Login | Register

Characterization of the role of TRAPPC2/Trs20p-related and associated proteins in membrane traffic

Title:

Characterization of the role of TRAPPC2/Trs20p-related and associated proteins in membrane traffic

Shahrzad, Nassim (2014) Characterization of the role of TRAPPC2/Trs20p-related and associated proteins in membrane traffic. PhD thesis, Concordia University.

[img]
Preview
Text (application/pdf)
Shahrzad_PhD_S2014.pdf - Accepted Version
8MB

Abstract

In the process of intracellular trafficking, fidelity of delivering proteins and lipids across the secretory pathway is of critical importance. Any failure in this highly regulated event could have severe consequences to the cell. Various human diseases arise from mutations affecting membrane trafficking. In this regard, vesicle tethering complexes serve as key factors for the maintenance of cellular function. The transport protein particle (TRAPP) is one such factor which provides specificity in delivering proteins and lipids. TRAPP is found in three related complexes sharing core subunits, each governing different transport steps. TRAPPC2, a mammalian ortholog of yeast TRS20, is an essential gene that codes for a protein that exists in all forms of the TRAPP complexes. My research has focused on elucidating the cellular function of TRAPPC2 and proteins that associate with it.
Substitution of an aspartic acid residue at position 47 of TRAPPC2 to tyrosine has been shown to cause a skeletal disorder known as spondyloepiphyseal dysplasia tarda (SEDT), a disorder which is believed to be due to a defect in collagen secretion. In Chapter 2 I demonstrate that aspartic acid residue 47 is absolutely invariant across taxa suggesting that this amino acid plays an important role in the function of the TRAPP complex. Even though TRAPPC2 is ubiquitously expressed the SEDT phenotype is manifested in only in specific tissue. Thus, we rationalised a search for homologs of TRAPPC2/Trs20p, hoping to provide an answer to the tissue-specificity of SEDT. We identified two novel proteins; TRAPPC2L and its yeast counterpart Tca17p. The position for the novel TRAPPC2L protein is postulated to be opposite to the region where TRAPPC2/Trs20p incorporates into the TRAPP complex.
In Chapter 3 I demonstrate a direct interaction between the TRAPP complex and the SNARE fusion machinery. This binding is lost in the pathogenic TRAPPC2D47Y mutant. Subsequently, we revealed that an SEDT-analogous mutation in Trs20p (trs20D46Y) resulted in deficiency in autophagy rather than defects in endoplasmic reticulum to Golgi trafficking. Chapter 4 describes the discovery of the association between TRAPP and the tethering factor p115. By using the TRAPPC2D47Y mutant I showed that p115 could not efficiently dissociate from membranes, thereby showing that a TRAPP-p115 interaction is critical for p115 membrane recognition. Furthermore, I provide evidence that TRAPP associates with p115 and SNAREs in a Brefeldin A-resistant manner. I propose placing this association at the ER-Golgi intermediate compartment (ERGIC) membranes, a compartment that lacks in lower eukaryotic cells, at the very early stage of the secretory pathway.
Previous work by our laboratory found several novel mammalian TRAPP components including TRAPPC11. Chapter 5 discusses our discoveries into the function of TRAPPC11, a TRAPPC2 protein partner. The genetic component of this work was conducted by our collaborators from Alberta who used homozygosity mapping in combination with exome sequencing in two siblings from a Hutterite family. They found that the candidate gene mutation affects the foie gras domain of TRAPPC11 in these brothers. The deletion mutation accounts for the array of phenotypes including myopathy, ataxia, and intellectual disability (ID) that is observed in these patients. I demonstrated that this mutation disrupts TRAPPC11 binding to multiple TRAPP subunits including TRAPPC2 and compromises the integrity of the Golgi apparatus. I also showed that this mutation causes a dramatic delay in trafficking from the Golgi to the plasma membrane. Moreover, this mutation dramatically affects the localization of lysosomal membrane glycoprotein 1 (LAMP1). This is the first study to investigate the function of the foie gras domain of TRAPPC11 in humans. Finally, in Chapter 6 I discuss the implications of all of the studies performed in the preceding chapters and provide a working model for the function of TRAPPC11 in membrane traffic.

Divisions:Concordia University > Faculty of Arts and Science > Biology
Item Type:Thesis (PhD)
Authors:Shahrzad, Nassim
Institution:Concordia University
Degree Name:Ph. D.
Program:Biology
Date:19 February 2014
Thesis Supervisor(s):Sacher, Michael
Keywords:transport protein particle (TRAPP) spondyloepiphyseal dysplasia tarda (SEDT) intellectual disability (ID) foie gras domain of TRAPPC11
ID Code:978314
Deposited By: NASSIM SHAHRZAD
Deposited On:16 Jun 2014 14:02
Last Modified:18 Jan 2018 17:46

References:

Allan, B. B., Moyer, B. D., & Balch, W. E. (2000). Rab1 recruitment of p115 into a cis-SNARE complex: programming budding COPII vesicles for fusion. Science, 289(5478), 444-448.
Alvarez, C., Garcia-Mata, R., Hauri, H. P., & Sztul, E. (2001). The p115-interactive proteins GM130 and giantin participate in endoplasmic reticulum-Golgi traffic. J Biol Chem, 276(4), 2693-2700. doi: 10.1074/jbc.M007957200
Amessou, M., A. Fradagrada, T. Falguieres, J.M. Lord, D.C. Smith, L.M. Roberts, C. Lamaze, and L. Johannes (2007). Syntaxin 16 and syntaxin 5 are required for efficient retrograde transport of several exogenous and endogenous cargo proteins. J Cell Sci, 120(Pt 8), 1457-1468. doi: 10.1242/jcs.03436
Appenzeller-Herzog, C., & Hauri, H. P. (2006). The ER-Golgi intermediate compartment (ERGIC): in search of its identity and function. J Cell Sci, 119(Pt 11), 2173-2183. doi: 10.1242/jcs.03019
Aridor, M., Bannykh, S. I., Rowe, T., & Balch, W. E. (1995). Sequential coupling between COPII and COPI vesicle coats in endoplasmic reticulum to Golgi transport. J Cell Biol, 131(4), 875-893.
Aridor, M., & Hannan, L. A. (2000). Traffic jam: a compendium of human diseases that affect intracellular transport processes. Traffic, 1(11), 836-851.
Aridor, M., & Hannan, L. A. (2002). Traffic jams II: an update of diseases of intracellular transport. Traffic, 3(11), 781-790.
Baba, M., Osumi, M., Scott, S. V., Klionsky, D. J., & Ohsumi, Y. (1997). Two distinct pathways for targeting proteins from the cytoplasm to the vacuole/lysosome. J Cell Biol, 139(7), 1687-1695.
Bachinger, H. P., Doege, K. J., Petschek, J. P., Fessler, L. I., & Fessler, J. H. (1982). Structural implications from an electronmicroscopic comparison of procollagen V with procollagen I, pC-collagen I, procollagen IV, and a Drosophila procollagen. J Biol Chem, 257(24), 14590-14592.
Bacon, R. A., Salminen, A., Ruohola, H., Novick, P., & Ferro-Novick, S. (1989). The GTP-binding protein Ypt1 is required for transport in vitro: the Golgi apparatus is defective in ypt1 mutants. J Cell Biol, 109(3), 1015-1022.
Balch, W. E., Dunphy, W. G., Braell, W. A., & Rothman, J. E. (1984). Reconstitution of the transport of protein between successive compartments of the Golgi measured by the coupled incorporation of N-acetylglucosamine. Cell, 39(2 Pt 1), 405-416.
Barlowe, C., L. Orci, T. Yeung, M. Hosobuchi, S. Hamamoto, N. Salama, M.F. Rexach, M. Ravazzola, M. Amherdt, and R. Schekman. (1994). COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell, 77(6), 895-907.
Barrowman, J., Sacher, M., & Ferro-Novick, S. (2000). TRAPP stably associates with the Golgi and is required for vesicle docking. EMBO J, 19(5), 862-869. doi: 10.1093/emboj/19.5.862
Bassik, M.C., M. Kampmann, R.J. Lebbink, S. Wang, M.Y. Hein, I. Poser, J. Weibezahn, M.A. Horlbeck, S. Chen, M. Mann, A.A. Hyman, E.M. Leproust, M.T. McManus, and J.S. Weissman. (2013). A systematic mammalian genetic interaction map reveals pathways underlying ricin susceptibility. Cell, 152(4), 909-922. doi: 10.1016/j.cell.2013.01.030
Beard, M., Satoh, A., Shorter, J., & Warren, G. (2005). A cryptic Rab1-binding site in the p115 tethering protein. J Biol Chem, 280(27), 25840-25848. doi: 10.1074/jbc.M503925200
Behrends, C., Sowa, M. E., Gygi, S. P., & Harper, J. W. (2010). Network organization of the human autophagy system. Nature, 466(7302), 68-76. doi: 10.1038/nature09204
Ben-Aroya, S., Coombes, C., Kwok, T., O'Donnell, K. A., Boeke, J. D., & Hieter, P. (2008). Toward a comprehensive temperature-sensitive mutant repository of the essential genes of Saccharomyces cerevisiae. Mol Cell, 30(2), 248-258. doi: 10.1016/j.molcel.2008.02.021
Bentley, M., Liang, Y., Mullen, K., Xu, D., Sztul, E., & Hay, J. C. (2006). SNARE status regulates tether recruitment and function in homotypic COPII vesicle fusion. J Biol Chem, 281(50), 38825-38833. doi: 10.1074/jbc.M606044200
Ben-Ze'ev, A., Robinson, G. S., Bucher, N. L., & Farmer, S. R. (1988). Cell-cell and cell-matrix interactions differentially regulate the expression of hepatic and cytoskeletal genes in primary cultures of rat hepatocytes. Proc Natl Acad Sci U S A, 85(7), 2161-2165.
Bergmann, J. E., & Singer, S. J. (1983). Immunoelectron microscopic studies of the intracellular transport of the membrane glycoprotein (G) of vesicular stomatitis virus in infected Chinese hamster ovary cells. J Cell Biol, 97(6), 1777-1787.
Bielli, A., Haney, C. J., Gabreski, G., Watkins, S. C., Bannykh, S. I., & Aridor, M. (2005). Regulation of Sar1 NH2 terminus by GTP binding and hydrolysis promotes membrane deformation to control COPII vesicle fission. J Cell Biol, 171(6), 919-924. doi: 10.1083/jcb.200509095
Blower, M. D., Feric, E., Weis, K., & Heald, R. (2007). Genome-wide analysis demonstrates conserved localization of messenger RNAs to mitotic microtubules. J Cell Biol, 179(7), 1365-1373. doi: 10.1083/jcb.200705163
Bogershausen, N., N. Shahrzad, J.X. Chong, J.C. von Kleist-Retzow, D. Stanga, Y. Li, F.P. Bernier, C.M. Loucks, R. Wirth, E.G. Puffenberger, R.A. Hegele, J. Schreml, G. Lapointe, K. Keupp, C.L. Brett, R. Anderson, A. Hahn, A.M. Innes, O. Suchowersky, M.B. Mets, G. Nurnberg, D.R. McLeod, H. Thiele, D. Waggoner, J. Altmuller, K.M. Boycott, B. Schoser, P. Nurnberg, C. Ober, R. Heller, J.S. Parboosingh, B. Wollnik, M. Sacher, and R.E. Lamont. (2013). Recessive TRAPPC11 Mutations Cause a Disease Spectrum of Limb Girdle Muscular Dystrophy and Myopathy with Movement Disorder and Intellectual Disability. Am J Hum Genet, 93(1), 181-190. doi: 10.1016/j.ajhg.2013.05.028
Bonifacino, J. S., & Glick, B. S. (2004). The mechanisms of vesicle budding and fusion. Cell, 116(2), 153-166.
Bonifacino, J. S., & Lippincott-Schwartz, J. (2003). Coat proteins: shaping membrane transport. Nat Rev Mol Cell Biol, 4(5), 409-414. doi: 10.1038/nrm1099
Boycott, K.M., J.S. Parboosingh, B.N. Chodirker, R.B. Lowry, D.R. McLeod, J. Morris, C.R. Greenberg, A.E. Chudley, F.P. Bernier, J. Midgley, L.B. Moller, and A.M. Innes. (2008). Clinical genetics and the Hutterite population: a review of Mendelian disorders. Am J Med Genet A, 146A(8), 1088-1098. doi: 10.1002/ajmg.a.32245
Boyd, C., Hughes, T., Pypaert, M., & Novick, P. (2004). Vesicles carry most exocyst subunits to exocytic sites marked by the remaining two subunits, Sec3p and Exo70p. J Cell Biol, 167(5), 889-901. doi: 10.1083/jcb.200408124
Brandon, E., Szul, T., Alvarez, C., Grabski, R., Benjamin, R., Kawai, R., & Sztul, E. (2006). On and off membrane dynamics of the endoplasmic reticulum-golgi tethering factor p115 in vivo. Mol Biol Cell, 17(7), 2996-3008. doi: 10.1091/mbc.E05-09-0862
Brunet, S., B. Noueihed, N. Shahrzad, D. Saint-Dic, B. Hasaj, T.L. Guan, A. Moores, C. Barlowe, and M. Sacher. (2012). The SMS domain of Trs23p is responsible for the in vitro appearance of the TRAPP I complex in Saccharomyces cerevisiae. Cell Logist, 2(1), 28-42. doi: 10.4161/cl.19414
Brunet, S., Shahrzad, N., Saint-Dic, D., Dutczak, H., & Sacher, M. (2013). A trs20 Mutation That Mimics an SEDT-Causing Mutation Blocks Selective and Non-Selective Autophagy: A Model for TRAPP III Organization. Traffic. doi: 10.1111/tra.12095
Cai, H., Reinisch, K., & Ferro-Novick, S. (2007a). Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev Cell, 12(5), 671-682. doi: 10.1016/j.devcel.2007.04.005
Cai, H., S. Yu, S. Menon, Y. Cai, D. Lazarova, C. Fu, K. Reinisch, J.C. Hay, and S. Ferro-Novick. (2007b). TRAPPI tethers COPII vesicles by binding the coat subunit Sec23. Nature, 445(7130), 941-944. doi: 10.1038/nature05527
Cai, H., Zhang, Y., Pypaert, M., Walker, L., & Ferro-Novick, S. (2005). Mutants in trs120 disrupt traffic from the early endosome to the late Golgi. J Cell Biol, 171(5), 823-833. doi: 10.1083/jcb.200505145
Cai, Y., H.F. Chin, D. Lazarova, S. Menon, C. Fu, H. Cai, A. Sclafani, D.W. Rodgers, E.M. De La Cruz, S. Ferro-Novick, and K.M. Reinisch. (2008). The structural basis for activation of the Rab Ypt1p by the TRAPP membrane-tethering complexes. Cell, 133(7), 1202-1213. doi: 10.1016/j.cell.2008.04.049
Cao, X., Ballew, N., & Barlowe, C. (1998). Initial docking of ER-derived vesicles requires Uso1p and Ypt1p but is independent of SNARE proteins. EMBO J, 17(8), 2156-2165. doi: 10.1093/emboj/17.8.2156
Cao, Y., Cheong, H., Song, H., & Klionsky, D. J. (2008). In vivo reconstitution of autophagy in Saccharomyces cerevisiae. J Cell Biol, 182(4), 703-713. doi: 10.1083/jcb.200801035
Caro, L. G., & Palade, G. E. (1964). Protein Synthesis, Storage, and Discharge in the Pancreatic Exocrine Cell. An Autoradiographic Study. J Cell Biol, 20, 473-495.
Carr, C. M., Grote, E., Munson, M., Hughson, F. M., & Novick, P. J. (1999). Sec1p binds to SNARE complexes and concentrates at sites of secretion. J Cell Biol, 146(2), 333-344.
Chen, S., Cai, H., Park, S. K., Menon, S., Jackson, C. L., & Ferro-Novick, S. (2011). Trs65p, a subunit of the Ypt1p GEF TRAPPII, interacts with the Arf1p exchange factor Gea2p to facilitate COPI-mediated vesicle traffic. Mol Biol Cell, 22(19), 3634-3644. doi: 10.1091/mbc.E11-03-0197
Cheong, H., & Klionsky, D. J. (2008). Dual role of Atg1 in regulation of autophagy-specific PAS assembly in Saccharomyces cerevisiae. Autophagy, 4(5), 724-726.
Cheong, H., Yorimitsu, T., Reggiori, F., Legakis, J. E., Wang, C. W., & Klionsky, D. J. (2005). Atg17 regulates the magnitude of the autophagic response. Mol Biol Cell, 16(7), 3438-3453. doi: 10.1091/mbc.E04-10-0894
Chiari, R., Foury, F., De Plaen, E., Baurain, J. F., Thonnard, J., & Coulie, P. G. (1999). Two antigens recognized by autologous cytolytic T lymphocytes on a melanoma result from a single point mutation in an essential housekeeping gene. Cancer Res, 59(22), 5785-5792.
Choi, C., Davey, M., Schluter, C., Pandher, P., Fang, Y., Foster, L. J., & Conibear, E. (2011). Organization and assembly of the TRAPPII complex. Traffic, 12(6), 715-725. doi: 10.1111/j.1600-0854.2011.01181.x
Choi, M. Y., Chan, C. C., Chan, D., Luk, K. D., Cheah, K. S., & Tanner, J. A. (2009). Biochemical consequences of sedlin mutations that cause spondyloepiphyseal dysplasia tarda. Biochem J, 423(2), 233-242. doi: 10.1042/BJ20090541
Choi, W. I., Qama, D., Lee, M. Y., & Kwon, K. Y. (2013). Pleural cancer antigen-125 levels in benign and malignant pleural effusions. Int J Tuberc Lung Dis, 17(5), 693-697. doi: 10.5588/ijtld.12.0635
Clary, D. O., & Rothman, J. E. (1990). Purification of three related peripheral membrane proteins needed for vesicular transport. J Biol Chem, 265(17), 10109-10117.
Conibear, E. (2011). Vesicle transport: springing the TRAPP. Curr Biol, 21(13), R506-508. doi: 10.1016/j.cub.2011.05.045
Cox, R., Chen, S. H., Yoo, E., & Segev, N. (2007). Conservation of the TRAPPII-specific subunits of a Ypt/Rab exchanger complex. BMC Evol Biol, 7, 12. doi: 10.1186/1471-2148-7-12
Cuervo, A. M. (2004). Autophagy: many paths to the same end. Mol Cell Biochem, 263(1-2), 55-72.
de Ligt, J., M.H. Willemsen, B.W. van Bon, T. Kleefstra, H.G. Yntema, T. Kroes, A.T. Vulto-van Silfhout, D.A. Koolen, P. de Vries, C. Gilissen, M. del Rosario, A. Hoischen, H. Scheffer, B.B. de Vries, H.G. Brunner, J.A. Veltman, and L.E. Vissers. (2012). Diagnostic exome sequencing in persons with severe intellectual disability. N Engl J Med, 367(20), 1921-1929. doi: 10.1056/NEJMoa1206524
Dulubova, I., Sugita, S., Hill, S., Hosaka, M., Fernandez, I., Sudhof, T. C., & Rizo, J. (1999). A conformational switch in syntaxin during exocytosis: role of munc18. EMBO J, 18(16), 4372-4382. doi: 10.1093/emboj/18.16.4372
Duncan, J. R., & Kornfeld, S. (1988). Intracellular movement of two mannose 6-phosphate receptors: return to the Golgi apparatus. J Cell Biol, 106(3), 617-628.
Fukuda, M., Viitala, J., Matteson, J., & Carlsson, S. R. (1988). Cloning of cDNAs encoding human lysosomal membrane glycoproteins, h-lamp-1 and h-lamp-2. Comparison of their deduced amino acid sequences. J Biol Chem, 263(35), 18920-18928.
Ganley, I. G., Carroll, K., Bittova, L., & Pfeffer, S. (2004). Rab9 GTPase regulates late endosome size and requires effector interaction for its stability. Mol Biol Cell, 15(12), 5420-5430. doi: 10.1091/mbc.E04-08-0747
Garcia, I. A., Martinez, H. E., & Alvarez, C. (2011). Rab1b regulates COPI and COPII dynamics in mammalian cells. Cell Logist, 1(4), 159-163. doi: 10.4161/cl.1.4.18221
Gavin, A.C., M. Bosche, R. Krause, P. Grandi, M. Marzioch, A. Bauer, J. Schultz, J.M. Rick, A.M. Michon, C.M. Cruciat, M. Remor, C. Hofert, M. Schelder, M. Brajenovic, H. Ruffner, A. Merino, K. Klein, M. Hudak, D. Dickson, T. Rudi, V. Gnau, A. Bauch, S. Bastuck, B. Huhse, C. Leutwein, M.A. Heurtier, R.R. Copley, A. Edelmann, E. Querfurth, V. Rybin, G. Drewes, M. Raida, T. Bouwmeester, P. Bork, B. Seraphin, B. Kuster, G. Neubauer, and G. Superti-Furga. (2002). Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature, 415(6868), 141-147. doi: 10.1038/415141a
Gecz, J., Hillman, M. A., Gedeon, A. K., Cox, T. C., Baker, E., & Mulley, J. C. (2000). Gene structure and expression study of the SEDL gene for spondyloepiphyseal dysplasia tarda. Genomics, 69(2), 242-251. doi: 10.1006/geno.2000.6326
Gecz, J., Shaw, M. A., Bellon, J. R., & de Barros Lopes, M. (2003). Human wild-type SEDL protein functionally complements yeast Trs20p but some naturally occurring SEDL mutants do not. Gene, 320, 137-144.
Gedeon, A.K., A. Colley, R. Jamieson, E.M. Thompson, J. Rogers, D. Sillence, G.E. Tiller, J.C. Mulley, and J. Gecz. (1999). Identification of the gene (SEDL) causing X-linked spondyloepiphyseal dysplasia tarda. Nat Genet, 22(4), 400-404. doi: 10.1038/11976
Gedeon, A.K., G.E. Tiller, M. Le Merrer, S. Heuertz, L. Tranebjaerg, D. Chitayat, S. Robertson, I.A. Glass, R. Savarirayan, W.G. Cole, D.L. Rimoin, B.G. Kousseff, H. Ohashi, B. Zabel, A. Munnich, J. Gecz, and J.C. Mulley. (2001). The molecular basis of X-linked spondyloepiphyseal dysplasia tarda. Am J Hum Genet, 68(6), 1386-1397. doi: 10.1086/320592
Ghosh, A. K., Majumder, M., Steele, R., White, R. A., & Ray, R. B. (2001). A novel 16-kilodalton cellular protein physically interacts with and antagonizes the functional activity of c-myc promoter-binding protein 1. Mol Cell Biol, 21(2), 655-662. doi: 10.1128/MCB.21.2.655-662.2001
Ghosh, A. K., Steele, R., & Ray, R. B. (2003). Modulation of human luteinizing hormone beta gene transcription by MIP-2A. J Biol Chem, 278(26), 24033-24038. doi: 10.1074/jbc.M211982200
Gillingham, A. K., & Munro, S. (2003). Long coiled-coil proteins and membrane traffic. Biochim Biophys Acta, 1641(2-3), 71-85.
Gonzalez, L. C., Jr., Weis, W. I., & Scheller, R. H. (2001). A novel snare N-terminal domain revealed by the crystal structure of Sec22b. J Biol Chem, 276(26), 24203-24211. doi: 10.1074/jbc.M101584200
Grabski, R., Z. Balklava, P. Wyrozumska, T. Szul, E. Brandon, C. Alvarez, Z.G. Holloway, and E. Sztul. (2012a). Identification of a functional domain within the p115 tethering factor that is required for Golgi ribbon assembly and membrane trafficking. J Cell Sci, 125(Pt 8), 1896-1909. doi: 10.1242/jcs.090571
Grabski, R., Hay, J., & Sztul, E. (2012b). Tethering factor P115: A new model for tether-SNARE interactions. Bioarchitecture, 2(5).
Gross, J.M., B.D. Perkins, A. Amsterdam, A. Egana, T. Darland, J.I. Matsui, S. Sciascia, N. Hopkins, and J.E. Dowling. (2005). Identification of zebrafish insertional mutants with defects in visual system development and function. Genetics, 170(1), 245-261. doi: 10.1534/genetics.104.039727
Gwynn, B., Smith, R. S., Rowe, L. B., Taylor, B. A., & Peters, L. L. (2006). A mouse TRAPP-related protein is involved in pigmentation. Genomics, 88(2), 196-203. doi: 10.1016/j.ygeno.2006.04.002
Hirschberg, K., Miller, C. M., Ellenberg, J., Presley, J. F., Siggia, E. D., Phair, R. D., & Lippincott-Schwartz, J. (1998). Kinetic analysis of secretory protein traffic and characterization of golgi to plasma membrane transport intermediates in living cells. J Cell Biol, 143(6), 1485-1503.
Hostetler, J. A. (1985). History and relevance of the Hutterite population for genetic studies. Am J Med Genet, 22(3), 453-462. doi: 10.1002/ajmg.1320220303
Hou, H., K. Subramanian, T.J. LaGrassa, D. Markgraf
All items in Spectrum are protected by copyright, with all rights reserved. The use of items is governed by Spectrum's terms of access.

Repository Staff Only: item control page

Downloads per month over past year

Back to top Back to top