change the modal properties noticeably, and thus they are not easily detectable using 

experimental methods. It should be noted that this limitation is not due to lack of 

sensitivity of the method, but it is due to the practical limitations of exciting higher 

modes. Normally lower modes do not change in a meaningful way, and on the other hand 
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excitation of higher modes requires high level of energy and usually is not viable in large 

structures like aircrafts or bridges. There are also other issues regarding higher mode 

excitation. Consider a truss with n elements, to excite the  th
 mode, around     sensors 

are required to install on the structure. Although some of the structural nodes are 

common and this may reduce the number of required sensors, it is still a problem of data 

acquisition and in reality it may confront many difficulties.   

1.4.3 Strain energy and mode shape based damage detection 

 

Damage occurrence alters the mode shapes more noticeable than natural 

frequencies. This fact attracted the interest of researchers; however this approach has its 

own drawbacks. Damage is a local matter and will not affect the lower mode shapes 

considerably while they are more accessible experimentally. Also the extracted mode 

shapes are under the influence of environmental conditions like ambient loads and sensor 

positioning and operational errors. 

Mode shapes of structures store strain energy, and when the amount of this stored 

energy is high enough in a particular mode, the frequency and shape of that specific mode 

is highly sensitive to every change in stored energy in that specific mode. Hence tracking 

the changes in strain energy of the structure may be a good idea to indicate the damage 

location. The bending strain energy in a beam using classical beam theory in a particular 

mode shape is given by 

2
2

20

1

2

l

i i

d
U EI dx

dx


 
  

 
  

The required curvature for this equation is usually calculated numerically using the 

central difference estimation of mode shape displacements [18]. 
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Modal Assurance Criterion (MAC) and Coordinate Modal Assurance Criterion 

(COMAC) are two common methods to compare mode shapes of pristine and damaged 

structures [1, 19]. MAC value is an indicator which denotes the similarity of two mode 

shapes from two different tests of a beam, say ,A B  in matrix form. These matrices have 

An m and Bn m elements respectively where   is the number of data points (sensors), 

Am  and Bm are numbers of modes in the respective tests. MAC value is then defined as 

 
 
   
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2 2

1 1
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If MAC number is     then  th
 mode of the first set and  th

 mode of the second set 

are similar and if it is      they are completely dissimilar. 

As an example a bridge structure was tested before and after repair and MAC 

values for both situations were obtained, although the first seven natural frequency values 

were shifted by less than 3% respectively, the MAC value was different in a meaningful 

manner and it was concluded that comparing the MAC value is more convenient to judge 

the structure state than shifts in natural frequency [20-21]. 

COMAC value is a similar concept that compares a specific location in two sets of 

data point consisting of   modes, the summation will take place on     instead of  , so for 

location   and total modes of L it will be defined as [21] 
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1.5 Impedance based methods 

 

The mechanical impedance method has been introduced in the late 1970 and early 

1980 and is based on measuring the response properties of forced excitation of structures. 

The excitation must be normal to the surface of the structure and is produced by 

conventional shakers and measured by velocity transducers. The transducer shall be a 

specialized one that measures the applied normal force and the induced velocity at the 

same time [22]. The mechanical impedance method is studied to be used as a non 

destructive testing (NDT) by Lange [23] and his work further extended by Cawley [24]. 

Cawley studied the bonded thin plates and suggested a method to find the disbonds. The 

impedance to excitation in the normal direction was predicted using the finite element 

analysis of vibrating bonded or disbonded thin plate. 

The experimental work included installing a specialized transducer that measures 

the applied normal force and the induced velocity simultaneously, and then the 

impedance magnitude spectrum was compared with the finite element model. Some 

correlation with these two approaches has been derived to distinguish the presence of 

disbonds. These studies are the base of mechanical impedance method that is a non 

destructive evaluation (NDE) technique and is a dominant method to detect disbonds in 

laminated structures and delaminations inside composite members up to 6-mm depth. 

Ultrasonic mechanical impedance analysis (MIA) equipment are common in industry [5, 

25-27]. 
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1.6 Acoustic emission testing 

 

Acoustic Emission (AE) has attracted attentions as a popular and powerful tool in 

NDT, condition monitoring, damage identification and structural health monitoring. This 

desire is partly due to recent advances in high speed digital waveform-based AE 

instruments which let a wide variety of AE waveform signals to be digitized and stored 

for analysis. However the main reason of the recent interests to AE is due to its ability to 

monitor a variety of machines and structures in a more holistic way. The major pivotal 

point in the direction of AE research trend came when work was carried out at an 

enhanced understanding of AE signal propagation in terms of guided acoustic modes, and 

this approach recently is designated as Modal AE and could be a departure point from 

conventional reliance on statistical analysis and significantly improves the knowledge 

about structural health monitoring capabilities using AE [28]. 

Traceability of results is often mentioned as the major deficit of AE testing, 

because AE measurements are dependent on many significant variables such as wave 

transmission, paths, sensor location and coupling, and sensor and system sensitivity. Also 

there are no measurement standards to estimate the real strength of AE source. This lack 

of standardization makes it very difficult to compare the results in different laboratories 

or on different structures[29]. 

AE testing is based on sensing the changes in signal strength due to sudden release 

of emitted energy. This energy emission is because of changing the stress field [30]. The 

amount of change order of magnitude could be referenced as an indicator of damage size, 

AE is suitable to scan a wide area and estimate the location of damage, and is known to 

be very sensitive to the external noise which limits its use in many applications. 
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1.7 Wave propagation Technique 

 

Wave propagation methods use transducers for active sensing of a wave packet, and 

then the collected data via transducers must be interpreted by proper tools. Wavelets have 

been considered as one of these interpreting tools. Actually the presence of cracks can 

hardly be observed from the changes in modal parameters. Nevertheless these 

discontinuities may be detectable from the wavelet coefficient distribution. These 

coefficients could be obtained by the Continuous Wavelet Transform (CWT) or by digital 

signals which form the Discrete Wavelet Transform (DWT). Hence wavelet transform 

come into picture as a noticeable tool [31]. 

Conventionally, ultrasonic wave is employed to excite structures in order to 

interrogate for damage in a specimen. The ultrasonic wave is a high frequency acoustics 

wave and is applied by actuators to the structure. The traditional method of NDT solely 

identifies damage locally, using ultrasonic wave, excited by large transducers. Due to this 

issue it has limited application for SHM. The use of large transducers significantly 

increase the mass loading effects and besides, online monitoring of structures seems 

impossible using such large probes. Moreover it is not economically feasible. Instead, 

methods that could use wave propagation techniques with in-situ transducers are required 

[32]. 

Nowadays, researchers are seeking for more efficient solutions to eliminate the 

mentioned problems and wave propagation has proved itself to have this potential. The 

ideal solution includes [6, 33]: 

 The ability to reach hidden and buried parts of structure. 

 Propagation of waves to traverse direction and covering large distances. 
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For quick and efficient sweeping of whole structure to collect data 

 Sensitivity to different types and sizes of damages. 

Some types of damages do not affect structural dynamics properties and 

hence alternative methods should be sought with higher sensitivity to variation 

of system status. 

 Consuming less excitation energy as possible. 

Excitation of structures is one of the main issues for condition monitoring 

and lesser excitation energy would be a great advantage. 

 Capable to be used for online condition monitoring. 

Online inspecting of the structures requires fast and reliable data collection and 

interpretation algorithms. Fast data acquisition and processing and reliable decision 

making will lead to online monitoring that is a major step forward in structure condition 

monitoring. 

Researchers have investigated the use of guided waves, particularly Lamb waves, 

for near real time condition monitoring [13, 34-35]. Lamb waves have great tendency to 

interfere on a propagation path (boundary or damage), and they travel over a long 

distance even in materials with high aspect ratio like carbon fiber reinforced composites 

[33]. Therefore a wide area, even hidden and out of reach parts can be easily scanned. 

The various types of damages that can be inspected by Lamb waves are discussed by 

Rose[36]. The main advantages of Lamb wave propagation method could be summarized 

as follow: 

 The ability to inspect large structures even with coating and insulation. 

 The ability to inspect whole cross sectional area of structural members. 
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 The least requirement of expensive tools and probes (insertion / rotation 

devices)  

 It is not required to move the devices during inspection. 

 Sensitive to multiple defects. 

 Low energy consumption. 

 Cost effectiveness. 

As it could be seen, this approach of damage identification could be considered 

very close to the ideal solution that mentioned before. The Lamb wave based damage 

identification method is supposed to answer the following questions from easy to hard 

level[37] 

 Has damage occurred in the structure? 

 Where is the location of the damage? 

 How much severe is the damage? Give a quantitative estimation. 

 What is the remaining safe life of the structure? 

 

1.8 Statistical pattern recognition approach 

 

With a closer look to the problem of damage identification (detection, localization, 

life estimation) one may admire that it is intrinsically a pattern recognition problem. The 

reason is that it deals with categorization of present situation into damaged or healthy 

state. Saving the response signals of a given structure over time, enables us to have a 

good measuring meter using various statistical based pattern recognition techniques [38-

39]. 
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Time series method for structural health monitoring is evolving considerably 

among wider category of vibration based approach for SHM [40-45]. This approach uses 

response signals with or without random excitation. Then it requires a statistical model 

building, and finally a decision making procedure, to judge the current situation. Like 

every other vibration based method, this method relies on the fact that damages may 

cause some discrepancies in the system response which may be incorporated to detect the 

origin of perturbation. 

There are many advantageous listed for statistical time series methods in the 

literature which some of them are [40]: 

 Models are data based rather than physics based or finite element model 

which are elaborating 

 Normal operation will not interrupt while assessing the system 

 No requirement of modal models 

 Statistical decision making based on previously gathered knowledge which 

encounters uncertainties inherently. 

Some disadvantages of the statistical time series method: 

 Since complete model of the structure is not employed the damage 

identification process is only to the point allowed by the incorporated model. 

 Need for proper training, as the method is based on “enough” number of 

observations 

 Potentially little physical interpretation of the damage nature 
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Statistical time series method uses random response signals from the structure in its 

healthy state and also from a number of probable damaged states, then by choosing the 

most suitable statistical model and extracting features out of signals (characteristic 

quantity); one would be able to characterize the structural state in each case. Among 

different statistical approaches some examples are [38]: 

 Power Spectral Density (PSD) and Cross Spectral Density (CSD) based 

methods 

 Frequency Response Function (FRF) based method 

 Model parameter based method 

 Residual (residual variance, likelihood function, residual uncorrelatedness) 

based methods 

1.9 Optimal sensor placement on structures 

 

Sensor types and placement on structures have a critical role in SHM. Sensor 

placement on structures usually is done either ad hoc or at last by experimentally testing 

few possible configurations and then selecting a set that performs the best. In this case, 

sensor placement relies on staff experience and available equipment [46].  

If one can cast the sensor placement problem into an optimization problem then this 

problem can be handled more effectively. It would be more knowledge based rather than 

a random or experience based process. Having a limited number of sensors, the problem 

is to determine the number and location of sensors regarding an objective function[46].  
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Few literatures are available on sensor placement problem, specifically relating to 

SHM and damage identification. Staszewski et al. study this problem to detect and locate 

damage in composite materials[47], Shi et al. investigate optimal sensor placement 

strategy and prioritize the sensor location according to their ability to localize structural 

damage based on the eigenvector sensitivity method[48]. Gue et al. also study the global 

optimization using genetic algorithm technique [49]. 

1.10 Contributions of the thesis work 

 

The significant contributions of this dissertation are summarized as follows: 

1- A damage sensitive feature is found and a new Damage Index is proposed for 

the first time. 

2- Support Vector Machine (SVM) as a classifier tool is used to localize damage 

in the structure, based on a previously built Meta model. 

3- Sensitivity analysis is performed to figure out the effects of different 

parameters changes on the proposed SHM procedure. These parameters 

include number of sensors, crack size, excitation force location and some other 

parameters.  

1.11 Thesis structure 

 

This dissertation consists of 4 Chapters. The first Chapter is the introduction and 

literature review, where the latest techniques of SHM techniques in structures are 

discussed.  
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Chapter 2 discusses the modeling and methodology. The theories which are the 

backbone of the current study are developed in this Chapter. Nodal model and Finite 

Element formulation of truss structures are represented. Also system of second order 

differential equations is represented in State Space or first order equations where a 

systematic numerical solution for dynamic response analysis is proposed. In addition, 

generating of theoretical excitation force and Frequency Response Function is 

investigated. Sensor arrangement optimization problem in the truss structure is the 

subject of another section in this Chapter where the optimum sensor arrangement at nodal 

positions is found. Given a limited number of sensors and known damage location, the 

optimum arrangement is investigated. Damage Sensitive Features (DSFs) and Damage 

Index (DI) is also defined and represented in this Chapter. Finally damage localization 

using the Support Vector Machine (SVM) tool is proposed. 

 Chapter 3 includes the simulation results and discussion where the sensitivity 

analysis is also performed. Model validation is performed by comparing the ANSYS 

model with the written MATLAB code.  DSFs and DIs are built and investigated for a 

specific example.    

  Chapter 4 is the final Chapter and includes the conclusion of the present research 

and further study proposal.  
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CHAPTER 2 

2                     MODELING AND METHODOLOGY 

2.1 SHM procedure based on statistical pattern recognition 

SHM in general is the process of detecting and localizing damages in structures in 

order to improve safety, reliability and maintenance costs. Here, SHM based on statistical 

pattern recognition approach has been effectively utilized to identify the damage in the 

truss type structures. Many structures normally are under repeated loading conditions. On 

the other hand, data acquisition and processing techniques are improving constantly.  

Hence statistical pattern recognition techniques can be cast as a powerful tool in the 

context of SHM. 

The best arrangement of sensor locations is obtained by combining the developed 

finite element model of the structure and the Mixed Variable Programming Pattern 

Search (MVPS) algorithm. Then an optimization problem is formulated. The conditions 

to find the best arrangement are that the damage location as well as its severity should be 

known in advance. Otherwise this optimization problem does not have a unique solution. 

This problem is challenging because the objective function is computationally expensive 
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and first order derivatives are not available due to discrete nature of variables. The 

approach to solve the problem is numerical solution based on      algorithm. 

The proposed procedure to identify the damage using SHM based statistical pattern 

recognition technique has been summarized in the following steps. 

1- Model the truss structure using the finite element method. 

2- Generate a force signal with a controlled frequency content and amplitude 

3- Introduce the generated force to the structure and find the dynamic response 

(acceleration) of the structure at sensor locations  

4- Evaluate the damage sensitive features (DSF), build a baseline based on healthy 

states and compare the damaged states to the baseline 

5- Build the damage sensitive matrix (DSM) and feed it to the Support Vector 

Machine (SVM) and complete the learning procedure and build a prediction 

model 

6- Generate a test data base and introduce it to the trained model and find the 

localization accuracy 

In the following subsections the theory and backbone of the above-mentioned steps 

are explained in detail and then in Chapter 3 the results are introduced and related 

discussions are made.  

 



22 

 

2.2 System modeling 

System modeling is the most important section of any analytical data driven 

analysis approach. The objective of modeling is basically to develop a mathematical 

model which its response to various inputs is as close as possible to the reality. For 

simple geometry structural systems, analytical equations may be derived from physical 

laws, such as Newton’s principles, Lagrange’s equations, or D’Alembert’s principle [50]. 

However for analysis of complex structural systems, numerical approach (mainly finite-

element technique) is inevitable. Also system identification methods and test data may be 

utilized to build the model. The models could be either in time domain (differential 

equations), or in frequency domain (transfer functions). 

In this research, the finite element technique has been employed to find the 

governing differential equations of the truss structure in the finite element format. These  

equations are then converted to a system of first order differential equations. This 

representation is a standard model which allows fast and modular numerical solutions to 

the system of differential equations [51].  

2.2.1 Second order structural model – nodal model 

The nodal model of a structure is a model which is based on nodal coordinates, 

displacements, velocities and accelerations. It incorporates mass, damping and stiffness 

matrices to model the structure. Also sensors and actuator locations are parts of the 

modeling. Let’s   be the number of degrees of freedom (DOF),   be the number of 

outputs and   be the number of inputs.  A truss structure in nodal coordinate could be 

modeled by the following matrix differential equations[52]: 
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  ̈      ̇                      (2.1) 

     ̈          (2.2) 

Where: 

 : Nodal displacement vector -     

 ̇: Nodal velocity vector -     

 ̈: Nodal acceleration vector -     

 : Input vector -     

 : Mass matrix -     

 : Damping matrix -     

 : Stiffness matrix –    

  : Input force matrix -     – it allocates the position of input excitation force 

  : Output acceleration matrix -    - it allocates the position of desired sensor 

locations 

 : Output vector 

2.2.2 Finite element formulation 

As mentioned before, in this research work, the methodology has been 

implemented on truss structures. Thus the finite element model of space truss type 

structured haven been constructed for this purpose.  The element type is the 3D bar 
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element having 2 nodes and 3 translational DOFs at each node as shown in Figure 2-1. 

Thus the mass and stiffness matrices are     as follow: 

 

Figure  2-1: Link element for truss structure modeling 

The mass matrix is considered as the lumped mass matrix. Thus it is independent of 

the local coordinate system. 
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      (2.3) 

where:   :density, A:cross section area, L: truss member length  

  The stiffness matrix in global coordinate can be written as [52]: 
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    (2.4) 

Where   is the modulus of elasticity and l, m and n are direction cosines defined as: 

E, A, L,   
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2.2.3 State Space representation 

State space representation incorporates only first degree differential equations. Eqs 

2.1 and 2.2 could be easily rewritten in the following form: 

 ̈       ̇                     (2.3) 

     ̈          (2.4) 

The state vector is defined as: 

  {
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 ̇}         (2.5) 

In this case, Eqs. 2.3 and 2.4 could be written as: 
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Eqs. 2.6 can be cast into the following form: 
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In the state space representation the number of differential equations is doubled in 

sake of order reduction from second order to first order. 

This completes the state space representation of the structural model. In the next 

section the force signal generation is discussed. 

2.3 Generation and analysis of excitation signals 

Each structural health monitoring process starts with performing some experiments 

that provide information about the objective of the experiment which is damage detection 

and localization. Within a limited time, as much information as possible should be 

retrieved.  The quality of collected information within the operational constraints strongly 

is dependent to the excitation signal selection. Some of the operational constraints in each 

excitation experiment are [53]: 

 Maximum excitation level that the structure could withstand 

 Minimum power consumption 

 Sensitivity of sensors to the inevitable noise content 

The right hand side of Eq. 2.1 contains the term      which is the input force signal 

vector. These signals are generated by shakers (or actuators) connected to the structure at 

any arbitrary point. 

The force signal must have some characteristics and should satisfy number of 

concerns: 

 Generation of appropriate excitation signals to solve nonparametric and 

parametric system identification problems 
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 Having control over the frequency content of the excitation signals 

 Generation of signals with predefined sampling frequency 

 Nyquist-Shanon law and its mandates about the excitation signals 

 Generation of the excitation signal with a user imposed power spectrum 

To meet the above mentioned criteria first of all a Butterworth low pass noise filter 

as shown in Figure 2-2, is created. The Butterworth filter is designed to make a flat 

frequency response in the passband region (the range of frequencies that can pass through 

a filter without being attenuated) [54-55]. The reason that only lower frequencies are 

desirable, is that normally the very first truss structures natural frequencies are in the 

range of below 200 Hz. Therefore a low pass filter is required to simulate the excitation 

dynamics force in this sampling frequency.  

 

Figure ‎2-2: Butterworth noise filter shape with cutoff frequency of 0.4 

 

For the 3D truss structure investigated here (Figure 2.3), the excitation force signal 

has a time interval of 5 seconds with 320 Hz sampling points. Hence every signal has 

1600 data points. The cutoff frequency is selected to be 0.4. It means the excitation signal 
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has a dominant frequency content of maximum                  . This value is 

selected because of the nature of the 3D truss structure. This structure will be described in 

Chapter 3 more precisely. The first six natural frequencies of this structure are less than 

128 Hz (Table 2.1), therefore this cutoff frequency is capable enough to make the signal 

excite the very first modes of the truss structure. 

 

Figure  2-3: 3D truss structure fully clamped at four top nodes at left and right 

 

Table 2.1 – First 10 modes of the 3D truss structure 

 Freq. (Hz)  Freq. (Hz) 

f1 

f2 

f3 

f4 

f5 

32.41 

45.10 

48.43 

88.43 

94.68 

f6 

f7 

f8 

f9 

f10 

97.52 

139.33 

148.77 

153.12 

160.51 
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After selecting the cutoff frequency, time interval and number of data points (N); a 

random vector of size N is created. In this case             . Then the 

Butterworth filter is applied on this vector using the filter command in MATLAB. The 

filtered vector x(t) then is multiplied in a Hanning window H(t) with the same time 

interval and data points (Figure 2.4). 

                       (2.9) 

 

Figure  2-4: Top- Hanning window H(t), down: filtered noise with sampling frequency of 320 Hz 

and cutoff frequency of 0.4 – x(t) 

The outcome is scaled by  

  √
∑  

 

 
                        (2.10) 

         
    

 
        (2.11) 

u(t) is the filtered excitation with the user imposed power spectrum. Figure 2.5 

indicates the generated signal distribution over time interval. 

H
(t

) 
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Figure  2-5: Filtered excitation signal with user imposed power spectrum –      

The DFT (Discrete Fourier Transform) of the excitation signal and its comparison with 

the filter characteristics is shown in Figure 2.6. This indicates that the spectrum of filtered 

excitation force mainly covers the frequency contents below 128 Hz which excites the 

first six modes of the under study structure (Table 2-1).  

 

Figure  2-6: DFT spectrum of the filtered excitation force (dots) and filter characteristics (gray line) 

shows the good conformity of the generated signal with the ideal Butterworth lowpass filter  

 

0 100 200 300 400 500

-80

-60

-40

-20

0

Frequency (Hz)

A
m

p
lit

u
d

e
 (

d
B

)

Number of averages = 1

0 100 200 300 400 500

-80

-60

-40

-20

0

Frequency (Hz)

A
m

p
lit

u
d

e
 (

d
B

)

Number of averages = 1

0 100 200 300 400 500

-80

-60

-40

-20

0

Frequency (Hz)

A
m

p
lit

u
d

e
 (

d
B

)

Number of averages = 16

0 20 40 60 80 100 120 140 160 180

-80

-60

-40

-20

0

Frequency (Hz)

A
m

p
lit

u
d

e
 (

d
B

)

Number of averages = 16

0 100 200 300 400 500

-80

-60

-40

-20

0

Frequency (Hz)

A
m

p
lit

u
d

e
 (

d
B

)

Number of averages = 64

0 100 200 300 400 500

-80

-60

-40

-20

0

Frequency (Hz)

A
m

p
lit

u
d

e
 (

d
B

)

Number of averages = 64



31 

 

2.4 Frequency Response Function 

Frequency Response Function (FRF) is a system characteristic which relates the 

output spectrum of a system to the excitation spectrum. It is used to characterize the 

system dynamics. It measures the magnitude and phase of the output in terms of 

frequency with respect to the input. For example if the system excitation signal is a sine 

wave with a given frequency, a linear time invariant (LTI) system will respond at the 

same frequency with a certain magnitude and phase angle relative to the input.  It means 

if the input amplitude doubles the output will also double. Also for an LTI system, the 

frequency response is time invariant. 

In structural health monitoring, this function could serve as a structure fingerprint, 

hence one might account it for as a damage sensitive feature. This could be realized from 

the fact that with similar inputs the pristine and damaged structures have different 

outputs. Therefore the FRFs of two structures might be a damage detection tool. 

It would be possible to attach an accelerometer at a particular point on the structure 

and excite the structure at another point with a force actuator. Then by measuring those 

two signals the resulting FRF could be described as a function of frequency between 

those two points on the structure. The basic formula of FRF is [54]: 

           
    

    
         (2.12) 

Where      is the sensor output and      is the excitation input both in frequency 

domain. This formula is valid when there is an explicit analytical solution between input 

and output.  
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Although the FRF is defined in Eq. (2.12) as the ratio of output and input in frequency 

domain, in all modern FFT analysis it is calculated in a different method as is described 

in Eqs. (2.13) and (2.14). The reason is to eliminate the random noise and non-linearity 

from the FRF estimates [56]. 

There are two main types of the FRF functions,       and       

      
                                          

                                  
 

      

      
    (2.13) 

      
                                   

                                              
 

      

      
           

 

Where                             are detailed in Eqs. (2.17) and (2.18). 

      frequency response function is used in conditions where the output signal of 

the system is noisier than the input signal. It can be shown that H1 is a least squared error 

estimate of the FRF when noise and randomly excited nonlinearity are added to the 

output and modeled as a Gaussian distribution [57]. This function is used in this thesis 

due to naturally noisier output signal than input. 

Despite,       frequency response function is used in conditions where the input 

signal of the system is noisier than the output signal. Similarly, it can be shown that H2 is 

a least squared error estimate of the FRF when noise and randomly excited nonlinearity 

are added to the output and modeled as a Gaussian distribution [57]. 

Assume the input force signal is represented by u(t) and the output acceleration at a 

sensor location is represented by y(t). Then the Fast Fourier Transform (FFT) of these 

two signals are: 
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                       (2.15) 

                       (2.16) 

Eqs. 2.13 and 2.14 could be rewritten with more detail as: 

      
      

      
 

     ̅   

     ̅   
       (2.17) 

      
      

      
 

     ̅   

     ̅   
       (2.18) 

Where  ̅    and  ̅    are the complex conjugate of the      and      
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2.5 Sensor arrangement optimization 

Few literatures are available on sensor placement problem, specifically relating to 

SHM and damage identification. Staszewski et al. [40] studied this problem to detect and 

locate damage in composite materials. Shi et al. [41] investigated optimal sensor 

placement strategy and prioritize the sensor location according to their ability to localize 

structural damage based on the eigenvector sensitivity method. Gue et al. [42] also 

studied the global optimization using genetic algorithm technique for sensor placement. 

A performance function is suggested  based on damage detection. Then an improved 

strategy for genetic algorithm is presented. The analytical results from this strategy are 

compared to the conventional penalty method. Finally it is concluded that the suggested 

method is faster and more efficient for the problem of sensor placement compare to the 

previous literature.    

2.5.1 Problem formulation 

Now let us consider the 3D truss structure shown in Figure 2.3. In this study, the 

optimum placement of the sensor set has been identified using the following procedure 

and the results are represented in Chapter 3. 

To formulate this problem we introduce the continuous variable   denoting the 

percentage of change in stiffness and sensor placement vector   where has the 

cardinality of   and  

 ⊂ {        },   NN = number of nodes     (2.19) 
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Let  ⃗     be the input (force) and   ⃗⃗⃗      be the output (acceleration) to a general 

linear time-invariant system. Also Fast Fourier Transforms of force and acceleration 

vectors are assumed to be      and     , respectively. As mentioned in Eq. 2.17 The 

output and input signals are related by the frequency response function as: 

     
      

      
 

     ̅   

     ̅   
       (2.20) 

The input force function is selected to be      as introduced in Eq. 2.11 in. The 

vertical accelerations are measured at all nodal points of the structure (Figure 2.3). Also it 

is assumed that the damage is applied on pre-known member by reducing the cross 

sectional area by 10% and 50% (two different cases).  

Modeling of a system could be classified as either full or reduced. The full model 

includes measurements available at all possible DOFs and the reduced model includes 

only those degrees of freedom that can be measured. Obviously the reduced model is a 

subset of the full model. 

 To define the objective function       , it may be the “best” sensor configuration 

that would minimize the difference between FRF information gathered from the full 

model and that gathered from the reduced model. 

Let denote the system FRF at its healthy state and at each location member   by 

      and for the system with damaged member   the corresponding  th FRF by 

  
 
      , for              . Aggregate relative changes are then measured as sums of 

the relative changes in transfer function values. The full relative change       is 

measured as a sum over all possible output locations (full model), while the reduced 
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relative change          is measured as a sum over only those output locations where 

sensors have been placed. Thus one may write: 

1
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H f H f p
F p j

H f


       (2.22) 

( ) ( , )
( , , )

( )

j

i i
v

i M i

H f H f p
R p M j

H f 


       (2.23) 

Now the optimization problem is defined as: 

( , ) ( , , )
( , )

( , )

: {1,2,...,N N}, 0 p 1

j v v

v

F p j R p M j
Minimize f p M

F p j

Subject to M




  

    (2.23) 

 In summary the purpose of this optimization problem is to find the nearest 

summation of FRF function changes of reduced model to the full model. The reduced 

model is a model that incorporates the limited sensor locations. This will ensure that the 

reduced model captures the most physical information of the structure as possible.  

  

2.5.2 Discrete neighbor sets 

For Mixed Variable Pattern Search (MVPS) problems, finding a minimizer is 

usually a difficult and complicated procedure, because there are many possible 

combinations to be considered. On the other hand, since the problem is discrete, and 

design variables are not continuous but bounded, the well-known gradient based 

optimization methods cannot be used.  Also the concept of local minimum may be 

confusing in this category of problems because the design variables do not have an 
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inherent natural ordering [46]. To define exactly what a local minimum is, first we have 

to define the concept of neighborhood. Assume that M is a set of n sensors and 

M {1,2,..., }NN , where NN is the number of nodes. 

Set  is called a neighbor-1 of M if it has the same cardinality of   and only one 

of its members is a single unit more or less of one of the members of   and all members 

of   are distinct and less than or equal to the upper bound or greater than or equal to the 

lower bound. For example if M {2,5,7,8} the sets of neighbors will be: 

1 2 3 4

5 6

{3,5,7,8}, {1,5,7,8}, {2,4,7,8}, {2,6,7,8}

{2,5,6,8}, {2,5,7,9}

       

   

 

Neighbor- , means one element of  Ni  differs from one of the elements in  , by   

Definition: Point           is a local minimizer of   with respect to the set of 

neighbors     ⊂  if there is an      such that           for all   in the set. 

   ⋃          {  }              (2.24) 

Where,         is an open ball of radius     of    centered neighborhood. Also this 

set accounts for discrete neighbors of   [46]. 

2.5.3 MVPS algorithm 

To find the optimum sensor arrangement the following algorithm has been 

presented: 

1) Let      satisfy           and choose a tolerance ξ (termination criteria) 

2) Set      
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3) For            do the following 

4) Search step: Employ some finite strategy seeking an improved mesh point; 

 i.e.,        where                . (In this case we may compare the objective 

function for all sets of neighbors and select the minimum). 

5) Extended search step: If the search step did not find a better result among neighbor set, 

then extend the neighbor-   set to         and search again until an improved mesh 

point is found or until all points are exhausted. 

6) Update: If search or extended search step finds an improved mesh point, update      

7) If   |               |  ξ    STOP otherwise go to step 2. 

In Chapter 3 the truss structure represented in Figure 2-3 is studied and the 

optimum sensor arrangement to detect the damage at specific location is found. 

 

2.6 Damage sensitive feature extraction: statistical approach 

In the SHM field of study it is essential to find damage sensitive features which can 

distinguish between healthy and damaged states. Preferably these features should not be 

sensitive to operational or environmental conditions. However this cannot be met in most 

real situations[58-59]. In this section some statistical based feature extraction techniques 

are introduced.  

Basic statistical properties of calculated time history data are also presented. The 

first four statistical moments as well as autoregressive parameters are part of feature 

extraction procedure. These features later are used to cluster and classify different time 

history signals.  
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Figure  2-7: Truss structure clamped at nodes 1 to 4, excited at node 23 and 

sensor locations at nodes {6, 9, 16, 18, 20, 26}
 
 

 

Assume the 3D truss structure shown in Figure 2-7 is excited by the external force 

at node 23.  The horizontal and vertical distance of each node from its nearest adjacent 

node is 1 meter. The cross section of each member is a solid square          . 

The accelerometers are situated at six different nodes {6, 9, 16, 18, 20, 26} which are 
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distinguished from other nodes in Figure 2-7. Figure 2-8 shows sample signals from these 

sensor locations for healthy structure case: 

 

 

Figure  2-8: Time response for healthy structure 
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Figure  2-9: Time response for damaged structure – 30% cross section reduction in member 

connecting nodes13 and19 

 

Now, the damage has been introduced by cross section reduction in one specific 

member. For instance if the member connecting nodes 13 and 19 is cracked and the crack 

size is 15 mm, then the reduction in the cross-section of this member can be calculated as 

(original cross section was 50 mm x 50 mm): 

                 
                 

                   (2.25) 

Figure 2-9 indicates the sensor acceleration outputs for described damaged case to 

the force input on node 23. It should be noted that for the damaged case, the applied 

dynamic force is the same as that for the healthy case plus a small white noise.        

Figure 2-10 indicates the applied forces for two different cases. The signal to noise ratio 

(SNR) is assumed to be 20. 
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Figure  2-10: Applied force for two cases: healthy and damaged with added noise with SNR=20 

To introduce the damage sensitive feature 10 different cases including 5 healthy 

and 5 damaged cases were studied. The difference among healthy cases is the applied 

force which has some added noise to a baseline force signal. This assumption is realistic 

because while doing the experiment, noises are always there and no two actuator output 

signals in different times are exactly the same. 
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Case 7: Damaged state - damaged member DM = 2 (Nodes 21-25) 

Case 8: Damaged state - damaged member DM = 3 (Nodes 15-16) 

Case 9: Damaged state - damaged member DM = 4 (Nodes 22-24) 

Case 10: Damaged state - damaged member DM = 5 (Nodes 12-17) 

The damage locations and their corresponding case number are clearly shown in 

Figure 2-11. 

 

Figure  2-11: Damage locations and their corresponding case number 

 

2.6.1 Statistical moments 

The statistical moments (mean, variance, skewness, and kurtosis) are often used to 

process raw time-series data. Also statistical moments can serve as damage sensitive 

features, as it can be seen from Figure 2-12, these moments are sensitive to damage and 

show some deviation from the trend of healthy cases. 

The first raw moment is the mean of data, and describes the tendency of data about 

its mean value. 
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E X x X x x x
n




        (2.26) 

( )E X is also called the mathematical expectation. 

Usually, the data vector is centralized by reducing its mean value from each vector 

component. Thus the first moment of centralized data is always zero. In other words,  

1

1

1
( ) ( ) 0

n

X i X

i

E X x
n

  


           (2.27) 

The second raw moment is the variance and is the square of standard deviation. It is 

defined as: 

2 2 2

1

1
( ) ( )

1

n

X X i X

i

E X x
n

  


   

      (2.28) 

The standard deviation X indicates the spread of data about the mean. 

The third raw moment is called the skewness and is defined as: 

3

3

( )X

X

E X
S






         (2.29) 

Positive skewness means that the right tail in the data distribution bell type diagram 

is longer and that the area of the distribution is concentrated below the mean. On the 

other hand, a negative skewness means that the left tail is longer and that the area of the 

distribution is concentrated above the mean. The skewness of a standard normal 

distribution is zero [58, 60]. 

The fourth statistical moment is a measure of the relative amount of data located in 

the tails of a probability distribution. The kurtosis,  , is the normalized fourth statistical 

moment and is defined as: 
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E X
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
         (2.30) 

Kurtosis greater than 3 indicates more data far from the mean and is common to 

“peaked” type data distribution. If the kurtosis is less than 3, the data distribution is flat 

with short tails. The kurtosis of standard normal distribution is exactly equal to 3 [60]. 

Figure 2-12 indicates the first four moments of data obtained from the sensors in Figure 2-7 

for above-mentioned cases. 

 

Figure  2-12: First four statistical moments for 10 different cases and 6 sensor data set 

 

As it can be realized, healthy cases 1-5 are following almost steady flat lines while 

the damaged cases are evidently deviated from the straight lines, so these moments are 

sensitive to damage. There are other sensitive features like the wavelet coefficients, FRF, 

and autoregressive parameters. In the next section the autoregressive parameter of a 

signal is discussed. 
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2.6.2 Autoregressive parameters 

Data points in the time series may have an internal structure like autocorrelation, 

trend or seasonal variation [58]. Autoregressive (AR) parameters are a tool which could 

reveal these correlations and connections. They can reduce the large cardinality of the 

time responses to manageable and interpretable data sets. With the aid of autoregressive 

parameters one can distinguish between healthy and damaged cases. 

The AR parameters with order p satisfy the following equation: 

1

, 1,...,
p

i j i j i

j

x x i n 



          (2.31) 

In equation 2.31, ix is the thi term in the time series ( )X t  and i  is the error. The 

AR parameters j can calculate the thn term of a time series by the weighted summation 

of its last p terms with an error of  i . The unknown parameters j can be calculated 

using two approaches. First one is the least square method (linear regression) and the 

second one is the Yule-Walker equation [61-63]. In this thesis the former is used and 

expanded due to its simplicity and acceptable performance.  

2.6.3 Least square method to estimate AR parameters 

In this section the application of least square method to estimate AR parameters is 

briefly explained. Given a data set  1, ,..., , 1,...,i i ipy x x i n where dependent variable iy

and p vector of regressors or predictor variables ix  have a linear relationship. It means 

1 1 ... , 1,...,i i p ip i iy x x i n         T

iX φ     (2.32) 

These n equations are stacked together and written in vector form as: 

 y Xφ ε          (2.33) 
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where 

11 12 11 1 1

21 22 22 2 2

1 2

, , ,

p

p

n n npn n n

x x xy

x x xy

x x xy

 

 

 

        
        
            
        
                

T

1

T

2

T

n

X

X
y X φ ε

X

 (2.34) 

 Neglecting the error, the AR parameters can be found as: 

(X X) XT T-1φ = y         (2.35) 

 

2.6.4 AR model order 

The AR model order is not a known value. A high-order model matches the data 

perfectly, but when it comes to other data sets, it cannot be used with great sensitivity to 

damage. Also, a low-order model will not capture the physical system response precisely.  

There are several techniques in the literature to find out the optimum model order, 

such as Akaike’s Information Criterion (AIC), Partial Autocorrelation Function (PAF), 

Root Mean Squared Error (RMSE) and Single Value Decomposition (SVD). These 

techniques suggest an optimum AR model order between 10 to 30 [58]. In this study the 

AR model order of 20 is used.  
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Figure  2-13: AR parameters of two different cases: healthy and damaged in member 1 connecting 

nodes 13 and 19 using the sensor at node #6 data 

 

Figure 2-13 indicates the comparison between two healthy and damaged cases and 

the high sensitivity of the AR parameters to damage is clear, using the obtained data from 

sensor at node 6. The AR parameter order is assumed to be 20. After studying this figure, 

one may find out that the AR parameters of the damaged case are completely 

distinguishable from the healthy case. This is a great finding that helps to detect the 

damaged cases from the healthy ones.  

Figure 2-14 shows two healthy cases with slightly different loading condition with 

added noise. It is clear that these two cases are almost identical. Comparing Figures 2-13 

and 2-14 clearly indicates the sensitivity of the AR parameters to slight damages in the 

structure.  
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Figure  2-14: AR parameter for two healthy cases, obtained from sensor at #6 

 

2.7 Damage Index and data clustering 

In structural health monitoring two aspects are very important, damage detection 

and damage localization. These are actually the first two steps of a complete SHM 

package. The other two aspects are damage sizing and estimating the remaining life and 

finally the prognosis (Figure 1-1).  

In this section the damage detection procedure for a truss structure has been studied 

and a Damage Index (DI) has been introduced. In the previous section it is found that the 

AR parameters are very sensitive to the damage, hence one may effectively utilize the 

AR parameters to categorize the output signals into healthy or damaged state based on the 

previously established knowledge.  
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In order to detect the damage a baseline data is essential. As mentioned before, in 

this study 5 realizations of healthy state with slightly different input force is employed to 

create a baseline reference data. 

 

Figures 2-15 to 2-20 show the extracted AR parameters for 5 healthy and 5 

damaged cases. Each Figure corresponds to one installed sensor and the extracted AR 

parameters. The AR model order is selected to be 20 based on the discussions in the 

2.6.4. These figures show that the AR parameters of damaged cases deviate big enough 

from the healthy cases. This proves them very sensitive to detect damage in truss 

structures.  

It should be noted that there are 20 AR parameters per sensor and thus for 6 

sensors, in total, there are120 parameters for each case. These 120 AR parameters will 

further be used as feature vector to be fed into the SVM tool.  
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Figure  2-15: AR parameters for sensor #6, and for healthy and different damaged cases 

H: Healthy, D: Damaged 

 

 

 

Figure  2-16: AR parameters for sensor #9, and for healthy and different damaged cases 

H: Healthy, D: Damaged 

 

 

 

Figure  2-17: AR parameters for sensor #16, and for healthy and different damaged cases 
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H: Healthy, D: Damaged 

 

 

 

Figure  2-18: AR parameters for sensor #18, and for healthy and different damaged cases 

H: Healthy, D: Damaged 

 

 

Figure  2-19: AR parameters for sensor #20, and for healthy and different damaged cases 
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Figure  2-20: AR parameters for sensor #26, and for healthy and different damaged cases 

H: Healthy, D: Damaged 

 

 

From close examination of Figures 2-15 to 2-20, one may find that the standard 

deviation from the baseline reference data could be an indicator of structural state. The 

baseline reference data is chosen to be the average of autoregressive parameters of at 

least five healthy states.  
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The damage index is chosen to be the standard deviation of AR parameters of each 
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std( )unknown stateDI AR BaseLine      (2.38) 

A threshold is also required to separate the damaged and healthy states, In other 

words, if the DI of an unknown state is above the threshold value, it indicates a damaged 

state. Here in this study, the threshold value is defined as: 

1

1
2

NR
healthy

i

i

Threshold DI
NR 

          (2.39) 

The multiplier 2 in Eq. 2.39 is selected based on try and error. The threshold line 

which is built based on this multiplier can distinguish the damaged and healthy cases in 

most of the times. Further explanation will be done in sensitivity analysis section in 

Chapter 3. This is one of the most significant contributions of the present thesis that is 

found by the author. 

Figure 2-21 illustrates the DI based on sensor #6 for 10 different cases (5 healthy 

and 5 damaged) and the threshold line. As it can be realized the damaged index based on 

the AR parameters enable to accurately identify all damaged cases. 

 

Figure  2-21: Damage Index (DI) obtained from sensor #6 and data clustering (damage 

detection) 
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Utilizing other sensors will also provide the same information and can accurately 

identify the damaged cases. More detail will be prepared in the next Chapter on this 

topic. 

This completes the damage detection phase which only requires one sensor data. In 

the next section, the damage localization technique using the support vector machine 

(SVM) tool is introduced. 

2.8 Damage localization 

2.8.1 Feature vector classification 

This section introduces a new approach to damage localization and feature 

classification, assuming that damage has already been determined to be present and that 

there is only one occurrence of damage in the whole structure. This statistical based 

approach relies on the accurate modeling of the structure and consequently, the presence 

of a rich data base of all possible damage locations and structural response to slightly 

different loading conditions. To accomplish the localization task, “enough” number of 

realizations should be generated and stored in data matrices. Normally 10 realizations 

(based on try and error) per case with slightly different loading conditions are enough. A 

feature vector is generated per every realization and all together ensembles to a feature 

matrix. This feature matrix is then fed to a training procedure to create a trained model. 

After building the trained model, a sample test data is generated and based on the 

trained model, the corresponding category of each sample data is predicted. Usually the 

sample data is just one realization of all damaged cases to check the accuracy of the 

trained model. The accuracy in prediction depends on few factors like the severity of 
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damage, feature vector (AR parameters) length, number of sensors and applied force 

location. 

2.8.2 Support Vector Machine 

Support Vector Machine (SVM), is the main tool to categorize feature vector data 

and build the trained model. SVM is a powerful tool which its basic idea was initiated in 

1979 by Vapnik [64] and developed by himself in 90’s [65-66]. 

SVM is a pattern recognition and data categorization tool which separates data 

points with maximum correlation and put them together in one category. The correlation 

among the data inside each category is maximized while the correlation among different 

categories is minimized.  

 

Figure  2-22: H1 (green) does not separate the classes. H2 (blue) does, but only with a small 

margin. H3(red) separates them with the maximum margin [67] 

Figure 2-22 shows the main idea of linear SVM in 2D in which the SVM algorithm 

finds the line with the greatest possible margin (red line) as the separator of two 

categories of data which are black dots and white dots.  
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Sometimes the data cannot be separated linearly and a nonlinear classifier is 

required to categorize the data. In these cases a kernel function is applied [68]. Figure (2-

18) gives the main idea of the nonlinear SVM. In nonlinear SVM kernel function 

x (x)  maps the data set to a space (for example a spherical surface) which a linear 

hyperplane is able to categorize data with maximum correlation.     

 

Figure  2-23: Data set that cannot be separated linearly (left), a linear hyper plane that separates 

data by using a kernel function 

 

In the truss structure which is discussed previously, the Damage Sensitive Features 

(DSFs) are AR parameters. Unlike the damage detection, to localize the damage all 

information from all sensors is required. DSFs are assembled into one big matrix namely 

Damage Sensitive Matrix (DSM). 

( )

1,1 1,2 1,6
( )

2,1 2,2 2,61

( ) 2

6

20,1 20,2 20,6

. . .

. . .

. . . .
, 1,2,...,

. . . .

. . . .

. . .

i

i
T

T

i

T

AR AR AR

AR AR ARDSF

DSF
DSM i NR

DSF

AR AR AR

 
 

 
 

 
 

    
 

 
 

  
 
 

 (2.40) 

Where each column of the DSM matrix is a feature vector corresponding to a 

sensor which is numbered by the column number. The number of columns is equal to the 

number of installed sensors and NR is the number of realization. The assembled DSM 
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matrix which includes all realizations is called the training set which must be prepared in 

a special format. This format will be elaborated with more details in the next chapter. 

When the training procedure is accomplished, and the predictor model is 

completed; a set of test data is generated and is introduced to develop the trained model. 

The SVM based trained model categorizes these data and predicts which signal is 

representing. 

Here, a SVM software named LibSVM [69] has been used to develop the trained 

model. LibSVM is an integrated software for support vector classification, regression and 

distribution estimation [70]. 
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CHAPTER 3 

3 SIMULATION RESULTS AND DISCUSSION 

3.1 Introduction 

The theory and formulation of the SHM package is elaborated in Chapter 2. In this 

Chapter the application of those theories is performed on a sample truss structure. A truss 

structure is modeled, validated and the suggested SHM package is applied to show the 

capability of the approach. The model is validated by making a comparison between 

ANSYS
®
 results and the developed FE code in MATLAB

®
 environment.  

3.2 Truss structure designation 

Figure 3-1 indicates the studied space truss structure which has 70 members of 

uniform cross section. The cross sections are all solid square and the joints are hinged in 

all directions by spherical joints. The far most left and right top nodes are fully 

constrained in all directions. Dynamic force is applied on node   and is indicated by 

    . Dimensions are shown clearly in Figure 3-1.  
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Figure  3-1: Truss structure designation, dimensions, and loading condition 

 

3.3 Model validation 

To model the truss structure, finite element analysis is employed and by state space 

representation, the system of first order differential equations are built and solved. The 

time response of each node of the system under dynamic loading condition is obtained. A 

number of sensors are installed exactly on selected nodes. The sensor responses are the 

acceleration responses at sensor locations.  

The developed FE model in MTALB has been validated using ANSYS. The results 

for the first 10 natural frequencies obtained from MATLAB and ANSYS are provided in 

Table 3-1.  

C 

F(t) 

D 
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Table  3-1: Comparison between first 10 natural frequencies of MATLAB and ANSYS built models  

 MATLAB 

Freq. (Hz) 

ANSYS 

Freq. (Hz) 

 MATLAB 

Freq. (Hz) 

ANSYS 

Freq. (Hz) 

f1 

f2 

f3 

f4 

f5 

32.41 

45.10 

48.43 

88.43 

94.68 

32.41 

45.10 

48.43 

88.43 

94.68 

f6 

f7 

f8 

f9 

f10 

97.52 

139.33 

148.77 

153.12 

160.51 

97.52 

139.33 

148.77 

153.12 

160.51 

 

Apparently, the results from MATLAB and ANSYS are exactly the same even with 

more than two decimal points. This validates the FEM formulation that is developed in 

the MATLAB program.  

To validate the dynamic time response, an impulse force is applied on the node C 

(Figure 3-1) and the acceleration of a selected node D is calculated over a time period of 

5 seconds. The impulse force diagram is shown in Figure 3-2. 

 

Figure  3-2: Impulse force diagram applied on node C 

 

The node D acceleration results are obtained by the developed FE model in ANSYS 

and MATLAB are also shown in Figures 3-3 and 3-4, respectively. A comparison 
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between Figures 3-3 and 3-4 shows the good conformity of ANSYS results, and the built 

Matlab model. This validates the structural dynamics modeling code as well.  

 

Figure  3-3: Acceleration response of node D due to impulse force exerted on node C –  

result is calculated by ANSYS 

 

 

Figure  3-4: Acceleration response of node D due to impulse force exerted on node C – 

 result is calculated by MATLAB 
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3.4 Frequency response function  

In section 2.4, the Frequency Response Function (FRF) is described in details. The 

FRF is required to find the optimum arrangement of sensors. The installed sensor 

positions are shown in Figure 3-5 and the six different FRF responses are indicated in 

Figures 3-6 to 3-11. 

The FRF corresponding to each sensor will be derived from equation (2.17) as: 

      
      

      
 

     ̅   

     ̅   
       ( 3-1) 

Where  ̅    is the complex conjugate of the     and   and   are fast Fourier 

transforms of      and        
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Figure  3-5: Sensor and actuator locations and their equivalent node number. Damaged member 

12-17  

 

Figure  3-6: FRF from sensor #6 and actuator #23 
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Figure  3-7: FRF from sensor #9 and actuator #23 

 

 

Figure  3-8: FRF from sensor #16 and actuator #23 
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Figure  3-9: FRF from sensor #18 and actuator #23 

 

 

Figure  3-10: FRF from sensor #20 and actuator #23 

 

 

 

Figure  3-11: FRF from sensor #26 and actuator #23 
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If a known member of the truss is damaged, there will be a change in the FRF 

response of all sensors. Let say the member connecting nodes 12 and 17 in Figure 3-5 is 

damaged. To model the damage it is assumed that the cross section area of this member is 

reduced by 20%. This means a crack of size 10 mm as shown in Figure 3-12. 

 

Figure  3-12: Cross section of healthy and damaged truss member 

 

Figure 3-13 indicates the FRF response of the healthy and damaged truss from 

sensor #6 together. It is clear that these responses are slightly different. This difference is 

employed to define the objective function of sensor arrangement problem in the next 

section.  
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Figure  3-13: Top - FRF from sensor #6 and actuator #23 for healthy and damaged member 

connecting nodes 12 and 17 , Bottom – Zooming to frequencies 0-60 Hz 

 

3.5 Sensor arrangement optimization 

In section 2.5 the problem formulation for sensor arrangement optimization is 

presented. In this section the formulation has been applied to the space truss structure 

investigated in this study. The specific member designated by nodes 12 and 17 in Figure 

3-5 is supposed to be damaged member. The damage is modeled by 20% reduction in 

cross section area (Figure 3-12). The problem is to find the optimum sensor arrangement 

to capture and detect this damage as accurate as possible.  

The problem formulation has been recast here again for the sake of clarity.  

 

( , ) ( , , )
( , )

( , )

: {1,2,..., N}, 0 p 1

j v v

v

F p j R p M j
Minimize f p M

F p j
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1

( ) ( , )
( , )

( )

( ) ( , )
( , , )

( )

jN
i i

v

i i

j

i i
v

i M i

H f H f p
F p j

H f

H f H f p
R p M j

H f



 











     ( 3-3) 

     

The number of sensors which their arrangement is to be optimized is selected to be 

six. The starting sensor configuration is the same as presented in Figure 3-5 

0 {6,9,16,18,20,26}X          ( 3-4) 

The MVPS algorithm is employed in NOMADm software which is a free package 

written in MATLAB [71]. It addresses MVPS and its applications in a very compact and 

efficient way. The strength of the program is that the design variables could be string 

types rather than numbers. For example NOMADm is employed to solve the problem of 

optimization of the number and composition of heat intercepts in a thermal insulation 

system [72].  

Starting from the initial set 
0X  in (3-4) and 3 other starting sets the objective 

function has been minimized. Figure 3.14 shows the iteration history for different initial 

points. As it can be realized the problem is multimodal and contains different local 

minima. It should be noted that this is a combinatory optimization problem and there are 

26 26!
230230

6 20! 6!

 
  

 
possible combinations. Thus it would be computationally very 

expensive to investigate all using brute-force approaches. The optimum set has been 

found to be * {6,7,9,16,17,23}X  . It should be noted that this set is the best sensor 

location set to capture the damage in a particular member (in this case member 
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connecting nodes 12 and 17). This approach could be suggested when there is a critical 

member to be monitored and the SHM approach may be tailored to prevent structure 

failure in that member.   

 

Figure  3-14:Objective function value versus number of function evaluation using four different starting sets 

 

3.6 Damage sensitive feature extraction 

In  2.6 the damage sensitive features (DSFs) and Damage Index (DI) are discussed. 

Here these features are extracted and discussed for the space truss structure investigated 

in this study. In this section the DIs for the truss structure with optimum sensor set 

* {6,7,9,16,17,23}X  is extracted. The dynamic force is applied on node #23.  

Figure 3-15 indicates the truss structure with all node numbers and optimum sensor 

set X
* 

positions. Results for different damage location are presented. It should be noted 

that only one member is presumed damaged per each simulation run. The crack size is 

0 20 40 60 80 100 120 140
40.5

41

41.5

42

42.5

43

43.5

44

X: 107

Y: 40.78

Performance History

Number of Function Evaluations

 

 

O
b
je

c
ti
v
e
 F

u
n
c
ti
o
n
 V

a
lu

e
  

X
01

X
02

X
03

X
04

X*=6,7,9,16,17,23



71 

 

assumed to be 10 mm causing 20% cross section area reduction in members , , , , 

 (see Figure  3-15). 

.  

 

Figure  3-15: Truss structure with 4 clamped nodes (1-4), sensor set * {6,7,9,16,17,23}X  , studied 

damaged cases, and loaded node 23 

The DI diagrams are indicated in the following Figures. Since there are six installed 

sensors, six DI diagram is generated. Each diagram studies 10 different cases including 5 

healthy cases and 5 damaged cases as discussed in Chapter 2. Each bar in these Figures 

represents the standard deviation from the base line data. Apparently DI for damaged 

cases is much higher than the threshold which was defined in Equation (2.9). 
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Figure  3-16: DI for each healthy case (H),and damaged cases (DM) obtained from sensor #6 

 

 

Figure  3-17: DI for each healthy case (H), and damaged cases (DM) obtained from sensor #7 
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Figure  3-18: DI for each healthy (H), and damaged (DM) cases obtained from sensor #9 

 

 

Figure  3-19: DI for each healthy (H), and damaged (DM) cases obtained from sensor #16 
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Figure  3-20: DI for each healthy (H), and damaged (DM) cases obtained from sensor #17 

 

 

Figure  3-21: DI for each healthy (H), and damaged (DM) cases obtained from sensor #23 
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identify the existence of the damage. Thus defined DI in Eq. 2.9 proved very powerful in 

discriminating among healthy and damaged cases. 

Once the damage is identified, the next important step in SHM is to exactly locate 

the damage for accurate diagnosis. The level of severity of the damage is also of great 

importance. These topics are addressed in Section 2.8 and here the results are presented 

in the following section. 

3.7 Damage localization results 

Damage localization is the final part of the proposed SHM package. It means 

isolating the faulty member among all truss structure members and reporting the damage 

location by its pre allocated member number.  As it is discussed in more detail in section 

2.8, a tool called LibSVM [69] is employed to localize the damage in the truss structure.  

LibSVM needs a training data set. In the space truss structure addressed here, the 

Damage Sensitive Features (DSFs) are AR parameters. Unlike the damage detection 

phase which could be performed with the help of only one sensor, to localize the damage, 

all information from all sensors is required. DSFs are assembled into a matrix namely 

Damage Sensitive Matrix (DSM). 
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  3-5) 

 

Each column of the DSM matrix is a feature vector corresponding to a sensor 

which is numbered by the column number. The number of DSM matrix columns is equal 

to the number of installed sensors and NR is the number of realization. By try and error it 

is found that NR=10 provides acceptable results.  

 

The training data set must be assembled in a special format to be used in the 

LibSVM tool. All possible damage locations should be taken into account. For each 

damage case, there are NR DSM matrices. Since only one damaged member is 

considered to occur at a time, so total of 70 different cases plus one healthy case is 

studied. Note that the 3D truss in Figure 3-15 has 70 members. So the training data set is 

the assembly of 71 10=710 DSM matrices which are properly labeled. 

Figure 3-22 shows the DSM matrix diagram for the studied truss structure. This is 

the combined format of Figures 2-15 to 2-20 for another set of sensors. 
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Figure  3-22: AR parameters (DSFs) of truss structure with 6 installed sensors at * {6,7,9,16,17,23}X 

forming the DSM matrix (combination of Figures 2-15 to 2-20 for another configuration of sensors) 

 

The training data set is assembled in a text file with a special format indicated in 

Figure 3-23. It is interesting to note that since all AR parameter vectors for each sensor 

starts with 1, and hence is a common value among all DSM matrix columns, it is better to 

eliminate it from each DSF vector. The reason is that it will help to maximize the 

correlation among different categories by eliminating common elements.  

The selected AR parameter order is 20 and the number of sensors is 6, hence there 

are 120 elements in each DSM matrix. It is clear from Figure 3-23 that each row has 119 

(starting from index 0) AR parameter values instead of 120. The missing one is the 

common value 1 which is eliminated from each DSF vector. Case label 0 corresponds to 

the healthy case and other labels correspond to the damaged member numbers. 

 

After feeding the training data set to the LibSVM program, a trained model is 
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(with unknown label) belongs to which case label. The generated test signals cover all 

possible damage places, i.e. 70 members. 

 

Figure  3-23: Training data set text file format 

Table 3-2 indicates both the successful and the wrong predictions, for the damage 

size of 10 mm in each member at a time. Also the percentage of successful predictions is 

calculated and reported as the True Prediction Index (TPI). 
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Table  3-2: Localization results for the 3D truss with a crack size of 10mmand applied force on node #23 

   DM Predicted    DM Predicted    DM Predicted    DM Predicted 

0 0 18 64 36 36 54 54 

1 1 19 8 37 37 55 55 

2 2 20 20 38 38 56 56 

3 3 21 21 39 0 57 57 

4 4 22 22 40 40 58 58 

5 5 23 23 41 41 59 59 

6 6 24 24 42 42 60 60 

7 7 25 25 43 43 61 61 

8 1 26 26 44 1 62 62 

9 58 27 27 45 45 63 63 

10 10 28 28 46 46 64 64 

11 11 29 29 47 47 65 65 

12 12 30 30 48 48 66 66 

13 13 31 31 49 49 67 65 

14 14 32 32 50 50 68 68 

15 65 33 33 51 51 69 69 

16 20 34 34 52 52 70 70 

17 17 35 35 53 53 TPI=61/71=85.9% 

 

 

3.8 Sensitivity analysis 

Sensitivity analysis has been conducted to investigate the sensitivity of the 

proposed SHM package results to different crack sizes, applied force locations, number 

of installed sensors and AR parameter order number. In this section the change in each of 

these parameters are studied and their effect in the results is explored. 

3.8.1 Sensitivity to crack size 

A range of crack sizes from 1mm to 25 mm (half the cross section height) is studied 

and the detection and localization TPIs are investigated. Figure 3-24 indicates the 

detection rate versus crack size in mm . As it can be realized, if the crack size is more 

than 2 mm then the detection rate is successful in at least 84% of conditions.  



80 

 

 

 

Figure  3-24: Sensitivity of the detection phase to crack size 

 

Figure 3-25 is the sensitivity of the localization phase to crack size parameter. It 

can be seen that if the crack size is 18 mm in around 90% of times the damage locations 

are predicted successfully. If the crack size is about 13.7 mm, 70% of attempts to locate 

the damage are successful. Figure 3-26 is the same as Figure 3-25 except the damage is 

represented as the percentage of cross section.  
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Figure  3-25: Sensitivity of localization phase to crack size in mm 

 

 

Figure  3-26: Sensitivity of localization phase to crack size in percentage of original cross section~ 
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3.8.2 Sensitivity to applied force location 

Let us consider the space truss structure in Figure 3-15. In all previous results, the 

force is applied on node #23. In this section the effect of changing applied force location 

is studied. Assume that force is also applied on nodes {7, 11, 17, 23, 24, 20, 14, 10}and 

the crack size is 18mm. Also the installed sensors are those at location

* {6,7,9,16,17,23}X  . 

The detection as expected is found correctly in 100% of times as expected in all 

cases. The localization diagram is shown in Figure 3-27. It can be concluded that the 

force location on nodes #20 and #14 gives slightly better results in localization than other 

excitation locations.  

 

Figure  3-27: TPI versus applied force location number 
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3.8.3 Sensitivity to the number of installed sensors 

The results of this section could be of great importance, due to interests to minimize 

the required sensors. Sensors, data acquisition and communication with the central 

computer are always a complex and expensive task. Detection phase can be done by only 

one sensor, but the localization phase requires a set of sensors to categorize the signals 

considering the trained model of damaged cases. Let us assume that the damage size is 10 

mm, the loaded node is node #23 and AR parameter order is 20. The sensors are added in 

the sequence of {6,7,9,16,17,23,8,14,11,20,13}X  one after another. The best 

localization accuracy to the selected configuration is found to be with 8 sensors. The 

SVM method fails to report better results with more number of sensors and incidents of 

wrong categorizations increase. 

 

Figure  3-28: Sensitivity of damage localization technique to the number of installed sensors – the sensors 

are installed at locations {6,7,9,16,17,23,8,14,11,20,13}X  one after another 
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3.8.4 Sensitivity to AR parameter order 

The last parameter that is studied in the sensitivity analysis concept is the AR 

parameter order. This order affects the DSM matrix dimension and the feature vector 

length. Figure 3-29 shows the correct localization rate versus the AR order. The crack 

size is assumed to be 18mm and the loaded node is node #23. The 18mm crack size is 

selected because at this crack size, the number of correct localized damaged members is 

90% and good enough to study the effect of other parameters.  There are six installed 

sensors on the truss structure at optimum location * {6,7,9,16,17,23}X  . AR orders 

ranging from 15 to 20 give the best results as it can be seen from Figure 3-29. 

It should be mentioned that the detection rate is again 100% in all cases except is 

AR order=5 which is 85%. 

 

Figure  3-29: Sensitivity of damage localization technique to the AR order parameter 
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CHAPTER 4 

4 CONCLUSION AND FURTHER STUDIES 

4.1 Conclusion 

Improving safety, costs of inspection procedure, probable significant damage in 

expensive structures due to failure in a small member, man-hour required to do 

inspection, monitoring and consequent costs are some of the reasons that have attracted 

researchers in the field of SHM. In this thesis, an efficient SHM methodology to detect 

and localize the single damage in truss structures has been proposed. However the study 

is not limited to truss structures. It can be extended to frame and plate type structures 

easily. 

The concept of SHM is explained and a method is proposed for the detection of 

damages based on Auto Regressive (AR) parameters. AR parameters of order p  are 

simply a set of parameters that estimate each term of a sequence in terms of p  previous 

terms of the same sequence of numbers. It turns out that AR parameters are damage 

sensitive features. 
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The AR parameters of a healthy case are assumed to be the baseline data which is a 

reference to judge other cases. A Damage Index is defined to be the standard deviation of 

any other unknown signal from this baseline data. This unique index is a very powerful 

tool to detect the damage in the structure.  

The localization process is more complex. It needs data classification techniques 

which are ranging from genetic algorithm, neural networks to Support Vector Machine 

(SVM). SVM is an statistical technique which is used in this research. It can successfully 

classify different signals extracted from a 3D sample truss structure. Localization requires 

a rich source of simulated data. If the simulation is done perfectly, a large set of 

simulated data is used to feed the classifier (SVM in here) to develop the trained model. 

This model is then subsequently used to predict the unknown signals and find the most 

correlated “known” category and report the case label as the best match for the 

“unknown” signal. This is called the localization process. 

At the end an extensive sensitivity analysis is performed to study the effect of 

parameter changes to the detection and localization processes. It should be mentioned 

that all results are case dependent and performed for the sample truss structure.  

  



87 

 

4.2 Further studies 

This study can be extended in the following areas 

1) Different type of structures like frames and plates or a combination of both 

could be studied. Also composite materials could be a good candidate. 

2) In this study damage is applied on only one member at a time, a good 

extension could be the study of multiple damage occurrences at a time.   

3) Other damage types other than crack could be studied. Loosened bolts, high 

temperature spots and the resulting thermal stresses, delamination of 

composite materials and corrosion are a handful of other damage types. 
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