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Abstract

Authorship Identification and Writeprint Visualization

Steven H. H. Ding

The Internet provides an ideal anonymous channel for concealing computer-mediated

malicious activities, as the network-based origins of critical electronic textual evidence

(e.g., emails, blogs, forum posts, chat log etc.) can be easily repudiated. Authorship at-

tribution is the study of identifying the actual author of the given anonymous documents

based on the text itself, and, for decades, many linguistic stylometry and computational

techniques have been extensively studied for this purpose. However, most of the previous

research emphasizes promoting the authorship attribution accuracy and few works have

been done for the purpose of constructing and visualizing the evidential traits; also, these

sophisticated techniques are difficult for cyber investigators or linguistic experts to inter-

pret. In this thesis, based on the EEDI (End-to-End Digital Investigation) Framework we

propose a visualizable evidence-driven approach, namely VEA, which aims at facilitating

the work of cyber investigation. Our comprehensive controlled experiment and stratified

experiment on the real-life Enron email data set both demonstrate that our approach can

achieve even higher accuracy than traditional methods; meanwhile, its output can be easily

visualized and interpreted as evidential traits. In addition to identifying the most plausible
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author of a given text, our approach also estimates the confidence for the predicted result

based on a given identification context and presents visualizable linguistic evidence for

each candidate.

iv



Acknowledgments

I would like to express my deepest gratitude to my supervisor, Dr. Benjamin C. M. Fung,

for his experienced guidance, constructive criticism, and persistent support on me through-

out the research. He has been a tremendous mentor for me. His encouragement and advices

on both my research and career, which enables me to grow as a researcher, have been price-

less.

I also would like to express my sincere appreciation to my supervisor, Dr. Mourad Deb-

babi, for his patience, confidence, and continuous support on me to complete this research

and thesis. He provides a great source of opportunities and encouragement. I am deeply

grateful to him.

My sincere appreciation also goes to all the faculty members and staff of Concordia

Institute for Information Systems Engineering. In addition, I am very grateful to Concordia

University for giving me this opportunity to study and work.

Last but not least, I would like to express my boundless appreciation from the button

of my heart to my warm family for their irreplaceable and unconditional love. Moreover,

special thanks to my fiancée, Lynne, for accompanying me, also for her firm support and

heartfelt understanding.

v



“The painter has the Universe in his mind and hands.” - Leonardo da

Vinci

vi



To my parents and

Lynne

vii



Contents

List of Figures x

List of Tables xii

1 Introduction 1

1.1 The problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Challenges and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Related Works 9

2.1 Stylometric Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Attribution Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Ensemble Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Adversary Stylometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Attribution Result and Result Visualization . . . . . . . . . . . . . . . . . 14

3 Analysis of Static Stylometry 16

3.1 Static Stylometry and Data Representation . . . . . . . . . . . . . . . . . . 17

viii



3.2 Similarity-based Approach and Distance Functions . . . . . . . . . . . . . 19

3.3 Analysis through Visualization . . . . . . . . . . . . . . . . . . . . . . . . 21

4 A Visualizable Evidence-driven Approach for Authorship Identification 25

4.1 Collecting Evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Analysis of Individual Event . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Event Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4 Secondary-level Correlation . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.5 Chain of Evidence Construction . . . . . . . . . . . . . . . . . . . . . . . 39

4.6 Corroboration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.7 Implementation of Forensic Software for Authorship Identification . . . . . 47

5 Experimental Results 52

5.1 Dataset Preprocessing, Analysis, and Experimental Setups . . . . . . . . . 53

5.2 Controlled Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3 Stratified Randomized Sampling Experiment . . . . . . . . . . . . . . . . 62

5.4 Confidence Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6 Conclusion and Future Work 66

Bibliography 68

ix



List of Figures

1 A sample fingerprint minutiae matching diagram generated by using fin-

gerprint software and data from NEUROtechnology1. . . . . . . . . . . . . 6

2 Examples of spectrum-based information-gain-inspired writeprint visual-

ization scheme. Different color represents writing style of different candi-

date author. Spectrum value represents ascending feature value. . . . . . . . 22

3 Examples of box-plot-based writeprint visualization scheme. Different

colour (series on the diagram) stands for different candidate authors’ pre-

vious writing sample Mi. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Overview of VEA in EEDI framework. . . . . . . . . . . . . . . . . . . . . 26

5 A sample 3-gram space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6 Evidentiary chain visualization: hypothesis representations and the visual-

ized evidence units. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7 Cumulative evidence unit scoring diagram: the serial that achieves the

highest score at the end of x-axis is for the most plausible candidate. . . . . 46

8 The architect design of the forensic software for authorship analysis. . . . . 48

9 Implemented forensic software. . . . . . . . . . . . . . . . . . . . . . . . . 49

x



10 Dataset analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

11 Performance comparison between isolated events. For all the diagrams, the

upper surface is lexical n-gram event, the intermediate surface is character

n-gram event and the lowest surface is POS n-gram event. . . . . . . . . . 56

12 Performance comparison between approaches. For all the diagrams, the

upper surface is VEA, the intermediate surface is the stylometric J48 and

the intermediate surface is the stylometric SVM. . . . . . . . . . . . . . . . 58

13 Performance comparison between VEA, voting ensemble, and lexical n-

gram event. X axis indicates different scenario, for example 2-120 stands

for a 2 candidates scenario with 120 writing samples for each of them. Y

axis indicates the identification accuracy. . . . . . . . . . . . . . . . . . . . 61

14 Performance of VEA on unbalanced-class problem. . . . . . . . . . . . . . 63

xi



List of Tables

1 Static features summarized from [IBFD10]. . . . . . . . . . . . . . . . . . 18

2 Identification accuracy using different models. . . . . . . . . . . . . . . . . 20

3 Employed lingusitic features. . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Features for confidence estimation (identification context) . . . . . . . . . . 35

5 Confidence estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6 Employed stylometric features. . . . . . . . . . . . . . . . . . . . . . . . . 60

7 Confidence estimation result . . . . . . . . . . . . . . . . . . . . . . . . . 64

xii



Chapter 1

Introduction

Research in authorship attribution on anonymous documents is experiencing a continu-

ing exponential growth in recent years because a reliable authorship attribution technology

is useful and valuable in many fields: literary science, sociolinguistic research, Psycholin-

guistics, social psychology, forensics, and medical diagnosis, etc. [Dae13] Especially under

the globalized and decentralized nature of the Internet, the communications of malicious

activities (e.g., illegal material distribution, ransom, and harassment, etc. [AC08,IBFD13])

can be easily hidden or repudiated. Authorship analysis techniques are capable of delving

into the information from different linguistic levels and of identifying the textual identity

trace, which potentially greatly facilitates the work of cyber forensic investigators and sus-

tains the social accountability. Stylometry even has been employed as evidence in a law

court [BAG12].
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The study of authorship attribution has a long-standing history [MW64] and many lin-

guistic stylometry and computational techniques have been developed for solving this prob-

lem. These methods have demonstrated outstanding effectiveness in identifying the actual

authors; however, those techniques that achieve the highest accuracy always involve sophis-

ticated, obscure computational models [Sta09]. These models as black-box approaches can

hardly be interpreted by an investigator and their output is too simple to use as evidence in

a court of law.

These issues handicap traditional methods from being widely applied to the real-life

lawsuits as convincing evidence. Practically, computational stylometry is calling for ‘more

explanation as opposed to purely quantitative measure’ [Dae13]. A better approach should

provide explainable and presentable convincing traces as evidence.

Most of the previous research did not measure the degradation of their methods’ perfor-

mance as the quantity/quality of the available information degraded simultaneously, which

is also noted by [Sol13]. These models are mostly evaluated only on formal writings,

which are relatively long, informative, well-structured, and free from grammatical errors.

On the contrary, short snippets are relatively casual, and their stylometric features have

larger variation. As shown in recent research [KSA11, LD11, NPG+12], authorship attri-

bution accuracy is greatly and directly affected by many objective factors (e.g., text length,

number of known author samples, etc.) due to the unstructured nature of the text itself. It is

critical for authorship analysis researchers to conduct attribution evaluation experiments in

varying attribution scenarios in order to ‘exclude a bogus conclusion based on inadequate

data’ [Sol13] when applied to real-life legal cases.
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In this thesis, we present a visualizable evidence-driven approach, namely VEA, for

the purpose of facilitating the work of cyber investigation and the decision-making pro-

cess in a law court. Our approach is driven by evidence and based on the lazy learning

scheme [NPG+12]. Basically, our method searches inside the anonymous document for

all the writing styles of different linguistic modalities as evidence and matches them to the

pre-built candidate profiles. Evidence from different linguistic modalities are combined by

using confidence estimation. Finally, it visualizes all the evidence on the given hypotheses,

and it is able to present a visual discrimination between hypotheses. Besides, it also pro-

vides an estimated confidence value based on the quality of the evidence and the amount

of available information in a given attribution scenario. More importantly, we modeled

the attribution scenario and conducted our experiments in varying situations (i.e., varying

length of text, varying candidate size, etc.) to fully evaluate our method.

1.1 The problem

In the authorship attribution problem, a set of candidate authors, along with their corre-

sponding individual writing samples, are available, and the task is to identify the most

plausible author among these candidates based on the given anonymous document [MW64,

Hol98, IBFD13]. In most of the previous studies, the candidate sets involved in their sce-

narios are mostly of size ranging from 2 to 20. Although the size of a real-life candidate

set may scale up to more than ten thousand, it is more appropriate to first employ scalable

methods from [KSA11] or [NPG+12] to determine a potential candidate subset, and then
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use other relatively more accurate techniques to figure out the most plausible conclusion.

An open-set authorship attribution problem is a variant of the original authorship attri-

bution problem [KSA11]. In this research problem, the solution is allowed to output an

alternative “unknown” option to indicate that the actual author could not be found or deter-

mined from the given candidate set based on presented available information. In fact, any

solutions that are capable of outputting a monotonous probability indicating the confidence

of a predicted result can be applied to this problem by setting an appropriate threshold on

this output probability value.

We formally define the authorship identification problem with a probability confidence

value output, as mentioned above. To be consistent in terminology, in this thesis “can-

didates” or “candidate authors” refer to the potential authors of the anonymous message,

and “author” or “actual author” refer to the true author of the anonymous message. Let

C = {C1, C2, . . . , CN} be a set of N candidate authors and M = {M1,M2, ...,MN} be

a set of their corresponding writing samples where Mi denotes the set of known samples

authored byCi. The task is to identify the actual author of given anonymous snippet ω from

the candidate set C based on the information available in M . Furthermore, the algorithm

should be able to output a probability value p ∈ [0, 1], which denotes the algorithm’s con-

fidence in its predicted result on the given problem context: p = 0 indicates an completely

uncertain result, while p = 1 indicates a very confident result.
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1.2 Challenges and Contributions

The authorship attribution problem is similar to the text classification problem. The plain

text classification task is tough inherently due to unstructured nature of textual data. By

unifying the feature vector and extracting the vector for each sample text, the textual data

can be transformed into structured samples, which is the typical and traditional authorship

attribution solution [Hol94, Sta09]. However, the deviation of each element inside the vec-

tor is still strongly affected by the length of available text. Online texts are mostly very short

and, therefore, contain limited information about the writing style [IBFD13], which causes

a larger fluctuation around the mean value in the unified feature vector. This introduces

difficulties in achieving higher accuracy due to the presence of more outliers.

In order to retain reasonable accuracy in the identification task, we try to maximize

the information gained from the given anonymous document and combine both statistical

similarity and data mining techniques to develop a hybrid model using the lazy learning

mechanism. Specifically, our contributions are summarized as follows:

• To the best of our knowledge, this is the first trial to design an authorship attribu-

tion approach with the goal of promoting not only the accuracy measure, but also

the interpretability and the visualizability of the predicted result. From the very be-

ginning this approach is designed from the perspective of collecting evidence. We

systematically outlined our approach by employing the EEDI (End-to-End Digital

Investigation) framework [BKW12], one of the recognized forensic processes used
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Figure 1: A sample fingerprint minutiae matching diagram generated by using fingerprint
software and data from NEUROtechnology1.

in digital forensics investigations. By doing this, we are able to construct a cumula-

tive evidentiary effect supporting the final output result, and the construction process

can be easily explained using the EEDI framework.

• Our approach is concise in design, and its output is visualizable. Inspired by the

visualization of fingerprint matching1 in Figure 1, where the correlations among fin-

gerprint minutiae can be visually compared, rather than presenting a simple numeric

result we devise an approach visualizing all the supporting evidence on top of our

visual representation of hypotheses. We are able to present a visual discrimination

among these hypotheses and present detailed supporting evidence. More importantly,

we systematically conducted our experiments under varying authorship attribution

scenarios in order to fully evaluate our approach. Our experiments demonstrate that

our approach achieves the state-of-the-art attribution accuracy, while the output evi-

dence is visualizable, presentable, and explainable.

1The software used to generate this diagram is available at http://www.neurotechnology.com/
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• Based on the specific context of the given authorship attribution problem, our ap-

proach is also able to estimate a confidence value and, thus, can be applied to the

authorship open-set problem. Based on those scenario-related features that we iden-

tified, our method can accurately model and predict the final classification accuracy.

Moreover, to our best knowledge and differing from previously employed voting-

based ensemble methods such as [KSA11], it is the first trial to combine multiple

classifiers by normalizing their scoring vector using individually estimated confi-

dence values on given classification contexts. We consider classifiers built on fea-

tures of different linguistic modalities separately. We explain the necessity of this

step by arguing that stylistic features from different linguistic modalities have differ-

ing capacity in determining the actual author and varying sensitivity to the objective

conditions in a given scenario. This is due to the unpredictable coherence of writing

style among known authors’ sample writings, and it is in accordance with our ob-

servations in the experiments. In addition, our approach is extensible, where other

features from different linguistic modalities or non-linguistic features can be further

added as additional events.

1.3 Thesis Organization

The rest of this thesis is organized as follows: Chapter 2 reviews and discusses recent

development and issues in authorship analysis. Chapter 3 presents our analysis on static

stylometry. Chapter 4 elaborates our Visualizable Evidence-driven Approach of authorship
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attribution in detail. Chapter 5 evaluates our proposed method VEA on the Enron real-life

dataset. Chapter 6 concludes this thesis.
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Chapter 2

Related Works

The history of authorship attribution backed up by computational and statistical methods

can be dated from the 19th century [Sta09]. Contributions to this area can be broadly cat-

egorized from three aspects: the involved stylometric features, the employed attribution

techniques, and the attacks against authorship attribution techniques. Previous research

mainly focuses on promoting quantitative evaluation and few have been done for visual-

ization or explanation. Most explanations for the choice of features and algorithmic pa-

rameters are simply driven by the classification accuracy. In this chapter we are going to

discuss several recent related works and research trends in authorship analysis research.

An inclusive survey on the complete history is beyond the scope of this work. Broader

comprehensive surveys can be referred to [Hol94, Juo06, Sta09].
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2.1 Stylometric Features

Stylometry is the solution of authorship recognition by investigating the linguistic char-

acteristics inside the given text document, and stylometric features are those linguistic

marks that could qualify or quantify these linguistic characteristics [Sta09, BAG12]. Sty-

lometric features can be categorized into different linguistic levels [Dae13, Sta09], or,

more precisely, linguistic modalities [SSMyR13, SPRMy11]. Various features of differ-

ent modalities have demonstrated their effectiveness in distinguishing human writing pat-

terns. These modalities include lexical [KSA06, Hal07, Sav12], character-based [KSA11,

KSAW12, ESMy11], syntactic [KKW+11, SVS+13, RKM10], semantic [HS11, SZB11,

SBZ12] and application-specific modality [CRS+12].

Among all these stylometric features, the character n-gram model in character-based

linguistic modality performs the best, and it is comparatively more robust against the oth-

ers [LD11, KSA11]. The character n-gram model actually captures information cross-

ing different modalities [HS06]; for example, a frequent ‘ed’ bigram in a character-based

modality may also carry the frequent usage of past tense in a syntactic modality. However,

as pointed out in [NPG+12], solutions using these features also take the risk of capturing

the context rather than the authors’ writing style. Regarding the relationship between sty-

lometric modalities, [SSMyR13] employed the word “orthogonal” to assimilate them as

independent components. In fact, this word appears to be over-dramatic because correla-

tions among modalities do exist. For example, some functional words in lexical modality

have exactly one corresponding Part-of-Speech tag in the syntactic modality (e.g., ‘to’ to
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POS tag ‘TO’). We argue that correlations may exist among linguistic modalities, but they

have differing capacity in attributing the correct author based on the given problem context.

Stylometric feature sets involved in previous studies can also be divided into two groups:

the unified feature set and the distinct feature set. Under the unified feature set, which is

employed by most previous solutions, every candidate is modeled using the same set of fea-

tures; however, under the distinct feature set, candidates are given different feature sets. As

shown by [AC08] and [IBFD13], the distinct algorithmic feature set can better distinguish

among candidates’ writing styles and achieve higher performance.

2.2 Attribution Techniques

After the selection of the specific feature scheme, attribution techniques are employed to

predict the actual author of a given snippet. Attribution techniques can be divided into

a similarity-based approach [PSWK03, Hal07, KSA11] and a machine-learning-based ap-

proach [SG06, LV09]. The similarity-based approach employs distance functions [Sav12]

to quantify the similarity between a candidate profile and a given anonymous document,

while the machine-learning-based approach builds complicated models to classify the given

document. Those solutions that have the best performance on benchmark data sets are

mostly machine-learning related.1 Among the machine-learning-based approaches, the

SVM-based approach [AC08] and the association-rule-based approach [IBFD13] achieve

higher accuracy due to the fact that they both consider the combination of feature values

among the high-dimensional space. Other machine-learning techniques are also employed,

1Contest organized in 2004 ALLC/ACH
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involving decision tree, Artificial Intelligence [TSH96], and clustering [LWD13]. Typ-

ically, one-versus-all SVM is chosen as the standard method when comparing different

stylometric features because it has a better multi-class classification capacity [DK05].

Even though a machine-learning-related approach can achieve a higher quantitative per-

formance, most involve a complicated computational model, and it is difficult to interpret

its decision-making process. The similarity-based approach is much easier to visualize and

interpret because it retains a monotonous linear relationship between evidence and conclu-

sion: the smaller the distance between author profile and the targeted document, the more

similar writing styles they possess.

2.3 Ensemble Method

Recent studies in authorship analysis demonstrate a trend of employing ensemble meth-

ods to combine several separately trained classifiers due to the fact that multiple classifiers

can better fit into sample data and boost the attribution accuracy. In [KSA11], multiple

classifiers are built based on different feature sets that are randomly selected from all avail-

able space-free character 4-grams, and the final output depends on their votes. In [KS11],

a co-training approach is employed by using two classifiers. Also, in [RKM10], higher

performance is achieved by employing the votes from classifiers built on different feature

sets.

However, all of these works consider classifiers equally weighted. Based on different
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classification contexts (e.g., the length of an anonymous snippet, candidate score distribu-

tion, training size, etc.), classifiers built by using features of varying linguistic modalities

will have varying capacity to attribute the author correctly. It is more rational to weight

them accordingly: under the specific classification context, the one that can better discrim-

inate writing style should be weighted more. In our approach, each classifier is built based

on features from different linguistic modalities, and it is weighted based on its demonstrated

consistency among prior written samples.

2.4 Adversary Stylometry

From the perspective of the adversary, several studies are trying to circumvent authorship

attribution techniques [KG06, JV10, BAG12]. The most influential study is by [BAG12].

They conducted an experiment on the effectiveness of stylometry obfuscation and imitation.

By recruiting volunteers and using the Amazon Mechanical Turk2 platform, they asked

participants to submit their prior written samples and then write an imitation passage and

an obfuscation passage (no guideline was given to participants on how to obfuscate or

imitate). Their results demonstrate that there is a significant drop in identification accuracy

when it comes to these attacks. Also the accuracy drops when it comes to one-step, two-

step translation attacks.

However, their experimental setup may not truly reflect the effectiveness of their obfus-

cating approach. First, the decrease in identification accuracy is mostly caused by the mis-

match of context between the obfuscated passages and the training passages. Obfuscated

2https://www.mturk.com/mturk/welcome
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passages are about the description of participants’ neighbours while pre-existing writing

samples are mostly “scholarly”, and thus more formal. Second, their experiment also com-

bined and split passages to generate known author writing samples, which may also lead

to a high contextual correlation among samples. As we know, word-level tokens are good

at capturing contextual and thematic correlation [FWE03]. We ran our model based on

pure lexical n-gram on their data set and it showed a high correlation of word-level n-gram

among training samples (86.01% identification accuracy for 45 authors; around 500 tokens

per sample), with a low correlation between obfuscated texts and training texts. Also in

the study of [Juo12], a method for detecting the obfuscated texts is proposed using charac-

ter 3-grams and word 3-grams. Their experiments also demonstrated a large difference in

gram usage between pre-existing samples and obfuscated samples. The difference in the

gram usage pattern implies the contextual and thematic variations, which naturally leads

to the unsatisfactory result when it comes to authorship attribution techniques that employ

character bigrams and trigrams.

2.5 Attribution Result and Result Visualization

Most of the aforementioned studies simply display the most plausible candidate as their

output result. Some recent research is able to add an estimated value indicating the attri-

bution confidence [KSA11, NPG+12]. However, due to the fact that authorship analysis

techniques are not reliable enough to be widely recognized, this kind of simple output will

14



still raise doubts when applied in real-life cases. Instead, visualized evidence corroborat-

ing why this candidate author is selected to be the most plausible one will be more help-

ful. The only work that we found on formally visualizing attribution output is by [AC06].

Nonetheless, their coordinate graph-based visual representation of the output result is still

too abstract from the intuitive linguistic characteristics.
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Chapter 3

Analysis of Static Stylometry

In this chapter, we present our study of the static stylometric features regarding its effec-

tiveness when employed with the similarity-based models for authorship attribution. Firstly

we discuss the schemes for data representation and analyze the distance functions, which

quantify the proximity among individual candidate writing styles in the similarity-based

solutions for authorship identification. After that we present two visualization methods for

analyzing the variation of writing styles among candidate authors. In the end we discuss

their capacities and limitations.

As shown by the following discussion, the similarity-based approaches with static sty-

lometric feature set cannot achieve higher identification accuracy than the state-of-the-

art identification techniques such as [IBFD13]. Moreover, diagram-based visualization

scheme for static stylometric features can be easily interpreted and it is useful for the pur-

pose of feature analysis. However, to visualize the writeprint for authorship identification,

it fails to consider the combination of different stylometric features and in each case the
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number of diagrams for user to inspect is overwhelming.

3.1 Static Stylometry and Data Representation

As mentioned in Chapter 2, stylometric features can be categorized based on their linguistic

properties, more precisely, linguistic modalities. However, based on their representations,

these features can also be divided into static features and dynamic features [LWD12]. Static

features are chosen before the training phase, and they are independent to the dataset, while

dynamic features are chosen as part of the training process [LWD12]. For example, the av-

erage length of sentences is a static feature, and the frequency value of the most frequent

noun in the training corpus is a dynamic feature. To solve the problem defined in Sec-

tion 1.1, initially we consider employing the static stylometric features which have been

predominantly adopted in previous studies [AC08, Sta09, NPG+12, BAG12, IBFD13] until

very recently [KSA11, LWD12].

In the literature of stylometry, lots of features have been developed for the purpose

of modeling writing styles [Juo06, ZLCH06, Sta09]. We summarize the static stylometric

features in [IBFD10] and list them in Table 1. These features cover character level modality,

lexical level modality and syntactic modality. As shown in Table 1, all of these static

features are of type numeric and are calculated using the frequency value or ratio value.

They model the preference and behavior of an individual on using specific vocabulary

and grammatic structures in his/her writings. These features have demonstrated accurate

authorship identification in varying settings [AC08, BAG12, IBFD13].
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Table 1: Static features summarized from [IBFD10].

Features type Features
Character features 1. Character count (P)
(character-based) 2. Ratio of digits to P

3. Ratio of letters to P
4. Ratio of uppercase letters to P
5. Ratio of spaces to P
6. Ratio of tabs to P
7. Occurrences of alphabets (A-Z) (26 features)
8. Occurrences of special characters: <> %|{} . . . (21 features)

Lexical features 1. Token count(T)
(word-based) 2. Average sentence length in terms of characters

3. Average token length
4. Ratio of characters in words to P
5. Ratio of short words (1-3 characters) to T
6. Ratio of word length frequency distribution to T (20 features)
7. Ratio of types to T
8. Vocabulary richness (Yule’s K measure)
9. Hapax legomena
10. Hapax dislegomena

Syntactic features 1. Occurrences of punctuations and function words (311 features).

To represent a snippet as a numeric vector using these predefined features, there are

two major approaches. The first approach is to treat each snippet as a standalone sample,

and the vector for this sample is calculated independently using predefined features. In this

case, there are |Mi| samples for candidate author Ci.

The second approach treats all the snippets written by one specific author as a text

corpus, and only one vector vectorCi is calculated for each author. In this case, there

is no need to combine vectors of written snippets for deriving a final representation for

writing style. We analyze both of these two approaches and discuss their performance in

the following section.
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3.2 Similarity-based Approach and Distance Functions

As mentioned in Chapter 2, attribution techniques are employed to predict the most plau-

sible author after representing text snippets as numeric vectors. In this section, we analyze

similarity-based approach which employs distance functions to quantify the similarity be-

tween anonymous snippet and candidate authors’ writing style, due to the fact that data

mining related techniques, such as SVM, introduce complicated computational models and

thus they can be hardly visualized.

For the first approach of data representation, each candidate author has |Mi| vectors. To

derive a final vector for candidate author Ci, the typical mean center vector is employed:

vectorCi = 1
|Mi|

∑Mi

doc vector
doc. For the second data representation approach, this step is

unnecessary since each candidate already has one dedicated vector vectorCi .

Assuming that we have SF static features in total, to quantify the proximity between

vectorCi and vectorω for anonymous snippet ω, we consider following typical distance

functions:

• Euclidean distance:

dist(vectorCi , vectorω) =

√√√√ SF∑
k=1

(vectorCi
k − vector

ω
k )2

• Cosine distance:

dist(vectorCi , vectorω) = vectorCi · vectorω
|vectorCi | × |vectorω|

• Pearson distance:

dist(vectorCi , vectorω) = 1− 1

SF

SF∑
k=1

(
vectorCi

k − vectorCi

σvectorCi

)(
vectorωk − vectorω

σvectorω
)
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Table 2: Identification accuracy using different models.

1st data representation 2nd data representation
Euclidean distance 0.49 0.22
Cosine distance 0.48 0.33
Pearson distance 0.51 0.29
Minkowski distance p = 3 0.45 0.17
Manhattan distance 0.31 0.19
Chebyshev distance 0.29 0.25

• Minkowski distance with p = 3:

dist(vectorCi , vectorω) =
( SF∑

k=1

|vectorCi
k − vector

ω
k |p
) 1

p

• Manhattan distance:

dist(vectorCi , vectorω) =
SF∑
k=1

|vectorCi
k − vector

ω
k |

• Chebyshev distance:

dist(vectorCi , vectorω) = maxSFk=1(|vector
Ci
k − vectorωk |)

To analyze the effectiveness of aforementioned data representations and distance func-

tions for the task authorship identification, we randomly sampled three scenarios where

10 candidates are involved from the Enron email dataset. We tested the combination of

aforementioned data representations and distance function using 10-fold cross validation,

and used the identification accuracy (ratio of samples that are correctly identified) as our

evalution measure. The test result is listed in Table 2.

This small analytical test is by no mean inclusive and comprehensive, but it turns out

that the second data representation, which considers each writing snippet as independent

sample, outperforms the first representation. Also the Pearson distance appears to at best

20



model the writing styles. However, 51% identification accuracy still is incomparable with

other state-of-the-art identification approaches such as [IBFD13].

3.3 Analysis through Visualization

In this section, we present two visualization schemes for static stylometric analysis. The

first scheme is spectrum based approach, which is inspired from the information gain the-

ory. Four examples are shown in Figure 2, respectively based on the static feature described

below the diagram. In this visual representation scheme, the spectrum stands for the as-

cending feature value, and different colour stands for writing style for different candidate

author. For example, in the first diagram on the left, colour blue mostly gathers in the upper

area on spectrum, and this indicates that the candidate author corresponding to colour blue

demonstrates high number of characters per sentence in his previous writing samples. Each

horizontal line on the spectrum stands for the demonstrated usage on this specific value. If

the colour of this line is purely only one specific colour, it means that this specific value on

this feature is only revealed on the writing samples of the candidate author corresponding to

this colour. For example, if a horizontal line is separated into two parts of equal length with

different colour, it means that this specific value on this feature is demonstrated equally in

the writing samples of these two candidate authors.

To calculate each line, we apply Equation 1 for each candidate author. f stands for

feature type, fv stands for the given specific feature value, L stands for the spectrum width

and coli stands for the colour for candidate i. By combing these Length values calculated
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Figure 2: Examples of spectrum-based information-gain-inspired writeprint visualization
scheme. Different color represents writing style of different candidate author. Spectrum
value represents ascending feature value.

for all the candidate authors, a horizontal line for feature f can be obtained.

Length(f, fv, coli) = L×
|{m|m ∈ Mi & m reveals fv on f}|/|Mi|

N∑
k=1

|{m|m ∈ Mk & m reveals fv on f}|/|Mk|

(1)

This approach visualizes the variation of writing styles on one specific feature among all

candidate authors. It also visualizes the discriminant power of one feature for the problem

of authorship identification. The horizontal lines in the spectrum directly stands for the

feature values revealed in previous writing samples, and in this way, it is easily interpretable

for the user. However, this scheme only considers one feature in one spectrum, and it is

hard to identify possible outliers for each candidate.
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Figure 3: Examples of box-plot-based writeprint visualization scheme. Different colour
(series on the diagram) stands for different candidate authors’ previous writing sample Mi.

Examples of the second visualization scheme for feature analysis are shown in Figure 3.

This scheme is based on the feature value distribution and it employs the box plot to scatter

the demonstrated values on specific feature for each candidate author. In this scheme,

different colour stands for different candidate author, and the box plot with corresponding

colouring represents how previous writing samples of this candidate author distribute on

this feature.

This scheme is able to demonstrate the variation writing styles among all the candidate

authors on a specific stylometric feature. Differing to the first spectrum-based scheme, all

the outliers as well as the mean value and the distributional variance for each author can be

easily identified. However, similar to the spectrum-based scheme, this scheme also fails to
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consider the combination of feature values.

These two schemes are suitable for feature analysis and individual visualization. How-

ever, for the task of authorship identification, they are impractical since they fail to combine

all the features together, which assumes that the user has to inspect them one by one in each

case. This assumption is unpractical since the number of features could be even more over-

whelming. Also, these two types of scheme fail to answer which candidate author is more

similar to the anonymous snippet ω, and thus fail to visualize the solution for the authorship

identification problem.

In the next chapter, we present our evidence-driven approach, which depends on dy-

namic features. By combining similarity based identification approach and data mining

approach, it achieves state-of-the-art identification result, at the same time its output can

be visualized and interpreted. Unlike previous two types of visualization scheme, this ap-

proach aims at visualizing the identification result, and it fits all the features in one diagram

in an interpretable way. Based on cumulative visual effect on the diagram, the most plausi-

ble author can be determined.
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Chapter 4

A Visualizable Evidence-driven

Approach for Authorship Identification

In this chapter, we present our visualizable evidence-driven approach for the authorship

attribution problem, addressing the issues and problems mentioned in Chapter 1. For this

approach we employ the dynamic stylometric feature set, which is different to the static

feature set that applied in previous chapter. In Chapter 5, we will present the experiments

that compare their performance in varying identification context.

For the purpose of promoting its interpretability and explainability, our approach is

designed according to the nine processes defined by the End-to-End Digital Investigation

framework (EEDI) [BKW12]. Considering that every digital crime fundamentally con-

sists of a source point and a destination point, the EEDI framework is a structured flow of

processes to establish an evidence chain connecting these two points. EEDI is a popular

framework employed by digital investigators due to its capacity of structurally organizing
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Figure 4: Overview of VEA in EEDI framework.

multiple evidence sources to test the conclusion.

We design our approach by adopting the EEDI framework, based on the fact that the

authorship attribution problem can also be fundamentally regarded as consisting of two

points: hypothesis and conclusion. By elaborating the linguistic evidences to establish an

evidentiary chain, we can connect these two points together and thus enable our approach

to present the completed chain as visualized evidence. Also, the process of chain construc-

tion can be easily explained by employing the EEDI framework. The briefs of procedures

employed are outlined in Figure 4.

To begin with, we formally define the term authorship hypothesis (see Definition 1).

Basically an authorship hypothesis is a statement that claims a candidate to be the author of

a given anonymous snippet ω. According to the problem defined in Sectioin 1.1, where N

candidate authors are involved, N hypotheses are thus formulated, respectively targeting

on each candidate in C.

Definition 1. (authorship hypothesis) Given an unknown author snippet ω and a known
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candidate Ci, a hypothesis in the authorship attribution problem is the statement that can-

didate Ci authored snippet ω.

4.1 Collecting Evidence

The first phase in the original EEDI framework is Collecting Evidence [BKW12]. This

phase is to detect and collect potential evidence from all available sources of information.

The type of evidence may vary, for example, to identify an intrusion; evidentiary types

could be logs of system access, logs of network packages, and firewall logs, etc. They

required different collection and preprocessing methods. Under the EEDI framework, evi-

dence of different types are grouped together and initiated into independent events, which

will be passed to the next process of EEDI.

Accordingly, based on the given anonymous snippet ω, during this phase our task is

to identify all the linguistic evidence. Likewise, linguistic characteristics reflected on the

given snippet ω are of varying types based on their particular linguistic modalities (e.g.,

syntactic, lexical, and character-based, etc.), and linguistic characteristics of certain modal-

ity require specific techniques for feature extraction [Sta09]. Thus, we group evidence into

independent events based on their linguistic modalities, and construct them respectively.

We start this phase by defining the term evidence unit. Let F (ω) = {f1, f2, . . . , fu}

denote the universe of writing style features extracted from the anonymous snippet ω. Ba-

sically, an evidence unit is defined as one specific writing style feature element with its

associated scoring vector (see Definition 2). Evidence unit is the minimum scoring unit
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Modality Characteristics Details Examples
Lexical Word Level N-gram Length:1-8 ‘It is noticed’,

‘is noticed and appreciated’
Character Character Level N-gram Length:1-8 no, not,

notic, tice, notice, a, an, and
Syntactic POS N-gram Length:1-8 PRP VBZ VBN,

CC VBN, TO DT NN

Table 3: Employed lingusitic features.

and minimum visualization unit, which will be further discussed in Section 4.2.

Definition 2. (evidence unit) Evidence unit eum is formulated as set {feum , ~veum}: given

a certain linguistic feature feum , ~veum ∈ RN is a numeric vector (v1, ..., vi, ..., vN), where

N indicates the number of candidates in C, and value vi indicates the score describing the

correlation between candidate Ci and the linguistic feature feum .

The linguistic writing characteristics employed in this thesis include lexical modality,

character modality, and syntactic modality. Specifically they include lexical word n-gram,

character level n-gram, and syntactic level part-of-speech n-gram [Sta09]. Refer to Table 3

for detailed information and examples. The length of these grams varies from 1-8 because

we can hardly find any gram present repetitively with length more than 8. We employ n-

gram technique because previous studies [KSA11, Sav12, SVS+13] show its effectiveness

in capturing the writing style. Also, they are comparatively easier to visualize and present

as evidence units; more details will be discussed in Section 4.5.

To preserve the explainability of our approach, unlike previous research, we do not

employ any feature selection techniques such as methods in [YP97]. That means we em-

ploy the full set of grams rather than an optimal top-K subset. Previous research, such

as [HS06], demonstrate that such a top-K culled subset can already achieve high accuracy
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in the authorship attribution problem, but it is hard to explain why and how this parame-

ter K, which indicates the size of employed features, is chosen. In the previous research,

the optimal K value is learned from the presented experimental results and it is assumed

that this value would work accordingly against other data. To avoid any exceptional cir-

cumstance, we thus employ the full set of grams to guarantee its explainability. Even

though this approach introduces high runtime complexity, it is acceptable in an investiga-

tion scenario to run it only once for the purpose of collecting evidence. We believe that this

trade-off between explainability and runtime complexity is reasonable.

Definition 3. (event) Given an event evn denoted by {Tevn , Confevn , ~Vevn , EUevn}, Tevn is

the type of linguistic modality with which this event is associated,EUevn is a set of evidence

units such that ∀euevnm ∈ EUevn , feuevn
m

is of type Tevn . Also ~Vevn ∈ RN is a numeric vector

of size N that describes to what extent this event evn supports each predefined hypothesis,

and Confevn ∈ [0, 1] is a numeric value that indicates the confidence that this event will

arrive at its conclusion based on the present classification context.

We define event as a set of evidence units of same linguistic modality and other as-

sociated properties (see Definition 3). Based on the selected linguistic feature scheme, the

extraction procedure is shown in Algorithm 1. The input includes the number of candidates

in C, linguistic modality type Type, and the anonymous snippet ω. In Line 2, all features

of given linguistic type are extracted from the anonymous snippet ω. Based on our selected

features, all the grams of given length 1 to 8 are thereby extracted and then assigned to the

evidence units (see Line 5).

For each linguistic modality, we construct an event by using Algorithm 1. After event
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Algorithm 1 Event Construction (EC)
Input number of candidates N , linguistic type Type, anonymous snippet ω
Output event ev

1: Tev ← Type . associate this event with the given type of linguistic modality
2: features← extract all linguistic characteristics of type Tev from snippet ω
3: for m = 1 to |features| do
4: ~veuev

m
∈ RN , ~veuev

m
← {0} . initialize as a zero vector

5: feuev
m

= featuresm
6: EUev ← EUev ∪ {euevm}
7: end for
8: return ev

constructions, all the events will be passed into the next process, as shown in Figure 4. In

our case, three events are created: a lexical event, a character event, and a syntactic event.

4.2 Analysis of Individual Event

The second phase in EEDI process flow is to analyze each event independently. The goal

in this phase is to isolate each event and access the correlation between each event and the

overall investigation [BKW12]. Correspondingly, during this phase in our algorithm, we

are going to independently assess each event with respect to its contribution in the overall

author identification problem. For each event, two analyses are conducted:

• Scoring: to score each hypothesis (i.e., to score each candidate author) based on the

given event’s feature set, and determine which hypothesis is more plausible to be the

correct one.

• Consistency analysis: to evaluate the feature set of a given event regarding its ca-

pability of distinguishing the writing styles among different candidates based on all

known samples M .

30



Algorithm 2 Event-based Scoring (ES)
Input event ev, writing samples M , anonymous snippet ω
Output scoring vector: ~s

1: ~s ∈ RN , ~s← {0} . create a numeric vector of size N
2: ~a ∈ R|EUev |, ~a← {0}
3: for m = 1 to |EUev| do
4: ~a[m] = tf(feuev

m
, ω) . this vector is for anonymous snippet ω

5: end for
6: for i = 1 to N do
7: ~c ∈ R|EUev |, ~c← {0} . this vector is for candidate author i
8: for m = 1 to |EUev| do
9: ~c[m] = tf(feuev

m
, Mi) × idf(feuev

m
) . here feature feuev

m
is a gram

10: ~veuev
m

[i]← ~c[m]× ~a[m] . store intermediate result
11: end for
12: ~s[i] = ~a · ~c
13: end for
14: return ~s

The first analysis adopts the similarity-based approach to score each hypothesis, and it

is shown in Algorithm 2. To begin with, by using tf−idf scoring scheme and regarding all

the extracted grams from an event as an unified feature vector, N + 1 numeric vectors are

constructed: one numeric vector ~a for anonymous snippet and N candidate author numeric

vectors (~c in Line 7).

Although there exist other scoring functions that may achieve higher identification ac-

curacy [MFJP09] [LV09], we use the tf − idf scheme [ZM98] for its simplicity. As in

Equation 2 and Equation 3, the tf score captures the normalized frequency of a given

gram, and the idf score gives weight to each gram by considering its discriminant power.

The constant Θ is used to avoid the divide-by-zero problem, and it is typically chosen as 1.

We set Θ as 0.1, and in this way it is in a smaller order of magnitude when compared with

|AuthorsEverUsed(gram)|. Other scoring schemes could be employed by considering
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Figure 5: A sample 3-gram space.

them as separate events, which could be explored in future studies.

tf(gram,Mi) =
frequency(gram,Mi)

maxGramFrequency(Mi)
(2)

idf(gram) = log

(
N

θ + |AuthorsEverUsed(gram)|

)
(3)

After the construction of aforementionedN+1 numeric vectors, a final score is derived

for each hypothesis (candidate) by comparing the similarity between each candidate vector

~c and the vector for anonymous snippet ~a. Here we adopt the dotproduct distance to derive

this score, as shown in Line 10 in Algorithm 2.

Considering a sample 3-gram space in Figure 5, ~PV1, ~PV2, and ~PV , respectively,

are the style vectors of candidate1, candidate2, and the anonymous snippet ω. In pre-

vious work such as [KSA11] where n-gram related features are employed, the cosine dis-

tance [SB88] is generally used to measure the distance between vectors. It only considers

the included angles between vectors: the difference between Θ1 and Θ2 in the example.

However, the difference in writing style is reflected in both gram coverage and normalized
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frequency of gram usage. Regarding the direction of ~PV as the anonymous snippet’s writ-

ing style, we take the projection ~PV ′1 of ~PV1 on ~PV and the projection ~PV ′2 of ~PV2 on

~PV for comparison. The projection models the amount of demonstrated evidence from a

given vector and shows the strength of support of the vector in this direction. The distance

function is shown in Equation 4, and for the ease of computation we multiply the norms

of the anonymous vector, which is independent to the values of other vectors, and finally

derive the dotproduct distance function.

similarity(~Pi, ~Pω) = proj ~Pω

~Pi × ‖ ~Pω‖

= ‖~Pi‖ × cos(Θi)× ‖ ~Pω‖

= ~Pi · ~Pω

(4)

At the end of the first analysis (see Line 13 of Algorithm 2), each evidence unit’s scor-

ing vector ~v is updated with the corresponding score vi that describes the correlation be-

tween candidate i and this given linguistic feature. This updated value will be used in the

visualization process elaborated in Section 4.5.

Algorithm 3 shows the second analysis. As defined in Definition 3, each event is rep-

resented as a set of linguistic features. The goal of this analysis is to evaluate features

of a given event with respect to their demonstrated consistency and discriminant power

among the known-author writing samples M . Such properties vary for different linguistic

modalities under the given identification context (e.g., anonymous snippet length, size of

known-author writing, and number of candidates, etc.). Hence, we treat each event as a
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Algorithm 3 Event-based Identification (EI)
Input writing samples M , candidate set C, event ev, anonymous snippet ω
Output event ev

1: folds← split(M ) . split M into 10 folds for cross-validation; each fold includes
nine training groups and one validation group

2: samples← ∅; . create an empty set of samples; each sample follows at-
tributes in Table 4

3: for each fold in folds do
4: precision← tests(Tev, TrainSetfold, TestSetfold) . collect precision value
5: for each doc in TestSetfold do
6: ev′ ← EC(N, Tev, doc)
7: scores← ES(ev′, TrainSetfold, doc)
8: sample← generateSample(scores, doc, precision) . collect other conditions
9: samples← samples ∪ {sample}

10: end for
11: end for
12: Modelev ← buildModel(samples) . build a model for this event ev using preci-

sion as target attribute
13: ~Vev ← ES(ev, M , ω) . collect sample from current classification context
14: Confev ←Modelev.predict(~Vev, ω) . estimate confidence
15: return ev

stand-alone similarity-based classifier. Then a confidence value is estimated for each event

in an isolated manner by building linear models. The features used to model an identifica-

tion context is listed in Table 4. In this way, an event is the minimum confidence estimation

unit.

To proceed with this analysis, a 10-fold cross validation test is conducted by partitioning

all the available writing samples from M into ten groups of roughly equal size (Line 1 in

Algorithm 3). Of these ten groups, one group is selected as a validation set, then the

remaining nine groups are used to build events following Algorithm 1 and to predict the

author of samples from the validation set by using Algorithm 2. The candidate with the

highest score output (Line 7 in Algorithm 2) will be the predicted result. The next step is to

construct a sample (Line 8 in Algorithm 3): the resulting precision value in this fold (i.e.,
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Table 4: Features for confidence estimation (identification context)

scoreavg average score in scoring vector (~Vev)
scoremax maximum score in scoring vector (~Vev)
scoremin minimum score in scoring vector (~Vev)

distmax−runnerup gap statistic between max and the runner-up
testlength number of tokens in testing (anonymous) document ω

tokenscommon number of shared tokens between M and ω

percentage of instances that are correctly identified) will be collected as the target attribute;

other attributes shown in Table 4 will be used to construct a sample. This validation process

is repeated ten times and each group is used as the validation set exactly once. Based on the

collected samples, a linear regression model is built for each event (Line 12 in Algorithm 3).

In Line 13, the event derives a scoring vector for given candidates based on the anony-

mous snippet ω by using Algorithm 2. Based on this scoring vector, a sample is created

with attributes in Table 4, and it is fed into the built model to derive the predicted precision

value, which will be used as the confidence value (Line 14 in Algorithm 3).

Regarding the attributes used to model the identification context, in addition to us-

ing the ‘gap statistic’ that describes the gap between max score and the runner-up in

[NPG+12, KSA11, KSA06], we also include more attributes that describe the scoring dis-

tribution including the maximum, the minimum, the average, and the length of testing

document. Our experiment in Section 5.4 shows that these attributes are all significantly

important for confidence estimation. However, we do not include the size of known-author

writings, because when we conduct the 10-fold cross validation process (Line 3 to Line 12

in Algorithm 3), the intercept value in the built linear model already reflects its effect as

baseline.
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4.3 Event Normalization

Algorithm 4 Confidence-based Normalization (CN)
Input event ev, anonymous snippet ω
Output event ev

1: for i=1 to N do
2: ~Vev[i] = ~Vev[i]× Confev . normalize score for this event
3: end for
4: for m = 1 to |EUeu| do
5: for i = 1 to N do
6: ~euevm [i] = ~euevm [i]× Confev . normalize the score inside each evidence unit
7: end for
8: end for
9: return ev

The event normalization process under the EEDI framework is to normalize all eviden-

tiary data of the same type from different sources into the same measurement level and to

further consider the possibility of combining them [BKW12]. For example, different events

from different sources may have varying timing formats or different time zone settings; in

order to chain them together, these formats must be normalized.

Accordingly, in our approach, after the previous process each event now has a scor-

ing vector, while they have different confidence values, which means they have different

performance levels on discriminating candidates. Before considering the combination of

evidentiary data from these events, normalization of performance for each event must be

done. Hence, we conduct our normalization step by multiplying the scoring vector with

corresponding confidence value for each event (Line 2 in Algorithm 4). Also, correspond-

ingly, we update the numeric vectors stored inside all evidence units of each event by

multiplying the original score with the confidence value (Line 4 to 8 in Algorithm 4). After

normalization, all the events are passed into the next process.
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4.4 Secondary-level Correlation

Under the EEDI framework, this process is to examine the correlation between events and

to consider ways of combining the evidence into an evidentiary chain [BKW12]. In our

case, accordingly, all the events from previous process are correlated and combined to

derive a unidimensional score for each candidate author. The idea is to summarize the

fine-grained evidence of different linguistic modalities into a single kind of evidence: the

linguistic evidence.

Algorithm 5 Event Combination (EC)
Input writing samples M , candidate set C, set of event EV , anonymous snippet ω
Output author, confidence value p

1: ~fs ∈ RN , ~fs← {0} . initialize final scoring vector with 0
2: conf ∈ R|EV |, conf ← {0} . a vector of confidence values
3: for n = 1 to |EV | do
4: for i = 1 to N do
5: ~fs[i] = ~fs[i] + ~Vevn [i]
6: end for
7: conf [n] = Confevn
8: end for
9: prediction← IndexOfMaxValue( ~fs) . determine the prediction result

10: author← C[prediction]
11: agreedConf ∈ R|EV |, conf ← {0}
12: for n = 1 to |EV | do
13: if evn agrees prediction then
14: agreedConf [n] = conf [n]
15: else
16: agreedConf [n] = −1
17: end if
18: end for
19: p = max(agreedConf ) . estimate the final confidence value
20: return author, p

The procedure for evidence combination is shown in Algorithm 5. Since in previous

process all the events have been normalized into the same identification performance level,
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the final scoring vector is simply the sum of the scoring vector from each input event.

In this algorithm, Line 1 to 8 combine scoring vectors from all input events, and Line 9

determines the prediction result as the candidate author that achieves the highest score.

p =
EV

max
evn

P (predicted author | evn)

=
EV

max
evn


Confevn , if evn agrees on final predicted author

−1, otherwise

(5)

To combine multiple confidence values of different classifiers, typical approaches in-

clude Product Rule, Max Rule, Min Rule, and Majority Vote Rule, etc. [KHDM98] Here

we combine the Max Rule and Majority Vote Rule to derive our final estimated confidence

value. As Line 12-19 in Algorithm 5 shows, the final confidence value is determined as the

maximum estimated confidence value among all the events that agree on the final output

candidate (also see Equation 5).

Previous research [KSA11, NPG+12] mostly combine classifiers using the ensemble

method and derive the final result in a voting manner. Differently from these, we combine

classifiers or, rather, events, in our case, in the scoring vector level and each scoring vector

is normalized by the estimated confidence (see Equation 6). Our experiment demonstrates

that this approach can achieve higher accuracy.

~fs[k] =
EV∑
evn

~Vevn [k]× Confevn (6)
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4.5 Chain of Evidence Construction

In this process, under the EEDI framework evidences are aligned on a timeline, and based

on this timeline a coherent chain of evidence is developed [BKW12]. This chain of evi-

dence is able to connect the starting point and ending point of the criminal incident. How-

ever, in our solution, temporal priority among all linguistic evidence is nonexistent. Based

on the employed dot-point distance, the cumulative effect of evidences is instead estab-

lished from hypotheses to conclusion.

~fs[k] =
EV∑
evn

EUevn∑
euevn

m

~veuevn
m

[k] (7)

At this point, based on the input events the cumulative effect to derive the final uni-

dimensional score for each hypothesis can be expressed as Equation 7 by employing the

intermediate results stored in evidence units according to Algorithm 2 and Algorithm 4.

~fs[k] refers to the final score for candidate k in Algorithm 5, which is also the same vari-

able in Equation 6 but is calculated using different intermediate results.

The task of this process is to visualize all the evidence units with respect to their dis-

tance to each hypothesis. The visually cumulative effect of all evidence units should be able

to reflect the difference between candidate scores ~fs[k]. Formally, a visual measurement

function vf should have the following property:

Property 4.5.1. (proportionally visualizable) Given a set of hypotheses H , we say they

are proportionally visualizable over a visual effect function vf if they satisfy: ∀Hk ∈ H

vf(Hk) ∝ ~fs[k].
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To begin with, hypotheses are visualized. As defined in Definition 1, the hypothesis is

the statement that an anonymous snippet ω is authored by one specific author. Given N

candidates in C, we thus haveN hypotheses, and each hypothesis is represented by the raw

tokens extracted from the anonymous snippet ω with the corresponding statement about

one specific candidate.

Figure 6: Evidentiary chain visualization: hypothesis representations and the visualized
evidence units.

As shown in Figure 6, two hypotheses are presented as examples . Each hypothesis is
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represented by the hypothetical statement on the title along with the following evidence ex-

tracted from anonymous snippet ω: the first row represents character level tokens, the sec-

ond row represents word level tokens, and the third row represents Part-Of-Speech tokens.

To make the representation simpler and clearer, in the first row we display the character

tokens with a transparent font colour so that each character token can be easily matched to

the lexical token beneath.

After presenting the visualizations of hypotheses we are going to visualize all evident

units (defined in Definition 2) by colouring each evidence unit’s tokens in the above repre-

sentations of hypotheses. The colour is determined by how affiliated an evidence unit is to

the given hypothesis. An evidence unit hereby is our smallest visualization unit.

To colour the tokens the HSL colour scheme is employed because it is more intuitive

than the RGB colour scheme [ÇLB12]. The HSL scheme encodes colour by using three

parameters: Hue, Saturation, and Lightness. Hue represents the selected tint ranging from

0 to 360, and in most cases it is used as a qualitative representation in data visualization: the

difference in kinds reflected in the difference of tint. Saturation controls its colourfulness

(from 0 to 100), and Lightness measures how much light should be reflected from this

colour, ranging from 0 (appears as black) to 100 (appears as white); 50 is normal [ÇLB12].

Lightness is visually suitable as a quantitative/sequential data representation. Dark equals

more is a standard cartographic convention [HB03] and the difference of lightness can still

be perceived by people with red-green colour vision impairments [HB03]. Thus we adopt

the lightness value representing the scores of evidence units.

Based on our observation, given an evidence unit euevnm and its scoring vector ~veuevn
m

,
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in most cases the range of this vector range(~veuevn
m

) is only a small fraction of the overall

score range. Simply picking up the lightness value of the given evidence unit euevnm , for

hypothesis k based on its score ~veuevn
m

[k], will naturally lead to the imperceptible visual

discrimination among hypotheses. Hence, instead of visualizing the original scores, we

visualize dif(euevnm , k) in Equation 8, which represents how the original score differs from

the minimum score in that scoring vector. The constant α > 1 is used to magnify the range,

avoiding assigning a blank background on euevnm for hypotheses k when ~veuevn
m

[k] equals

min(~veuevn
m

), because if ~veuevn
m

[k] 6= 0, euevnm still contributes to the overlapping effect in the

colouring process, which will be discussed later.

To calculate the value dif(euevnm , k) for each hypothesis k on each evidence unit euevnm ,

the global range maxR of the scaled difference is first calculated by using first three equa-

tions in Equation 8. The range of the scaled difference in scoring vectors is calculated for

each event and then all ranges are combined to reach maxR (globally maximum scaled

difference in all scoring vectors).

range′(eum) = max(~veum)× α−min(~veum)

maxRevn = max({euevnm ∈ EUevn | range′(euevnm )})

maxR = max({evn ∈ EV | maxRevn})

dif(euevnm , k) =
~veuevn

m
[k]× α−min(~veum)

maxR

(8)

The linguistic feature we chose is based on the n-gram model, where each evidence

unit is represented as a sequence of tokens. As such, different evidence units may share the
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same token in the hypothesis representation. Accordingly, each evidence unit is coloured

in an overlapping manner.

LHk
tokenn

(euevnm ) =


LHk
tokenn

− η × dif(euevnm , k), if euevnm stem from tokenn

LHk
tokenn

otherwise

(9)

Given a visual representation of hypothesisHk, we start by initializing all tokens’ back-

grounds with a maximum lightness value (i.e., the background colour reflects 100% light

and appears to be blank), and then we enumerate tokens in the hypotheses representation to

apply Equation 9. Given a tokenn in Hk, for each previously extracted evidence unit euevnm ,

if feuevn
m

stems from tokenn then the token’s lightness value degrades by the multiplication

of degradation factor η and its normalized variant score dif(euevnm , k). Degradation factor

η ∈ (0, 100] controls the contrast between hypotheses and can be designated by the user or

empirically as 100.0/MaxMatch, where MaxMatch indicates the maximum number of

evidence units that can stem from the same token. euevnm stems from tokenn means that the

evidence units euevnm partially or completely originates from the tokenn. For example, evi-

dence unit “your organization” can stem from token “your” in phase “to your organization”

but not from the token “your” in phase “your teams”.

Since this “stem” mapping between tokens and evidence units is identical for all the

hypotheses, given the same evidence unit the lightness value of a token is inversely pro-

portional to the score dif(euevnm , k) of the hypothesis. In this way, it is also inversely

proportional to the original score ~veuevn
m

[k] (see Equation 10).
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LHk
tokenn

(euevnm ) ∝ dif(euevnm , k)−1

∝ (~veuevn
m

[k]−min(~veuevn
m

))−1

∝ ~veuevn
m

[k]

(10)

Our selected visual function vfVEA(Hk) for hypothesis k is the global darkness of its

visual representation, denoted by GD(Hk), which is inversely proportional to the global

lightness GL(Hk) function. We assume that the global lightness value is contributed by

the cumulative lightness of all tokens on the representation. This assumption is reasonable

when the anonymous snippet is short. GD(Hk) is formulated in Equation 11.

vfVEA(Hk) =GD(Hk)

∝GL(Hk)−1
(11)

It can be shown that this visual function satisfies Property 4.5.1 as follows: First, the

global lightness function GL(Hk) for hypothesis k is formulated as the cumulative light-

ness of all tokens (see Step 1 in Equation 12). By combining Equation 10, the GL(Hk)

function is inversely proportional to the final score of hypothesis k (see Step 2-5 in Equa-

tion 12).
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GL(Hk) =

tokens(Hk)∑
tokenn

EV∑
evn

EUevn∑
euevn

m

LHk
tokenn

(euevnm )

∝
( tokens(Hk)∑

tokenn

EV∑
evn

EUevn∑
euevn

m

dif(euevnm , k)
)−1

∝
( tokens(Hk)∑

tokenn

EV∑
evn

EUevn∑
euevn

m

~veuevn
m

[k]
)−1

∝
( EV∑

evn

EUevn∑
euevn

m

~veuevn
m

[k]
)−1

∝
(
~fs[k]

)−1

(12)

In this way, by combining Equation 11, the visual function GD(Hk) is proportional

to the final score of hypothesis k (see Equation 13). Thus, our selected presentation of

hypothesis and evidence unit satisfies Property 4.5.1 over visual function GD(Hk), which

indicates that the darker the hypothesis representation’s holistic colour is, the higher final

score this hypothesis possesses.

vfVEA(Hk) =GD(Hk)

∝GL(Hk)−1

∝ ~fs[k]

(13)

After all the aforementioned colouring is done, one can conclude that the hypothesis

with the most holistically darkest colouring representation is the most plausible one. As

the example in Figure 6 demonstrates, representation of hypothesis 2 is more holistically
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Figure 7: Cumulative evidence unit scoring diagram: the serial that achieves the highest
score at the end of x-axis is for the most plausible candidate.

darker than that of hypothesis 1, and thus the corresponding candidate, candidate Y, is the

plausible author.

In addition, we construct an evidence unit cumulative scoring diagram, as shown in

Figure 7. An area with a different colour represents a different hypothesis, and the one that

achieves the highest score at the end of x-axis is the most plausible one. If many candidates

are involved, or the given anonymous text is too long, the cumulative visual discrimination

will be difficult to perceive in Figure 6, while this scoring diagram is still able to show

which hypothesis achieves the highest final score, and the detailed evidence can still be

referred to the visualized evidence.

At the end of this phase, we also list all the estimated confidence values in Table 5.

In this example, since all three events agreed on same plausible hypothesis, the overall

confidence value is simply the maximum: one.
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Table 5: Confidence estimation.

Events Estimated confidence
n-gram (lexical level) 0.8311
n-gram (character level) 0.9560
n-gram (syntactic level) 0.6867

Voted Maximum 0.9560

4.6 Corroboration

Note that linguistic evidence is only one kind of event, other non-linguistic evidence exists

related to the criminal incident and may support the authorship identification problem. Ev-

idence may include system logs, network logs, or IP-related information from ISP, or even

the socioeconomic relationship between each candidate and this incident. By including this

process, linguistic evidence for this authorship attribution problem becomes a stand-alone

event, and investigators can further connect all the linguistic and non-linguistic events to

corroborate their final hypothesis on the incident.

4.7 Implementation of Forensic Software for Authorship

Identification

To implement the aforementioned approach into a forensic software, we firstly design our

software architect from the perspective of Object Oriented Programming (OOP) [CS11]

and Aspect Oriented Programming (AOP) [KLM+97] for the purpose that other authorship

identification or verification techniques can be implemented and directly loaded into this
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  Author Miner Runtime Core

DLL 
 Manager

Data Abstraction Layer

Data set abstraction interfaces

Raptor document DB or 
others (built-in) DB Factory

Logging Utility

C# Nlog lib

Logging interface

Algorithm Executor Algorithm Abstraction

Training invoker

Identification invoker

Verification invoker

Visualization invoker

Runtime Configurator

Verification interface

Identification interface

Training interface

Algorithm execution 
contexts

Visualization interface

Execution environment variables

User Interfaces

Feature Manager Abstract feature class

Extract interface

Evaluate interface
Feature extractor & analyzer Preprocessing abstraction

Feature storage abstraction

Figure 8: The architect design of the forensic software for authorship analysis.
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Figure 9: Implemented forensic software.

software in the future. This software is based on the Windows .Net Framework1 3.5 plat-

form or its upper versions. The architect design of this software is shown in Figure 8. This

software enables users to create cases, import text samples, conduct analyses, and generate

reports.

This software can be divided into four critical components: logging utility, document

data abstraction and database, runtime core, and user interface. Logging utility we employ

the open source NLog2 library. Document database we choose persistent Raptor3 document

database. The data abstraction layer and the logging layer are implemented as interceptors

1.NET Framework http://msdn.microsoft.com/en-us/vstudio/aa496123
2NLog lib for .Net available at http://nlog-project.org/
3Raptor document database available at http://www.codeproject.com/Articles/375413/

RaptorDB-the-Document-Store
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in AOP, and in these ways they are cross-cutting concerns separated to the core concern of

authorship analysis. For the user interfaces of software workspace we employ open source

project AvalonDock4 and Fluent5 ribbon control. The main execution and thread managing

component is the runtime library, which controls the execution of algorithm, manages the

hot plugging DLL components, and coordinates the data flow.

The user interface of this software can be divided into three part: identification result

and cumulative scoring diagram panel, visualized linguistic evidence panel, and evidence

search panel. The first panel elaborates the prediction results and the reported confidence

values from all events, and displays the cumulative scoring diagram. By clicking on the

curve in this diagram, in the two panels on the both sides, the user is able to see which

pieces of evidence contribute to the slope of the clicked point on this curve. The visu-

alized evidence panel showcases our hypothesis representations and visualized linguistic

evidence. The user is able to browse and see the difference in the matched evidence among

all the candidate authors. Also, by clicking on the evidence (i.e., grams in our case), the user

is able to see how this piece of gram is used by all candidates in their previous writing sam-

ples. All the snippets containing this clicked gram are listed on the left search panel, and

the corresponding grams in all these snippets are highlighted with the candidates’ colours.

In this software, the user is able to manage different authorship analysis scenarios in a

case-based manner. All the imported writings and analytic results can be saved in a user

specified folder. The flexibility provided by the OOP and AOP design enables the hot

plugging of newly implemented authorship analytic approach. Also the document database

4AvalonDock, a docking control for WPF, hosted at http://avalondock.codeplex.com/
5Fluent, a ribbon control for WPF, hosted at https://fluent.codeplex.com/
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can be changed into any other kinds through the data abstraction layer, which provides

possibility of storing data in other media with encryption rather than simply on the local

folder.
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Chapter 5

Experimental Results

The objective of the experiment is to evaluate our approach with respect to the identification

accuracy and robustness under varying circumstance in the authorship attribution problem.

The dataset that we adopted is the Enron Email dataset, which was made public by the

Federal Energy Regulatory Commission [SA04]. This dataset contains 517,424 emails

from 151 users. Email data tend to be relatively short compared to other literature works

and bring more challenges to the authorship identification problem.

As previous work demonstrated, the identification context (i.e., the available samples,

and available hypotheses/candidates, etc.) of the authorship attribution problem strongly

affects the solution’s performance, while most of the previous experiments by design failed

to test their model systematically. To avoid other possible explanations of our experimen-

tal results, we first conducted statistical analysis of the dataset and then conducted both

controlled sampling experiments and stratified randomized experiments.
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Figure 10: Dataset analysis.

5.1 Dataset Preprocessing, Analysis, and Experimental Se-

tups

We started by conducting preprocessing procedures on this dataset. The first procedure

extracted the body from each email and the second procedure cleaned up the identity-

related information. The extraction procedure was completed by using a set of regular

expressions that removed the ‘forward’ and ‘reply’ part of the email as well as all the

header information. To remove the identity-related information is relatively more complex.

We completed this procedure by employing following steps:

• We utilized the regular expressions to replace URL links with the ‘< link/ >’ tag.

• We utilized the Name Finder in OpenNLP1 project to replace all the found name

entries with the ‘< name/ >’ tag.

• We fetched the employee information file from the data set and generated a list of
1available at http://opennlp.apache.org
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first names and a list of last names. We found all the tokens that were exactly the

same, case ignored, as the names in these two lists and replaced them with the ‘<

name/ >’ tag.

• Based on the above name lists, we found all the tokens that had exactly 1 string

editing distance [Lev66] to the names, case ignored, and replaced these tokens with

the ‘< name/ >’ tag. We assume that the author of a given email can only make

one character mistake when typing his or another’s first/last name.

• Also based on the employee information, we constructed a list of short names, by

concatenating the first character of a first name and that of the last name. We found

these tokens and replaced them with the ‘< name/ >’ tag in the last sentence for

each email.

After preprocessing we analyzed the distribution of email length for this data set. As

plotted in Figure 10, we conducted the Empirical Distribution analysis, the Kernel Density

analysis, and the Histogram analysis. These diagrams show that most of the emails inside

this dataset are of length less than 11. According to the criteria concluded in [Bur07], at

least 1000 emails per author are required to guarantee a good identification result. This

introduces a great challenge to authorship identification solutions when it comes to a con-

text with a small number of writing samples. For the length distribution, emails of length

ranging from 1 to 26 comprise 50% of the total, and 75% of the total can be categorized

into emails of length ranging from 1 to 55. 99% of the total are emails of length ranging

from 1 to 320.
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In order to systematically test our approach, we designed two experiments: a controlled

experiment and a stratified randomized sampling experiment. The first experiment is to

evaluate the performance of our approach under different authorship attribution contexts

and to evaluate its performance degradation as the available information systematically

degrades. The second experiment is to simulate the real authorship identification scenario,

where emails of varying lengths are sampled for each candidate author, and, in most cases,

the size of known-author writing samples is unbalanced.

The authorship attribution problem can be regarded as a multi-class text classification

problem: we classify the anonymous snippet into a set of predefined classes (i.e., candidate

authors) based on the known samples from each class (i.e., writing samples of each candi-

date author). We evaluate our approach with respect to the classification accuracy measure,

which indicates the percentage of anonymous snippets that are correctly classified.

For all the experiments described below, we adopt the 10-fold cross validation test,

where the emails for each author are split into 10 groups. For a total of 10 iterations, each

is used as a validation set exactly once (used as anonymous samples) and the remaining 9

groups are used as known author samples. The final accuracy measure is the average of

accuracy values of these 10 iterations.

5.2 Controlled Experiment

In this experiment, we sampled documents randomly multiple times under controlled con-

ditions and systematically tested our approach with respect to its identification accuracy.
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Figure 11: Performance comparison between isolated events. For all the diagrams, the

upper surface is lexical n-gram event, the intermediate surface is character n-gram event

and the lowest surface is POS n-gram event.
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First, based on previous work, we identified the three most critical factors that significantly

affect authorship attribution performance: the size of known-author writings, the size of

the candidate set, and the document length. We counted the document length with respect

to the number of tokens that it had. The size of known-author writings is measured by

the number of documents (i.e., emails). We did not break a complete email or reconstruct

an email by concatenation. The following are the selected factors and their selected value

intervals:

• The distribution of the email length naturally leads us to conduct experiments on

three different levels: emails of length 1-26 (50%), emails of length 27-55 (25%),

and emails of length 56-320 (24%).

• For the size of samples for each author, we selected 20, 40, 80, and 120.

• For the size of candidate set, we chose the typical values: 2, 5, 10, 20.

Since each candidate author is regarded as a class in a classification problem, it has

its own accuracy value (number of samples that are identified correctly) during the 10-

fold validation. In this case, because each author has the same controlled number of known

writing samples, our problem can be attributed to the balanced-class classification problem.

Hence, we only adopted the Macro Average [Sav12] to calculate the overall accuracy value

in each round. Macro average accuracy is simply the average of all accuracy, where all the

classes are equally weighted.

By controlling the combination of the aforementioned conditions, we conducted three

tests. The first one was conducted by isolating each event in order to systematically test
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the difference between the events with respect to their identifying accuracy. The second

one was conducted by employing the complete VEA approach in Chapter 4 to compare

its performance with other typical approaches. Since our approach of combining events

(i.e., linguistic modalities) can be attributed as an ensemble method, we also compared our

approach with the typical voting ensemble method.

Figure 11 shows the experimental result of test one, in which each event is tested in

an isolate manner by employing Algorithm 2. In each diagram, the Num of Candidates

axis represents the size of candidate authors, and the Num of Samples axis represents the

size of samples for each author in the 10-fold validation. The z axis indicates the macro

average accuracy under the given values of x and y. Also, the colour of the gradient surface

indicates the accuracy value: the brighter the colour, the higher accuracy value the point

has. For all three diagrams in this figure, the upper surface is the event for lexical n-gram,

which means it achieves the best identifying accuracy across all given conditions, and the

intermediate surface is the event character n-gram, also on the bottom, the lowest surface

is for the event Part-Of-Speech n-gram.

The three diagrams in Figure 11 show that as the available information decreases in the

identification context, the identification accuracy for all isolated events drops significantly.

Lexical n-gram performs the best across all the given conditions, but it is significantly

affected by the length of the given anonymous document, while the POS n-gram event

appears to suffer less from this condition even though it achieves at most around 80%

accuracy. Also, as the size of candidate increases, performance of the event Lexical n-

gram appears to drop more slowly than the other two surfaces.
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Table 6: Employed stylometric features.

Stylometry Number of Features
lexical features 105
function words 150

punctuation marks 9
structural features 15

domain-specific features 13
gender-preferential features 10

total 302

This result indicates that evidence of different linguistic modalities has different degrees

of sensitivity to the conditions of the given investigation scenario. Hence, for a confidence

estimation task, where a confidence value is part of the identification result implying how

reliable this result is, a distinct model should be built for each linguistic modality. Also,

when combining evidence from these modalities, they should be weighted accordingly.

Figure 12 shows the experimental results of the second test. In this experiment we

compare the performance of VEA to the other two typical stylometric techniques. The

selected stylometric feature set of these two approaches consists of 302 stylometric fea-

tures, as shown in Table 6. These features are used and discussed in [IBFD13]. To have a

comparable result, we did not adopt any n-gram related dynamic feature. Two attribution

techniques were selected: SVM and J48, which demonstrated the most comparable per-

formance in [IBFD13]. We choose the libSVM [CL11] for SVM implementation and J48

decision tree implementation in weka2.

As indicated in Figure 12, which is the same diagram representation used in Figure 11,

our VEA approach consistently outperforms the other two typical approaches. Even though

the given anonymous document is only of length 1-26, it can still achieve more than 85%
2http://www.cs.waikato.ac.nz/ml/weka/
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accuracy in a two-candidate scenario. Also, as the diagrams show, our VEA approach is

more robust against information drops with respect to the candidate size and the available

known-author samples.

In the third test we compared our VEA approach with a typical voting-based ensemble

method and the lexical n-gram-event-only approach. The experimental result is shown in

Figure 13. The Y axis represents Macro Average accuracy and the X axis stands for the

combination of conditions. For example, ‘2-120’ stands for 2 candidate authors, each of

whom has 120 writing samples. As the diagram illustrates, our VEA approach promotes the

identifying accuracy and performs better than all the others in almost all cases, especially

when the given documents are short. It always outperforms the voting ensemble approach,

and it performs better than the pure lexical n-gram approach, except in 3 scenarios.

5.3 Stratified Randomized Sampling Experiment

In this section, we describe the second experiment. In order to simulate the actual au-

thorship identification task, we conducted the stratified randomized experiment, where the

sample size for each author is unbalanced and the variant in document length of the sam-

ples is much larger. In this experiment, the number of emails that we randomly sampled

for each candidate depends on how many emails this candidate actually has in the whole

dataset. We also manually examine and conduct preprocessing steps for each email with

respect to its identity-related information to avoid the explanation that the high accuracy is

simply attributed to the capture of identity-related information rather than the writing style.
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Figure 14: Performance of VEA on unbalanced-class problem.

Both the Macro Average and Micro Average accuracy measures are employed in this

experiment. As mentioned above, macro average is simply the average of accuracy value

from each author (i.e., class in classification problem). Micro Average accuracy employs

the confusion matrix to calculate the accuracy value for multi-class classification [Sav12].

Typically Micro Average will yield better results in an unbalanced classification problem

because it gives more weight to the class that has more samples. For example, in a 2-class

classification problem, if for the first class 1 sample is correctly classified out of 10, and

for the second class 19 are correctly classified out of 20, the Macro Average accuracy is

simply (1/10 + 19/20)/ = 0.525 but the Micro Average is (1 + 19)/(10 + 20) = 0.667.

The experimental result is shown in Figure 14. The labels on the x axis indicate the

given scenario. For instance, ‘2a’ means a stratified sampling on two random authors while

‘2b’ is another stratified sampling on two random authors. The y axis represents the accu-

racy value, and two serials in the diagram respectively stand for the Macro Average and the

Micro Average. As shown in this diagram, our VEA approach can still handle unbalanced
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Table 7: Confidence estimation result

Variable Coefficient z value Pr(>| z |)
scoreavg 1.204e+ 01 7.429 1.10e− 13
scoremax −4.234e+ 00 −5.747 9.07e− 09
scoremin −7.368e+ 00 −4.333 1.47e− 05

distmax−runnerup 2.032e+ 00 4.818 1.45e− 06
testlength 4.775e− 04 5.004 5.63e− 07

tokenscommon 5.811e− 04 4.378 1.20e− 05
MAE: 0.057536618 R2 : 0.90564199

class problems and achieve good identifying accuracy with respect to both Macro Average

and Micro Average.

5.4 Confidence Estimation

In this section, we present our confidence estimation results. To verify how well our se-

lected features can model the identification accuracy value, we first collected the input

samples for building an estimation model from all previous runs of the VEA approach in

the above experiments. Specifically, these samples were collected from Line 11 in Algo-

rithm 3 based on the features in Table 7, along with their validation accuracy value. This

test is to evaluate whether the features we selected can model the output accuracy value.

The modeling result is in the first 6 rows in Table 7, which includes the estimated coeffi-

cients and the standard z-test for each coefficient. In this table, all the z values indicate that

on our selected features all significantly affect the target accuracy attribute. Note that the

gap statistic distmr [KSA06] does affect the prediction result but the distribution related

features in scores (i.e., socreavg, scoremax) play relatively more important and stable roles.

Also, in order to verify whether our estimation model can actually predict the accuracy
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value of the unseen data (unseen scenarios), we collect all the estimated confidence values

from VEA in all of the above experimental runs. Specifically, these predicted values come

from Line 22 in Algorithm 5. We also gather the corresponding actual accuracy value

in the testing phase in all our 10-fold cross-validation experiments. By comparing these

predicted accuracy values and actual accuracy values, its performance on the unseen data

can be evaluated. Both Mean Absolute Error and R2 statistics are shown in the last row

in Table 4. The MAE value indicates that on average our predicted confidence value has a

5% difference to the actual accuracy value, and the R2, which closes to 1, indicates a very

good prediction result.
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Chapter 6

Conclusion and Future Work

In this thesis, we present our Visualizable Evidence-driven Approach (VEA) for the author-

ship attribution problem. To facilitate its interpretability and explainability, it is designed

according to the EEDI (End-to-End Digital Investigation) framework and it is able to vi-

sualize and corroborate the linguistic evidence supporting our output attribution results.

Also, we conducted comprehensive experiments to fully evaluate our VEA approach and

have shown that it can achieve state-of-art authorship attribution accuracy. We have no-

ticed the scalability issues of this method; when dealing with a scenario with more than 20

candidates, it is more suitable to identify a small subset of candidates using other scalable

methods, and after that employ our method to construct cumulative visualized evidence.

In general, the presented approach achieves a higher attribution accuracy than traditional

stylometry, while its output is visualizable and presentable.

Future study for improving the VEA approach has the following directions:
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• Include stylometric features (e.g., features in Table 1) other than the employed n-

gram features into VEA approach as additional events. It is very possible for the

VEA approach to achieve comparable or even better identification accuracy, since

there is an increased amount of input information and VEA weights the events by

considering their demonstrated discriminant power in the training set. Also, taking

stylometric features other than n-gram into the model can reduce the chance that

VEA approach models the themes rather than the actual writing style.

• Design a new hypothesis visualization scheme that is able to represent not only n-

gram features but also other stylometric features (e.g., features in Table 1). Currently,

VEA is only able to visualize n-gram features due to the limited hypothesis represen-

tation. It is possible to modify the representation to incorporate and visualize other

features. For example, the feature ratioofdigitstocharactercount in Table 1 can be

possibly represented as digits in the anonymous snippet and then their highlighted

colours represent the degree of proximity to corresponding candidate authors.

• To design authorship analysis solution, an other direction can be exploiting the power

of language model. Recently, the research of language model has been developing in

an increasing pace. The most promising one is the work from [MSC+13] on learning

vector representation of words. The learned vector space models the semantic rela-

tionship between words. As different people have varying writing styles and distinct

individual vocabulary, the learned vector space describes different semantic relation-

ship and it is possible to distinguish writing styles based on this learned model.
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Authorship Attribution (AA) studies have a history longer than 120 years, while it is

still not as reliable as other successful biological idiosyncrasies to be widely accepted by

the public. Distinct from biological idiosyncrasy, the plain text data with its unstructured

property and variant quality introduces larger fluctuation in individual style under changing

scenarios. It is true that the studies on AA is calling for a widely acceptable systematic stan-

dard for conducting AA evaluational experiment, and that the purely quantitative measure

of attribution result with poor presentability and interpretability is practically insufficient

as evidentiary proof from the perspective of forensic science. We believe that more studies

on Authorship Analysis considering these factors are needed to make AA techniques more

reliable and practical.
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