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Ramanujan sums (RS) have been found to be very successful in signal processing recently.
However, as far as we know, the RS have not been applied to image analysis. In this
paper, we propose two novel algorithms for image analysis, including moment invariants
and pattern recognition. Our algorithms are invariant to the translation, rotation and
scaling of the 2D shapes. The RS are robust to Gaussian white noise and occlusion as
well. Our algorithms compare favourably to the dual-tree complex wavelet (DTCWT)
moments and the Zernike’s moments in terms of correct classification rates for three
well-known shape datasets.

Keywords: Ramanujan Sums (RS); invariant features; moment invariants; pattern recog-
nition; Fourier transform (FT); Gaussian white noise; occlusion.

AMS Subject Classification: 68T10, 91C20, 62H35

1. Introduction

The Ramanujan Sums (RS) 9 were proposed by R. Ramanujan in 1918. However,

only recently they were introduced to signal processing (12’ 8’ 10’ 6’ 7). The RS

are orthogonal in nature and therefore offer excellent energy conservation, similar

to the Fourier transform (FT). The RS are operated on integers and hence can

obtain a reduced quantization error implementation. Even though the RS have

such important properties, they have not been applied to image analysis such as

moment invariants, shape recognition, and noise robustness.

In this paper, we propose two novel algorithms for image analysis, including

moment invariants and shape recognition. Our algorithms are invariant to the

1
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translation, rotation, and scaling of the input 2D shapes. Our experiments show

that our proposed algorithms compare favourably to the dual-tree complex wavelet

(DTCWT) moments and the Zernike’s moments for classifying three well-known

shape datasets.

The organization of the paper is as follows. Section 2 reviews the RS transform.

Section 3 proposes the RS moments for pattern recognition. Section 4 develops a

shape recognition algorithm by using the RS function. Section 5 studies the noise

robust property of the RS transform. Section 6 conducts some experiments in order

to compare our proposed algorithms with existing algorithms. Finally, Section 7

draws the conclusions of this paper.

2. Ramanujan Sums (RS)

The RS are the mth powers of qth primitive roots of unity, defined as

cq(m) =

q
∑

p=1;(p,q)=1

exp(2iπ
p

q
m)

where (p,q) =1 means that the greatest common divisor (GCD) is unity, i.e., p and

q are co-primes. An alternate computation of RS can be given as

cq(m) = µ(
q

(q,m)
)

φ(q)

φ( q
(q,m) )

Let q = Π
i
qαi

i (qi prime). Then, we have

φ(q) = qΠ
i
(1 −

1

qi
).

The Mobius function µ(m) is defined as

µ(m) =







0, if m contains a square number

1, if m = 1

(−1)k, if m is a product of k prime numbers.

The first few values of cq(m)are given as follows:

c1 =< 1 >, c2 =< −1, 1 >, c3 =< −1,−1, 2 >, c4 =< 0,−2, 0, 2 >, ...

where <> indicates the period. For example, c4(1)=0, c4(2) = −2, c4(3) = 0,

c4(4) = 2, c4(5) = 0, c4(6) = −2, etc. We give Table 1 for cq(n) in range q∈[1,20]

here.

The RS has the following multiplicative property:

cqq′(n) = cq(n)cq′ (n) if (q,q’)=1
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and also the orthogonal property:
∑qq′

n=1 cq(n)cq′(n) = 0if q 6=q’.
∑q

n=1 c
2
q(n) = qφ(q)otherwise.

The 1D RS transform of a signal x(m) with M samples is defined as

xq =
1

φ(q)

1

M

M
∑

m=1

x(m)cq(m)

In this paper, we study the applications of RS for image analysis, including mo-

ment invariants, shape recognition, and noise robustness. We find out that our pro-

posed algorithms compare favourably to the DTCWT moments 3 and the Zernike’s

moments 5. In addition, the RS are robust to Gaussian white noise. In order to

speed up the calculation, we precompute cq(m)only once and save them into a file

for later retrieval. This can save a lot of computation time.

3. RS Moment Invariants

In this section, we propose a set of new moments based on the RS. Let f(x, y) rep-

resent a 2D binary image object in the (x,y)-coordinate and its corresponding form

in the polar coordinate be f(r, θ), where r ∈ [0, 1] and θ ∈ [0, 2π). The relationship

between f(x, y) and f(r, θ) is given as follows:

x = r cos(θ),

y = r sin(θ).

Let the RS function sweep across in all angular rotations in the moment calcu-

lation; it will be able to extract either global or local information depending on the

values of q and k. We can then introduce a set of moment invariants by using RS

functions, defined as:

Aq,k = |

∫ 2π

0

∫ 1

0

f(r, θ)cq(nr)e
−ikθrdrdθ|

where nr = ⌊r ×N + 0.5⌋ and N is the number of rows in the image f. Note that

in the above equation, we need to discretize the image f in the polar coordinate

system (r,θ). For ease of notation, we still write the r and θ as continuous variables.

It is well known that higher-order moments are too sensitive to Gaussian white

noise; they cannot be used as the discriminative features of an object. This is also

true for the proposed RS moment invariants in this paper. It is easy to show that

the proposed RS moments are invariant to the rotation of the 2D pattern images,

which is very useful in invariant pattern recognition. This is because

|
∫ 2π

0

∫ 1

0
f(r, θ + θ0)cq(nr)e

−ikθrdrdθ|

= |
∫ 2π

0

∫ 1

0
f(r, θ)cq(nr)e

−ikθrdrdθ| × |eikθ0 |

= |
∫ 2π

0

∫ 1

0
f(r, θ)cq(nr)e

−ikθrdrdθ|
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The Zernike’s moments 5 can be used to extract rotation invariant features from

the input image. Let

Vpq = Rpq(r) exp(jqθ),

where r =
√

x2 + y2is the length of the vector from the origin to the pixel (x,y)

and θ = arctan(y/x). Also,

Rpq(r) =

(p−|q|)/2
∑

l=0

(−1)l
(p− l)!

l!(p+|q|
2 − l)!(p−|q|

2 − l)!
rp−2l

Now, let us define the Zernike moment of order p with repetition q as

Zpq =

∫∫

f(x, y)V ∗
pq(x, y)dxdy.

Since the Zernike’s moments are very complex to compute, they should be slower

than RS moments. In this paper, we calculate cq(nr)only once and save them into

a file for later retrieval.

The major contribution of this algorithm is the following. We have proposed a

new set of moment invariants by using the RS. This set of RS moments is invariant

to the rotation of the 2D patterns, which is very important for invariant pattern

recognition. Experimental results show that the proposed RS moment invariants

compare favourably to the Zernike’s moments and the DTCWT moments for rec-

ognizing 2D shapes in the first shape dataset. However, the RS moments are not

as good as the Zernike’s moments and the DTCWT moments for the second shape

dataset. The RS moments are better than the Zernike’s moments for the third shape

dataset.

Note that the RS moments introduced in this paper can also be called as ra-

dial moments. Radial moments are a well-known tool for object recognition. Their

kernel functions all have the form similar to our formula, where there is always a

harmonic function in angular direction and (usually orthogonal) polynomials in a

radial direction. Thanks to the Fourier-shift theorem applied in angular direction,

all radial moments preserve their magnitude under arbitrary rotation. Individual

radial moments differ from each other namely by the radial function used, each of

them having its pros and cons 4.

4. Shape Recognition

Invariance in terms of translation, rotation and scale is a very important aspect in

2D shape recognition. For translation invariance, we can move the centroid of the

2D shape to the centre of the shape image. For scaling invariance, we can use a

standard normalization technique given in 2, For example, the scaling factor of a

black-and-white image f(x,y) is given as

α =

√

β
∑

x,y f(x, y)
.
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where β is a constant. In this paper, we have chosen β=1500, 3000 and 5000 for

the first, second and third dataset, respectively. We propose to perform the Radon

transform to the input 2D shape f(x,y) 1:

R(r, θ) =

∫

x

∫

y

f(x, y)δ(r − x cos θ − y sin θ) dxdy

where δ() is the Dirac delta function. In this way, the rotation of the 2D shape is

converted to circular shift in θ. For every fixed θ , we can perform the convolution

between R(r,θ) and cq(1 : q), q∈[1,Q], along the r direction:

B(θ, q) = conv(R(r, θ), f liplr(cq(1 : q)))

where fliplr() is a function to flip its filter and conv() is the convolution operation.

Let us circularly pad q elements after the vector B(θ,q), and we obtainB̂(θ, q). Now,

convert the vectorB̂(θ, q)into a matrix with q columns by the Matlab command:

Dq(qi, θ) = vec2mat(B̂(θ, q), q).

Next, take the sum along each column of Dq(qi,θ ):

SD(q, θ) =
∑

qi

Dq(qi, θ).

Also,

r(q∗, θ) = max
q

(|SD(q, θ)|/φ(q))

Finally, we can take the sum along the θ direction so that we can obtain the rotation

invariant features F (q∗) =
∑

θ r(q∗, θ) for q*∈[1,Q],

The computational complexity of this algorithm can be given as follows. For

an M×N image, the Radon transform takes O(MN log(MN))flops of operation.

The RS transform for each row of R(r,θ) takes O(N log(N)) operations. Since we

have M rows in total, the RS for the image R(r,θ) is O(MN log(N)) operations.

Therefore, the total computational complexity of our proposed method in this paper

is O(MN (log(MN) + log(N)) = O(MN log(MN2)).

The major contributions of this algorithm are the following. We are the first

who have successfully applied the RS to shape recognition. Our proposed method

is invariant to the translation, rotation, and scaling of the input shapes. Our exper-

imental results show that our proposed algorithm outperforms both the DTCWT

moments and the Zernike’s moments in terms of correct classification rates for the

first and the second shape datasets. For the third dataset, out RS algorithm is not as

good as the DTCWT moments, but it is much better than the Zernike’s moments.

In addition, we have proposed to precompute the RS basis function cq(m)offline

and save them into a file, and then retrieve them during the calculation without

computing them online. This can save a huge amount of computation time.
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5. Noise Robustness

We now discuss the reasons why the RS are more noise robust than the FT. Let

the noise-free signal be x(i)and the noisy signal be

y(i) = x(i) + σnz(i),

where σn is the standard deviation of the noise and z(i)is the noise with Gaussian

distribution N(0,1). We know that

c1 =< 1 >, c2 =< −1, 1 >, c3 =< −1,−1, 2 >, c4 =< 0,−2, 0, 2 >, ...

Since the RS coefficients can be calculated as follows:

rq =
1

φ(q)
×

1

M

M
∑

i=1

x(i)cq(i)

Therefore, when q=1, we have

r∗1 = 1
φ(1) ×

1
M

∑M
i=1 y(i)c1(i)

= 1
φ(1) ×

1
M (

∑M
i=1 x(i)c1(i) + σn

∑M
i=1 z(i)c1(i))

= 1
M

∑M
i=1 x(i) = r1

.

This is becausec1 =< 1 >and
∑M

i=1 z(i) = 0. This means that the Gaussian white

noise does not affect the RS coefficient r1. When q=2, we have

r∗2 = 1
φ(2) ×

1
M

∑M
i=1 y(i)c2(i)

= 1
φ(2) ×

1
M (

∑M
i=1 x(i)c2(i) + σn

∑M
i=1 z(i)c2(i))

= r2 + σn
1

φ(2) ×
1
M

∑M/2
i=1 (z(2i)− z(2i− 1))

= r2 + σn
1

φ(2) ×
1
M (

∑M/2
i=1 z(2i)−

∑M/2
i=1 z(2i− 1))

≈ r2

This is because c2 =< −1, 1 > and
∑M/2

i=1 z(2i) = 0 and
∑M/2

i=1 z(2i − 1) = 0.

Similarly, we can derive other RS coefficients so that r∗q ≈ rqfor q>2.

6. Experimental Results

We conducted experiments for three shape datasets. The first dataset 13 is a subset

of the MPEG-7 CE Shape-1 Part-B data set, which has 216 shapes in total. This

dataset has 18 categories with 12 shapes in each category. The dataset is shown in

Fig. 1. Each shape is matched against every other shape in the dataset. As there are

12 shapes in each category, up to 12 nearest neighbours are from the same category.

We rate the performance based on the number of times the 12 nearest neighbours

are in the same category. The shape classes are very distinct, but the data set shows

substantial within-class variations.

The second dataset 13 in our experiments is the fighter airplane shape dataset,

which includes Mirage, Eurofighter, F-14, Harrier, F-22 and F-15. Since F-14 has
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two possible shapes, one when its wings are closed and another when its wings

are opened, total number of shape classes are seven. Each class includes 30 shape

samples. The sample category of this dataset is shown in Fig. 2. Each shape is

matched against every other shape in the dataset. As there are 30 shapes in each

category, up to 30 nearest neighbours are from the same category. We rate the

performance based on the number of times the 30 nearest neighbours are in the

same category.

The third dataset is available in 11 (see Fig. 3 for a subset of this shape dataset).

The dataset has 70 classes of 2D shapes and every class has 20 shapes with different

sizes and orientations. Therefore, there are 1400 shapes in this dataset in total. Each

shape is matched against every other shape in the dataset. As there are 20 shapes

in each category, up to 20 nearest neighbours are from the same category. We rate

the performance based on the number of times the 20 nearest neighbours are in the

same category.

Tables 2, 3 and 4 tabulate the correct recognition rates of the first 12/30/20

nearest neighbours in the same category for the first/second/third dataset. For the

Zernike’s moment, we used the 12th order of moment features. For our proposed RS

shape algorithm, we selected to use 79 invariant features. For RS moments, we also

used 12th order moments as the Zernike’s moments. From Tables 2 and 3, it can be

seen that our proposed algorithms compare favourably to the DTCWT moments

and the Zernike’s moments in terms of correct recognition rates. For Table 4, the

DTCWT moments perform the best among the four methods compared in this

paper. However, our proposed methods are both better than the Zernike’s moments

for this dataset. This demonstrates that our proposed methods in this paper are

feasible in practical shape recognition.

We performed occlusion tests by removing 3 or 5 rows from the center of the

shape images. Fig. 4 shows one original image and the occluded image. Table 5

tabulates the correct recognition rates of occlusion for the second shape dataset for

the RS shape algorithm and the RS moments. It can be seen that the RS moments

perform better than the RS shape algorithm for occlusions in these experiments. In

general, the RS moments are better than the RS shape algorithm for occlusions.

We also conducted experiments for the noisy environment. We added Gaussian

white noise with zero mean and standard deviation σn=10 or 20 to the original

shape images (see Fig. 5). Table 6 tabulates the correct recognition rates of the two

methods considered in this paper. It is clear that our proposed RS shape algorithm

and the RS moments perform well in the noisy environment. In general, the RS

shape algorithm is better than the RS moments for recognizing noisy shapes.

7. Conclusions

In this paper, we have studied the RS for image analysis, including moment in-

variants, invariant shape recognition and their noise robustness. Our classification

algorithms are invariant to the translation, rotation, and scaling of the input shape
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images. Experimental results have shown that the RS shape algorithm generates

higher correct classification rates than the DTCWT moments and the Zernike’s

moments for the first and the second shape datasets. Our RS moments are com-

parable to the Zernike’s moments and the DTCWT moments for the first shape

dataset, but they are not as good as the Zernike’s moments and the DTCWT mo-

ments for the second shape dataset. For the third dataset, the DTCWT moments

perform the best among the four methods. However, our proposed RS shape algo-

rithm and the RS moments are still better than the Zernike’s moments in terms

of correct classification rates. The RS are robust to occlusion and Gaussian white

noise as well. Furthermore, the RS are fast because we can retrieve the RS basis

functions saved in the file that was created before.

Given the fact that this is the first paper to apply the RS to moment invariants

and shape recognition, more research needs to be done on these topics.
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Table 1. The RS basis cq(n)for q∈[1,20].

q

1 1

2 -1 1

3 -1 -1 2

4 0 -2 0 2

5 -1 -1 -1 -1 4

6 1 -1 -2 -1 1 2

7 -1 -1 -1 -1 -1 -1 6

8 0 0 0 -4 0 0 0 4

9 0 0 -3 0 0 -3 0 0 6

10 1 -1 1 -1 -4 -1 1 -1 1 4

11 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 10

12 0 2 0 -2 0 -4 0 -2 0 2 0 4

13 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 12

14 1 -1 1 -1 1 -1 -6 -1 1 -1 1 -1 1 6

15 1 1 -2 1 -4 -2 1 1 -2 -4 1 -2 1 1 8

16 0 0 0 0 0 0 0 -8 0 0 0 0 0 0 0 8

17 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 16

18 0 0 3 0 0 -3 0 0 -6 0 0 -3 0 0 3 0 0 6

19 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 18

20 0 2 0 -2 0 2 0 -2 0 -8 0 -2 0 2 0 -2 0 2 0 8

Table 2. The correct recognition rates (%) of the proposed RS shape algorithm, the

RS moments, the DTCWT moments, and the Zernike’s moments for the first shape

dataset. The highest recognition rates are highlighted in bold font.

RS Shape Algorithm

100 95.37 92.59 91.67 81.48 83.33

82.87 79.17 73.61 65.74 63.43 56.02

RS Moments

100 93.52 85.19 80.56 81.48 79.63

77.31 70.83 68.98 67.13 64.35 64.35

DTCWT Moments

100 94.44 88.89 82.41 80.56 73.61

72.22 68.52 67.59 61.11 52.78 48.15

Zernike’s Moments

100 94.44 91.67 87.96 85.65 81.02

74.07 75.46 66.67 66.20 50.00 51.85
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Table 3. The correct recognition rates (%) of the proposed RS Shape Algorithm,

the RS moments, the DTCWT moments, and the Zernike’s moments for the second

shape dataset. The highest recognition rates are highlighted in bold font.

RS Shape Algorithm

100 100 100 100 100 100

100 100 100 100 100 100

100 100 100 100 100 100

100 100 100 99.52 100 100

99.52 100 100 100 98.57 95.24

RS Moments

100 99.52 98.57 99.05 99.05 99.05

96.67 96.67 96.67 92.86 93.33 93.33

86.19 84.76 76.67 69.05 67.14 67.14

68.10 70.48 65.71 64.29 62.38 57.14

55.24 46.19 52.38 51.43 40.95 44.76

DTCWT Moments

100 100 100 100 100 100

100 100 100 100 100 100

99.52 99.05 100 100 100 100

99.52 100 100 99.52 99.05 100

99.52 99.05 99.05 98.10 89.52 75.71

Zernike’s Moments

100 100 99.52 100 100 100

100 100 99.52 99.52 100 99.05

100 98.57 98.57 99.52 99.05 100

99.05 99.05 98.57 99.05 99.52 98.09

98.09 99.05 99.52 96.67 93.33 79.52
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Table 4. The correct recognition rates (%) of the proposed RS shape algorithm,

the RS moments, the DTCWT moments, and the Zernike’s moments for the third

shape dataset. The highest recognition rates are highlighted in bold font.

RS Shape Algorithm

100 88.50 79.21 72.57 61.57

60.79 56.36 54.00 48.79 47.29

43.07 40.71 38.64 35.50 33.00

29.86 31.43 25.07 28.07 24.21

RS Moments

100 89.86 79.50 74.21 65.43

61.86 58.57 57.14 53.36 50.21

47.86 45.71 45.64 40.43 38.71

33.64 32.29 31.07 27.86 25.14

DTCWT Moments

100 90.93 82.14 77.21 69.64

65.29 60.86 57.93 55.00 51.64

48.00 44.71 41.93 39.29 37.07

36.57 34.64 29.93 30.71 27.29

Zernike’s Moments

100 84.00 74.14 67.43 58.79

53.57 48.07 45.57 40.93 39.21

35.86 36.29 34.21 32.07 29.86

27.71 26.71 23.93 23.71 21.21
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Table 5. The correct recognition rates (%) of the proposed RS Shape algorithm and

the RS moments for the second shape dataset. Every shape image is distorted by

removing T=3 or 5 rows of pixels from the center of the original shape.

RS Shape Algorithm (T=3)

67.62 67.15 66.19 65.71 65.71 65.71

66.19 65.71 64.76 65.71 66.67 66.19

67.14 69.05 66.19 64.76 68.57 65.71

64.76 64.29 65.71 63.33 59.52 63.81

62.86 60.48 61.43 62.38 58.57 48.57

RS Shape Algorithm (T=5)

42.86 42.38 34.76 37.62 36.19 35.71

34.29 35.24 34.76 34.29 34.29 36.67

35.71 33.33 37.62 34.29 36.19 31.43

37.14 32.86 36.67 31.90 31.90 34.76

30.95 36.19 31.43 31.43 30.48 29.05

RS Moments (T=3)

100 99.05 98.10 98.57 99.52 97.14

95.71 95.71 95.71 96.19 92.86 91.90

90.00 84.76 81.43 74.76 78.57 75.71

70.95 69.05 69.05 63.81 62.38 59.52

59.52 58.10 51.90 52.38 38.57 39.52

RS Moments (T=5)

100 94.76 95.24 93.81 93.33 92.38

93.33 92.38 88.57 88.57 87.62 86.19

87.62 82.38 77.14 75.24 73.81 74.29

70.00 66.19 68.10 64.29 63.33 57.14

61.90 52.86 48.57 46.19 40.48 31.90
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Table 6. The correct recognition rates (%) of the proposed RS Shape Algorithm

and the RS moments for the second shape dataset. Every shape image is distorted

by adding Gaussian white noise to the shape image with zero mean and standard

deviation σn=10 or 20.

RS Shape Algorithm (σn=10)

100 100 100 100 100 100

100 100 100 100 100 99.52

100 100 100 100 99.52 100

99.52 99.52 99.52 99.52 100 99.52

99.52 99.52 100 99.52 99.52 88.57

RS Shape Algorithm (σn=20)

98.57 97.62 99.05 97.62 97.14 98.09

99.05 98.10 98.57 97.62 98.10 97.62

99.05 98.57 98.57 96.67 97.62 97.62

99.05 97.62 97.62 97.14 97.14 97.14

98.10 93.81 95.24 90.95 81.43 78.10

RS Moments (σn=10)

100 99.52 99.05 99.05 99.05 98.10

97.62 97.14 93.81 93.81 92.86 92.86

87.14 81.90 74.29 68.57 71.43 63.33

71.43 71.43 66.67 64.76 62.86 53.81

50.95 51.43 53.33 47.14 48.57 42.38

RS Moments (σn=20)

100 99.52 99.05 99.52 97.62 97.62

98.57 94.76 93.81 94.29 93.81 89.05

84.29 83.81 73.33 70.00 68.57 67.14

67.62 69.52 64.29 66.19 62.86 59.05

55.24 51.43 50.48 47.62 48.57 47.62
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Fig. 1. The samples of the first shape dataset.
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Fig. 2. The samples of the second shape dataset.
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Fig. 3. The samples of the third shape dataset.

Fig. 4. A shape image and its occluded image by removing five lines of pixels at the center of the
image.
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Fig. 5. A shape image and its noisy version by adding Gaussian white noise with zero mean and
standard deviation σn=20.


