
MINIMUM LATENCY AGGREGATION

CONVERGECAST IN WIRELESS SENSOR NETWORKS

Jonathan Gagnon

A thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Computer Science

Concordia University

Montréal, Québec, Canada

April 2014

c© Jonathan Gagnon, 2014

Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Jonathan Gagnon

Entitled: Minimum Latency Aggregation Convergecast in Wireless

Sensor Networks

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining commitee:

Chair

Dr. Olga Ormandjieva

Examiner

Dr. Hovhannes Harutyunyan

Examiner

Dr. Jaroslav Opatrny

Supervisor

Dr. Lata Narayanan

Approved by
Chair of Department or Graduate Program Director

Dean of Faculty

Date

Abstract

Minimum Latency Aggregation Convergecast in Wireless Sensor

Networks

Jonathan Gagnon

In wireless sensor networks, sensor nodes are used to collect data from the environ-

ment and send it to a data collection point or a sink node using a convergecast tree.

Considerable savings in energy can be obtained by aggregating data at intermediate

nodes along the way to the sink.

We study the problem of finding a minimum latency aggregation tree and trans-

mission schedule in wireless sensor networks. This problem is referred to as Minimum

Latency Aggregation Scheduling (MLAS) in the literature and has been proven to

be NP-Complete even for unit disk graphs. We present a new simpler proof of the

NP-Completeness of the MLAS Problem for arbitrary networks and unit disk graphs.

We give tight bounds for the latency of aggregation convergecast for grids, tori, and

trees. For regular unit interval graphs, we provide an algorithm which is guaranteed

to have a latency that is within one time slot of the optimal latency. Finally, for unit

interval graphs we give a 2-approximation algorithm to solve the same problem.

For arbitrary graphs, we introduce a new algorithm for building an aggregation

tree. Furthermore, we propose two new approaches for building a transmission sched-

ule to perform aggregation on a given tree. We evaluate the performance of our algo-

rithms through extensive simulations on randomly generated graphs and we compare

them to the previous state of the art. Our results show that one of our algorithms

has a latency that is 38% less than the latency of the previous best algorithm.

iii

Acknowledgments

First and foremost, I would like to express my sincere gratitude to my supervisor,

Dr. Lata Narayanan, for her help and guidance throughout this thesis. Her deep

knowledge of the field and her valuable suggestions helped me achieve the results

presented in this thesis. I have learned a lot from working with her and she gave

me the tools that I needed to complete this work. Her availability outside of normal

working hours was also very much appreciated.

I also wish to thank my wife and two daughters, who have let me spend the

necessary hours to be able to work on this problem. Without their encouragements

and support, it would have been very difficult to complete this thesis.

iv

Contents

List of Figures viii

List of Tables xi

1 Introduction 1

1.1 Model and Problem Statement . 3

1.2 Notation . 6

1.3 Summary of Contributions . 7

1.4 Outline of Thesis . 7

2 Related Work 9

2.1 Aggregation Techniques for data gathering 10

2.1.1 SPIN family of protocols . 11

2.1.2 Directed Diffusion . 12

2.1.3 LEACH . 13

2.1.4 LEACH-C . 14

2.1.5 CLUstered Diffusion with Dynamic Data Aggregation (CLUDDA) 15

2.1.6 Other Approaches . 16

2.2 Scheduling Algorithms for Convergecast 17

2.2.1 Optimal and near-optimal algorithms for line and tree networks 18

v

2.2.2 BFS-Based Approximation Algorithm 21

2.3 Minimum Latency Aggregation Scheduling 22

2.3.1 Shortest Data Aggregation (SDA) 23

2.3.2 Randomized Distributed Algorithm 24

2.3.3 MIS-based Algorithms . 25

2.3.4 BSPT-WIRES . 26

2.4 Differences with our work . 28

3 Optimal and Approximation Algorithms for Specific Topologies 30

3.1 NP-Completeness Proof . 30

3.2 Trees . 37

3.3 Grids and Tori . 40

3.4 Unit Interval Graphs . 46

3.4.1 Lower Bound for Unit Interval Graphs 46

3.4.2 Algorithm for Unit Interval Graphs 50

3.4.3 Lower Bound for Regular Unit Interval Graphs 51

3.4.4 Algorithm for Regular Unit Interval Graphs 56

4 Heuristics for Arbitrary Graphs 64

4.1 Degree-Constrained Aggregation Tree (DCAT) 64

4.2 Scheduling Algorithms . 67

4.3 Simulation Results for DCAT . 71

4.3.1 Performance Comparison for Small Graphs (5 by 5) 72

4.3.2 Performance Comparison for Medium-Sized Graphs (10 by 10) 74

4.3.3 Performance Comparison for Large Graphs (20 by 20) 77

4.4 Simulation Results for Scheduling Algorithms 79

4.4.1 Performance Comparison for Small Graphs (5 by 5) 79

vi

4.4.2 Performance Comparison for Medium-Sized Graphs (10 by 10) 82

4.4.3 Performance Comparison for Large Graphs (20 by 20) 84

4.5 Performance Analysis . 88

4.5.1 DCAT Performance . 88

4.5.2 WIRES-G and DCATS Performance 92

5 Conclusion and Future Work 96

Bibliography 98

vii

List of Figures

1 A multi-line network. 20

2 Reduction of a tree network into linear branches. 20

3 Illustration of a tree and schedule for an instance of 3-SAT. 33

4 Example tree and schedule for a specific instance of 3-SAT. 34

5 Example of an optimal schedule for a perfect binary tree. 38

6 Example of an optimal schedule for a perfect ternary tree. 38

7 Example of a schedule built by the ScheduleGrid algorithm for a

5× 5 grid with the sink node located at (3, 3). 43

8 Illustration of a graph with 3 cliques 48

9 Illustration of a schedule built by the Hub Algorithm. 50

10 Optimal solution using the Hub Algorithm. 57

11 Illustration of the tree and schedule built by the Hub Algorithm for a

Regular Unit Interval Graph of size 2k. 57

12 Illustration of using S0 as a data aggregator for a Regular Unit Interval

Graph of size 2k. 58

13 Tree and schedule for G1 and G2. 58

14 Tree and schedule for G2 and G3. 59

15 Example showing that minimizing the highest degree in the aggrega-

tion tree is not necessarily a good approach. 67

viii

16 Average aggregation convergecast latency comparison between DCAT

and BSPT for a network size of 5 by 5. 72

17 Average gains of using the DCAT algorithm when compared to the

BSPT algorithm for a network size of 5 by 5. 74

18 Average aggregation convergecast latency comparison between DCAT

and BSPT for a network size of 10 by 10. 75

19 Average gains of using the DCAT algorithm when compared to the

BSPT algorithm for a network size of 10 by 10. 76

20 Average aggregation convergecast latency comparison between DCAT

and BSPT for a network size of 20 by 20. 77

21 Average gains of using the DCAT algorithm when compared to the

BSPT algorithm for a network size of 20 by 20. 79

22 Average aggregation convergecast latency for a network size of 5 by 5. 80

23 Average gains of using DCAT, WIRES-G or DCATS when compared

to WIRES-BSPT for a network size of 5 by 5. 81

24 Average aggregation convergecast latency for a network size of 10 by 10. 83

25 Average gains of using DCAT, WIRES-G or DCATS when compared

to WIRES-BSPT for a network size of 10 by 10. 84

26 Average aggregation convergecast latency for a network size of 20 by 20. 85

27 Average gains of using DCAT, WIRES-G or DCATS when compared

to WIRES-BSPT for a network size of 20 by 20. 87

28 Relationship between the degree in the graph and the average number

of children in the aggregation tree for a density of 30. 89

29 Relationship between the degree in the graph and the average number

of children in the aggregation tree for a density of 100. 90

ix

30 Number of nodes that have a certain number of children in the aggre-

gation tree (density=30). 90

31 Number of nodes that have a certain number of children in the aggre-

gation tree (density=100). 91

32 Relationship between the degree in the graph and the average number

of children in the aggregation tree for a density of 30. 92

33 Relationship between the degree in the graph and the average number

of children in the aggregation tree for a density of 100. 93

34 Location of the high-degree nodes in the aggregation tree (density=30). 94

35 Location of the high-degree nodes in the aggregation tree (density=100). 94

x

List of Tables

1 Example convergecast schedule for a 10-node line network 19

2 Average aggregation convergecast latency comparison between DCAT

and BSPT for a network size of 5 by 5. 73

3 Average aggregation convergecast latency comparison between DCAT

and BSPT for a network size of 10 by 10. 76

4 Average aggregation convergecast latency comparison between DCAT

and BSPT for a network size of 20 by 20. 78

5 Average aggregation convergecast latency for a network size of 5 by 5. 80

6 Average latency gains of using DCAT, WIRES-G or DCATS when

compared to BSPT-WIRES for a network size of 5 by 5. 82

7 Average aggregation convergecast latency for a network size of 10 by 10. 83

8 Average latency gains of using DCAT, WIRES-G or DCATS when

compared to BSPT-WIRES for a network size of 10 by 10. 85

9 Average aggregation convergecast latency for a network size of 20 by 20. 86

10 Average latency gains of using DCAT, WIRES-G or DCATS when

compared to BSPT-WIRES for a network size of 20 by 20. 87

xi

Chapter 1

Introduction

A Wireless Sensor Network (WSN) is a collection of densely deployed sensor nodes

that collaborate to monitor physical events or conditions [2]. WSNs have a wide range

of applications such as environmental monitoring, target detection and tracking, bat-

tlefield surveillance, disaster relief, health and home automation. Sensor nodes are

low-cost battery-powered devices that are equipped with a radio transceiver and one

or more sensors that can detect aspects of the environment such as temperature,

humidity, or light. Sensor nodes are usually deployed in an arbitrary manner inside

an area to be monitored. The position of sensor nodes is not always predetermined,

which means that the nodes must be able to self-organize after being deployed. This

versatility is useful for some applications where careful deployment is not possible or

when the environmental conditions might affect the network topology. Since trans-

mission ranges are small, communication between nodes is achieved by multi-hop

routing, with sensor nodes forwarding packets on behalf of other nodes.

The main function of WSNs is to collect information about the environment in

which they are deployed. In most applications, the collected information is sent to a

selected node called the sink. This communication pattern is called convergecast [27]

1

and has been studied extensively in the context of WSNs. Convergecasting is usually

done by building a logical tree rooted at the sink and by routing packets along

the tree’s edges toward the sink. Properly scheduling the nodes’ transmissions is

important to avoid possible interference.

There are two other main communication patterns that are used in WSNs [27]:

broadcast and local gossip. The broadcast communication pattern is used when a

node in the network, usually the base station, needs to send a message to all the

other nodes in the network. For example, reprogramming all the nodes in a sensor

network may be achieved using a broadcast operation. Local gossip is used when

sensor nodes need to collaborate with their neighbors to detect some events in the

environment. For example, local gossip may be a useful primitive in a wildfire or

target detection application.

Sensor nodes are powered by small batteries, and in many applications, it is infea-

sible or very expensive to replace or recharge the battery. Therefore, energy efficiency

is an overriding concern in the design of communication protocols for wireless sensor

networks. Since the radio is by far the most power-hungry element of a sensor node

[11], any reduction in the transmitted data can be translated into energy savings for

the sensor node. Even though the processing power of sensor nodes is limited, it is

usually sufficient for simple computations. This allows for some processing of the

raw data to be done before its transmission, and the cost of this local processing is

negligible compared to the cost of transmissions. For example, a sensor node could

compress the sensor readings, or send a simple function of the sensor readings, thus

reducing the size of the packets it sends. Additionally, in a convergecast operation, a

sensor node could combine multiple packets received from its children, perhaps with

its own data, before forwarding it to its parent in the tree to reduce the number of its

2

own transmitted packets. Finally, in some applications, the information can be aggre-

gated along the way to the sink, using a specific aggregation function. For example,

suppose you want to calculate the average temperature or the top-k temperatures in

a region. Each node can easily aggregate the data received from its children with its

own and simply send one message containing the result. In large networks, this can

dramatically reduce the total number and size of packets sent, because each node

sends only one message and the total number of messages sent is always equal to

n− 1.

In this thesis, we study the problem of convergecast with aggregation. The la-

tency of a convergecast operation is the time taken for the sink node to receive the

data from all the nodes. The problem of minimizing this latency is referred to as

the Minimum Latency Aggregation Scheduling (MLAS) problem [37] and has also

been called aggregation convergecast [30] and MDAT (Minimum Data Aggregation

Time) [8] in the literature.

Algorithms solving the MLAS problem are usually very different from algorithms

solving the regular convergecast problem. The main difference is that in the MLAS

problem, nodes have to wait until they have performed data aggregation on all incom-

ing packets before they can transmit. Thus, the scheduling of nodes’ transmissions

in the MLAS problem is different from regular convergecast where a node can simply

immediately forward any packet it gets from a child.

1.1 Model and Problem Statement

Throughout this thesis, we assume that the nodes are synchronized and that they

share the same wireless channel. Time is assumed to be slotted, and each node is

scheduled to transmit in a given slot. Two nodes can transmit in the same time

3

slot so long as their transmissions do not interfere. All nodes are stationary and

their transmission range is assumed to be constant and identical. The interference

radius is assumed to be equal to the transmission range. Nodes are allowed to use

an aggregation function, as long as the aggregation function can be computed in a

distributed fashion by intermediate nodes in the tree and that it requires O(1) amount

of information to be forwarded by intermediate nodes. Examples of functions that

follow these constraints are the aggregation functions Min, Max, Average, Sum and

Count. Note that the Median aggregation function is not included in the list as it

requires non-constant amount of information to be forwarded by intermediate nodes.

Given a set of sensor nodes S = {S0, S1, . . . , Sn−1} with Sn−1 being the sink

node and where each node has a data item that it wants to send to the sink node,

the problem we are interested in is to find a transmission schedule to send all the

aggregated data to the sink in such a manner that each node transmits exactly once.

A valid schedule for the problem has the following constraints [30]:

1. Each node must transmit exactly once, except for the sink which doesn’t trans-

mit.

2. A node cannot receive after it has transmitted.

3. A node cannot transmit and receive in the same time slot.

4. When a node is receiving, exactly one of its neighbors in the graph is transmit-

ting in the same time slot.

The fourth constraint ensures that any solution provides a collision-free schedule.

As explained in [30], any solution that follows these constraints must be a tree, so

any algorithm for the problem must build a tree rooted at the sink.

4

Formally, given a graph G = (V,E), and a spanning tree T of G rooted at and

directed towards the sink node s ∈ V , we define a valid schedule for (T,G) to be an

assignment A : V → Z of time slots to the nodes of the graph such that

1. v ∈ children(u) =⇒ A(u) > A(v)

2. (u, v) ∈ T and (w, v) ∈ G =⇒ A(u) 6= A(w)

The latency of a valid schedule is defined to be maxv∈V {A(v)}. The MLAS prob-

lem is now formally defined as follows: Given a graph G = (V,E), find a spanning

tree T of G and a valid schedule of minimum latency for (T,G).

Sometimes sensor nodes can be deployed to monitor perimeters or borders. These

sensors will most of the time overlap to provide some kind of redundancy. This

kind of network can usually be represented as a unit interval graph where the unit

intervals represent the nodes’ transmission range (which is assumed to be constant

and identical).

We consider a unit interval graph G = (V,E) of size n, where V = {S0, ..., Sn−1}

and where Sn−1 is the sink node. We assume that all sensor nodes are located at

distinct locations. The nodes are sorted in descending order of distance from the sink

which means S0 is the farthest node from the sink. Sj is called a forward neighbor

of Si if it is closer to the sink than Si (i.e. if j > i), otherwise it is called a backward

neighbor.

We also study a more constrained kind of unit interval graph where all nodes

except for the last k nodes have k forward neighbors. We call such a graph a regular

unit interval graph.

5

1.2 Notation

In this section, we describe the notation used throughout the algorithms presented

in this thesis. Variables used in the pseudocode are considered to be objects that

can have attributes. For example, a graph G contains vertices and edges which are

referred to as G.V and G.E respectively. Consider a vertex v, here is the list of

attributes it can have:

1. v.d denotes the distance in hops between v and the sink.

2. v.t denotes the time slot assigned to v to transmit its aggregated data to its

parent in the aggregation tree.

3. v.p denotes the parent of v in the aggregation tree. It can be a pointer to any

neighbor in G or nil if v has not been assigned a parent.

We denote by N (v) the set of neighbors of v and we denote by N (S) the set of

nodes that are a neighbor of at least one node in the set S. Finally, we denote by

C(v) the children of v in the aggregation tree and by Ci(v) the ith child of v in the

aggregation tree.

6

1.3 Summary of Contributions

The MLAS problem has been shown to be NP-Complete even for unit disk graphs

by Chen et al. [8]. We present a new proof for the NP-Completeness of the MLAS

problem for arbitrary networks and unit disk graphs. The transformation used in our

proof is simpler than the one in [8] because of the fact that we give a sequence of two

reductions.

We prove lower bounds for the latency of aggregation convergecast for grids, tori,

and trees and we provide algorithms with matching upper bounds. For regular unit

interval graphs, we provide an algorithm which is guaranteed to have a latency that

is within one time slot of the optimal latency. For unit interval graphs, we give a 2-

approximation algorithm to solve the same problem. Our 2-approximation algorithm

compares favorably to the best known approximation ratio of4−1 for general graphs.

For arbitrary graphs, we give a new algorithm for building an aggregation tree.

Furthermore, we give two new approaches for building a transmission schedule to

perform aggregation on a given tree. We evaluate the performance of our algorithms

through extensive simulations on randomly generated graphs and we compare them

to the previous state of the art. Our results show that one of our algorithms beats

the previous best by up to 38%.

1.4 Outline of Thesis

The remainder of this thesis is organized as follows. In Chapter 2, we present a review

of the relevant literature on data gathering in WSNs. Our proof of NP-Completeness

and our lower bounds and algorithms for trees, gris, tori and unit interval graphs are

presented in Chapter 3. In Chapter 4, we present a new tree-building algorithm and

two new scheduling algorithms, and we compare them to the state of the art through

7

simulations. Finally, conclusions and suggestions for future research on the subject

are given in Chapter 5.

8

Chapter 2

Related Work

Broadcast has been studied extensively in various models of communication for wired

networks [17], as well as in wireless networks [9]. In the wired setting, the time for

broadcast on a tree is the same as the time for convergecast (sometimes called accu-

mulation or gathering). However, in the wireless setting, these two times are usually

quite different. First, the broadcast nature of wireless transmissions implies that a

node can reach all its children in a single transmission. Algorithms for broadcast can

take advantage of this, while algorithms for convergecast cannot. For example, con-

sider a tree where the root node has two children. Broadcast can be accomplished in

one time slot, while two time slots are needed for convergecast. Second, in a wireless

network, a valid schedule has to consider interference caused by edges not in the tree;

there is no such restriction in the wired setting. For example, suppose nodes a and

c have parents b and d respectively in the convergecast tree. If node a is scheduled

to transmit at time t to its parent b, then node c cannot be scheduled to transmit at

time t to its parent d if c happens to be a neighbor of b in the graph or if a happens

to be a neighbor of d in the graph. To summarize, convergecast in wireless networks

is a different problem than either broadcast in wireless networks or convergecast in

9

wired networks.

In this chapter, we review existing data gathering algorithms for wireless sensor

networks. Although many protocols and algorithms have been proposed for tradi-

tional wireless ad hoc networks, it is widely accepted that those algorithms are not

well suited for WSNs [3]. One of the main reasons is that sensor nodes are much

more limited in power, which means that network protocols need to focus on power

conservation, rather than achieving high quality of service (QoS) like traditional net-

work protocols. WSNs are also usually much denser than traditional wireless ad hoc

networks and node densities may be as high as 20 nodes/m3 [33]. This high density

comes with challenges because a high number of devices will contend for the same

wireless communication channel. To address those constraints, extensive research has

been done to devise protocols and algorithms optimized specifically for WSNs.

In Section 2.1, we look at some of the first efforts suggesting the use of application-

specific logic to do some form of aggregation in wireless sensor networks. Section 2.2

describes algorithms for the regular convergecast problem where all packets need

to be forwarded to the sink and no in-network aggregation takes place. Existing

algorithms that generate a schedule for the MLAS problem are explored in Section 2.3.

Finally, we explain the difference between our work and what has been done before

in Section 2.4.

2.1 Aggregation Techniques for data gathering

In this section, we look at some of the first strategies that were used in order to

reduce the amount of traffic in wireless sensor networks. We will show that many

protocols use application-specific logic to reduce the number of packets sent towards

the sink while others use some form of message-packing to achieve the same goal.

10

2.1.1 SPIN family of protocols

A family of adaptive protocols called SPIN (Sensor Protocols for Information via

Negotiation) [20] was designed to efficiently disseminate information among sensors

in an energy-constrained wireless sensor network. The design of SPIN came from the

analysis of the limitations of conventional protocols, characterized as classic flooding

in [20], for disseminating data in a sensor network. Three deficiencies of classic

flooding were identified as problems in the context of sensor networks:

1. Implosion: Implosion happens when a node receives the same message multiple

times from different sources. For example, if a node A has x neighbors that are

also the neighbors of another node B, B will receive x copies of the message

sent by A.

2. Overlap: Because sensor nodes are densely deployed, some nodes may sense

the same information at the same time. As a result, energy and bandwidth is

wasted by sending the same information more than once.

3. Resource blindness : Nodes do not modify their activities based on the amount

of energy left.

To overcome the problems of implosion and overlap, the SPIN family of proto-

cols use high-level data descriptors, called meta-data, to eliminate redundant data

throughout the network. Before sending the actual data, a sensor node first broad-

casts the meta-data to all its neighbors by sending a new data advertisement (ADV)

message. Neighbors that are interested in the data respond with a request for data

message (REQ). The data message (DATA) is then only sent to interested neighbors.

This approach is called data-centric in that all communication is for named data[22].

In the experiments done in [20], this three-stage approach effectively cuts down on

11

wasted energy due to redundant information. The problem of resource blindness is

handled by making the SPIN protocols resource-aware. If resources are low, a node

is able to cut back on certain activities to increase longevity. There are two main

protocols in the SPIN family: SPIN-1 and SPIN-2 [4]. The SPIN-1 protocol im-

plements the three-stage approach described earlier (ADV, REQ, DATA). SPIN-2

extends SPIN-1 by incorporating a threshold-based resource awareness mechanism.

Other protocols of the SPIN family are[4, 26]:

1. SPIN-BC: A three-stage handshake protocol designed for broadcast channels.

2. SPIN-PP: A three-stage handshake protocol for point-to-point communication.

3. SPIN-EC: Same as SPIN-PP, but with a low-energy threshold.

4. SPIN-RL: A reliable version of SPIN-BC for lossy networks.

2.1.2 Directed Diffusion

Intanagonwiwat et al. [22] introduced a new data dissemination paradigm called di-

rected diffusion. Like the SPIN protocols, directed diffusion is data-centric in that all

communication is for named data. However, instead of the sensor nodes advertising

information about available data, the sink sends out interest to all sensors by sending

a task description, and data matching that task description is then routed toward

the sink. An interesting property of directed diffusion is that it allows for multiple

sinks to be present in the network with each of them having possibly different inter-

ests. Data is aggregated by intermediate nodes to reduce the number of duplicate

messages, but duplicates are not removed entirely and some form of redundancy is

kept. This allows the protocol to be robust in the presence of node failures. In [23],

experiments with a node failure rate of 10% to 20% showed that the event delivery

12

rate remains high and that the additional delay incurred by failed transmissions is

always less than 20%.

2.1.3 LEACH

Heinzelman et al. [18] proposed a clustering-based protocol called LEACH (Low-

Energy Adaptive Clustering Hierarchy), that utilizes randomized rotation of local

cluster-heads to evenly distribute the energy load among the sensors in the network.

The LEACH protocol incorporates data aggregation (also called data fusion in [18])

into the routing protocol to reduce the amount of information that must be trans-

mitted to the sink.

In LEACH, each round has a set-up phase where clusters are formed, followed by

a steady-state phase where the data collected by the sensors is routed to the sink.

In the set-up phase, each node decides whether or not to become a cluster-head by

choosing a random number between 0 and 1. If this random number is less than a

threshold T (v), the node becomes a cluster-head. The threshold is calculated using

the following formula:

T (v) =


P

1−P [r mod (1/P)]
if v ∈ G

0 otherwise

where P is the desired percentage of cluster heads in the network, r is the current

round number and G is the set of nodes eligible to become a cluster-head. A node is

guaranteed to become a cluster-head within 1
P

rounds and nodes are removed from

the eligible nodes G when they become a cluster-head. After 1
P

rounds, the value of

r is reset to 0 and all nodes become eligible again to be a cluster-head.

Newly elected cluster-heads need to advertise their new state to the other sensor

nodes. Each sensor node selects as its parent the cluster-head that has the highest

signal strength. Once a parent is selected, the node informs the cluster-head that

13

it will be a member of the cluster. Afterwards, each cluster-head creates a schedule

to determine the time slot in which each node in the cluster will transmit, and the

schedule is broadcasted to all the nodes in the cluster.

During the steady-state phase, sensor nodes collect data from their environment

and wait for their assigned time slot to send it to their cluster-head. The cluster-head

needs to keep its radio on to receive the data from all the nodes in the cluster, but the

other nodes in the cluster can shut down their radio to save power. Once the cluster-

head has received data from all the nodes in the cluster, it sends the aggregated data

to the sink. Since the sink can be far away, this transmission requires a significant

amount of energy and assumes that the sensor radio is powerful enough to reach the

sink. The steady-state phase goes on for a pre-determined amount of time without

changing the clusters. The steady-state phase is usually much longer than the set-up

phase to minimize the set-up overhead. The exact time of each phase need to be

determined in advance to maintain the synchronization between all the nodes in the

network throughout all the rounds. When the steady-state phase is completed, a new

round begins, new cluster-heads are selected and new clusters are formed.

Software simulations were conducted in [18] to show that LEACH can reduce

energy consumption by as much as a factor of 8 compared with conventional routing

protocols. In the same tests, LEACH was able to double the useful network lifetime

by evenly distributing the task of aggregating the data from the nodes in the cluster

and sending it to the sink.

2.1.4 LEACH-C

Although the LEACH protocol obtains good results compared to previous techniques,

the distributed nature of the algorithm means that clusters might not be set up

optimally. A centralized version of LEACH, called LEACH-C was proposed in [19]

14

to try to optimize the cluster formation. Only the nodes that have an energy level

above the average energy level in the network are considered in the cluster head

selection. Since the problem of finding k optimal clusters is known to be NP-Hard,

the simulated annealing algorithm is used to try to efficiently form clusters. In their

simulations, LEACH-C is up to 40% more energy-efficient than LEACH because of

the improved cluster setup.

Even though the LEACH and LEACH-C protocols improve the energy-efficiency

and the lifetime of the network, they both suffer from the same limitation. These

protocols rely on the capability of every sensor in the network to communicate directly

with the sink node in a single hop. This is not realistic for most WSN where sensor

nodes have limited energy and transmission power.

The SPIN and LEACH protocols and the directed diffusion paradigm were im-

portant advances in WSNs research, because they showed that there were advantages

in application-specific optimizations in the context of sensor networks [23]. SPIN

uses application-specific metadata to significantly reduce energy dissipation, whereas

LEACH is able to achieve energy savings by doing application-specific data aggrega-

tion at its cluster heads and directed diffusion is able to do the same at any interme-

diate node between the source and the sink.

2.1.5 CLUstered Diffusion with Dynamic Data Aggregation

(CLUDDA)

An hybrid approach that combines clustering with directed diffusion was proposed

by Chatterjea and Havinga [7]. The approach is called CLUstered Diffusion with

Dynamic Data Aggregation (CLUDDA) and it works by using clustering in the initial

phase of query propagation of directed diffusion. Instead of communicating directly

with the sink, cluster heads communicate between each other in a multi-hop fashion

15

to route messages to and from the sink. This has the potential of reducing the

energy consumption when compared to clustering-only solutions like LEACH. Yet, as

mentioned in [32], CLUDDA would need to be implemented and compared with other

approaches to validate the potential improvements. The authors of [32] expressed

doubts regarding the feasibility of the algorithm for sensor networks because of the

potentially high memory requirements at the cluster heads.

2.1.6 Other Approaches

Instead of proposing another application-specific aggregation scheme, He et al. [16]

proposed an application-independent data aggregation scheme called AIDA (Appli-

cation Independent Data Aggregation). The main idea behind AIDA is to maximize

the utilization of the communication channel by combining multiple messages into a

single packet. It comes from the observation that there is a lot of control overhead

in wireless communications and that sending one big packet is more efficient than

sending several smaller ones containing the same data. Experimental results show

that AIDA reduces the latency by up to 80% and the energy spent by 30-50% under

heavy traffic when compared to not using aggregation. Moreover, AIDA can easily

be combined with any application-specific aggregation scheme to achieve even better

results.

The TAG service, proposed by [29], is a service implemented on top of TinyOS [1]

that allows users to send queries to the network. Sensor nodes process the query

and route the information back to the base station, aggregating it using the aggre-

gation function specified in the query. An SQL-like language is used to express the

queries sent by the users. A more efficient approach for top-k aggregation functions

is presented in [38] and called FILA. The main idea behind the FILA approach is to

avoid sending readings entirely if they are within certain bounds. The base station

16

sets up those filters per node according to the data it received from each of them.

As long as the data sampled by the sensor node is within the values excluded by the

filter, the node refrains from sending a message. For the top-k nodes, another tighter

filter is maintained and used to make the top-k report any changes in their readings

that are outside the desired tolerance. If the reading is within the tolerance for a

top-k node, it doesn’t have to communicate the value to the base station and the

value is assumed to be the same. Obviously, this filter-based approach is useful when

readings are relatively stable from one round to the other. For applications where

the readings are more volatile, the base station would keep sending new filters to the

nodes and a lot a energy would be lost in these updates. Experiments were done

in [38] to compare the FILA approach to TAG [29] and range caching [31], using real

world temperature and dew point readings. The results demonstrated that FILA was

the best approach for aggregating the top-k values for this type of readings.

2.2 Scheduling Algorithms for Convergecast

In this section, we look at algorithms that build a schedule for the regular convergecast

problem (i.e. without aggregation). As stated earlier, convergecast is a communica-

tion pattern where the data collected at each node in the network is routed toward a

special node in the network called the sink node. Nodes can periodically send data

to the sink based on a desired sampling rate or they can respond to a query from the

sink node, broadcasted to all the sensor nodes.

When nodes respond to a query from the sink node, the broadcast tree used for

sending the query from the sink to the nodes can be used to gather the information

from the nodes to the sink. As shown in [5], traditional broadcast algorithms usually

don’t produce trees that are efficient for the convergecast operation in WSNs. For

17

applications that require both broadcasting and convergecasting, they proposed a

new heuristic algorithm called Convergecasting Tree Construction and Channel Al-

location Algorithm (CTCCAA). It was later shown by Upadhyayula et al. [35] that

this algorithm was inefficient in terms of energy consumption and latency, and a new

more efficient algorithm was proposed in [35].

The problem of minimizing the latency of the convergecast communication in

WSNs has been proven to be NP-hard for general graphs by Choi et al. [10] and later

by Ergen and Varaiya [12].

2.2.1 Optimal and near-optimal algorithms for line and tree

networks

The convergecast problem was solved optimally by Choi et al. [10] for line and tree

networks, using pipeline-like scheduling algorithms called LPIPE and TPIPE respec-

tively. The LPIPE algorithm works by scheduling a maximum of 1 out of 3 nodes

at every round, which is the maximum that can be scheduled without conflicts when

all nodes are transmitting toward the sink. It is shown in [10] that LPIPE creates a

schedule that uses exactly 3(n− 2) time slots for n > 2, and that this is an optimal

solution. Later and seemingly independently, Gandham et al. [13] proved that an op-

timal solution for the same line network required a minimum of 3(n−2)+2+1 = 3n−3

time slots, which appears to be 3 more time slots than what was found by Choi et

al. [10]. However, their definition of n is different from the one in [10] in that the

sink is not included in n, which accounts for the added three time slots in the lower

bound. Table 1 shows an example schedule for a 10-node line network.

The TPIPE algorithm is similar to the LPIPE algorithm and produces schedules

that use exactly 3(n − 2) time slots. However, the algorithm assumes that the root

node has only one child and that this child also has only one child, which somewhat

18

PPPPPPPPPtime
edge

(1,0) (2,1) (3,2) (4,3) (5,4) (6,5) (7,6) (8,7) (9,8)

1 T(1) T(4) T(7)
2 T(2) T(5) T(8)
3 T(3) T(6) T(9)
4 T(2) T(5) T(8)
5 T(3) T(6) T(9)
6 T(4) T(7)
7 T(3) T(6) T(9)
8 T(4) T(7)
9 T(5) T(8)
10 T(4) T(7)
11 T(5) T(8)
12 T(6) T(9)
13 T(5) T(8)
14 T(6) T(9)
15 T(7)
16 T(6) T(9)
17 T(7)
18 T(8)
19 T(7)
20 T(8)
21 T(9)
22 T(8)
23 T(9)
24 T(9)

Table 1: Example convergecast schedule for a 10-node line network where node 0 is
the sink (reproduced from Fig.3 in [10]). To avoid collisions, no more than a third of
the nodes can transmit at any time slot.

19

Base Station

Branch B

Branch A

Branch D

Branch C

Figure 1: A multi-line network (reproduction of Fig. 3 in [13]).

i

j a g

a b

a b

W

Wc

Wd

Wg

W
h

We

Wf

W i

W j

c

d

g

a

b

f

e h
ga

d

f

j

c

e

h

i

Base=Station

(a)=Tree=Network (b)=Equivalent=Linear=Branches

b==0

==0

==0

==0

==0

==2

==2

==1

==1

Figure 2: Reduction of a tree network into linear branches (reproduction of Fig. 5
in [13]).

limits the usefulness of the algorithm and mitigates their claim that their TPIPE

algorithm produces an optimal schedule for tree networks. Gandham et al. [13]

later presented a distributed algorithm for the tree topology without any limitations

about the nodes’ degree. Their tree algorithm is an adaptation of their multi-line

(see Figure 1) algorithm and comes from the observation that a tree network can be

reduced to a multi-line network with each line represented as a combination of linear

branches of nodes (see Figure 2).

The main idea behind their tree and multi-line algorithms is to schedule trans-

missions in parallel along multiple branches or subtrees. The bottleneck is usually

located at the sink because the sink can only receive one packet at a time. Thus, in

each timeslot, the algorithm will need to decide which branch or one-hop-subtree will

20

forward a packet to the sink. The term one-hop-subtree refers to any subtree that is

rooted at a one-hop neighbor of the sink. The tree and multi-line algorithms produce

schedules that require at most max(3nk − 1, n) time slots, where n represents the

number of nodes in the network and nk represents the number of nodes in the largest

one-hop-subtree or branch. This is a maximum of 2 time slots above the proven lower

bound of max(3nk − 3, n) [13].

2.2.2 BFS-Based Approximation Algorithm

Gandham et al. [13] also proposed a distributed convergecast algorithm that requires

at most 3n time slots in arbitrary networks. The algorithm works by creating a

Breadth First Search (BFS) tree and then using their tree scheduling algorithm to

build the schedule. They demonstrated through simulations that this algorithm pro-

duces schedules that use an average of around 1.5n time slots. In [14], they showed

that the same algorithm can be used when nodes generate multiple packets, where P

represents the number of packets that need to be sent to the sink. In this scenario,

the algorithm produces schedules that use at most 3P time slots.

More recently, Augustine et al. [6] looked at variation of the convergecast problem

where k readings from sensors can be packed into the same packet for the same

energy cost. They refer to this problem as the CCP (ConvergeCast Problem) and

they study a simplification of this problem, called the UCCP (Unit ConvergeCast

Problem), where the size of each reading is exactly 1 byte. They prove that both

CCP and UCCP are NP-Hard and they propose an optimal algorithm for the tree

topology and an asymptotically optimal solution for the grid topology.

21

2.3 Minimum Latency Aggregation Scheduling

Data aggregation has been proposed early on in WSNs to reduce the energy usage

of sensor nodes and improve the network lifetime. Krishnamachari et al. [25] demon-

strated that significant energy savings could be achieved by using data aggregation,

and that the gains were even bigger for large networks or for cases where sources are

far from the sink. As mentioned earlier, there are many different forms of data aggre-

gation. Some approaches are application-independent like AIDA [16] and they usually

work by trying to pack many readings into a single message. Other approaches work

by using an application-specific aggregation function to fuse the data and reduce the

number of messages. Such aggregation functions include duplicates removal, min,

max, count, average, top-k, or any other function that takes multiple inputs.

In this thesis, we look at the problem of convergecast with in-network data ag-

gregation using an aggregation function that produces a single output, regardless of

the number of inputs. The problem of minimizing the time it takes to aggregate the

information from all the nodes in the network using such an aggregation function is

referred to as MLAS (Minimum Latency Aggregation Scheduling) [37]. The problem

has also been variably called aggregation convergecast [30] and MDAT (Minimum

Data Aggregation Time) [8] in the literature.

Algorithms that solve the MLAS problem are divided into two main categories:

centralized and distributed algorithms. Centralized algorithms usually generate bet-

ter schedules as they have complete knowledge of the network, but they have the

disadvantage of being less adaptable to topology changes that could occur due to

node failures. Distributed algorithms are better suited for environments in which

topology changes occur frequently, as they don’t need to wait for a new schedule to

be broadcasted to all the nodes. However, they usually have a higher latency than

centralized algorithms. Most centralized algorithms solving the MLAS problem are

22

divided into 2 phases. The first phase builds a logical tree rooted at the sink and the

second phase schedules the transmissions along that tree.

In this section, we describe several centralized and distributed algorithms that

solve the MLAS problem. All these algorithms solve the problem for arbitrary net-

work topologies and have proven latency bounds.

2.3.1 Shortest Data Aggregation (SDA)

Chen et al. [8] introduced a centralized (4 − 1)-approximation algorithm named

Shortest Data Aggregation (SDA), where 4 is the maximum degree. The algorithm

works by first creating a spanning tree T1 rooted at the sink. At each iteration, the

algorithm selects some nodes to transmit for the round corresponding to the iteration,

and then those nodes are removed from the tree. For instance, suppose that Tr is the

tree to schedule at the rth iteration. The algorithm iterates through all the leaves

in Tr in decreasing order of the number of their non-leaf neighbors in Tr. A leaf is

eliminated from the potential senders if it can be eliminated without violating the

property that every non-leaf neighbor of a leaf in Tr has a neighbor in the remaining

potential senders. At the end of the loop, the leaves that have not been eliminated

are scheduled to transmit at time r. For each scheduled node, the receiver is selected

from the non-leaf neighbors of the node in Tr and the tree Tr+1 is built by removing

those leaves from Tr. The algorithm terminates when all nodes but the sink have

been scheduled.

As pointed out in [30], the fact that the scheduling part of SDA selects a receiver

instead of just using the parent node in Tr means that the original aggregation tree is

not always kept. Because of that, the authors of [30] argue that the SDA algorithm

cannot be used when a given aggregation tree is required for a specific application.

23

2.3.2 Randomized Distributed Algorithm

A randomized distributed algorithm called DC (Distributed Convergecast) was pro-

posed by Kesselman and Kowalski [24]. The DC algorithm works by dividing the

time into rounds long enough for the transmission of one message. At the beginning

of the first round, all nodes are active and have data to transmit. At each round, a

subset of active nodes are randomly selected to transmit. The transmission range of

each selected node is set to the distance between the sender and the closest active

neighbor. If the transmission is successful (i.e. no collision detected), the sender

becomes inactive. The senders for which the transmission failed remain active and

can be selected or not to transmit in the next round. The nodes that received data

from another node then fuse it with their own data. This process goes on until only

one node is active. At this point, the remaining node has aggregated the data from

all the nodes in the network.

There are a few issues with this algorithm. As pointed out by other authors [41,

40], the algorithm assumes that sensor nodes can easily adjust their transmission

range and that they have a special collision detection capability. This is usually not

the case for the hardware present in WSNs since the cost must remain low because

of the large number of nodes deployed. Moreover, they assume that the maximum

transmission range is unbounded, which is not very realistic for large networks. In

their own evaluation of the algorithm, they acknowledge the fact that the algorithm

may require O(n log n) times the minimum energy required to complete the converge-

cast. Last but not least, because of the random nature of the algorithm, the sink

node changes at every data collection. This makes it impractical if the data needs to

be collected at a predetermined node.

24

2.3.3 MIS-based Algorithms

Huang et al. [21] designed a centralized algorithm based on Maximal Independent

Sets (MIS) and with a latency bound of 23R + 4 − 18, where R is the maximum

distance between the sink and any other node. Their main improvement over SDA is

that the maximum degree contributes to an additive factor instead of a multiplicative

factor in the latency bound. However, the algorithm doesn’t perform well for a big

enough R, and it has been found that the generated schedule is not always conflict-

free[40].

Using a similar MIS approach, Wan et al. [37] proposed three new centralized

algorithms, SAS, PAS and E-PAS, with latency bounds of 15R+4−4, 2R+O(logR)+

4 and (1 +O(logR/ 3
√
R))R+4 respectively. The E-PAS algorithms has the lowest

proved maximal latency, although experiments have shown that approaches based on

the Connected Dominating Set (CDS) problem don’t perform well in practice [30].

Indeed, CDS and MIS approaches tend to connect many nodes to the same parent

which prevents parallelism and increases latency.

Yu et al. [40] proposed a distributed MIS-based algorithm called DAS (Distributed

Aggregation Scheduling). Their algorithm starts by building an aggregation tree

using the distributed approach of constructing a CDS tree proposed by Wan et al. [36].

To build the schedule in a distributed manner, each node needs to know its unique

ID and maintains a list of nodes called the competitors. For a given node u, the

competitors of u are all the nodes that cannot be scheduled at the same time as u.

This list of competitors is used to build a conflict-free schedule. Nodes that have a

higher ID than all their competitors are scheduled to transmit first. Then the other

nodes are scheduled as soon as all their competitors with higher IDs have transmitted.

At any time slot, a node can be in any one of six possible states and messages are

sent between the nodes to be able to properly schedule the nodes in a distributed

25

way. DAS has a proven maximum latency of 24D+64+16, where D is the diameter

of the network.

Another distributed MIS-based algorithm, also called DAS (Data Aggregation

Scheduling), is proposed by Xu et al. [39]. Their algorithm was also inspired by the

distributed approach of constructing a CDS proposed in [36]. Their DAS is a little

different than previous CDS-based algorithms in that data is first aggregated towards

the center of the network and then routed to the sink. The network center is defined

as the node that minimizes the maximum distance between itself and any other node

in the network. By selecting the center as the aggregation point, the theoretical upper

bound of the algorithm is reduced. They prove an upper bound of 16R + 4 − 14

where they define R as the maximum distance between the network center and any

node instead of being the maximum distance between the sink and any node.

2.3.4 BSPT-WIRES

Malhotra et al. [30] introduced two centralized algorithms, one is a tree construction

algorithm called BSPT (Balanced Shortest Path Tree) and the other is a ranking/priority-

based scheduling algorithm called WIRES (Weighted Incremental Ranking for con-

vergEcast with aggregation Scheduling). We present this work in more details since

in Chapter 4 we compare our algorithms experimentally with their work. The BSPT

algorithm is based on a lower bound that they introduced for the latency of the ag-

gregation convergecast in a logical tree, and given by the following theorem (Theorem

1 in [30]) :

Theorem 1 Given a logical tree the lower bound, Tmin, for the aggregation converge-

cast scheduling problem is max{Ei+hi : i = 1, 2, . . . , n}, where Ei and hi, respectively,

are the children-count and hop-count (from the root) of node i in the given tree.

26

The BSPT algorithm builds a shortest path tree by traversing the graph in a

Breadth First Search (BFS) way. As it builds the tree, the BSPT algorithm builds a

bipartite graph for all the nodes of two consecutive levels in the tree, and it uses the

bipartite semi-matching algorithm from Harvey et al. [15] to distribute as evenly as

possible the lower level nodes between the upper level nodes. This is done for every

pair of consecutive levels in the tree. The result is a shortest path tree that minimizes

the lower bound presented in Theorem 1, compared to any other possible shortest

path trees generated for the same graph.

Algorithm 1 WIRES

Input: G = (V,E), s: sink node, v.p: parent of v ∈ V in the tree
Output: A valid schedule for G where v.t is the transmission time for v ∈ V

1: procedure WIRES(G, s)
2: ∀v ∈ G.V v.t = 0 . Initialize time slots
3: j = 1
4: while s.t = 0 do
5: L = GetEligibleNodes(G)
6: ComputeWeights(L)
7: SortDecreasing(L) . Sort nodes in decreasing order of weights.
8: S = R = ∅ . Set of senders and receivers are initially empty
9: ScheduleNodes(L, S,R)

10: j = j + 1
11: end while
12: end procedure

13: procedure ScheduleNodes(L, S,R)
14: for each u ∈ L do
15: if u /∈ N (R) and u.p /∈ N (S) then . If u can transmit without conflict
16: u.t = j . u is scheduled to transmit at time j
17: S = S ∪ {u} . u is added to the set of senders
18: R = R ∪ {u.p} . The parent of u is added to the set of receivers
19: end if
20: end for
21: end procedure

The WIRES scheduling algorithm takes an aggregation tree as input and starts

by considering all the leaves in the tree as nodes eligible to be scheduled at time 1.

27

A weight is calculated for every eligible node where a higher weight means a higher

priority for the node to be scheduled at the current time slot. Eligible nodes are

then considered one by one and each node that can transmit without interfering with

the previous nodes is scheduled. Once all nodes have been considered, the round

is completed and the set of eligible nodes is updated by removing the nodes that

have been scheduled, and by adding the nodes that have received data from all their

children. The previous steps are repeated until all the nodes have a schedule.

The weight computation that worked best in their experiments was to use the

non-leaf neighbor count, which corresponds to the number of neighbors that are not

leaves in the aggregation tree. Since scheduled nodes are removed from the aggre-

gation tree once they are scheduled, the weights need to be recomputed at every

round. Experiments showed that the combination of BSPT and WIRES was better

than SDA, SAS, PAS and DAS [40] by 10% to 30%. They also proved that the choice

of a good aggregation tree was very important by combining their BSPT algorithm

with the scheduling algorithms of SDA, PAS and DAS. They called those modified

algorithms SDA-BSPT, PAS-BSPT and DAS-BSPT respectively, and their experi-

ments showed that the latency of the schedules produced by those algorithms was

reduced when compared to their original versions. The WIRES-BSPT algorithm still

has an edge of around 10% to 18% in most cases. The only exception is at very high

densities, where the SDA-BSPT algorithm was able to slightly outperform their own

WIRES-BSPT.

2.4 Differences with our work

Previous work on the MLAS problem, presented in Section 2.3, focused mainly on

finding algorithms that work for any topology. Some papers introduced algorithms

28

with provable latency bounds while others presented practical algorithms that were

evaluated through simulations.

To the best of our knowledge, no paper has addressed the MLAS problem for

specific simple topologies like trees, grids, tori and unit interval graphs. In our

work, we present new lower bounds for all these topologies, and we present optimal

algorithms for trees, grids and tori as well as near-optimal algorithms for unit interval

graphs and regular unit interval graphs.

We propose a new algorithm to construct the logical convergecast tree used to

gather information to the sink. When used in combination with the WIRES [30]

scheduling algorithm, we show through simulations that our algorithm beats the

BSPT-WIRES combination for random topologies. According to simulations done in

[30], BSPT-WIRES was the previous best combination of algorithms for solving the

MLAS problem. We propose two new scheduling algorithms, WIRES-G and DCATS,

that both produce schedules with lower latencies than WIRES.

We also present an NP-Completeness proof for the general MLAS problem and

we extend this proof to show that the problem is also NP-Complete for unit disk

graphs. A proof of the NP-Completeness of the MLAS problem for unit disk graphs

was already given earlier in [8], but our proof is simpler and easier to follow because

of the fact that we give a sequence of two reductions.

29

Chapter 3

Optimal and Approximation

Algorithms for Specific Topologies

In this chapter, we start by proving that the MLAS problem is NP-Complete, even

for unit disk graphs. We then study specific topologies for which we can either find

optimal algorithms or approximation algorithms with proven approximation ratios.

A trivial lower bound for any topology is the maximum distance from any node

to the sink. This measure is sometimes referred to as the network radius R [37, 21].

Since at most half of the nodes that have not yet transmitted can transmit at any

time step, log n is also a lower bound on the latency, as observed in [37]. For specific

topologies, we will show that we can improve on the above lower bounds and give

new lower bounds for trees, grids, tori and unit interval graphs.

3.1 NP-Completeness Proof

In this section, we study the decision version of the MLAS problem which we call the

Aggregation Convergecast Problem: given an integer k and a graph G = (V,E) of

size n where V = {S0, S1, . . . , Sn−1} and where Sn−1 is the sink node, is there a valid

30

schedule that aggregates the data from all the nodes to the sink in k time slots.

Theorem 2 The Aggregation Convergecast Problem is NP-Complete.

Proof. We prove it by reducing from the 3-SAT problem.

Consider a boolean formula f in 3-CNF, where {x1, x2, . . . , xn} is the set of

boolean variables and {c1, c2, . . . , cm} is the set of clauses. We create an instance

of the aggregation convergecast problem by creating a graph Gf as follows :

1. For each variable xi, we create a line Xi with the set of nodes {xi,1, xi,2, . . . , xi,m,

xi, x̄i,m, x̄i,m−1, . . . , x̄i,1}.

2. For every node xi,j (resp. x̄i,j) created in 1, we create a node ai,j (resp. āi,j)

and a path Pi,j (resp. P̄i,j) of length li,j = max(i−1, 1)+max(j−2, 0) between

ai,j and xi,j (resp. āi,j and x̄i,j). For further reference, we denote by bi,j (resp.

b̄i,j) the node on the path Pi,j (resp. P̄i,j) that is connected to xi,j (resp. x̄i,j),

and we denote by gadget gi the set of nodes contained in Xi and all the paths

Pi,j.

3. Each gadget gi is connected to gi+1 by connecting xi to xi+1 for 1 ≤ i < n.

4. For each clause cj, we create a node cj.

5. For every literal xi (resp. x̄i) that appears in clause cj, we connect node cj to

ai,j (resp. āi,j).

6. The sink node is node xn.

This transformation can be done in polynomial time as the number of nodes

created in Gf is less than 2m2 + 2mn+m+ n.

We now show that f is satisfiable if and only if there exists a tree and schedule

that completes the aggregation convergecast of Gf in m+ n+ 1 time slots.

31

Suppose that f has a satisfying assignment A. For each clause cj = (lj1∨ lj2∨ lj3)

in f , we know that at least one of lj1, lj2, lj3 must be true in A. Without loss of

generality, assume that lj1 is true, and that it represents the unnegated literal xi

(resp. negated literal x̄i). The convergecast tree is built by keeping the link between

node cj and node ai,j (resp. āi,j), and by removing the other edges connected to cj.

If more than one literal in clause cj is true, then node cj connects to only one of the

corresponding ai,j (resp. āi,j) nodes. Clearly, all cj nodes are leaves in the tree, and

the only other leaves are a subset of the ai,j and āi,j nodes. The schedule is built as

follows:

1. Node cj is scheduled to transmit at time 1 for 1 ≤ j ≤ m.

2. Node ai,j (resp. āi,j) is scheduled to transmit at time 1 if xi (resp. x̄i) is false

in A, and at time 2 if xi (resp. x̄i) is true in A.

3. Intermediate nodes on the tree are scheduled to transmit one time slot after

they’ve received from all their children.

This tree and schedule is illustrated in Figure 3 and a specific instance of the

problem is shown in Figure 4.

We now prove that such a schedule is collision-free and that it completes the

aggregation convergecast in m+ n+ 1 time slots.

Since the collisions always happen at the receiver’s end, we only need to consider

the nodes that have more than one child in the convergecast tree. First, we show

that there is no collision at nodes xi,j (resp. x̄i,j) for 1 ≤ i ≤ n and 1 < j ≤

m, i.e. we show that xi,j−1 (resp. x̄i,j−1) does not transmit at the same time as

bi,j (resp. b̄i,j). Consider the case where xi is false in A, xi,1 will receive from its

only child at time li,1 = max(i − 1, 1) + max(1 − 2, 0) = max(i − 1, 1), and will

transmit to node xi,2 at time max(i − 1, 1) + 1. Node xi,2 receives from bi,2 at time

32

x1,1 x1,2 x1,3 ... x1,m x1 x̄1,m ... x̄1,3 x̄1,2 x̄1,1

xi,1 xi,2 xi,3 ... xi,m xi x̄i,m ... x̄i,3 x̄i,2 x̄i,1

...

a1,1

ai,1

2

3

22
2

1

1 1

3 344 2mm + 1 m + 2 m + 15

c1

c3

m− 1

1

m

m + i− 3i− 1 i− 1 i i + 1m + i− 2

m + i− 1m + im + i− 2 m + i− 1i i + 1 i + 2 i + 3 i + 1i + 2

i

1

i

m + 3

m + i + 1

m + i + 2

b1,3 b1,m b̄1,m b̄1,3

a1,3

a1,m ā1,m

ā1,1

āi,1

b̄i,1

āi,m

bi,m

ai,m

Figure 3: Illustration of how the schedule is built for a generic 3-SAT problem where
f = (x̄i ∨ . . .) ∧ (. . .) ∧ (x1 ∨ . . .) ∧ . . . and A = {x1 = T, . . . , xi = F, . . .}.

li,2 = max(i − 1, 1) + max(2 − 2, 0) = max(i − 1, 1). Clearly, there is no collision

at node xi,2 as its children use different time slots. By induction, we can show that

there is no collision at xi,j for 2 ≤ j ≤ m. Indeed, we can easily see that xi,j−1 will

transmit to xi,j at time max(i − 1, 1) + j − 1, and that bi,j will transmit at time

li,j = max(i− 1, 1) + j − 2.

When xi is true in A, we can show that there is no collision by using a similar

demonstration. The nodes will simply transmit one time slot later (when compared

to the case where xi is false), because the ai,j nodes transmit at time 2 instead of

time 1. This ensures that node xi,m will not transmit at the same time as node x̄i,m,

because one will transmit at time max(i− 1, 1) +m and the other one will transmit

at time max(i − 1, 1) + m + 1. For node x1, that means it receives from one of its

children at time m + 1, from the other child at time m + 2, and that it is scheduled

to transmit to x2 at time m+ 3.

Next we show that there is no collision at xi for 2 ≤ i ≤ n. Assume inductively

that node xi−1 transmits to node xi at time m+ i+ 1. The other 2 children of xi are

33

x1,1 x1,2 x1,3 x1,4 x1,5 x1 x̄1,5 x̄1,3 x̄1,2 x̄1,1

x4,1 x4,2 x4,3 x4,5 x4 x̄4,5 x̄4,3 x̄4,2 x̄4,1

a1,1

a4,1

2

3

22
2

1

1 1

3 344 256 7 65

c5

c1

45

63 3 4 57

897 84 5 6 7 56

44

8

b1,3 b1,5 b̄1,5 b̄1,3

x̄1,4

x2,1 x2,2 x2,3 x2,4 x2,5 x2 x̄2,5 x̄2,3 x̄2,2 x̄2,1

a2,1

2

3

22
2

1

1 1

3 344 256 7 65

45

9

b2,4 b̄2,4

x̄2,4

x3,1 x3,2 x3,3 x3,5 x3 x̄3,5 x̄3,3 x̄3,2 x̄3,1

c4

52 2 3 46

786 73 4 5 6 45

33

10

x3,4 x̄3,4

c2

c3

5

4

4

4

6

5

3

3

x4,4 x̄4,4

1

1

1

1

1

ā1,1

ā2,1

ā3,1

b̄4,5

ā4,5

a2,4

a1,3

b̄3,1b3,5

a3,5

ā2,4

Figure 4: Example tree and schedule built for a specific instance of 3-SAT where
f = (x̄1 ∨ x2 ∨ x4) ∧ (x1 ∨ x̄3 ∨ x4) ∧ (x1 ∨ x̄2 ∨ x̄4) ∧ (x2 ∨ x̄3 ∨ x̄4) ∧ (x̄1 ∨ x3 ∨ x̄4)
and A = {x1 = T, x2 = T, x3 = F, x4 = F}. Clearly, there are no collisions and the
aggregation convergecast is completed in m+ n+ 1 = 5 + 4 + 1 = 10 time slots.

34

transmitting at timemax(i−1, 1)+m = m+i−1 and timemax(i−1, 1)+m+1 = m+i.

It is straightforward to see that there is no collision at xi and that the last node to

transmit will be node xn−1 and that it will transmit at time m+ n+ 1.

This proves that the schedule is collision-free and that it completes the aggregation

convergecast in m+ n+ 1 time slots.

Now suppose that Gf has a valid schedule that completes the aggregation con-

vergecast in m + n + 1 time slots using the tree T . For each node cj ∈ Gf , we take

its parent in T and use it to determine which variables are true in f . Let ni,j ∈ Pi,j
(resp. n̄i,j ∈ P̄i,j) be the parent of cj in T , we assign true (resp. false) to xi in f .

Since every node cj must have a parent in T , we know that every clause in f will

have at least one literal that makes it true. We need to show that this is a valid

assignment, i.e. there is no situation in which xi would be set to true and false.

The gadgets gi are built to generate a collision at xi whenever the unnegated and

the negated sides of the gadget are connected to a node cj in T . Suppose instead

that there is a solution in which cj is connected to ni,j ∈ Pi,j and ck is connected to

n̄i,k ∈ P̄i,k. We’ve shown earlier that when the first node in a path Pi,j transmits at

time 2, the earliest its information can reach node xi is at time max(i−1, 1) +m+ 1.

Since both ni,j and n̄i,k have to aggregate the information from their respective child,

their aggregated information could reach node xi at the same time and one of xi,m

or x̄i,m will have to wait at least one time slot to transmit to xi. If i = 1, this means

either x1,m or x̄1,m transmits at time m+3. Therefore, x1 cannot transmit before time

m+4 and its information cannot reach the sink before m+4+dist(x1, xn) = m+n+2.

If i > 1, either xi,m or x̄i,m cannot transmit before time m + i + 1. However, this is

precisely the earliest time that xi−1 also can transmit, so one of them will have to

transmit at time m + i + 2 to avoid a collision at xi. Thus, xi can only transmit at

time m+ i+ 3 at the earliest, which implies that its information won’t reach the sink

35

before time m + i + 3 + dist(xi, xn) = m + n + 2. This contradicts the assumption

that the schedule completes the aggregation convergecast in m + n + 1 time slots,

and proves that there is no situation in which a variable xi would be set to true and

false.

We now show that the aggregation convergecast problem is also NP-Complete

for unit disk graphs by doing some changes to our proof. Instead of reducing from

the general 3-SAT problem, we reduce from a restricted version of the planar 3-SAT

problem, introduced by Lichtenstein [28]. This restricted version of the problem has

the following additional properties:

1. Each variable occurs in at most three clauses.

2. Both unnegated and negated instances of each variable appear.

3. For every variable node x in Gf , all the edges representing positive instances of

the variable are incident to one side of x and all the edges representing negative

instances are incident to the other side of x.

We first transform the planar formula graph Gf by replacing each variable node

xi by a gadget gi, and adjusting the edges using the same logic as in the previous

proof. Since Gf is planar and because of the constraints of the restricted planar

3-SAT problem, it is relatively easy to see that we can draw the transformed graph in

such a way that there is no crossing of edges. It is also easy to see that the maximum

degree of the transformed graph is 4.

We then use the following lemma from Chen et al.[8] to transform the graph into

a unit disk graph:

Lemma 1 Let H be a plane graph on g vertices with a maximum degree at most 4.

Suppose that H is not an octahedron, and let H ′ be the graph obtained from H by

36

replacing each edge in H with a path of length 120g2. Then H ′ is a unit disk graph

and an orthogonal planar embedding of H ′ of grid size (40g2 + 40g) × (40g2 + 40g)

can be computed in time polynomial in g.

Since H ′ is built by replacing each edge by a path of constant length 120g2, we

can use the same argument we used for the general aggregation convergecast problem

to prove that the restricted 3-SAT problem is satisfiable if and only if we can build

a spanning tree T of the unit disk graph H ′ with a schedule that completes the

aggregation convergecast in (120g2)(m+ n+ 1) time slots. This yields the following

theorem:

Theorem 3 The Aggregation Convergecast Problem is NP-Complete even for unit

disk graphs.

3.2 Trees

In this section, we show that finding lower bounds for specific tree topologies is

relatively straightforward and we give an algorithm for building an optimal schedule

for the MLAS problem.

In tree networks, building a conflict-free schedule is simplified by the fact that

conflicts can only occur between the children of a node. For example, consider a

binary tree in which all leaf nodes are at the same depth and all internal nodes have

two children. Such a tree is called a perfect binary tree and it is not hard to show

using induction on the number of levels in the tree that 2blog2 nc is a lower bound on

the latency of the schedule. In other words, in a perfect binary tree, two time slots

are required per level. An example of an optimal schedule for a perfect binary tree

is shown in Figure 5. We can generalize this observation to perfect k-ary trees and

37

say that an optimal schedule for a given perfect k-ary tree would have a latency of

kblogk nc (see Figure 6).

1 1 1 12 2 2 2

3 34 4

5 6

Figure 5: Example of an optimal schedule for a perfect binary tree. The schedule
uses exactly 2blog2 nc = 6 time slots.

1
2

3 1
2

3 1
2

3

4
5

6

Figure 6: Example of an optimal schedule for a perfect ternary tree. The schedule
uses exactly 3blog3 nc = 6 time slots.

Because of the fact that conflicts can only happen between children of a node,

the MLAS problem for trees is similar to the broadcast problem in wired networks.

For this reason, the broadcast algorithm proposed in [34] could be used to find an

optimal schedule for the MLAS problem on a given tree. Still, we present our own

algorithm here as it was developed independently and for a different model.

We now introduce our ScheduleTree algorithm (See Algorithm 2), which builds

optimal schedules for arbitrary trees.

Theorem 4 Given a tree T rooted at the sink, the ScheduleTree algorithm (see

Algorithm 2) builds a conflict-free schedule that solves the MLAS problem optimally.

This schedule can be built in O(|V | log |V |) time.

38

Algorithm 2 ScheduleTree
Input: v
Output: v.t

1: if |C(v)| == 0 then
2: v.t = 1
3: else
4: for each c ∈ C(v) do
5: ScheduleTree(c)
6: end for
7: Sort(C(v)) . sort children in order of assigned time slot
8: i = 2
9: while i < |C(v)| do

10: u = Ci(v)
11: x = Ci−1(v)
12: u.t = Max(x.t+ 1, u.t)
13: i = i+ 1
14: end while
15: u = Ci−1(v)
16: v.t = u.t+ 1
17: end if

Proof. Algorithm 2 is called recursively until it reaches a leaf node, at which point

it will assign time slot 1 to the leaf. For any node v ∈ T , assume inductively that

v’s children are assigned a time slot which corresponds to the time at which v has

aggregated all the information from its children and is ready to transmit. At this

point, some children might have been assigned the same time slot. To resolve those

potential conflicts, we first sort the children of v in order of currently assigned time

slot (line 7). The loop of lines 9-14 will then resolve conflicts by assigning a different

time slot to each child. At each iteration starting with the second child, the child

either keeps its currently assigned time slot or it is scheduled to transmit one time

slot after the previous child, depending on which is greater. This guarantees that

each child will transmit at a different time slot, which means the children’s schedule

is now conflict-free. The loop ensures that each child is assigned the first available

time slot after it is ready to transmit. The children’s schedule is thus optimal. At

39

the end of this for loop, the children are still sorted in order of assigned time slot.

Line 16 assigns to v the time slot that follows the one used by its last child. This

ensures that v transmits as soon as it has received all the data from its children, and

completes the proof by induction.

We use amortized analysis to count the total number of operations. At every

node, the amount of time needed is O(i log i) where i is the size of the adjacency list

of the node. The total amount of time is therefore O(|E| log |E|) where |E| is the

total number of edges. This in turn is O(|V | log |V |) since the graph is a tree.

3.3 Grids and Tori

Depending on the position of the sink and the size of the grid, there are many cases

in which a schedule can be built by using exactly R time slots. However, there are

cases where this is not possible because of conflicts when building the schedule. In

a grid, conflicts will occur if the sink is exactly in the middle of a row or a column.

When that happens, at least one node will have to be scheduled one time slot after

it is ready to transmit to avoid a conflict with another node. This leads us to our

lower bound for grids.

Theorem 5 Given a grid G of 2 dimensions, any MLAS scheduling algorithm re-

quires a minimum number of time slots defined by Tmin = max{dist(Si, s) : i =

1, 2, . . . , n}+Ccol +Crow, where Ccol equals 1 if the sink is exactly in the middle of a

row and 0 otherwise, and where Crow equals 1 if the sink if exactly in the middle of a

column, and 0 otherwise.

Proof. Consider a grid G of m rows by n columns. We have three cases to look at

in order to show that the lower bound holds. We need to look at the case where the

sink is located in the middle row, the case where the sink is located in the middle

40

column, and the case where the sink is located in the middle row and column at the

same time.

Let m be odd and let the position of the sink be (dm
2
e, j) where j is not the middle

column. There are 2 nodes that are located at a distance of R time slots from the

sink. If j < dn
2
e, those 2 nodes are located at (1, n) and (m,n), and if j < dn

2
e

then those 2 nodes are located at (1, 1) and (m, 1). If these two nodes’ data follow a

disjoint path, then the last nodes on each path will be ready to transmit at the same

time and one of them will have to be scheduled at least one time slot later. Suppose

instead that their paths merge at some point. No matter where those paths merge,

if they are shortest paths, we still have a conflict to resolve at the merge point and

a delay of at least one time slot is inevitable. If one of the path is not a shortest

path, then this path has a minimum length of R+ 1 and our lower bound still holds.

The same argument also holds when the sink is located at (i, dn
2
e) where i is not the

middle row.

This leads us to the last case where the sink is exactly in the middle, in which case

the 4 corners are R time slots away from the sink. If their data follow disjoint paths,

4 nodes will be ready to transmit to the sink at the same time and the last scheduled

node will transmit at R+3. However, we can do better by making the paths converge

before the sink. We still have conflicts at the merge points, but those conflicts can

be handled independently if we merge 2 paths at one point and the other 2 paths at

another point. Therefore, we only need one time slot to handle both conflicts and

the merged paths now have a schedule length of R+ 1. We have one more conflict to

resolve at the sink, but since we now only have 2 paths, we only need one more time

slot which gives us the lower bound of R + 2.

We can use the same logic to obtain the following lower bound, generalized for

grids of k dimensions.

41

Corollary 6 Given a grid G of k dimensions, any MLAS scheduling algorithm re-

quires a minimum number of time slots defined by Tmin = max{dist(vi, s) : i =

1, 2, . . . , n} +
∑k

j=1Cj, where Cj equals 1 or 0 depending on the position of the sink

in the grid.

Cj =

 1 if G.sizej > 1 and sink.posj == (G.sizej + 1)/2

0 otherwise

The same argument also holds for torus networks, although the sink position is

not important for this topology. Because of the circular structure of a torus, the sink

is always exactly in the middle of a dimension when the size of the dimension is odd.

If the size of the dimension is even, the sink cannot be exactly in the middle so there

is no possible conflict. This leads us to the following corollary.

Corollary 7 Given a torus G of k dimensions, any MLAS scheduling algorithm

requires a minimum number of time slots defined by Tmin =
∑k

i=1 bG.sizei2
c+∑k

j=1Cj,

where Cj equals 1 or 0 depending on the size of each dimension:

Cj =

 1 if G.sizej > 1 and G.sizej is odd

0 otherwise

We now present our algorithm for solving the MLAS problem for grid topologies.

The algorithm starts by building a Shortest Path Tree T rooted at the sink. For a 2-

dimensional grid, T is built by keeping the vertical edges that are in the same column

as the sink, as well as all the horizontal edges. The scheduling logic is relatively simple

as conflicts can only happen in nodes located in the same column as the sink. Indeed,

those are the only nodes in T with more than one children. If the sink is not located

in the middle of a dimension, we don’t need to bother about conflicts and we can

simply assign the first valid time slot for every node. If the sink is in the middle

column, then we need to handle conflicts at all the nodes in the column of the sink.

If the sink is in the middle row, we need to handle a conflict at the sink node. Figure 7

42

S1,1 S2,1 S3,1 S4,1 S5,1

S1,5 S2,5 S3,5 S4,5 S5,5

S3,3

1 2 3 2

1 2 3 2

1 2 3 2

1 2 3 2

1 2 3 2

4

5

6

5

Figure 7: Example of a schedule built by the ScheduleGrid algorithm for a 5× 5
grid with the sink node located at (3, 3). As you can see, nodes at (2, j) and (4, j)
need to be assigned a different time slot to avoid a collision at (3, j). The nodes at
(3, 2) and (3, 4) also have to transmit at different time slots to avoid a collision at
the sink.

illustrates a case where the sink is in the middle of both dimensions and shows how

our algorithm handles the conflicts.

The ScheduleGrid algorithm works as follows. Line 2 checks if there is an

equal number of nodes to the left and to the right of the sink. If this is the case, that

means that there is a potential for conflict and that we need to add 1 to the time

slots assigned to one side of the sink (the right side in our algorithm). Line 3 assigns

1 to Ccol in that case, and Ccol will be later added to the time slots assigned to the

nodes on the right side of the sink. Line 5 checks if there is an equal number of nodes

below and above the sink. If true, line 6 assigns 1 to Crow which will be later added

to the time slots assigned to the nodes below the sink.

43

Algorithm 3 ScheduleGrid

Input: S: 2-dimensional array of nodes, s: sink node
Output: Assignment of parent and time slot for each node in S

1: Ccol = Crow = 0
2: if s.x− 1 == G.sizeX − s.x then
3: Ccol = 1
4: end if
5: if s.y − 1 == G.sizeY − s.y then
6: Crow = 1
7: end if
8: maxtx = Max(s.x− 1, G.sizeX − s.x) + Ccol
9: for y = 1 to G.sizeY do

10: for x = 1 to G.sizeX do
11: if x < s.x then
12: S[x, y].p = S[x+ 1, y]
13: S[x, y].t = x
14: else if x > s.x then
15: S[x, y].p = S[x− 1, y]
16: S[x, y].t = G.sizeX − s.x− x+ Ccol
17: end if
18: end for
19: if y < s.y then
20: S[s.x, y].p = S[s.x, y + 1]
21: S[s.x, y].t = maxtx+ y
22: else if x > s.x then
23: S[s.x, y].p = S[s.x, y − 1]
24: S[s.x, y].t = maxtx+G.sizeY − s.y − y + Crow
25: end if
26: end for

44

Line 8 computes the maximum time slot used by any horizontal edge. This value is

used when scheduling nodes in the column of the sink since they need to be scheduled

after the data form their children has been aggregated. Lines 9-26 build the tree and

the schedule for the graph. The inner loop of lines 10-18 will create and schedule the

horizontal edges. As you can see at line 16, Ccol is added to the time slot assigned

to each node that is located at the right of the sink (x > sink.x) to handle potential

conflicts. Lines 19-25 create and schedule the vertical edges. The maxtx variable

computed earlier is used at lines 21 and 24 to ensure that those nodes are scheduled

after they have received from their children. The Crow variable is added to each node

that is located below the sink (y > sink.y) to handle potential conflicts.

Since the algorithm iterates through all the nodes only once and the processing

done at each node is constant, the ScheduleGrid algorithm has a time complexity

of O(|V |).

We can clearly see that the schedule built by the ScheduleGrid algorithm is

conflict-free and uses a number of time slots equal to our lower bound defined in

Theorem 5. The schedule is thus conflict-free and optimal. As we’ve shown earlier,

a torus network can be treated as a grid network where the sink is in the middle.

Therefore, the same algorithm can be used to build a schedule for tori. This leads to

the following theorem:

Theorem 8 Given a grid or torus network of k dimensions, the ScheduleGrid

algorithm (described in Algorithm 3) builds a conflict-free schedule that solves the

MLAS problem optimally. This schedule can be built in O(|V |) time.

45

3.4 Unit Interval Graphs

Sometimes sensor nodes can be deployed to monitor perimeters or borders and their

positions therefore fall on a line. Two nodes are connected if each is contained in

the other’s transmission range. If all transmission ranges are equal, they can be

represented by unit intervals and the resulting graph can be represented by a unit

interval graph1.

We consider a unit interval graph G = (V,E) of size n, where V = {S0, ..., Sn−1}

and where Sn−1 is the sink node. We assume that all sensor nodes are located at

distinct locations. The nodes are sorted in descending order of distance from the sink

which means S0 is the farthest node from the sink. Sj is called a forward neighbor

of Si if it is closer to the sink than Si (i.e. if j > i), otherwise it is called a backward

neighbor.

We also study a more constrained kind of unit interval graph where all nodes

except for the last k nodes have k forward neighbors. We call such a graph a regular

unit interval graph.

In this section, we look at unit interval graphs and regular unit interval graphs,

and we give lower bounds and algorithms for both topologies.

3.4.1 Lower Bound for Unit Interval Graphs

In a unit interval graph, cliques have special properties that allow us to find a tighter

lower bound.

Lemma 2 In a clique, if a node S ′i is receiving from a node Si, no other node inside

the clique can transmit at the same time.

1In the usual definition of an interval graph, intervals are represented by nodes and there is an
edge between two nodes if their corresponding intervals overlap. It is easy to see that our definition
is equivalent.

46

Proof. Any node inside the clique that would transmit at the same time would

interfere at S ′i.

Lemma 3 In a unit interval graph, 2 nodes Si and Sj with i < j that are part of the

same clique can transmit at the same time if and only if Si transmits backwards to a

node S ′i that is outside the clique and Sj transmits forwards to a node S ′j outside the

clique.

Proof. If i′ > i, then Sj’s transmission will interfere with S ′i’s reception. If j′ < j,

then Si’s transmission will interfere with S ′j’s reception. This proves that Si has

to transmit backwards and that Sj has to transmit forwards. And we know from

Lemma 2 that neither S ′i nor S ′j can form a clique with Si and Sj.

Obviously, the data sent by a node has a minimum latency that is equal to the

minimum number of hops to the sink. Given nodes S0, . . . , Sn−1 in a unit interval

graph, we denote by dist(Si, Sn−1) the minimum number of hops between a node Si

and the sink.

However, the hop distance alone is not the only factor to consider if we want to

have a good lower bound. Indeed, a node cannot transmit before it has received all

the data from its children, and it needs to avoid collisions with other transmissions.

Suppose a node Si transmits at time t, then its data cannot reach the sink before:

dist(Si, Sn−1)− 1 + t

We denote by ln(Si) the last neighbor of Si, i.e. the neighbor of Si that is the

closest to the sink. Consider the nodes to be divided into cliques C0, ..., Cm−1 where

C0 = {S0, ..., ln(S0)}, C1 = {ln(S0), ..., ln(ln(S0))} and so on. Note that, as defined,

the cliques are overlapping (not disjoint); the last node in clique Ci is the first node

47

in clique Ci+1, for 0 ≤ i < m− 1. Figure 8 shows an example of a graph with three

cliques.

S0 S1 S2 S3 S4 S5 S6

C0

C1

C2

Figure 8: Illustration of a graph with 3 cliques where C0 = {S0, S1, S2}, C1 =
{S2, S3, S4, S5}, C2 = {S5, S6}.

Based on these definitions, we can now introduce the following lower bound:

Theorem 9 In a unit interval graph of size n, any MLAS scheduling algorithm must

use a minimum number of time slots defined by the following formula :

max


|C0|+ dist(C0, Sn−1)− 1

|Cm−1| − 1

|Ci|+|Ci+1|
2

+ dist(Ci, Sn−1)− 1

Proof. We know from Lemma 3 that no more than 2 nodes in a clique can transmit

at the same time. Because C0 doesn’t have a clique behind it, no node can transmit

backwards outside the clique and so only one node in C0 can be scheduled at a given

time slot. Similarly, only one node in Cm−1 can be scheduled at a given time slot.

It follows from the fact that no node in Cm−1 has a forward neighbor outside of the

clique.

Thus, no matter how we schedule the nodes, there is no way to use less time

slots than the size of C0 or the size of Cm−1 minus 1 (because the sink is part of

Cm−1). Suppose that Si ∈ C0 is the last node in that clique to transmit, the earliest

it can transmit is at time |C0|, and the earliest its data can reach the sink is at time

48

|C0|+dist(C0, Sn−1)−1. Similarly, the last node to transmit in Cm−1 cannot transmit

before time |Cm−1|−1 and this is also the earliest its data can reach the sink because

dist(Cm−1, Sn−1) = 0.

This takes care of the first 2 lower bounds in our formula. The third lower bound

is a little trickier to prove as C1 through Cm−2 have the possibility to schedule 2

nodes to transmit at the same time slot. This would give us a straightforward lower

bound of |Ci|
2

+dist(Ci, Sn−1). However, this trivial bound is overoptimistic because it

doesn’t take the neighboring cliques into consideration. Indeed, any time slot used to

transmit to a neighboring clique prevents any node in the receiving clique to transmit

at the same time. Therefore, it effectively adds one to the number of time slots used

by this neighboring clique.

Consider 2 consecutive cliques Ci and Ci+1. From Lemma 3, we know that a

maximum of 2 nodes in a clique can transmit at the same time. Suppose that 2

nodes in Ci transmit at time t. One of these nodes has to transmit to a node in Ci+i.

Therefore, we know from Lemma 2 that no node in Ci+1 can transmit at time t.

Similarly, suppose that 2 nodes in Ci+1 transmit at time t′. One of these nodes

has to transmit to a node in Ci. Therefore, no node in Ci can transmit at time t′.

This shows that no more than 2 nodes in Ci ∪ Ci+1 can transmit at the same time.

It is now easy to see that we need a minimum of |Ci|+|Ci+1|
2

time slots for each pair

of consecutive cliques. To tighten this bound, we need to add the distance between

the pair of cliques and the sink minus 1, which gives us exactly the third lower bound

in our formula.

49

3.4.2 Algorithm for Unit Interval Graphs

In this section, we present our 2-approximation algorithm for solving the MLAS

problem in Unit Interval Graphs.

A simple greedy approach for building the convergecast tree would be for each

node to select as parent the neighbor that is the closest to the sink node. This

approach leads to bad results in practice because it reduces the chance of being able

to schedule many nodes to transmit at the same time slot.

An approach that was found to give good results in practice was to divide the

nodes in cliques and to select one node in each clique as the aggregator for the data

from all the other nodes of the same clique. This is the approach we use in our Hub

Algorithm and it is illustrated in Figure 9.

The Hub Algorithm works by dividing the graph into cliques C0, ..., Cm−1 where

C0 = {S0, ..., ln(S0)}, C1 = {ln(S0), ..., ln(ln(S0))} and so on. As was the case in our

lower bound definition, the cliques are overlapping in such a way that the last node

in clique Ci is the first node in clique Ci+1, for 0 ≤ i < m − 1. The last node in

each clique is used as the aggregator for the clique. The schedule is built by iterating

through all the nodes and assigning to each node the lowest time slot not already in

use by a node in the previous and current clique.

S0 S1
. . . Si . . . Sj−2 Sj−1

1

2

i

j − 1
Sj Sj+1 . . . Sj+k−3 Sj+k−2

j

j + 1

j + 2

j + k − 2

Figure 9: In the Hub algorithm, intermediate nodes are selected and used as aggre-
gators along the way to the sink. In this figure, j = |C0| and k = |C1|. Note that the
total number of time slots used by these 2 cliques is j + k− 1, assuming that Sj+k−1
is not the sink and is scheduled at time j + k − 1.

50

Theorem 10 The Hub Algorithm is a 2-approximation algorithm and builds a sched-

ule in O(|V |) time.

Proof. Using the algorithm definition, we can easily determine the number of time

slots used by any pair of 2 consecutive cliques. Let Ci and Ci+1 be 2 consecutive

cliques, the number of time slots used by their nodes is |Ci|+ |Ci+1| − 1, or the total

number of nodes in those 2 cliques. Thus, the total latency of the algorithm is given

by Max(|Ci|+ |Ci+1| − 1 + dist(Ci, Sn−1)).

In the worst case, this is no more than twice the number of time slots defined by

our lower bound of |Ci|+|Ci+1|
2

+dist(Ci, Sn−1)−1. This proves that the Hub Algorithm

is a 2-approximation algorithm.

Assuming that the nodes are already sorted in order of index, the cliques can be

found in O(|V |) time in the worst case. Every node is assigned as parent the last

node in its clique which can be done in constant time. By maintaining separate lists

for the set of time slots used in the previous two cliques and a set of available time

slots, the schedule can be built in O(|V |) time.

3.4.3 Lower Bound for Regular Unit Interval Graphs

In this section, we show that we can find a tighter lower bound for the regular unit

interval graph. We start by observing that in a regular unit interval graph, each set

of k + 1 consecutive nodes represents a clique. This follows from the fact that each

node has a maximum of k forward neighbors and k backward neighbors.

Obviously, the data sent by a node has a latency that is greater or equal to the

number of hops to the sink. Given nodes S0, . . . , Sn−1 in a regular unit interval graph,

the number of hops between a node and the sink can be found with the following

51

formula:

dist(Si, Sn−1) =

⌈
n− 1− i

k

⌉

But the hop distance alone is not the only factor to consider if we want to have

a good lower bound. Indeed, a node cannot transmit before it has received all the

data to aggregate and it needs to avoid collisions with other transmissions. Suppose

a node Si transmits at time t, then its data cannot reach the sink before:

dist(Si, Sn−1)− 1 + t

Based on these definitions, we can now introduce the following straightforward

lower bound:

Theorem 11 In a regular unit interval graph of size n where each node has a max-

imum of k forward neighbors, any aggregation convergecast algorithm must use a

minimum of

⌈
n− 1

k

⌉
+ k − 1 time slots.

Proof. The first k + 1 nodes form a clique, and it follows from Lemma 3 that only

one node of this group can transmit at a time. Therefore, k+ 1 time slots are needed

for these nodes to transmit their data. Suppose that Si ∈ {S0, . . . , Sk} is the last

node in that group to transmit, the earliest it can transmit is at time k + 1, and the

earliest it can reach the sink is at time

dist(Si, Sn−1)− 1 + k + 1 =

⌈
n− 1− i

k

⌉
+ k

≥
⌈
n− 1− k

k

⌉
+ k

=

⌈
n− 1

k

⌉
+ k − 1

52

We now show that the above lower bound can be strengthened for large enough

values of n and k. Let n ≥ 2k + 3, k > 2 and consider the first 3k + 3 nodes to be

divided into 3 cliques of size k + 1, where C0 = {S0, . . . , Sk}, C1 = {Sk+1, . . . , S2k+1}

and C2 = {S2k+2, . . . , S3k+2}.

Theorem 12 In a regular unit interval graph of size n where each node has a maxi-

mum of k forward neighbors, if n ≥ 2k + 3, k > 2 and (n− 1) mod k /∈ {1, 2}, then

any MLAS scheduling algorithm must use a minimum of

⌈
n− 1

k

⌉
+ k time slots.

Proof. Suppose there is an algorithm that can complete the aggregation converge-

cast in dn−1
k
e + k − 1 time slots. Then such an algorithm must have the following

properties:

1. It needs to assign time 1, . . . , k + 1 to nodes in C0.

Let bi = dn−1−i
k
e − 1 + ti be the lower bound on the time at which the data of

node Si reaches the sink. If ∃i, 1 ≤ i ≤ k + 1 such that ti > k + 1, then

bi ≥
⌈
n− 1− (k + 1)

k

⌉
− 1 + (k + 2)

=

⌈
n− 2

k

⌉
+ k

>

⌈
n− 1

k

⌉
+ k − 1

2. The node in C0 that transmits at time k + 1 has to transmit to a node in

C1. This follows from the fact that a node cannot receive data after it has

transmitted its own data.

3. Nodes in C1 must be assigned time slots from the set {1, . . . , k, k+ 2} following

a similar argument as in Property 1. Time k+ 1 is excluded because a node in

53

C1 is receiving data at time k+1 (see Property 2), and we know from Lemma 2

that no other node in C1 can transmit at the same time.

4. The node in C1 that transmits at time k + 2 has to transmit to a node in C2,

following a similar argument as in Property 2.

5. Node Sk+1 has to transmit in the first k+1 time slots, otherwise its data cannot

reach the sink in dn−1
k
e+ k − 1.

Proof. Suppose Sk+1 transmits at time k+ 2. Then its data cannot reach the

sink before dn−1−(k+1)
k

e − 1 + (k + 2).

⌈
n− 1− (k + 1)

k

⌉
− 1 + (k + 2) ≤

⌈
n− 1

k

⌉
− 1 + (k + 2)

We substitute n− 1 by ik + r.

⌈
ik + r − k − 1

k

⌉
+ 2 ≤

⌈
ik + r

k

⌉
⌈
r − 1

k

⌉
+ 1 ≤

⌈ r
k

⌉

This is only true if r = 1. But we assumed that (n−1) mod k /∈ {1, 2}, so Sk+1

cannot transmit at time k + 2 or later.

6. Suppose that Sk+1 transmits at some time t with 1 ≤ t ≤ k+1. By Property 1,

there exists a node Si ∈ C0 that also transmits at time t. In order to have a

collision free transmission, S0 is the only possible receiver for Si. Sk+1 would

interfere with any other possible receiver.

7. It has to assign a time slot i ≤ k+2 to node S2k+2. However, it cannot transmit

at time k+ 2 because a node in C1 transmits to a node in C2 at the same time

(see Property 4).

54

Proof. Suppose S2k+2 transmits at time k + 3. Then its data cannot reach

the sink before dn−1−(2k+2)
k

e − 1 + (k + 3).

⌈
n− 1− (2k + 2)

k

⌉
− 1 + (k + 3) ≤

⌈
n− 1

k

⌉
− 1 + (k + 3)

We substitute n− 1 by ik + r.

⌈
ik + r − 2k − 2

k

⌉
+ 3 ≤

⌈
ik + r

k

⌉
⌈
r − 2

k

⌉
+ 1 ≤

⌈ r
k

⌉

This is only true if r ∈ {1, 2}. But we assumed that (n− 1) mod k /∈ {1, 2}, so

S2k+2 cannot transmit at time k + 3 or later.

Suppose that node S2k+2 is transmitting at time i ∈ {1, . . . , k}, which means it

is transmitting at the same time as a node Si ∈ C1. Then the only possible receiver

for Si is Sk+1. Otherwise, if the receiver is Si′ with i′ < k + 1, then a node in C0 will

interfere at Si′ . If i′ > k + 1, then node Sk+2 will interfere at Si′ .

If Sk+1 is the receiver, then the only node in C0 that can transmit at the same

time is S0. Any other node in C0 would interfere at Sk+1. This implies that S0 also

has to transmit at time i and can no longer receive anything after that time. We

know Sk+1 has to transmit after time i and we know from Property 5 that it has to

transmit at the same time as a node in C0. But we know from Property 6 that the

only possible receiver for the sender in C0 is S0. This is in contradiction with the

constraint that a node cannot receive data after it has transmitted. This means that

node S2k+2 cannot transmit at time i ∈ {1, . . . , k}.

Now that we have excluded all these time slots, the only one left are k+1 and k+2.

Suppose that node S2k+2 transmits at time k + 1. We know from Property 2 that it

55

is used by a node Si ∈ C0 and that the receiver is Si′ ∈ C1. To avoid interference at

Si′ , we need to have i′ = k + 1. Therefore, Sk+1 cannot transmit before time k + 2,

which means that its data cannot reach the sink before

dist(Sk+1, Sn−1)− 1 + k + 2 =

⌈
n− 1− (k + 1)

k

⌉
+ k + 1

=

⌈
n− 2− k

k

⌉
+ k + 1

=

⌈
n− 2

k

⌉
+ k

=

⌈
n− 1

k

⌉
+ k

The last equality is true because we initially assumed that (n − 1) mod k 6= 1,

which implies that dn−2
k
e = dn−1

k
e. This contradicts the initial assumption that the

convergecast algorithm completes in dn−1
k
e + k − 1 time slots, and thus means that

node S2k+2 cannot transmit at time k + 1. A similar argument can be used to show

that node S2k+2 cannot transmit at time k + 2.

Therefore, S2k+2 cannot transmit before time k+ 3, which contradicts Property 7

and completes the proof.

3.4.4 Algorithm for Regular Unit Interval Graphs

In this section, we introduce an algorithm for building the tree and scheduling the

nodes for regular unit interval graphs. The number of time slots used by this al-

gorithm is at worst one more than an optimal solution, and is optimal if k ≤ 2 or

(n− 1) mod k /∈ {1, 2}.

Remember that the key to any good aggregation convergecast algorithm is to

maximize parallelism. To achieve that goal, our algorithm is divided in 4 main

56

sections that each have their own algorithm. To simplify the explanation of the

algorithm, consider the nodes to be divided into groups of size k. Let us denote by

Gi the group that contains nodes Sik, . . . , S(i+1)k−1.

If n = k+ 1, it is easy to create an optimal schedule using the Hub Algorithm, as

shown in Figure 10. However, the Hub Algorithm doesn’t give an optimal solution

for larger networks. For instance if n = 2k, this approach will lead to a sub-optimal

solution as shown in Figure 11. In this specific example, the lower bound given by

Theorem 12 is k+ 1. However, since nodes in G0 transmit to Sk, nodes in G1 cannot

reuse the same time slots without causing interference at Sk. Thus, a total of 2k time

slots are necessary when using the Hub Algorithm for this example.

S0 S1
. . . Si . . . Sk−1 Sk

1

2

i + 1

k

Figure 10: Optimal solution using the Hub Algorithm.

A better approach is to use node S0 as a data aggregator for the nodes in G0.

Because S0 is more than k nodes away from the nodes in G1, nodes in G1 are far

enough to allow the same time slots to be reused without interference. This scenario

is illustrated in Figure 12, for n = sk and is an optimal schedule for n ≤ 2k.

S0 S1
. . . Si . . . Sk−1 Sk

1

2

i+ 1

k
Sk+1 Sk+2 . . . S2k−1 S2k

k + 1

k + 2

k + 3

2k

Figure 11: Illustration of the tree and schedule built by the Hub Algorithm for a
Regular Unit Interval Graph of size 2k. The schedule built with the Hub Algorithm
uses 2k time slots whereas an optimal solution for the same graph would use only
k + 1 time slots.

57

S0 S1
. . . Si . . . Sk−1 Sk

k

1

i

k − 1

Sk+1 Sk+2 . . . S2k−1 S2k

k + 1

1

2

k − 1

Figure 12: Illustration of using S0 as a data aggregator for a Regular Unit Interval
Graph of size 2k. Using S0 as the aggregator for G0 allows us to reassign the same
time slots to the nodes in G1. In this example, we can achieve an optimal solution of
k + 1 time slots.

Things get more complicated when n > 2k. Nodes in G1 now have to avoid

collisions with nodes in G2 as well as avoiding collisions with nodes in G0. This adds

constraints that make it harder to maintain an optimal solution. Nodes in G1 cannot

transmit backwards to avoid collisions with G2, because there would be a collision

with a node in G0. In order to minimize the chance of collision, a simple solution is

to schedule nodes in G1 to transmit to the closest forward neighbor. This way we

still avoid collisions with nodes in G0 while increasing the number of time slots that

can be reused in G2 (see Figure 13).

Sk . . . Sk+i . . . S2k

k + 1

i k − 1

S2k+1 S2k+2 S2k+3 . . . S3k

k + 3

k + 2 k 1 k − 3

Figure 13: Tree and schedule for G1 and G2. Nodes in G1 transmit to their closest
forward neighbor. This allows for k − 3 time slots to be reusable in G2.

The next groups face the same problem as G1, which is to try to reuse as many

time slots as possible while avoiding collisions with their neighboring groups. But we

cannot reuse the same scheduling strategy that we used for G1 because that would

not be collision free. In G1, node Sk+i transmits to Sk+i+1 at time i. Nodes in G2 can

only transmit at time i if they are at least k+ 1 nodes away from Sk+i+1. Therefore,

the first node in G2 that can transmit at time i is node S2k+i+2. This means that

S2k+1 and S2k+2 need to use time slots that are not used in G1. As shown in Figure 13,

58

we can make them transmit backwards so that we can reuse those time slots in the

next group.

Next, in G3, we cannot reuse the exact pattern that we used in G2 without losing

optimality. We can schedule nodes S3k+5, . . . , S4k−1 to use time slots 1, . . . , k − 5

respectively. But that leaves us with 4 nodes that would need to transmit backwards,

and we can only use 3 more time slots if we want to remain optimal. But because

we chose to make nodes S2k+1 and S2k+2 transmit backwards, we can reuse one of

their time slot to schedule node S3k+4 to transmit to S4k. This solution is shown in

Figure 14.

S2k S2k+1 S2k+2 S2k+3 . . . S3k

k + 3

k + 2 k 1 k − 3

S3k+1 S3k+2 S3k+3 S3k+4 S3k+5 . . . S4k

k + 4

k + 1 k − 1 k − 2

k

1
k − 5

Figure 14: Tree and schedule for G2 and G3. Some nodes in G2 and G3 will transmit
to their closest backward neighbor to allow for more time slots to be reused in the
next groups.

We can now introduce our algorithm for constructing the tree and scheduling the

nodes of a regular unit interval graph of size n > 2k + 2. As shown in Figure 12,

S0 is used as a data aggregator for nodes in G0 and will transmit its aggregated

data to Sk at time k. Nodes in the other groups will be scheduled according to a

common pattern. Let Gi be divided into 4 sub-groups Ai, Bi, Ci and Di, and let

α = min{i, k − 1} and β = min{2i − 2, k − 1}. The sub-groups are defined by the

59

following equations

Ai = {Sik}

Bi =

 ∅ if i = 0

{Sj | ik + 1 ≤ j ≤ ik + α} otherwise

Ci = {Sj | ik + α + 1 ≤ j ≤ ik + β}

Di = {Sj | ik + β + 1 ≤ j ≤ ik + k − 1}

From these equations, we can derive the size of each sub-group:

|Ai| = 1

|Bi| = α

|Ci| =

 β − α if i < k − 1

0 otherwise

|Di| =

 k − 1− β if i ≤ k
2

0 otherwise

Based on these definitions, our regular unit interval graph algorithm schedules nodes

in each sub-group using the following rules:

1. Sik ∈ Ai transmits at time k + i + 1. If ik + k < n then the receiver is node

Sik+k, otherwise the receiver is node Sn−1.

2. Let Ti be the set of time slots used by group Gi and let TBi = {1, . . . ,min(k+

i, 2k − 1)} − Ti−1 be the set of time slots used by sub-group Bi. Node Sj ∈ Bi

transmits to node Sj−1 at time j′ ∈ TBi. Time slots are assigned in ascending

order from the last node to the first node in Bi.

60

3. For each Sj ∈ Ci, Sj transmits at the same time as node Sj−k−α ∈ Bi−1. If

ik + k < n, the receiver is node Sik+k, otherwise the receiver is node Sn−1.

4. For each Sj ∈ Di, Sj transmits to node Sj+1 at time j − (ik + β). Nodes in Di

will therefore use time slots in the range 1, . . . , |Di|.

Theorem 13 Our regular unit interval graph scheduling algorithm produces a valid

collision-free schedule that uses exactly

⌈
n− 1

k

⌉
+ k time slots. This schedule can be

built in O(|V |) time.

Proof. We can easily see in Figure 12 that the schedule of the first 2k nodes is

collision-free. We will show by induction that the schedule of the other nodes is also

collision-free. Assume that nodes in the first i groups have a collision-free schedule.

We know from the algorithm’s rules that each node in Gi is assigned a different time

slot, so there cannot be any collision between them. We need to show that their

transmissions never collide with the transmission of a node in Gi−1.

The transmission of node Sik is obviously collision-free since the latest time slot

used in Gi−1 is time k+ i and Sik transmits at time k+ i+1. Nodes in Bi are assigned

time slots from the set TBi, which is disjoint from Ti−1 by definition. Therefore, the

schedule of nodes in Bi is also collision-free, as long as the number of time slots in

TBi is greater or equal to the number of nodes in Bi. This is verified by solving

|Bi| <= |TBi|

<= min{k + i, 2k − 1} − k

= min{i, k − 1}

= α

To prove that the schedule of nodes in Ci is collision-free, we first need to prove

61

that |Bi−1| >= |Ci|. If i >= k − 1, then |Ci| = 0 so |Bi−1| is definitely greater than

|Ci|. If i < k − 1, then

|Bi−1| >= |Ci|

min{i− 1, k − 1} >= min{2i− 2, k − 1} −min{i, k − 1}

i− 1 >= min{2i− 2, k − 1} − i

i− 1 >= min{i− 2, k − 1− i}

This is always true since i−1 > i−2. Therefore, nodes in Ci will use the same time

slots as nodes in Bi−1. This is collision-free because nodes in Ci transmit forwards

while nodes in Bi−1 transmit backwards, and because for each pair of nodes that

share the same time slot, the distance between them is more than k nodes (exactly

k + α nodes). Those conditions guarantee that the receivers will be in range of only

one transmitter at their scheduled time slots.

Finally, we need to prove that the schedule of nodes in Di is collision-free. Observe

that time slots used by Di are a strict subset of time slots used by Di−1. Therefore,

nodes in Di can only collide with node in Di−1. Suppose that Sj ∈ Di transmits to

Sj+1 and that Sj′ ∈ Di−1 transmits to Sj′+1, both at time j − (ik + β). We need

to verify that the distance between Sj and Sj′+1 as well as the distance between Sj′

and Sj+1 are both greater than k. Based on the definition of our algorithm, we can

represent j′ in terms of j and find that j′ = j − k − 2. We can then compute both

distances and find that the distance between Sj and Sj′+1 is j − (j − k − 1) = k + 1

and that the distance between Sj′ and Sj+1 is (j + 1) − (j − k − 2) = k + 3. Both

distances are greater than k and the schedule is therefore collision-free.

Now that we have proven that the algorithm is collision-free, we need to prove

that the schedule uses exactly dn−1
k
e+k time slots. By the definition of the algorithm,

62

the highest time slot used by Gi is k+ i+ 1, so the last time slot will be used by the

last group. There are dn−1
k
e groups, numbered from 0 to dn−1

k
e − 1. Thus, the last

time slot used by the last group will be k + (dn−1
k
e − 1) + 1 = dn−1

k
e+ k.

As for the Hub Algorithm for unit interval graphs, we start by dividing the graph

into cliques which can be done in O(|V |) time. The division of each clique into

subgroups can be computed in constant time. It is straightforward to see from the

description of the schedule that the remaining computations can be completed in

O(|V |) time.

63

Chapter 4

Heuristics for Arbitrary Graphs

In this chapter, we present a new algorithm for building an aggregation tree and

two new scheduling algorithms for the MLAS problem. Section 4.1 describes our

tree-building algorithm, called Degree-Constrained Aggregation Tree (DCAT), and

presents a simple example showing how it can reduce the latency. Our scheduling

algorithms, named WIRES-G (where G stands for Greedy) and Degree-Constrained

Aggregation Tree Scheduling (DCATS), are presented in Section 4.2. In Section 4.3,

the performance of DCAT is evaluated through simulations on randomly generated

graphs. The same randomly generated graphs are used in Section 4.4 to evaluate the

performance of WIRES-G and DCATS. An in-depth analysis of the results for the

tree-building algorithm and the scheduling algorithms is done in Section 4.5.

4.1 Degree-Constrained Aggregation Tree (DCAT)

As mentioned in Chapter 2, most approximation algorithms designed for any topolo-

gies use either a CDS-based (or MIS-based) approach or they use a Shortest Path

Tree (SPT) algorithm. It was shown by Malhotra et al. [30] that SPT-based ap-

proaches performed better in practice due to the fact that CDS approaches tend to

64

cluster nodes, which reduces the possibilities of scheduling many nodes in parallel. It

was also shown in [30] that the choice of a good tree was very important to produce a

good schedule, and they proposed the BSPT algorithm to build an efficient aggrega-

tion tree. The BSPT algorithm tries to maximize parallelism by distributing evenly

the nodes between their potential parents. The main idea behind it is that if nodes

are distributed evenly, the scheduling algorithm is more likely to be able to schedule

many nodes in parallel.

However, the approach used in BSPT doesn’t take into consideration the degree

of the nodes in the graph. So although BSPT does a good job of minimizing the

maximum degree of a node in the aggregation tree, it does little to prevent a high-

degree node in the graph from having many children in the tree. Having a high-degree

node with multiple children reduces the possibility of parallelism, and in the end hurts

the overall performance of the scheduling algorithm.

Our new algorithm DCAT tries to address this problem by minimizing the number

of children assigned to the highest-degree nodes in the graph. It works by traversing

the graph in a BFS way. As it traverses each node, the set of potential parents is

determined by identifying the nodes that are one-hop closer to the sink. The potential

parent with the lowest degree in the graph is selected as the parent for the currently

traversed node. As with any BFS-based algorithm, DCAT has a time complexity of

O(|V |+ |E|) since every vertex and every edge are explored once.

Figure 15 illustrates how the approach used in DCAT can give better results

than BSPT. It shows a case where distributing the children evenly between potential

parents, regardless of their degree in the graph, leads to more constraints for the

scheduling algorithm. In this specific example, we can clearly see that considering

the degree in the graph is better than trying to minimize the degree in the aggregation

tree. This gives an indication that DCAT could be a better algorithm for building an

65

Algorithm 4 DCAT

Input: G = (V,E), s: sink node
Output: A spanning tree of G rooted at s where v.p is the parent of v ∈ V

1: procedure DCAT(G, s)
2: for each u ∈ G.V do
3: u.d = −1
4: u.p = nil
5: end for
6: s.d = 0
7: Q = ∅
8: Enqueue(Q, s)
9: while Q 6= ∅ do

10: u = Dequeue(Q)
11: for each v ∈ N (u) do
12: if v.d < 0 then
13: v.d = u.d+ 1
14: Enqueue(Q, v)
15: end if
16: if v.d > u.d then
17: if v.p == nil or |N (v.p)| > |N (u)| then
18: v.p = u
19: end if
20: end if
21: end for
22: end while
23: end procedure

66

efficient aggregation tree, at least when the degree varies between nodes. In order to

evaluate the performance of DCAT and validate the potential gains, we conducted a

series of experiments that are presented in Section 4.3.

1 2

1 2
3 3

2
1

1243

Figure 15: Example showing that minimizing the highest degree in the aggregation
tree is not necessarily a good approach. Solid edges: Aggregation tree edges. Dashed
edges: Graph edges that are not tree edges. Above: Aggregation tree built by the
BSPT algorithm. We can see that the best possible schedule for this tree requires
4 time slots. Below: Aggregation tree built by the DCAT algorithm for the same
graph. In this case, the best schedule uses only 3 time slots.

4.2 Scheduling Algorithms

In this section, we present two new scheduling algorithms based on the WIRES

algorithm designed by Malhotra et al. [30]. Those new algorithms are the result

of the analysis of our simulation results in section 4.5.1. As our analysis shows,

the DCAT algorithm sometimes assigns many children to the same parent in the

aggregation tree. This has an impact on the latency of any scheduling algorithm that

preserves the original aggregation tree. To alleviate this problem, we added a new

step to the WIRES scheduling algorithm to try to schedule more nodes per time slot.

At each round, the new step tries to find alternate parents for the eligible nodes that

67

could not be scheduled by the original algorithm.

Our first scheduling algorithm is called WIRES-G (G for Greedy) and is detailed

in Algorithm 5. It works as follows. Lines 5-9 correspond to the steps that are done

at each round in the original WIRES algorithm. At the end of Line 9, S contains

the nodes that are scheduled to send at time j and R contains the set of nodes that

receive data from the nodes in S. At this point, if we keep the original tree, no other

node can be scheduled to transmit without causing interference with the already

scheduled nodes. Our experiments have shown that in many cases, more nodes have

the potential to be scheduled if we just select a new parent for them. This is especially

true at high densities where each node have many potential parents. This is what

our new Greedy-Scheduling procedure tries to accomplish.

The loop of lines 16-35 iterates through all the eligible nodes that were not sched-

uled to transmit. Line 17 first verifies if the current node is not already a receiver

and if it can transmit without causing any interference at one of the receivers in R. If

the node p can transmit without conflict, the loop of lines 19-23 iterates through all

the neighbors of p and looks for a neighbor that has not yet been scheduled and that

can receive at time j without conflict. If more than one neighbor follow these con-

straints, the one with the lowest degree in the graph will be selected. If a neighbor is

found, it becomes the new parent in the aggregation tree for the current node. If the

previous parent does not have any unscheduled children left and if it is not a receiver

in the current round, it is added to the list of eligible nodes as it could potentially

be scheduled at time j (lines 27-29).

GetEligibleNodes takes O(|V |) time and ComputeWeights takes O(|V |+

|E|) time. Line 7 takes O(|V log |V ||) time in the worst case. Both the Schedu-

leNodes procedure and the Greedy-Scheduling procedure explore all nodes and

edges at each call and have a time complexity of O(|V | + |E|). The outer loop of

68

Algorithm 5 WIRES-G

Input: G = (V,E), s: sink node, v.p: parent of v ∈ V in the tree
Output: A valid schedule for G where v.t is the transmission time for v ∈ V

1: procedure WIRES-G(G, s)
2: ∀v ∈ G.V v.t = 0 . Initialize time slots
3: j = 1
4: while s.t = 0 do
5: L = GetEligibleNodes(G)
6: ComputeWeights(L)
7: SortDecreasing(L) . Sort nodes in decreasing order of weights.
8: S = R = ∅ . Set of senders and receivers are initially empty
9: ScheduleNodes(L, S,R)

10: L = L \ S . Remove senders from eligible nodes
11: Greedy-Scheduling(L, S,R)
12: j = j + 1
13: end while
14: end procedure

15: procedure Greedy-Scheduling(L, S,R)
16: for each u ∈ L do
17: if u /∈ R and u /∈ N (R) then . If u can transmit without interference
18: r = nil . No parent found yet
19: for each p ∈ N (u) do . Try to find a parent
20: if p.t == 0 and p /∈ N (S) and (r = nil or |N (p)| < |N (r)|) then
21: r = p . Found a parent with no conflict
22: end if
23: end for
24: if r 6= nil then . If a new parent was found
25: p = u.p . Keep a reference to the previous parent
26: u.p = r . Assign the new parent
27: if IsEligible(p) then . Check if p has become eligible.
28: L = L ∪ {p} . Add it to the set of eligible nodes
29: end if
30: u.t = j . u is scheduled to transmit at time j
31: S = S ∪ {u} . u is added to the set of senders
32: R = R ∪ {u.p} . The parent of u is added to the set of receivers
33: end if
34: end if
35: end for
36: end procedure

69

line 4 executes at most |V | times. Thus, the WIRES-G algorithm, like the WIRES

algorithm, has time complexity O(|V |2 log |V |+ |V ||E|).

The WIRES-G scheduling algorithm was shown to obtain very good results when

used in combination with either DCAT or BSPT (see Section 4.4). However, be-

cause it starts by scheduling as many nodes as possible using the original tree, its

performance is limited by the given tree. Another approach would be to completely

get rid of the scheduling routine in the original WIRES and use only the Greedy-

Scheduling procedure introduced in WIRES-G. This way, the impact of the original

tree would be more limited and the overall performance could be improved. This is

the idea that is used in our DCATS algorithm. DCATS combines our tree-building

algorithm DCAT with our Greedy-Scheduling procedure to try to achieve even

lower latency.

Algorithm 6 DCATS

Input: G = (V,E), s: sink node
Output: A spanning tree of G rooted at s and a valid schedule for G, where v.t and

v.p are the transmission time and parent for v ∈ V respectively.
1: procedure DCATS(G)
2: DCAT(G, s)
3: ∀v ∈ G.V v.t = 0 . Initialize time slots
4: j = 1
5: while s.t = 0 do
6: L = GetEligibleNodes(G)
7: ComputeWeights(L)
8: SortDecreasing(L) . Sort nodes in decreasing order of weights.
9: S = R = ∅ . Set of senders and receivers are initially empty

10: Greedy-Scheduling(L, S,R)
11: j = j + 1
12: end while
13: end procedure

The pseudocode for DCATS is shown in Algorithm 6. DCATS first uses the

DCAT algorithm to build an aggregation tree. This is necessary as the original tree

will determine the order in which the nodes will be considered by the scheduling

70

phase of the algorithm. The scheduling phase in DCATS (Lines 5-12) is similar to

the scheduling done in WIRES. At each iteration, we determine which nodes are

eligible to be scheduled at this round. Nodes become eligible once all their children

have been assigned a time slot. DCATS uses the same weight calculation used in

WIRES (number of non-leaf neighbors) and nodes are sorted in decreasing order of

weight. The Greedy-Scheduling procedure then iterates through all the eligible

nodes and tries to schedule as many as possible without conflict. Obviously, the

node with the highest weight is always scheduled for the current round, and the

lower weight nodes are only scheduled if doing so will not cause any conflict with the

previously scheduled nodes.

DCATS differs from WIRES-G in two ways: (a) it uses DCAT to build a tree

and (b) there is no call to the ScheduleNodes procedure. As already mentioned,

DCAT takes time O(|V | + |E|) and WIRES-G takes time O(|V |2 log |V | + |V ||E|).

Therefore, it is easy to see that DCATS has time complexity O(|V |2 log |V |+ |V ||E|).

4.3 Simulation Results for DCAT

In this section, we evaluate the performance of the DCAT algorithm on randomly

generated graphs. Because of the fact that DCAT only solves the tree-building part

of the MLAS problem, we pair it with the WIRES scheduling algorithm presented

in [30] to generate the schedule. We selected the WIRES algorithm for its ability

to retain the original aggregation tree. Moreover, it was shown in [30] to be the

best among the scheduling algorithms that don’t alter the aggregation tree. The

DCAT-WIRES combination is compared to the BSPT-WIRES pair, which was the

best combination in the simulations conducted in [30]. We measure the latency of

the generated schedule, which corresponds to the total number of time slots required

71

by the schedule.

4.3.1 Performance Comparison for Small Graphs (5 by 5)

We look at the performance of the DCAT algorithm on small graphs. The test graphs

were generated by uniformly distributing the nodes at random in a geographic area

of 5 by 5. Nodes have a transmission range of 1 and the graphs are generated with

a wide range of densities between 8 and 200, where the density is the average degree

in the graph. Nodes are connected in the generated graph if the Euclidean distance

between them is less than or equal to the transmission range. For each selected

density, a total of 100 connected graphs were generated and the results are averaged

over these 100 graphs.

0

50

100

150

200

250

300

8 10 15 20 25 30 40 50 60 75 90 100 125 150 175 200

La
te

n
cy

Density

BSPT

DCAT

Figure 16: Average aggregation convergecast latency comparison between DCAT and
BSPT for a network size of 5 by 5.

As shown in Figure 16, the DCAT algorithm is better at all densities. As the

density increases, so does the improvement in the schedule length. This can be easily

explained by the fact the the BSPT algorithm does not consider the nodes’ degree

at all when building the aggregation tree. Thus, it is outperformed at high densities

72

by an algorithm that tries to avoid selecting high-degree nodes as parents for other

nodes.

Nodes Density BSPT DCAT Difference Gain (%)
80 8 17.45 16.29 1.16 6.65
96 10 19.46 17.74 1.72 8.84

145 15 26.08 22.99 3.09 11.85
192 20 32.11 27.82 4.29 13.36
235 25 37.72 32.71 5.01 13.28
284 30 43.73 38.2 5.53 12.65
380 40 55.89 49.15 6.74 12.06
475 50 67.78 60.6 7.18 10.59
568 60 79.11 71.29 7.82 9.88
712 75 96.58 88.2 8.38 8.68
855 90 113.96 103.94 10.02 8.79
950 100 125.19 115.26 9.93 7.93

1185 125 153.2 142.7 10.5 6.85
1420 150 181.78 170.07 11.71 6.44
1662 175 210.89 197.55 13.34 6.33
1900 200 239.53 226.48 13.05 5.45

Table 2: Average aggregation convergecast latency comparison between DCAT and
BSPT for a network size of 5 by 5.

Figure 17 shows the performance difference in percentage. We can see that the

gains in percentage are bigger as the density increases up until it reaches a peak

of ∼13% at a density of 20. The gains in percentage start to slowly decrease after

that peak, but they remain above 5% at all densities. The decrease in gains can be

explained by the fact that at a certain point, no matter which node we select as the

parent, it still has a high degree and the scheduling algorithm cannot parallelize as

many transmissions as it can at lower densities. The fact that the graph is relatively

small further complicates matters as many nodes compete for the same channel of

communication in a small area. This reduces the number of nodes that can be

scheduled in parallel.

Out of the 1600 graphs that were generated for these tests, the BSPT algorithm

73

0

2

4

6

8

10

12

14

16

8 10 15 20 25 30 40 50 60 75 90 100 125 150 175 200

%
 G

ai
n

Density

Figure 17: Average gains of using the DCAT algorithm when compared to the BSPT
algorithm for a network size of 5 by 5.

was only able to outperform the DCAT algorithm in 78 instances, or a little less

than 5%. Interestingly, 42 of those cases occurred at a density of 125 or above. This

indicates that further improvements could be made at high densities to address those

cases.

4.3.2 Performance Comparison for Medium-Sized

Graphs (10 by 10)

We look at the performance of the DCAT algorithm on medium-sized graphs, gen-

erated by uniformly distributing the nodes at random in a geographic area of 10 by

10. The rest of the setup is the same as the previous subsection with nodes having

a transmission range of 1 and the graphs having a density between 8 and 200. For

each selected density, a total of 100 connected graphs were generated and the results

are averaged over these 100 graphs.

As was the case for small graphs, the DCAT algorithm beats the BSPT algorithm

at all densities and for almost all test graphs. We can see in Figure 18 that the

74

0

50

100

150

200

250

300

8 10 15 20 25 30 40 50 60 75 90 100 125 150 175 200

La
te

n
cy

Density

BSPT

DCAT

Figure 18: Average aggregation convergecast latency comparison between DCAT and
BSPT for a network size of 10 by 10.

gains in number of time slots are bigger at higher densities. This time, the gap

between DCAT and BSPT is a little bigger than with smaller graphs, which means

that the higher number of nodes seems to benefit our algorithm. This was somewhat

expected since a bigger graph gives more possibilities for parallelism, and the way

DCAT selects parent also improves the likelihood that the scheduling algorithm will

be able to schedule multiple nodes at the same time slot.

The BSPT algorithm was only the best in 23 out of the 1600 medium-sized graphs

generated, for a meager 1.4%. Again, most of those cases occur at high densities with

17 at a density of 150 or above. In one specific case that occurred at a density of 200,

the result of the DCAT algorithm is particularly bad when compared with the result

of BSPT. Indeed, the BSPT algorithm produces a schedule that is 14.95% better

than DCAT, by far the worse performance in any of our tests. This suggests that

there might be some rare cases in which the DCAT algorithm is not a good approach.

Figure 19 presents the gains in percentage for the medium-sized graphs. The chart

follows a similar pattern as Figure 17, where gains are bigger as the density increases

75

Nodes Density BSPT DCAT Difference Gain (%)
280 8 24.96 23.47 1.49 5.97
350 10 27.22 24.78 2.44 8.96
520 15 33.62 28.65 4.97 14.78
690 20 39.91 33.22 6.69 16.76
870 25 46.24 37.88 8.36 18.08

1040 30 52.5 42.56 9.94 18.93
1385 40 64.97 53.15 11.82 18.19
1730 50 77.49 63.45 14.04 18.12
2090 60 90.65 74.93 15.72 17.34
2610 75 108.42 91.86 16.56 15.27
3135 90 126.65 108.92 17.73 14.00
3485 100 138.71 120.77 17.94 12.93
4350 125 168.45 149.03 19.42 11.53
5220 150 197.5 178.19 19.31 9.78
6080 175 227.33 208.79 18.54 8.16
6950 200 257.08 238.26 18.82 7.32

Table 3: Average aggregation convergecast latency comparison between DCAT and
BSPT for a network size of 10 by 10.

0

2

4

6

8

10

12

14

16

18

20

8 10 15 20 25 30 40 50 60 75 90 100 125 150 175 200

%
 G

ai
n

Density

Figure 19: Average gains of using the DCAT algorithm when compared to the BSPT
algorithm for a network size of 10 by 10.

76

up until it reaches a peak. This time, the peak occurs at a slightly higher density

of 30 instead of 20. The gains in percentage are also higher with a peak of almost

19% and most of the densities are above the 10% mark. These results suggest that

we could have even better gains for even bigger graphs, which is what we will try to

measure in the next subsection.

4.3.3 Performance Comparison for Large Graphs (20 by 20)

We look at the performance of the DCAT algorithm on large graphs, generated by

uniformly distributing the nodes at random in a geographic area of 20 by 20. The

rest of the setup is the same as the two previous subsections with nodes having a

transmission range of 1 and the graphs having a density between 8 and 200. For each

selected density, a total of 100 connected graphs were generated and the results are

averaged over these 100 graphs.

0

50

100

150

200

250

300

8 10 15 20 25 30 40 50 60 75 90 100 125 150 175 200

La
te

n
cy

Density

BSPT

DCAT

Figure 20: Average aggregation convergecast latency comparison between DCAT and
BSPT for a network size of 20 by 20.

The tendency continues with the large graphs as the DCAT algorithm outperforms

the BSPT algorithm at all the tested densities. The assumption that DCAT has a

77

bigger advantage on larger graphs is confirmed by those results, as the gap in the

latency is bigger than with the two smaller sets of graphs. Figure 20 shows the

same pattern that we’ve seen in the previous subsections where the gap in latency

is bigger at higher densities. Only 6 of the 1600 graphs give the advantage to the

BSPT algorithm, or 0.375% of the test cases. The worst case occurs at a density of

175 where the BSPT outperforms the DCAT algorithm by 6.02%.

Nodes Density BSPT DCAT Difference Gain (%)
1050 8 38.92 37.33 1.59 4.09
1335 10 40.03 37.53 2.5 6.25
2000 15 45.22 40.94 4.28 9.46
2670 20 51.41 44.77 6.64 12.92
3340 25 58.04 48.74 9.3 16.02
4005 30 63.98 53 10.98 17.16
5340 40 76.97 61.35 15.62 20.29
6650 50 90.08 70.47 19.61 21.77
7990 60 103.21 80.77 22.44 21.74
9980 75 122.12 96.05 26.07 21.35

11960 90 141.39 112.18 29.21 20.66
13300 100 154.34 123.64 30.7 19.89
16625 125 186.22 151.71 34.51 18.53
19950 150 216.69 181.28 35.41 16.34
23275 175 247.88 211.81 36.07 14.55
26600 200 278.35 241.51 36.84 13.24

Table 4: Average aggregation convergecast latency comparison between DCAT and
BSPT for a network size of 20 by 20.

Figure 21 presents the gains in percentage for the large graphs. Again, gains are

bigger as the density increases up until a peak is reached. This time, the peak occurs

at an even higher density of 50. We also get the highest gains in percentage of all

the tests with a peak of 21.77%, which is a significant gain over BSPT.

78

0

5

10

15

20

25

8 10 15 20 25 30 40 50 60 75 90 100 125 150 175 200

%
 G

ai
n

Density

Figure 21: Average gains of using the DCAT algorithm when compared to the BSPT
algorithm for a network size of 20 by 20.

4.4 Simulation Results for Scheduling Algorithms

In this section, we evaluate the performance of the WIRES-G and DCATS algorithms

on randomly generated graphs. We use the same graphs that we used in Section 4.3

with the same three sizes (small, medium and large).

4.4.1 Performance Comparison for Small Graphs (5 by 5)

We start with the performance on small graphs. Figure 22 shows the performance of

WIRES-G and DCATS compared with WIRES. We can see that WIRES-G reduces

the latency of the schedule in all cases, regardless of the tree building algorithm used.

An interesting result is that BSPT-WIRES-G is able to slightly outperform DCAT-

WIRES, which suggest that the scheduling algorithm is more important that the

tree-building algorithm for small graphs. The DCAT-WIRES-G algorithm beats all

the other algorithms except DCATS, with bigger gains at higher densities. Figure 22

also shows the lower bounds of the shortest path trees. The lower bound is calculated

using our optimal algorithm for scheduling a tree.

79

0

50

100

150

200

250

8 10 15 20 25 30 40 50 60 75 90 100 125 150 175 200

La
te

n
cy

Density

BSPT-WIRES

DCAT-WIRES

BSPT-WIRES-G

DCAT-WIRES-G

DCATS

BSPT (LB)

DCATS (LB)

Figure 22: Average aggregation convergecast latency for a network size of 5 by 5.

Density BSPT-WIRES DCAT-WIRES BSPT-WIRES-G DCAT-WIRES-G DCATS

8 17.45 16.29 15.36 14.64 14.12
10 19.46 17.74 16.78 15.61 15
15 26.08 22.99 21.98 19.75 18.59
20 32.11 27.82 26.9 24.04 22.12
25 37.72 32.71 31.39 28.34 25.36
30 43.73 38.2 37.14 33.67 29.23
40 55.89 49.15 48.63 44.34 36.13
50 67.78 60.6 59.7 54.89 43.36
60 79.11 71.29 70.52 64.72 50.7
75 96.58 88.2 86.85 80.63 60.69
90 113.96 103.94 103.24 95.82 71.36

100 125.19 115.26 114.3 105.8 78.88
125 153.2 142.7 141.16 131 94.57
150 181.78 170.07 168.84 157.35 112.61
175 210.89 197.55 195.4 183 130.13
200 239.53 226.48 223.53 209.54 147.28

Table 5: Average aggregation convergecast latency for a network size of 5 by 5.

80

In our experiments. we observed that the lower bounds of the trees generated by

either BSPT, DCAT, BSPT-WIRES-G or DCAT-WIRES-G are all very similar and

vary only by a latency of less than 0.5 time slots in the worst case. For this reason, we

only show the lower bound of the tree generated by BSPT (usually the lowest), but

the other lower bounds would appear almost identical on the chart. Note that the

DCAT-WIRES-G algorithm comes close to the theoretical minimum allowed by its

tree. This means that no significant gains can be achieved without further modifying

the tree.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

8 10 15 20 25 30 40 50 60 75 90 100 125 150 175 200

%
 G

ai
n

Density

DCAT-WIRES

BSPT-WIRES-G

DCAT-WIRES-G

DCATS

Figure 23: Average gains of using DCAT, WIRES-G or DCATS when compared to
WIRES-BSPT for a network size of 5 by 5.

The best algorithm for small graphs is definitely DCATS. We can see that the

average latency of the schedules produced by DCATS is way lower than the other

algorithms, especially at high densities. DCATS is even significantly below the lower

bound of the tree generated by BSPT. At a density of 200, DCATS outperforms

DCAT-WIRES-G by more than 25%, and it beats BSPT-WIRES by almost 40%.

What is even more impressive is that the gains in percentage seem to steadily increase

with the density, never reaching a peak (see Figure 23).

81

Density DCAT-WIRES BSPT-WIRES-G DCAT-WIRES-G DCATS
8 6.65 11.98 16.10 19.08

10 8.84 13.77 19.78 22.92
15 11.85 15.72 24.27 28.72
20 13.36 16.23 25.13 31.11
25 13.28 16.78 24.87 32.77
30 12.65 15.07 23.00 33.16
40 12.06 12.99 20.67 35.36
50 10.59 11.92 19.02 36.03
60 9.88 10.86 18.19 35.91
75 8.68 10.07 16.51 37.16
90 8.79 9.41 15.92 37.38

100 7.93 8.70 15.49 36.99
125 6.85 7.86 14.49 38.27
150 6.44 7.12 13.44 38.05
175 6.33 7.35 13.22 38.29
200 5.45 6.68 12.52 38.51

Table 6: Average latency gains of using DCAT, WIRES-G or DCATS when compared
to BSPT-WIRES for a network size of 5 by 5.

4.4.2 Performance Comparison for Medium-Sized

Graphs (10 by 10)

We look at the performance of WIRES-G and DCATS on medium-sized graphs. As

shown in Figure 24, WIRES-G again reduces the latency of the schedule in all cases

when compared to WIRES. This time though, DCAT-WIRES is able to beat BSPT-

WIRES-G at densities between 15 and 60 inclusively (see Table 7). This confirms

what we had seen in Section 4.3 that the tree selection is more important for larger

graphs. As was the case for smaller graphs, the DCAT-WIRES-G algorithm beats

all the other algorithms except DCATS, and it comes close to the lower bound of the

generated tree. This seems to confirm that the gains of DCAT and WIRES-G are

additive.

Again, we can see that DCATS is the best at all densities and that the margin is

bigger at higher densities. However, the difference with DCAT-WIRES-G is smaller

82

0

50

100

150

200

250

300

8 10 15 20 25 30 40 50 60 75 90 100 125 150 175 200

La
te

n
cy

Density

BSPT-WIRES

DCAT-WIRES

BSPT-WIRES-G

DCAT-WIRES-G

DCATS

BSPT (LB)

DCATS (LB)

Figure 24: Average aggregation convergecast latency for a network size of 10 by 10.

Density BSPT-WIRES DCAT-WIRES BSPT-WIRES-G DCAT-WIRES-G DCATS

8 24.96 23.47 22.96 21.95 21.74
10 27.22 24.78 24.31 22.32 22.18
15 33.62 28.65 28.82 25.23 25.03
20 39.91 33.22 33.46 28.67 28.31
25 46.24 37.88 38.37 32.7 31.76
30 52.5 42.56 43.22 36.69 35.29
40 64.97 53.15 53.49 46.27 42.77
50 77.49 63.45 64.2 55.69 50.49
60 90.65 74.93 75.36 66.25 59.03
75 108.42 91.86 91.62 82.11 72.09
90 126.65 108.92 108.42 98.54 85.45

100 138.71 120.77 120.06 108.72 95.64
125 168.45 149.03 147.51 133.84 118.79
150 197.5 178.19 174.95 160.7 143.48
175 227.33 208.79 202.97 187.22 167.28
200 257.08 238.26 230.68 214.75 192.88

Table 7: Average aggregation convergecast latency for a network size of 10 by 10.

83

than with smaller graphs. At densities below 25, the difference between the two

is lower than 1%, which is marginal. The difference if much more impressive at

higher densities where DCATS has a performance advantage of close to 10%. The

performance benefits of DCATS when compared to BSPT-WIRES seem to reach a

peak close to 35% at a density of 60 (see Figure 25). This is a little lower than the

38.5% obtained for smaller graphs.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

8 10 15 20 25 30 40 50 60 75 90 100 125 150 175 200

%
 G

ai
n

Density

DCAT-WIRES

BSPT-WIRES-G

DCAT-WIRES-G

DCATS

Figure 25: Average gains of using DCAT, WIRES-G or DCATS when compared to
WIRES-BSPT for a network size of 10 by 10.

Note that the lower bound of the tree generated by DCATS is higher than the

lower bound of the tree generated by BSPT at low densities (20 and below). This

doesn’t prevent DCATS from doing well at low densities as it performs close to its

lower bound at every densities. It is also worth noting that DCATS outperformed

BSPT-WIRES in every single graph that we tested by a minimum of 3.33%.

4.4.3 Performance Comparison for Large Graphs (20 by 20)

We look at the performance of WIRES-G and DCATS on large graphs. As shown

in Figure 26, WIRES-G again reduces the latency of the schedule in all cases when

compared to WIRES. However, DCAT-WIRES shows a better performance than

84

Density DCAT-WIRES BSPT-WIRES-G DCAT-WIRES-G DCATS
8 5.97 8.01 12.06 12.90

10 8.96 10.69 18.00 18.52
15 14.78 14.28 24.96 25.55
20 16.76 16.16 28.16 29.07
25 18.08 17.02 29.28 31.31
30 18.93 17.68 30.11 32.78
40 18.19 17.67 28.78 34.17
50 18.12 17.15 28.13 34.84
60 17.34 16.87 26.92 34.88
75 15.27 15.50 24.27 33.51
90 14.00 14.39 22.20 32.53

100 12.93 13.45 21.62 31.05
125 11.53 12.43 20.55 29.48
150 9.78 11.42 18.63 27.35
175 8.16 10.72 17.64 26.42
200 7.32 10.27 16.47 24.97

Table 8: Average latency gains of using DCAT, WIRES-G or DCATS when compared
to BSPT-WIRES for a network size of 10 by 10.

0

50

100

150

200

250

300

8 10 15 20 25 30 40 50 60 75 90 100 125 150 175 200

La
te

n
cy

Density

BSPT-WIRES

DCAT-WIRES

BSPT-WIRES-G

DCAT-WIRES-G

DCATS

BSPT (LB)

DCATS (LB)

Figure 26: Average aggregation convergecast latency for a network size of 20 by 20.

85

BSPT-WIRES-G at almost all densities (see Table 9). This is in contrast with what

we saw for small graphs where BSPT-WIRES-G was better at all densities. For large

graphs, only the 3 lowest and 2 highest densities show the BSPT-WIRES-G algorithm

having a lower average latency than DCAT-WIRES. This proves that starting with

a good tree has an important impact on the overall schedule. As expected and if

we exclude DCATS, DCAT-WIRES-G is once again the best at all densities and it

is up to 15% better than BSPT-WIRES-G at medium densities, which is significant

considering that they use the same scheduling algorithm.

Density BSPT-WIRES DCAT-WIRES BSPT-WIRES-G DCAT-WIRES-G DCATS

8 38.92 37.33 37.11 35.82 35.48
10 40.03 37.53 37.41 35.55 35.37
15 45.22 40.94 40.78 37.46 37.49
20 51.41 44.77 44.96 39.92 40.3
25 58.04 48.74 49.5 42.42 43.31
30 63.98 53 53.47 45.14 46.73
40 76.97 61.35 62.93 51.38 53.93
50 90.08 70.47 72.58 58.86 61.41
60 103.21 80.77 83.03 68.59 69.92
75 122.12 96.05 98.34 82.51 84.68
90 141.39 112.18 114.52 98.38 97.41

100 154.34 123.64 125.76 109.49 106.65
125 186.22 151.71 153.59 135.75 130.85
150 216.69 181.28 182 162.36 154.58
175 247.88 211.81 210.99 190.98 179.47
200 278.35 241.51 238.29 218.51 204.03

Table 9: Average aggregation convergecast latency for a network size of 20 by 20.

For the first time, the latency of DCATS is above the lower bound of BSPT at

all densities. DCAT-WIRES-G is even able to beat DCATS at densities between 15

and 75 inclusively. DCAT-WIRES-G also obtains the highest gains when compared

to BSPT-WIRES, with 34.66% at a density of 50 (see Figure 27). DCATS reaches its

peak at a higher density of 60 and with a smaller gain of 32.25% over BSPT-WIRES.

These results suggests that the greedy approach of selecting a parent exclusively

86

0

5

10

15

20

25

30

35

40

8 10 15 20 25 30 40 50 60 75 90 100 125 150 175 200

%
 G

ai
n

Density

DCAT-WIRES

BSPT-WIRES-G

DCAT-WIRES-G

DCATS

Figure 27: Average gains of using DCAT, WIRES-G or DCATS when compared to
WIRES-BSPT for a network size of 20 by 20.

Density DCAT-WIRES BSPT-WIRES-G DCAT-WIRES-G DCATS
8 4.09 4.65 7.97 8.84

10 6.25 6.55 11.19 11.64
15 9.46 9.82 17.16 17.09
20 12.92 12.55 22.35 21.61
25 16.02 14.71 26.91 25.38
30 17.16 16.43 29.45 26.96
40 20.29 18.24 33.25 29.93
50 21.77 19.43 34.66 31.83
60 21.74 19.55 33.54 32.25
75 21.35 19.47 32.44 30.66
90 20.66 19.00 30.42 31.11

100 19.89 18.52 29.06 30.90
125 18.53 17.52 27.10 29.73
150 16.34 16.01 25.07 28.66
175 14.55 14.88 22.95 27.60
200 13.24 14.39 21.50 26.70

Table 10: Average latency gains of using DCAT, WIRES-G or DCATS when com-
pared to BSPT-WIRES for a network size of 20 by 20.

87

on its number of neighbors might have some drawbacks. Indeed, it seems like the

more balanced approach of first considering the parents on the shortest paths to the

sink is better in some cases. Still, DCATS is able to outperform the other algorithms

at low and very high densities and it beats BSPT-WIRES in every single test with a

minimum gain of 2.27%. In comparison, there were 2 tests in which DCAT-WIRES-G

produced a schedule that had the same latency as the one produced by BSPT-WIRES.

We also noted that the standard deviation of DCATS results was lower than those

of DCAT-WIRES-G (4.48 vs 5.35). This suggests that DCATS might have a more

predictable performance.

4.5 Performance Analysis

In this section, we analyze the strengths and weaknesses of our heuristic algorithms

DCAT, WIRES-G and DCATS.

4.5.1 DCAT Performance

We look at the simulation results presented in Section 4.3 to get a better understand-

ing of why the DCAT algorithm is better than BSPT in almost all the test cases.

We also investigate the rare case where BSPT outperforms DCAT by 14.95% and we

give some ideas that could improve the performance of DCAT in this case.

We start by looking at the heuristic used in DCAT. The heuristic is quite simple

and only looks at the degree in the graph when selecting a parent. The potential

parent with the lowest degree is always selected, no matter what is its current degree

in the aggregation tree. Figure 28 gives some insight as to why this simple heuristic

beats a more complex algorithm like BSPT. The figure shows the relation between

the number of neighbors in the graph and the average number of children in the

88

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88

A
vg

.
N

u
m

b
e

r
o

f
C

h
ild

re
n

Number of Neighbors

BSPT

DCAT

Figure 28: Relationship between the degree in the graph and the average number of
children in the aggregation tree for a density of 30.

aggregation tree. We can see that BSPT assigns a lot more children to high-degree

nodes than DCAT, whereas DCAT tends to assign more children to nodes that have

a degree below the network density. Having less high-degree nodes as parents in the

tree gives the scheduling algorithm a chance to schedule more nodes at the same time

slot, which helps reduce the overall latency of the schedule.

The pattern is similar at higher densities, as shown in Figure 29 for a density

of 100. Note that the BSPT algorithm tends to distribute the children more evenly

between the parents. On the other hand, DCAT sometimes assigns a high number of

nodes per parent (see Figures 30 and 31). This is particularly evident at a density of

100 where a little more than 5000 nodes end up with a number of children higher or

equal to 15. This is compared to the fact that BSPT has never assigned more than

14 children to the same node for the same tests.

Simulation results have shown that assigning more children to lower-degree nodes

is better in almost all cases, even if some nodes end up with a high number of children.

However, the fact that some nodes have a high number of children might give us an

89

0

0.5

1

1.5

2

2.5

1
9

2
4

2
9

3
4

3
9

4
4

4
9

5
4

5
9

6
4

6
9

7
4

7
9

8
4

8
9

9
4

9
9

1
0
4

1
0
9

1
1
4

1
1
9

1
2
4

1
2
9

1
3
4

1
3
9

1
4
4

1
4
9

1
5
4

A
vg

.
N

u
m

b
e

r
o

f
C

h
ild

re
n

Number of Neighbors

BSPT

DCAT

Figure 29: Relationship between the degree in the graph and the average number of
children in the aggregation tree for a density of 100.

1

10

100

1000

10000

100000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

N
u

m
b

e
r

o
f

N
o

d
e

s

Number of Children

BSPT

DCAT

Figure 30: Number of nodes that have a certain number of children in the aggregation
tree (density=30).

90

1

10

100

1000

10000

100000

1000000

0 5 10 15 20 25 30 35 40 45 50 55 60

N
u

m
b

e
r

o
f

N
o

d
e

s

Number of Children

BSPT

DCAT

Figure 31: Number of nodes that have a certain number of children in the aggregation
tree (density=100).

idea as to why there are some rare cases where DCAT does not perform well. For

example, if the degree between the potential parents is very close, DCAT will always

select the lowest degree node, even if it already has a high number of children. When

one node has a very high degree in the aggregation tree, it becomes a bottleneck for

any scheduling algorithm that doesn’t alter the tree.

We tried several approaches to improve the heuristic and get a better aggregation

tree. One idea was to handle cases where more than one potential parent have the

same degree, and to resolve ties by looking at the current number of assigned children

in the tree. This new heuristic did improve the results in some cases, but it was worse

in other cases and the overall performance was similar. Another way to resolve ties

was to use the parent that is physically the closest to the child, but the results were

mixed in that case too. Finally, instead of systematically taking the parent with the

lowest degree, we tried to add some randomness by calculating a random number

and selecting the parent based on this number. The calculation was done in such a

way that the potential parents with the lowest degrees were a lot more likely to be

91

selected, and the ones with the highest degrees had very little chance. The results

of this approach were generally worse than DCAT, and by tweaking the calculation

could not make it better than DCAT. In the end, we didn’t find a better heuristic

that was significantly better than the simple one used in DCAT.

4.5.2 WIRES-G and DCATS Performance

We look at the simulation results presented in Section 4.4 and we analyze the ag-

gregation trees generated by the WIRES-G and DCATS algorithms. We determine

what makes them perform well in our experiments and we investigate their flaws to

see where they could be improved.

0

1

2

3

4

5

6

7

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88

A
vg

.
N

u
m

b
e

r
o

f
C

h
ild

re
n

Number of Neighbors

BSPT

DCAT

BSPT-WIRES-G

DCAT-WIRES-G

DCATS

Figure 32: Relationship between the degree in the graph and the average number of
children in the aggregation tree for a density of 30.

We start by looking at the relationship between the degree in the graph and the

average number of children in the aggregation tree. Figure 32 shows this relationship

for the medium-sized random graphs at a density of 30. As expected, we can see

that the DCAT-based algorithms assign a very low number of children to high-degree

nodes. The BSPT-WIRES-G combination has the best distribution of children among

92

all the algorithms, although it doesn’t translate into the best overall performance.

The DCATS algorithm assigns the highest number of children to low-degree nodes,

and the lowest number of children to high-degree nodes. This is one reason why it

performs well in our experiments. Figure 33 shows almost exactly the same pattern

at a higher density of 100.

0

1

2

3

4

5

6

7

8

9

10

1
9

2
4

2
9

3
4

3
9

4
4

4
9

5
4

5
9

6
4

6
9

7
4

7
9

8
4

8
9

9
4

9
9

1
0
4

1
0
9

1
1
4

1
1
9

1
2
4

1
2
9

1
3
4

1
3
9

1
4
4

1
4
9

1
5
4

A
vg

.
N

u
m

b
e

r
o

f
C

h
ild

re
n

Number of Neighbors

BSPT

DCAT

BSPT-WIRES-G

DCAT-WIRES-G

DCATS

Figure 33: Relationship between the degree in the graph and the average number of
children in the aggregation tree for a density of 100.

Another interesting property to look at in the aggregation trees is the location of

the nodes with the highest number of children. To measure this property for a given

density, we take all the nodes in all the aggregation trees and we take the thousand

nodes with the highest number of children in the tree. The results for medium-sized

graphs and for a density of 30 are presented in Figure 34. We can see that the

sink (the node at distance 0) has always a very high number of children with all

algorithms except for DCATS. This can be easily explained by the fact that we start

with a shortest path tree. Therefore, all the nodes that are one hop away from the

sink will be children of the sink, and the degree of the sink becomes a lower bound for

the scheduling algorithm. This is particularly bad for small networks where a high

93

sink degree has a bigger impact on the overall latency.

0

20

40

60

80

100

120

140

160

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

N
u

m
b

e
r

o
f

H
ig

h
-D

e
gr

e
e

 N
o

d
e

s

Distance (in hops)

BSPT

DCAT

BSPT-WIRES-G

DCAT-WIRES-G

DCATS

Figure 34: Location of the high-degree nodes in the aggregation tree (density=30).

DCATS doesn’t have this problem because it alters the original tree to schedule

as many nodes as possible at the same time. In most cases, the sink ends up with a

low number of children and it is even more obvious at high densities (see Figure 35).

At high densities, DCATS almost never assigns a high number of children to the sink.

0

20

40

60

80

100

120

140

160

180

0 2 4 6 8 10 12 14 16 18 20 22 24 26

N
u

m
b

e
r

o
f

H
ig

h
-D

e
ge

e
 N

o
d

e
s

Distance (in hops)

BSPT

DCAT

BSPT-WIRES-G

DCAT-WIRES-G

DCATS

Figure 35: Location of the high-degree nodes in the aggregation tree (density=100).

We would think that the WIRES-G algorithm should also have a similar behavior

94

regarding the number of children assigned to the sink, as it uses the same Greedy-

Scheduling procedure. The problem with WIRES-G is that it first schedules as

many nodes as possible without altering the tree, and then it calls the Greedy-

Scheduling procedure to schedule more nodes. It works well at the bottom of the

tree, but once we reach the sink, the additional step is unable to schedule more nodes.

Indeed, as soon as one node is scheduled to transmit to the sink, no other neighbor

of the sink can transmit at the same time without causing a conflict. This explains

why DCATS perform so well compared to DCAT-WIRES-G on small graphs with

high densities

We observed that having high-degree nodes close to the top of the tree generally

leads to higher latency. This can be explained by the fact that the possibility of

parallelism is reduced as we get closer to the sink, because there are fewer nodes to

choose from. Having high-degree nodes at the bottom of the tree is also generally bad,

because the information cannot go up the tree until all children have transmitted.

This is where DCATS is bad compared to the other algorithms and might explain

why it is outperformed by DCAT-WIRES-G on large graphs with medium densities.

A hybrid approach that combines the benefits of both algorithms could possibly

be designed to improve the results on larger graphs. For example, the WIRES-

G algorithm could be used at the lower levels in the tree and the DCATS algorithm

could be used at higher levels. Such an approach would have the potential of avoiding

high-degree nodes at both ends of the tree.

95

Chapter 5

Conclusion and Future Work

In this thesis, we looked at the problem of data gathering in wireless sensor net-

works. We discussed the importance of in-network data aggregation to save energy

and reduce the latency of the data gathering operation. We specifically looked at

applications where all the information can be aggregated into a single message us-

ing an aggregation function. We studied the problem of finding a minimum latency

aggregation tree and transmission schedule. This problem is referred to as MLAS

(Minimum Latency Aggregation Scheduling) in the literature and has been proven to

be NP-Complete even for unit disk graphs [8]. We presented a new simpler proof of

the NP-Completeness of the MLAS Problem for arbitrary networks by reducing from

the well known 3-SAT problem. Using the same technique and gadget, we proposed

a reduction from a restricted version of the planar 3-SAT problem to show that the

problem is also NP-Complete for unit disk graphs.

We gave algorithms that build optimal aggregation trees and schedules for three

specific topologies: grids, tori and trees. For regular unit interval graphs, we provided

an algorithm that builds a schedule which is guaranteed to have a latency that is

within one time slot of the optimal latency. Finally, for unit interval graphs we gave

96

a 2-approximation algorithm to solve the same problem. The MLAS problem has not

been proven to be NP-Complete for unit interval graphs, so the problem of finding a

polynomial-time algorithm for building an optimal tree and schedule for unit interval

graphs remains open. Finding an algorithm with a constant approximation ratio for

unit disk graphs is also an open problem, as the best currently known approximation

ratio is 4− 1 [8].

For arbitrary graphs, we gave a new algorithm called DCAT for building an ag-

gregation tree. Simulation results show that DCAT outperforms the previous best

tree-building algorithm in terms of latency of the schedule by up to 22%, and that it

is better at all the tested densities. We added a greedy step to a known scheduling

algorithm called WIRES, and we called the modified algorithm WIRES-G. In our

simulations, WIRES-G is better than WIRES by up to 15%, and it is also better

at all densities. Furthermore, we proposed DCATS, a new algorithm that combines

DCAT with a modified version of the greedy scheduling introduced in WIRES-G. This

new algorithm ended up being the best in almost all tests, being only outperformed

on large graphs by the combination of DCAT and WIRES-G and at medium densi-

ties. The performance of DCATS is particularly impressive on small graphs where its

greedy approach allows it to be really efficient at high densities, with latency gains

of up to 38.51%.

It was shown by our analysis that the approach used in DCATS is better suited

to schedule the higher levels in the aggregation tree, and that the approach used in

WIRES-G is better at the lower levels. In the future, a new algorithm could com-

bine both approaches by using WIRES-G at the bottom of the tree and switching to

DCATS when getting closer to the top. Such an algorithm would have the potential

to significantly reduce the overall latency of the schedule on large graphs. Another

possible approach would be to try to build the tree and the schedule in one single

97

phase, instead of the two-phase algorithms that currently exist. Our DCATS algo-

rithm is already a step in this direction, as it performs significant modifications of the

original tree. Finally, a CDS-based approach where the CDS would contain as many

low-degree nodes as possible could also lead to interesting results. Indeed, previous

CDS-based approaches failed to achieve good results mainly because they tend to

assign many children to high-degree nodes. An approach that would instead assign

many children to low-degree nodes, similar to what we do in DCAT but without the

shortest path constraint, could probably perform well in practice.

98

Bibliography

[1] TinyOS home page. http://www.tinyos.net/.

[2] Ian F. Akyildiz, Weilian Su, Yogesh Sankarasubramaniam, and Erdal Cayirci.

A survey on sensor networks. IEEE Communications Magazine, 40(8):102–114,

2002.

[3] Ian F. Akyildiz, Weilian Su, Yogesh Sankarasubramaniam, and Erdal Cayirci.

Wireless sensor networks: a survey. Computer Networks, 38(4):393–422, 2002.

[4] Jamal N. Al-Karaki and Ahmed E. Kamal. Routing techniques in wireless sensor

networks: a survey. IEEE Wireless Communications, 11(6):6–28, 2004.

[5] Valliappan Annamalai, Sandeep KS Gupta, and Loren Schwiebert. On tree-

based convergecasting in wireless sensor networks. In Proceedings of the IEEE

Wireless Communications and Networking Conference (WCNC’03), volume 3,

pages 1942–1947. IEEE, 2003.

[6] John Augustine, Qi Han, Philip Loden, Sachin Lodha, and Sasanka Roy. Tight

analysis of shortest path convergecast in wireless sensor networks. International

Journal of Foundations of Computer Science, 24(01):31–50, 2013.

99

[7] Supriyo Chatterjea and Paul Havinga. A dynamic data aggregation scheme for

wireless sensor networks. In ProRISC 2003, 14th Workshop on Circuits, Systems

and Signal Processing, 2003.

[8] Xujin Chen, Xiaodong Hu, and Jianming Zhu. Minimum data aggregation time

problem in wireless sensor networks. In Proceedings of the First International

Conference on Mobile Ad-hoc and Sensor Networks, MSN’05, pages 133–142,

Berlin, Heidelberg, 2005. Springer-Verlag.

[9] Imrich Chlamtac and Shay Kutten. On broadcasting in radio networks–

problem analysis and protocol design. IEEE Transactions on Communications,

33(12):1240–1246, 1985.

[10] Hongsik Choi, Ju Wang, and E.A. Hughes. Scheduling on sensor hybrid network.

In Proceedings of the 14th International Conference on Computer Communica-

tions and Networks (ICCCN), pages 503–508, 2005.

[11] Ilker Demirkol, Cem Ersoy, and Fatih Alagoz. MAC protocols for wireless sensor

networks: a survey. IEEE Communications Magazine, 44(4):115–121, 2006.

[12] Sinem Coleri Ergen and Pravin Varaiya. TDMA scheduling algorithms for wire-

less sensor networks. Wireless Networks, 16(4):985–997, 2010.

[13] Shashidhar Gandham, Ying Zhang, and Qingfeng Huang. Distributed minimal

time convergecast scheduling in wireless sensor networks. In Proceedings of the

26th IEEE International Conference on Distributed Computing Systems, ICDCS

’06, pages 50–50. IEEE, 2006.

[14] Shashidhar Gandham, Ying Zhang, and Qingfeng Huang. Distributed time-

optimal scheduling for convergecast in wireless sensor networks. Computer Net-

works, 52(3):610–629, 2008.

100

[15] Nicholas J. A. Harvey, Richard E. Ladner, László Lovász, and Tami Tamir.

Semi-matchings for bipartite graphs and load balancing. Journal of Algorithms,

59(1):53–78, 2006.

[16] Tian He, Brian M. Blum, John A. Stankovic, and Tarek Abdelzaher. AIDA:

adaptive application-independent data aggregation in wireless sensor networks.

ACM Transactions on Embedded Computing Systems (TECS), 3(2):426–457,

2004.

[17] Sandra M. Hedetniemi, Stephen T. Hedetniemi, and Arthur L. Liestman. A

survey of gossiping and broadcasting in communication networks. Networks,

18(4):319–349, 1988.

[18] Wendi Rabiner Heinzelman, Anantha Chandrakasan, and Hari Balakrishnan.

Energy-efficient communication protocol for wireless microsensor networks. In

Proceedings of the 33rd Annual Hawaii International Conference, page 10. IEEE,

2000.

[19] Wendi Rabiner Heinzelman, Anantha Chandrakasan, and Hari Balakrishnan.

An application-specific protocol architecture for wireless microsensor networks.

IEEE Transactions on Wireless Communications, 1(4):660–670, 2002.

[20] Wendi Rabiner Heinzelman, Joanna Kulik, and Hari Balakrishnan. Adaptive

protocols for information dissemination in wireless sensor networks. In Proceed-

ings of the 5th Annual ACM/IEEE International Conference on Mobile Com-

puting and Networking, pages 174–185. ACM, 1999.

101

[21] SC-H. Huang, Peng-Jun Wan, Chinh T. Vu, Yingshu Li, and Frances Yao. Nearly

constant approximation for data aggregation scheduling in wireless sensor net-

works. In Proceedings of the 26th IEEE International Conference on Computer

Communications (INFOCOM), pages 366–372. IEEE, 2007.

[22] Chalermek Intanagonwiwat, Ramesh Govindan, and Deborah Estrin. Directed

diffusion: a scalable and robust communication paradigm for sensor networks.

In Proceedings of the 6th Annual International Conference on Mobile Computing

and Networking, pages 56–67. ACM, 2000.

[23] Chalermek Intanagonwiwat, Ramesh Govindan, Deborah Estrin, John Hei-

demann, and Fabio Silva. Directed diffusion for wireless sensor networking.

IEEE/ACM Transactions on Networking, 11(1):2–16, 2003.

[24] Alex Kesselman and Dariusz R. Kowalski. Fast distributed algorithm for con-

vergecast in ad hoc geometric radio networks. Journal of Parallel and Distributed

Computing, 66(4):578–585, 2006.

[25] Bhaskar Krishnamachari, Deborah Estrin, and Stephen Wicker. The impact of

data aggregation in wireless sensor networks. In Proceedings of the 22nd Inter-

national Conference on Distributed Computing Systems, pages 575–578. IEEE,

2002.

[26] Joanna Kulik, Wendi Heinzelman, and Hari Balakrishnan. Negotiation-based

protocols for disseminating information in wireless sensor networks. Wireless

Networks, 8(2/3):169–185, 2002.

[27] Sandeep Kulkarni. TDMA service for sensor networks. In Proceedings of the

24th International Conference on Distributed Computing Systems, pages 604–

609, 2004.

102

[28] David Lichtenstein. Planar formulae and their uses. SIAM Journal on Comput-

ing, 11(2):329–343, 1982.

[29] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong.

TAG: a tiny aggregation service for ad-hoc sensor networks. ACM SIGOPS

Operating Systems Review, 36(SI):131–146, 2002.

[30] Baljeet Malhotra, Ioanis Nikolaidis, and Mario A. Nascimento. Aggregation con-

vergecast scheduling in wireless sensor networks. Wireless Networks, 17(2):319–

335, 2011.

[31] Chris Olston, Boon Thau Loo, and Jennifer Widom. Adaptive precision setting

for cached approximate values. ACM SIGMOD Record, 30(2):355–366, 2001.

[32] Ramesh Rajagopalan and Pramod K. Varshney. Data aggregation techniques in

sensor networks: A survey. IEEE Communications Surveys & Tutorials, 8(4):48–

63, 2006.

[33] Eugene Shih, Seong-Hwan Cho, Nathan Ickes, Rex Min, Amit Sinha, Alice Wang,

and Anantha Chandrakasan. Physical layer driven protocol and algorithm design

for energy-efficient wireless sensor networks. In Proceedings of the 7th Annual

International Conference on Mobile Computing and Networking, pages 272–287.

ACM, 2001.

[34] Peter J. Slater, Ernest J. Cockayne, and Sandra T. Hedetniemi. Information

dissemination in trees. SIAM Journal on Computing, 10(4):692–701, 1981.

[35] Sarma Upadhyayula, Valliappan Annamalai, and Sandeep KS Gupta. A low-

latency and energy-efficient algorithm for convergecast in wireless sensor net-

works. In IEEE Global Telecommunications Conference (GLOBECOM’03), vol-

ume 6, pages 3525–3530. IEEE, 2003.

103

[36] Peng-Jun Wan, Khaled M. Alzoubi, and Ophir Frieder. Distributed construction

of connected dominating set in wireless ad hoc networks. In Proceedings of the

Twenty-First Annual Joint Conference of the IEEE Computer and Communica-

tions Societies (INFOCOM), volume 3, pages 1597–1604. IEEE, 2002.

[37] Peng-Jun Wan, Scott C.-H. Huang, Lixin Wang, Zhiyuan Wan, and Xiaohua

Jia. Minimum-latency aggregation scheduling in multihop wireless networks.

In Proceedings of the 10th ACM International Symposium on Mobile Ad Hoc

Networking and Computing, pages 185–194. ACM, 2009.

[38] Minji Wu, J. Jianliang Xu, X. Xueyan Tang, and W.-C. Wang-Chien Lee. Top-k

monitoring in wireless sensor networks. IEEE Transactions on Knowledge and

Data Engineering, 19(7):962–976, 2007.

[39] XiaoHua Xu, ShiGuang Wang, XuFei Mao, ShaoJie Tang, and Xiang Yang Li.

An improved approximation algorithm for data aggregation in multi-hop wire-

less sensor networks. In Proceedings of the 2nd ACM International Workshop

on Foundations of Wireless Ad Hoc and Sensor Networking and Computing,

FOWANC ’09, pages 47–56, New York, NY, USA, 2009. ACM.

[40] Bo Yu, Jianzhong Li, and Yingshu Li. Distributed data aggregation scheduling

in wireless sensor networks. In Proceedings of the 28th Conference on Computer

Communications (INFOCOM), pages 2159–2167. IEEE, 2009.

[41] Jianming Zhu and Xiaodong Hu. Improved algorithm for minimum data aggre-

gation time problem in wireless sensor networks. Journal of Systems Science and

Complexity, 21(4):626–636, 2008.

104

